summaryrefslogtreecommitdiff
path: root/thirdparty/libwebp/enc/predictor_enc.c
diff options
context:
space:
mode:
authorvolzhs <volzhs@gmail.com>2017-12-12 02:11:11 +0900
committervolzhs <volzhs@gmail.com>2017-12-12 02:55:47 +0900
commit043103fe6a1168729abf74dd56b8982ce54eea43 (patch)
treef3311c0442fba0ff565d9de0ad9fee3f0002295e /thirdparty/libwebp/enc/predictor_enc.c
parent64d104756c04f4d5c4e8140271d5e8049e5f8371 (diff)
Update libwebp to 0.6.1
* lossless performance and compression improvements + a new 'cruncher' mode (-m 6 -q 100) * ARM performance improvements with clang (15-20% w/ndk r15c) * webp-js: emscripten/webassembly based javascript decoder * miscellaneous bug & build fixes
Diffstat (limited to 'thirdparty/libwebp/enc/predictor_enc.c')
-rw-r--r--thirdparty/libwebp/enc/predictor_enc.c750
1 files changed, 0 insertions, 750 deletions
diff --git a/thirdparty/libwebp/enc/predictor_enc.c b/thirdparty/libwebp/enc/predictor_enc.c
deleted file mode 100644
index 0639b74f1c..0000000000
--- a/thirdparty/libwebp/enc/predictor_enc.c
+++ /dev/null
@@ -1,750 +0,0 @@
-// Copyright 2016 Google Inc. All Rights Reserved.
-//
-// Use of this source code is governed by a BSD-style license
-// that can be found in the COPYING file in the root of the source
-// tree. An additional intellectual property rights grant can be found
-// in the file PATENTS. All contributing project authors may
-// be found in the AUTHORS file in the root of the source tree.
-// -----------------------------------------------------------------------------
-//
-// Image transform methods for lossless encoder.
-//
-// Authors: Vikas Arora (vikaas.arora@gmail.com)
-// Jyrki Alakuijala (jyrki@google.com)
-// Urvang Joshi (urvang@google.com)
-// Vincent Rabaud (vrabaud@google.com)
-
-#include "../dsp/lossless.h"
-#include "../dsp/lossless_common.h"
-#include "./vp8li_enc.h"
-
-#define MAX_DIFF_COST (1e30f)
-
-static const float kSpatialPredictorBias = 15.f;
-static const int kPredLowEffort = 11;
-static const uint32_t kMaskAlpha = 0xff000000;
-
-// Mostly used to reduce code size + readability
-static WEBP_INLINE int GetMin(int a, int b) { return (a > b) ? b : a; }
-static WEBP_INLINE int GetMax(int a, int b) { return (a < b) ? b : a; }
-
-//------------------------------------------------------------------------------
-// Methods to calculate Entropy (Shannon).
-
-static float PredictionCostSpatial(const int counts[256], int weight_0,
- double exp_val) {
- const int significant_symbols = 256 >> 4;
- const double exp_decay_factor = 0.6;
- double bits = weight_0 * counts[0];
- int i;
- for (i = 1; i < significant_symbols; ++i) {
- bits += exp_val * (counts[i] + counts[256 - i]);
- exp_val *= exp_decay_factor;
- }
- return (float)(-0.1 * bits);
-}
-
-static float PredictionCostSpatialHistogram(const int accumulated[4][256],
- const int tile[4][256]) {
- int i;
- double retval = 0;
- for (i = 0; i < 4; ++i) {
- const double kExpValue = 0.94;
- retval += PredictionCostSpatial(tile[i], 1, kExpValue);
- retval += VP8LCombinedShannonEntropy(tile[i], accumulated[i]);
- }
- return (float)retval;
-}
-
-static WEBP_INLINE void UpdateHisto(int histo_argb[4][256], uint32_t argb) {
- ++histo_argb[0][argb >> 24];
- ++histo_argb[1][(argb >> 16) & 0xff];
- ++histo_argb[2][(argb >> 8) & 0xff];
- ++histo_argb[3][argb & 0xff];
-}
-
-//------------------------------------------------------------------------------
-// Spatial transform functions.
-
-static WEBP_INLINE void PredictBatch(int mode, int x_start, int y,
- int num_pixels, const uint32_t* current,
- const uint32_t* upper, uint32_t* out) {
- if (x_start == 0) {
- if (y == 0) {
- // ARGB_BLACK.
