summaryrefslogtreecommitdiff
path: root/thirdparty/embree/kernels/subdiv/bezier_patch.h
diff options
context:
space:
mode:
authorjfons <joan.fonssanchez@gmail.com>2021-05-20 12:49:33 +0200
committerjfons <joan.fonssanchez@gmail.com>2021-05-21 17:00:24 +0200
commit767e374dced69b45db0afb30ca2ccf0bbbeef672 (patch)
treea712cecc2c8cc2c6d6ecdc4a50020d423ddb4c0c /thirdparty/embree/kernels/subdiv/bezier_patch.h
parent42b6602f1d4b108cecb94b94c0d2b645acaebd4f (diff)
Upgrade Embree to the latest official release.
Since Embree v3.13.0 supports AARCH64, switch back to the official repo instead of using Embree-aarch64. `thirdparty/embree/patches/godot-changes.patch` should now contain an accurate diff of the changes done to the library.
Diffstat (limited to 'thirdparty/embree/kernels/subdiv/bezier_patch.h')
-rw-r--r--thirdparty/embree/kernels/subdiv/bezier_patch.h372
1 files changed, 372 insertions, 0 deletions
diff --git a/thirdparty/embree/kernels/subdiv/bezier_patch.h b/thirdparty/embree/kernels/subdiv/bezier_patch.h
new file mode 100644
index 0000000000..2ff03902a7
--- /dev/null
+++ b/thirdparty/embree/kernels/subdiv/bezier_patch.h
@@ -0,0 +1,372 @@
+// Copyright 2009-2021 Intel Corporation
+// SPDX-License-Identifier: Apache-2.0
+
+#pragma once
+
+#include "catmullclark_patch.h"
+#include "bezier_curve.h"
+
+namespace embree
+{
+ template<class T, class S>
+ static __forceinline T deCasteljau(const S& uu, const T& v0, const T& v1, const T& v2, const T& v3)
+ {
+ const T v0_1 = lerp(v0,v1,uu);
+ const T v1_1 = lerp(v1,v2,uu);
+ const T v2_1 = lerp(v2,v3,uu);
+ const T v0_2 = lerp(v0_1,v1_1,uu);
+ const T v1_2 = lerp(v1_1,v2_1,uu);
+ const T v0_3 = lerp(v0_2,v1_2,uu);
+ return v0_3;
+ }
+
+ template<class T, class S>
+ static __forceinline T deCasteljau_tangent(const S& uu, const T& v0, const T& v1, const T& v2, const T& v3)
+ {
+ const T v0_1 = lerp(v0,v1,uu);
+ const T v1_1 = lerp(v1,v2,uu);
+ const T v2_1 = lerp(v2,v3,uu);
+ const T v0_2 = lerp(v0_1,v1_1,uu);
+ const T v1_2 = lerp(v1_1,v2_1,uu);
+ return S(3.0f)*(v1_2-v0_2);
+ }
+
+ template<typename Vertex>
+ __forceinline Vertex computeInnerBezierControlPoint(const Vertex v[4][4], const size_t y, const size_t x) {
+ return 1.0f / 36.0f * (16.0f * v[y][x] + 4.0f * (v[y-1][x] + v[y+1][x] + v[y][x-1] + v[y][x+1]) + (v[y-1][x-1] + v[y+1][x+1] + v[y-1][x+1] + v[y+1][x-1]));
+ }
+
+ template<typename Vertex>
+ __forceinline Vertex computeTopEdgeBezierControlPoint(const Vertex v[4][4], const size_t y, const size_t x) {
+ return 1.0f / 18.0f * (8.0f * v[y][x] + 4.0f * v[y-1][x] + 2.0f * (v[y][x-1] + v[y][x+1]) + (v[y-1][x-1] + v[y-1][x+1]));
+ }
+
+ template<typename Vertex>
+ __forceinline Vertex computeBottomEdgeBezierControlPoint(const Vertex v[4][4], const size_t y, const size_t x) {
