summaryrefslogtreecommitdiff
path: root/thirdparty/libwebp/enc/histogram_enc.c
diff options
context:
space:
mode:
authorvolzhs <volzhs@gmail.com>2017-12-12 02:11:11 +0900
committervolzhs <volzhs@gmail.com>2017-12-12 02:55:47 +0900
commit043103fe6a1168729abf74dd56b8982ce54eea43 (patch)
treef3311c0442fba0ff565d9de0ad9fee3f0002295e /thirdparty/libwebp/enc/histogram_enc.c
parent64d104756c04f4d5c4e8140271d5e8049e5f8371 (diff)
Update libwebp to 0.6.1
* lossless performance and compression improvements + a new 'cruncher' mode (-m 6 -q 100) * ARM performance improvements with clang (15-20% w/ndk r15c) * webp-js: emscripten/webassembly based javascript decoder * miscellaneous bug & build fixes
Diffstat (limited to 'thirdparty/libwebp/enc/histogram_enc.c')
-rw-r--r--thirdparty/libwebp/enc/histogram_enc.c990
1 files changed, 0 insertions, 990 deletions
diff --git a/thirdparty/libwebp/enc/histogram_enc.c b/thirdparty/libwebp/enc/histogram_enc.c
deleted file mode 100644
index 808b6f78ab..0000000000
--- a/thirdparty/libwebp/enc/histogram_enc.c
+++ /dev/null
@@ -1,990 +0,0 @@
-// Copyright 2012 Google Inc. All Rights Reserved.
-//
-// Use of this source code is governed by a BSD-style license
-// that can be found in the COPYING file in the root of the source
-// tree. An additional intellectual property rights grant can be found
-// in the file PATENTS. All contributing project authors may
-// be found in the AUTHORS file in the root of the source tree.
-// -----------------------------------------------------------------------------
-//
-// Author: Jyrki Alakuijala (jyrki@google.com)
-//
-#ifdef HAVE_CONFIG_H
-#include "../webp/config.h"
-#endif
-
-#include <math.h>
-
-#include "./backward_references_enc.h"
-#include "./histogram_enc.h"
-#include "../dsp/lossless.h"
-#include "../dsp/lossless_common.h"
-#include "../utils/utils.h"
-
-#define MAX_COST 1.e38
-
-// Number of partitions for the three dominant (literal, red and blue) symbol
-// costs.
-#define NUM_PARTITIONS 4
-// The size of the bin-hash corresponding to the three dominant costs.
-#define BIN_SIZE (NUM_PARTITIONS * NUM_PARTITIONS * NUM_PARTITIONS)
-// Maximum number of histograms allowed in greedy combining algorithm.
-#define MAX_HISTO_GREEDY 100
-
-static void HistogramClear(VP8LHistogram* const p) {
- uint32_t* const literal = p->literal_;
- const int cache_bits = p->palette_code_bits_;
- const int histo_size = VP8LGetHistogramSize(cache_bits);
- memset(p, 0, histo_size);
- p->palette_code_bits_ = cache_bits;
- p->literal_ = literal;
-}
-
-// Swap two histogram pointers.
-static void HistogramSwap(VP8LHistogram** const A, VP8LHistogram** const B) {
- VP8LHistogram* const tmp = *A;
- *A = *B;
- *B = tmp;
-}
-
-static void HistogramCopy(const VP8LHistogram* const src,
- VP8LHistogram* const dst) {
- uint32_t* const dst_literal = dst->literal_;
- const int dst_cache_bits = dst->palette_code_bits_;
- const int histo_size = VP8LGetHistogramSize(dst_cache_bits);
- assert(src->palette_code_bits_ == dst_cache_bits);
- memcpy(dst, src, histo_size);
- dst->literal_ = dst_literal;
-}
-
-int VP8LGetHistogramSize(int cache_bits) {
- const int literal_size = VP8LHistogramNumCodes(cache_bits);
- const size_t total_size = sizeof(VP8LHistogram) + sizeof(int) * literal_size;
- assert(total_size <= (size_t)0x7fffffff);
- return (int)total_size;
-}
-
-void VP8LFreeHistogram(VP8LHistogram* const histo) {
- WebPSafeFree(histo);
-}
-
-void VP8LFreeHistogramSet(VP8LHistogramSet* const histo) {
- WebPSafeFree(histo);
-}
-
-void VP8LHistogramStoreRefs(const VP8LBackwardRefs* const refs,
- VP8LHistogram* const histo) {
- VP8LRefsCursor c = VP8LRefsCursorInit(refs);
- while (VP8LRefsCursorOk(&c)) {
- VP8LHistogramAddSinglePixOrCopy(histo, c.cur_pos);
- VP8LRefsCursorNext(&c);
- }
-}
-
-void VP8LHistogramCreate(VP8LHistogram* const p,
- const VP8LBackwardRefs* const refs,
- int palette_code_bits) {
- if (palette_code_bits >= 0) {
- p->palette_code_bits_ = palette_code_bits;
- }
- HistogramClear(p);
- VP8LHistogramStoreRefs(refs, p);
-}
-
-void VP8LHistogramInit(VP8LHistogram* const p, int palette_code_bits) {
- p->palette_code_bits_ = palette_code_bits;
- HistogramClear(p);
-}
-
-VP8LHistogram* VP8LAllocateHistogram(int cache_bits) {
- VP8LHistogram* histo = NULL;
- const int total_size = VP8LGetHistogramSize(cache_bits);
- uint8_t* const memory = (uint8_t*)WebPSafeMalloc(total_size, sizeof(*memory));
- if (memory == NULL) return NULL;
- histo = (VP8LHistogram*)memory;
- // literal_ won't necessary be aligned.