- VP8LPredictorsSub[0](current, NULL, 1, out);
- } else {
- // Top one.
- VP8LPredictorsSub[2](current, upper, 1, out);
- }
- ++x_start;
- ++out;
- --num_pixels;
- }
- if (y == 0) {
- // Left one.
- VP8LPredictorsSub[1](current + x_start, NULL, num_pixels, out);
- } else {
- VP8LPredictorsSub[mode](current + x_start, upper + x_start, num_pixels,
- out);
- }
-}
-
-static int MaxDiffBetweenPixels(uint32_t p1, uint32_t p2) {
- const int diff_a = abs((int)(p1 >> 24) - (int)(p2 >> 24));
- const int diff_r = abs((int)((p1 >> 16) & 0xff) - (int)((p2 >> 16) & 0xff));
- const int diff_g = abs((int)((p1 >> 8) & 0xff) - (int)((p2 >> 8) & 0xff));
- const int diff_b = abs((int)(p1 & 0xff) - (int)(p2 & 0xff));
- return GetMax(GetMax(diff_a, diff_r), GetMax(diff_g, diff_b));
-}
-
-static int MaxDiffAroundPixel(uint32_t current, uint32_t up, uint32_t down,
- uint32_t left, uint32_t right) {
- const int diff_up = MaxDiffBetweenPixels(current, up);
- const int diff_down = MaxDiffBetweenPixels(current, down);
- const int diff_left = MaxDiffBetweenPixels(current, left);
- const int diff_right = MaxDiffBetweenPixels(current, right);
- return GetMax(GetMax(diff_up, diff_down), GetMax(diff_left, diff_right));
-}
-
-static uint32_t AddGreenToBlueAndRed(uint32_t argb) {
- const uint32_t green = (argb >> 8) & 0xff;
- uint32_t red_blue = argb & 0x00ff00ffu;
- red_blue += (green << 16) | green;
- red_blue &= 0x00ff00ffu;
- return (argb & 0xff00ff00u) | red_blue;
-}
-
-static void MaxDiffsForRow(int width, int stride, const uint32_t* const argb,
- uint8_t* const max_diffs, int used_subtract_green) {
- uint32_t current, up, down, left, right;
- int x;
- if (width <= 2) return;
- current = argb[0];
- right = argb[1];
- if (used_subtract_green) {
- current = AddGreenToBlueAndRed(current);
- right = AddGreenToBlueAndRed(right);
- }
- // max_diffs[0] and max_diffs[width - 1] are never used.
- for (x = 1; x < width - 1; ++x) {
- up = argb[-stride + x];
- down = argb[stride + x];
- left = current;
- current = right;
- right = argb[x + 1];
- if (used_subtract_green) {
- up = AddGreenToBlueAndRed(up);
- down = AddGreenToBlueAndRed(down);
- right = AddGreenToBlueAndRed(right);
- }
- max_diffs[x] = MaxDiffAroundPixel(current, up, down, left, right);
- }
-}
-
-// Quantize the difference between the actual component value and its prediction
-// to a multiple of quantization, working modulo 256, taking care not to cross
-// a boundary (inclusive upper limit).
-static uint8_t NearLosslessComponent(uint8_t value, uint8_t predict,
- uint8_t boundary, int quantization) {
- const int residual = (value - predict) & 0xff;
- const int boundary_residual = (boundary - predict) & 0xff;
- const int lower = residual & ~(quantization - 1);
- const int upper = lower + quantization;
- // Resolve ties towards a value closer to the prediction (i.e. towards lower
- // if value comes after prediction and towards upper otherwise).
- const int bias = ((boundary - value) & 0xff) < boundary_residual;
- if (residual - lower < upper - residual + bias) {
- // lower is closer to residual than upper.
- if (residual > boundary_residual && lower <= boundary_residual) {
- // Halve quantization step to avoid crossing boundary. This midpoint is
- // on the same side of boundary as residual because midpoint >= residual
- // (since lower is closer than upper) and residual is above the boundary.
- return lower + (quantization >> 1);
- }
- return lower;
- } else {
- // upper is closer to residual than lower.
