diff options
author | volzhs <volzhs@gmail.com> | 2017-12-12 02:11:11 +0900 |
---|---|---|
committer | volzhs <volzhs@gmail.com> | 2017-12-12 02:55:47 +0900 |
commit | 043103fe6a1168729abf74dd56b8982ce54eea43 (patch) | |
tree | f3311c0442fba0ff565d9de0ad9fee3f0002295e /thirdparty/libwebp/enc/predictor_enc.c | |
parent | 64d104756c04f4d5c4e8140271d5e8049e5f8371 (diff) |
Update libwebp to 0.6.1
* lossless performance and compression improvements + a new 'cruncher' mode (-m 6 -q 100)
* ARM performance improvements with clang (15-20% w/ndk r15c)
* webp-js: emscripten/webassembly based javascript decoder
* miscellaneous bug & build fixes
Diffstat (limited to 'thirdparty/libwebp/enc/predictor_enc.c')
-rw-r--r-- | thirdparty/libwebp/enc/predictor_enc.c | 750 |
1 files changed, 0 insertions, 750 deletions
diff --git a/thirdparty/libwebp/enc/predictor_enc.c b/thirdparty/libwebp/enc/predictor_enc.c deleted file mode 100644 index 0639b74f1c..0000000000 --- a/thirdparty/libwebp/enc/predictor_enc.c +++ /dev/null @@ -1,750 +0,0 @@ -// Copyright 2016 Google Inc. All Rights Reserved. -// -// Use of this source code is governed by a BSD-style license -// that can be found in the COPYING file in the root of the source -// tree. An additional intellectual property rights grant can be found -// in the file PATENTS. All contributing project authors may -// be found in the AUTHORS file in the root of the source tree. -// ----------------------------------------------------------------------------- -// -// Image transform methods for lossless encoder. -// -// Authors: Vikas Arora (vikaas.arora@gmail.com) -// Jyrki Alakuijala (jyrki@google.com) -// Urvang Joshi (urvang@google.com) -// Vincent Rabaud (vrabaud@google.com) - -#include "../dsp/lossless.h" -#include "../dsp/lossless_common.h" -#include "./vp8li_enc.h" - -#define MAX_DIFF_COST (1e30f) - -static const float kSpatialPredictorBias = 15.f; -static const int kPredLowEffort = 11; -static const uint32_t kMaskAlpha = 0xff000000; - -// Mostly used to reduce code size + readability -static WEBP_INLINE int GetMin(int a, int b) { return (a > b) ? b : a; } -static WEBP_INLINE int GetMax(int a, int b) { return (a < b) ? b : a; } - -//------------------------------------------------------------------------------ -// Methods to calculate Entropy (Shannon). - -static float PredictionCostSpatial(const int counts[256], int weight_0, - double exp_val) { - const int significant_symbols = 256 >> 4; - const double exp_decay_factor = 0.6; - double bits = weight_0 * counts[0]; - int i; - for (i = 1; i < significant_symbols; ++i) { - bits += exp_val * (counts[i] + counts[256 - i]); - exp_val *= exp_decay_factor; - } - return (float)(-0.1 * bits); -} - -static float PredictionCostSpatialHistogram(const int accumulated[4][256], - const int tile[4][256]) { - int i; - double retval = 0; - for (i = 0; i < 4; ++i) { - const double kExpValue = 0.94; - retval += PredictionCostSpatial(tile[i], 1, kExpValue); - retval += VP8LCombinedShannonEntropy(tile[i], accumulated[i]); - } - return (float)retval; -} - -static WEBP_INLINE void UpdateHisto(int histo_argb[4][256], uint32_t argb) { - ++histo_argb[0][argb >> 24]; - ++histo_argb[1][(argb >> 16) & 0xff]; - ++histo_argb[2][(argb >> 8) & 0xff]; - ++histo_argb[3][argb & 0xff]; -} - -//------------------------------------------------------------------------------ -// Spatial transform functions. - -static WEBP_INLINE void PredictBatch(int mode, int x_start, int y, - int num_pixels, const uint32_t* current, - const uint32_t* upper, uint32_t* out) { - if (x_start == 0) { - if (y == 0) { - // ARGB_BLACK. - VP8LPredictorsSub[0](current, NULL, 