+ return 1.0f / 18.0f * (8.0f * v[y][x] + 4.0f * v[y+1][x] + 2.0f * (v[y][x-1] + v[y][x+1]) + v[y+1][x-1] + v[y+1][x+1]);
+ }
+
+ template<typename Vertex>
+ __forceinline Vertex computeLeftEdgeBezierControlPoint(const Vertex v[4][4], const size_t y, const size_t x) {
+ return 1.0f / 18.0f * (8.0f * v[y][x] + 4.0f * v[y][x-1] + 2.0f * (v[y-1][x] + v[y+1][x]) + v[y-1][x-1] + v[y+1][x-1]);
+ }
+
+ template<typename Vertex>
+ __forceinline Vertex computeRightEdgeBezierControlPoint(const Vertex v[4][4], const size_t y, const size_t x) {
+ return 1.0f / 18.0f * (8.0f * v[y][x] + 4.0f * v[y][x+1] + 2.0f * (v[y-1][x] + v[y+1][x]) + v[y-1][x+1] + v[y+1][x+1]);
+ }
+
+ template<typename Vertex>
+ __forceinline Vertex computeCornerBezierControlPoint(const Vertex v[4][4], const size_t y, const size_t x, const ssize_t delta_y, const ssize_t delta_x)
+ {
+ return 1.0f / 9.0f * (4.0f * v[y][x] + 2.0f * (v[y+delta_y][x] + v[y][x+delta_x]) + v[y+delta_y][x+delta_x]);
+ }
+
+ template<typename Vertex, typename Vertex_t>
+ class __aligned(64) BezierPatchT
+ {
+ public:
+ Vertex matrix[4][4];
+
+ public:
+
+ __forceinline BezierPatchT() {}
+
+ __forceinline BezierPatchT (const HalfEdge* edge, const char* vertices, size_t stride);
+
+ __forceinline BezierPatchT(const CatmullClarkPatchT<Vertex,Vertex_t>& patch);
+
+ __forceinline BezierPatchT(const CatmullClarkPatchT<Vertex,Vertex_t>& patch,
+ const BezierCurveT<Vertex>* border0,
+ const BezierCurveT<Vertex>* border1,
+ const BezierCurveT<Vertex>* border2,
+ const BezierCurveT<Vertex>* border3);
+
+ __forceinline BezierPatchT(const BSplinePatchT<Vertex,Vertex_t>& source)
+ {
+ /* compute inner bezier control points */
+ matrix[0][0] = computeInnerBezierControlPoint(source.v,1,1);
+ matrix[0][3] = computeInnerBezierControlPoint(source.v,1,2);
+ matrix[3][3] = computeInnerBezierControlPoint(source.v,2,2);
+ matrix[3][0] = computeInnerBezierControlPoint(source.v,2,1);
+
+ /* compute top edge control points */
+ matrix[0][1] = computeRightEdgeBezierControlPoint(source.v,1,1);
+ matrix[0][2] = computeLeftEdgeBezierControlPoint(source.v,1,2);
+
+ /* compute buttom edge control points */
+ matrix[3][1] = computeRightEdgeBezierControlPoint(source.v,2,1);
+ matrix[3][2] = computeLeftEdgeBezierControlPoint(source.v,2,2);
+
+ /* compute left edge control points */
+ matrix[1][0] = computeBottomEdgeBezierControlPoint(source.v,1,1);
+ matrix[2][0] = computeTopEdgeBezierControlPoint(source.v,2,1);
+
+ /* compute right edge control points */
+ matrix[1][3] = computeBottomEdgeBezierControlPoint(source.v,1,2);
+ matrix[2][3] = computeTopEdgeBezierControlPoint(source.v,2,2);
+
+ /* compute corner control points */
+ matrix[1][1] = computeCornerBezierControlPoint(source.v,1,1, 1, 1);
+ matrix[1][2] = computeCornerBezierControlPoint(source.v,1,2, 1,-1);