- if (residual <= boundary_residual && upper > boundary_residual) {
- // Halve quantization step to avoid crossing boundary. This midpoint is
- // on the same side of boundary as residual because midpoint <= residual
- // (since upper is closer than lower) and residual is below the boundary.
- return lower + (quantization >> 1);
- }
- return upper & 0xff;
- }
-}
-
-// Quantize every component of the difference between the actual pixel value and
-// its prediction to a multiple of a quantization (a power of 2, not larger than
-// max_quantization which is a power of 2, smaller than max_diff). Take care if
-// value and predict have undergone subtract green, which means that red and
-// blue are represented as offsets from green.
-static uint32_t NearLossless(uint32_t value, uint32_t predict,
- int max_quantization, int max_diff,
- int used_subtract_green) {
- int quantization;
- uint8_t new_green = 0;
- uint8_t green_diff = 0;
- uint8_t a, r, g, b;
- if (max_diff <= 2) {
- return VP8LSubPixels(value, predict);
- }
- quantization = max_quantization;
- while (quantization >= max_diff) {
- quantization >>= 1;
- }
- if ((value >> 24) == 0 || (value >> 24) == 0xff) {
- // Preserve transparency of fully transparent or fully opaque pixels.
- a = ((value >> 24) - (predict >> 24)) & 0xff;
- } else {
- a = NearLosslessComponent(value >> 24, predict >> 24, 0xff, quantization);
- }
- g = NearLosslessComponent((value >> 8) & 0xff, (predict >> 8) & 0xff, 0xff,
- quantization);
- if (used_subtract_green) {
- // The green offset will be added to red and blue components during decoding
- // to obtain the actual red and blue values.
- new_green = ((predict >> 8) + g) & 0xff;
- // The amount by which green has been adjusted during quantization. It is
- // subtracted from red and blue for compensation, to avoid accumulating two
- // quantization errors in them.
- green_diff = (new_green - (value >> 8)) & 0xff;
- }
- r = NearLosslessComponent(((value >> 16) - green_diff) & 0xff,
- (predict >> 16) & 0xff, 0xff - new_green,
- quantization);
- b = NearLosslessComponent((value - green_diff) & 0xff, predict & 0xff,
- 0xff - new_green, quantization);
- return ((uint32_t)a << 24) | ((uint32_t)r << 16) | ((uint32_t)g << 8) | b;
-}
-
-// Stores the difference between the pixel and its prediction in "out".
-// In case of a lossy encoding, updates the source image to avoid propagating
-// the deviation further to pixels which depend on the current pixel for their
-// predictions.
-static WEBP_INLINE void GetResidual(
- int width, int height, uint32_t* const upper_row,
- uint32_t* const current_row, const uint8_t* const max_diffs, int mode,
- int x_start, int x_end, int y, int max_quantization, int exact,
- int used_subtract_green, uint32_t* const out) {
- if (exact) {
- PredictBatch(mode, x_start, y, x_end - x_start, current_row, upper_row,
- out);
- } else {
- const VP8LPredictorFunc pred_func = VP8LPredictors[mode];
- int x;
- for (x = x_start; x < x_end; ++x) {
- uint32_t predict;
- uint32_t residual;
- if (y == 0) {
- predict = (x == 0) ? ARGB_BLACK : current_row[x - 1]; // Left.
- } else if (x == 0) {
- predict = upper_row[x]; // Top.
- } else {
- predict = pred_func(current_row[x - 1], upper_row + x);
- }
- if (max_quantization == 1 || mode == 0 || y == 0 || y == height - 1 ||
- x == 0 || x == width - 1) {
- residual = VP8LSubPixels(current_row[x], predict);
- } else {
- residual = NearLossless(current_row[x], predict, max_quantization,
- max_diffs[x], used_subtract_green);
- // Update the source image.
- current_row[x] = VP8LAddPixels(predict, residual);
- // x is never 0 here so we do not need to update upper_row like below.
- }
- if ((current_row[x] & kMaskAlpha) == 0) {
- // If alpha is 0, cleanup RGB. We can choose the RGB values of the
- // residual for best compression. The prediction of alpha itself can be
- // non-zero and must be kept though. We choose RGB of the residual to be
- // 0.
- residual &= kMaskAlpha;
- // Update the source image.
