summaryrefslogtreecommitdiff
path: root/thirdparty/libwebp/dsp
diff options
context:
space:
mode:
authorRĂ©mi Verschelde <rverschelde@gmail.com>2017-02-26 20:13:31 +0100
committerGitHub <noreply@github.com>2017-02-26 20:13:31 +0100
commit0f12d0a9243c17c08ef4a5e2a5beb4d82a9f048d (patch)
treec49dcb94c5ba42e4542586f5a01adced30204552 /thirdparty/libwebp/dsp
parenta78c314b0ec48ef03da66d5de893c07e03523b90 (diff)
parent6de3defe7271441f6e55e1a0ed5e115a92a72606 (diff)
Merge pull request #7827 from volzhs/libwebp-0.6.0
Update libwebp to 0.6.0
Diffstat (limited to 'thirdparty/libwebp/dsp')
-rw-r--r--thirdparty/libwebp/dsp/alpha_processing.c38
-rw-r--r--thirdparty/libwebp/dsp/alpha_processing_neon.c191
-rw-r--r--thirdparty/libwebp/dsp/alpha_processing_sse2.c141
-rw-r--r--thirdparty/libwebp/dsp/common_sse2.h85
-rw-r--r--thirdparty/libwebp/dsp/cost.c2
-rw-r--r--thirdparty/libwebp/dsp/cost_mips32.c2
-rw-r--r--thirdparty/libwebp/dsp/cost_mips_dsp_r2.c2
-rw-r--r--thirdparty/libwebp/dsp/cost_sse2.c4
-rw-r--r--thirdparty/libwebp/dsp/cpu.c45
-rw-r--r--thirdparty/libwebp/dsp/dec.c2
-rw-r--r--thirdparty/libwebp/dsp/dec_clip_tables.c8
-rw-r--r--thirdparty/libwebp/dsp/dec_msa.c847
-rw-r--r--thirdparty/libwebp/dsp/dec_neon.c40
-rw-r--r--thirdparty/libwebp/dsp/dec_sse2.c4
-rw-r--r--thirdparty/libwebp/dsp/dec_sse41.c2
-rw-r--r--thirdparty/libwebp/dsp/dsp.h57
-rw-r--r--thirdparty/libwebp/dsp/enc.c178
-rw-r--r--thirdparty/libwebp/dsp/enc_mips32.c4
-rw-r--r--thirdparty/libwebp/dsp/enc_mips_dsp_r2.c4
-rw-r--r--thirdparty/libwebp/dsp/enc_msa.c892
-rw-r--r--thirdparty/libwebp/dsp/enc_neon.c42
-rw-r--r--thirdparty/libwebp/dsp/enc_sse2.c182
-rw-r--r--thirdparty/libwebp/dsp/enc_sse41.c2
-rw-r--r--thirdparty/libwebp/dsp/filters.c12
-rw-r--r--thirdparty/libwebp/dsp/filters_msa.c202
-rw-r--r--thirdparty/libwebp/dsp/filters_neon.c327
-rw-r--r--thirdparty/libwebp/dsp/lossless.c186
-rw-r--r--thirdparty/libwebp/dsp/lossless.h225
-rw-r--r--thirdparty/libwebp/dsp/lossless_common.h210
-rw-r--r--thirdparty/libwebp/dsp/lossless_enc.c953
-rw-r--r--thirdparty/libwebp/dsp/lossless_enc_mips32.c47
-rw-r--r--thirdparty/libwebp/dsp/lossless_enc_msa.c147
-rw-r--r--thirdparty/libwebp/dsp/lossless_enc_sse2.c320
-rw-r--r--thirdparty/libwebp/dsp/lossless_enc_sse41.c4
-rw-r--r--thirdparty/libwebp/dsp/lossless_mips_dsp_r2.c79
-rw-r--r--thirdparty/libwebp/dsp/lossless_msa.c355
-rw-r--r--thirdparty/libwebp/dsp/lossless_neon.c395
-rw-r--r--thirdparty/libwebp/dsp/lossless_sse2.c389
-rw-r--r--thirdparty/libwebp/dsp/msa_macro.h1097
-rw-r--r--thirdparty/libwebp/dsp/neon.h18
-rw-r--r--thirdparty/libwebp/dsp/rescaler.c8
-rw-r--r--thirdparty/libwebp/dsp/rescaler_mips32.c2
-rw-r--r--thirdparty/libwebp/dsp/rescaler_mips_dsp_r2.c2
-rw-r--r--thirdparty/libwebp/dsp/rescaler_msa.c444
-rw-r--r--thirdparty/libwebp/dsp/rescaler_neon.c2
-rw-r--r--thirdparty/libwebp/dsp/rescaler_sse2.c2
-rw-r--r--thirdparty/libwebp/dsp/upsampling.c6
-rw-r--r--thirdparty/libwebp/dsp/upsampling_msa.c678
-rw-r--r--thirdparty/libwebp/dsp/upsampling_neon.c77
-rw-r--r--thirdparty/libwebp/dsp/yuv.c57
-rw-r--r--thirdparty/libwebp/dsp/yuv.h2
-rw-r--r--thirdparty/libwebp/dsp/yuv_sse2.c304
-rw-r--r--thirdparty/libwebp/dsp/yuv_tables_sse2.h536
53 files changed, 7725 insertions, 2135 deletions
diff --git a/thirdparty/libwebp/dsp/alpha_processing.c b/thirdparty/libwebp/dsp/alpha_processing.c
index 1716cace8d..4b60e092be 100644
--- a/thirdparty/libwebp/dsp/alpha_processing.c
+++ b/thirdparty/libwebp/dsp/alpha_processing.c
@@ -284,9 +284,9 @@ static void ApplyAlphaMultiply_16b(uint8_t* rgba4444,
#endif
}
-static int DispatchAlpha(const uint8_t* alpha, int alpha_stride,
- int width, int height,
- uint8_t* dst, int dst_stride) {
+static int DispatchAlpha_C(const uint8_t* alpha, int alpha_stride,
+ int width, int height,
+ uint8_t* dst, int dst_stride) {
uint32_t alpha_mask = 0xff;
int i, j;
@@ -303,9 +303,9 @@ static int DispatchAlpha(const uint8_t* alpha, int alpha_stride,
return (alpha_mask != 0xff);
}
-static void DispatchAlphaToGreen(const uint8_t* alpha, int alpha_stride,
- int width, int height,
- uint32_t* dst, int dst_stride) {
+static void DispatchAlphaToGreen_C(const uint8_t* alpha, int alpha_stride,
+ int width, int height,
+ uint32_t* dst, int dst_stride) {
int i, j;
for (j = 0; j < height; ++j) {
for (i = 0; i < width; ++i) {
@@ -316,9 +316,9 @@ static void DispatchAlphaToGreen(const uint8_t* alpha, int alpha_stride,
}
}
-static int ExtractAlpha(const uint8_t* argb, int argb_stride,
- int width, int height,
- uint8_t* alpha, int alpha_stride) {
+static int ExtractAlpha_C(const uint8_t* argb, int argb_stride,
+ int width, int height,
+ uint8_t* alpha, int alpha_stride) {
uint8_t alpha_mask = 0xff;
int i, j;
@@ -334,11 +334,17 @@ static int ExtractAlpha(const uint8_t* argb, int argb_stride,
return (alpha_mask == 0xff);
}
+static void ExtractGreen_C(const uint32_t* argb, uint8_t* alpha, int size) {
+ int i;
+ for (i = 0; i < size; ++i) alpha[i] = argb[i] >> 8;
+}
+
void (*WebPApplyAlphaMultiply)(uint8_t*, int, int, int, int);
void (*WebPApplyAlphaMultiply4444)(uint8_t*, int, int, int);
int (*WebPDispatchAlpha)(const uint8_t*, int, int, int, uint8_t*, int);
void (*WebPDispatchAlphaToGreen)(const uint8_t*, int, int, int, uint32_t*, int);
int (*WebPExtractAlpha)(const uint8_t*, int, int, int, uint8_t*, int);
+void (*WebPExtractGreen)(const uint32_t* argb, uint8_t* alpha, int size);
//------------------------------------------------------------------------------
// Init function
@@ -346,6 +352,7 @@ int (*WebPExtractAlpha)(const uint8_t*, int, int, int, uint8_t*, int);
extern void WebPInitAlphaProcessingMIPSdspR2(void);
extern void WebPInitAlphaProcessingSSE2(void);
extern void WebPInitAlphaProcessingSSE41(void);
+extern void WebPInitAlphaProcessingNEON(void);
static volatile VP8CPUInfo alpha_processing_last_cpuinfo_used =
(VP8CPUInfo)&alpha_processing_last_cpuinfo_used;
@@ -357,9 +364,11 @@ WEBP_TSAN_IGNORE_FUNCTION void WebPInitAlphaProcessing(void) {
WebPMultRow = WebPMultRowC;
WebPApplyAlphaMultiply = ApplyAlphaMultiply;
WebPApplyAlphaMultiply4444 = ApplyAlphaMultiply_16b;
- WebPDispatchAlpha = DispatchAlpha;
- WebPDispatchAlphaToGreen = DispatchAlphaToGreen;
- WebPExtractAlpha = ExtractAlpha;
+
+ WebPDispatchAlpha = DispatchAlpha_C;
+ WebPDispatchAlphaToGreen = DispatchAlphaToGreen_C;
+ WebPExtractAlpha = ExtractAlpha_C;
+ WebPExtractGreen = ExtractGreen_C;
// If defined, use CPUInfo() to overwrite some pointers with faster versions.
if (VP8GetCPUInfo != NULL) {
@@ -373,6 +382,11 @@ WEBP_TSAN_IGNORE_FUNCTION void WebPInitAlphaProcessing(void) {
#endif
}
#endif
+#if defined(WEBP_USE_NEON)
+ if (VP8GetCPUInfo(kNEON)) {
+ WebPInitAlphaProcessingNEON();
+ }
+#endif
#if defined(WEBP_USE_MIPS_DSP_R2)
if (VP8GetCPUInfo(kMIPSdspR2)) {
WebPInitAlphaProcessingMIPSdspR2();
diff --git a/thirdparty/libwebp/dsp/alpha_processing_neon.c b/thirdparty/libwebp/dsp/alpha_processing_neon.c
new file mode 100644
index 0000000000..606a401cf7
--- /dev/null
+++ b/thirdparty/libwebp/dsp/alpha_processing_neon.c
@@ -0,0 +1,191 @@
+// Copyright 2017 Google Inc. All Rights Reserved.
+//
+// Use of this source code is governed by a BSD-style license
+// that can be found in the COPYING file in the root of the source
+// tree. An additional intellectual property rights grant can be found
+// in the file PATENTS. All contributing project authors may
+// be found in the AUTHORS file in the root of the source tree.
+// -----------------------------------------------------------------------------
+//
+// Utilities for processing transparent channel, NEON version.
+//
+// Author: Skal (pascal.massimino@gmail.com)
+
+#include "./dsp.h"
+
+#if defined(WEBP_USE_NEON)
+
+#include "./neon.h"
+
+//------------------------------------------------------------------------------
+
+#define MULTIPLIER(a) ((a) * 0x8081)
+#define PREMULTIPLY(x, m) (((x) * (m)) >> 23)
+
+#define MULTIPLY_BY_ALPHA(V, ALPHA, OTHER) do { \
+ const uint8x8_t alpha = (V).val[(ALPHA)]; \
+ const uint16x8_t r1 = vmull_u8((V).val[1], alpha); \
+ const uint16x8_t g1 = vmull_u8((V).val[2], alpha); \
+ const uint16x8_t b1 = vmull_u8((V).val[(OTHER)], alpha); \
+ /* we use: v / 255 = (v + 1 + (v >> 8)) >> 8 */ \
+ const uint16x8_t r2 = vsraq_n_u16(r1, r1, 8); \
+ const uint16x8_t g2 = vsraq_n_u16(g1, g1, 8); \
+ const uint16x8_t b2 = vsraq_n_u16(b1, b1, 8); \
+ const uint16x8_t r3 = vaddq_u16(r2, kOne); \
+ const uint16x8_t g3 = vaddq_u16(g2, kOne); \
+ const uint16x8_t b3 = vaddq_u16(b2, kOne); \
+ (V).val[1] = vshrn_n_u16(r3, 8); \
+ (V).val[2] = vshrn_n_u16(g3, 8); \
+ (V).val[(OTHER)] = vshrn_n_u16(b3, 8); \
+} while (0)
+
+static void ApplyAlphaMultiply_NEON(uint8_t* rgba, int alpha_first,
+ int w, int h, int stride) {
+ const uint16x8_t kOne = vdupq_n_u16(1u);
+ while (h-- > 0) {
+ uint32_t* const rgbx = (uint32_t*)rgba;
+ int i = 0;
+ if (alpha_first) {
+ for (; i + 8 <= w; i += 8) {
+ // load aaaa...|rrrr...|gggg...|bbbb...
+ uint8x8x4_t RGBX = vld4_u8((const uint8_t*)(rgbx + i));
+ MULTIPLY_BY_ALPHA(RGBX, 0, 3);
+ vst4_u8((uint8_t*)(rgbx + i), RGBX);
+ }
+ } else {
+ for (; i + 8 <= w; i += 8) {
+ uint8x8x4_t RGBX = vld4_u8((const uint8_t*)(rgbx + i));
+ MULTIPLY_BY_ALPHA(RGBX, 3, 0);
+ vst4_u8((uint8_t*)(rgbx + i), RGBX);
+ }
+ }
+ // Finish with left-overs.
+ for (; i < w; ++i) {
+ uint8_t* const rgb = rgba + (alpha_first ? 1 : 0);
+ const uint8_t* const alpha = rgba + (alpha_first ? 0 : 3);
+ const uint32_t a = alpha[4 * i];
+ if (a != 0xff) {
+ const uint32_t mult = MULTIPLIER(a);
+ rgb[4 * i + 0] = PREMULTIPLY(rgb[4 * i + 0], mult);
+ rgb[4 * i + 1] = PREMULTIPLY(rgb[4 * i + 1], mult);
+ rgb[4 * i + 2] = PREMULTIPLY(rgb[4 * i + 2], mult);
+ }
+ }
+ rgba += stride;
+ }
+}
+#undef MULTIPLY_BY_ALPHA
+#undef MULTIPLIER
+#undef PREMULTIPLY
+
+//------------------------------------------------------------------------------
+
+static int DispatchAlpha_NEON(const uint8_t* alpha, int alpha_stride,
+ int width, int height,
+ uint8_t* dst, int dst_stride) {
+ uint32_t alpha_mask = 0xffffffffu;
+ uint8x8_t mask8 = vdup_n_u8(0xff);
+ uint32_t tmp[2];
+ int i, j;
+ for (j = 0; j < height; ++j) {
+ // We don't know if alpha is first or last in dst[] (depending on rgbA/Argb
+ // mode). So we must be sure dst[4*i + 8 - 1] is writable for the store.
+ // Hence the test with 'width - 1' instead of just 'width'.
+ for (i = 0; i + 8 <= width - 1; i += 8) {
+ uint8x8x4_t rgbX = vld4_u8((const uint8_t*)(dst + 4 * i));
+ const uint8x8_t alphas = vld1_u8(alpha + i);
+ rgbX.val[0] = alphas;
+ vst4_u8((uint8_t*)(dst + 4 * i), rgbX);
+ mask8 = vand_u8(mask8, alphas);
+ }
+ for (; i < width; ++i) {
+ const uint32_t alpha_value = alpha[i];
+ dst[4 * i] = alpha_value;
+ alpha_mask &= alpha_value;
+ }
+ alpha += alpha_stride;
+ dst += dst_stride;
+ }
+ vst1_u8((uint8_t*)tmp, mask8);
+ alpha_mask &= tmp[0];
+ alpha_mask &= tmp[1];
+ return (alpha_mask != 0xffffffffu);
+}
+
+static void DispatchAlphaToGreen_NEON(const uint8_t* alpha, int alpha_stride,
+ int width, int height,
+ uint32_t* dst, int dst_stride) {
+ int i, j;
+ uint8x8x4_t greens; // leave A/R/B channels zero'd.
+ greens.val[0] = vdup_n_u8(0);
+ greens.val[2] = vdup_n_u8(0);
+ greens.val[3] = vdup_n_u8(0);
+ for (j = 0; j < height; ++j) {
+ for (i = 0; i + 8 <= width; i += 8) {
+ greens.val[1] = vld1_u8(alpha + i);
+ vst4_u8((uint8_t*)(dst + i), greens);
+ }
+ for (; i < width; ++i) dst[i] = alpha[i] << 8;
+ alpha += alpha_stride;
+ dst += dst_stride;
+ }
+}
+
+static int ExtractAlpha_NEON(const uint8_t* argb, int argb_stride,
+ int width, int height,
+ uint8_t* alpha, int alpha_stride) {
+ uint32_t alpha_mask = 0xffffffffu;
+ uint8x8_t mask8 = vdup_n_u8(0xff);
+ uint32_t tmp[2];
+ int i, j;
+ for (j = 0; j < height; ++j) {
+ // We don't know if alpha is first or last in dst[] (depending on rgbA/Argb
+ // mode). So we must be sure dst[4*i + 8 - 1] is writable for the store.
+ // Hence the test with 'width - 1' instead of just 'width'.
+ for (i = 0; i + 8 <= width - 1; i += 8) {
+ const uint8x8x4_t rgbX = vld4_u8((const uint8_t*)(argb + 4 * i));
+ const uint8x8_t alphas = rgbX.val[0];
+ vst1_u8((uint8_t*)(alpha + i), alphas);
+ mask8 = vand_u8(mask8, alphas);
+ }
+ for (; i < width; ++i) {
+ alpha[i] = argb[4 * i];
+ alpha_mask &= alpha[i];
+ }
+ argb += argb_stride;
+ alpha += alpha_stride;
+ }
+ vst1_u8((uint8_t*)tmp, mask8);
+ alpha_mask &= tmp[0];
+ alpha_mask &= tmp[1];
+ return (alpha_mask == 0xffffffffu);
+}
+
+static void ExtractGreen_NEON(const uint32_t* argb,
+ uint8_t* alpha, int size) {
+ int i;
+ for (i = 0; i + 16 <= size; i += 16) {
+ const uint8x16x4_t rgbX = vld4q_u8((const uint8_t*)(argb + i));
+ const uint8x16_t greens = rgbX.val[1];
+ vst1q_u8(alpha + i, greens);
+ }
+ for (; i < size; ++i) alpha[i] = (argb[i] >> 8) & 0xff;
+}
+
+//------------------------------------------------------------------------------
+
+extern void WebPInitAlphaProcessingNEON(void);
+
+WEBP_TSAN_IGNORE_FUNCTION void WebPInitAlphaProcessingNEON(void) {
+ WebPApplyAlphaMultiply = ApplyAlphaMultiply_NEON;
+ WebPDispatchAlpha = DispatchAlpha_NEON;
+ WebPDispatchAlphaToGreen = DispatchAlphaToGreen_NEON;
+ WebPExtractAlpha = ExtractAlpha_NEON;
+ WebPExtractGreen = ExtractGreen_NEON;
+}
+
+#else // !WEBP_USE_NEON
+
+WEBP_DSP_INIT_STUB(WebPInitAlphaProcessingNEON)
+
+#endif // WEBP_USE_NEON
diff --git a/thirdparty/libwebp/dsp/alpha_processing_sse2.c b/thirdparty/libwebp/dsp/alpha_processing_sse2.c
index 5acb481dcd..83dc559fac 100644
--- a/thirdparty/libwebp/dsp/alpha_processing_sse2.c
+++ b/thirdparty/libwebp/dsp/alpha_processing_sse2.c
@@ -150,46 +150,46 @@ static int ExtractAlpha(const uint8_t* argb, int argb_stride,
#define PREMULTIPLY(x, m) (((x) * (m)) >> 23)
// We can't use a 'const int' for the SHUFFLE value, because it has to be an
-// immediate in the _mm_shufflexx_epi16() instruction. We really a macro here.
-#define APPLY_ALPHA(RGBX, SHUFFLE, MASK, MULT) do { \
- const __m128i argb0 = _mm_loadl_epi64((__m128i*)&(RGBX)); \
- const __m128i argb1 = _mm_unpacklo_epi8(argb0, zero); \
- const __m128i alpha0 = _mm_and_si128(argb1, MASK); \
- const __m128i alpha1 = _mm_shufflelo_epi16(alpha0, SHUFFLE); \
- const __m128i alpha2 = _mm_shufflehi_epi16(alpha1, SHUFFLE); \
- /* alpha2 = [0 a0 a0 a0][0 a1 a1 a1] */ \
- const __m128i scale0 = _mm_mullo_epi16(alpha2, MULT); \
- const __m128i scale1 = _mm_mulhi_epu16(alpha2, MULT); \
- const __m128i argb2 = _mm_mulhi_epu16(argb1, scale0); \
- const __m128i argb3 = _mm_mullo_epi16(argb1, scale1); \
- const __m128i argb4 = _mm_adds_epu16(argb2, argb3); \
- const __m128i argb5 = _mm_srli_epi16(argb4, 7); \
- const __m128i argb6 = _mm_or_si128(argb5, alpha0); \
- const __m128i argb7 = _mm_packus_epi16(argb6, zero); \
- _mm_storel_epi64((__m128i*)&(RGBX), argb7); \
+// immediate in the _mm_shufflexx_epi16() instruction. We really need a macro.
+// We use: v / 255 = (v * 0x8081) >> 23, where v = alpha * {r,g,b} is a 16bit
+// value.
+#define APPLY_ALPHA(RGBX, SHUFFLE) do { \
+ const __m128i argb0 = _mm_loadu_si128((const __m128i*)&(RGBX)); \
+ const __m128i argb1_lo = _mm_unpacklo_epi8(argb0, zero); \
+ const __m128i argb1_hi = _mm_unpackhi_epi8(argb0, zero); \
+ const __m128i alpha0_lo = _mm_or_si128(argb1_lo, kMask); \
+ const __m128i alpha0_hi = _mm_or_si128(argb1_hi, kMask); \
+ const __m128i alpha1_lo = _mm_shufflelo_epi16(alpha0_lo, SHUFFLE); \
+ const __m128i alpha1_hi = _mm_shufflelo_epi16(alpha0_hi, SHUFFLE); \
+ const __m128i alpha2_lo = _mm_shufflehi_epi16(alpha1_lo, SHUFFLE); \
+ const __m128i alpha2_hi = _mm_shufflehi_epi16(alpha1_hi, SHUFFLE); \
+ /* alpha2 = [ff a0 a0 a0][ff a1 a1 a1] */ \
+ const __m128i A0_lo = _mm_mullo_epi16(alpha2_lo, argb1_lo); \
+ const __m128i A0_hi = _mm_mullo_epi16(alpha2_hi, argb1_hi); \
+ const __m128i A1_lo = _mm_mulhi_epu16(A0_lo, kMult); \
+ const __m128i A1_hi = _mm_mulhi_epu16(A0_hi, kMult); \
+ const __m128i A2_lo = _mm_srli_epi16(A1_lo, 7); \
+ const __m128i A2_hi = _mm_srli_epi16(A1_hi, 7); \
+ const __m128i A3 = _mm_packus_epi16(A2_lo, A2_hi); \
+ _mm_storeu_si128((__m128i*)&(RGBX), A3); \
} while (0)
-static void ApplyAlphaMultiply(uint8_t* rgba, int alpha_first,
- int w, int h, int stride) {
+static void ApplyAlphaMultiply_SSE2(uint8_t* rgba, int alpha_first,
+ int w, int h, int stride) {
const __m128i zero = _mm_setzero_si128();
- const int kSpan = 2;
- const int w2 = w & ~(kSpan - 1);
+ const __m128i kMult = _mm_set1_epi16(0x8081u);
+ const __m128i kMask = _mm_set_epi16(0, 0xff, 0xff, 0, 0, 0xff, 0xff, 0);
+ const int kSpan = 4;
while (h-- > 0) {
uint32_t* const rgbx = (uint32_t*)rgba;
int i;
if (!alpha_first) {
- const __m128i kMask = _mm_set_epi16(0xff, 0, 0, 0, 0xff, 0, 0, 0);
- const __m128i kMult =
- _mm_set_epi16(0, 0x8081, 0x8081, 0x8081, 0, 0x8081, 0x8081, 0x8081);
- for (i = 0; i < w2; i += kSpan) {
- APPLY_ALPHA(rgbx[i], _MM_SHUFFLE(0, 3, 3, 3), kMask, kMult);
+ for (i = 0; i + kSpan <= w; i += kSpan) {
+ APPLY_ALPHA(rgbx[i], _MM_SHUFFLE(2, 3, 3, 3));
}
} else {
- const __m128i kMask = _mm_set_epi16(0, 0, 0, 0xff, 0, 0, 0, 0xff);
- const __m128i kMult =
- _mm_set_epi16(0x8081, 0x8081, 0x8081, 0, 0x8081, 0x8081, 0x8081, 0);
- for (i = 0; i < w2; i += kSpan) {
- APPLY_ALPHA(rgbx[i], _MM_SHUFFLE(0, 0, 0, 3), kMask, kMult);
+ for (i = 0; i + kSpan <= w; i += kSpan) {
+ APPLY_ALPHA(rgbx[i], _MM_SHUFFLE(0, 0, 0, 1));
}
}
// Finish with left-overs.
@@ -213,64 +213,51 @@ static void ApplyAlphaMultiply(uint8_t* rgba, int alpha_first,
// -----------------------------------------------------------------------------
// Apply alpha value to rows
-// We use: kINV255 = (1 << 24) / 255 = 0x010101
-// So: a * kINV255 = (a << 16) | [(a << 8) | a]
-// -> _mm_mulhi_epu16() takes care of the (a<<16) part,
-// and _mm_mullo_epu16(a * 0x0101,...) takes care of the "(a << 8) | a" one.
-
-static void MultARGBRow(uint32_t* const ptr, int width, int inverse) {
+static void MultARGBRow_SSE2(uint32_t* const ptr, int width, int inverse) {
int x = 0;
if (!inverse) {
const int kSpan = 2;
const __m128i zero = _mm_setzero_si128();
- const __m128i kRound =
- _mm_set_epi16(0, 1 << 7, 1 << 7, 1 << 7, 0, 1 << 7, 1 << 7, 1 << 7);
- const __m128i kMult =
- _mm_set_epi16(0, 0x0101, 0x0101, 0x0101, 0, 0x0101, 0x0101, 0x0101);
- const __m128i kOne64 = _mm_set_epi16(1u << 8, 0, 0, 0, 1u << 8, 0, 0, 0);
- const int w2 = width & ~(kSpan - 1);
- for (x = 0; x < w2; x += kSpan) {
- const __m128i argb0 = _mm_loadl_epi64((__m128i*)&ptr[x]);
- const __m128i argb1 = _mm_unpacklo_epi8(argb0, zero);
- const __m128i tmp0 = _mm_shufflelo_epi16(argb1, _MM_SHUFFLE(3, 3, 3, 3));
- const __m128i tmp1 = _mm_shufflehi_epi16(tmp0, _MM_SHUFFLE(3, 3, 3, 3));
- const __m128i tmp2 = _mm_srli_epi64(tmp1, 16);
- const __m128i scale0 = _mm_mullo_epi16(tmp1, kMult);
- const __m128i scale1 = _mm_or_si128(tmp2, kOne64);
- const __m128i argb2 = _mm_mulhi_epu16(argb1, scale0);
- const __m128i argb3 = _mm_mullo_epi16(argb1, scale1);
- const __m128i argb4 = _mm_adds_epu16(argb2, argb3);
- const __m128i argb5 = _mm_adds_epu16(argb4, kRound);
- const __m128i argb6 = _mm_srli_epi16(argb5, 8);
- const __m128i argb7 = _mm_packus_epi16(argb6, zero);
- _mm_storel_epi64((__m128i*)&ptr[x], argb7);
+ const __m128i k128 = _mm_set1_epi16(128);
+ const __m128i kMult = _mm_set1_epi16(0x0101);
+ const __m128i kMask = _mm_set_epi16(0, 0xff, 0, 0, 0, 0xff, 0, 0);
+ for (x = 0; x + kSpan <= width; x += kSpan) {
+ // To compute 'result = (int)(a * x / 255. + .5)', we use:
+ // tmp = a * v + 128, result = (tmp * 0x0101u) >> 16
+ const __m128i A0 = _mm_loadl_epi64((const __m128i*)&ptr[x]);
+ const __m128i A1 = _mm_unpacklo_epi8(A0, zero);
+ const __m128i A2 = _mm_or_si128(A1, kMask);
+ const __m128i A3 = _mm_shufflelo_epi16(A2, _MM_SHUFFLE(2, 3, 3, 3));
+ const __m128i A4 = _mm_shufflehi_epi16(A3, _MM_SHUFFLE(2, 3, 3, 3));
+ // here, A4 = [ff a0 a0 a0][ff a1 a1 a1]
+ const __m128i A5 = _mm_mullo_epi16(A4, A1);
+ const __m128i A6 = _mm_add_epi16(A5, k128);
+ const __m128i A7 = _mm_mulhi_epu16(A6, kMult);
+ const __m128i A10 = _mm_packus_epi16(A7, zero);
+ _mm_storel_epi64((__m128i*)&ptr[x], A10);
}
}
width -= x;
if (width > 0) WebPMultARGBRowC(ptr + x, width, inverse);
}
-static void MultRow(uint8_t* const ptr, const uint8_t* const alpha,
- int width, int inverse) {
+static void MultRow_SSE2(uint8_t* const ptr, const uint8_t* const alpha,
+ int width, int inverse) {
int x = 0;
if (!inverse) {
- const int kSpan = 8;
const __m128i zero = _mm_setzero_si128();
- const __m128i kRound = _mm_set1_epi16(1 << 7);
- const int w2 = width & ~(kSpan - 1);
- for (x = 0; x < w2; x += kSpan) {
+ const __m128i k128 = _mm_set1_epi16(128);
+ const __m128i kMult = _mm_set1_epi16(0x0101);
+ for (x = 0; x + 8 <= width; x += 8) {
const __m128i v0 = _mm_loadl_epi64((__m128i*)&ptr[x]);
+ const __m128i a0 = _mm_loadl_epi64((const __m128i*)&alpha[x]);
const __m128i v1 = _mm_unpacklo_epi8(v0, zero);
- const __m128i alpha0 = _mm_loadl_epi64((const __m128i*)&alpha[x]);
- const __m128i alpha1 = _mm_unpacklo_epi8(alpha0, zero);
- const __m128i alpha2 = _mm_unpacklo_epi8(alpha0, alpha0);
- const __m128i v2 = _mm_mulhi_epu16(v1, alpha2);
- const __m128i v3 = _mm_mullo_epi16(v1, alpha1);
- const __m128i v4 = _mm_adds_epu16(v2, v3);
- const __m128i v5 = _mm_adds_epu16(v4, kRound);
- const __m128i v6 = _mm_srli_epi16(v5, 8);
- const __m128i v7 = _mm_packus_epi16(v6, zero);
- _mm_storel_epi64((__m128i*)&ptr[x], v7);
+ const __m128i a1 = _mm_unpacklo_epi8(a0, zero);
+ const __m128i v2 = _mm_mullo_epi16(v1, a1);
+ const __m128i v3 = _mm_add_epi16(v2, k128);
+ const __m128i v4 = _mm_mulhi_epu16(v3, kMult);
+ const __m128i v5 = _mm_packus_epi16(v4, zero);
+ _mm_storel_epi64((__m128i*)&ptr[x], v5);
}
}
width -= x;
@@ -283,9 +270,9 @@ static void MultRow(uint8_t* const ptr, const uint8_t* const alpha,
extern void WebPInitAlphaProcessingSSE2(void);
WEBP_TSAN_IGNORE_FUNCTION void WebPInitAlphaProcessingSSE2(void) {
- WebPMultARGBRow = MultARGBRow;
- WebPMultRow = MultRow;
- WebPApplyAlphaMultiply = ApplyAlphaMultiply;
+ WebPMultARGBRow = MultARGBRow_SSE2;
+ WebPMultRow = MultRow_SSE2;
+ WebPApplyAlphaMultiply = ApplyAlphaMultiply_SSE2;
WebPDispatchAlpha = DispatchAlpha;
WebPDispatchAlphaToGreen = DispatchAlphaToGreen;
WebPExtractAlpha = ExtractAlpha;
diff --git a/thirdparty/libwebp/dsp/common_sse2.h b/thirdparty/libwebp/dsp/common_sse2.h
index 7cea13fb3c..995d7cf4ea 100644
--- a/thirdparty/libwebp/dsp/common_sse2.h
+++ b/thirdparty/libwebp/dsp/common_sse2.h
@@ -100,6 +100,91 @@ static WEBP_INLINE void VP8Transpose_2_4x4_16b(
// a03 a13 a23 a33 b03 b13 b23 b33
}
+//------------------------------------------------------------------------------
+// Channel mixing.
+
+// Function used several times in VP8PlanarTo24b.
+// It samples the in buffer as follows: one every two unsigned char is stored
+// at the beginning of the buffer, while the other half is stored at the end.
+#define VP8PlanarTo24bHelper(IN, OUT) \
+ do { \
+ const __m128i v_mask = _mm_set1_epi16(0x00ff); \
+ /* Take one every two upper 8b values.*/ \
+ (OUT##0) = _mm_packus_epi16(_mm_and_si128((IN##0), v_mask), \
+ _mm_and_si128((IN##1), v_mask)); \
+ (OUT##1) = _mm_packus_epi16(_mm_and_si128((IN##2), v_mask), \
+ _mm_and_si128((IN##3), v_mask)); \
+ (OUT##2) = _mm_packus_epi16(_mm_and_si128((IN##4), v_mask), \
+ _mm_and_si128((IN##5), v_mask)); \
+ /* Take one every two lower 8b values.*/ \
+ (OUT##3) = _mm_packus_epi16(_mm_srli_epi16((IN##0), 8), \
+ _mm_srli_epi16((IN##1), 8)); \
+ (OUT##4) = _mm_packus_epi16(_mm_srli_epi16((IN##2), 8), \
+ _mm_srli_epi16((IN##3), 8)); \
+ (OUT##5) = _mm_packus_epi16(_mm_srli_epi16((IN##4), 8), \
+ _mm_srli_epi16((IN##5), 8)); \
+ } while (0)
+
+// Pack the planar buffers
+// rrrr... rrrr... gggg... gggg... bbbb... bbbb....
+// triplet by triplet in the output buffer rgb as rgbrgbrgbrgb ...
+static WEBP_INLINE void VP8PlanarTo24b(__m128i* const in0, __m128i* const in1,
+ __m128i* const in2, __m128i* const in3,
+ __m128i* const in4, __m128i* const in5) {
+ // The input is 6 registers of sixteen 8b but for the sake of explanation,
+ // let's take 6 registers of four 8b values.
+ // To pack, we will keep taking one every two 8b integer and move it
+ // around as follows:
+ // Input:
+ // r0r1r2r3 | r4r5r6r7 | g0g1g2g3 | g4g5g6g7 | b0b1b2b3 | b4b5b6b7
+ // Split the 6 registers in two sets of 3 registers: the first set as the even
+ // 8b bytes, the second the odd ones:
+ // r0r2r4r6 | g0g2g4g6 | b0b2b4b6 | r1r3r5r7 | g1g3g5g7 | b1b3b5b7
+ // Repeat the same permutations twice more:
+ // r0r4g0g4 | b0b4r1r5 | g1g5b1b5 | r2r6g2g6 | b2b6r3r7 | g3g7b3b7
+ // r0g0b0r1 | g1b1r2g2 | b2r3g3b3 | r4g4b4r5 | g5b5r6g6 | b6r7g7b7
+ __m128i tmp0, tmp1, tmp2, tmp3, tmp4, tmp5;
+ VP8PlanarTo24bHelper(*in, tmp);
+ VP8PlanarTo24bHelper(tmp, *in);
+ VP8PlanarTo24bHelper(*in, tmp);
+ // We need to do it two more times than the example as we have sixteen bytes.
+ {
+ __m128i out0, out1, out2, out3, out4, out5;
+ VP8PlanarTo24bHelper(tmp, out);
+ VP8PlanarTo24bHelper(out, *in);
+ }
+}
+
+#undef VP8PlanarTo24bHelper
+
+// Convert four packed four-channel buffers like argbargbargbargb... into the
+// split channels aaaaa ... rrrr ... gggg .... bbbbb ......
+static WEBP_INLINE void VP8L32bToPlanar(__m128i* const in0,
+ __m128i* const in1,
+ __m128i* const in2,
+ __m128i* const in3) {
+ // Column-wise transpose.
+ const __m128i A0 = _mm_unpacklo_epi8(*in0, *in1);
+ const __m128i A1 = _mm_unpackhi_epi8(*in0, *in1);
+ const __m128i A2 = _mm_unpacklo_epi8(*in2, *in3);
+ const __m128i A3 = _mm_unpackhi_epi8(*in2, *in3);
+ const __m128i B0 = _mm_unpacklo_epi8(A0, A1);
+ const __m128i B1 = _mm_unpackhi_epi8(A0, A1);
+ const __m128i B2 = _mm_unpacklo_epi8(A2, A3);
+ const __m128i B3 = _mm_unpackhi_epi8(A2, A3);
+ // C0 = g7 g6 ... g1 g0 | b7 b6 ... b1 b0
+ // C1 = a7 a6 ... a1 a0 | r7 r6 ... r1 r0
+ const __m128i C0 = _mm_unpacklo_epi8(B0, B1);
+ const __m128i C1 = _mm_unpackhi_epi8(B0, B1);
+ const __m128i C2 = _mm_unpacklo_epi8(B2, B3);
+ const __m128i C3 = _mm_unpackhi_epi8(B2, B3);
+ // Gather the channels.
+ *in0 = _mm_unpackhi_epi64(C1, C3);
+ *in1 = _mm_unpacklo_epi64(C1, C3);
+ *in2 = _mm_unpackhi_epi64(C0, C2);
+ *in3 = _mm_unpacklo_epi64(C0, C2);
+}
+
#endif // WEBP_USE_SSE2
#ifdef __cplusplus
diff --git a/thirdparty/libwebp/dsp/cost.c b/thirdparty/libwebp/dsp/cost.c
index fe72d26e79..58ddea7248 100644
--- a/thirdparty/libwebp/dsp/cost.c
+++ b/thirdparty/libwebp/dsp/cost.c
@@ -10,7 +10,7 @@
// Author: Skal (pascal.massimino@gmail.com)
#include "./dsp.h"
-#include "../enc/cost.h"
+#include "../enc/cost_enc.h"
//------------------------------------------------------------------------------
// Boolean-cost cost table
diff --git a/thirdparty/libwebp/dsp/cost_mips32.c b/thirdparty/libwebp/dsp/cost_mips32.c
index d1e240e191..3102da877a 100644
--- a/thirdparty/libwebp/dsp/cost_mips32.c
+++ b/thirdparty/libwebp/dsp/cost_mips32.c
@@ -13,7 +13,7 @@
#if defined(WEBP_USE_MIPS32)
-#include "../enc/cost.h"
+#include "../enc/cost_enc.h"
static int GetResidualCost(int ctx0, const VP8Residual* const res) {
int temp0, temp1;
diff --git a/thirdparty/libwebp/dsp/cost_mips_dsp_r2.c b/thirdparty/libwebp/dsp/cost_mips_dsp_r2.c
index ce64067756..6ec8aeb610 100644
--- a/thirdparty/libwebp/dsp/cost_mips_dsp_r2.c
+++ b/thirdparty/libwebp/dsp/cost_mips_dsp_r2.c
@@ -13,7 +13,7 @@
#if defined(WEBP_USE_MIPS_DSP_R2)
-#include "../enc/cost.h"
+#include "../enc/cost_enc.h"
static int GetResidualCost(int ctx0, const VP8Residual* const res) {
int temp0, temp1;
diff --git a/thirdparty/libwebp/dsp/cost_sse2.c b/thirdparty/libwebp/dsp/cost_sse2.c
index 0cb1c1fa04..421d51fdd5 100644
--- a/thirdparty/libwebp/dsp/cost_sse2.c
+++ b/thirdparty/libwebp/dsp/cost_sse2.c
@@ -16,8 +16,8 @@
#if defined(WEBP_USE_SSE2)
#include <emmintrin.h>
-#include "../enc/cost.h"
-#include "../enc/vp8enci.h"
+#include "../enc/cost_enc.h"
+#include "../enc/vp8i_enc.h"
#include "../utils/utils.h"
//------------------------------------------------------------------------------
diff --git a/thirdparty/libwebp/dsp/cpu.c b/thirdparty/libwebp/dsp/cpu.c
index cbb08db90a..b5583b6e9b 100644
--- a/thirdparty/libwebp/dsp/cpu.c
+++ b/thirdparty/libwebp/dsp/cpu.c
@@ -95,26 +95,62 @@ static WEBP_INLINE uint64_t xgetbv(void) {
#endif
#if defined(__i386__) || defined(__x86_64__) || defined(WEBP_MSC_SSE2)
+
+// helper function for run-time detection of slow SSSE3 platforms
+static int CheckSlowModel(int info) {
+ // Table listing display models with longer latencies for the bsr instruction
+ // (ie 2 cycles vs 10/16 cycles) and some SSSE3 instructions like pshufb.
+ // Refer to Intel 64 and IA-32 Architectures Optimization Reference Manual.
+ static const uint8_t kSlowModels[] = {
+ 0x37, 0x4a, 0x4d, // Silvermont Microarchitecture
+ 0x1c, 0x26, 0x27 // Atom Microarchitecture
+ };
+ const uint32_t model = ((info & 0xf0000) >> 12) | ((info >> 4) & 0xf);
+ const uint32_t family = (info >> 8) & 0xf;
+ if (family == 0x06) {
+ size_t i;
+ for (i = 0; i < sizeof(kSlowModels) / sizeof(kSlowModels[0]); ++i) {
+ if (model == kSlowModels[i]) return 1;
+ }
+ }
+ return 0;
+}
+
static int x86CPUInfo(CPUFeature feature) {
int max_cpuid_value;
int cpu_info[4];
+ int is_intel = 0;
// get the highest feature value cpuid supports
GetCPUInfo(cpu_info, 0);
max_cpuid_value = cpu_info[0];
if (max_cpuid_value < 1) {
return 0;
+ } else {
+ const int VENDOR_ID_INTEL_EBX = 0x756e6547; // uneG
+ const int VENDOR_ID_INTEL_EDX = 0x49656e69; // Ieni
+ const int VENDOR_ID_INTEL_ECX = 0x6c65746e; // letn
+ is_intel = (cpu_info[1] == VENDOR_ID_INTEL_EBX &&
+ cpu_info[2] == VENDOR_ID_INTEL_ECX &&
+ cpu_info[3] == VENDOR_ID_INTEL_EDX); // genuine Intel?
}
GetCPUInfo(cpu_info, 1);
if (feature == kSSE2) {
- return 0 != (cpu_info[3] & 0x04000000);
+ return !!(cpu_info[3] & (1 << 26));
}
if (feature == kSSE3) {
- return 0 != (cpu_info[2] & 0x00000001);
+ return !!(cpu_info[2] & (1 << 0));
+ }
+ if (feature == kSlowSSSE3) {
+ if (is_intel && (cpu_info[2] & (1 << 0))) { // SSSE3?
+ return CheckSlowModel(cpu_info[0]);
+ }
+ return 0;
}
+
if (feature == kSSE4_1) {
- return 0 != (cpu_info[2] & 0x00080000);
+ return !!(cpu_info[2] & (1 << 19));
}
if (feature == kAVX) {
// bits 27 (OSXSAVE) & 28 (256-bit AVX)
@@ -126,7 +162,7 @@ static int x86CPUInfo(CPUFeature feature) {
if (feature == kAVX2) {
if (x86CPUInfo(kAVX) && max_cpuid_value >= 7) {
GetCPUInfo(cpu_info, 7);
- return ((cpu_info[1] & 0x00000020) == 0x00000020);
+ return !!(cpu_info[1] & (1 << 5));
}
}
return 0;
@@ -184,4 +220,3 @@ VP8CPUInfo VP8GetCPUInfo = mipsCPUInfo;
#else
VP8CPUInfo VP8GetCPUInfo = NULL;
#endif
-
diff --git a/thirdparty/libwebp/dsp/dec.c b/thirdparty/libwebp/dsp/dec.c
index 49bd16d976..007e985d8b 100644
--- a/thirdparty/libwebp/dsp/dec.c
+++ b/thirdparty/libwebp/dsp/dec.c
@@ -12,7 +12,7 @@
// Author: Skal (pascal.massimino@gmail.com)
#include "./dsp.h"
-#include "../dec/vp8i.h"
+#include "../dec/vp8i_dec.h"
#include "../utils/utils.h"
//------------------------------------------------------------------------------
diff --git a/thirdparty/libwebp/dsp/dec_clip_tables.c b/thirdparty/libwebp/dsp/dec_clip_tables.c
index 3b6dde86ba..74ba34c0bb 100644
--- a/thirdparty/libwebp/dsp/dec_clip_tables.c
+++ b/thirdparty/libwebp/dsp/dec_clip_tables.c
@@ -63,7 +63,7 @@ static const uint8_t abs0[255 + 255 + 1] = {
0xf9, 0xfa, 0xfb, 0xfc, 0xfd, 0xfe, 0xff
};
-static const int8_t sclip1[1020 + 1020 + 1] = {
+static const uint8_t sclip1[1020 + 1020 + 1] = {
0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80,
0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80,
0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80,
@@ -236,7 +236,7 @@ static const int8_t sclip1[1020 + 1020 + 1] = {
0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f
};
-static const int8_t sclip2[112 + 112 + 1] = {
+static const uint8_t sclip2[112 + 112 + 1] = {
0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0,
0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0,
0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0,
@@ -339,8 +339,8 @@ static volatile int tables_ok = 0;
#endif
-const int8_t* const VP8ksclip1 = &sclip1[1020];
-const int8_t* const VP8ksclip2 = &sclip2[112];
+const int8_t* const VP8ksclip1 = (const int8_t*)&sclip1[1020];
+const int8_t* const VP8ksclip2 = (const int8_t*)&sclip2[112];
const uint8_t* const VP8kclip1 = &clip1[255];
const uint8_t* const VP8kabs0 = &abs0[255];
diff --git a/thirdparty/libwebp/dsp/dec_msa.c b/thirdparty/libwebp/dsp/dec_msa.c
index f76055cab0..8d9c98c3cf 100644
--- a/thirdparty/libwebp/dsp/dec_msa.c
+++ b/thirdparty/libwebp/dsp/dec_msa.c
@@ -154,6 +154,820 @@ static void TransformAC3(const int16_t* in, uint8_t* dst) {
}
//------------------------------------------------------------------------------
+// Edge filtering functions
+
+#define FLIP_SIGN2(in0, in1, out0, out1) { \
+ out0 = (v16i8)__msa_xori_b(in0, 0x80); \
+ out1 = (v16i8)__msa_xori_b(in1, 0x80); \
+}
+
+#define FLIP_SIGN4(in0, in1, in2, in3, out0, out1, out2, out3) { \
+ FLIP_SIGN2(in0, in1, out0, out1); \
+ FLIP_SIGN2(in2, in3, out2, out3); \
+}
+
+#define FILT_VAL(q0_m, p0_m, mask, filt) do { \
+ v16i8 q0_sub_p0; \
+ q0_sub_p0 = __msa_subs_s_b(q0_m, p0_m); \
+ filt = __msa_adds_s_b(filt, q0_sub_p0); \
+ filt = __msa_adds_s_b(filt, q0_sub_p0); \
+ filt = __msa_adds_s_b(filt, q0_sub_p0); \
+ filt = filt & mask; \
+} while (0)
+
+#define FILT2(q_m, p_m, q, p) do { \
+ u_r = SRAI_H(temp1, 7); \
+ u_r = __msa_sat_s_h(u_r, 7); \
+ u_l = SRAI_H(temp3, 7); \
+ u_l = __msa_sat_s_h(u_l, 7); \
+ u = __msa_pckev_b((v16i8)u_l, (v16i8)u_r); \
+ q_m = __msa_subs_s_b(q_m, u); \
+ p_m = __msa_adds_s_b(p_m, u); \
+ q = __msa_xori_b((v16u8)q_m, 0x80); \
+ p = __msa_xori_b((v16u8)p_m, 0x80); \
+} while (0)
+
+#define LPF_FILTER4_4W(p1, p0, q0, q1, mask, hev) do { \
+ v16i8 p1_m, p0_m, q0_m, q1_m; \
+ v16i8 filt, t1, t2; \
+ const v16i8 cnst4b = __msa_ldi_b(4); \
+ const v16i8 cnst3b = __msa_ldi_b(3); \
+ \
+ FLIP_SIGN4(p1, p0, q0, q1, p1_m, p0_m, q0_m, q1_m); \
+ filt = __msa_subs_s_b(p1_m, q1_m); \
+ filt = filt & hev; \
+ FILT_VAL(q0_m, p0_m, mask, filt); \
+ t1 = __msa_adds_s_b(filt, cnst4b); \
+ t1 = SRAI_B(t1, 3); \
+ t2 = __msa_adds_s_b(filt, cnst3b); \
+ t2 = SRAI_B(t2, 3); \
+ q0_m = __msa_subs_s_b(q0_m, t1); \
+ q0 = __msa_xori_b((v16u8)q0_m, 0x80); \
+ p0_m = __msa_adds_s_b(p0_m, t2); \
+ p0 = __msa_xori_b((v16u8)p0_m, 0x80); \
+ filt = __msa_srari_b(t1, 1); \
+ hev = __msa_xori_b(hev, 0xff); \
+ filt = filt & hev; \
+ q1_m = __msa_subs_s_b(q1_m, filt); \
+ q1 = __msa_xori_b((v16u8)q1_m, 0x80); \
+ p1_m = __msa_adds_s_b(p1_m, filt); \
+ p1 = __msa_xori_b((v16u8)p1_m, 0x80); \
+} while (0)
+
+#define LPF_MBFILTER(p2, p1, p0, q0, q1, q2, mask, hev) do { \
+ v16i8 p2_m, p1_m, p0_m, q2_m, q1_m, q0_m; \
+ v16i8 u, filt, t1, t2, filt_sign; \
+ v8i16 filt_r, filt_l, u_r, u_l; \
+ v8i16 temp0, temp1, temp2, temp3; \
+ const v16i8 cnst4b = __msa_ldi_b(4); \
+ const v16i8 cnst3b = __msa_ldi_b(3); \
+ const v8i16 cnst9h = __msa_ldi_h(9); \
+ \
+ FLIP_SIGN4(p1, p0, q0, q1, p1_m, p0_m, q0_m, q1_m); \
+ filt = __msa_subs_s_b(p1_m, q1_m); \
+ FILT_VAL(q0_m, p0_m, mask, filt); \
+ FLIP_SIGN2(p2, q2, p2_m, q2_m); \
+ t2 = filt & hev; \
+ /* filt_val &= ~hev */ \
+ hev = __msa_xori_b(hev, 0xff); \
+ filt = filt & hev; \
+ t1 = __msa_adds_s_b(t2, cnst4b); \
+ t1 = SRAI_B(t1, 3); \
+ t2 = __msa_adds_s_b(t2, cnst3b); \
+ t2 = SRAI_B(t2, 3); \
+ q0_m = __msa_subs_s_b(q0_m, t1); \
+ p0_m = __msa_adds_s_b(p0_m, t2); \
+ filt_sign = __msa_clti_s_b(filt, 0); \
+ ILVRL_B2_SH(filt_sign, filt, filt_r, filt_l); \
+ /* update q2/p2 */ \
+ temp0 = filt_r * cnst9h; \
+ temp1 = ADDVI_H(temp0, 63); \
+ temp2 = filt_l * cnst9h; \
+ temp3 = ADDVI_H(temp2, 63); \
+ FILT2(q2_m, p2_m, q2, p2); \
+ /* update q1/p1 */ \
+ temp1 = temp1 + temp0; \
+ temp3 = temp3 + temp2; \
+ FILT2(q1_m, p1_m, q1, p1); \
+ /* update q0/p0 */ \
+ temp1 = temp1 + temp0; \
+ temp3 = temp3 + temp2; \
+ FILT2(q0_m, p0_m, q0, p0); \
+} while (0)
+
+#define LPF_MASK_HEV(p3_in, p2_in, p1_in, p0_in, \
+ q0_in, q1_in, q2_in, q3_in, \
+ limit_in, b_limit_in, thresh_in, \
+ hev_out, mask_out) do { \
+ v16u8 p3_asub_p2_m, p2_asub_p1_m, p1_asub_p0_m, q1_asub_q0_m; \
+ v16u8 p1_asub_q1_m, p0_asub_q0_m, q3_asub_q2_m, q2_asub_q1_m; \
+ v16u8 flat_out; \
+ \
+ /* absolute subtraction of pixel values */ \
+ p3_asub_p2_m = __msa_asub_u_b(p3_in, p2_in); \
+ p2_asub_p1_m = __msa_asub_u_b(p2_in, p1_in); \
+ p1_asub_p0_m = __msa_asub_u_b(p1_in, p0_in); \
+ q1_asub_q0_m = __msa_asub_u_b(q1_in, q0_in); \
+ q2_asub_q1_m = __msa_asub_u_b(q2_in, q1_in); \
+ q3_asub_q2_m = __msa_asub_u_b(q3_in, q2_in); \
+ p0_asub_q0_m = __msa_asub_u_b(p0_in, q0_in); \
+ p1_asub_q1_m = __msa_asub_u_b(p1_in, q1_in); \
+ /* calculation of hev */ \
+ flat_out = __msa_max_u_b(p1_asub_p0_m, q1_asub_q0_m); \
+ hev_out = (thresh_in < flat_out); \
+ /* calculation of mask */ \
+ p0_asub_q0_m = __msa_adds_u_b(p0_asub_q0_m, p0_asub_q0_m); \
+ p1_asub_q1_m = SRAI_B(p1_asub_q1_m, 1); \
+ p0_asub_q0_m = __msa_adds_u_b(p0_asub_q0_m, p1_asub_q1_m); \
+ mask_out = (b_limit_in < p0_asub_q0_m); \
+ mask_out = __msa_max_u_b(flat_out, mask_out); \
+ p3_asub_p2_m = __msa_max_u_b(p3_asub_p2_m, p2_asub_p1_m); \
+ mask_out = __msa_max_u_b(p3_asub_p2_m, mask_out); \
+ q2_asub_q1_m = __msa_max_u_b(q2_asub_q1_m, q3_asub_q2_m); \
+ mask_out = __msa_max_u_b(q2_asub_q1_m, mask_out); \
+ mask_out = (limit_in < mask_out); \
+ mask_out = __msa_xori_b(mask_out, 0xff); \
+} while (0)
+
+#define ST6x1_UB(in0, in0_idx, in1, in1_idx, pdst, stride) do { \
+ const uint16_t tmp0_h = __msa_copy_s_h((v8i16)in1, in1_idx); \
+ const uint32_t tmp0_w = __msa_copy_s_w((v4i32)in0, in0_idx); \
+ SW(tmp0_w, pdst); \
+ SH(tmp0_h, pdst + stride); \
+} while (0)
+
+#define ST6x4_UB(in0, start_in0_idx, in1, start_in1_idx, pdst, stride) do { \
+ uint8_t* ptmp1 = (uint8_t*)pdst; \
+ ST6x1_UB(in0, start_in0_idx, in1, start_in1_idx, ptmp1, 4); \
+ ptmp1 += stride; \
+ ST6x1_UB(in0, start_in0_idx + 1, in1, start_in1_idx + 1, ptmp1, 4); \
+ ptmp1 += stride; \
+ ST6x1_UB(in0, start_in0_idx + 2, in1, start_in1_idx + 2, ptmp1, 4); \
+ ptmp1 += stride; \
+ ST6x1_UB(in0, start_in0_idx + 3, in1, start_in1_idx + 3, ptmp1, 4); \
+} while (0)
+
+#define LPF_SIMPLE_FILT(p1_in, p0_in, q0_in, q1_in, mask) do { \
+ v16i8 p1_m, p0_m, q0_m, q1_m, filt, filt1, filt2; \
+ const v16i8 cnst4b = __msa_ldi_b(4); \
+ const v16i8 cnst3b = __msa_ldi_b(3); \
+ \
+ FLIP_SIGN4(p1_in, p0_in, q0_in, q1_in, p1_m, p0_m, q0_m, q1_m); \
+ filt = __msa_subs_s_b(p1_m, q1_m); \
+ FILT_VAL(q0_m, p0_m, mask, filt); \
+ filt1 = __msa_adds_s_b(filt, cnst4b); \
+ filt1 = SRAI_B(filt1, 3); \
+ filt2 = __msa_adds_s_b(filt, cnst3b); \
+ filt2 = SRAI_B(filt2, 3); \
+ q0_m = __msa_subs_s_b(q0_m, filt1); \
+ p0_m = __msa_adds_s_b(p0_m, filt2); \
+ q0_in = __msa_xori_b((v16u8)q0_m, 0x80); \
+ p0_in = __msa_xori_b((v16u8)p0_m, 0x80); \
+} while (0)
+
+#define LPF_SIMPLE_MASK(p1, p0, q0, q1, b_limit, mask) do { \
+ v16u8 p1_a_sub_q1, p0_a_sub_q0; \
+ \
+ p0_a_sub_q0 = __msa_asub_u_b(p0, q0); \
+ p1_a_sub_q1 = __msa_asub_u_b(p1, q1); \
+ p1_a_sub_q1 = (v16u8)__msa_srli_b((v16i8)p1_a_sub_q1, 1); \
+ p0_a_sub_q0 = __msa_adds_u_b(p0_a_sub_q0, p0_a_sub_q0); \
+ mask = __msa_adds_u_b(p0_a_sub_q0, p1_a_sub_q1); \
+ mask = (mask <= b_limit); \
+} while (0)
+
+static void VFilter16(uint8_t* src, int stride,
+ int b_limit_in, int limit_in, int thresh_in) {
+ uint8_t* ptemp = src - 4 * stride;
+ v16u8 p3, p2, p1, p0, q3, q2, q1, q0;
+ v16u8 mask, hev;
+ const v16u8 thresh = (v16u8)__msa_fill_b(thresh_in);
+ const v16u8 limit = (v16u8)__msa_fill_b(limit_in);
+ const v16u8 b_limit = (v16u8)__msa_fill_b(b_limit_in);
+
+ LD_UB8(ptemp, stride, p3, p2, p1, p0, q0, q1, q2, q3);
+ LPF_MASK_HEV(p3, p2, p1, p0, q0, q1, q2, q3, limit, b_limit, thresh,
+ hev, mask);
+ LPF_MBFILTER(p2, p1, p0, q0, q1, q2, mask, hev);
+ ptemp = src - 3 * stride;
+ ST_UB4(p2, p1, p0, q0, ptemp, stride);
+ ptemp += (4 * stride);
+ ST_UB2(q1, q2, ptemp, stride);
+}
+
+static void HFilter16(uint8_t* src, int stride,
+ int b_limit_in, int limit_in, int thresh_in) {
+ uint8_t* ptmp = src - 4;
+ v16u8 p3, p2, p1, p0, q3, q2, q1, q0;
+ v16u8 mask, hev;
+ v16u8 row0, row1, row2, row3, row4, row5, row6, row7, row8;
+ v16u8 row9, row10, row11, row12, row13, row14, row15;
+ v8i16 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
+ const v16u8 b_limit = (v16u8)__msa_fill_b(b_limit_in);
+ const v16u8 limit = (v16u8)__msa_fill_b(limit_in);
+ const v16u8 thresh = (v16u8)__msa_fill_b(thresh_in);
+
+ LD_UB8(ptmp, stride, row0, row1, row2, row3, row4, row5, row6, row7);
+ ptmp += (8 * stride);
+ LD_UB8(ptmp, stride, row8, row9, row10, row11, row12, row13, row14, row15);
+ TRANSPOSE16x8_UB_UB(row0, row1, row2, row3, row4, row5, row6, row7,
+ row8, row9, row10, row11, row12, row13, row14, row15,
+ p3, p2, p1, p0, q0, q1, q2, q3);
+ LPF_MASK_HEV(p3, p2, p1, p0, q0, q1, q2, q3, limit, b_limit, thresh,
+ hev, mask);
+ LPF_MBFILTER(p2, p1, p0, q0, q1, q2, mask, hev);
+ ILVR_B2_SH(p1, p2, q0, p0, tmp0, tmp1);
+ ILVRL_H2_SH(tmp1, tmp0, tmp3, tmp4);
+ ILVL_B2_SH(p1, p2, q0, p0, tmp0, tmp1);
+ ILVRL_H2_SH(tmp1, tmp0, tmp6, tmp7);
+ ILVRL_B2_SH(q2, q1, tmp2, tmp5);
+ ptmp = src - 3;
+ ST6x1_UB(tmp3, 0, tmp2, 0, ptmp, 4);
+ ptmp += stride;
+ ST6x1_UB(tmp3, 1, tmp2, 1, ptmp, 4);
+ ptmp += stride;
+ ST6x1_UB(tmp3, 2, tmp2, 2, ptmp, 4);
+ ptmp += stride;
+ ST6x1_UB(tmp3, 3, tmp2, 3, ptmp, 4);
+ ptmp += stride;
+ ST6x1_UB(tmp4, 0, tmp2, 4, ptmp, 4);
+ ptmp += stride;
+ ST6x1_UB(tmp4, 1, tmp2, 5, ptmp, 4);
+ ptmp += stride;
+ ST6x1_UB(tmp4, 2, tmp2, 6, ptmp, 4);
+ ptmp += stride;
+ ST6x1_UB(tmp4, 3, tmp2, 7, ptmp, 4);
+ ptmp += stride;
+ ST6x1_UB(tmp6, 0, tmp5, 0, ptmp, 4);
+ ptmp += stride;
+ ST6x1_UB(tmp6, 1, tmp5, 1, ptmp, 4);
+ ptmp += stride;
+ ST6x1_UB(tmp6, 2, tmp5, 2, ptmp, 4);
+ ptmp += stride;
+ ST6x1_UB(tmp6, 3, tmp5, 3, ptmp, 4);
+ ptmp += stride;
+ ST6x1_UB(tmp7, 0, tmp5, 4, ptmp, 4);
+ ptmp += stride;
+ ST6x1_UB(tmp7, 1, tmp5, 5, ptmp, 4);
+ ptmp += stride;
+ ST6x1_UB(tmp7, 2, tmp5, 6, ptmp, 4);
+ ptmp += stride;
+ ST6x1_UB(tmp7, 3, tmp5, 7, ptmp, 4);
+}
+
+// on three inner edges
+static void VFilterHorEdge16i(uint8_t* src, int stride,
+ int b_limit, int limit, int thresh) {
+ v16u8 mask, hev;
+ v16u8 p3, p2, p1, p0, q3, q2, q1, q0;
+ const v16u8 thresh0 = (v16u8)__msa_fill_b(thresh);
+ const v16u8 b_limit0 = (v16u8)__msa_fill_b(b_limit);
+ const v16u8 limit0 = (v16u8)__msa_fill_b(limit);
+
+ LD_UB8((src - 4 * stride), stride, p3, p2, p1, p0, q0, q1, q2, q3);
+ LPF_MASK_HEV(p3, p2, p1, p0, q0, q1, q2, q3, limit0, b_limit0, thresh0,
+ hev, mask);
+ LPF_FILTER4_4W(p1, p0, q0, q1, mask, hev);
+ ST_UB4(p1, p0, q0, q1, (src - 2 * stride), stride);
+}
+
+static void VFilter16i(uint8_t* src_y, int stride,
+ int b_limit, int limit, int thresh) {
+ VFilterHorEdge16i(src_y + 4 * stride, stride, b_limit, limit, thresh);
+ VFilterHorEdge16i(src_y + 8 * stride, stride, b_limit, limit, thresh);
+ VFilterHorEdge16i(src_y + 12 * stride, stride, b_limit, limit, thresh);
+}
+
+static void HFilterVertEdge16i(uint8_t* src, int stride,
+ int b_limit, int limit, int thresh) {
+ v16u8 mask, hev;
+ v16u8 p3, p2, p1, p0, q3, q2, q1, q0;
+ v16u8 row0, row1, row2, row3, row4, row5, row6, row7;
+ v16u8 row8, row9, row10, row11, row12, row13, row14, row15;
+ v8i16 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5;
+ const v16u8 thresh0 = (v16u8)__msa_fill_b(thresh);
+ const v16u8 b_limit0 = (v16u8)__msa_fill_b(b_limit);
+ const v16u8 limit0 = (v16u8)__msa_fill_b(limit);
+
+ LD_UB8(src - 4, stride, row0, row1, row2, row3, row4, row5, row6, row7);
+ LD_UB8(src - 4 + (8 * stride), stride,
+ row8, row9, row10, row11, row12, row13, row14, row15);
+ TRANSPOSE16x8_UB_UB(row0, row1, row2, row3, row4, row5, row6, row7,
+ row8, row9, row10, row11, row12, row13, row14, row15,
+ p3, p2, p1, p0, q0, q1, q2, q3);
+ LPF_MASK_HEV(p3, p2, p1, p0, q0, q1, q2, q3, limit0, b_limit0, thresh0,
+ hev, mask);
+ LPF_FILTER4_4W(p1, p0, q0, q1, mask, hev);
+ ILVR_B2_SH(p0, p1, q1, q0, tmp0, tmp1);
+ ILVRL_H2_SH(tmp1, tmp0, tmp2, tmp3);
+ ILVL_B2_SH(p0, p1, q1, q0, tmp0, tmp1);
+ ILVRL_H2_SH(tmp1, tmp0, tmp4, tmp5);
+ src -= 2;
+ ST4x8_UB(tmp2, tmp3, src, stride);
+ src += (8 * stride);
+ ST4x8_UB(tmp4, tmp5, src, stride);
+}
+
+static void HFilter16i(uint8_t* src_y, int stride,
+ int b_limit, int limit, int thresh) {
+ HFilterVertEdge16i(src_y + 4, stride, b_limit, limit, thresh);
+ HFilterVertEdge16i(src_y + 8, stride, b_limit, limit, thresh);
+ HFilterVertEdge16i(src_y + 12, stride, b_limit, limit, thresh);
+}
+
+// 8-pixels wide variants, for chroma filtering
+static void VFilter8(uint8_t* src_u, uint8_t* src_v, int stride,
+ int b_limit_in, int limit_in, int thresh_in) {
+ uint8_t* ptmp_src_u = src_u - 4 * stride;
+ uint8_t* ptmp_src_v = src_v - 4 * stride;
+ uint64_t p2_d, p1_d, p0_d, q0_d, q1_d, q2_d;
+ v16u8 p3, p2, p1, p0, q3, q2, q1, q0, mask, hev;
+ v16u8 p3_u, p2_u, p1_u, p0_u, q3_u, q2_u, q1_u, q0_u;
+ v16u8 p3_v, p2_v, p1_v, p0_v, q3_v, q2_v, q1_v, q0_v;
+ const v16u8 b_limit = (v16u8)__msa_fill_b(b_limit_in);
+ const v16u8 limit = (v16u8)__msa_fill_b(limit_in);
+ const v16u8 thresh = (v16u8)__msa_fill_b(thresh_in);
+
+ LD_UB8(ptmp_src_u, stride, p3_u, p2_u, p1_u, p0_u, q0_u, q1_u, q2_u, q3_u);
+ LD_UB8(ptmp_src_v, stride, p3_v, p2_v, p1_v, p0_v, q0_v, q1_v, q2_v, q3_v);
+ ILVR_D4_UB(p3_v, p3_u, p2_v, p2_u, p1_v, p1_u, p0_v, p0_u, p3, p2, p1, p0);
+ ILVR_D4_UB(q0_v, q0_u, q1_v, q1_u, q2_v, q2_u, q3_v, q3_u, q0, q1, q2, q3);
+ LPF_MASK_HEV(p3, p2, p1, p0, q0, q1, q2, q3, limit, b_limit, thresh,
+ hev, mask);
+ LPF_MBFILTER(p2, p1, p0, q0, q1, q2, mask, hev);
+ p2_d = __msa_copy_s_d((v2i64)p2, 0);
+ p1_d = __msa_copy_s_d((v2i64)p1, 0);
+ p0_d = __msa_copy_s_d((v2i64)p0, 0);
+ q0_d = __msa_copy_s_d((v2i64)q0, 0);
+ q1_d = __msa_copy_s_d((v2i64)q1, 0);
+ q2_d = __msa_copy_s_d((v2i64)q2, 0);
+ ptmp_src_u += stride;
+ SD4(p2_d, p1_d, p0_d, q0_d, ptmp_src_u, stride);
+ ptmp_src_u += (4 * stride);
+ SD(q1_d, ptmp_src_u);
+ ptmp_src_u += stride;
+ SD(q2_d, ptmp_src_u);
+ p2_d = __msa_copy_s_d((v2i64)p2, 1);
+ p1_d = __msa_copy_s_d((v2i64)p1, 1);
+ p0_d = __msa_copy_s_d((v2i64)p0, 1);
+ q0_d = __msa_copy_s_d((v2i64)q0, 1);
+ q1_d = __msa_copy_s_d((v2i64)q1, 1);
+ q2_d = __msa_copy_s_d((v2i64)q2, 1);
+ ptmp_src_v += stride;
+ SD4(p2_d, p1_d, p0_d, q0_d, ptmp_src_v, stride);
+ ptmp_src_v += (4 * stride);
+ SD(q1_d, ptmp_src_v);
+ ptmp_src_v += stride;
+ SD(q2_d, ptmp_src_v);
+}
+
+static void HFilter8(uint8_t* src_u, uint8_t* src_v, int stride,
+ int b_limit_in, int limit_in, int thresh_in) {
+ uint8_t* ptmp_src_u = src_u - 4;
+ uint8_t* ptmp_src_v = src_v - 4;
+ v16u8 p3, p2, p1, p0, q3, q2, q1, q0, mask, hev;
+ v16u8 row0, row1, row2, row3, row4, row5, row6, row7, row8;
+ v16u8 row9, row10, row11, row12, row13, row14, row15;
+ v8i16 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
+ const v16u8 b_limit = (v16u8)__msa_fill_b(b_limit_in);
+ const v16u8 limit = (v16u8)__msa_fill_b(limit_in);
+ const v16u8 thresh = (v16u8)__msa_fill_b(thresh_in);
+
+ LD_UB8(ptmp_src_u, stride, row0, row1, row2, row3, row4, row5, row6, row7);
+ LD_UB8(ptmp_src_v, stride,
+ row8, row9, row10, row11, row12, row13, row14, row15);
+ TRANSPOSE16x8_UB_UB(row0, row1, row2, row3, row4, row5, row6, row7,
+ row8, row9, row10, row11, row12, row13, row14, row15,
+ p3, p2, p1, p0, q0, q1, q2, q3);
+ LPF_MASK_HEV(p3, p2, p1, p0, q0, q1, q2, q3, limit, b_limit, thresh,
+ hev, mask);
+ LPF_MBFILTER(p2, p1, p0, q0, q1, q2, mask, hev);
+ ILVR_B2_SH(p1, p2, q0, p0, tmp0, tmp1);
+ ILVRL_H2_SH(tmp1, tmp0, tmp3, tmp4);
+ ILVL_B2_SH(p1, p2, q0, p0, tmp0, tmp1);
+ ILVRL_H2_SH(tmp1, tmp0, tmp6, tmp7);
+ ILVRL_B2_SH(q2, q1, tmp2, tmp5);
+ ptmp_src_u += 1;
+ ST6x4_UB(tmp3, 0, tmp2, 0, ptmp_src_u, stride);
+ ptmp_src_u += 4 * stride;
+ ST6x4_UB(tmp4, 0, tmp2, 4, ptmp_src_u, stride);
+ ptmp_src_v += 1;
+ ST6x4_UB(tmp6, 0, tmp5, 0, ptmp_src_v, stride);
+ ptmp_src_v += 4 * stride;
+ ST6x4_UB(tmp7, 0, tmp5, 4, ptmp_src_v, stride);
+}
+
+static void VFilter8i(uint8_t* src_u, uint8_t* src_v, int stride,
+ int b_limit_in, int limit_in, int thresh_in) {
+ uint64_t p1_d, p0_d, q0_d, q1_d;
+ v16u8 p3, p2, p1, p0, q3, q2, q1, q0, mask, hev;
+ v16u8 p3_u, p2_u, p1_u, p0_u, q3_u, q2_u, q1_u, q0_u;
+ v16u8 p3_v, p2_v, p1_v, p0_v, q3_v, q2_v, q1_v, q0_v;
+ const v16u8 thresh = (v16u8)__msa_fill_b(thresh_in);
+ const v16u8 limit = (v16u8)__msa_fill_b(limit_in);
+ const v16u8 b_limit = (v16u8)__msa_fill_b(b_limit_in);
+
+ LD_UB8(src_u, stride, p3_u, p2_u, p1_u, p0_u, q0_u, q1_u, q2_u, q3_u);
+ src_u += (5 * stride);
+ LD_UB8(src_v, stride, p3_v, p2_v, p1_v, p0_v, q0_v, q1_v, q2_v, q3_v);
+ src_v += (5 * stride);
+ ILVR_D4_UB(p3_v, p3_u, p2_v, p2_u, p1_v, p1_u, p0_v, p0_u, p3, p2, p1, p0);
+ ILVR_D4_UB(q0_v, q0_u, q1_v, q1_u, q2_v, q2_u, q3_v, q3_u, q0, q1, q2, q3);
+ LPF_MASK_HEV(p3, p2, p1, p0, q0, q1, q2, q3, limit, b_limit, thresh,
+ hev, mask);
+ LPF_FILTER4_4W(p1, p0, q0, q1, mask, hev);
+ p1_d = __msa_copy_s_d((v2i64)p1, 0);
+ p0_d = __msa_copy_s_d((v2i64)p0, 0);
+ q0_d = __msa_copy_s_d((v2i64)q0, 0);
+ q1_d = __msa_copy_s_d((v2i64)q1, 0);
+ SD4(q1_d, q0_d, p0_d, p1_d, src_u, -stride);
+ p1_d = __msa_copy_s_d((v2i64)p1, 1);
+ p0_d = __msa_copy_s_d((v2i64)p0, 1);
+ q0_d = __msa_copy_s_d((v2i64)q0, 1);
+ q1_d = __msa_copy_s_d((v2i64)q1, 1);
+ SD4(q1_d, q0_d, p0_d, p1_d, src_v, -stride);
+}
+
+static void HFilter8i(uint8_t* src_u, uint8_t* src_v, int stride,
+ int b_limit_in, int limit_in, int thresh_in) {
+ v16u8 p3, p2, p1, p0, q3, q2, q1, q0, mask, hev;
+ v16u8 row0, row1, row2, row3, row4, row5, row6, row7, row8;
+ v16u8 row9, row10, row11, row12, row13, row14, row15;
+ v4i32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5;
+ const v16u8 thresh = (v16u8)__msa_fill_b(thresh_in);
+ const v16u8 limit = (v16u8)__msa_fill_b(limit_in);
+ const v16u8 b_limit = (v16u8)__msa_fill_b(b_limit_in);
+
+ LD_UB8(src_u, stride, row0, row1, row2, row3, row4, row5, row6, row7);
+ LD_UB8(src_v, stride,
+ row8, row9, row10, row11, row12, row13, row14, row15);
+ TRANSPOSE16x8_UB_UB(row0, row1, row2, row3, row4, row5, row6, row7,
+ row8, row9, row10, row11, row12, row13, row14, row15,
+ p3, p2, p1, p0, q0, q1, q2, q3);
+ LPF_MASK_HEV(p3, p2, p1, p0, q0, q1, q2, q3, limit, b_limit, thresh,
+ hev, mask);
+ LPF_FILTER4_4W(p1, p0, q0, q1, mask, hev);
+ ILVR_B2_SW(p0, p1, q1, q0, tmp0, tmp1);
+ ILVRL_H2_SW(tmp1, tmp0, tmp2, tmp3);
+ ILVL_B2_SW(p0, p1, q1, q0, tmp0, tmp1);
+ ILVRL_H2_SW(tmp1, tmp0, tmp4, tmp5);
+ src_u += 2;
+ ST4x4_UB(tmp2, tmp2, 0, 1, 2, 3, src_u, stride);
+ src_u += 4 * stride;
+ ST4x4_UB(tmp3, tmp3, 0, 1, 2, 3, src_u, stride);
+ src_v += 2;
+ ST4x4_UB(tmp4, tmp4, 0, 1, 2, 3, src_v, stride);
+ src_v += 4 * stride;
+ ST4x4_UB(tmp5, tmp5, 0, 1, 2, 3, src_v, stride);
+}
+
+static void SimpleVFilter16(uint8_t* src, int stride, int b_limit_in) {
+ v16u8 p1, p0, q1, q0, mask;
+ const v16u8 b_limit = (v16u8)__msa_fill_b(b_limit_in);
+
+ LD_UB4(src - 2 * stride, stride, p1, p0, q0, q1);
+ LPF_SIMPLE_MASK(p1, p0, q0, q1, b_limit, mask);
+ LPF_SIMPLE_FILT(p1, p0, q0, q1, mask);
+ ST_UB2(p0, q0, src - stride, stride);
+}
+
+static void SimpleHFilter16(uint8_t* src, int stride, int b_limit_in) {
+ v16u8 p1, p0, q1, q0, mask, row0, row1, row2, row3, row4, row5, row6, row7;
+ v16u8 row8, row9, row10, row11, row12, row13, row14, row15;
+ v8i16 tmp0, tmp1;
+ const v16u8 b_limit = (v16u8)__msa_fill_b(b_limit_in);
+ uint8_t* ptemp_src = src - 2;
+
+ LD_UB8(ptemp_src, stride, row0, row1, row2, row3, row4, row5, row6, row7);
+ LD_UB8(ptemp_src + 8 * stride, stride,
+ row8, row9, row10, row11, row12, row13, row14, row15);
+ TRANSPOSE16x4_UB_UB(row0, row1, row2, row3, row4, row5, row6, row7,
+ row8, row9, row10, row11, row12, row13, row14, row15,
+ p1, p0, q0, q1);
+ LPF_SIMPLE_MASK(p1, p0, q0, q1, b_limit, mask);
+ LPF_SIMPLE_FILT(p1, p0, q0, q1, mask);
+ ILVRL_B2_SH(q0, p0, tmp1, tmp0);
+ ptemp_src += 1;
+ ST2x4_UB(tmp1, 0, ptemp_src, stride);
+ ptemp_src += 4 * stride;
+ ST2x4_UB(tmp1, 4, ptemp_src, stride);
+ ptemp_src += 4 * stride;
+ ST2x4_UB(tmp0, 0, ptemp_src, stride);
+ ptemp_src += 4 * stride;
+ ST2x4_UB(tmp0, 4, ptemp_src, stride);
+ ptemp_src += 4 * stride;
+}
+
+static void SimpleVFilter16i(uint8_t* src_y, int stride, int b_limit_in) {
+ SimpleVFilter16(src_y + 4 * stride, stride, b_limit_in);
+ SimpleVFilter16(src_y + 8 * stride, stride, b_limit_in);
+ SimpleVFilter16(src_y + 12 * stride, stride, b_limit_in);
+}
+
+static void SimpleHFilter16i(uint8_t* src_y, int stride, int b_limit_in) {
+ SimpleHFilter16(src_y + 4, stride, b_limit_in);
+ SimpleHFilter16(src_y + 8, stride, b_limit_in);
+ SimpleHFilter16(src_y + 12, stride, b_limit_in);
+}
+
+//------------------------------------------------------------------------------
+// Intra predictions
+//------------------------------------------------------------------------------
+
+// 4x4
+
+static void DC4(uint8_t* dst) { // DC
+ uint32_t dc = 4;
+ int i;
+ for (i = 0; i < 4; ++i) dc += dst[i - BPS] + dst[-1 + i * BPS];
+ dc >>= 3;
+ dc = dc | (dc << 8) | (dc << 16) | (dc << 24);
+ SW4(dc, dc, dc, dc, dst, BPS);
+}
+
+static void TM4(uint8_t* dst) {
+ const uint8_t* const ptemp = dst - BPS - 1;
+ v8i16 T, d, r0, r1, r2, r3;
+ const v16i8 zero = { 0 };
+ const v8i16 TL = (v8i16)__msa_fill_h(ptemp[0 * BPS]);
+ const v8i16 L0 = (v8i16)__msa_fill_h(ptemp[1 * BPS]);
+ const v8i16 L1 = (v8i16)__msa_fill_h(ptemp[2 * BPS]);
+ const v8i16 L2 = (v8i16)__msa_fill_h(ptemp[3 * BPS]);
+ const v8i16 L3 = (v8i16)__msa_fill_h(ptemp[4 * BPS]);
+ const v16u8 T1 = LD_UB(ptemp + 1);
+
+ T = (v8i16)__msa_ilvr_b(zero, (v16i8)T1);
+ d = T - TL;
+ ADD4(d, L0, d, L1, d, L2, d, L3, r0, r1, r2, r3);
+ CLIP_SH4_0_255(r0, r1, r2, r3);
+ PCKEV_ST4x4_UB(r0, r1, r2, r3, dst, BPS);
+}
+
+static void VE4(uint8_t* dst) { // vertical
+ const uint8_t* const ptop = dst - BPS - 1;
+ const uint32_t val0 = LW(ptop + 0);
+ const uint32_t val1 = LW(ptop + 4);
+ uint32_t out;
+ v16u8 A, B, C, AC, B2, R;
+
+ INSERT_W2_UB(val0, val1, A);
+ B = SLDI_UB(A, A, 1);
+ C = SLDI_UB(A, A, 2);
+ AC = __msa_ave_u_b(A, C);
+ B2 = __msa_ave_u_b(B, B);
+ R = __msa_aver_u_b(AC, B2);
+ out = __msa_copy_s_w((v4i32)R, 0);
+ SW4(out, out, out, out, dst, BPS);
+}
+
+static void RD4(uint8_t* dst) { // Down-right
+ const uint8_t* const ptop = dst - 1 - BPS;
+ uint32_t val0 = LW(ptop + 0);
+ uint32_t val1 = LW(ptop + 4);
+ uint32_t val2, val3;
+ v16u8 A, B, C, AC, B2, R, A1;
+
+ INSERT_W2_UB(val0, val1, A1);
+ A = SLDI_UB(A1, A1, 12);
+ A = (v16u8)__msa_insert_b((v16i8)A, 3, ptop[1 * BPS]);
+ A = (v16u8)__msa_insert_b((v16i8)A, 2, ptop[2 * BPS]);
+ A = (v16u8)__msa_insert_b((v16i8)A, 1, ptop[3 * BPS]);
+ A = (v16u8)__msa_insert_b((v16i8)A, 0, ptop[4 * BPS]);
+ B = SLDI_UB(A, A, 1);
+ C = SLDI_UB(A, A, 2);
+ AC = __msa_ave_u_b(A, C);
+ B2 = __msa_ave_u_b(B, B);
+ R = __msa_aver_u_b(AC, B2);
+ val3 = __msa_copy_s_w((v4i32)R, 0);
+ R = SLDI_UB(R, R, 1);
+ val2 = __msa_copy_s_w((v4i32)R, 0);
+ R = SLDI_UB(R, R, 1);
+ val1 = __msa_copy_s_w((v4i32)R, 0);
+ R = SLDI_UB(R, R, 1);
+ val0 = __msa_copy_s_w((v4i32)R, 0);
+ SW4(val0, val1, val2, val3, dst, BPS);
+}
+
+static void LD4(uint8_t* dst) { // Down-Left
+ const uint8_t* const ptop = dst - BPS;
+ uint32_t val0 = LW(ptop + 0);
+ uint32_t val1 = LW(ptop + 4);
+ uint32_t val2, val3;
+ v16u8 A, B, C, AC, B2, R;
+
+ INSERT_W2_UB(val0, val1, A);
+ B = SLDI_UB(A, A, 1);
+ C = SLDI_UB(A, A, 2);
+ C = (v16u8)__msa_insert_b((v16i8)C, 6, ptop[7]);
+ AC = __msa_ave_u_b(A, C);
+ B2 = __msa_ave_u_b(B, B);
+ R = __msa_aver_u_b(AC, B2);
+ val0 = __msa_copy_s_w((v4i32)R, 0);
+ R = SLDI_UB(R, R, 1);
+ val1 = __msa_copy_s_w((v4i32)R, 0);
+ R = SLDI_UB(R, R, 1);
+ val2 = __msa_copy_s_w((v4i32)R, 0);
+ R = SLDI_UB(R, R, 1);
+ val3 = __msa_copy_s_w((v4i32)R, 0);
+ SW4(val0, val1, val2, val3, dst, BPS);
+}
+
+// 16x16
+
+static void DC16(uint8_t* dst) { // DC
+ uint32_t dc = 16;
+ int i;
+ const v16u8 rtop = LD_UB(dst - BPS);
+ const v8u16 dctop = __msa_hadd_u_h(rtop, rtop);
+ v16u8 out;
+
+ for (i = 0; i < 16; ++i) {
+ dc += dst[-1 + i * BPS];
+ }
+ dc += HADD_UH_U32(dctop);
+ out = (v16u8)__msa_fill_b(dc >> 5);
+ ST_UB8(out, out, out, out, out, out, out, out, dst, BPS);
+ ST_UB8(out, out, out, out, out, out, out, out, dst + 8 * BPS, BPS);
+}
+
+static void TM16(uint8_t* dst) {
+ int j;
+ v8i16 d1, d2;
+ const v16i8 zero = { 0 };
+ const v8i16 TL = (v8i16)__msa_fill_h(dst[-1 - BPS]);
+ const v16i8 T = LD_SB(dst - BPS);
+
+ ILVRL_B2_SH(zero, T, d1, d2);
+ SUB2(d1, TL, d2, TL, d1, d2);
+ for (j = 0; j < 16; j += 4) {
+ v16i8 t0, t1, t2, t3;
+ v8i16 r0, r1, r2, r3, r4, r5, r6, r7;
+ const v8i16 L0 = (v8i16)__msa_fill_h(dst[-1 + 0 * BPS]);
+ const v8i16 L1 = (v8i16)__msa_fill_h(dst[-1 + 1 * BPS]);
+ const v8i16 L2 = (v8i16)__msa_fill_h(dst[-1 + 2 * BPS]);
+ const v8i16 L3 = (v8i16)__msa_fill_h(dst[-1 + 3 * BPS]);
+ ADD4(d1, L0, d1, L1, d1, L2, d1, L3, r0, r1, r2, r3);
+ ADD4(d2, L0, d2, L1, d2, L2, d2, L3, r4, r5, r6, r7);
+ CLIP_SH4_0_255(r0, r1, r2, r3);
+ CLIP_SH4_0_255(r4, r5, r6, r7);
+ PCKEV_B4_SB(r4, r0, r5, r1, r6, r2, r7, r3, t0, t1, t2, t3);
+ ST_SB4(t0, t1, t2, t3, dst, BPS);
+ dst += 4 * BPS;
+ }
+}
+
+static void VE16(uint8_t* dst) { // vertical
+ const v16u8 rtop = LD_UB(dst - BPS);
+ ST_UB8(rtop, rtop, rtop, rtop, rtop, rtop, rtop, rtop, dst, BPS);
+ ST_UB8(rtop, rtop, rtop, rtop, rtop, rtop, rtop, rtop, dst + 8 * BPS, BPS);
+}
+
+static void HE16(uint8_t* dst) { // horizontal
+ int j;
+ for (j = 16; j > 0; j -= 4) {
+ const v16u8 L0 = (v16u8)__msa_fill_b(dst[-1 + 0 * BPS]);
+ const v16u8 L1 = (v16u8)__msa_fill_b(dst[-1 + 1 * BPS]);
+ const v16u8 L2 = (v16u8)__msa_fill_b(dst[-1 + 2 * BPS]);
+ const v16u8 L3 = (v16u8)__msa_fill_b(dst[-1 + 3 * BPS]);
+ ST_UB4(L0, L1, L2, L3, dst, BPS);
+ dst += 4 * BPS;
+ }
+}
+
+static void DC16NoTop(uint8_t* dst) { // DC with top samples not available
+ int j;
+ uint32_t dc = 8;
+ v16u8 out;
+
+ for (j = 0; j < 16; ++j) {
+ dc += dst[-1 + j * BPS];
+ }
+ out = (v16u8)__msa_fill_b(dc >> 4);
+ ST_UB8(out, out, out, out, out, out, out, out, dst, BPS);
+ ST_UB8(out, out, out, out, out, out, out, out, dst + 8 * BPS, BPS);
+}
+
+static void DC16NoLeft(uint8_t* dst) { // DC with left samples not available
+ uint32_t dc = 8;
+ const v16u8 rtop = LD_UB(dst - BPS);
+ const v8u16 dctop = __msa_hadd_u_h(rtop, rtop);
+ v16u8 out;
+
+ dc += HADD_UH_U32(dctop);
+ out = (v16u8)__msa_fill_b(dc >> 4);
+ ST_UB8(out, out, out, out, out, out, out, out, dst, BPS);
+ ST_UB8(out, out, out, out, out, out, out, out, dst + 8 * BPS, BPS);
+}
+
+static void DC16NoTopLeft(uint8_t* dst) { // DC with nothing
+ const v16u8 out = (v16u8)__msa_fill_b(0x80);
+ ST_UB8(out, out, out, out, out, out, out, out, dst, BPS);
+ ST_UB8(out, out, out, out, out, out, out, out, dst + 8 * BPS, BPS);
+}
+
+// Chroma
+
+#define STORE8x8(out, dst) do { \
+ SD4(out, out, out, out, dst + 0 * BPS, BPS); \
+ SD4(out, out, out, out, dst + 4 * BPS, BPS); \
+} while (0)
+
+static void DC8uv(uint8_t* dst) { // DC
+ uint32_t dc = 8;
+ int i;
+ uint64_t out;
+ const v16u8 rtop = LD_UB(dst - BPS);
+ const v8u16 temp0 = __msa_hadd_u_h(rtop, rtop);
+ const v4u32 temp1 = __msa_hadd_u_w(temp0, temp0);
+ const v2u64 temp2 = __msa_hadd_u_d(temp1, temp1);
+ v16u8 dctemp;
+
+ for (i = 0; i < 8; ++i) {
+ dc += dst[-1 + i * BPS];
+ }
+ dc += __msa_copy_s_w((v4i32)temp2, 0);
+ dctemp = (v16u8)__msa_fill_b(dc >> 4);
+ out = __msa_copy_s_d((v2i64)dctemp, 0);
+ STORE8x8(out, dst);
+}
+
+static void TM8uv(uint8_t* dst) {
+ int j;
+ const v16i8 T1 = LD_SB(dst - BPS);
+ const v16i8 zero = { 0 };
+ const v8i16 T = (v8i16)__msa_ilvr_b(zero, T1);
+ const v8i16 TL = (v8i16)__msa_fill_h(dst[-1 - BPS]);
+ const v8i16 d = T - TL;
+
+ for (j = 0; j < 8; j += 4) {
+ v16i8 t0, t1;
+ v8i16 r0 = (v8i16)__msa_fill_h(dst[-1 + 0 * BPS]);
+ v8i16 r1 = (v8i16)__msa_fill_h(dst[-1 + 1 * BPS]);
+ v8i16 r2 = (v8i16)__msa_fill_h(dst[-1 + 2 * BPS]);
+ v8i16 r3 = (v8i16)__msa_fill_h(dst[-1 + 3 * BPS]);
+ ADD4(d, r0, d, r1, d, r2, d, r3, r0, r1, r2, r3);
+ CLIP_SH4_0_255(r0, r1, r2, r3);
+ PCKEV_B2_SB(r1, r0, r3, r2, t0, t1);
+ ST4x4_UB(t0, t1, 0, 2, 0, 2, dst, BPS);
+ ST4x4_UB(t0, t1, 1, 3, 1, 3, dst + 4, BPS);
+ dst += 4 * BPS;
+ }
+}
+
+static void VE8uv(uint8_t* dst) { // vertical
+ const v16u8 rtop = LD_UB(dst - BPS);
+ const uint64_t out = __msa_copy_s_d((v2i64)rtop, 0);
+ STORE8x8(out, dst);
+}
+
+static void HE8uv(uint8_t* dst) { // horizontal
+ int j;
+ for (j = 0; j < 8; j += 4) {
+ const v16u8 L0 = (v16u8)__msa_fill_b(dst[-1 + 0 * BPS]);
+ const v16u8 L1 = (v16u8)__msa_fill_b(dst[-1 + 1 * BPS]);
+ const v16u8 L2 = (v16u8)__msa_fill_b(dst[-1 + 2 * BPS]);
+ const v16u8 L3 = (v16u8)__msa_fill_b(dst[-1 + 3 * BPS]);
+ const uint64_t out0 = __msa_copy_s_d((v2i64)L0, 0);
+ const uint64_t out1 = __msa_copy_s_d((v2i64)L1, 0);
+ const uint64_t out2 = __msa_copy_s_d((v2i64)L2, 0);
+ const uint64_t out3 = __msa_copy_s_d((v2i64)L3, 0);
+ SD4(out0, out1, out2, out3, dst, BPS);
+ dst += 4 * BPS;
+ }
+}
+
+static void DC8uvNoLeft(uint8_t* dst) { // DC with no left samples
+ const uint32_t dc = 4;
+ const v16u8 rtop = LD_UB(dst - BPS);
+ const v8u16 temp0 = __msa_hadd_u_h(rtop, rtop);
+ const v4u32 temp1 = __msa_hadd_u_w(temp0, temp0);
+ const v2u64 temp2 = __msa_hadd_u_d(temp1, temp1);
+ const uint32_t sum_m = __msa_copy_s_w((v4i32)temp2, 0);
+ const v16u8 dcval = (v16u8)__msa_fill_b((dc + sum_m) >> 3);
+ const uint64_t out = __msa_copy_s_d((v2i64)dcval, 0);
+ STORE8x8(out, dst);
+}
+
+static void DC8uvNoTop(uint8_t* dst) { // DC with no top samples
+ uint32_t dc = 4;
+ int i;
+ uint64_t out;
+ v16u8 dctemp;
+
+ for (i = 0; i < 8; ++i) {
+ dc += dst[-1 + i * BPS];
+ }
+ dctemp = (v16u8)__msa_fill_b(dc >> 3);
+ out = __msa_copy_s_d((v2i64)dctemp, 0);
+ STORE8x8(out, dst);
+}
+
+static void DC8uvNoTopLeft(uint8_t* dst) { // DC with nothing
+ const uint64_t out = 0x8080808080808080ULL;
+ STORE8x8(out, dst);
+}
+
+//------------------------------------------------------------------------------
// Entry point
extern void VP8DspInitMSA(void);
@@ -163,6 +977,39 @@ WEBP_TSAN_IGNORE_FUNCTION void VP8DspInitMSA(void) {
VP8Transform = TransformTwo;
VP8TransformDC = TransformDC;
VP8TransformAC3 = TransformAC3;
+
+ VP8VFilter16 = VFilter16;
+ VP8HFilter16 = HFilter16;
+ VP8VFilter16i = VFilter16i;
+ VP8HFilter16i = HFilter16i;
+ VP8VFilter8 = VFilter8;
+ VP8HFilter8 = HFilter8;
+ VP8VFilter8i = VFilter8i;
+ VP8HFilter8i = HFilter8i;
+ VP8SimpleVFilter16 = SimpleVFilter16;
+ VP8SimpleHFilter16 = SimpleHFilter16;
+ VP8SimpleVFilter16i = SimpleVFilter16i;
+ VP8SimpleHFilter16i = SimpleHFilter16i;
+
+ VP8PredLuma4[0] = DC4;
+ VP8PredLuma4[1] = TM4;
+ VP8PredLuma4[2] = VE4;
+ VP8PredLuma4[4] = RD4;
+ VP8PredLuma4[6] = LD4;
+ VP8PredLuma16[0] = DC16;
+ VP8PredLuma16[1] = TM16;
+ VP8PredLuma16[2] = VE16;
+ VP8PredLuma16[3] = HE16;
+ VP8PredLuma16[4] = DC16NoTop;
+ VP8PredLuma16[5] = DC16NoLeft;
+ VP8PredLuma16[6] = DC16NoTopLeft;
+ VP8PredChroma8[0] = DC8uv;
+ VP8PredChroma8[1] = TM8uv;
+ VP8PredChroma8[2] = VE8uv;
+ VP8PredChroma8[3] = HE8uv;
+ VP8PredChroma8[4] = DC8uvNoTop;
+ VP8PredChroma8[5] = DC8uvNoLeft;
+ VP8PredChroma8[6] = DC8uvNoTopLeft;
}
#else // !WEBP_USE_MSA
diff --git a/thirdparty/libwebp/dsp/dec_neon.c b/thirdparty/libwebp/dsp/dec_neon.c
index a63f43fe17..34796cf4a2 100644
--- a/thirdparty/libwebp/dsp/dec_neon.c
+++ b/thirdparty/libwebp/dsp/dec_neon.c
@@ -17,7 +17,7 @@
#if defined(WEBP_USE_NEON)
#include "./neon.h"
-#include "../dec/vp8i.h"
+#include "../dec/vp8i_dec.h"
//------------------------------------------------------------------------------
// NxM Loading functions
@@ -666,9 +666,8 @@ static uint8x16_t NeedsHev(const uint8x16_t p1, const uint8x16_t p0,
const uint8x16_t hev_thresh_v = vdupq_n_u8((uint8_t)hev_thresh);
const uint8x16_t a_p1_p0 = vabdq_u8(p1, p0); // abs(p1 - p0)
const uint8x16_t a_q1_q0 = vabdq_u8(q1, q0); // abs(q1 - q0)
- const uint8x16_t mask1 = vcgtq_u8(a_p1_p0, hev_thresh_v);
- const uint8x16_t mask2 = vcgtq_u8(a_q1_q0, hev_thresh_v);
- const uint8x16_t mask = vorrq_u8(mask1, mask2);
+ const uint8x16_t a_max = vmaxq_u8(a_p1_p0, a_q1_q0);
+ const uint8x16_t mask = vcgtq_u8(a_max, hev_thresh_v);
return mask;
}
@@ -756,24 +755,25 @@ static void ApplyFilter6(
const int8x16_t delta,
uint8x16_t* const op2, uint8x16_t* const op1, uint8x16_t* const op0,
uint8x16_t* const oq0, uint8x16_t* const oq1, uint8x16_t* const oq2) {
- const int16x8_t kCst63 = vdupq_n_s16(63);
- const int8x8_t kCst27 = vdup_n_s8(27);
- const int8x8_t kCst18 = vdup_n_s8(18);
- const int8x8_t kCst9 = vdup_n_s8(9);
+ // We have to compute: X = (9*a+63) >> 7, Y = (18*a+63)>>7, Z = (27*a+63) >> 7
+ // Turns out, there's a common sub-expression S=9 * a - 1 that can be used
+ // with the special vqrshrn_n_s16 rounding-shift-and-narrow instruction:
+ // X = (S + 64) >> 7, Y = (S + 32) >> 6, Z = (18 * a + S + 64) >> 7
const int8x8_t delta_lo = vget_low_s8(delta);
const int8x8_t delta_hi = vget_high_s8(delta);
- const int16x8_t s1_lo = vmlal_s8(kCst63, kCst27, delta_lo); // 63 + 27 * a
- const int16x8_t s1_hi = vmlal_s8(kCst63, kCst27, delta_hi); // 63 + 27 * a
- const int16x8_t s2_lo = vmlal_s8(kCst63, kCst18, delta_lo); // 63 + 18 * a
- const int16x8_t s2_hi = vmlal_s8(kCst63, kCst18, delta_hi); // 63 + 18 * a
- const int16x8_t s3_lo = vmlal_s8(kCst63, kCst9, delta_lo); // 63 + 9 * a
- const int16x8_t s3_hi = vmlal_s8(kCst63, kCst9, delta_hi); // 63 + 9 * a
- const int8x8_t a1_lo = vqshrn_n_s16(s1_lo, 7);
- const int8x8_t a1_hi = vqshrn_n_s16(s1_hi, 7);
- const int8x8_t a2_lo = vqshrn_n_s16(s2_lo, 7);
- const int8x8_t a2_hi = vqshrn_n_s16(s2_hi, 7);
- const int8x8_t a3_lo = vqshrn_n_s16(s3_lo, 7);
- const int8x8_t a3_hi = vqshrn_n_s16(s3_hi, 7);
+ const int8x8_t kCst9 = vdup_n_s8(9);
+ const int16x8_t kCstm1 = vdupq_n_s16(-1);
+ const int8x8_t kCst18 = vdup_n_s8(18);
+ const int16x8_t S_lo = vmlal_s8(kCstm1, kCst9, delta_lo); // S = 9 * a - 1
+ const int16x8_t S_hi = vmlal_s8(kCstm1, kCst9, delta_hi);
+ const int16x8_t Z_lo = vmlal_s8(S_lo, kCst18, delta_lo); // S + 18 * a
+ const int16x8_t Z_hi = vmlal_s8(S_hi, kCst18, delta_hi);
+ const int8x8_t a3_lo = vqrshrn_n_s16(S_lo, 7); // (9 * a + 63) >> 7
+ const int8x8_t a3_hi = vqrshrn_n_s16(S_hi, 7);
+ const int8x8_t a2_lo = vqrshrn_n_s16(S_lo, 6); // (9 * a + 31) >> 6
+ const int8x8_t a2_hi = vqrshrn_n_s16(S_hi, 6);
+ const int8x8_t a1_lo = vqrshrn_n_s16(Z_lo, 7); // (27 * a + 63) >> 7
+ const int8x8_t a1_hi = vqrshrn_n_s16(Z_hi, 7);
const int8x16_t a1 = vcombine_s8(a1_lo, a1_hi);
const int8x16_t a2 = vcombine_s8(a2_lo, a2_hi);
const int8x16_t a3 = vcombine_s8(a3_lo, a3_hi);
diff --git a/thirdparty/libwebp/dsp/dec_sse2.c b/thirdparty/libwebp/dsp/dec_sse2.c
index f0a8ddcaf3..411fb02768 100644
--- a/thirdparty/libwebp/dsp/dec_sse2.c
+++ b/thirdparty/libwebp/dsp/dec_sse2.c
@@ -22,7 +22,7 @@
#include <emmintrin.h>
#include "./common_sse2.h"
-#include "../dec/vp8i.h"
+#include "../dec/vp8i_dec.h"
#include "../utils/utils.h"
//------------------------------------------------------------------------------
@@ -140,7 +140,7 @@ static void Transform(const int16_t* in, uint8_t* dst, int do_two) {
// Transpose the two 4x4.
