summaryrefslogtreecommitdiff
path: root/thirdparty/glslang/SPIRV/hex_float.h
diff options
context:
space:
mode:
authorJuan Linietsky <reduzio@gmail.com>2019-06-07 13:07:57 -0300
committerJuan Linietsky <reduzio@gmail.com>2020-02-11 11:53:26 +0100
commitfd188ddd5176390efb22ed041d8aedad25d81dee (patch)
tree18766edace54f7e3e5ed5c1efe1223de163cad86 /thirdparty/glslang/SPIRV/hex_float.h
parent3e3f8a47616327d7faeb17f558bb81a943385e82 (diff)
Initial work on Vulkan:
-Added VulkanContext -Added an X11 implementation -Added a rendering device abstraction -added a Vulkan rendering device abstraction -Engine does not work, only shows Godot logo (run it from bin/)
Diffstat (limited to 'thirdparty/glslang/SPIRV/hex_float.h')
-rw-r--r--thirdparty/glslang/SPIRV/hex_float.h1078
1 files changed, 1078 insertions, 0 deletions
diff --git a/thirdparty/glslang/SPIRV/hex_float.h b/thirdparty/glslang/SPIRV/hex_float.h
new file mode 100644
index 0000000000..905b21a45a
--- /dev/null
+++ b/thirdparty/glslang/SPIRV/hex_float.h
@@ -0,0 +1,1078 @@
+// Copyright (c) 2015-2016 The Khronos Group Inc.
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+#ifndef LIBSPIRV_UTIL_HEX_FLOAT_H_
+#define LIBSPIRV_UTIL_HEX_FLOAT_H_
+
+#include <cassert>
+#include <cctype>
+#include <cmath>
+#include <cstdint>
+#include <iomanip>
+#include <limits>
+#include <sstream>
+
+#if defined(_MSC_VER) && _MSC_VER < 1800
+namespace std {
+bool isnan(double f)
+{
+ return ::_isnan(f) != 0;
+}
+bool isinf(double f)
+{
+ return ::_finite(f) == 0;
+}
+}
+#endif
+
+#include "bitutils.h"
+
+namespace spvutils {
+
+class Float16 {
+ public:
+ Float16(uint16_t v) : val(v) {}
+ Float16() {}
+ static bool isNan(const Float16& val) {
+ return ((val.val & 0x7C00) == 0x7C00) && ((val.val & 0x3FF) != 0);
+ }
+ // Returns true if the given value is any kind of infinity.
+ static bool isInfinity(const Float16& val) {
+ return ((val.val & 0x7C00) == 0x7C00) && ((val.val & 0x3FF) == 0);
+ }
+ Float16(const Float16& other) { val = other.val; }
+ uint16_t get_value() const { return val; }
+
+ // Returns the maximum normal value.
+ static Float16 max() { return Float16(0x7bff); }
+ // Returns the lowest normal value.
+ static Float16 lowest() { return Float16(0xfbff); }
+
+ private:
+ uint16_t val;
+};
+
+// To specialize this type, you must override uint_type to define
+// an unsigned integer that can fit your floating point type.
+// You must also add a isNan function that returns true if
+// a value is Nan.
+template <typename T>
+struct FloatProxyTraits {
+ typedef void uint_type;
+};
+
+template <>
+struct FloatProxyTraits<float> {
+ typedef uint32_t uint_type;
+ static bool isNan(float f) { return std::isnan(f); }
+ // Returns true if the given value is any kind of infinity.
+ static bool isInfinity(float f) { return std::isinf(f); }
+ // Returns the maximum normal value.
+ static float max() { return std::numeric_limits<float>::max(); }
+ // Returns the lowest normal value.
+ static float lowest() { return std::numeric_limits<float>::lowest(); }
+};
+
+template <>
+struct FloatProxyTraits<double> {
+ typedef uint64_t uint_type;
+ static bool isNan(double f) { return std::isnan(f); }
+ // Returns true if the given value is any kind of infinity.
+ static bool isInfinity(double f) { return std::isinf(f); }
+ // Returns the maximum normal value.
+ static double max() { return std::numeric_limits<double>::max(); }
+ // Returns the lowest normal value.
+ static double lowest() { return std::numeric_limits<double>::lowest(); }
+};
+
+template <>
+struct FloatProxyTraits<Float16> {
+ typedef uint16_t uint_type;
+ static bool isNan(Float16 f) { return Float16::isNan(f); }
+ // Returns true if the given value is any kind of infinity.
+ static bool isInfinity(Float16 f) { return Float16::isInfinity(f); }
+ // Returns the maximum normal value.
+ static Float16 max() { return Float16::max(); }
+ // Returns the lowest normal value.
+ static Float16 lowest() { return Float16::lowest(); }
+};
+
+// Since copying a floating point number (especially if it is NaN)
+// does not guarantee that bits are preserved, this class lets us
+// store the type and use it as a float when necessary.
+template <typename T>
+class FloatProxy {
+ public:
+ typedef typename FloatProxyTraits<T>::uint_type uint_type;
+
+ // Since this is to act similar to the normal floats,
+ // do not initialize the data by default.
+ FloatProxy() {}
+
+ // Intentionally non-explicit. This is a proxy type so
+ // implicit conversions allow us to use it more transparently.
+ FloatProxy(T val) { data_ = BitwiseCast<uint_type>(val); }
+
+ // Intentionally non-explicit. This is a proxy type so
+ // implicit conversions allow us to use it more transparently.