- histo->literal_ = (uint32_t*)(memory + sizeof(VP8LHistogram));
- VP8LHistogramInit(histo, cache_bits);
- return histo;
-}
-
-VP8LHistogramSet* VP8LAllocateHistogramSet(int size, int cache_bits) {
- int i;
- VP8LHistogramSet* set;
- const int histo_size = VP8LGetHistogramSize(cache_bits);
- const size_t total_size =
- sizeof(*set) + size * (sizeof(*set->histograms) +
- histo_size + WEBP_ALIGN_CST);
- uint8_t* memory = (uint8_t*)WebPSafeMalloc(total_size, sizeof(*memory));
- if (memory == NULL) return NULL;
-
- set = (VP8LHistogramSet*)memory;
- memory += sizeof(*set);
- set->histograms = (VP8LHistogram**)memory;
- memory += size * sizeof(*set->histograms);
- set->max_size = size;
- set->size = size;
- for (i = 0; i < size; ++i) {
- memory = (uint8_t*)WEBP_ALIGN(memory);
- set->histograms[i] = (VP8LHistogram*)memory;
- // literal_ won't necessary be aligned.
- set->histograms[i]->literal_ = (uint32_t*)(memory + sizeof(VP8LHistogram));
- VP8LHistogramInit(set->histograms[i], cache_bits);
- memory += histo_size;
- }
- return set;
-}
-
-// -----------------------------------------------------------------------------
-
-void VP8LHistogramAddSinglePixOrCopy(VP8LHistogram* const histo,
- const PixOrCopy* const v) {
- if (PixOrCopyIsLiteral(v)) {
- ++histo->alpha_[PixOrCopyLiteral(v, 3)];
- ++histo->red_[PixOrCopyLiteral(v, 2)];
- ++histo->literal_[PixOrCopyLiteral(v, 1)];
- ++histo->blue_[PixOrCopyLiteral(v, 0)];
- } else if (PixOrCopyIsCacheIdx(v)) {
- const int literal_ix =
- NUM_LITERAL_CODES + NUM_LENGTH_CODES + PixOrCopyCacheIdx(v);
- ++histo->literal_[literal_ix];
- } else {
- int code, extra_bits;
- VP8LPrefixEncodeBits(PixOrCopyLength(v), &code, &extra_bits);
- ++histo->literal_[NUM_LITERAL_CODES + code];
- VP8LPrefixEncodeBits(PixOrCopyDistance(v), &code, &extra_bits);
- ++histo->distance_[code];
- }
-}
-
-// -----------------------------------------------------------------------------
-// Entropy-related functions.
-
-static WEBP_INLINE double BitsEntropyRefine(const VP8LBitEntropy* entropy) {
- double mix;
- if (entropy->nonzeros < 5) {
- if (entropy->nonzeros <= 1) {
- return 0;
- }
- // Two symbols, they will be 0 and 1 in a Huffman code.
- // Let's mix in a bit of entropy to favor good clustering when
- // distributions of these are combined.
- if (entropy->nonzeros == 2) {
- return 0.99 * entropy->sum + 0.01 * entropy->entropy;
- }
- // No matter what the entropy says, we cannot be better than min_limit
- // with Huffman coding. I am mixing a bit of entropy into the
- // min_limit since it produces much better (~0.5 %) compression results
- // perhaps because of better entropy clustering.
- if (entropy->nonzeros == 3) {
- mix = 0.95;
- } else {
- mix = 0.7; // nonzeros == 4.
- }
- } else {
- mix = 0.627;
- }
-
- {
- double min_limit = 2 * entropy->sum - entropy->max_val;
- min_limit = mix * min_limit + (1.0 - mix) * entropy->entropy;
- return (entropy->entropy < min_limit) ? min_limit : entropy->entropy;
- }
-}
-
-double VP8LBitsEntropy(const uint32_t* const array, int n,
- uint32_t* const trivial_symbol) {
- VP8LBitEntropy entropy;
- VP8LBitsEntropyUnrefined(array, n, &entropy);
- if (trivial_symbol != NULL) {
- *trivial_symbol =
- (entropy.nonzeros == 1) ? entropy.nonzero_code : VP8L_NON_TRIVIAL_SYM;
- }
-
- return BitsEntropyRefine(&entropy);
-}
-
-static double InitialHuffmanCost(void) {
- // Small bias because Huffman code length is typically not stored in
- // full length.
- static const int kHuffmanCodeOfHuffmanCodeSize = CODE_LENGTH_CODES * 3;
- static const double kSmallBias = 9.1;
- return kHuffmanCodeOfHuffmanCodeSize - kSmallBias;
-}
-
-// Finalize the Huffman cost based on streak numbers and length type (<3 or >=3)
-static double FinalHuffmanCost(const VP8LStreaks* const stats) {
- // The constants in this function are experimental and got rounded from
- // their original values in 1/8 when switched to 1/1024.
- double retval = InitialHuffmanCost();
- // Second coefficient: Many zeros in the histogram are covered efficiently
- // by a run-length encode. Originally 2/8.
- retval += stats->counts[0] * 1.5625 + 0.234375 * stats->streaks[0][1];
- // Second coefficient: Constant values are encoded less efficiently, but still
- // RLE'ed. Originally 6/8.