VP8Transpose_2_4x4_16b(&shifted0, &shifted1, &shifted2, &shifted3, &T0, &T1,
- &T2, &T3);
+ &T2, &T3);
}
// Add inverse transform to 'dst' and store.
diff --git a/thirdparty/libwebp/dsp/dec_sse41.c b/thirdparty/libwebp/dsp/dec_sse41.c
index 8d6aed13e6..4e81ec4d80 100644
--- a/thirdparty/libwebp/dsp/dec_sse41.c
+++ b/thirdparty/libwebp/dsp/dec_sse41.c
@@ -16,7 +16,7 @@
#if defined(WEBP_USE_SSE41)
#include <smmintrin.h>
-#include "../dec/vp8i.h"
+#include "../dec/vp8i_dec.h"
#include "../utils/utils.h"
static void HE16(uint8_t* dst) { // horizontal
diff --git a/thirdparty/libwebp/dsp/dsp.h b/thirdparty/libwebp/dsp/dsp.h
index 1faac27b2b..813fed4a35 100644
--- a/thirdparty/libwebp/dsp/dsp.h
+++ b/thirdparty/libwebp/dsp/dsp.h
@@ -111,8 +111,7 @@ extern "C" {
#define WEBP_UBSAN_IGNORE_UNDEF
#define WEBP_UBSAN_IGNORE_UNSIGNED_OVERFLOW
-#if !defined(WEBP_FORCE_ALIGNED) && defined(__clang__) && \
- defined(__has_attribute)
+#if defined(__clang__) && defined(__has_attribute)
#if __has_attribute(no_sanitize)
// This macro prevents the undefined behavior sanitizer from reporting
// failures. This is only meant to silence unaligned loads on platforms that
@@ -133,6 +132,7 @@ extern "C" {
typedef enum {
kSSE2,
kSSE3,
+ kSlowSSSE3, // special feature for slow SSSE3 architectures
kSSE4_1,
kAVX,
kAVX2,
@@ -185,6 +185,11 @@ typedef int (*VP8WMetric)(const uint8_t* pix, const uint8_t* ref,
// 4 by 4 symmetric matrix.
extern VP8WMetric VP8TDisto4x4, VP8TDisto16x16;
+// Compute the average (DC) of four 4x4 blocks.
+// Each sub-4x4 block #i sum is stored in dc[i].
+typedef void (*VP8MeanMetric)(const uint8_t* ref, uint32_t dc[4]);
+extern VP8MeanMetric VP8Mean16x4;
+
typedef void (*VP8BlockCopy)(const uint8_t* src, uint8_t* dst);
extern VP8BlockCopy VP8Copy4x4;
extern VP8BlockCopy VP8Copy16x8;
@@ -246,30 +251,37 @@ extern VP8GetResidualCostFunc VP8GetResidualCost;
void VP8EncDspCostInit(void);
//------------------------------------------------------------------------------
-// SSIM utils
+// SSIM / PSNR utils
// struct for accumulating statistical moments
typedef struct {
- double w; // sum(w_i) : sum of weights
- double xm, ym; // sum(w_i * x_i), sum(w_i * y_i)
- double xxm, xym, yym; // sum(w_i * x_i * x_i), etc.
+ uint32_t w; // sum(w_i) : sum of weights
+ uint32_t xm, ym; // sum(w_i * x_i), sum(w_i * y_i)
+ uint32_t xxm, xym, yym; // sum(w_i * x_i * x_i), etc.
} VP8DistoStats;
+// Compute the final SSIM value
+// The non-clipped version assumes stats->w = (2 * VP8_SSIM_KERNEL + 1)^2.
+double VP8SSIMFromStats(const VP8DistoStats* const stats);
+double VP8SSIMFromStatsClipped(const VP8DistoStats* const stats);
+
#define VP8_SSIM_KERNEL 3 // total size of the kernel: 2 * VP8_SSIM_KERNEL + 1
-typedef void (*VP8SSIMAccumulateClippedFunc)(const uint8_t* src1, int stride1,
- const uint8_t* src2, int stride2,
- int xo, int yo, // center position
- int W, int H, // plane dimension
- VP8DistoStats* const stats);
+typedef double (*VP8SSIMGetClippedFunc)(const uint8_t* src1, int stride1,
+ const uint8_t* src2, int stride2,
+ int xo, int yo, // center position
+ int W, int H); // plane dimension
// This version is called with the guarantee that you can load 8 bytes and
// 8 rows at offset src1 and src2
-typedef void (*VP8SSIMAccumulateFunc)(const uint8_t* src1, int stride1,
- const uint8_t* src2, int stride2,
- VP8DistoStats* const stats);
+typedef double (*VP8SSIMGetFunc)(const uint8_t* src1, int stride1,
+ const uint8_t* src2, int stride2);
+
+extern VP8SSIMGetFunc VP8SSIMGet; // unclipped / unchecked
+extern VP8SSIMGetClippedFunc VP8SSIMGetClipped; // with clipping
-extern VP8SSIMAccumulateFunc VP8SSIMAccumulate; // unclipped / unchecked
-extern VP8SSIMAccumulateClippedFunc VP8SSIMAccumulateClipped; // with clipping
+typedef uint32_t (*VP8AccumulateSSEFunc)(const uint8_t* src1,
+ const uint8_t* src2, int len);
+extern VP8AccumulateSSEFunc VP8AccumulateSSE;
// must be called before using any of the above directly
void VP8SSIMDspInit(void);
@@ -416,6 +428,15 @@ extern void WebPConvertARGBToUV_C(const uint32_t* argb, uint8_t* u, uint8_t* v,
extern void WebPConvertRGBA32ToUV_C(const uint16_t* rgb,
uint8_t* u, uint8_t* v, int width);
+// utilities for accurate RGB->YUV conversion
+extern uint64_t (*WebPSharpYUVUpdateY)(const uint16_t* src, const uint16_t* ref,
+ uint16_t* dst, int len);
+extern void (*WebPSharpYUVUpdateRGB)(const int16_t* src, const int16_t* ref,
+ int16_t* dst, int len);
+extern void (*WebPSharpYUVFilterRow)(const int16_t* A, const int16_t* B,
+ int len,
+ const uint16_t* best_y, uint16_t* out);
+
// Must be called before using the above.
void WebPInitConvertARGBToYUV(void);
@@ -488,6 +509,10 @@ extern int (*WebPExtractAlpha)(const uint8_t* argb, int argb_stride,
int width, int height,
uint8_t* alpha, int alpha_stride);
+// Extract the green values from 32b values in argb[] and pack them into alpha[]
+// (this is the opposite of WebPDispatchAlphaToGreen).
+extern void (*WebPExtractGreen)(const uint32_t* argb, uint8_t* alpha, int size);
+
// Pre-Multiply operation transforms x into x * A / 255 (where x=Y,R,G or B).
// Un-Multiply operation transforms x into x * 255 / A.
diff --git a/thirdparty/libwebp/dsp/enc.c b/thirdparty/libwebp/dsp/enc.c
index db0e9e70ae..f31bc6de18 100644
--- a/thirdparty/libwebp/dsp/enc.c
+++ b/thirdparty/libwebp/dsp/enc.c
@@ -15,7 +15,7 @@
#include <stdlib.h> // for abs()
#include "./dsp.h"
-#include "../enc/vp8enci.h"
+#include "../enc/vp8i_enc.h"
static WEBP_INLINE uint8_t clip_8b(int v) {
return (!(v & ~0xff)) ? v : (v < 0) ? 0 : 255;
@@ -551,6 +551,20 @@ static int SSE4x4(const uint8_t* a, const uint8_t* b) {
return GetSSE(a, b, 4, 4);
}
+static void Mean16x4(const uint8_t* ref, uint32_t dc[4]) {
+ int k, x, y;
+ for (k = 0; k < 4; ++k) {
+ uint32_t avg = 0;
+ for (y = 0; y < 4; ++y) {
+ for (x = 0; x < 4; ++x) {
+ avg += ref[x + y * BPS];
+ }
+ }
+ dc[k] = avg;
+ ref += 4; // go to next 4x4 block.
+ }
+}
+
//------------------------------------------------------------------------------
// Texture distortion
//
@@ -656,32 +670,6 @@ static int Quantize2Blocks(int16_t in[32], int16_t out[32],
return nz;
}
-static int QuantizeBlockWHT(int16_t in[16], int16_t out[16],
- const VP8Matrix* const mtx) {
- int n, last = -1;
- for (n = 0; n < 16; ++n) {
- const int j = kZigzag[n];
- const int sign = (in[j] < 0);
- const uint32_t coeff = sign ? -in[j] : in[j];
- assert(mtx->sharpen_[j] == 0);
- if (coeff > mtx->zthresh_[j]) {
- const uint32_t Q = mtx->q_[j];
- const uint32_t iQ = mtx->iq_[j];
- const uint32_t B = mtx->bias_[j];
- int level = QUANTDIV(coeff, iQ, B);
- if (level > MAX_LEVEL) level = MAX_LEVEL;
- if (sign) level = -level;
- in[j] = level * (int)Q;
- out[n] = level;
- if (level) last = n;
- } else {
- out[n] = 0;
- in[j] = 0;
- }
- }
- return (last >= 0);
-}
-
//------------------------------------------------------------------------------
// Block copy
@@ -703,11 +691,51 @@ static void Copy16x8(const uint8_t* src, uint8_t* dst) {
}
//------------------------------------------------------------------------------
+// SSIM / PSNR
-static void SSIMAccumulateClipped(const uint8_t* src1, int stride1,
- const uint8_t* src2, int stride2,
- int xo, int yo, int W, int H,
- VP8DistoStats* const stats) {
+// hat-shaped filter. Sum of coefficients is equal to 16.
+static const uint32_t kWeight[2 * VP8_SSIM_KERNEL + 1] = {
+ 1, 2, 3, 4, 3, 2, 1
+};
+static const uint32_t kWeightSum = 16 * 16; // sum{kWeight}^2
+
+static WEBP_INLINE double SSIMCalculation(
+ const VP8DistoStats* const stats, uint32_t N /*num samples*/) {
+ const uint32_t w2 = N * N;
+ const uint32_t C1 = 20 * w2;
+ const uint32_t C2 = 60 * w2;
+ const uint32_t C3 = 8 * 8 * w2; // 'dark' limit ~= 6
+ const uint64_t xmxm = (uint64_t)stats->xm * stats->xm;
+ const uint64_t ymym = (uint64_t)stats->ym * stats->ym;
+ if (xmxm + ymym >= C3) {
+ const int64_t xmym = (int64_t)stats->xm * stats->ym;
+ const int64_t sxy = (int64_t)stats->xym * N - xmym; // can be negative
+ const uint64_t sxx = (uint64_t)stats->xxm * N - xmxm;
+ const uint64_t syy = (uint64_t)stats->yym * N - ymym;
+ // we descale by 8 to prevent overflow during the fnum/fden multiply.
+ const uint64_t num_S = (2 * (uint64_t)(sxy < 0 ? 0 : sxy) + C2) >> 8;
+ const uint64_t den_S = (sxx + syy + C2) >> 8;
+ const uint64_t fnum = (2 * xmym + C1) * num_S;
+ const uint64_t fden = (xmxm + ymym + C1) * den_S;
+ const double r = (double)fnum / fden;
+ assert(r >= 0. && r <= 1.0);
+ return r;
+ }
+ return 1.; // area is too dark to contribute meaningfully
+}
+
+double VP8SSIMFromStats(const VP8DistoStats* const stats) {
+ return SSIMCalculation(stats, kWeightSum);
+}
+
+double VP8SSIMFromStatsClipped(const VP8DistoStats* const stats) {
+ return SSIMCalculation(stats, stats->w);
+}
+
+static double SSIMGetClipped_C(const uint8_t* src1, int stride1,
+ const uint8_t* src2, int stride2,
+ int xo, int yo, int W, int H) {
+ VP8DistoStats stats = { 0, 0, 0, 0, 0, 0 };
const int ymin = (yo - VP8_SSIM_KERNEL < 0) ? 0 : yo - VP8_SSIM_KERNEL;
const int ymax = (yo + VP8_SSIM_KERNEL > H - 1) ? H - 1
: yo + VP8_SSIM_KERNEL;
@@ -719,38 +747,61 @@ static void SSIMAccumulateClipped(const uint8_t* src1, int stride1,
src2 += ymin * stride2;
for (y = ymin; y <= ymax; ++y, src1 += stride1, src2 += stride2) {
for (x = xmin; x <= xmax; ++x) {
- const int s1 = src1[x];
- const int s2 = src2[x];
- stats->w += 1;
- stats->xm += s1;
- stats->ym += s2;
- stats->xxm += s1 * s1;
- stats->xym += s1 * s2;
- stats->yym += s2 * s2;
+ const uint32_t w = kWeight[VP8_SSIM_KERNEL + x - xo]
+ * kWeight[VP8_SSIM_KERNEL + y - yo];
+ const uint32_t s1 = src1[x];
+ const uint32_t s2 = src2[x];
+ stats.w += w;
+ stats.xm += w * s1;
+ stats.ym += w * s2;
+ stats.xxm += w * s1 * s1;
+ stats.xym += w * s1 * s2;
+ stats.yym += w * s2 * s2;
}
}
+ return VP8SSIMFromStatsClipped(&stats);
}
-static void SSIMAccumulate(const uint8_t* src1, int stride1,
- const uint8_t* src2, int stride2,
- VP8DistoStats* const stats) {
+static double SSIMGet_C(const uint8_t* src1, int stride1,
+ const uint8_t* src2, int stride2) {
+ VP8DistoStats stats = { 0, 0, 0, 0, 0, 0 };
int x, y;
for (y = 0; y <= 2 * VP8_SSIM_KERNEL; ++y, src1 += stride1, src2 += stride2) {
for (x = 0; x <= 2 * VP8_SSIM_KERNEL; ++x) {
- const int s1 = src1[x];
- const int s2 = src2[x];
- stats->w += 1;
- stats->xm += s1;
- stats->ym += s2;
- stats->xxm += s1 * s1;
- stats->xym += s1 * s2;
- stats->yym += s2 * s2;
+ const uint32_t w = kWeight[x] * kWeight[y];
+ const uint32_t s1 = src1[x];
+ const uint32_t s2 = src2[x];
+ stats.xm += w * s1;
+ stats.ym += w * s2;
+ stats.xxm += w * s1 * s1;
+ stats.xym += w * s1 * s2;
+ stats.yym += w * s2 * s2;
}
}
+ return VP8SSIMFromStats(&stats);
+}
+
+//------------------------------------------------------------------------------
+
+static uint32_t AccumulateSSE(const uint8_t* src1,
+ const uint8_t* src2, int len) {
+ int i;
+ uint32_t sse2 = 0;
+ assert(len <= 65535); // to ensure that accumulation fits within uint32_t
+ for (i = 0; i < len; ++i) {
+ const int32_t diff = src1[i] - src2[i];
+ sse2 += diff * diff;
+ }
+ return sse2;
}
-VP8SSIMAccumulateFunc VP8SSIMAccumulate;
-VP8SSIMAccumulateClippedFunc VP8SSIMAccumulateClipped;
+//------------------------------------------------------------------------------
+
+VP8SSIMGetFunc VP8SSIMGet;
+VP8SSIMGetClippedFunc VP8SSIMGetClipped;
+VP8AccumulateSSEFunc VP8AccumulateSSE;
+
+extern void VP8SSIMDspInitSSE2(void);
static volatile VP8CPUInfo ssim_last_cpuinfo_used =
(VP8CPUInfo)&ssim_last_cpuinfo_used;
@@ -758,8 +809,17 @@ static volatile VP8CPUInfo ssim_last_cpuinfo_used =
WEBP_TSAN_IGNORE_FUNCTION void VP8SSIMDspInit(void) {
if (ssim_last_cpuinfo_used == VP8GetCPUInfo) return;
- VP8SSIMAccumulate = SSIMAccumulate;
- VP8SSIMAccumulateClipped = SSIMAccumulateClipped;
+ VP8SSIMGetClipped = SSIMGetClipped_C;
+ VP8SSIMGet = SSIMGet_C;
+
+ VP8AccumulateSSE = AccumulateSSE;
+ if (VP8GetCPUInfo != NULL) {
+#if defined(WEBP_USE_SSE2)
+ if (VP8GetCPUInfo(kSSE2)) {
+ VP8SSIMDspInitSSE2();
+ }
+#endif
+ }
ssim_last_cpuinfo_used = VP8GetCPUInfo;
}
@@ -783,6 +843,7 @@ VP8Metric VP8SSE16x8;
VP8Metric VP8SSE4x4;
VP8WMetric VP8TDisto4x4;
VP8WMetric VP8TDisto16x16;
+VP8MeanMetric VP8Mean16x4;
VP8QuantizeBlock VP8EncQuantizeBlock;
VP8Quantize2Blocks VP8EncQuantize2Blocks;
VP8QuantizeBlockWHT VP8EncQuantizeBlockWHT;
@@ -795,6 +856,7 @@ extern void VP8EncDspInitAVX2(void);
extern void VP8EncDspInitNEON(void);
extern void VP8EncDspInitMIPS32(void);
extern void VP8EncDspInitMIPSdspR2(void);
+extern void VP8EncDspInitMSA(void);
static volatile VP8CPUInfo enc_last_cpuinfo_used =
(VP8CPUInfo)&enc_last_cpuinfo_used;
@@ -820,9 +882,10 @@ WEBP_TSAN_IGNORE_FUNCTION void VP8EncDspInit(void) {
VP8SSE4x4 = SSE4x4;
VP8TDisto4x4 = Disto4x4;
VP8TDisto16x16 = Disto16x16;
+ VP8Mean16x4 = Mean16x4;
VP8EncQuantizeBlock = QuantizeBlock;
VP8EncQuantize2Blocks = Quantize2Blocks;
- VP8EncQuantizeBlockWHT = QuantizeBlockWHT;
+ VP8EncQuantizeBlockWHT = QuantizeBlock;
VP8Copy4x4 = Copy4x4;
VP8Copy16x8 = Copy16x8;
@@ -858,6 +921,11 @@ WEBP_TSAN_IGNORE_FUNCTION void VP8EncDspInit(void) {
VP8EncDspInitMIPSdspR2();
}
#endif
+#if defined(WEBP_USE_MSA)
+ if (VP8GetCPUInfo(kMSA)) {
+ VP8EncDspInitMSA();
+ }
+#endif
}
enc_last_cpuinfo_used = VP8GetCPUInfo;
}
diff --git a/thirdparty/libwebp/dsp/enc_mips32.c b/thirdparty/libwebp/dsp/enc_mips32.c
index fd10143de9..752b14daf6 100644
--- a/thirdparty/libwebp/dsp/enc_mips32.c
+++ b/thirdparty/libwebp/dsp/enc_mips32.c
@@ -18,8 +18,8 @@
#if defined(WEBP_USE_MIPS32)
#include "./mips_macro.h"
-#include "../enc/vp8enci.h"
-#include "../enc/cost.h"
+#include "../enc/vp8i_enc.h"
+#include "../enc/cost_enc.h"
static const int kC1 = 20091 + (1 << 16);
static const int kC2 = 35468;
diff --git a/thirdparty/libwebp/dsp/enc_mips_dsp_r2.c b/thirdparty/libwebp/dsp/enc_mips_dsp_r2.c
index 7ab96f6800..6c8c1c6acd 100644
--- a/thirdparty/libwebp/dsp/enc_mips_dsp_r2.c
+++ b/thirdparty/libwebp/dsp/enc_mips_dsp_r2.c
@@ -17,8 +17,8 @@
#if defined(WEBP_USE_MIPS_DSP_R2)
#include "./mips_macro.h"
-#include "../enc/cost.h"
-#include "../enc/vp8enci.h"
+#include "../enc/cost_enc.h"
+#include "../enc/vp8i_enc.h"
static const int kC1 = 20091 + (1 << 16);
static const int kC2 = 35468;
diff --git a/thirdparty/libwebp/dsp/enc_msa.c b/thirdparty/libwebp/dsp/enc_msa.c
new file mode 100644
index 0000000000..909b46d5d9
--- /dev/null
+++ b/thirdparty/libwebp/dsp/enc_msa.c
@@ -0,0 +1,892 @@
+// Copyright 2016 Google Inc. All Rights Reserved.
+//
+// Use of this source code is governed by a BSD-style license
+// that can be found in the COPYING file in the root of the source
+// tree. An additional intellectual property rights grant can be found
+// in the file PATENTS. All contributing project authors may
+// be found in the AUTHORS file in the root of the source tree.
+// -----------------------------------------------------------------------------
+//
+// MSA version of encoder dsp functions.
+//
+// Author: Prashant Patil (prashant.patil@imgtec.com)
+
+#include "./dsp.h"
+
+#if defined(WEBP_USE_MSA)
+
+#include <stdlib.h>
+#include "./msa_macro.h"
+#include "../enc/vp8i_enc.h"
+
+//------------------------------------------------------------------------------
+// Transforms
+
+#define IDCT_1D_W(in0, in1, in2, in3, out0, out1, out2, out3) do { \
+ v4i32 a1_m, b1_m, c1_m, d1_m; \
+ const v4i32 cospi8sqrt2minus1 = __msa_fill_w(20091); \
+ const v4i32 sinpi8sqrt2 = __msa_fill_w(35468); \
+ v4i32 c_tmp1_m = in1 * sinpi8sqrt2; \
+ v4i32 c_tmp2_m = in3 * cospi8sqrt2minus1; \
+ v4i32 d_tmp1_m = in1 * cospi8sqrt2minus1; \
+ v4i32 d_tmp2_m = in3 * sinpi8sqrt2; \
+ \
+ ADDSUB2(in0, in2, a1_m, b1_m); \
+ SRAI_W2_SW(c_tmp1_m, c_tmp2_m, 16); \
+ c_tmp2_m = c_tmp2_m + in3; \
+ c1_m = c_tmp1_m - c_tmp2_m; \
+ SRAI_W2_SW(d_tmp1_m, d_tmp2_m, 16); \
+ d_tmp1_m = d_tmp1_m + in1; \
+ d1_m = d_tmp1_m + d_tmp2_m; \
+ BUTTERFLY_4(a1_m, b1_m, c1_m, d1_m, out0, out1, out2, out3); \
+} while (0)
+
+static WEBP_INLINE void ITransformOne(const uint8_t* ref, const int16_t* in,
+ uint8_t* dst) {
+ v8i16 input0, input1;
+ v4i32 in0, in1, in2, in3, hz0, hz1, hz2, hz3, vt0, vt1, vt2, vt3;
+ v4i32 res0, res1, res2, res3;
+ v16i8 dest0, dest1, dest2, dest3;
+ const v16i8 zero = { 0 };
+
+ LD_SH2(in, 8, input0, input1);
+ UNPCK_SH_SW(input0, in0, in1);
+ UNPCK_SH_SW(input1, in2, in3);
+ IDCT_1D_W(in0, in1, in2, in3, hz0, hz1, hz2, hz3);
+ TRANSPOSE4x4_SW_SW(hz0, hz1, hz2, hz3, hz0, hz1, hz2, hz3);
+ IDCT_1D_W(hz0, hz1, hz2, hz3, vt0, vt1, vt2, vt3);
+ SRARI_W4_SW(vt0, vt1, vt2, vt3, 3);
+ TRANSPOSE4x4_SW_SW(vt0, vt1, vt2, vt3, vt0, vt1, vt2, vt3);
+ LD_SB4(ref, BPS, dest0, dest1, dest2, dest3);
+ ILVR_B4_SW(zero, dest0, zero, dest1, zero, dest2, zero, dest3,
+ res0, res1, res2, res3);
+ ILVR_H4_SW(zero, res0, zero, res1, zero, res2, zero, res3,
+ res0, res1, res2, res3);
+ ADD4(res0, vt0, res1, vt1, res2, vt2, res3, vt3, res0, res1, res2, res3);
+ CLIP_SW4_0_255(res0, res1, res2, res3);
+ PCKEV_B2_SW(res0, res1, res2, res3, vt0, vt1);
+ res0 = (v4i32)__msa_pckev_b((v16i8)vt0, (v16i8)vt1);
+ ST4x4_UB(res0, res0, 3, 2, 1, 0, dst, BPS);
+}
+
+static void ITransform(const uint8_t* ref, const int16_t* in, uint8_t* dst,
+ int do_two) {
+ ITransformOne(ref, in, dst);
+ if (do_two) {
+ ITransformOne(ref + 4, in + 16, dst + 4);
+ }
+}
+
+static void FTransform(const uint8_t* src, const uint8_t* ref, int16_t* out) {
+ uint64_t out0, out1, out2, out3;
+ uint32_t in0, in1, in2, in3;
+ v4i32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5;
+ v8i16 t0, t1, t2, t3;
+ v16u8 srcl0, srcl1, src0, src1;
+ const v8i16 mask0 = { 0, 4, 8, 12, 1, 5, 9, 13 };
+ const v8i16 mask1 = { 3, 7, 11, 15, 2, 6, 10, 14 };
+ const v8i16 mask2 = { 4, 0, 5, 1, 6, 2, 7, 3 };
+ const v8i16 mask3 = { 0, 4, 1, 5, 2, 6, 3, 7 };
+ const v8i16 cnst0 = { 2217, -5352, 2217, -5352, 2217, -5352, 2217, -5352 };
+ const v8i16 cnst1 = { 5352, 2217, 5352, 2217, 5352, 2217, 5352, 2217 };
+
+ LW4(src, BPS, in0, in1, in2, in3);
+ INSERT_W4_UB(in0, in1, in2, in3, src0);
+ LW4(ref, BPS, in0, in1, in2, in3);
+ INSERT_W4_UB(in0, in1, in2, in3, src1);
+ ILVRL_B2_UB(src0, src1, srcl0, srcl1);
+ HSUB_UB2_SH(srcl0, srcl1, t0, t1);
+ VSHF_H2_SH(t0, t1, t0, t1, mask0, mask1, t2, t3);
+ ADDSUB2(t2, t3, t0, t1);
+ t0 = SRLI_H(t0, 3);
+ VSHF_H2_SH(t0, t0, t1, t1, mask2, mask3, t3, t2);
+ tmp0 = __msa_hadd_s_w(t3, t3);
+ tmp2 = __msa_hsub_s_w(t3, t3);
+ FILL_W2_SW(1812, 937, tmp1, tmp3);
+ DPADD_SH2_SW(t2, t2, cnst0, cnst1, tmp3, tmp1);
+ SRAI_W2_SW(tmp1, tmp3, 9);
+ PCKEV_H2_SH(tmp1, tmp0, tmp3, tmp2, t0, t1);
+ VSHF_H2_SH(t0, t1, t0, t1, mask0, mask1, t2, t3);
+ ADDSUB2(t2, t3, t0, t1);
+ VSHF_H2_SH(t0, t0, t1, t1, mask2, mask3, t3, t2);
+ tmp0 = __msa_hadd_s_w(t3, t3);
+ tmp2 = __msa_hsub_s_w(t3, t3);
+ ADDVI_W2_SW(tmp0, 7, tmp2, 7, tmp0, tmp2);
+ SRAI_W2_SW(tmp0, tmp2, 4);
+ FILL_W2_SW(12000, 51000, tmp1, tmp3);
+ DPADD_SH2_SW(t2, t2, cnst0, cnst1, tmp3, tmp1);
+ SRAI_W2_SW(tmp1, tmp3, 16);
+ UNPCK_R_SH_SW(t1, tmp4);
+ tmp5 = __msa_ceqi_w(tmp4, 0);
+ tmp4 = (v4i32)__msa_nor_v((v16u8)tmp5, (v16u8)tmp5);
+ tmp5 = __msa_fill_w(1);
+ tmp5 = (v4i32)__msa_and_v((v16u8)tmp5, (v16u8)tmp4);
+ tmp1 += tmp5;
+ PCKEV_H2_SH(tmp1, tmp0, tmp3, tmp2, t0, t1);
+ out0 = __msa_copy_s_d((v2i64)t0, 0);
+ out1 = __msa_copy_s_d((v2i64)t0, 1);
+ out2 = __msa_copy_s_d((v2i64)t1, 0);
+ out3 = __msa_copy_s_d((v2i64)t1, 1);
+ SD4(out0, out1, out2, out3, out, 8);
+}
+
+static void FTransformWHT(const int16_t* in, int16_t* out) {
+ v8i16 in0 = { 0 };
+ v8i16 in1 = { 0 };
+ v8i16 tmp0, tmp1, tmp2, tmp3;
+ v8i16 out0, out1;
+ const v8i16 mask0 = { 0, 1, 2, 3, 8, 9, 10, 11 };
+ const v8i16 mask1 = { 4, 5, 6, 7, 12, 13, 14, 15 };
+ const v8i16 mask2 = { 0, 4, 8, 12, 1, 5, 9, 13 };
+ const v8i16 mask3 = { 3, 7, 11, 15, 2, 6, 10, 14 };
+
+ in0 = __msa_insert_h(in0, 0, in[ 0]);
+ in0 = __msa_insert_h(in0, 1, in[ 64]);
+ in0 = __msa_insert_h(in0, 2, in[128]);
+ in0 = __msa_insert_h(in0, 3, in[192]);
+ in0 = __msa_insert_h(in0, 4, in[ 16]);
+ in0 = __msa_insert_h(in0, 5, in[ 80]);
+ in0 = __msa_insert_h(in0, 6, in[144]);
+ in0 = __msa_insert_h(in0, 7, in[208]);
+ in1 = __msa_insert_h(in1, 0, in[ 48]);
+ in1 = __msa_insert_h(in1, 1, in[112]);
+ in1 = __msa_insert_h(in1, 2, in[176]);
+ in1 = __msa_insert_h(in1, 3, in[240]);
+ in1 = __msa_insert_h(in1, 4, in[ 32]);
+ in1 = __msa_insert_h(in1, 5, in[ 96]);
+ in1 = __msa_insert_h(in1, 6, in[160]);
+ in1 = __msa_insert_h(in1, 7, in[224]);
+ ADDSUB2(in0, in1, tmp0, tmp1);
+ VSHF_H2_SH(tmp0, tmp1, tmp0, tmp1, mask0, mask1, tmp2, tmp3);
+ ADDSUB2(tmp2, tmp3, tmp0, tmp1);
+ VSHF_H2_SH(tmp0, tmp1, tmp0, tmp1, mask2, mask3, in0, in1);
+ ADDSUB2(in0, in1, tmp0, tmp1);
+ VSHF_H2_SH(tmp0, tmp1, tmp0, tmp1, mask0, mask1, tmp2, tmp3);
+ ADDSUB2(tmp2, tmp3, out0, out1);
+ SRAI_H2_SH(out0, out1, 1);
+ ST_SH2(out0, out1, out, 8);
+}
+
+static int TTransform(const uint8_t* in, const uint16_t* w) {
+ int sum;
+ uint32_t in0_m, in1_m, in2_m, in3_m;
+ v16i8 src0;
+ v8i16 in0, in1, tmp0, tmp1, tmp2, tmp3;
+ v4i32 dst0, dst1;
+ const v16i8 zero = { 0 };
+ const v8i16 mask0 = { 0, 1, 2, 3, 8, 9, 10, 11 };
+ const v8i16 mask1 = { 4, 5, 6, 7, 12, 13, 14, 15 };
+ const v8i16 mask2 = { 0, 4, 8, 12, 1, 5, 9, 13 };
+ const v8i16 mask3 = { 3, 7, 11, 15, 2, 6, 10, 14 };
+
+ LW4(in, BPS, in0_m, in1_m, in2_m, in3_m);
+ INSERT_W4_SB(in0_m, in1_m, in2_m, in3_m, src0);
+ ILVRL_B2_SH(zero, src0, tmp0, tmp1);
+ VSHF_H2_SH(tmp0, tmp1, tmp0, tmp1, mask2, mask3, in0, in1);
+ ADDSUB2(in0, in1, tmp0, tmp1);
+ VSHF_H2_SH(tmp0, tmp1, tmp0, tmp1, mask0, mask1, tmp2, tmp3);
+ ADDSUB2(tmp2, tmp3, tmp0, tmp1);
+ VSHF_H2_SH(tmp0, tmp1, tmp0, tmp1, mask2, mask3, in0, in1);
+ ADDSUB2(in0, in1, tmp0, tmp1);
+ VSHF_H2_SH(tmp0, tmp1, tmp0, tmp1, mask0, mask1, tmp2, tmp3);
+ ADDSUB2(tmp2, tmp3, tmp0, tmp1);
+ tmp0 = __msa_add_a_h(tmp0, (v8i16)zero);
+ tmp1 = __msa_add_a_h(tmp1, (v8i16)zero);
+ LD_SH2(w, 8, tmp2, tmp3);
+ DOTP_SH2_SW(tmp0, tmp1, tmp2, tmp3, dst0, dst1);
+ dst0 = dst0 + dst1;
+ sum = HADD_SW_S32(dst0);
+ return sum;
+}
+
+static int Disto4x4(const uint8_t* const a, const uint8_t* const b,
+ const uint16_t* const w) {
+ const int sum1 = TTransform(a, w);
+ const int sum2 = TTransform(b, w);
+ return abs(sum2 - sum1) >> 5;
+}
+
+static int Disto16x16(const uint8_t* const a, const uint8_t* const b,
+ const uint16_t* const w) {
+ int D = 0;
+ int x, y;
+ for (y = 0; y < 16 * BPS; y += 4 * BPS) {
+ for (x = 0; x < 16; x += 4) {
+ D += Disto4x4(a + x + y, b + x + y, w);
+ }
+ }
+ return D;
+}
+
+//------------------------------------------------------------------------------
+// Histogram
+
+static void CollectHistogram(const uint8_t* ref, const uint8_t* pred,
+ int start_block, int end_block,
+ VP8Histogram* const histo) {
+ int j;
+ int distribution[MAX_COEFF_THRESH + 1] = { 0 };
+ for (j = start_block; j < end_block; ++j) {
+ int16_t out[16];
+ VP8FTransform(ref + VP8DspScan[j], pred + VP8DspScan[j], out);
+ {
+ int k;
+ v8i16 coeff0, coeff1;
+ const v8i16 zero = { 0 };
+ const v8i16 max_coeff_thr = __msa_ldi_h(MAX_COEFF_THRESH);
+ LD_SH2(&out[0], 8, coeff0, coeff1);
+ coeff0 = __msa_add_a_h(coeff0, zero);
+ coeff1 = __msa_add_a_h(coeff1, zero);
+ SRAI_H2_SH(coeff0, coeff1, 3);
+ coeff0 = __msa_min_s_h(coeff0, max_coeff_thr);
+ coeff1 = __msa_min_s_h(coeff1, max_coeff_thr);
+ ST_SH2(coeff0, coeff1, &out[0], 8);
+ for (k = 0; k < 16; ++k) {
+ ++distribution[out[k]];
+ }
+ }
+ }
+ VP8SetHistogramData(distribution, histo);
+}
+
+//------------------------------------------------------------------------------
+// Intra predictions
+
+// luma 4x4 prediction
+
+#define DST(x, y) dst[(x) + (y) * BPS]
+#define AVG3(a, b, c) (((a) + 2 * (b) + (c) + 2) >> 2)
+#define AVG2(a, b) (((a) + (b) + 1) >> 1)
+
+static WEBP_INLINE void VE4(uint8_t* dst, const uint8_t* top) { // vertical
+ const uint64_t val_m = LD(top - 1);
+ const v16u8 A = (v16u8)__msa_insert_d((v2i64)A, 0, val_m);
+ const v16u8 B = SLDI_UB(A, A, 1);
+ const v16u8 C = SLDI_UB(A, A, 2);
+ const v16u8 AC = __msa_ave_u_b(A, C);
+ const v16u8 B2 = __msa_ave_u_b(B, B);
+ const v16u8 R = __msa_aver_u_b(AC, B2);
+ const uint32_t out = __msa_copy_s_w((v4i32)R, 0);
+ SW4(out, out, out, out, dst, BPS);
+}
+
+static WEBP_INLINE void HE4(uint8_t* dst, const uint8_t* top) { // horizontal
+ const int X = top[-1];
+ const int I = top[-2];
+ const int J = top[-3];
+ const int K = top[-4];
+ const int L = top[-5];
+ WebPUint32ToMem(dst + 0 * BPS, 0x01010101U * AVG3(X, I, J));
+ WebPUint32ToMem(dst + 1 * BPS, 0x01010101U * AVG3(I, J, K));
+ WebPUint32ToMem(dst + 2 * BPS, 0x01010101U * AVG3(J, K, L));
+ WebPUint32ToMem(dst + 3 * BPS, 0x01010101U * AVG3(K, L, L));
+}
+
+static WEBP_INLINE void DC4(uint8_t* dst, const uint8_t* top) {
+ uint32_t dc = 4;
+ int i;
+ for (i = 0; i < 4; ++i) dc += top[i] + top[-5 + i];
+ dc >>= 3;
+ dc = dc | (dc << 8) | (dc << 16) | (dc << 24);
+ SW4(dc, dc, dc, dc, dst, BPS);
+}
+
+static WEBP_INLINE void RD4(uint8_t* dst, const uint8_t* top) {
+ const uint64_t val_m = LD(top - 5);
+ const v16u8 A1 = (v16u8)__msa_insert_d((v2i64)A1, 0, val_m);
+ const v16u8 A = (v16u8)__msa_insert_b((v16i8)A1, 8, top[3]);
+ const v16u8 B = SLDI_UB(A, A, 1);
+ const v16u8 C = SLDI_UB(A, A, 2);
+ const v16u8 AC = __msa_ave_u_b(A, C);
+ const v16u8 B2 = __msa_ave_u_b(B, B);
+ const v16u8 R0 = __msa_aver_u_b(AC, B2);
+ const v16u8 R1 = SLDI_UB(R0, R0, 1);
+ const v16u8 R2 = SLDI_UB(R1, R1, 1);
+ const v16u8 R3 = SLDI_UB(R2, R2, 1);
+ const uint32_t val0 = __msa_copy_s_w((v4i32)R0, 0);
+ const uint32_t val1 = __msa_copy_s_w((v4i32)R1, 0);
+ const uint32_t val2 = __msa_copy_s_w((v4i32)R2, 0);
+ const uint32_t val3 = __msa_copy_s_w((v4i32)R3, 0);
+ SW4(val3, val2, val1, val0, dst, BPS);
+}
+
+static WEBP_INLINE void LD4(uint8_t* dst, const uint8_t* top) {
+ const uint64_t val_m = LD(top);
+ const v16u8 A = (v16u8)__msa_insert_d((v2i64)A, 0, val_m);
+ const v16u8 B = SLDI_UB(A, A, 1);
+ const v16u8 C1 = SLDI_UB(A, A, 2);
+ const v16u8 C = (v16u8)__msa_insert_b((v16i8)C1, 6, top[7]);
+ const v16u8 AC = __msa_ave_u_b(A, C);
+ const v16u8 B2 = __msa_ave_u_b(B, B);
+ const v16u8 R0 = __msa_aver_u_b(AC, B2);
+ const v16u8 R1 = SLDI_UB(R0, R0, 1);
+ const v16u8 R2 = SLDI_UB(R1, R1, 1);
+ const v16u8 R3 = SLDI_UB(R2, R2, 1);
+ const uint32_t val0 = __msa_copy_s_w((v4i32)R0, 0);
+ const uint32_t val1 = __msa_copy_s_w((v4i32)R1, 0);
+ const uint32_t val2 = __msa_copy_s_w((v4i32)R2, 0);
+ const uint32_t val3 = __msa_copy_s_w((v4i32)R3, 0);
+ SW4(val0, val1, val2, val3, dst, BPS);
+}
+
+static WEBP_INLINE void VR4(uint8_t* dst, const uint8_t* top) {
+ const int X = top[-1];
+ const int I = top[-2];
+ const int J = top[-3];
+ const int K = top[-4];
+ const int A = top[0];
+ const int B = top[1];
+ const int C = top[2];
+ const int D = top[3];
+ DST(0, 0) = DST(1, 2) = AVG2(X, A);
+ DST(1, 0) = DST(2, 2) = AVG2(A, B);
+ DST(2, 0) = DST(3, 2) = AVG2(B, C);
+ DST(3, 0) = AVG2(C, D);
+ DST(0, 3) = AVG3(K, J, I);
+ DST(0, 2) = AVG3(J, I, X);
+ DST(0, 1) = DST(1, 3) = AVG3(I, X, A);
+ DST(1, 1) = DST(2, 3) = AVG3(X, A, B);
+ DST(2, 1) = DST(3, 3) = AVG3(A, B, C);
+ DST(3, 1) = AVG3(B, C, D);
+}
+
+static WEBP_INLINE void VL4(uint8_t* dst, const uint8_t* top) {
+ const int A = top[0];
+ const int B = top[1];
+ const int C = top[2];
+ const int D = top[3];
+ const int E = top[4];
+ const int F = top[5];
+ const int G = top[6];
+ const int H = top[7];
+ DST(0, 0) = AVG2(A, B);
+ DST(1, 0) = DST(0, 2) = AVG2(B, C);
+ DST(2, 0) = DST(1, 2) = AVG2(C, D);
+ DST(3, 0) = DST(2, 2) = AVG2(D, E);
+ DST(0, 1) = AVG3(A, B, C);
+ DST(1, 1) = DST(0, 3) = AVG3(B, C, D);
+ DST(2, 1) = DST(1, 3) = AVG3(C, D, E);
+ DST(3, 1) = DST(2, 3) = AVG3(D, E, F);
+ DST(3, 2) = AVG3(E, F, G);
+ DST(3, 3) = AVG3(F, G, H);
+}
+
+static WEBP_INLINE void HU4(uint8_t* dst, const uint8_t* top) {
+ const int I = top[-2];
+ const int J = top[-3];
+ const int K = top[-4];
+ const int L = top[-5];
+ DST(0, 0) = AVG2(I, J);
+ DST(2, 0) = DST(0, 1) = AVG2(J, K);
+ DST(2, 1) = DST(0, 2) = AVG2(K, L);
+ DST(1, 0) = AVG3(I, J, K);
+ DST(3, 0) = DST(1, 1) = AVG3(J, K, L);
+ DST(3, 1) = DST(1, 2) = AVG3(K, L, L);
+ DST(3, 2) = DST(2, 2) =
+ DST(0, 3) = DST(1, 3) = DST(2, 3) = DST(3, 3) = L;
+}
+
+static WEBP_INLINE void HD4(uint8_t* dst, const uint8_t* top) {
+ const int X = top[-1];
+ const int I = top[-2];
+ const int J = top[-3];
+ const int K = top[-4];
+ const int L = top[-5];
+ const int A = top[0];
+ const int B = top[1];
+ const int C = top[2];
+ DST(0, 0) = DST(2, 1) = AVG2(I, X);
+ DST(0, 1) = DST(2, 2) = AVG2(J, I);
+ DST(0, 2) = DST(2, 3) = AVG2(K, J);
+ DST(0, 3) = AVG2(L, K);
+ DST(3, 0) = AVG3(A, B, C);
+ DST(2, 0) = AVG3(X, A, B);
+ DST(1, 0) = DST(3, 1) = AVG3(I, X, A);
+ DST(1, 1) = DST(3, 2) = AVG3(J, I, X);
+ DST(1, 2) = DST(3, 3) = AVG3(K, J, I);
+ DST(1, 3) = AVG3(L, K, J);
+}
+
+static WEBP_INLINE void TM4(uint8_t* dst, const uint8_t* top) {
+ const v16i8 zero = { 0 };
+ const v8i16 TL = (v8i16)__msa_fill_h(top[-1]);
+ const v8i16 L0 = (v8i16)__msa_fill_h(top[-2]);
+ const v8i16 L1 = (v8i16)__msa_fill_h(top[-3]);
+ const v8i16 L2 = (v8i16)__msa_fill_h(top[-4]);
+ const v8i16 L3 = (v8i16)__msa_fill_h(top[-5]);
+ const v16u8 T1 = LD_UB(top);
+ const v8i16 T = (v8i16)__msa_ilvr_b(zero, (v16i8)T1);
+ const v8i16 d = T - TL;
+ v8i16 r0, r1, r2, r3;
+ ADD4(d, L0, d, L1, d, L2, d, L3, r0, r1, r2, r3);
+ CLIP_SH4_0_255(r0, r1, r2, r3);
+ PCKEV_ST4x4_UB(r0, r1, r2, r3, dst, BPS);
+}
+
+#undef DST
+#undef AVG3
+#undef AVG2
+
+static void Intra4Preds(uint8_t* dst, const uint8_t* top) {
+ DC4(I4DC4 + dst, top);
+ TM4(I4TM4 + dst, top);
+ VE4(I4VE4 + dst, top);
+ HE4(I4HE4 + dst, top);
+ RD4(I4RD4 + dst, top);
+ VR4(I4VR4 + dst, top);
+ LD4(I4LD4 + dst, top);
+ VL4(I4VL4 + dst, top);
+ HD4(I4HD4 + dst, top);
+ HU4(I4HU4 + dst, top);
+}
+
+// luma 16x16 prediction
+
+#define STORE16x16(out, dst) do { \
+ ST_UB8(out, out, out, out, out, out, out, out, dst + 0 * BPS, BPS); \
+ ST_UB8(out, out, out, out, out, out, out, out, dst + 8 * BPS, BPS); \
+} while (0)
+
+static WEBP_INLINE void VerticalPred16x16(uint8_t* dst, const uint8_t* top) {
+ if (top != NULL) {
+ const v16u8 out = LD_UB(top);
+ STORE16x16(out, dst);
+ } else {
+ const v16u8 out = (v16u8)__msa_fill_b(0x7f);
+ STORE16x16(out, dst);
+ }
+}
+
+static WEBP_INLINE void HorizontalPred16x16(uint8_t* dst,
+ const uint8_t* left) {
+ if (left != NULL) {
+ int j;
+ for (j = 0; j < 16; j += 4) {
+ const v16u8 L0 = (v16u8)__msa_fill_b(left[0]);
+ const v16u8 L1 = (v16u8)__msa_fill_b(left[1]);
+ const v16u8 L2 = (v16u8)__msa_fill_b(left[2]);
+ const v16u8 L3 = (v16u8)__msa_fill_b(left[3]);
+ ST_UB4(L0, L1, L2, L3, dst, BPS);
+ dst += 4 * BPS;
+ left += 4;
+ }
+ } else {
+ const v16u8 out = (v16u8)__msa_fill_b(0x81);
+ STORE16x16(out, dst);
+ }
+}
+
+static WEBP_INLINE void TrueMotion16x16(uint8_t* dst, const uint8_t* left,
+ const uint8_t* top) {
+ if (left != NULL) {
+ if (top != NULL) {
+ int j;
+ v8i16 d1, d2;
+ const v16i8 zero = { 0 };
+ const v8i16 TL = (v8i16)__msa_fill_h(left[-1]);
+ const v16u8 T = LD_UB(top);
+ ILVRL_B2_SH(zero, T, d1, d2);
+ SUB2(d1, TL, d2, TL, d1, d2);
+ for (j = 0; j < 16; j += 4) {
+ v16i8 t0, t1, t2, t3;
+ v8i16 r0, r1, r2, r3, r4, r5, r6, r7;
+ const v8i16 L0 = (v8i16)__msa_fill_h(left[j + 0]);
+ const v8i16 L1 = (v8i16)__msa_fill_h(left[j + 1]);
+ const v8i16 L2 = (v8i16)__msa_fill_h(left[j + 2]);
+ const v8i16 L3 = (v8i16)__msa_fill_h(left[j + 3]);
+ ADD4(d1, L0, d1, L1, d1, L2, d1, L3, r0, r1, r2, r3);
+ ADD4(d2, L0, d2, L1, d2, L2, d2, L3, r4, r5, r6, r7);
+ CLIP_SH4_0_255(r0, r1, r2, r3);
+ CLIP_SH4_0_255(r4, r5, r6, r7);
+ PCKEV_B4_SB(r4, r0, r5, r1, r6, r2, r7, r3, t0, t1, t2, t3);
+ ST_SB4(t0, t1, t2, t3, dst, BPS);
+ dst += 4 * BPS;
+ }
+ } else {
+ HorizontalPred16x16(dst, left);
+ }
+ } else {
+ if (top != NULL) {
+ VerticalPred16x16(dst, top);
+ } else {
+ const v16u8 out = (v16u8)__msa_fill_b(0x81);
+ STORE16x16(out, dst);
+ }
+ }
+}
+
+static WEBP_INLINE void DCMode16x16(uint8_t* dst, const uint8_t* left,
+ const uint8_t* top) {
+ int DC;
+ v16u8 out;
+ if (top != NULL && left != NULL) {
+ const v16u8 rtop = LD_UB(top);
+ const v8u16 dctop = __msa_hadd_u_h(rtop, rtop);
+ const v16u8 rleft = LD_UB(left);
+ const v8u16 dcleft = __msa_hadd_u_h(rleft, rleft);
+ const v8u16 dctemp = dctop + dcleft;
+ DC = HADD_UH_U32(dctemp);
+ DC = (DC + 16) >> 5;
+ } else if (left != NULL) { // left but no top
+ const v16u8 rleft = LD_UB(left);
+ const v8u16 dcleft = __msa_hadd_u_h(rleft, rleft);
+ DC = HADD_UH_U32(dcleft);
+ DC = (DC + DC + 16) >> 5;
+ } else if (top != NULL) { // top but no left
+ const v16u8 rtop = LD_UB(top);
+ const v8u16 dctop = __msa_hadd_u_h(rtop, rtop);
+ DC = HADD_UH_U32(dctop);
+ DC = (DC + DC + 16) >> 5;
+ } else { // no top, no left, nothing.
+ DC = 0x80;
+ }
+ out = (v16u8)__msa_fill_b(DC);
+ STORE16x16(out, dst);
+}
+
+static void Intra16Preds(uint8_t* dst,
+ const uint8_t* left, const uint8_t* top) {
+ DCMode16x16(I16DC16 + dst, left, top);
+ VerticalPred16x16(I16VE16 + dst, top);
+ HorizontalPred16x16(I16HE16 + dst, left);
+ TrueMotion16x16(I16TM16 + dst, left, top);
+}
+
+// Chroma 8x8 prediction
+
+#define CALC_DC8(in, out) do { \
+ const v8u16 temp0 = __msa_hadd_u_h(in, in); \
+ const v4u32 temp1 = __msa_hadd_u_w(temp0, temp0); \
+ const v2i64 temp2 = (v2i64)__msa_hadd_u_d(temp1, temp1); \
+ const v2i64 temp3 = __msa_splati_d(temp2, 1); \
+ const v2i64 temp4 = temp3 + temp2; \
+ const v16i8 temp5 = (v16i8)__msa_srari_d(temp4, 4); \
+ const v2i64 temp6 = (v2i64)__msa_splati_b(temp5, 0); \
+ out = __msa_copy_s_d(temp6, 0); \
+} while (0)
+
+#define STORE8x8(out, dst) do { \
+ SD4(out, out, out, out, dst + 0 * BPS, BPS); \
+ SD4(out, out, out, out, dst + 4 * BPS, BPS); \
+} while (0)
+
+static WEBP_INLINE void VerticalPred8x8(uint8_t* dst, const uint8_t* top) {
+ if (top != NULL) {
+ const uint64_t out = LD(top);
+ STORE8x8(out, dst);
+ } else {
+ const uint64_t out = 0x7f7f7f7f7f7f7f7fULL;
+ STORE8x8(out, dst);
+ }
+}
+
+static WEBP_INLINE void HorizontalPred8x8(uint8_t* dst, const uint8_t* left) {
+ if (left != NULL) {
+ int j;
+ for (j = 0; j < 8; j += 4) {
+ const v16u8 L0 = (v16u8)__msa_fill_b(left[0]);
+ const v16u8 L1 = (v16u8)__msa_fill_b(left[1]);
+ const v16u8 L2 = (v16u8)__msa_fill_b(left[2]);
+ const v16u8 L3 = (v16u8)__msa_fill_b(left[3]);
+ const uint64_t out0 = __msa_copy_s_d((v2i64)L0, 0);
+ const uint64_t out1 = __msa_copy_s_d((v2i64)L1, 0);
+ const uint64_t out2 = __msa_copy_s_d((v2i64)L2, 0);
+ const uint64_t out3 = __msa_copy_s_d((v2i64)L3, 0);
+ SD4(out0, out1, out2, out3, dst, BPS);
+ dst += 4 * BPS;
+ left += 4;
+ }
+ } else {
+ const uint64_t out = 0x8181818181818181ULL;
+ STORE8x8(out, dst);
+ }
+}
+
+static WEBP_INLINE void TrueMotion8x8(uint8_t* dst, const uint8_t* left,
+ const uint8_t* top) {
+ if (left != NULL) {
+ if (top != NULL) {
+ int j;
+ const v8i16 TL = (v8i16)__msa_fill_h(left[-1]);
+ const v16u8 T1 = LD_UB(top);
+ const v16i8 zero = { 0 };
+ const v8i16 T = (v8i16)__msa_ilvr_b(zero, (v16i8)T1);
+ const v8i16 d = T - TL;
+ for (j = 0; j < 8; j += 4) {
+ uint64_t out0, out1, out2, out3;
+ v16i8 t0, t1;
+ v8i16 r0 = (v8i16)__msa_fill_h(left[j + 0]);
+ v8i16 r1 = (v8i16)__msa_fill_h(left[j + 1]);
+ v8i16 r2 = (v8i16)__msa_fill_h(left[j + 2]);
+ v8i16 r3 = (v8i16)__msa_fill_h(left[j + 3]);
+ ADD4(d, r0, d, r1, d, r2, d, r3, r0, r1, r2, r3);
+ CLIP_SH4_0_255(r0, r1, r2, r3);
+ PCKEV_B2_SB(r1, r0, r3, r2, t0, t1);
+ out0 = __msa_copy_s_d((v2i64)t0, 0);
+ out1 = __msa_copy_s_d((v2i64)t0, 1);
+ out2 = __msa_copy_s_d((v2i64)t1, 0);
+ out3 = __msa_copy_s_d((v2i64)t1, 1);
+ SD4(out0, out1, out2, out3, dst, BPS);
+ dst += 4 * BPS;
+ }
+ } else {
+ HorizontalPred8x8(dst, left);
+ }
+ } else {
+ if (top != NULL) {
+ VerticalPred8x8(dst, top);
+ } else {
+ const uint64_t out = 0x8181818181818181ULL;
+ STORE8x8(out, dst);
+ }
+ }
+}
+
+static WEBP_INLINE void DCMode8x8(uint8_t* dst, const uint8_t* left,
+ const uint8_t* top) {
+ uint64_t out;
+ v16u8 src;
+ if (top != NULL && left != NULL) {
+ const uint64_t left_m = LD(left);
+ const uint64_t top_m = LD(top);
+ INSERT_D2_UB(left_m, top_m, src);
+ CALC_DC8(src, out);
+ } else if (left != NULL) { // left but no top
+ const uint64_t left_m = LD(left);
+ INSERT_D2_UB(left_m, left_m, src);
+ CALC_DC8(src, out);
+ } else if (top != NULL) { // top but no left
+ const uint64_t top_m = LD(top);
+ INSERT_D2_UB(top_m, top_m, src);
+ CALC_DC8(src, out);
+ } else { // no top, no left, nothing.