+ FloatProxy(uint_type val) { data_ = val; }
+
+ // This is helpful to have and is guaranteed not to stomp bits.
+ FloatProxy<T> operator-() const {
+ return static_cast<uint_type>(data_ ^
+ (uint_type(0x1) << (sizeof(T) * 8 - 1)));
+ }
+
+ // Returns the data as a floating point value.
+ T getAsFloat() const { return BitwiseCast<T>(data_); }
+
+ // Returns the raw data.
+ uint_type data() const { return data_; }
+
+ // Returns true if the value represents any type of NaN.
+ bool isNan() { return FloatProxyTraits<T>::isNan(getAsFloat()); }
+ // Returns true if the value represents any type of infinity.
+ bool isInfinity() { return FloatProxyTraits<T>::isInfinity(getAsFloat()); }
+
+ // Returns the maximum normal value.
+ static FloatProxy<T> max() {
+ return FloatProxy<T>(FloatProxyTraits<T>::max());
+ }
+ // Returns the lowest normal value.
+ static FloatProxy<T> lowest() {
+ return FloatProxy<T>(FloatProxyTraits<T>::lowest());
+ }
+
+ private:
+ uint_type data_;
+};
+
+template <typename T>
+bool operator==(const FloatProxy<T>& first, const FloatProxy<T>& second) {
+ return first.data() == second.data();
+}
+
+// Reads a FloatProxy value as a normal float from a stream.
+template <typename T>
+std::istream& operator>>(std::istream& is, FloatProxy<T>& value) {
+ T float_val;
+ is >> float_val;
+ value = FloatProxy<T>(float_val);
+ return is;
+}
+
+// This is an example traits. It is not meant to be used in practice, but will
+// be the default for any non-specialized type.
+template <typename T>
+struct HexFloatTraits {
+ // Integer type that can store this hex-float.
+ typedef void uint_type;
+ // Signed integer type that can store this hex-float.
+ typedef void int_type;
+ // The numerical type that this HexFloat represents.
+ typedef void underlying_type;
+ // The type needed to construct the underlying type.
+ typedef void native_type;
+ // The number of bits that are actually relevant in the uint_type.
+ // This allows us to deal with, for example, 24-bit values in a 32-bit
+ // integer.
+ static const uint32_t num_used_bits = 0;
+ // Number of bits that represent the exponent.
+ static const uint32_t num_exponent_bits = 0;
+ // Number of bits that represent the fractional part.
+ static const uint32_t num_fraction_bits = 0;
+ // The bias of the exponent. (How much we need to subtract from the stored
+ // value to get the correct value.)
+ static const uint32_t exponent_bias = 0;
+};
+
+// Traits for IEEE float.
+// 1 sign bit, 8 exponent bits, 23 fractional bits.
+template <>
+struct HexFloatTraits<FloatProxy<float>> {
+ typedef uint32_t uint_type;
+ typedef int32_t int_type;
+ typedef FloatProxy<float> underlying_type;
+ typedef float native_type;
+ static const uint_type num_used_bits = 32;
+ static const uint_type num_exponent_bits = 8;
+ static const uint_type num_fraction_bits = 23;
+ static const uint_type exponent_bias = 127;
+};
+
+// Traits for IEEE double.
+// 1 sign bit, 11 exponent bits, 52 fractional bits.
+template <>
+struct HexFloatTraits<FloatProxy<double>> {
+ typedef uint64_t uint_type;
+ typedef int64_t int_type;
+ typedef FloatProxy<double> underlying_type;
+ typedef double native_type;
+ static const uint_type num_used_bits = 64;
+ static const uint_type num_exponent_bits = 11;
+ static const uint_type num_fraction_bits = 52;
+ static const uint_type exponent_bias = 1023;
+};
+
+// Traits for IEEE half.
+// 1 sign bit, 5 exponent bits, 10 fractional bits.
+template <>
+struct HexFloatTraits<FloatProxy<Float16>> {
+ typedef uint16_t uint_type;
+ typedef int16_t int_type;
+ typedef uint16_t underlying_type;
+ typedef uint16_t native_type;
+ static const uint_type num_used_bits = 16;
+ static const uint_type num_exponent_bits = 5;
+ static const uint_type num_fraction_bits = 10;
+ static const uint_type exponent_bias = 15;
+};
+
+enum round_direction {
+ kRoundToZero,
+ kRoundToNearestEven,
+ kRoundToPositiveInfinity,
+ kRoundToNegativeInfinity
+};
+
+// Template class that houses a floating pointer number.
+// It exposes a number of constants based on the provided traits to
+// assist in interpreting the bits of the value.
+template <typename T, typename Traits = HexFloatTraits<T>>
+class HexFloat {
+ public:
+ typedef typename Traits::uint_type uint_type;
+ typedef typename Traits::int_type int_type;
+ typedef typename Traits::underlying_type underlying_type;
+ typedef typename Traits::native_type native_type;
+
+ explicit HexFloat(T f) : value_(f) {}
+
+ T value() const { return value_; }
+ void set_value(T f) { value_ = f; }
+
+ // These are all written like this because it is convenient to have
+ // compile-time constants for all of these values.
+
+ // Pass-through values to save typing.
