summaryrefslogtreecommitdiff
path: root/thirdparty/embree-aarch64/kernels/subdiv
diff options
context:
space:
mode:
authorjfons <joan.fonssanchez@gmail.com>2021-04-20 18:38:09 +0200
committerjfons <joan.fonssanchez@gmail.com>2021-04-23 15:57:28 +0200
commit34b3e8f9e2ae076990ecf3b2827eff759ba2abf9 (patch)
tree854a526a5ba2d6128e44d995d1bc138cf84ee722 /thirdparty/embree-aarch64/kernels/subdiv
parenteeccab26c5641409092547e02ad11e6253ac1b87 (diff)
Add Embree-aarch64 thirdparty library
Diffstat (limited to 'thirdparty/embree-aarch64/kernels/subdiv')
-rw-r--r--thirdparty/embree-aarch64/kernels/subdiv/bezier_curve.h669
-rw-r--r--thirdparty/embree-aarch64/kernels/subdiv/bezier_patch.h372
-rw-r--r--thirdparty/embree-aarch64/kernels/subdiv/bilinear_patch.h191
-rw-r--r--thirdparty/embree-aarch64/kernels/subdiv/bspline_curve.h319
-rw-r--r--thirdparty/embree-aarch64/kernels/subdiv/bspline_patch.h449
-rw-r--r--thirdparty/embree-aarch64/kernels/subdiv/catmullclark_coefficients.h85
-rw-r--r--thirdparty/embree-aarch64/kernels/subdiv/catmullclark_patch.h562
-rw-r--r--thirdparty/embree-aarch64/kernels/subdiv/catmullclark_ring.h826
-rw-r--r--thirdparty/embree-aarch64/kernels/subdiv/catmullrom_curve.h296
-rw-r--r--thirdparty/embree-aarch64/kernels/subdiv/feature_adaptive_eval.h226
-rw-r--r--thirdparty/embree-aarch64/kernels/subdiv/feature_adaptive_eval_grid.h359
-rw-r--r--thirdparty/embree-aarch64/kernels/subdiv/feature_adaptive_eval_simd.h186
-rw-r--r--thirdparty/embree-aarch64/kernels/subdiv/gregory_patch.h893
-rw-r--r--thirdparty/embree-aarch64/kernels/subdiv/gregory_patch_dense.h113
-rw-r--r--thirdparty/embree-aarch64/kernels/subdiv/gridrange.h96
-rw-r--r--thirdparty/embree-aarch64/kernels/subdiv/half_edge.h371
-rw-r--r--thirdparty/embree-aarch64/kernels/subdiv/hermite_curve.h38
-rw-r--r--thirdparty/embree-aarch64/kernels/subdiv/linear_bezier_patch.h403
-rw-r--r--thirdparty/embree-aarch64/kernels/subdiv/patch.h371
-rw-r--r--thirdparty/embree-aarch64/kernels/subdiv/patch_eval.h129
-rw-r--r--thirdparty/embree-aarch64/kernels/subdiv/patch_eval_grid.h245
-rw-r--r--thirdparty/embree-aarch64/kernels/subdiv/patch_eval_simd.h127
-rw-r--r--thirdparty/embree-aarch64/kernels/subdiv/subdivpatch1base.h156
-rw-r--r--thirdparty/embree-aarch64/kernels/subdiv/tessellation.h161
-rw-r--r--thirdparty/embree-aarch64/kernels/subdiv/tessellation_cache.h325
25 files changed, 7968 insertions, 0 deletions
diff --git a/thirdparty/embree-aarch64/kernels/subdiv/bezier_curve.h b/thirdparty/embree-aarch64/kernels/subdiv/bezier_curve.h
new file mode 100644
index 0000000000..c0e78820f8
--- /dev/null
+++ b/thirdparty/embree-aarch64/kernels/subdiv/bezier_curve.h
@@ -0,0 +1,669 @@
+// Copyright 2009-2020 Intel Corporation
+// SPDX-License-Identifier: Apache-2.0
+
+#pragma once