- retval += stats->counts[1] * 2.578125 + 0.703125 * stats->streaks[1][1];
- // 0s are usually encoded more efficiently than non-0s.
- // Originally 15/8.
- retval += 1.796875 * stats->streaks[0][0];
- // Originally 26/8.
- retval += 3.28125 * stats->streaks[1][0];
- return retval;
-}
-
-// Get the symbol entropy for the distribution 'population'.
-// Set 'trivial_sym', if there's only one symbol present in the distribution.
-static double PopulationCost(const uint32_t* const population, int length,
- uint32_t* const trivial_sym) {
- VP8LBitEntropy bit_entropy;
- VP8LStreaks stats;
- VP8LGetEntropyUnrefined(population, length, &bit_entropy, &stats);
- if (trivial_sym != NULL) {
- *trivial_sym = (bit_entropy.nonzeros == 1) ? bit_entropy.nonzero_code
- : VP8L_NON_TRIVIAL_SYM;
- }
-
- return BitsEntropyRefine(&bit_entropy) + FinalHuffmanCost(&stats);
-}
-
-// trivial_at_end is 1 if the two histograms only have one element that is
-// non-zero: both the zero-th one, or both the last one.
-static WEBP_INLINE double GetCombinedEntropy(const uint32_t* const X,
- const uint32_t* const Y,
- int length, int trivial_at_end) {
- VP8LStreaks stats;
- if (trivial_at_end) {
- // This configuration is due to palettization that transforms an indexed
- // pixel into 0xff000000 | (pixel << 8) in VP8LBundleColorMap.
- // BitsEntropyRefine is 0 for histograms with only one non-zero value.
- // Only FinalHuffmanCost needs to be evaluated.
- memset(&stats, 0, sizeof(stats));
- // Deal with the non-zero value at index 0 or length-1.
- stats.streaks[1][0] += 1;
- // Deal with the following/previous zero streak.
- stats.counts[0] += 1;
- stats.streaks[0][1] += length - 1;
- return FinalHuffmanCost(&stats);
- } else {
- VP8LBitEntropy bit_entropy;
- VP8LGetCombinedEntropyUnrefined(X, Y, length, &bit_entropy, &stats);
-
- return BitsEntropyRefine(&bit_entropy) + FinalHuffmanCost(&stats);
- }
-}
-
-// Estimates the Entropy + Huffman + other block overhead size cost.
-double VP8LHistogramEstimateBits(const VP8LHistogram* const p) {
- return
- PopulationCost(
- p->literal_, VP8LHistogramNumCodes(p->palette_code_bits_), NULL)
- + PopulationCost(p->red_, NUM_LITERAL_CODES, NULL)
- + PopulationCost(p->blue_, NUM_LITERAL_CODES, NULL)
- + PopulationCost(p->alpha_, NUM_LITERAL_CODES, NULL)
- + PopulationCost(p->distance_, NUM_DISTANCE_CODES, NULL)
- + VP8LExtraCost(p->literal_ + NUM_LITERAL_CODES, NUM_LENGTH_CODES)
- + VP8LExtraCost(p->distance_, NUM_DISTANCE_CODES);
-}
-
-// -----------------------------------------------------------------------------
-// Various histogram combine/cost-eval functions
-
-static int GetCombinedHistogramEntropy(const VP8LHistogram* const a,
- const VP8LHistogram* const b,
- double cost_threshold,
- double* cost) {
- const int palette_code_bits = a->palette_code_bits_;
- int trivial_at_end = 0;
- assert(a->palette_code_bits_ == b->palette_code_bits_);
- *cost += GetCombinedEntropy(a->literal_, b->literal_,
- VP8LHistogramNumCodes(palette_code_bits), 0);
- *cost += VP8LExtraCostCombined(a->literal_ + NUM_LITERAL_CODES,
- b->literal_ + NUM_LITERAL_CODES,
- NUM_LENGTH_CODES);
- if (*cost > cost_threshold) return 0;
-
- if (a->trivial_symbol_ != VP8L_NON_TRIVIAL_SYM &&
- a->trivial_symbol_ == b->trivial_symbol_) {
- // A, R and B are all 0 or 0xff.
- const uint32_t color_a = (a->trivial_symbol_ >> 24) & 0xff;
- const uint32_t color_r = (a->trivial_symbol_ >> 16) & 0xff;
- const uint32_t color_b = (a->trivial_symbol_ >> 0) & 0xff;
- if ((color_a == 0 || color_a == 0xff) &&
- (color_r == 0 || color_r == 0xff) &&
- (color_b == 0 || color_b == 0xff)) {
- trivial_at_end = 1;
- }
- }
-
- *cost +=
- GetCombinedEntropy(a->red_, b->red_, NUM_LITERAL_CODES, trivial_at_end);
- if (*cost > cost_threshold) return 0;
-
- *cost +=
- GetCombinedEntropy(a->blue_, b->blue_, NUM_LITERAL_CODES, trivial_at_end);
- if (*cost > cost_threshold) return 0;
-
- *cost += GetCombinedEntropy(a->alpha_, b->alpha_, NUM_LITERAL_CODES,
- trivial_at_end);
- if (*cost > cost_threshold) return 0;
-
- *cost +=
- GetCombinedEntropy(a->distance_, b->distance_, NUM_DISTANCE_CODES, 0);
- *cost +=
- VP8LExtraCostCombined(a->distance_, b->distance_, NUM_DISTANCE_CODES);
- if (*cost > cost_threshold) return 0;
-
- return 1;
-}
-
-static WEBP_INLINE void HistogramAdd(const VP8LHistogram* const a,
- const VP8LHistogram* const b,
- VP8LHistogram* const out) {
- VP8LHistogramAdd(a, b, out);
- out->trivial_symbol_ = (a->trivial_symbol_ == b->trivial_symbol_)
- ? a->trivial_symbol_
- : VP8L_NON_TRIVIAL_SYM;
-}
-
-// Performs out = a + b, computing the cost C(a+b) - C(a) - C(b) while comparing
-// to the threshold value 'cost_threshold'. The score returned is
-// Score = C(a+b) - C(a) - C(b), where C(a) + C(b) is known and fixed.