+ static const uint32_t num_used_bits = Traits::num_used_bits;
+ static const uint32_t exponent_bias = Traits::exponent_bias;
+ static const uint32_t num_exponent_bits = Traits::num_exponent_bits;
+ static const uint32_t num_fraction_bits = Traits::num_fraction_bits;
+
+ // Number of bits to shift left to set the highest relevant bit.
+ static const uint32_t top_bit_left_shift = num_used_bits - 1;
+ // How many nibbles (hex characters) the fractional part takes up.
+ static const uint32_t fraction_nibbles = (num_fraction_bits + 3) / 4;
+ // If the fractional part does not fit evenly into a hex character (4-bits)
+ // then we have to left-shift to get rid of leading 0s. This is the amount
+ // we have to shift (might be 0).
+ static const uint32_t num_overflow_bits =
+ fraction_nibbles * 4 - num_fraction_bits;
+
+ // The representation of the fraction, not the actual bits. This
+ // includes the leading bit that is usually implicit.
+ static const uint_type fraction_represent_mask =
+ spvutils::SetBits<uint_type, 0,
+ num_fraction_bits + num_overflow_bits>::get;
+
+ // The topmost bit in the nibble-aligned fraction.
+ static const uint_type fraction_top_bit =
+ uint_type(1) << (num_fraction_bits + num_overflow_bits - 1);
+
+ // The least significant bit in the exponent, which is also the bit
+ // immediately to the left of the significand.
+ static const uint_type first_exponent_bit = uint_type(1)
+ << (num_fraction_bits);
+
+ // The mask for the encoded fraction. It does not include the
+ // implicit bit.
+ static const uint_type fraction_encode_mask =
+ spvutils::SetBits<uint_type, 0, num_fraction_bits>::get;
+
+ // The bit that is used as a sign.
+ static const uint_type sign_mask = uint_type(1) << top_bit_left_shift;
+
+ // The bits that represent the exponent.
+ static const uint_type exponent_mask =
+ spvutils::SetBits<uint_type, num_fraction_bits, num_exponent_bits>::get;
+
+ // How far left the exponent is shifted.
+ static const uint32_t exponent_left_shift = num_fraction_bits;
+
+ // How far from the right edge the fraction is shifted.
+ static const uint32_t fraction_right_shift =
+ static_cast<uint32_t>(sizeof(uint_type) * 8) - num_fraction_bits;
+
+ // The maximum representable unbiased exponent.
+ static const int_type max_exponent =
+ (exponent_mask >> num_fraction_bits) - exponent_bias;
+ // The minimum representable exponent for normalized numbers.
+ static const int_type min_exponent = -static_cast<int_type>(exponent_bias);
+
+ // Returns the bits associated with the value.
+ uint_type getBits() const { return spvutils::BitwiseCast<uint_type>(value_); }
+
+ // Returns the bits associated with the value, without the leading sign bit.
+ uint_type getUnsignedBits() const {
+ return static_cast<uint_type>(spvutils::BitwiseCast<uint_type>(value_) &
+ ~sign_mask);
+ }
+
+ // Returns the bits associated with the exponent, shifted to start at the
+ // lsb of the type.
+ const uint_type getExponentBits() const {
+ return static_cast<uint_type>((getBits() & exponent_mask) >>
+ num_fraction_bits);
+ }
+
+ // Returns the exponent in unbiased form. This is the exponent in the
+ // human-friendly form.
+ const int_type getUnbiasedExponent() const {
+ return static_cast<int_type>(getExponentBits() - exponent_bias);
+ }
+
+ // Returns just the significand bits from the value.
+ const uint_type getSignificandBits() const {
+ return getBits() & fraction_encode_mask;
+ }
+
+ // If the number was normalized, returns the unbiased exponent.
+ // If the number was denormal, normalize the exponent first.
+ const int_type getUnbiasedNormalizedExponent() const {
+ if ((getBits() & ~sign_mask) == 0) { // special case if everything is 0
+ return 0;
+ }
+ int_type exp = getUnbiasedExponent();
+ if (exp == min_exponent) { // We are in denorm land.
+ uint_type significand_bits = getSignificandBits();
+ while ((significand_bits & (first_exponent_bit >> 1)) == 0) {
+ significand_bits = static_cast<uint_type>(significand_bits << 1);
+ exp = static_cast<int_type>(exp - 1);
+ }
+ significand_bits &= fraction_encode_mask;
+ }
+ return exp;
+ }
+
+ // Returns the signficand after it has been normalized.
+ const uint_type getNormalizedSignificand() const {
+ int_type unbiased_exponent = getUnbiasedNormalizedExponent();
+ uint_type significand = getSignificandBits();
+ for (int_type i = unbiased_exponent; i <= min_exponent; ++i) {
+ significand = static_cast<uint_type>(significand << 1);
+ }
+ significand &= fraction_encode_mask;
+ return significand;
+ }
+
+ // Returns true if this number represents a negative value.
+ bool isNegative() const { return (getBits() & sign_mask) != 0; }
+
+ // Sets this HexFloat from the individual components.
+ // Note this assumes EVERY significand is normalized, and has an implicit
+ // leading one. This means that the only way that this method will set 0,
+ // is if you set a number so denormalized that it underflows.
+ // Do not use this method with raw bits extracted from a subnormal number,
+ // since subnormals do not have an implicit leading 1 in the significand.
+ // The significand is also expected to be in the
+ // lowest-most num_fraction_bits of the uint_type.