+
+#include "../common/default.h"
+#include "../common/scene_curves.h"
+
+namespace embree
+{
+ class BezierBasis
+ {
+ public:
+
+ template<typename T>
+ static __forceinline Vec4<T> eval(const T& u)
+ {
+ const T t1 = u;
+ const T t0 = 1.0f-t1;
+ const T B0 = t0 * t0 * t0;
+ const T B1 = 3.0f * t1 * (t0 * t0);
+ const T B2 = 3.0f * (t1 * t1) * t0;
+ const T B3 = t1 * t1 * t1;
+ return Vec4<T>(B0,B1,B2,B3);
+ }
+
+ template<typename T>
+ static __forceinline Vec4<T> derivative(const T& u)
+ {
+ const T t1 = u;
+ const T t0 = 1.0f-t1;
+ const T B0 = -(t0*t0);
+ const T B1 = madd(-2.0f,t0*t1,t0*t0);
+ const T B2 = msub(+2.0f,t0*t1,t1*t1);
+ const T B3 = +(t1*t1);
+ return T(3.0f)*Vec4<T>(B0,B1,B2,B3);
+ }
+
+ template<typename T>
+ static __forceinline Vec4<T> derivative2(const T& u)
+ {
+ const T t1 = u;
+ const T t0 = 1.0f-t1;
+ const T B0 = t0;
+ const T B1 = madd(-2.0f,t0,t1);
+ const T B2 = madd(-2.0f,t1,t0);
+ const T B3 = t1;
+ return T(6.0f)*Vec4<T>(B0,B1,B2,B3);
+ }
+ };
+
+ struct PrecomputedBezierBasis
+ {
+ enum { N = 16 };
+ public:
+ PrecomputedBezierBasis() {}
+ PrecomputedBezierBasis(int shift);
+
+ /* basis for bezier evaluation */
+ public:
+ float c0[N+1][N+1];
+ float c1[N+1][N+1];
+ float c2[N+1][N+1];
+ float c3[N+1][N+1];
+
+ /* basis for bezier derivative evaluation */
+ public:
+ float d0[N+1][N+1];
+ float d1[N+1][N+1];
+ float d2[N+1][N+1];
+ float d3[N+1][N+1];
+ };
+ extern PrecomputedBezierBasis bezier_basis0;
+ extern PrecomputedBezierBasis bezier_basis1;
+
+
+ template<typename V>
+ struct LinearBezierCurve
+ {
+ V v0,v1;
+
+ __forceinline LinearBezierCurve () {}
+
+ __forceinline LinearBezierCurve (const LinearBezierCurve& other)
+ : v0(other.v0), v1(other.v1) {}
+
+ __forceinline LinearBezierCurve& operator= (const LinearBezierCurve& other) {
+ v0 = other.v0; v1 = other.v1; return *this;
+ }
+
+ __forceinline LinearBezierCurve (const V& v0, const V& v1)
+ : v0(v0), v1(v1) {}
+
+ __forceinline V begin() const { return v0; }
+ __forceinline V end () const { return v1; }
+
+ bool hasRoot() const;
+
+ friend embree_ostream operator<<(embree_ostream cout, const LinearBezierCurve& a) {
+ return cout << "LinearBezierCurve (" << a.v0 << ", " << a.v1 << ")";
+ }
+ };
+
+ template<> __forceinline bool LinearBezierCurve<Interval1f>::hasRoot() const {
+ return numRoots(v0,v1);
+ }
+
+ template<typename V>
+ struct QuadraticBezierCurve
+ {
+ V v0,v1,v2;
+
+ __forceinline QuadraticBezierCurve () {}
+
+ __forceinline QuadraticBezierCurve (const QuadraticBezierCurve& other)
+ : v0(other.v0), v1(other.v1), v2(other.v2) {}
+
+ __forceinline QuadraticBezierCurve& operator= (const QuadraticBezierCurve& other) {
+ v0 = other.v0; v1 = other.v1; v2 = other.v2; return *this;
+ }
+
