diff options
author | volzhs <volzhs@gmail.com> | 2017-12-12 02:11:11 +0900 |
---|---|---|
committer | volzhs <volzhs@gmail.com> | 2017-12-12 02:55:47 +0900 |
commit | 043103fe6a1168729abf74dd56b8982ce54eea43 (patch) | |
tree | f3311c0442fba0ff565d9de0ad9fee3f0002295e /thirdparty/libwebp/enc/quant_enc.c | |
parent | 64d104756c04f4d5c4e8140271d5e8049e5f8371 (diff) |
Update libwebp to 0.6.1
* lossless performance and compression improvements + a new 'cruncher' mode (-m 6 -q 100)
* ARM performance improvements with clang (15-20% w/ndk r15c)
* webp-js: emscripten/webassembly based javascript decoder
* miscellaneous bug & build fixes
Diffstat (limited to 'thirdparty/libwebp/enc/quant_enc.c')
-rw-r--r-- | thirdparty/libwebp/enc/quant_enc.c | 1283 |
1 files changed, 0 insertions, 1283 deletions
diff --git a/thirdparty/libwebp/enc/quant_enc.c b/thirdparty/libwebp/enc/quant_enc.c deleted file mode 100644 index b118fb2a13..0000000000 --- a/thirdparty/libwebp/enc/quant_enc.c +++ /dev/null @@ -1,1283 +0,0 @@ -// Copyright 2011 Google Inc. All Rights Reserved. -// -// Use of this source code is governed by a BSD-style license -// that can be found in the COPYING file in the root of the source -// tree. An additional intellectual property rights grant can be found -// in the file PATENTS. All contributing project authors may -// be found in the AUTHORS file in the root of the source tree. -// ----------------------------------------------------------------------------- -// -// Quantization -// -// Author: Skal (pascal.massimino@gmail.com) - -#include <assert.h> -#include <math.h> -#include <stdlib.h> // for abs() - -#include "./vp8i_enc.h" -#include "./cost_enc.h" - -#define DO_TRELLIS_I4 1 -#define DO_TRELLIS_I16 1 // not a huge gain, but ok at low bitrate. -#define DO_TRELLIS_UV 0 // disable trellis for UV. Risky. Not worth. -#define USE_TDISTO 1 - -#define MID_ALPHA 64 // neutral value for susceptibility -#define MIN_ALPHA 30 // lowest usable value for susceptibility -#define MAX_ALPHA 100 // higher meaningful value for susceptibility - -#define SNS_TO_DQ 0.9 // Scaling constant between the sns value and the QP - // power-law modulation. Must be strictly less than 1. - -// number of non-zero coeffs below which we consider the block very flat -// (and apply a penalty to complex predictions) -#define FLATNESS_LIMIT_I16 10 // I16 mode -#define FLATNESS_LIMIT_I4 3 // I4 mode -#define FLATNESS_LIMIT_UV 2 // UV mode -#define FLATNESS_PENALTY 140 // roughly ~1bit per block - -#define MULT_8B(a, b) (((a) * (b) + 128) >> 8) - -#define RD_DISTO_MULT 256 // distortion multiplier (equivalent of lambda) - -// #define DEBUG_BLOCK - -//------------------------------------------------------------------------------ - -#if defined(DEBUG_BLOCK) - -#include <stdio.h> -#include <stdlib.h> - -static void PrintBlockInfo(const VP8EncIterator* const it, - const VP8ModeScore* const rd) { - int i, j; - const int is_i16 = (it->mb_->type_ == 1); - const uint8_t* const y_in = it->yuv_in_ + Y_OFF_ENC; - const uint8_t* const y_out = it->yuv_out_ + Y_OFF_ENC; - const uint8_t* const uv_in = it->yuv_in_ + U_OFF_ENC; - const uint8_t* const uv_out = it->yuv_out_ + U_OFF_ENC; - printf("SOURCE / OUTPUT / ABS DELTA\n"); - for (j = 0; j < 16; ++j) { - for (i = 0; i < 16; ++i) printf("%3d ", y_in[i + j * BPS]); - printf(" "); - for (i = 0; i < 16; ++i) printf("%3d ", y_out[i + j * BPS]); - printf(" "); - for (i = 0; i < 16; ++i) { - printf("%1d ", abs(y_in[i + j * BPS] - y_out[i + j * BPS])); - } - printf("\n"); - } - printf("\n"); // newline before the U/V block - for (j = 0; j < 8; ++j) { - for (i = 0; i < 8; ++i) printf("%3d ", uv_in[i + j * BPS]); - printf(" "); - for (i = 8; i < 16; ++i) printf("%3d ", uv_in[i + j * BPS]); - printf(" "); - for (i = 0; i < 8; ++i) printf("%3d ", uv_out[i + j * BPS]); - printf(" "); - for (i = 8; i < 16; ++i) printf("%3d ", uv_out[i + j * BPS]); - printf(" "); - for (i = 0; i < 8; ++i) { - printf("%1d ", abs(uv_out[i + j * BPS] - uv_in[i + j * BPS])); - } - printf(" "); - for (i = 8; i < 16; ++i) { - printf("%1d ", abs(uv_out[i + j * BPS] - uv_in[i + j * BPS])); - } - printf("\n"); - } - printf("\nD:%d SD:%d R:%d H:%d nz:0x%x score:%d\n", - (int)rd->D, (int)rd->SD, (int)rd->R, (int)rd->H, (int)rd->nz, - (int)rd->score); - if (is_i16) { - printf("Mode: %d\n", rd->mode_i16); - printf("y_dc_levels:"); - for (i = 0; i < 16; ++i) printf("%3d ", rd->y_dc_levels[i]); - printf("\n"); - } else { - printf("Modes[16]: "); - for (i = 0; i < 16; ++i) printf("%d ", rd->modes_i4[i]); - printf("\n"); - } - printf("y_ac_levels:\n"); - for (j = 0; j < 16; ++j) { - for (i = is_i16 ? 1 : 0; i < 16; ++i) { - printf("%4d ", rd->y_ac_levels[j][i]); - } - printf("\n"); - } - printf("\n"); - printf("uv_levels (mode=%d):\n", rd->mode_uv); - for (j = 0; j < 8; ++j) { - for (i = 0; i < 16; ++i) { - printf("%4d ", rd->uv_levels[j][i]); - } - printf("\n"); - } -} - -#endif // DEBUG_BLOCK - -//------------------------------------------------------------------------------ - -static WEBP_INLINE int clip(int v, int m, int M) { - return v < m ? m : v > M ? M : v; -} - -static const uint8_t kZigzag[16] = { - 0, 1, 4, 8, 5, 2, 3, 6, 9, 12, 13, 10, 7, 11, 14, 15 -}; - -static const uint8_t kDcTable[128] = { - 4, 5, 6, 7, 8, 9, 10, 10, - 11, 12, 13, 14, 15, 16, 17, 17, - 18, 19, 20, 20, 21, 21, 22, 22, - 23, 23, 24, 25, 25, 26, 27, 28, - 29, 30, 31, 32, 33, 34, 35, 36, - 37, 37, 38, 39, 40, 41, 42, 43, - 44, 45, 46, 46, 47, 48, 