-// Since the previous score passed is 'cost_threshold', we only need to compare
-// the partial cost against 'cost_threshold + C(a) + C(b)' to possibly bail-out
-// early.
-static double HistogramAddEval(const VP8LHistogram* const a,
- const VP8LHistogram* const b,
- VP8LHistogram* const out,
- double cost_threshold) {
- double cost = 0;
- const double sum_cost = a->bit_cost_ + b->bit_cost_;
- cost_threshold += sum_cost;
-
- if (GetCombinedHistogramEntropy(a, b, cost_threshold, &cost)) {
- HistogramAdd(a, b, out);
- out->bit_cost_ = cost;
- out->palette_code_bits_ = a->palette_code_bits_;
- }
-
- return cost - sum_cost;
-}
-
-// Same as HistogramAddEval(), except that the resulting histogram
-// is not stored. Only the cost C(a+b) - C(a) is evaluated. We omit
-// the term C(b) which is constant over all the evaluations.
-static double HistogramAddThresh(const VP8LHistogram* const a,
- const VP8LHistogram* const b,
- double cost_threshold) {
- double cost = -a->bit_cost_;
- GetCombinedHistogramEntropy(a, b, cost_threshold, &cost);
- return cost;
-}
-
-// -----------------------------------------------------------------------------
-
-// The structure to keep track of cost range for the three dominant entropy
-// symbols.
-// TODO(skal): Evaluate if float can be used here instead of double for
-// representing the entropy costs.
-typedef struct {
- double literal_max_;
- double literal_min_;
- double red_max_;
- double red_min_;
- double blue_max_;
- double blue_min_;
-} DominantCostRange;
-
-static void DominantCostRangeInit(DominantCostRange* const c) {
- c->literal_max_ = 0.;
- c->literal_min_ = MAX_COST;
- c->red_max_ = 0.;
- c->red_min_ = MAX_COST;
- c->blue_max_ = 0.;
- c->blue_min_ = MAX_COST;
-}
-
-static void UpdateDominantCostRange(
- const VP8LHistogram* const h, DominantCostRange* const c) {
- if (c->literal_max_ < h->literal_cost_) c->literal_max_ = h->literal_cost_;
- if (c->literal_min_ > h->literal_cost_) c->literal_min_ = h->literal_cost_;
- if (c->red_max_ < h->red_cost_) c->red_max_ = h->red_cost_;
- if (c->red_min_ > h->red_cost_) c->red_min_ = h->red_cost_;
- if (c->blue_max_ < h->blue_cost_) c->blue_max_ = h->blue_cost_;
- if (c->blue_min_ > h->blue_cost_) c->blue_min_ = h->blue_cost_;
-}
-
-static void UpdateHistogramCost(VP8LHistogram* const h) {
- uint32_t alpha_sym, red_sym, blue_sym;
- const double alpha_cost =
- PopulationCost(h->alpha_, NUM_LITERAL_CODES, &alpha_sym);
- const double distance_cost =
- PopulationCost(h->distance_, NUM_DISTANCE_CODES, NULL) +
- VP8LExtraCost(h->distance_, NUM_DISTANCE_CODES);
- const int num_codes = VP8LHistogramNumCodes(h->palette_code_bits_);
- h->literal_cost_ = PopulationCost(h->literal_, num_codes, NULL) +
- VP8LExtraCost(h->literal_ + NUM_LITERAL_CODES,
- NUM_LENGTH_CODES);
- h->red_cost_ = PopulationCost(h->red_, NUM_LITERAL_CODES, &red_sym);
- h->blue_cost_ = PopulationCost(h->blue_, NUM_LITERAL_CODES, &blue_sym);
- h->bit_cost_ = h->literal_cost_ + h->red_cost_ + h->blue_cost_ +
- alpha_cost + distance_cost;
- if ((alpha_sym | red_sym | blue_sym) == VP8L_NON_TRIVIAL_SYM) {
- h->trivial_symbol_ = VP8L_NON_TRIVIAL_SYM;
- } else {
- h->trivial_symbol_ =
- ((uint32_t)alpha_sym << 24) | (red_sym << 16) | (blue_sym << 0);
- }
-}
-
-static int GetBinIdForEntropy(double min, double max, double val) {
- const double range = max - min;
- if (range > 0.) {
- const double delta = val - min;
- return (int)((NUM_PARTITIONS - 1e-6) * delta / range);
- } else {
- return 0;
- }
-}
-
-static int GetHistoBinIndex(const VP8LHistogram* const h,
- const DominantCostRange* const c, int low_effort) {
- int bin_id = GetBinIdForEntropy(c->literal_min_, c->literal_max_,
- h->literal_cost_);
- assert(bin_id < NUM_PARTITIONS);
- if (!low_effort) {
- bin_id = bin_id * NUM_PARTITIONS
- + GetBinIdForEntropy(c->red_min_, c->red_max_, h->red_cost_);
- bin_id = bin_id * NUM_PARTITIONS
- + GetBinIdForEntropy(c->blue_min_, c->blue_max_, h->blue_cost_);
- assert(bin_id < BIN_SIZE);
- }
- return bin_id;
-}
-
-// Construct the histograms from backward references.