1, out); - } else { - // Top one. - VP8LPredictorsSub[2](current, upper, 1, out); - } - ++x_start; - ++out; - --num_pixels; - } - if (y == 0) { - // Left one. - VP8LPredictorsSub[1](current + x_start, NULL, num_pixels, out); - } else { - VP8LPredictorsSub[mode](current + x_start, upper + x_start, num_pixels, - out); - } -} - -static int MaxDiffBetweenPixels(uint32_t p1, uint32_t p2) { - const int diff_a = abs((int)(p1 >> 24) - (int)(p2 >> 24)); - const int diff_r = abs((int)((p1 >> 16) & 0xff) - (int)((p2 >> 16) & 0xff)); - const int diff_g = abs((int)((p1 >> 8) & 0xff) - (int)((p2 >> 8) & 0xff)); - const int diff_b = abs((int)(p1 & 0xff) - (int)(p2 & 0xff)); - return GetMax(GetMax(diff_a, diff_r), GetMax(diff_g, diff_b)); -} - -static int MaxDiffAroundPixel(uint32_t current, uint32_t up, uint32_t down, - uint32_t left, uint32_t right) { - const int diff_up = MaxDiffBetweenPixels(current, up); - const int diff_down = MaxDiffBetweenPixels(current, down); - const int diff_left = MaxDiffBetweenPixels(current, left); - const int diff_right = MaxDiffBetweenPixels(current, right); - return GetMax(GetMax(diff_up, diff_down), GetMax(diff_left, diff_right)); -} - -static uint32_t AddGreenToBlueAndRed(uint32_t argb) { - const uint32_t green = (argb >> 8) & 0xff; - uint32_t red_blue = argb & 0x00ff00ffu; - red_blue += (green << 16) | green; - red_blue &= 0x00ff00ffu; - return (argb & 0xff00ff00u) | red_blue; -} - -static void MaxDiffsForRow(int width, int stride, const uint32_t* const argb, - uint8_t* const max_diffs, int used_subtract_green) { - uint32_t current, up, down, left, right; - int x; - if (width <= 2) return; - current = argb[0]; - right = argb[1]; - if (used_subtract_green) { - current = AddGreenToBlueAndRed(current); - right = AddGreenToBlueAndRed(right); - } - // max_diffs[0] and max_diffs[width - 1] are never used. - for (x = 1; x < width - 1; ++x) { - up = argb[-stride + x]; - down = argb[stride + x]; - left = current; - current = right; - right = argb[x + 1]; - if (used_subtract_green) { - up = AddGreenToBlueAndRed(up); - down = AddGreenToBlueAndRed(down); - right = AddGreenToBlueAndRed(right); - } - max_diffs[x] = MaxDiffAroundPixel(current, up, down, left, right); - } -} - -// Quantize the difference between the actual component value and its prediction -// to a multiple of quantization, working modulo 256, taking care not to cross -// a boundary (inclusive upper limit). -static uint8_t NearLosslessComponent(uint8_t value, uint8_t predict, - uint8_t boundary, int quantization) { - const int residual = (value - predict) & 0xff; - const int boundary_residual = (boundary - predict) & 0xff; - const int lower = residual & ~(quantization - 1); - const int upper = lower + quantization; - // Resolve ties towards a value closer to the prediction (i.e. towards lower - // if value comes after prediction and towards upper otherwise). - const int bias = ((boundary - value) & 0xff) < boundary_residual; - if (residual - lower < upper - residual + bias) { - // lower is closer to residual than upper. - if (residual > boundary_residual && lower <= boundary_residual) { - // Halve quantization step to avoid crossing boundary. This midpoint is - // on the same side of boundary as residual because midpoint >= residual - // (since lower is closer than upper) and residual is above the boundary. - return lower + (quantization >> 1); - } - return lower; - } else { - // upper is closer to residual than lower. - if (residual <= boundary_residual && upper > boundary_residual) { - // Halve quantization step to avoid crossing boundary. This midpoint is - // on the same side of boundary as residual