49, 50, - 51, 52, 53, 54, 55, 56, 57, 58, - 59, 60, 61, 62, 63, 64, 65, 66, - 67, 68, 69, 70, 71, 72, 73, 74, - 75, 76, 76, 77, 78, 79, 80, 81, - 82, 83, 84, 85, 86, 87, 88, 89, - 91, 93, 95, 96, 98, 100, 101, 102, - 104, 106, 108, 110, 112, 114, 116, 118, - 122, 124, 126, 128, 130, 132, 134, 136, - 138, 140, 143, 145, 148, 151, 154, 157 -}; - -static const uint16_t kAcTable[128] = { - 4, 5, 6, 7, 8, 9, 10, 11, - 12, 13, 14, 15, 16, 17, 18, 19, - 20, 21, 22, 23, 24, 25, 26, 27, - 28, 29, 30, 31, 32, 33, 34, 35, - 36, 37, 38, 39, 40, 41, 42, 43, - 44, 45, 46, 47, 48, 49, 50, 51, - 52, 53, 54, 55, 56, 57, 58, 60, - 62, 64, 66, 68, 70, 72, 74, 76, - 78, 80, 82, 84, 86, 88, 90, 92, - 94, 96, 98, 100, 102, 104, 106, 108, - 110, 112, 114, 116, 119, 122, 125, 128, - 131, 134, 137, 140, 143, 146, 149, 152, - 155, 158, 161, 164, 167, 170, 173, 177, - 181, 185, 189, 193, 197, 201, 205, 209, - 213, 217, 221, 225, 229, 234, 239, 245, - 249, 254, 259, 264, 269, 274, 279, 284 -}; - -static const uint16_t kAcTable2[128] = { - 8, 8, 9, 10, 12, 13, 15, 17, - 18, 20, 21, 23, 24, 26, 27, 29, - 31, 32, 34, 35, 37, 38, 40, 41, - 43, 44, 46, 48, 49, 51, 52, 54, - 55, 57, 58, 60, 62, 63, 65, 66, - 68, 69, 71, 72, 74, 75, 77, 79, - 80, 82, 83, 85, 86, 88, 89, 93, - 96, 99, 102, 105, 108, 111, 114, 117, - 120, 124, 127, 130, 133, 136, 139, 142, - 145, 148, 151, 155, 158, 161, 164, 167, - 170, 173, 176, 179, 184, 189, 193, 198, - 203, 207, 212, 217, 221, 226, 230, 235, - 240, 244, 249, 254, 258, 263, 268, 274, - 280, 286, 292, 299, 305, 311, 317, 323, - 330, 336, 342, 348, 354, 362, 370, 379, - 385, 393, 401, 409, 416, 424, 432, 440 -}; - -static const uint8_t kBiasMatrices[3][2] = { // [luma-ac,luma-dc,chroma][dc,ac] - { 96, 110 }, { 96, 108 }, { 110, 115 } -}; - -// Sharpening by (slightly) raising the hi-frequency coeffs. -// Hack-ish but helpful for mid-bitrate range. Use with care. -#define SHARPEN_BITS 11 // number of descaling bits for sharpening bias -static const uint8_t kFreqSharpening[16] = { - 0, 30, 60, 90, - 30, 60, 90, 90, - 60, 90, 90, 90, - 90, 90, 90, 90 -}; - -//------------------------------------------------------------------------------ -// Initialize quantization parameters in VP8Matrix - -// Returns the average quantizer -static int ExpandMatrix(VP8Matrix* const m, int type) { - int i, sum; - for (i = 0; i < 2; ++i) { - const int is_ac_coeff = (i > 0); - const int bias = kBiasMatrices[type][is_ac_coeff]; - m->iq_[i] = (1 << QFIX) / m->q_[i]; - m->bias_[i] = BIAS(bias); - // zthresh_ is the exact value such that QUANTDIV(coeff, iQ, B) is: - // * zero if coeff <= zthresh - // * non-zero if coeff > zthresh - m->zthresh_[i] = ((1 << QFIX) - 1 - m->bias_[i]) / m->iq_[i]; - } - for (i = 2; i < 16; ++i) { - m->q_[i] = m->q_[1]; - m->iq_[i] = m->iq_[1]; - m->bias_[i] = m->bias_[1]; - m->zthresh_[i] = m->zthresh_[1]; - } - for (sum = 0, i = 0; i < 16; ++i) { - if (type == 0) { // we only use sharpening for AC luma coeffs - m->sharpen_[i] = (kFreqSharpening[i] * m->q_[i]) >> SHARPEN_BITS; - } else { - m->sharpen_[i] = 0; - } - sum += m->q_[i]; - } - return (sum + 8) >> 4; -} - -static void CheckLambdaValue(int* const v) { if (*v < 1) *v = 1; } - -static void SetupMatrices(VP8Encoder* enc) { - int i; - const int tlambda_scale = - (enc->method_ >= 4) ? enc->config_->sns_strength - : 0; - const int num_segments = enc->segment_hdr_.num_segments_; - for (i = 0; i < num_segments; ++i) { - VP8SegmentInfo* const m = &enc->dqm_[i]; - const int q = m->quant_; - int q_i4, q_i16, q_uv; - m->y1_.q_[0] = kDcTable[clip(q + enc->dq_y1_dc_, 0, 127)]; - m->y1_.q_[1] = kAcTable[clip(q, 0, 127)]; - - m->y2_.q_[0] = kDcTable[ clip(q + enc->dq_y2_dc_, 0, 127)] * 2; - m->y2_.q_[1] = kAcTable2[clip(q + enc->dq_y2_ac_, 0, 127)]; - - m->uv_.q_[0] = kDcTable[clip(q + enc->dq_uv_dc_, 0, 117)]; - m->uv_.q_[1] = kAcTable[clip(q + enc->dq_uv_ac_, 0, 127)]; - - q_i4 = ExpandMatrix(&m->y1_, 0); - q_i16 = ExpandMatrix(&m->y2_, 1); - q_uv = ExpandMatrix(&m->uv_, 2); - - m->lambda_i4_ = (3 * q_i4 * q_i4) >> 7; - m->lambda_i16_ = (3 * q_i16 * q_i16); - m->lambda_uv_ = (3 * q_uv * q_uv) >> 6; - m->lambda_mode_ = (1 * q_i4 * q_i4) >> 7; - m->lambda_trellis_i4_ = (7 * q_i4 * q_i4) >> 3; - m->lambda_trellis_i16_ = (q_i16 * q_i16) >> 2; - m->lambda_trellis_uv_ = (q_uv * q_uv) << 1; - m->tlambda_ = (tlambda_scale * q_i4) >> 5; - - // none of these constants should be < 1 - CheckLambdaValue(&m->lambda_i4_); - CheckLambdaValue(&m->lambda_i16_); - CheckLambdaValue(&m->lambda_uv_); - CheckLambdaValue(&m->lambda_mode_); - CheckLambdaValue(&m->lambda_trellis_i4_); - CheckLambdaValue(&m->lambda_trellis_i16_); - CheckLambdaValue(&m->lambda_trellis_uv_); - CheckLambdaValue(&m->tlambda_); - - m->min_disto_ = 20 * m->y1_.q_[0]; // quantization-aware min disto - m->max_edge_ = 0; - - m->i4_penalty_ = 1000 * q_i4 * q_i4; - } -} - -//------------------------------------------------------------------------------ -// Initialize filtering parameters - -// Very small filter-strength values have close to no visual effect. So we can -// save a little decoding-CPU by turning filtering off for these. -#define FSTRENGTH_CUTOFF 2 - -static void SetupFilterStrength(VP8Encoder* const enc) { - int i; - // level0 is in [0..500]. Using '-f 50' as filter_strength is mid-filtering. - const int level0 = 5 * enc->config_->filter_strength; - for (i = 0; i < NUM_MB_SEGMENTS; ++i) { - VP8SegmentInfo* const m = &enc->dqm_[i]; - // We focus on the quantization of AC coeffs. - const int qstep = kAcTable[clip(m->quant_, 0, 127)] >> 2; - const int base_strength = - VP8FilterStrengthFromDelta(enc->filter_hdr_.sharpness_, qstep); - // Segments with lower complexity ('beta') will be less filtered. - const int f = base_strength * level0 / (256 + m->beta_); - m->fstrength_ = (f < FSTRENGTH_CUTOFF) ? 