-static void HistogramBuild(
- int xsize, int histo_bits, const VP8LBackwardRefs* const backward_refs,
- VP8LHistogramSet* const image_histo) {
- int x = 0, y = 0;
- const int histo_xsize = VP8LSubSampleSize(xsize, histo_bits);
- VP8LHistogram** const histograms = image_histo->histograms;
- VP8LRefsCursor c = VP8LRefsCursorInit(backward_refs);
- assert(histo_bits > 0);
- while (VP8LRefsCursorOk(&c)) {
- const PixOrCopy* const v = c.cur_pos;
- const int ix = (y >> histo_bits) * histo_xsize + (x >> histo_bits);
- VP8LHistogramAddSinglePixOrCopy(histograms[ix], v);
- x += PixOrCopyLength(v);
- while (x >= xsize) {
- x -= xsize;
- ++y;
- }
- VP8LRefsCursorNext(&c);
- }
-}
-
-// Copies the histograms and computes its bit_cost.
-static void HistogramCopyAndAnalyze(
- VP8LHistogramSet* const orig_histo, VP8LHistogramSet* const image_histo) {
- int i;
- const int histo_size = orig_histo->size;
- VP8LHistogram** const orig_histograms = orig_histo->histograms;
- VP8LHistogram** const histograms = image_histo->histograms;
- for (i = 0; i < histo_size; ++i) {
- VP8LHistogram* const histo = orig_histograms[i];
- UpdateHistogramCost(histo);
- // Copy histograms from orig_histo[] to image_histo[].
- HistogramCopy(histo, histograms[i]);
- }
-}
-
-// Partition histograms to different entropy bins for three dominant (literal,
-// red and blue) symbol costs and compute the histogram aggregate bit_cost.
-static void HistogramAnalyzeEntropyBin(VP8LHistogramSet* const image_histo,
- uint16_t* const bin_map,
- int low_effort) {
- int i;
- VP8LHistogram** const histograms = image_histo->histograms;
- const int histo_size = image_histo->size;
- DominantCostRange cost_range;
- DominantCostRangeInit(&cost_range);
-
- // Analyze the dominant (literal, red and blue) entropy costs.
- for (i = 0; i < histo_size; ++i) {
- UpdateDominantCostRange(histograms[i], &cost_range);
- }
-
- // bin-hash histograms on three of the dominant (literal, red and blue)
- // symbol costs and store the resulting bin_id for each histogram.
- for (i = 0; i < histo_size; ++i) {
- bin_map[i] = GetHistoBinIndex(histograms[i], &cost_range, low_effort);
- }
-}
-
-// Compact image_histo[] by merging some histograms with same bin_id together if
-// it's advantageous.
-static VP8LHistogram* HistogramCombineEntropyBin(
- VP8LHistogramSet* const image_histo,
- VP8LHistogram* cur_combo,
- const uint16_t* const bin_map, int bin_map_size, int num_bins,
- double combine_cost_factor, int low_effort) {
- VP8LHistogram** const histograms = image_histo->histograms;
- int idx;
- // Work in-place: processed histograms are put at the beginning of
- // image_histo[]. At the end, we just have to truncate the array.
- int size = 0;
- struct {
- int16_t first; // position of the histogram that accumulates all
- // histograms with the same bin_id
- uint16_t num_combine_failures; // number of combine failures per bin_id
- } bin_info[BIN_SIZE];
-
- assert(num_bins <= BIN_SIZE);
- for (idx = 0; idx < num_bins; ++idx) {
- bin_info[idx].first = -1;
- bin_info[idx].num_combine_failures = 0;
- }
-
- for (idx = 0; idx < bin_map_size; ++idx) {
- const int bin_id = bin_map[idx];
- const int first = bin_info[bin_id].first;
- assert(size <= idx);
- if (first == -1) {
- // just move histogram #idx to its final position
- histograms[size] = histograms[idx];
- bin_info[bin_id].first = size++;
- } else if (low_effort) {
- HistogramAdd(histograms[idx], histograms[first], histograms[first]);
- } else {
- // try to merge #idx into #first (both share the same bin_id)
- const double bit_cost = histograms[idx]->bit_cost_;
- const double bit_cost_thresh = -bit_cost * combine_cost_factor;
- const double curr_cost_diff =
- HistogramAddEval(histograms[first], histograms[idx],
- cur_combo, bit_cost_thresh);
- if (curr_cost_diff < bit_cost_thresh) {
- // Try to merge two histograms only if the combo is a trivial one or
- // the two candidate histograms are already non-trivial.
- // For some images, 'try_combine' turns out to be false for a lot of
- // histogram pairs. In that case, we fallback to combining
- // histograms as usual to avoid increasing the header size.
