diff options
author | volzhs <volzhs@gmail.com> | 2017-12-12 02:11:11 +0900 |
---|---|---|
committer | volzhs <volzhs@gmail.com> | 2017-12-12 02:55:47 +0900 |
commit | 043103fe6a1168729abf74dd56b8982ce54eea43 (patch) | |
tree | f3311c0442fba0ff565d9de0ad9fee3f0002295e /thirdparty/libwebp/enc/histogram_enc.c | |
parent | 64d104756c04f4d5c4e8140271d5e8049e5f8371 (diff) |
Update libwebp to 0.6.1
* lossless performance and compression improvements + a new 'cruncher' mode (-m 6 -q 100)
* ARM performance improvements with clang (15-20% w/ndk r15c)
* webp-js: emscripten/webassembly based javascript decoder
* miscellaneous bug & build fixes
Diffstat (limited to 'thirdparty/libwebp/enc/histogram_enc.c')
-rw-r--r-- | thirdparty/libwebp/enc/histogram_enc.c | 990 |
1 files changed, 0 insertions, 990 deletions
diff --git a/thirdparty/libwebp/enc/histogram_enc.c b/thirdparty/libwebp/enc/histogram_enc.c deleted file mode 100644 index 808b6f78ab..0000000000 --- a/thirdparty/libwebp/enc/histogram_enc.c +++ /dev/null @@ -1,990 +0,0 @@ -// Copyright 2012 Google Inc. All Rights Reserved. -// -// Use of this source code is governed by a BSD-style license -// that can be found in the COPYING file in the root of the source -// tree. An additional intellectual property rights grant can be found -// in the file PATENTS. All contributing project authors may -// be found in the AUTHORS file in the root of the source tree. -// ----------------------------------------------------------------------------- -// -// Author: Jyrki Alakuijala (jyrki@google.com) -// -#ifdef HAVE_CONFIG_H -#include "../webp/config.h" -#endif - -#include <math.h> - -#include "./backward_references_enc.h" -#include "./histogram_enc.h" -#include "../dsp/lossless.h" -#include "../dsp/lossless_common.h" -#include "../utils/utils.h" - -#define MAX_COST 1.e38 - -// Number of partitions for the three dominant (literal, red and blue) symbol -// costs. -#define NUM_PARTITIONS 4 -// The size of the bin-hash corresponding to the three dominant costs. -#define BIN_SIZE (NUM_PARTITIONS * NUM_PARTITIONS * NUM_PARTITIONS) -// Maximum number of histograms allowed in greedy combining algorithm. -#define MAX_HISTO_GREEDY 100 - -static void HistogramClear(VP8LHistogram* const p) { - uint32_t* const literal = p->literal_; - const int cache_bits = p->palette_code_bits_; - const int histo_size = VP8LGetHistogramSize(cache_bits); - memset(p, 0, histo_size); - p->palette_code_bits_ = cache_bits; - p->literal_ = literal; -} - -// Swap two histogram pointers. -static void HistogramSwap(VP8LHistogram** const A, VP8LHistogram** const B) { - VP8LHistogram* const tmp = *A; - *A = *B; - *B = tmp; -} - -static void HistogramCopy(const VP8LHistogram* const src, - VP8LHistogram* const dst) { - uint32_t* const dst_literal = dst->literal_; - const int dst_cache_bits = dst->palette_code_bits_; - const int histo_size = VP8LGetHistogramSize(dst_cache_bits); - assert(src->palette_code_bits_ == dst_cache_bits); - memcpy(dst, src, histo_size); - dst->literal_ = dst_literal; -} - -int VP8LGetHistogramSize(int cache_bits) { - const int literal_size = VP8LHistogramNumCodes(cache_bits); - const size_t total_size = sizeof(VP8LHistogram) + sizeof(int) * literal_size; - assert(total_size <= (size_t)0x7fffffff); - return (int)total_size; -} - -void VP8LFreeHistogram(VP8LHistogram* const histo) { - WebPSafeFree(histo); -} - -void VP8LFreeHistogramSet(VP8LHistogramSet* const histo) { - WebPSafeFree(histo); -} - -void VP8LHistogramStoreRefs(const VP8LBackwardRefs* const refs, - VP8LHistogram* const histo) { - VP8LRefsCursor c = VP8LRefsCursorInit(refs); - while (VP8LRefsCursorOk(&c)) { - VP8LHistogramAddSinglePixOrCopy(histo, c.cur_pos); - VP8LRefsCursorNext(&c); - } -} - -void VP8LHistogramCreate(VP8LHistogram* const p, - const VP8LBackwardRefs* const refs, - int palette_code_bits) { - if (palette_code_bits >= 0) { - p->palette_code_bits_ = palette_code_bits; - } - HistogramClear(p); - VP8LHistogramStoreRefs(refs, p); -} - -void VP8LHistogramInit(VP8LHistogram* const p, int palette_code_bits) { - p->palette_code_bits_ = palette_code_bits; - HistogramClear(p); -} - -VP8LHistogram* VP8LAllocateHistogram(int cache_bits) { - VP8LHistogram* histo = NULL; - const int total_size = VP8LGetHistogramSize(cache_bits); - uint8_t* const memory = (uint8_t*)WebPSafeMalloc(total_size, sizeof(*memory)); - if (memory == NULL) return NULL; - histo = (VP8LHistogram*)memory; - // literal_ won't necessary be aligned. - histo->literal_ = (uint32_t*)(memory + sizeof(VP8LHistogram)); - VP8LHistogramInit(histo, cache_bits); - return histo; -} - -VP8LHistogramSet* VP8LAllocateHistogramSet(int size, int cache_bits) { - int i; - VP8LHistogramSet* set; - const int histo_size = VP8LGetHistogramSize(cache_bits); - const size_t total_size = - sizeof(*set) + size * (sizeof(*set->histograms) + - histo_size + WEBP_ALIGN_CST); - uint8_t* memory = (uint8_t*)WebPSafeMalloc(total_size, sizeof(*memory)); - if (memory == NULL) return NULL; - - set = (VP8LHistogramSet*)memory; - memory += sizeof(*set); - set->histograms = (VP8LHistogram**)memory; - memory += size * sizeof(*set->histograms); - set->max_size = size; - set->size = size; - for (i = 0; i < size; ++i) { - memory = (uint8_t*)WEBP_ALIGN(memory); - set->histograms[i] = (VP8LHistogram*)memory; - // literal_ won't necessary be aligned. - set->histograms[i]->literal_ = (uint32_t*)(memory + sizeof(VP8LHistogram)); - VP8LHistogramInit(set->histograms[i], cache_bits); - memory += histo_size; - } - return set; -} - -// ----------------------------------------------------------------------------- - -void VP8LHistogramAddSinglePixOrCopy(VP8LHistogram* const histo, - const PixOrCopy* const v) { - if (PixOrCopyIsLiteral(v)) { - ++histo->alpha_[PixOrCopyLiteral(v, 3)]; - ++histo->red_[PixOrCopyLiteral(v, 2)]; - ++histo->literal_[PixOrCopyLiteral(v, 1)]; - ++histo->blue_[PixOrCopyLiteral(v, 0)]; - } else if (PixOrCopyIsCacheIdx(v)) { - const int literal_ix = - NUM_LITERAL_CODES + NUM_LENGTH_CODES + PixOrCopyCacheIdx(v); - ++histo->literal_[literal_ix]; - } else { - int code, extra_bits; - VP8LPrefixEncodeBits(PixOrCopyLength(v), &code, &extra_bits); - ++histo->literal_[NUM_LITERAL_CODES + code]; - VP8LPrefixEncodeBits(PixOrCopyDistance(v), &code, &extra_bits); - ++histo->distance_[code]; - } -} - -// ----------------------------------------------------------------------------- -// Entropy-related functions. - -static WEBP_INLINE double BitsEntropyRefine(const VP8LBitEntropy* entropy) { - double mix; - if (entropy->nonzeros < 5) { - if (entropy->nonzeros <= 1) { - return 0; - } - // Two symbols, they will be 0 and 1 in a Huffman code. - // Let's mix in a bit of entropy to favor good clustering when - // distributions of these are combined. - if (entropy->nonzeros == 2) { - return 0.99 * entropy->sum + 0.01 * entropy->entropy; - } - // No matter what the entropy says, we cannot be better than min_limit - // with Huffman coding. I am mixing a bit of entropy into the - // min_limit since it produces much better (~0.5 %) compression results - // perhaps because of better entropy clustering. - if (entropy->nonzeros == 3) { - mix = 0.95; - } else { - mix = 0.7; // nonzeros == 4. - } - } else { - mix = 0.627; - } - - { - double min_limit = 2 * entropy->sum - entropy->max_val; - min_limit = mix * min_limit + (1.0 - mix) * entropy->entropy; - return (entropy->entropy < min_limit) ? min_limit : entropy->entropy; - } -} - -double VP8LBitsEntropy(const uint32_t* const array, int n, - uint32_t* const trivial_symbol) { - VP8LBitEntropy entropy; - VP8LBitsEntropyUnrefined(array, n, &entropy); - if (trivial_symbol != NULL) { - *trivial_symbol = - (entropy.nonzeros == 1) ? entropy.nonzero_code : VP8L_NON_TRIVIAL_SYM; - } - - return BitsEntropyRefine(&entropy); -} - -static double InitialHuffmanCost(void) { - // Small bias because Huffman code length is typically not stored in - // full length. - static const int kHuffmanCodeOfHuffmanCodeSize = CODE_LENGTH_CODES * 3; - static const double kSmallBias = 9.1; - return kHuffmanCodeOfHuffmanCodeSize - kSmallBias; -} - -// Finalize the Huffman cost based on streak numbers and length type (<3 or >=3) -static double FinalHuffmanCost(const VP8LStreaks* const stats) { - // The constants in this function are experimental and got rounded from - // their original values in 1/8 when switched to 1/1024. - double retval = InitialHuffmanCost(); - // Second coefficient: Many zeros in the histogram are covered efficiently - // by a run-length encode. Originally 2/8. - retval += stats->counts[0] * 1.5625 + 0.234375 * stats->streaks[0][1]; - // Second coefficient: Constant values are encoded less efficiently, but still - // RLE'ed. Originally 6/8. - retval += stats->counts[1] * 2.578125 + 0.703125 * stats->streaks[1][1]; - // 0s are usually encoded more efficiently than non-0s. - // Originally 