0 : (f > 63) ? 63 : f; - } - // We record the initial strength (mainly for the case of 1-segment only). - enc->filter_hdr_.level_ = enc->dqm_[0].fstrength_; - enc->filter_hdr_.simple_ = (enc->config_->filter_type == 0); - enc->filter_hdr_.sharpness_ = enc->config_->filter_sharpness; -} - -//------------------------------------------------------------------------------ - -// Note: if you change the values below, remember that the max range -// allowed by the syntax for DQ_UV is [-16,16]. -#define MAX_DQ_UV (6) -#define MIN_DQ_UV (-4) - -// We want to emulate jpeg-like behaviour where the expected "good" quality -// is around q=75. Internally, our "good" middle is around c=50. So we -// map accordingly using linear piece-wise function -static double QualityToCompression(double c) { - const double linear_c = (c < 0.75) ? c * (2. / 3.) : 2. * c - 1.; - // The file size roughly scales as pow(quantizer, 3.). Actually, the - // exponent is somewhere between 2.8 and 3.2, but we're mostly interested - // in the mid-quant range. So we scale the compressibility inversely to - // this power-law: quant ~= compression ^ 1/3. This law holds well for - // low quant. Finer modeling for high-quant would make use of kAcTable[] - // more explicitly. - const double v = pow(linear_c, 1 / 3.); - return v; -} - -static double QualityToJPEGCompression(double c, double alpha) { - // We map the complexity 'alpha' and quality setting 'c' to a compression - // exponent empirically matched to the compression curve of libjpeg6b. - // On average, the WebP output size will be roughly similar to that of a - // JPEG file compressed with same quality factor. - const double amin = 0.30; - const double amax = 0.85; - const double exp_min = 0.4; - const double exp_max = 0.9; - const double slope = (exp_min - exp_max) / (amax - amin); - // Linearly interpolate 'expn' from exp_min to exp_max - // in the [amin, amax] range. - const double expn = (alpha > amax) ? exp_min - : (alpha < amin) ? exp_max - : exp_max + slope * (alpha - amin); - const double v = pow(c, expn); - return v; -} - -static int SegmentsAreEquivalent(const VP8SegmentInfo* const S1, - const VP8SegmentInfo* const S2) { - return (S1->quant_ == S2->quant_) && (S1->fstrength_ == S2->fstrength_); -} - -static void SimplifySegments(VP8Encoder* const enc) { - int map[NUM_MB_SEGMENTS] = { 0, 1, 2, 3 }; - // 'num_segments_' is previously validated and <= NUM_MB_SEGMENTS, but an - // explicit check is needed to avoid a spurious warning about 'i' exceeding - // array bounds of 'dqm_' with some compilers (noticed with gcc-4.9). - const int num_segments = (enc->segment_hdr_.num_segments_ < NUM_MB_SEGMENTS) - ? enc->segment_hdr_.num_segments_ - : NUM_MB_SEGMENTS; - int num_final_segments = 1; - int s1, s2; - for (s1 = 1; s1 < num_segments; ++s1) { // find similar segments - const VP8SegmentInfo* const S1 = &enc->dqm_[s1]; - int found = 0; - // check if we already have similar segment - for (s2 = 0; s2 < num_final_segments; ++s2) { - const VP8SegmentInfo* const S2 = &enc->dqm_[s2]; - if (SegmentsAreEquivalent(S1, S2)) { - found = 1; - break; - } - } - map[s1] = s2; - if (!found) { - if (num_final_segments != s1) { - enc->dqm_[num_final_segments] = enc->dqm_[s1]; - } - ++num_final_segments; - } - } - if (num_final_segments < num_segments) { // Remap - int i = enc->mb_w_ * enc->mb_h_; - while (i-- > 0) enc->mb_info_[i].segment_ = map[enc->mb_info_[i].segment_]; - enc->segment_hdr_.num_segments_ = num_final_segments; - // Replicate the trailing segment infos (it's mostly cosmetics) - for (i = num_final_segments; i < num_segments; ++i) { - enc->dqm_[i] = enc->dqm_[num_final_segments - 1]; - } - } -} - -void VP8SetSegmentParams(VP8Encoder* const enc, float quality) { - int i; - int dq_uv_ac, dq_uv_dc; - const int num_segments = enc->segment_hdr_.num_segments_; - const double amp = SNS_TO_DQ * enc->config_->sns_strength / 100. / 128.; - const double Q = quality / 100.; - const double c_base = enc->config_->emulate_jpeg_size ? - QualityToJPEGCompression(Q, enc->alpha_ / 255.) : - QualityToCompression(Q); - for (i = 0; i < num_segments; ++i) { - // We modulate the base coefficient to accommodate for the quantization - // susceptibility and allow denser segments to be quantized more. - const double expn = 1. - amp * enc->dqm_[i].alpha_; - const double c = pow(c_base, expn); - const int q = (int)(127. * (1. - c)); - assert(expn > 0.); - enc->dqm_[i].quant_ = clip(q, 0, 127); - } - - // purely indicative in the bitstream (except for the 1-segment case) - enc->base_quant_ = enc->dqm_[0].quant_; - - // fill-in values for the unused segments (required by the syntax) - for (i = num_segments; i < NUM_MB_SEGMENTS; ++i) { - enc->dqm_[i].quant_ = enc->base_quant_; - } - - // uv_alpha_ is normally spread around ~60. The useful range is - // typically ~30 (quite bad) to ~100 (ok to decimate UV more). - // We map it to the safe maximal range of MAX/MIN_DQ_UV for dq_uv. - dq_uv_ac = (enc->uv_alpha_ - MID_ALPHA) * (MAX_DQ_UV - MIN_DQ_UV) - / (MAX_ALPHA - MIN_ALPHA); - // we rescale by the user-defined strength of adaptation - dq_uv_ac = dq_uv_ac * enc->config_->sns_strength / 100; - // and make it safe. - dq_uv_ac = clip(dq_uv_ac, MIN_DQ_UV, MAX_DQ_UV); - // We also boost the dc-uv-quant a little, based on sns-strength, since - // U/V channels are quite more reactive to high quants (flat DC-blocks - // tend to appear, and are unpleasant). - dq_uv_dc = -4 * enc->config_->sns_strength / 100; - dq_uv_dc = clip(dq_uv_dc, -15, 15); // 4bit-signed max allowed - - enc->dq_y1_dc_ = 0; // TODO(skal): dq-lum - enc->dq_y2_dc_ = 0; - enc->dq_y2_ac_ = 0; - enc->dq_uv_dc_ = dq_uv_dc; - enc->dq_uv_ac_ = dq_uv_ac; - - SetupFilterStrength(enc); // initialize segments' filtering, eventually - - if (num_segments > 1) SimplifySegments(enc); - - SetupMatrices(enc); // finalize quantization matrices -} - -//------------------------------------------------------------------------------ -// Form the predictions in cache - -// Must be ordered using {DC_PRED, TM_PRED, V_PRED, H_PRED} as index -const int VP8I16ModeOffsets[4] = { I16DC16, I16TM16, I16VE16, I16HE16 }; -const int VP8UVModeOffsets[4] = { C8DC8, C8TM8, C8VE8, C8HE8 }; - -// Must be indexed using {B_DC_PRED -> B_HU_PRED} as index -const int VP8I4ModeOffsets[NUM_BMODES] = { - I4DC4, I4TM4, I4VE4, I4HE4, I4RD4, I4VR4, I4LD4, I4VL4, I4HD4, I4HU4 -}; - -void VP8MakeLuma16Preds(const VP8EncIterator* const it) { - const uint8_t* const left = it->x_ ? it->y_left_ : NULL; - const uint8_t* const top = it->y_ ? it->y_top_ : NULL; - VP8EncPredLuma16(it->yuv_p_, left, top); -} - -void VP8MakeChroma8Preds(const VP8EncIterator* const it) { - const uint8_t* const left = it->x_ ? it->u_left_ : NULL; - const uint8_t* const top = it->y_ ? it->uv_top_ : NULL; - VP8EncPredChroma8(it->yuv_p_, left, top); -} - -void VP8MakeIntra4Preds(const VP8EncIterator* const it) { - VP8EncPredLuma4(it->yuv_p_, it->i4_top_); -} - -//------------------------------------------------------------------------------ -// Quantize - -// Layout: -// +----+----+ -// |YYYY|UUVV| 0 -// |YYYY|UUVV| 4 -// |YYYY|....| 8 -// |YYYY|....| 12 -// +----+----+ - -const int VP8Scan[16] = { // Luma - 0 + 0 * BPS, 4 + 0 * BPS, 8 + 0 * BPS, 12 + 0 * BPS, - 0 + 4 * BPS, 4 + 4 * BPS, 8 + 4 * BPS, 12 + 4 * BPS, - 0 + 8 * BPS, 4 + 8 * BPS, 8 + 8 * BPS, 12 + 8 * BPS, - 0 + 12 * BPS, 4 + 12 * BPS, 8 + 12 * BPS, 12 + 12 * BPS, -}; - -static const int VP8ScanUV[4 + 4] = { - 0 + 0 * BPS, 4 + 0 * BPS, 0 + 4 * BPS, 4 + 4 * BPS, // U - 8 + 0 * BPS, 12 + 0 * BPS, 8 + 4 * BPS, 12 + 4 * BPS // V -}; - -//------------------------------------------------------------------------------ -// Distortion measurement - -static const uint16_t kWeightY[16] = { - 38, 32, 20, 9, 32, 28, 17, 7, 20, 17, 10, 4, 9, 7, 4, 2 -}; - -static const uint16_t kWeightTrellis[16] = { -#if USE_TDISTO == 0 - 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16 -#else - 30, 27, 19, 11, - 27, 24, 17, 10, - 19, 17, 12, 8, - 11, 10, 8, 6 -#endif -}; - -// Init/Copy the common fields in score. -static void InitScore(VP8ModeScore* const rd) { - rd->D = 0; - rd->SD = 0; - rd->R = 0; - rd->H = 0; - rd->nz = 0; - rd->score = MAX_COST; -} - -static void CopyScore(VP8ModeScore* const dst, const VP8ModeScore* const src) { - dst->D = src->D; - dst->SD = src->SD; - dst->R = src->R; - dst->H = src->H; - dst->nz = src->nz; // note that nz is not accumulated, but just copied. - dst->score = src->score; -} - -static void AddScore(VP8ModeScore* const dst, const VP8ModeScore* const src) { - dst->D += src->D; - dst->SD += src->SD; - dst->R += src->R; - dst->H += src->H; - dst->nz |= src->nz; // here, new nz bits are accumulated. - dst->score += src->score; -} - -//------------------------------------------------------------------------------ -// Performs trellis-optimized quantization. - -// Trellis node -typedef struct { - int8_t prev; // best previous node - int8_t sign; // sign of coeff_i - int16_t level; // level -} Node; - -// Score state -typedef struct { - score_t score; // partial RD score - const uint16_t* costs; // shortcut to cost tables -} ScoreState; - -// If a coefficient was quantized to a value Q (using a neutral bias), -// we test all alternate possibilities between [Q-MIN_DELTA, Q+MAX_DELTA] -// We don't test negative values though. -#define MIN_DELTA 0 // how much lower level to try -#define MAX_DELTA 1 // how much higher -#define NUM_NODES (MIN_DELTA + 1 + MAX_DELTA) -#define NODE(n, l) (nodes[(n)][(l) + MIN_DELTA]) -#define SCORE_STATE(n, l) (score_states[n][(l) + MIN_DELTA]) - -static WEBP_INLINE void SetRDScore(int lambda, VP8ModeScore* const rd) { - rd->score = (rd->R + rd->H) * lambda + RD_DISTO_MULT * (rd->D + rd->SD); -} - -static WEBP_INLINE score_t RDScoreTrellis(int lambda, score_t rate, - score_t distortion) { - return rate * lambda + RD_DISTO_MULT * distortion; -} - -static int TrellisQuantizeBlock(const VP8Encoder* const enc, - int16_t in[16], int16_t out[16], - int ctx0, int coeff_type, - const VP8Matrix* const mtx, - int lambda) { - const ProbaArray* const probas = enc->proba_.coeffs_[coeff_type]; - CostArrayPtr const costs = - (CostArrayPtr)enc->proba_.remapped_costs_[coeff_type]; - const int first = (coeff_type == 0) ? 