diff options
author | jfons <joan.fonssanchez@gmail.com> | 2021-05-20 12:49:33 +0200 |
---|---|---|
committer | jfons <joan.fonssanchez@gmail.com> | 2021-05-21 17:00:24 +0200 |
commit | 767e374dced69b45db0afb30ca2ccf0bbbeef672 (patch) | |
tree | a712cecc2c8cc2c6d6ecdc4a50020d423ddb4c0c /thirdparty/embree/kernels/builders/heuristic_timesplit_array.h | |
parent | 42b6602f1d4b108cecb94b94c0d2b645acaebd4f (diff) |
Upgrade Embree to the latest official release.
Since Embree v3.13.0 supports AARCH64, switch back to the
official repo instead of using Embree-aarch64.
`thirdparty/embree/patches/godot-changes.patch` should now contain
an accurate diff of the changes done to the library.
Diffstat (limited to 'thirdparty/embree/kernels/builders/heuristic_timesplit_array.h')
-rw-r--r-- | thirdparty/embree/kernels/builders/heuristic_timesplit_array.h | 237 |
1 files changed, 237 insertions, 0 deletions
diff --git a/thirdparty/embree/kernels/builders/heuristic_timesplit_array.h b/thirdparty/embree/kernels/builders/heuristic_timesplit_array.h new file mode 100644 index 0000000000..b968e01c90 --- /dev/null +++ b/thirdparty/embree/kernels/builders/heuristic_timesplit_array.h @@ -0,0 +1,237 @@ +// Copyright 2009-2021 Intel Corporation +// SPDX-License-Identifier: Apache-2.0 + +#pragma once + +#include "../common/primref_mb.h" +#include "../../common/algorithms/parallel_filter.h" + +#define MBLUR_TIME_SPLIT_THRESHOLD 1.25f + +namespace embree +{ + namespace isa + { + /*! Performs standard object binning */ + template<typename PrimRefMB, typename RecalculatePrimRef, size_t BINS> + struct HeuristicMBlurTemporalSplit + { + typedef BinSplit<MBLUR_NUM_OBJECT_BINS> Split; + typedef mvector<PrimRefMB>* PrimRefVector; + typedef typename PrimRefMB::BBox BBox; + + static const size_t PARALLEL_THRESHOLD = 3 * 1024; + static const size_t PARALLEL_FIND_BLOCK_SIZE = 1024; + static const size_t PARALLEL_PARTITION_BLOCK_SIZE = 128; + + HeuristicMBlurTemporalSplit (MemoryMonitorInterface* device, const RecalculatePrimRef& recalculatePrimRef) + : device(device), recalculatePrimRef(recalculatePrimRef) {} + + struct TemporalBinInfo + { + __forceinline TemporalBinInfo () { + } + + __forceinline TemporalBinInfo (EmptyTy) + { + for (size_t i=0; i<BINS-1; i++) + { + count0[i] = count1[i] = 0; + bounds0[i] = bounds1[i] = empty; + } + } + + void bin(const PrimRefMB* prims, size_t begin, size_t end, BBox1f time_range, const SetMB& set, const RecalculatePrimRef& recalculatePrimRef) + { + for (int b=0; b<BINS-1; b++) + { + const float t = float(b+1)/float(BINS); + const float ct = lerp(time_range.lower,time_range.upper,t); + const float center_time = set.align_time(ct); + if (center_time <= time_range.lower) continue; + if (center_time >= time_range.upper) continue; + const BBox1f dt0(time_range.lower,center_time); + const BBox1f dt1(center_time,time_range.upper); + + /* find linear bounds for both time segments */ + for (size_t i=begin; i<end; i++) + { + if (prims[i].time_range_overlap(dt0)) + { + const LBBox3fa bn0 = recalculatePrimRef.linearBounds(prims[i],dt0); +#if MBLUR_BIN_LBBOX + bounds0[b].extend(bn0); +#else + bounds0[b].extend(bn0.interpolate(0.5f)); +#endif + count0[b] += prims[i].timeSegmentRange(dt0).size(); + } + + if (prims[i].time_range_overlap(dt1)) + { + const LBBox3fa bn1 = recalculatePrimRef.linearBounds(prims[i],dt1); +#if MBLUR_BIN_LBBOX + bounds1[b].extend(bn1); +#else + bounds1[b].extend(bn1.interpolate(0.5f)); +#endif + count1[b] += prims[i].timeSegmentRange(dt1).size(); + } + } + } + } + + __forceinline void bin_parallel(const PrimRefMB* prims, size_t begin, size_t end, size_t blockSize, size_t parallelThreshold, BBox1f time_range, const SetMB& set, const RecalculatePrimRef& recalculatePrimRef) + { + if (likely(end-begin < parallelThreshold)) { + bin(prims,begin,end,time_range,set,recalculatePrimRef); + } + else + { + auto bin = [&](const range<size_t>& r) -> TemporalBinInfo { + TemporalBinInfo binner(empty); binner.bin(prims, r.begin(), r.end(), time_range, set, recalculatePrimRef); return binner; + }; + *this = parallel_reduce(begin,end,blockSize,TemporalBinInfo(empty),bin,merge2); + } + } + + /*! merges in other binning information */ + __forceinline void merge (const TemporalBinInfo& other) + { + for (size_t i=0; i<BINS-1; i++) + { + count0[i] += other.count0[i]; + count1[i] += other.count1[i]; + bounds0[i].extend(other.bounds0[i]); + bounds1[i].extend(other.bounds1[i]); + } + } + + static __forceinline const TemporalBinInfo merge2(const TemporalBinInfo& a, const TemporalBinInfo& b) { + TemporalBinInfo r = a; r.merge(b); return