because midpoint <= residual - // (since upper is closer than lower) and residual is below the boundary. - return lower + (quantization >> 1); - } - return upper & 0xff; - } -} - -// Quantize every component of the difference between the actual pixel value and -// its prediction to a multiple of a quantization (a power of 2, not larger than -// max_quantization which is a power of 2, smaller than max_diff). Take care if -// value and predict have undergone subtract green, which means that red and -// blue are represented as offsets from green. -static uint32_t NearLossless(uint32_t value, uint32_t predict, - int max_quantization, int max_diff, - int used_subtract_green) { - int quantization; - uint8_t new_green = 0; - uint8_t green_diff = 0; - uint8_t a, r, g, b; - if (max_diff <= 2) { - return VP8LSubPixels(value, predict); - } - quantization = max_quantization; - while (quantization >= max_diff) { - quantization >>= 1; - } - if ((value >> 24) == 0 || (value >> 24) == 0xff) { - // Preserve transparency of fully transparent or fully opaque pixels. - a = ((value >> 24) - (predict >> 24)) & 0xff; - } else { - a = NearLosslessComponent(value >> 24, predict >> 24, 0xff, quantization); - } - g = NearLosslessComponent((value >> 8) & 0xff, (predict >> 8) & 0xff, 0xff, - quantization); - if (used_subtract_green) { - // The green offset will be added to red and blue components during decoding - // to obtain the actual red and blue values. - new_green = ((predict >> 8) + g) & 0xff; - // The amount by which green has been adjusted during quantization. It is - // subtracted from red and blue for compensation, to avoid accumulating two - // quantization errors in them. - green_diff = (new_green - (value >> 8)) & 0xff; - } - r = NearLosslessComponent(((value >> 16) - green_diff) & 0xff, - (predict >> 16) & 0xff, 0xff - new_green, - quantization); - b = NearLosslessComponent((value - green_diff) & 0xff, predict & 0xff, - 0xff - new_green, quantization); - return ((uint32_t)a << 24) | ((uint32_t)r << 16) | ((uint32_t)g << 8) | b; -} - -// Stores the difference between the pixel and its prediction in "out". -// In case of a lossy encoding, updates the source image to avoid propagating -// the deviation further to pixels which depend on the current pixel for their -// predictions. -static WEBP_INLINE void GetResidual( - int width, int height, uint32_t* const upper_row, - uint32_t* const current_row, const uint8_t* const max_diffs, int mode, - int x_start, int x_end, int y, int max_quantization, int exact, - int used_subtract_green, uint32_t* const out) { - if (exact) { - PredictBatch(mode, x_start, y, x_end - x_start, current_row, upper_row, - out); - } else { - const VP8LPredictorFunc pred_func = VP8LPredictors[mode]; - int x; - for (x = x_start; x < x_end; ++x) { - uint32_t predict; - uint32_t residual; - if (y == 0) { - predict = (x == 0) ? ARGB_BLACK : current_row[x - 1]; // Left. - } else if (x == 0) { - predict = upper_row[x]; // Top. - } else { - predict = pred_func(current_row[x - 1], upper_row + x); - } - if (max_quantization == 1 || mode == 0 || y == 0 || y == height - 1 || - x == 0 || x == width - 1) { - residual = VP8LSubPixels(current_row[x], predict); - } else { - residual = NearLossless(current_row[x], predict, max_quantization, - max_diffs[x], used_subtract_green); - // Update the source image. - current_row[x] = VP8LAddPixels(predict, residual); - // x is never 0 here so we do not need to update upper_row like below. - } - if ((current_row[x] & kMaskAlpha) == 0) { - // If alpha is 0, cleanup RGB. We can choose the RGB values of the - // residual for best compression. The prediction of