+ // The exponent is expected to be unbiased, meaning an exponent of
+ // 0 actually means 0.
+ // If underflow_round_up is set, then on underflow, if a number is non-0
+ // and would underflow, we round up to the smallest denorm.
+ void setFromSignUnbiasedExponentAndNormalizedSignificand(
+ bool negative, int_type exponent, uint_type significand,
+ bool round_denorm_up) {
+ bool significand_is_zero = significand == 0;
+
+ if (exponent <= min_exponent) {
+ // If this was denormalized, then we have to shift the bit on, meaning
+ // the significand is not zero.
+ significand_is_zero = false;
+ significand |= first_exponent_bit;
+ significand = static_cast<uint_type>(significand >> 1);
+ }
+
+ while (exponent < min_exponent) {
+ significand = static_cast<uint_type>(significand >> 1);
+ ++exponent;
+ }
+
+ if (exponent == min_exponent) {
+ if (significand == 0 && !significand_is_zero && round_denorm_up) {
+ significand = static_cast<uint_type>(0x1);
+ }
+ }
+
+ uint_type new_value = 0;
+ if (negative) {
+ new_value = static_cast<uint_type>(new_value | sign_mask);
+ }
+ exponent = static_cast<int_type>(exponent + exponent_bias);
+ assert(exponent >= 0);
+
+ // put it all together
+ exponent = static_cast<uint_type>((exponent << exponent_left_shift) &
+ exponent_mask);
+ significand = static_cast<uint_type>(significand & fraction_encode_mask);
+ new_value = static_cast<uint_type>(new_value | (exponent | significand));
+ value_ = BitwiseCast<T>(new_value);
+ }
+
+ // Increments the significand of this number by the given amount.
+ // If this would spill the significand into the implicit bit,
+ // carry is set to true and the significand is shifted to fit into
+ // the correct location, otherwise carry is set to false.
+ // All significands and to_increment are assumed to be within the bounds
+ // for a valid significand.
+ static uint_type incrementSignificand(uint_type significand,
+ uint_type to_increment, bool* carry) {
+ significand = static_cast<uint_type>(significand + to_increment);
+ *carry = false;
+ if (significand & first_exponent_bit) {
+ *carry = true;
+ // The implicit 1-bit will have carried, so we should zero-out the
+ // top bit and shift back.
+ significand = static_cast<uint_type>(significand & ~first_exponent_bit);
+ significand = static_cast<uint_type>(significand >> 1);
+ }
+ return significand;
+ }
+
+ // These exist because MSVC throws warnings on negative right-shifts
+ // even if they are not going to be executed. Eg:
+ // constant_number < 0? 0: constant_number
+ // These convert the negative left-shifts into right shifts.
+
+ template <typename int_type>
+ uint_type negatable_left_shift(int_type N, uint_type val)
+ {
+ if(N >= 0)
+ return val << N;
+
+ return val >> -N;
+ }
+
+ template <typename int_type>
+ uint_type negatable_right_shift(int_type N, uint_type val)
+ {
+ if(N >= 0)
+ return val >> N;
+
+ return val << -N;
+ }
+
+ // Returns the significand, rounded to fit in a significand in
+ // other_T. This is shifted so that the most significant
+ // bit of the rounded number lines up with the most significant bit
+ // of the returned significand.
+ template <typename other_T>
+ typename other_T::uint_type getRoundedNormalizedSignificand(
+ round_direction dir, bool* carry_bit) {
+ typedef typename other_T::uint_type other_uint_type;
+ static const int_type num_throwaway_bits =
+ static_cast<int_type>(num_fraction_bits) -
+ static_cast<int_type>(other_T::num_fraction_bits);
+
+ static const uint_type last_significant_bit =
+ (num_throwaway_bits < 0)
+ ? 0
+ : negatable_left_shift(num_throwaway_bits, 1u);
+ static const uint_type first_rounded_bit =
+ (num_throwaway_bits < 1)
+ ? 0
+ : negatable_left_shift(num_throwaway_bits - 1, 1u);
+
+ static const uint_type throwaway_mask_bits =
+ num_throwaway_bits > 0 ? num_throwaway_bits : 0;
+ static const uint_type throwaway_mask =
+ spvutils::SetBits<uint_type, 0, throwaway_mask_bits>::get;
+
+ *carry_bit = false;
+ other_uint_type out_val = 0;
+ uint_type significand = getNormalizedSignificand();
+ // If we are up-casting, then we just have to shift to the right location.
+ if (num_throwaway_bits <= 0) {
+ out_val = static_cast<other_uint_type>(significand);
+ uint_type shift_amount = static_cast<uint_type>(-num_throwaway_bits);
+ out_val = static_cast<other_uint_type>(out_val << shift_amount);
+ return out_val;
+ }
+
+ // If every non-representable bit is 0, then we don't have any casting to
+ // do.
+ if ((significand & throwaway_mask) == 0) {
+ return static_cast<other_uint_type>(
+ negatable_right_shift(num_throwaway_bits, significand));
+ }
+
+ bool round_away_from_zero = false;
+ // We actually have to narrow the significand here, so we have to follow the
+ // rounding rules.