+ src = (v16u8)__msa_fill_b(0x80);
+ out = __msa_copy_s_d((v2i64)src, 0);
+ }
+ STORE8x8(out, dst);
+}
+
+static void IntraChromaPreds(uint8_t* dst, const uint8_t* left,
+ const uint8_t* top) {
+ // U block
+ DCMode8x8(C8DC8 + dst, left, top);
+ VerticalPred8x8(C8VE8 + dst, top);
+ HorizontalPred8x8(C8HE8 + dst, left);
+ TrueMotion8x8(C8TM8 + dst, left, top);
+ // V block
+ dst += 8;
+ if (top != NULL) top += 8;
+ if (left != NULL) left += 16;
+ DCMode8x8(C8DC8 + dst, left, top);
+ VerticalPred8x8(C8VE8 + dst, top);
+ HorizontalPred8x8(C8HE8 + dst, left);
+ TrueMotion8x8(C8TM8 + dst, left, top);
+}
+
+//------------------------------------------------------------------------------
+// Metric
+
+#define PACK_DOTP_UB4_SW(in0, in1, in2, in3, out0, out1, out2, out3) do { \
+ v16u8 tmp0, tmp1; \
+ v8i16 tmp2, tmp3; \
+ ILVRL_B2_UB(in0, in1, tmp0, tmp1); \
+ HSUB_UB2_SH(tmp0, tmp1, tmp2, tmp3); \
+ DOTP_SH2_SW(tmp2, tmp3, tmp2, tmp3, out0, out1); \
+ ILVRL_B2_UB(in2, in3, tmp0, tmp1); \
+ HSUB_UB2_SH(tmp0, tmp1, tmp2, tmp3); \
+ DOTP_SH2_SW(tmp2, tmp3, tmp2, tmp3, out2, out3); \
+} while (0)
+
+#define PACK_DPADD_UB4_SW(in0, in1, in2, in3, out0, out1, out2, out3) do { \
+ v16u8 tmp0, tmp1; \
+ v8i16 tmp2, tmp3; \
+ ILVRL_B2_UB(in0, in1, tmp0, tmp1); \
+ HSUB_UB2_SH(tmp0, tmp1, tmp2, tmp3); \
+ DPADD_SH2_SW(tmp2, tmp3, tmp2, tmp3, out0, out1); \
+ ILVRL_B2_UB(in2, in3, tmp0, tmp1); \
+ HSUB_UB2_SH(tmp0, tmp1, tmp2, tmp3); \
+ DPADD_SH2_SW(tmp2, tmp3, tmp2, tmp3, out2, out3); \
+} while (0)
+
+static int SSE16x16(const uint8_t* a, const uint8_t* b) {
+ uint32_t sum;
+ v16u8 src0, src1, src2, src3, src4, src5, src6, src7;
+ v16u8 ref0, ref1, ref2, ref3, ref4, ref5, ref6, ref7;
+ v4i32 out0, out1, out2, out3;
+
+ LD_UB8(a, BPS, src0, src1, src2, src3, src4, src5, src6, src7);
+ LD_UB8(b, BPS, ref0, ref1, ref2, ref3, ref4, ref5, ref6, ref7);
+ PACK_DOTP_UB4_SW(src0, ref0, src1, ref1, out0, out1, out2, out3);
+ PACK_DPADD_UB4_SW(src2, ref2, src3, ref3, out0, out1, out2, out3);
+ PACK_DPADD_UB4_SW(src4, ref4, src5, ref5, out0, out1, out2, out3);
+ PACK_DPADD_UB4_SW(src6, ref6, src7, ref7, out0, out1, out2, out3);
+ a += 8 * BPS;
+ b += 8 * BPS;
+ LD_UB8(a, BPS, src0, src1, src2, src3, src4, src5, src6, src7);
+ LD_UB8(b, BPS, ref0, ref1, ref2, ref3, ref4, ref5, ref6, ref7);
+ PACK_DPADD_UB4_SW(src0, ref0, src1, ref1, out0, out1, out2, out3);
+ PACK_DPADD_UB4_SW(src2, ref2, src3, ref3, out0, out1, out2, out3);
+ PACK_DPADD_UB4_SW(src4, ref4, src5, ref5, out0, out1, out2, out3);
+ PACK_DPADD_UB4_SW(src6, ref6, src7, ref7, out0, out1, out2, out3);
+ out0 += out1;
+ out2 += out3;
+ out0 += out2;
+ sum = HADD_SW_S32(out0);
+ return sum;
+}
+
+static int SSE16x8(const uint8_t* a, const uint8_t* b) {
+ uint32_t sum;
+ v16u8 src0, src1, src2, src3, src4, src5, src6, src7;
+ v16u8 ref0, ref1, ref2, ref3, ref4, ref5, ref6, ref7;
+ v4i32 out0, out1, out2, out3;
+
+ LD_UB8(a, BPS, src0, src1, src2, src3, src4, src5, src6, src7);
+ LD_UB8(b, BPS, ref0, ref1, ref2, ref3, ref4, ref5, ref6, ref7);
+ PACK_DOTP_UB4_SW(src0, ref0, src1, ref1, out0, out1, out2, out3);
+ PACK_DPADD_UB4_SW(src2, ref2, src3, ref3, out0, out1, out2, out3);
+ PACK_DPADD_UB4_SW(src4, ref4, src5, ref5, out0, out1, out2, out3);
+ PACK_DPADD_UB4_SW(src6, ref6, src7, ref7, out0, out1, out2, out3);
+ out0 += out1;
+ out2 += out3;
+ out0 += out2;
+ sum = HADD_SW_S32(out0);
+ return sum;
+}
+
+static int SSE8x8(const uint8_t* a, const uint8_t* b) {
+ uint32_t sum;
+ v16u8 src0, src1, src2, src3, src4, src5, src6, src7;
+ v16u8 ref0, ref1, ref2, ref3, ref4, ref5, ref6, ref7;
+ v16u8 t0, t1, t2, t3;
+ v4i32 out0, out1, out2, out3;
+
+ LD_UB8(a, BPS, src0, src1, src2, src3, src4, src5, src6, src7);
+ LD_UB8(b, BPS, ref0, ref1, ref2, ref3, ref4, ref5, ref6, ref7);
+ ILVR_B4_UB(src0, src1, src2, src3, ref0, ref1, ref2, ref3, t0, t1, t2, t3);
+ PACK_DOTP_UB4_SW(t0, t2, t1, t3, out0, out1, out2, out3);
+ ILVR_B4_UB(src4, src5, src6, src7, ref4, ref5, ref6, ref7, t0, t1, t2, t3);
+ PACK_DPADD_UB4_SW(t0, t2, t1, t3, out0, out1, out2, out3);
+ out0 += out1;
+ out2 += out3;
+ out0 += out2;
+ sum = HADD_SW_S32(out0);
+ return sum;
+}
+
+static int SSE4x4(const uint8_t* a, const uint8_t* b) {
+ uint32_t sum = 0;
+ uint32_t src0, src1, src2, src3, ref0, ref1, ref2, ref3;
+ v16u8 src, ref, tmp0, tmp1;
+ v8i16 diff0, diff1;
+ v4i32 out0, out1;
+
+ LW4(a, BPS, src0, src1, src2, src3);
+ LW4(b, BPS, ref0, ref1, ref2, ref3);
+ INSERT_W4_UB(src0, src1, src2, src3, src);
+ INSERT_W4_UB(ref0, ref1, ref2, ref3, ref);
+ ILVRL_B2_UB(src, ref, tmp0, tmp1);
+ HSUB_UB2_SH(tmp0, tmp1, diff0, diff1);
+ DOTP_SH2_SW(diff0, diff1, diff0, diff1, out0, out1);
+ out0 += out1;
+ sum = HADD_SW_S32(out0);
+ return sum;
+}
+
+//------------------------------------------------------------------------------
+// Quantization
+
+static int QuantizeBlock(int16_t in[16], int16_t out[16],
+ const VP8Matrix* const mtx) {
+ int sum;
+ v8i16 in0, in1, sh0, sh1, out0, out1;
+ v8i16 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, sign0, sign1;
+ v4i32 s0, s1, s2, s3, b0, b1, b2, b3, t0, t1, t2, t3;
+ const v8i16 zero = { 0 };
+ const v8i16 zigzag0 = { 0, 1, 4, 8, 5, 2, 3, 6 };
+ const v8i16 zigzag1 = { 9, 12, 13, 10, 7, 11, 14, 15 };
+ const v8i16 maxlevel = __msa_fill_h(MAX_LEVEL);
+
+ LD_SH2(&in[0], 8, in0, in1);
+ LD_SH2(&mtx->sharpen_[0], 8, sh0, sh1);
+ tmp4 = __msa_add_a_h(in0, zero);
+ tmp5 = __msa_add_a_h(in1, zero);
+ ILVRL_H2_SH(sh0, tmp4, tmp0, tmp1);
+ ILVRL_H2_SH(sh1, tmp5, tmp2, tmp3);
+ HADD_SH4_SW(tmp0, tmp1, tmp2, tmp3, s0, s1, s2, s3);
+ sign0 = (in0 < zero);
+ sign1 = (in1 < zero); // sign
+ LD_SH2(&mtx->iq_[0], 8, tmp0, tmp1); // iq
+ ILVRL_H2_SW(zero, tmp0, t0, t1);
+ ILVRL_H2_SW(zero, tmp1, t2, t3);
+ LD_SW4(&mtx->bias_[0], 4, b0, b1, b2, b3); // bias
+ MUL4(t0, s0, t1, s1, t2, s2, t3, s3, t0, t1, t2, t3);
+ ADD4(b0, t0, b1, t1, b2, t2, b3, t3, b0, b1, b2, b3);
+ SRAI_W4_SW(b0, b1, b2, b3, 17);
+ PCKEV_H2_SH(b1, b0, b3, b2, tmp2, tmp3);
+ tmp0 = (tmp2 > maxlevel);
+ tmp1 = (tmp3 > maxlevel);
+ tmp2 = (v8i16)__msa_bmnz_v((v16u8)tmp2, (v16u8)maxlevel, (v16u8)tmp0);
+ tmp3 = (v8i16)__msa_bmnz_v((v16u8)tmp3, (v16u8)maxlevel, (v16u8)tmp1);
+ SUB2(0, tmp2, 0, tmp3, tmp0, tmp1);
+ tmp2 = (v8i16)__msa_bmnz_v((v16u8)tmp2, (v16u8)tmp0, (v16u8)sign0);
+ tmp3 = (v8i16)__msa_bmnz_v((v16u8)tmp3, (v16u8)tmp1, (v16u8)sign1);
+ LD_SW4(&mtx->zthresh_[0], 4, t0, t1, t2, t3); // zthresh
+ t0 = (s0 > t0);
+ t1 = (s1 > t1);
+ t2 = (s2 > t2);
+ t3 = (s3 > t3);
+ PCKEV_H2_SH(t1, t0, t3, t2, tmp0, tmp1);
+ tmp4 = (v8i16)__msa_bmnz_v((v16u8)zero, (v16u8)tmp2, (v16u8)tmp0);
+ tmp5 = (v8i16)__msa_bmnz_v((v16u8)zero, (v16u8)tmp3, (v16u8)tmp1);
+ LD_SH2(&mtx->q_[0], 8, tmp0, tmp1);
+ MUL2(tmp4, tmp0, tmp5, tmp1, in0, in1);
+ VSHF_H2_SH(tmp4, tmp5, tmp4, tmp5, zigzag0, zigzag1, out0, out1);
+ ST_SH2(in0, in1, &in[0], 8);
+ ST_SH2(out0, out1, &out[0], 8);
+ out0 = __msa_add_a_h(out0, out1);
+ sum = HADD_SH_S32(out0);
+ return (sum > 0);
+}
+
+static int Quantize2Blocks(int16_t in[32], int16_t out[32],
+ const VP8Matrix* const mtx) {
+ int nz;
+ nz = VP8EncQuantizeBlock(in + 0 * 16, out + 0 * 16, mtx) << 0;
+ nz |= VP8EncQuantizeBlock(in + 1 * 16, out + 1 * 16, mtx) << 1;
+ return nz;
+}
+
+//------------------------------------------------------------------------------
+// Entry point
+
+extern void VP8EncDspInitMSA(void);
+
+WEBP_TSAN_IGNORE_FUNCTION void VP8EncDspInitMSA(void) {
+ VP8ITransform = ITransform;
+ VP8FTransform = FTransform;
+ VP8FTransformWHT = FTransformWHT;
+
+ VP8TDisto4x4 = Disto4x4;
+ VP8TDisto16x16 = Disto16x16;
+ VP8CollectHistogram = CollectHistogram;
+
+ VP8EncPredLuma4 = Intra4Preds;
+ VP8EncPredLuma16 = Intra16Preds;
+ VP8EncPredChroma8 = IntraChromaPreds;
+
+ VP8SSE16x16 = SSE16x16;
+ VP8SSE16x8 = SSE16x8;
+ VP8SSE8x8 = SSE8x8;
+ VP8SSE4x4 = SSE4x4;
+
+ VP8EncQuantizeBlock = QuantizeBlock;
+ VP8EncQuantize2Blocks = Quantize2Blocks;
+ VP8EncQuantizeBlockWHT = QuantizeBlock;
+}
+
+#else // !WEBP_USE_MSA
+
+WEBP_DSP_INIT_STUB(VP8EncDspInitMSA)
+
+#endif // WEBP_USE_MSA
diff --git a/thirdparty/libwebp/dsp/enc_neon.c b/thirdparty/libwebp/dsp/enc_neon.c
index 46f6bf9a33..6a078d632d 100644
--- a/thirdparty/libwebp/dsp/enc_neon.c
+++ b/thirdparty/libwebp/dsp/enc_neon.c
@@ -18,7 +18,7 @@
#include <assert.h>
#include "./neon.h"
-#include "../enc/vp8enci.h"
+#include "../enc/vp8i_enc.h"
//------------------------------------------------------------------------------
// Transforms (Paragraph 14.4)
@@ -746,9 +746,14 @@ static WEBP_INLINE void AccumulateSSE16(const uint8_t* const a,
const uint8x16_t a0 = vld1q_u8(a);
const uint8x16_t b0 = vld1q_u8(b);
const uint8x16_t abs_diff = vabdq_u8(a0, b0);
- uint16x8_t prod = vmull_u8(vget_low_u8(abs_diff), vget_low_u8(abs_diff));
- prod = vmlal_u8(prod, vget_high_u8(abs_diff), vget_high_u8(abs_diff));
- *sum = vpadalq_u16(*sum, prod); // pair-wise add and accumulate
+ const uint16x8_t prod1 = vmull_u8(vget_low_u8(abs_diff),
+ vget_low_u8(abs_diff));
+ const uint16x8_t prod2 = vmull_u8(vget_high_u8(abs_diff),
+ vget_high_u8(abs_diff));
+ /* pair-wise adds and widen */
+ const uint32x4_t sum1 = vpaddlq_u16(prod1);
+ const uint32x4_t sum2 = vpaddlq_u16(prod2);
+ *sum = vaddq_u32(*sum, vaddq_u32(sum1, sum2));
}
// Horizontal sum of all four uint32_t values in 'sum'.
@@ -758,7 +763,7 @@ static int SumToInt(uint32x4_t sum) {
return (int)sum3;
}
-static int SSE16x16(const uint8_t* a, const uint8_t* b) {
+static int SSE16x16_NEON(const uint8_t* a, const uint8_t* b) {
uint32x4_t sum = vdupq_n_u32(0);
int y;
for (y = 0; y < 16; ++y) {
@@ -767,7 +772,7 @@ static int SSE16x16(const uint8_t* a, const uint8_t* b) {
return SumToInt(sum);
}
-static int SSE16x8(const uint8_t* a, const uint8_t* b) {
+static int SSE16x8_NEON(const uint8_t* a, const uint8_t* b) {
uint32x4_t sum = vdupq_n_u32(0);
int y;
for (y = 0; y < 8; ++y) {
@@ -776,7 +781,7 @@ static int SSE16x8(const uint8_t* a, const uint8_t* b) {
return SumToInt(sum);
}
-static int SSE8x8(const uint8_t* a, const uint8_t* b) {
+static int SSE8x8_NEON(const uint8_t* a, const uint8_t* b) {
uint32x4_t sum = vdupq_n_u32(0);
int y;
for (y = 0; y < 8; ++y) {
@@ -789,13 +794,18 @@ static int SSE8x8(const uint8_t* a, const uint8_t* b) {
return SumToInt(sum);
}
-static int SSE4x4(const uint8_t* a, const uint8_t* b) {
+static int SSE4x4_NEON(const uint8_t* a, const uint8_t* b) {
const uint8x16_t a0 = Load4x4(a);
const uint8x16_t b0 = Load4x4(b);
const uint8x16_t abs_diff = vabdq_u8(a0, b0);
- uint16x8_t prod = vmull_u8(vget_low_u8(abs_diff), vget_low_u8(abs_diff));
- prod = vmlal_u8(prod, vget_high_u8(abs_diff), vget_high_u8(abs_diff));
- return SumToInt(vpaddlq_u16(prod));
+ const uint16x8_t prod1 = vmull_u8(vget_low_u8(abs_diff),
+ vget_low_u8(abs_diff));
+ const uint16x8_t prod2 = vmull_u8(vget_high_u8(abs_diff),
+ vget_high_u8(abs_diff));
+ /* pair-wise adds and widen */
+ const uint32x4_t sum1 = vpaddlq_u16(prod1);
+ const uint32x4_t sum2 = vpaddlq_u16(prod2);
+ return SumToInt(vaddq_u32(sum1, sum2));
}
//------------------------------------------------------------------------------
@@ -903,10 +913,12 @@ WEBP_TSAN_IGNORE_FUNCTION void VP8EncDspInitNEON(void) {
VP8TDisto4x4 = Disto4x4;
VP8TDisto16x16 = Disto16x16;
VP8CollectHistogram = CollectHistogram;
- VP8SSE16x16 = SSE16x16;
- VP8SSE16x8 = SSE16x8;
- VP8SSE8x8 = SSE8x8;
- VP8SSE4x4 = SSE4x4;
+
+ VP8SSE16x16 = SSE16x16_NEON;
+ VP8SSE16x8 = SSE16x8_NEON;
+ VP8SSE8x8 = SSE8x8_NEON;
+ VP8SSE4x4 = SSE4x4_NEON;
+
#if !defined(WORK_AROUND_GCC)
VP8EncQuantizeBlock = QuantizeBlock;
VP8EncQuantize2Blocks = Quantize2Blocks;
diff --git a/thirdparty/libwebp/dsp/enc_sse2.c b/thirdparty/libwebp/dsp/enc_sse2.c
index 4a2e3ce14f..2026a74c91 100644
--- a/thirdparty/libwebp/dsp/enc_sse2.c
+++ b/thirdparty/libwebp/dsp/enc_sse2.c
@@ -14,12 +14,13 @@
#include "./dsp.h"
#if defined(WEBP_USE_SSE2)
+#include <assert.h>
#include <stdlib.h> // for abs()
#include <emmintrin.h>
#include "./common_sse2.h"
-#include "../enc/cost.h"
-#include "../enc/vp8enci.h"
+#include "../enc/cost_enc.h"
+#include "../enc/vp8i_enc.h"
//------------------------------------------------------------------------------
// Transforms (Paragraph 14.4)
@@ -139,7 +140,7 @@ static void ITransform(const uint8_t* ref, const int16_t* in, uint8_t* dst,
// Transpose the two 4x4.
VP8Transpose_2_4x4_16b(&shifted0, &shifted1, &shifted2, &shifted3, &T0, &T1,
- &T2, &T3);
+ &T2, &T3);
}
// Add inverse transform to 'ref' and store.
@@ -250,25 +251,11 @@ static void FTransformPass2(const __m128i* const v01, const __m128i* const v32,
const __m128i k51000 = _mm_set1_epi32(51000);
// Same operations are done on the (0,3) and (1,2) pairs.
- // a0 = v0 + v3
- // a1 = v1 + v2
// a3 = v0 - v3
// a2 = v1 - v2
- const __m128i a01 = _mm_add_epi16(*v01, *v32);
const __m128i a32 = _mm_sub_epi16(*v01, *v32);
- const __m128i a11 = _mm_unpackhi_epi64(a01, a01);
const __m128i a22 = _mm_unpackhi_epi64(a32, a32);
- const __m128i a01_plus_7 = _mm_add_epi16(a01, seven);
- // d0 = (a0 + a1 + 7) >> 4;
- // d2 = (a0 - a1 + 7) >> 4;
- const __m128i c0 = _mm_add_epi16(a01_plus_7, a11);
- const __m128i c2 = _mm_sub_epi16(a01_plus_7, a11);
- const __m128i d0 = _mm_srai_epi16(c0, 4);
- const __m128i d2 = _mm_srai_epi16(c2, 4);
-
- // f1 = ((b3 * 5352 + b2 * 2217 + 12000) >> 16)
- // f3 = ((b3 * 2217 - b2 * 5352 + 51000) >> 16)
const __m128i b23 = _mm_unpacklo_epi16(a22, a32);
const __m128i c1 = _mm_madd_epi16(b23, k5352_2217);
const __m128i c3 = _mm_madd_epi16(b23, k2217_5352);
@@ -276,14 +263,28 @@ static void FTransformPass2(const __m128i* const v01, const __m128i* const v32,
const __m128i d3 = _mm_add_epi32(c3, k51000);
const __m128i e1 = _mm_srai_epi32(d1, 16);
const __m128i e3 = _mm_srai_epi32(d3, 16);
+ // f1 = ((b3 * 5352 + b2 * 2217 + 12000) >> 16)
+ // f3 = ((b3 * 2217 - b2 * 5352 + 51000) >> 16)
const __m128i f1 = _mm_packs_epi32(e1, e1);
const __m128i f3 = _mm_packs_epi32(e3, e3);
- // f1 = f1 + (a3 != 0);
+ // g1 = f1 + (a3 != 0);
// The compare will return (0xffff, 0) for (==0, !=0). To turn that into the
// desired (0, 1), we add one earlier through k12000_plus_one.
- // -> f1 = f1 + 1 - (a3 == 0)
+ // -> g1 = f1 + 1 - (a3 == 0)
const __m128i g1 = _mm_add_epi16(f1, _mm_cmpeq_epi16(a32, zero));
+ // a0 = v0 + v3
+ // a1 = v1 + v2
+ const __m128i a01 = _mm_add_epi16(*v01, *v32);
+ const __m128i a01_plus_7 = _mm_add_epi16(a01, seven);
+ const __m128i a11 = _mm_unpackhi_epi64(a01, a01);
+ const __m128i c0 = _mm_add_epi16(a01_plus_7, a11);
+ const __m128i c2 = _mm_sub_epi16(a01_plus_7, a11);
+ // d0 = (a0 + a1 + 7) >> 4;
+ // d2 = (a0 - a1 + 7) >> 4;
+ const __m128i d0 = _mm_srai_epi16(c0, 4);
+ const __m128i d2 = _mm_srai_epi16(c2, 4);
+
const __m128i d0_g1 = _mm_unpacklo_epi64(d0, g1);
const __m128i d2_f3 = _mm_unpacklo_epi64(d2, f3);
_mm_storeu_si128((__m128i*)&out[0], d0_g1);
@@ -1046,6 +1047,37 @@ static int SSE4x4(const uint8_t* a, const uint8_t* b) {
}
//------------------------------------------------------------------------------
+
+static void Mean16x4(const uint8_t* ref, uint32_t dc[4]) {
+ const __m128i mask = _mm_set1_epi16(0x00ff);
+ const __m128i a0 = _mm_loadu_si128((const __m128i*)&ref[BPS * 0]);
+ const __m128i a1 = _mm_loadu_si128((const __m128i*)&ref[BPS * 1]);
+ const __m128i a2 = _mm_loadu_si128((const __m128i*)&ref[BPS * 2]);
+ const __m128i a3 = _mm_loadu_si128((const __m128i*)&ref[BPS * 3]);
+ const __m128i b0 = _mm_srli_epi16(a0, 8); // hi byte
+ const __m128i b1 = _mm_srli_epi16(a1, 8);
+ const __m128i b2 = _mm_srli_epi16(a2, 8);
+ const __m128i b3 = _mm_srli_epi16(a3, 8);
+ const __m128i c0 = _mm_and_si128(a0, mask); // lo byte
+ const __m128i c1 = _mm_and_si128(a1, mask);
+ const __m128i c2 = _mm_and_si128(a2, mask);
+ const __m128i c3 = _mm_and_si128(a3, mask);
+ const __m128i d0 = _mm_add_epi32(b0, c0);
+ const __m128i d1 = _mm_add_epi32(b1, c1);
+ const __m128i d2 = _mm_add_epi32(b2, c2);
+ const __m128i d3 = _mm_add_epi32(b3, c3);
+ const __m128i e0 = _mm_add_epi32(d0, d1);
+ const __m128i e1 = _mm_add_epi32(d2, d3);
+ const __m128i f0 = _mm_add_epi32(e0, e1);
+ uint16_t tmp[8];
+ _mm_storeu_si128((__m128i*)tmp, f0);
+ dc[0] = tmp[0] + tmp[1];
+ dc[1] = tmp[2] + tmp[3];
+ dc[2] = tmp[4] + tmp[5];
+ dc[3] = tmp[6] + tmp[7];
+}
+
+//------------------------------------------------------------------------------
// Texture distortion
//
// We try to match the spectral content (weighted) between source and
@@ -1331,10 +1363,122 @@ WEBP_TSAN_IGNORE_FUNCTION void VP8EncDspInitSSE2(void) {
VP8SSE4x4 = SSE4x4;
VP8TDisto4x4 = Disto4x4;
VP8TDisto16x16 = Disto16x16;
+ VP8Mean16x4 = Mean16x4;
+}
+
+//------------------------------------------------------------------------------
+// SSIM / PSNR entry point (TODO(skal): move to its own file later)
+
+static uint32_t AccumulateSSE_SSE2(const uint8_t* src1,
+ const uint8_t* src2, int len) {
+ int i = 0;
+ uint32_t sse2 = 0;
+ if (len >= 16) {
+ const int limit = len - 32;
+ int32_t tmp[4];
+ __m128i sum1;
+ __m128i sum = _mm_setzero_si128();
+ __m128i a0 = _mm_loadu_si128((const __m128i*)&src1[i]);
+ __m128i b0 = _mm_loadu_si128((const __m128i*)&src2[i]);
+ i += 16;
+ while (i <= limit) {
+ const __m128i a1 = _mm_loadu_si128((const __m128i*)&src1[i]);
+ const __m128i b1 = _mm_loadu_si128((const __m128i*)&src2[i]);
+ __m128i sum2;
+ i += 16;
+ SubtractAndAccumulate(a0, b0, &sum1);
+ sum = _mm_add_epi32(sum, sum1);
+ a0 = _mm_loadu_si128((const __m128i*)&src1[i]);
+ b0 = _mm_loadu_si128((const __m128i*)&src2[i]);
+ i += 16;
+ SubtractAndAccumulate(a1, b1, &sum2);
+ sum = _mm_add_epi32(sum, sum2);
+ }
+ SubtractAndAccumulate(a0, b0, &sum1);
+ sum = _mm_add_epi32(sum, sum1);
+ _mm_storeu_si128((__m128i*)tmp, sum);
+ sse2 += (tmp[3] + tmp[2] + tmp[1] + tmp[0]);
+ }
+
+ for (; i < len; ++i) {
+ const int32_t diff = src1[i] - src2[i];
+ sse2 += diff * diff;
+ }
+ return sse2;
+}
+
+static uint32_t HorizontalAdd16b(const __m128i* const m) {
+ uint16_t tmp[8];
+ const __m128i a = _mm_srli_si128(*m, 8);
+ const __m128i b = _mm_add_epi16(*m, a);
+ _mm_storeu_si128((__m128i*)tmp, b);
+ return (uint32_t)tmp[3] + tmp[2] + tmp[1] + tmp[0];
+}
+
+static uint32_t HorizontalAdd32b(const __m128i* const m) {
+ const __m128i a = _mm_srli_si128(*m, 8);
+ const __m128i b = _mm_add_epi32(*m, a);
+ const __m128i c = _mm_add_epi32(b, _mm_srli_si128(b, 4));
+ return (uint32_t)_mm_cvtsi128_si32(c);
+}
+
+static const uint16_t kWeight[] = { 1, 2, 3, 4, 3, 2, 1, 0 };
+
+#define ACCUMULATE_ROW(WEIGHT) do { \
+ /* compute row weight (Wx * Wy) */ \
+ const __m128i Wy = _mm_set1_epi16((WEIGHT)); \
+ const __m128i W = _mm_mullo_epi16(Wx, Wy); \
+ /* process 8 bytes at a time (7 bytes, actually) */ \
+ const __m128i a0 = _mm_loadl_epi64((const __m128i*)src1); \
+ const __m128i b0 = _mm_loadl_epi64((const __m128i*)src2); \
+ /* convert to 16b and multiply by weight */ \
+ const __m128i a1 = _mm_unpacklo_epi8(a0, zero); \
+ const __m128i b1 = _mm_unpacklo_epi8(b0, zero); \
+ const __m128i wa1 = _mm_mullo_epi16(a1, W); \
+ const __m128i wb1 = _mm_mullo_epi16(b1, W); \
+ /* accumulate */ \
+ xm = _mm_add_epi16(xm, wa1); \
+ ym = _mm_add_epi16(ym, wb1); \
+ xxm = _mm_add_epi32(xxm, _mm_madd_epi16(a1, wa1)); \
+ xym = _mm_add_epi32(xym, _mm_madd_epi16(a1, wb1)); \
+ yym = _mm_add_epi32(yym, _mm_madd_epi16(b1, wb1)); \
+ src1 += stride1; \
+ src2 += stride2; \
+} while (0)
+
+static double SSIMGet_SSE2(const uint8_t* src1, int stride1,
+ const uint8_t* src2, int stride2) {
+ VP8DistoStats stats;
+ const __m128i zero = _mm_setzero_si128();
+ __m128i xm = zero, ym = zero; // 16b accums
+ __m128i xxm = zero, yym = zero, xym = zero; // 32b accum
+ const __m128i Wx = _mm_loadu_si128((const __m128i*)kWeight);
+ assert(2 * VP8_SSIM_KERNEL + 1 == 7);
+ ACCUMULATE_ROW(1);
+ ACCUMULATE_ROW(2);
+ ACCUMULATE_ROW(3);
+ ACCUMULATE_ROW(4);
+ ACCUMULATE_ROW(3);
+ ACCUMULATE_ROW(2);
+ ACCUMULATE_ROW(1);
+ stats.xm = HorizontalAdd16b(&xm);
+ stats.ym = HorizontalAdd16b(&ym);
+ stats.xxm = HorizontalAdd32b(&xxm);
+ stats.xym = HorizontalAdd32b(&xym);
+ stats.yym = HorizontalAdd32b(&yym);
+ return VP8SSIMFromStats(&stats);
+}
+
+extern void VP8SSIMDspInitSSE2(void);
+
+WEBP_TSAN_IGNORE_FUNCTION void VP8SSIMDspInitSSE2(void) {
+ VP8AccumulateSSE = AccumulateSSE_SSE2;
+ VP8SSIMGet = SSIMGet_SSE2;
}
#else // !WEBP_USE_SSE2
WEBP_DSP_INIT_STUB(VP8EncDspInitSSE2)
+WEBP_DSP_INIT_STUB(VP8SSIMDspInitSSE2)
#endif // WEBP_USE_SSE2
diff --git a/thirdparty/libwebp/dsp/enc_sse41.c b/thirdparty/libwebp/dsp/enc_sse41.c
index a1783901a6..e32086d9fd 100644
--- a/thirdparty/libwebp/dsp/enc_sse41.c
+++ b/thirdparty/libwebp/dsp/enc_sse41.c
@@ -18,7 +18,7 @@
#include <stdlib.h> // for abs()
#include "./common_sse2.h"
-#include "../enc/vp8enci.h"
+#include "../enc/vp8i_enc.h"
//------------------------------------------------------------------------------
// Compute susceptibility based on DCT-coeff histograms.
diff --git a/thirdparty/libwebp/dsp/filters.c b/thirdparty/libwebp/dsp/filters.c
index 9f04faf0cb..65f34aad1f 100644
--- a/thirdparty/libwebp/dsp/filters.c
+++ b/thirdparty/libwebp/dsp/filters.c
@@ -227,6 +227,8 @@ WebPFilterFunc WebPFilters[WEBP_FILTER_LAST];
WebPUnfilterFunc WebPUnfilters[WEBP_FILTER_LAST];
extern void VP8FiltersInitMIPSdspR2(void);
+extern void VP8FiltersInitMSA(void);
+extern void VP8FiltersInitNEON(void);
extern void VP8FiltersInitSSE2(void);
static volatile VP8CPUInfo filters_last_cpuinfo_used =
@@ -251,11 +253,21 @@ WEBP_TSAN_IGNORE_FUNCTION void VP8FiltersInit(void) {
VP8FiltersInitSSE2();
}
#endif
+#if defined(WEBP_USE_NEON)
+ if (VP8GetCPUInfo(kNEON)) {
+ VP8FiltersInitNEON();
+ }
+#endif
#if defined(WEBP_USE_MIPS_DSP_R2)
if (VP8GetCPUInfo(kMIPSdspR2)) {
VP8FiltersInitMIPSdspR2();
}
#endif
+#if defined(WEBP_USE_MSA)
+ if (VP8GetCPUInfo(kMSA)) {
+ VP8FiltersInitMSA();
+ }
+#endif
}
filters_last_cpuinfo_used = VP8GetCPUInfo;
}
diff --git a/thirdparty/libwebp/dsp/filters_msa.c b/thirdparty/libwebp/dsp/filters_msa.c
new file mode 100644
index 0000000000..4b8922d0bc
--- /dev/null
+++ b/thirdparty/libwebp/dsp/filters_msa.c
@@ -0,0 +1,202 @@
+// Copyright 2016 Google Inc. All Rights Reserved.
+//
+// Use of this source code is governed by a BSD-style license
+// that can be found in the COPYING file in the root of the source
+// tree. An additional intellectual property rights grant can be found
+// in the file PATENTS. All contributing project authors may
+// be found in the AUTHORS file in the root of the source tree.
+// -----------------------------------------------------------------------------
+//
+// MSA variant of alpha filters
+//
+// Author: Prashant Patil (prashant.patil@imgtec.com)
+
+#include "./dsp.h"
+
+#if defined(WEBP_USE_MSA)
+
+#include "./msa_macro.h"
+
+#include <assert.h>
+
+static WEBP_INLINE void PredictLineInverse0(const uint8_t* src,
+ const uint8_t* pred,
+ uint8_t* dst, int length) {
+ v16u8 src0, pred0, dst0;
+ assert(length >= 0);
+ while (length >= 32) {
+ v16u8 src1, pred1, dst1;
+ LD_UB2(src, 16, src0, src1);
+ LD_UB2(pred, 16, pred0, pred1);
+ SUB2(src0, pred0, src1, pred1, dst0, dst1);
+ ST_UB2(dst0, dst1, dst, 16);
+ src += 32;
+ pred += 32;
+ dst += 32;
+ length -= 32;
+ }
+ if (length > 0) {
+ int i;
+ if (length >= 16) {
+ src0 = LD_UB(src);
+ pred0 = LD_UB(pred);
+ dst0 = src0 - pred0;
+ ST_UB(dst0, dst);
+ src += 16;
+ pred += 16;
+ dst += 16;
+ length -= 16;
+ }
+ for (i = 0; i < length; i++) {
+ dst[i] = src[i] - pred[i];
+ }
+ }
+}
+
+//------------------------------------------------------------------------------
+// Helpful macro.
+
+#define SANITY_CHECK(in, out) \
+ assert(in != NULL); \
+ assert(out != NULL); \
+ assert(width > 0); \
+ assert(height > 0); \
+ assert(stride >= width);
+
+//------------------------------------------------------------------------------
+// Horrizontal filter
+
+static void HorizontalFilter(const uint8_t* data, int width, int height,
+ int stride, uint8_t* filtered_data) {
+ const uint8_t* preds = data;
+ const uint8_t* in = data;
+ uint8_t* out = filtered_data;
+ int row = 1;
+ SANITY_CHECK(in, out);
+
+ // Leftmost pixel is the same as input for topmost scanline.
+ out[0] = in[0];
+ PredictLineInverse0(in + 1, preds, out + 1, width - 1);
+ preds += stride;
+ in += stride;
+ out += stride;
+ // Filter line-by-line.
+ while (row < height) {
+ // Leftmost pixel is predicted from above.
+ PredictLineInverse0(in, preds - stride, out, 1);
+ PredictLineInverse0(in + 1, preds, out + 1, width - 1);
+ ++row;
+ preds += stride;
+ in += stride;
+ out += stride;
+ }
+}
+
+//------------------------------------------------------------------------------
+// Gradient filter
+
+static WEBP_INLINE void PredictLineGradient(const uint8_t* pinput,
+ const uint8_t* ppred,
+ uint8_t* poutput, int stride,
+ int size) {
+ int w;
+ const v16i8 zero = { 0 };
+ while (size >= 16) {
+ v16u8 pred0, dst0;
+ v8i16 a0, a1, b0, b1, c0, c1;
+ const v16u8 tmp0 = LD_UB(ppred - 1);
+ const v16u8 tmp1 = LD_UB(ppred - stride);
+ const v16u8 tmp2 = LD_UB(ppred - stride - 1);
+ const v16u8 src0 = LD_UB(pinput);
+ ILVRL_B2_SH(zero, tmp0, a0, a1);
+ ILVRL_B2_SH(zero, tmp1, b0, b1);
+ ILVRL_B2_SH(zero, tmp2, c0, c1);
+ ADD2(a0, b0, a1, b1, a0, a1);
+ SUB2(a0, c0, a1, c1, a0, a1);
+ CLIP_SH2_0_255(a0, a1);
+ pred0 = (v16u8)__msa_pckev_b((v16i8)a1, (v16i8)a0);
+ dst0 = src0 - pred0;
+ ST_UB(dst0, poutput);
+ ppred += 16;
+ pinput += 16;
+ poutput += 16;
+ size -= 16;
+ }
+ for (w = 0; w < size; ++w) {
+ const int pred = ppred[w - 1] + ppred[w - stride] - ppred[w - stride - 1];
+ poutput[w] = pinput[w] - (pred < 0 ? 0 : pred > 255 ? 255 : pred);
+ }
+}
+
+
+static void GradientFilter(const uint8_t* data, int width, int height,
+ int stride, uint8_t* filtered_data) {
+ const uint8_t* in = data;
+ const uint8_t* preds = data;
+ uint8_t* out = filtered_data;
+ int row = 1;
+ SANITY_CHECK(in, out);
+
+ // left prediction for top scan-line
+ out[0] = in[0];
+ PredictLineInverse0(in + 1, preds, out + 1, width - 1);
+ preds += stride;
+ in += stride;
+ out += stride;
+ // Filter line-by-line.
+ while (row < height) {
+ out[0] = in[0] - preds[- stride];
+ PredictLineGradient(preds + 1, in + 1, out + 1, stride, width - 1);
+ ++row;
+ preds += stride;
+ in += stride;
+ out += stride;
+ }
+}
+
+//------------------------------------------------------------------------------
+// Vertical filter
+
+static void VerticalFilter(const uint8_t* data, int width, int height,
+ int stride, uint8_t* filtered_data) {
+ const uint8_t* in = data;
+ const uint8_t* preds = data;
+ uint8_t* out = filtered_data;
+ int row = 1;
+ SANITY_CHECK(in, out);
+
+ // Very first top-left pixel is copied.
+ out[0] = in[0];
+ // Rest of top scan-line is left-predicted.
+ PredictLineInverse0(in + 1, preds, out + 1, width - 1);
+ in += stride;
+ out += stride;
+
+ // Filter line-by-line.
+ while (row < height) {
+ PredictLineInverse0(in, preds, out, width);
+ ++row;
+ preds += stride;
+ in += stride;
+ out += stride;
+ }
+}
+
+#undef SANITY_CHECK
+
+//------------------------------------------------------------------------------
+// Entry point
+
+extern void VP8FiltersInitMSA(void);
+
+WEBP_TSAN_IGNORE_FUNCTION void VP8FiltersInitMSA(void) {
+ WebPFilters[WEBP_FILTER_HORIZONTAL] = HorizontalFilter;
+ WebPFilters[WEBP_FILTER_VERTICAL] = VerticalFilter;
+ WebPFilters[WEBP_FILTER_GRADIENT] = GradientFilter;
+}
+
+#else // !WEBP_USE_MSA
+
+WEBP_DSP_INIT_STUB(VP8FiltersInitMSA)
+
+#endif // WEBP_USE_MSA
diff --git a/thirdparty/libwebp/dsp/filters_neon.c b/thirdparty/libwebp/dsp/filters_neon.c
new file mode 100644
index 0000000000..4d6e50cc76
--- /dev/null
+++ b/thirdparty/libwebp/dsp/filters_neon.c
@@ -0,0 +1,327 @@
+// Copyright 2017 Google Inc. All Rights Reserved.
+//
+// Use of this source code is governed by a BSD-style license
+// that can be found in the COPYING file in the root of the source
+// tree. An additional intellectual property rights grant can be found
+// in the file PATENTS. All contributing project authors may
+// be found in the AUTHORS file in the root of the source tree.
+// -----------------------------------------------------------------------------
+//
+// NEON variant of alpha filters
+//
+// Author: Skal (pascal.massimino@gmail.com)
+
+#include "./dsp.h"
+
+#if defined(WEBP_USE_NEON)
+
+#include <assert.h>
+#include "./neon.h"
+
+//------------------------------------------------------------------------------
+// Helpful macros.
+
+# define SANITY_CHECK(in, out) \
+ assert(in != NULL); \
+ assert(out != NULL); \
+ assert(width > 0); \
+ assert(height > 0); \
+ assert(stride >= width); \
+ assert(row >= 0 && num_rows > 0 && row + num_rows <= height); \
+ (void)height; // Silence unused warning.
+
+// load eight u8 and widen to s16
+#define U8_TO_S16(A) vreinterpretq_s16_u16(vmovl_u8(A))
+#define LOAD_U8_TO_S16(A) U8_TO_S16(vld1_u8(A))
+
+// shift left or right by N byte, inserting zeros
+#define SHIFT_RIGHT_N_Q(A, N) vextq_u8((A), zero, (N))
+#define SHIFT_LEFT_N_Q(A, N) vextq_u8(zero, (A), (16 - (N)) % 16)
+
+// rotate left by N bytes
+#define ROTATE_LEFT_N(A, N) vext_u8((A), (A), (N))
+// rotate right by N bytes
+#define ROTATE_RIGHT_N(A, N) vext_u8((A), (A), (8 - (N)) % 8)
+
+static void PredictLine_NEON(const uint8_t* src, const uint8_t* pred,
+ uint8_t* dst, int length) {
+ int i;
+ assert(length >= 0);
+ for (i = 0; i + 16 <= length; i += 16) {
+ const uint8x16_t A = vld1q_u8(&src[i]);
+ const uint8x16_t B = vld1q_u8(&pred[i]);
+ const uint8x16_t C = vsubq_u8(A, B);
+ vst1q_u8(&dst[i], C);
+ }
+ for (; i < length; ++i) dst[i] = src[i] - pred[i];
+}
+
+// Special case for left-based prediction (when preds==dst-1 or preds==src-1).
+static void PredictLineLeft_NEON(const uint8_t* src, uint8_t* dst, int length) {
+ PredictLine_NEON(src, src - 1, dst, length);
+}
+
+//------------------------------------------------------------------------------
+// Horizontal filter.
+
+static WEBP_INLINE void DoHorizontalFilter_NEON(const uint8_t* in,
+ int width, int height,
+ int stride,
+ int row, int num_rows,
+ uint8_t* out) {
+ const size_t start_offset = row * stride;
+ const int last_row = row + num_rows;
+ SANITY_CHECK(in, out);
+ in += start_offset;
+ out += start_offset;
+
+ if (row == 0) {
+ // Leftmost pixel is the same as input for topmost scanline.
+ out[0] = in[0];
+ PredictLineLeft_NEON(in + 1, out + 1, width - 1);
+ row = 1;
+ in += stride;
+ out += stride;
+ }
+
+ // Filter line-by-line.
+ while (row < last_row) {
+ // Leftmost pixel is predicted from above.
+ out[0] = in[0] - in[-stride];
+ PredictLineLeft_NEON(in + 1, out + 1, width - 1);
+ ++row;
+ in += stride;
+ out += stride;
+ }
+}
+
+static void HorizontalFilter_NEON(const uint8_t* data, int width, int height,
+ int stride, uint8_t* filtered_data) {
+ DoHorizontalFilter_NEON(data, width, height, stride, 0, height,
+ filtered_data);
+}
+
+//------------------------------------------------------------------------------
+// Vertical filter.
+
+static WEBP_INLINE void DoVerticalFilter_NEON(const uint8_t* in,
+ int width, int height, int stride,
+ int row, int num_rows,
+ uint8_t* out) {
+ const size_t start_offset = row * stride;
+ const int last_row = row + num_rows;
+ SANITY_CHECK(in, out);
+ in += start_offset;
+ out += start_offset;
+
+ if (row == 0) {
+ // Very first top-left pixel is copied.
+ out[0] = in[0];
+ // Rest of top scan-line is left-predicted.
+ PredictLineLeft_NEON(in + 1, out + 1, width - 1);
+ row = 1;
+ in += stride;
+ out += stride;
+ }
+
+ // Filter line-by-line.
+ while (row < last_row) {
+ PredictLine_NEON(in, in - stride, out, width);
+ ++row;
+ in += stride;
+ out += stride;
+ }
+}
+
+static void VerticalFilter_NEON(const uint8_t* data, int width, int height,
+ int stride, uint8_t* filtered_data) {
+ DoVerticalFilter_NEON(data, width, height, stride, 0, height,
+ filtered_data);
+}
+
+//------------------------------------------------------------------------------
+// Gradient filter.
+
+static WEBP_INLINE int GradientPredictor_C(uint8_t a, uint8_t b, uint8_t c) {
+ const int g = a + b - c;
+ return ((g & ~0xff) == 0) ? g : (g < 0) ? 0 : 255; // clip to 8bit
+}
+
+static void GradientPredictDirect_NEON(const uint8_t* const row,
+ const uint8_t* const top,
+ uint8_t* const out, int length) {
+ int i;
+ for (i = 0; i + 8 <= length; i += 8) {
+ const uint8x8_t A = vld1_u8(&row[i - 1]);
+ const uint8x8_t B = vld1_u8(&top[i + 0]);
+ const int16x8_t C = vreinterpretq_s16_u16(vaddl_u8(A, B));
+ const int16x8_t D = LOAD_U8_TO_S16(&top[i - 1]);
+ const uint8x8_t E = vqmovun_s16(vsubq_s16(C, D));
+ const uint8x8_t F = vld1_u8(&row[i + 0]);
+ vst1_u8(&out[i], vsub_u8(F, E));
+ }
+ for (; i < length; ++i) {
+ out[i] = row[i] - GradientPredictor_C(row[i - 1], top[i], top[i - 1]);
+ }
+}
+
+static WEBP_INLINE void DoGradientFilter_NEON(const uint8_t* in,
+ int width, int height,
+ int stride,
+ int row, int num_rows,
+ uint8_t* out) {
+ const size_t start_offset = row * stride;
+ const int last_row = row + num_rows;
+ SANITY_CHECK(in, out);
+ in += start_offset;
+ out += start_offset;
+
+ // left prediction for top scan-line
+ if (row == 0) {
+ out[0] = in[0];
+ PredictLineLeft_NEON(in + 1, out + 1, width - 1);
+ row = 1;
+ in += stride;
+ out += stride;
+ }
+
+ // Filter line-by-line.
+ while (row < last_row) {
+ out[0] = in[0] - in[-stride];
+ GradientPredictDirect_NEON(in + 1, in + 1 - stride, out + 1, width - 1);
+ ++row;
+ in += stride;
+ out += stride;
+ }
+}
+
+static void GradientFilter_NEON(const uint8_t* data, int width, int height,
+ int stride, uint8_t* filtered_data) {
+ DoGradientFilter_NEON(data, width, height, stride, 0, height,
+ filtered_data);
+}
+
+#undef SANITY_CHECK
+
+//------------------------------------------------------------------------------
+// Inverse transforms
+
+static void HorizontalUnfilter_NEON(const uint8_t* prev, const uint8_t* in,
+ uint8_t* out, int width) {
+ int i;
+ const uint8x16_t zero = vdupq_n_u8(0);
+ uint8x16_t last;
+ out[0] = in[0] + (prev == NULL ? 0 : prev[0]);
+ if (width <= 1) return;
+ last = vsetq_lane_u8(out[0], zero, 0);
+ for (i = 1; i + 16 <= width; i += 16) {
+ const uint8x16_t A0 = vld1q_u8(&in[i]);
+ const uint8x16_t A1 = vaddq_u8(A0, last);
+ const uint8x16_t A2 = SHIFT_LEFT_N_Q(A1, 1);
+ const uint8x16_t A3 = vaddq_u8(A1, A2);
+ const uint8x16_t A4 = SHIFT_LEFT_N_Q(A3, 2);
+ const uint8x16_t A5 = vaddq_u8(A3, A4);
+ const uint8x16_t A6 = SHIFT_LEFT_N_Q(A5, 4);
+ const uint8x16_t A7 = vaddq_u8(A5, A6);
+ const uint8x16_t A8 = SHIFT_LEFT_N_Q(A7, 8);
+ const uint8x16_t A9 = vaddq_u8(A7, A8);
+ vst1q_u8(&out[i], A9);
+ last = SHIFT_RIGHT_N_Q(A9, 15);
+ }
+ for (; i < width; ++i) out[i] = in[i] + out[i - 1];
+}
+
+static void VerticalUnfilter_NEON(const uint8_t* prev, const uint8_t* in,
+ uint8_t* out, int width) {
+ if (prev == NULL) {
+ HorizontalUnfilter_NEON(NULL, in, out, width);
+ } else {
+ int i;
+ assert(width >= 0);
+ for (i = 0; i + 16 <= width; i += 16) {
+ const uint8x16_t A = vld1q_u8(&in[i]);
+ const uint8x16_t B = vld1q_u8(&prev[i]);
+ const uint8x16_t C = vaddq_u8(A, B);
+ vst1q_u8(&out[i], C);
+ }
+ for (; i < width; ++i) out[i] = in[i] + prev[i];
+ }
+}
+
+// GradientUnfilter_NEON is correct but slower than the C-version,
+// at least on ARM64. For armv7, it's a wash.
+// So best is to disable it for now, but keep the idea around...
+// #define USE_GRADIENT_UNFILTER
+
+#if defined(USE_GRADIENT_UNFILTER)
+#define GRAD_PROCESS_LANE(L) do { \
+ const uint8x8_t tmp1 = ROTATE_RIGHT_N(pred, 1); /* rotate predictor in */ \
+ const int16x8_t tmp2 = vaddq_s16(BC, U8_TO_S16(tmp1)); \
+ const uint8x8_t delta = vqmovun_s16(tmp2); \
+ pred = vadd_u8(D, delta); \
+ out = vext_u8(out, ROTATE_LEFT_N(pred, (L)), 1); \
+} while (0)
+
+static void GradientPredictInverse_NEON(const uint8_t* const in,
+ const uint8_t* const top,
+ uint8_t* const row, int length) {
+ if (length > 0) {
+ int i;
+ uint8x8_t pred = vdup_n_u8(row[-1]); // left sample
+ uint8x8_t out = vdup_n_u8(0);
+ for (i = 0; i + 8 <= length; i += 8) {
+ const int16x8_t B = LOAD_U8_TO_S16(&top[i + 0]);
+ const int16x8_t C = LOAD_U8_TO_S16(&top[i - 1]);
+ const int16x8_t BC = vsubq_s16(B, C); // unclipped gradient basis B - C
+ const uint8x8_t D = vld1_u8(&in[i]); // base input
+ GRAD_PROCESS_LANE(0);
+ GRAD_PROCESS_LANE(1);
+ GRAD_PROCESS_LANE(2);
+ GRAD_PROCESS_LANE(3);
+ GRAD_PROCESS_LANE(4);
+ GRAD_PROCESS_LANE(5);
+ GRAD_PROCESS_LANE(6);
+ GRAD_PROCESS_LANE(7);
+ vst1_u8(&row[i], out);
+ }
+ for (; i < length; ++i) {
+ row[i] = in[i] + GradientPredictor_C(row[i - 1], top[i], top[i - 1]);
+ }
+ }
+}
+#undef GRAD_PROCESS_LANE
+
+static void GradientUnfilter_NEON(const uint8_t* prev, const uint8_t* in,
+ uint8_t* out, int width) {
+ if (prev == NULL) {
+ HorizontalUnfilter_NEON(NULL, in, out, width);
+ } else {
+ out[0] = in[0] + prev[0]; // predict from above
+ GradientPredictInverse_NEON(in + 1, prev + 1, out + 1, width - 1);
+ }
+}
+
+#endif // USE_GRADIENT_UNFILTER
+
+//------------------------------------------------------------------------------
+// Entry point
+
+extern void VP8FiltersInitNEON(void);
+
+WEBP_TSAN_IGNORE_FUNCTION void VP8FiltersInitNEON(void) {
+ WebPUnfilters[WEBP_FILTER_HORIZONTAL] = HorizontalUnfilter_NEON;
+ WebPUnfilters[WEBP_FILTER_VERTICAL] = VerticalUnfilter_NEON;
+#if defined(USE_GRADIENT_UNFILTER)
+ WebPUnfilters[WEBP_FILTER_GRADIENT] = GradientUnfilter_NEON;
+#endif
+
+ WebPFilters[WEBP_FILTER_HORIZONTAL] = HorizontalFilter_NEON;
+ WebPFilters[WEBP_FILTER_VERTICAL] = VerticalFilter_NEON;
+ WebPFilters[WEBP_FILTER_GRADIENT] = GradientFilter_NEON;
+}
+
+#else // !WEBP_USE_NEON
+
+WEBP_DSP_INIT_STUB(VP8FiltersInitNEON)
+
+#endif // WEBP_USE_NEON
diff --git a/thirdparty/libwebp/dsp/lossless.c b/thirdparty/libwebp/dsp/lossless.c
index af913efccb..20d18f6ecd 100644
--- a/thirdparty/libwebp/dsp/lossless.c
+++ b/thirdparty/libwebp/dsp/lossless.c
@@ -17,20 +17,16 @@
#include <math.h>
#include <stdlib.h>
-#include "../dec/vp8li.h"
-#include "../utils/endian_inl.h"
+#include "../dec/vp8li_dec.h"
+#include "../utils/endian_inl_utils.h"
#include "./lossless.h"
+#include "./lossless_common.h"
#define MAX_DIFF_COST (1e30f)
//------------------------------------------------------------------------------
// Image transforms.
-// In-place sum of each component with mod 256.
-static WEBP_INLINE void AddPixelsEq(uint32_t* a, uint32_t b) {
- *a = VP8LAddPixels(*a, b);
-}
-
static WEBP_INLINE uint32_t Average2(uint32_t a0, uint32_t a1) {
return (((a0 ^ a1) & 0xfefefefeu) >> 1) + (a0 & a1);
}
@@ -171,21 +167,41 @@ static uint32_t Predictor13(uint32_t left, const uint32_t* const top) {
return pred;
}
+GENERATE_PREDICTOR_ADD(Predictor0, PredictorAdd0)
+static void PredictorAdd1(const uint32_t* in, const uint32_t* upper,
+ int num_pixels, uint32_t* out) {
+ int i;
+ uint32_t left = out[-1];
+ for (i = 0; i < num_pixels; ++i) {
+ out[i] = left = VP8LAddPixels(in[i], left);
+ }
+ (void)upper;
+}
+GENERATE_PREDICTOR_ADD(Predictor2, PredictorAdd2)
+GENERATE_PREDICTOR_ADD(Predictor3, PredictorAdd3)
+GENERATE_PREDICTOR_ADD(Predictor4, PredictorAdd4)
+GENERATE_PREDICTOR_ADD(Predictor5, PredictorAdd5)
+GENERATE_PREDICTOR_ADD(Predictor6, PredictorAdd6)
+GENERATE_PREDICTOR_ADD(Predictor7, PredictorAdd7)
+GENERATE_PREDICTOR_ADD(Predictor8, PredictorAdd8)
+GENERATE_PREDICTOR_ADD(Predictor9, PredictorAdd9)
+GENERATE_PREDICTOR_ADD(Predictor10, PredictorAdd10)
+GENERATE_PREDICTOR_ADD(Predictor11, PredictorAdd11)
+GENERATE_PREDICTOR_ADD(Predictor12, PredictorAdd12)
+GENERATE_PREDICTOR_ADD(Predictor13, PredictorAdd13)
+
//------------------------------------------------------------------------------
// Inverse prediction.
static void PredictorInverseTransform(const VP8LTransform* const transform,
- int y_start, int y_end, uint32_t* data) {
+ int y_start, int y_end,
+ const uint32_t* in, uint32_t* out) {
const int width = transform->xsize_;
if (y_start == 0) { // First Row follows the L (mode=1) mode.
- int x;
- const uint32_t pred0 = Predictor0(data[-1], NULL);
- AddPixelsEq(data, pred0);
- for (x = 1; x < width; ++x) {
- const uint32_t pred1 = Predictor1(data[x - 1], NULL);
- AddPixelsEq(data + x, pred1);
- }
- data += width;
+ PredictorAdd0(in, NULL, 1, out);
+ PredictorAdd1(in + 1, NULL, width - 1, out + 1);
+ in += width;
+ out += width;
++y_start;
}
@@ -193,36 +209,26 @@ static void PredictorInverseTransform(const VP8LTransform* const transform,
int y = y_start;
const int tile_width = 1 << transform->bits_;
const int mask = tile_width - 1;
- const int safe_width = width & ~mask;
const int tiles_per_row = VP8LSubSampleSize(width, transform->bits_);
const uint32_t* pred_mode_base =
transform->data_ + (y >> transform->bits_) * tiles_per_row;
while (y < y_end) {
- const uint32_t pred2 = Predictor2(data[-1], data - width);
const uint32_t* pred_mode_src = pred_mode_base;
- VP8LPredictorFunc pred_func;
int x = 1;
- int t = 1;
// First pixel follows the T (mode=2) mode.
- AddPixelsEq(data, pred2);
+ PredictorAdd2(in, out - width, 1, out);
// .. the rest:
- while (x < safe_width) {
- pred_func = VP8LPredictors[((*pred_mode_src++) >> 8) & 0xf];
- for (; t < tile_width; ++t, ++x) {
- const uint32_t pred = pred_func(data[x - 1], data + x - width);
- AddPixelsEq(data + x, pred);
- }
- t = 0;
- }
- if (x < width) {
- pred_func = VP8LPredictors[((*pred_mode_src++) >> 8) & 0xf];
- for (; x < width; ++x) {
- const uint32_t pred = pred_func(data[x - 1], data + x - width);
- AddPixelsEq(data + x, pred);
- }
+ while (x < width) {
+ const VP8LPredictorAddSubFunc pred_func =
+ VP8LPredictorsAdd[((*pred_mode_src++) >> 8) & 0xf];
+ int x_end = (x & ~mask) + tile_width;
+ if (x_end > width) x_end = width;
+ pred_func(in + x, out + x - width, x_end - x, out + x);
+ x = x_end;
}
- data += width;
+ in += width;
+ out += width;
++y;
if ((y & mask) == 0) { // Use the same mask, since tiles are squares.
pred_mode_base += tiles_per_row;
@@ -233,21 +239,22 @@ static void PredictorInverseTransform(const VP8LTransform* const transform,
// Add green to blue and red channels (i.e. perform the inverse transform of
// 'subtract green').
-void VP8LAddGreenToBlueAndRed_C(uint32_t* data, int num_pixels) {
+void VP8LAddGreenToBlueAndRed_C(const uint32_t* src, int num_pixels,
+ uint32_t* dst) {
int i;
for (i = 0; i < num_pixels; ++i) {
- const uint32_t argb = data[i];
+ const uint32_t argb = src[i];
const uint32_t green = ((argb >> 8) & 0xff);
uint32_t red_blue = (argb & 0x00ff00ffu);
red_blue += (green << 16) | green;
red_blue &= 0x00ff00ffu;
- data[i] = (argb & 0xff00ff00u) | red_blue;
+ dst[i] = (argb & 0xff00ff00u) | red_blue;
}
}
-static WEBP_INLINE uint32_t ColorTransformDelta(int8_t color_pred,
- int8_t color) {
- return (uint32_t)((int)(color_pred) * color) >> 5;
+static WEBP_INLINE int ColorTransformDelta(int8_t color_pred,
+ int8_t color) {
+ return ((int)color_pred * color) >> 5;
}
static WEBP_INLINE void ColorCodeToMultipliers(uint32_t color_code,
@@ -257,27 +264,29 @@ static WEBP_INLINE void ColorCodeToMultipliers(uint32_t color_code,
m->red_to_blue_ = (color_code >> 16) & 0xff;
}
-void VP8LTransformColorInverse_C(const VP8LMultipliers* const m, uint32_t* data,
- int num_pixels) {
+void VP8LTransformColorInverse_C(const VP8LMultipliers* const m,
+ const uint32_t* src, int num_pixels,
+ uint32_t* dst) {
int i;
for (i = 0; i < num_pixels; ++i) {
- const uint32_t argb = data[i];
+ const uint32_t argb = src[i];
const uint32_t green = argb >> 8;
const uint32_t red = argb >> 16;
- uint32_t new_red = red;
- uint32_t new_blue = argb;
+ int new_red = red;
+ int new_blue = argb;
new_red += ColorTransformDelta(m->green_to_red_, green);
new_red &= 0xff;
new_blue += ColorTransformDelta(m->green_to_blue_, green);
new_blue += ColorTransformDelta(m->red_to_blue_, new_red);
new_blue &= 0xff;
- data[i] = (argb & 0xff00ff00u) | (new_red << 16) | (new_blue);
+ dst[i] = (argb & 0xff00ff00u) | (new_red << 16) | (new_blue);
}
}
// Color space inverse transform.
static void ColorSpaceInverseTransform(const VP8LTransform* const transform,
- int y_start, int y_end, uint32_t* data) {
+ int y_start, int y_end,
+ const uint32_t* src, uint32_t* dst) {
const int width = transform->xsize_;
const int tile_width = 1 << transform->bits_;
const int mask = tile_width - 1;
@@ -291,17 +300,19 @@ static void ColorSpaceInverseTransform(const VP8LTransform* const transform,
while (y < y_end) {
const uint32_t* pred = pred_row;
VP8LMultipliers m = { 0, 0, 0 };
- const uint32_t* const data_safe_end = data + safe_width;
- const uint32_t* const data_end = data + width;
- while (data < data_safe_end) {
+ const uint32_t* const src_safe_end = src + safe_width;
+ const uint32_t* const src_end = src + width;
+ while (src < src_safe_end) {
ColorCodeToMultipliers(*pred++, &m);
- VP8LTransformColorInverse(&m, data, tile_width);
- data += tile_width;
+ VP8LTransformColorInverse(&m, src, tile_width, dst);
+ src += tile_width;
+ dst += tile_width;
}
- if (data < data_end) { // Left-overs using C-version.
+ if (src < src_end) { // Left-overs using C-version.
ColorCodeToMultipliers(*pred++, &m);
- VP8LTransformColorInverse(&m, data, remaining_width);
- data += remaining_width;
+ VP8LTransformColorInverse(&m, src, remaining_width, dst);
+ src += remaining_width;
+ dst += remaining_width;
}
++y;
if ((y & mask) == 0) pred_row += tiles_per_row;
@@ -366,10 +377,10 @@ void VP8LInverseTransform(const VP8LTransform* const transform,
assert(row_end <= transform->ysize_);
switch (transform->type_) {
case SUBTRACT_GREEN:
- VP8LAddGreenToBlueAndRed(out, (row_end - row_start) * width);
+ VP8LAddGreenToBlueAndRed(in, (row_end - row_start) * width, out);
break;
case PREDICTOR_TRANSFORM:
- PredictorInverseTransform(transform, row_start, row_end, out);
+ PredictorInverseTransform(transform, row_start, row_end, in, out);
if (row_end != transform->ysize_) {
// The last predicted row in this iteration will be the top-pred row
// for the first row in next iteration.
@@ -378,7 +389,7 @@ void VP8LInverseTransform(const VP8LTransform* const transform,
}
break;
case CROSS_COLOR_TRANSFORM:
- ColorSpaceInverseTransform(transform, row_start, row_end, out);
+ ColorSpaceInverseTransform(transform, row_start, row_end, in, out);
break;
case COLOR_INDEXING_TRANSFORM:
if (in == out && transform->bits_ > 0) {
@@ -555,10 +566,15 @@ void VP8LConvertFromBGRA(const uint32_t* const in_data, int num_pixels,
//------------------------------------------------------------------------------
-VP8LProcessBlueAndRedFunc VP8LAddGreenToBlueAndRed;
+VP8LProcessDecBlueAndRedFunc VP8LAddGreenToBlueAndRed;
+VP8LPredictorAddSubFunc VP8LPredictorsAdd[16];
VP8LPredictorFunc VP8LPredictors[16];
-VP8LTransformColorFunc VP8LTransformColorInverse;
+// exposed plain-C implementations
+VP8LPredictorAddSubFunc VP8LPredictorsAdd_C[16];
+VP8LPredictorFunc VP8LPredictors_C[16];
+
+VP8LTransformColorInverseFunc VP8LTransformColorInverse;
VP8LConvertFunc VP8LConvertBGRAToRGB;
VP8LConvertFunc VP8LConvertBGRAToRGBA;
@@ -572,29 +588,37 @@ VP8LMapAlphaFunc VP8LMapColor8b;
extern void VP8LDspInitSSE2(void);
extern void VP8LDspInitNEON(void);
extern void VP8LDspInitMIPSdspR2(void);
+extern void VP8LDspInitMSA(void);
static volatile VP8CPUInfo lossless_last_cpuinfo_used =
(VP8CPUInfo)&lossless_last_cpuinfo_used;
+#define COPY_PREDICTOR_ARRAY(IN, OUT) do { \
+ (OUT)[0] = IN##0; \
+ (OUT)[1] = IN##1; \
+ (OUT)[2] = IN##2; \
+ (OUT)[3] = IN##3; \
+ (OUT)[4] = IN##4; \
+ (OUT)[5] = IN##5; \
+ (OUT)[6] = IN##6; \
+ (OUT)[7] = IN##7; \
+ (OUT)[8] = IN##8; \
+ (OUT)[9] = IN##9; \
+ (OUT)[10] = IN##10; \
+ (OUT)[11] = IN##11; \
+ (OUT)[12] = IN##12; \
+ (OUT)[13] = IN##13; \
+ (OUT)[14] = IN##0; /* <- padding security sentinels*/ \
+ (OUT)[15] = IN##0; \
+} while (0);
+
WEBP_TSAN_IGNORE_FUNCTION void VP8LDspInit(void) {
if (lossless_last_cpuinfo_used == VP8GetCPUInfo) return;
- VP8LPredictors[0] = Predictor0;
- VP8LPredictors[1] = Predictor1;
- VP8LPredictors[2] = Predictor2;
- VP8LPredictors[3] = Predictor3;
- VP8LPredictors[4] = Predictor4;
- VP8LPredictors[5] = Predictor5;
- VP8LPredictors[6] = Predictor6;
- VP8LPredictors[7] = Predictor7;
- VP8LPredictors[8] = Predictor8;
- VP8LPredictors[9] = Predictor9;
- VP8LPredictors[10] = Predictor10;
- VP8LPredictors[11] = Predictor11;
- VP8LPredictors[12] = Predictor12;
- VP8LPredictors[13] = Predictor13;
- VP8LPredictors[14] = Predictor0; // <- padding security sentinels
- VP8LPredictors[15] = Predictor0;
+ COPY_PREDICTOR_ARRAY(Predictor, VP8LPredictors)
+ COPY_PREDICTOR_ARRAY(Predictor, VP8LPredictors_C)
+ COPY_PREDICTOR_ARRAY(PredictorAdd, VP8LPredictorsAdd)
+ COPY_PREDICTOR_ARRAY(PredictorAdd, VP8LPredictorsAdd_C)
VP8LAddGreenToBlueAndRed = VP8LAddGreenToBlueAndRed_C;
@@ -626,8 +650,14 @@ WEBP_TSAN_IGNORE_FUNCTION void VP8LDspInit(void) {
VP8LDspInitMIPSdspR2();
}
#endif
+#if defined(WEBP_USE_MSA)
+ if (VP8GetCPUInfo(kMSA)) {
+ VP8LDspInitMSA();
+ }
+#endif
}
lossless_last_cpuinfo_used = VP8GetCPUInfo;
}
+#undef COPY_PREDICTOR_ARRAY
//------------------------------------------------------------------------------
diff --git a/thirdparty/libwebp/dsp/lossless.h b/thirdparty/libwebp/dsp/lossless.h
index 9f0d7a25b7..352a54e509 100644
--- a/thirdparty/libwebp/dsp/lossless.h
+++ b/thirdparty/libwebp/dsp/lossless.h
@@ -18,7 +18,7 @@
#include "../webp/types.h"
#include "../webp/decode.h"
-#include "../enc/histogram.h"
+#include "../enc/histogram_enc.h"
#include "../utils/utils.h"
#ifdef __cplusplus
@@ -26,7 +26,7 @@ extern "C" {
#endif
#ifdef WEBP_EXPERIMENTAL_FEATURES
-#include "../enc/delta_palettization.h"
+#include "../enc/delta_palettization_enc.h"
#endif // WEBP_EXPERIMENTAL_FEATURES
//------------------------------------------------------------------------------
@@ -34,9 +34,17 @@ extern "C" {
typedef uint32_t (*VP8LPredictorFunc)(uint32_t left, const uint32_t* const top);
extern VP8LPredictorFunc VP8LPredictors[16];
-
-typedef void (*VP8LProcessBlueAndRedFunc)(uint32_t* argb_data, int num_pixels);
-extern VP8LProcessBlueAndRedFunc VP8LAddGreenToBlueAndRed;
+extern VP8LPredictorFunc VP8LPredictors_C[16];
+// These Add/Sub function expects upper[-1] and out[-1] to be readable.
+typedef void (*VP8LPredictorAddSubFunc)(const uint32_t* in,
+ const uint32_t* upper, int num_pixels,
+ uint32_t* out);
+extern VP8LPredictorAddSubFunc VP8LPredictorsAdd[16];
+extern VP8LPredictorAddSubFunc VP8LPredictorsAdd_C[16];
+
+typedef void (*VP8LProcessDecBlueAndRedFunc)(const uint32_t* src,
+ int num_pixels, uint32_t* dst);
+extern VP8LProcessDecBlueAndRedFunc VP8LAddGreenToBlueAndRed;
typedef struct {
// Note: the members are uint8_t, so that any negative values are
@@ -45,9 +53,10 @@ typedef struct {
uint8_t green_to_blue_;
uint8_t red_to_blue_;
} VP8LMultipliers;
-typedef void (*VP8LTransformColorFunc)(const VP8LMultipliers* const m,
- uint32_t* argb_data, int num_pixels);
-extern VP8LTransformColorFunc VP8LTransformColorInverse;
+typedef void (*VP8LTransformColorInverseFunc)(const VP8LMultipliers* const m,
+ const uint32_t* src,
+ int num_pixels, uint32_t* dst);
+extern VP8LTransformColorInverseFunc VP8LTransformColorInverse;
struct VP8LTransform; // Defined in dec/vp8li.h.
@@ -72,23 +81,6 @@ extern VP8LConvertFunc VP8LConvertBGRAToBGR;
void VP8LConvertFromBGRA(const uint32_t* const in_data, int num_pixels,
WEBP_CSP_MODE out_colorspace, uint8_t* const rgba);
-// color mapping related functions.
-static WEBP_INLINE uint32_t VP8GetARGBIndex(uint32_t idx) {
- return (idx >> 8) & 0xff;
-}
-
-static WEBP_INLINE uint8_t VP8GetAlphaIndex(uint8_t idx) {
- return idx;
-}
-
-static WEBP_INLINE uint32_t VP8GetARGBValue(uint32_t val) {
- return val;
-}
-
-static WEBP_INLINE uint8_t VP8GetAlphaValue(uint32_t val) {
- return (val >> 8) & 0xff;
-}
-
typedef void (*VP8LMapARGBFunc)(const uint32_t* src,
const uint32_t* const color_map,
uint32_t* dst, int y_start,
@@ -110,7 +102,8 @@ void VP8LColorIndexInverseTransformAlpha(
// Expose some C-only fallback functions
void VP8LTransformColorInverse_C(const VP8LMultipliers* const m,
- uint32_t* data, int num_pixels);
+ const uint32_t* src, int num_pixels,
+ uint32_t* dst);
void VP8LConvertBGRAToRGB_C(const uint32_t* src, int num_pixels, uint8_t* dst);
void VP8LConvertBGRAToRGBA_C(const uint32_t* src, int num_pixels, uint8_t* dst);
@@ -119,7 +112,8 @@ void VP8LConvertBGRAToRGBA4444_C(const uint32_t* src,
void VP8LConvertBGRAToRGB565_C(const uint32_t* src,
int num_pixels, uint8_t* dst);
void VP8LConvertBGRAToBGR_C(const uint32_t* src, int num_pixels, uint8_t* dst);
-void VP8LAddGreenToBlueAndRed_C(uint32_t* data, int num_pixels);
+void VP8LAddGreenToBlueAndRed_C(const uint32_t* src, int num_pixels,
+ uint32_t* dst);
// Must be called before calling any of the above methods.
void VP8LDspInit(void);
@@ -127,7 +121,10 @@ void VP8LDspInit(void);
//------------------------------------------------------------------------------
// Encoding
-extern VP8LProcessBlueAndRedFunc VP8LSubtractGreenFromBlueAndRed;
+typedef void (*VP8LProcessEncBlueAndRedFunc)(uint32_t* dst, int num_pixels);
+extern VP8LProcessEncBlueAndRedFunc VP8LSubtractGreenFromBlueAndRed;
+typedef void (*VP8LTransformColorFunc)(const VP8LMultipliers* const m,
+ uint32_t* const dst, int num_pixels);
extern VP8LTransformColorFunc VP8LTransformColor;
typedef void (*VP8LCollectColorBlueTransformsFunc)(
const uint32_t* argb, int stride,
@@ -153,62 +150,8 @@ void VP8LCollectColorBlueTransforms_C(const uint32_t* argb, int stride,
int green_to_blue, int red_to_blue,
int histo[]);
-//------------------------------------------------------------------------------
-// Image transforms.
-
-void VP8LResidualImage(int width, int height, int bits, int low_effort,
- uint32_t* const argb, uint32_t* const argb_scratch,
- uint32_t* const image, int near_lossless, int exact,
- int used_subtract_green);
-
-void VP8LColorSpaceTransform(int width, int height, int bits, int quality,
- uint32_t* const argb, uint32_t* image);
-
-//------------------------------------------------------------------------------
-// Misc methods.
-
-// Computes sampled size of 'size' when sampling using 'sampling bits'.
-static WEBP_INLINE uint32_t VP8LSubSampleSize(uint32_t size,
- uint32_t sampling_bits) {
- return (size + (1 << sampling_bits) - 1) >> sampling_bits;
-}
-
-// Converts near lossless quality into max number of bits shaved off.
-static WEBP_INLINE int VP8LNearLosslessBits(int near_lossless_quality) {
- // 100 -> 0
- // 80..99 -> 1
- // 60..79 -> 2
- // 40..59 -> 3
- // 20..39 -> 4
- // 0..19 -> 5
- return 5 - near_lossless_quality / 20;
-}
-
-// -----------------------------------------------------------------------------
-// Faster logarithm for integers. Small values use a look-up table.
-
-// The threshold till approximate version of log_2 can be used.
-// Practically, we can get rid of the call to log() as the two values match to
-// very high degree (the ratio of these two is 0.99999x).
-// Keeping a high threshold for now.
-#define APPROX_LOG_WITH_CORRECTION_MAX 65536
-#define APPROX_LOG_MAX 4096
-#define LOG_2_RECIPROCAL 1.44269504088896338700465094007086
-#define LOG_LOOKUP_IDX_MAX 256
-extern const float kLog2Table[LOG_LOOKUP_IDX_MAX];
-extern const float kSLog2Table[LOG_LOOKUP_IDX_MAX];
-typedef float (*VP8LFastLog2SlowFunc)(uint32_t v);
-
-extern VP8LFastLog2SlowFunc VP8LFastLog2Slow;
-extern VP8LFastLog2SlowFunc VP8LFastSLog2Slow;
-
-static WEBP_INLINE float VP8LFastLog2(uint32_t v) {
- return (v < LOG_LOOKUP_IDX_MAX) ? kLog2Table[v] : VP8LFastLog2Slow(v);
-}
-// Fast calculation of v * log2(v) for integer input.
-static WEBP_INLINE float VP8LFastSLog2(uint32_t v) {
- return (v < LOG_LOOKUP_IDX_MAX) ? kSLog2Table[v] : VP8LFastSLog2Slow(v);
-}
+extern VP8LPredictorAddSubFunc VP8LPredictorsSub[16];
+extern VP8LPredictorAddSubFunc VP8LPredictorsSub_C[16];
// -----------------------------------------------------------------------------
// Huffman-cost related functions.
@@ -228,11 +171,6 @@ typedef struct { // small struct to hold counters
int streaks[2][2]; // [zero/non-zero][streak<3 / streak>=3]
} VP8LStreaks;
-typedef VP8LStreaks (*VP8LCostCombinedCountFunc)(const uint32_t* X,
- const uint32_t* Y, int length);
-
-extern VP8LCostCombinedCountFunc VP8LHuffmanCostCombinedCount;
-
typedef struct { // small struct to hold bit entropy results
double entropy; // entropy
uint32_t sum; // sum of the population
@@ -246,26 +184,20 @@ void VP8LBitEntropyInit(VP8LBitEntropy* const entropy);
// Get the combined symbol bit entropy and Huffman cost stats for the
// distributions 'X' and 'Y'. Those results can then be refined according to
// codec specific heuristics.
-void VP8LGetCombinedEntropyUnrefined(const uint32_t* const X,
- const uint32_t* const Y, int length,
- VP8LBitEntropy* const bit_entropy,
- VP8LStreaks* const stats);
+typedef void (*VP8LGetCombinedEntropyUnrefinedFunc)(
+ const uint32_t X[], const uint32_t Y[], int length,
+ VP8LBitEntropy* const bit_entropy, VP8LStreaks* const stats);
+extern VP8LGetCombinedEntropyUnrefinedFunc VP8LGetCombinedEntropyUnrefined;
+
// Get the entropy for the distribution 'X'.
-void VP8LGetEntropyUnrefined(const uint32_t* const X, int length,
- VP8LBitEntropy* const bit_entropy,
- VP8LStreaks* const stats);
+typedef void (*VP8LGetEntropyUnrefinedFunc)(const uint32_t X[], int length,
+ VP8LBitEntropy* const bit_entropy,
+ VP8LStreaks* const stats);
+extern VP8LGetEntropyUnrefinedFunc VP8LGetEntropyUnrefined;
void VP8LBitsEntropyUnrefined(const uint32_t* const array, int n,
VP8LBitEntropy* const entropy);
-typedef void (*GetEntropyUnrefinedHelperFunc)(uint32_t val, int i,
- uint32_t* const val_prev,
- int* const i_prev,
- VP8LBitEntropy* const bit_entropy,
- VP8LStreaks* const stats);
-// Internal function used by VP8LGet*EntropyUnrefined.
-extern GetEntropyUnrefinedHelperFunc VP8LGetEntropyUnrefinedHelper;
-
typedef void (*VP8LHistogramAddFunc)(const VP8LHistogram* const a,
const VP8LHistogram* const b,
VP8LHistogram* const out);
@@ -279,86 +211,11 @@ typedef int (*VP8LVectorMismatchFunc)(const uint32_t* const array1,
// Returns the first index where array1 and array2 are different.
extern VP8LVectorMismatchFunc VP8LVectorMismatch;
-static WEBP_INLINE int VP8LBitsLog2Ceiling(uint32_t n) {
- const int log_floor = BitsLog2Floor(n);
- if (n == (n & ~(n - 1))) // zero or a power of two.
- return log_floor;
- else
- return log_floor + 1;
-}
-
-// Splitting of distance and length codes into prefixes and
-// extra bits. The prefixes are encoded with an entropy code
-// while the extra bits are stored just as normal bits.
-static WEBP_INLINE void VP8LPrefixEncodeBitsNoLUT(int distance, int* const code,
- int* const extra_bits) {
- const int highest_bit = BitsLog2Floor(--distance);
- const int second_highest_bit = (distance >> (highest_bit - 1)) & 1;
- *extra_bits = highest_bit - 1;
- *code = 2 * highest_bit + second_highest_bit;
-}
-
-static WEBP_INLINE void VP8LPrefixEncodeNoLUT(int distance, int* const code,
- int* const extra_bits,
- int* const extra_bits_value) {
- const int highest_bit = BitsLog2Floor(--distance);
- const int second_highest_bit = (distance >> (highest_bit - 1)) & 1;
- *extra_bits = highest_bit - 1;
- *extra_bits_value = distance & ((1 << *extra_bits) - 1);
- *code = 2 * highest_bit + second_highest_bit;
-}
-
-#define PREFIX_LOOKUP_IDX_MAX 512
-typedef struct {
- int8_t code_;
- int8_t extra_bits_;
-} VP8LPrefixCode;
-
-// These tables are derived using VP8LPrefixEncodeNoLUT.
-extern const VP8LPrefixCode kPrefixEncodeCode[PREFIX_LOOKUP_IDX_MAX];
-extern const uint8_t kPrefixEncodeExtraBitsValue[PREFIX_LOOKUP_IDX_MAX];
-static WEBP_INLINE void VP8LPrefixEncodeBits(int distance, int* const code,
- int* const extra_bits) {
- if (distance < PREFIX_LOOKUP_IDX_MAX) {
- const VP8LPrefixCode prefix_code = kPrefixEncodeCode[distance];
- *code = prefix_code.code_;
- *extra_bits = prefix_code.extra_bits_;
- } else {
- VP8LPrefixEncodeBitsNoLUT(distance, code, extra_bits);
- }
-}
-
-static WEBP_INLINE void VP8LPrefixEncode(int distance, int* const code,
- int* const extra_bits,
- int* const extra_bits_value) {
- if (distance < PREFIX_LOOKUP_IDX_MAX) {
- const VP8LPrefixCode prefix_code = kPrefixEncodeCode[distance];
- *code = prefix_code.code_;
- *extra_bits = prefix_code.extra_bits_;
- *extra_bits_value = kPrefixEncodeExtraBitsValue[distance];
- } else {
- VP8LPrefixEncodeNoLUT(distance, code, extra_bits, extra_bits_value);
- }
-}
-
-// Sum of each component, mod 256.
-static WEBP_INLINE uint32_t VP8LAddPixels(uint32_t a, uint32_t b) {
- const uint32_t alpha_and_green = (a & 0xff00ff00u) + (b & 0xff00ff00u);
- const uint32_t red_and_blue = (a & 0x00ff00ffu) + (b & 0x00ff00ffu);
- return (alpha_and_green & 0xff00ff00u) | (red_and_blue & 0x00ff00ffu);
-}
-
-// Difference of each component, mod 256.
-static WEBP_INLINE uint32_t VP8LSubPixels(uint32_t a, uint32_t b) {
- const uint32_t alpha_and_green =
- 0x00ff00ffu + (a & 0xff00ff00u) - (b & 0xff00ff00u);
- const uint32_t red_and_blue =
- 0xff00ff00u + (a & 0x00ff00ffu) - (b & 0x00ff00ffu);
- return (alpha_and_green & 0xff00ff00u) | (red_and_blue & 0x00ff00ffu);
-}
-
-void VP8LBundleColorMap(const uint8_t* const row, int width,
- int xbits, uint32_t* const dst);
+typedef void (*VP8LBundleColorMapFunc)(const uint8_t* const row, int width,
+ int xbits, uint32_t* dst);
+extern VP8LBundleColorMapFunc VP8LBundleColorMap;
+void VP8LBundleColorMap_C(const uint8_t* const row, int width, int xbits,
+ uint32_t* dst);
// Must be called before calling any of the above methods.
void VP8LEncDspInit(void);
diff --git a/thirdparty/libwebp/dsp/lossless_common.h b/thirdparty/libwebp/dsp/lossless_common.h
new file mode 100644
index 0000000000..c40f711208
--- /dev/null
+++ b/thirdparty/libwebp/dsp/lossless_common.h
@@ -0,0 +1,210 @@
+// Copyright 2012 Google Inc. All Rights Reserved.
+//
+// Use of this source code is governed by a BSD-style license
+// that can be found in the COPYING file in the root of the source
+// tree. An additional intellectual property rights grant can be found
+// in the file PATENTS. All contributing project authors may
+// be found in the AUTHORS file in the root of the source tree.
+// -----------------------------------------------------------------------------
+//
+// Image transforms and color space conversion methods for lossless decoder.
+//
+// Authors: Vikas Arora (vikaas.arora@gmail.com)
+// Jyrki Alakuijala (jyrki@google.com)
+// Vincent Rabaud (vrabaud@google.com)
+
+#ifndef WEBP_DSP_LOSSLESS_COMMON_H_
+#define WEBP_DSP_LOSSLESS_COMMON_H_
+
+#include "../webp/types.h"
+
+#include "../utils/utils.h"
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+//------------------------------------------------------------------------------
+// Decoding
+
+// color mapping related functions.
+static WEBP_INLINE uint32_t VP8GetARGBIndex(uint32_t idx) {
+ return (idx >> 8) & 0xff;
+}
+
+static WEBP_INLINE uint8_t VP8GetAlphaIndex(uint8_t idx) {
+ return idx;
+}
+
+static WEBP_INLINE uint32_t VP8GetARGBValue(uint32_t val) {
+ return val;
+}
+
+static WEBP_INLINE uint8_t VP8GetAlphaValue(uint32_t val) {
+ return (val >> 8) & 0xff;
+}
+
+//------------------------------------------------------------------------------
+// Misc methods.