alpha itself can be - // non-zero and must be kept though. We choose RGB of the residual to be - // 0. - residual &= kMaskAlpha; - // Update the source image. - current_row[x] = predict & ~kMaskAlpha; - // The prediction for the rightmost pixel in a row uses the leftmost - // pixel - // in that row as its top-right context pixel. Hence if we change the - // leftmost pixel of current_row, the corresponding change must be - // applied - // to upper_row as well where top-right context is being read from. - if (x == 0 && y != 0) upper_row[width] = current_row[0]; - } - out[x - x_start] = residual; - } - } -} - -// Returns best predictor and updates the accumulated histogram. -// If max_quantization > 1, assumes that near lossless processing will be -// applied, quantizing residuals to multiples of quantization levels up to -// max_quantization (the actual quantization level depends on smoothness near -// the given pixel). -static int GetBestPredictorForTile(int width, int height, - int tile_x, int tile_y, int bits, - int accumulated[4][256], - uint32_t* const argb_scratch, - const uint32_t* const argb, - int max_quantization, - int exact, int used_subtract_green, - const uint32_t* const modes) { - const int kNumPredModes = 14; - const int start_x = tile_x << bits; - const int start_y = tile_y << bits; - const int tile_size = 1 << bits; - const int max_y = GetMin(tile_size, height - start_y); - const int max_x = GetMin(tile_size, width - start_x); - // Whether there exist columns just outside the tile. - const int have_left = (start_x > 0); - const int have_right = (max_x < width - start_x); - // Position and size of the strip covering the tile and adjacent columns if - // they exist. - const int context_start_x = start_x - have_left; - const int context_width = max_x + have_left + have_right; - const int tiles_per_row = VP8LSubSampleSize(width, bits); - // Prediction modes of the left and above neighbor tiles. - const int left_mode = (tile_x > 0) ? - (modes[tile_y * tiles_per_row + tile_x - 1] >> 8) & 0xff : 0xff; - const int above_mode = (tile_y > 0) ? - (modes[(tile_y - 1) * tiles_per_row + tile_x] >> 8) & 0xff : 0xff; - // The width of upper_row and current_row is one pixel larger than image width - // to allow the top right pixel to point to the leftmost pixel of the next row - // when at the right edge. - uint32_t* upper_row = argb_scratch; - uint32_t* current_row = upper_row + width + 1; - uint8_t* const max_diffs = (uint8_t*)(current_row + width + 1); - float best_diff = MAX_DIFF_COST; - int best_mode = 0; - int mode; - int histo_stack_1[4][256]; - int histo_stack_2[4][256]; - // Need pointers to be able to swap arrays. - int (*histo_argb)[256] = histo_stack_1; - int (*best_histo)[256] = histo_stack_2; - int i, j; - uint32_t residuals[1 << MAX_TRANSFORM_BITS]; - assert(bits <= MAX_TRANSFORM_BITS); - assert(max_x <= (1 << MAX_TRANSFORM_BITS)); - - for (mode = 0; mode < kNumPredModes; ++mode) { - float cur_diff; - int relative_y; - memset(histo_argb, 0, sizeof(histo_stack_1)); - if (start_y > 0) { - // Read the row above the tile which will become the first upper_row. - // Include a pixel to the left if it exists; include a pixel to the right - // in all cases (wrapping to the leftmost pixel of the next row if it does - // not exist). - memcpy(current_row + context_start_x, - argb + (start_y - 1) * width + context_start_x, - sizeof(*argb) * (max_x + have_left + 1)); - } - for (relative_y = 0; relative_y < max_y; ++relative_y) { - const int y = start_y + relative_y; - int relative_x; - uint32_t* tmp = upper_row; - upper_row = current_row; - current_row = tmp; - // Read current_row. Include