+ switch (dir) {
+ case kRoundToZero:
+ break;
+ case kRoundToPositiveInfinity:
+ round_away_from_zero = !isNegative();
+ break;
+ case kRoundToNegativeInfinity:
+ round_away_from_zero = isNegative();
+ break;
+ case kRoundToNearestEven:
+ // Have to round down, round bit is 0
+ if ((first_rounded_bit & significand) == 0) {
+ break;
+ }
+ if (((significand & throwaway_mask) & ~first_rounded_bit) != 0) {
+ // If any subsequent bit of the rounded portion is non-0 then we round
+ // up.
+ round_away_from_zero = true;
+ break;
+ }
+ // We are exactly half-way between 2 numbers, pick even.
+ if ((significand & last_significant_bit) != 0) {
+ // 1 for our last bit, round up.
+ round_away_from_zero = true;
+ break;
+ }
+ break;
+ }
+
+ if (round_away_from_zero) {
+ return static_cast<other_uint_type>(
+ negatable_right_shift(num_throwaway_bits, incrementSignificand(
+ significand, last_significant_bit, carry_bit)));
+ } else {
+ return static_cast<other_uint_type>(
+ negatable_right_shift(num_throwaway_bits, significand));
+ }
+ }
+
+ // Casts this value to another HexFloat. If the cast is widening,
+ // then round_dir is ignored. If the cast is narrowing, then
+ // the result is rounded in the direction specified.
+ // This number will retain Nan and Inf values.
+ // It will also saturate to Inf if the number overflows, and
+ // underflow to (0 or min depending on rounding) if the number underflows.
+ template <typename other_T>
+ void castTo(other_T& other, round_direction round_dir) {
+ other = other_T(static_cast<typename other_T::native_type>(0));
+ bool negate = isNegative();
+ if (getUnsignedBits() == 0) {
+ if (negate) {
+ other.set_value(-other.value());
+ }
+ return;
+ }
+ uint_type significand = getSignificandBits();
+ bool carried = false;
+ typename other_T::uint_type rounded_significand =
+ getRoundedNormalizedSignificand<other_T>(round_dir, &carried);
+
+ int_type exponent = getUnbiasedExponent();
+ if (exponent == min_exponent) {
+ // If we are denormal, normalize the exponent, so that we can encode
+ // easily.
+ exponent = static_cast<int_type>(exponent + 1);
+ for (uint_type check_bit = first_exponent_bit >> 1; check_bit != 0;
+ check_bit = static_cast<uint_type>(check_bit >> 1)) {
+ exponent = static_cast<int_type>(exponent - 1);
+ if (check_bit & significand) break;
+ }
+ }
+
+ bool is_nan =
+ (getBits() & exponent_mask) == exponent_mask && significand != 0;
+ bool is_inf =
+ !is_nan &&
+ ((exponent + carried) > static_cast<int_type>(other_T::exponent_bias) ||
+ (significand == 0 && (getBits() & exponent_mask) == exponent_mask));
+
+ // If we are Nan or Inf we should pass that through.
+ if (is_inf) {
+ other.set_value(BitwiseCast<typename other_T::underlying_type>(
+ static_cast<typename other_T::uint_type>(
+ (negate ? other_T::sign_mask : 0) | other_T::exponent_mask)));
+ return;
+ }
+ if (is_nan) {
+ typename other_T::uint_type shifted_significand;
+ shifted_significand = static_cast<typename other_T::uint_type>(
+ negatable_left_shift(
+ static_cast<int_type>(other_T::num_fraction_bits) -
+ static_cast<int_type>(num_fraction_bits), significand));
+
+ // We are some sort of Nan. We try to keep the bit-pattern of the Nan
+ // as close as possible. If we had to shift off bits so we are 0, then we
+ // just set the last bit.
+ other.set_value(BitwiseCast<typename other_T::underlying_type>(
+ static_cast<typename other_T::uint_type>(
+ (negate ? other_T::sign_mask : 0) | other_T::exponent_mask |
+ (shifted_significand == 0 ? 0x1 : shifted_significand))));
+ return;
+ }
+
+ bool round_underflow_up =
+ isNegative() ? round_dir == kRoundToNegativeInfinity
+ : round_dir == kRoundToPositiveInfinity;
+ typedef typename other_T::int_type other_int_type;
+ // setFromSignUnbiasedExponentAndNormalizedSignificand will
+ // zero out any underflowing value (but retain the sign).
+ other.setFromSignUnbiasedExponentAndNormalizedSignificand(
+ negate, static_cast<other_int_type>(exponent), rounded_significand,
+ round_underflow_up);
+ return;
+ }
+
+ private:
+ T value_;
+
+ static_assert(num_used_bits ==
+ Traits::num_exponent_bits + Traits::num_fraction_bits + 1,
+ "The number of bits do not fit");
+ static_assert(sizeof(T) == sizeof(uint_type), "The type sizes do not match");
+};
+
+// Returns 4 bits represented by the hex character.
+inline uint8_t get_nibble_from_character(int character) {
+ const char* dec = "0123456789";
+ const char* lower = "abcdef";
+ const char* upper = "ABCDEF";
+ const char* p = nullptr;
+ if ((p = strchr(dec, character))) {
+ return static_cast<uint8_t>(p - dec);
+ } else if ((p = strchr(lower, character))) {
+ return static_cast<uint8_t>(p - lower + 0xa);
+ } else if ((p = strchr(upper, character))) {
+ return static_cast<uint8_t>(p - upper + 0xa);
+ }
+
+ assert(false && "This was called with a non-hex character");
+ return 0;
+}
+
+// Outputs the given HexFloat to the stream.