+
+// Computes sampled size of 'size' when sampling using 'sampling bits'.
+static WEBP_INLINE uint32_t VP8LSubSampleSize(uint32_t size,
+ uint32_t sampling_bits) {
+ return (size + (1 << sampling_bits) - 1) >> sampling_bits;
+}
+
+// Converts near lossless quality into max number of bits shaved off.
+static WEBP_INLINE int VP8LNearLosslessBits(int near_lossless_quality) {
+ // 100 -> 0
+ // 80..99 -> 1
+ // 60..79 -> 2
+ // 40..59 -> 3
+ // 20..39 -> 4
+ // 0..19 -> 5
+ return 5 - near_lossless_quality / 20;
+}
+
+// -----------------------------------------------------------------------------
+// Faster logarithm for integers. Small values use a look-up table.
+
+// The threshold till approximate version of log_2 can be used.
+// Practically, we can get rid of the call to log() as the two values match to
+// very high degree (the ratio of these two is 0.99999x).
+// Keeping a high threshold for now.
+#define APPROX_LOG_WITH_CORRECTION_MAX 65536
+#define APPROX_LOG_MAX 4096
+#define LOG_2_RECIPROCAL 1.44269504088896338700465094007086
+#define LOG_LOOKUP_IDX_MAX 256
+extern const float kLog2Table[LOG_LOOKUP_IDX_MAX];
+extern const float kSLog2Table[LOG_LOOKUP_IDX_MAX];
+typedef float (*VP8LFastLog2SlowFunc)(uint32_t v);
+
+extern VP8LFastLog2SlowFunc VP8LFastLog2Slow;
+extern VP8LFastLog2SlowFunc VP8LFastSLog2Slow;
+
+static WEBP_INLINE float VP8LFastLog2(uint32_t v) {
+ return (v < LOG_LOOKUP_IDX_MAX) ? kLog2Table[v] : VP8LFastLog2Slow(v);
+}
+// Fast calculation of v * log2(v) for integer input.
+static WEBP_INLINE float VP8LFastSLog2(uint32_t v) {
+ return (v < LOG_LOOKUP_IDX_MAX) ? kSLog2Table[v] : VP8LFastSLog2Slow(v);
+}
+
+// -----------------------------------------------------------------------------
+// PrefixEncode()
+
+static WEBP_INLINE int VP8LBitsLog2Ceiling(uint32_t n) {
+ const int log_floor = BitsLog2Floor(n);
+ if (n == (n & ~(n - 1))) { // zero or a power of two.
+ return log_floor;
+ }
+ return log_floor + 1;
+}
+
+// Splitting of distance and length codes into prefixes and
+// extra bits. The prefixes are encoded with an entropy code
+// while the extra bits are stored just as normal bits.
+static WEBP_INLINE void VP8LPrefixEncodeBitsNoLUT(int distance, int* const code,
+ int* const extra_bits) {
+ const int highest_bit = BitsLog2Floor(--distance);
+ const int second_highest_bit = (distance >> (highest_bit - 1)) & 1;
+ *extra_bits = highest_bit - 1;
+ *code = 2 * highest_bit + second_highest_bit;
+}
+
+static WEBP_INLINE void VP8LPrefixEncodeNoLUT(int distance, int* const code,
+ int* const extra_bits,
+ int* const extra_bits_value) {
+ const int highest_bit = BitsLog2Floor(--distance);
+ const int second_highest_bit = (distance >> (highest_bit - 1)) & 1;
+ *extra_bits = highest_bit - 1;
+ *extra_bits_value = distance & ((1 << *extra_bits) - 1);
+ *code = 2 * highest_bit + second_highest_bit;
+}
+
+#define PREFIX_LOOKUP_IDX_MAX 512
+typedef struct {
+ int8_t code_;
+ int8_t extra_bits_;
+} VP8LPrefixCode;
+
+// These tables are derived using VP8LPrefixEncodeNoLUT.
+extern const VP8LPrefixCode kPrefixEncodeCode[PREFIX_LOOKUP_IDX_MAX];
+extern const uint8_t kPrefixEncodeExtraBitsValue[PREFIX_LOOKUP_IDX_MAX];
+static WEBP_INLINE void VP8LPrefixEncodeBits(int distance, int* const code,
+ int* const extra_bits) {
+ if (distance < PREFIX_LOOKUP_IDX_MAX) {
+ const VP8LPrefixCode prefix_code = kPrefixEncodeCode[distance];
+ *code = prefix_code.code_;
+ *extra_bits = prefix_code.extra_bits_;
+ } else {
+ VP8LPrefixEncodeBitsNoLUT(distance, code, extra_bits);
+ }
+}
+
+static WEBP_INLINE void VP8LPrefixEncode(int distance, int* const code,
+ int* const extra_bits,
+ int* const extra_bits_value) {
+ if (distance < PREFIX_LOOKUP_IDX_MAX) {
+ const VP8LPrefixCode prefix_code = kPrefixEncodeCode[distance];
+ *code = prefix_code.code_;
+ *extra_bits = prefix_code.extra_bits_;
+ *extra_bits_value = kPrefixEncodeExtraBitsValue[distance];
+ } else {
+ VP8LPrefixEncodeNoLUT(distance, code, extra_bits, extra_bits_value);
+ }
+}
+
+// Sum of each component, mod 256.
+static WEBP_UBSAN_IGNORE_UNSIGNED_OVERFLOW WEBP_INLINE
+uint32_t VP8LAddPixels(uint32_t a, uint32_t b) {
+ const uint32_t alpha_and_green = (a & 0xff00ff00u) + (b & 0xff00ff00u);
+ const uint32_t red_and_blue = (a & 0x00ff00ffu) + (b & 0x00ff00ffu);
+ return (alpha_and_green & 0xff00ff00u) | (red_and_blue & 0x00ff00ffu);
+}
+
+// Difference of each component, mod 256.
+static WEBP_UBSAN_IGNORE_UNSIGNED_OVERFLOW WEBP_INLINE
+uint32_t VP8LSubPixels(uint32_t a, uint32_t b) {
+ const uint32_t alpha_and_green =
+ 0x00ff00ffu + (a & 0xff00ff00u) - (b & 0xff00ff00u);
+ const uint32_t red_and_blue =
+ 0xff00ff00u + (a & 0x00ff00ffu) - (b & 0x00ff00ffu);
+ return (alpha_and_green & 0xff00ff00u) | (red_and_blue & 0x00ff00ffu);
+}
+
+//------------------------------------------------------------------------------
+// Transform-related functions use din both encoding and decoding.
+
+// Macros used to create a batch predictor that iteratively uses a
+// one-pixel predictor.
+
+// The predictor is added to the output pixel (which
+// is therefore considered as a residual) to get the final prediction.
+#define GENERATE_PREDICTOR_ADD(PREDICTOR, PREDICTOR_ADD) \
+static void PREDICTOR_ADD(const uint32_t* in, const uint32_t* upper, \
+ int num_pixels, uint32_t* out) { \
+ int x; \
+ for (x = 0; x < num_pixels; ++x) { \
+ const uint32_t pred = (PREDICTOR)(out[x - 1], upper + x); \
+ out[x] = VP8LAddPixels(in[x], pred); \
+ } \
+}
+
+// It subtracts the prediction from the input pixel and stores the residual
+// in the output pixel.
+#define GENERATE_PREDICTOR_SUB(PREDICTOR, PREDICTOR_SUB) \
+static void PREDICTOR_SUB(const uint32_t* in, const uint32_t* upper, \
+ int num_pixels, uint32_t* out) { \
+ int x; \
+ for (x = 0; x < num_pixels; ++x) { \
+ const uint32_t pred = (PREDICTOR)(in[x - 1], upper + x); \
+ out[x] = VP8LSubPixels(in[x], pred); \
+ } \
+}
+
+#ifdef __cplusplus
+} // extern "C"
+#endif
+
+#endif // WEBP_DSP_LOSSLESS_COMMON_H_
diff --git a/thirdparty/libwebp/dsp/lossless_enc.c b/thirdparty/libwebp/dsp/lossless_enc.c
index 256f6f5f8b..4e46fbab8b 100644
--- a/thirdparty/libwebp/dsp/lossless_enc.c
+++ b/thirdparty/libwebp/dsp/lossless_enc.c
@@ -17,16 +17,12 @@
#include <math.h>
#include <stdlib.h>
-#include "../dec/vp8li.h"
-#include "../utils/endian_inl.h"
+#include "../dec/vp8li_dec.h"
+#include "../utils/endian_inl_utils.h"
#include "./lossless.h"
+#include "./lossless_common.h"
#include "./yuv.h"
-#define MAX_DIFF_COST (1e30f)
-
-static const int kPredLowEffort = 11;
-static const uint32_t kMaskAlpha = 0xff000000;
-
// lookup table for small values of log2(int)
const float kLog2Table[LOG_LOOKUP_IDX_MAX] = {
0.0000000000000000f, 0.0000000000000000f,
@@ -380,26 +376,9 @@ static float FastLog2Slow(uint32_t v) {
}
}
-// Mostly used to reduce code size + readability
-static WEBP_INLINE int GetMin(int a, int b) { return (a > b) ? b : a; }
-static WEBP_INLINE int GetMax(int a, int b) { return (a < b) ? b : a; }
-
//------------------------------------------------------------------------------
// Methods to calculate Entropy (Shannon).
-static float PredictionCostSpatial(const int counts[256], int weight_0,
- double exp_val) {
- const int significant_symbols = 256 >> 4;
- const double exp_decay_factor = 0.6;
- double bits = weight_0 * counts[0];
- int i;
- for (i = 1; i < significant_symbols; ++i) {
- bits += exp_val * (counts[i] + counts[256 - i]);
- exp_val *= exp_decay_factor;
- }
- return (float)(-0.1 * bits);
-}
-
// Compute the combined Shanon's entropy for distribution {X} and {X+Y}
static float CombinedShannonEntropy(const int X[256], const int Y[256]) {
int i;
@@ -422,18 +401,6 @@ static float CombinedShannonEntropy(const int X[256], const int Y[256]) {
return (float)retval;
}
-static float PredictionCostSpatialHistogram(const int accumulated[4][256],
- const int tile[4][256]) {
- int i;
- double retval = 0;
- for (i = 0; i < 4; ++i) {
- const double kExpValue = 0.94;
- retval += PredictionCostSpatial(tile[i], 1, kExpValue);
- retval += VP8LCombinedShannonEntropy(tile[i], accumulated[i]);
- }
- return (float)retval;
-}
-
void VP8LBitEntropyInit(VP8LBitEntropy* const entropy) {
entropy->entropy = 0.;
entropy->sum = 0;
@@ -486,9 +453,9 @@ static WEBP_INLINE void GetEntropyUnrefinedHelper(
*i_prev = i;
}
-void VP8LGetEntropyUnrefined(const uint32_t* const X, int length,
- VP8LBitEntropy* const bit_entropy,
- VP8LStreaks* const stats) {
+static void GetEntropyUnrefined(const uint32_t X[], int length,
+ VP8LBitEntropy* const bit_entropy,
+ VP8LStreaks* const stats) {
int i;
int i_prev = 0;
uint32_t x_prev = X[0];
@@ -499,18 +466,18 @@ void VP8LGetEntropyUnrefined(const uint32_t* const X, int length,
for (i = 1; i < length; ++i) {
const uint32_t x = X[i];
if (x != x_prev) {
- VP8LGetEntropyUnrefinedHelper(x, i, &x_prev, &i_prev, bit_entropy, stats);
+ GetEntropyUnrefinedHelper(x, i, &x_prev, &i_prev, bit_entropy, stats);
}
}
- VP8LGetEntropyUnrefinedHelper(0, i, &x_prev, &i_prev, bit_entropy, stats);
+ GetEntropyUnrefinedHelper(0, i, &x_prev, &i_prev, bit_entropy, stats);
bit_entropy->entropy += VP8LFastSLog2(bit_entropy->sum);
}
-void VP8LGetCombinedEntropyUnrefined(const uint32_t* const X,
- const uint32_t* const Y, int length,
- VP8LBitEntropy* const bit_entropy,
- VP8LStreaks* const stats) {
+static void GetCombinedEntropyUnrefined(const uint32_t X[], const uint32_t Y[],
+ int length,
+ VP8LBitEntropy* const bit_entropy,
+ VP8LStreaks* const stats) {
int i = 1;
int i_prev = 0;
uint32_t xy_prev = X[0] + Y[0];
@@ -521,439 +488,29 @@ void VP8LGetCombinedEntropyUnrefined(const uint32_t* const X,
for (i = 1; i < length; ++i) {
const uint32_t xy = X[i] + Y[i];
if (xy != xy_prev) {
- VP8LGetEntropyUnrefinedHelper(xy, i, &xy_prev, &i_prev, bit_entropy,
- stats);
+ GetEntropyUnrefinedHelper(xy, i, &xy_prev, &i_prev, bit_entropy, stats);
}
}
- VP8LGetEntropyUnrefinedHelper(0, i, &xy_prev, &i_prev, bit_entropy, stats);
+ GetEntropyUnrefinedHelper(0, i, &xy_prev, &i_prev, bit_entropy, stats);
bit_entropy->entropy += VP8LFastSLog2(bit_entropy->sum);
}
-static WEBP_INLINE void UpdateHisto(int histo_argb[4][256], uint32_t argb) {
- ++histo_argb[0][argb >> 24];
- ++histo_argb[1][(argb >> 16) & 0xff];
- ++histo_argb[2][(argb >> 8) & 0xff];
- ++histo_argb[3][argb & 0xff];
-}
-
//------------------------------------------------------------------------------
-static WEBP_INLINE uint32_t Predict(VP8LPredictorFunc pred_func,
- int x, int y,
- const uint32_t* current_row,
- const uint32_t* upper_row) {
- if (y == 0) {
- return (x == 0) ? ARGB_BLACK : current_row[x - 1]; // Left.
- } else if (x == 0) {
- return upper_row[x]; // Top.
- } else {
- return pred_func(current_row[x - 1], upper_row + x);
- }
-}
-
-static int MaxDiffBetweenPixels(uint32_t p1, uint32_t p2) {
- const int diff_a = abs((int)(p1 >> 24) - (int)(p2 >> 24));
- const int diff_r = abs((int)((p1 >> 16) & 0xff) - (int)((p2 >> 16) & 0xff));
- const int diff_g = abs((int)((p1 >> 8) & 0xff) - (int)((p2 >> 8) & 0xff));
- const int diff_b = abs((int)(p1 & 0xff) - (int)(p2 & 0xff));
- return GetMax(GetMax(diff_a, diff_r), GetMax(diff_g, diff_b));
-}
-
-static int MaxDiffAroundPixel(uint32_t current, uint32_t up, uint32_t down,
- uint32_t left, uint32_t right) {
- const int diff_up = MaxDiffBetweenPixels(current, up);
- const int diff_down = MaxDiffBetweenPixels(current, down);
- const int diff_left = MaxDiffBetweenPixels(current, left);
- const int diff_right = MaxDiffBetweenPixels(current, right);
- return GetMax(GetMax(diff_up, diff_down), GetMax(diff_left, diff_right));
-}
-
-static uint32_t AddGreenToBlueAndRed(uint32_t argb) {
- const uint32_t green = (argb >> 8) & 0xff;
- uint32_t red_blue = argb & 0x00ff00ffu;
- red_blue += (green << 16) | green;
- red_blue &= 0x00ff00ffu;
- return (argb & 0xff00ff00u) | red_blue;
-}
-
-static void MaxDiffsForRow(int width, int stride, const uint32_t* const argb,
- uint8_t* const max_diffs, int used_subtract_green) {
- uint32_t current, up, down, left, right;
- int x;
- if (width <= 2) return;
- current = argb[0];
- right = argb[1];
- if (used_subtract_green) {
- current = AddGreenToBlueAndRed(current);
- right = AddGreenToBlueAndRed(right);
- }
- // max_diffs[0] and max_diffs[width - 1] are never used.
- for (x = 1; x < width - 1; ++x) {
- up = argb[-stride + x];
- down = argb[stride + x];
- left = current;
- current = right;
- right = argb[x + 1];
- if (used_subtract_green) {
- up = AddGreenToBlueAndRed(up);
- down = AddGreenToBlueAndRed(down);
- right = AddGreenToBlueAndRed(right);
- }
- max_diffs[x] = MaxDiffAroundPixel(current, up, down, left, right);
- }
-}
-
-// Quantize the difference between the actual component value and its prediction
-// to a multiple of quantization, working modulo 256, taking care not to cross
-// a boundary (inclusive upper limit).
-static uint8_t NearLosslessComponent(uint8_t value, uint8_t predict,
- uint8_t boundary, int quantization) {
- const int residual = (value - predict) & 0xff;
- const int boundary_residual = (boundary - predict) & 0xff;
- const int lower = residual & ~(quantization - 1);
- const int upper = lower + quantization;
- // Resolve ties towards a value closer to the prediction (i.e. towards lower
- // if value comes after prediction and towards upper otherwise).
- const int bias = ((boundary - value) & 0xff) < boundary_residual;
- if (residual - lower < upper - residual + bias) {
- // lower is closer to residual than upper.
- if (residual > boundary_residual && lower <= boundary_residual) {
- // Halve quantization step to avoid crossing boundary. This midpoint is
- // on the same side of boundary as residual because midpoint >= residual
- // (since lower is closer than upper) and residual is above the boundary.
- return lower + (quantization >> 1);
- }
- return lower;
- } else {
- // upper is closer to residual than lower.
- if (residual <= boundary_residual && upper > boundary_residual) {
- // Halve quantization step to avoid crossing boundary. This midpoint is
- // on the same side of boundary as residual because midpoint <= residual
- // (since upper is closer than lower) and residual is below the boundary.
- return lower + (quantization >> 1);
- }
- return upper & 0xff;
- }
-}
-
-// Quantize every component of the difference between the actual pixel value and
-// its prediction to a multiple of a quantization (a power of 2, not larger than
-// max_quantization which is a power of 2, smaller than max_diff). Take care if
-// value and predict have undergone subtract green, which means that red and
-// blue are represented as offsets from green.
-static uint32_t NearLossless(uint32_t value, uint32_t predict,
- int max_quantization, int max_diff,
- int used_subtract_green) {
- int quantization;
- uint8_t new_green = 0;
- uint8_t green_diff = 0;
- uint8_t a, r, g, b;
- if (max_diff <= 2) {
- return VP8LSubPixels(value, predict);
- }
- quantization = max_quantization;
- while (quantization >= max_diff) {
- quantization >>= 1;
- }
- if ((value >> 24) == 0 || (value >> 24) == 0xff) {
- // Preserve transparency of fully transparent or fully opaque pixels.
- a = ((value >> 24) - (predict >> 24)) & 0xff;
- } else {
- a = NearLosslessComponent(value >> 24, predict >> 24, 0xff, quantization);
- }
- g = NearLosslessComponent((value >> 8) & 0xff, (predict >> 8) & 0xff, 0xff,
- quantization);
- if (used_subtract_green) {
- // The green offset will be added to red and blue components during decoding
- // to obtain the actual red and blue values.
- new_green = ((predict >> 8) + g) & 0xff;
- // The amount by which green has been adjusted during quantization. It is
- // subtracted from red and blue for compensation, to avoid accumulating two
- // quantization errors in them.
- green_diff = (new_green - (value >> 8)) & 0xff;
- }
- r = NearLosslessComponent(((value >> 16) - green_diff) & 0xff,
- (predict >> 16) & 0xff, 0xff - new_green,
- quantization);
- b = NearLosslessComponent((value - green_diff) & 0xff, predict & 0xff,
- 0xff - new_green, quantization);
- return ((uint32_t)a << 24) | ((uint32_t)r << 16) | ((uint32_t)g << 8) | b;
-}
-
-// Returns the difference between the pixel and its prediction. In case of a
-// lossy encoding, updates the source image to avoid propagating the deviation
-// further to pixels which depend on the current pixel for their predictions.
-static WEBP_INLINE uint32_t GetResidual(int width, int height,
- uint32_t* const upper_row,
- uint32_t* const current_row,
- const uint8_t* const max_diffs,
- int mode, VP8LPredictorFunc pred_func,
- int x, int y, int max_quantization,
- int exact, int used_subtract_green) {
- const uint32_t predict = Predict(pred_func, x, y, current_row, upper_row);
- uint32_t residual;
- if (max_quantization == 1 || mode == 0 || y == 0 || y == height - 1 ||
- x == 0 || x == width - 1) {
- residual = VP8LSubPixels(current_row[x], predict);
- } else {
- residual = NearLossless(current_row[x], predict, max_quantization,
- max_diffs[x], used_subtract_green);
- // Update the source image.
- current_row[x] = VP8LAddPixels(predict, residual);
- // x is never 0 here so we do not need to update upper_row like below.
- }
- if (!exact && (current_row[x] & kMaskAlpha) == 0) {
- // If alpha is 0, cleanup RGB. We can choose the RGB values of the residual
- // for best compression. The prediction of alpha itself can be non-zero and
- // must be kept though. We choose RGB of the residual to be 0.
- residual &= kMaskAlpha;
- // Update the source image.
- current_row[x] = predict & ~kMaskAlpha;
- // The prediction for the rightmost pixel in a row uses the leftmost pixel
- // in that row as its top-right context pixel. Hence if we change the
- // leftmost pixel of current_row, the corresponding change must be applied
- // to upper_row as well where top-right context is being read from.
- if (x == 0 && y != 0) upper_row[width] = current_row[0];
- }
- return residual;
-}
-
-// Returns best predictor and updates the accumulated histogram.
-// If max_quantization > 1, assumes that near lossless processing will be
-// applied, quantizing residuals to multiples of quantization levels up to
-// max_quantization (the actual quantization level depends on smoothness near
-// the given pixel).
-static int GetBestPredictorForTile(int width, int height,
- int tile_x, int tile_y, int bits,
- int accumulated[4][256],
- uint32_t* const argb_scratch,
- const uint32_t* const argb,
- int max_quantization,
- int exact, int used_subtract_green) {
- const int kNumPredModes = 14;
- const int start_x = tile_x << bits;
- const int start_y = tile_y << bits;
- const int tile_size = 1 << bits;
- const int max_y = GetMin(tile_size, height - start_y);
- const int max_x = GetMin(tile_size, width - start_x);
- // Whether there exist columns just outside the tile.
- const int have_left = (start_x > 0);
- const int have_right = (max_x < width - start_x);
- // Position and size of the strip covering the tile and adjacent columns if
- // they exist.
- const int context_start_x = start_x - have_left;
- const int context_width = max_x + have_left + have_right;
- // The width of upper_row and current_row is one pixel larger than image width
- // to allow the top right pixel to point to the leftmost pixel of the next row
- // when at the right edge.
- uint32_t* upper_row = argb_scratch;
- uint32_t* current_row = upper_row + width + 1;
- uint8_t* const max_diffs = (uint8_t*)(current_row + width + 1);
- float best_diff = MAX_DIFF_COST;
- int best_mode = 0;
- int mode;
- int histo_stack_1[4][256];
- int histo_stack_2[4][256];
- // Need pointers to be able to swap arrays.
- int (*histo_argb)[256] = histo_stack_1;
- int (*best_histo)[256] = histo_stack_2;
- int i, j;
-
- for (mode = 0; mode < kNumPredModes; ++mode) {
- const VP8LPredictorFunc pred_func = VP8LPredictors[mode];
- float cur_diff;
- int relative_y;
- memset(histo_argb, 0, sizeof(histo_stack_1));
- if (start_y > 0) {
- // Read the row above the tile which will become the first upper_row.
- // Include a pixel to the left if it exists; include a pixel to the right
- // in all cases (wrapping to the leftmost pixel of the next row if it does
- // not exist).
- memcpy(current_row + context_start_x,
- argb + (start_y - 1) * width + context_start_x,
- sizeof(*argb) * (max_x + have_left + 1));
- }
- for (relative_y = 0; relative_y < max_y; ++relative_y) {
- const int y = start_y + relative_y;
- int relative_x;
- uint32_t* tmp = upper_row;
- upper_row = current_row;
- current_row = tmp;
- // Read current_row. Include a pixel to the left if it exists; include a
- // pixel to the right in all cases except at the bottom right corner of
- // the image (wrapping to the leftmost pixel of the next row if it does
- // not exist in the current row).
- memcpy(current_row + context_start_x,
- argb + y * width + context_start_x,
- sizeof(*argb) * (max_x + have_left + (y + 1 < height)));
- if (max_quantization > 1 && y >= 1 && y + 1 < height) {
- MaxDiffsForRow(context_width, width, argb + y * width + context_start_x,
- max_diffs + context_start_x, used_subtract_green);
- }
-
- for (relative_x = 0; relative_x < max_x; ++relative_x) {
- const int x = start_x + relative_x;
- UpdateHisto(histo_argb,
- GetResidual(width, height, upper_row, current_row,
- max_diffs, mode, pred_func, x, y,
- max_quantization, exact, used_subtract_green));
- }
- }
- cur_diff = PredictionCostSpatialHistogram(
- (const int (*)[256])accumulated, (const int (*)[256])histo_argb);
- if (cur_diff < best_diff) {
- int (*tmp)[256] = histo_argb;
- histo_argb = best_histo;
- best_histo = tmp;
- best_diff = cur_diff;
- best_mode = mode;
- }
- }
-
- for (i = 0; i < 4; i++) {
- for (j = 0; j < 256; j++) {
- accumulated[i][j] += best_histo[i][j];
- }
- }
-
- return best_mode;
-}
-
-// Converts pixels of the image to residuals with respect to predictions.
-// If max_quantization > 1, applies near lossless processing, quantizing
-// residuals to multiples of quantization levels up to max_quantization
-// (the actual quantization level depends on smoothness near the given pixel).
-static void CopyImageWithPrediction(int width, int height,
- int bits, uint32_t* const modes,
- uint32_t* const argb_scratch,
- uint32_t* const argb,
- int low_effort, int max_quantization,
- int exact, int used_subtract_green) {
- const int tiles_per_row = VP8LSubSampleSize(width, bits);
- const int mask = (1 << bits) - 1;
- // The width of upper_row and current_row is one pixel larger than image width
- // to allow the top right pixel to point to the leftmost pixel of the next row
- // when at the right edge.
- uint32_t* upper_row = argb_scratch;
- uint32_t* current_row = upper_row + width + 1;
- uint8_t* current_max_diffs = (uint8_t*)(current_row + width + 1);
- uint8_t* lower_max_diffs = current_max_diffs + width;
- int y;
- int mode = 0;
- VP8LPredictorFunc pred_func = NULL;
-
- for (y = 0; y < height; ++y) {
- int x;
- uint32_t* const tmp32 = upper_row;
- upper_row = current_row;
- current_row = tmp32;
- memcpy(current_row, argb + y * width,
- sizeof(*argb) * (width + (y + 1 < height)));
-
- if (low_effort) {
- for (x = 0; x < width; ++x) {
- const uint32_t predict = Predict(VP8LPredictors[kPredLowEffort], x, y,
- current_row, upper_row);
- argb[y * width + x] = VP8LSubPixels(current_row[x], predict);
- }
- } else {
- if (max_quantization > 1) {
- // Compute max_diffs for the lower row now, because that needs the
- // contents of argb for the current row, which we will overwrite with
- // residuals before proceeding with the next row.
- uint8_t* const tmp8 = current_max_diffs;
- current_max_diffs = lower_max_diffs;
- lower_max_diffs = tmp8;
- if (y + 2 < height) {
- MaxDiffsForRow(width, width, argb + (y + 1) * width, lower_max_diffs,
- used_subtract_green);
- }
- }
- for (x = 0; x < width; ++x) {
- if ((x & mask) == 0) {
- mode = (modes[(y >> bits) * tiles_per_row + (x >> bits)] >> 8) & 0xff;
- pred_func = VP8LPredictors[mode];
- }
- argb[y * width + x] = GetResidual(
- width, height, upper_row, current_row, current_max_diffs, mode,
- pred_func, x, y, max_quantization, exact, used_subtract_green);
- }
- }
- }
-}
-
-// Finds the best predictor for each tile, and converts the image to residuals
-// with respect to predictions. If near_lossless_quality < 100, applies
-// near lossless processing, shaving off more bits of residuals for lower
-// qualities.
-void VP8LResidualImage(int width, int height, int bits, int low_effort,
- uint32_t* const argb, uint32_t* const argb_scratch,
- uint32_t* const image, int near_lossless_quality,
- int exact, int used_subtract_green) {
- const int tiles_per_row = VP8LSubSampleSize(width, bits);
- const int tiles_per_col = VP8LSubSampleSize(height, bits);
- int tile_y;
- int histo[4][256];
- const int max_quantization = 1 << VP8LNearLosslessBits(near_lossless_quality);
- if (low_effort) {
- int i;
- for (i = 0; i < tiles_per_row * tiles_per_col; ++i) {
- image[i] = ARGB_BLACK | (kPredLowEffort << 8);
- }
- } else {
- memset(histo, 0, sizeof(histo));
- for (tile_y = 0; tile_y < tiles_per_col; ++tile_y) {
- int tile_x;
- for (tile_x = 0; tile_x < tiles_per_row; ++tile_x) {
- const int pred = GetBestPredictorForTile(width, height, tile_x, tile_y,
- bits, histo, argb_scratch, argb, max_quantization, exact,
- used_subtract_green);
- image[tile_y * tiles_per_row + tile_x] = ARGB_BLACK | (pred << 8);
- }
- }
- }
-
- CopyImageWithPrediction(width, height, bits, image, argb_scratch, argb,
- low_effort, max_quantization, exact,
- used_subtract_green);
-}
-
void VP8LSubtractGreenFromBlueAndRed_C(uint32_t* argb_data, int num_pixels) {
int i;
for (i = 0; i < num_pixels; ++i) {
- const uint32_t argb = argb_data[i];
- const uint32_t green = (argb >> 8) & 0xff;
+ const int argb = argb_data[i];
+ const int green = (argb >> 8) & 0xff;
const uint32_t new_r = (((argb >> 16) & 0xff) - green) & 0xff;
- const uint32_t new_b = ((argb & 0xff) - green) & 0xff;
- argb_data[i] = (argb & 0xff00ff00) | (new_r << 16) | new_b;
+ const uint32_t new_b = (((argb >> 0) & 0xff) - green) & 0xff;
+ argb_data[i] = (argb & 0xff00ff00u) | (new_r << 16) | new_b;
}
}
-static WEBP_INLINE void MultipliersClear(VP8LMultipliers* const m) {
- m->green_to_red_ = 0;
- m->green_to_blue_ = 0;
- m->red_to_blue_ = 0;
-}
-
-static WEBP_INLINE uint32_t ColorTransformDelta(int8_t color_pred,
- int8_t color) {
- return (uint32_t)((int)(color_pred) * color) >> 5;
-}
-
-static WEBP_INLINE void ColorCodeToMultipliers(uint32_t color_code,
- VP8LMultipliers* const m) {
- m->green_to_red_ = (color_code >> 0) & 0xff;
- m->green_to_blue_ = (color_code >> 8) & 0xff;
- m->red_to_blue_ = (color_code >> 16) & 0xff;
-}
-
-static WEBP_INLINE uint32_t MultipliersToColorCode(
- const VP8LMultipliers* const m) {
- return 0xff000000u |
- ((uint32_t)(m->red_to_blue_) << 16) |
- ((uint32_t)(m->green_to_blue_) << 8) |
- m->green_to_red_;
+static WEBP_INLINE int ColorTransformDelta(int8_t color_pred, int8_t color) {
+ return ((int)color_pred * color) >> 5;
}
void VP8LTransformColor_C(const VP8LMultipliers* const m, uint32_t* data,
@@ -963,8 +520,8 @@ void VP8LTransformColor_C(const VP8LMultipliers* const m, uint32_t* data,
const uint32_t argb = data[i];
const uint32_t green = argb >> 8;
const uint32_t red = argb >> 16;
- uint32_t new_red = red;
- uint32_t new_blue = argb;
+ int new_red = red;
+ int new_blue = argb;
new_red -= ColorTransformDelta(m->green_to_red_, green);
new_red &= 0xff;
new_blue -= ColorTransformDelta(m->green_to_blue_, green);
@@ -977,7 +534,7 @@ void VP8LTransformColor_C(const VP8LMultipliers* const m, uint32_t* data,
static WEBP_INLINE uint8_t TransformColorRed(uint8_t green_to_red,
uint32_t argb) {
const uint32_t green = argb >> 8;
- uint32_t new_red = argb >> 16;
+ int new_red = argb >> 16;
new_red -= ColorTransformDelta(green_to_red, green);
return (new_red & 0xff);
}
@@ -993,15 +550,6 @@ static WEBP_INLINE uint8_t TransformColorBlue(uint8_t green_to_blue,
return (new_blue & 0xff);
}
-static float PredictionCostCrossColor(const int accumulated[256],
- const int counts[256]) {
- // Favor low entropy, locally and globally.
- // Favor small absolute values for PredictionCostSpatial
- static const double kExpValue = 2.4;
- return VP8LCombinedShannonEntropy(counts, accumulated) +
- PredictionCostSpatial(counts, 3, kExpValue);
-}
-
void VP8LCollectColorRedTransforms_C(const uint32_t* argb, int stride,
int tile_width, int tile_height,
int green_to_red, int histo[]) {
@@ -1014,59 +562,6 @@ void VP8LCollectColorRedTransforms_C(const uint32_t* argb, int stride,
}
}
-static float GetPredictionCostCrossColorRed(
- const uint32_t* argb, int stride, int tile_width, int tile_height,
- VP8LMultipliers prev_x, VP8LMultipliers prev_y, int green_to_red,
- const int accumulated_red_histo[256]) {
- int histo[256] = { 0 };
- float cur_diff;
-
- VP8LCollectColorRedTransforms(argb, stride, tile_width, tile_height,
- green_to_red, histo);
-
- cur_diff = PredictionCostCrossColor(accumulated_red_histo, histo);
- if ((uint8_t)green_to_red == prev_x.green_to_red_) {
- cur_diff -= 3; // favor keeping the areas locally similar
- }
- if ((uint8_t)green_to_red == prev_y.green_to_red_) {
- cur_diff -= 3; // favor keeping the areas locally similar
- }
- if (green_to_red == 0) {
- cur_diff -= 3;
- }
- return cur_diff;
-}
-
-static void GetBestGreenToRed(
- const uint32_t* argb, int stride, int tile_width, int tile_height,
- VP8LMultipliers prev_x, VP8LMultipliers prev_y, int quality,
- const int accumulated_red_histo[256], VP8LMultipliers* const best_tx) {
- const int kMaxIters = 4 + ((7 * quality) >> 8); // in range [4..6]
- int green_to_red_best = 0;
- int iter, offset;
- float best_diff = GetPredictionCostCrossColorRed(
- argb, stride, tile_width, tile_height, prev_x, prev_y,
- green_to_red_best, accumulated_red_histo);
- for (iter = 0; iter < kMaxIters; ++iter) {
- // ColorTransformDelta is a 3.5 bit fixed point, so 32 is equal to
- // one in color computation. Having initial delta here as 1 is sufficient
- // to explore the range of (-2, 2).
- const int delta = 32 >> iter;
- // Try a negative and a positive delta from the best known value.
- for (offset = -delta; offset <= delta; offset += 2 * delta) {
- const int green_to_red_cur = offset + green_to_red_best;
- const float cur_diff = GetPredictionCostCrossColorRed(
- argb, stride, tile_width, tile_height, prev_x, prev_y,
- green_to_red_cur, accumulated_red_histo);
- if (cur_diff < best_diff) {
- best_diff = cur_diff;
- green_to_red_best = green_to_red_cur;
- }
- }
- }
- best_tx->green_to_red_ = green_to_red_best;
-}
-
void VP8LCollectColorBlueTransforms_C(const uint32_t* argb, int stride,
int tile_width, int tile_height,
int green_to_blue, int red_to_blue,
@@ -1080,187 +575,6 @@ void VP8LCollectColorBlueTransforms_C(const uint32_t* argb, int stride,
}
}
-static float GetPredictionCostCrossColorBlue(
- const uint32_t* argb, int stride, int tile_width, int tile_height,
- VP8LMultipliers prev_x, VP8LMultipliers prev_y,
- int green_to_blue, int red_to_blue, const int accumulated_blue_histo[256]) {
- int histo[256] = { 0 };
- float cur_diff;
-
- VP8LCollectColorBlueTransforms(argb, stride, tile_width, tile_height,
- green_to_blue, red_to_blue, histo);
-
- cur_diff = PredictionCostCrossColor(accumulated_blue_histo, histo);
- if ((uint8_t)green_to_blue == prev_x.green_to_blue_) {
- cur_diff -= 3; // favor keeping the areas locally similar
- }
- if ((uint8_t)green_to_blue == prev_y.green_to_blue_) {
- cur_diff -= 3; // favor keeping the areas locally similar
- }
- if ((uint8_t)red_to_blue == prev_x.red_to_blue_) {
- cur_diff -= 3; // favor keeping the areas locally similar
- }
- if ((uint8_t)red_to_blue == prev_y.red_to_blue_) {
- cur_diff -= 3; // favor keeping the areas locally similar
- }
- if (green_to_blue == 0) {
- cur_diff -= 3;
- }
- if (red_to_blue == 0) {
- cur_diff -= 3;
- }
- return cur_diff;
-}
-
-#define kGreenRedToBlueNumAxis 8
-#define kGreenRedToBlueMaxIters 7
-static void GetBestGreenRedToBlue(
- const uint32_t* argb, int stride, int tile_width, int tile_height,
- VP8LMultipliers prev_x, VP8LMultipliers prev_y, int quality,
- const int accumulated_blue_histo[256],
- VP8LMultipliers* const best_tx) {
- const int8_t offset[kGreenRedToBlueNumAxis][2] =
- {{0, -1}, {0, 1}, {-1, 0}, {1, 0}, {-1, -1}, {-1, 1}, {1, -1}, {1, 1}};
- const int8_t delta_lut[kGreenRedToBlueMaxIters] = { 16, 16, 8, 4, 2, 2, 2 };
- const int iters =
- (quality < 25) ? 1 : (quality > 50) ? kGreenRedToBlueMaxIters : 4;
- int green_to_blue_best = 0;
- int red_to_blue_best = 0;
- int iter;
- // Initial value at origin:
- float best_diff = GetPredictionCostCrossColorBlue(
- argb, stride, tile_width, tile_height, prev_x, prev_y,
- green_to_blue_best, red_to_blue_best, accumulated_blue_histo);
- for (iter = 0; iter < iters; ++iter) {
- const int delta = delta_lut[iter];
- int axis;
- for (axis = 0; axis < kGreenRedToBlueNumAxis; ++axis) {
- const int green_to_blue_cur =
- offset[axis][0] * delta + green_to_blue_best;
- const int red_to_blue_cur = offset[axis][1] * delta + red_to_blue_best;
- const float cur_diff = GetPredictionCostCrossColorBlue(
- argb, stride, tile_width, tile_height, prev_x, prev_y,
- green_to_blue_cur, red_to_blue_cur, accumulated_blue_histo);
- if (cur_diff < best_diff) {
- best_diff = cur_diff;
- green_to_blue_best = green_to_blue_cur;
- red_to_blue_best = red_to_blue_cur;
- }
- if (quality < 25 && iter == 4) {
- // Only axis aligned diffs for lower quality.
- break; // next iter.
- }
- }
- if (delta == 2 && green_to_blue_best == 0 && red_to_blue_best == 0) {
- // Further iterations would not help.
- break; // out of iter-loop.
- }
- }
- best_tx->green_to_blue_ = green_to_blue_best;
- best_tx->red_to_blue_ = red_to_blue_best;
-}
-#undef kGreenRedToBlueMaxIters
-#undef kGreenRedToBlueNumAxis
-
-static VP8LMultipliers GetBestColorTransformForTile(
- int tile_x, int tile_y, int bits,
- VP8LMultipliers prev_x,
- VP8LMultipliers prev_y,
- int quality, int xsize, int ysize,
- const int accumulated_red_histo[256],
- const int accumulated_blue_histo[256],
- const uint32_t* const argb) {
- const int max_tile_size = 1 << bits;
- const int tile_y_offset = tile_y * max_tile_size;
- const int tile_x_offset = tile_x * max_tile_size;
- const int all_x_max = GetMin(tile_x_offset + max_tile_size, xsize);
- const int all_y_max = GetMin(tile_y_offset + max_tile_size, ysize);
- const int tile_width = all_x_max - tile_x_offset;
- const int tile_height = all_y_max - tile_y_offset;
- const uint32_t* const tile_argb = argb + tile_y_offset * xsize
- + tile_x_offset;
- VP8LMultipliers best_tx;
- MultipliersClear(&best_tx);
-
- GetBestGreenToRed(tile_argb, xsize, tile_width, tile_height,
- prev_x, prev_y, quality, accumulated_red_histo, &best_tx);
- GetBestGreenRedToBlue(tile_argb, xsize, tile_width, tile_height,
- prev_x, prev_y, quality, accumulated_blue_histo,
- &best_tx);
- return best_tx;
-}
-
-static void CopyTileWithColorTransform(int xsize, int ysize,
- int tile_x, int tile_y,
- int max_tile_size,
- VP8LMultipliers color_transform,
- uint32_t* argb) {
- const int xscan = GetMin(max_tile_size, xsize - tile_x);
- int yscan = GetMin(max_tile_size, ysize - tile_y);
- argb += tile_y * xsize + tile_x;
- while (yscan-- > 0) {
- VP8LTransformColor(&color_transform, argb, xscan);
- argb += xsize;
- }
-}
-
-void VP8LColorSpaceTransform(int width, int height, int bits, int quality,
- uint32_t* const argb, uint32_t* image) {
- const int max_tile_size = 1 << bits;
- const int tile_xsize = VP8LSubSampleSize(width, bits);
- const int tile_ysize = VP8LSubSampleSize(height, bits);
- int accumulated_red_histo[256] = { 0 };
- int accumulated_blue_histo[256] = { 0 };
- int tile_x, tile_y;
- VP8LMultipliers prev_x, prev_y;
- MultipliersClear(&prev_y);
- MultipliersClear(&prev_x);
- for (tile_y = 0; tile_y < tile_ysize; ++tile_y) {
- for (tile_x = 0; tile_x < tile_xsize; ++tile_x) {
- int y;
- const int tile_x_offset = tile_x * max_tile_size;
- const int tile_y_offset = tile_y * max_tile_size;
- const int all_x_max = GetMin(tile_x_offset + max_tile_size, width);
- const int all_y_max = GetMin(tile_y_offset + max_tile_size, height);
- const int offset = tile_y * tile_xsize + tile_x;
- if (tile_y != 0) {
- ColorCodeToMultipliers(image[offset - tile_xsize], &prev_y);
- }
- prev_x = GetBestColorTransformForTile(tile_x, tile_y, bits,
- prev_x, prev_y,
- quality, width, height,
- accumulated_red_histo,
- accumulated_blue_histo,
- argb);
- image[offset] = MultipliersToColorCode(&prev_x);
- CopyTileWithColorTransform(width, height, tile_x_offset, tile_y_offset,
- max_tile_size, prev_x, argb);
-
- // Gather accumulated histogram data.
- for (y = tile_y_offset; y < all_y_max; ++y) {
- int ix = y * width + tile_x_offset;
- const int ix_end = ix + all_x_max - tile_x_offset;
- for (; ix < ix_end; ++ix) {
- const uint32_t pix = argb[ix];
- if (ix >= 2 &&
- pix == argb[ix - 2] &&
- pix == argb[ix - 1]) {
- continue; // repeated pixels are handled by backward references
- }
- if (ix >= width + 2 &&
- argb[ix - 2] == argb[ix - width - 2] &&
- argb[ix - 1] == argb[ix - width - 1] &&
- pix == argb[ix - width]) {
- continue; // repeated pixels are handled by backward references
- }
- ++accumulated_red_histo[(pix >> 16) & 0xff];
- ++accumulated_blue_histo[(pix >> 0) & 0xff];
- }
- }
- }
- }
-}
-
//------------------------------------------------------------------------------
static int VectorMismatch(const uint32_t* const array1,
@@ -1274,8 +588,8 @@ static int VectorMismatch(const uint32_t* const array1,
}
// Bundles multiple (1, 2, 4 or 8) pixels into a single pixel.
-void VP8LBundleColorMap(const uint8_t* const row, int width,
- int xbits, uint32_t* const dst) {
+void VP8LBundleColorMap_C(const uint8_t* const row, int width, int xbits,
+ uint32_t* dst) {
int x;
if (xbits > 0) {
const int bit_depth = 1 << (3 - xbits);
@@ -1350,8 +664,172 @@ static void HistogramAdd(const VP8LHistogram* const a,
}
//------------------------------------------------------------------------------
+// Image transforms.
-VP8LProcessBlueAndRedFunc VP8LSubtractGreenFromBlueAndRed;
+static WEBP_INLINE uint32_t Average2(uint32_t a0, uint32_t a1) {
+ return (((a0 ^ a1) & 0xfefefefeu) >> 1) + (a0 & a1);
+}
+
+static WEBP_INLINE uint32_t Average3(uint32_t a0, uint32_t a1, uint32_t a2) {
+ return Average2(Average2(a0, a2), a1);
+}
+
+static WEBP_INLINE uint32_t Average4(uint32_t a0, uint32_t a1,
+ uint32_t a2, uint32_t a3) {
+ return Average2(Average2(a0, a1), Average2(a2, a3));
+}
+
+static WEBP_INLINE uint32_t Clip255(uint32_t a) {
+ if (a < 256) {
+ return a;
+ }
+ // return 0, when a is a negative integer.
+ // return 255, when a is positive.
+ return ~a >> 24;
+}
+
+static WEBP_INLINE int AddSubtractComponentFull(int a, int b, int c) {
+ return Clip255(a + b - c);
+}
+
+static WEBP_INLINE uint32_t ClampedAddSubtractFull(uint32_t c0, uint32_t c1,
+ uint32_t c2) {
+ const int a = AddSubtractComponentFull(c0 >> 24, c1 >> 24, c2 >> 24);
+ const int r = AddSubtractComponentFull((c0 >> 16) & 0xff,
+ (c1 >> 16) & 0xff,
+ (c2 >> 16) & 0xff);
+ const int g = AddSubtractComponentFull((c0 >> 8) & 0xff,
+ (c1 >> 8) & 0xff,
+ (c2 >> 8) & 0xff);
+ const int b = AddSubtractComponentFull(c0 & 0xff, c1 & 0xff, c2 & 0xff);
+ return ((uint32_t)a << 24) | (r << 16) | (g << 8) | b;
+}
+
+static WEBP_INLINE int AddSubtractComponentHalf(int a, int b) {
+ return Clip255(a + (a - b) / 2);
+}
+
+static WEBP_INLINE uint32_t ClampedAddSubtractHalf(uint32_t c0, uint32_t c1,
+ uint32_t c2) {
+ const uint32_t ave = Average2(c0, c1);
+ const int a = AddSubtractComponentHalf(ave >> 24, c2 >> 24);
+ const int r = AddSubtractComponentHalf((ave >> 16) & 0xff, (c2 >> 16) & 0xff);
+ const int g = AddSubtractComponentHalf((ave >> 8) & 0xff, (c2 >> 8) & 0xff);
+ const int b = AddSubtractComponentHalf((ave >> 0) & 0xff, (c2 >> 0) & 0xff);
+ return ((uint32_t)a << 24) | (r << 16) | (g << 8) | b;
+}
+
+// gcc-4.9 on ARM generates incorrect code in Select() when Sub3() is inlined.
+#if defined(__arm__) && \
+ (LOCAL_GCC_VERSION == 0x409 || LOCAL_GCC_VERSION == 0x408)
+# define LOCAL_INLINE __attribute__ ((noinline))
+#else
+# define LOCAL_INLINE WEBP_INLINE
+#endif
+
+static LOCAL_INLINE int Sub3(int a, int b, int c) {
+ const int pb = b - c;
+ const int pa = a - c;
+ return abs(pb) - abs(pa);
+}
+
+#undef LOCAL_INLINE
+
+static WEBP_INLINE uint32_t Select(uint32_t a, uint32_t b, uint32_t c) {
+ const int pa_minus_pb =
+ Sub3((a >> 24) , (b >> 24) , (c >> 24) ) +
+ Sub3((a >> 16) & 0xff, (b >> 16) & 0xff, (c >> 16) & 0xff) +
+ Sub3((a >> 8) & 0xff, (b >> 8) & 0xff, (c >> 8) & 0xff) +
+ Sub3((a ) & 0xff, (b ) & 0xff, (c ) & 0xff);
+ return (pa_minus_pb <= 0) ? a : b;
+}
+
+//------------------------------------------------------------------------------
+// Predictors
+
+static uint32_t Predictor2(uint32_t left, const uint32_t* const top) {
+ (void)left;
+ return top[0];
+}
+static uint32_t Predictor3(uint32_t left, const uint32_t* const top) {
+ (void)left;
+ return top[1];
+}
+static uint32_t Predictor4(uint32_t left, const uint32_t* const top) {
+ (void)left;
+ return top[-1];
+}
+static uint32_t Predictor5(uint32_t left, const uint32_t* const top) {
+ const uint32_t pred = Average3(left, top[0], top[1]);
+ return pred;
+}
+static uint32_t Predictor6(uint32_t left, const uint32_t* const top) {
+ const uint32_t pred = Average2(left, top[-1]);
+ return pred;
+}
+static uint32_t Predictor7(uint32_t left, const uint32_t* const top) {
+ const uint32_t pred = Average2(left, top[0]);
+ return pred;
+}
+static uint32_t Predictor8(uint32_t left, const uint32_t* const top) {
+ const uint32_t pred = Average2(top[-1], top[0]);
+ (void)left;
+ return pred;
+}
+static uint32_t Predictor9(uint32_t left, const uint32_t* const top) {
+ const uint32_t pred = Average2(top[0], top[1]);
+ (void)left;
+ return pred;
+}
+static uint32_t Predictor10(uint32_t left, const uint32_t* const top) {
+ const uint32_t pred = Average4(left, top[-1], top[0], top[1]);
+ return pred;
+}
+static uint32_t Predictor11(uint32_t left, const uint32_t* const top) {
+ const uint32_t pred = Select(top[0], left, top[-1]);
+ return pred;
+}
+static uint32_t Predictor12(uint32_t left, const uint32_t* const top) {
+ const uint32_t pred = ClampedAddSubtractFull(left, top[0], top[-1]);
+ return pred;
+}
+static uint32_t Predictor13(uint32_t left, const uint32_t* const top) {
+ const uint32_t pred = ClampedAddSubtractHalf(left, top[0], top[-1]);
+ return pred;
+}
+
+//------------------------------------------------------------------------------
+
+static void PredictorSub0_C(const uint32_t* in, const uint32_t* upper,
+ int num_pixels, uint32_t* out) {
+ int i;
+ for (i = 0; i < num_pixels; ++i) out[i] = VP8LSubPixels(in[i], ARGB_BLACK);
+ (void)upper;
+}
+
+static void PredictorSub1_C(const uint32_t* in, const uint32_t* upper,
+ int num_pixels, uint32_t* out) {
+ int i;
+ for (i = 0; i < num_pixels; ++i) out[i] = VP8LSubPixels(in[i], in[i - 1]);
+ (void)upper;
+}
+
+GENERATE_PREDICTOR_SUB(Predictor2, PredictorSub2_C)
+GENERATE_PREDICTOR_SUB(Predictor3, PredictorSub3_C)
+GENERATE_PREDICTOR_SUB(Predictor4, PredictorSub4_C)
+GENERATE_PREDICTOR_SUB(Predictor5, PredictorSub5_C)
+GENERATE_PREDICTOR_SUB(Predictor6, PredictorSub6_C)
+GENERATE_PREDICTOR_SUB(Predictor7, PredictorSub7_C)
+GENERATE_PREDICTOR_SUB(Predictor8, PredictorSub8_C)
+GENERATE_PREDICTOR_SUB(Predictor9, PredictorSub9_C)
+GENERATE_PREDICTOR_SUB(Predictor10, PredictorSub10_C)
+GENERATE_PREDICTOR_SUB(Predictor11, PredictorSub11_C)
+GENERATE_PREDICTOR_SUB(Predictor12, PredictorSub12_C)
+GENERATE_PREDICTOR_SUB(Predictor13, PredictorSub13_C)
+
+//------------------------------------------------------------------------------
+
+VP8LProcessEncBlueAndRedFunc VP8LSubtractGreenFromBlueAndRed;
VP8LTransformColorFunc VP8LTransformColor;
@@ -1365,17 +843,23 @@ VP8LCostFunc VP8LExtraCost;
VP8LCostCombinedFunc VP8LExtraCostCombined;
VP8LCombinedShannonEntropyFunc VP8LCombinedShannonEntropy;
-GetEntropyUnrefinedHelperFunc VP8LGetEntropyUnrefinedHelper;
+VP8LGetEntropyUnrefinedFunc VP8LGetEntropyUnrefined;
+VP8LGetCombinedEntropyUnrefinedFunc VP8LGetCombinedEntropyUnrefined;
VP8LHistogramAddFunc VP8LHistogramAdd;
VP8LVectorMismatchFunc VP8LVectorMismatch;
+VP8LBundleColorMapFunc VP8LBundleColorMap;
+
+VP8LPredictorAddSubFunc VP8LPredictorsSub[16];
+VP8LPredictorAddSubFunc VP8LPredictorsSub_C[16];
extern void VP8LEncDspInitSSE2(void);
extern void VP8LEncDspInitSSE41(void);
extern void VP8LEncDspInitNEON(void);
extern void VP8LEncDspInitMIPS32(void);
extern void VP8LEncDspInitMIPSdspR2(void);
+extern void VP8LEncDspInitMSA(void);
static volatile VP8CPUInfo lossless_enc_last_cpuinfo_used =
(VP8CPUInfo)&lossless_enc_last_cpuinfo_used;
@@ -1399,11 +883,47 @@ WEBP_TSAN_IGNORE_FUNCTION void VP8LEncDspInit(void) {
VP8LExtraCostCombined = ExtraCostCombined;
VP8LCombinedShannonEntropy = CombinedShannonEntropy;
- VP8LGetEntropyUnrefinedHelper = GetEntropyUnrefinedHelper;
+ VP8LGetEntropyUnrefined = GetEntropyUnrefined;
+ VP8LGetCombinedEntropyUnrefined = GetCombinedEntropyUnrefined;
VP8LHistogramAdd = HistogramAdd;
VP8LVectorMismatch = VectorMismatch;
+ VP8LBundleColorMap = VP8LBundleColorMap_C;
+
+ VP8LPredictorsSub[0] = PredictorSub0_C;
+ VP8LPredictorsSub[1] = PredictorSub1_C;
+ VP8LPredictorsSub[2] = PredictorSub2_C;
+ VP8LPredictorsSub[3] = PredictorSub3_C;
+ VP8LPredictorsSub[4] = PredictorSub4_C;
+ VP8LPredictorsSub[5] = PredictorSub5_C;
+ VP8LPredictorsSub[6] = PredictorSub6_C;
+ VP8LPredictorsSub[7] = PredictorSub7_C;
+ VP8LPredictorsSub[8] = PredictorSub8_C;
+ VP8LPredictorsSub[9] = PredictorSub9_C;
+ VP8LPredictorsSub[10] = PredictorSub10_C;
+ VP8LPredictorsSub[11] = PredictorSub11_C;
+ VP8LPredictorsSub[12] = PredictorSub12_C;
+ VP8LPredictorsSub[13] = PredictorSub13_C;
+ VP8LPredictorsSub[14] = PredictorSub0_C; // <- padding security sentinels
+ VP8LPredictorsSub[15] = PredictorSub0_C;
+
+ VP8LPredictorsSub_C[0] = PredictorSub0_C;
+ VP8LPredictorsSub_C[1] = PredictorSub1_C;
+ VP8LPredictorsSub_C[2] = PredictorSub2_C;
+ VP8LPredictorsSub_C[3] = PredictorSub3_C;
+ VP8LPredictorsSub_C[4] = PredictorSub4_C;
+ VP8LPredictorsSub_C[5] = PredictorSub5_C;
+ VP8LPredictorsSub_C[6] = PredictorSub6_C;
+ VP8LPredictorsSub_C[7] = PredictorSub7_C;
+ VP8LPredictorsSub_C[8] = PredictorSub8_C;
+ VP8LPredictorsSub_C[9] = PredictorSub9_C;
+ VP8LPredictorsSub_C[10] = PredictorSub10_C;
+ VP8LPredictorsSub_C[11] = PredictorSub11_C;
+ VP8LPredictorsSub_C[12] = PredictorSub12_C;
+ VP8LPredictorsSub_C[13] = PredictorSub13_C;
+ VP8LPredictorsSub_C[14] = PredictorSub0_C; // <- padding security sentinels
+ VP8LPredictorsSub_C[15] = PredictorSub0_C;
// If defined, use CPUInfo() to overwrite some pointers with faster versions.
if (VP8GetCPUInfo != NULL) {
@@ -1432,6 +952,11 @@ WEBP_TSAN_IGNORE_FUNCTION void VP8LEncDspInit(void) {
VP8LEncDspInitMIPSdspR2();
}
#endif
+#if defined(WEBP_USE_MSA)
+ if (VP8GetCPUInfo(kMSA)) {
+ VP8LEncDspInitMSA();
+ }
+#endif
}
lossless_enc_last_cpuinfo_used = VP8GetCPUInfo;
}
diff --git a/thirdparty/libwebp/dsp/lossless_enc_mips32.c b/thirdparty/libwebp/dsp/lossless_enc_mips32.c
index 49c666d4fd..4186b9f50d 100644
--- a/thirdparty/libwebp/dsp/lossless_enc_mips32.c
+++ b/thirdparty/libwebp/dsp/lossless_enc_mips32.c
@@ -14,6 +14,7 @@
#include "./dsp.h"
#include "./lossless.h"
+#include "./lossless_common.h"
#if defined(WEBP_USE_MIPS32)
@@ -240,6 +241,49 @@ static WEBP_INLINE void GetEntropyUnrefinedHelper(
*i_prev = i;
}
+static void GetEntropyUnrefined(const uint32_t X[], int length,
+ VP8LBitEntropy* const bit_entropy,
+ VP8LStreaks* const stats) {
+ int i;
+ int i_prev = 0;
+ uint32_t x_prev = X[0];
+
+ memset(stats, 0, sizeof(*stats));
+ VP8LBitEntropyInit(bit_entropy);
+
+ for (i = 1; i < length; ++i) {
+ const uint32_t x = X[i];
+ if (x != x_prev) {
+ GetEntropyUnrefinedHelper(x, i, &x_prev, &i_prev, bit_entropy, stats);
+ }
+ }
+ GetEntropyUnrefinedHelper(0, i, &x_prev, &i_prev, bit_entropy, stats);
+
+ bit_entropy->entropy += VP8LFastSLog2(bit_entropy->sum);
+}
+
+static void GetCombinedEntropyUnrefined(const uint32_t X[], const uint32_t Y[],
+ int length,
+ VP8LBitEntropy* const bit_entropy,
+ VP8LStreaks* const stats) {
+ int i = 1;
+ int i_prev = 0;
+ uint32_t xy_prev = X[0] + Y[0];
+
+ memset(stats, 0, sizeof(*stats));
+ VP8LBitEntropyInit(bit_entropy);
+
+ for (i = 1; i < length; ++i) {
+ const uint32_t xy = X[i] + Y[i];
+ if (xy != xy_prev) {
+ GetEntropyUnrefinedHelper(xy, i, &xy_prev, &i_prev, bit_entropy, stats);
+ }
+ }
+ GetEntropyUnrefinedHelper(0, i, &xy_prev, &i_prev, bit_entropy, stats);
+
+ bit_entropy->entropy += VP8LFastSLog2(bit_entropy->sum);
+}
+
#define ASM_START \
__asm__ volatile( \
".set push \n\t" \
@@ -375,7 +419,8 @@ WEBP_TSAN_IGNORE_FUNCTION void VP8LEncDspInitMIPS32(void) {
VP8LFastLog2Slow = FastLog2Slow;
VP8LExtraCost = ExtraCost;
VP8LExtraCostCombined = ExtraCostCombined;
- VP8LGetEntropyUnrefinedHelper = GetEntropyUnrefinedHelper;
+ VP8LGetEntropyUnrefined = GetEntropyUnrefined;
+ VP8LGetCombinedEntropyUnrefined = GetCombinedEntropyUnrefined;
VP8LHistogramAdd = HistogramAdd;
}
diff --git a/thirdparty/libwebp/dsp/lossless_enc_msa.c b/thirdparty/libwebp/dsp/lossless_enc_msa.c
new file mode 100644
index 0000000000..2f69ba3bca
--- /dev/null
+++ b/thirdparty/libwebp/dsp/lossless_enc_msa.c
@@ -0,0 +1,147 @@
+// Copyright 2016 Google Inc. All Rights Reserved.
+//
+// Use of this source code is governed by a BSD-style license
+// that can be found in the COPYING file in the root of the source
+// tree. An additional intellectual property rights grant can be found
+// in the file PATENTS. All contributing project authors may
+// be found in the AUTHORS file in the root of the source tree.
+// -----------------------------------------------------------------------------
+//
+// MSA variant of Image transform methods for lossless encoder.
+//
+// Authors: Prashant Patil (Prashant.Patil@imgtec.com)
+
+#include "./dsp.h"
+
+#if defined(WEBP_USE_MSA)
+
+#include "./lossless.h"
+#include "./msa_macro.h"
+
+#define TRANSFORM_COLOR_8(src0, src1, dst0, dst1, c0, c1, mask0, mask1) do { \
+ v8i16 g0, g1, t0, t1, t2, t3; \
+ v4i32 t4, t5; \
+ VSHF_B2_SH(src0, src0, src1, src1, mask0, mask0, g0, g1); \
+ DOTP_SB2_SH(g0, g1, c0, c0, t0, t1); \
+ SRAI_H2_SH(t0, t1, 5); \
+ t0 = __msa_subv_h((v8i16)src0, t0); \
+ t1 = __msa_subv_h((v8i16)src1, t1); \
+ t4 = __msa_srli_w((v4i32)src0, 16); \
+ t5 = __msa_srli_w((v4i32)src1, 16); \
+ DOTP_SB2_SH(t4, t5, c1, c1, t2, t3); \
+ SRAI_H2_SH(t2, t3, 5); \
+ SUB2(t0, t2, t1, t3, t0, t1); \
+ VSHF_B2_UB(src0, t0, src1, t1, mask1, mask1, dst0, dst1); \
+} while (0)
+
+#define TRANSFORM_COLOR_4(src, dst, c0, c1, mask0, mask1) do { \
+ const v16i8 g0 = VSHF_SB(src, src, mask0); \
+ v8i16 t0 = __msa_dotp_s_h(c0, g0); \
+ v8i16 t1; \
+ v4i32 t2; \
+ t0 = SRAI_H(t0, 5); \
+ t0 = __msa_subv_h((v8i16)src, t0); \
+ t2 = __msa_srli_w((v4i32)src, 16); \
+ t1 = __msa_dotp_s_h(c1, (v16i8)t2); \
+ t1 = SRAI_H(t1, 5); \
+ t0 = t0 - t1; \
+ dst = VSHF_UB(src, t0, mask1); \
+} while (0)
+
+static void TransformColor(const VP8LMultipliers* const m, uint32_t* data,
+ int num_pixels) {
+ v16u8 src0, dst0;
+ const v16i8 g2br = (v16i8)__msa_fill_w(m->green_to_blue_ |
+ (m->green_to_red_ << 16));
+ const v16i8 r2b = (v16i8)__msa_fill_w(m->red_to_blue_);
+ const v16u8 mask0 = { 1, 255, 1, 255, 5, 255, 5, 255, 9, 255, 9, 255,
+ 13, 255, 13, 255 };
+ const v16u8 mask1 = { 16, 1, 18, 3, 20, 5, 22, 7, 24, 9, 26, 11,
+ 28, 13, 30, 15 };
+
+ while (num_pixels >= 8) {
+ v16u8 src1, dst1;
+ LD_UB2(data, 4, src0, src1);
+ TRANSFORM_COLOR_8(src0, src1, dst0, dst1, g2br, r2b, mask0, mask1);
+ ST_UB2(dst0, dst1, data, 4);
+ data += 8;
+ num_pixels -= 8;
+ }
+ if (num_pixels > 0) {
+ if (num_pixels >= 4) {
+ src0 = LD_UB(data);
+ TRANSFORM_COLOR_4(src0, dst0, g2br, r2b, mask0, mask1);
+ ST_UB(dst0, data);
+ data += 4;
+ num_pixels -= 4;
+ }
+ if (num_pixels > 0) {
+ src0 = LD_UB(data);
+ TRANSFORM_COLOR_4(src0, dst0, g2br, r2b, mask0, mask1);
+ if (num_pixels == 3) {
+ const uint64_t pix_d = __msa_copy_s_d((v2i64)dst0, 0);
+ const uint32_t pix_w = __msa_copy_s_w((v4i32)dst0, 2);
+ SD(pix_d, data + 0);
+ SW(pix_w, data + 2);
+ } else if (num_pixels == 2) {
+ const uint64_t pix_d = __msa_copy_s_d((v2i64)dst0, 0);
+ SD(pix_d, data);
+ } else {
+ const uint32_t pix_w = __msa_copy_s_w((v4i32)dst0, 0);
+ SW(pix_w, data);
+ }
+ }
+ }
+}
+
+static void SubtractGreenFromBlueAndRed(uint32_t* argb_data, int num_pixels) {
+ int i;
+ uint8_t* ptemp_data = (uint8_t*)argb_data;
+ v16u8 src0, dst0, tmp0;
+ const v16u8 mask = { 1, 255, 1, 255, 5, 255, 5, 255, 9, 255, 9, 255,
+ 13, 255, 13, 255 };
+
+ while (num_pixels >= 8) {
+ v16u8 src1, dst1, tmp1;
+ LD_UB2(ptemp_data, 16, src0, src1);
+ VSHF_B2_UB(src0, src1, src1, src0, mask, mask, tmp0, tmp1);
+ SUB2(src0, tmp0, src1, tmp1, dst0, dst1);
+ ST_UB2(dst0, dst1, ptemp_data, 16);
+ ptemp_data += 8 * 4;
+ num_pixels -= 8;
+ }
+ if (num_pixels > 0) {
+ if (num_pixels >= 4) {
+ src0 = LD_UB(ptemp_data);
+ tmp0 = VSHF_UB(src0, src0, mask);
+ dst0 = src0 - tmp0;
+ ST_UB(dst0, ptemp_data);
+ ptemp_data += 4 * 4;
+ num_pixels -= 4;
+ }
+ for (i = 0; i < num_pixels; i++) {
+ const uint8_t b = ptemp_data[0];
+ const uint8_t g = ptemp_data[1];
+ const uint8_t r = ptemp_data[2];
+ ptemp_data[0] = (b - g) & 0xff;
+ ptemp_data[2] = (r - g) & 0xff;
+ ptemp_data += 4;
+ }
+ }
+}
+
+//------------------------------------------------------------------------------
+// Entry point
+
+extern void VP8LEncDspInitMSA(void);
+
+WEBP_TSAN_IGNORE_FUNCTION void VP8LEncDspInitMSA(void) {
+ VP8LSubtractGreenFromBlueAndRed = SubtractGreenFromBlueAndRed;
+ VP8LTransformColor = TransformColor;
+}
+
+#else // !WEBP_USE_MSA
+
+WEBP_DSP_INIT_STUB(VP8LEncDspInitMSA)
+
+#endif // WEBP_USE_MSA
diff --git a/thirdparty/libwebp/dsp/lossless_enc_sse2.c b/thirdparty/libwebp/dsp/lossless_enc_sse2.c
index 7c894e7ca4..8ad85d94d7 100644
--- a/thirdparty/libwebp/dsp/lossless_enc_sse2.c
+++ b/thirdparty/libwebp/dsp/lossless_enc_sse2.c
@@ -17,6 +17,8 @@
#include <assert.h>
#include <emmintrin.h>
#include "./lossless.h"
+#include "./common_sse2.h"
+#include "./lossless_common.h"
// For sign-extended multiplying constants, pre-shifted by 5:
#define CST_5b(X) (((int16_t)((uint16_t)X << 8)) >> 5)
@@ -35,7 +37,9 @@ static void SubtractGreenFromBlueAndRed(uint32_t* argb_data, int num_pixels) {
_mm_storeu_si128((__m128i*)&argb_data[i], out);
}
// fallthrough and finish off with plain-C
- VP8LSubtractGreenFromBlueAndRed_C(argb_data + i, num_pixels - i);
+ if (i != num_pixels) {
+ VP8LSubtractGreenFromBlueAndRed_C(argb_data + i, num_pixels - i);
+ }
}
//------------------------------------------------------------------------------
@@ -69,7 +73,9 @@ static void TransformColor(const VP8LMultipliers* const m,
_mm_storeu_si128((__m128i*)&argb_data[i], out);
}
// fallthrough and finish off with plain-C
- VP8LTransformColor_C(m, argb_data + i, num_pixels - i);
+ if (i != num_pixels) {
+ VP8LTransformColor_C(m, argb_data + i, num_pixels - i);
+ }
}
//------------------------------------------------------------------------------
@@ -364,8 +370,9 @@ static int VectorMismatch(const uint32_t* const array1,
if (length >= 8 &&
_mm_movemask_epi8(_mm_cmpeq_epi32(
_mm_loadu_si128((const __m128i*)&array1[4]),
- _mm_loadu_si128((const __m128i*)&array2[4]))) == 0xffff)
+ _mm_loadu_si128((const __m128i*)&array2[4]))) == 0xffff) {
match_len = 8;
+ }
}
}
@@ -375,6 +382,295 @@ static int VectorMismatch(const uint32_t* const array1,
return match_len;
}
+// Bundles multiple (1, 2, 4 or 8) pixels into a single pixel.
+static void BundleColorMap_SSE2(const uint8_t* const row, int width, int xbits,
+ uint32_t* dst) {
+ int x;
+ assert(xbits >= 0);
+ assert(xbits <= 3);
+ switch (xbits) {
+ case 0: {
+ const __m128i ff = _mm_set1_epi16(0xff00);
+ const __m128i zero = _mm_setzero_si128();
+ // Store 0xff000000 | (row[x] << 8).
+ for (x = 0; x + 16 <= width; x += 16, dst += 16) {
+ const __m128i in = _mm_loadu_si128((const __m128i*)&row[x]);
+ const __m128i in_lo = _mm_unpacklo_epi8(zero, in);
+ const __m128i dst0 = _mm_unpacklo_epi16(in_lo, ff);
+ const __m128i dst1 = _mm_unpackhi_epi16(in_lo, ff);
+ const __m128i in_hi = _mm_unpackhi_epi8(zero, in);
+ const __m128i dst2 = _mm_unpacklo_epi16(in_hi, ff);
+ const __m128i dst3 = _mm_unpackhi_epi16(in_hi, ff);
+ _mm_storeu_si128((__m128i*)&dst[0], dst0);
+ _mm_storeu_si128((__m128i*)&dst[4], dst1);
+ _mm_storeu_si128((__m128i*)&dst[8], dst2);
+ _mm_storeu_si128((__m128i*)&dst[12], dst3);
+ }
+ break;
+ }
+ case 1: {
+ const __m128i ff = _mm_set1_epi16(0xff00);
+ const __m128i mul = _mm_set1_epi16(0x110);
+ for (x = 0; x + 16 <= width; x += 16, dst += 8) {
+ // 0a0b | (where a/b are 4 bits).
+ const __m128i in = _mm_loadu_si128((const __m128i*)&row[x]);
+ const __m128i tmp = _mm_mullo_epi16(in, mul); // aba0
+ const __m128i pack = _mm_and_si128(tmp, ff); // ab00
+ const __m128i dst0 = _mm_unpacklo_epi16(pack, ff);
+ const __m128i dst1 = _mm_unpackhi_epi16(pack, ff);
+ _mm_storeu_si128((__m128i*)&dst[0], dst0);
+ _mm_storeu_si128((__m128i*)&dst[4], dst1);
+ }
+ break;
+ }
+ case 2: {
+ const __m128i mask_or = _mm_set1_epi32(0xff000000);
+ const __m128i mul_cst = _mm_set1_epi16(0x0104);
+ const __m128i mask_mul = _mm_set1_epi16(0x0f00);
+ for (x = 0; x + 16 <= width; x += 16, dst += 4) {
+ // 000a000b000c000d | (where a/b/c/d are 2 bits).
+ const __m128i in = _mm_loadu_si128((const __m128i*)&row[x]);
+ const __m128i mul = _mm_mullo_epi16(in, mul_cst); // 00ab00b000cd00d0
+ const __m128i tmp = _mm_and_si128(mul, mask_mul); // 00ab000000cd0000
+ const __m128i shift = _mm_srli_epi32(tmp, 12); // 00000000ab000000
+ const __m128i pack = _mm_or_si128(shift, tmp); // 00000000abcd0000
+ // Convert to 0xff00**00.
+ const __m128i res = _mm_or_si128(pack, mask_or);
+ _mm_storeu_si128((__m128i*)dst, res);
+ }
+ break;
+ }
+ default: {
+ assert(xbits == 3);
+ for (x = 0; x + 16 <= width; x += 16, dst += 2) {
+ // 0000000a00000000b... | (where a/b are 1 bit).
+ const __m128i in = _mm_loadu_si128((const __m128i*)&row[x]);
+ const __m128i shift = _mm_slli_epi64(in, 7);
+ const uint32_t move = _mm_movemask_epi8(shift);
+ dst[0] = 0xff000000 | ((move & 0xff) << 8);
+ dst[1] = 0xff000000 | (move & 0xff00);
+ }
+ break;
+ }
+ }
+ if (x != width) {
+ VP8LBundleColorMap_C(row + x, width - x, xbits, dst);
+ }
+}
+
+//------------------------------------------------------------------------------
+// Batch version of Predictor Transform subtraction
+
+static WEBP_INLINE void Average2_m128i(const __m128i* const a0,
+ const __m128i* const a1,
+ __m128i* const avg) {
+ // (a + b) >> 1 = ((a + b + 1) >> 1) - ((a ^ b) & 1)
+ const __m128i ones = _mm_set1_epi8(1);
+ const __m128i avg1 = _mm_avg_epu8(*a0, *a1);
+ const __m128i one = _mm_and_si128(_mm_xor_si128(*a0, *a1), ones);
+ *avg = _mm_sub_epi8(avg1, one);
+}
+
+// Predictor0: ARGB_BLACK.
+static void PredictorSub0_SSE2(const uint32_t* in, const uint32_t* upper,
+ int num_pixels, uint32_t* out) {
+ int i;
+ const __m128i black = _mm_set1_epi32(ARGB_BLACK);
+ for (i = 0; i + 4 <= num_pixels; i += 4) {
+ const __m128i src = _mm_loadu_si128((const __m128i*)&in[i]);
+ const __m128i res = _mm_sub_epi8(src, black);
+ _mm_storeu_si128((__m128i*)&out[i], res);
+ }
+ if (i != num_pixels) {
+ VP8LPredictorsSub_C[0](in + i, upper + i, num_pixels - i, out + i);
+ }
+}
+
+#define GENERATE_PREDICTOR_1(X, IN) \
+static void PredictorSub##X##_SSE2(const uint32_t* in, const uint32_t* upper, \
+ int num_pixels, uint32_t* out) { \
+ int i; \
+ for (i = 0; i + 4 <= num_pixels; i += 4) { \
+ const __m128i src = _mm_loadu_si128((const __m128i*)&in[i]); \
+ const __m128i pred = _mm_loadu_si128((const __m128i*)&(IN)); \
+ const __m128i res = _mm_sub_epi8(src, pred); \
+ _mm_storeu_si128((__m128i*)&out[i], res); \
+ } \
+ if (i != num_pixels) { \
+ VP8LPredictorsSub_C[(X)](in + i, upper + i, num_pixels - i, out + i); \
+ } \
+}
+
+GENERATE_PREDICTOR_1(1, in[i - 1]) // Predictor1: L
+GENERATE_PREDICTOR_1(2, upper[i]) // Predictor2: T
+GENERATE_PREDICTOR_1(3, upper[i + 1]) // Predictor3: TR
+GENERATE_PREDICTOR_1(4, upper[i - 1]) // Predictor4: TL
+#undef GENERATE_PREDICTOR_1
+
+// Predictor5: avg2(avg2(L, TR), T)
+static void PredictorSub5_SSE2(const uint32_t* in, const uint32_t* upper,
+ int num_pixels, uint32_t* out) {
+ int i;
+ for (i = 0; i + 4 <= num_pixels; i += 4) {
+ const __m128i L = _mm_loadu_si128((const __m128i*)&in[i - 1]);
+ const __m128i T = _mm_loadu_si128((const __m128i*)&upper[i]);
+ const __m128i TR = _mm_loadu_si128((const __m128i*)&upper[i + 1]);
+ const __m128i src = _mm_loadu_si128((const __m128i*)&in[i]);
+ __m128i avg, pred, res;
+ Average2_m128i(&L, &TR, &avg);
+ Average2_m128i(&avg, &T, &pred);
+ res = _mm_sub_epi8(src, pred);
+ _mm_storeu_si128((__m128i*)&out[i], res);
+ }
+ if (i != num_pixels) {
+ VP8LPredictorsSub_C[5](in + i, upper + i, num_pixels - i, out + i);
+ }
+}
+
+#define GENERATE_PREDICTOR_2(X, A, B) \
+static void PredictorSub##X##_SSE2(const uint32_t* in, const uint32_t* upper, \
+ int num_pixels, uint32_t* out) { \
+ int i; \
+ for (i = 0; i + 4 <= num_pixels; i += 4) { \
+ const __m128i tA = _mm_loadu_si128((const __m128i*)&(A)); \
+ const __m128i tB = _mm_loadu_si128((const __m128i*)&(B)); \
+ const __m128i src = _mm_loadu_si128((const __m128i*)&in[i]); \
+ __m128i pred, res; \
+ Average2_m128i(&tA, &tB, &pred); \
+ res = _mm_sub_epi8(src, pred); \
+ _mm_storeu_si128((__m128i*)&out[i], res); \
+ } \
+ if (i != num_pixels) { \
+ VP8LPredictorsSub_C[(X)](in + i, upper + i, num_pixels - i, out + i); \
+ } \
+}
+
+GENERATE_PREDICTOR_2(6, in[i - 1], upper[i - 1]) // Predictor6: avg(L, TL)
+GENERATE_PREDICTOR_2(7, in[i - 1], upper[i]) // Predictor7: avg(L, T)
+GENERATE_PREDICTOR_2(8, upper[i - 1], upper[i]) // Predictor8: avg(TL, T)
+GENERATE_PREDICTOR_2(9, upper[i], upper[i + 1]) // Predictor9: average(T, TR)
+#undef GENERATE_PREDICTOR_2
+
+// Predictor10: avg(avg(L,TL), avg(T, TR)).
+static void PredictorSub10_SSE2(const uint32_t* in, const uint32_t* upper,
+ int num_pixels, uint32_t* out) {
+ int i;
+ for (i = 0; i + 4 <= num_pixels; i += 4) {
+ const __m128i L = _mm_loadu_si128((const __m128i*)&in[i - 1]);
+ const __m128i src = _mm_loadu_si128((const __m128i*)&in[i]);
+ const __m128i TL = _mm_loadu_si128((const __m128i*)&upper[i - 1]);
+ const __m128i T = _mm_loadu_si128((const __m128i*)&upper[i]);
+ const __m128i TR = _mm_loadu_si128((const __m128i*)&upper[i + 1]);
+ __m128i avgTTR, avgLTL, avg, res;
+ Average2_m128i(&T, &TR, &avgTTR);
+ Average2_m128i(&L, &TL, &avgLTL);
+ Average2_m128i(&avgTTR, &avgLTL, &avg);
+ res = _mm_sub_epi8(src, avg);
+ _mm_storeu_si128((__m128i*)&out[i], res);
+ }
+ if (i != num_pixels) {
+ VP8LPredictorsSub_C[10](in + i, upper + i, num_pixels - i, out + i);
+ }
+}
+
+// Predictor11: select.
+static void GetSumAbsDiff32(const __m128i* const A, const __m128i* const B,
+ __m128i* const out) {
+ // We can unpack with any value on the upper 32 bits, provided it's the same
+ // on both operands (to that their sum of abs diff is zero). Here we use *A.