+ matrix[2][2] = computeCornerBezierControlPoint(source.v,2,2,-1,-1);
+ matrix[2][1] = computeCornerBezierControlPoint(source.v,2,1,-1, 1);
+ }
+
+ static __forceinline Vertex_t bilinear(const Vec4f Bu, const Vertex matrix[4][4], const Vec4f Bv)
+ {
+ const Vertex_t M0 = madd(Bu.x,matrix[0][0],madd(Bu.y,matrix[0][1],madd(Bu.z,matrix[0][2],Bu.w * matrix[0][3])));
+ const Vertex_t M1 = madd(Bu.x,matrix[1][0],madd(Bu.y,matrix[1][1],madd(Bu.z,matrix[1][2],Bu.w * matrix[1][3])));
+ const Vertex_t M2 = madd(Bu.x,matrix[2][0],madd(Bu.y,matrix[2][1],madd(Bu.z,matrix[2][2],Bu.w * matrix[2][3])));
+ const Vertex_t M3 = madd(Bu.x,matrix[3][0],madd(Bu.y,matrix[3][1],madd(Bu.z,matrix[3][2],Bu.w * matrix[3][3])));
+ return madd(Bv.x,M0,madd(Bv.y,M1,madd(Bv.z,M2,Bv.w*M3)));
+ }
+
+ static __forceinline Vertex_t eval(const Vertex matrix[4][4], const float uu, const float vv)
+ {
+ const Vec4f Bu = BezierBasis::eval(uu);
+ const Vec4f Bv = BezierBasis::eval(vv);
+ return bilinear(Bu,matrix,Bv);
+ }
+
+ static __forceinline Vertex_t eval_du(const Vertex matrix[4][4], const float uu, const float vv)
+ {
+ const Vec4f Bu = BezierBasis::derivative(uu);
+ const Vec4f Bv = BezierBasis::eval(vv);
+ return bilinear(Bu,matrix,Bv);
+ }
+
+ static __forceinline Vertex_t eval_dv(const Vertex matrix[4][4], const float uu, const float vv)
+ {
+ const Vec4f Bu = BezierBasis::eval(uu);
+ const Vec4f Bv = BezierBasis::derivative(vv);
+ return bilinear(Bu,matrix,Bv);
+ }
+
+ static __forceinline Vertex_t eval_dudu(const Vertex matrix[4][4], const float uu, const float vv)
+ {
+ const Vec4f Bu = BezierBasis::derivative2(uu);
+ const Vec4f Bv = BezierBasis::eval(vv);
+ return bilinear(Bu,matrix,Bv);
+ }
+
+ static __forceinline Vertex_t eval_dvdv(const Vertex matrix[4][4], const float uu, const float vv)
+ {
+ const Vec4f Bu = BezierBasis::eval(uu);
+ const Vec4f Bv = BezierBasis::derivative2(vv);
+ return bilinear(Bu,matrix,Bv);
+ }
+
+ static __forceinline Vertex_t eval_dudv(const Vertex matrix[4][4], const float uu, const float vv)
+ {
+ const Vec4f Bu = BezierBasis::derivative(uu);
+ const Vec4f Bv = BezierBasis::derivative(vv);
+ return bilinear(Bu,matrix,Bv);
+ }
+
+ static __forceinline Vertex_t normal(const Vertex matrix[4][4], const float uu, const float vv)
+ {
+ const Vertex_t dPdu = eval_du(matrix,uu,vv);
+ const Vertex_t dPdv = eval_dv(matrix,uu,vv);
+ return cross(dPdu,dPdv);
+ }
+
+ __forceinline Vertex_t normal(const float uu, const float vv)
+ {
+ const Vertex_t dPdu = eval_du(matrix,uu,vv);
+ const Vertex_t dPdv = eval_dv(matrix,uu,vv);
+ return cross(dPdu,dPdv);
+ }
+
+ __forceinline Vertex_t eval(const float uu, const float vv) const {
+ return eval(matrix,uu,vv);
+ }
+
+ __forceinline Vertex_t eval_du(const float uu, const float vv) const {
+ return eval_du(matrix,uu,vv);