- current_row[x] = predict & ~kMaskAlpha;
- // The prediction for the rightmost pixel in a row uses the leftmost
- // pixel
- // in that row as its top-right context pixel. Hence if we change the
- // leftmost pixel of current_row, the corresponding change must be
- // applied
- // to upper_row as well where top-right context is being read from.
- if (x == 0 && y != 0) upper_row[width] = current_row[0];
- }
- out[x - x_start] = residual;
- }
- }
-}
-
-// Returns best predictor and updates the accumulated histogram.
-// If max_quantization > 1, assumes that near lossless processing will be
-// applied, quantizing residuals to multiples of quantization levels up to
-// max_quantization (the actual quantization level depends on smoothness near
-// the given pixel).
-static int GetBestPredictorForTile(int width, int height,
- int tile_x, int tile_y, int bits,
- int accumulated[4][256],
- uint32_t* const argb_scratch,
- const uint32_t* const argb,
- int max_quantization,
- int exact, int used_subtract_green,
- const uint32_t* const modes) {
- const int kNumPredModes = 14;
- const int start_x = tile_x << bits;
- const int start_y = tile_y << bits;
- const int tile_size = 1 << bits;
- const int max_y = GetMin(tile_size, height - start_y);
- const int max_x = GetMin(tile_size, width - start_x);
- // Whether there exist columns just outside the tile.
- const int have_left = (start_x > 0);
- const int have_right = (max_x < width - start_x);
- // Position and size of the strip covering the tile and adjacent columns if
- // they exist.
- const int context_start_x = start_x - have_left;
- const int context_width = max_x + have_left + have_right;
- const int tiles_per_row = VP8LSubSampleSize(width, bits);
- // Prediction modes of the left and above neighbor tiles.
- const int left_mode = (tile_x > 0) ?
- (modes[tile_y * tiles_per_row + tile_x - 1] >> 8) & 0xff : 0xff;
- const int above_mode = (tile_y > 0) ?
- (modes[(tile_y - 1) * tiles_per_row + tile_x] >> 8) & 0xff : 0xff;
- // The width of upper_row and current_row is one pixel larger than image width
- // to allow the top right pixel to point to the leftmost pixel of the next row
- // when at the right edge.
- uint32_t* upper_row = argb_scratch;
- uint32_t* current_row = upper_row + width + 1;
- uint8_t* const max_diffs = (uint8_t*)(current_row + width + 1);
- float best_diff = MAX_DIFF_COST;
- int best_mode = 0;
- int mode;
- int histo_stack_1[4][256];
- int histo_stack_2[4][256];
- // Need pointers to be able to swap arrays.
- int (*histo_argb)[256] = histo_stack_1;
- int (*best_histo)[256] = histo_stack_2;
- int i, j;
- uint32_t residuals[1 << MAX_TRANSFORM_BITS];
- assert(bits <= MAX_TRANSFORM_BITS);
- assert(max_x <= (1 << MAX_TRANSFORM_BITS));
-
- for (mode = 0; mode < kNumPredModes; ++mode) {
- float cur_diff;
- int relative_y;
- memset(histo_argb, 0, sizeof(histo_stack_1));
- if (start_y > 0) {
- // Read the row above the tile which will become the first upper_row.
- // Include a pixel to the left if it exists; include a pixel to the right
- // in all cases (wrapping to the leftmost pixel of the next row if it does
- // not exist).
- memcpy(current_row + context_start_x,
- argb + (start_y - 1) * width + context_start_x,
- sizeof(*argb) * (max_x + have_left + 1));
- }
- for (relative_y = 0; relative_y < max_y; ++relative_y) {
- const int y = start_y + relative_y;
- int relative_x;
- uint32_t* tmp = upper_row;
- upper_row = current_row;
- current_row = tmp;
- // Read current_row. Include a pixel to the left if it exists; include a
- // pixel to the right in all cases except at the bottom right corner of
- // the image (wrapping to the leftmost pixel of the next row if it does
- // not exist in the current row).