+ const __m128i A_lo = _mm_unpacklo_epi32(*A, *A);
+ const __m128i B_lo = _mm_unpacklo_epi32(*B, *A);
+ const __m128i A_hi = _mm_unpackhi_epi32(*A, *A);
+ const __m128i B_hi = _mm_unpackhi_epi32(*B, *A);
+ const __m128i s_lo = _mm_sad_epu8(A_lo, B_lo);
+ const __m128i s_hi = _mm_sad_epu8(A_hi, B_hi);
+ *out = _mm_packs_epi32(s_lo, s_hi);
+}
+
+static void PredictorSub11_SSE2(const uint32_t* in, const uint32_t* upper,
+ int num_pixels, uint32_t* out) {
+ int i;
+ for (i = 0; i + 4 <= num_pixels; i += 4) {
+ const __m128i L = _mm_loadu_si128((const __m128i*)&in[i - 1]);
+ const __m128i T = _mm_loadu_si128((const __m128i*)&upper[i]);
+ const __m128i TL = _mm_loadu_si128((const __m128i*)&upper[i - 1]);
+ const __m128i src = _mm_loadu_si128((const __m128i*)&in[i]);
+ __m128i pa, pb;
+ GetSumAbsDiff32(&T, &TL, &pa); // pa = sum |T-TL|
+ GetSumAbsDiff32(&L, &TL, &pb); // pb = sum |L-TL|
+ {
+ const __m128i mask = _mm_cmpgt_epi32(pb, pa);
+ const __m128i A = _mm_and_si128(mask, L);
+ const __m128i B = _mm_andnot_si128(mask, T);
+ const __m128i pred = _mm_or_si128(A, B); // pred = (L > T)? L : T
+ const __m128i res = _mm_sub_epi8(src, pred);
+ _mm_storeu_si128((__m128i*)&out[i], res);
+ }
+ }
+ if (i != num_pixels) {
+ VP8LPredictorsSub_C[11](in + i, upper + i, num_pixels - i, out + i);
+ }
+}
+
+// Predictor12: ClampedSubSubtractFull.
+static void PredictorSub12_SSE2(const uint32_t* in, const uint32_t* upper,
+ int num_pixels, uint32_t* out) {
+ int i;
+ const __m128i zero = _mm_setzero_si128();
+ for (i = 0; i + 4 <= num_pixels; i += 4) {
+ const __m128i src = _mm_loadu_si128((const __m128i*)&in[i]);
+ const __m128i L = _mm_loadu_si128((const __m128i*)&in[i - 1]);
+ const __m128i L_lo = _mm_unpacklo_epi8(L, zero);
+ const __m128i L_hi = _mm_unpackhi_epi8(L, zero);
+ const __m128i T = _mm_loadu_si128((const __m128i*)&upper[i]);
+ const __m128i T_lo = _mm_unpacklo_epi8(T, zero);
+ const __m128i T_hi = _mm_unpackhi_epi8(T, zero);
+ const __m128i TL = _mm_loadu_si128((const __m128i*)&upper[i - 1]);
+ const __m128i TL_lo = _mm_unpacklo_epi8(TL, zero);
+ const __m128i TL_hi = _mm_unpackhi_epi8(TL, zero);
+ const __m128i diff_lo = _mm_sub_epi16(T_lo, TL_lo);
+ const __m128i diff_hi = _mm_sub_epi16(T_hi, TL_hi);
+ const __m128i pred_lo = _mm_add_epi16(L_lo, diff_lo);
+ const __m128i pred_hi = _mm_add_epi16(L_hi, diff_hi);
+ const __m128i pred = _mm_packus_epi16(pred_lo, pred_hi);
+ const __m128i res = _mm_sub_epi8(src, pred);
+ _mm_storeu_si128((__m128i*)&out[i], res);
+ }
+ if (i != num_pixels) {
+ VP8LPredictorsSub_C[12](in + i, upper + i, num_pixels - i, out + i);
+ }
+}
+
+// Predictors13: ClampedAddSubtractHalf
+static void PredictorSub13_SSE2(const uint32_t* in, const uint32_t* upper,
+ int num_pixels, uint32_t* out) {
+ int i;
+ const __m128i zero = _mm_setzero_si128();
+ for (i = 0; i + 2 <= num_pixels; i += 2) {
+ // we can only process two pixels at a time
+ const __m128i L = _mm_loadl_epi64((const __m128i*)&in[i - 1]);
+ const __m128i src = _mm_loadl_epi64((const __m128i*)&in[i]);
+ const __m128i T = _mm_loadl_epi64((const __m128i*)&upper[i]);
+ const __m128i TL = _mm_loadl_epi64((const __m128i*)&upper[i - 1]);
+ const __m128i L_lo = _mm_unpacklo_epi8(L, zero);
+ const __m128i T_lo = _mm_unpacklo_epi8(T, zero);
+ const __m128i TL_lo = _mm_unpacklo_epi8(TL, zero);
+ const __m128i sum = _mm_add_epi16(T_lo, L_lo);
+ const __m128i avg = _mm_srli_epi16(sum, 1);
+ const __m128i A1 = _mm_sub_epi16(avg, TL_lo);
+ const __m128i bit_fix = _mm_cmpgt_epi16(TL_lo, avg);
+ const __m128i A2 = _mm_sub_epi16(A1, bit_fix);
+ const __m128i A3 = _mm_srai_epi16(A2, 1);
+ const __m128i A4 = _mm_add_epi16(avg, A3);
+ const __m128i pred = _mm_packus_epi16(A4, A4);
+ const __m128i res = _mm_sub_epi8(src, pred);
+ _mm_storel_epi64((__m128i*)&out[i], res);
+ }
+ if (i != num_pixels) {
+ VP8LPredictorsSub_C[13](in + i, upper + i, num_pixels - i, out + i);
+ }
+}
+
//------------------------------------------------------------------------------
// Entry point
@@ -388,6 +684,24 @@ WEBP_TSAN_IGNORE_FUNCTION void VP8LEncDspInitSSE2(void) {
VP8LHistogramAdd = HistogramAdd;
VP8LCombinedShannonEntropy = CombinedShannonEntropy;
VP8LVectorMismatch = VectorMismatch;
+ VP8LBundleColorMap = BundleColorMap_SSE2;
+
+ VP8LPredictorsSub[0] = PredictorSub0_SSE2;
+ VP8LPredictorsSub[1] = PredictorSub1_SSE2;
+ VP8LPredictorsSub[2] = PredictorSub2_SSE2;
+ VP8LPredictorsSub[3] = PredictorSub3_SSE2;
+ VP8LPredictorsSub[4] = PredictorSub4_SSE2;
+ VP8LPredictorsSub[5] = PredictorSub5_SSE2;
+ VP8LPredictorsSub[6] = PredictorSub6_SSE2;
+ VP8LPredictorsSub[7] = PredictorSub7_SSE2;
+ VP8LPredictorsSub[8] = PredictorSub8_SSE2;
+ VP8LPredictorsSub[9] = PredictorSub9_SSE2;
+ VP8LPredictorsSub[10] = PredictorSub10_SSE2;
+ VP8LPredictorsSub[11] = PredictorSub11_SSE2;
+ VP8LPredictorsSub[12] = PredictorSub12_SSE2;
+ VP8LPredictorsSub[13] = PredictorSub13_SSE2;
+ VP8LPredictorsSub[14] = PredictorSub0_SSE2; // <- padding security sentinels
+ VP8LPredictorsSub[15] = PredictorSub0_SSE2;
}
#else // !WEBP_USE_SSE2
diff --git a/thirdparty/libwebp/dsp/lossless_enc_sse41.c b/thirdparty/libwebp/dsp/lossless_enc_sse41.c
index 3e493198db..821057ccd4 100644
--- a/thirdparty/libwebp/dsp/lossless_enc_sse41.c
+++ b/thirdparty/libwebp/dsp/lossless_enc_sse41.c
@@ -32,7 +32,9 @@ static void SubtractGreenFromBlueAndRed(uint32_t* argb_data, int num_pixels) {
_mm_storeu_si128((__m128i*)&argb_data[i], out);
}
// fallthrough and finish off with plain-C
- VP8LSubtractGreenFromBlueAndRed_C(argb_data + i, num_pixels - i);
+ if (i != num_pixels) {
+ VP8LSubtractGreenFromBlueAndRed_C(argb_data + i, num_pixels - i);
+ }
}
//------------------------------------------------------------------------------
diff --git a/thirdparty/libwebp/dsp/lossless_mips_dsp_r2.c b/thirdparty/libwebp/dsp/lossless_mips_dsp_r2.c
index 90aed7f151..2984ce8df7 100644
--- a/thirdparty/libwebp/dsp/lossless_mips_dsp_r2.c
+++ b/thirdparty/libwebp/dsp/lossless_mips_dsp_r2.c
@@ -17,6 +17,7 @@
#if defined(WEBP_USE_MIPS_DSP_R2)
#include "./lossless.h"
+#include "./lossless_common.h"
#define MAP_COLOR_FUNCS(FUNC_NAME, TYPE, GET_INDEX, GET_VALUE) \
static void FUNC_NAME(const TYPE* src, \
@@ -227,25 +228,27 @@ static uint32_t Predictor13(uint32_t left, const uint32_t* const top) {
// Add green to blue and red channels (i.e. perform the inverse transform of
// 'subtract green').
-static void AddGreenToBlueAndRed(uint32_t* data, int num_pixels) {
+static void AddGreenToBlueAndRed(const uint32_t* src, int num_pixels,
+ uint32_t* dst) {
uint32_t temp0, temp1, temp2, temp3, temp4, temp5, temp6, temp7;
- uint32_t* const p_loop1_end = data + (num_pixels & ~3);
- uint32_t* const p_loop2_end = data + num_pixels;
+ const uint32_t* const p_loop1_end = src + (num_pixels & ~3);
+ const uint32_t* const p_loop2_end = src + num_pixels;
__asm__ volatile (
".set push \n\t"
".set noreorder \n\t"
- "beq %[data], %[p_loop1_end], 3f \n\t"
+ "beq %[src], %[p_loop1_end], 3f \n\t"
" nop \n\t"
"0: \n\t"
- "lw %[temp0], 0(%[data]) \n\t"
- "lw %[temp1], 4(%[data]) \n\t"
- "lw %[temp2], 8(%[data]) \n\t"
- "lw %[temp3], 12(%[data]) \n\t"
+ "lw %[temp0], 0(%[src]) \n\t"
+ "lw %[temp1], 4(%[src]) \n\t"
+ "lw %[temp2], 8(%[src]) \n\t"
+ "lw %[temp3], 12(%[src]) \n\t"
"ext %[temp4], %[temp0], 8, 8 \n\t"
"ext %[temp5], %[temp1], 8, 8 \n\t"
"ext %[temp6], %[temp2], 8, 8 \n\t"
"ext %[temp7], %[temp3], 8, 8 \n\t"
- "addiu %[data], %[data], 16 \n\t"
+ "addiu %[src], %[src], 16 \n\t"
+ "addiu %[dst], %[dst], 16 \n\t"
"replv.ph %[temp4], %[temp4] \n\t"
"replv.ph %[temp5], %[temp5] \n\t"
"replv.ph %[temp6], %[temp6] \n\t"
@@ -254,44 +257,47 @@ static void AddGreenToBlueAndRed(uint32_t* data, int num_pixels) {
"addu.qb %[temp1], %[temp1], %[temp5] \n\t"
"addu.qb %[temp2], %[temp2], %[temp6] \n\t"
"addu.qb %[temp3], %[temp3], %[temp7] \n\t"
- "sw %[temp0], -16(%[data]) \n\t"
- "sw %[temp1], -12(%[data]) \n\t"
- "sw %[temp2], -8(%[data]) \n\t"
- "bne %[data], %[p_loop1_end], 0b \n\t"
- " sw %[temp3], -4(%[data]) \n\t"
+ "sw %[temp0], -16(%[dst]) \n\t"
+ "sw %[temp1], -12(%[dst]) \n\t"
+ "sw %[temp2], -8(%[dst]) \n\t"
+ "bne %[src], %[p_loop1_end], 0b \n\t"
+ " sw %[temp3], -4(%[dst]) \n\t"
"3: \n\t"
- "beq %[data], %[p_loop2_end], 2f \n\t"
+ "beq %[src], %[p_loop2_end], 2f \n\t"
" nop \n\t"
"1: \n\t"
- "lw %[temp0], 0(%[data]) \n\t"
- "addiu %[data], %[data], 4 \n\t"
+ "lw %[temp0], 0(%[src]) \n\t"
+ "addiu %[src], %[src], 4 \n\t"
+ "addiu %[dst], %[dst], 4 \n\t"
"ext %[temp4], %[temp0], 8, 8 \n\t"
"replv.ph %[temp4], %[temp4] \n\t"
"addu.qb %[temp0], %[temp0], %[temp4] \n\t"
- "bne %[data], %[p_loop2_end], 1b \n\t"
- " sw %[temp0], -4(%[data]) \n\t"
+ "bne %[src], %[p_loop2_end], 1b \n\t"
+ " sw %[temp0], -4(%[dst]) \n\t"
"2: \n\t"
".set pop \n\t"
- : [data]"+&r"(data), [temp0]"=&r"(temp0), [temp1]"=&r"(temp1),
- [temp2]"=&r"(temp2), [temp3]"=&r"(temp3), [temp4]"=&r"(temp4),
- [temp5]"=&r"(temp5), [temp6]"=&r"(temp6), [temp7]"=&r"(temp7)
+ : [dst]"+&r"(dst), [src]"+&r"(src), [temp0]"=&r"(temp0),
+ [temp1]"=&r"(temp1), [temp2]"=&r"(temp2), [temp3]"=&r"(temp3),
+ [temp4]"=&r"(temp4), [temp5]"=&r"(temp5), [temp6]"=&r"(temp6),
+ [temp7]"=&r"(temp7)
: [p_loop1_end]"r"(p_loop1_end), [p_loop2_end]"r"(p_loop2_end)
: "memory"
);
}
static void TransformColorInverse(const VP8LMultipliers* const m,
- uint32_t* data, int num_pixels) {
+ const uint32_t* src, int num_pixels,
+ uint32_t* dst) {
int temp0, temp1, temp2, temp3, temp4, temp5;
uint32_t argb, argb1, new_red;
const uint32_t G_to_R = m->green_to_red_;
const uint32_t G_to_B = m->green_to_blue_;
const uint32_t R_to_B = m->red_to_blue_;
- uint32_t* const p_loop_end = data + (num_pixels & ~1);
+ const uint32_t* const p_loop_end = src + (num_pixels & ~1);
__asm__ volatile (
".set push \n\t"
".set noreorder \n\t"
- "beq %[data], %[p_loop_end], 1f \n\t"
+ "beq %[src], %[p_loop_end], 1f \n\t"
" nop \n\t"
"replv.ph %[temp0], %[G_to_R] \n\t"
"replv.ph %[temp1], %[G_to_B] \n\t"
@@ -303,9 +309,12 @@ static void TransformColorInverse(const VP8LMultipliers* const m,
"shra.ph %[temp1], %[temp1], 8 \n\t"
"shra.ph %[temp2], %[temp2], 8 \n\t"
"0: \n\t"
- "lw %[argb], 0(%[data]) \n\t"
- "lw %[argb1], 4(%[data]) \n\t"
- "addiu %[data], %[data], 8 \n\t"
+ "lw %[argb], 0(%[src]) \n\t"
+ "lw %[argb1], 4(%[src]) \n\t"
+ "sw %[argb], 0(%[dst]) \n\t"
+ "sw %[argb1], 4(%[dst]) \n\t"
+ "addiu %[src], %[src], 8 \n\t"
+ "addiu %[dst], %[dst], 8 \n\t"
"precrq.qb.ph %[temp3], %[argb], %[argb1] \n\t"
"preceu.ph.qbra %[temp3], %[temp3] \n\t"
"shll.ph %[temp3], %[temp3], 8 \n\t"
@@ -322,29 +331,29 @@ static void TransformColorInverse(const VP8LMultipliers* const m,
"shll.ph %[temp4], %[temp5], 8 \n\t"
"shra.ph %[temp4], %[temp4], 8 \n\t"
"mul.ph %[temp4], %[temp4], %[temp2] \n\t"
- "sb %[temp5], -2(%[data]) \n\t"
+ "sb %[temp5], -2(%[dst]) \n\t"
"sra %[temp5], %[temp5], 16 \n\t"
"shra.ph %[temp4], %[temp4], 5 \n\t"
"addu.ph %[argb1], %[argb1], %[temp4] \n\t"
"preceu.ph.qbra %[temp3], %[argb1] \n\t"
- "sb %[temp5], -6(%[data]) \n\t"
- "sb %[temp3], -4(%[data]) \n\t"
+ "sb %[temp5], -6(%[dst]) \n\t"
+ "sb %[temp3], -4(%[dst]) \n\t"
"sra %[temp3], %[temp3], 16 \n\t"
- "bne %[data], %[p_loop_end], 0b \n\t"
- " sb %[temp3], -8(%[data]) \n\t"
+ "bne %[src], %[p_loop_end], 0b \n\t"
+ " sb %[temp3], -8(%[dst]) \n\t"
"1: \n\t"
".set pop \n\t"
: [temp0]"=&r"(temp0), [temp1]"=&r"(temp1), [temp2]"=&r"(temp2),
[temp3]"=&r"(temp3), [temp4]"=&r"(temp4), [temp5]"=&r"(temp5),
[new_red]"=&r"(new_red), [argb]"=&r"(argb),
- [argb1]"=&r"(argb1), [data]"+&r"(data)
+ [argb1]"=&r"(argb1), [dst]"+&r"(dst), [src]"+&r"(src)
: [G_to_R]"r"(G_to_R), [R_to_B]"r"(R_to_B),
[G_to_B]"r"(G_to_B), [p_loop_end]"r"(p_loop_end)
: "memory", "hi", "lo"
);
// Fall-back to C-version for left-overs.
- if (num_pixels & 1) VP8LTransformColorInverse_C(m, data, 1);
+ if (num_pixels & 1) VP8LTransformColorInverse_C(m, src, 1, dst);
}
static void ConvertBGRAToRGB(const uint32_t* src,
diff --git a/thirdparty/libwebp/dsp/lossless_msa.c b/thirdparty/libwebp/dsp/lossless_msa.c
new file mode 100644
index 0000000000..f6dd5649ac
--- /dev/null
+++ b/thirdparty/libwebp/dsp/lossless_msa.c
@@ -0,0 +1,355 @@
+// Copyright 2016 Google Inc. All Rights Reserved.
+//
+// Use of this source code is governed by a BSD-style license
+// that can be found in the COPYING file in the root of the source
+// tree. An additional intellectual property rights grant can be found
+// in the file PATENTS. All contributing project authors may
+// be found in the AUTHORS file in the root of the source tree.
+// -----------------------------------------------------------------------------
+//
+// MSA variant of methods for lossless decoder
+//
+// Author: Prashant Patil (prashant.patil@imgtec.com)
+
+#include "./dsp.h"
+
+#if defined(WEBP_USE_MSA)
+
+#include "./lossless.h"
+#include "./msa_macro.h"
+
+//------------------------------------------------------------------------------
+// Colorspace conversion functions
+
+#define CONVERT16_BGRA_XXX(psrc, pdst, m0, m1, m2) do { \
+ v16u8 src0, src1, src2, src3, dst0, dst1, dst2; \
+ LD_UB4(psrc, 16, src0, src1, src2, src3); \
+ VSHF_B2_UB(src0, src1, src1, src2, m0, m1, dst0, dst1); \
+ dst2 = VSHF_UB(src2, src3, m2); \
+ ST_UB2(dst0, dst1, pdst, 16); \
+ ST_UB(dst2, pdst + 32); \
+} while (0)
+
+#define CONVERT12_BGRA_XXX(psrc, pdst, m0, m1, m2) do { \
+ uint32_t pix_w; \
+ v16u8 src0, src1, src2, dst0, dst1, dst2; \
+ LD_UB3(psrc, 16, src0, src1, src2); \
+ VSHF_B2_UB(src0, src1, src1, src2, m0, m1, dst0, dst1); \
+ dst2 = VSHF_UB(src2, src2, m2); \
+ ST_UB2(dst0, dst1, pdst, 16); \
+ pix_w = __msa_copy_s_w((v4i32)dst2, 0); \
+ SW(pix_w, pdst + 32); \
+} while (0)
+
+#define CONVERT8_BGRA_XXX(psrc, pdst, m0, m1) do { \
+ uint64_t pix_d; \
+ v16u8 src0, src1, src2, dst0, dst1; \
+ LD_UB2(psrc, 16, src0, src1); \
+ VSHF_B2_UB(src0, src1, src1, src2, m0, m1, dst0, dst1); \
+ ST_UB(dst0, pdst); \
+ pix_d = __msa_copy_s_d((v2i64)dst1, 0); \
+ SD(pix_d, pdst + 16); \
+} while (0)
+
+#define CONVERT4_BGRA_XXX(psrc, pdst, m) do { \
+ const v16u8 src0 = LD_UB(psrc); \
+ const v16u8 dst0 = VSHF_UB(src0, src0, m); \
+ uint64_t pix_d = __msa_copy_s_d((v2i64)dst0, 0); \
+ uint32_t pix_w = __msa_copy_s_w((v4i32)dst0, 2); \
+ SD(pix_d, pdst + 0); \
+ SW(pix_w, pdst + 8); \
+} while (0)
+
+#define CONVERT1_BGRA_BGR(psrc, pdst) do { \
+ const int32_t b = (psrc)[0]; \
+ const int32_t g = (psrc)[1]; \
+ const int32_t r = (psrc)[2]; \
+ (pdst)[0] = b; \
+ (pdst)[1] = g; \
+ (pdst)[2] = r; \
+} while (0)
+
+#define CONVERT1_BGRA_RGB(psrc, pdst) do { \
+ const int32_t b = (psrc)[0]; \
+ const int32_t g = (psrc)[1]; \
+ const int32_t r = (psrc)[2]; \
+ (pdst)[0] = r; \
+ (pdst)[1] = g; \
+ (pdst)[2] = b; \
+} while (0)
+
+#define TRANSFORM_COLOR_INVERSE_8(src0, src1, dst0, dst1, \
+ c0, c1, mask0, mask1) do { \
+ v8i16 g0, g1, t0, t1, t2, t3; \
+ v4i32 t4, t5; \
+ VSHF_B2_SH(src0, src0, src1, src1, mask0, mask0, g0, g1); \
+ DOTP_SB2_SH(g0, g1, c0, c0, t0, t1); \
+ SRAI_H2_SH(t0, t1, 5); \
+ t0 = __msa_addv_h(t0, (v8i16)src0); \
+ t1 = __msa_addv_h(t1, (v8i16)src1); \
+ t4 = __msa_srli_w((v4i32)t0, 16); \
+ t5 = __msa_srli_w((v4i32)t1, 16); \
+ DOTP_SB2_SH(t4, t5, c1, c1, t2, t3); \
+ SRAI_H2_SH(t2, t3, 5); \
+ ADD2(t0, t2, t1, t3, t0, t1); \
+ VSHF_B2_UB(src0, t0, src1, t1, mask1, mask1, dst0, dst1); \
+} while (0)
+
+#define TRANSFORM_COLOR_INVERSE_4(src, dst, c0, c1, mask0, mask1) do { \
+ const v16i8 g0 = VSHF_SB(src, src, mask0); \
+ v8i16 t0 = __msa_dotp_s_h(c0, g0); \
+ v8i16 t1; \
+ v4i32 t2; \
+ t0 = SRAI_H(t0, 5); \
+ t0 = __msa_addv_h(t0, (v8i16)src); \
+ t2 = __msa_srli_w((v4i32)t0, 16); \
+ t1 = __msa_dotp_s_h(c1, (v16i8)t2); \
+ t1 = SRAI_H(t1, 5); \
+ t0 = t0 + t1; \
+ dst = VSHF_UB(src, t0, mask1); \
+} while (0)
+
+static void ConvertBGRAToRGBA(const uint32_t* src,
+ int num_pixels, uint8_t* dst) {
+ int i;
+ const uint8_t* ptemp_src = (const uint8_t*)src;
+ uint8_t* ptemp_dst = (uint8_t*)dst;
+ v16u8 src0, dst0;
+ const v16u8 mask = { 2, 1, 0, 3, 6, 5, 4, 7, 10, 9, 8, 11, 14, 13, 12, 15 };
+
+ while (num_pixels >= 8) {
+ v16u8 src1, dst1;
+ LD_UB2(ptemp_src, 16, src0, src1);
+ VSHF_B2_UB(src0, src0, src1, src1, mask, mask, dst0, dst1);
+ ST_UB2(dst0, dst1, ptemp_dst, 16);
+ ptemp_src += 32;
+ ptemp_dst += 32;
+ num_pixels -= 8;
+ }
+ if (num_pixels > 0) {
+ if (num_pixels >= 4) {
+ src0 = LD_UB(ptemp_src);
+ dst0 = VSHF_UB(src0, src0, mask);
+ ST_UB(dst0, ptemp_dst);
+ ptemp_src += 16;
+ ptemp_dst += 16;
+ num_pixels -= 4;
+ }
+ for (i = 0; i < num_pixels; i++) {
+ const uint8_t b = ptemp_src[2];
+ const uint8_t g = ptemp_src[1];
+ const uint8_t r = ptemp_src[0];
+ const uint8_t a = ptemp_src[3];
+ ptemp_dst[0] = b;
+ ptemp_dst[1] = g;
+ ptemp_dst[2] = r;
+ ptemp_dst[3] = a;
+ ptemp_src += 4;
+ ptemp_dst += 4;
+ }
+ }
+}
+
+static void ConvertBGRAToBGR(const uint32_t* src,
+ int num_pixels, uint8_t* dst) {
+ const uint8_t* ptemp_src = (const uint8_t*)src;
+ uint8_t* ptemp_dst = (uint8_t*)dst;
+ const v16u8 mask0 = { 0, 1, 2, 4, 5, 6, 8, 9, 10, 12, 13, 14,
+ 16, 17, 18, 20 };
+ const v16u8 mask1 = { 5, 6, 8, 9, 10, 12, 13, 14, 16, 17, 18, 20,
+ 21, 22, 24, 25 };
+ const v16u8 mask2 = { 10, 12, 13, 14, 16, 17, 18, 20, 21, 22, 24, 25,
+ 26, 28, 29, 30 };
+
+ while (num_pixels >= 16) {
+ CONVERT16_BGRA_XXX(ptemp_src, ptemp_dst, mask0, mask1, mask2);
+ ptemp_src += 64;
+ ptemp_dst += 48;
+ num_pixels -= 16;
+ }
+ if (num_pixels > 0) {
+ if (num_pixels >= 12) {
+ CONVERT12_BGRA_XXX(ptemp_src, ptemp_dst, mask0, mask1, mask2);
+ ptemp_src += 48;
+ ptemp_dst += 36;
+ num_pixels -= 12;
+ } else if (num_pixels >= 8) {
+ CONVERT8_BGRA_XXX(ptemp_src, ptemp_dst, mask0, mask1);
+ ptemp_src += 32;
+ ptemp_dst += 24;
+ num_pixels -= 8;
+ } else if (num_pixels >= 4) {
+ CONVERT4_BGRA_XXX(ptemp_src, ptemp_dst, mask0);
+ ptemp_src += 16;
+ ptemp_dst += 12;
+ num_pixels -= 4;
+ }
+ if (num_pixels == 3) {
+ CONVERT1_BGRA_BGR(ptemp_src + 0, ptemp_dst + 0);
+ CONVERT1_BGRA_BGR(ptemp_src + 4, ptemp_dst + 3);
+ CONVERT1_BGRA_BGR(ptemp_src + 8, ptemp_dst + 6);
+ } else if (num_pixels == 2) {
+ CONVERT1_BGRA_BGR(ptemp_src + 0, ptemp_dst + 0);
+ CONVERT1_BGRA_BGR(ptemp_src + 4, ptemp_dst + 3);
+ } else if (num_pixels == 1) {
+ CONVERT1_BGRA_BGR(ptemp_src, ptemp_dst);
+ }
+ }
+}
+
+static void ConvertBGRAToRGB(const uint32_t* src,
+ int num_pixels, uint8_t* dst) {
+ const uint8_t* ptemp_src = (const uint8_t*)src;
+ uint8_t* ptemp_dst = (uint8_t*)dst;
+ const v16u8 mask0 = { 2, 1, 0, 6, 5, 4, 10, 9, 8, 14, 13, 12,
+ 18, 17, 16, 22 };
+ const v16u8 mask1 = { 5, 4, 10, 9, 8, 14, 13, 12, 18, 17, 16, 22,
+ 21, 20, 26, 25 };
+ const v16u8 mask2 = { 8, 14, 13, 12, 18, 17, 16, 22, 21, 20, 26, 25,
+ 24, 30, 29, 28 };
+
+ while (num_pixels >= 16) {
+ CONVERT16_BGRA_XXX(ptemp_src, ptemp_dst, mask0, mask1, mask2);
+ ptemp_src += 64;
+ ptemp_dst += 48;
+ num_pixels -= 16;
+ }
+ if (num_pixels) {
+ if (num_pixels >= 12) {
+ CONVERT12_BGRA_XXX(ptemp_src, ptemp_dst, mask0, mask1, mask2);
+ ptemp_src += 48;
+ ptemp_dst += 36;
+ num_pixels -= 12;
+ } else if (num_pixels >= 8) {
+ CONVERT8_BGRA_XXX(ptemp_src, ptemp_dst, mask0, mask1);
+ ptemp_src += 32;
+ ptemp_dst += 24;
+ num_pixels -= 8;
+ } else if (num_pixels >= 4) {
+ CONVERT4_BGRA_XXX(ptemp_src, ptemp_dst, mask0);
+ ptemp_src += 16;
+ ptemp_dst += 12;
+ num_pixels -= 4;
+ }
+ if (num_pixels == 3) {
+ CONVERT1_BGRA_RGB(ptemp_src + 0, ptemp_dst + 0);
+ CONVERT1_BGRA_RGB(ptemp_src + 4, ptemp_dst + 3);
+ CONVERT1_BGRA_RGB(ptemp_src + 8, ptemp_dst + 6);
+ } else if (num_pixels == 2) {
+ CONVERT1_BGRA_RGB(ptemp_src + 0, ptemp_dst + 0);
+ CONVERT1_BGRA_RGB(ptemp_src + 4, ptemp_dst + 3);
+ } else if (num_pixels == 1) {
+ CONVERT1_BGRA_RGB(ptemp_src, ptemp_dst);
+ }
+ }
+}
+
+static void AddGreenToBlueAndRed(const uint32_t* const src, int num_pixels,
+ uint32_t* dst) {
+ int i;
+ const uint8_t* in = (const uint8_t*)src;
+ uint8_t* out = (uint8_t*)dst;
+ v16u8 src0, dst0, tmp0;
+ const v16u8 mask = { 1, 255, 1, 255, 5, 255, 5, 255, 9, 255, 9, 255,
+ 13, 255, 13, 255 };
+
+ while (num_pixels >= 8) {
+ v16u8 src1, dst1, tmp1;
+ LD_UB2(in, 16, src0, src1);
+ VSHF_B2_UB(src0, src1, src1, src0, mask, mask, tmp0, tmp1);
+ ADD2(src0, tmp0, src1, tmp1, dst0, dst1);
+ ST_UB2(dst0, dst1, out, 16);
+ in += 32;
+ out += 32;
+ num_pixels -= 8;
+ }
+ if (num_pixels > 0) {
+ if (num_pixels >= 4) {
+ src0 = LD_UB(in);
+ tmp0 = VSHF_UB(src0, src0, mask);
+ dst0 = src0 + tmp0;
+ ST_UB(dst0, out);
+ in += 16;
+ out += 16;
+ num_pixels -= 4;
+ }
+ for (i = 0; i < num_pixels; i++) {
+ const uint8_t b = in[0];
+ const uint8_t g = in[1];
+ const uint8_t r = in[2];
+ out[0] = (b + g) & 0xff;
+ out[1] = g;
+ out[2] = (r + g) & 0xff;
+ out[4] = in[4];
+ out += 4;
+ }
+ }
+}
+
+static void TransformColorInverse(const VP8LMultipliers* const m,
+ const uint32_t* src, int num_pixels,
+ uint32_t* dst) {
+ v16u8 src0, dst0;
+ const v16i8 g2br = (v16i8)__msa_fill_w(m->green_to_blue_ |
+ (m->green_to_red_ << 16));
+ const v16i8 r2b = (v16i8)__msa_fill_w(m->red_to_blue_);
+ const v16u8 mask0 = { 1, 255, 1, 255, 5, 255, 5, 255, 9, 255, 9, 255,
+ 13, 255, 13, 255 };
+ const v16u8 mask1 = { 16, 1, 18, 3, 20, 5, 22, 7, 24, 9, 26, 11,
+ 28, 13, 30, 15 };
+
+ while (num_pixels >= 8) {
+ v16u8 src1, dst1;
+ LD_UB2(src, 4, src0, src1);
+ TRANSFORM_COLOR_INVERSE_8(src0, src1, dst0, dst1, g2br, r2b, mask0, mask1);
+ ST_UB2(dst0, dst1, dst, 4);
+ src += 8;
+ dst += 8;
+ num_pixels -= 8;
+ }
+ if (num_pixels > 0) {
+ if (num_pixels >= 4) {
+ src0 = LD_UB(src);
+ TRANSFORM_COLOR_INVERSE_4(src0, dst0, g2br, r2b, mask0, mask1);
+ ST_UB(dst0, dst);
+ src += 4;
+ dst += 4;
+ num_pixels -= 4;
+ }
+ if (num_pixels > 0) {
+ src0 = LD_UB(src);
+ TRANSFORM_COLOR_INVERSE_4(src0, dst0, g2br, r2b, mask0, mask1);
+ if (num_pixels == 3) {
+ const uint64_t pix_d = __msa_copy_s_d((v2i64)dst0, 0);
+ const uint32_t pix_w = __msa_copy_s_w((v4i32)dst0, 2);
+ SD(pix_d, dst + 0);
+ SW(pix_w, dst + 2);
+ } else if (num_pixels == 2) {
+ const uint64_t pix_d = __msa_copy_s_d((v2i64)dst0, 0);
+ SD(pix_d, dst);
+ } else {
+ const uint32_t pix_w = __msa_copy_s_w((v4i32)dst0, 0);
+ SW(pix_w, dst);
+ }
+ }
+ }
+}
+
+//------------------------------------------------------------------------------
+// Entry point
+
+extern void VP8LDspInitMSA(void);
+
+WEBP_TSAN_IGNORE_FUNCTION void VP8LDspInitMSA(void) {
+ VP8LConvertBGRAToRGBA = ConvertBGRAToRGBA;
+ VP8LConvertBGRAToBGR = ConvertBGRAToBGR;
+ VP8LConvertBGRAToRGB = ConvertBGRAToRGB;
+ VP8LAddGreenToBlueAndRed = AddGreenToBlueAndRed;
+ VP8LTransformColorInverse = TransformColorInverse;
+}
+
+#else // !WEBP_USE_MSA
+
+WEBP_DSP_INIT_STUB(VP8LDspInitMSA)
+
+#endif // WEBP_USE_MSA
diff --git a/thirdparty/libwebp/dsp/lossless_neon.c b/thirdparty/libwebp/dsp/lossless_neon.c
index 6faccb8f97..1145d5fad0 100644
--- a/thirdparty/libwebp/dsp/lossless_neon.c
+++ b/thirdparty/libwebp/dsp/lossless_neon.c
@@ -139,6 +139,357 @@ static void ConvertBGRAToRGB(const uint32_t* src,
#endif // !WORK_AROUND_GCC
+
+//------------------------------------------------------------------------------
+// Predictor Transform
+
+#define LOAD_U32_AS_U8(IN) vreinterpret_u8_u32(vdup_n_u32((IN)))
+#define LOAD_U32P_AS_U8(IN) vreinterpret_u8_u32(vld1_u32((IN)))
+#define LOADQ_U32_AS_U8(IN) vreinterpretq_u8_u32(vdupq_n_u32((IN)))
+#define LOADQ_U32P_AS_U8(IN) vreinterpretq_u8_u32(vld1q_u32((IN)))
+#define GET_U8_AS_U32(IN) vget_lane_u32(vreinterpret_u32_u8((IN)), 0);
+#define GETQ_U8_AS_U32(IN) vgetq_lane_u32(vreinterpretq_u32_u8((IN)), 0);
+#define STOREQ_U8_AS_U32P(OUT, IN) vst1q_u32((OUT), vreinterpretq_u32_u8((IN)));
+#define ROTATE32_LEFT(L) vextq_u8((L), (L), 12) // D|C|B|A -> C|B|A|D
+
+static WEBP_INLINE uint8x8_t Average2_u8_NEON(uint32_t a0, uint32_t a1) {
+ const uint8x8_t A0 = LOAD_U32_AS_U8(a0);
+ const uint8x8_t A1 = LOAD_U32_AS_U8(a1);
+ return vhadd_u8(A0, A1);
+}
+
+static WEBP_INLINE uint32_t ClampedAddSubtractHalf_NEON(uint32_t c0,
+ uint32_t c1,
+ uint32_t c2) {
+ const uint8x8_t avg = Average2_u8_NEON(c0, c1);
+ // Remove one to c2 when bigger than avg.
+ const uint8x8_t C2 = LOAD_U32_AS_U8(c2);
+ const uint8x8_t cmp = vcgt_u8(C2, avg);
+ const uint8x8_t C2_1 = vadd_u8(C2, cmp);
+ // Compute half of the difference between avg and c2.
+ const int8x8_t diff_avg = vreinterpret_s8_u8(vhsub_u8(avg, C2_1));
+ // Compute the sum with avg and saturate.
+ const int16x8_t avg_16 = vreinterpretq_s16_u16(vmovl_u8(avg));
+ const uint8x8_t res = vqmovun_s16(vaddw_s8(avg_16, diff_avg));
+ const uint32_t output = GET_U8_AS_U32(res);
+ return output;
+}
+
+static WEBP_INLINE uint32_t Average2_NEON(uint32_t a0, uint32_t a1) {
+ const uint8x8_t avg_u8x8 = Average2_u8_NEON(a0, a1);
+ const uint32_t avg = GET_U8_AS_U32(avg_u8x8);
+ return avg;
+}
+
+static WEBP_INLINE uint32_t Average3_NEON(uint32_t a0, uint32_t a1,
+ uint32_t a2) {
+ const uint8x8_t avg0 = Average2_u8_NEON(a0, a2);
+ const uint8x8_t A1 = LOAD_U32_AS_U8(a1);
+ const uint32_t avg = GET_U8_AS_U32(vhadd_u8(avg0, A1));
+ return avg;
+}
+
+static uint32_t Predictor5_NEON(uint32_t left, const uint32_t* const top) {
+ return Average3_NEON(left, top[0], top[1]);
+}
+static uint32_t Predictor6_NEON(uint32_t left, const uint32_t* const top) {
+ return Average2_NEON(left, top[-1]);
+}
+static uint32_t Predictor7_NEON(uint32_t left, const uint32_t* const top) {
+ return Average2_NEON(left, top[0]);
+}
+static uint32_t Predictor13_NEON(uint32_t left, const uint32_t* const top) {
+ return ClampedAddSubtractHalf_NEON(left, top[0], top[-1]);
+}
+
+// Batch versions of those functions.
+
+// Predictor0: ARGB_BLACK.
+static void PredictorAdd0_NEON(const uint32_t* in, const uint32_t* upper,
+ int num_pixels, uint32_t* out) {
+ int i;
+ const uint8x16_t black = vreinterpretq_u8_u32(vdupq_n_u32(ARGB_BLACK));
+ for (i = 0; i + 4 <= num_pixels; i += 4) {
+ const uint8x16_t src = LOADQ_U32P_AS_U8(&in[i]);
+ const uint8x16_t res = vaddq_u8(src, black);
+ STOREQ_U8_AS_U32P(&out[i], res);
+ }
+ VP8LPredictorsAdd_C[0](in + i, upper + i, num_pixels - i, out + i);
+}
+
+// Predictor1: left.
+static void PredictorAdd1_NEON(const uint32_t* in, const uint32_t* upper,
+ int num_pixels, uint32_t* out) {
+ int i;
+ const uint8x16_t zero = LOADQ_U32_AS_U8(0);
+ for (i = 0; i + 4 <= num_pixels; i += 4) {
+ // a | b | c | d
+ const uint8x16_t src = LOADQ_U32P_AS_U8(&in[i]);
+ // 0 | a | b | c
+ const uint8x16_t shift0 = vextq_u8(zero, src, 12);
+ // a | a + b | b + c | c + d
+ const uint8x16_t sum0 = vaddq_u8(src, shift0);
+ // 0 | 0 | a | a + b
+ const uint8x16_t shift1 = vextq_u8(zero, sum0, 8);
+ // a | a + b | a + b + c | a + b + c + d
+ const uint8x16_t sum1 = vaddq_u8(sum0, shift1);
+ const uint8x16_t prev = LOADQ_U32_AS_U8(out[i - 1]);
+ const uint8x16_t res = vaddq_u8(sum1, prev);
+ STOREQ_U8_AS_U32P(&out[i], res);
+ }
+ VP8LPredictorsAdd_C[1](in + i, upper + i, num_pixels - i, out + i);
+}
+
+// Macro that adds 32-bit integers from IN using mod 256 arithmetic
+// per 8 bit channel.
+#define GENERATE_PREDICTOR_1(X, IN) \
+static void PredictorAdd##X##_NEON(const uint32_t* in, \
+ const uint32_t* upper, int num_pixels, \
+ uint32_t* out) { \
+ int i; \
+ for (i = 0; i + 4 <= num_pixels; i += 4) { \
+ const uint8x16_t src = LOADQ_U32P_AS_U8(&in[i]); \
+ const uint8x16_t other = LOADQ_U32P_AS_U8(&(IN)); \
+ const uint8x16_t res = vaddq_u8(src, other); \
+ STOREQ_U8_AS_U32P(&out[i], res); \
+ } \
+ VP8LPredictorsAdd_C[(X)](in + i, upper + i, num_pixels - i, out + i); \
+}
+// Predictor2: Top.
+GENERATE_PREDICTOR_1(2, upper[i])
+// Predictor3: Top-right.
+GENERATE_PREDICTOR_1(3, upper[i + 1])
+// Predictor4: Top-left.
+GENERATE_PREDICTOR_1(4, upper[i - 1])
+#undef GENERATE_PREDICTOR_1
+
+// Predictor5: average(average(left, TR), T)
+#define DO_PRED5(LANE) do { \
+ const uint8x16_t avgLTR = vhaddq_u8(L, TR); \
+ const uint8x16_t avg = vhaddq_u8(avgLTR, T); \
+ const uint8x16_t res = vaddq_u8(avg, src); \
+ vst1q_lane_u32(&out[i + (LANE)], vreinterpretq_u32_u8(res), (LANE)); \
+ L = ROTATE32_LEFT(res); \
+} while (0)
+
+static void PredictorAdd5_NEON(const uint32_t* in, const uint32_t* upper,
+ int num_pixels, uint32_t* out) {
+ int i;
+ uint8x16_t L = LOADQ_U32_AS_U8(out[-1]);
+ for (i = 0; i + 4 <= num_pixels; i += 4) {
+ const uint8x16_t src = LOADQ_U32P_AS_U8(&in[i]);
+ const uint8x16_t T = LOADQ_U32P_AS_U8(&upper[i + 0]);
+ const uint8x16_t TR = LOADQ_U32P_AS_U8(&upper[i + 1]);
+ DO_PRED5(0);
+ DO_PRED5(1);
+ DO_PRED5(2);
+ DO_PRED5(3);
+ }
+ VP8LPredictorsAdd_C[5](in + i, upper + i, num_pixels - i, out + i);
+}
+#undef DO_PRED5
+
+#define DO_PRED67(LANE) do { \
+ const uint8x16_t avg = vhaddq_u8(L, top); \
+ const uint8x16_t res = vaddq_u8(avg, src); \
+ vst1q_lane_u32(&out[i + (LANE)], vreinterpretq_u32_u8(res), (LANE)); \
+ L = ROTATE32_LEFT(res); \
+} while (0)
+
+// Predictor6: average(left, TL)
+static void PredictorAdd6_NEON(const uint32_t* in, const uint32_t* upper,
+ int num_pixels, uint32_t* out) {
+ int i;
+ uint8x16_t L = LOADQ_U32_AS_U8(out[-1]);
+ for (i = 0; i + 4 <= num_pixels; i += 4) {
+ const uint8x16_t src = LOADQ_U32P_AS_U8(&in[i]);
+ const uint8x16_t top = LOADQ_U32P_AS_U8(&upper[i - 1]);
+ DO_PRED67(0);
+ DO_PRED67(1);
+ DO_PRED67(2);
+ DO_PRED67(3);
+ }
+ VP8LPredictorsAdd_C[6](in + i, upper + i, num_pixels - i, out + i);
+}
+
+// Predictor7: average(left, T)
+static void PredictorAdd7_NEON(const uint32_t* in, const uint32_t* upper,
+ int num_pixels, uint32_t* out) {
+ int i;
+ uint8x16_t L = LOADQ_U32_AS_U8(out[-1]);
+ for (i = 0; i + 4 <= num_pixels; i += 4) {
+ const uint8x16_t src = LOADQ_U32P_AS_U8(&in[i]);
+ const uint8x16_t top = LOADQ_U32P_AS_U8(&upper[i]);
+ DO_PRED67(0);
+ DO_PRED67(1);
+ DO_PRED67(2);
+ DO_PRED67(3);
+ }
+ VP8LPredictorsAdd_C[7](in + i, upper + i, num_pixels - i, out + i);
+}
+#undef DO_PRED67
+
+#define GENERATE_PREDICTOR_2(X, IN) \
+static void PredictorAdd##X##_NEON(const uint32_t* in, \
+ const uint32_t* upper, int num_pixels, \
+ uint32_t* out) { \
+ int i; \
+ for (i = 0; i + 4 <= num_pixels; i += 4) { \
+ const uint8x16_t src = LOADQ_U32P_AS_U8(&in[i]); \
+ const uint8x16_t Tother = LOADQ_U32P_AS_U8(&(IN)); \
+ const uint8x16_t T = LOADQ_U32P_AS_U8(&upper[i]); \
+ const uint8x16_t avg = vhaddq_u8(T, Tother); \
+ const uint8x16_t res = vaddq_u8(avg, src); \
+ STOREQ_U8_AS_U32P(&out[i], res); \
+ } \
+ VP8LPredictorsAdd_C[(X)](in + i, upper + i, num_pixels - i, out + i); \
+}
+// Predictor8: average TL T.
+GENERATE_PREDICTOR_2(8, upper[i - 1])
+// Predictor9: average T TR.
+GENERATE_PREDICTOR_2(9, upper[i + 1])
+#undef GENERATE_PREDICTOR_2
+
+// Predictor10: average of (average of (L,TL), average of (T, TR)).
+#define DO_PRED10(LANE) do { \
+ const uint8x16_t avgLTL = vhaddq_u8(L, TL); \
+ const uint8x16_t avg = vhaddq_u8(avgTTR, avgLTL); \
+ const uint8x16_t res = vaddq_u8(avg, src); \
+ vst1q_lane_u32(&out[i + (LANE)], vreinterpretq_u32_u8(res), (LANE)); \
+ L = ROTATE32_LEFT(res); \
+} while (0)
+
+static void PredictorAdd10_NEON(const uint32_t* in, const uint32_t* upper,
+ int num_pixels, uint32_t* out) {
+ int i;
+ uint8x16_t L = LOADQ_U32_AS_U8(out[-1]);
+ for (i = 0; i + 4 <= num_pixels; i += 4) {
+ const uint8x16_t src = LOADQ_U32P_AS_U8(&in[i]);
+ const uint8x16_t TL = LOADQ_U32P_AS_U8(&upper[i - 1]);
+ const uint8x16_t T = LOADQ_U32P_AS_U8(&upper[i]);
+ const uint8x16_t TR = LOADQ_U32P_AS_U8(&upper[i + 1]);
+ const uint8x16_t avgTTR = vhaddq_u8(T, TR);
+ DO_PRED10(0);
+ DO_PRED10(1);
+ DO_PRED10(2);
+ DO_PRED10(3);
+ }
+ VP8LPredictorsAdd_C[10](in + i, upper + i, num_pixels - i, out + i);
+}
+#undef DO_PRED10
+
+// Predictor11: select.
+#define DO_PRED11(LANE) do { \
+ const uint8x16_t sumLin = vaddq_u8(L, src); /* in + L */ \
+ const uint8x16_t pLTL = vabdq_u8(L, TL); /* |L - TL| */ \
+ const uint16x8_t sum_LTL = vpaddlq_u8(pLTL); \
+ const uint32x4_t pa = vpaddlq_u16(sum_LTL); \
+ const uint32x4_t mask = vcleq_u32(pa, pb); \
+ const uint8x16_t res = vbslq_u8(vreinterpretq_u8_u32(mask), sumTin, sumLin); \
+ vst1q_lane_u32(&out[i + (LANE)], vreinterpretq_u32_u8(res), (LANE)); \
+ L = ROTATE32_LEFT(res); \
+} while (0)
+
+static void PredictorAdd11_NEON(const uint32_t* in, const uint32_t* upper,
+ int num_pixels, uint32_t* out) {
+ int i;
+ uint8x16_t L = LOADQ_U32_AS_U8(out[-1]);
+ for (i = 0; i + 4 <= num_pixels; i += 4) {
+ const uint8x16_t T = LOADQ_U32P_AS_U8(&upper[i]);
+ const uint8x16_t TL = LOADQ_U32P_AS_U8(&upper[i - 1]);
+ const uint8x16_t pTTL = vabdq_u8(T, TL); // |T - TL|
+ const uint16x8_t sum_TTL = vpaddlq_u8(pTTL);
+ const uint32x4_t pb = vpaddlq_u16(sum_TTL);
+ const uint8x16_t src = LOADQ_U32P_AS_U8(&in[i]);
+ const uint8x16_t sumTin = vaddq_u8(T, src); // in + T
+ DO_PRED11(0);
+ DO_PRED11(1);
+ DO_PRED11(2);
+ DO_PRED11(3);
+ }
+ VP8LPredictorsAdd_C[11](in + i, upper + i, num_pixels - i, out + i);
+}
+#undef DO_PRED11
+
+// Predictor12: ClampedAddSubtractFull.
+#define DO_PRED12(DIFF, LANE) do { \
+ const uint8x8_t pred = \
+ vqmovun_s16(vaddq_s16(vreinterpretq_s16_u16(L), (DIFF))); \
+ const uint8x8_t res = \
+ vadd_u8(pred, (LANE <= 1) ? vget_low_u8(src) : vget_high_u8(src)); \
+ const uint16x8_t res16 = vmovl_u8(res); \
+ vst1_lane_u32(&out[i + (LANE)], vreinterpret_u32_u8(res), (LANE) & 1); \
+ /* rotate in the left predictor for next iteration */ \
+ L = vextq_u16(res16, res16, 4); \
+} while (0)
+
+static void PredictorAdd12_NEON(const uint32_t* in, const uint32_t* upper,
+ int num_pixels, uint32_t* out) {
+ int i;
+ uint16x8_t L = vmovl_u8(LOAD_U32_AS_U8(out[-1]));
+ for (i = 0; i + 4 <= num_pixels; i += 4) {
+ // load four pixels of source
+ const uint8x16_t src = LOADQ_U32P_AS_U8(&in[i]);
+ // precompute the difference T - TL once for all, stored as s16
+ const uint8x16_t TL = LOADQ_U32P_AS_U8(&upper[i - 1]);
+ const uint8x16_t T = LOADQ_U32P_AS_U8(&upper[i]);
+ const int16x8_t diff_lo =
+ vreinterpretq_s16_u16(vsubl_u8(vget_low_u8(T), vget_low_u8(TL)));
+ const int16x8_t diff_hi =
+ vreinterpretq_s16_u16(vsubl_u8(vget_high_u8(T), vget_high_u8(TL)));
+ // loop over the four reconstructed pixels
+ DO_PRED12(diff_lo, 0);
+ DO_PRED12(diff_lo, 1);
+ DO_PRED12(diff_hi, 2);
+ DO_PRED12(diff_hi, 3);
+ }
+ VP8LPredictorsAdd_C[12](in + i, upper + i, num_pixels - i, out + i);
+}
+#undef DO_PRED12
+
+// Predictor13: ClampedAddSubtractHalf
+#define DO_PRED13(LANE, LOW_OR_HI) do { \
+ const uint8x16_t avg = vhaddq_u8(L, T); \
+ const uint8x16_t cmp = vcgtq_u8(TL, avg); \
+ const uint8x16_t TL_1 = vaddq_u8(TL, cmp); \
+ /* Compute half of the difference between avg and TL'. */ \
+ const int8x8_t diff_avg = \
+ vreinterpret_s8_u8(LOW_OR_HI(vhsubq_u8(avg, TL_1))); \
+ /* Compute the sum with avg and saturate. */ \
+ const int16x8_t avg_16 = vreinterpretq_s16_u16(vmovl_u8(LOW_OR_HI(avg))); \
+ const uint8x8_t delta = vqmovun_s16(vaddw_s8(avg_16, diff_avg)); \
+ const uint8x8_t res = vadd_u8(LOW_OR_HI(src), delta); \
+ const uint8x16_t res2 = vcombine_u8(res, res); \
+ vst1_lane_u32(&out[i + (LANE)], vreinterpret_u32_u8(res), (LANE) & 1); \
+ L = ROTATE32_LEFT(res2); \
+} while (0)
+
+static void PredictorAdd13_NEON(const uint32_t* in, const uint32_t* upper,
+ int num_pixels, uint32_t* out) {
+ int i;
+ uint8x16_t L = LOADQ_U32_AS_U8(out[-1]);
+ for (i = 0; i + 4 <= num_pixels; i += 4) {
+ const uint8x16_t src = LOADQ_U32P_AS_U8(&in[i]);
+ const uint8x16_t T = LOADQ_U32P_AS_U8(&upper[i]);
+ const uint8x16_t TL = LOADQ_U32P_AS_U8(&upper[i - 1]);
+ DO_PRED13(0, vget_low_u8);
+ DO_PRED13(1, vget_low_u8);
+ DO_PRED13(2, vget_high_u8);
+ DO_PRED13(3, vget_high_u8);
+ }
+ VP8LPredictorsAdd_C[13](in + i, upper + i, num_pixels - i, out + i);
+}
+#undef DO_PRED13
+
+#undef LOAD_U32_AS_U8
+#undef LOAD_U32P_AS_U8
+#undef LOADQ_U32_AS_U8
+#undef LOADQ_U32P_AS_U8
+#undef GET_U8_AS_U32
+#undef GETQ_U8_AS_U32
+#undef STOREQ_U8_AS_U32P
+#undef ROTATE32_LEFT
+
//------------------------------------------------------------------------------
// Subtract-Green Transform
@@ -171,28 +522,30 @@ static WEBP_INLINE uint8x16_t DoGreenShuffle(const uint8x16_t argb,
}
#endif // USE_VTBLQ
-static void AddGreenToBlueAndRed(uint32_t* argb_data, int num_pixels) {
- const uint32_t* const end = argb_data + (num_pixels & ~3);
+static void AddGreenToBlueAndRed(const uint32_t* src, int num_pixels,
+ uint32_t* dst) {
+ const uint32_t* const end = src + (num_pixels & ~3);
#ifdef USE_VTBLQ
const uint8x16_t shuffle = vld1q_u8(kGreenShuffle);
#else
const uint8x8_t shuffle = vld1_u8(kGreenShuffle);
#endif
- for (; argb_data < end; argb_data += 4) {
- const uint8x16_t argb = vld1q_u8((uint8_t*)argb_data);
+ for (; src < end; src += 4, dst += 4) {
+ const uint8x16_t argb = vld1q_u8((const uint8_t*)src);
const uint8x16_t greens = DoGreenShuffle(argb, shuffle);
- vst1q_u8((uint8_t*)argb_data, vaddq_u8(argb, greens));
+ vst1q_u8((uint8_t*)dst, vaddq_u8(argb, greens));
}
// fallthrough and finish off with plain-C
- VP8LAddGreenToBlueAndRed_C(argb_data, num_pixels & 3);
+ VP8LAddGreenToBlueAndRed_C(src, num_pixels & 3, dst);
}
//------------------------------------------------------------------------------
// Color Transform
static void TransformColorInverse(const VP8LMultipliers* const m,
- uint32_t* argb_data, int num_pixels) {
- // sign-extended multiplying constants, pre-shifted by 6.
+ const uint32_t* const src, int num_pixels,
+ uint32_t* dst) {
+// sign-extended multiplying constants, pre-shifted by 6.
#define CST(X) (((int16_t)(m->X << 8)) >> 6)
const int16_t rb[8] = {
CST(green_to_blue_), CST(green_to_red_),
@@ -219,7 +572,7 @@ static void TransformColorInverse(const VP8LMultipliers* const m,
const uint32x4_t mask_ag = vdupq_n_u32(0xff00ff00u);
int i;
for (i = 0; i + 4 <= num_pixels; i += 4) {
- const uint8x16_t in = vld1q_u8((uint8_t*)(argb_data + i));
+ const uint8x16_t in = vld1q_u8((const uint8_t*)(src + i));
const uint32x4_t a0g0 = vandq_u32(vreinterpretq_u32_u8(in), mask_ag);
// 0 g 0 g
const uint8x16_t greens = DoGreenShuffle(in, shuffle);
@@ -240,10 +593,10 @@ static void TransformColorInverse(const VP8LMultipliers* const m,
// 0 r' 0 b''
const uint16x8_t G = vshrq_n_u16(vreinterpretq_u16_s8(F), 8);
const uint32x4_t out = vorrq_u32(vreinterpretq_u32_u16(G), a0g0);
- vst1q_u32(argb_data + i, out);
+ vst1q_u32(dst + i, out);
}
// Fall-back to C-version for left-overs.
- VP8LTransformColorInverse_C(m, argb_data + i, num_pixels - i);
+ VP8LTransformColorInverse_C(m, src + i, num_pixels - i, dst + i);
}
#undef USE_VTBLQ
@@ -254,6 +607,26 @@ static void TransformColorInverse(const VP8LMultipliers* const m,
extern void VP8LDspInitNEON(void);
WEBP_TSAN_IGNORE_FUNCTION void VP8LDspInitNEON(void) {
+ VP8LPredictors[5] = Predictor5_NEON;
+ VP8LPredictors[6] = Predictor6_NEON;
+ VP8LPredictors[7] = Predictor7_NEON;
+ VP8LPredictors[13] = Predictor13_NEON;
+
+ VP8LPredictorsAdd[0] = PredictorAdd0_NEON;
+ VP8LPredictorsAdd[1] = PredictorAdd1_NEON;
+ VP8LPredictorsAdd[2] = PredictorAdd2_NEON;
+ VP8LPredictorsAdd[3] = PredictorAdd3_NEON;
+ VP8LPredictorsAdd[4] = PredictorAdd4_NEON;
+ VP8LPredictorsAdd[5] = PredictorAdd5_NEON;
+ VP8LPredictorsAdd[6] = PredictorAdd6_NEON;
+ VP8LPredictorsAdd[7] = PredictorAdd7_NEON;
+ VP8LPredictorsAdd[8] = PredictorAdd8_NEON;
+ VP8LPredictorsAdd[9] = PredictorAdd9_NEON;
+ VP8LPredictorsAdd[10] = PredictorAdd10_NEON;
+ VP8LPredictorsAdd[11] = PredictorAdd11_NEON;
+ VP8LPredictorsAdd[12] = PredictorAdd12_NEON;
+ VP8LPredictorsAdd[13] = PredictorAdd13_NEON;
+
VP8LConvertBGRAToRGBA = ConvertBGRAToRGBA;
VP8LConvertBGRAToBGR = ConvertBGRAToBGR;
VP8LConvertBGRAToRGB = ConvertBGRAToRGB;
diff --git a/thirdparty/libwebp/dsp/lossless_sse2.c b/thirdparty/libwebp/dsp/lossless_sse2.c
index 2d016c2911..15aae93869 100644
--- a/thirdparty/libwebp/dsp/lossless_sse2.c
+++ b/thirdparty/libwebp/dsp/lossless_sse2.c
@@ -14,9 +14,12 @@
#include "./dsp.h"
#if defined(WEBP_USE_SSE2)
+
+#include "./common_sse2.h"
+#include "./lossless.h"
+#include "./lossless_common.h"
#include <assert.h>
#include <emmintrin.h>
-#include "./lossless.h"
//------------------------------------------------------------------------------
// Predictor Transform
@@ -75,25 +78,44 @@ static WEBP_INLINE uint32_t Select(uint32_t a, uint32_t b, uint32_t c) {
return (pa_minus_pb <= 0) ? a : b;
}
-static WEBP_INLINE __m128i Average2_128i(uint32_t a0, uint32_t a1) {
+static WEBP_INLINE void Average2_m128i(const __m128i* const a0,
+ const __m128i* const a1,
+ __m128i* const avg) {
+ // (a + b) >> 1 = ((a + b + 1) >> 1) - ((a ^ b) & 1)
+ const __m128i ones = _mm_set1_epi8(1);
+ const __m128i avg1 = _mm_avg_epu8(*a0, *a1);
+ const __m128i one = _mm_and_si128(_mm_xor_si128(*a0, *a1), ones);
+ *avg = _mm_sub_epi8(avg1, one);
+}
+
+static WEBP_INLINE void Average2_uint32(const uint32_t a0, const uint32_t a1,
+ __m128i* const avg) {
+ // (a + b) >> 1 = ((a + b + 1) >> 1) - ((a ^ b) & 1)
+ const __m128i ones = _mm_set1_epi8(1);
+ const __m128i A0 = _mm_cvtsi32_si128(a0);
+ const __m128i A1 = _mm_cvtsi32_si128(a1);
+ const __m128i avg1 = _mm_avg_epu8(A0, A1);
+ const __m128i one = _mm_and_si128(_mm_xor_si128(A0, A1), ones);
+ *avg = _mm_sub_epi8(avg1, one);
+}
+
+static WEBP_INLINE __m128i Average2_uint32_16(uint32_t a0, uint32_t a1) {
const __m128i zero = _mm_setzero_si128();
const __m128i A0 = _mm_unpacklo_epi8(_mm_cvtsi32_si128(a0), zero);
const __m128i A1 = _mm_unpacklo_epi8(_mm_cvtsi32_si128(a1), zero);
const __m128i sum = _mm_add_epi16(A1, A0);
- const __m128i avg = _mm_srli_epi16(sum, 1);
- return avg;
+ return _mm_srli_epi16(sum, 1);
}
static WEBP_INLINE uint32_t Average2(uint32_t a0, uint32_t a1) {
- const __m128i avg = Average2_128i(a0, a1);
- const __m128i A2 = _mm_packus_epi16(avg, avg);
- const uint32_t output = _mm_cvtsi128_si32(A2);
- return output;
+ __m128i output;
+ Average2_uint32(a0, a1, &output);
+ return _mm_cvtsi128_si32(output);
}
static WEBP_INLINE uint32_t Average3(uint32_t a0, uint32_t a1, uint32_t a2) {
const __m128i zero = _mm_setzero_si128();
- const __m128i avg1 = Average2_128i(a0, a2);
+ const __m128i avg1 = Average2_uint32_16(a0, a2);
const __m128i A1 = _mm_unpacklo_epi8(_mm_cvtsi32_si128(a1), zero);
const __m128i sum = _mm_add_epi16(avg1, A1);
const __m128i avg2 = _mm_srli_epi16(sum, 1);
@@ -104,8 +126,8 @@ static WEBP_INLINE uint32_t Average3(uint32_t a0, uint32_t a1, uint32_t a2) {
static WEBP_INLINE uint32_t Average4(uint32_t a0, uint32_t a1,
uint32_t a2, uint32_t a3) {
- const __m128i avg1 = Average2_128i(a0, a1);
- const __m128i avg2 = Average2_128i(a2, a3);
+ const __m128i avg1 = Average2_uint32_16(a0, a1);
+ const __m128i avg2 = Average2_uint32_16(a2, a3);
const __m128i sum = _mm_add_epi16(avg2, avg1);
const __m128i avg3 = _mm_srli_epi16(sum, 1);
const __m128i A0 = _mm_packus_epi16(avg3, avg3);
@@ -113,68 +135,289 @@ static WEBP_INLINE uint32_t Average4(uint32_t a0, uint32_t a1,
return output;
}
-static uint32_t Predictor5(uint32_t left, const uint32_t* const top) {
+static uint32_t Predictor5_SSE2(uint32_t left, const uint32_t* const top) {
const uint32_t pred = Average3(left, top[0], top[1]);
return pred;
}
-static uint32_t Predictor6(uint32_t left, const uint32_t* const top) {
+static uint32_t Predictor6_SSE2(uint32_t left, const uint32_t* const top) {
const uint32_t pred = Average2(left, top[-1]);
return pred;
}
-static uint32_t Predictor7(uint32_t left, const uint32_t* const top) {
+static uint32_t Predictor7_SSE2(uint32_t left, const uint32_t* const top) {
const uint32_t pred = Average2(left, top[0]);
return pred;
}
-static uint32_t Predictor8(uint32_t left, const uint32_t* const top) {
+static uint32_t Predictor8_SSE2(uint32_t left, const uint32_t* const top) {
const uint32_t pred = Average2(top[-1], top[0]);
(void)left;
return pred;
}
-static uint32_t Predictor9(uint32_t left, const uint32_t* const top) {
+static uint32_t Predictor9_SSE2(uint32_t left, const uint32_t* const top) {
const uint32_t pred = Average2(top[0], top[1]);
(void)left;
return pred;
}
-static uint32_t Predictor10(uint32_t left, const uint32_t* const top) {
+static uint32_t Predictor10_SSE2(uint32_t left, const uint32_t* const top) {
const uint32_t pred = Average4(left, top[-1], top[0], top[1]);
return pred;
}
-static uint32_t Predictor11(uint32_t left, const uint32_t* const top) {
+static uint32_t Predictor11_SSE2(uint32_t left, const uint32_t* const top) {
const uint32_t pred = Select(top[0], left, top[-1]);
return pred;
}
-static uint32_t Predictor12(uint32_t left, const uint32_t* const top) {
+static uint32_t Predictor12_SSE2(uint32_t left, const uint32_t* const top) {
const uint32_t pred = ClampedAddSubtractFull(left, top[0], top[-1]);
return pred;
}
-static uint32_t Predictor13(uint32_t left, const uint32_t* const top) {
+static uint32_t Predictor13_SSE2(uint32_t left, const uint32_t* const top) {
const uint32_t pred = ClampedAddSubtractHalf(left, top[0], top[-1]);
return pred;
}
+// Batch versions of those functions.
+
+// Predictor0: ARGB_BLACK.
+static void PredictorAdd0_SSE2(const uint32_t* in, const uint32_t* upper,
+ int num_pixels, uint32_t* out) {
+ int i;
+ const __m128i black = _mm_set1_epi32(ARGB_BLACK);
+ for (i = 0; i + 4 <= num_pixels; i += 4) {
+ const __m128i src = _mm_loadu_si128((const __m128i*)&in[i]);
+ const __m128i res = _mm_add_epi8(src, black);
+ _mm_storeu_si128((__m128i*)&out[i], res);
+ }
+ if (i != num_pixels) {
+ VP8LPredictorsAdd_C[0](in + i, upper + i, num_pixels - i, out + i);
+ }
+}
+
+// Predictor1: left.
+static void PredictorAdd1_SSE2(const uint32_t* in, const uint32_t* upper,
+ int num_pixels, uint32_t* out) {
+ int i;
+ __m128i prev = _mm_set1_epi32(out[-1]);
+ for (i = 0; i + 4 <= num_pixels; i += 4) {
+ // a | b | c | d
+ const __m128i src = _mm_loadu_si128((const __m128i*)&in[i]);
+ // 0 | a | b | c
+ const __m128i shift0 = _mm_slli_si128(src, 4);
+ // a | a + b | b + c | c + d
+ const __m128i sum0 = _mm_add_epi8(src, shift0);
+ // 0 | 0 | a | a + b
+ const __m128i shift1 = _mm_slli_si128(sum0, 8);
+ // a | a + b | a + b + c | a + b + c + d
+ const __m128i sum1 = _mm_add_epi8(sum0, shift1);
+ const __m128i res = _mm_add_epi8(sum1, prev);
+ _mm_storeu_si128((__m128i*)&out[i], res);
+ // replicate prev output on the four lanes
+ prev = _mm_shuffle_epi32(res, (3 << 0) | (3 << 2) | (3 << 4) | (3 << 6));
+ }
+ if (i != num_pixels) {
+ VP8LPredictorsAdd_C[1](in + i, upper + i, num_pixels - i, out + i);
+ }
+}
+
+// Macro that adds 32-bit integers from IN using mod 256 arithmetic
+// per 8 bit channel.
+#define GENERATE_PREDICTOR_1(X, IN) \
+static void PredictorAdd##X##_SSE2(const uint32_t* in, const uint32_t* upper, \
+ int num_pixels, uint32_t* out) { \
+ int i; \
+ for (i = 0; i + 4 <= num_pixels; i += 4) { \
+ const __m128i src = _mm_loadu_si128((const __m128i*)&in[i]); \
+ const __m128i other = _mm_loadu_si128((const __m128i*)&(IN)); \
+ const __m128i res = _mm_add_epi8(src, other); \
+ _mm_storeu_si128((__m128i*)&out[i], res); \
+ } \
+ if (i != num_pixels) { \
+ VP8LPredictorsAdd_C[(X)](in + i, upper + i, num_pixels - i, out + i); \
+ } \
+}
+
+// Predictor2: Top.
+GENERATE_PREDICTOR_1(2, upper[i])
+// Predictor3: Top-right.
+GENERATE_PREDICTOR_1(3, upper[i + 1])
+// Predictor4: Top-left.
+GENERATE_PREDICTOR_1(4, upper[i - 1])
+#undef GENERATE_PREDICTOR_1
+
+// Due to averages with integers, values cannot be accumulated in parallel for
+// predictors 5 to 7.
+GENERATE_PREDICTOR_ADD(Predictor5_SSE2, PredictorAdd5_SSE2)
+GENERATE_PREDICTOR_ADD(Predictor6_SSE2, PredictorAdd6_SSE2)
+GENERATE_PREDICTOR_ADD(Predictor7_SSE2, PredictorAdd7_SSE2)
+
+#define GENERATE_PREDICTOR_2(X, IN) \
+static void PredictorAdd##X##_SSE2(const uint32_t* in, const uint32_t* upper, \
+ int num_pixels, uint32_t* out) { \
+ int i; \
+ for (i = 0; i + 4 <= num_pixels; i += 4) { \
+ const __m128i Tother = _mm_loadu_si128((const __m128i*)&(IN)); \
+ const __m128i T = _mm_loadu_si128((const __m128i*)&upper[i]); \
+ const __m128i src = _mm_loadu_si128((const __m128i*)&in[i]); \
+ __m128i avg, res; \
+ Average2_m128i(&T, &Tother, &avg); \
+ res = _mm_add_epi8(avg, src); \
+ _mm_storeu_si128((__m128i*)&out[i], res); \
+ } \
+ if (i != num_pixels) { \
+ VP8LPredictorsAdd_C[(X)](in + i, upper + i, num_pixels - i, out + i); \
+ } \
+}
+// Predictor8: average TL T.
+GENERATE_PREDICTOR_2(8, upper[i - 1])
+// Predictor9: average T TR.
+GENERATE_PREDICTOR_2(9, upper[i + 1])
+#undef GENERATE_PREDICTOR_2
+
+// Predictor10: average of (average of (L,TL), average of (T, TR)).
+static void PredictorAdd10_SSE2(const uint32_t* in, const uint32_t* upper,
+ int num_pixels, uint32_t* out) {
+ int i, j;
+ __m128i L = _mm_cvtsi32_si128(out[-1]);
+ for (i = 0; i + 4 <= num_pixels; i += 4) {
+ __m128i src = _mm_loadu_si128((const __m128i*)&in[i]);
+ __m128i TL = _mm_loadu_si128((const __m128i*)&upper[i - 1]);
+ const __m128i T = _mm_loadu_si128((const __m128i*)&upper[i]);
+ const __m128i TR = _mm_loadu_si128((const __m128i*)&upper[i + 1]);
+ __m128i avgTTR;
+ Average2_m128i(&T, &TR, &avgTTR);
+ for (j = 0; j < 4; ++j) {
+ __m128i avgLTL, avg;
+ Average2_m128i(&L, &TL, &avgLTL);
+ Average2_m128i(&avgTTR, &avgLTL, &avg);
+ L = _mm_add_epi8(avg, src);
+ out[i + j] = _mm_cvtsi128_si32(L);
+ // Rotate the pre-computed values for the next iteration.
+ avgTTR = _mm_srli_si128(avgTTR, 4);
+ TL = _mm_srli_si128(TL, 4);
+ src = _mm_srli_si128(src, 4);
+ }
+ }
+ if (i != num_pixels) {
+ VP8LPredictorsAdd_C[10](in + i, upper + i, num_pixels - i, out + i);
+ }
+}
+
+// Predictor11: select.
+static void GetSumAbsDiff32(const __m128i* const A, const __m128i* const B,
+ __m128i* const out) {
+ // We can unpack with any value on the upper 32 bits, provided it's the same
+ // on both operands (to that their sum of abs diff is zero). Here we use *A.
+ const __m128i A_lo = _mm_unpacklo_epi32(*A, *A);
+ const __m128i B_lo = _mm_unpacklo_epi32(*B, *A);
+ const __m128i A_hi = _mm_unpackhi_epi32(*A, *A);
+ const __m128i B_hi = _mm_unpackhi_epi32(*B, *A);
+ const __m128i s_lo = _mm_sad_epu8(A_lo, B_lo);
+ const __m128i s_hi = _mm_sad_epu8(A_hi, B_hi);
+ *out = _mm_packs_epi32(s_lo, s_hi);
+}
+
+static void PredictorAdd11_SSE2(const uint32_t* in, const uint32_t* upper,
+ int num_pixels, uint32_t* out) {
+ int i, j;
+ __m128i L = _mm_cvtsi32_si128(out[-1]);
+ for (i = 0; i + 4 <= num_pixels; i += 4) {
+ __m128i T = _mm_loadu_si128((const __m128i*)&upper[i]);
+ __m128i TL = _mm_loadu_si128((const __m128i*)&upper[i - 1]);
+ __m128i src = _mm_loadu_si128((const __m128i*)&in[i]);
+ __m128i pa;
+ GetSumAbsDiff32(&T, &TL, &pa); // pa = sum |T-TL|
+ for (j = 0; j < 4; ++j) {
+ const __m128i L_lo = _mm_unpacklo_epi32(L, L);
+ const __m128i TL_lo = _mm_unpacklo_epi32(TL, L);
+ const __m128i pb = _mm_sad_epu8(L_lo, TL_lo); // pb = sum |L-TL|
+ const __m128i mask = _mm_cmpgt_epi32(pb, pa);
+ const __m128i A = _mm_and_si128(mask, L);
+ const __m128i B = _mm_andnot_si128(mask, T);
+ const __m128i pred = _mm_or_si128(A, B); // pred = (L > T)? L : T
+ L = _mm_add_epi8(src, pred);
+ out[i + j] = _mm_cvtsi128_si32(L);
+ // Shift the pre-computed value for the next iteration.
+ T = _mm_srli_si128(T, 4);
+ TL = _mm_srli_si128(TL, 4);
+ src = _mm_srli_si128(src, 4);
+ pa = _mm_srli_si128(pa, 4);
+ }
+ }
+ if (i != num_pixels) {
+ VP8LPredictorsAdd_C[11](in + i, upper + i, num_pixels - i, out + i);
+ }
+}
+
+// Predictor12: ClampedAddSubtractFull.
+#define DO_PRED12(DIFF, LANE, OUT) \
+do { \
+ const __m128i all = _mm_add_epi16(L, (DIFF)); \
+ const __m128i alls = _mm_packus_epi16(all, all); \
+ const __m128i res = _mm_add_epi8(src, alls); \
+ out[i + (OUT)] = _mm_cvtsi128_si32(res); \
+ L = _mm_unpacklo_epi8(res, zero); \
+ /* Shift the pre-computed value for the next iteration.*/ \
+ if (LANE == 0) (DIFF) = _mm_srli_si128((DIFF), 8); \
+ src = _mm_srli_si128(src, 4); \
+} while (0)
+
+static void PredictorAdd12_SSE2(const uint32_t* in, const uint32_t* upper,
+ int num_pixels, uint32_t* out) {
+ int i;
+ const __m128i zero = _mm_setzero_si128();
+ const __m128i L8 = _mm_cvtsi32_si128(out[-1]);
+ __m128i L = _mm_unpacklo_epi8(L8, zero);
+ for (i = 0; i + 4 <= num_pixels; i += 4) {
+ // Load 4 pixels at a time.
+ __m128i src = _mm_loadu_si128((const __m128i*)&in[i]);
+ const __m128i T = _mm_loadu_si128((const __m128i*)&upper[i]);
+ const __m128i T_lo = _mm_unpacklo_epi8(T, zero);
+ const __m128i T_hi = _mm_unpackhi_epi8(T, zero);
+ const __m128i TL = _mm_loadu_si128((const __m128i*)&upper[i - 1]);
+ const __m128i TL_lo = _mm_unpacklo_epi8(TL, zero);
+ const __m128i TL_hi = _mm_unpackhi_epi8(TL, zero);
+ __m128i diff_lo = _mm_sub_epi16(T_lo, TL_lo);
+ __m128i diff_hi = _mm_sub_epi16(T_hi, TL_hi);
+ DO_PRED12(diff_lo, 0, 0);
+ DO_PRED12(diff_lo, 1, 1);
+ DO_PRED12(diff_hi, 0, 2);
+ DO_PRED12(diff_hi, 1, 3);
+ }
+ if (i != num_pixels) {
+ VP8LPredictorsAdd_C[12](in + i, upper + i, num_pixels - i, out + i);
+ }
+}
+#undef DO_PRED12
+
+// Due to averages with integers, values cannot be accumulated in parallel for
+// predictors 13.
+GENERATE_PREDICTOR_ADD(Predictor13_SSE2, PredictorAdd13_SSE2)
+
//------------------------------------------------------------------------------
// Subtract-Green Transform
-static void AddGreenToBlueAndRed(uint32_t* argb_data, int num_pixels) {
+static void AddGreenToBlueAndRed(const uint32_t* const src, int num_pixels,
+ uint32_t* dst) {
int i;
for (i = 0; i + 4 <= num_pixels; i += 4) {
- const __m128i in = _mm_loadu_si128((__m128i*)&argb_data[i]); // argb
+ const __m128i in = _mm_loadu_si128((const __m128i*)&src[i]); // argb
const __m128i A = _mm_srli_epi16(in, 8); // 0 a 0 g
const __m128i B = _mm_shufflelo_epi16(A, _MM_SHUFFLE(2, 2, 0, 0));
const __m128i C = _mm_shufflehi_epi16(B, _MM_SHUFFLE(2, 2, 0, 0)); // 0g0g
const __m128i out = _mm_add_epi8(in, C);
- _mm_storeu_si128((__m128i*)&argb_data[i], out);
+ _mm_storeu_si128((__m128i*)&dst[i], out);
}
// fallthrough and finish off with plain-C
- VP8LAddGreenToBlueAndRed_C(argb_data + i, num_pixels - i);
+ if (i != num_pixels) {
+ VP8LAddGreenToBlueAndRed_C(src + i, num_pixels - i, dst + i);
+ }
}
//------------------------------------------------------------------------------
// Color Transform
static void TransformColorInverse(const VP8LMultipliers* const m,
- uint32_t* argb_data, int num_pixels) {
- // sign-extended multiplying constants, pre-shifted by 5.
+ const uint32_t* const src, int num_pixels,
+ uint32_t* dst) {
+// sign-extended multiplying constants, pre-shifted by 5.
#define CST(X) (((int16_t)(m->X << 8)) >> 5) // sign-extend
const __m128i mults_rb = _mm_set_epi16(
CST(green_to_red_), CST(green_to_blue_),
@@ -188,7 +431,7 @@ static void TransformColorInverse(const VP8LMultipliers* const m,
const __m128i mask_ag = _mm_set1_epi32(0xff00ff00); // alpha-green masks
int i;
for (i = 0; i + 4 <= num_pixels; i += 4) {
- const __m128i in = _mm_loadu_si128((__m128i*)&argb_data[i]); // argb
+ const __m128i in = _mm_loadu_si128((const __m128i*)&src[i]); // argb
const __m128i A = _mm_and_si128(in, mask_ag); // a 0 g 0
const __m128i B = _mm_shufflelo_epi16(A, _MM_SHUFFLE(2, 2, 0, 0));
const __m128i C = _mm_shufflehi_epi16(B, _MM_SHUFFLE(2, 2, 0, 0)); // g0g0
@@ -200,15 +443,53 @@ static void TransformColorInverse(const VP8LMultipliers* const m,
const __m128i I = _mm_add_epi8(H, F); // r' x b'' 0
const __m128i J = _mm_srli_epi16(I, 8); // 0 r' 0 b''
const __m128i out = _mm_or_si128(J, A);
- _mm_storeu_si128((__m128i*)&argb_data[i], out);
+ _mm_storeu_si128((__m128i*)&dst[i], out);
}
// Fall-back to C-version for left-overs.
- VP8LTransformColorInverse_C(m, argb_data + i, num_pixels - i);
+ if (i != num_pixels) {
+ VP8LTransformColorInverse_C(m, src + i, num_pixels - i, dst + i);
+ }
}
//------------------------------------------------------------------------------
// Color-space conversion functions
+static void ConvertBGRAToRGB(const uint32_t* src, int num_pixels,
+ uint8_t* dst) {
+ const __m128i* in = (const __m128i*)src;
+ __m128i* out = (__m128i*)dst;
+
+ while (num_pixels >= 32) {
+ // Load the BGRA buffers.