1 : 0; - Node nodes[16][NUM_NODES]; - ScoreState score_states[2][NUM_NODES]; - ScoreState* ss_cur = &SCORE_STATE(0, MIN_DELTA); - ScoreState* ss_prev = &SCORE_STATE(1, MIN_DELTA); - int best_path[3] = {-1, -1, -1}; // store best-last/best-level/best-previous - score_t best_score; - int n, m, p, last; - - { - score_t cost; - const int thresh = mtx->q_[1] * mtx->q_[1] / 4; - const int last_proba = probas[VP8EncBands[first]][ctx0][0]; - - // compute the position of the last interesting coefficient - last = first - 1; - for (n = 15; n >= first; --n) { - const int j = kZigzag[n]; - const int err = in[j] * in[j]; - if (err > thresh) { - last = n; - break; - } - } - // we don't need to go inspect up to n = 16 coeffs. We can just go up - // to last + 1 (inclusive) without losing much. - if (last < 15) ++last; - - // compute 'skip' score. This is the max score one can do. - cost = VP8BitCost(0, last_proba); - best_score = RDScoreTrellis(lambda, cost, 0); - - // initialize source node. - for (m = -MIN_DELTA; m <= MAX_DELTA; ++m) { - const score_t rate = (ctx0 == 0) ? VP8BitCost(1, last_proba) : 0; - ss_cur[m].score = RDScoreTrellis(lambda, rate, 0); - ss_cur[m].costs = costs[first][ctx0]; - } - } - - // traverse trellis. - for (n = first; n <= last; ++n) { - const int j = kZigzag[n]; - const uint32_t Q = mtx->q_[j]; - const uint32_t iQ = mtx->iq_[j]; - const uint32_t B = BIAS(0x00); // neutral bias - // note: it's important to take sign of the _original_ coeff, - // so we don't have to consider level < 0 afterward. - const int sign = (in[j] < 0); - const uint32_t coeff0 = (sign ? -in[j] : in[j]) + mtx->sharpen_[j]; - int level0 = QUANTDIV(coeff0, iQ, B); - int thresh_level = QUANTDIV(coeff0, iQ, BIAS(0x80)); - if (thresh_level > MAX_LEVEL) thresh_level = MAX_LEVEL; - if (level0 > MAX_LEVEL) level0 = MAX_LEVEL; - - { // Swap current and previous score states - ScoreState* const tmp = ss_cur; - ss_cur = ss_prev; - ss_prev = tmp; - } - - // test all alternate level values around level0. - for (m = -MIN_DELTA; m <= MAX_DELTA; ++m) { - Node* const cur = &NODE(n, m); - int level = level0 + m; - const int ctx = (level > 2) ? 2 : level; - const int band = VP8EncBands[n + 1]; - score_t base_score; - score_t best_cur_score = MAX_COST; - int best_prev = 0; // default, in case - - ss_cur[m].score = MAX_COST; - ss_cur[m].costs = costs[n + 1][ctx]; - if (level < 0 || level > thresh_level) { - // Node is dead. - continue; - } - - { - // Compute delta_error = how much coding this level will - // subtract to max_error as distortion. - // Here, distortion = sum of (|coeff_i| - level_i * Q_i)^2 - const int new_error = coeff0 - level * Q; - const int delta_error = - kWeightTrellis[j] * (new_error * new_error - coeff0 * coeff0); - base_score = RDScoreTrellis(lambda, 0, delta_error); - } - - // Inspect all possible non-dead predecessors. Retain only the best one. - for (p = -MIN_DELTA; p <= MAX_DELTA; ++p) { - // Dead nodes (with ss_prev[p].score >= MAX_COST) are automatically - // eliminated since their score can't be better than the current best. - const score_t cost = VP8LevelCost(ss_prev[p].costs, level); - // Examine node assuming it's a non-terminal one. - const score_t score = - base_score + ss_prev[p].score + RDScoreTrellis(lambda, cost, 0); - if (score < best_cur_score) { - best_cur_score = score; - best_prev = p; - } - } - // Store best finding in current node. - cur->sign = sign; - cur->level = level; - cur->prev = best_prev; - ss_cur[m].score = best_cur_score; - - // Now, record best terminal node (and thus best entry in the graph). - if (level != 0) { - const score_t last_pos_cost = - (n < 15) ? VP8BitCost(0, probas[band][ctx][0]) : 0; - const score_t last_pos_score = RDScoreTrellis(lambda, last_pos_cost, 0); - const score_t score = best_cur_score + last_pos_score; - if (score < best_score) { - best_score = score; - best_path[0] = n; // best eob position - best_path[1] = m; // best node index - best_path[2] = best_prev; // best predecessor - } - } - } - } - - // Fresh start - memset(in + first, 0, (16 - first) * sizeof(*in)); - memset(out + first, 0, (16 - first) * sizeof(*out)); - if (best_path[0] == -1) { - return 0; // skip! - } - - { - // Unwind the best path. - // Note: best-prev on terminal node is not necessarily equal to the - // best_prev for non-terminal. So we patch best_path[2] in. - int nz = 0; - int best_node = best_path[1]; - n = best_path[0]; - NODE(n, best_node).prev = best_path[2]; // force best-prev for terminal - - for (; n >= first; --n) { - const Node* const node = &NODE(n, best_node); - const int j = kZigzag[n]; - out[n] = node->sign ? -node->level : node->level; - nz |= node->level; - in[j] = out[n] * mtx->q_[j]; - best_node = node->prev; - } - return (nz != 0); - } -} - -#undef NODE - -//------------------------------------------------------------------------------ -// Performs: difference, transform, quantize, back-transform, add -// all at once. Output is the reconstructed block in *yuv_out, and the -// quantized levels in *levels. - -static int ReconstructIntra16(VP8EncIterator* const it, - VP8ModeScore* const rd, - uint8_t* const yuv_out, - int mode) { - const VP8Encoder* const enc = it->enc_; - const uint8_t* const ref = it->yuv_p_ + VP8I16ModeOffsets[mode]; - const uint8_t* const src = it->yuv_in_ + Y_OFF_ENC; - const VP8SegmentInfo* const dqm = &enc->dqm_[it->mb_->segment_]; - int nz = 0; - int n; - int16_t tmp[16][16], dc_tmp[16]; - - for (n = 0; n < 16; n += 2) { - VP8FTransform2(src + VP8Scan[n], ref + VP8Scan[n], tmp[n]); - } - VP8FTransformWHT(tmp[0], dc_tmp); - nz |= VP8EncQuantizeBlockWHT(dc_tmp, rd->y_dc_levels, &dqm->y2_) << 24; - - if (DO_TRELLIS_I16 && it->do_trellis_) { - int x, y; - VP8IteratorNzToBytes(it); - for (y = 0, n = 0; y < 4; ++y) { - for (x = 0; x < 4; ++x, ++n) { - const int ctx = it->top_nz_[x] + it->left_nz_[y]; - const int non_zero = - TrellisQuantizeBlock(enc, tmp[n], rd->y_ac_levels[n], ctx, 0, - &dqm->y1_, dqm->lambda_trellis_i16_); - it->top_nz_[x] = it->left_nz_[y] = non_zero; - rd->y_ac_levels[n][0] = 0; - nz |= non_zero << n; - } - } - } else { - for (n = 0; n < 16; n += 2) { - // Zero-out the first coeff, so that: a) nz is correct below, and - // b) finding 'last' non-zero coeffs in SetResidualCoeffs() is simplified. - tmp[n][0] = tmp[n + 1][0] = 0; - nz |= VP8EncQuantize2Blocks(tmp[n], rd->y_ac_levels[n], &dqm->y1_) << n; - assert(rd->y_ac_levels[n + 0][0] == 0); - assert(rd->y_ac_levels[n + 1][0] == 0); - } - } - - // Transform back - VP8TransformWHT(dc_tmp, tmp[0]); - for (n = 0; n < 16; n += 2) { - VP8ITransform(ref + VP8Scan[n], tmp[n], yuv_out + VP8Scan[n], 1); - } - - return nz; -} - -static int ReconstructIntra4(VP8EncIterator* const it, - int16_t levels[16], - const uint8_t* const src, - uint8_t* const yuv_out, - int mode) { - const VP8Encoder* const enc = it->enc_; - const uint8_t* const ref = it->yuv_p_ + VP8I4ModeOffsets[mode]; - const VP8SegmentInfo* const dqm = &enc->dqm_[it->mb_->segment_]; - int nz = 0; - int16_t tmp[16]; - - VP8FTransform(src, ref, tmp); - if (DO_TRELLIS_I4 && it->do_trellis_) { - const int x = it->i4_ & 3, y = it->i4_ >> 2; - const int ctx = it->top_nz_[x] + it->left_nz_[y]; - nz = TrellisQuantizeBlock(enc, tmp, levels, ctx, 3, &dqm->y1_, - dqm->lambda_trellis_i4_); - } else { - nz = VP8EncQuantizeBlock(tmp, levels, &dqm->y1_); - } - VP8ITransform(ref, tmp, yuv_out, 0); - return nz; -} - -static int ReconstructUV(VP8EncIterator* const it, VP8ModeScore* const rd, - uint8_t* const yuv_out, int mode) { - const VP8Encoder* const enc = it->enc_; - const uint8_t* const ref = it->yuv_p_ + VP8UVModeOffsets[mode]; - const uint8_t* const src = it->yuv_in_ + U_OFF_ENC; - const VP8SegmentInfo* const dqm = &enc->dqm_[it->mb_->segment_]; - int nz = 0; - int n; - int16_t tmp[8][16]; - - for (n = 0; n < 8; n += 2) { - VP8FTransform2(src + VP8ScanUV[n], ref + VP8ScanUV[n], tmp[n]); - } - if (DO_TRELLIS_UV && it->do_trellis_) { - int ch, x, y; - for (ch = 0, n = 0; ch <= 2; ch += 2) { - for (y = 0; y < 2; ++y) { - for (x = 0; x < 2; ++x, ++n) { - const int ctx = it->top_nz_[4 + ch + x] + it->left_nz_[4 + ch + y]; - const int non_zero = - TrellisQuantizeBlock(enc, tmp[n], rd->uv_levels[n], ctx, 2, - &dqm->uv_, dqm->lambda_trellis_uv_); - it->top_nz_[4 + ch + x] = it->left_nz_[4 + ch + y] = non_zero; - nz |= non_zero << n; - } - } - } - } else { - for (n = 0; n < 8; n += 2) { - nz |= VP8EncQuantize2Blocks(tmp[n], rd->uv_levels[n], &dqm->uv_) << n; - } - } - - for (n = 0; n < 8; n += 2) { - VP8ITransform(ref + VP8ScanUV[n], tmp[n], yuv_out + VP8ScanUV[n], 1); - } - return (nz << 16); -} - -//------------------------------------------------------------------------------ -// RD-opt decision. Reconstruct each modes, evalue distortion and bit-cost. -// Pick the mode is lower RD-cost = Rate + lambda * Distortion. - -static void StoreMaxDelta(VP8SegmentInfo* const dqm, const int16_t DCs[16]) { - // We look at the first three AC coefficients to determine what is the average - // delta between each sub-4x4 block. - const int v0 = abs(DCs[1]); - const int v1 = abs(DCs[2]); - const int v2 = abs(DCs[4]); - int max_v = (v1 > v0) ? v1 : v0; - max_v = (v2 > max_v) ? v2 : max_v; - if (max_v > dqm->max_edge_) dqm->max_edge_ = max_v; -} - -static void SwapModeScore(VP8ModeScore** a, VP8ModeScore** b) { - VP8ModeScore* const tmp = *a; - *a = *b; - *b = tmp; -} - -static void SwapPtr(uint8_t** a, uint8_t** b) { - uint8_t* const tmp = *a; - *a = *b; - *b = tmp; -} - -static void SwapOut(VP8EncIterator* const it) { - SwapPtr(&it->yuv_out_, &it->yuv_out2_); -} - -static score_t IsFlat(const int16_t* levels, int num_blocks, score_t thresh) { - score_t score = 0; - while (num_blocks-- > 0) { // TODO(skal): refine positional scoring? - int i; - for (i = 1; i < 16; ++i) { // omit DC, we're only interested in AC - score += (levels[i] != 0); - if (score > thresh) return 0; - } - levels += 16; - } - return 1; -} - -static void PickBestIntra16(VP8EncIterator* const it, VP8ModeScore* rd) { - const int kNumBlocks = 16; - VP8SegmentInfo* const dqm = &it->enc_->dqm_[it->mb_->segment_]; - const int lambda = dqm->lambda_i16_; - const int tlambda = dqm->tlambda_; - const uint8_t* const src = it->yuv_in_ + Y_OFF_ENC; - VP8ModeScore rd_tmp; - VP8ModeScore* rd_cur = &rd_tmp; - VP8ModeScore* rd_best = rd; - int mode; - - rd->mode_i16 = -1; - for (mode = 0; mode < NUM_PRED_MODES; ++mode) { - uint8_t* const tmp_dst = it->yuv_out2_ + Y_OFF_ENC; // scratch buffer - rd_cur->mode_i16 = mode; - - // Reconstruct - rd_cur->nz = ReconstructIntra16(it, rd_cur, tmp_dst, mode); - - // Measure RD-score - rd_cur->D = VP8SSE16x16(src, tmp_dst); - rd_cur->SD = - tlambda ? MULT_8B(tlambda, VP8TDisto16x16(src, tmp_dst, kWeightY)) : 0; - rd_cur->H = VP8FixedCostsI16[mode]; - rd_cur->R = VP8GetCostLuma16(it, rd_cur); - if (mode > 0 && - IsFlat(rd_cur->y_ac_levels[0], kNumBlocks, FLATNESS_LIMIT_I16)) { - // penalty to avoid flat area to be mispredicted by complex mode - rd_cur->R += FLATNESS_PENALTY * kNumBlocks; - } - - // Since we always examine Intra16 first, we can overwrite *rd directly. - SetRDScore(lambda, rd_cur); - if (mode == 0 || rd_cur->score < rd_best->score) { - SwapModeScore(&rd_cur, &rd_best); - SwapOut(it); - } - } - if (rd_best != rd) { - memcpy(rd, rd_best, sizeof(*rd)); - } - SetRDScore(dqm->lambda_mode_, rd); // finalize