+ }
+
+ __forceinline Vertex_t eval_dv(const float uu, const float vv) const {
+ return eval_dv(matrix,uu,vv);
+ }
+
+ __forceinline Vertex_t eval_dudu(const float uu, const float vv) const {
+ return eval_dudu(matrix,uu,vv);
+ }
+
+ __forceinline Vertex_t eval_dvdv(const float uu, const float vv) const {
+ return eval_dvdv(matrix,uu,vv);
+ }
+
+ __forceinline Vertex_t eval_dudv(const float uu, const float vv) const {
+ return eval_dudv(matrix,uu,vv);
+ }
+
+ __forceinline void eval(const float u, const float v, Vertex* P, Vertex* dPdu, Vertex* dPdv, Vertex* ddPdudu, Vertex* ddPdvdv, Vertex* ddPdudv, const float dscale = 1.0f) const
+ {
+ if (P) {
+ *P = eval(u,v);
+ }
+ if (dPdu) {
+ assert(dPdu); *dPdu = eval_du(u,v)*dscale;
+ assert(dPdv); *dPdv = eval_dv(u,v)*dscale;
+ }
+ if (ddPdudu) {
+ assert(ddPdudu); *ddPdudu = eval_dudu(u,v)*sqr(dscale);
+ assert(ddPdvdv); *ddPdvdv = eval_dvdv(u,v)*sqr(dscale);
+ assert(ddPdudv); *ddPdudv = eval_dudv(u,v)*sqr(dscale);
+ }
+ }
+
+ template<class vfloat>
+ __forceinline vfloat eval(const size_t i, const vfloat& uu, const vfloat& vv, const Vec4<vfloat>& u_n, const Vec4<vfloat>& v_n) const
+ {
+ const vfloat curve0_x = v_n[0] * vfloat(matrix[0][0][i]) + v_n[1] * vfloat(matrix[1][0][i]) + v_n[2] * vfloat(matrix[2][0][i]) + v_n[3] * vfloat(matrix[3][0][i]);
+ const vfloat curve1_x = v_n[0] * vfloat(matrix[0][1][i]) + v_n[1] * vfloat(matrix[1][1][i]) + v_n[2] * vfloat(matrix[2][1][i]) + v_n[3] * vfloat(matrix[3][1][i]);
+ const vfloat curve2_x = v_n[0] * vfloat(matrix[0][2][i]) + v_n[1] * vfloat(matrix[1][2][i]) + v_n[2] * vfloat(matrix[2][2][i]) + v_n[3] * vfloat(matrix[3][2][i]);
+ const vfloat curve3_x = v_n[0] * vfloat(matrix[0][3][i]) + v_n[1] * vfloat(matrix[1][3][i]) + v_n[2] * vfloat(matrix[2][3][i]) + v_n[3] * vfloat(matrix[3][3][i]);
+ return u_n[0] * curve0_x + u_n[1] * curve1_x + u_n[2] * curve2_x + u_n[3] * curve3_x;
+ }
+
+ template<typename vbool, typename vfloat>
+ __forceinline void eval(const vbool& valid, const vfloat& uu, const vfloat& vv,
+ float* P, float* dPdu, float* dPdv, float* ddPdudu, float* ddPdvdv, float* ddPdudv,
+ const float dscale, const size_t dstride, const size_t N) const
+ {
+ if (P) {
+ const Vec4<vfloat> u_n = BezierBasis::eval(uu);
+ const Vec4<vfloat> v_n = BezierBasis::eval(vv);
+ for (size_t i=0; i<N; i++) vfloat::store(valid,P+i*dstride,eval(i,uu,vv,u_n,v_n));
+ }
+ if (dPdu)
+ {
+ {
+ assert(dPdu);
+ const Vec4<vfloat> u_n = BezierBasis::derivative(uu);
+ const Vec4<vfloat> v_n = BezierBasis::eval(vv);
+ for (size_t i=0; i<N; i++) vfloat::store(valid,dPdu+i*dstride,eval(i,uu,vv,u_n,v_n)*dscale);
+ }
+ {
+ assert(dPdv);
+ const Vec4<vfloat> u_n = BezierBasis::eval(uu);
+ const Vec4<vfloat> v_n = BezierBasis::derivative(vv);