+ __m128i in0 = _mm_loadu_si128(in + 0);
+ __m128i in1 = _mm_loadu_si128(in + 1);
+ __m128i in2 = _mm_loadu_si128(in + 2);
+ __m128i in3 = _mm_loadu_si128(in + 3);
+ __m128i in4 = _mm_loadu_si128(in + 4);
+ __m128i in5 = _mm_loadu_si128(in + 5);
+ __m128i in6 = _mm_loadu_si128(in + 6);
+ __m128i in7 = _mm_loadu_si128(in + 7);
+ VP8L32bToPlanar(&in0, &in1, &in2, &in3);
+ VP8L32bToPlanar(&in4, &in5, &in6, &in7);
+ // At this points, in1/in5 contains red only, in2/in6 green only ...
+ // Pack the colors in 24b RGB.
+ VP8PlanarTo24b(&in1, &in5, &in2, &in6, &in3, &in7);
+ _mm_storeu_si128(out + 0, in1);
+ _mm_storeu_si128(out + 1, in5);
+ _mm_storeu_si128(out + 2, in2);
+ _mm_storeu_si128(out + 3, in6);
+ _mm_storeu_si128(out + 4, in3);
+ _mm_storeu_si128(out + 5, in7);
+ in += 8;
+ out += 6;
+ num_pixels -= 32;
+ }
+ // left-overs
+ if (num_pixels > 0) {
+ VP8LConvertBGRAToRGB_C((const uint32_t*)in, num_pixels, (uint8_t*)out);
+ }
+}
+
static void ConvertBGRAToRGBA(const uint32_t* src,
int num_pixels, uint8_t* dst) {
const __m128i* in = (const __m128i*)src;
@@ -233,7 +514,9 @@ static void ConvertBGRAToRGBA(const uint32_t* src,
num_pixels -= 8;
}
// left-overs
- VP8LConvertBGRAToRGBA_C((const uint32_t*)in, num_pixels, (uint8_t*)out);
+ if (num_pixels > 0) {
+ VP8LConvertBGRAToRGBA_C((const uint32_t*)in, num_pixels, (uint8_t*)out);
+ }
}
static void ConvertBGRAToRGBA4444(const uint32_t* src,
@@ -267,7 +550,9 @@ static void ConvertBGRAToRGBA4444(const uint32_t* src,
num_pixels -= 8;
}
// left-overs
- VP8LConvertBGRAToRGBA4444_C((const uint32_t*)in, num_pixels, (uint8_t*)out);
+ if (num_pixels > 0) {
+ VP8LConvertBGRAToRGBA4444_C((const uint32_t*)in, num_pixels, (uint8_t*)out);
+ }
}
static void ConvertBGRAToRGB565(const uint32_t* src,
@@ -306,7 +591,9 @@ static void ConvertBGRAToRGB565(const uint32_t* src,
num_pixels -= 8;
}
// left-overs
- VP8LConvertBGRAToRGB565_C((const uint32_t*)in, num_pixels, (uint8_t*)out);
+ if (num_pixels > 0) {
+ VP8LConvertBGRAToRGB565_C((const uint32_t*)in, num_pixels, (uint8_t*)out);
+ }
}
static void ConvertBGRAToBGR(const uint32_t* src,
@@ -337,7 +624,9 @@ static void ConvertBGRAToBGR(const uint32_t* src,
num_pixels -= 8;
}
// left-overs
- VP8LConvertBGRAToBGR_C((const uint32_t*)in, num_pixels, dst);
+ if (num_pixels > 0) {
+ VP8LConvertBGRAToBGR_C((const uint32_t*)in, num_pixels, dst);
+ }
}
//------------------------------------------------------------------------------
@@ -346,19 +635,35 @@ static void ConvertBGRAToBGR(const uint32_t* src,
extern void VP8LDspInitSSE2(void);
WEBP_TSAN_IGNORE_FUNCTION void VP8LDspInitSSE2(void) {
- VP8LPredictors[5] = Predictor5;
- VP8LPredictors[6] = Predictor6;
- VP8LPredictors[7] = Predictor7;
- VP8LPredictors[8] = Predictor8;
- VP8LPredictors[9] = Predictor9;
- VP8LPredictors[10] = Predictor10;
- VP8LPredictors[11] = Predictor11;
- VP8LPredictors[12] = Predictor12;
- VP8LPredictors[13] = Predictor13;
+ VP8LPredictors[5] = Predictor5_SSE2;
+ VP8LPredictors[6] = Predictor6_SSE2;
+ VP8LPredictors[7] = Predictor7_SSE2;
+ VP8LPredictors[8] = Predictor8_SSE2;
+ VP8LPredictors[9] = Predictor9_SSE2;
+ VP8LPredictors[10] = Predictor10_SSE2;
+ VP8LPredictors[11] = Predictor11_SSE2;
+ VP8LPredictors[12] = Predictor12_SSE2;
+ VP8LPredictors[13] = Predictor13_SSE2;
+
+ VP8LPredictorsAdd[0] = PredictorAdd0_SSE2;
+ VP8LPredictorsAdd[1] = PredictorAdd1_SSE2;
+ VP8LPredictorsAdd[2] = PredictorAdd2_SSE2;
+ VP8LPredictorsAdd[3] = PredictorAdd3_SSE2;
+ VP8LPredictorsAdd[4] = PredictorAdd4_SSE2;
+ VP8LPredictorsAdd[5] = PredictorAdd5_SSE2;
+ VP8LPredictorsAdd[6] = PredictorAdd6_SSE2;
+ VP8LPredictorsAdd[7] = PredictorAdd7_SSE2;
+ VP8LPredictorsAdd[8] = PredictorAdd8_SSE2;
+ VP8LPredictorsAdd[9] = PredictorAdd9_SSE2;
+ VP8LPredictorsAdd[10] = PredictorAdd10_SSE2;
+ VP8LPredictorsAdd[11] = PredictorAdd11_SSE2;
+ VP8LPredictorsAdd[12] = PredictorAdd12_SSE2;
+ VP8LPredictorsAdd[13] = PredictorAdd13_SSE2;
VP8LAddGreenToBlueAndRed = AddGreenToBlueAndRed;
VP8LTransformColorInverse = TransformColorInverse;
+ VP8LConvertBGRAToRGB = ConvertBGRAToRGB;
VP8LConvertBGRAToRGBA = ConvertBGRAToRGBA;
VP8LConvertBGRAToRGBA4444 = ConvertBGRAToRGBA4444;
VP8LConvertBGRAToRGB565 = ConvertBGRAToRGB565;
diff --git a/thirdparty/libwebp/dsp/msa_macro.h b/thirdparty/libwebp/dsp/msa_macro.h
index 5c707f476a..d0e5f45e01 100644
--- a/thirdparty/libwebp/dsp/msa_macro.h
+++ b/thirdparty/libwebp/dsp/msa_macro.h
@@ -23,12 +23,24 @@
#ifdef CLANG_BUILD
#define ADDVI_H(a, b) __msa_addvi_h((v8i16)a, b)
+ #define ADDVI_W(a, b) __msa_addvi_w((v4i32)a, b)
+ #define SRAI_B(a, b) __msa_srai_b((v16i8)a, b)
#define SRAI_H(a, b) __msa_srai_h((v8i16)a, b)
#define SRAI_W(a, b) __msa_srai_w((v4i32)a, b)
+ #define SRLI_H(a, b) __msa_srli_h((v8i16)a, b)
+ #define SLLI_B(a, b) __msa_slli_b((v4i32)a, b)
+ #define ANDI_B(a, b) __msa_andi_b((v16u8)a, b)
+ #define ORI_B(a, b) __msa_ori_b((v16u8)a, b)
#else
#define ADDVI_H(a, b) (a + b)
+ #define ADDVI_W(a, b) (a + b)
+ #define SRAI_B(a, b) (a >> b)
#define SRAI_H(a, b) (a >> b)
#define SRAI_W(a, b) (a >> b)
+ #define SRLI_H(a, b) (a << b)
+ #define SLLI_B(a, b) (a << b)
+ #define ANDI_B(a, b) (a & b)
+ #define ORI_B(a, b) (a | b)
#endif
#define LD_B(RTYPE, psrc) *((RTYPE*)(psrc))
@@ -116,13 +128,13 @@
#define SH(val, pdst) MSA_STORE(val, pdst, msa_ush)
MSA_STORE_FUNC(uint32_t, usw, msa_usw);
#define SW(val, pdst) MSA_STORE(val, pdst, msa_usw)
- #define SD(val, pdst) { \
+ #define SD(val, pdst) do { \
uint8_t* const pdst_sd_m = (uint8_t*)(pdst); \
const uint32_t val0_m = (uint32_t)(val & 0x00000000FFFFFFFF); \
const uint32_t val1_m = (uint32_t)((val >> 32) & 0x00000000FFFFFFFF); \
SW(val0_m, pdst_sd_m); \
SW(val1_m, pdst_sd_m + 4); \
- }
+ } while (0)
#endif // (__mips_isa_rev >= 6)
/* Description : Load 4 words with stride
@@ -133,34 +145,68 @@
* Load word in 'out2' from (psrc + 2 * stride)
* Load word in 'out3' from (psrc + 3 * stride)
*/
-#define LW4(psrc, stride, out0, out1, out2, out3) { \
- const uint8_t* ptmp = (const uint8_t*)psrc; \
- out0 = LW(ptmp); \
- ptmp += stride; \
- out1 = LW(ptmp); \
- ptmp += stride; \
- out2 = LW(ptmp); \
- ptmp += stride; \
- out3 = LW(ptmp); \
-}
+#define LW4(psrc, stride, out0, out1, out2, out3) do { \
+ const uint8_t* ptmp = (const uint8_t*)psrc; \
+ out0 = LW(ptmp); \
+ ptmp += stride; \
+ out1 = LW(ptmp); \
+ ptmp += stride; \
+ out2 = LW(ptmp); \
+ ptmp += stride; \
+ out3 = LW(ptmp); \
+} while (0)
-/* Description : Store 4 words with stride
+/* Description : Store words with stride
* Arguments : Inputs - in0, in1, in2, in3, pdst, stride
* Details : Store word from 'in0' to (pdst)
* Store word from 'in1' to (pdst + stride)
* Store word from 'in2' to (pdst + 2 * stride)
* Store word from 'in3' to (pdst + 3 * stride)
*/
-#define SW4(in0, in1, in2, in3, pdst, stride) { \
- uint8_t* ptmp = (uint8_t*)pdst; \
- SW(in0, ptmp); \
- ptmp += stride; \
- SW(in1, ptmp); \
- ptmp += stride; \
- SW(in2, ptmp); \
- ptmp += stride; \
- SW(in3, ptmp); \
-}
+#define SW4(in0, in1, in2, in3, pdst, stride) do { \
+ uint8_t* ptmp = (uint8_t*)pdst; \
+ SW(in0, ptmp); \
+ ptmp += stride; \
+ SW(in1, ptmp); \
+ ptmp += stride; \
+ SW(in2, ptmp); \
+ ptmp += stride; \
+ SW(in3, ptmp); \
+} while (0)
+
+#define SW3(in0, in1, in2, pdst, stride) do { \
+ uint8_t* ptmp = (uint8_t*)pdst; \
+ SW(in0, ptmp); \
+ ptmp += stride; \
+ SW(in1, ptmp); \
+ ptmp += stride; \
+ SW(in2, ptmp); \
+} while (0)
+
+#define SW2(in0, in1, pdst, stride) do { \
+ uint8_t* ptmp = (uint8_t*)pdst; \
+ SW(in0, ptmp); \
+ ptmp += stride; \
+ SW(in1, ptmp); \
+} while (0)
+
+/* Description : Store 4 double words with stride
+ * Arguments : Inputs - in0, in1, in2, in3, pdst, stride
+ * Details : Store double word from 'in0' to (pdst)
+ * Store double word from 'in1' to (pdst + stride)
+ * Store double word from 'in2' to (pdst + 2 * stride)
+ * Store double word from 'in3' to (pdst + 3 * stride)
+ */
+#define SD4(in0, in1, in2, in3, pdst, stride) do { \
+ uint8_t* ptmp = (uint8_t*)pdst; \
+ SD(in0, ptmp); \
+ ptmp += stride; \
+ SD(in1, ptmp); \
+ ptmp += stride; \
+ SD(in2, ptmp); \
+ ptmp += stride; \
+ SD(in3, ptmp); \
+} while (0)
/* Description : Load vectors with 16 byte elements with stride
* Arguments : Inputs - psrc, stride
@@ -169,33 +215,169 @@
* Details : Load 16 byte elements in 'out0' from (psrc)
* Load 16 byte elements in 'out1' from (psrc + stride)
*/
-#define LD_B2(RTYPE, psrc, stride, out0, out1) { \
- out0 = LD_B(RTYPE, psrc); \
- out1 = LD_B(RTYPE, psrc + stride); \
-}
+#define LD_B2(RTYPE, psrc, stride, out0, out1) do { \
+ out0 = LD_B(RTYPE, psrc); \
+ out1 = LD_B(RTYPE, psrc + stride); \
+} while (0)
#define LD_UB2(...) LD_B2(v16u8, __VA_ARGS__)
#define LD_SB2(...) LD_B2(v16i8, __VA_ARGS__)
-#define LD_B4(RTYPE, psrc, stride, out0, out1, out2, out3) { \
- LD_B2(RTYPE, psrc, stride, out0, out1); \
- LD_B2(RTYPE, psrc + 2 * stride , stride, out2, out3); \
-}
+#define LD_B3(RTYPE, psrc, stride, out0, out1, out2) do { \
+ LD_B2(RTYPE, psrc, stride, out0, out1); \
+ out2 = LD_B(RTYPE, psrc + 2 * stride); \
+} while (0)
+#define LD_UB3(...) LD_B3(v16u8, __VA_ARGS__)
+#define LD_SB3(...) LD_B3(v16i8, __VA_ARGS__)
+
+#define LD_B4(RTYPE, psrc, stride, out0, out1, out2, out3) do { \
+ LD_B2(RTYPE, psrc, stride, out0, out1); \
+ LD_B2(RTYPE, psrc + 2 * stride , stride, out2, out3); \
+} while (0)
#define LD_UB4(...) LD_B4(v16u8, __VA_ARGS__)
#define LD_SB4(...) LD_B4(v16i8, __VA_ARGS__)
+#define LD_B8(RTYPE, psrc, stride, \
+ out0, out1, out2, out3, out4, out5, out6, out7) do { \
+ LD_B4(RTYPE, psrc, stride, out0, out1, out2, out3); \
+ LD_B4(RTYPE, psrc + 4 * stride, stride, out4, out5, out6, out7); \
+} while (0)
+#define LD_UB8(...) LD_B8(v16u8, __VA_ARGS__)
+#define LD_SB8(...) LD_B8(v16i8, __VA_ARGS__)
+
/* Description : Load vectors with 8 halfword elements with stride
* Arguments : Inputs - psrc, stride
* Outputs - out0, out1
* Details : Load 8 halfword elements in 'out0' from (psrc)
* Load 8 halfword elements in 'out1' from (psrc + stride)
*/
-#define LD_H2(RTYPE, psrc, stride, out0, out1) { \
- out0 = LD_H(RTYPE, psrc); \
- out1 = LD_H(RTYPE, psrc + stride); \
-}
+#define LD_H2(RTYPE, psrc, stride, out0, out1) do { \
+ out0 = LD_H(RTYPE, psrc); \
+ out1 = LD_H(RTYPE, psrc + stride); \
+} while (0)
#define LD_UH2(...) LD_H2(v8u16, __VA_ARGS__)
#define LD_SH2(...) LD_H2(v8i16, __VA_ARGS__)
+/* Description : Load vectors with 4 word elements with stride
+ * Arguments : Inputs - psrc, stride
+ * Outputs - out0, out1, out2, out3
+ * Details : Load 4 word elements in 'out0' from (psrc + 0 * stride)
+ * Load 4 word elements in 'out1' from (psrc + 1 * stride)
+ * Load 4 word elements in 'out2' from (psrc + 2 * stride)
+ * Load 4 word elements in 'out3' from (psrc + 3 * stride)
+ */
+#define LD_W2(RTYPE, psrc, stride, out0, out1) do { \
+ out0 = LD_W(RTYPE, psrc); \
+ out1 = LD_W(RTYPE, psrc + stride); \
+} while (0)
+#define LD_UW2(...) LD_W2(v4u32, __VA_ARGS__)
+#define LD_SW2(...) LD_W2(v4i32, __VA_ARGS__)
+
+#define LD_W3(RTYPE, psrc, stride, out0, out1, out2) do { \
+ LD_W2(RTYPE, psrc, stride, out0, out1); \
+ out2 = LD_W(RTYPE, psrc + 2 * stride); \
+} while (0)
+#define LD_UW3(...) LD_W3(v4u32, __VA_ARGS__)
+#define LD_SW3(...) LD_W3(v4i32, __VA_ARGS__)
+
+#define LD_W4(RTYPE, psrc, stride, out0, out1, out2, out3) do { \
+ LD_W2(RTYPE, psrc, stride, out0, out1); \
+ LD_W2(RTYPE, psrc + 2 * stride, stride, out2, out3); \
+} while (0)
+#define LD_UW4(...) LD_W4(v4u32, __VA_ARGS__)
+#define LD_SW4(...) LD_W4(v4i32, __VA_ARGS__)
+
+/* Description : Store vectors of 16 byte elements with stride
+ * Arguments : Inputs - in0, in1, pdst, stride
+ * Details : Store 16 byte elements from 'in0' to (pdst)
+ * Store 16 byte elements from 'in1' to (pdst + stride)
+ */
+#define ST_B2(RTYPE, in0, in1, pdst, stride) do { \
+ ST_B(RTYPE, in0, pdst); \
+ ST_B(RTYPE, in1, pdst + stride); \
+} while (0)
+#define ST_UB2(...) ST_B2(v16u8, __VA_ARGS__)
+#define ST_SB2(...) ST_B2(v16i8, __VA_ARGS__)
+
+#define ST_B4(RTYPE, in0, in1, in2, in3, pdst, stride) do { \
+ ST_B2(RTYPE, in0, in1, pdst, stride); \
+ ST_B2(RTYPE, in2, in3, pdst + 2 * stride, stride); \
+} while (0)
+#define ST_UB4(...) ST_B4(v16u8, __VA_ARGS__)
+#define ST_SB4(...) ST_B4(v16i8, __VA_ARGS__)
+
+#define ST_B8(RTYPE, in0, in1, in2, in3, in4, in5, in6, in7, \
+ pdst, stride) do { \
+ ST_B4(RTYPE, in0, in1, in2, in3, pdst, stride); \
+ ST_B4(RTYPE, in4, in5, in6, in7, pdst + 4 * stride, stride); \
+} while (0)
+#define ST_UB8(...) ST_B8(v16u8, __VA_ARGS__)
+
+/* Description : Store vectors of 4 word elements with stride
+ * Arguments : Inputs - in0, in1, in2, in3, pdst, stride
+ * Details : Store 4 word elements from 'in0' to (pdst + 0 * stride)
+ * Store 4 word elements from 'in1' to (pdst + 1 * stride)
+ * Store 4 word elements from 'in2' to (pdst + 2 * stride)
+ * Store 4 word elements from 'in3' to (pdst + 3 * stride)
+ */
+#define ST_W2(RTYPE, in0, in1, pdst, stride) do { \
+ ST_W(RTYPE, in0, pdst); \
+ ST_W(RTYPE, in1, pdst + stride); \
+} while (0)
+#define ST_UW2(...) ST_W2(v4u32, __VA_ARGS__)
+#define ST_SW2(...) ST_W2(v4i32, __VA_ARGS__)
+
+#define ST_W3(RTYPE, in0, in1, in2, pdst, stride) do { \
+ ST_W2(RTYPE, in0, in1, pdst, stride); \
+ ST_W(RTYPE, in2, pdst + 2 * stride); \
+} while (0)
+#define ST_UW3(...) ST_W3(v4u32, __VA_ARGS__)
+#define ST_SW3(...) ST_W3(v4i32, __VA_ARGS__)
+
+#define ST_W4(RTYPE, in0, in1, in2, in3, pdst, stride) do { \
+ ST_W2(RTYPE, in0, in1, pdst, stride); \
+ ST_W2(RTYPE, in2, in3, pdst + 2 * stride, stride); \
+} while (0)
+#define ST_UW4(...) ST_W4(v4u32, __VA_ARGS__)
+#define ST_SW4(...) ST_W4(v4i32, __VA_ARGS__)
+
+/* Description : Store vectors of 8 halfword elements with stride
+ * Arguments : Inputs - in0, in1, pdst, stride
+ * Details : Store 8 halfword elements from 'in0' to (pdst)
+ * Store 8 halfword elements from 'in1' to (pdst + stride)
+ */
+#define ST_H2(RTYPE, in0, in1, pdst, stride) do { \
+ ST_H(RTYPE, in0, pdst); \
+ ST_H(RTYPE, in1, pdst + stride); \
+} while (0)
+#define ST_UH2(...) ST_H2(v8u16, __VA_ARGS__)
+#define ST_SH2(...) ST_H2(v8i16, __VA_ARGS__)
+
+/* Description : Store 2x4 byte block to destination memory from input vector
+ * Arguments : Inputs - in, stidx, pdst, stride
+ * Details : Index 'stidx' halfword element from 'in' vector is copied to
+ * the GP register and stored to (pdst)
+ * Index 'stidx+1' halfword element from 'in' vector is copied to
+ * the GP register and stored to (pdst + stride)
+ * Index 'stidx+2' halfword element from 'in' vector is copied to
+ * the GP register and stored to (pdst + 2 * stride)
+ * Index 'stidx+3' halfword element from 'in' vector is copied to
+ * the GP register and stored to (pdst + 3 * stride)
+ */
+#define ST2x4_UB(in, stidx, pdst, stride) do { \
+ uint8_t* pblk_2x4_m = (uint8_t*)pdst; \
+ const uint16_t out0_m = __msa_copy_s_h((v8i16)in, stidx); \
+ const uint16_t out1_m = __msa_copy_s_h((v8i16)in, stidx + 1); \
+ const uint16_t out2_m = __msa_copy_s_h((v8i16)in, stidx + 2); \
+ const uint16_t out3_m = __msa_copy_s_h((v8i16)in, stidx + 3); \
+ SH(out0_m, pblk_2x4_m); \
+ pblk_2x4_m += stride; \
+ SH(out1_m, pblk_2x4_m); \
+ pblk_2x4_m += stride; \
+ SH(out2_m, pblk_2x4_m); \
+ pblk_2x4_m += stride; \
+ SH(out3_m, pblk_2x4_m); \
+} while (0)
+
/* Description : Store 4x4 byte block to destination memory from input vector
* Arguments : Inputs - in0, in1, pdst, stride
* Details : 'Idx0' word element from input vector 'in0' is copied to the
@@ -207,14 +389,20 @@
* 'Idx3' word element from input vector 'in0' is copied to the
* GP register and stored to (pdst + 3 * stride)
*/
-#define ST4x4_UB(in0, in1, idx0, idx1, idx2, idx3, pdst, stride) { \
- uint8_t* const pblk_4x4_m = (uint8_t*)pdst; \
- const uint32_t out0_m = __msa_copy_s_w((v4i32)in0, idx0); \
- const uint32_t out1_m = __msa_copy_s_w((v4i32)in0, idx1); \
- const uint32_t out2_m = __msa_copy_s_w((v4i32)in1, idx2); \
- const uint32_t out3_m = __msa_copy_s_w((v4i32)in1, idx3); \
- SW4(out0_m, out1_m, out2_m, out3_m, pblk_4x4_m, stride); \
-}
+#define ST4x4_UB(in0, in1, idx0, idx1, idx2, idx3, pdst, stride) do { \
+ uint8_t* const pblk_4x4_m = (uint8_t*)pdst; \
+ const uint32_t out0_m = __msa_copy_s_w((v4i32)in0, idx0); \
+ const uint32_t out1_m = __msa_copy_s_w((v4i32)in0, idx1); \
+ const uint32_t out2_m = __msa_copy_s_w((v4i32)in1, idx2); \
+ const uint32_t out3_m = __msa_copy_s_w((v4i32)in1, idx3); \
+ SW4(out0_m, out1_m, out2_m, out3_m, pblk_4x4_m, stride); \
+} while (0)
+
+#define ST4x8_UB(in0, in1, pdst, stride) do { \
+ uint8_t* const pblk_4x8 = (uint8_t*)pdst; \
+ ST4x4_UB(in0, in0, 0, 1, 2, 3, pblk_4x8, stride); \
+ ST4x4_UB(in1, in1, 0, 1, 2, 3, pblk_4x8 + 4 * stride, stride); \
+} while (0)
/* Description : Immediate number of elements to slide
* Arguments : Inputs - in0, in1, slide_val
@@ -230,6 +418,30 @@
#define SLDI_SB(...) SLDI_B(v16i8, __VA_ARGS__)
#define SLDI_SH(...) SLDI_B(v8i16, __VA_ARGS__)
+/* Description : Shuffle byte vector elements as per mask vector
+ * Arguments : Inputs - in0, in1, in2, in3, mask0, mask1
+ * Outputs - out0, out1
+ * Return Type - as per RTYPE
+ * Details : Byte elements from 'in0' & 'in1' are copied selectively to
+ * 'out0' as per control vector 'mask0'
+ */
+#define VSHF_B(RTYPE, in0, in1, mask) \
+ (RTYPE)__msa_vshf_b((v16i8)mask, (v16i8)in1, (v16i8)in0)
+
+#define VSHF_UB(...) VSHF_B(v16u8, __VA_ARGS__)
+#define VSHF_SB(...) VSHF_B(v16i8, __VA_ARGS__)
+#define VSHF_UH(...) VSHF_B(v8u16, __VA_ARGS__)
+#define VSHF_SH(...) VSHF_B(v8i16, __VA_ARGS__)
+
+#define VSHF_B2(RTYPE, in0, in1, in2, in3, mask0, mask1, out0, out1) do { \
+ out0 = VSHF_B(RTYPE, in0, in1, mask0); \
+ out1 = VSHF_B(RTYPE, in2, in3, mask1); \
+} while (0)
+#define VSHF_B2_UB(...) VSHF_B2(v16u8, __VA_ARGS__)
+#define VSHF_B2_SB(...) VSHF_B2(v16i8, __VA_ARGS__)
+#define VSHF_B2_UH(...) VSHF_B2(v8u16, __VA_ARGS__)
+#define VSHF_B2_SH(...) VSHF_B2(v8i16, __VA_ARGS__)
+
/* Description : Shuffle halfword vector elements as per mask vector
* Arguments : Inputs - in0, in1, in2, in3, mask0, mask1
* Outputs - out0, out1
@@ -237,44 +449,219 @@
* Details : halfword elements from 'in0' & 'in1' are copied selectively to
* 'out0' as per control vector 'mask0'
*/
-#define VSHF_H2(RTYPE, in0, in1, in2, in3, mask0, mask1, out0, out1) { \
- out0 = (RTYPE)__msa_vshf_h((v8i16)mask0, (v8i16)in1, (v8i16)in0); \
- out1 = (RTYPE)__msa_vshf_h((v8i16)mask1, (v8i16)in3, (v8i16)in2); \
-}
+#define VSHF_H2(RTYPE, in0, in1, in2, in3, mask0, mask1, out0, out1) do { \
+ out0 = (RTYPE)__msa_vshf_h((v8i16)mask0, (v8i16)in1, (v8i16)in0); \
+ out1 = (RTYPE)__msa_vshf_h((v8i16)mask1, (v8i16)in3, (v8i16)in2); \
+} while (0)
#define VSHF_H2_UH(...) VSHF_H2(v8u16, __VA_ARGS__)
#define VSHF_H2_SH(...) VSHF_H2(v8i16, __VA_ARGS__)
+/* Description : Dot product of byte vector elements
+ * Arguments : Inputs - mult0, mult1, cnst0, cnst1
+ * Outputs - out0, out1
+ * Return Type - as per RTYPE
+ * Details : Signed byte elements from 'mult0' are multiplied with
+ * signed byte elements from 'cnst0' producing a result
+ * twice the size of input i.e. signed halfword.
+ * The multiplication result of adjacent odd-even elements
+ * are added together and written to the 'out0' vector
+*/
+#define DOTP_SB2(RTYPE, mult0, mult1, cnst0, cnst1, out0, out1) do { \
+ out0 = (RTYPE)__msa_dotp_s_h((v16i8)mult0, (v16i8)cnst0); \
+ out1 = (RTYPE)__msa_dotp_s_h((v16i8)mult1, (v16i8)cnst1); \
+} while (0)
+#define DOTP_SB2_SH(...) DOTP_SB2(v8i16, __VA_ARGS__)
+
+/* Description : Dot product of halfword vector elements
+ * Arguments : Inputs - mult0, mult1, cnst0, cnst1
+ * Outputs - out0, out1
+ * Return Type - as per RTYPE
+ * Details : Signed halfword elements from 'mult0' are multiplied with
+ * signed halfword elements from 'cnst0' producing a result
+ * twice the size of input i.e. signed word.
+ * The multiplication result of adjacent odd-even elements
+ * are added together and written to the 'out0' vector
+ */
+#define DOTP_SH2(RTYPE, mult0, mult1, cnst0, cnst1, out0, out1) do { \
+ out0 = (RTYPE)__msa_dotp_s_w((v8i16)mult0, (v8i16)cnst0); \
+ out1 = (RTYPE)__msa_dotp_s_w((v8i16)mult1, (v8i16)cnst1); \
+} while (0)
+#define DOTP_SH2_SW(...) DOTP_SH2(v4i32, __VA_ARGS__)
+
+/* Description : Dot product of unsigned word vector elements
+ * Arguments : Inputs - mult0, mult1, cnst0, cnst1
+ * Outputs - out0, out1
+ * Return Type - as per RTYPE
+ * Details : Unsigned word elements from 'mult0' are multiplied with
+ * unsigned word elements from 'cnst0' producing a result
+ * twice the size of input i.e. unsigned double word.
+ * The multiplication result of adjacent odd-even elements
+ * are added together and written to the 'out0' vector
+ */
+#define DOTP_UW2(RTYPE, mult0, mult1, cnst0, cnst1, out0, out1) do { \
+ out0 = (RTYPE)__msa_dotp_u_d((v4u32)mult0, (v4u32)cnst0); \
+ out1 = (RTYPE)__msa_dotp_u_d((v4u32)mult1, (v4u32)cnst1); \
+} while (0)
+#define DOTP_UW2_UD(...) DOTP_UW2(v2u64, __VA_ARGS__)
+
+/* Description : Dot product & addition of halfword vector elements
+ * Arguments : Inputs - mult0, mult1, cnst0, cnst1
+ * Outputs - out0, out1
+ * Return Type - as per RTYPE
+ * Details : Signed halfword elements from 'mult0' are multiplied with
+ * signed halfword elements from 'cnst0' producing a result
+ * twice the size of input i.e. signed word.
+ * The multiplication result of adjacent odd-even elements
+ * are added to the 'out0' vector
+ */
+#define DPADD_SH2(RTYPE, mult0, mult1, cnst0, cnst1, out0, out1) do { \
+ out0 = (RTYPE)__msa_dpadd_s_w((v4i32)out0, (v8i16)mult0, (v8i16)cnst0); \
+ out1 = (RTYPE)__msa_dpadd_s_w((v4i32)out1, (v8i16)mult1, (v8i16)cnst1); \
+} while (0)
+#define DPADD_SH2_SW(...) DPADD_SH2(v4i32, __VA_ARGS__)
+
/* Description : Clips all signed halfword elements of input vector
* between 0 & 255
* Arguments : Input/output - val
* Return Type - signed halfword
*/
-#define CLIP_SH_0_255(val) { \
+#define CLIP_SH_0_255(val) do { \
const v8i16 max_m = __msa_ldi_h(255); \
val = __msa_maxi_s_h((v8i16)val, 0); \
val = __msa_min_s_h(max_m, (v8i16)val); \
-}
-#define CLIP_SH2_0_255(in0, in1) { \
- CLIP_SH_0_255(in0); \
- CLIP_SH_0_255(in1); \
-}
+} while (0)
+
+#define CLIP_SH2_0_255(in0, in1) do { \
+ CLIP_SH_0_255(in0); \
+ CLIP_SH_0_255(in1); \
+} while (0)
+
+#define CLIP_SH4_0_255(in0, in1, in2, in3) do { \
+ CLIP_SH2_0_255(in0, in1); \
+ CLIP_SH2_0_255(in2, in3); \
+} while (0)
+
+/* Description : Clips all unsigned halfword elements of input vector
+ * between 0 & 255
+ * Arguments : Input - in
+ * Output - out_m
+ * Return Type - unsigned halfword
+ */
+#define CLIP_UH_0_255(in) do { \
+ const v8u16 max_m = (v8u16)__msa_ldi_h(255); \
+ in = __msa_maxi_u_h((v8u16) in, 0); \
+ in = __msa_min_u_h((v8u16) max_m, (v8u16) in); \
+} while (0)
+
+#define CLIP_UH2_0_255(in0, in1) do { \
+ CLIP_UH_0_255(in0); \
+ CLIP_UH_0_255(in1); \
+} while (0)
/* Description : Clips all signed word elements of input vector
* between 0 & 255
* Arguments : Input/output - val
* Return Type - signed word
*/
-#define CLIP_SW_0_255(val) { \
+#define CLIP_SW_0_255(val) do { \
const v4i32 max_m = __msa_ldi_w(255); \
val = __msa_maxi_s_w((v4i32)val, 0); \
val = __msa_min_s_w(max_m, (v4i32)val); \
+} while (0)
+
+#define CLIP_SW4_0_255(in0, in1, in2, in3) do { \
+ CLIP_SW_0_255(in0); \
+ CLIP_SW_0_255(in1); \
+ CLIP_SW_0_255(in2); \
+ CLIP_SW_0_255(in3); \
+} while (0)
+
+/* Description : Horizontal addition of 4 signed word elements of input vector
+ * Arguments : Input - in (signed word vector)
+ * Output - sum_m (i32 sum)
+ * Return Type - signed word (GP)
+ * Details : 4 signed word elements of 'in' vector are added together and
+ * the resulting integer sum is returned
+ */
+static WEBP_INLINE int32_t func_hadd_sw_s32(v4i32 in) {
+ const v2i64 res0_m = __msa_hadd_s_d((v4i32)in, (v4i32)in);
+ const v2i64 res1_m = __msa_splati_d(res0_m, 1);
+ const v2i64 out = res0_m + res1_m;
+ int32_t sum_m = __msa_copy_s_w((v4i32)out, 0);
+ return sum_m;
}
-#define CLIP_SW4_0_255(in0, in1, in2, in3) { \
- CLIP_SW_0_255(in0); \
- CLIP_SW_0_255(in1); \
- CLIP_SW_0_255(in2); \
- CLIP_SW_0_255(in3); \
+#define HADD_SW_S32(in) func_hadd_sw_s32(in)
+
+/* Description : Horizontal addition of 8 signed halfword elements
+ * Arguments : Input - in (signed halfword vector)
+ * Output - sum_m (s32 sum)
+ * Return Type - signed word
+ * Details : 8 signed halfword elements of input vector are added
+ * together and the resulting integer sum is returned
+ */
+static WEBP_INLINE int32_t func_hadd_sh_s32(v8i16 in) {
+ const v4i32 res = __msa_hadd_s_w(in, in);
+ const v2i64 res0 = __msa_hadd_s_d(res, res);
+ const v2i64 res1 = __msa_splati_d(res0, 1);
+ const v2i64 res2 = res0 + res1;
+ const int32_t sum_m = __msa_copy_s_w((v4i32)res2, 0);
+ return sum_m;
+}
+#define HADD_SH_S32(in) func_hadd_sh_s32(in)
+
+/* Description : Horizontal addition of 8 unsigned halfword elements
+ * Arguments : Input - in (unsigned halfword vector)
+ * Output - sum_m (u32 sum)
+ * Return Type - unsigned word
+ * Details : 8 unsigned halfword elements of input vector are added
+ * together and the resulting integer sum is returned
+ */
+static WEBP_INLINE uint32_t func_hadd_uh_u32(v8u16 in) {
+ uint32_t sum_m;
+ const v4u32 res_m = __msa_hadd_u_w(in, in);
+ v2u64 res0_m = __msa_hadd_u_d(res_m, res_m);
+ v2u64 res1_m = (v2u64)__msa_splati_d((v2i64)res0_m, 1);
+ res0_m = res0_m + res1_m;
+ sum_m = __msa_copy_s_w((v4i32)res0_m, 0);
+ return sum_m;
}
+#define HADD_UH_U32(in) func_hadd_uh_u32(in)
+
+/* Description : Horizontal addition of signed half word vector elements
+ Arguments : Inputs - in0, in1
+ Outputs - out0, out1
+ Return Type - as per RTYPE
+ Details : Each signed odd half word element from 'in0' is added to
+ even signed half word element from 'in0' (pairwise) and the
+ halfword result is written in 'out0'
+*/
+#define HADD_SH2(RTYPE, in0, in1, out0, out1) do { \
+ out0 = (RTYPE)__msa_hadd_s_w((v8i16)in0, (v8i16)in0); \
+ out1 = (RTYPE)__msa_hadd_s_w((v8i16)in1, (v8i16)in1); \
+} while (0)
+#define HADD_SH2_SW(...) HADD_SH2(v4i32, __VA_ARGS__)
+
+#define HADD_SH4(RTYPE, in0, in1, in2, in3, out0, out1, out2, out3) do { \
+ HADD_SH2(RTYPE, in0, in1, out0, out1); \
+ HADD_SH2(RTYPE, in2, in3, out2, out3); \
+} while (0)
+#define HADD_SH4_SW(...) HADD_SH4(v4i32, __VA_ARGS__)
+
+/* Description : Horizontal subtraction of unsigned byte vector elements
+ * Arguments : Inputs - in0, in1
+ * Outputs - out0, out1
+ * Return Type - as per RTYPE
+ * Details : Each unsigned odd byte element from 'in0' is subtracted from
+ * even unsigned byte element from 'in0' (pairwise) and the
+ * halfword result is written to 'out0'
+ */
+#define HSUB_UB2(RTYPE, in0, in1, out0, out1) do { \
+ out0 = (RTYPE)__msa_hsub_u_h((v16u8)in0, (v16u8)in0); \
+ out1 = (RTYPE)__msa_hsub_u_h((v16u8)in1, (v16u8)in1); \
+} while (0)
+#define HSUB_UB2_UH(...) HSUB_UB2(v8u16, __VA_ARGS__)
+#define HSUB_UB2_SH(...) HSUB_UB2(v8i16, __VA_ARGS__)
+#define HSUB_UB2_SW(...) HSUB_UB2(v4i32, __VA_ARGS__)
/* Description : Set element n input vector to GPR value
* Arguments : Inputs - in0, in1, in2, in3
@@ -282,23 +669,188 @@
* Return Type - as per RTYPE
* Details : Set element 0 in vector 'out' to value specified in 'in0'
*/
-#define INSERT_W2(RTYPE, in0, in1, out) { \
+#define INSERT_W2(RTYPE, in0, in1, out) do { \
out = (RTYPE)__msa_insert_w((v4i32)out, 0, in0); \
out = (RTYPE)__msa_insert_w((v4i32)out, 1, in1); \
-}
+} while (0)
#define INSERT_W2_UB(...) INSERT_W2(v16u8, __VA_ARGS__)
#define INSERT_W2_SB(...) INSERT_W2(v16i8, __VA_ARGS__)
-#define INSERT_W4(RTYPE, in0, in1, in2, in3, out) { \
- out = (RTYPE)__msa_insert_w((v4i32)out, 0, in0); \
- out = (RTYPE)__msa_insert_w((v4i32)out, 1, in1); \
- out = (RTYPE)__msa_insert_w((v4i32)out, 2, in2); \
- out = (RTYPE)__msa_insert_w((v4i32)out, 3, in3); \
-}
+#define INSERT_W4(RTYPE, in0, in1, in2, in3, out) do { \
+ out = (RTYPE)__msa_insert_w((v4i32)out, 0, in0); \
+ out = (RTYPE)__msa_insert_w((v4i32)out, 1, in1); \
+ out = (RTYPE)__msa_insert_w((v4i32)out, 2, in2); \
+ out = (RTYPE)__msa_insert_w((v4i32)out, 3, in3); \
+} while (0)
#define INSERT_W4_UB(...) INSERT_W4(v16u8, __VA_ARGS__)
#define INSERT_W4_SB(...) INSERT_W4(v16i8, __VA_ARGS__)
#define INSERT_W4_SW(...) INSERT_W4(v4i32, __VA_ARGS__)
+/* Description : Set element n of double word input vector to GPR value
+ * Arguments : Inputs - in0, in1
+ * Output - out
+ * Return Type - as per RTYPE
+ * Details : Set element 0 in vector 'out' to GPR value specified in 'in0'
+ * Set element 1 in vector 'out' to GPR value specified in 'in1'
+ */
+#define INSERT_D2(RTYPE, in0, in1, out) do { \
+ out = (RTYPE)__msa_insert_d((v2i64)out, 0, in0); \
+ out = (RTYPE)__msa_insert_d((v2i64)out, 1, in1); \
+} while (0)
+#define INSERT_D2_UB(...) INSERT_D2(v16u8, __VA_ARGS__)
+#define INSERT_D2_SB(...) INSERT_D2(v16i8, __VA_ARGS__)
+
+/* Description : Interleave even byte elements from vectors
+ * Arguments : Inputs - in0, in1, in2, in3
+ * Outputs - out0, out1
+ * Return Type - as per RTYPE
+ * Details : Even byte elements of 'in0' and 'in1' are interleaved
+ * and written to 'out0'
+ */
+#define ILVEV_B2(RTYPE, in0, in1, in2, in3, out0, out1) do { \
+ out0 = (RTYPE)__msa_ilvev_b((v16i8)in1, (v16i8)in0); \
+ out1 = (RTYPE)__msa_ilvev_b((v16i8)in3, (v16i8)in2); \
+} while (0)
+#define ILVEV_B2_UB(...) ILVEV_B2(v16u8, __VA_ARGS__)
+#define ILVEV_B2_SB(...) ILVEV_B2(v16i8, __VA_ARGS__)
+#define ILVEV_B2_UH(...) ILVEV_B2(v8u16, __VA_ARGS__)
+#define ILVEV_B2_SH(...) ILVEV_B2(v8i16, __VA_ARGS__)
+#define ILVEV_B2_SD(...) ILVEV_B2(v2i64, __VA_ARGS__)
+
+/* Description : Interleave odd byte elements from vectors
+ * Arguments : Inputs - in0, in1, in2, in3
+ * Outputs - out0, out1
+ * Return Type - as per RTYPE
+ * Details : Odd byte elements of 'in0' and 'in1' are interleaved
+ * and written to 'out0'
+ */
+#define ILVOD_B2(RTYPE, in0, in1, in2, in3, out0, out1) do { \
+ out0 = (RTYPE)__msa_ilvod_b((v16i8)in1, (v16i8)in0); \
+ out1 = (RTYPE)__msa_ilvod_b((v16i8)in3, (v16i8)in2); \
+} while (0)
+#define ILVOD_B2_UB(...) ILVOD_B2(v16u8, __VA_ARGS__)
+#define ILVOD_B2_SB(...) ILVOD_B2(v16i8, __VA_ARGS__)
+#define ILVOD_B2_UH(...) ILVOD_B2(v8u16, __VA_ARGS__)
+#define ILVOD_B2_SH(...) ILVOD_B2(v8i16, __VA_ARGS__)
+#define ILVOD_B2_SD(...) ILVOD_B2(v2i64, __VA_ARGS__)
+
+/* Description : Interleave even halfword elements from vectors
+ * Arguments : Inputs - in0, in1, in2, in3
+ * Outputs - out0, out1
+ * Return Type - as per RTYPE
+ * Details : Even halfword elements of 'in0' and 'in1' are interleaved
+ * and written to 'out0'
+ */
+#define ILVEV_H2(RTYPE, in0, in1, in2, in3, out0, out1) do { \
+ out0 = (RTYPE)__msa_ilvev_h((v8i16)in1, (v8i16)in0); \
+ out1 = (RTYPE)__msa_ilvev_h((v8i16)in3, (v8i16)in2); \
+} while (0)
+#define ILVEV_H2_UB(...) ILVEV_H2(v16u8, __VA_ARGS__)
+#define ILVEV_H2_UH(...) ILVEV_H2(v8u16, __VA_ARGS__)
+#define ILVEV_H2_SH(...) ILVEV_H2(v8i16, __VA_ARGS__)
+#define ILVEV_H2_SW(...) ILVEV_H2(v4i32, __VA_ARGS__)
+
+/* Description : Interleave odd halfword elements from vectors
+ * Arguments : Inputs - in0, in1, in2, in3
+ * Outputs - out0, out1
+ * Return Type - as per RTYPE
+ * Details : Odd halfword elements of 'in0' and 'in1' are interleaved
+ * and written to 'out0'
+ */
+#define ILVOD_H2(RTYPE, in0, in1, in2, in3, out0, out1) do { \
+ out0 = (RTYPE)__msa_ilvod_h((v8i16)in1, (v8i16)in0); \
+ out1 = (RTYPE)__msa_ilvod_h((v8i16)in3, (v8i16)in2); \
+} while (0)
+#define ILVOD_H2_UB(...) ILVOD_H2(v16u8, __VA_ARGS__)
+#define ILVOD_H2_UH(...) ILVOD_H2(v8u16, __VA_ARGS__)
+#define ILVOD_H2_SH(...) ILVOD_H2(v8i16, __VA_ARGS__)
+#define ILVOD_H2_SW(...) ILVOD_H2(v4i32, __VA_ARGS__)
+
+/* Description : Interleave even word elements from vectors
+ * Arguments : Inputs - in0, in1, in2, in3
+ * Outputs - out0, out1
+ * Return Type - as per RTYPE
+ * Details : Even word elements of 'in0' and 'in1' are interleaved
+ * and written to 'out0'
+ */
+#define ILVEV_W2(RTYPE, in0, in1, in2, in3, out0, out1) do { \
+ out0 = (RTYPE)__msa_ilvev_w((v4i32)in1, (v4i32)in0); \
+ out1 = (RTYPE)__msa_ilvev_w((v4i32)in3, (v4i32)in2); \
+} while (0)
+#define ILVEV_W2_UB(...) ILVEV_W2(v16u8, __VA_ARGS__)
+#define ILVEV_W2_SB(...) ILVEV_W2(v16i8, __VA_ARGS__)
+#define ILVEV_W2_UH(...) ILVEV_W2(v8u16, __VA_ARGS__)
+#define ILVEV_W2_SD(...) ILVEV_W2(v2i64, __VA_ARGS__)
+
+/* Description : Interleave even-odd word elements from vectors
+ * Arguments : Inputs - in0, in1, in2, in3
+ * Outputs - out0, out1
+ * Return Type - as per RTYPE
+ * Details : Even word elements of 'in0' and 'in1' are interleaved
+ * and written to 'out0'
+ * Odd word elements of 'in2' and 'in3' are interleaved
+ * and written to 'out1'
+ */
+#define ILVEVOD_W2(RTYPE, in0, in1, in2, in3, out0, out1) do { \
+ out0 = (RTYPE)__msa_ilvev_w((v4i32)in1, (v4i32)in0); \
+ out1 = (RTYPE)__msa_ilvod_w((v4i32)in3, (v4i32)in2); \
+} while (0)
+#define ILVEVOD_W2_UB(...) ILVEVOD_W2(v16u8, __VA_ARGS__)
+#define ILVEVOD_W2_UH(...) ILVEVOD_W2(v8u16, __VA_ARGS__)
+#define ILVEVOD_W2_SH(...) ILVEVOD_W2(v8i16, __VA_ARGS__)
+#define ILVEVOD_W2_SW(...) ILVEVOD_W2(v4i32, __VA_ARGS__)
+
+/* Description : Interleave even-odd half-word elements from vectors
+ * Arguments : Inputs - in0, in1, in2, in3
+ * Outputs - out0, out1
+ * Return Type - as per RTYPE
+ * Details : Even half-word elements of 'in0' and 'in1' are interleaved
+ * and written to 'out0'
+ * Odd half-word elements of 'in2' and 'in3' are interleaved
+ * and written to 'out1'
+ */
+#define ILVEVOD_H2(RTYPE, in0, in1, in2, in3, out0, out1) do { \
+ out0 = (RTYPE)__msa_ilvev_h((v8i16)in1, (v8i16)in0); \
+ out1 = (RTYPE)__msa_ilvod_h((v8i16)in3, (v8i16)in2); \
+} while (0)
+#define ILVEVOD_H2_UB(...) ILVEVOD_H2(v16u8, __VA_ARGS__)
+#define ILVEVOD_H2_UH(...) ILVEVOD_H2(v8u16, __VA_ARGS__)
+#define ILVEVOD_H2_SH(...) ILVEVOD_H2(v8i16, __VA_ARGS__)
+#define ILVEVOD_H2_SW(...) ILVEVOD_H2(v4i32, __VA_ARGS__)
+
+/* Description : Interleave even double word elements from vectors
+ * Arguments : Inputs - in0, in1, in2, in3
+ * Outputs - out0, out1
+ * Return Type - as per RTYPE
+ * Details : Even double word elements of 'in0' and 'in1' are interleaved
+ * and written to 'out0'
+ */
+#define ILVEV_D2(RTYPE, in0, in1, in2, in3, out0, out1) do { \
+ out0 = (RTYPE)__msa_ilvev_d((v2i64)in1, (v2i64)in0); \
+ out1 = (RTYPE)__msa_ilvev_d((v2i64)in3, (v2i64)in2); \
+} while (0)
+#define ILVEV_D2_UB(...) ILVEV_D2(v16u8, __VA_ARGS__)
+#define ILVEV_D2_SB(...) ILVEV_D2(v16i8, __VA_ARGS__)
+#define ILVEV_D2_SW(...) ILVEV_D2(v4i32, __VA_ARGS__)
+#define ILVEV_D2_SD(...) ILVEV_D2(v2i64, __VA_ARGS__)
+
+/* Description : Interleave left half of byte elements from vectors
+ * Arguments : Inputs - in0, in1, in2, in3
+ * Outputs - out0, out1
+ * Return Type - as per RTYPE
+ * Details : Left half of byte elements of 'in0' and 'in1' are interleaved
+ * and written to 'out0'.
+ */
+#define ILVL_B2(RTYPE, in0, in1, in2, in3, out0, out1) do { \
+ out0 = (RTYPE)__msa_ilvl_b((v16i8)in0, (v16i8)in1); \
+ out1 = (RTYPE)__msa_ilvl_b((v16i8)in2, (v16i8)in3); \
+} while (0)
+#define ILVL_B2_UB(...) ILVL_B2(v16u8, __VA_ARGS__)
+#define ILVL_B2_SB(...) ILVL_B2(v16i8, __VA_ARGS__)
+#define ILVL_B2_UH(...) ILVL_B2(v8u16, __VA_ARGS__)
+#define ILVL_B2_SH(...) ILVL_B2(v8i16, __VA_ARGS__)
+#define ILVL_B2_SW(...) ILVL_B2(v4i32, __VA_ARGS__)
+
/* Description : Interleave right half of byte elements from vectors
* Arguments : Inputs - in0, in1, in2, in3
* Outputs - out0, out1
@@ -306,10 +858,10 @@
* Details : Right half of byte elements of 'in0' and 'in1' are interleaved
* and written to out0.
*/
-#define ILVR_B2(RTYPE, in0, in1, in2, in3, out0, out1) { \
- out0 = (RTYPE)__msa_ilvr_b((v16i8)in0, (v16i8)in1); \
- out1 = (RTYPE)__msa_ilvr_b((v16i8)in2, (v16i8)in3); \
-}
+#define ILVR_B2(RTYPE, in0, in1, in2, in3, out0, out1) do { \
+ out0 = (RTYPE)__msa_ilvr_b((v16i8)in0, (v16i8)in1); \
+ out1 = (RTYPE)__msa_ilvr_b((v16i8)in2, (v16i8)in3); \
+} while (0)
#define ILVR_B2_UB(...) ILVR_B2(v16u8, __VA_ARGS__)
#define ILVR_B2_SB(...) ILVR_B2(v16i8, __VA_ARGS__)
#define ILVR_B2_UH(...) ILVR_B2(v8u16, __VA_ARGS__)
@@ -317,10 +869,10 @@
#define ILVR_B2_SW(...) ILVR_B2(v4i32, __VA_ARGS__)
#define ILVR_B4(RTYPE, in0, in1, in2, in3, in4, in5, in6, in7, \
- out0, out1, out2, out3) { \
+ out0, out1, out2, out3) do { \
ILVR_B2(RTYPE, in0, in1, in2, in3, out0, out1); \
ILVR_B2(RTYPE, in4, in5, in6, in7, out2, out3); \
-}
+} while (0)
#define ILVR_B4_UB(...) ILVR_B4(v16u8, __VA_ARGS__)
#define ILVR_B4_SB(...) ILVR_B4(v16i8, __VA_ARGS__)
#define ILVR_B4_UH(...) ILVR_B4(v8u16, __VA_ARGS__)
@@ -334,19 +886,19 @@
* Details : Right half of halfword elements of 'in0' and 'in1' are
* interleaved and written to 'out0'.
*/
-#define ILVR_H2(RTYPE, in0, in1, in2, in3, out0, out1) { \
- out0 = (RTYPE)__msa_ilvr_h((v8i16)in0, (v8i16)in1); \
- out1 = (RTYPE)__msa_ilvr_h((v8i16)in2, (v8i16)in3); \
-}
+#define ILVR_H2(RTYPE, in0, in1, in2, in3, out0, out1) do { \
+ out0 = (RTYPE)__msa_ilvr_h((v8i16)in0, (v8i16)in1); \
+ out1 = (RTYPE)__msa_ilvr_h((v8i16)in2, (v8i16)in3); \
+} while (0)
#define ILVR_H2_UB(...) ILVR_H2(v16u8, __VA_ARGS__)
#define ILVR_H2_SH(...) ILVR_H2(v8i16, __VA_ARGS__)
#define ILVR_H2_SW(...) ILVR_H2(v4i32, __VA_ARGS__)
#define ILVR_H4(RTYPE, in0, in1, in2, in3, in4, in5, in6, in7, \
- out0, out1, out2, out3) { \
+ out0, out1, out2, out3) do { \
ILVR_H2(RTYPE, in0, in1, in2, in3, out0, out1); \
ILVR_H2(RTYPE, in4, in5, in6, in7, out2, out3); \
-}
+} while (0)
#define ILVR_H4_UB(...) ILVR_H4(v16u8, __VA_ARGS__)
#define ILVR_H4_SH(...) ILVR_H4(v8i16, __VA_ARGS__)
#define ILVR_H4_SW(...) ILVR_H4(v4i32, __VA_ARGS__)
@@ -358,31 +910,57 @@
* Details : Right half of double word elements of 'in0' and 'in1' are
* interleaved and written to 'out0'.
*/
-#define ILVR_D2(RTYPE, in0, in1, in2, in3, out0, out1) { \
- out0 = (RTYPE)__msa_ilvr_d((v2i64)in0, (v2i64)in1); \
- out1 = (RTYPE)__msa_ilvr_d((v2i64)in2, (v2i64)in3); \
-}
+#define ILVR_D2(RTYPE, in0, in1, in2, in3, out0, out1) do { \
+ out0 = (RTYPE)__msa_ilvr_d((v2i64)in0, (v2i64)in1); \
+ out1 = (RTYPE)__msa_ilvr_d((v2i64)in2, (v2i64)in3); \
+} while (0)
#define ILVR_D2_UB(...) ILVR_D2(v16u8, __VA_ARGS__)
#define ILVR_D2_SB(...) ILVR_D2(v16i8, __VA_ARGS__)
#define ILVR_D2_SH(...) ILVR_D2(v8i16, __VA_ARGS__)
-#define ILVRL_H2(RTYPE, in0, in1, out0, out1) { \
+#define ILVR_D4(RTYPE, in0, in1, in2, in3, in4, in5, in6, in7, \
+ out0, out1, out2, out3) do { \
+ ILVR_D2(RTYPE, in0, in1, in2, in3, out0, out1); \
+ ILVR_D2(RTYPE, in4, in5, in6, in7, out2, out3); \
+} while (0)
+#define ILVR_D4_SB(...) ILVR_D4(v16i8, __VA_ARGS__)
+#define ILVR_D4_UB(...) ILVR_D4(v16u8, __VA_ARGS__)
+
+/* Description : Interleave both left and right half of input vectors
+ * Arguments : Inputs - in0, in1
+ * Outputs - out0, out1
+ * Return Type - as per RTYPE
+ * Details : Right half of byte elements from 'in0' and 'in1' are
+ * interleaved and written to 'out0'
+ */
+#define ILVRL_B2(RTYPE, in0, in1, out0, out1) do { \
+ out0 = (RTYPE)__msa_ilvr_b((v16i8)in0, (v16i8)in1); \
+ out1 = (RTYPE)__msa_ilvl_b((v16i8)in0, (v16i8)in1); \
+} while (0)
+#define ILVRL_B2_UB(...) ILVRL_B2(v16u8, __VA_ARGS__)
+#define ILVRL_B2_SB(...) ILVRL_B2(v16i8, __VA_ARGS__)
+#define ILVRL_B2_UH(...) ILVRL_B2(v8u16, __VA_ARGS__)
+#define ILVRL_B2_SH(...) ILVRL_B2(v8i16, __VA_ARGS__)
+#define ILVRL_B2_SW(...) ILVRL_B2(v4i32, __VA_ARGS__)
+
+#define ILVRL_H2(RTYPE, in0, in1, out0, out1) do { \
out0 = (RTYPE)__msa_ilvr_h((v8i16)in0, (v8i16)in1); \
out1 = (RTYPE)__msa_ilvl_h((v8i16)in0, (v8i16)in1); \
-}
+} while (0)
#define ILVRL_H2_UB(...) ILVRL_H2(v16u8, __VA_ARGS__)
#define ILVRL_H2_SB(...) ILVRL_H2(v16i8, __VA_ARGS__)
#define ILVRL_H2_SH(...) ILVRL_H2(v8i16, __VA_ARGS__)
#define ILVRL_H2_SW(...) ILVRL_H2(v4i32, __VA_ARGS__)
#define ILVRL_H2_UW(...) ILVRL_H2(v4u32, __VA_ARGS__)
-#define ILVRL_W2(RTYPE, in0, in1, out0, out1) { \
+#define ILVRL_W2(RTYPE, in0, in1, out0, out1) do { \
out0 = (RTYPE)__msa_ilvr_w((v4i32)in0, (v4i32)in1); \
out1 = (RTYPE)__msa_ilvl_w((v4i32)in0, (v4i32)in1); \
-}
+} while (0)
#define ILVRL_W2_UB(...) ILVRL_W2(v16u8, __VA_ARGS__)
#define ILVRL_W2_SH(...) ILVRL_W2(v8i16, __VA_ARGS__)
#define ILVRL_W2_SW(...) ILVRL_W2(v4i32, __VA_ARGS__)
+#define ILVRL_W2_UW(...) ILVRL_W2(v4u32, __VA_ARGS__)
/* Description : Pack even byte elements of vector pairs
* Arguments : Inputs - in0, in1, in2, in3
@@ -392,15 +970,76 @@
* 'out0' & even byte elements of 'in1' are copied to the right
* half of 'out0'.
*/
-#define PCKEV_B2(RTYPE, in0, in1, in2, in3, out0, out1) { \
- out0 = (RTYPE)__msa_pckev_b((v16i8)in0, (v16i8)in1); \
- out1 = (RTYPE)__msa_pckev_b((v16i8)in2, (v16i8)in3); \
-}
+#define PCKEV_B2(RTYPE, in0, in1, in2, in3, out0, out1) do { \
+ out0 = (RTYPE)__msa_pckev_b((v16i8)in0, (v16i8)in1); \
+ out1 = (RTYPE)__msa_pckev_b((v16i8)in2, (v16i8)in3); \
+} while (0)
#define PCKEV_B2_SB(...) PCKEV_B2(v16i8, __VA_ARGS__)
#define PCKEV_B2_UB(...) PCKEV_B2(v16u8, __VA_ARGS__)
#define PCKEV_B2_SH(...) PCKEV_B2(v8i16, __VA_ARGS__)
#define PCKEV_B2_SW(...) PCKEV_B2(v4i32, __VA_ARGS__)
+#define PCKEV_B4(RTYPE, in0, in1, in2, in3, in4, in5, in6, in7, \
+ out0, out1, out2, out3) do { \
+ PCKEV_B2(RTYPE, in0, in1, in2, in3, out0, out1); \
+ PCKEV_B2(RTYPE, in4, in5, in6, in7, out2, out3); \
+} while (0)
+#define PCKEV_B4_SB(...) PCKEV_B4(v16i8, __VA_ARGS__)
+#define PCKEV_B4_UB(...) PCKEV_B4(v16u8, __VA_ARGS__)
+#define PCKEV_B4_SH(...) PCKEV_B4(v8i16, __VA_ARGS__)
+#define PCKEV_B4_SW(...) PCKEV_B4(v4i32, __VA_ARGS__)
+
+/* Description : Pack even halfword elements of vector pairs
+ * Arguments : Inputs - in0, in1, in2, in3
+ * Outputs - out0, out1
+ * Return Type - as per RTYPE
+ * Details : Even halfword elements of 'in0' are copied to the left half of
+ * 'out0' & even halfword elements of 'in1' are copied to the
+ * right half of 'out0'.
+ */
+#define PCKEV_H2(RTYPE, in0, in1, in2, in3, out0, out1) do { \
+ out0 = (RTYPE)__msa_pckev_h((v8i16)in0, (v8i16)in1); \
+ out1 = (RTYPE)__msa_pckev_h((v8i16)in2, (v8i16)in3); \
+} while (0)
+#define PCKEV_H2_UH(...) PCKEV_H2(v8u16, __VA_ARGS__)
+#define PCKEV_H2_SH(...) PCKEV_H2(v8i16, __VA_ARGS__)
+#define PCKEV_H2_SW(...) PCKEV_H2(v4i32, __VA_ARGS__)
+#define PCKEV_H2_UW(...) PCKEV_H2(v4u32, __VA_ARGS__)
+
+/* Description : Pack even word elements of vector pairs
+ * Arguments : Inputs - in0, in1, in2, in3
+ * Outputs - out0, out1
+ * Return Type - as per RTYPE
+ * Details : Even word elements of 'in0' are copied to the left half of
+ * 'out0' & even word elements of 'in1' are copied to the
+ * right half of 'out0'.
+ */
+#define PCKEV_W2(RTYPE, in0, in1, in2, in3, out0, out1) do { \
+ out0 = (RTYPE)__msa_pckev_w((v4i32)in0, (v4i32)in1); \
+ out1 = (RTYPE)__msa_pckev_w((v4i32)in2, (v4i32)in3); \
+} while (0)
+#define PCKEV_W2_UH(...) PCKEV_W2(v8u16, __VA_ARGS__)
+#define PCKEV_W2_SH(...) PCKEV_W2(v8i16, __VA_ARGS__)
+#define PCKEV_W2_SW(...) PCKEV_W2(v4i32, __VA_ARGS__)
+#define PCKEV_W2_UW(...) PCKEV_W2(v4u32, __VA_ARGS__)
+
+/* Description : Pack odd halfword elements of vector pairs
+ * Arguments : Inputs - in0, in1, in2, in3
+ * Outputs - out0, out1
+ * Return Type - as per RTYPE
+ * Details : Odd halfword elements of 'in0' are copied to the left half of
+ * 'out0' & odd halfword elements of 'in1' are copied to the
+ * right half of 'out0'.
+ */
+#define PCKOD_H2(RTYPE, in0, in1, in2, in3, out0, out1) do { \
+ out0 = (RTYPE)__msa_pckod_h((v8i16)in0, (v8i16)in1); \
+ out1 = (RTYPE)__msa_pckod_h((v8i16)in2, (v8i16)in3); \
+} while (0)
+#define PCKOD_H2_UH(...) PCKOD_H2(v8u16, __VA_ARGS__)
+#define PCKOD_H2_SH(...) PCKOD_H2(v8i16, __VA_ARGS__)
+#define PCKOD_H2_SW(...) PCKOD_H2(v4i32, __VA_ARGS__)
+#define PCKOD_H2_UW(...) PCKOD_H2(v4u32, __VA_ARGS__)
+
/* Description : Arithmetic immediate shift right all elements of word vector
* Arguments : Inputs - in0, in1, shift
* Outputs - in place operation
@@ -408,17 +1047,17 @@
* Details : Each element of vector 'in0' is right shifted by 'shift' and
* the result is written in-place. 'shift' is a GP variable.
*/
-#define SRAI_W2(RTYPE, in0, in1, shift_val) { \
- in0 = (RTYPE)SRAI_W(in0, shift_val); \
- in1 = (RTYPE)SRAI_W(in1, shift_val); \
-}
+#define SRAI_W2(RTYPE, in0, in1, shift_val) do { \
+ in0 = (RTYPE)SRAI_W(in0, shift_val); \
+ in1 = (RTYPE)SRAI_W(in1, shift_val); \
+} while (0)
#define SRAI_W2_SW(...) SRAI_W2(v4i32, __VA_ARGS__)
#define SRAI_W2_UW(...) SRAI_W2(v4u32, __VA_ARGS__)
-#define SRAI_W4(RTYPE, in0, in1, in2, in3, shift_val) { \
- SRAI_W2(RTYPE, in0, in1, shift_val); \
- SRAI_W2(RTYPE, in2, in3, shift_val); \
-}
+#define SRAI_W4(RTYPE, in0, in1, in2, in3, shift_val) do { \
+ SRAI_W2(RTYPE, in0, in1, shift_val); \
+ SRAI_W2(RTYPE, in2, in3, shift_val); \
+} while (0)
#define SRAI_W4_SW(...) SRAI_W4(v4i32, __VA_ARGS__)
#define SRAI_W4_UW(...) SRAI_W4(v4u32, __VA_ARGS__)
@@ -429,10 +1068,10 @@
* Details : Each element of vector 'in0' is right shifted by 'shift' and
* the result is written in-place. 'shift' is a GP variable.
*/
-#define SRAI_H2(RTYPE, in0, in1, shift_val) { \
- in0 = (RTYPE)SRAI_H(in0, shift_val); \
- in1 = (RTYPE)SRAI_H(in1, shift_val); \
-}
+#define SRAI_H2(RTYPE, in0, in1, shift_val) do { \
+ in0 = (RTYPE)SRAI_H(in0, shift_val); \
+ in1 = (RTYPE)SRAI_H(in1, shift_val); \
+} while (0)
#define SRAI_H2_SH(...) SRAI_H2(v8i16, __VA_ARGS__)
#define SRAI_H2_UH(...) SRAI_H2(v8u16, __VA_ARGS__)
@@ -443,48 +1082,166 @@
* Details : Each element of vector 'in0' is right shifted by 'shift' and
* the result is written in-place. 'shift' is a GP variable.
*/
-#define SRARI_W2(RTYPE, in0, in1, shift) { \
+#define SRARI_W2(RTYPE, in0, in1, shift) do { \
in0 = (RTYPE)__msa_srari_w((v4i32)in0, shift); \
in1 = (RTYPE)__msa_srari_w((v4i32)in1, shift); \
-}
+} while (0)
#define SRARI_W2_SW(...) SRARI_W2(v4i32, __VA_ARGS__)
-#define SRARI_W4(RTYPE, in0, in1, in2, in3, shift) { \
- SRARI_W2(RTYPE, in0, in1, shift); \
- SRARI_W2(RTYPE, in2, in3, shift); \
-}
+#define SRARI_W4(RTYPE, in0, in1, in2, in3, shift) do { \
+ SRARI_W2(RTYPE, in0, in1, shift); \
+ SRARI_W2(RTYPE, in2, in3, shift); \
+} while (0)
#define SRARI_W4_SH(...) SRARI_W4(v8i16, __VA_ARGS__)
#define SRARI_W4_UW(...) SRARI_W4(v4u32, __VA_ARGS__)
#define SRARI_W4_SW(...) SRARI_W4(v4i32, __VA_ARGS__)
+/* Description : Shift right arithmetic rounded double words
+ * Arguments : Inputs - in0, in1, shift
+ * Outputs - in place operation
+ * Return Type - as per RTYPE
+ * Details : Each element of vector 'in0' is shifted right arithmetically by
+ * the number of bits in the corresponding element in the vector
+ * 'shift'. The last discarded bit is added to shifted value for
+ * rounding and the result is written in-place.
+ * 'shift' is a vector.
+ */
+#define SRAR_D2(RTYPE, in0, in1, shift) do { \
+ in0 = (RTYPE)__msa_srar_d((v2i64)in0, (v2i64)shift); \
+ in1 = (RTYPE)__msa_srar_d((v2i64)in1, (v2i64)shift); \
+} while (0)
+#define SRAR_D2_SW(...) SRAR_D2(v4i32, __VA_ARGS__)
+#define SRAR_D2_SD(...) SRAR_D2(v2i64, __VA_ARGS__)
+#define SRAR_D2_UD(...) SRAR_D2(v2u64, __VA_ARGS__)
+
+#define SRAR_D4(RTYPE, in0, in1, in2, in3, shift) do { \
+ SRAR_D2(RTYPE, in0, in1, shift); \
+ SRAR_D2(RTYPE, in2, in3, shift); \
+} while (0)
+#define SRAR_D4_SD(...) SRAR_D4(v2i64, __VA_ARGS__)
+#define SRAR_D4_UD(...) SRAR_D4(v2u64, __VA_ARGS__)
+
/* Description : Addition of 2 pairs of half-word vectors
* Arguments : Inputs - in0, in1, in2, in3
* Outputs - out0, out1
* Details : Each element in 'in0' is added to 'in1' and result is written
* to 'out0'.
*/
-#define ADDVI_H2(RTYPE, in0, in1, in2, in3, out0, out1) { \
- out0 = (RTYPE)ADDVI_H(in0, in1); \
- out1 = (RTYPE)ADDVI_H(in2, in3); \
-}
+#define ADDVI_H2(RTYPE, in0, in1, in2, in3, out0, out1) do { \
+ out0 = (RTYPE)ADDVI_H(in0, in1); \
+ out1 = (RTYPE)ADDVI_H(in2, in3); \
+} while (0)
#define ADDVI_H2_SH(...) ADDVI_H2(v8i16, __VA_ARGS__)
#define ADDVI_H2_UH(...) ADDVI_H2(v8u16, __VA_ARGS__)
+/* Description : Addition of 2 pairs of word vectors
+ * Arguments : Inputs - in0, in1, in2, in3
+ * Outputs - out0, out1
+ * Details : Each element in 'in0' is added to 'in1' and result is written
+ * to 'out0'.
+ */
+#define ADDVI_W2(RTYPE, in0, in1, in2, in3, out0, out1) do { \
+ out0 = (RTYPE)ADDVI_W(in0, in1); \
+ out1 = (RTYPE)ADDVI_W(in2, in3); \
+} while (0)
+#define ADDVI_W2_SW(...) ADDVI_W2(v4i32, __VA_ARGS__)
+
+/* Description : Fill 2 pairs of word vectors with GP registers
+ * Arguments : Inputs - in0, in1
+ * Outputs - out0, out1
+ * Details : GP register in0 is replicated in each word element of out0
+ * GP register in1 is replicated in each word element of out1
+ */
+#define FILL_W2(RTYPE, in0, in1, out0, out1) do { \
+ out0 = (RTYPE)__msa_fill_w(in0); \
+ out1 = (RTYPE)__msa_fill_w(in1); \
+} while (0)
+#define FILL_W2_SW(...) FILL_W2(v4i32, __VA_ARGS__)
+
/* Description : Addition of 2 pairs of vectors
* Arguments : Inputs - in0, in1, in2, in3
* Outputs - out0, out1
* Details : Each element in 'in0' is added to 'in1' and result is written
* to 'out0'.
*/
-#define ADD2(in0, in1, in2, in3, out0, out1) { \
- out0 = in0 + in1; \
- out1 = in2 + in3; \
-}
+#define ADD2(in0, in1, in2, in3, out0, out1) do { \
+ out0 = in0 + in1; \
+ out1 = in2 + in3; \
+} while (0)
+
#define ADD4(in0, in1, in2, in3, in4, in5, in6, in7, \
- out0, out1, out2, out3) { \
+ out0, out1, out2, out3) do { \
ADD2(in0, in1, in2, in3, out0, out1); \
ADD2(in4, in5, in6, in7, out2, out3); \
-}
+} while (0)
+
+/* Description : Subtraction of 2 pairs of vectors
+ * Arguments : Inputs - in0, in1, in2, in3
+ * Outputs - out0, out1
+ * Details : Each element in 'in1' is subtracted from 'in0' and result is
+ * written to 'out0'.
+ */
+#define SUB2(in0, in1, in2, in3, out0, out1) do { \
+ out0 = in0 - in1; \
+ out1 = in2 - in3; \
+} while (0)
+
+#define SUB3(in0, in1, in2, in3, in4, in5, out0, out1, out2) do { \
+ out0 = in0 - in1; \
+ out1 = in2 - in3; \
+ out2 = in4 - in5; \
+} while (0)
+
+#define SUB4(in0, in1, in2, in3, in4, in5, in6, in7, \
+ out0, out1, out2, out3) do { \
+ out0 = in0 - in1; \
+ out1 = in2 - in3; \
+ out2 = in4 - in5; \
+ out3 = in6 - in7; \
+} while (0)
+
+/* Description : Addition - Subtraction of input vectors
+ * Arguments : Inputs - in0, in1
+ * Outputs - out0, out1
+ * Details : Each element in 'in1' is added to 'in0' and result is
+ * written to 'out0'.
+ * Each element in 'in1' is subtracted from 'in0' and result is
+ * written to 'out1'.
+ */
+#define ADDSUB2(in0, in1, out0, out1) do { \
+ out0 = in0 + in1; \
+ out1 = in0 - in1; \
+} while (0)
+
+/* Description : Multiplication of pairs of vectors
+ * Arguments : Inputs - in0, in1, in2, in3
+ * Outputs - out0, out1
+ * Details : Each element from 'in0' is multiplied with elements from 'in1'
+ * and the result is written to 'out0'
+ */
+#define MUL2(in0, in1, in2, in3, out0, out1) do { \
+ out0 = in0 * in1; \
+ out1 = in2 * in3; \
+} while (0)
+
+#define MUL4(in0, in1, in2, in3, in4, in5, in6, in7, \
+ out0, out1, out2, out3) do { \
+ MUL2(in0, in1, in2, in3, out0, out1); \
+ MUL2(in4, in5, in6, in7, out2, out3); \
+} while (0)
+
+/* Description : Sign extend halfword elements from right half of the vector
+ * Arguments : Input - in (halfword vector)
+ * Output - out (sign extended word vector)
+ * Return Type - signed word
+ * Details : Sign bit of halfword elements from input vector 'in' is
+ * extracted and interleaved with same vector 'in0' to generate
+ * 4 word elements keeping sign intact
+ */
+#define UNPCK_R_SH_SW(in, out) do { \
+ const v8i16 sign_m = __msa_clti_s_h((v8i16)in, 0); \
+ out = (v4i32)__msa_ilvr_h(sign_m, (v8i16)in); \
+} while (0)
/* Description : Sign extend halfword elements from input vector and return
* the result in pair of vectors
@@ -497,29 +1254,82 @@
* Then interleaved left with same vector 'in0' to
* generate 4 signed word elements in 'out1'
*/
-#define UNPCK_SH_SW(in, out0, out1) { \
+#define UNPCK_SH_SW(in, out0, out1) do { \
const v8i16 tmp_m = __msa_clti_s_h((v8i16)in, 0); \
ILVRL_H2_SW(tmp_m, in, out0, out1); \
-}
+} while (0)
/* Description : Butterfly of 4 input vectors
* Arguments : Inputs - in0, in1, in2, in3
* Outputs - out0, out1, out2, out3
* Details : Butterfly operation
*/
-#define BUTTERFLY_4(in0, in1, in2, in3, out0, out1, out2, out3) { \
- out0 = in0 + in3; \
- out1 = in1 + in2; \
- out2 = in1 - in2; \
- out3 = in0 - in3; \
-}
+#define BUTTERFLY_4(in0, in1, in2, in3, out0, out1, out2, out3) do { \
+ out0 = in0 + in3; \
+ out1 = in1 + in2; \
+ out2 = in1 - in2; \
+ out3 = in0 - in3; \
+} while (0)
+
+/* Description : Transpose 16x4 block into 4x16 with byte elements in vectors
+ * Arguments : Inputs - in0, in1, in2, in3, in4, in5, in6, in7,
+ * in8, in9, in10, in11, in12, in13, in14, in15
+ * Outputs - out0, out1, out2, out3
+ * Return Type - unsigned byte
+ */
+#define TRANSPOSE16x4_UB_UB(in0, in1, in2, in3, in4, in5, in6, in7, \
+ in8, in9, in10, in11, in12, in13, in14, in15, \
+ out0, out1, out2, out3) do { \
+ v2i64 tmp0_m, tmp1_m, tmp2_m, tmp3_m, tmp4_m, tmp5_m; \
+ ILVEV_W2_SD(in0, in4, in8, in12, tmp2_m, tmp3_m); \
+ ILVEV_W2_SD(in1, in5, in9, in13, tmp0_m, tmp1_m); \
+ ILVEV_D2_UB(tmp2_m, tmp3_m, tmp0_m, tmp1_m, out1, out3); \
+ ILVEV_W2_SD(in2, in6, in10, in14, tmp4_m, tmp5_m); \
+ ILVEV_W2_SD(in3, in7, in11, in15, tmp0_m, tmp1_m); \
+ ILVEV_D2_SD(tmp4_m, tmp5_m, tmp0_m, tmp1_m, tmp2_m, tmp3_m); \
+ ILVEV_B2_SD(out1, out3, tmp2_m, tmp3_m, tmp0_m, tmp1_m); \
+ ILVEVOD_H2_UB(tmp0_m, tmp1_m, tmp0_m, tmp1_m, out0, out2); \
+ ILVOD_B2_SD(out1, out3, tmp2_m, tmp3_m, tmp0_m, tmp1_m); \
+ ILVEVOD_H2_UB(tmp0_m, tmp1_m, tmp0_m, tmp1_m, out1, out3); \
+} while (0)
+
+/* Description : Transpose 16x8 block into 8x16 with byte elements in vectors
+ * Arguments : Inputs - in0, in1, in2, in3, in4, in5, in6, in7,
+ * in8, in9, in10, in11, in12, in13, in14, in15
+ * Outputs - out0, out1, out2, out3, out4, out5, out6, out7
+ * Return Type - unsigned byte
+ */
+#define TRANSPOSE16x8_UB_UB(in0, in1, in2, in3, in4, in5, in6, in7, \
+ in8, in9, in10, in11, in12, in13, in14, in15, \
+ out0, out1, out2, out3, out4, out5, \
+ out6, out7) do { \
+ v8i16 tmp0_m, tmp1_m, tmp4_m, tmp5_m, tmp6_m, tmp7_m; \
+ v4i32 tmp2_m, tmp3_m; \
+ ILVEV_D2_UB(in0, in8, in1, in9, out7, out6); \
+ ILVEV_D2_UB(in2, in10, in3, in11, out5, out4); \
+ ILVEV_D2_UB(in4, in12, in5, in13, out3, out2); \
+ ILVEV_D2_UB(in6, in14, in7, in15, out1, out0); \
+ ILVEV_B2_SH(out7, out6, out5, out4, tmp0_m, tmp1_m); \
+ ILVOD_B2_SH(out7, out6, out5, out4, tmp4_m, tmp5_m); \
+ ILVEV_B2_UB(out3, out2, out1, out0, out5, out7); \
+ ILVOD_B2_SH(out3, out2, out1, out0, tmp6_m, tmp7_m); \
+ ILVEV_H2_SW(tmp0_m, tmp1_m, out5, out7, tmp2_m, tmp3_m); \
+ ILVEVOD_W2_UB(tmp2_m, tmp3_m, tmp2_m, tmp3_m, out0, out4); \
+ ILVOD_H2_SW(tmp0_m, tmp1_m, out5, out7, tmp2_m, tmp3_m); \
+ ILVEVOD_W2_UB(tmp2_m, tmp3_m, tmp2_m, tmp3_m, out2, out6); \
+ ILVEV_H2_SW(tmp4_m, tmp5_m, tmp6_m, tmp7_m, tmp2_m, tmp3_m); \
+ ILVEVOD_W2_UB(tmp2_m, tmp3_m, tmp2_m, tmp3_m, out1, out5); \
+ ILVOD_H2_SW(tmp4_m, tmp5_m, tmp6_m, tmp7_m, tmp2_m, tmp3_m); \
+ ILVEVOD_W2_UB(tmp2_m, tmp3_m, tmp2_m, tmp3_m, out3, out7); \
+} while (0)
/* Description : Transpose 4x4 block with word elements in vectors
* Arguments : Inputs - in0, in1, in2, in3
* Outputs - out0, out1, out2, out3
* Return Type - as per RTYPE
*/
-#define TRANSPOSE4x4_W(RTYPE, in0, in1, in2, in3, out0, out1, out2, out3) { \
+#define TRANSPOSE4x4_W(RTYPE, in0, in1, in2, in3, \
+ out0, out1, out2, out3) do { \
v4i32 s0_m, s1_m, s2_m, s3_m; \
ILVRL_W2_SW(in1, in0, s0_m, s1_m); \
ILVRL_W2_SW(in3, in2, s2_m, s3_m); \
@@ -527,7 +1337,7 @@
out1 = (RTYPE)__msa_ilvl_d((v2i64)s2_m, (v2i64)s0_m); \
out2 = (RTYPE)__msa_ilvr_d((v2i64)s3_m, (v2i64)s1_m); \
out3 = (RTYPE)__msa_ilvl_d((v2i64)s3_m, (v2i64)s1_m); \
-}
+} while (0)
#define TRANSPOSE4x4_SW_SW(...) TRANSPOSE4x4_W(v4i32, __VA_ARGS__)
/* Description : Add block 4x4
@@ -535,7 +1345,7 @@
* Details : Least significant 4 bytes from each input vector are added to
* the destination bytes, clipped between 0-255 and stored.
