diff options
author | jfons <joan.fonssanchez@gmail.com> | 2021-05-20 12:49:33 +0200 |
---|---|---|
committer | jfons <joan.fonssanchez@gmail.com> | 2021-05-21 17:00:24 +0200 |
commit | 767e374dced69b45db0afb30ca2ccf0bbbeef672 (patch) | |
tree | a712cecc2c8cc2c6d6ecdc4a50020d423ddb4c0c /thirdparty/embree/kernels/subdiv/bezier_patch.h | |
parent | 42b6602f1d4b108cecb94b94c0d2b645acaebd4f (diff) |
Upgrade Embree to the latest official release.
Since Embree v3.13.0 supports AARCH64, switch back to the
official repo instead of using Embree-aarch64.
`thirdparty/embree/patches/godot-changes.patch` should now contain
an accurate diff of the changes done to the library.
Diffstat (limited to 'thirdparty/embree/kernels/subdiv/bezier_patch.h')
-rw-r--r-- | thirdparty/embree/kernels/subdiv/bezier_patch.h | 372 |
1 files changed, 372 insertions, 0 deletions
diff --git a/thirdparty/embree/kernels/subdiv/bezier_patch.h b/thirdparty/embree/kernels/subdiv/bezier_patch.h new file mode 100644 index 0000000000..2ff03902a7 --- /dev/null +++ b/thirdparty/embree/kernels/subdiv/bezier_patch.h @@ -0,0 +1,372 @@ +// Copyright 2009-2021 Intel Corporation +// SPDX-License-Identifier: Apache-2.0 + +#pragma once + +#include "catmullclark_patch.h" +#include "bezier_curve.h" + +namespace embree +{ + template<class T, class S> + static __forceinline T deCasteljau(const S& uu, const T& v0, const T& v1, const T& v2, const T& v3) + { + const T v0_1 = lerp(v0,v1,uu); + const T v1_1 = lerp(v1,v2,uu); + const T v2_1 = lerp(v2,v3,uu); + const T v0_2 = lerp(v0_1,v1_1,uu); + const T v1_2 = lerp(v1_1,v2_1,uu); + const T v0_3 = lerp(v0_2,v1_2,uu); + return v0_3; + } + + template<class T, class S> + static __forceinline T deCasteljau_tangent(const S& uu, const T& v0, const T& v1, const T& v2, const T& v3) + { + const T v0_1 = lerp(v0,v1,uu); + const T v1_1 = lerp(v1,v2,uu); + const T v2_1 = lerp(v2,v3,uu); + const T v0_2 = lerp(v0_1,v1_1,uu); + const T v1_2 = lerp(v1_1,v2_1,uu); + return S(3.0f)*(v1_2-v0_2); + } + + template<typename Vertex> + __forceinline Vertex computeInnerBezierControlPoint(const Vertex v[4][4], const size_t y, const size_t x) { + return 1.0f / 36.0f * (16.0f * v[y][x] + 4.0f * (v[y-1][x] + v[y+1][x] + v[y][x-1] + v[y][x+1]) + (v[y-1][x-1] + v[y+1][x+1] + v[y-1][x+1] + v[y+1][x-1])); + } + + template<typename Vertex> + __forceinline Vertex computeTopEdgeBezierControlPoint(const Vertex v[4][4], const size_t y, const size_t x) { + return 1.0f / 18.0f * (8.0f * v[y][x] + 4.0f * v[y-1][x] + 2.0f * (v[y][x-1] + v[y][x+1]) + (v[y-1][x-1] + v[y-1][x+1])); + } + + template<typename Vertex> + __forceinline Vertex computeBottomEdgeBezierControlPoint(const Vertex v[4][4], const size_t y, const size_t x) { + return 1.0f / 18.0f * (8.0f * v[y][x] + 4.0f * v[y+1][x] + 2.0f * (v[y][x-1] + v[y][x+1]) + v[y+1][x-1] + v[y+1][x+1]); + } + + template<typename Vertex> + __forceinline Vertex computeLeftEdgeBezierControlPoint(const Vertex v[4][4], const size_t y, const size_t x) { + return 1.0f / 18.0f * (8.0f * v[y][x] + 4.0f * v[y][x-1] + 2.0f * (v[y-1][x] + v[y+1][x]) + v[y-1][x-1] + v[y+1][x-1]); + } + + template<typename Vertex> + __forceinline Vertex computeRightEdgeBezierControlPoint(const Vertex v[4][4], const size_t y, const size_t x) { + return 1.0f / 18.0f * (8.0f * v[y][x] + 4.0f * v[y][x+1] + 2.0f * (v[y-1][x] + v[y+1][x]) + v[y-1][x+1] + v[y+1][x+1]); + } + + template<typename Vertex> + __forceinline Vertex computeCornerBezierControlPoint(const Vertex v[4][4], const size_t y, const size_t x, const ssize_t delta_y, const ssize_t delta_x) + { + return 1.0f / 9.0f * (4.0f * v[y][x] + 2.0f * (v[y+delta_y][x] + v[y][x+delta_x]) + v[y+delta_y][x+delta_x]); + } + + template<typename Vertex, typename Vertex_t> + class __aligned(64) BezierPatchT + { + public: + Vertex matrix[4][4]; + + public: + + __forceinline BezierPatchT() {} + + __forceinline BezierPatchT (const HalfEdge* edge, const char* vertices, size_t stride); + + __forceinline BezierPatchT(const CatmullClarkPatchT<Vertex,Vertex_t>& patch); + + __forceinline BezierPatchT(const CatmullClarkPatchT<Vertex,Vertex_t>& patch, + const BezierCurveT<Vertex>* border0, + const BezierCurveT<Vertex>* border1, + const BezierCurveT<Vertex>* border2, + const BezierCurveT<Vertex>* border3); + + __forceinline BezierPatchT(const BSplinePatchT<Vertex,Vertex_t>& source) + { + /* compute inner bezier control points */ + matrix[0][0] = computeInnerBezierControlPoint(source.v,1,1); + matrix[0][3] = computeInnerBezierControlPoint(source.v,1,2); + matrix[3][3] = computeInnerBezierControlPoint(source.v,2,2); + matrix[3][0] = computeInnerBezierControlPoint(source.v,2,1); + + /* compute top edge control points */ + matrix[0][1] = computeRightEdgeBezierControlPoint(source.v,1,1); + matrix[0][2] = computeLeftEdgeBezierControlPoint(source.v,1,2); + + /* compute buttom edge control points */ + matrix[3][1] = computeRightEdgeBezierControlPoint(source.v,2,1); + matrix[3][2] = computeLeftEdgeBezierControlPoint(source.v,2,2); + + /* compute left edge control points */ + matrix[1][0] = computeBottomEdgeBezierControlPoint(source.v,1,1); + matrix[2][0] = computeTopEdgeBezierControlPoint(source.v,2,1); + + /* compute right edge control points */ + matrix[1][3] = computeBottomEdgeBezierControlPoint(source.v,1,2); + matrix[2][3] = computeTopEdgeBezierControlPoint(source.v,2,2); + + /* compute corner control points */ + matrix[1][1] = computeCornerBezierControlPoint(source.v,1,1, 1, 1); + matrix[1][2] = computeCornerBezierControlPoint(source.v,1,2, 