15/8. - retval += 1.796875 * stats->streaks[0][0]; - // Originally 26/8. - retval += 3.28125 * stats->streaks[1][0]; - return retval; -} - -// Get the symbol entropy for the distribution 'population'. -// Set 'trivial_sym', if there's only one symbol present in the distribution. -static double PopulationCost(const uint32_t* const population, int length, - uint32_t* const trivial_sym) { - VP8LBitEntropy bit_entropy; - VP8LStreaks stats; - VP8LGetEntropyUnrefined(population, length, &bit_entropy, &stats); - if (trivial_sym != NULL) { - *trivial_sym = (bit_entropy.nonzeros == 1) ? bit_entropy.nonzero_code - : VP8L_NON_TRIVIAL_SYM; - } - - return BitsEntropyRefine(&bit_entropy) + FinalHuffmanCost(&stats); -} - -// trivial_at_end is 1 if the two histograms only have one element that is -// non-zero: both the zero-th one, or both the last one. -static WEBP_INLINE double GetCombinedEntropy(const uint32_t* const X, - const uint32_t* const Y, - int length, int trivial_at_end) { - VP8LStreaks stats; - if (trivial_at_end) { - // This configuration is due to palettization that transforms an indexed - // pixel into 0xff000000 | (pixel << 8) in VP8LBundleColorMap. - // BitsEntropyRefine is 0 for histograms with only one non-zero value. - // Only FinalHuffmanCost needs to be evaluated. - memset(&stats, 0, sizeof(stats)); - // Deal with the non-zero value at index 0 or length-1. - stats.streaks[1][0] += 1; - // Deal with the following/previous zero streak. - stats.counts[0] += 1; - stats.streaks[0][1] += length - 1; - return FinalHuffmanCost(&stats); - } else { - VP8LBitEntropy bit_entropy; - VP8LGetCombinedEntropyUnrefined(X, Y, length, &bit_entropy, &stats); - - return BitsEntropyRefine(&bit_entropy) + FinalHuffmanCost(&stats); - } -} - -// Estimates the Entropy + Huffman + other block overhead size cost. -double VP8LHistogramEstimateBits(const VP8LHistogram* const p) { - return - PopulationCost( - p->literal_, VP8LHistogramNumCodes(p->palette_code_bits_), NULL) - + PopulationCost(p->red_, NUM_LITERAL_CODES, NULL) - + PopulationCost(p->blue_, NUM_LITERAL_CODES, NULL) - + PopulationCost(p->alpha_, NUM_LITERAL_CODES, NULL) - + PopulationCost(p->distance_, NUM_DISTANCE_CODES, NULL) - + VP8LExtraCost(p->literal_ + NUM_LITERAL_CODES, NUM_LENGTH_CODES) - + VP8LExtraCost(p->distance_, NUM_DISTANCE_CODES); -} - -// ----------------------------------------------------------------------------- -// Various histogram combine/cost-eval functions - -static int GetCombinedHistogramEntropy(const VP8LHistogram* const a, - const VP8LHistogram* const b, - double cost_threshold, - double* cost) { - const int palette_code_bits = a->palette_code_bits_; - int trivial_at_end = 0; - assert(a->palette_code_bits_ == b->palette_code_bits_); - *cost += GetCombinedEntropy(a->literal_, b->literal_, - VP8LHistogramNumCodes(palette_code_bits), 0); - *cost += VP8LExtraCostCombined(a->literal_ + NUM_LITERAL_CODES, - b->literal_ + NUM_LITERAL_CODES, - NUM_LENGTH_CODES); - if (*cost > cost_threshold) return 0; - - if (a->trivial_symbol_ != VP8L_NON_TRIVIAL_SYM && - a->trivial_symbol_ == b->trivial_symbol_) { - // A, R and B are all 0 or 0xff. - const uint32_t color_a = (a->trivial_symbol_ >> 24) & 0xff; - const uint32_t color_r = (a->trivial_symbol_ >> 16) & 0xff; - const uint32_t color_b = (a->trivial_symbol_ >> 0) & 0xff; - if ((color_a == 0 || color_a == 0xff) && - (color_r == 0 || color_r == 0xff) && - (color_b == 0 || color_b == 0xff)) { - trivial_at_end = 1; - } - } - - *cost += - GetCombinedEntropy(a->red_, b->red_, NUM_LITERAL_CODES, trivial_at_end); - if (*cost > cost_threshold) return 0; - - *cost += - GetCombinedEntropy(a->blue_, b->blue_, NUM_LITERAL_CODES, trivial_at_end); - if (*cost > cost_threshold) return 0; - - *cost += GetCombinedEntropy(a->alpha_, b->alpha_, NUM_LITERAL_CODES, - trivial_at_end); - if (*cost > cost_threshold) return 0; - - *cost += - GetCombinedEntropy(a->distance_, b->distance_, NUM_DISTANCE_CODES, 0); - *cost += - VP8LExtraCostCombined(a->distance_, b->distance_, NUM_DISTANCE_CODES); - if (*cost > cost_threshold) return 0; - - return 1; -} - -static WEBP_INLINE void HistogramAdd(const VP8LHistogram* const a, - const VP8LHistogram* const b, - VP8LHistogram* const out) { - VP8LHistogramAdd(a, b, out); - out->trivial_symbol_ = (a->trivial_symbol_ == b->trivial_symbol_) - ? a->trivial_symbol_ - : VP8L_NON_TRIVIAL_SYM; -} - -// Performs out = a + b, computing the cost