+template <typename T, typename Traits>
+std::ostream& operator<<(std::ostream& os, const HexFloat<T, Traits>& value) {
+ typedef HexFloat<T, Traits> HF;
+ typedef typename HF::uint_type uint_type;
+ typedef typename HF::int_type int_type;
+
+ static_assert(HF::num_used_bits != 0,
+ "num_used_bits must be non-zero for a valid float");
+ static_assert(HF::num_exponent_bits != 0,
+ "num_exponent_bits must be non-zero for a valid float");
+ static_assert(HF::num_fraction_bits != 0,
+ "num_fractin_bits must be non-zero for a valid float");
+
+ const uint_type bits = spvutils::BitwiseCast<uint_type>(value.value());
+ const char* const sign = (bits & HF::sign_mask) ? "-" : "";
+ const uint_type exponent = static_cast<uint_type>(
+ (bits & HF::exponent_mask) >> HF::num_fraction_bits);
+
+ uint_type fraction = static_cast<uint_type>((bits & HF::fraction_encode_mask)
+ << HF::num_overflow_bits);
+
+ const bool is_zero = exponent == 0 && fraction == 0;
+ const bool is_denorm = exponent == 0 && !is_zero;
+
+ // exponent contains the biased exponent we have to convert it back into
+ // the normal range.
+ int_type int_exponent = static_cast<int_type>(exponent - HF::exponent_bias);
+ // If the number is all zeros, then we actually have to NOT shift the
+ // exponent.
+ int_exponent = is_zero ? 0 : int_exponent;
+
+ // If we are denorm, then start shifting, and decreasing the exponent until
+ // our leading bit is 1.
+
+ if (is_denorm) {
+ while ((fraction & HF::fraction_top_bit) == 0) {
+ fraction = static_cast<uint_type>(fraction << 1);
+ int_exponent = static_cast<int_type>(int_exponent - 1);
+ }
+ // Since this is denormalized, we have to consume the leading 1 since it
+ // will end up being implicit.
+ fraction = static_cast<uint_type>(fraction << 1); // eat the leading 1
+ fraction &= HF::fraction_represent_mask;
+ }
+
+ uint_type fraction_nibbles = HF::fraction_nibbles;
+ // We do not have to display any trailing 0s, since this represents the
+ // fractional part.
+ while (fraction_nibbles > 0 && (fraction & 0xF) == 0) {
+ // Shift off any trailing values;
+ fraction = static_cast<uint_type>(fraction >> 4);
+ --fraction_nibbles;
+ }
+
+ const auto saved_flags = os.flags();
+ const auto saved_fill = os.fill();
+
+ os << sign << "0x" << (is_zero ? '0' : '1');
+ if (fraction_nibbles) {
+ // Make sure to keep the leading 0s in place, since this is the fractional
+ // part.
+ os << "." << std::setw(static_cast<int>(fraction_nibbles))
+ << std::setfill('0') << std::hex << fraction;
+ }
+ os << "p" << std::dec << (int_exponent >= 0 ? "+" : "") << int_exponent;
+
+ os.flags(saved_flags);
+ os.fill(saved_fill);
+
+ return os;
+}
+
+// Returns true if negate_value is true and the next character on the
+// input stream is a plus or minus sign. In that case we also set the fail bit
+// on the stream and set the value to the zero value for its type.
+template <typename T, typename Traits>
+inline bool RejectParseDueToLeadingSign(std::istream& is, bool negate_value,
+ HexFloat<T, Traits>& value) {
+ if (negate_value) {
+ auto next_char = is.peek();
+ if (next_char == '-' || next_char == '+') {
+ // Fail the parse. Emulate standard behaviour by setting the value to
+ // the zero value, and set the fail bit on the stream.
+ value = HexFloat<T, Traits>(typename HexFloat<T, Traits>::uint_type(0));
+ is.setstate(std::ios_base::failbit);
+ return true;
+ }
+ }
+ return false;
+}
+
+// Parses a floating point number from the given stream and stores it into the
+// value parameter.
+// If negate_value is true then the number may not have a leading minus or
+// plus, and if it successfully parses, then the number is negated before
+// being stored into the value parameter.
+// If the value cannot be correctly parsed or overflows the target floating
+// point type, then set the fail bit on the stream.
+// TODO(dneto): Promise C++11 standard behavior in how the value is set in
+// the error case, but only after all target platforms implement it correctly.
+// In particular, the Microsoft C++ runtime appears to be out of spec.
+template <typename T, typename Traits>
+inline std::istream& ParseNormalFloat(std::istream& is, bool negate_value,
+ HexFloat<T, Traits>& value) {
+ if (RejectParseDueToLeadingSign(is, negate_value, value)) {
+ return is;
+ }
+ T val;
+ is >> val;
+ if (negate_value) {
+ val = -val;
+ }
+ value.set_value(val);
+ // In the failure case, map -0.0 to 0.0.
+ if (is.fail() && value.getUnsignedBits() == 0u) {
+ value = HexFloat<T, Traits>(typename HexFloat<T, Traits>::uint_type(0));
+ }
+ if (val.isInfinity()) {
+ // Fail the parse. Emulate standard behaviour by setting the value to
+ // the closest normal value, and set the fail bit on the stream.
+ value.set_value((value.isNegative() | negate_value) ? T::lowest()
+ : T::max());
+ is.setstate(std::ios_base::failbit);
+ }
+ return is;
+}
+
+// Specialization of ParseNormalFloat for FloatProxy<Float16> values.