*/
-#define ADDBLK_ST4x4_UB(in0, in1, in2, in3, pdst, stride) { \
+#define ADDBLK_ST4x4_UB(in0, in1, in2, in3, pdst, stride) do { \
uint32_t src0_m, src1_m, src2_m, src3_m; \
v8i16 inp0_m, inp1_m, res0_m, res1_m; \
v16i8 dst0_m = { 0 }; \
@@ -550,6 +1360,31 @@
CLIP_SH2_0_255(res0_m, res1_m); \
PCKEV_B2_SB(res0_m, res0_m, res1_m, res1_m, dst0_m, dst1_m); \
ST4x4_UB(dst0_m, dst1_m, 0, 1, 0, 1, pdst, stride); \
-}
+} while (0)
+
+/* Description : Pack even byte elements, extract 0 & 2 index words from pair
+ * of results and store 4 words in destination memory as per
+ * stride
+ * Arguments : Inputs - in0, in1, in2, in3, pdst, stride
+ */
+#define PCKEV_ST4x4_UB(in0, in1, in2, in3, pdst, stride) do { \
+ v16i8 tmp0_m, tmp1_m; \
+ PCKEV_B2_SB(in1, in0, in3, in2, tmp0_m, tmp1_m); \
+ ST4x4_UB(tmp0_m, tmp1_m, 0, 2, 0, 2, pdst, stride); \
+} while (0)
+
+/* Description : average with rounding (in0 + in1 + 1) / 2.
+ * Arguments : Inputs - in0, in1, in2, in3,
+ * Outputs - out0, out1
+ * Return Type - as per RTYPE
+ * Details : Each unsigned byte element from 'in0' vector is added with
+ * each unsigned byte element from 'in1' vector. Then the average
+ * with rounding is calculated and written to 'out0'
+ */
+#define AVER_UB2(RTYPE, in0, in1, in2, in3, out0, out1) do { \
+ out0 = (RTYPE)__msa_aver_u_b((v16u8)in0, (v16u8)in1); \
+ out1 = (RTYPE)__msa_aver_u_b((v16u8)in2, (v16u8)in3); \
+} while (0)
+#define AVER_UB2_UB(...) AVER_UB2(v16u8, __VA_ARGS__)
#endif /* WEBP_DSP_MSA_MACRO_H_ */
diff --git a/thirdparty/libwebp/dsp/neon.h b/thirdparty/libwebp/dsp/neon.h
index 0a06266848..3b548a6855 100644
--- a/thirdparty/libwebp/dsp/neon.h
+++ b/thirdparty/libwebp/dsp/neon.h
@@ -79,4 +79,22 @@ static WEBP_INLINE int32x4x4_t Transpose4x4(const int32x4x4_t rows) {
}
}
+#if 0 // Useful debug macro.
+#include <stdio.h>
+#define PRINT_REG(REG, SIZE) do { \
+ int i; \
+ printf("%s \t[%d]: 0x", #REG, SIZE); \
+ if (SIZE == 8) { \
+ uint8_t _tmp[8]; \
+ vst1_u8(_tmp, (REG)); \
+ for (i = 0; i < 8; ++i) printf("%.2x ", _tmp[i]); \
+ } else if (SIZE == 16) { \
+ uint16_t _tmp[4]; \
+ vst1_u16(_tmp, (REG)); \
+ for (i = 0; i < 4; ++i) printf("%.4x ", _tmp[i]); \
+ } \
+ printf("\n"); \
+} while (0)
+#endif
+
#endif // WEBP_DSP_NEON_H_
diff --git a/thirdparty/libwebp/dsp/rescaler.c b/thirdparty/libwebp/dsp/rescaler.c
index f5b07756cf..0f54502352 100644
--- a/thirdparty/libwebp/dsp/rescaler.c
+++ b/thirdparty/libwebp/dsp/rescaler.c
@@ -14,7 +14,7 @@
#include <assert.h>
#include "./dsp.h"
-#include "../utils/rescaler.h"
+#include "../utils/rescaler_utils.h"
//------------------------------------------------------------------------------
// Implementations of critical functions ImportRow / ExportRow
@@ -199,6 +199,7 @@ WebPRescalerExportRowFunc WebPRescalerExportRowShrink;
extern void WebPRescalerDspInitSSE2(void);
extern void WebPRescalerDspInitMIPS32(void);
extern void WebPRescalerDspInitMIPSdspR2(void);
+extern void WebPRescalerDspInitMSA(void);
extern void WebPRescalerDspInitNEON(void);
static volatile VP8CPUInfo rescaler_last_cpuinfo_used =
@@ -233,6 +234,11 @@ WEBP_TSAN_IGNORE_FUNCTION void WebPRescalerDspInit(void) {
WebPRescalerDspInitMIPSdspR2();
}
#endif
+#if defined(WEBP_USE_MSA)
+ if (VP8GetCPUInfo(kMSA)) {
+ WebPRescalerDspInitMSA();
+ }
+#endif
}
rescaler_last_cpuinfo_used = VP8GetCPUInfo;
}
diff --git a/thirdparty/libwebp/dsp/rescaler_mips32.c b/thirdparty/libwebp/dsp/rescaler_mips32.c
index ddaa391336..e09ad5d19f 100644
--- a/thirdparty/libwebp/dsp/rescaler_mips32.c
+++ b/thirdparty/libwebp/dsp/rescaler_mips32.c
@@ -16,7 +16,7 @@
#if defined(WEBP_USE_MIPS32)
#include <assert.h>
-#include "../utils/rescaler.h"
+#include "../utils/rescaler_utils.h"
//------------------------------------------------------------------------------
// Row import
diff --git a/thirdparty/libwebp/dsp/rescaler_mips_dsp_r2.c b/thirdparty/libwebp/dsp/rescaler_mips_dsp_r2.c
index b457d0a30a..2308d64544 100644
--- a/thirdparty/libwebp/dsp/rescaler_mips_dsp_r2.c
+++ b/thirdparty/libwebp/dsp/rescaler_mips_dsp_r2.c
@@ -16,7 +16,7 @@
#if defined(WEBP_USE_MIPS_DSP_R2)
#include <assert.h>
-#include "../utils/rescaler.h"
+#include "../utils/rescaler_utils.h"
#define ROUNDER (WEBP_RESCALER_ONE >> 1)
#define MULT_FIX(x, y) (((uint64_t)(x) * (y) + ROUNDER) >> WEBP_RESCALER_RFIX)
diff --git a/thirdparty/libwebp/dsp/rescaler_msa.c b/thirdparty/libwebp/dsp/rescaler_msa.c
new file mode 100644
index 0000000000..2c10e55d8c
--- /dev/null
+++ b/thirdparty/libwebp/dsp/rescaler_msa.c
@@ -0,0 +1,444 @@
+// Copyright 2016 Google Inc. All Rights Reserved.
+//
+// Use of this source code is governed by a BSD-style license
+// that can be found in the COPYING file in the root of the source
+// tree. An additional intellectual property rights grant can be found
+// in the file PATENTS. All contributing project authors may
+// be found in the AUTHORS file in the root of the source tree.
+// -----------------------------------------------------------------------------
+//
+// MSA version of rescaling functions
+//
+// Author: Prashant Patil (prashant.patil@imgtec.com)
+
+#include "./dsp.h"
+
+#if defined(WEBP_USE_MSA)
+
+#include <assert.h>
+
+#include "../utils/rescaler_utils.h"
+#include "./msa_macro.h"
+
+#define ROUNDER (WEBP_RESCALER_ONE >> 1)
+#define MULT_FIX(x, y) (((uint64_t)(x) * (y) + ROUNDER) >> WEBP_RESCALER_RFIX)
+
+#define CALC_MULT_FIX_16(in0, in1, in2, in3, scale, shift, dst) do { \
+ v4u32 tmp0, tmp1, tmp2, tmp3; \
+ v16u8 t0, t1, t2, t3, t4, t5; \
+ v2u64 out0, out1, out2, out3; \
+ ILVRL_W2_UW(zero, in0, tmp0, tmp1); \
+ ILVRL_W2_UW(zero, in1, tmp2, tmp3); \
+ DOTP_UW2_UD(tmp0, tmp1, scale, scale, out0, out1); \
+ DOTP_UW2_UD(tmp2, tmp3, scale, scale, out2, out3); \
+ SRAR_D4_UD(out0, out1, out2, out3, shift); \
+ PCKEV_B2_UB(out1, out0, out3, out2, t0, t1); \
+ ILVRL_W2_UW(zero, in2, tmp0, tmp1); \
+ ILVRL_W2_UW(zero, in3, tmp2, tmp3); \
+ DOTP_UW2_UD(tmp0, tmp1, scale, scale, out0, out1); \
+ DOTP_UW2_UD(tmp2, tmp3, scale, scale, out2, out3); \
+ SRAR_D4_UD(out0, out1, out2, out3, shift); \
+ PCKEV_B2_UB(out1, out0, out3, out2, t2, t3); \
+ PCKEV_B2_UB(t1, t0, t3, t2, t4, t5); \
+ dst = (v16u8)__msa_pckev_b((v16i8)t5, (v16i8)t4); \
+} while (0)
+
+#define CALC_MULT_FIX_4(in0, scale, shift, dst) do { \
+ v4u32 tmp0, tmp1; \
+ v16i8 t0, t1; \
+ v2u64 out0, out1; \
+ ILVRL_W2_UW(zero, in0, tmp0, tmp1); \
+ DOTP_UW2_UD(tmp0, tmp1, scale, scale, out0, out1); \
+ SRAR_D2_UD(out0, out1, shift); \
+ t0 = __msa_pckev_b((v16i8)out1, (v16i8)out0); \
+ t1 = __msa_pckev_b(t0, t0); \
+ t0 = __msa_pckev_b(t1, t1); \
+ dst = __msa_copy_s_w((v4i32)t0, 0); \
+} while (0)
+
+#define CALC_MULT_FIX1_16(in0, in1, in2, in3, fyscale, shift, \
+ dst0, dst1, dst2, dst3) do { \
+ v4u32 tmp0, tmp1, tmp2, tmp3; \
+ v2u64 out0, out1, out2, out3; \
+ ILVRL_W2_UW(zero, in0, tmp0, tmp1); \
+ ILVRL_W2_UW(zero, in1, tmp2, tmp3); \
+ DOTP_UW2_UD(tmp0, tmp1, fyscale, fyscale, out0, out1); \
+ DOTP_UW2_UD(tmp2, tmp3, fyscale, fyscale, out2, out3); \
+ SRAR_D4_UD(out0, out1, out2, out3, shift); \
+ PCKEV_W2_UW(out1, out0, out3, out2, dst0, dst1); \
+ ILVRL_W2_UW(zero, in2, tmp0, tmp1); \
+ ILVRL_W2_UW(zero, in3, tmp2, tmp3); \
+ DOTP_UW2_UD(tmp0, tmp1, fyscale, fyscale, out0, out1); \
+ DOTP_UW2_UD(tmp2, tmp3, fyscale, fyscale, out2, out3); \
+ SRAR_D4_UD(out0, out1, out2, out3, shift); \
+ PCKEV_W2_UW(out1, out0, out3, out2, dst2, dst3); \
+} while (0)
+
+#define CALC_MULT_FIX1_4(in0, scale, shift, dst) do { \
+ v4u32 tmp0, tmp1; \
+ v2u64 out0, out1; \
+ ILVRL_W2_UW(zero, in0, tmp0, tmp1); \
+ DOTP_UW2_UD(tmp0, tmp1, scale, scale, out0, out1); \
+ SRAR_D2_UD(out0, out1, shift); \
+ dst = (v4u32)__msa_pckev_w((v4i32)out1, (v4i32)out0); \
+} while (0)
+
+#define CALC_MULT_FIX2_16(in0, in1, in2, in3, mult, scale, shift, \
+ dst0, dst1) do { \
+ v4u32 tmp0, tmp1, tmp2, tmp3; \
+ v2u64 out0, out1, out2, out3; \
+ ILVRL_W2_UW(in0, in2, tmp0, tmp1); \
+ ILVRL_W2_UW(in1, in3, tmp2, tmp3); \
+ DOTP_UW2_UD(tmp0, tmp1, mult, mult, out0, out1); \
+ DOTP_UW2_UD(tmp2, tmp3, mult, mult, out2, out3); \
+ SRAR_D4_UD(out0, out1, out2, out3, shift); \
+ DOTP_UW2_UD(out0, out1, scale, scale, out0, out1); \
+ DOTP_UW2_UD(out2, out3, scale, scale, out2, out3); \
+ SRAR_D4_UD(out0, out1, out2, out3, shift); \
+ PCKEV_B2_UB(out1, out0, out3, out2, dst0, dst1); \
+} while (0)
+
+#define CALC_MULT_FIX2_4(in0, in1, mult, scale, shift, dst) do { \
+ v4u32 tmp0, tmp1; \
+ v2u64 out0, out1; \
+ v16i8 t0, t1; \
+ ILVRL_W2_UW(in0, in1, tmp0, tmp1); \
+ DOTP_UW2_UD(tmp0, tmp1, mult, mult, out0, out1); \
+ SRAR_D2_UD(out0, out1, shift); \
+ DOTP_UW2_UD(out0, out1, scale, scale, out0, out1); \
+ SRAR_D2_UD(out0, out1, shift); \
+ t0 = __msa_pckev_b((v16i8)out1, (v16i8)out0); \
+ t1 = __msa_pckev_b(t0, t0); \
+ t0 = __msa_pckev_b(t1, t1); \
+ dst = __msa_copy_s_w((v4i32)t0, 0); \
+} while (0)
+
+static WEBP_INLINE void ExportRowExpand_0(const uint32_t* frow, uint8_t* dst,
+ int length,
+ WebPRescaler* const wrk) {
+ const v4u32 scale = (v4u32)__msa_fill_w(wrk->fy_scale);
+ const v4u32 shift = (v4u32)__msa_fill_w(WEBP_RESCALER_RFIX);
+ const v4i32 zero = { 0 };
+
+ while (length >= 16) {
+ v4u32 src0, src1, src2, src3;
+ v16u8 out;
+ LD_UW4(frow, 4, src0, src1, src2, src3);
+ CALC_MULT_FIX_16(src0, src1, src2, src3, scale, shift, out);
+ ST_UB(out, dst);
+ length -= 16;
+ frow += 16;
+ dst += 16;
+ }
+ if (length > 0) {
+ int x_out;
+ if (length >= 12) {
+ uint32_t val0_m, val1_m, val2_m;
+ v4u32 src0, src1, src2;
+ LD_UW3(frow, 4, src0, src1, src2);
+ CALC_MULT_FIX_4(src0, scale, shift, val0_m);
+ CALC_MULT_FIX_4(src1, scale, shift, val1_m);
+ CALC_MULT_FIX_4(src2, scale, shift, val2_m);
+ SW3(val0_m, val1_m, val2_m, dst, 4);
+ length -= 12;
+ frow += 12;
+ dst += 12;
+ } else if (length >= 8) {
+ uint32_t val0_m, val1_m;
+ v4u32 src0, src1;
+ LD_UW2(frow, 4, src0, src1);
+ CALC_MULT_FIX_4(src0, scale, shift, val0_m);
+ CALC_MULT_FIX_4(src1, scale, shift, val1_m);
+ SW2(val0_m, val1_m, dst, 4);
+ length -= 8;
+ frow += 8;
+ dst += 8;
+ } else if (length >= 4) {
+ uint32_t val0_m;
+ const v4u32 src0 = LD_UW(frow);
+ CALC_MULT_FIX_4(src0, scale, shift, val0_m);
+ SW(val0_m, dst);
+ length -= 4;
+ frow += 4;
+ dst += 4;
+ }
+ for (x_out = 0; x_out < length; ++x_out) {
+ const uint32_t J = frow[x_out];
+ const int v = (int)MULT_FIX(J, wrk->fy_scale);
+ assert(v >= 0 && v <= 255);
+ dst[x_out] = v;
+ }
+ }
+}
+
+static WEBP_INLINE void ExportRowExpand_1(const uint32_t* frow, uint32_t* irow,
+ uint8_t* dst, int length,
+ WebPRescaler* const wrk) {
+ const uint32_t B = WEBP_RESCALER_FRAC(-wrk->y_accum, wrk->y_sub);
+ const uint32_t A = (uint32_t)(WEBP_RESCALER_ONE - B);
+ const v4i32 B1 = __msa_fill_w(B);
+ const v4i32 A1 = __msa_fill_w(A);
+ const v4i32 AB = __msa_ilvr_w(A1, B1);
+ const v4u32 scale = (v4u32)__msa_fill_w(wrk->fy_scale);
+ const v4u32 shift = (v4u32)__msa_fill_w(WEBP_RESCALER_RFIX);
+
+ while (length >= 16) {
+ v4u32 frow0, frow1, frow2, frow3, irow0, irow1, irow2, irow3;
+ v16u8 t0, t1, t2, t3, t4, t5;
+ LD_UW4(frow, 4, frow0, frow1, frow2, frow3);
+ LD_UW4(irow, 4, irow0, irow1, irow2, irow3);
+ CALC_MULT_FIX2_16(frow0, frow1, irow0, irow1, AB, scale, shift, t0, t1);
+ CALC_MULT_FIX2_16(frow2, frow3, irow2, irow3, AB, scale, shift, t2, t3);
+ PCKEV_B2_UB(t1, t0, t3, t2, t4, t5);
+ t0 = (v16u8)__msa_pckev_b((v16i8)t5, (v16i8)t4);
+ ST_UB(t0, dst);
+ frow += 16;
+ irow += 16;
+ dst += 16;
+ length -= 16;
+ }
+ if (length > 0) {
+ int x_out;
+ if (length >= 12) {
+ uint32_t val0_m, val1_m, val2_m;
+ v4u32 frow0, frow1, frow2, irow0, irow1, irow2;
+ LD_UW3(frow, 4, frow0, frow1, frow2);
+ LD_UW3(irow, 4, irow0, irow1, irow2);
+ CALC_MULT_FIX2_4(frow0, irow0, AB, scale, shift, val0_m);
+ CALC_MULT_FIX2_4(frow1, irow1, AB, scale, shift, val1_m);
+ CALC_MULT_FIX2_4(frow2, irow2, AB, scale, shift, val2_m);
+ SW3(val0_m, val1_m, val2_m, dst, 4);
+ frow += 12;
+ irow += 12;
+ dst += 12;
+ length -= 12;
+ } else if (length >= 8) {
+ uint32_t val0_m, val1_m;
+ v4u32 frow0, frow1, irow0, irow1;
+ LD_UW2(frow, 4, frow0, frow1);
+ LD_UW2(irow, 4, irow0, irow1);
+ CALC_MULT_FIX2_4(frow0, irow0, AB, scale, shift, val0_m);
+ CALC_MULT_FIX2_4(frow1, irow1, AB, scale, shift, val1_m);
+ SW2(val0_m, val1_m, dst, 4);
+ frow += 4;
+ irow += 4;
+ dst += 4;
+ length -= 4;
+ } else if (length >= 4) {
+ uint32_t val0_m;
+ const v4u32 frow0 = LD_UW(frow + 0);
+ const v4u32 irow0 = LD_UW(irow + 0);
+ CALC_MULT_FIX2_4(frow0, irow0, AB, scale, shift, val0_m);
+ SW(val0_m, dst);
+ frow += 4;
+ irow += 4;
+ dst += 4;
+ length -= 4;
+ }
+ for (x_out = 0; x_out < length; ++x_out) {
+ const uint64_t I = (uint64_t)A * frow[x_out]
+ + (uint64_t)B * irow[x_out];
+ const uint32_t J = (uint32_t)((I + ROUNDER) >> WEBP_RESCALER_RFIX);
+ const int v = (int)MULT_FIX(J, wrk->fy_scale);
+ assert(v >= 0 && v <= 255);
+ dst[x_out] = v;
+ }
+ }
+}
+
+static void RescalerExportRowExpand(WebPRescaler* const wrk) {
+ uint8_t* dst = wrk->dst;
+ rescaler_t* irow = wrk->irow;
+ const int x_out_max = wrk->dst_width * wrk->num_channels;
+ const rescaler_t* frow = wrk->frow;
+ assert(!WebPRescalerOutputDone(wrk));
+ assert(wrk->y_accum <= 0);
+ assert(wrk->y_expand);
+ assert(wrk->y_sub != 0);
+ if (wrk->y_accum == 0) {
+ ExportRowExpand_0(frow, dst, x_out_max, wrk);
+ } else {
+ ExportRowExpand_1(frow, irow, dst, x_out_max, wrk);
+ }
+}
+
+static WEBP_INLINE void ExportRowShrink_0(const uint32_t* frow, uint32_t* irow,
+ uint8_t* dst, int length,
+ const uint32_t yscale,
+ WebPRescaler* const wrk) {
+ const v4u32 y_scale = (v4u32)__msa_fill_w(yscale);
+ const v4u32 fxyscale = (v4u32)__msa_fill_w(wrk->fxy_scale);
+ const v4u32 shiftval = (v4u32)__msa_fill_w(WEBP_RESCALER_RFIX);
+ const v4i32 zero = { 0 };
+
+ while (length >= 16) {
+ v4u32 src0, src1, src2, src3, frac0, frac1, frac2, frac3;
+ v16u8 out;
+ LD_UW4(frow, 4, src0, src1, src2, src3);
+ CALC_MULT_FIX1_16(src0, src1, src2, src3, y_scale, shiftval,
+ frac0, frac1, frac2, frac3);
+ LD_UW4(irow, 4, src0, src1, src2, src3);
+ SUB4(src0, frac0, src1, frac1, src2, frac2, src3, frac3,
+ src0, src1, src2, src3);
+ CALC_MULT_FIX_16(src0, src1, src2, src3, fxyscale, shiftval, out);
+ ST_UB(out, dst);
+ ST_UW4(frac0, frac1, frac2, frac3, irow, 4);
+ frow += 16;
+ irow += 16;
+ dst += 16;
+ length -= 16;
+ }
+ if (length > 0) {
+ int x_out;
+ if (length >= 12) {
+ uint32_t val0_m, val1_m, val2_m;
+ v4u32 src0, src1, src2, frac0, frac1, frac2;
+ LD_UW3(frow, 4, src0, src1, src2);
+ CALC_MULT_FIX1_4(src0, y_scale, shiftval, frac0);
+ CALC_MULT_FIX1_4(src1, y_scale, shiftval, frac1);
+ CALC_MULT_FIX1_4(src2, y_scale, shiftval, frac2);
+ LD_UW3(irow, 4, src0, src1, src2);
+ SUB3(src0, frac0, src1, frac1, src2, frac2, src0, src1, src2);
+ CALC_MULT_FIX_4(src0, fxyscale, shiftval, val0_m);
+ CALC_MULT_FIX_4(src1, fxyscale, shiftval, val1_m);
+ CALC_MULT_FIX_4(src2, fxyscale, shiftval, val2_m);
+ SW3(val0_m, val1_m, val2_m, dst, 4);
+ ST_UW3(frac0, frac1, frac2, irow, 4);
+ frow += 12;
+ irow += 12;
+ dst += 12;
+ length -= 12;
+ } else if (length >= 8) {
+ uint32_t val0_m, val1_m;
+ v4u32 src0, src1, frac0, frac1;
+ LD_UW2(frow, 4, src0, src1);
+ CALC_MULT_FIX1_4(src0, y_scale, shiftval, frac0);
+ CALC_MULT_FIX1_4(src1, y_scale, shiftval, frac1);
+ LD_UW2(irow, 4, src0, src1);
+ SUB2(src0, frac0, src1, frac1, src0, src1);
+ CALC_MULT_FIX_4(src0, fxyscale, shiftval, val0_m);
+ CALC_MULT_FIX_4(src1, fxyscale, shiftval, val1_m);
+ SW2(val0_m, val1_m, dst, 4);
+ ST_UW2(frac0, frac1, irow, 4);
+ frow += 8;
+ irow += 8;
+ dst += 8;
+ length -= 8;
+ } else if (length >= 4) {
+ uint32_t val0_m;
+ v4u32 frac0;
+ v4u32 src0 = LD_UW(frow);
+ CALC_MULT_FIX1_4(src0, y_scale, shiftval, frac0);
+ src0 = LD_UW(irow);
+ src0 = src0 - frac0;
+ CALC_MULT_FIX_4(src0, fxyscale, shiftval, val0_m);
+ SW(val0_m, dst);
+ ST_UW(frac0, irow);
+ frow += 4;
+ irow += 4;
+ dst += 4;
+ length -= 4;
+ }
+ for (x_out = 0; x_out < length; ++x_out) {
+ const uint32_t frac = (uint32_t)MULT_FIX(frow[x_out], yscale);
+ const int v = (int)MULT_FIX(irow[x_out] - frac, wrk->fxy_scale);
+ assert(v >= 0 && v <= 255);
+ dst[x_out] = v;
+ irow[x_out] = frac;
+ }
+ }
+}
+
+static WEBP_INLINE void ExportRowShrink_1(uint32_t* irow, uint8_t* dst,
+ int length,
+ WebPRescaler* const wrk) {
+ const v4u32 scale = (v4u32)__msa_fill_w(wrk->fxy_scale);
+ const v4u32 shift = (v4u32)__msa_fill_w(WEBP_RESCALER_RFIX);
+ const v4i32 zero = { 0 };
+
+ while (length >= 16) {
+ v4u32 src0, src1, src2, src3;
+ v16u8 dst0;
+ LD_UW4(irow, 4, src0, src1, src2, src3);
+ CALC_MULT_FIX_16(src0, src1, src2, src3, scale, shift, dst0);
+ ST_UB(dst0, dst);
+ ST_SW4(zero, zero, zero, zero, irow, 4);
+ length -= 16;
+ irow += 16;
+ dst += 16;
+ }
+ if (length > 0) {
+ int x_out;
+ if (length >= 12) {
+ uint32_t val0_m, val1_m, val2_m;
+ v4u32 src0, src1, src2;
+ LD_UW3(irow, 4, src0, src1, src2);
+ CALC_MULT_FIX_4(src0, scale, shift, val0_m);
+ CALC_MULT_FIX_4(src1, scale, shift, val1_m);
+ CALC_MULT_FIX_4(src2, scale, shift, val2_m);
+ SW3(val0_m, val1_m, val2_m, dst, 4);
+ ST_SW3(zero, zero, zero, irow, 4);
+ length -= 12;
+ irow += 12;
+ dst += 12;
+ } else if (length >= 8) {
+ uint32_t val0_m, val1_m;
+ v4u32 src0, src1;
+ LD_UW2(irow, 4, src0, src1);
+ CALC_MULT_FIX_4(src0, scale, shift, val0_m);
+ CALC_MULT_FIX_4(src1, scale, shift, val1_m);
+ SW2(val0_m, val1_m, dst, 4);
+ ST_SW2(zero, zero, irow, 4);
+ length -= 8;
+ irow += 8;
+ dst += 8;
+ } else if (length >= 4) {
+ uint32_t val0_m;
+ const v4u32 src0 = LD_UW(irow + 0);
+ CALC_MULT_FIX_4(src0, scale, shift, val0_m);
+ SW(val0_m, dst);
+ ST_SW(zero, irow);
+ length -= 4;
+ irow += 4;
+ dst += 4;
+ }
+ for (x_out = 0; x_out < length; ++x_out) {
+ const int v = (int)MULT_FIX(irow[x_out], wrk->fxy_scale);
+ assert(v >= 0 && v <= 255);
+ dst[x_out] = v;
+ irow[x_out] = 0;
+ }
+ }
+}
+
+static void RescalerExportRowShrink(WebPRescaler* const wrk) {
+ uint8_t* dst = wrk->dst;
+ rescaler_t* irow = wrk->irow;
+ const int x_out_max = wrk->dst_width * wrk->num_channels;
+ const rescaler_t* frow = wrk->frow;
+ const uint32_t yscale = wrk->fy_scale * (-wrk->y_accum);
+ assert(!WebPRescalerOutputDone(wrk));
+ assert(wrk->y_accum <= 0);
+ assert(!wrk->y_expand);
+ if (yscale) {
+ ExportRowShrink_0(frow, irow, dst, x_out_max, yscale, wrk);
+ } else {
+ ExportRowShrink_1(irow, dst, x_out_max, wrk);
+ }
+}
+
+//------------------------------------------------------------------------------
+// Entry point
+
+extern void WebPRescalerDspInitMSA(void);
+
+WEBP_TSAN_IGNORE_FUNCTION void WebPRescalerDspInitMSA(void) {
+ WebPRescalerExportRowExpand = RescalerExportRowExpand;
+ WebPRescalerExportRowShrink = RescalerExportRowShrink;
+}
+
+#else // !WEBP_USE_MSA
+
+WEBP_DSP_INIT_STUB(WebPRescalerDspInitMSA)
+
+#endif // WEBP_USE_MSA
diff --git a/thirdparty/libwebp/dsp/rescaler_neon.c b/thirdparty/libwebp/dsp/rescaler_neon.c
index 16fd450ea3..b2dd8f30cc 100644
--- a/thirdparty/libwebp/dsp/rescaler_neon.c
+++ b/thirdparty/libwebp/dsp/rescaler_neon.c
@@ -18,7 +18,7 @@
#include <arm_neon.h>
#include <assert.h>
#include "./neon.h"
-#include "../utils/rescaler.h"
+#include "../utils/rescaler_utils.h"
#define ROUNDER (WEBP_RESCALER_ONE >> 1)
#define MULT_FIX_C(x, y) (((uint64_t)(x) * (y) + ROUNDER) >> WEBP_RESCALER_RFIX)
diff --git a/thirdparty/libwebp/dsp/rescaler_sse2.c b/thirdparty/libwebp/dsp/rescaler_sse2.c
index 5b9702817c..8271c22e05 100644
--- a/thirdparty/libwebp/dsp/rescaler_sse2.c
+++ b/thirdparty/libwebp/dsp/rescaler_sse2.c
@@ -17,7 +17,7 @@
#include <emmintrin.h>
#include <assert.h>
-#include "../utils/rescaler.h"
+#include "../utils/rescaler_utils.h"
#include "../utils/utils.h"
//------------------------------------------------------------------------------
diff --git a/thirdparty/libwebp/dsp/upsampling.c b/thirdparty/libwebp/dsp/upsampling.c
index 651274fcee..265e722c10 100644
--- a/thirdparty/libwebp/dsp/upsampling.c
+++ b/thirdparty/libwebp/dsp/upsampling.c
@@ -215,6 +215,7 @@ WEBP_TSAN_IGNORE_FUNCTION void WebPInitYUV444Converters(void) {
extern void WebPInitUpsamplersSSE2(void);
extern void WebPInitUpsamplersNEON(void);
extern void WebPInitUpsamplersMIPSdspR2(void);
+extern void WebPInitUpsamplersMSA(void);
static volatile VP8CPUInfo upsampling_last_cpuinfo_used2 =
(VP8CPUInfo)&upsampling_last_cpuinfo_used2;
@@ -252,6 +253,11 @@ WEBP_TSAN_IGNORE_FUNCTION void WebPInitUpsamplers(void) {
WebPInitUpsamplersMIPSdspR2();
}
#endif
+#if defined(WEBP_USE_MSA)
+ if (VP8GetCPUInfo(kMSA)) {
+ WebPInitUpsamplersMSA();
+ }
+#endif
}
#endif // FANCY_UPSAMPLING
upsampling_last_cpuinfo_used2 = VP8GetCPUInfo;
diff --git a/thirdparty/libwebp/dsp/upsampling_msa.c b/thirdparty/libwebp/dsp/upsampling_msa.c
new file mode 100644
index 0000000000..f24926fa94
--- /dev/null
+++ b/thirdparty/libwebp/dsp/upsampling_msa.c
@@ -0,0 +1,678 @@
+// Copyright 2016 Google Inc. All Rights Reserved.
+//
+// Use of this source code is governed by a BSD-style license
+// that can be found in the COPYING file in the root of the source
+// tree. An additional intellectual property rights grant can be found
+// in the file PATENTS. All contributing project authors may
+// be found in the AUTHORS file in the root of the source tree.
+// -----------------------------------------------------------------------------
+//
+// MSA version of YUV to RGB upsampling functions.
+//
+// Author: Prashant Patil (prashant.patil@imgtec.com)
+
+#include <string.h>
+#include "./dsp.h"
+
+#if defined(WEBP_USE_MSA)
+
+#include "./msa_macro.h"
+#include "./yuv.h"
+
+#ifdef FANCY_UPSAMPLING
+
+#define ILVR_UW2(in, out0, out1) do { \
+ const v8i16 t0 = (v8i16)__msa_ilvr_b((v16i8)zero, (v16i8)in); \
+ out0 = (v4u32)__msa_ilvr_h((v8i16)zero, t0); \
+ out1 = (v4u32)__msa_ilvl_h((v8i16)zero, t0); \
+} while (0)
+
+#define ILVRL_UW4(in, out0, out1, out2, out3) do { \
+ v16u8 t0, t1; \
+ ILVRL_B2_UB(zero, in, t0, t1); \
+ ILVRL_H2_UW(zero, t0, out0, out1); \
+ ILVRL_H2_UW(zero, t1, out2, out3); \
+} while (0)
+
+#define MULTHI_16(in0, in1, in2, in3, cnst, out0, out1) do { \
+ const v4i32 const0 = (v4i32)__msa_fill_w(cnst * 256); \
+ v4u32 temp0, temp1, temp2, temp3; \
+ MUL4(in0, const0, in1, const0, in2, const0, in3, const0, \
+ temp0, temp1, temp2, temp3); \
+ PCKOD_H2_UH(temp1, temp0, temp3, temp2, out0, out1); \
+} while (0)
+
+#define MULTHI_8(in0, in1, cnst, out0) do { \
+ const v4i32 const0 = (v4i32)__msa_fill_w(cnst * 256); \
+ v4u32 temp0, temp1; \
+ MUL2(in0, const0, in1, const0, temp0, temp1); \
+ out0 = (v8u16)__msa_pckod_h((v8i16)temp1, (v8i16)temp0); \
+} while (0)
+
+#define CALC_R16(y0, y1, v0, v1, dst) do { \
+ const v8i16 const_a = (v8i16)__msa_fill_h(14234); \
+ const v8i16 a0 = __msa_adds_s_h((v8i16)y0, (v8i16)v0); \
+ const v8i16 a1 = __msa_adds_s_h((v8i16)y1, (v8i16)v1); \
+ v8i16 b0 = __msa_subs_s_h(a0, const_a); \
+ v8i16 b1 = __msa_subs_s_h(a1, const_a); \
+ SRAI_H2_SH(b0, b1, 6); \
+ CLIP_SH2_0_255(b0, b1); \
+ dst = (v16u8)__msa_pckev_b((v16i8)b1, (v16i8)b0); \
+} while (0)
+
+#define CALC_R8(y0, v0, dst) do { \
+ const v8i16 const_a = (v8i16)__msa_fill_h(14234); \
+ const v8i16 a0 = __msa_adds_s_h((v8i16)y0, (v8i16)v0); \
+ v8i16 b0 = __msa_subs_s_h(a0, const_a); \
+ b0 = SRAI_H(b0, 6); \
+ CLIP_SH_0_255(b0); \
+ dst = (v16u8)__msa_pckev_b((v16i8)b0, (v16i8)b0); \
+} while (0)
+
+#define CALC_G16(y0, y1, u0, u1, v0, v1, dst) do { \
+ const v8i16 const_a = (v8i16)__msa_fill_h(8708); \
+ v8i16 a0 = __msa_subs_s_h((v8i16)y0, (v8i16)u0); \
+ v8i16 a1 = __msa_subs_s_h((v8i16)y1, (v8i16)u1); \
+ const v8i16 b0 = __msa_subs_s_h(a0, (v8i16)v0); \
+ const v8i16 b1 = __msa_subs_s_h(a1, (v8i16)v1); \
+ a0 = __msa_adds_s_h(b0, const_a); \
+ a1 = __msa_adds_s_h(b1, const_a); \
+ SRAI_H2_SH(a0, a1, 6); \
+ CLIP_SH2_0_255(a0, a1); \
+ dst = (v16u8)__msa_pckev_b((v16i8)a1, (v16i8)a0); \
+} while (0)
+
+#define CALC_G8(y0, u0, v0, dst) do { \
+ const v8i16 const_a = (v8i16)__msa_fill_h(8708); \
+ v8i16 a0 = __msa_subs_s_h((v8i16)y0, (v8i16)u0); \
+ const v8i16 b0 = __msa_subs_s_h(a0, (v8i16)v0); \
+ a0 = __msa_adds_s_h(b0, const_a); \
+ a0 = SRAI_H(a0, 6); \
+ CLIP_SH_0_255(a0); \
+ dst = (v16u8)__msa_pckev_b((v16i8)a0, (v16i8)a0); \
+} while (0)
+
+#define CALC_B16(y0, y1, u0, u1, dst) do { \
+ const v8u16 const_a = (v8u16)__msa_fill_h(17685); \
+ const v8u16 a0 = __msa_adds_u_h((v8u16)y0, u0); \
+ const v8u16 a1 = __msa_adds_u_h((v8u16)y1, u1); \
+ v8u16 b0 = __msa_subs_u_h(a0, const_a); \
+ v8u16 b1 = __msa_subs_u_h(a1, const_a); \
+ SRAI_H2_UH(b0, b1, 6); \
+ CLIP_UH2_0_255(b0, b1); \
+ dst = (v16u8)__msa_pckev_b((v16i8)b1, (v16i8)b0); \
+} while (0)
+
+#define CALC_B8(y0, u0, dst) do { \
+ const v8u16 const_a = (v8u16)__msa_fill_h(17685); \
+ const v8u16 a0 = __msa_adds_u_h((v8u16)y0, u0); \
+ v8u16 b0 = __msa_subs_u_h(a0, const_a); \
+ b0 = SRAI_H(b0, 6); \
+ CLIP_UH_0_255(b0); \
+ dst = (v16u8)__msa_pckev_b((v16i8)b0, (v16i8)b0); \
+} while (0)
+
+#define CALC_RGB16(y, u, v, R, G, B) do { \
+ const v16u8 zero = { 0 }; \
+ v8u16 y0, y1, u0, u1, v0, v1; \
+ v4u32 p0, p1, p2, p3; \
+ const v16u8 in_y = LD_UB(y); \
+ const v16u8 in_u = LD_UB(u); \
+ const v16u8 in_v = LD_UB(v); \
+ ILVRL_UW4(in_y, p0, p1, p2, p3); \
+ MULTHI_16(p0, p1, p2, p3, 19077, y0, y1); \
+ ILVRL_UW4(in_v, p0, p1, p2, p3); \
+ MULTHI_16(p0, p1, p2, p3, 26149, v0, v1); \
+ CALC_R16(y0, y1, v0, v1, R); \
+ MULTHI_16(p0, p1, p2, p3, 13320, v0, v1); \
+ ILVRL_UW4(in_u, p0, p1, p2, p3); \
+ MULTHI_16(p0, p1, p2, p3, 6419, u0, u1); \
+ CALC_G16(y0, y1, u0, u1, v0, v1, G); \
+ MULTHI_16(p0, p1, p2, p3, 33050, u0, u1); \
+ CALC_B16(y0, y1, u0, u1, B); \
+} while (0)
+
+#define CALC_RGB8(y, u, v, R, G, B) do { \
+ const v16u8 zero = { 0 }; \
+ v8u16 y0, u0, v0; \
+ v4u32 p0, p1; \
+ const v16u8 in_y = LD_UB(y); \
+ const v16u8 in_u = LD_UB(u); \
+ const v16u8 in_v = LD_UB(v); \
+ ILVR_UW2(in_y, p0, p1); \
+ MULTHI_8(p0, p1, 19077, y0); \
+ ILVR_UW2(in_v, p0, p1); \
+ MULTHI_8(p0, p1, 26149, v0); \
+ CALC_R8(y0, v0, R); \
+ MULTHI_8(p0, p1, 13320, v0); \
+ ILVR_UW2(in_u, p0, p1); \
+ MULTHI_8(p0, p1, 6419, u0); \
+ CALC_G8(y0, u0, v0, G); \
+ MULTHI_8(p0, p1, 33050, u0); \
+ CALC_B8(y0, u0, B); \
+} while (0)
+
+#define STORE16_3(a0, a1, a2, dst) do { \
+ const v16u8 mask0 = { 0, 1, 16, 2, 3, 17, 4, 5, 18, 6, 7, 19, \
+ 8, 9, 20, 10 }; \
+ const v16u8 mask1 = { 0, 21, 1, 2, 22, 3, 4, 23, 5, 6, 24, 7, \
+ 8, 25, 9, 10 }; \
+ const v16u8 mask2 = { 26, 0, 1, 27, 2, 3, 28, 4, 5, 29, 6, 7, \
+ 30, 8, 9, 31 }; \
+ v16u8 out0, out1, out2, tmp0, tmp1, tmp2; \
+ ILVRL_B2_UB(a1, a0, tmp0, tmp1); \
+ out0 = VSHF_UB(tmp0, a2, mask0); \
+ tmp2 = SLDI_UB(tmp1, tmp0, 11); \
+ out1 = VSHF_UB(tmp2, a2, mask1); \
+ tmp2 = SLDI_UB(tmp1, tmp1, 6); \
+ out2 = VSHF_UB(tmp2, a2, mask2); \
+ ST_UB(out0, dst + 0); \
+ ST_UB(out1, dst + 16); \
+ ST_UB(out2, dst + 32); \
+} while (0)
+
+#define STORE8_3(a0, a1, a2, dst) do { \
+ int64_t out_m; \
+ const v16u8 mask0 = { 0, 1, 16, 2, 3, 17, 4, 5, 18, 6, 7, 19, \
+ 8, 9, 20, 10 }; \
+ const v16u8 mask1 = { 11, 21, 12, 13, 22, 14, 15, 23, \
+ 255, 255, 255, 255, 255, 255, 255, 255 }; \
+ const v16u8 tmp0 = (v16u8)__msa_ilvr_b((v16i8)a1, (v16i8)a0); \
+ v16u8 out0, out1; \
+ VSHF_B2_UB(tmp0, a2, tmp0, a2, mask0, mask1, out0, out1); \
+ ST_UB(out0, dst); \
+ out_m = __msa_copy_s_d((v2i64)out1, 0); \
+ SD(out_m, dst + 16); \
+} while (0)
+
+#define STORE16_4(a0, a1, a2, a3, dst) do { \
+ v16u8 tmp0, tmp1, tmp2, tmp3; \
+ v16u8 out0, out1, out2, out3; \
+ ILVRL_B2_UB(a1, a0, tmp0, tmp1); \
+ ILVRL_B2_UB(a3, a2, tmp2, tmp3); \
+ ILVRL_H2_UB(tmp2, tmp0, out0, out1); \
+ ILVRL_H2_UB(tmp3, tmp1, out2, out3); \
+ ST_UB(out0, dst + 0); \
+ ST_UB(out1, dst + 16); \
+ ST_UB(out2, dst + 32); \
+ ST_UB(out3, dst + 48); \
+} while (0)
+
+#define STORE8_4(a0, a1, a2, a3, dst) do { \
+ v16u8 tmp0, tmp1, tmp2, tmp3; \
+ ILVR_B2_UB(a1, a0, a3, a2, tmp0, tmp1); \
+ ILVRL_H2_UB(tmp1, tmp0, tmp2, tmp3); \
+ ST_UB(tmp2, dst + 0); \
+ ST_UB(tmp3, dst + 16); \
+} while (0)
+
+#define STORE2_16(a0, a1, dst) do { \
+ v16u8 out0, out1; \
+ ILVRL_B2_UB(a1, a0, out0, out1); \
+ ST_UB(out0, dst + 0); \
+ ST_UB(out1, dst + 16); \
+} while (0)
+
+#define STORE2_8(a0, a1, dst) do { \
+ const v16u8 out0 = (v16u8)__msa_ilvr_b((v16i8)a1, (v16i8)a0); \
+ ST_UB(out0, dst); \
+} while (0)
+
+#define CALC_RGBA4444(y, u, v, out0, out1, N, dst) do { \
+ CALC_RGB##N(y, u, v, R, G, B); \
+ tmp0 = ANDI_B(R, 0xf0); \
+ tmp1 = SRAI_B(G, 4); \
+ RG = tmp0 | tmp1; \
+ tmp0 = ANDI_B(B, 0xf0); \
+ BA = ORI_B(tmp0, 0x0f); \
+ STORE2_##N(out0, out1, dst); \
+} while (0)
+
+#define CALC_RGB565(y, u, v, out0, out1, N, dst) do { \
+ CALC_RGB##N(y, u, v, R, G, B); \
+ tmp0 = ANDI_B(R, 0xf8); \
+ tmp1 = SRAI_B(G, 5); \
+ RG = tmp0 | tmp1; \
+ tmp0 = SLLI_B(G, 3); \
+ tmp1 = ANDI_B(tmp0, 0xe0); \
+ tmp0 = SRAI_B(B, 3); \
+ GB = tmp0 | tmp1; \
+ STORE2_##N(out0, out1, dst); \
+} while (0)
+
+static WEBP_INLINE int Clip8(int v) {
+ return v < 0 ? 0 : v > 255 ? 255 : v;
+}
+
+static void YuvToRgb(int y, int u, int v, uint8_t* const rgb) {
+ const int y1 = MultHi(y, 19077);
+ const int r1 = y1 + MultHi(v, 26149) - 14234;
+ const int g1 = y1 - MultHi(u, 6419) - MultHi(v, 13320) + 8708;
+ const int b1 = y1 + MultHi(u, 33050) - 17685;
+ rgb[0] = Clip8(r1 >> 6);
+ rgb[1] = Clip8(g1 >> 6);
+ rgb[2] = Clip8(b1 >> 6);
+}
+
+static void YuvToBgr(int y, int u, int v, uint8_t* const bgr) {
+ const int y1 = MultHi(y, 19077);
+ const int r1 = y1 + MultHi(v, 26149) - 14234;
+ const int g1 = y1 - MultHi(u, 6419) - MultHi(v, 13320) + 8708;
+ const int b1 = y1 + MultHi(u, 33050) - 17685;
+ bgr[0] = Clip8(b1 >> 6);
+ bgr[1] = Clip8(g1 >> 6);
+ bgr[2] = Clip8(r1 >> 6);
+}
+
+static void YuvToRgb565(int y, int u, int v, uint8_t* const rgb) {
+ const int y1 = MultHi(y, 19077);
+ const int r1 = y1 + MultHi(v, 26149) - 14234;
+ const int g1 = y1 - MultHi(u, 6419) - MultHi(v, 13320) + 8708;
+ const int b1 = y1 + MultHi(u, 33050) - 17685;
+ const int r = Clip8(r1 >> 6);
+ const int g = Clip8(g1 >> 6);
+ const int b = Clip8(b1 >> 6);
+ const int rg = (r & 0xf8) | (g >> 5);
+ const int gb = ((g << 3) & 0xe0) | (b >> 3);
+#ifdef WEBP_SWAP_16BIT_CSP
+ rgb[0] = gb;
+ rgb[1] = rg;
+#else
+ rgb[0] = rg;
+ rgb[1] = gb;
+#endif
+}
+
+static void YuvToRgba4444(int y, int u, int v, uint8_t* const argb) {
+ const int y1 = MultHi(y, 19077);
+ const int r1 = y1 + MultHi(v, 26149) - 14234;
+ const int g1 = y1 - MultHi(u, 6419) - MultHi(v, 13320) + 8708;
+ const int b1 = y1 + MultHi(u, 33050) - 17685;
+ const int r = Clip8(r1 >> 6);
+ const int g = Clip8(g1 >> 6);
+ const int b = Clip8(b1 >> 6);
+ const int rg = (r & 0xf0) | (g >> 4);
+ const int ba = (b & 0xf0) | 0x0f; // overwrite the lower 4 bits
+#ifdef WEBP_SWAP_16BIT_CSP
+ argb[0] = ba;
+ argb[1] = rg;
+#else
+ argb[0] = rg;
+ argb[1] = ba;
+#endif
+}
+
+static void YuvToArgb(uint8_t y, uint8_t u, uint8_t v, uint8_t* const argb) {
+ argb[0] = 0xff;
+ YuvToRgb(y, u, v, argb + 1);
+}
+
+static void YuvToBgra(uint8_t y, uint8_t u, uint8_t v, uint8_t* const bgra) {
+ YuvToBgr(y, u, v, bgra);
+ bgra[3] = 0xff;
+}
+
+static void YuvToRgba(uint8_t y, uint8_t u, uint8_t v, uint8_t* const rgba) {
+ YuvToRgb(y, u, v, rgba);
+ rgba[3] = 0xff;
+}
+
+static void YuvToRgbLine(const uint8_t* y, const uint8_t* u,
+ const uint8_t* v, uint8_t* dst, int length) {
+ v16u8 R, G, B;
+ while (length >= 16) {
+ CALC_RGB16(y, u, v, R, G, B);
+ STORE16_3(R, G, B, dst);
+ y += 16;
+ u += 16;
+ v += 16;
+ dst += 16 * 3;
+ length -= 16;
+ }
+ if (length > 8) {
+ uint8_t temp[3 * 16] = { 0 };
+ memcpy(temp, y, length * sizeof(*temp));
+ CALC_RGB16(temp, u, v, R, G, B);
+ STORE16_3(R, G, B, temp);
+ memcpy(dst, temp, length * 3 * sizeof(*dst));
+ } else if (length > 0) {
+ uint8_t temp[3 * 8] = { 0 };
+ memcpy(temp, y, length * sizeof(*temp));
+ CALC_RGB8(temp, u, v, R, G, B);
+ STORE8_3(R, G, B, temp);
+ memcpy(dst, temp, length * 3 * sizeof(*dst));
+ }
+}
+
+static void YuvToBgrLine(const uint8_t* y, const uint8_t* u,
+ const uint8_t* v, uint8_t* dst, int length) {
+ v16u8 R, G, B;
+ while (length >= 16) {
+ CALC_RGB16(y, u, v, R, G, B);
+ STORE16_3(B, G, R, dst);
+ y += 16;
+ u += 16;
+ v += 16;
+ dst += 16 * 3;
+ length -= 16;
+ }
+ if (length > 8) {
+ uint8_t temp[3 * 16] = { 0 };
+ memcpy(temp, y, length * sizeof(*temp));
+ CALC_RGB16(temp, u, v, R, G, B);
+ STORE16_3(B, G, R, temp);
+ memcpy(dst, temp, length * 3 * sizeof(*dst));
+ } else if (length > 0) {
+ uint8_t temp[3 * 8] = { 0 };
+ memcpy(temp, y, length * sizeof(*temp));
+ CALC_RGB8(temp, u, v, R, G, B);
+ STORE8_3(B, G, R, temp);
+ memcpy(dst, temp, length * 3 * sizeof(*dst));
+ }
+}
+
+static void YuvToRgbaLine(const uint8_t* y, const uint8_t* u,
+ const uint8_t* v, uint8_t* dst, int length) {
+ v16u8 R, G, B;
+ const v16u8 A = (v16u8)__msa_ldi_b(0xff);
+ while (length >= 16) {
+ CALC_RGB16(y, u, v, R, G, B);
+ STORE16_4(R, G, B, A, dst);
+ y += 16;
+ u += 16;
+ v += 16;
+ dst += 16 * 4;
+ length -= 16;
+ }
+ if (length > 8) {
+ uint8_t temp[4 * 16] = { 0 };
+ memcpy(temp, y, length * sizeof(*temp));
+ CALC_RGB16(&temp[0], u, v, R, G, B);
+ STORE16_4(R, G, B, A, temp);
+ memcpy(dst, temp, length * 4 * sizeof(*dst));
+ } else if (length > 0) {
+ uint8_t temp[4 * 8] = { 0 };
+ memcpy(temp, y, length * sizeof(*temp));
+ CALC_RGB8(temp, u, v, R, G, B);
+ STORE8_4(R, G, B, A, temp);
+ memcpy(dst, temp, length * 4 * sizeof(*dst));
+ }
+}
+
+static void YuvToBgraLine(const uint8_t* y, const uint8_t* u,
+ const uint8_t* v, uint8_t* dst, int length) {
+ v16u8 R, G, B;
+ const v16u8 A = (v16u8)__msa_ldi_b(0xff);
+ while (length >= 16) {
+ CALC_RGB16(y, u, v, R, G, B);
+ STORE16_4(B, G, R, A, dst);
+ y += 16;
+ u += 16;
+ v += 16;
+ dst += 16 * 4;
+ length -= 16;
+ }
+ if (length > 8) {
+ uint8_t temp[4 * 16] = { 0 };
+ memcpy(temp, y, length * sizeof(*temp));
+ CALC_RGB16(temp, u, v, R, G, B);
+ STORE16_4(B, G, R, A, temp);
+ memcpy(dst, temp, length * 4 * sizeof(*dst));
+ } else if (length > 0) {
+ uint8_t temp[4 * 8] = { 0 };
+ memcpy(temp, y, length * sizeof(*temp));
+ CALC_RGB8(temp, u, v, R, G, B);
+ STORE8_4(B, G, R, A, temp);
+ memcpy(dst, temp, length * 4 * sizeof(*dst));
+ }
+}
+
+static void YuvToArgbLine(const uint8_t* y, const uint8_t* u,
+ const uint8_t* v, uint8_t* dst, int length) {
+ v16u8 R, G, B;
+ const v16u8 A = (v16u8)__msa_ldi_b(0xff);
+ while (length >= 16) {
+ CALC_RGB16(y, u, v, R, G, B);
+ STORE16_4(A, R, G, B, dst);
+ y += 16;
+ u += 16;
+ v += 16;
+ dst += 16 * 4;
+ length -= 16;
+ }
+ if (length > 8) {
+ uint8_t temp[4 * 16] = { 0 };
+ memcpy(temp, y, length * sizeof(*temp));
+ CALC_RGB16(temp, u, v, R, G, B);
+ STORE16_4(A, R, G, B, temp);
+ memcpy(dst, temp, length * 4 * sizeof(*dst));
+ } else if (length > 0) {
+ uint8_t temp[4 * 8] = { 0 };
+ memcpy(temp, y, length * sizeof(*temp));
+ CALC_RGB8(temp, u, v, R, G, B);
+ STORE8_4(A, R, G, B, temp);
+ memcpy(dst, temp, length * 4 * sizeof(*dst));
+ }
+}
+
+static void YuvToRgba4444Line(const uint8_t* y, const uint8_t* u,
+ const uint8_t* v, uint8_t* dst, int length) {
+ v16u8 R, G, B, RG, BA, tmp0, tmp1;
+ while (length >= 16) {
+ #ifdef WEBP_SWAP_16BIT_CSP
+ CALC_RGBA4444(y, u, v, BA, RG, 16, dst);
+ #else
+ CALC_RGBA4444(y, u, v, RG, BA, 16, dst);
+ #endif
+ y += 16;
+ u += 16;
+ v += 16;
+ dst += 16 * 2;
+ length -= 16;
+ }
+ if (length > 8) {
+ uint8_t temp[2 * 16] = { 0 };
+ memcpy(temp, y, length * sizeof(*temp));
+#ifdef WEBP_SWAP_16BIT_CSP
+ CALC_RGBA4444(temp, u, v, BA, RG, 16, temp);
+#else
+ CALC_RGBA4444(temp, u, v, RG, BA, 16, temp);
+#endif
+ memcpy(dst, temp, length * 2 * sizeof(*dst));
+ } else if (length > 0) {
+ uint8_t temp[2 * 8] = { 0 };
+ memcpy(temp, y, length * sizeof(*temp));
+#ifdef WEBP_SWAP_16BIT_CSP
+ CALC_RGBA4444(temp, u, v, BA, RG, 8, temp);
+#else
+ CALC_RGBA4444(temp, u, v, RG, BA, 8, temp);
+#endif
+ memcpy(dst, temp, length * 2 * sizeof(*dst));
+ }
+}
+
+static void YuvToRgb565Line(const uint8_t* y, const uint8_t* u,
+ const uint8_t* v, uint8_t* dst, int length) {
+ v16u8 R, G, B, RG, GB, tmp0, tmp1;
+ while (length >= 16) {
+ #ifdef WEBP_SWAP_16BIT_CSP
+ CALC_RGB565(y, u, v, GB, RG, 16, dst);
+ #else
+ CALC_RGB565(y, u, v, RG, GB, 16, dst);
+ #endif
+ y += 16;
+ u += 16;
+ v += 16;
+ dst += 16 * 2;
+ length -= 16;
+ }
+ if (length > 8) {
+ uint8_t temp[2 * 16] = { 0 };
+ memcpy(temp, y, length * sizeof(*temp));
+#ifdef WEBP_SWAP_16BIT_CSP
+ CALC_RGB565(temp, u, v, GB, RG, 16, temp);
+#else
+ CALC_RGB565(temp, u, v, RG, GB, 16, temp);
+#endif
+ memcpy(dst, temp, length * 2 * sizeof(*dst));
+ } else if (length > 0) {
+ uint8_t temp[2 * 8] = { 0 };
+ memcpy(temp, y, length * sizeof(*temp));
+#ifdef WEBP_SWAP_16BIT_CSP
+ CALC_RGB565(temp, u, v, GB, RG, 8, temp);
+#else
+ CALC_RGB565(temp, u, v, RG, GB, 8, temp);
+#endif
+ memcpy(dst, temp, length * 2 * sizeof(*dst));
+ }
+}
+
+#define UPSAMPLE_32PIXELS(a, b, c, d) do { \
+ v16u8 s = __msa_aver_u_b(a, d); \
+ v16u8 t = __msa_aver_u_b(b, c); \
+ const v16u8 st = s ^ t; \
+ v16u8 ad = a ^ d; \
+ v16u8 bc = b ^ c; \
+ v16u8 t0 = ad | bc; \
+ v16u8 t1 = t0 | st; \
+ v16u8 t2 = ANDI_B(t1, 1); \
+ v16u8 t3 = __msa_aver_u_b(s, t); \
+ const v16u8 k = t3 - t2; \
+ v16u8 diag1, diag2; \
+ AVER_UB2_UB(t, k, s, k, t0, t1); \
+ bc = bc & st; \
+ ad = ad & st; \
+ t = t ^ k; \
+ s = s ^ k; \
+ t2 = bc | t; \
+ t3 = ad | s; \
+ t2 = ANDI_B(t2, 1); \
+ t3 = ANDI_B(t3, 1); \
+ SUB2(t0, t2, t1, t3, diag1, diag2); \
+ AVER_UB2_UB(a, diag1, b, diag2, t0, t1); \
+ ILVRL_B2_UB(t1, t0, a, b); \
+ if (pbot_y != NULL) { \
+ AVER_UB2_UB(c, diag2, d, diag1, t0, t1); \
+ ILVRL_B2_UB(t1, t0, c, d); \
+ } \
+} while (0)
+
+#define UPSAMPLE_FUNC(FUNC_NAME, FUNC, XSTEP) \
+static void FUNC_NAME(const uint8_t* top_y, const uint8_t* bot_y, \
+ const uint8_t* top_u, const uint8_t* top_v, \
+ const uint8_t* cur_u, const uint8_t* cur_v, \
+ uint8_t* top_dst, uint8_t* bot_dst, int len) \
+{ \
+ int size = (len - 1) >> 1; \
+ uint8_t temp_u[64]; \
+ uint8_t temp_v[64]; \
+ const uint32_t tl_uv = ((top_u[0]) | ((top_v[0]) << 16)); \
+ const uint32_t l_uv = ((cur_u[0]) | ((cur_v[0]) << 16)); \
+ const uint32_t uv0 = (3 * tl_uv + l_uv + 0x00020002u) >> 2; \
+ const uint8_t* ptop_y = &top_y[1]; \
+ uint8_t *ptop_dst = top_dst + XSTEP; \
+ const uint8_t* pbot_y = &bot_y[1]; \
+ uint8_t *pbot_dst = bot_dst + XSTEP; \
+ \
+ FUNC(top_y[0], uv0 & 0xff, (uv0 >> 16), top_dst); \
+ if (bot_y != NULL) { \
+ const uint32_t uv1 = (3 * l_uv + tl_uv + 0x00020002u) >> 2; \
+ FUNC(bot_y[0], uv1 & 0xff, (uv1 >> 16), bot_dst); \
+ } \
+ while (size >= 16) { \
+ v16u8 tu0, tu1, tv0, tv1, cu0, cu1, cv0, cv1; \
+ LD_UB2(top_u, 1, tu0, tu1); \
+ LD_UB2(cur_u, 1, cu0, cu1); \
+ LD_UB2(top_v, 1, tv0, tv1); \
+ LD_UB2(cur_v, 1, cv0, cv1); \
+ UPSAMPLE_32PIXELS(tu0, tu1, cu0, cu1); \
+ UPSAMPLE_32PIXELS(tv0, tv1, cv0, cv1); \
+ ST_UB4(tu0, tu1, cu0, cu1, &temp_u[0], 16); \
+ ST_UB4(tv0, tv1, cv0, cv1, &temp_v[0], 16); \
+ FUNC##Line(ptop_y, &temp_u[ 0], &temp_v[0], ptop_dst, 32); \
+ if (bot_y != NULL) { \
+ FUNC##Line(pbot_y, &temp_u[32], &temp_v[32], pbot_dst, 32); \
+ } \
+ ptop_y += 32; \
+ pbot_y += 32; \
+ ptop_dst += XSTEP * 32; \
+ pbot_dst += XSTEP * 32; \
+ top_u += 16; \
+ top_v += 16; \
+ cur_u += 16; \
+ cur_v += 16; \
+ size -= 16; \
+ } \
+ if (size > 0) { \
+ v16u8 tu0, tu1, tv0, tv1, cu0, cu1, cv0, cv1; \
+ memcpy(&temp_u[ 0], top_u, 17 * sizeof(uint8_t)); \
+ memcpy(&temp_u[32], cur_u, 17 * sizeof(uint8_t)); \
+ memcpy(&temp_v[ 0], top_v, 17 * sizeof(uint8_t)); \
+ memcpy(&temp_v[32], cur_v, 17 * sizeof(uint8_t)); \
+ LD_UB2(&temp_u[ 0], 1, tu0, tu1); \
+ LD_UB2(&temp_u[32], 1, cu0, cu1); \
+ LD_UB2(&temp_v[ 0], 1, tv0, tv1); \
+ LD_UB2(&temp_v[32], 1, cv0, cv1); \
+ UPSAMPLE_32PIXELS(tu0, tu1, cu0, cu1); \
+ UPSAMPLE_32PIXELS(tv0, tv1, cv0, cv1); \
+ ST_UB4(tu0, tu1, cu0, cu1, &temp_u[0], 16); \
+ ST_UB4(tv0, tv1, cv0, cv1, &temp_v[0], 16); \
+ FUNC##Line(ptop_y, &temp_u[ 0], &temp_v[0], ptop_dst, size * 2); \
+ if (bot_y != NULL) { \
+ FUNC##Line(pbot_y, &temp_u[32], &temp_v[32], pbot_dst, size * 2); \
+ } \
+ top_u += size; \
+ top_v += size; \
+ cur_u += size; \
+ cur_v += size; \
+ } \
+ if (!(len & 1)) { \
+ const uint32_t t0 = ((top_u[0]) | ((top_v[0]) << 16)); \
+ const uint32_t c0 = ((cur_u[0]) | ((cur_v[0]) << 16)); \
+ const uint32_t tmp0 = (3 * t0 + c0 + 0x00020002u) >> 2; \
+ FUNC(top_y[len - 1], tmp0 & 0xff, (tmp0 >> 16), \
+ top_dst + (len - 1) * XSTEP); \
+ if (bot_y != NULL) { \
+ const uint32_t tmp1 = (3 * c0 + t0 + 0x00020002u) >> 2; \
+ FUNC(bot_y[len - 1], tmp1 & 0xff, (tmp1 >> 16), \
+ bot_dst + (len - 1) * XSTEP); \
+ } \
+ } \
+}
+
+UPSAMPLE_FUNC(UpsampleRgbLinePair, YuvToRgb, 3)
+UPSAMPLE_FUNC(UpsampleBgrLinePair, YuvToBgr, 3)
+UPSAMPLE_FUNC(UpsampleRgbaLinePair, YuvToRgba, 4)
+UPSAMPLE_FUNC(UpsampleBgraLinePair, YuvToBgra, 4)
+UPSAMPLE_FUNC(UpsampleArgbLinePair, YuvToArgb, 4)
+UPSAMPLE_FUNC(UpsampleRgba4444LinePair, YuvToRgba4444, 2)
+UPSAMPLE_FUNC(UpsampleRgb565LinePair, YuvToRgb565, 2)
+
+//------------------------------------------------------------------------------
+// Entry point
+
+extern WebPUpsampleLinePairFunc WebPUpsamplers[/* MODE_LAST */];
+
+extern void WebPInitUpsamplersMSA(void);
+
+WEBP_TSAN_IGNORE_FUNCTION void WebPInitUpsamplersMSA(void) {
+ WebPUpsamplers[MODE_RGB] = UpsampleRgbLinePair;
+ WebPUpsamplers[MODE_RGBA] = UpsampleRgbaLinePair;
+ WebPUpsamplers[MODE_BGR] = UpsampleBgrLinePair;
+ WebPUpsamplers[MODE_BGRA] = UpsampleBgraLinePair;
+ WebPUpsamplers[MODE_ARGB] = UpsampleArgbLinePair;
+ WebPUpsamplers[MODE_rgbA] = UpsampleRgbaLinePair;
+ WebPUpsamplers[MODE_bgrA] = UpsampleBgraLinePair;
+ WebPUpsamplers[MODE_Argb] = UpsampleArgbLinePair;
+ WebPUpsamplers[MODE_RGB_565] = UpsampleRgb565LinePair;
+ WebPUpsamplers[MODE_RGBA_4444] = UpsampleRgba4444LinePair;
+ WebPUpsamplers[MODE_rgbA_4444] = UpsampleRgba4444LinePair;
+}
+
+#endif // FANCY_UPSAMPLING
+
+#endif // WEBP_USE_MSA
+
+#if !(defined(FANCY_UPSAMPLING) && defined(WEBP_USE_MSA))
+WEBP_DSP_INIT_STUB(WebPInitUpsamplersMSA)
+#endif
diff --git a/thirdparty/libwebp/dsp/upsampling_neon.c b/thirdparty/libwebp/dsp/upsampling_neon.c
index 2b0c99bddb..d371a834ff 100644
--- a/thirdparty/libwebp/dsp/upsampling_neon.c
+++ b/thirdparty/libwebp/dsp/upsampling_neon.c
@@ -28,47 +28,34 @@
// U/V upsampling
// Loads 9 pixels each from rows r1 and r2 and generates 16 pixels.
-#define UPSAMPLE_16PIXELS(r1, r2, out) { \
- uint8x8_t a = vld1_u8(r1); \
- uint8x8_t b = vld1_u8(r1 + 1); \
- uint8x8_t c = vld1_u8(r2); \
- uint8x8_t d = vld1_u8(r2 + 1); \
- \
- uint16x8_t al = vshll_n_u8(a, 1); \
- uint16x8_t bl = vshll_n_u8(b, 1); \
- uint16x8_t cl = vshll_n_u8(c, 1); \
- uint16x8_t dl = vshll_n_u8(d, 1); \
- \
- uint8x8_t diag1, diag2; \
- uint16x8_t sl; \
- \
+#define UPSAMPLE_16PIXELS(r1, r2, out) do { \
+ const uint8x8_t a = vld1_u8(r1 + 0); \
+ const uint8x8_t b = vld1_u8(r1 + 1); \
+ const uint8x8_t c = vld1_u8(r2 + 0); \
+ const uint8x8_t d = vld1_u8(r2 + 1); \
/* a + b + c + d */ \
- sl = vaddl_u8(a, b); \
- sl = vaddw_u8(sl, c); \
- sl = vaddw_u8(sl, d); \
- \
- al = vaddq_u16(sl, al); /* 3a + b + c + d */ \
- bl = vaddq_u16(sl, bl); /* a + 3b + c + d */ \
- \
- al = vaddq_u16(al, dl); /* 3a + b + c + 3d */ \
- bl = vaddq_u16(bl, cl); /* a + 3b + 3c + d */ \
+ const uint16x8_t ad = vaddl_u8(a, d); \
+ const uint16x8_t bc = vaddl_u8(b, c); \
+ const uint16x8_t abcd = vaddq_u16(ad, bc); \
+ /* 3a + b + c + 3d */ \
+ const uint16x8_t al = vaddq_u16(abcd, vshlq_n_u16(ad, 1)); \
+ /* a + 3b + 3c + d */ \
+ const uint16x8_t bl = vaddq_u16(abcd, vshlq_n_u16(bc, 1)); \
\
- diag2 = vshrn_n_u16(al, 3); \
- diag1 = vshrn_n_u16(bl, 3); \
+ const uint8x8_t diag2 = vshrn_n_u16(al, 3); \
+ const uint8x8_t diag1 = vshrn_n_u16(bl, 3); \
\
- a = vrhadd_u8(a, diag1); \
- b = vrhadd_u8(b, diag2); \
- c = vrhadd_u8(c, diag2); \
- d = vrhadd_u8(d, diag1); \
+ const uint8x8_t A = vrhadd_u8(a, diag1); \
+ const uint8x8_t B = vrhadd_u8(b, diag2); \
+ const uint8x8_t C = vrhadd_u8(c, diag2); \
+ const uint8x8_t D = vrhadd_u8(d, diag1); \
\
- { \
- uint8x8x2_t a_b, c_d; \
- INIT_VECTOR2(a_b, a, b); \
- INIT_VECTOR2(c_d, c, d); \
- vst2_u8(out, a_b); \
- vst2_u8(out + 32, c_d); \
- } \
-}
+ uint8x8x2_t A_B, C_D; \
+ INIT_VECTOR2(A_B, A, B); \
+ INIT_VECTOR2(C_D, C, D); \
+ vst2_u8(out + 0, A_B); \
+ vst2_u8(out + 32, C_D); \
+} while (0)
// Turn the macro into a function for reducing code-size when non-critical
static void Upsample16Pixels(const uint8_t *r1, const uint8_t *r2,
@@ -93,7 +80,6 @@ static void Upsample16Pixels(const uint8_t *r1, const uint8_t *r2,
static const int16_t kCoeffs1[4] = { 19077, 26149, 6419, 13320 };
#define v255 vdup_n_u8(255)
-#define v_0x0f vdup_n_u8(15)
#define STORE_Rgb(out, r, g, b) do { \
uint8x8x3_t r_g_b; \
@@ -132,21 +118,16 @@ static const int16_t kCoeffs1[4] = { 19077, 26149, 6419, 13320 };
#endif
#define STORE_Rgba4444(out, r, g, b) do { \
- const uint8x8_t r1 = vshl_n_u8(vshr_n_u8(r, 4), 4); /* 4bits */ \
- const uint8x8_t g1 = vshr_n_u8(g, 4); \
- const uint8x8_t ba = vorr_u8(b, v_0x0f); \
- const uint8x8_t rg = vorr_u8(r1, g1); \
+ const uint8x8_t rg = vsri_n_u8(r, g, 4); /* shift g, insert r */ \
+ const uint8x8_t ba = vsri_n_u8(b, v255, 4); /* shift a, insert b */ \
const uint8x8x2_t rgba4444 = ZIP_U8(rg, ba); \
vst1q_u8(out, vcombine_u8(rgba4444.val[0], rgba4444.val[1])); \
} while (0)
#define STORE_Rgb565(out, r, g, b) do { \
- const uint8x8_t r1 = vshl_n_u8(vshr_n_u8(r, 3), 3); /* 5bits */ \
- const uint8x8_t g1 = vshr_n_u8(g, 5); /* upper 3bits */\
- const uint8x8_t g2 = vshl_n_u8(vshr_n_u8(g, 2), 5); /* lower 3bits */\
- const uint8x8_t b1 = vshr_n_u8(b, 3); /* 5bits */ \
- const uint8x8_t rg = vorr_u8(r1, g1); \
- const uint8x8_t gb = vorr_u8(g2, b1); \
+ const uint8x8_t rg = vsri_n_u8(r, g, 5); /* shift g and insert r */ \
+ const uint8x8_t g1 = vshl_n_u8(g, 3); /* pre-shift g: 3bits */ \
+ const uint8x8_t gb = vsri_n_u8(g1, b, 3); /* shift b and insert g */ \
const uint8x8x2_t rgb565 = ZIP_U8(rg, gb); \
vst1q_u8(out, vcombine_u8(rgb565.val[0], rgb565.val[1])); \
} while (0)
diff --git a/thirdparty/libwebp/dsp/yuv.c b/thirdparty/libwebp/dsp/yuv.c
index f50a253168..dd7d9dedfa 100644
--- a/thirdparty/libwebp/dsp/yuv.c
+++ b/thirdparty/libwebp/dsp/yuv.c
@@ -13,6 +13,8 @@
#include "./yuv.h"
+#include <stdlib.h>
+
#if defined(WEBP_YUV_USE_TABLE)
static int done = 0;
@@ -244,6 +246,48 @@ void WebPConvertRGBA32ToUV_C(const uint16_t* rgb,
//-----------------------------------------------------------------------------
+#define MAX_Y ((1 << 10) - 1) // 10b precision over 16b-arithmetic
+static uint16_t clip_y(int v) {
+ return (v < 0) ? 0 : (v > MAX_Y) ? MAX_Y : (uint16_t)v;
+}
+
+static uint64_t SharpYUVUpdateY_C(const uint16_t* ref, const uint16_t* src,
+ uint16_t* dst, int len) {
+ uint64_t diff = 0;
+ int i;
+ for (i = 0; i < len; ++i) {
+ const int diff_y = ref[i] - src[i];
+ const int new_y = (int)dst[i] + diff_y;
+ dst[i] = clip_y(new_y);
+ diff += (uint64_t)abs(diff_y);
+ }
+ return diff;
+}
+
+static void SharpYUVUpdateRGB_C(const int16_t* ref, const int16_t* src,
+ int16_t* dst, int len) {
+ int i;
+ for (i = 0; i < len; ++i) {
+ const int diff_uv = ref[i] - src[i];
+ dst[i] += diff_uv;
+ }
+}
+
+static void SharpYUVFilterRow_C(const int16_t* A, const int16_t* B, int len,
+ const uint16_t* best_y, uint16_t* out) {
+ int i;
+ for (i = 0; i < len; ++i, ++A, ++B) {
+ const int v0 = (A[0] * 9 + A[1] * 3 + B[0] * 3 + B[1] + 8) >> 4;
+ const int v1 = (A[1] * 9 + A[0] * 3 + B[1] * 3 + B[0] + 8) >> 4;
+ out[2 * i + 0] = clip_y(best_y[2 * i + 0] + v0);
+ out[2 * i + 1] = clip_y(best_y[2 * i + 1] + v1);
+ }
+}
+
+#undef MAX_Y
+
+//-----------------------------------------------------------------------------
+
void (*WebPConvertRGB24ToY)(const uint8_t* rgb, uint8_t* y, int width);
void (*WebPConvertBGR24ToY)(const uint8_t* bgr, uint8_t* y, int width);
void (*WebPConvertRGBA32ToUV)(const uint16_t* rgb,
@@ -253,10 +297,18 @@ void (*WebPConvertARGBToY)(const uint32_t* argb, uint8_t* y, int width);
void (*WebPConvertARGBToUV)(const uint32_t* argb, uint8_t* u, uint8_t* v,
int src_width, int do_store);
+uint64_t (*WebPSharpYUVUpdateY)(const uint16_t* ref, const uint16_t* src,
+ uint16_t* dst, int len);
+void (*WebPSharpYUVUpdateRGB)(const int16_t* ref, const int16_t* src,
+ int16_t* dst, int len);
+void (*WebPSharpYUVFilterRow)(const int16_t* A, const int16_t* B, int len,
+ const uint16_t* best_y, uint16_t* out);
+
static volatile VP8CPUInfo rgba_to_yuv_last_cpuinfo_used =
(VP8CPUInfo)&rgba_to_yuv_last_cpuinfo_used;
extern void WebPInitConvertARGBToYUVSSE2(void);
+extern void WebPInitSharpYUVSSE2(void);
WEBP_TSAN_IGNORE_FUNCTION void WebPInitConvertARGBToYUV(void) {
if (rgba_to_yuv_last_cpuinfo_used == VP8GetCPUInfo) return;
@@ -269,10 +321,15 @@ WEBP_TSAN_IGNORE_FUNCTION void WebPInitConvertARGBToYUV(void) {
WebPConvertRGBA32ToUV = WebPConvertRGBA32ToUV_C;
+ WebPSharpYUVUpdateY = SharpYUVUpdateY_C;
+ WebPSharpYUVUpdateRGB = SharpYUVUpdateRGB_C;
+ WebPSharpYUVFilterRow = SharpYUVFilterRow_C;
+
if (VP8GetCPUInfo != NULL) {
#if defined(WEBP_USE_SSE2)
if (VP8GetCPUInfo(kSSE2)) {
WebPInitConvertARGBToYUVSSE2();
+ WebPInitSharpYUVSSE2();
}
#endif // WEBP_USE_SSE2
}
diff --git a/thirdparty/libwebp/dsp/yuv.h b/thirdparty/libwebp/dsp/yuv.h
index 01c40fcb84..1d33b5863b 100644
--- a/thirdparty/libwebp/dsp/yuv.h
+++ b/thirdparty/libwebp/dsp/yuv.h
@@ -36,7 +36,7 @@
#define WEBP_DSP_YUV_H_
#include "./dsp.h"
-#include "../dec/decode_vp8.h"
+#include "../dec/vp8_dec.h"
#if defined(WEBP_EXPERIMENTAL_FEATURES)
// Do NOT activate this feature for real compression. This is only experimental!
diff --git a/thirdparty/libwebp/dsp/yuv_sse2.c b/thirdparty/libwebp/dsp/yuv_sse2.c
index e19bddff6c..e33c2bbafd 100644
--- a/thirdparty/libwebp/dsp/yuv_sse2.c
+++ b/thirdparty/libwebp/dsp/yuv_sse2.c
@@ -15,6 +15,8 @@
#if defined(WEBP_USE_SSE2)
+#include "./common_sse2.h"
+#include <stdlib.h>
#include <emmintrin.h>
//-----------------------------------------------------------------------------
@@ -155,30 +157,13 @@ static WEBP_INLINE void PackAndStore565(const __m128i* const R,
_mm_storeu_si128((__m128i*)dst, rgb565);
}
-// Function used several times in PlanarTo24b.
-// It samples the in buffer as follows: one every two unsigned char is stored
-// at the beginning of the buffer, while the other half is stored at the end.
-static WEBP_INLINE void PlanarTo24bHelper(const __m128i* const in /*in[6]*/,
- __m128i* const out /*out[6]*/) {
- const __m128i v_mask = _mm_set1_epi16(0x00ff);
-
- // Take one every two upper 8b values.
- out[0] = _mm_packus_epi16(_mm_and_si128(in[0], v_mask),
- _mm_and_si128(in[1], v_mask));
- out[1] = _mm_packus_epi16(_mm_and_si128(in[2], v_mask),
- _mm_and_si128(in[3], v_mask));
- out[2] = _mm_packus_epi16(_mm_and_si128(in[4], v_mask),
- _mm_and_si128(in[5], v_mask));
- // Take one every two lower 8b values.
- out[3] = _mm_packus_epi16(_mm_srli_epi16(in[0], 8), _mm_srli_epi16(in[1], 8));
- out[4] = _mm_packus_epi16(_mm_srli_epi16(in[2], 8), _mm_srli_epi16(in[3], 8));
- out[5] = _mm_packus_epi16(_mm_srli_epi16(in[4], 8), _mm_srli_epi16(in[5], 8));
-}
-
// Pack the planar buffers
// rrrr... rrrr... gggg... gggg... bbbb... bbbb....
// triplet by triplet in the output buffer rgb as rgbrgbrgbrgb ...
-static WEBP_INLINE void PlanarTo24b(__m128i* const in /*in[6]*/, uint8_t* rgb) {
+static WEBP_INLINE void PlanarTo24b(__m128i* const in0, __m128i* const in1,
+ __m128i* const in2, __m128i* const in3,
+ __m128i* const in4, __m128i* const in5,
+ uint8_t* const rgb) {
// The input is 6 registers of sixteen 8b but for the sake of explanation,
// let's take 6 registers of four 8b values.