+ for (size_t i=0; i<N; i++) vfloat::store(valid,dPdv+i*dstride,eval(i,uu,vv,u_n,v_n)*dscale);
+ }
+ }
+ if (ddPdudu)
+ {
+ {
+ assert(ddPdudu);
+ const Vec4<vfloat> u_n = BezierBasis::derivative2(uu);
+ const Vec4<vfloat> v_n = BezierBasis::eval(vv);
+ for (size_t i=0; i<N; i++) vfloat::store(valid,ddPdudu+i*dstride,eval(i,uu,vv,u_n,v_n)*sqr(dscale));
+ }
+ {
+ assert(ddPdvdv);
+ const Vec4<vfloat> u_n = BezierBasis::eval(uu);
+ const Vec4<vfloat> v_n = BezierBasis::derivative2(vv);
+ for (size_t i=0; i<N; i++) vfloat::store(valid,ddPdvdv+i*dstride,eval(i,uu,vv,u_n,v_n)*sqr(dscale));
+ }
+ {
+ assert(ddPdudv);
+ const Vec4<vfloat> u_n = BezierBasis::derivative(uu);
+ const Vec4<vfloat> v_n = BezierBasis::derivative(vv);
+ for (size_t i=0; i<N; i++) vfloat::store(valid,ddPdudv+i*dstride,eval(i,uu,vv,u_n,v_n)*sqr(dscale));
+ }
+ }
+ }
+
+ template<typename T>
+ static __forceinline Vec3<T> eval(const Vertex matrix[4][4], const T& uu, const T& vv)
+ {
+ const T one_minus_uu = 1.0f - uu;
+ const T one_minus_vv = 1.0f - vv;
+
+ const T B0_u = one_minus_uu * one_minus_uu * one_minus_uu;
+ const T B0_v = one_minus_vv * one_minus_vv * one_minus_vv;
+ const T B1_u = 3.0f * (one_minus_uu * uu * one_minus_uu);
+ const T B1_v = 3.0f * (one_minus_vv * vv * one_minus_vv);
+ const T B2_u = 3.0f * (uu * one_minus_uu * uu);
+ const T B2_v = 3.0f * (vv * one_minus_vv * vv);
+ const T B3_u = uu * uu * uu;
+ const T B3_v = vv * vv * vv;
+
+ const T x =
+ madd(B0_v,madd(B0_u,matrix[0][0].x,madd(B1_u,matrix[0][1].x,madd(B2_u,matrix[0][2].x,B3_u*matrix[0][3].x))),
+ madd(B1_v,madd(B0_u,matrix[1][0].x,madd(B1_u,matrix[1][1].x,madd(B2_u,matrix[1][2].x,B3_u*matrix[1][3].x))),
+ madd(B2_v,madd(B0_u,matrix[2][0].x,madd(B1_u,matrix[2][1].x,madd(B2_u,matrix[2][2].x,B3_u*matrix[2][3].x))),
+ B3_v*madd(B0_u,matrix[3][0].x,madd(B1_u,matrix[3][1].x,madd(B2_u,matrix[3][2].x,B3_u*matrix[3][3].x))))));
+
+ const T y =
+ madd(B0_v,madd(B0_u,matrix[0][0].y,madd(B1_u,matrix[0][1].y,madd(B2_u,matrix[0][2].y,B3_u*matrix[0][3].y))),
+ madd(B1_v,madd(B0_u,matrix[1][0].y,madd(B1_u,matrix[1][1].y,madd(B2_u,matrix[1][2].y,B3_u*matrix[1][3].y))),
+ madd(B2_v,madd(B0_u,matrix[2][0].y,madd(B1_u,matrix[2][1].y,madd(B2_u,matrix[2][2].y,B3_u*matrix[2][3].y))),
+ B3_v*madd(B0_u,matrix[3][0].y,madd(B1_u,matrix[3][1].y,madd(B2_u,matrix[3][2].y,B3_u*matrix[3][3].y))))));
+
+ const T z =
+ madd(B0_v,madd(B0_u,matrix[0][0].z,madd(B1_u,matrix[0][1].z,madd(B2_u,matrix[0][2].z,B3_u*matrix[0][3].z))),
+ madd(B1_v,madd(B0_u,matrix[1][0].z,madd(B1_u,matrix[1][1].z,madd(B2_u,matrix[1][2].z,B3_u*matrix[1][3].z))),
+ madd(B2_v,madd(B0_u,matrix[2][0].z,madd(B1_u,matrix[2][1].z,madd(B2_u,matrix[2][2].z,B3_u*matrix[2][3].z))),
+ B3_v*madd(B0_u,matrix[3][0].z,madd(B1_u,matrix[3][1].z,madd(B2_u,matrix[3][2].z,B3_u*matrix[3][3].z))))));
+