+// This will parse the float as it were a 32-bit floating point number,
+// and then round it down to fit into a Float16 value.
+// The number is rounded towards zero.
+// If negate_value is true then the number may not have a leading minus or
+// plus, and if it successfully parses, then the number is negated before
+// being stored into the value parameter.
+// If the value cannot be correctly parsed or overflows the target floating
+// point type, then set the fail bit on the stream.
+// TODO(dneto): Promise C++11 standard behavior in how the value is set in
+// the error case, but only after all target platforms implement it correctly.
+// In particular, the Microsoft C++ runtime appears to be out of spec.
+template <>
+inline std::istream&
+ParseNormalFloat<FloatProxy<Float16>, HexFloatTraits<FloatProxy<Float16>>>(
+ std::istream& is, bool negate_value,
+ HexFloat<FloatProxy<Float16>, HexFloatTraits<FloatProxy<Float16>>>& value) {
+ // First parse as a 32-bit float.
+ HexFloat<FloatProxy<float>> float_val(0.0f);
+ ParseNormalFloat(is, negate_value, float_val);
+
+ // Then convert to 16-bit float, saturating at infinities, and
+ // rounding toward zero.
+ float_val.castTo(value, kRoundToZero);
+
+ // Overflow on 16-bit behaves the same as for 32- and 64-bit: set the
+ // fail bit and set the lowest or highest value.
+ if (Float16::isInfinity(value.value().getAsFloat())) {
+ value.set_value(value.isNegative() ? Float16::lowest() : Float16::max());
+ is.setstate(std::ios_base::failbit);
+ }
+ return is;
+}
+
+// Reads a HexFloat from the given stream.
+// If the float is not encoded as a hex-float then it will be parsed
+// as a regular float.
+// This may fail if your stream does not support at least one unget.
+// Nan values can be encoded with "0x1.<not zero>p+exponent_bias".
+// This would normally overflow a float and round to
+// infinity but this special pattern is the exact representation for a NaN,
+// and therefore is actually encoded as the correct NaN. To encode inf,
+// either 0x0p+exponent_bias can be specified or any exponent greater than
+// exponent_bias.
+// Examples using IEEE 32-bit float encoding.
+// 0x1.0p+128 (+inf)
+// -0x1.0p-128 (-inf)
+//
+// 0x1.1p+128 (+Nan)
+// -0x1.1p+128 (-Nan)
+//
+// 0x1p+129 (+inf)
+// -0x1p+129 (-inf)
+template <typename T, typename Traits>
+std::istream& operator>>(std::istream& is, HexFloat<T, Traits>& value) {
+ using HF = HexFloat<T, Traits>;
+ using uint_type = typename HF::uint_type;
+ using int_type = typename HF::int_type;
+
+ value.set_value(static_cast<typename HF::native_type>(0.f));
+
+ if (is.flags() & std::ios::skipws) {
+ // If the user wants to skip whitespace , then we should obey that.
+ while (std::isspace(is.peek())) {
+ is.get();
+ }
+ }
+
+ auto next_char = is.peek();
+ bool negate_value = false;
+
+ if (next_char != '-' && next_char != '0') {
+ return ParseNormalFloat(is, negate_value, value);
+ }
+
+ if (next_char == '-') {
+ negate_value = true;
+ is.get();
+ next_char = is.peek();
+ }
+
+ if (next_char == '0') {
+ is.get(); // We may have to unget this.
+ auto maybe_hex_start = is.peek();
+ if (maybe_hex_start != 'x' && maybe_hex_start != 'X') {
+ is.unget();
+ return ParseNormalFloat(is, negate_value, value);
+ } else {
+ is.get(); // Throw away the 'x';
+ }
+ } else {
+ return ParseNormalFloat(is, negate_value, value);
+ }
+
+ // This "looks" like a hex-float so treat it as one.
+ bool seen_p = false;
+ bool seen_dot = false;
+ uint_type fraction_index = 0;
+
+ uint_type fraction = 0;
+ int_type exponent = HF::exponent_bias;
+
+ // Strip off leading zeros so we don't have to special-case them later.
+ while ((next_char = is.peek()) == '0') {
+ is.get();
+ }
+
+ bool is_denorm =
+ true; // Assume denorm "representation" until we hear otherwise.
+ // NB: This does not mean the value is actually denorm,
+ // it just means that it was written 0.
+ bool bits_written = false; // Stays false until we write a bit.
+ while (!seen_p && !seen_dot) {
+ // Handle characters that are left of the fractional part.
+ if (next_char == '.') {
+ seen_dot = true;
+ } else if (next_char == 'p') {
+ seen_p = true;
+ } else if (::isxdigit(next_char)) {
+ // We know this is not denormalized since we have stripped all leading
+ // zeroes and we are not a ".".
+ is_denorm = false;
+ int number = get_nibble_from_character(next_char);
+ for (int i = 0; i < 4; ++i, number <<= 1) {
+ uint_type write_bit = (number & 0x8) ? 0x1 : 0x0;
+ if (bits_written) {
+ // If we are here the bits represented belong in the fractional
+ // part of the float, and we have to adjust the exponent accordingly.