- const int try_combine =
- (cur_combo->trivial_symbol_ != VP8L_NON_TRIVIAL_SYM) ||
- ((histograms[idx]->trivial_symbol_ == VP8L_NON_TRIVIAL_SYM) &&
- (histograms[first]->trivial_symbol_ == VP8L_NON_TRIVIAL_SYM));
- const int max_combine_failures = 32;
- if (try_combine ||
- bin_info[bin_id].num_combine_failures >= max_combine_failures) {
- // move the (better) merged histogram to its final slot
- HistogramSwap(&cur_combo, &histograms[first]);
- } else {
- histograms[size++] = histograms[idx];
- ++bin_info[bin_id].num_combine_failures;
- }
- } else {
- histograms[size++] = histograms[idx];
- }
- }
- }
- image_histo->size = size;
- if (low_effort) {
- // for low_effort case, update the final cost when everything is merged
- for (idx = 0; idx < size; ++idx) {
- UpdateHistogramCost(histograms[idx]);
- }
- }
- return cur_combo;
-}
-
-static uint32_t MyRand(uint32_t* const seed) {
- *seed = (*seed * 16807ull) & 0xffffffffu;
- if (*seed == 0) {
- *seed = 1;
- }
- return *seed;
-}
-
-// -----------------------------------------------------------------------------
-// Histogram pairs priority queue
-
-// Pair of histograms. Negative idx1 value means that pair is out-of-date.
-typedef struct {
- int idx1;
- int idx2;
- double cost_diff;
- double cost_combo;
-} HistogramPair;
-
-typedef struct {
- HistogramPair* queue;
- int size;
- int max_size;
-} HistoQueue;
-
-static int HistoQueueInit(HistoQueue* const histo_queue, const int max_index) {
- histo_queue->size = 0;
- // max_index^2 for the queue size is safe. If you look at
- // HistogramCombineGreedy, and imagine that UpdateQueueFront always pushes
- // data to the queue, you insert at most:
- // - max_index*(max_index-1)/2 (the first two for loops)
- // - max_index - 1 in the last for loop at the first iteration of the while
- // loop, max_index - 2 at the second iteration ... therefore
- // max_index*(max_index-1)/2 overall too
- histo_queue->max_size = max_index * max_index;
- // We allocate max_size + 1 because the last element at index "size" is
- // used as temporary data (and it could be up to max_size).
- histo_queue->queue = (HistogramPair*)WebPSafeMalloc(
- histo_queue->max_size + 1, sizeof(*histo_queue->queue));
- return histo_queue->queue != NULL;
-}
-
-static void HistoQueueClear(HistoQueue* const histo_queue) {
- assert(histo_queue != NULL);
- WebPSafeFree(histo_queue->queue);
-}
-
-static void SwapHistogramPairs(HistogramPair *p1,
- HistogramPair *p2) {
- const HistogramPair tmp = *p1;
- *p1 = *p2;
- *p2 = tmp;
-}
-
-// Given a valid priority queue in range [0, queue_size) this function checks
-// whether histo_queue[queue_size] should be accepted and swaps it with the
-// front if it is smaller. Otherwise, it leaves it as is.
-static void UpdateQueueFront(HistoQueue* const histo_queue) {
- if (histo_queue->queue[histo_queue->size].cost_diff >= 0) return;
-
- if (histo_queue->queue[histo_queue->size].cost_diff <
- histo_queue->queue[0].cost_diff) {
- SwapHistogramPairs(histo_queue->queue,
- histo_queue->queue + histo_queue->size);
- }
- ++histo_queue->size;
-
- // We cannot add more elements than the capacity.
- // The allocation adds an extra element to the official capacity so that
- // histo_queue->queue[histo_queue->max_size] is read/written within bound.
- assert(histo_queue->size <= histo_queue->max_size);
-}
-
-// -----------------------------------------------------------------------------
-
-static void PreparePair(VP8LHistogram** histograms, int idx1, int idx2,
- HistogramPair* const pair) {
- VP8LHistogram* h1;
- VP8LHistogram* h2;
- double sum_cost;
-
- if (idx1 > idx2) {
- const int tmp = idx2;
- idx2 = idx1;
- idx1 = tmp;
- }
- pair->idx1 = idx1;
- pair->idx2 = idx2;
- h1 = histograms[idx1];
- h2 = histograms[idx2];
- sum_cost = h1->bit_cost_ + h2->bit_cost_;
- pair->cost_combo = 0.;
- GetCombinedHistogramEntropy(h1, h2, sum_cost, &pair->cost_combo);
- pair->cost_diff = pair->cost_combo - sum_cost;
-}
-
-// Combines histograms by continuously choosing the one with the highest cost
-// reduction.
-static int HistogramCombineGreedy(VP8LHistogramSet* const image_histo) {
- int ok = 0;
- int image_histo_size = image_histo->size;
- int i, j;
- VP8LHistogram** const histograms = image_histo->histograms;
- // Indexes of remaining histograms.
- int* const clusters =
- (int*)WebPSafeMalloc(image_histo_size, sizeof(*clusters));
- // Priority queue of histogram pairs.
- HistoQueue histo_queue;
-
- if (!HistoQueueInit(&histo_queue, image_histo_size) || clusters == NULL) {
- goto End;
- }
-
- for (i = 0; i < image_histo_size; ++i) {
- // Initialize clusters indexes.
- clusters[i] = i;
- for (j = i + 1; j < image_histo_size; ++j) {
- // Initialize positions array.