- memcpy(current_row + context_start_x,
- argb + y * width + context_start_x,
- sizeof(*argb) * (max_x + have_left + (y + 1 < height)));
- if (max_quantization > 1 && y >= 1 && y + 1 < height) {
- MaxDiffsForRow(context_width, width, argb + y * width + context_start_x,
- max_diffs + context_start_x, used_subtract_green);
- }
-
- GetResidual(width, height, upper_row, current_row, max_diffs, mode,
- start_x, start_x + max_x, y, max_quantization, exact,
- used_subtract_green, residuals);
- for (relative_x = 0; relative_x < max_x; ++relative_x) {
- UpdateHisto(histo_argb, residuals[relative_x]);
- }
- }
- cur_diff = PredictionCostSpatialHistogram(
- (const int (*)[256])accumulated, (const int (*)[256])histo_argb);
- // Favor keeping the areas locally similar.
- if (mode == left_mode) cur_diff -= kSpatialPredictorBias;
- if (mode == above_mode) cur_diff -= kSpatialPredictorBias;
-
- if (cur_diff < best_diff) {
- int (*tmp)[256] = histo_argb;
- histo_argb = best_histo;
- best_histo = tmp;
- best_diff = cur_diff;
- best_mode = mode;
- }
- }
-
- for (i = 0; i < 4; i++) {
- for (j = 0; j < 256; j++) {
- accumulated[i][j] += best_histo[i][j];
- }
- }
-
- return best_mode;
-}
-
-// Converts pixels of the image to residuals with respect to predictions.
-// If max_quantization > 1, applies near lossless processing, quantizing
-// residuals to multiples of quantization levels up to max_quantization
-// (the actual quantization level depends on smoothness near the given pixel).
-static void CopyImageWithPrediction(int width, int height,
- int bits, uint32_t* const modes,
- uint32_t* const argb_scratch,
- uint32_t* const argb,
- int low_effort, int max_quantization,
- int exact, int used_subtract_green) {
- const int tiles_per_row = VP8LSubSampleSize(width, bits);
- // The width of upper_row and current_row is one pixel larger than image width
- // to allow the top right pixel to point to the leftmost pixel of the next row
- // when at the right edge.
- uint32_t* upper_row = argb_scratch;
- uint32_t* current_row = upper_row + width + 1;
- uint8_t* current_max_diffs = (uint8_t*)(current_row + width + 1);
- uint8_t* lower_max_diffs = current_max_diffs + width;
- int y;
-
- for (y = 0; y < height; ++y) {
- int x;
- uint32_t* const tmp32 = upper_row;
- upper_row = current_row;
- current_row = tmp32;
- memcpy(current_row, argb + y * width,
- sizeof(*argb) * (width + (y + 1 < height)));
-
- if (low_effort) {
- PredictBatch(kPredLowEffort, 0, y, width, current_row, upper_row,
- argb + y * width);
- } else {
- if (max_quantization > 1) {
- // Compute max_diffs for the lower row now, because that needs the
- // contents of argb for the current row, which we will overwrite with
- // residuals before proceeding with the next row.
- uint8_t* const tmp8 = current_max_diffs;
- current_max_diffs = lower_max_diffs;
- lower_max_diffs = tmp8;
- if (y + 2 < height) {
- MaxDiffsForRow(width, width, argb + (y + 1) * width, lower_max_diffs,
- used_subtract_green);
- }
- }
- for (x = 0; x < width;) {
- const int mode =
- (modes[(y >> bits) * tiles_per_row + (x >> bits)] >> 8) & 0xff;
- int x_end = x + (1 << bits);
- if (x_end > width) x_end = width;
- GetResidual(width, height, upper_row, current_row, current_max_diffs,
- mode, x, x_end, y, max_quantization, exact,
- used_subtract_green, argb + y * width + x);
- x = x_end;
- }
- }
- }
-}
-
-// Finds the best predictor for each tile, and converts the image to residuals
-// with respect to predictions. If near_lossless_quality < 100, applies
-// near lossless processing, shaving off more bits of residuals for lower
-// qualities.