1,-1); + matrix[2][2] = computeCornerBezierControlPoint(source.v,2,2,-1,-1); + matrix[2][1] = computeCornerBezierControlPoint(source.v,2,1,-1, 1); + } + + static __forceinline Vertex_t bilinear(const Vec4f Bu, const Vertex matrix[4][4], const Vec4f Bv) + { + const Vertex_t M0 = madd(Bu.x,matrix[0][0],madd(Bu.y,matrix[0][1],madd(Bu.z,matrix[0][2],Bu.w * matrix[0][3]))); + const Vertex_t M1 = madd(Bu.x,matrix[1][0],madd(Bu.y,matrix[1][1],madd(Bu.z,matrix[1][2],Bu.w * matrix[1][3]))); + const Vertex_t M2 = madd(Bu.x,matrix[2][0],madd(Bu.y,matrix[2][1],madd(Bu.z,matrix[2][2],Bu.w * matrix[2][3]))); + const Vertex_t M3 = madd(Bu.x,matrix[3][0],madd(Bu.y,matrix[3][1],madd(Bu.z,matrix[3][2],Bu.w * matrix[3][3]))); + return madd(Bv.x,M0,madd(Bv.y,M1,madd(Bv.z,M2,Bv.w*M3))); + } + + static __forceinline Vertex_t eval(const Vertex matrix[4][4], const float uu, const float vv) + { + const Vec4f Bu = BezierBasis::eval(uu); + const Vec4f Bv = BezierBasis::eval(vv); + return bilinear(Bu,matrix,Bv); + } + + static __forceinline Vertex_t eval_du(const Vertex matrix[4][4], const float uu, const float vv) + { + const Vec4f Bu = BezierBasis::derivative(uu); + const Vec4f Bv = BezierBasis::eval(vv); + return bilinear(Bu,matrix,Bv); + } + + static __forceinline Vertex_t eval_dv(const Vertex matrix[4][4], const float uu, const float vv) + { + const Vec4f Bu = BezierBasis::eval(uu); + const Vec4f Bv = BezierBasis::derivative(vv); + return bilinear(Bu,matrix,Bv); + } + + static __forceinline Vertex_t eval_dudu(const Vertex matrix[4][4], const float uu, const float vv) + { + const Vec4f Bu = BezierBasis::derivative2(uu); + const Vec4f Bv = BezierBasis::eval(vv); + return bilinear(Bu,matrix,Bv); + } + + static __forceinline Vertex_t eval_dvdv(const Vertex matrix[4][4], const float uu, const float vv) + { + const Vec4f Bu = BezierBasis::eval(uu); + const Vec4f Bv = BezierBasis::derivative2(vv); + return bilinear(Bu,matrix,Bv); + } + + static __forceinline Vertex_t eval_dudv(const Vertex matrix[4][4], const float uu, const float vv) + { + const Vec4f Bu = BezierBasis::derivative(uu); + const Vec4f Bv = BezierBasis::derivative(vv); + return bilinear(Bu,matrix,Bv); + } + + static __forceinline Vertex_t normal(const Vertex matrix[4][4], const float uu, const float vv) + { + const Vertex_t dPdu = eval_du(matrix,uu,vv); + const Vertex_t dPdv = eval_dv(matrix,uu,vv); + return cross(dPdu,dPdv); + } + + __forceinline Vertex_t normal(const float uu, const float vv) + { + const Vertex_t dPdu = eval_du(matrix,uu,vv); + const Vertex_t dPdv = eval_dv(matrix,uu,vv); + return cross(dPdu,dPdv); + } + + __forceinline Vertex_t eval(const float uu, const float vv) const { + return eval(matrix,uu,vv); + } + + __forceinline Vertex_t eval_du(const float uu, const float vv) const { + return eval_du(matrix,uu,vv); + } + + __forceinline