- PreparePair(histograms, i, j, &histo_queue.queue[histo_queue.size]);
- UpdateQueueFront(&histo_queue);
- }
- }
-
- while (image_histo_size > 1 && histo_queue.size > 0) {
- HistogramPair* copy_to;
- const int idx1 = histo_queue.queue[0].idx1;
- const int idx2 = histo_queue.queue[0].idx2;
- HistogramAdd(histograms[idx2], histograms[idx1], histograms[idx1]);
- histograms[idx1]->bit_cost_ = histo_queue.queue[0].cost_combo;
- // Remove merged histogram.
- for (i = 0; i + 1 < image_histo_size; ++i) {
- if (clusters[i] >= idx2) {
- clusters[i] = clusters[i + 1];
- }
- }
- --image_histo_size;
-
- // Remove pairs intersecting the just combined best pair. This will
- // therefore pop the head of the queue.
- copy_to = histo_queue.queue;
- for (i = 0; i < histo_queue.size; ++i) {
- HistogramPair* const p = histo_queue.queue + i;
- if (p->idx1 == idx1 || p->idx2 == idx1 ||
- p->idx1 == idx2 || p->idx2 == idx2) {
- // Do not copy the invalid pair.
- continue;
- }
- if (p->cost_diff < histo_queue.queue[0].cost_diff) {
- // Replace the top of the queue if we found better.
- SwapHistogramPairs(histo_queue.queue, p);
- }
- SwapHistogramPairs(copy_to, p);
- ++copy_to;
- }
- histo_queue.size = (int)(copy_to - histo_queue.queue);
-
- // Push new pairs formed with combined histogram to the queue.
- for (i = 0; i < image_histo_size; ++i) {
- if (clusters[i] != idx1) {
- PreparePair(histograms, idx1, clusters[i],
- &histo_queue.queue[histo_queue.size]);
- UpdateQueueFront(&histo_queue);
- }
- }
- }
- // Move remaining histograms to the beginning of the array.
- for (i = 0; i < image_histo_size; ++i) {
- if (i != clusters[i]) { // swap the two histograms
- HistogramSwap(&histograms[i], &histograms[clusters[i]]);
- }
- }
-
- image_histo->size = image_histo_size;
- ok = 1;
-
- End:
- WebPSafeFree(clusters);
- HistoQueueClear(&histo_queue);
- return ok;
-}
-
-static void HistogramCombineStochastic(VP8LHistogramSet* const image_histo,
- VP8LHistogram* tmp_histo,
- VP8LHistogram* best_combo,
- int quality, int min_cluster_size) {
- int iter;
- uint32_t seed = 0;
- int tries_with_no_success = 0;
- int image_histo_size = image_histo->size;
- const int iter_mult = (quality < 25) ? 2 : 2 + (quality - 25) / 8;
- const int outer_iters = image_histo_size * iter_mult;
- const int num_pairs = image_histo_size / 2;
- const int num_tries_no_success = outer_iters / 2;
- int idx2_max = image_histo_size - 1;
- int do_brute_dorce = 0;
- VP8LHistogram** const histograms = image_histo->histograms;
-
- // Collapse similar histograms in 'image_histo'.
- ++min_cluster_size;
- for (iter = 0;
- iter < outer_iters && image_histo_size >= min_cluster_size;
- ++iter) {
- double best_cost_diff = 0.;
- int best_idx1 = -1, best_idx2 = 1;
- int j;
- int num_tries =
- (num_pairs < image_histo_size) ? num_pairs : image_histo_size;
- // Use a brute force approach if:
- // - stochastic has not worked for a while and
- // - if the number of iterations for brute force is less than the number of
- // iterations if we never find a match ever again stochastically (hence
- // num_tries times the number of remaining outer iterations).
- do_brute_dorce =
- (tries_with_no_success > 10) &&
- (idx2_max * (idx2_max + 1) < 2 * num_tries * (outer_iters - iter));
- if (do_brute_dorce) num_tries = idx2_max;
-
- seed += iter;
- for (j = 0; j < num_tries; ++j) {
- double curr_cost_diff;
- // Choose two histograms at random and try to combine them.
- uint32_t idx1, idx2;
- if (do_brute_dorce) {
- // Use a brute force approach.
- idx1 = (uint32_t)j;
- idx2 = (uint32_t)idx2_max;
- } else {
- const uint32_t tmp = (j & 7) + 1;
- const uint32_t diff =
- (tmp < 3) ? tmp : MyRand(&seed) % (image_histo_size - 1);
- idx1 = MyRand(&seed) % image_histo_size;
- idx2 = (idx1 + diff + 1) % image_histo_size;
- if (idx1 == idx2) {
- continue;
- }
- }
-
- // Calculate cost reduction on combining.
- curr_cost_diff = HistogramAddEval(histograms[idx1], histograms[idx2],
- tmp_histo, best_cost_diff);
- if (curr_cost_diff < best_cost_diff) { // found a better pair?
- HistogramSwap(&best_combo, &tmp_histo);
- best_cost_diff = curr_cost_diff;
- best_idx1 = idx1;
- best_idx2 = idx2;
- }
- }
- if (do_brute_dorce) --idx2_max;
-
- if (best_idx1 >= 0) {
- HistogramSwap(&best_combo, &histograms[best_idx1]);
- // swap best_idx2 slot with last one (which is now unused)
- --image_histo_size;
- if (idx2_max >= image_histo_size) idx2_max = image_histo_size - 1;
- if (best_idx2 != image_histo_size) {
- HistogramSwap(&histograms[image_histo_size], &histograms[best_idx2]);
- histograms[image_histo_size] = NULL;
- }
- tries_with_no_success = 0;
- }
- if (++tries_with_no_success >= num_tries_no_success || idx2_max == 0) {
- break;
- }
- }
- image_histo->size = image_histo_size;
-}
-
-// -----------------------------------------------------------------------------
-// Histogram refinement
-
-// Find the best 'out' histogram for each of the 'in' histograms.
