diff options
author | RĂ©mi Verschelde <remi@verschelde.fr> | 2021-05-21 18:30:02 +0200 |
---|---|---|
committer | GitHub <noreply@github.com> | 2021-05-21 18:30:02 +0200 |
commit | 3ee034451a9349e7de26decc662afefd7ab8c460 (patch) | |
tree | a8bec3fbb06c2eaca05a075f5ffe2cdd2d94f04a /thirdparty/embree/common/math/linearspace3.h | |
parent | 8fa07eae145e1e37eb8708ce8c117188b58e3ecc (diff) | |
parent | 767e374dced69b45db0afb30ca2ccf0bbbeef672 (diff) |
Merge pull request #48885 from JFonS/upgrade_embree
Upgrade Embree to the latest official release (3.13.0).
Diffstat (limited to 'thirdparty/embree/common/math/linearspace3.h')
-rw-r--r-- | thirdparty/embree/common/math/linearspace3.h | 213 |
1 files changed, 213 insertions, 0 deletions
diff --git a/thirdparty/embree/common/math/linearspace3.h b/thirdparty/embree/common/math/linearspace3.h new file mode 100644 index 0000000000..9eaa2cc2bb --- /dev/null +++ b/thirdparty/embree/common/math/linearspace3.h @@ -0,0 +1,213 @@ +// Copyright 2009-2021 Intel Corporation +// SPDX-License-Identifier: Apache-2.0 + +#pragma once + +#include "vec3.h" +#include "quaternion.h" + +namespace embree +{ + //////////////////////////////////////////////////////////////////////////////// + /// 3D Linear Transform (3x3 Matrix) + //////////////////////////////////////////////////////////////////////////////// + + template<typename T> struct LinearSpace3 + { + typedef T Vector; + typedef typename T::Scalar Scalar; + + /*! default matrix constructor */ + __forceinline LinearSpace3 ( ) {} + __forceinline LinearSpace3 ( const LinearSpace3& other ) { vx = other.vx; vy = other.vy; vz = other.vz; } + __forceinline LinearSpace3& operator=( const LinearSpace3& other ) { vx = other.vx; vy = other.vy; vz = other.vz; return *this; } + + template<typename L1> __forceinline LinearSpace3( const LinearSpace3<L1>& s ) : vx(s.vx), vy(s.vy), vz(s.vz) {} + + /*! matrix construction from column vectors */ + __forceinline LinearSpace3(const Vector& vx, const Vector& vy, const Vector& vz) + : vx(vx), vy(vy), vz(vz) {} + + /*! construction from quaternion */ + __forceinline LinearSpace3( const QuaternionT<Scalar>& q ) + : vx((q.r*q.r + q.i*q.i - q.j*q.j - q.k*q.k), 2.0f*(q.i*q.j + q.r*q.k), 2.0f*(q.i*q.k - q.r*q.j)) + , vy(2.0f*(q.i*q.j - q.r*q.k), (q.r*q.r - q.i*q.i + q.j*q.j - q.k*q.k), 2.0f*(q.j*q.k + q.r*q.i)) + , vz(2.0f*(q.i*q.k + q.r*q.j), 2.0f*(q.j*q.k - q.r*q.i), (q.r*q.r - q.i*q.i - q.j*q.j + q.k*q.k)) {} + + /*! matrix construction from row mayor data */ + __forceinline LinearSpace3(const Scalar& m00, const Scalar& m01, const Scalar& m02, + const Scalar& m10, const Scalar& m11, const Scalar& m12, + const Scalar& m20, const Scalar& m21, const Scalar& m22) + : vx(m00,m10,m20), vy(m01,m11,m21), vz(m02,m12,m22) {} + + /*! compute the determinant of the matrix */ + __forceinline const Scalar det() const { return dot(vx,cross(vy,vz)); } + + /*! compute adjoint matrix */ + __forceinline const LinearSpace3 adjoint() const { return LinearSpace3(cross(vy,vz),cross(vz,vx),cross(vx,vy)).transposed(); } + + /*! compute inverse matrix */ + __forceinline const LinearSpace3 inverse() const { return adjoint()/det(); } + + /*! compute transposed matrix */ + __forceinline const LinearSpace3 transposed() const { return LinearSpace3(vx.x,vx.y,vx.z,vy.x,vy.y,vy.z,vz.x,vz.y,vz.z); } + + /*! returns first row of matrix */ + __forceinline Vector row0() const { return Vector(vx.x,vy.x,vz.x); } + + /*! returns second row of matrix */ + __forceinline Vector row1() const { return Vector(vx.y,vy.y,vz.y); } + + /*! returns third row of matrix */ + __forceinline Vector row2() const { return Vector(vx.z,vy.z,vz.z); } + + //////////////////////////////////////////////////////////////////////////////// + /// Constants + //////////////////////////////////////////////////////////////////////////////// + + __forceinline LinearSpace3( ZeroTy ) : vx(zero), vy(zero), vz(zero) {} + __forceinline LinearSpace3( OneTy ) : vx(one, zero, zero), vy(zero, one, zero), vz(zero, zero, one) {} + + /*! return matrix for scaling */ + static __forceinline LinearSpace3 scale(const Vector& s) { + return LinearSpace3(s.x, 0, 0, + 0 , s.y, 0, + 0 , 0, s.z); + } + + /*! return matrix for rotation around arbitrary axis */ + static __forceinline LinearSpace3 rotate(const Vector& _u, const Scalar& r) { + Vector u = normalize(_u); + Scalar s = sin(r), c = cos(r); + return LinearSpace3(u.x*u.x+(1-u.x*u.x)*c, u.x*u.y*(1-c)-u.z*s, u.x*u.z*(1-c)+u.y*s, + u.x*u.y*(1-c)+u.z*s, u.y*u.y+(1-u.y*u.y)*c, u.y*u.z*(1-c)-u.x*s, + u.x*u.z*(1-c)-u.y*s, u.y*u.z*(1-c)+u.x*s, u.z*u.z+(1-u.z*u.z)*c); + } + + public: + + /*! the column vectors of the matrix */ + Vector vx,vy,vz; + }; + + /*! compute transposed matrix */ + template<> __forceinline const LinearSpace3<Vec3fa> LinearSpace3<Vec3fa>::transposed() const { + vfloat4 rx,ry,rz; transpose((vfloat4&)vx,(vfloat4&)vy,(vfloat4&)vz,vfloat4(zero),rx,ry,rz); + return LinearSpace3<Vec3fa>(Vec3fa(rx),Vec3fa(ry),Vec3fa(rz)); + } + + template<typename T> + __forceinline const LinearSpace3<T> transposed(const LinearSpace3<T>& xfm) { + return xfm.transposed(); + } + + //////////////////////////////////////////////////////////////////////////////// + // Unary Operators + //////////////////////////////////////////////////////////////////////////////// + + template<typename T> __forceinline LinearSpace3<T> operator -( const LinearSpace3<T>& a ) { return LinearSpace3<T>(-a.vx,-a.vy,-a.vz); } + template<typename T> __forceinline LinearSpace3<T> operator +( const LinearSpace3<T>& a ) { return LinearSpace3<T>(+a.vx,+a.vy,+a.vz); } + template<typename T> __forceinline LinearSpace3<T> rcp ( const LinearSpace3<T>& a ) { return a.inverse(); } + + /* constructs a coordinate frame form a normalized normal */ + template<typename T> __forceinline LinearSpace3<T> frame(const T& N) + { + const T dx0(0,N.z,-N.y); + const T dx1(-N.z,0,N.x); + const T dx = normalize(select(dot(dx0,dx0) > dot(dx1,dx1),dx0,dx1)); + const T dy = normalize(cross(N,dx)); + return LinearSpace3<T>(dx,dy,N); + } + + /* constructs a coordinate frame from a normal and approximate x-direction */ + template<typename T> __forceinline LinearSpace3<T> frame(const T& N, const T& dxi) + { + if (abs(dot(dxi,N)) > 0.99f) return frame(N); // fallback in case N and dxi are very parallel + const T dx = normalize(cross(dxi,N)); + const T dy = normalize(cross(N,dx)); + return LinearSpace3<T>(dx,dy,N); + } + + /* clamps linear space to range -1 to +1 */ + template<typename T> __forceinline LinearSpace3<T> clamp(const LinearSpace3<T>& space) { + return LinearSpace3<T>(clamp(space.vx,T(-1.0f),T(1.0f)), + clamp(space.vy,T(-1.0f),T(1.0f)), + clamp(space.vz,T(-1.0f),T(1.0f))); + } + + //////////////////////////////////////////////////////////////////////////////// + // Binary Operators + //////////////////////////////////////////////////////////////////////////////// + + template<typename T> __forceinline LinearSpace3<T> operator +( const LinearSpace3<T>& a, const LinearSpace3<T>& b ) { return LinearSpace3<T>(a.vx+b.vx,a.vy+b.vy,a.vz+b.vz); } + template<typename T> __forceinline LinearSpace3<T> operator -( const LinearSpace3<T>& a, const LinearSpace3<T>& b ) { return LinearSpace3<T>(a.vx-b.vx,a.vy-b.vy,a.vz-b.vz); } + + template<typename T> __forceinline LinearSpace3<T> operator*(const typename T::Scalar & a, const LinearSpace3<T>& b) { return