diff options
author | Rémi Verschelde <rverschelde@gmail.com> | 2016-10-13 19:40:40 +0200 |
---|---|---|
committer | Rémi Verschelde <rverschelde@gmail.com> | 2016-10-15 11:50:41 +0200 |
commit | cfcc8a20e862b758c32bd3f152186e6df0591a24 (patch) | |
tree | e9cf6ebad67c17ae60b8beb4d1468cbc94dbb982 /thirdparty/libtheora/enquant.c | |
parent | da09c6131bcdace7e8e62c3dabc62890e9564c97 (diff) |
theora: Move to a module and split thirdparty lib
Same rationale as the previous commits.
Diffstat (limited to 'thirdparty/libtheora/enquant.c')
-rw-r--r-- | thirdparty/libtheora/enquant.c | 274 |
1 files changed, 274 insertions, 0 deletions
diff --git a/thirdparty/libtheora/enquant.c b/thirdparty/libtheora/enquant.c new file mode 100644 index 0000000000..3372fed221 --- /dev/null +++ b/thirdparty/libtheora/enquant.c @@ -0,0 +1,274 @@ +/******************************************************************** + * * + * THIS FILE IS PART OF THE OggTheora SOFTWARE CODEC SOURCE CODE. * + * USE, DISTRIBUTION AND REPRODUCTION OF THIS LIBRARY SOURCE IS * + * GOVERNED BY A BSD-STYLE SOURCE LICENSE INCLUDED WITH THIS SOURCE * + * IN 'COPYING'. PLEASE READ THESE TERMS BEFORE DISTRIBUTING. * + * * + * THE Theora SOURCE CODE IS COPYRIGHT (C) 2002-2009 * + * by the Xiph.Org Foundation http://www.xiph.org/ * + * * + ******************************************************************** + + function: + last mod: $Id: enquant.c 16503 2009-08-22 18:14:02Z giles $ + + ********************************************************************/ +#include <stdlib.h> +#include <string.h> +#include "encint.h" + + + +void oc_quant_params_pack(oggpack_buffer *_opb,const th_quant_info *_qinfo){ + const th_quant_ranges *qranges; + const th_quant_base *base_mats[2*3*64]; + int indices[2][3][64]; + int nbase_mats; + int nbits; + int ci; + int qi; + int qri; + int qti; + int pli; + int qtj; + int plj; + int bmi; + int i; + i=_qinfo->loop_filter_limits[0]; + for(qi=1;qi<64;qi++)i=OC_MAXI(i,_qinfo->loop_filter_limits[qi]); + nbits=OC_ILOG_32(i); + oggpackB_write(_opb,nbits,3); + for(qi=0;qi<64;qi++){ + oggpackB_write(_opb,_qinfo->loop_filter_limits[qi],nbits); + } + /*580 bits for VP3.*/ + i=1; + for(qi=0;qi<64;qi++)i=OC_MAXI(_qinfo->ac_scale[qi],i); + nbits=OC_ILOGNZ_32(i); + oggpackB_write(_opb,nbits-1,4); + for(qi=0;qi<64;qi++)oggpackB_write(_opb,_qinfo->ac_scale[qi],nbits); + /*516 bits for VP3.*/ + i=1; + for(qi=0;qi<64;qi++)i=OC_MAXI(_qinfo->dc_scale[qi],i); + nbits=OC_ILOGNZ_32(i); + oggpackB_write(_opb,nbits-1,4); + for(qi=0;qi<64;qi++)oggpackB_write(_opb,_qinfo->dc_scale[qi],nbits); + /*Consolidate any duplicate base matrices.*/ + nbase_mats=0; + for(qti=0;qti<2;qti++)for(pli=0;pli<3;pli++){ + qranges=_qinfo->qi_ranges[qti]+pli; + for(qri=0;qri<=qranges->nranges;qri++){ + for(bmi=0;;bmi++){ + if(bmi>=nbase_mats){ + base_mats[bmi]=qranges->base_matrices+qri; + indices[qti][pli][qri]=nbase_mats++; + break; + } + else if(memcmp(base_mats[bmi][0],qranges->base_matrices[qri], + sizeof(base_mats[bmi][0]))==0){ + indices[qti][pli][qri]=bmi; + break; + } + } + } + } + /*Write out the list of unique base matrices. + 1545 bits for VP3 matrices.*/ + oggpackB_write(_opb,nbase_mats-1,9); + for(bmi=0;bmi<nbase_mats;bmi++){ + for(ci=0;ci<64;ci++)oggpackB_write(_opb,base_mats[bmi][0][ci],8); + } + /*Now store quant ranges and their associated indices into the base matrix + list. + 46 bits for VP3 matrices.