score for mode decision. - VP8SetIntra16Mode(it, rd->mode_i16); - - // we have a blocky macroblock (only DCs are non-zero) with fairly high - // distortion, record max delta so we can later adjust the minimal filtering - // strength needed to smooth these blocks out. - if ((rd->nz & 0x100ffff) == 0x1000000 && rd->D > dqm->min_disto_) { - StoreMaxDelta(dqm, rd->y_dc_levels); - } -} - -//------------------------------------------------------------------------------ - -// return the cost array corresponding to the surrounding prediction modes. -static const uint16_t* GetCostModeI4(VP8EncIterator* const it, - const uint8_t modes[16]) { - const int preds_w = it->enc_->preds_w_; - const int x = (it->i4_ & 3), y = it->i4_ >> 2; - const int left = (x == 0) ? it->preds_[y * preds_w - 1] : modes[it->i4_ - 1]; - const int top = (y == 0) ? it->preds_[-preds_w + x] : modes[it->i4_ - 4]; - return VP8FixedCostsI4[top][left]; -} - -static int PickBestIntra4(VP8EncIterator* const it, VP8ModeScore* const rd) { - const VP8Encoder* const enc = it->enc_; - const VP8SegmentInfo* const dqm = &enc->dqm_[it->mb_->segment_]; - const int lambda = dqm->lambda_i4_; - const int tlambda = dqm->tlambda_; - const uint8_t* const src0 = it->yuv_in_ + Y_OFF_ENC; - uint8_t* const best_blocks = it->yuv_out2_ + Y_OFF_ENC; - int total_header_bits = 0; - VP8ModeScore rd_best; - - if (enc->max_i4_header_bits_ == 0) { - return 0; - } - - InitScore(&rd_best); - rd_best.H = 211; // '211' is the value of VP8BitCost(0, 145) - SetRDScore(dqm->lambda_mode_, &rd_best); - VP8IteratorStartI4(it); - do { - const int kNumBlocks = 1; - VP8ModeScore rd_i4; - int mode; - int best_mode = -1; - const uint8_t* const src = src0 + VP8Scan[it->i4_]; - const uint16_t* const mode_costs = GetCostModeI4(it, rd->modes_i4); - uint8_t* best_block = best_blocks + VP8Scan[it->i4_]; - uint8_t* tmp_dst = it->yuv_p_ + I4TMP; // scratch buffer. - - InitScore(&rd_i4); - VP8MakeIntra4Preds(it); - for (mode = 0; mode < NUM_BMODES; ++mode) { - VP8ModeScore rd_tmp; - int16_t tmp_levels[16]; - - // Reconstruct - rd_tmp.nz = - ReconstructIntra4(it, tmp_levels, src, tmp_dst, mode) << it->i4_; - - // Compute RD-score - rd_tmp.D = VP8SSE4x4(src, tmp_dst); - rd_tmp.SD = - tlambda ? MULT_8B(tlambda, VP8TDisto4x4(src, tmp_dst, kWeightY)) - : 0; - rd_tmp.H = mode_costs[mode]; - - // Add flatness penalty - if (mode > 0 && IsFlat(tmp_levels, kNumBlocks, FLATNESS_LIMIT_I4)) { - rd_tmp.R = FLATNESS_PENALTY * kNumBlocks; - } else { - rd_tmp.R = 0; - } - - // early-out check - SetRDScore(lambda, &rd_tmp); - if (best_mode >= 0 && rd_tmp.score >= rd_i4.score) continue; - - // finish computing score - rd_tmp.R += VP8GetCostLuma4(it, tmp_levels); - SetRDScore(lambda, &rd_tmp); - - if (best_mode < 0 || rd_tmp.score < rd_i4.score) { - CopyScore(&rd_i4, &rd_tmp); - best_mode = mode; - SwapPtr(&tmp_dst, &best_block); - memcpy(rd_best.y_ac_levels[it->i4_], tmp_levels, - sizeof(rd_best.y_ac_levels[it->i4_])); - } - } - SetRDScore(dqm->lambda_mode_, &rd_i4); - AddScore(&rd_best, &rd_i4); - if (rd_best.score >= rd->score) { - return 0; - } - total_header_bits += (int)rd_i4.H; // <- equal to mode_costs[best_mode]; - if (total_header_bits > enc->max_i4_header_bits_) { - return 0; - } - // Copy selected samples if not in the right place already. - if (best_block != best_blocks + VP8Scan[it->i4_]) { - VP8Copy4x4(best_block, best_blocks + VP8Scan[it->i4_]); - } - rd->modes_i4[it->i4_] = best_mode; - it->top_nz_[it->i4_ & 3] = it->left_nz_[it->i4_ >> 2] = (rd_i4.nz ? 1 : 0); - } while (VP8IteratorRotateI4(it, best_blocks)); - - // finalize state - CopyScore(rd, &rd_best); - VP8SetIntra4Mode(it, rd->modes_i4); - SwapOut(it); - memcpy(rd->y_ac_levels, rd_best.y_ac_levels, sizeof(rd->y_ac_levels)); - return 1; // select intra4x4 over intra16x16 -} - -//------------------------------------------------------------------------------ - -static void PickBestUV(VP8EncIterator* const it, VP8ModeScore* const rd) { - const int kNumBlocks = 8; - const VP8SegmentInfo* const dqm = &it->enc_->dqm_[it->mb_->segment_]; - const int lambda = dqm->lambda_uv_; - const uint8_t* const src = it->yuv_in_ + U_OFF_ENC; - uint8_t* tmp_dst = it->yuv_out2_ + U_OFF_ENC; // scratch buffer - uint8_t* dst0 = it->yuv_out_ + U_OFF_ENC; - uint8_t* dst = dst0; - VP8ModeScore rd_best; - int mode; - - rd->mode_uv = -1; - InitScore(&rd_best); - for (mode = 0; mode < NUM_PRED_MODES; ++mode) { - VP8ModeScore rd_uv; - - // Reconstruct - rd_uv.nz = ReconstructUV(it, &rd_uv, tmp_dst, mode); - - // Compute RD-score - rd_uv.D = VP8SSE16x8(src, tmp_dst); - rd_uv.SD = 0; // not calling TDisto here: it tends to flatten areas. - rd_uv.H = VP8FixedCostsUV[mode]; - rd_uv.R = VP8GetCostUV(it, &rd_uv); - if (mode > 0 && IsFlat(rd_uv.uv_levels[0], kNumBlocks, FLATNESS_LIMIT_UV)) { - rd_uv.R += FLATNESS_PENALTY * kNumBlocks; - } - - SetRDScore(lambda, &rd_uv); - if (mode == 0 || rd_uv.score < rd_best.score) { - CopyScore(&rd_best, &rd_uv); - rd->mode_uv = mode; - memcpy(rd->uv_levels, rd_uv.uv_levels, sizeof(rd->uv_levels)); - SwapPtr(&dst, &tmp_dst); - } - } - VP8SetIntraUVMode(it, rd->mode_uv); - AddScore(rd, &rd_best); - if (dst != dst0) { // copy 16x8 block if needed - VP8Copy16x8(dst, dst0); - } -} - -//------------------------------------------------------------------------------ -// Final reconstruction and quantization. - -static void SimpleQuantize(VP8EncIterator* const it, VP8ModeScore* const