+ fraction = static_cast<uint_type>(
+ fraction |
+ static_cast<uint_type>(
+ write_bit << (HF::top_bit_left_shift - fraction_index++)));
+ exponent = static_cast<int_type>(exponent + 1);
+ }
+ bits_written |= write_bit != 0;
+ }
+ } else {
+ // We have not found our exponent yet, so we have to fail.
+ is.setstate(std::ios::failbit);
+ return is;
+ }
+ is.get();
+ next_char = is.peek();
+ }
+ bits_written = false;
+ while (seen_dot && !seen_p) {
+ // Handle only fractional parts now.
+ if (next_char == 'p') {
+ seen_p = true;
+ } else if (::isxdigit(next_char)) {
+ int number = get_nibble_from_character(next_char);
+ for (int i = 0; i < 4; ++i, number <<= 1) {
+ uint_type write_bit = (number & 0x8) ? 0x01 : 0x00;
+ bits_written |= write_bit != 0;
+ if (is_denorm && !bits_written) {
+ // Handle modifying the exponent here this way we can handle
+ // an arbitrary number of hex values without overflowing our
+ // integer.
+ exponent = static_cast<int_type>(exponent - 1);
+ } else {
+ fraction = static_cast<uint_type>(
+ fraction |
+ static_cast<uint_type>(
+ write_bit << (HF::top_bit_left_shift - fraction_index++)));
+ }
+ }
+ } else {
+ // We still have not found our 'p' exponent yet, so this is not a valid
+ // hex-float.
+ is.setstate(std::ios::failbit);
+ return is;
+ }
+ is.get();
+ next_char = is.peek();
+ }
+
+ bool seen_sign = false;
+ int8_t exponent_sign = 1;
+ int_type written_exponent = 0;
+ while (true) {
+ if ((next_char == '-' || next_char == '+')) {
+ if (seen_sign) {
+ is.setstate(std::ios::failbit);
+ return is;
+ }
+ seen_sign = true;
+ exponent_sign = (next_char == '-') ? -1 : 1;
+ } else if (::isdigit(next_char)) {
+ // Hex-floats express their exponent as decimal.
+ written_exponent = static_cast<int_type>(written_exponent * 10);
+ written_exponent =
+ static_cast<int_type>(written_exponent + (next_char - '0'));
+ } else {
+ break;
+ }
+ is.get();
+ next_char = is.peek();
+ }
+
+ written_exponent = static_cast<int_type>(written_exponent * exponent_sign);
+ exponent = static_cast<int_type>(exponent + written_exponent);
+
+ bool is_zero = is_denorm && (fraction == 0);
+ if (is_denorm && !is_zero) {
+ fraction = static_cast<uint_type>(fraction << 1);
+ exponent = static_cast<int_type>(exponent - 1);
+ } else if (is_zero) {
+ exponent = 0;
+ }
+
+ if (exponent <= 0 && !is_zero) {
+ fraction = static_cast<uint_type>(fraction >> 1);
+ fraction |= static_cast<uint_type>(1) << HF::top_bit_left_shift;
+ }
+
+ fraction = (fraction >> HF::fraction_right_shift) & HF::fraction_encode_mask;
+
+ const int_type max_exponent =
+ SetBits<uint_type, 0, HF::num_exponent_bits>::get;
+
+ // Handle actual denorm numbers
+ while (exponent < 0 && !is_zero) {
+ fraction = static_cast<uint_type>(fraction >> 1);
+ exponent = static_cast<int_type>(exponent + 1);
+
+ fraction &= HF::fraction_encode_mask;
+ if (fraction == 0) {
+ // We have underflowed our fraction. We should clamp to zero.
+ is_zero = true;
+ exponent = 0;
+ }
+ }
+
+ // We have overflowed so we should be inf/-inf.
+ if (exponent > max_exponent) {
+ exponent = max_exponent;
+ fraction = 0;
+ }
+
+ uint_type output_bits = static_cast<uint_type>(
+ static_cast<uint_type>(negate_value ? 1 : 0) << HF::top_bit_left_shift);
+ output_bits |= fraction;
+
+ uint_type shifted_exponent = static_cast<uint_type>(
+ static_cast<uint_type>(exponent << HF::exponent_left_shift) &
+ HF::exponent_mask);
+ output_bits |= shifted_exponent;
+
+ T output_float = spvutils::BitwiseCast<T>(output_bits);
+ value.set_value(output_float);
+
+ return is;
+}
+
+// Writes a FloatProxy value to a stream.
+// Zero and normal numbers are printed in the usual notation, but with
+// enough digits to fully reproduce the value. Other values (subnormal,
+// NaN, and infinity) are printed as a hex float.
+template <typename T>
+std::ostream& operator<<(std::ostream& os, const FloatProxy<T>& value) {
+ auto float_val = value.getAsFloat();
+ switch (std::fpclassify(float_val)) {
+ case FP_ZERO:
+ case FP_NORMAL: {
+ auto saved_precision = os.precision();
+ os.precision(std::numeric_limits<T>::digits10);
+ os << float_val;
+ os.precision(saved_precision);
+ } break;
+ default:
+ os << HexFloat<FloatProxy<T>>(value);
+ break;
+ }
+ return os;
+}
+
+template <>
+inline std::ostream& operator<<<Float16>(std::ostream& os,
+ const FloatProxy<Float16>& value) {
+ os << HexFloat<FloatProxy<Float16>>(value);
+ return os;
+}
+}
+
+#endif // LIBSPIRV_UTIL_HEX_FLOAT_H_