Vertex_t eval_dv(const float uu, const float vv) const { + return eval_dv(matrix,uu,vv); + } + + __forceinline Vertex_t eval_dudu(const float uu, const float vv) const { + return eval_dudu(matrix,uu,vv); + } + + __forceinline Vertex_t eval_dvdv(const float uu, const float vv) const { + return eval_dvdv(matrix,uu,vv); + } + + __forceinline Vertex_t eval_dudv(const float uu, const float vv) const { + return eval_dudv(matrix,uu,vv); + } + + __forceinline void eval(const float u, const float v, Vertex* P, Vertex* dPdu, Vertex* dPdv, Vertex* ddPdudu, Vertex* ddPdvdv, Vertex* ddPdudv, const float dscale = 1.0f) const + { + if (P) { + *P = eval(u,v); + } + if (dPdu) { + assert(dPdu); *dPdu = eval_du(u,v)*dscale; + assert(dPdv); *dPdv = eval_dv(u,v)*dscale; + } + if (ddPdudu) { + assert(ddPdudu); *ddPdudu = eval_dudu(u,v)*sqr(dscale); + assert(ddPdvdv); *ddPdvdv = eval_dvdv(u,v)*sqr(dscale); + assert(ddPdudv); *ddPdudv = eval_dudv(u,v)*sqr(dscale); + } + } + + template<class vfloat> + __forceinline vfloat eval(const size_t i, const vfloat& uu, const vfloat& vv, const Vec4<vfloat>& u_n, const Vec4<vfloat>& v_n) const + { + const vfloat curve0_x = v_n[0] * vfloat(matrix[0][0][i]) + v_n[1] * vfloat(matrix[1][0][i]) + v_n[2] * vfloat(matrix[2][0][i]) + v_n[3] * vfloat(matrix[3][0][i]); + const vfloat curve1_x = v_n[0] * vfloat(matrix[0][1][i]) + v_n[1] * vfloat(matrix[1][1][i]) + v_n[2] * vfloat(matrix[2][1][i]) + v_n[3] * vfloat(matrix[3][1][i]); + const vfloat curve2_x = v_n[0] * vfloat(matrix[0][2][i]) + v_n[1] * vfloat(matrix[1][2][i]) + v_n[2] * vfloat(matrix[2][2][i]) + v_n[3] * vfloat(matrix[3][2][i]); + const vfloat curve3_x = v_n[0] * vfloat(matrix[0][3][i]) + v_n[1] * vfloat(matrix[1][3][i]) + v_n[2] * vfloat(matrix[2][3][i]) + v_n[3] * vfloat(matrix[3][3][i]); + return u_n[0] * curve0_x + u_n[1] * curve1_x + u_n[2] * curve2_x + u_n[3] * curve3_x; + } + + template<typename vbool, typename vfloat> + __forceinline void eval(const vbool& valid, const vfloat& uu, const vfloat& vv, + float* P, float* dPdu, float* dPdv, float* ddPdudu, float* ddPdvdv, float* ddPdudv, + const float dscale, const size_t dstride, const size_t N) const + { + if (P) { + const Vec4<vfloat> u_n = BezierBasis::eval(uu); + const Vec4<vfloat> v_n = BezierBasis::eval(vv); + for (size_t i=0; i<N; i++) vfloat::store(valid,P+i*dstride,eval(i,uu,vv,u_n,v_n)); + } + if (dPdu) + { + { + assert(dPdu); + const Vec4<vfloat> u_n = BezierBasis::derivative(uu); + const Vec4<vfloat> v_n = BezierBasis::eval(vv); + for (size_t i=0; i<N; i++) vfloat::store(valid,dPdu+i*dstride,eval(i,uu,vv,u_n,v_n)*dscale); + } + { + assert(dPdv); + const Vec4<vfloat> u_n = BezierBasis::eval(uu); + const Vec4<vfloat> v_n = BezierBasis::derivative(vv); + for (size_t