r; + } + + Split best(int logBlockSize, BBox1f time_range, const SetMB& set) + { + float bestSAH = inf; + float bestPos = 0.0f; + for (int b=0; b<BINS-1; b++) + { + float t = float(b+1)/float(BINS); + float ct = lerp(time_range.lower,time_range.upper,t); + const float center_time = set.align_time(ct); + if (center_time <= time_range.lower) continue; + if (center_time >= time_range.upper) continue; + const BBox1f dt0(time_range.lower,center_time); + const BBox1f dt1(center_time,time_range.upper); + + /* calculate sah */ + const size_t lCount = (count0[b]+(size_t(1) << logBlockSize)-1) >> int(logBlockSize); + const size_t rCount = (count1[b]+(size_t(1) << logBlockSize)-1) >> int(logBlockSize); + float sah0 = expectedApproxHalfArea(bounds0[b])*float(lCount)*dt0.size(); + float sah1 = expectedApproxHalfArea(bounds1[b])*float(rCount)*dt1.size(); + if (unlikely(lCount == 0)) sah0 = 0.0f; // happens for initial splits when objects not alive over entire shutter time + if (unlikely(rCount == 0)) sah1 = 0.0f; + const float sah = sah0+sah1; + if (sah < bestSAH) { + bestSAH = sah; + bestPos = center_time; + } + } + return Split(bestSAH*MBLUR_TIME_SPLIT_THRESHOLD,(unsigned)Split::SPLIT_TEMPORAL,0,bestPos); + } + + public: + size_t count0[BINS-1]; + size_t count1[BINS-1]; + BBox bounds0[BINS-1]; + BBox bounds1[BINS-1]; + }; + + /*! finds the best split */ + const Split find(const SetMB& set, const size_t logBlockSize) + { + assert(set.size() > 0); + TemporalBinInfo binner(empty); + binner.bin_parallel(set.prims->data(),set.begin(),set.end(),PARALLEL_FIND_BLOCK_SIZE,PARALLEL_THRESHOLD,set.time_range,set,recalculatePrimRef); + Split tsplit = binner.best((int)logBlockSize,set.time_range,set); + if (!tsplit.valid()) tsplit.data = Split::SPLIT_FALLBACK; // use fallback split + return tsplit; + } + + __forceinline std::unique_ptr<mvector<PrimRefMB>> split(const Split& tsplit, const SetMB& set, SetMB& lset, SetMB& rset) + { + assert(tsplit.sah != float(inf)); + assert(tsplit.fpos > set.time_range.lower); + assert(tsplit.fpos < set.time_range.upper); + + float center_time = tsplit.fpos; + const BBox1f time_range0(set.time_range.lower,center_time); + const BBox1f time_range1(center_time,set.time_range.upper); + mvector<PrimRefMB>& prims = *set.prims; + + /* calculate primrefs for first time range */ + std::unique_ptr<mvector<PrimRefMB>> new_vector(new mvector<PrimRefMB>(device, set.size())); + PrimRefVector lprims = new_vector.get(); + + auto reduction_func0 = [&] (const range<size_t>& r) { + PrimInfoMB pinfo = empty; + for (size_t i=r.begin(); i<r.end(); i++) + { + if (likely(prims[i].time_range_overlap(time_range0))) + { + const PrimRefMB& prim = recalculatePrimRef(prims[i],time_range0); + (*lprims)[i-set.begin()] = prim; + pinfo.add_primref(prim); + } + else + { + (*lprims)[i-set.begin()] = prims[i]; + } + } + return pinfo; + }; + PrimInfoMB linfo = parallel_reduce(set.object_range,PARALLEL_PARTITION_BLOCK_SIZE,PARALLEL_THRESHOLD,PrimInfoMB(empty),reduction_func0,PrimInfoMB::merge2); + + /* primrefs for first time range are in lprims[0 .. set.size()) */ + /* some primitives may need to be filtered out */ + if (linfo.size() != set.size()) + linfo.object_range._end = parallel_filter(lprims->data(), size_t(0), set.size(), size_t(1024), + [&](const PrimRefMB& prim) { return prim.time_range_overlap(time_range0); }); + + lset = SetMB(linfo,lprims,time_range0); + + /* calculate primrefs for second time range */ + auto reduction_func1 = [&] (const range<size_t>& r) { + PrimInfoMB pinfo = empty; + for (size_t i=r.begin(); i<r.end(); i++) + { + if (likely(prims[i].time_range_overlap(time_range1))) + { + const PrimRefMB& prim = recalculatePrimRef(prims[i],time_range1); + prims[i] = prim; + pinfo.add_primref(prim); + } + } + return pinfo; + }; + PrimInfoMB rinfo = parallel_reduce(set.object_range,PARALLEL_PARTITION_BLOCK_SIZE,PARALLEL_THRESHOLD,PrimInfoMB(empty),reduction_func1,PrimInfoMB::merge2); + rinfo.object_range = range<size_t>(set.begin(), set.begin() + rinfo.size()); + + /* primrefs for second time range are in prims[set.begin() .. set.end()) */ + /* some primitives may need to be filtered out */ + if (rinfo.size() != set.size()) + rinfo.object_range._end = parallel_filter(prims.data(), set.begin(), set.end(), size_t(1024), + [&](const PrimRefMB& prim) { return prim.time_range_overlap(time_range1); }); + + rset = SetMB(rinfo,&prims,time_range1); + + return new_vector; + } + + private: + MemoryMonitorInterface* device; // device to report memory usage to + const RecalculatePrimRef recalculatePrimRef; + }; + } +} |