-void VP8LResidualImage(int width, int height, int bits, int low_effort,
- uint32_t* const argb, uint32_t* const argb_scratch,
- uint32_t* const image, int near_lossless_quality,
- int exact, int used_subtract_green) {
- const int tiles_per_row = VP8LSubSampleSize(width, bits);
- const int tiles_per_col = VP8LSubSampleSize(height, bits);
- int tile_y;
- int histo[4][256];
- const int max_quantization = 1 << VP8LNearLosslessBits(near_lossless_quality);
- if (low_effort) {
- int i;
- for (i = 0; i < tiles_per_row * tiles_per_col; ++i) {
- image[i] = ARGB_BLACK | (kPredLowEffort << 8);
- }
- } else {
- memset(histo, 0, sizeof(histo));
- for (tile_y = 0; tile_y < tiles_per_col; ++tile_y) {
- int tile_x;
- for (tile_x = 0; tile_x < tiles_per_row; ++tile_x) {
- const int pred = GetBestPredictorForTile(width, height, tile_x, tile_y,
- bits, histo, argb_scratch, argb, max_quantization, exact,
- used_subtract_green, image);
- image[tile_y * tiles_per_row + tile_x] = ARGB_BLACK | (pred << 8);
- }
- }
- }
-
- CopyImageWithPrediction(width, height, bits, image, argb_scratch, argb,
- low_effort, max_quantization, exact,
- used_subtract_green);
-}
-
-//------------------------------------------------------------------------------
-// Color transform functions.
-
-static WEBP_INLINE void MultipliersClear(VP8LMultipliers* const m) {
- m->green_to_red_ = 0;
- m->green_to_blue_ = 0;
- m->red_to_blue_ = 0;
-}
-
-static WEBP_INLINE void ColorCodeToMultipliers(uint32_t color_code,
- VP8LMultipliers* const m) {
- m->green_to_red_ = (color_code >> 0) & 0xff;
- m->green_to_blue_ = (color_code >> 8) & 0xff;
- m->red_to_blue_ = (color_code >> 16) & 0xff;
-}
-
-static WEBP_INLINE uint32_t MultipliersToColorCode(
- const VP8LMultipliers* const m) {
- return 0xff000000u |
- ((uint32_t)(m->red_to_blue_) << 16) |
- ((uint32_t)(m->green_to_blue_) << 8) |
- m->green_to_red_;
-}
-
-static float PredictionCostCrossColor(const int accumulated[256],
- const int counts[256]) {
- // Favor low entropy, locally and globally.
- // Favor small absolute values for PredictionCostSpatial
- static const double kExpValue = 2.4;
- return VP8LCombinedShannonEntropy(counts, accumulated) +
- PredictionCostSpatial(counts, 3, kExpValue);
-}
-
-static float GetPredictionCostCrossColorRed(
- const uint32_t* argb, int stride, int tile_width, int tile_height,
- VP8LMultipliers prev_x, VP8LMultipliers prev_y, int green_to_red,
- const int accumulated_red_histo[256]) {
- int histo[256] = { 0 };
- float cur_diff;
-
- VP8LCollectColorRedTransforms(argb, stride, tile_width, tile_height,
- green_to_red, histo);
-
- cur_diff = PredictionCostCrossColor(accumulated_red_histo, histo);
- if ((uint8_t)green_to_red == prev_x.green_to_red_) {
- cur_diff -= 3; // favor keeping the areas locally similar
- }
- if ((uint8_t)green_to_red == prev_y.green_to_red_) {
- cur_diff -= 3; // favor keeping the areas locally similar
- }
- if (green_to_red == 0) {
- cur_diff -= 3;
- }
- return cur_diff;
-}
-
-static void GetBestGreenToRed(
- const uint32_t* argb, int stride, int tile_width, int tile_height,
- VP8LMultipliers prev_x, VP8LMultipliers prev_y, int quality,
- const int accumulated_red_histo[256], VP8LMultipliers* const best_tx) {
- const int kMaxIters = 4 + ((7 * quality) >> 8); // in range [4..6]
- int green_to_red_best = 0;
- int iter, offset;
- float best_diff = GetPredictionCostCrossColorRed(
- argb, stride, tile_width, tile_height, prev_x, prev_y,
- green_to_red_best, accumulated_red_histo);
- for (iter = 0; iter < kMaxIters; ++iter) {
- // ColorTransformDelta is a 3.5 bit fixed point, so 32 is equal to
- // one in color computation. Having initial delta here as 1 is sufficient
- // to explore the range of (-2, 2).
- const int delta = 32 >> iter;
- // Try a negative and a positive delta from the best known value.