i=0; i<N; i++) vfloat::store(valid,dPdv+i*dstride,eval(i,uu,vv,u_n,v_n)*dscale); + } + } + if (ddPdudu) + { + { + assert(ddPdudu); + const Vec4<vfloat> u_n = BezierBasis::derivative2(uu); + const Vec4<vfloat> v_n = BezierBasis::eval(vv); + for (size_t i=0; i<N; i++) vfloat::store(valid,ddPdudu+i*dstride,eval(i,uu,vv,u_n,v_n)*sqr(dscale)); + } + { + assert(ddPdvdv); + const Vec4<vfloat> u_n = BezierBasis::eval(uu); + const Vec4<vfloat> v_n = BezierBasis::derivative2(vv); + for (size_t i=0; i<N; i++) vfloat::store(valid,ddPdvdv+i*dstride,eval(i,uu,vv,u_n,v_n)*sqr(dscale)); + } + { + assert(ddPdudv); + const Vec4<vfloat> u_n = BezierBasis::derivative(uu); + const Vec4<vfloat> v_n = BezierBasis::derivative(vv); + for (size_t i=0; i<N; i++) vfloat::store(valid,ddPdudv+i*dstride,eval(i,uu,vv,u_n,v_n)*sqr(dscale)); + } + } + } + + template<typename T> + static __forceinline Vec3<T> eval(const Vertex matrix[4][4], const T& uu, const T& vv) + { + const T one_minus_uu = 1.0f - uu; + const T one_minus_vv = 1.0f - vv; + + const T B0_u = one_minus_uu * one_minus_uu * one_minus_uu; + const T B0_v = one_minus_vv * one_minus_vv * one_minus_vv; + const T B1_u = 3.0f * (one_minus_uu * uu * one_minus_uu); + const T B1_v = 3.0f * (one_minus_vv * vv * one_minus_vv); + const T B2_u = 3.0f * (uu * one_minus_uu * uu); + const T B2_v = 3.0f * (vv * one_minus_vv * vv); + const T B3_u = uu * uu * uu; + const T B3_v = vv * vv * vv; + + const T x = + madd(B0_v,madd(B0_u,matrix[0][0].x,madd(B1_u,matrix[0][1].x,madd(B2_u,matrix[0][2].x,B3_u*matrix[0][3].x))), + madd(B1_v,madd(B0_u,matrix[1][0].x,madd(B1_u,matrix[1][1].x,madd(B2_u,matrix[1][2].x,B3_u*matrix[1][3].x))), + madd(B2_v,madd(B0_u,matrix[2][0].x,madd(B1_u,matrix[2][1].x,madd(B2_u,matrix[2][2].x,B3_u*matrix[2][3].x))), + B3_v*madd(B0_u,matrix[3][0].x,madd(B1_u,matrix[3][1].x,madd(B2_u,matrix[3][2].x,B3_u*matrix[3][3].x)))))); + + const T y = + madd(B0_v,madd(B0_u,matrix[0][0].y,madd(B1_u,matrix[0][1].y,madd(B2_u,matrix[0][2].y,B3_u*matrix[0][3].y))), + madd(B1_v,madd(B0_u,matrix[1][0].y,madd(B1_u,matrix[1][1].y,madd(B2_u,matrix[1][2].y,B3_u*matrix[1][3].y))), + madd(B2_v,madd(B0_u,matrix[2][0].y,madd(B1_u,matrix[2][1].y,madd(B2_u,matrix[2][2].y,B3_u*matrix[2][3].y))), + B3_v*madd(B0_u,matrix[3][0].y,madd(B1_u,matrix[3][1].y,madd(B2_u,matrix[3][2].y,B3_u*matrix[3][3].y)))))); + + const T z = + madd(B0_v,madd(B0_u,matrix[0][0].z,madd(B1_u,matrix[0][1].z,madd(B2_u,matrix[0][2].z,B3_u*matrix[0][3].z))), + madd(B1_v,madd(B0_u,matrix[1][0].z,madd(B1_u,matrix[1][1].z,madd(B2_u,matrix[1][2].z,B3_u*matrix[1][3].z))), + madd(B2_v,madd(B0_u,matrix[2][0].z,madd(B1_u,matrix[2][1].z,madd(B2_u,matrix[2][2].z,B3_u*matrix[2][3].z))), + B3_v*madd(B0_u,matrix[3][0].z,madd(B1_u,matrix[3][1].z,madd(B2_u,matrix[3][2].z,B3_u*matrix[3][3].z)))))); + + return