+ __forceinline QuadraticBezierCurve (const V& v0, const V& v1, const V& v2)
+ : v0(v0), v1(v1), v2(v2) {}
+
+ __forceinline V begin() const { return v0; }
+ __forceinline V end () const { return v2; }
+
+ __forceinline V interval() const {
+ return merge(v0,v1,v2);
+ }
+
+ __forceinline BBox<V> bounds() const {
+ return merge(BBox<V>(v0),BBox<V>(v1),BBox<V>(v2));
+ }
+
+ friend embree_ostream operator<<(embree_ostream cout, const QuadraticBezierCurve& a) {
+ return cout << "QuadraticBezierCurve ( (" << a.u.lower << ", " << a.u.upper << "), " << a.v0 << ", " << a.v1 << ", " << a.v2 << ")";
+ }
+ };
+
+
+ typedef QuadraticBezierCurve<float> QuadraticBezierCurve1f;
+ typedef QuadraticBezierCurve<Vec2fa> QuadraticBezierCurve2fa;
+ typedef QuadraticBezierCurve<Vec3fa> QuadraticBezierCurve3fa;
+
+ template<typename Vertex>
+ struct CubicBezierCurve
+ {
+ Vertex v0,v1,v2,v3;
+
+ __forceinline CubicBezierCurve() {}
+
+ template<typename T1>
+ __forceinline CubicBezierCurve (const CubicBezierCurve<T1>& other)
+ : v0(other.v0), v1(other.v1), v2(other.v2), v3(other.v3) {}
+
+ __forceinline CubicBezierCurve& operator= (const CubicBezierCurve& other) {
+ v0 = other.v0; v1 = other.v1; v2 = other.v2; v3 = other.v3; return *this;
+ }
+
+ __forceinline CubicBezierCurve(const Vertex& v0, const Vertex& v1, const Vertex& v2, const Vertex& v3)
+ : v0(v0), v1(v1), v2(v2), v3(v3) {}
+
+ __forceinline Vertex begin() const {
+ return v0;
+ }
+
+ __forceinline Vertex end() const {
+ return v3;
+ }
+
+ __forceinline Vertex center() const {
+ return 0.25f*(v0+v1+v2+v3);
+ }
+
+ __forceinline Vertex begin_direction() const {
+ return v1-v0;
+ }
+
+ __forceinline Vertex end_direction() const {
+ return v3-v2;
+ }
+
+ __forceinline CubicBezierCurve<float> xfm(const Vertex& dx) const {
+ return CubicBezierCurve<float>(dot(v0,dx),dot(v1,dx),dot(v2,dx),dot(v3,dx));
+ }
+
+ __forceinline CubicBezierCurve<vfloatx> vxfm(const Vertex& dx) const {
+ return CubicBezierCurve<vfloatx>(dot(v0,dx),dot(v1,dx),dot(v2,dx),dot(v3,dx));
+ }
+
+ __forceinline CubicBezierCurve<float> xfm(const Vertex& dx, const Vertex& p) const {
+ return CubicBezierCurve<float>(dot(v0-p,dx),dot(v1-p,dx),dot(v2-p,dx),dot(v3-p,dx));
+ }
+
+ __forceinline CubicBezierCurve<Vec3fa> xfm(const LinearSpace3fa& space) const
+ {
+ const Vec3fa q0 = xfmVector(space,v0);
+ const Vec3fa q1 = xfmVector(space,v1);
+ const Vec3fa q2 = xfmVector(space,v2);
+ const Vec3fa q3 = xfmVector(space,v3);
+ return CubicBezierCurve<Vec3fa>(q0,q1,q2,q3);
+ }
+
+ __forceinline CubicBezierCurve<Vec3fa> xfm(const LinearSpace3fa& space, const Vec3fa& p) const
+ {
+ const Vec3fa q0 = xfmVector(space,v0-p);
+ const Vec3fa q1 = xfmVector(space,v1-p);
+ const Vec3fa q2 = xfmVector(space,v2-p);
+ const Vec3fa q3 = xfmVector(space,v3-p);
+ return CubicBezierCurve<Vec3fa>(q0,q1,q2,q3);