a pixel to the left if it exists; include a - // pixel to the right in all cases except at the bottom right corner of - // the image (wrapping to the leftmost pixel of the next row if it does - // not exist in the current row). - memcpy(current_row + context_start_x, - argb + y * width + context_start_x, - sizeof(*argb) * (max_x + have_left + (y + 1 < height))); - if (max_quantization > 1 && y >= 1 && y + 1 < height) { - MaxDiffsForRow(context_width, width, argb + y * width + context_start_x, - max_diffs + context_start_x, used_subtract_green); - } - - GetResidual(width, height, upper_row, current_row, max_diffs, mode, - start_x, start_x + max_x, y, max_quantization, exact, - used_subtract_green, residuals); - for (relative_x = 0; relative_x < max_x; ++relative_x) { - UpdateHisto(histo_argb, residuals[relative_x]); - } - } - cur_diff = PredictionCostSpatialHistogram( - (const int (*)[256])accumulated, (const int (*)[256])histo_argb); - // Favor keeping the areas locally similar. - if (mode == left_mode) cur_diff -= kSpatialPredictorBias; - if (mode == above_mode) cur_diff -= kSpatialPredictorBias; - - if (cur_diff < best_diff) { - int (*tmp)[256] = histo_argb; - histo_argb = best_histo; - best_histo = tmp; - best_diff = cur_diff; - best_mode = mode; - } - } - - for (i = 0; i < 4; i++) { - for (j = 0; j < 256; j++) { - accumulated[i][j] += best_histo[i][j]; - } - } - - return best_mode; -} - -// Converts pixels of the image to residuals with respect to predictions. -// If max_quantization > 1, applies near lossless processing, quantizing -// residuals to multiples of quantization levels up to max_quantization -// (the actual quantization level depends on smoothness near the given pixel). -static void CopyImageWithPrediction(int width, int height, - int bits, uint32_t* const modes, - uint32_t* const argb_scratch, - uint32_t* const argb, - int low_effort, int max_quantization, - int exact, int used_subtract_green) { - const int tiles_per_row = VP8LSubSampleSize(width, bits); - // The width of upper_row and current_row is one pixel larger than image width - // to allow the top right pixel to point to the leftmost pixel of the next row - // when at the right edge. - uint32_t* upper_row = argb_scratch; - uint32_t* current_row = upper_row + width + 1; - uint8_t* current_max_diffs = (uint8_t*)(current_row + width + 1); - uint8_t* lower_max_diffs = current_max_diffs + width; - int y; - - for (y = 0; y < height; ++y) { - int x; - uint32_t* const tmp32 = upper_row; - upper_row = current_row; - current_row = tmp32; - memcpy(current_row, argb + y * width, - sizeof(*argb) * (width + (y + 1 < height))); - - if (low_effort) { - PredictBatch(kPredLowEffort, 0, y, width, current_row, upper_row, - argb + y * width); - } else { - if (max_quantization > 1) { - // Compute max_diffs for the lower row now, because that needs the - // contents of argb for the current row, which we will overwrite with - // residuals before proceeding with the next row. - uint8_t* const tmp8 = current_max_diffs; - current_max_diffs = lower_max_diffs; - lower_max_diffs = tmp8; - if (y + 2 < height) { - MaxDiffsForRow(width, width, argb + (y + 1) * width, lower_max_diffs, - used_subtract_green); - } - } - for (x = 0; x < width;) { - const int mode = - (modes[(y >> bits) * tiles_per_row + (x >> bits)] >> 8) & 0xff; - int x_end = x + (1 << bits); - if (x_end > width) x_end = width; - GetResidual(width, height, upper_row, current_row, current_max_diffs, - mode, x, x_end, y, max_quantization, exact, - used_subtract_green, argb + y * width + x); - x = x_end; - } - } - } -} - -// Finds the best predictor for each tile, and