-// Note: we assume that out[]->bit_cost_ is already up-to-date.
-static void HistogramRemap(const VP8LHistogramSet* const in,
- const VP8LHistogramSet* const out,
- uint16_t* const symbols) {
- int i;
- VP8LHistogram** const in_histo = in->histograms;
- VP8LHistogram** const out_histo = out->histograms;
- const int in_size = in->size;
- const int out_size = out->size;
- if (out_size > 1) {
- for (i = 0; i < in_size; ++i) {
- int best_out = 0;
- double best_bits = MAX_COST;
- int k;
- for (k = 0; k < out_size; ++k) {
- const double cur_bits =
- HistogramAddThresh(out_histo[k], in_histo[i], best_bits);
- if (k == 0 || cur_bits < best_bits) {
- best_bits = cur_bits;
- best_out = k;
- }
- }
- symbols[i] = best_out;
- }
- } else {
- assert(out_size == 1);
- for (i = 0; i < in_size; ++i) {
- symbols[i] = 0;
- }
- }
-
- // Recompute each out based on raw and symbols.
- for (i = 0; i < out_size; ++i) {
- HistogramClear(out_histo[i]);
- }
-
- for (i = 0; i < in_size; ++i) {
- const int idx = symbols[i];
- HistogramAdd(in_histo[i], out_histo[idx], out_histo[idx]);
- }
-}
-
-static double GetCombineCostFactor(int histo_size, int quality) {
- double combine_cost_factor = 0.16;
- if (quality < 90) {
- if (histo_size > 256) combine_cost_factor /= 2.;
- if (histo_size > 512) combine_cost_factor /= 2.;
- if (histo_size > 1024) combine_cost_factor /= 2.;
- if (quality <= 50) combine_cost_factor /= 2.;
- }
- return combine_cost_factor;
-}
-
-int VP8LGetHistoImageSymbols(int xsize, int ysize,
- const VP8LBackwardRefs* const refs,
- int quality, int low_effort,
- int histo_bits, int cache_bits,
- VP8LHistogramSet* const image_histo,
- VP8LHistogramSet* const tmp_histos,
- uint16_t* const histogram_symbols) {
- int ok = 0;
- const int histo_xsize = histo_bits ? VP8LSubSampleSize(xsize, histo_bits) : 1;
- const int histo_ysize = histo_bits ? VP8LSubSampleSize(ysize, histo_bits) : 1;
- const int image_histo_raw_size = histo_xsize * histo_ysize;
- VP8LHistogramSet* const orig_histo =
- VP8LAllocateHistogramSet(image_histo_raw_size, cache_bits);
- VP8LHistogram* cur_combo;
- // Don't attempt linear bin-partition heuristic for
- // histograms of small sizes (as bin_map will be very sparse) and
- // maximum quality q==100 (to preserve the compression gains at that level).
- const int entropy_combine_num_bins = low_effort ? NUM_PARTITIONS : BIN_SIZE;
- const int entropy_combine =
- (orig_histo->size > entropy_combine_num_bins * 2) && (quality < 100);
-
- if (orig_histo == NULL) goto Error;
-
- // Construct the histograms from backward references.
- HistogramBuild(xsize, histo_bits, refs, orig_histo);
- // Copies the histograms and computes its bit_cost.
- HistogramCopyAndAnalyze(orig_histo, image_histo);
-
- cur_combo = tmp_histos->histograms[1]; // pick up working slot
- if (entropy_combine) {
- const int bin_map_size = orig_histo->size;
- // Reuse histogram_symbols storage. By definition, it's guaranteed to be ok.
- uint16_t* const bin_map = histogram_symbols;
- const double combine_cost_factor =
- GetCombineCostFactor(image_histo_raw_size, quality);
-
- HistogramAnalyzeEntropyBin(orig_histo, bin_map, low_effort);
- // Collapse histograms with similar entropy.
- cur_combo = HistogramCombineEntropyBin(image_histo, cur_combo,
- bin_map, bin_map_size,
- entropy_combine_num_bins,
- combine_cost_factor, low_effort);
- }
-
- // Don't combine the histograms using stochastic and greedy heuristics for
- // low-effort compression mode.
- if (!low_effort || !entropy_combine) {
- const float x = quality / 100.f;
- // cubic ramp between 1 and MAX_HISTO_GREEDY:
- const int threshold_size = (int)(1 + (x * x * x) * (MAX_HISTO_GREEDY - 1));
- HistogramCombineStochastic(image_histo, tmp_histos->histograms[0],
- cur_combo, quality, threshold_size);
- if ((image_histo->size <= threshold_size) &&
- !HistogramCombineGreedy(image_histo)) {
- goto Error;
- }
- }
-
- // TODO(vikasa): Optimize HistogramRemap for low-effort compression mode also.
- // Find the optimal map from original histograms to the final ones.
- HistogramRemap(orig_histo, image_histo, histogram_symbols);
-
- ok = 1;
-
- Error:
- VP8LFreeHistogramSet(orig_histo);
- return ok;
-}