- for (offset = -delta; offset <= delta; offset += 2 * delta) {
- const int green_to_red_cur = offset + green_to_red_best;
- const float cur_diff = GetPredictionCostCrossColorRed(
- argb, stride, tile_width, tile_height, prev_x, prev_y,
- green_to_red_cur, accumulated_red_histo);
- if (cur_diff < best_diff) {
- best_diff = cur_diff;
- green_to_red_best = green_to_red_cur;
- }
- }
- }
- best_tx->green_to_red_ = green_to_red_best;
-}
-
-static float GetPredictionCostCrossColorBlue(
- const uint32_t* argb, int stride, int tile_width, int tile_height,
- VP8LMultipliers prev_x, VP8LMultipliers prev_y,
- int green_to_blue, int red_to_blue, const int accumulated_blue_histo[256]) {
- int histo[256] = { 0 };
- float cur_diff;
-
- VP8LCollectColorBlueTransforms(argb, stride, tile_width, tile_height,
- green_to_blue, red_to_blue, histo);
-
- cur_diff = PredictionCostCrossColor(accumulated_blue_histo, histo);
- if ((uint8_t)green_to_blue == prev_x.green_to_blue_) {
- cur_diff -= 3; // favor keeping the areas locally similar
- }
- if ((uint8_t)green_to_blue == prev_y.green_to_blue_) {
- cur_diff -= 3; // favor keeping the areas locally similar
- }
- if ((uint8_t)red_to_blue == prev_x.red_to_blue_) {
- cur_diff -= 3; // favor keeping the areas locally similar
- }
- if ((uint8_t)red_to_blue == prev_y.red_to_blue_) {
- cur_diff -= 3; // favor keeping the areas locally similar
- }
- if (green_to_blue == 0) {
- cur_diff -= 3;
- }
- if (red_to_blue == 0) {
- cur_diff -= 3;
- }
- return cur_diff;
-}
-
-#define kGreenRedToBlueNumAxis 8
-#define kGreenRedToBlueMaxIters 7
-static void GetBestGreenRedToBlue(
- const uint32_t* argb, int stride, int tile_width, int tile_height,
- VP8LMultipliers prev_x, VP8LMultipliers prev_y, int quality,
- const int accumulated_blue_histo[256],
- VP8LMultipliers* const best_tx) {
- const int8_t offset[kGreenRedToBlueNumAxis][2] =
- {{0, -1}, {0, 1}, {-1, 0}, {1, 0}, {-1, -1}, {-1, 1}, {1, -1}, {1, 1}};
- const int8_t delta_lut[kGreenRedToBlueMaxIters] = { 16, 16, 8, 4, 2, 2, 2 };
- const int iters =
- (quality < 25) ? 1 : (quality > 50) ? kGreenRedToBlueMaxIters : 4;
- int green_to_blue_best = 0;
- int red_to_blue_best = 0;
- int iter;
- // Initial value at origin:
- float best_diff = GetPredictionCostCrossColorBlue(
- argb, stride, tile_width, tile_height, prev_x, prev_y,
- green_to_blue_best, red_to_blue_best, accumulated_blue_histo);
- for (iter = 0; iter < iters; ++iter) {
- const int delta = delta_lut[iter];
- int axis;
- for (axis = 0; axis < kGreenRedToBlueNumAxis; ++axis) {
- const int green_to_blue_cur =
- offset[axis][0] * delta + green_to_blue_best;
- const int red_to_blue_cur = offset[axis][1] * delta + red_to_blue_best;
- const float cur_diff = GetPredictionCostCrossColorBlue(
- argb, stride, tile_width, tile_height, prev_x, prev_y,
- green_to_blue_cur, red_to_blue_cur, accumulated_blue_histo);
- if (cur_diff < best_diff) {
- best_diff = cur_diff;
- green_to_blue_best = green_to_blue_cur;
- red_to_blue_best = red_to_blue_cur;
- }
- if (quality < 25 && iter == 4) {
- // Only axis aligned diffs for lower quality.
- break; // next iter.
- }
- }
- if (delta == 2 && green_to_blue_best == 0 && red_to_blue_best == 0) {
- // Further iterations would not help.
- break; // out of iter-loop.