*/ + nbits=OC_ILOG_32(nbase_mats-1); + for(i=0;i<6;i++){ + qti=i/3; + pli=i%3; + qranges=_qinfo->qi_ranges[qti]+pli; + if(i>0){ + if(qti>0){ + if(qranges->nranges==_qinfo->qi_ranges[qti-1][pli].nranges&& + memcmp(qranges->sizes,_qinfo->qi_ranges[qti-1][pli].sizes, + qranges->nranges*sizeof(qranges->sizes[0]))==0&& + memcmp(indices[qti][pli],indices[qti-1][pli], + (qranges->nranges+1)*sizeof(indices[qti][pli][0]))==0){ + oggpackB_write(_opb,1,2); + continue; + } + } + qtj=(i-1)/3; + plj=(i-1)%3; + if(qranges->nranges==_qinfo->qi_ranges[qtj][plj].nranges&& + memcmp(qranges->sizes,_qinfo->qi_ranges[qtj][plj].sizes, + qranges->nranges*sizeof(qranges->sizes[0]))==0&& + memcmp(indices[qti][pli],indices[qtj][plj], + (qranges->nranges+1)*sizeof(indices[qti][pli][0]))==0){ + oggpackB_write(_opb,0,1+(qti>0)); + continue; + } + oggpackB_write(_opb,1,1); + } + oggpackB_write(_opb,indices[qti][pli][0],nbits); + for(qi=qri=0;qi<63;qri++){ + oggpackB_write(_opb,qranges->sizes[qri]-1,OC_ILOG_32(62-qi)); + qi+=qranges->sizes[qri]; + oggpackB_write(_opb,indices[qti][pli][qri+1],nbits); + } + } +} + +static void oc_iquant_init(oc_iquant *_this,ogg_uint16_t _d){ + ogg_uint32_t t; + int l; + _d<<=1; + l=OC_ILOGNZ_32(_d)-1; + t=1+((ogg_uint32_t)1<<16+l)/_d; + _this->m=(ogg_int16_t)(t-0x10000); + _this->l=l; +} + +/*See comments at oc_dequant_tables_init() for how the quantization tables' + storage should be initialized.*/ +void oc_enquant_tables_init(ogg_uint16_t *_dequant[64][3][2], + oc_iquant *_enquant[64][3][2],const th_quant_info *_qinfo){ + int qi; + int pli; + int qti; + /*Initialize the dequantization tables first.*/ + oc_dequant_tables_init(_dequant,NULL,_qinfo); + /*Derive the quantization tables directly from the dequantization tables.*/ + for(qi=0;qi<64;qi++)for(qti=0;qti<2;qti++)for(pli=0;pli<3;pli++){ + int zzi; + int plj; + int qtj; + int dupe; + dupe=0; + for(qtj=0;qtj<=qti;qtj++){ + for(plj=0;plj<(qtj<qti?3:pli);plj++){ + if(_dequant[qi][pli][qti]==_dequant[qi][plj][qtj]){ + dupe=1; + break; + } + } + if(dupe)break; + } + if(dupe){ + _enquant[qi][pli][qti]=_enquant[qi][plj][qtj]; + continue; + } + /*In the original VP3.2 code, the rounding offset and the size of the + dead zone around 0 were controlled by a "sharpness" parameter. + We now R-D optimize the tokens for each block after quantization, + so the rounding offset should always be 1/2, and an explicit dead + zone is unnecessary. + Hence, all of that VP3.2 code is gone from here, and the remaining + floating point code has been implemented as equivalent integer + code with exact precision.*/ + for(zzi=0;zzi<64;zzi++){ + oc_iquant_init(_enquant[qi][pli][qti]+zzi, + _dequant[qi][pli][qti][zzi]); + } + } +} + + + +/*This table gives the square root of the fraction of the squared magnitude of + each DCT coefficient relative to the total, scaled by 2**16, for both INTRA + and INTER modes. + These values were measured after motion-compensated prediction, before + quantization, over a large set of test video (from QCIF to 1080p) encoded at + all possible rates. + The DC coefficient takes into account the DPCM prediction (using the + quantized values from neighboring blocks, as the encoder does, but still + before quantization of the coefficient in the current block). + The results differ significantly from the expected variance (e.g., using an + AR(1) model of the signal with rho=0.95, as is frequently done to compute + the coding gain of the DCT). + We use them to estimate an "average" quantizer for a given