LinearSpace3<T>(a*b.vx, a*b.vy, a*b.vz); } + template<typename T> __forceinline T operator*(const LinearSpace3<T>& a, const T & b) { return madd(T(b.x),a.vx,madd(T(b.y),a.vy,T(b.z)*a.vz)); } + template<typename T> __forceinline LinearSpace3<T> operator*(const LinearSpace3<T>& a, const LinearSpace3<T>& b) { return LinearSpace3<T>(a*b.vx, a*b.vy, a*b.vz); } + + template<typename T> __forceinline LinearSpace3<T> operator/(const LinearSpace3<T>& a, const typename T::Scalar & b) { return LinearSpace3<T>(a.vx/b, a.vy/b, a.vz/b); } + template<typename T> __forceinline LinearSpace3<T> operator/(const LinearSpace3<T>& a, const LinearSpace3<T>& b) { return a * rcp(b); } + + template<typename T> __forceinline LinearSpace3<T>& operator *=( LinearSpace3<T>& a, const LinearSpace3<T>& b ) { return a = a * b; } + template<typename T> __forceinline LinearSpace3<T>& operator /=( LinearSpace3<T>& a, const LinearSpace3<T>& b ) { return a = a / b; } + + template<typename T> __forceinline T xfmPoint (const LinearSpace3<T>& s, const T & a) { return madd(T(a.x),s.vx,madd(T(a.y),s.vy,T(a.z)*s.vz)); } + template<typename T> __forceinline T xfmVector(const LinearSpace3<T>& s, const T & a) { return madd(T(a.x),s.vx,madd(T(a.y),s.vy,T(a.z)*s.vz)); } + template<typename T> __forceinline T xfmNormal(const LinearSpace3<T>& s, const T & a) { return xfmVector(s.inverse().transposed(),a); } + + //////////////////////////////////////////////////////////////////////////////// + /// Comparison Operators + //////////////////////////////////////////////////////////////////////////////// + + template<typename T> __forceinline bool operator ==( const LinearSpace3<T>& a, const LinearSpace3<T>& b ) { return a.vx == b.vx && a.vy == b.vy && a.vz == b.vz; } + template<typename T> __forceinline bool operator !=( const LinearSpace3<T>& a, const LinearSpace3<T>& b ) { return a.vx != b.vx || a.vy != b.vy || a.vz != b.vz; } + + //////////////////////////////////////////////////////////////////////////////// + /// Select + //////////////////////////////////////////////////////////////////////////////// + + template<typename T> __forceinline LinearSpace3<T> select ( const typename T::Scalar::Bool& s, const LinearSpace3<T>& t, const LinearSpace3<T>& f ) { + return LinearSpace3<T>(select(s,t.vx,f.vx),select(s,t.vy,f.vy),select(s,t.vz,f.vz)); + } + + /*! blending */ + template<typename T> + __forceinline LinearSpace3<T> lerp(const LinearSpace3<T>& l0, const LinearSpace3<T>& l1, const float t) + { + return LinearSpace3<T>(lerp(l0.vx,l1.vx,t), + lerp(l0.vy,l1.vy,t), + lerp(l0.vz,l1.vz,t)); + } + + //////////////////////////////////////////////////////////////////////////////// + /// Output Operators + //////////////////////////////////////////////////////////////////////////////// + + template<typename T> static embree_ostream operator<<(embree_ostream cout, const LinearSpace3<T>& m) { + return cout << "{ vx = " << m.vx << ", vy = " << m.vy << ", vz = " << m.vz << "}"; + } + + /*! Shortcuts for common linear spaces. */ + typedef LinearSpace3<Vec3f> LinearSpace3f; + typedef LinearSpace3<Vec3fa> LinearSpace3fa; + typedef LinearSpace3<Vec3fx> LinearSpace3fx; + typedef LinearSpace3<Vec3ff> LinearSpace3ff; + + template<int N> using LinearSpace3vf = LinearSpace3<Vec3<vfloat<N>>>; + typedef LinearSpace3<Vec3<vfloat<4>>> LinearSpace3vf4; + typedef LinearSpace3<Vec3<vfloat<8>>> LinearSpace3vf8; + typedef LinearSpace3<Vec3<vfloat<16>>> LinearSpace3vf16; + + /*! blending */ + template<typename T, typename S> + __forceinline LinearSpace3<T> lerp(const LinearSpace3<T>& l0, + const LinearSpace3<T>& l1, + const S& t) + { + return LinearSpace3<T>(lerp(l0.vx,l1.vx,t), + lerp(l0.vy,l1.vy,t), + lerp(l0.vz,l1.vz,t)); + } + +} |