C(a+b) - C(a) - C(b) while comparing -// to the threshold value 'cost_threshold'. The score returned is -// Score = C(a+b) - C(a) - C(b), where C(a) + C(b) is known and fixed. -// Since the previous score passed is 'cost_threshold', we only need to compare -// the partial cost against 'cost_threshold + C(a) + C(b)' to possibly bail-out -// early. -static double HistogramAddEval(const VP8LHistogram* const a, - const VP8LHistogram* const b, - VP8LHistogram* const out, - double cost_threshold) { - double cost = 0; - const double sum_cost = a->bit_cost_ + b->bit_cost_; - cost_threshold += sum_cost; - - if (GetCombinedHistogramEntropy(a, b, cost_threshold, &cost)) { - HistogramAdd(a, b, out); - out->bit_cost_ = cost; - out->palette_code_bits_ = a->palette_code_bits_; - } - - return cost - sum_cost; -} - -// Same as HistogramAddEval(), except that the resulting histogram -// is not stored. Only the cost C(a+b) - C(a) is evaluated. We omit -// the term C(b) which is constant over all the evaluations. -static double HistogramAddThresh(const VP8LHistogram* const a, - const VP8LHistogram* const b, - double cost_threshold) { - double cost = -a->bit_cost_; - GetCombinedHistogramEntropy(a, b, cost_threshold, &cost); - return cost; -} - -// ----------------------------------------------------------------------------- - -// The structure to keep track of cost range for the three dominant entropy -// symbols. -// TODO(skal): Evaluate if float can be used here instead of double for -// representing the entropy costs. -typedef struct { - double literal_max_; - double literal_min_; - double red_max_; - double red_min_; - double blue_max_; - double blue_min_; -} DominantCostRange; - -static void DominantCostRangeInit(DominantCostRange* const c) { - c->literal_max_ = 0.; - c->literal_min_ = MAX_COST; - c->red_max_ = 0.; - c->red_min_ = MAX_COST; - c->blue_max_ = 0.; - c->blue_min_ = MAX_COST; -} - -static void UpdateDominantCostRange( - const VP8LHistogram* const h, DominantCostRange* const c) { - if (c->literal_max_ < h->literal_cost_) c->literal_max_ = h->literal_cost_; - if (c->literal_min_ > h->literal_cost_) c->literal_min_ = h->literal_cost_; - if (c->red_max_ < h->red_cost_) c->red_max_ = h->red_cost_; - if (c->red_min_ > h->red_cost_) c->red_min_ = h->red_cost_; - if (c->blue_max_ < h->blue_cost_) c->blue_max_ = h->blue_cost_; - if (c->blue_min_ > h->blue_cost_) c->blue_min_ = h->blue_cost_; -} - -static void UpdateHistogramCost(VP8LHistogram* const h) { - uint32_t alpha_sym, red_sym, blue_sym; - const double alpha_cost = - PopulationCost(h->alpha_, NUM_LITERAL_CODES, &alpha_sym); - const double distance_cost = - PopulationCost(h->distance_, NUM_DISTANCE_CODES, NULL) + - VP8LExtraCost(h->distance_, NUM_DISTANCE_CODES); - const int num_codes = VP8LHistogramNumCodes(h->palette_code_bits_); - h->literal_cost_ = PopulationCost(h->literal_, num_codes, NULL) + - VP8LExtraCost(h->literal_ + NUM_LITERAL_CODES, - NUM_LENGTH_CODES); - h->red_cost_ = PopulationCost(h->red_, NUM_LITERAL_CODES, &red_sym); - h->blue_cost_ = PopulationCost(h->blue_, NUM_LITERAL_CODES, &blue_sym); - h->bit_cost_ = h->literal_cost_ + h->red_cost_ + h->blue_cost_ + - alpha_cost + distance_cost; - if ((alpha_sym | red_sym | blue_sym) == VP8L_NON_TRIVIAL_SYM) { - h->trivial_symbol_ = VP8L_NON_TRIVIAL_SYM; - } else { - h->trivial_symbol_ = - ((uint32_t)alpha_sym << 24) | (red_sym << 16) | (blue_sym << 0); - } -} - -static int GetBinIdForEntropy(double min, double max, double val) { - const double range = max - min; - if (range > 0.) { - const double delta = val - min; - return (int)((NUM_PARTITIONS - 1e-6) * delta / range); - } else { - return 0; - } -} - -static int GetHistoBinIndex(const VP8LHistogram* const h, - const DominantCostRange* const c, int low_effort) { - int bin_id = GetBinIdForEntropy(c->literal_min_, c->literal_max_, - h->literal_cost_); - assert(bin_id < NUM_PARTITIONS); - if (!low_effort) { - bin_id = bin_id * NUM_PARTITIONS - + GetBinIdForEntropy(c->red_min_, c->red_max_, h->red_cost_); - bin_id = bin_id * NUM_PARTITIONS - + GetBinIdForEntropy(c->blue_min_, c->blue_max_, h->blue_cost_); - assert(bin_id < BIN_SIZE); - } - return bin_id; -} - -// Construct the histograms from backward references. -static void HistogramBuild( - int xsize, int histo_bits, const VP8LBackwardRefs* const backward_refs, - VP8LHistogramSet* const image_histo) { - int x = 0, y = 0; - const int histo_xsize = VP8LSubSampleSize(xsize, histo_bits); - VP8LHistogram** const histograms = image_histo->histograms; - VP8LRefsCursor c = VP8LRefsCursorInit(backward_refs); - assert(histo_bits > 0); - while (VP8LRefsCursorOk(&c)) { - const PixOrCopy* const v = c.cur_pos; - const int ix = (y >> histo_bits) * histo_xsize + (x >> histo_bits); - VP8LHistogramAddSinglePixOrCopy(histograms[ix], v); - x += PixOrCopyLength(v); - while (x >= xsize) { - x -= xsize; - ++y; - } - VP8LRefsCursorNext(&c); - } -} - -// Copies the histograms and computes its bit_cost. -static void HistogramCopyAndAnalyze( - VP8LHistogramSet* const orig_histo, VP8LHistogramSet* const image_histo) { - int i; - const int histo_size = orig_histo->size; - VP8LHistogram** const orig_histograms = orig_histo->histograms; - VP8LHistogram** const histograms = image_histo->histograms; - for (i = 0; i < histo_size; ++i) { - VP8LHistogram* const histo = orig_histograms[i]; - UpdateHistogramCost(histo); - // Copy histograms from orig_histo[] to image_histo[]. - HistogramCopy(histo, histograms[i]); - } -} - -// Partition histograms to different entropy bins for three dominant (literal, -// red and blue) symbol costs and compute the histogram aggregate bit_cost. -static void HistogramAnalyzeEntropyBin(VP8LHistogramSet* const image_histo, - uint16_t* const bin_map, - int low_effort) { - int i; - VP8LHistogram** const histograms = image_histo->histograms; - const int histo_size = image_histo->size; - DominantCostRange cost_range; - DominantCostRangeInit(&cost_range); - - // Analyze the dominant (literal, red and blue) entropy costs. - for (i = 0; i < histo_size; ++i) { - UpdateDominantCostRange(histograms[i], &cost_range); - } - - // bin-hash histograms on three of the dominant (literal, red and blue) - // symbol costs and store the resulting bin_id for each histogram. - for (i = 0; i < histo_size; ++i) { - bin_map[i] = GetHistoBinIndex(histograms[i], &cost_range, low_effort); - } -} - -// Compact image_histo[] by merging some histograms with same bin_id together if -// it's advantageous. -static VP8LHistogram* HistogramCombineEntropyBin( - VP8LHistogramSet* const image_histo, - VP8LHistogram* cur_combo, - const uint16_t* const bin_map, int bin_map_size, int num_bins, - double combine_cost_factor, int low_effort) { - VP8LHistogram** const histograms = image_histo->histograms; - int idx; - // Work in-place: processed histograms are put at the beginning of - // image_histo[]. At the end, we just have to truncate the array. - int size = 0; - struct { - int16_t first; // position of the histogram that accumulates all - // histograms with the same bin_id - uint16_t num_combine_failures; // number of combine failures per bin_id - } bin_info[BIN_SIZE]; - - assert(num_bins <= BIN_SIZE); - for (idx = 0; idx < num_bins; ++idx) { - bin_info[idx].first = -1; - bin_info[idx].num_combine_failures = 0; - } - - for (idx = 0; idx < bin_map_size; ++idx) { - const int bin_id = bin_map[idx]; - const int first = bin_info[bin_id].first; - assert(size <= idx); - if (first == -1) { - // just move histogram #idx to its final position - histograms[size] = histograms[idx]; - bin_info[bin_id].first = size++; - } else if (low_effort) { - HistogramAdd(histograms[idx], histograms[first], histograms[first]); - } else { - // try to merge #idx into #first (both share the same bin_id) - const double bit_cost = histograms[idx]->bit_cost_; - const double bit_cost_thresh = -bit_cost * combine_cost_factor; - const double curr_cost_diff = - HistogramAddEval(histograms[first], histograms[idx], - cur_combo, bit_cost_thresh); - if (curr_cost_diff < bit_cost_thresh) { - // Try to merge two histograms only if the combo is a trivial one or - // the two candidate histograms are already non-trivial. - // For some images, 'try_combine' turns out to be false for a lot of - // histogram pairs. In that case, we fallback to combining - // histograms as usual to avoid increasing the header size. - const int try_combine = - (cur_combo->trivial_symbol_ != VP8L_NON_TRIVIAL_SYM) || - ((histograms[idx]->trivial_symbol_ == VP8L_NON_TRIVIAL_SYM) && - (histograms[first]->trivial_symbol_ == VP8L_NON_TRIVIAL_SYM)); - const int max_combine_failures = 32; - if (try_combine || - bin_info[bin_id].num_combine_failures >= max_combine_failures) { - // move the (better) merged histogram to its final slot - HistogramSwap(&cur_combo, &histograms[first]); - } else { - histograms[size++] = histograms[idx]; - ++bin_info[bin_id].num_combine_failures; - } - } else { - histograms[size++] = histograms[idx]; - } - } - } - image_histo->size = size; - if (low_effort) { - // for low_effort case, update the final cost when everything is merged - for (idx = 0; idx < size; ++idx) { - UpdateHistogramCost(histograms[idx]); - } - } - return cur_combo; -} - -static uint32_t MyRand(uint32_t* const seed) { - *seed = (*seed * 16807ull) & 0xffffffffu; - if (*seed == 0) { - *seed = 1; - } - return *seed; -} - -// ----------------------------------------------------------------------------- -// Histogram pairs priority queue - -// Pair of histograms. Negative idx1 value means that pair is out-of-date. -typedef struct { - int idx1; - int idx2; - double cost_diff; - double cost_combo; -} HistogramPair; - -typedef struct { - HistogramPair* queue; - int size; - int max_size; -} HistoQueue; - -static int HistoQueueInit(HistoQueue* const histo_queue, const int max_index) { - histo_queue->size = 0; - // max_index^2 for the queue size is safe. If you look at - // HistogramCombineGreedy, and imagine that UpdateQueueFront always pushes - // data to the queue, you insert at most: - // - max_index*(max_index-1)/2 (the first two for loops) - // - max_index - 1 in the last for loop at the first iteration of the while - // loop, max_index - 2 at the second iteration ... therefore - // max_index*(max_index-1)/2 overall too - histo_queue->max_size = max_index * max_index; - // We allocate max_size + 1 because the last element at index "size" is - // used as temporary data (and it could be up to max_size). - histo_queue->queue = (HistogramPair*)WebPSafeMalloc( - histo_queue->max_size + 1, sizeof(*histo_queue->queue)); - return histo_queue->queue != NULL; -} - -static void HistoQueueClear(HistoQueue* const histo_queue) { - assert(histo_queue != NULL); - WebPSafeFree(histo_queue->queue); -} - -static void SwapHistogramPairs(HistogramPair *p1, - HistogramPair *p2) { - const HistogramPair tmp = *p1; - *p1 = *p2; - *p2 = tmp; -} - -// Given a valid priority queue in range [0, queue_size) this function checks -// whether histo_queue[queue_size] should be accepted and swaps it with the -// front if it is smaller. Otherwise, it leaves it as is. -static void UpdateQueueFront(HistoQueue* const histo_queue) { - if (histo_queue->queue[histo_queue->size].cost_diff >= 0) return; - - if (histo_queue->queue[histo_queue->size].cost_diff < - histo_queue->queue[0].cost_diff) { - SwapHistogramPairs(histo_queue->queue, - histo_queue->queue + histo_queue->size); - } - ++histo_queue->size; - - // We cannot add more elements than the capacity. - // The allocation adds an extra element to the official capacity so that - // histo_queue->queue[histo_queue->max_size] is read/written within bound. - assert(histo_queue->size <= histo_queue->max_size); -} - -// ----------------------------------------------------------------------------- - -static void PreparePair(VP8LHistogram** histograms, int idx1, int idx2, - HistogramPair* const pair) { - VP8LHistogram* h1; - VP8LHistogram* h2; - double sum_cost; - - if (idx1 > idx2) { - const int tmp = idx2; - idx2 = idx1; - idx1 = tmp; - } - pair->idx1 = idx1; - pair->idx2 = idx2; - h1 = histograms[idx1]; - h2 = histograms[idx2]; - sum_cost = h1->bit_cost_ + h2->bit_cost_; - pair->cost_combo = 0.; - GetCombinedHistogramEntropy(h1, h2, sum_cost, &pair->cost_combo); - pair->cost_diff = pair->cost_combo - sum_cost; -} - -// Combines histograms by continuously choosing the one with the highest cost -// reduction. -static int HistogramCombineGreedy(VP8LHistogramSet* const image_histo) { - int ok = 0; - int image_histo_size = image_histo->size; - int i, j; - VP8LHistogram** const histograms = image_histo->histograms; - // Indexes of remaining histograms. - int* const clusters = - (int*)WebPSafeMalloc(image_histo_size, sizeof(*clusters)); - // Priority queue of histogram pairs. - HistoQueue histo_queue; - - if (!HistoQueueInit(&histo_queue, image_histo_size) || clusters == NULL) { - goto End; - } - - for (i = 0; i < image_histo_size; ++i) { - // Initialize clusters indexes. - clusters[i] = i; - for (j = i + 1; j < image_histo_size; ++j) { - // Initialize positions array. - PreparePair(histograms, i, j, &histo_queue.queue[histo_queue.size]); - UpdateQueueFront(&histo_queue); - } - } - - while (image_histo_size > 1 && histo_queue.size > 0) { - HistogramPair* copy_to; - const int idx1 = histo_queue.queue[0].idx1; - const int idx2 = histo_queue.queue[0].idx2; - HistogramAdd(histograms[idx2], histograms[idx1], histograms[idx1]); - histograms[idx1]->bit_cost_ = histo_queue.queue[0].cost_combo; - // Remove merged histogram. - for (i = 0; i + 1 < image_histo_size; ++i) { - if (clusters[i] >= idx2) { - clusters[i] = clusters[i + 1]; - } - } - --image_histo_size; - - // Remove pairs intersecting the just combined best pair. This will - // therefore pop the head of the queue. - copy_to = histo_queue.queue; - for (i = 0; i < histo_queue.size; ++i) { - HistogramPair* const p = histo_queue.queue + i; - if (p->idx1 == idx1 || p->idx2 == idx1 || - p->idx1 == idx2 || p->idx2 == idx2) { - // Do not copy the invalid pair. - continue; - } - if (p->cost_diff < histo_queue.queue[0].cost_diff) { - // Replace the top of the queue if we found better. - SwapHistogramPairs(histo_queue.queue, p); - } - SwapHistogramPairs(copy_to, p); - ++copy_to; - } - histo_queue.size = (int)(copy_to - histo_queue.queue); - - // Push new pairs formed with combined histogram to the queue. - for (i = 0; i < image_histo_size; ++i) { - if (clusters[i] != idx1) { - PreparePair(histograms, idx1, clusters[i], - &histo_queue.queue[histo_queue.size]); - UpdateQueueFront(&histo_queue); - } - } - } - // Move remaining histograms to the beginning of the array. - for (i = 0; i < image_histo_size; ++i) { - if (i != clusters[i]) { // swap the two histograms - HistogramSwap(&histograms[i], &histograms[clusters[i]]); - } - } - - image_histo->size = image_histo_size; - ok = 1; - - End: - WebPSafeFree(clusters); - HistoQueueClear(&histo_queue); - return ok; -} - -static void HistogramCombineStochastic(VP8LHistogramSet* const image_histo, - VP8LHistogram* tmp_histo, - VP8LHistogram* best_combo, - int quality, int min_cluster_size) { - int iter; - uint32_t seed = 0; - int tries_with_no_success = 0; - int image_histo_size = image_histo->size; - const int iter_mult = (quality < 25) ? 2 : 2 + (quality - 25) / 8; - const int outer_iters = image_histo_size * iter_mult; - const int num_pairs = image_histo_size / 2; - const int num_tries_no_success = outer_iters / 2; - int idx2_max = image_histo_size - 1; - int do_brute_dorce = 0; - VP8LHistogram** const histograms = image_histo->histograms; - - // Collapse similar histograms in 'image_histo'. - ++min_cluster_size; - for (iter = 0; - iter < outer_iters && image_histo_size >= min_cluster_size; - ++iter) { - double best_cost_diff = 0.; - int best_idx1 = -1, best_idx2 = 1; - int j; - int num_tries = - (num_pairs < image_histo_size) ? num_pairs : image_histo_size; - // Use a brute force approach if: - // - stochastic has not worked for a while and - // - if the number of iterations for brute force is less than the number of - // iterations if we never find a match ever again stochastically (hence - // num_tries times the number of remaining outer iterations). - do_brute_dorce = - (tries_with_no_success > 10) && - (idx2_max * (idx2_max + 1) < 2 * num_tries * (outer_iters - iter)); - if (do_brute_dorce) num_tries = idx2_max; - - seed += iter; - for (j = 0; j < num_tries; ++j) { - double curr_cost_diff; - // Choose two histograms at random and try to combine them. - uint32_t idx1, idx2; - if (do_brute_dorce) { - // Use a brute force approach. - idx1 = (uint32_t)j; - idx2 = (uint32_t)idx2_max; - } else { - const uint32_t tmp = (j & 7) + 1; - const uint32_t diff = - (tmp < 3) ? tmp : MyRand(&seed) % (image_histo_size - 1); - idx1 = MyRand(&seed) % image_histo_size; - idx2 = (idx1 + diff + 1) % image_histo_size; - if (idx1 == idx2) { - continue; - } - } - - // Calculate cost reduction on combining. - curr_cost_diff = HistogramAddEval(histograms[idx1], histograms[idx2], - tmp_histo, best_cost_diff); - if (curr_cost_diff < best_cost_diff) { // found a better pair? - HistogramSwap(&best_combo, &tmp_histo); - best_cost_diff = curr_cost_diff; - best_idx1 = idx1; - best_idx2 = idx2; - } - } - if (do_brute_dorce) --idx2_max; - - if (best_idx1 >= 0) { - HistogramSwap(&best_combo, &histograms[best_idx1]); - // swap best_idx2 slot with last one (which is now unused) - --image_histo_size; - if (idx2_max >= image_histo_size) idx2_max = image_histo_size - 1; - if (best_idx2 != image_histo_size) { - HistogramSwap(&histograms[image_histo_size], &histograms[best_idx2]); - histograms[image_histo_size] = NULL; - } - tries_with_no_success = 0; - } - if (++tries_with_no_success >= num_tries_no_success || idx2_max == 0) { - break; - } - } - image_histo->size = image_histo_size; -} - -// ----------------------------------------------------------------------------- -// Histogram refinement - -// Find the best 'out' histogram for each of the 'in' histograms. -// Note: we assume that out[]->bit_cost_ is already up-to-date. -static void HistogramRemap(const VP8LHistogramSet* const in, - const VP8LHistogramSet* const out, - uint16_t* const symbols) { - int i; - VP8LHistogram** const in_histo = in->histograms; - VP8LHistogram** const out_histo = out->histograms; - const int in_size = in->size; - const int out_size = out->size; - if (out_size > 1) { - for (i = 0; i < in_size; ++i) { - int best_out = 0; - double best_bits = MAX_COST; - int k; - for (k = 0; k < out_size; ++k) { - const double cur_bits = - HistogramAddThresh(out_histo[k], in_histo[i], best_bits); - if (k == 0 || cur_bits < best_bits) { - best_bits = cur_bits; - best_out = k; - } - } - symbols[i] = best_out; - } - } else { - assert(out_size == 1); - for (i = 0; i < in_size; ++i) { - symbols[i] = 0; - } - } - - // Recompute each out based on raw and symbols. - for (i = 0; i < out_size; ++i) { - HistogramClear(out_histo[i]); - } - - for (i = 0; i < in_size; ++i) { - const int idx = symbols[i]; - HistogramAdd(in_histo[i], out_histo[idx], out_histo[idx]); - } -} - -static double GetCombineCostFactor(int histo_size, int quality) { - double combine_cost_factor = 0.16; - if (quality < 90) { - if (histo_size > 256) combine_cost_factor /= 2.; - if (histo_size > 512) combine_cost_factor /= 2.; - if (histo_size > 1024) combine_cost_factor /= 2.; - if (quality <= 50) combine_cost_factor /= 2.; - } - return combine_cost_factor; -} - -int VP8LGetHistoImageSymbols(int xsize, int ysize, - const VP8LBackwardRefs* const refs, - int quality, int low_effort, - int histo_bits, int cache_bits, - VP8LHistogramSet* const image_histo, - VP8LHistogramSet* const tmp_histos, - uint16_t* const histogram_symbols) { - int ok = 0; - const int histo_xsize = histo_bits ? VP8LSubSampleSize(xsize, histo_bits) : 1; - const int histo_ysize = histo_bits ? VP8LSubSampleSize(ysize, histo_bits) : 1; - const int image_histo_raw_size = histo_xsize * histo_ysize; - VP8LHistogramSet* const orig_histo = - VP8LAllocateHistogramSet(image_histo_raw_size, cache_bits); - VP8LHistogram* cur_combo; - // Don't attempt linear bin-partition heuristic for - // histograms of small sizes (as bin_map will be very sparse) and - // maximum quality q==100 (to preserve the compression gains at that level). - const int entropy_combine_num_bins = low_effort ? NUM_PARTITIONS : BIN_SIZE; - const int entropy_combine = - (orig_histo->size > entropy_combine_num_bins * 2) && (quality < 100); - - if (orig_histo == NULL) goto Error; - - // Construct the histograms from backward references. - HistogramBuild(xsize, histo_bits, refs, orig_histo); - // Copies the histograms and computes its bit_cost. - HistogramCopyAndAnalyze(orig_histo, image_histo); - - cur_combo = tmp_histos->histograms[1]; // pick up working slot - if (entropy_combine) { - const int bin_map_size = orig_histo->size; - // Reuse histogram_symbols storage. By definition, it's guaranteed to be ok. - uint16_t* const bin_map = histogram_symbols; - const double combine_cost_factor = - GetCombineCostFactor(image_histo_raw_size, quality); - - HistogramAnalyzeEntropyBin(orig_histo, bin_map, low_effort); - // Collapse histograms with similar entropy. - cur_combo = HistogramCombineEntropyBin(image_histo, cur_combo, - bin_map, bin_map_size, - entropy_combine_num_bins, - combine_cost_factor, low_effort); - } - - // Don't combine the histograms using stochastic and greedy heuristics for - // low-effort compression mode. - if (!low_effort || !entropy_combine) { - const float x = quality / 100.f; - // cubic ramp between 1 and MAX_HISTO_GREEDY: - const int threshold_size = (int)(1 + (x * x * x) * (MAX_HISTO_GREEDY - 1)); - HistogramCombineStochastic(image_histo, tmp_histos->histograms[0], - cur_combo, quality, threshold_size); - if ((image_histo->size <= threshold_size) && - !HistogramCombineGreedy(image_histo)) { - goto Error; - } - } - - // TODO(vikasa): Optimize HistogramRemap for low-effort compression mode also. - // Find the optimal map from original histograms to the final ones. - HistogramRemap(orig_histo, image_histo, histogram_symbols); - - ok = 1; - - Error: - VP8LFreeHistogramSet(orig_histo); - return ok; -} |