Vec3<T>(x,y,z); + } + + template<typename vfloat> + __forceinline Vec3<vfloat> eval(const vfloat& uu, const vfloat& vv) const { + return eval(matrix,uu,vv); + } + + template<class T> + static __forceinline Vec3<T> normal(const Vertex matrix[4][4], const T& uu, const T& vv) + { + + const Vec3<T> matrix_00 = Vec3<T>(matrix[0][0].x,matrix[0][0].y,matrix[0][0].z); + const Vec3<T> matrix_01 = Vec3<T>(matrix[0][1].x,matrix[0][1].y,matrix[0][1].z); + const Vec3<T> matrix_02 = Vec3<T>(matrix[0][2].x,matrix[0][2].y,matrix[0][2].z); + const Vec3<T> matrix_03 = Vec3<T>(matrix[0][3].x,matrix[0][3].y,matrix[0][3].z); + + const Vec3<T> matrix_10 = Vec3<T>(matrix[1][0].x,matrix[1][0].y,matrix[1][0].z); + const Vec3<T> matrix_11 = Vec3<T>(matrix[1][1].x,matrix[1][1].y,matrix[1][1].z); + const Vec3<T> matrix_12 = Vec3<T>(matrix[1][2].x,matrix[1][2].y,matrix[1][2].z); + const Vec3<T> matrix_13 = Vec3<T>(matrix[1][3].x,matrix[1][3].y,matrix[1][3].z); + + const Vec3<T> matrix_20 = Vec3<T>(matrix[2][0].x,matrix[2][0].y,matrix[2][0].z); + const Vec3<T> matrix_21 = Vec3<T>(matrix[2][1].x,matrix[2][1].y,matrix[2][1].z); + const Vec3<T> matrix_22 = Vec3<T>(matrix[2][2].x,matrix[2][2].y,matrix[2][2].z); + const Vec3<T> matrix_23 = Vec3<T>(matrix[2][3].x,matrix[2][3].y,matrix[2][3].z); + + const Vec3<T> matrix_30 = Vec3<T>(matrix[3][0].x,matrix[3][0].y,matrix[3][0].z); + const Vec3<T> matrix_31 = Vec3<T>(matrix[3][1].x,matrix[3][1].y,matrix[3][1].z); + const Vec3<T> matrix_32 = Vec3<T>(matrix[3][2].x,matrix[3][2].y,matrix[3][2].z); + const Vec3<T> matrix_33 = Vec3<T>(matrix[3][3].x,matrix[3][3].y,matrix[3][3].z); + + /* tangentU */ + const Vec3<T> col0 = deCasteljau(vv, matrix_00, matrix_10, matrix_20, matrix_30); + const Vec3<T> col1 = deCasteljau(vv, matrix_01, matrix_11, matrix_21, matrix_31); + const Vec3<T> col2 = deCasteljau(vv, matrix_02, matrix_12, matrix_22, matrix_32); + const Vec3<T> col3 = deCasteljau(vv, matrix_03, matrix_13, matrix_23, matrix_33); + + const Vec3<T> tangentU = deCasteljau_tangent(uu, col0, col1, col2, col3); + + /* tangentV */ + const Vec3<T> row0 = deCasteljau(uu, matrix_00, matrix_01, matrix_02, matrix_03); + const Vec3<T> row1 = deCasteljau(uu, matrix_10, matrix_11, matrix_12, matrix_13); + const Vec3<T> row2 = deCasteljau(uu, matrix_20, matrix_21, matrix_22, matrix_23); + const Vec3<T> row3 = deCasteljau(uu, matrix_30, matrix_31, matrix_32, matrix_33); + + const Vec3<T> tangentV = deCasteljau_tangent(vv, row0, row1, row2, row3); + + /* normal = tangentU x tangentV */ + const Vec3<T> n = cross(tangentU,tangentV); + return n; + } + + template<typename vfloat> + __forceinline Vec3<vfloat> normal(const vfloat& uu, const vfloat& vv) const { + return normal(matrix,uu,vv); + } + }; + + typedef BezierPatchT<Vec3fa,Vec3fa_t> BezierPatch3fa; +} |