rd) { - const VP8Encoder* const enc = it->enc_; - const int is_i16 = (it->mb_->type_ == 1); - int nz = 0; - - if (is_i16) { - nz = ReconstructIntra16(it, rd, it->yuv_out_ + Y_OFF_ENC, it->preds_[0]); - } else { - VP8IteratorStartI4(it); - do { - const int mode = - it->preds_[(it->i4_ & 3) + (it->i4_ >> 2) * enc->preds_w_]; - const uint8_t* const src = it->yuv_in_ + Y_OFF_ENC + VP8Scan[it->i4_]; - uint8_t* const dst = it->yuv_out_ + Y_OFF_ENC + VP8Scan[it->i4_]; - VP8MakeIntra4Preds(it); - nz |= ReconstructIntra4(it, rd->y_ac_levels[it->i4_], - src, dst, mode) << it->i4_; - } while (VP8IteratorRotateI4(it, it->yuv_out_ + Y_OFF_ENC)); - } - - nz |= ReconstructUV(it, rd, it->yuv_out_ + U_OFF_ENC, it->mb_->uv_mode_); - rd->nz = nz; -} - -// Refine intra16/intra4 sub-modes based on distortion only (not rate). -static void RefineUsingDistortion(VP8EncIterator* const it, - int try_both_modes, int refine_uv_mode, - VP8ModeScore* const rd) { - score_t best_score = MAX_COST; - int nz = 0; - int mode; - int is_i16 = try_both_modes || (it->mb_->type_ == 1); - - const VP8SegmentInfo* const dqm = &it->enc_->dqm_[it->mb_->segment_]; - // Some empiric constants, of approximate order of magnitude. - const int lambda_d_i16 = 106; - const int lambda_d_i4 = 11; - const int lambda_d_uv = 120; - score_t score_i4 = dqm->i4_penalty_; - score_t i4_bit_sum = 0; - const score_t bit_limit = try_both_modes ? it->enc_->mb_header_limit_ - : MAX_COST; // no early-out allowed - - if (is_i16) { // First, evaluate Intra16 distortion - int best_mode = -1; - const uint8_t* const src = it->yuv_in_ + Y_OFF_ENC; - for (mode = 0; mode < NUM_PRED_MODES; ++mode) { - const uint8_t* const ref = it->yuv_p_ + VP8I16ModeOffsets[mode]; - const score_t score = VP8SSE16x16(src, ref) * RD_DISTO_MULT - + VP8FixedCostsI16[mode] * lambda_d_i16; - if (mode > 0 && VP8FixedCostsI16[mode] > bit_limit) { - continue; - } - if (score < best_score) { - best_mode = mode; - best_score = score; - } - } - VP8SetIntra16Mode(it, best_mode); - // we'll reconstruct later, if i16 mode actually gets selected - } - - // Next, evaluate Intra4 - if (try_both_modes || !is_i16) { - // We don't evaluate the rate here, but just account for it through a - // constant penalty (i4 mode usually needs more bits compared to i16). - is_i16 = 0; - VP8IteratorStartI4(it); - do { - int best_i4_mode = -1; - score_t best_i4_score = MAX_COST; - const uint8_t* const src = it->yuv_in_ + Y_OFF_ENC + VP8Scan[it->i4_]; - const uint16_t* const mode_costs = GetCostModeI4(it, rd->modes_i4); - - VP8MakeIntra4Preds(it); - for (mode = 0; mode < NUM_BMODES; ++mode) { - const uint8_t* const ref = it->yuv_p_ + VP8I4ModeOffsets[mode]; - const score_t score = VP8SSE4x4(src, ref) * RD_DISTO_MULT - + mode_costs[mode] * lambda_d_i4; - if (score < best_i4_score) { - best_i4_mode = mode; - best_i4_score = score; - } - } - i4_bit_sum += mode_costs[best_i4_mode]; - rd->modes_i4[it->i4_] = best_i4_mode; - score_i4 += best_i4_score; - if (score_i4 >= best_score || i4_bit_sum > bit_limit) { - // Intra4 won't be better than Intra16. Bail out and pick Intra16. - is_i16 = 1; - break; - } else { // reconstruct partial block inside yuv_out2_ buffer - uint8_t* const tmp_dst = it->yuv_out2_ + Y_OFF_ENC + VP8Scan[it->i4_]; - nz |= ReconstructIntra4(it, rd->y_ac_levels[it->i4_], - src, tmp_dst, best_i4_mode) << it->i4_; - } - } while (VP8IteratorRotateI4(it, it->yuv_out2_ + Y_OFF_ENC)); - } - - // Final reconstruction, depending on which mode is selected. - if (!is_i16) { - VP8SetIntra4Mode(it, rd->modes_i4); - SwapOut(it); - best_score = score_i4; - } else { - nz = ReconstructIntra16(it, rd, it->yuv_out_ + Y_OFF_ENC, it->preds_[0]); - } - - // ... and UV! - if (refine_uv_mode) { - int best_mode = -1; - score_t best_uv_score = MAX_COST; - const uint8_t* const src = it->yuv_in_ + U_OFF_ENC; - for (mode = 0; mode < NUM_PRED_MODES; ++mode) { - const uint8_t* const ref = it->yuv_p_ + VP8UVModeOffsets[mode]; - const score_t score = VP8SSE16x8(src, ref) * RD_DISTO_MULT - + VP8FixedCostsUV[mode] * lambda_d_uv; - if (score < best_uv_score) { - best_mode = mode; - best_uv_score = score; - } - } - VP8SetIntraUVMode(it, best_mode); - } - nz |= ReconstructUV(it, rd, it->yuv_out_ + U_OFF_ENC, it->mb_->uv_mode_); - - rd->nz = nz; - rd->score = best_score; -} - -//------------------------------------------------------------------------------ -// Entry point - -int VP8Decimate(VP8EncIterator* const it, VP8ModeScore* const rd, - VP8RDLevel rd_opt) { - int is_skipped; - const int method = it->enc_->method_; - - InitScore(rd); - - // We can perform predictions for Luma16x16 and Chroma8x8 already. - // Luma4x4 predictions needs to be done as-we-go. - VP8MakeLuma16Preds(it); - VP8MakeChroma8Preds(it); - - if (rd_opt > RD_OPT_NONE) { - it->do_trellis_ = (rd_opt >= RD_OPT_TRELLIS_ALL); - PickBestIntra16(it, rd); - if (method >= 2) { - PickBestIntra4(it, rd); - } - PickBestUV(it, rd); - if (rd_opt == RD_OPT_TRELLIS) { // finish off with trellis-optim now - it->do_trellis_ = 1; - SimpleQuantize(it, rd); - } - } else { - // At this point we have heuristically decided intra16 / intra4. - // For method >= 2, pick the best intra4/intra16 based on SSE (~tad slower). - // For method <= 1, we don't re-examine the decision but just go ahead with - // quantization/reconstruction. - RefineUsingDistortion(it, (method >= 2), (method >= 1), rd); - } - is_skipped = (rd->nz == 0); - VP8SetSkip(it, is_skipped); - return is_skipped; -} |