quantizer matrix, + as this is used to parameterize a number of the rate control decisions. + These values are themselves probably quantizer-matrix dependent, since the + shape of the matrix affects the noise distribution in the reference frames, + but they should at least give us _some_ amount of adaptivity to different + matrices, as opposed to hard-coding a table of average Q values for the + current set. + The main features they capture are that a) only a few of the quantizers in + the upper-left corner contribute anything significant at all (though INTER + mode is significantly flatter) and b) the DPCM prediction of the DC + coefficient gives a very minor improvement in the INTRA case and a quite + significant one in the INTER case (over the expected variance).*/ +static const ogg_uint16_t OC_RPSD[2][64]={ + { + 52725,17370,10399, 6867, 5115, 3798, 2942, 2076, + 17370, 9900, 6948, 4994, 3836, 2869, 2229, 1619, + 10399, 6948, 5516, 4202, 3376, 2573, 2015, 1461, + 6867, 4994, 4202, 3377, 2800, 2164, 1718, 1243, + 5115, 3836, 3376, 2800, 2391, 1884, 1530, 1091, + 3798, 2869, 2573, 2164, 1884, 1495, 1212, 873, + 2942, 2229, 2015, 1718, 1530, 1212, 1001, 704, + 2076, 1619, 1461, 1243, 1091, 873, 704, 474 + }, + { + 23411,15604,13529,11601,10683, 8958, 7840, 6142, + 15604,11901,10718, 9108, 8290, 6961, 6023, 4487, + 13529,10718, 9961, 8527, 7945, 6689, 5742, 4333, + 11601, 9108, 8527, 7414, 7084, 5923, 5175, 3743, + 10683, 8290, 7945, 7084, 6771, 5754, 4793, 3504, + 8958, 6961, 6689, 5923, 5754, 4679, 3936, 2989, + 7840, 6023, 5742, 5175, 4793, 3936, 3522, 2558, + 6142, 4487, 4333, 3743, 3504, 2989, 2558, 1829 + } +}; + +/*The fraction of the squared magnitude of the residuals in each color channel + relative to the total, scaled by 2**16, for each pixel format. + These values were measured after motion-compensated prediction, before + quantization, over a large set of test video encoded at all possible rates. + TODO: These values are only from INTER frames; it should be re-measured for + INTRA frames.*/ +static const ogg_uint16_t OC_PCD[4][3]={ + {59926, 3038, 2572}, + {55201, 5597, 4738}, + {55201, 5597, 4738}, + {47682, 9669, 8185} +}; + + +/*Compute an "average" quantizer for each qi level. + We do one for INTER and one for INTRA, since their behavior is very + different, but average across chroma channels. + The basic approach is to compute a harmonic average of the squared quantizer, + weighted by the expected squared magnitude of the DCT coefficients. + Under the (not quite true) assumption that DCT coefficients are + Laplacian-distributed, this preserves the product Q*lambda, where + lambda=sqrt(2/sigma**2) is the Laplacian distribution parameter (not to be + confused with the lambda used in R-D optimization throughout most of the + rest of the code). + The value Q*lambda completely determines the entropy of the coefficients.*/ +void oc_enquant_qavg_init(ogg_int64_t _log_qavg[2][64], + ogg_uint16_t *_dequant[64][3][2],int _pixel_fmt){ + int qi; + int pli; + int qti; + int ci; + for(qti=0;qti<2;qti++)for(qi=0;qi<64;qi++){ + ogg_int64_t q2; + q2=0; + for(pli=0;pli<3;pli++){ + ogg_uint32_t qp; + qp=0; + for(ci=0;ci<64;ci++){ + unsigned rq; + unsigned qd; + qd=_dequant[qi][pli][qti][OC_IZIG_ZAG[ci]]; + rq=(OC_RPSD[qti][ci]+(qd>>1))/qd; + qp+=rq*(ogg_uint32_t)rq; + } + q2+=OC_PCD[_pixel_fmt][pli]*(ogg_int64_t)qp; + } + /*qavg=1.0/sqrt(q2).*/ + _log_qavg[qti][qi]=OC_Q57(48)-oc_blog64(q2)>>1; + } +} |