converts the image to residuals -// with respect to predictions. If near_lossless_quality < 100, applies -// near lossless processing, shaving off more bits of residuals for lower -// qualities. -void VP8LResidualImage(int width, int height, int bits, int low_effort, - uint32_t* const argb, uint32_t* const argb_scratch, - uint32_t* const image, int near_lossless_quality, - int exact, int used_subtract_green) { - const int tiles_per_row = VP8LSubSampleSize(width, bits); - const int tiles_per_col = VP8LSubSampleSize(height, bits); - int tile_y; - int histo[4][256]; - const int max_quantization = 1 << VP8LNearLosslessBits(near_lossless_quality); - if (low_effort) { - int i; - for (i = 0; i < tiles_per_row * tiles_per_col; ++i) { - image[i] = ARGB_BLACK | (kPredLowEffort << 8); - } - } else { - memset(histo, 0, sizeof(histo)); - for (tile_y = 0; tile_y < tiles_per_col; ++tile_y) { - int tile_x; - for (tile_x = 0; tile_x < tiles_per_row; ++tile_x) { - const int pred = GetBestPredictorForTile(width, height, tile_x, tile_y, - bits, histo, argb_scratch, argb, max_quantization, exact, - used_subtract_green, image); - image[tile_y * tiles_per_row + tile_x] = ARGB_BLACK | (pred << 8); - } - } - } - - CopyImageWithPrediction(width, height, bits, image, argb_scratch, argb, - low_effort, max_quantization, exact, - used_subtract_green); -} - -//------------------------------------------------------------------------------ -// Color transform functions. - -static WEBP_INLINE void MultipliersClear(VP8LMultipliers* const m) { - m->green_to_red_ = 0; - m->green_to_blue_ = 0; - m->red_to_blue_ = 0; -} - -static WEBP_INLINE void ColorCodeToMultipliers(uint32_t color_code, - VP8LMultipliers* const m) { - m->green_to_red_ = (color_code >> 0) & 0xff; - m->green_to_blue_ = (color_code >> 8) & 0xff; - m->red_to_blue_ = (color_code >> 16) & 0xff; -} - -static WEBP_INLINE uint32_t MultipliersToColorCode( - const VP8LMultipliers* const m) { - return 0xff000000u | - ((uint32_t)(m->red_to_blue_) << 16) | - ((uint32_t)(m->green_to_blue_) << 8) | - m->green_to_red_; -} - -static float PredictionCostCrossColor(const int accumulated[256], - const int counts[256]) { - // Favor low entropy, locally and globally. - // Favor small absolute values for PredictionCostSpatial - static const double kExpValue = 2.4; - return VP8LCombinedShannonEntropy(counts, accumulated) + - PredictionCostSpatial(counts, 3, kExpValue); -} - -static float GetPredictionCostCrossColorRed( - const uint32_t* argb, int stride, int tile_width, int tile_height, - VP8LMultipliers prev_x, VP8LMultipliers prev_y, int green_to_red, - const int accumulated_red_histo[256]) { - int histo[256] = { 0 }; - float cur_diff; - - VP8LCollectColorRedTransforms(argb, stride, tile_width, tile_height, - green_to_red, histo); - - cur_diff = PredictionCostCrossColor(accumulated_red_histo, histo); - if ((uint8_t)green_to_red == prev_x.green_to_red_) { - cur_diff -= 3; // favor keeping the areas locally similar - } - if ((uint8_t)green_to_red == prev_y.green_to_red_) { - cur_diff -= 3; // favor keeping the areas locally similar - } - if (green_to_red == 0) { - cur_diff -= 3; - } - return cur_diff; -} - -static void GetBestGreenToRed( - const uint32_t* argb, int stride, int tile_width, int tile_height, - VP8LMultipliers prev_x, VP8LMultipliers prev_y, int quality, - const int accumulated_red_histo[256], VP8LMultipliers* const best_tx) { - const int kMaxIters = 4 + ((7 * quality) >> 8); // in range [4..6] - int green_to_red_best = 0; - int iter, offset; - float best_diff = GetPredictionCostCrossColorRed( - argb, stride, tile_width, tile_height, prev_x, prev_y, - green_to_red_best, accumulated_red_histo); - for (iter = 0; iter < kMaxIters; ++iter) { - // ColorTransformDelta is a 3.5 bit fixed point, so 32 is equal to - // one in color computation. Having initial delta here as 1 is sufficient - // to explore the range of (-2, 2). - const int delta = 32 >> iter; - // Try a negative and a positive delta from the best known value. - for (offset = -delta; offset <= delta; offset += 2 * delta) { - const int green_to_red_cur = offset + green_to_red_best; - const float cur_diff = GetPredictionCostCrossColorRed( - argb, stride, tile_width, tile_height, prev_x, prev_y, - green_to_red_cur, accumulated_red_histo); - if (cur_diff < best_diff) { - best_diff = cur_diff; - green_to_red_best = green_to_red_cur; - } - } - } - best_tx->green_to_red_ = green_to_red_best; -} - -static float GetPredictionCostCrossColorBlue( - const uint32_t* argb, int stride, int tile_width, int tile_height, - VP8LMultipliers prev_x, VP8LMultipliers prev_y, - int green_to_blue, int red_to_blue, const int accumulated_blue_histo[256]) { - int histo[256] = { 0 }; - float cur_diff; - - VP8LCollectColorBlueTransforms(argb, stride, tile_width, tile_height, - green_to_blue, red_to_blue, histo); - - cur_diff = PredictionCostCrossColor(accumulated_blue_histo, histo); - if ((uint8_t)green_to_blue == prev_x.green_to_blue_) { - cur_diff -= 3; // favor keeping the areas locally similar - } - if ((uint8_t)green_to_blue == prev_y.green_to_blue_) { - cur_diff -= 3; // favor keeping the areas locally similar - } - if ((uint8_t)red_to_blue == prev_x.red_to_blue_) { - cur_diff -= 3; // favor keeping the areas locally similar - } - if ((uint8_t)red_to_blue == prev_y.red_to_blue_) { - cur_diff -= 3; // favor keeping the areas locally similar - } - if (green_to_blue == 0) { - cur_diff -= 3; - } - if (red_to_blue == 0) { - cur_diff -= 3; - } - return cur_diff; -} - -#define kGreenRedToBlueNumAxis 8 -#define kGreenRedToBlueMaxIters 7 -static void GetBestGreenRedToBlue( - const uint32_t* argb, int stride, int tile_width, int tile_height, - VP8LMultipliers prev_x, VP8LMultipliers prev_y, int quality, - const int accumulated_blue_histo[256], - VP8LMultipliers* const best_tx) { - const int8_t offset[kGreenRedToBlueNumAxis][2] = - {{0, -1}, {0, 1}, {-1, 0}, {1, 0}, {-1, -1}, {-1, 1}, {1, -1}, {1, 1}}; - const int8_t delta_lut[kGreenRedToBlueMaxIters] = { 16, 16, 8, 4, 2, 2, 2 }; - const int iters = - (quality < 25) ? 1 : (quality > 50) ? kGreenRedToBlueMaxIters : 4; - int green_to_blue_best = 0; - int red_to_blue_best = 0; - int iter; - // Initial value at origin: - float best_diff = GetPredictionCostCrossColorBlue( - argb, stride, tile_width, tile_height, prev_x, prev_y, - green_to_blue_best, red_to_blue_best, accumulated_blue_histo); - for (iter = 0; iter < iters; ++iter) { - const int delta = delta_lut[iter]; - int axis; - for (axis = 0; axis < kGreenRedToBlueNumAxis; ++axis) { - const int green_to_blue_cur = - offset[axis][0] * delta + green_to_blue_best; - const int red_to_blue_cur = offset[axis][1] * delta + red_to_blue_best; - const float cur_diff = GetPredictionCostCrossColorBlue( - argb, stride, tile_width, tile_height, prev_x, prev_y, - green_to_blue_cur, red_to_blue_cur, accumulated_blue_histo); - if (cur_diff < best_diff) { - best_diff = cur_diff; - green_to_blue_best = green_to_blue_cur; - red_to_blue_best = red_to_blue_cur; - } - if (quality < 25 && iter == 4) { - // Only axis aligned diffs for lower quality. - break; // next iter. - } - } - if (delta == 2 && green_to_blue_best == 0 && red_to_blue_best == 0) { - // Further iterations would not help. - break; // out of iter-loop. - } - } - best_tx->green_to_blue_ = green_to_blue_best; - best_tx->red_to_blue_ = red_to_blue_best; -} -#undef kGreenRedToBlueMaxIters -#undef kGreenRedToBlueNumAxis - -static VP8LMultipliers GetBestColorTransformForTile( - int tile_x, int tile_y, int bits, - VP8LMultipliers prev_x, - VP8LMultipliers prev_y, - int quality, int xsize, int ysize, - const int accumulated_red_histo[256], - const int accumulated_blue_histo[256], - const uint32_t* const argb) { - const int max_tile_size = 1 << bits; - const int tile_y_offset = tile_y * max_tile_size; - const int tile_x_offset = tile_x * max_tile_size; - const int all_x_max = GetMin(tile_x_offset + max_tile_size, xsize); - const int all_y_max = GetMin(tile_y_offset + max_tile_size, ysize); - const int tile_width = all_x_max - tile_x_offset; - const int tile_height = all_y_max - tile_y_offset; - const uint32_t* const tile_argb = argb + tile_y_offset * xsize - + tile_x_offset; - VP8LMultipliers best_tx; - MultipliersClear(&best_tx); - - GetBestGreenToRed(tile_argb, xsize, tile_width, tile_height, - prev_x, prev_y, quality, accumulated_red_histo, &best_tx); - GetBestGreenRedToBlue(tile_argb, xsize, tile_width, tile_height, - prev_x, prev_y, quality, accumulated_blue_histo, - &best_tx); - return best_tx; -} - -static void CopyTileWithColorTransform(int xsize, int ysize, - int tile_x, int tile_y, - int max_tile_size, - VP8LMultipliers color_transform, - uint32_t* argb) { - const int xscan = GetMin(max_tile_size, xsize - tile_x); - int yscan = GetMin(max_tile_size, ysize - tile_y); - argb += tile_y * xsize + tile_x; - while (yscan-- > 0) { - VP8LTransformColor(&color_transform, argb, xscan); - argb += xsize; - } -} - -void VP8LColorSpaceTransform(int width, int height, int bits, int quality, - uint32_t* const argb, uint32_t* image) { - const int max_tile_size = 1 << bits; - const int tile_xsize = VP8LSubSampleSize(width, bits); - const int tile_ysize = VP8LSubSampleSize(height, bits); - int accumulated_red_histo[256] = { 0 }; - int accumulated_blue_histo[256] = { 0 }; - int tile_x, tile_y; - VP8LMultipliers prev_x, prev_y; - MultipliersClear(&prev_y); - MultipliersClear(&prev_x); - for (tile_y = 0; tile_y < tile_ysize; ++tile_y) { - for (tile_x = 0; tile_x < tile_xsize; ++tile_x) { - int y; - const int tile_x_offset = tile_x * max_tile_size; - const int tile_y_offset = tile_y * max_tile_size; - const int all_x_max = GetMin(tile_x_offset + max_tile_size, width); - const int all_y_max = GetMin(tile_y_offset + max_tile_size, height); - const int offset = tile_y * tile_xsize + tile_x; - if (tile_y != 0) { - ColorCodeToMultipliers(image[offset - tile_xsize], &prev_y); - } - prev_x = GetBestColorTransformForTile(tile_x, tile_y, bits, - prev_x, prev_y, - quality, width, height, - accumulated_red_histo, - accumulated_blue_histo, - argb); - image[offset] = MultipliersToColorCode(&prev_x); - CopyTileWithColorTransform(width, height, tile_x_offset, tile_y_offset, - max_tile_size, prev_x, argb); - - // Gather accumulated histogram data. - for (y = tile_y_offset; y < all_y_max; ++y) { - int ix = y * width + tile_x_offset; - const int ix_end = ix + all_x_max - tile_x_offset; - for (; ix < ix_end; ++ix) { - const uint32_t pix = argb[ix]; - if (ix >= 2 && - pix == argb[ix - 2] && - pix == argb[ix - 1]) { - continue; // repeated pixels are handled by backward references - } - if (ix >= width + 2 && - argb[ix - 2] == argb[ix - width - 2] && - argb[ix - 1] == argb[ix - width - 1] && - pix == argb[ix - width]) { - continue; // repeated pixels are handled by backward references - } - ++accumulated_red_histo[(pix >> 16) & 0xff]; - ++accumulated_blue_histo[(pix >> 0) & 0xff]; - } - } - } - } -} |