+ return Vec3<T>(x,y,z);
+ }
+
+ template<typename vfloat>
+ __forceinline Vec3<vfloat> eval(const vfloat& uu, const vfloat& vv) const {
+ return eval(matrix,uu,vv);
+ }
+
+ template<class T>
+ static __forceinline Vec3<T> normal(const Vertex matrix[4][4], const T& uu, const T& vv)
+ {
+
+ const Vec3<T> matrix_00 = Vec3<T>(matrix[0][0].x,matrix[0][0].y,matrix[0][0].z);
+ const Vec3<T> matrix_01 = Vec3<T>(matrix[0][1].x,matrix[0][1].y,matrix[0][1].z);
+ const Vec3<T> matrix_02 = Vec3<T>(matrix[0][2].x,matrix[0][2].y,matrix[0][2].z);
+ const Vec3<T> matrix_03 = Vec3<T>(matrix[0][3].x,matrix[0][3].y,matrix[0][3].z);
+
+ const Vec3<T> matrix_10 = Vec3<T>(matrix[1][0].x,matrix[1][0].y,matrix[1][0].z);
+ const Vec3<T> matrix_11 = Vec3<T>(matrix[1][1].x,matrix[1][1].y,matrix[1][1].z);
+ const Vec3<T> matrix_12 = Vec3<T>(matrix[1][2].x,matrix[1][2].y,matrix[1][2].z);
+ const Vec3<T> matrix_13 = Vec3<T>(matrix[1][3].x,matrix[1][3].y,matrix[1][3].z);
+
+ const Vec3<T> matrix_20 = Vec3<T>(matrix[2][0].x,matrix[2][0].y,matrix[2][0].z);
+ const Vec3<T> matrix_21 = Vec3<T>(matrix[2][1].x,matrix[2][1].y,matrix[2][1].z);
+ const Vec3<T> matrix_22 = Vec3<T>(matrix[2][2].x,matrix[2][2].y,matrix[2][2].z);
+ const Vec3<T> matrix_23 = Vec3<T>(matrix[2][3].x,matrix[2][3].y,matrix[2][3].z);
+
+ const Vec3<T> matrix_30 = Vec3<T>(matrix[3][0].x,matrix[3][0].y,matrix[3][0].z);
+ const Vec3<T> matrix_31 = Vec3<T>(matrix[3][1].x,matrix[3][1].y,matrix[3][1].z);
+ const Vec3<T> matrix_32 = Vec3<T>(matrix[3][2].x,matrix[3][2].y,matrix[3][2].z);
+ const Vec3<T> matrix_33 = Vec3<T>(matrix[3][3].x,matrix[3][3].y,matrix[3][3].z);
+
+ /* tangentU */
+ const Vec3<T> col0 = deCasteljau(vv, matrix_00, matrix_10, matrix_20, matrix_30);
+ const Vec3<T> col1 = deCasteljau(vv, matrix_01, matrix_11, matrix_21, matrix_31);
+ const Vec3<T> col2 = deCasteljau(vv, matrix_02, matrix_12, matrix_22, matrix_32);
+ const Vec3<T> col3 = deCasteljau(vv, matrix_03, matrix_13, matrix_23, matrix_33);
+
+ const Vec3<T> tangentU = deCasteljau_tangent(uu, col0, col1, col2, col3);
+
+ /* tangentV */
+ const Vec3<T> row0 = deCasteljau(uu, matrix_00, matrix_01, matrix_02, matrix_03);
+ const Vec3<T> row1 = deCasteljau(uu, matrix_10, matrix_11, matrix_12, matrix_13);
+ const Vec3<T> row2 = deCasteljau(uu, matrix_20, matrix_21, matrix_22, matrix_23);
+ const Vec3<T> row3 = deCasteljau(uu, matrix_30, matrix_31, matrix_32, matrix_33);
+
+ const Vec3<T> tangentV = deCasteljau_tangent(vv, row0, row1, row2, row3);
+
+ /* normal = tangentU x tangentV */
+ const Vec3<T> n = cross(tangentU,tangentV);
+ return n;
+ }
+
+ template<typename vfloat>
+ __forceinline Vec3<vfloat> normal(const vfloat& uu, const vfloat& vv) const {
+ return normal(matrix,uu,vv);
+ }
+ };
+
+ typedef BezierPatchT<Vec3fa,Vec3fa_t> BezierPatch3fa;
+}