- }
- }
- best_tx->green_to_blue_ = green_to_blue_best;
- best_tx->red_to_blue_ = red_to_blue_best;
-}
-#undef kGreenRedToBlueMaxIters
-#undef kGreenRedToBlueNumAxis
-
-static VP8LMultipliers GetBestColorTransformForTile(
- int tile_x, int tile_y, int bits,
- VP8LMultipliers prev_x,
- VP8LMultipliers prev_y,
- int quality, int xsize, int ysize,
- const int accumulated_red_histo[256],
- const int accumulated_blue_histo[256],
- const uint32_t* const argb) {
- const int max_tile_size = 1 << bits;
- const int tile_y_offset = tile_y * max_tile_size;
- const int tile_x_offset = tile_x * max_tile_size;
- const int all_x_max = GetMin(tile_x_offset + max_tile_size, xsize);
- const int all_y_max = GetMin(tile_y_offset + max_tile_size, ysize);
- const int tile_width = all_x_max - tile_x_offset;
- const int tile_height = all_y_max - tile_y_offset;
- const uint32_t* const tile_argb = argb + tile_y_offset * xsize
- + tile_x_offset;
- VP8LMultipliers best_tx;
- MultipliersClear(&best_tx);
-
- GetBestGreenToRed(tile_argb, xsize, tile_width, tile_height,
- prev_x, prev_y, quality, accumulated_red_histo, &best_tx);
- GetBestGreenRedToBlue(tile_argb, xsize, tile_width, tile_height,
- prev_x, prev_y, quality, accumulated_blue_histo,
- &best_tx);
- return best_tx;
-}
-
-static void CopyTileWithColorTransform(int xsize, int ysize,
- int tile_x, int tile_y,
- int max_tile_size,
- VP8LMultipliers color_transform,
- uint32_t* argb) {
- const int xscan = GetMin(max_tile_size, xsize - tile_x);
- int yscan = GetMin(max_tile_size, ysize - tile_y);
- argb += tile_y * xsize + tile_x;
- while (yscan-- > 0) {
- VP8LTransformColor(&color_transform, argb, xscan);
- argb += xsize;
- }
-}
-
-void VP8LColorSpaceTransform(int width, int height, int bits, int quality,
- uint32_t* const argb, uint32_t* image) {
- const int max_tile_size = 1 << bits;
- const int tile_xsize = VP8LSubSampleSize(width, bits);
- const int tile_ysize = VP8LSubSampleSize(height, bits);
- int accumulated_red_histo[256] = { 0 };
- int accumulated_blue_histo[256] = { 0 };
- int tile_x, tile_y;
- VP8LMultipliers prev_x, prev_y;
- MultipliersClear(&prev_y);
- MultipliersClear(&prev_x);
- for (tile_y = 0; tile_y < tile_ysize; ++tile_y) {
- for (tile_x = 0; tile_x < tile_xsize; ++tile_x) {
- int y;
- const int tile_x_offset = tile_x * max_tile_size;
- const int tile_y_offset = tile_y * max_tile_size;
- const int all_x_max = GetMin(tile_x_offset + max_tile_size, width);
- const int all_y_max = GetMin(tile_y_offset + max_tile_size, height);
- const int offset = tile_y * tile_xsize + tile_x;
- if (tile_y != 0) {
- ColorCodeToMultipliers(image[offset - tile_xsize], &prev_y);
- }
- prev_x = GetBestColorTransformForTile(tile_x, tile_y, bits,
- prev_x, prev_y,
- quality, width, height,
- accumulated_red_histo,
- accumulated_blue_histo,
- argb);
- image[offset] = MultipliersToColorCode(&prev_x);
- CopyTileWithColorTransform(width, height, tile_x_offset, tile_y_offset,
- max_tile_size, prev_x, argb);
-
- // Gather accumulated histogram data.
- for (y = tile_y_offset; y < all_y_max; ++y) {
- int ix = y * width + tile_x_offset;
- const int ix_end = ix + all_x_max - tile_x_offset;
- for (; ix < ix_end; ++ix) {
- const uint32_t pix = argb[ix];
- if (ix >= 2 &&
- pix == argb[ix - 2] &&
- pix == argb[ix - 1]) {
- continue; // repeated pixels are handled by backward references
- }
- if (ix >= width + 2 &&
- argb[ix - 2] == argb[ix - width - 2] &&
- argb[ix - 1] == argb[ix - width - 1] &&
- pix == argb[ix - width]) {
- continue; // repeated pixels are handled by backward references
- }
- ++accumulated_red_histo[(pix >> 16) & 0xff];
- ++accumulated_blue_histo[(pix >> 0) & 0xff];
- }
- }
- }
- }
-}