// To pack, we will keep taking one every two 8b integer and move it
@@ -191,22 +176,15 @@ static WEBP_INLINE void PlanarTo24b(__m128i* const in /*in[6]*/, uint8_t* rgb) {
// Repeat the same permutations twice more:
// r0r4g0g4 | b0b4r1r5 | g1g5b1b5 | r2r6g2g6 | b2b6r3r7 | g3g7b3b7
// r0g0b0r1 | g1b1r2g2 | b2r3g3b3 | r4g4b4r5 | g5b5r6g6 | b6r7g7b7
- __m128i tmp[6];
- PlanarTo24bHelper(in, tmp);
- PlanarTo24bHelper(tmp, in);
- PlanarTo24bHelper(in, tmp);
- // We need to do it two more times than the example as we have sixteen bytes.
- PlanarTo24bHelper(tmp, in);
- PlanarTo24bHelper(in, tmp);
-
- _mm_storeu_si128((__m128i*)(rgb + 0), tmp[0]);
- _mm_storeu_si128((__m128i*)(rgb + 16), tmp[1]);
- _mm_storeu_si128((__m128i*)(rgb + 32), tmp[2]);
- _mm_storeu_si128((__m128i*)(rgb + 48), tmp[3]);
- _mm_storeu_si128((__m128i*)(rgb + 64), tmp[4]);
- _mm_storeu_si128((__m128i*)(rgb + 80), tmp[5]);
-}
-#undef MK_UINT32
+ VP8PlanarTo24b(in0, in1, in2, in3, in4, in5);
+
+ _mm_storeu_si128((__m128i*)(rgb + 0), *in0);
+ _mm_storeu_si128((__m128i*)(rgb + 16), *in1);
+ _mm_storeu_si128((__m128i*)(rgb + 32), *in2);
+ _mm_storeu_si128((__m128i*)(rgb + 48), *in3);
+ _mm_storeu_si128((__m128i*)(rgb + 64), *in4);
+ _mm_storeu_si128((__m128i*)(rgb + 80), *in5);
+}
void VP8YuvToRgba32(const uint8_t* y, const uint8_t* u, const uint8_t* v,
uint8_t* dst) {
@@ -265,29 +243,29 @@ void VP8YuvToRgb56532(const uint8_t* y, const uint8_t* u, const uint8_t* v,
void VP8YuvToRgb32(const uint8_t* y, const uint8_t* u, const uint8_t* v,
uint8_t* dst) {
__m128i R0, R1, R2, R3, G0, G1, G2, G3, B0, B1, B2, B3;
- __m128i rgb[6];
+ __m128i rgb0, rgb1, rgb2, rgb3, rgb4, rgb5;
- YUV444ToRGB(y + 0, u + 0, v + 0, &R0, &G0, &B0);
- YUV444ToRGB(y + 8, u + 8, v + 8, &R1, &G1, &B1);
+ YUV444ToRGB(y + 0, u + 0, v + 0, &R0, &G0, &B0);
+ YUV444ToRGB(y + 8, u + 8, v + 8, &R1, &G1, &B1);
YUV444ToRGB(y + 16, u + 16, v + 16, &R2, &G2, &B2);
YUV444ToRGB(y + 24, u + 24, v + 24, &R3, &G3, &B3);
// Cast to 8b and store as RRRRGGGGBBBB.
- rgb[0] = _mm_packus_epi16(R0, R1);
- rgb[1] = _mm_packus_epi16(R2, R3);
- rgb[2] = _mm_packus_epi16(G0, G1);
- rgb[3] = _mm_packus_epi16(G2, G3);
- rgb[4] = _mm_packus_epi16(B0, B1);
- rgb[5] = _mm_packus_epi16(B2, B3);
+ rgb0 = _mm_packus_epi16(R0, R1);
+ rgb1 = _mm_packus_epi16(R2, R3);
+ rgb2 = _mm_packus_epi16(G0, G1);
+ rgb3 = _mm_packus_epi16(G2, G3);
+ rgb4 = _mm_packus_epi16(B0, B1);
+ rgb5 = _mm_packus_epi16(B2, B3);
// Pack as RGBRGBRGBRGB.
- PlanarTo24b(rgb, dst);
+ PlanarTo24b(&rgb0, &rgb1, &rgb2, &rgb3, &rgb4, &rgb5, dst);
}
void VP8YuvToBgr32(const uint8_t* y, const uint8_t* u, const uint8_t* v,
uint8_t* dst) {
__m128i R0, R1, R2, R3, G0, G1, G2, G3, B0, B1, B2, B3;
- __m128i bgr[6];
+ __m128i bgr0, bgr1, bgr2, bgr3, bgr4, bgr5;
YUV444ToRGB(y + 0, u + 0, v + 0, &R0, &G0, &B0);
YUV444ToRGB(y + 8, u + 8, v + 8, &R1, &G1, &B1);
@@ -295,15 +273,15 @@ void VP8YuvToBgr32(const uint8_t* y, const uint8_t* u, const uint8_t* v,
YUV444ToRGB(y + 24, u + 24, v + 24, &R3, &G3, &B3);
// Cast to 8b and store as BBBBGGGGRRRR.
- bgr[0] = _mm_packus_epi16(B0, B1);
- bgr[1] = _mm_packus_epi16(B2, B3);
- bgr[2] = _mm_packus_epi16(G0, G1);
- bgr[3] = _mm_packus_epi16(G2, G3);
- bgr[4] = _mm_packus_epi16(R0, R1);
- bgr[5] = _mm_packus_epi16(R2, R3);
+ bgr0 = _mm_packus_epi16(B0, B1);
+ bgr1 = _mm_packus_epi16(B2, B3);
+ bgr2 = _mm_packus_epi16(G0, G1);
+ bgr3 = _mm_packus_epi16(G2, G3);
+ bgr4 = _mm_packus_epi16(R0, R1);
+ bgr5= _mm_packus_epi16(R2, R3);
// Pack as BGRBGRBGRBGR.
- PlanarTo24b(bgr, dst);
+ PlanarTo24b(&bgr0, &bgr1, &bgr2, &bgr3, &bgr4, &bgr5, dst);
}
//-----------------------------------------------------------------------------
@@ -377,7 +355,7 @@ static void YuvToRgbRow(const uint8_t* y, const uint8_t* u, const uint8_t* v,
int n;
for (n = 0; n + 32 <= len; n += 32, dst += 32 * 3) {
__m128i R0, R1, R2, R3, G0, G1, G2, G3, B0, B1, B2, B3;
- __m128i rgb[6];
+ __m128i rgb0, rgb1, rgb2, rgb3, rgb4, rgb5;
YUV420ToRGB(y + 0, u + 0, v + 0, &R0, &G0, &B0);
YUV420ToRGB(y + 8, u + 4, v + 4, &R1, &G1, &B1);
@@ -385,15 +363,15 @@ static void YuvToRgbRow(const uint8_t* y, const uint8_t* u, const uint8_t* v,
YUV420ToRGB(y + 24, u + 12, v + 12, &R3, &G3, &B3);
// Cast to 8b and store as RRRRGGGGBBBB.
- rgb[0] = _mm_packus_epi16(R0, R1);
- rgb[1] = _mm_packus_epi16(R2, R3);
- rgb[2] = _mm_packus_epi16(G0, G1);
- rgb[3] = _mm_packus_epi16(G2, G3);
- rgb[4] = _mm_packus_epi16(B0, B1);
- rgb[5] = _mm_packus_epi16(B2, B3);
+ rgb0 = _mm_packus_epi16(R0, R1);
+ rgb1 = _mm_packus_epi16(R2, R3);
+ rgb2 = _mm_packus_epi16(G0, G1);
+ rgb3 = _mm_packus_epi16(G2, G3);
+ rgb4 = _mm_packus_epi16(B0, B1);
+ rgb5 = _mm_packus_epi16(B2, B3);
// Pack as RGBRGBRGBRGB.
- PlanarTo24b(rgb, dst);
+ PlanarTo24b(&rgb0, &rgb1, &rgb2, &rgb3, &rgb4, &rgb5, dst);
y += 32;
u += 16;
@@ -413,7 +391,7 @@ static void YuvToBgrRow(const uint8_t* y, const uint8_t* u, const uint8_t* v,
int n;
for (n = 0; n + 32 <= len; n += 32, dst += 32 * 3) {
__m128i R0, R1, R2, R3, G0, G1, G2, G3, B0, B1, B2, B3;
- __m128i bgr[6];
+ __m128i bgr0, bgr1, bgr2, bgr3, bgr4, bgr5;
YUV420ToRGB(y + 0, u + 0, v + 0, &R0, &G0, &B0);
YUV420ToRGB(y + 8, u + 4, v + 4, &R1, &G1, &B1);
@@ -421,15 +399,15 @@ static void YuvToBgrRow(const uint8_t* y, const uint8_t* u, const uint8_t* v,
YUV420ToRGB(y + 24, u + 12, v + 12, &R3, &G3, &B3);
// Cast to 8b and store as BBBBGGGGRRRR.
- bgr[0] = _mm_packus_epi16(B0, B1);
- bgr[1] = _mm_packus_epi16(B2, B3);
- bgr[2] = _mm_packus_epi16(G0, G1);
- bgr[3] = _mm_packus_epi16(G2, G3);
- bgr[4] = _mm_packus_epi16(R0, R1);
- bgr[5] = _mm_packus_epi16(R2, R3);
+ bgr0 = _mm_packus_epi16(B0, B1);
+ bgr1 = _mm_packus_epi16(B2, B3);
+ bgr2 = _mm_packus_epi16(G0, G1);
+ bgr3 = _mm_packus_epi16(G2, G3);
+ bgr4 = _mm_packus_epi16(R0, R1);
+ bgr5 = _mm_packus_epi16(R2, R3);
// Pack as BGRBGRBGRBGR.
- PlanarTo24b(bgr, dst);
+ PlanarTo24b(&bgr0, &bgr1, &bgr2, &bgr3, &bgr4, &bgr5, dst);
y += 32;
u += 16;
@@ -499,25 +477,19 @@ static WEBP_INLINE void RGB24PackedToPlanar(const uint8_t* const rgb,
// Convert 8 packed ARGB to r[], g[], b[]
static WEBP_INLINE void RGB32PackedToPlanar(const uint32_t* const argb,
- __m128i* const r,
- __m128i* const g,
- __m128i* const b) {
+ __m128i* const rgb /*in[6]*/) {
const __m128i zero = _mm_setzero_si128();
- const __m128i in0 = LOAD_16(argb + 0); // argb3 | argb2 | argb1 | argb0
- const __m128i in1 = LOAD_16(argb + 4); // argb7 | argb6 | argb5 | argb4
- // column-wise transpose
- const __m128i A0 = _mm_unpacklo_epi8(in0, in1);
- const __m128i A1 = _mm_unpackhi_epi8(in0, in1);
- const __m128i B0 = _mm_unpacklo_epi8(A0, A1);
- const __m128i B1 = _mm_unpackhi_epi8(A0, A1);
- // C0 = g7 g6 ... g1 g0 | b7 b6 ... b1 b0
- // C1 = a7 a6 ... a1 a0 | r7 r6 ... r1 r0
- const __m128i C0 = _mm_unpacklo_epi8(B0, B1);
- const __m128i C1 = _mm_unpackhi_epi8(B0, B1);
- // store 16b
- *r = _mm_unpacklo_epi8(C1, zero);
- *g = _mm_unpackhi_epi8(C0, zero);
- *b = _mm_unpacklo_epi8(C0, zero);
+ __m128i a0 = LOAD_16(argb + 0);
+ __m128i a1 = LOAD_16(argb + 4);
+ __m128i a2 = LOAD_16(argb + 8);
+ __m128i a3 = LOAD_16(argb + 12);
+ VP8L32bToPlanar(&a0, &a1, &a2, &a3);
+ rgb[0] = _mm_unpacklo_epi8(a1, zero);
+ rgb[1] = _mm_unpackhi_epi8(a1, zero);
+ rgb[2] = _mm_unpacklo_epi8(a2, zero);
+ rgb[3] = _mm_unpackhi_epi8(a2, zero);
+ rgb[4] = _mm_unpacklo_epi8(a3, zero);
+ rgb[5] = _mm_unpackhi_epi8(a3, zero);
}
// This macro computes (RG * MULT_RG + GB * MULT_GB + ROUNDER) >> DESCALE_FIX
@@ -649,11 +621,10 @@ static void ConvertARGBToY(const uint32_t* argb, uint8_t* y, int width) {
const int max_width = width & ~15;
int i;
for (i = 0; i < max_width; i += 16) {
- __m128i r, g, b, Y0, Y1;
- RGB32PackedToPlanar(&argb[i + 0], &r, &g, &b);
- ConvertRGBToY(&r, &g, &b, &Y0);
- RGB32PackedToPlanar(&argb[i + 8], &r, &g, &b);
- ConvertRGBToY(&r, &g, &b, &Y1);
+ __m128i Y0, Y1, rgb[6];
+ RGB32PackedToPlanar(&argb[i], rgb);
+ ConvertRGBToY(&rgb[0], &rgb[2], &rgb[4], &Y0);
+ ConvertRGBToY(&rgb[1], &rgb[3], &rgb[5], &Y1);
STORE_16(_mm_packus_epi16(Y0, Y1), y + i);
}
for (; i < width; ++i) { // left-over
@@ -678,20 +649,18 @@ static void ConvertARGBToUV(const uint32_t* argb, uint8_t* u, uint8_t* v,
const int max_width = src_width & ~31;
int i;
for (i = 0; i < max_width; i += 32, u += 16, v += 16) {
- __m128i r0, g0, b0, r1, g1, b1, U0, V0, U1, V1;
- RGB32PackedToPlanar(&argb[i + 0], &r0, &g0, &b0);
- RGB32PackedToPlanar(&argb[i + 8], &r1, &g1, &b1);
- HorizontalAddPack(&r0, &r1, &r0);
- HorizontalAddPack(&g0, &g1, &g0);
- HorizontalAddPack(&b0, &b1, &b0);
- ConvertRGBToUV(&r0, &g0, &b0, &U0, &V0);
-
- RGB32PackedToPlanar(&argb[i + 16], &r0, &g0, &b0);
- RGB32PackedToPlanar(&argb[i + 24], &r1, &g1, &b1);
- HorizontalAddPack(&r0, &r1, &r0);
- HorizontalAddPack(&g0, &g1, &g0);
- HorizontalAddPack(&b0, &b1, &b0);
- ConvertRGBToUV(&r0, &g0, &b0, &U1, &V1);
+ __m128i rgb[6], U0, V0, U1, V1;
+ RGB32PackedToPlanar(&argb[i], rgb);
+ HorizontalAddPack(&rgb[0], &rgb[1], &rgb[0]);
+ HorizontalAddPack(&rgb[2], &rgb[3], &rgb[2]);
+ HorizontalAddPack(&rgb[4], &rgb[5], &rgb[4]);
+ ConvertRGBToUV(&rgb[0], &rgb[2], &rgb[4], &U0, &V0);
+
+ RGB32PackedToPlanar(&argb[i + 16], rgb);
+ HorizontalAddPack(&rgb[0], &rgb[1], &rgb[0]);
+ HorizontalAddPack(&rgb[2], &rgb[3], &rgb[2]);
+ HorizontalAddPack(&rgb[4], &rgb[5], &rgb[4]);
+ ConvertRGBToUV(&rgb[0], &rgb[2], &rgb[4], &U1, &V1);
U0 = _mm_packus_epi16(U0, U1);
V0 = _mm_packus_epi16(V0, V1);
@@ -767,9 +736,128 @@ WEBP_TSAN_IGNORE_FUNCTION void WebPInitConvertARGBToYUVSSE2(void) {
WebPConvertRGBA32ToUV = ConvertRGBA32ToUV;
}
+//------------------------------------------------------------------------------
+
+#define MAX_Y ((1 << 10) - 1) // 10b precision over 16b-arithmetic
+static uint16_t clip_y(int v) {
+ return (v < 0) ? 0 : (v > MAX_Y) ? MAX_Y : (uint16_t)v;
+}
+
+static uint64_t SharpYUVUpdateY_SSE2(const uint16_t* ref, const uint16_t* src,
+ uint16_t* dst, int len) {
+ uint64_t diff = 0;
+ uint32_t tmp[4];
+ int i;
+ const __m128i zero = _mm_setzero_si128();
+ const __m128i max = _mm_set1_epi16(MAX_Y);
+ const __m128i one = _mm_set1_epi16(1);
+ __m128i sum = zero;
+
+ for (i = 0; i + 8 <= len; i += 8) {
+ const __m128i A = _mm_loadu_si128((const __m128i*)(ref + i));
+ const __m128i B = _mm_loadu_si128((const __m128i*)(src + i));
+ const __m128i C = _mm_loadu_si128((const __m128i*)(dst + i));
+ const __m128i D = _mm_sub_epi16(A, B); // diff_y
+ const __m128i E = _mm_cmpgt_epi16(zero, D); // sign (-1 or 0)
+ const __m128i F = _mm_add_epi16(C, D); // new_y
+ const __m128i G = _mm_or_si128(E, one); // -1 or 1
+ const __m128i H = _mm_max_epi16(_mm_min_epi16(F, max), zero);
+ const __m128i I = _mm_madd_epi16(D, G); // sum(abs(...))
+ _mm_storeu_si128((__m128i*)(dst + i), H);
+ sum = _mm_add_epi32(sum, I);
+ }
+ _mm_storeu_si128((__m128i*)tmp, sum);
+ diff = tmp[3] + tmp[2] + tmp[1] + tmp[0];
+ for (; i < len; ++i) {
+ const int diff_y = ref[i] - src[i];
+ const int new_y = (int)dst[i] + diff_y;
+ dst[i] = clip_y(new_y);
+ diff += (uint64_t)abs(diff_y);
+ }
+ return diff;
+}
+
+static void SharpYUVUpdateRGB_SSE2(const int16_t* ref, const int16_t* src,
+ int16_t* dst, int len) {
+ int i = 0;
+ for (i = 0; i + 8 <= len; i += 8) {
+ const __m128i A = _mm_loadu_si128((const __m128i*)(ref + i));
+ const __m128i B = _mm_loadu_si128((const __m128i*)(src + i));
+ const __m128i C = _mm_loadu_si128((const __m128i*)(dst + i));
+ const __m128i D = _mm_sub_epi16(A, B); // diff_uv
+ const __m128i E = _mm_add_epi16(C, D); // new_uv
+ _mm_storeu_si128((__m128i*)(dst + i), E);
+ }
+ for (; i < len; ++i) {
+ const int diff_uv = ref[i] - src[i];
+ dst[i] += diff_uv;
+ }
+}
+
+static void SharpYUVFilterRow_SSE2(const int16_t* A, const int16_t* B, int len,
+ const uint16_t* best_y, uint16_t* out) {
+ int i;
+ const __m128i kCst8 = _mm_set1_epi16(8);
+ const __m128i max = _mm_set1_epi16(MAX_Y);
+ const __m128i zero = _mm_setzero_si128();
+ for (i = 0; i + 8 <= len; i += 8) {
+ const __m128i a0 = _mm_loadu_si128((const __m128i*)(A + i + 0));
+ const __m128i a1 = _mm_loadu_si128((const __m128i*)(A + i + 1));
+ const __m128i b0 = _mm_loadu_si128((const __m128i*)(B + i + 0));
+ const __m128i b1 = _mm_loadu_si128((const __m128i*)(B + i + 1));
+ const __m128i a0b1 = _mm_add_epi16(a0, b1);
+ const __m128i a1b0 = _mm_add_epi16(a1, b0);
+ const __m128i a0a1b0b1 = _mm_add_epi16(a0b1, a1b0); // A0+A1+B0+B1
+ const __m128i a0a1b0b1_8 = _mm_add_epi16(a0a1b0b1, kCst8);
+ const __m128i a0b1_2 = _mm_add_epi16(a0b1, a0b1); // 2*(A0+B1)
+ const __m128i a1b0_2 = _mm_add_epi16(a1b0, a1b0); // 2*(A1+B0)
+ const __m128i c0 = _mm_srai_epi16(_mm_add_epi16(a0b1_2, a0a1b0b1_8), 3);
+ const __m128i c1 = _mm_srai_epi16(_mm_add_epi16(a1b0_2, a0a1b0b1_8), 3);
+ const __m128i d0 = _mm_add_epi16(c1, a0);
+ const __m128i d1 = _mm_add_epi16(c0, a1);
+ const __m128i e0 = _mm_srai_epi16(d0, 1);
+ const __m128i e1 = _mm_srai_epi16(d1, 1);
+ const __m128i f0 = _mm_unpacklo_epi16(e0, e1);
+ const __m128i f1 = _mm_unpackhi_epi16(e0, e1);
+ const __m128i g0 = _mm_loadu_si128((const __m128i*)(best_y + 2 * i + 0));
+ const __m128i g1 = _mm_loadu_si128((const __m128i*)(best_y + 2 * i + 8));
+ const __m128i h0 = _mm_add_epi16(g0, f0);
+ const __m128i h1 = _mm_add_epi16(g1, f1);
+ const __m128i i0 = _mm_max_epi16(_mm_min_epi16(h0, max), zero);
+ const __m128i i1 = _mm_max_epi16(_mm_min_epi16(h1, max), zero);
+ _mm_storeu_si128((__m128i*)(out + 2 * i + 0), i0);
+ _mm_storeu_si128((__m128i*)(out + 2 * i + 8), i1);
+ }
+ for (; i < len; ++i) {
+ // (9 * A0 + 3 * A1 + 3 * B0 + B1 + 8) >> 4 =
+ // = (8 * A0 + 2 * (A1 + B0) + (A0 + A1 + B0 + B1 + 8)) >> 4
+ // We reuse the common sub-expressions.
+ const int a0b1 = A[i + 0] + B[i + 1];
+ const int a1b0 = A[i + 1] + B[i + 0];
+ const int a0a1b0b1 = a0b1 + a1b0 + 8;
+ const int v0 = (8 * A[i + 0] + 2 * a1b0 + a0a1b0b1) >> 4;
+ const int v1 = (8 * A[i + 1] + 2 * a0b1 + a0a1b0b1) >> 4;
+ out[2 * i + 0] = clip_y(best_y[2 * i + 0] + v0);
+ out[2 * i + 1] = clip_y(best_y[2 * i + 1] + v1);
+ }
+}
+
+#undef MAX_Y
+
+//------------------------------------------------------------------------------
+
+extern void WebPInitSharpYUVSSE2(void);
+
+WEBP_TSAN_IGNORE_FUNCTION void WebPInitSharpYUVSSE2(void) {
+ WebPSharpYUVUpdateY = SharpYUVUpdateY_SSE2;
+ WebPSharpYUVUpdateRGB = SharpYUVUpdateRGB_SSE2;
+ WebPSharpYUVFilterRow = SharpYUVFilterRow_SSE2;
+}
+
#else // !WEBP_USE_SSE2
WEBP_DSP_INIT_STUB(WebPInitSamplersSSE2)
WEBP_DSP_INIT_STUB(WebPInitConvertARGBToYUVSSE2)
+WEBP_DSP_INIT_STUB(WebPInitSharpYUVSSE2)
#endif // WEBP_USE_SSE2
diff --git a/thirdparty/libwebp/dsp/yuv_tables_sse2.h b/thirdparty/libwebp/dsp/yuv_tables_sse2.h
deleted file mode 100644
index 2b0f057518..0000000000
--- a/thirdparty/libwebp/dsp/yuv_tables_sse2.h
+++ /dev/null
@@ -1,536 +0,0 @@
-// Copyright 2014 Google Inc. All Rights Reserved.
-//
-// Use of this source code is governed by a BSD-style license
-// that can be found in the COPYING file in the root of the source
-// tree. An additional intellectual property rights grant can be found
-// in the file PATENTS. All contributing project authors may
-// be found in the AUTHORS file in the root of the source tree.
-// -----------------------------------------------------------------------------
-//
-// SSE2 tables for YUV->RGB conversion (12kB overall)
-//
-// Author: Skal (pascal.massimino@gmail.com)
-
-// This file is not compiled, but #include'd directly from yuv.c
-// Only used if WEBP_YUV_USE_SSE2_TABLES is defined.
-
-static const VP8kCstSSE2 VP8kYtoRGBA[256] = {
- {{0xfffb77b0, 0xfffb77b0, 0xfffb77b0, 0x003fc000}},
- {{0xfffbc235, 0xfffbc235, 0xfffbc235, 0x003fc000}},
- {{0xfffc0cba, 0xfffc0cba, 0xfffc0cba, 0x003fc000}},
- {{0xfffc573f, 0xfffc573f, 0xfffc573f, 0x003fc000}},
- {{0xfffca1c4, 0xfffca1c4, 0xfffca1c4, 0x003fc000}},
- {{0xfffcec49, 0xfffcec49, 0xfffcec49, 0x003fc000}},
- {{0xfffd36ce, 0xfffd36ce, 0xfffd36ce, 0x003fc000}},
- {{0xfffd8153, 0xfffd8153, 0xfffd8153, 0x003fc000}},
- {{0xfffdcbd8, 0xfffdcbd8, 0xfffdcbd8, 0x003fc000}},
- {{0xfffe165d, 0xfffe165d, 0xfffe165d, 0x003fc000}},
- {{0xfffe60e2, 0xfffe60e2, 0xfffe60e2, 0x003fc000}},
- {{0xfffeab67, 0xfffeab67, 0xfffeab67, 0x003fc000}},
- {{0xfffef5ec, 0xfffef5ec, 0xfffef5ec, 0x003fc000}},
- {{0xffff4071, 0xffff4071, 0xffff4071, 0x003fc000}},
- {{0xffff8af6, 0xffff8af6, 0xffff8af6, 0x003fc000}},
- {{0xffffd57b, 0xffffd57b, 0xffffd57b, 0x003fc000}},
- {{0x00002000, 0x00002000, 0x00002000, 0x003fc000}},
- {{0x00006a85, 0x00006a85, 0x00006a85, 0x003fc000}},
- {{0x0000b50a, 0x0000b50a, 0x0000b50a, 0x003fc000}},
- {{0x0000ff8f, 0x0000ff8f, 0x0000ff8f, 0x003fc000}},
- {{0x00014a14, 0x00014a14, 0x00014a14, 0x003fc000}},
- {{0x00019499, 0x00019499, 0x00019499, 0x003fc000}},
- {{0x0001df1e, 0x0001df1e, 0x0001df1e, 0x003fc000}},
- {{0x000229a3, 0x000229a3, 0x000229a3, 0x003fc000}},
- {{0x00027428, 0x00027428, 0x00027428, 0x003fc000}},
- {{0x0002bead, 0x0002bead, 0x0002bead, 0x003fc000}},
- {{0x00030932, 0x00030932, 0x00030932, 0x003fc000}},
- {{0x000353b7, 0x000353b7, 0x000353b7, 0x003fc000}},
- {{0x00039e3c, 0x00039e3c, 0x00039e3c, 0x003fc000}},
- {{0x0003e8c1, 0x0003e8c1, 0x0003e8c1, 0x003fc000}},
- {{0x00043346, 0x00043346, 0x00043346, 0x003fc000}},
- {{0x00047dcb, 0x00047dcb, 0x00047dcb, 0x003fc000}},
- {{0x0004c850, 0x0004c850, 0x0004c850, 0x003fc000}},
- {{0x000512d5, 0x000512d5, 0x000512d5, 0x003fc000}},
- {{0x00055d5a, 0x00055d5a, 0x00055d5a, 0x003fc000}},
- {{0x0005a7df, 0x0005a7df, 0x0005a7df, 0x003fc000}},
- {{0x0005f264, 0x0005f264, 0x0005f264, 0x003fc000}},
- {{0x00063ce9, 0x00063ce9, 0x00063ce9, 0x003fc000}},
- {{0x0006876e, 0x0006876e, 0x0006876e, 0x003fc000}},
- {{0x0006d1f3, 0x0006d1f3, 0x0006d1f3, 0x003fc000}},
- {{0x00071c78, 0x00071c78, 0x00071c78, 0x003fc000}},
- {{0x000766fd, 0x000766fd, 0x000766fd, 0x003fc000}},
- {{0x0007b182, 0x0007b182, 0x0007b182, 0x003fc000}},
- {{0x0007fc07, 0x0007fc07, 0x0007fc07, 0x003fc000}},
- {{0x0008468c, 0x0008468c, 0x0008468c, 0x003fc000}},
- {{0x00089111, 0x00089111, 0x00089111, 0x003fc000}},
- {{0x0008db96, 0x0008db96, 0x0008db96, 0x003fc000}},
- {{0x0009261b, 0x0009261b, 0x0009261b, 0x003fc000}},
- {{0x000970a0, 0x000970a0, 0x000970a0, 0x003fc000}},
- {{0x0009bb25, 0x0009bb25, 0x0009bb25, 0x003fc000}},
- {{0x000a05aa, 0x000a05aa, 0x000a05aa, 0x003fc000}},
- {{0x000a502f, 0x000a502f, 0x000a502f, 0x003fc000}},
- {{0x000a9ab4, 0x000a9ab4, 0x000a9ab4, 0x003fc000}},
- {{0x000ae539, 0x000ae539, 0x000ae539, 0x003fc000}},
- {{0x000b2fbe, 0x000b2fbe, 0x000b2fbe, 0x003fc000}},
- {{0x000b7a43, 0x000b7a43, 0x000b7a43, 0x003fc000}},
- {{0x000bc4c8, 0x000bc4c8, 0x000bc4c8, 0x003fc000}},
- {{0x000c0f4d, 0x000c0f4d, 0x000c0f4d, 0x003fc000}},
- {{0x000c59d2, 0x000c59d2, 0x000c59d2, 0x003fc000}},
- {{0x000ca457, 0x000ca457, 0x000ca457, 0x003fc000}},
- {{0x000ceedc, 0x000ceedc, 0x000ceedc, 0x003fc000}},
- {{0x000d3961, 0x000d3961, 0x000d3961, 0x003fc000}},
- {{0x000d83e6, 0x000d83e6, 0x000d83e6, 0x003fc000}},
- {{0x000dce6b, 0x000dce6b, 0x000dce6b, 0x003fc000}},
- {{0x000e18f0, 0x000e18f0, 0x000e18f0, 0x003fc000}},
- {{0x000e6375, 0x000e6375, 0x000e6375, 0x003fc000}},
- {{0x000eadfa, 0x000eadfa, 0x000eadfa, 0x003fc000}},
- {{0x000ef87f, 0x000ef87f, 0x000ef87f, 0x003fc000}},
- {{0x000f4304, 0x000f4304, 0x000f4304, 0x003fc000}},
- {{0x000f8d89, 0x000f8d89, 0x000f8d89, 0x003fc000}},
- {{0x000fd80e, 0x000fd80e, 0x000fd80e, 0x003fc000}},
- {{0x00102293, 0x00102293, 0x00102293, 0x003fc000}},
- {{0x00106d18, 0x00106d18, 0x00106d18, 0x003fc000}},
- {{0x0010b79d, 0x0010b79d, 0x0010b79d, 0x003fc000}},
- {{0x00110222, 0x00110222, 0x00110222, 0x003fc000}},
- {{0x00114ca7, 0x00114ca7, 0x00114ca7, 0x003fc000}},
- {{0x0011972c, 0x0011972c, 0x0011972c, 0x003fc000}},
- {{0x0011e1b1, 0x0011e1b1, 0x0011e1b1, 0x003fc000}},
- {{0x00122c36, 0x00122c36, 0x00122c36, 0x003fc000}},
- {{0x001276bb, 0x001276bb, 0x001276bb, 0x003fc000}},
- {{0x0012c140, 0x0012c140, 0x0012c140, 0x003fc000}},
- {{0x00130bc5, 0x00130bc5, 0x00130bc5, 0x003fc000}},
- {{0x0013564a, 0x0013564a, 0x0013564a, 0x003fc000}},
- {{0x0013a0cf, 0x0013a0cf, 0x0013a0cf, 0x003fc000}},
- {{0x0013eb54, 0x0013eb54, 0x0013eb54, 0x003fc000}},
- {{0x001435d9, 0x001435d9, 0x001435d9, 0x003fc000}},
- {{0x0014805e, 0x0014805e, 0x0014805e, 0x003fc000}},
- {{0x0014cae3, 0x0014cae3, 0x0014cae3, 0x003fc000}},
- {{0x00151568, 0x00151568, 0x00151568, 0x003fc000}},
- {{0x00155fed, 0x00155fed, 0x00155fed, 0x003fc000}},
- {{0x0015aa72, 0x0015aa72, 0x0015aa72, 0x003fc000}},
- {{0x0015f4f7, 0x0015f4f7, 0x0015f4f7, 0x003fc000}},
- {{0x00163f7c, 0x00163f7c, 0x00163f7c, 0x003fc000}},
- {{0x00168a01, 0x00168a01, 0x00168a01, 0x003fc000}},
- {{0x0016d486, 0x0016d486, 0x0016d486, 0x003fc000}},
- {{0x00171f0b, 0x00171f0b, 0x00171f0b, 0x003fc000}},
- {{0x00176990, 0x00176990, 0x00176990, 0x003fc000}},
- {{0x0017b415, 0x0017b415, 0x0017b415, 0x003fc000}},
- {{0x0017fe9a, 0x0017fe9a, 0x0017fe9a, 0x003fc000}},
- {{0x0018491f, 0x0018491f, 0x0018491f, 0x003fc000}},
- {{0x001893a4, 0x001893a4, 0x001893a4, 0x003fc000}},
- {{0x0018de29, 0x0018de29, 0x0018de29, 0x003fc000}},
- {{0x001928ae, 0x001928ae, 0x001928ae, 0x003fc000}},
- {{0x00197333, 0x00197333, 0x00197333, 0x003fc000}},
- {{0x0019bdb8, 0x0019bdb8, 0x0019bdb8, 0x003fc000}},
- {{0x001a083d, 0x001a083d, 0x001a083d, 0x003fc000}},
- {{0x001a52c2, 0x001a52c2, 0x001a52c2, 0x003fc000}},
- {{0x001a9d47, 0x001a9d47, 0x001a9d47, 0x003fc000}},
- {{0x001ae7cc, 0x001ae7cc, 0x001ae7cc, 0x003fc000}},
- {{0x001b3251, 0x001b3251, 0x001b3251, 0x003fc000}},
- {{0x001b7cd6, 0x001b7cd6, 0x001b7cd6, 0x003fc000}},
- {{0x001bc75b, 0x001bc75b, 0x001bc75b, 0x003fc000}},
- {{0x001c11e0, 0x001c11e0, 0x001c11e0, 0x003fc000}},
- {{0x001c5c65, 0x001c5c65, 0x001c5c65, 0x003fc000}},
- {{0x001ca6ea, 0x001ca6ea, 0x001ca6ea, 0x003fc000}},
- {{0x001cf16f, 0x001cf16f, 0x001cf16f, 0x003fc000}},
- {{0x001d3bf4, 0x001d3bf4, 0x001d3bf4, 0x003fc000}},
- {{0x001d8679, 0x001d8679, 0x001d8679, 0x003fc000}},
- {{0x001dd0fe, 0x001dd0fe, 0x001dd0fe, 0x003fc000}},
- {{0x001e1b83, 0x001e1b83, 0x001e1b83, 0x003fc000}},
- {{0x001e6608, 0x001e6608, 0x001e6608, 0x003fc000}},
- {{0x001eb08d, 0x001eb08d, 0x001eb08d, 0x003fc000}},
- {{0x001efb12, 0x001efb12, 0x001efb12, 0x003fc000}},
- {{0x001f4597, 0x001f4597, 0x001f4597, 0x003fc000}},
- {{0x001f901c, 0x001f901c, 0x001f901c, 0x003fc000}},
- {{0x001fdaa1, 0x001fdaa1, 0x001fdaa1, 0x003fc000}},
- {{0x00202526, 0x00202526, 0x00202526, 0x003fc000}},
- {{0x00206fab, 0x00206fab, 0x00206fab, 0x003fc000}},
- {{0x0020ba30, 0x0020ba30, 0x0020ba30, 0x003fc000}},
- {{0x002104b5, 0x002104b5, 0x002104b5, 0x003fc000}},
- {{0x00214f3a, 0x00214f3a, 0x00214f3a, 0x003fc000}},
- {{0x002199bf, 0x002199bf, 0x002199bf, 0x003fc000}},
- {{0x0021e444, 0x0021e444, 0x0021e444, 0x003fc000}},
- {{0x00222ec9, 0x00222ec9, 0x00222ec9, 0x003fc000}},
- {{0x0022794e, 0x0022794e, 0x0022794e, 0x003fc000}},
- {{0x0022c3d3, 0x0022c3d3, 0x0022c3d3, 0x003fc000}},
- {{0x00230e58, 0x00230e58, 0x00230e58, 0x003fc000}},
- {{0x002358dd, 0x002358dd, 0x002358dd, 0x003fc000}},
- {{0x0023a362, 0x0023a362, 0x0023a362, 0x003fc000}},
- {{0x0023ede7, 0x0023ede7, 0x0023ede7, 0x003fc000}},
- {{0x0024386c, 0x0024386c, 0x0024386c, 0x003fc000}},
- {{0x002482f1, 0x002482f1, 0x002482f1, 0x003fc000}},
- {{0x0024cd76, 0x0024cd76, 0x0024cd76, 0x003fc000}},
- {{0x002517fb, 0x002517fb, 0x002517fb, 0x003fc000}},
- {{0x00256280, 0x00256280, 0x00256280, 0x003fc000}},
- {{0x0025ad05, 0x0025ad05, 0x0025ad05, 0x003fc000}},
- {{0x0025f78a, 0x0025f78a, 0x0025f78a, 0x003fc000}},
- {{0x0026420f, 0x0026420f, 0x0026420f, 0x003fc000}},
- {{0x00268c94, 0x00268c94, 0x00268c94, 0x003fc000}},
- {{0x0026d719, 0x0026d719, 0x0026d719, 0x003fc000}},
- {{0x0027219e, 0x0027219e, 0x0027219e, 0x003fc000}},
- {{0x00276c23, 0x00276c23, 0x00276c23, 0x003fc000}},
- {{0x0027b6a8, 0x0027b6a8, 0x0027b6a8, 0x003fc000}},
- {{0x0028012d, 0x0028012d, 0x0028012d, 0x003fc000}},
- {{0x00284bb2, 0x00284bb2, 0x00284bb2, 0x003fc000}},
- {{0x00289637, 0x00289637, 0x00289637, 0x003fc000}},
- {{0x0028e0bc, 0x0028e0bc, 0x0028e0bc, 0x003fc000}},
- {{0x00292b41, 0x00292b41, 0x00292b41, 0x003fc000}},
- {{0x002975c6, 0x002975c6, 0x002975c6, 0x003fc000}},
- {{0x0029c04b, 0x0029c04b, 0x0029c04b, 0x003fc000}},
- {{0x002a0ad0, 0x002a0ad0, 0x002a0ad0, 0x003fc000}},
- {{0x002a5555, 0x002a5555, 0x002a5555, 0x003fc000}},
- {{0x002a9fda, 0x002a9fda, 0x002a9fda, 0x003fc000}},
- {{0x002aea5f, 0x002aea5f, 0x002aea5f, 0x003fc000}},
- {{0x002b34e4, 0x002b34e4, 0x002b34e4, 0x003fc000}},
- {{0x002b7f69, 0x002b7f69, 0x002b7f69, 0x003fc000}},
- {{0x002bc9ee, 0x002bc9ee, 0x002bc9ee, 0x003fc000}},
- {{0x002c1473, 0x002c1473, 0x002c1473, 0x003fc000}},
- {{0x002c5ef8, 0x002c5ef8, 0x002c5ef8, 0x003fc000}},
- {{0x002ca97d, 0x002ca97d, 0x002ca97d, 0x003fc000}},
- {{0x002cf402, 0x002cf402, 0x002cf402, 0x003fc000}},
- {{0x002d3e87, 0x002d3e87, 0x002d3e87, 0x003fc000}},
- {{0x002d890c, 0x002d890c, 0x002d890c, 0x003fc000}},
- {{0x002dd391, 0x002dd391, 0x002dd391, 0x003fc000}},
- {{0x002e1e16, 0x002e1e16, 0x002e1e16, 0x003fc000}},
- {{0x002e689b, 0x002e689b, 0x002e689b, 0x003fc000}},
- {{0x002eb320, 0x002eb320, 0x002eb320, 0x003fc000}},
- {{0x002efda5, 0x002efda5, 0x002efda5, 0x003fc000}},
- {{0x002f482a, 0x002f482a, 0x002f482a, 0x003fc000}},
- {{0x002f92af, 0x002f92af, 0x002f92af, 0x003fc000}},
- {{0x002fdd34, 0x002fdd34, 0x002fdd34, 0x003fc000}},
- {{0x003027b9, 0x003027b9, 0x003027b9, 0x003fc000}},
- {{0x0030723e, 0x0030723e, 0x0030723e, 0x003fc000}},
- {{0x0030bcc3, 0x0030bcc3, 0x0030bcc3, 0x003fc000}},
- {{0x00310748, 0x00310748, 0x00310748, 0x003fc000}},
- {{0x003151cd, 0x003151cd, 0x003151cd, 0x003fc000}},
- {{0x00319c52, 0x00319c52, 0x00319c52, 0x003fc000}},
- {{0x0031e6d7, 0x0031e6d7, 0x0031e6d7, 0x003fc000}},
- {{0x0032315c, 0x0032315c, 0x0032315c, 0x003fc000}},
- {{0x00327be1, 0x00327be1, 0x00327be1, 0x003fc000}},
- {{0x0032c666, 0x0032c666, 0x0032c666, 0x003fc000}},
- {{0x003310eb, 0x003310eb, 0x003310eb, 0x003fc000}},
- {{0x00335b70, 0x00335b70, 0x00335b70, 0x003fc000}},
- {{0x0033a5f5, 0x0033a5f5, 0x0033a5f5, 0x003fc000}},
- {{0x0033f07a, 0x0033f07a, 0x0033f07a, 0x003fc000}},
- {{0x00343aff, 0x00343aff, 0x00343aff, 0x003fc000}},
- {{0x00348584, 0x00348584, 0x00348584, 0x003fc000}},
- {{0x0034d009, 0x0034d009, 0x0034d009, 0x003fc000}},
- {{0x00351a8e, 0x00351a8e, 0x00351a8e, 0x003fc000}},
- {{0x00356513, 0x00356513, 0x00356513, 0x003fc000}},
- {{0x0035af98, 0x0035af98, 0x0035af98, 0x003fc000}},
- {{0x0035fa1d, 0x0035fa1d, 0x0035fa1d, 0x003fc000}},
- {{0x003644a2, 0x003644a2, 0x003644a2, 0x003fc000}},
- {{0x00368f27, 0x00368f27, 0x00368f27, 0x003fc000}},
- {{0x0036d9ac, 0x0036d9ac, 0x0036d9ac, 0x003fc000}},
- {{0x00372431, 0x00372431, 0x00372431, 0x003fc000}},
- {{0x00376eb6, 0x00376eb6, 0x00376eb6, 0x003fc000}},
- {{0x0037b93b, 0x0037b93b, 0x0037b93b, 0x003fc000}},
- {{0x003803c0, 0x003803c0, 0x003803c0, 0x003fc000}},
- {{0x00384e45, 0x00384e45, 0x00384e45, 0x003fc000}},
- {{0x003898ca, 0x003898ca, 0x003898ca, 0x003fc000}},
- {{0x0038e34f, 0x0038e34f, 0x0038e34f, 0x003fc000}},
- {{0x00392dd4, 0x00392dd4, 0x00392dd4, 0x003fc000}},
- {{0x00397859, 0x00397859, 0x00397859, 0x003fc000}},
- {{0x0039c2de, 0x0039c2de, 0x0039c2de, 0x003fc000}},
- {{0x003a0d63, 0x003a0d63, 0x003a0d63, 0x003fc000}},
- {{0x003a57e8, 0x003a57e8, 0x003a57e8, 0x003fc000}},
- {{0x003aa26d, 0x003aa26d, 0x003aa26d, 0x003fc000}},
- {{0x003aecf2, 0x003aecf2, 0x003aecf2, 0x003fc000}},
- {{0x003b3777, 0x003b3777, 0x003b3777, 0x003fc000}},
- {{0x003b81fc, 0x003b81fc, 0x003b81fc, 0x003fc000}},
- {{0x003bcc81, 0x003bcc81, 0x003bcc81, 0x003fc000}},
- {{0x003c1706, 0x003c1706, 0x003c1706, 0x003fc000}},
- {{0x003c618b, 0x003c618b, 0x003c618b, 0x003fc000}},
- {{0x003cac10, 0x003cac10, 0x003cac10, 0x003fc000}},
- {{0x003cf695, 0x003cf695, 0x003cf695, 0x003fc000}},
- {{0x003d411a, 0x003d411a, 0x003d411a, 0x003fc000}},
- {{0x003d8b9f, 0x003d8b9f, 0x003d8b9f, 0x003fc000}},
- {{0x003dd624, 0x003dd624, 0x003dd624, 0x003fc000}},
- {{0x003e20a9, 0x003e20a9, 0x003e20a9, 0x003fc000}},
- {{0x003e6b2e, 0x003e6b2e, 0x003e6b2e, 0x003fc000}},
- {{0x003eb5b3, 0x003eb5b3, 0x003eb5b3, 0x003fc000}},
- {{0x003f0038, 0x003f0038, 0x003f0038, 0x003fc000}},
- {{0x003f4abd, 0x003f4abd, 0x003f4abd, 0x003fc000}},
- {{0x003f9542, 0x003f9542, 0x003f9542, 0x003fc000}},
- {{0x003fdfc7, 0x003fdfc7, 0x003fdfc7, 0x003fc000}},
- {{0x00402a4c, 0x00402a4c, 0x00402a4c, 0x003fc000}},
- {{0x004074d1, 0x004074d1, 0x004074d1, 0x003fc000}},
- {{0x0040bf56, 0x0040bf56, 0x0040bf56, 0x003fc000}},
- {{0x004109db, 0x004109db, 0x004109db, 0x003fc000}},
- {{0x00415460, 0x00415460, 0x00415460, 0x003fc000}},
- {{0x00419ee5, 0x00419ee5, 0x00419ee5, 0x003fc000}},
- {{0x0041e96a, 0x0041e96a, 0x0041e96a, 0x003fc000}},
- {{0x004233ef, 0x004233ef, 0x004233ef, 0x003fc000}},
- {{0x00427e74, 0x00427e74, 0x00427e74, 0x003fc000}},
- {{0x0042c8f9, 0x0042c8f9, 0x0042c8f9, 0x003fc000}},
- {{0x0043137e, 0x0043137e, 0x0043137e, 0x003fc000}},
- {{0x00435e03, 0x00435e03, 0x00435e03, 0x003fc000}},
- {{0x0043a888, 0x0043a888, 0x0043a888, 0x003fc000}},
- {{0x0043f30d, 0x0043f30d, 0x0043f30d, 0x003fc000}},
- {{0x00443d92, 0x00443d92, 0x00443d92, 0x003fc000}},
- {{0x00448817, 0x00448817, 0x00448817, 0x003fc000}},
- {{0x0044d29c, 0x0044d29c, 0x0044d29c, 0x003fc000}},
- {{0x00451d21, 0x00451d21, 0x00451d21, 0x003fc000}},
- {{0x004567a6, 0x004567a6, 0x004567a6, 0x003fc000}},
- {{0x0045b22b, 0x0045b22b, 0x0045b22b, 0x003fc000}}
-};
-
-static const VP8kCstSSE2 VP8kUtoRGBA[256] = {
- {{0, 0x000c8980, 0xffbf7300, 0}}, {{0, 0x000c706d, 0xffbff41a, 0}},
- {{0, 0x000c575a, 0xffc07534, 0}}, {{0, 0x000c3e47, 0xffc0f64e, 0}},
- {{0, 0x000c2534, 0xffc17768, 0}}, {{0, 0x000c0c21, 0xffc1f882, 0}},
- {{0, 0x000bf30e, 0xffc2799c, 0}}, {{0, 0x000bd9fb, 0xffc2fab6, 0}},
- {{0, 0x000bc0e8, 0xffc37bd0, 0}}, {{0, 0x000ba7d5, 0xffc3fcea, 0}},
- {{0, 0x000b8ec2, 0xffc47e04, 0}}, {{0, 0x000b75af, 0xffc4ff1e, 0}},
- {{0, 0x000b5c9c, 0xffc58038, 0}}, {{0, 0x000b4389, 0xffc60152, 0}},
- {{0, 0x000b2a76, 0xffc6826c, 0}}, {{0, 0x000b1163, 0xffc70386, 0}},
- {{0, 0x000af850, 0xffc784a0, 0}}, {{0, 0x000adf3d, 0xffc805ba, 0}},
- {{0, 0x000ac62a, 0xffc886d4, 0}}, {{0, 0x000aad17, 0xffc907ee, 0}},
- {{0, 0x000a9404, 0xffc98908, 0}}, {{0, 0x000a7af1, 0xffca0a22, 0}},
- {{0, 0x000a61de, 0xffca8b3c, 0}}, {{0, 0x000a48cb, 0xffcb0c56, 0}},
- {{0, 0x000a2fb8, 0xffcb8d70, 0}}, {{0, 0x000a16a5, 0xffcc0e8a, 0}},
- {{0, 0x0009fd92, 0xffcc8fa4, 0}}, {{0, 0x0009e47f, 0xffcd10be, 0}},
- {{0, 0x0009cb6c, 0xffcd91d8, 0}}, {{0, 0x0009b259, 0xffce12f2, 0}},
- {{0, 0x00099946, 0xffce940c, 0}}, {{0, 0x00098033, 0xffcf1526, 0}},
- {{0, 0x00096720, 0xffcf9640, 0}}, {{0, 0x00094e0d, 0xffd0175a, 0}},
- {{0, 0x000934fa, 0xffd09874, 0}}, {{0, 0x00091be7, 0xffd1198e, 0}},
- {{0, 0x000902d4, 0xffd19aa8, 0}}, {{0, 0x0008e9c1, 0xffd21bc2, 0}},
- {{0, 0x0008d0ae, 0xffd29cdc, 0}}, {{0, 0x0008b79b, 0xffd31df6, 0}},
- {{0, 0x00089e88, 0xffd39f10, 0}}, {{0, 0x00088575, 0xffd4202a, 0}},
- {{0, 0x00086c62, 0xffd4a144, 0}}, {{0, 0x0008534f, 0xffd5225e, 0}},
- {{0, 0x00083a3c, 0xffd5a378, 0}}, {{0, 0x00082129, 0xffd62492, 0}},
- {{0, 0x00080816, 0xffd6a5ac, 0}}, {{0, 0x0007ef03, 0xffd726c6, 0}},
- {{0, 0x0007d5f0, 0xffd7a7e0, 0}}, {{0, 0x0007bcdd, 0xffd828fa, 0}},
- {{0, 0x0007a3ca, 0xffd8aa14, 0}}, {{0, 0x00078ab7, 0xffd92b2e, 0}},
- {{0, 0x000771a4, 0xffd9ac48, 0}}, {{0, 0x00075891, 0xffda2d62, 0}},
- {{0, 0x00073f7e, 0xffdaae7c, 0}}, {{0, 0x0007266b, 0xffdb2f96, 0}},
- {{0, 0x00070d58, 0xffdbb0b0, 0}}, {{0, 0x0006f445, 0xffdc31ca, 0}},
- {{0, 0x0006db32, 0xffdcb2e4, 0}}, {{0, 0x0006c21f, 0xffdd33fe, 0}},
- {{0, 0x0006a90c, 0xffddb518, 0}}, {{0, 0x00068ff9, 0xffde3632, 0}},
- {{0, 0x000676e6, 0xffdeb74c, 0}}, {{0, 0x00065dd3, 0xffdf3866, 0}},
- {{0, 0x000644c0, 0xffdfb980, 0}}, {{0, 0x00062bad, 0xffe03a9a, 0}},
- {{0, 0x0006129a, 0xffe0bbb4, 0}}, {{0, 0x0005f987, 0xffe13cce, 0}},
- {{0, 0x0005e074, 0xffe1bde8, 0}}, {{0, 0x0005c761, 0xffe23f02, 0}},
- {{0, 0x0005ae4e, 0xffe2c01c, 0}}, {{0, 0x0005953b, 0xffe34136, 0}},
- {{0, 0x00057c28, 0xffe3c250, 0}}, {{0, 0x00056315, 0xffe4436a, 0}},
- {{0, 0x00054a02, 0xffe4c484, 0}}, {{0, 0x000530ef, 0xffe5459e, 0}},
- {{0, 0x000517dc, 0xffe5c6b8, 0}}, {{0, 0x0004fec9, 0xffe647d2, 0}},
- {{0, 0x0004e5b6, 0xffe6c8ec, 0}}, {{0, 0x0004cca3, 0xffe74a06, 0}},
- {{0, 0x0004b390, 0xffe7cb20, 0}}, {{0, 0x00049a7d, 0xffe84c3a, 0}},
- {{0, 0x0004816a, 0xffe8cd54, 0}}, {{0, 0x00046857, 0xffe94e6e, 0}},
- {{0, 0x00044f44, 0xffe9cf88, 0}}, {{0, 0x00043631, 0xffea50a2, 0}},
- {{0, 0x00041d1e, 0xffead1bc, 0}}, {{0, 0x0004040b, 0xffeb52d6, 0}},
- {{0, 0x0003eaf8, 0xffebd3f0, 0}}, {{0, 0x0003d1e5, 0xffec550a, 0}},
- {{0, 0x0003b8d2, 0xffecd624, 0}}, {{0, 0x00039fbf, 0xffed573e, 0}},
- {{0, 0x000386ac, 0xffedd858, 0}}, {{0, 0x00036d99, 0xffee5972, 0}},
- {{0, 0x00035486, 0xffeeda8c, 0}}, {{0, 0x00033b73, 0xffef5ba6, 0}},
- {{0, 0x00032260, 0xffefdcc0, 0}}, {{0, 0x0003094d, 0xfff05dda, 0}},
- {{0, 0x0002f03a, 0xfff0def4, 0}}, {{0, 0x0002d727, 0xfff1600e, 0}},
- {{0, 0x0002be14, 0xfff1e128, 0}}, {{0, 0x0002a501, 0xfff26242, 0}},
- {{0, 0x00028bee, 0xfff2e35c, 0}}, {{0, 0x000272db, 0xfff36476, 0}},
- {{0, 0x000259c8, 0xfff3e590, 0}}, {{0, 0x000240b5, 0xfff466aa, 0}},
- {{0, 0x000227a2, 0xfff4e7c4, 0}}, {{0, 0x00020e8f, 0xfff568de, 0}},
- {{0, 0x0001f57c, 0xfff5e9f8, 0}}, {{0, 0x0001dc69, 0xfff66b12, 0}},
- {{0, 0x0001c356, 0xfff6ec2c, 0}}, {{0, 0x0001aa43, 0xfff76d46, 0}},
- {{0, 0x00019130, 0xfff7ee60, 0}}, {{0, 0x0001781d, 0xfff86f7a, 0}},
- {{0, 0x00015f0a, 0xfff8f094, 0}}, {{0, 0x000145f7, 0xfff971ae, 0}},
- {{0, 0x00012ce4, 0xfff9f2c8, 0}}, {{0, 0x000113d1, 0xfffa73e2, 0}},
- {{0, 0x0000fabe, 0xfffaf4fc, 0}}, {{0, 0x0000e1ab, 0xfffb7616, 0}},
- {{0, 0x0000c898, 0xfffbf730, 0}}, {{0, 0x0000af85, 0xfffc784a, 0}},
- {{0, 0x00009672, 0xfffcf964, 0}}, {{0, 0x00007d5f, 0xfffd7a7e, 0}},
- {{0, 0x0000644c, 0xfffdfb98, 0}}, {{0, 0x00004b39, 0xfffe7cb2, 0}},
- {{0, 0x00003226, 0xfffefdcc, 0}}, {{0, 0x00001913, 0xffff7ee6, 0}},
- {{0, 0x00000000, 0x00000000, 0}}, {{0, 0xffffe6ed, 0x0000811a, 0}},
- {{0, 0xffffcdda, 0x00010234, 0}}, {{0, 0xffffb4c7, 0x0001834e, 0}},
- {{0, 0xffff9bb4, 0x00020468, 0}}, {{0, 0xffff82a1, 0x00028582, 0}},
- {{0, 0xffff698e, 0x0003069c, 0}}, {{0, 0xffff507b, 0x000387b6, 0}},
- {{0, 0xffff3768, 0x000408d0, 0}}, {{0, 0xffff1e55, 0x000489ea, 0}},
- {{0, 0xffff0542, 0x00050b04, 0}}, {{0, 0xfffeec2f, 0x00058c1e, 0}},
- {{0, 0xfffed31c, 0x00060d38, 0}}, {{0, 0xfffeba09, 0x00068e52, 0}},
- {{0, 0xfffea0f6, 0x00070f6c, 0}}, {{0, 0xfffe87e3, 0x00079086, 0}},
- {{0, 0xfffe6ed0, 0x000811a0, 0}}, {{0, 0xfffe55bd, 0x000892ba, 0}},
- {{0, 0xfffe3caa, 0x000913d4, 0}}, {{0, 0xfffe2397, 0x000994ee, 0}},
- {{0, 0xfffe0a84, 0x000a1608, 0}}, {{0, 0xfffdf171, 0x000a9722, 0}},
- {{0, 0xfffdd85e, 0x000b183c, 0}}, {{0, 0xfffdbf4b, 0x000b9956, 0}},
- {{0, 0xfffda638, 0x000c1a70, 0}}, {{0, 0xfffd8d25, 0x000c9b8a, 0}},
- {{0, 0xfffd7412, 0x000d1ca4, 0}}, {{0, 0xfffd5aff, 0x000d9dbe, 0}},
- {{0, 0xfffd41ec, 0x000e1ed8, 0}}, {{0, 0xfffd28d9, 0x000e9ff2, 0}},
- {{0, 0xfffd0fc6, 0x000f210c, 0}}, {{0, 0xfffcf6b3, 0x000fa226, 0}},
- {{0, 0xfffcdda0, 0x00102340, 0}}, {{0, 0xfffcc48d, 0x0010a45a, 0}},
- {{0, 0xfffcab7a, 0x00112574, 0}}, {{0, 0xfffc9267, 0x0011a68e, 0}},
- {{0, 0xfffc7954, 0x001227a8, 0}}, {{0, 0xfffc6041, 0x0012a8c2, 0}},
- {{0, 0xfffc472e, 0x001329dc, 0}}, {{0, 0xfffc2e1b, 0x0013aaf6, 0}},
- {{0, 0xfffc1508, 0x00142c10, 0}}, {{0, 0xfffbfbf5, 0x0014ad2a, 0}},
- {{0, 0xfffbe2e2, 0x00152e44, 0}}, {{0, 0xfffbc9cf, 0x0015af5e, 0}},
- {{0, 0xfffbb0bc, 0x00163078, 0}}, {{0, 0xfffb97a9, 0x0016b192, 0}},
- {{0, 0xfffb7e96, 0x001732ac, 0}}, {{0, 0xfffb6583, 0x0017b3c6, 0}},
- {{0, 0xfffb4c70, 0x001834e0, 0}}, {{0, 0xfffb335d, 0x0018b5fa, 0}},
- {{0, 0xfffb1a4a, 0x00193714, 0}}, {{0, 0xfffb0137, 0x0019b82e, 0}},
- {{0, 0xfffae824, 0x001a3948, 0}}, {{0, 0xfffacf11, 0x001aba62, 0}},
- {{0, 0xfffab5fe, 0x001b3b7c, 0}}, {{0, 0xfffa9ceb, 0x001bbc96, 0}},
- {{0, 0xfffa83d8, 0x001c3db0, 0}}, {{0, 0xfffa6ac5, 0x001cbeca, 0}},
- {{0, 0xfffa51b2, 0x001d3fe4, 0}}, {{0, 0xfffa389f, 0x001dc0fe, 0}},
- {{0, 0xfffa1f8c, 0x001e4218, 0}}, {{0, 0xfffa0679, 0x001ec332, 0}},
- {{0, 0xfff9ed66, 0x001f444c, 0}}, {{0, 0xfff9d453, 0x001fc566, 0}},
- {{0, 0xfff9bb40, 0x00204680, 0}}, {{0, 0xfff9a22d, 0x0020c79a, 0}},
- {{0, 0xfff9891a, 0x002148b4, 0}}, {{0, 0xfff97007, 0x0021c9ce, 0}},
- {{0, 0xfff956f4, 0x00224ae8, 0}}, {{0, 0xfff93de1, 0x0022cc02, 0}},
- {{0, 0xfff924ce, 0x00234d1c, 0}}, {{0, 0xfff90bbb, 0x0023ce36, 0}},
- {{0, 0xfff8f2a8, 0x00244f50, 0}}, {{0, 0xfff8d995, 0x0024d06a, 0}},
- {{0, 0xfff8c082, 0x00255184, 0}}, {{0, 0xfff8a76f, 0x0025d29e, 0}},
- {{0, 0xfff88e5c, 0x002653b8, 0}}, {{0, 0xfff87549, 0x0026d4d2, 0}},
- {{0, 0xfff85c36, 0x002755ec, 0}}, {{0, 0xfff84323, 0x0027d706, 0}},
- {{0, 0xfff82a10, 0x00285820, 0}}, {{0, 0xfff810fd, 0x0028d93a, 0}},
- {{0, 0xfff7f7ea, 0x00295a54, 0}}, {{0, 0xfff7ded7, 0x0029db6e, 0}},
- {{0, 0xfff7c5c4, 0x002a5c88, 0}}, {{0, 0xfff7acb1, 0x002adda2, 0}},
- {{0, 0xfff7939e, 0x002b5ebc, 0}}, {{0, 0xfff77a8b, 0x002bdfd6, 0}},
- {{0, 0xfff76178, 0x002c60f0, 0}}, {{0, 0xfff74865, 0x002ce20a, 0}},
- {{0, 0xfff72f52, 0x002d6324, 0}}, {{0, 0xfff7163f, 0x002de43e, 0}},
- {{0, 0xfff6fd2c, 0x002e6558, 0}}, {{0, 0xfff6e419, 0x002ee672, 0}},
- {{0, 0xfff6cb06, 0x002f678c, 0}}, {{0, 0xfff6b1f3, 0x002fe8a6, 0}},
- {{0, 0xfff698e0, 0x003069c0, 0}}, {{0, 0xfff67fcd, 0x0030eada, 0}},
- {{0, 0xfff666ba, 0x00316bf4, 0}}, {{0, 0xfff64da7, 0x0031ed0e, 0}},
- {{0, 0xfff63494, 0x00326e28, 0}}, {{0, 0xfff61b81, 0x0032ef42, 0}},
- {{0, 0xfff6026e, 0x0033705c, 0}}, {{0, 0xfff5e95b, 0x0033f176, 0}},
- {{0, 0xfff5d048, 0x00347290, 0}}, {{0, 0xfff5b735, 0x0034f3aa, 0}},
- {{0, 0xfff59e22, 0x003574c4, 0}}, {{0, 0xfff5850f, 0x0035f5de, 0}},
- {{0, 0xfff56bfc, 0x003676f8, 0}}, {{0, 0xfff552e9, 0x0036f812, 0}},
- {{0, 0xfff539d6, 0x0037792c, 0}}, {{0, 0xfff520c3, 0x0037fa46, 0}},
- {{0, 0xfff507b0, 0x00387b60, 0}}, {{0, 0xfff4ee9d, 0x0038fc7a, 0}},
- {{0, 0xfff4d58a, 0x00397d94, 0}}, {{0, 0xfff4bc77, 0x0039feae, 0}},
- {{0, 0xfff4a364, 0x003a7fc8, 0}}, {{0, 0xfff48a51, 0x003b00e2, 0}},
- {{0, 0xfff4713e, 0x003b81fc, 0}}, {{0, 0xfff4582b, 0x003c0316, 0}},
- {{0, 0xfff43f18, 0x003c8430, 0}}, {{0, 0xfff42605, 0x003d054a, 0}},
- {{0, 0xfff40cf2, 0x003d8664, 0}}, {{0, 0xfff3f3df, 0x003e077e, 0}},
- {{0, 0xfff3dacc, 0x003e8898, 0}}, {{0, 0xfff3c1b9, 0x003f09b2, 0}},
- {{0, 0xfff3a8a6, 0x003f8acc, 0}}, {{0, 0xfff38f93, 0x00400be6, 0}}
-};
-
-static VP8kCstSSE2 VP8kVtoRGBA[256] = {
- {{0xffcced80, 0x001a0400, 0, 0}}, {{0xffcd53a5, 0x0019cff8, 0, 0}},
- {{0xffcdb9ca, 0x00199bf0, 0, 0}}, {{0xffce1fef, 0x001967e8, 0, 0}},
- {{0xffce8614, 0x001933e0, 0, 0}}, {{0xffceec39, 0x0018ffd8, 0, 0}},
- {{0xffcf525e, 0x0018cbd0, 0, 0}}, {{0xffcfb883, 0x001897c8, 0, 0}},
- {{0xffd01ea8, 0x001863c0, 0, 0}}, {{0xffd084cd, 0x00182fb8, 0, 0}},
- {{0xffd0eaf2, 0x0017fbb0, 0, 0}}, {{0xffd15117, 0x0017c7a8, 0, 0}},
- {{0xffd1b73c, 0x001793a0, 0, 0}}, {{0xffd21d61, 0x00175f98, 0, 0}},
- {{0xffd28386, 0x00172b90, 0, 0}}, {{0xffd2e9ab, 0x0016f788, 0, 0}},
- {{0xffd34fd0, 0x0016c380, 0, 0}}, {{0xffd3b5f5, 0x00168f78, 0, 0}},
- {{0xffd41c1a, 0x00165b70, 0, 0}}, {{0xffd4823f, 0x00162768, 0, 0}},
- {{0xffd4e864, 0x0015f360, 0, 0}}, {{0xffd54e89, 0x0015bf58, 0, 0}},
- {{0xffd5b4ae, 0x00158b50, 0, 0}}, {{0xffd61ad3, 0x00155748, 0, 0}},
- {{0xffd680f8, 0x00152340, 0, 0}}, {{0xffd6e71d, 0x0014ef38, 0, 0}},
- {{0xffd74d42, 0x0014bb30, 0, 0}}, {{0xffd7b367, 0x00148728, 0, 0}},
- {{0xffd8198c, 0x00145320, 0, 0}}, {{0xffd87fb1, 0x00141f18, 0, 0}},
- {{0xffd8e5d6, 0x0013eb10, 0, 0}}, {{0xffd94bfb, 0x0013b708, 0, 0}},
- {{0xffd9b220, 0x00138300, 0, 0}}, {{0xffda1845, 0x00134ef8, 0, 0}},
- {{0xffda7e6a, 0x00131af0, 0, 0}}, {{0xffdae48f, 0x0012e6e8, 0, 0}},
- {{0xffdb4ab4, 0x0012b2e0, 0, 0}}, {{0xffdbb0d9, 0x00127ed8, 0, 0}},
- {{0xffdc16fe, 0x00124ad0, 0, 0}}, {{0xffdc7d23, 0x001216c8, 0, 0}},
- {{0xffdce348, 0x0011e2c0, 0, 0}}, {{0xffdd496d, 0x0011aeb8, 0, 0}},
- {{0xffddaf92, 0x00117ab0, 0, 0}}, {{0xffde15b7, 0x001146a8, 0, 0}},
- {{0xffde7bdc, 0x001112a0, 0, 0}}, {{0xffdee201, 0x0010de98, 0, 0}},
- {{0xffdf4826, 0x0010aa90, 0, 0}}, {{0xffdfae4b, 0x00107688, 0, 0}},
- {{0xffe01470, 0x00104280, 0, 0}}, {{0xffe07a95, 0x00100e78, 0, 0}},
- {{0xffe0e0ba, 0x000fda70, 0, 0}}, {{0xffe146df, 0x000fa668, 0, 0}},
- {{0xffe1ad04, 0x000f7260, 0, 0}}, {{0xffe21329, 0x000f3e58, 0, 0}},
- {{0xffe2794e, 0x000f0a50, 0, 0}}, {{0xffe2df73, 0x000ed648, 0, 0}},
- {{0xffe34598, 0x000ea240, 0, 0}}, {{0xffe3abbd, 0x000e6e38, 0, 0}},
- {{0xffe411e2, 0x000e3a30, 0, 0}}, {{0xffe47807, 0x000e0628, 0, 0}},
- {{0xffe4de2c, 0x000dd220, 0, 0}}, {{0xffe54451, 0x000d9e18, 0, 0}},
- {{0xffe5aa76, 0x000d6a10, 0, 0}}, {{0xffe6109b, 0x000d3608, 0, 0}},
- {{0xffe676c0, 0x000d0200, 0, 0}}, {{0xffe6dce5, 0x000ccdf8, 0, 0}},
- {{0xffe7430a, 0x000c99f0, 0, 0}}, {{0xffe7a92f, 0x000c65e8, 0, 0}},
- {{0xffe80f54, 0x000c31e0, 0, 0}}, {{0xffe87579, 0x000bfdd8, 0, 0}},
- {{0xffe8db9e, 0x000bc9d0, 0, 0}}, {{0xffe941c3, 0x000b95c8, 0, 0}},
- {{0xffe9a7e8, 0x000b61c0, 0, 0}}, {{0xffea0e0d, 0x000b2db8, 0, 0}},
- {{0xffea7432, 0x000af9b0, 0, 0}}, {{0xffeada57, 0x000ac5a8, 0, 0}},
- {{0xffeb407c, 0x000a91a0, 0, 0}}, {{0xffeba6a1, 0x000a5d98, 0, 0}},
- {{0xffec0cc6, 0x000a2990, 0, 0}}, {{0xffec72eb, 0x0009f588, 0, 0}},
- {{0xffecd910, 0x0009c180, 0, 0}}, {{0xffed3f35, 0x00098d78, 0, 0}},
- {{0xffeda55a, 0x00095970, 0, 0}}, {{0xffee0b7f, 0x00092568, 0, 0}},
- {{0xffee71a4, 0x0008f160, 0, 0}}, {{0xffeed7c9, 0x0008bd58, 0, 0}},
- {{0xffef3dee, 0x00088950, 0, 0}}, {{0xffefa413, 0x00085548, 0, 0}},
- {{0xfff00a38, 0x00082140, 0, 0}}, {{0xfff0705d, 0x0007ed38, 0, 0}},
- {{0xfff0d682, 0x0007b930, 0, 0}}, {{0xfff13ca7, 0x00078528, 0, 0}},
- {{0xfff1a2cc, 0x00075120, 0, 0}}, {{0xfff208f1, 0x00071d18, 0, 0}},
- {{0xfff26f16, 0x0006e910, 0, 0}}, {{0xfff2d53b, 0x0006b508, 0, 0}},
- {{0xfff33b60, 0x00068100, 0, 0}}, {{0xfff3a185, 0x00064cf8, 0, 0}},
- {{0xfff407aa, 0x000618f0, 0, 0}}, {{0xfff46dcf, 0x0005e4e8, 0, 0}},
- {{0xfff4d3f4, 0x0005b0e0, 0, 0}}, {{0xfff53a19, 0x00057cd8, 0, 0}},
- {{0xfff5a03e, 0x000548d0, 0, 0}}, {{0xfff60663, 0x000514c8, 0, 0}},
- {{0xfff66c88, 0x0004e0c0, 0, 0}}, {{0xfff6d2ad, 0x0004acb8, 0, 0}},
- {{0xfff738d2, 0x000478b0, 0, 0}}, {{0xfff79ef7, 0x000444a8, 0, 0}},
- {{0xfff8051c, 0x000410a0, 0, 0}}, {{0xfff86b41, 0x0003dc98, 0, 0}},
- {{0xfff8d166, 0x0003a890, 0, 0}}, {{0xfff9378b, 0x00037488, 0, 0}},
- {{0xfff99db0, 0x00034080, 0, 0}}, {{0xfffa03d5, 0x00030c78, 0, 0}},
- {{0xfffa69fa, 0x0002d870, 0, 0}}, {{0xfffad01f, 0x0002a468, 0, 0}},
- {{0xfffb3644, 0x00027060, 0, 0}}, {{0xfffb9c69, 0x00023c58, 0, 0}},
- {{0xfffc028e, 0x00020850, 0, 0}}, {{0xfffc68b3, 0x0001d448, 0, 0}},
- {{0xfffcced8, 0x0001a040, 0, 0}}, {{0xfffd34fd, 0x00016c38, 0, 0}},
- {{0xfffd9b22, 0x00013830, 0, 0}}, {{0xfffe0147, 0x00010428, 0, 0}},
- {{0xfffe676c, 0x0000d020, 0, 0}}, {{0xfffecd91, 0x00009c18, 0, 0}},
- {{0xffff33b6, 0x00006810, 0, 0}}, {{0xffff99db, 0x00003408, 0, 0}},
- {{0x00000000, 0x00000000, 0, 0}}, {{0x00006625, 0xffffcbf8, 0, 0}},
- {{0x0000cc4a, 0xffff97f0, 0, 0}}, {{0x0001326f, 0xffff63e8, 0, 0}},
- {{0x00019894, 0xffff2fe0, 0, 0}}, {{0x0001feb9, 0xfffefbd8, 0, 0}},
- {{0x000264de, 0xfffec7d0, 0, 0}}, {{0x0002cb03, 0xfffe93c8, 0, 0}},
- {{0x00033128, 0xfffe5fc0, 0, 0}}, {{0x0003974d, 0xfffe2bb8, 0, 0}},
- {{0x0003fd72, 0xfffdf7b0, 0, 0}}, {{0x00046397, 0xfffdc3a8, 0, 0}},
- {{0x0004c9bc, 0xfffd8fa0, 0, 0}}, {{0x00052fe1, 0xfffd5b98, 0, 0}},
- {{0x00059606, 0xfffd2790, 0, 0}}, {{0x0005fc2b, 0xfffcf388, 0, 0}},
- {{0x00066250, 0xfffcbf80, 0, 0}}, {{0x0006c875, 0xfffc8b78, 0, 0}},
- {{0x00072e9a, 0xfffc5770, 0, 0}}, {{0x000794bf, 0xfffc2368, 0, 0}},
- {{0x0007fae4, 0xfffbef60, 0, 0}}, {{0x00086109, 0xfffbbb58, 0, 0}},
- {{0x0008c72e, 0xfffb8750, 0, 0}}, {{0x00092d53, 0xfffb5348, 0, 0}},
- {{0x00099378, 0xfffb1f40, 0, 0}}, {{0x0009f99d, 0xfffaeb38, 0, 0}},
- {{0x000a5fc2, 0xfffab730, 0, 0}}, {{0x000ac5e7, 0xfffa8328, 0, 0}},
- {{0x000b2c0c, 0xfffa4f20, 0, 0}}, {{0x000b9231, 0xfffa1b18, 0, 0}},
- {{0x000bf856, 0xfff9e710, 0, 0}}, {{0x000c5e7b, 0xfff9b308, 0, 0}},
- {{0x000cc4a0, 0xfff97f00, 0, 0}}, {{0x000d2ac5, 0xfff94af8, 0, 0}},
- {{0x000d90ea, 0xfff916f0, 0, 0}}, {{0x000df70f, 0xfff8e2e8, 0, 0}},
- {{0x000e5d34, 0xfff8aee0, 0, 0}}, {{0x000ec359, 0xfff87ad8, 0, 0}},
- {{0x000f297e, 0xfff846d0, 0, 0}}, {{0x000f8fa3, 0xfff812c8, 0, 0}},
- {{0x000ff5c8, 0xfff7dec0, 0, 0}}, {{0x00105bed, 0xfff7aab8, 0, 0}},
- {{0x0010c212, 0xfff776b0, 0, 0}}, {{0x00112837, 0xfff742a8, 0, 0}},
- {{0x00118e5c, 0xfff70ea0, 0, 0}}, {{0x0011f481, 0xfff6da98, 0, 0}},
- {{0x00125aa6, 0xfff6a690, 0, 0}}, {{0x0012c0cb, 0xfff67288, 0, 0}},
- {{0x001326f0, 0xfff63e80, 0, 0}}, {{0x00138d15, 0xfff60a78, 0, 0}},
- {{0x0013f33a, 0xfff5d670, 0, 0}}, {{0x0014595f, 0xfff5a268, 0, 0}},
- {{0x0014bf84, 0xfff56e60, 0, 0}}, {{0x001525a9, 0xfff53a58, 0, 0}},
- {{0x00158bce, 0xfff50650, 0, 0}}, {{0x0015f1f3, 0xfff4d248, 0, 0}},
- {{0x00165818, 0xfff49e40, 0, 0}}, {{0x0016be3d, 0xfff46a38, 0, 0}},
- {{0x00172462, 0xfff43630, 0, 0}}, {{0x00178a87, 0xfff40228, 0, 0}},
- {{0x0017f0ac, 0xfff3ce20, 0, 0}}, {{0x001856d1, 0xfff39a18, 0, 0}},
- {{0x0018bcf6, 0xfff36610, 0, 0}}, {{0x0019231b, 0xfff33208, 0, 0}},
- {{0x00198940, 0xfff2fe00, 0, 0}}, {{0x0019ef65, 0xfff2c9f8, 0, 0}},
- {{0x001a558a, 0xfff295f0, 0, 0}}, {{0x001abbaf, 0xfff261e8, 0, 0}},
- {{0x001b21d4, 0xfff22de0, 0, 0}}, {{0x001b87f9, 0xfff1f9d8, 0, 0}},
- {{0x001bee1e, 0xfff1c5d0, 0, 0}}, {{0x001c5443, 0xfff191c8, 0, 0}},
- {{0x001cba68, 0xfff15dc0, 0, 0}}, {{0x001d208d, 0xfff129b8, 0, 0}},
- {{0x001d86b2, 0xfff0f5b0, 0, 0}}, {{0x001decd7, 0xfff0c1a8, 0, 0}},
- {{0x001e52fc, 0xfff08da0, 0, 0}}, {{0x001eb921, 0xfff05998, 0, 0}},
- {{0x001f1f46, 0xfff02590, 0, 0}}, {{0x001f856b, 0xffeff188, 0, 0}},
- {{0x001feb90, 0xffefbd80, 0, 0}}, {{0x002051b5, 0xffef8978, 0, 0}},
- {{0x0020b7da, 0xffef5570, 0, 0}}, {{0x00211dff, 0xffef2168, 0, 0}},
- {{0x00218424, 0xffeeed60, 0, 0}}, {{0x0021ea49, 0xffeeb958, 0, 0}},
- {{0x0022506e, 0xffee8550, 0, 0}}, {{0x0022b693, 0xffee5148, 0, 0}},
- {{0x00231cb8, 0xffee1d40, 0, 0}}, {{0x002382dd, 0xffede938, 0, 0}},
- {{0x0023e902, 0xffedb530, 0, 0}}, {{0x00244f27, 0xffed8128, 0, 0}},
- {{0x0024b54c, 0xffed4d20, 0, 0}}, {{0x00251b71, 0xffed1918, 0, 0}},
- {{0x00258196, 0xffece510, 0, 0}}, {{0x0025e7bb, 0xffecb108, 0, 0}},
- {{0x00264de0, 0xffec7d00, 0, 0}}, {{0x0026b405, 0xffec48f8, 0, 0}},
- {{0x00271a2a, 0xffec14f0, 0, 0}}, {{0x0027804f, 0xffebe0e8, 0, 0}},
- {{0x0027e674, 0xffebace0, 0, 0}}, {{0x00284c99, 0xffeb78d8, 0, 0}},
- {{0x0028b2be, 0xffeb44d0, 0, 0}}, {{0x002918e3, 0xffeb10c8, 0, 0}},
- {{0x00297f08, 0xffeadcc0, 0, 0}}, {{0x0029e52d, 0xffeaa8b8, 0, 0}},
- {{0x002a4b52, 0xffea74b0, 0, 0}}, {{0x002ab177, 0xffea40a8, 0, 0}},
- {{0x002b179c, 0xffea0ca0, 0, 0}}, {{0x002b7dc1, 0xffe9d898, 0, 0}},
- {{0x002be3e6, 0xffe9a490, 0, 0}}, {{0x002c4a0b, 0xffe97088, 0, 0}},
- {{0x002cb030, 0xffe93c80, 0, 0}}, {{0x002d1655, 0xffe90878, 0, 0}},
- {{0x002d7c7a, 0xffe8d470, 0, 0}}, {{0x002de29f, 0xffe8a068, 0, 0}},
- {{0x002e48c4, 0xffe86c60, 0, 0}}, {{0x002eaee9, 0xffe83858, 0, 0}},
- {{0x002f150e, 0xffe80450, 0, 0}}, {{0x002f7b33, 0xffe7d048, 0, 0}},
- {{0x002fe158, 0xffe79c40, 0, 0}}, {{0x0030477d, 0xffe76838, 0, 0}},
- {{0x0030ada2, 0xffe73430, 0, 0}}, {{0x003113c7, 0xffe70028, 0, 0}},
- {{0x003179ec, 0xffe6cc20, 0, 0}}, {{0x0031e011, 0xffe69818, 0, 0}},
- {{0x00324636, 0xffe66410, 0, 0}}, {{0x0032ac5b, 0xffe63008, 0, 0}}
-};