+ }
+
+ __forceinline CubicBezierCurve<Vec3ff> xfm_pr(const LinearSpace3fa& space, const Vec3fa& p) const
+ {
+ const Vec3ff q0(xfmVector(space,(Vec3fa)v0-p), v0.w);
+ const Vec3ff q1(xfmVector(space,(Vec3fa)v1-p), v1.w);
+ const Vec3ff q2(xfmVector(space,(Vec3fa)v2-p), v2.w);
+ const Vec3ff q3(xfmVector(space,(Vec3fa)v3-p), v3.w);
+ return CubicBezierCurve<Vec3ff>(q0,q1,q2,q3);
+ }
+
+ __forceinline CubicBezierCurve<Vec3fa> xfm(const LinearSpace3fa& space, const Vec3fa& p, const float s) const
+ {
+ const Vec3fa q0 = xfmVector(space,s*(v0-p));
+ const Vec3fa q1 = xfmVector(space,s*(v1-p));
+ const Vec3fa q2 = xfmVector(space,s*(v2-p));
+ const Vec3fa q3 = xfmVector(space,s*(v3-p));
+ return CubicBezierCurve<Vec3fa>(q0,q1,q2,q3);
+ }
+
+ __forceinline int maxRoots() const;
+
+ __forceinline BBox<Vertex> bounds() const {
+ return merge(BBox<Vertex>(v0),BBox<Vertex>(v1),BBox<Vertex>(v2),BBox<Vertex>(v3));
+ }
+
+ __forceinline friend CubicBezierCurve operator +( const CubicBezierCurve& a, const CubicBezierCurve& b ) {
+ return CubicBezierCurve(a.v0+b.v0,a.v1+b.v1,a.v2+b.v2,a.v3+b.v3);
+ }
+
+ __forceinline friend CubicBezierCurve operator -( const CubicBezierCurve& a, const CubicBezierCurve& b ) {
+ return CubicBezierCurve(a.v0-b.v0,a.v1-b.v1,a.v2-b.v2,a.v3-b.v3);
+ }
+
+ __forceinline friend CubicBezierCurve operator -( const CubicBezierCurve& a, const Vertex& b ) {
+ return CubicBezierCurve(a.v0-b,a.v1-b,a.v2-b,a.v3-b);
+ }
+
+ __forceinline friend CubicBezierCurve operator *( const Vertex& a, const CubicBezierCurve& b ) {
+ return CubicBezierCurve(a*b.v0,a*b.v1,a*b.v2,a*b.v3);
+ }
+
+ __forceinline friend CubicBezierCurve cmadd( const Vertex& a, const CubicBezierCurve& b, const CubicBezierCurve& c) {
+ return CubicBezierCurve(madd(a,b.v0,c.v0),madd(a,b.v1,c.v1),madd(a,b.v2,c.v2),madd(a,b.v3,c.v3));
+ }
+
+ __forceinline friend CubicBezierCurve clerp ( const CubicBezierCurve& a, const CubicBezierCurve& b, const Vertex& t ) {
+ return cmadd((Vertex(1.0f)-t),a,t*b);
+ }
+
+ __forceinline friend CubicBezierCurve merge ( const CubicBezierCurve& a, const CubicBezierCurve& b ) {
+ return CubicBezierCurve(merge(a.v0,b.v0),merge(a.v1,b.v1),merge(a.v2,b.v2),merge(a.v3,b.v3));
+ }
+
+ __forceinline void split(CubicBezierCurve& left, CubicBezierCurve& right, const float t = 0.5f) const
+ {
+ const Vertex p00 = v0;
+ const Vertex p01 = v1;
+ const Vertex p02 = v2;
+ const Vertex p03 = v3;
+
+ const Vertex p10 = lerp(p00,p01,t);
+ const Vertex p11 = lerp(p01,p02,t);
+ const Vertex p12 = lerp(p02,p03,t);
+ const Vertex p20 = lerp(p10,p11,t);
+ const Vertex p21 = lerp(p11,p12,t);
+ const Vertex p30 = lerp(p20,p21,t);
+
+ new (&left ) CubicBezierCurve(p00,p10,p20,p30);
+ new (&right) CubicBezierCurve(p30,p21,p12,p03);
+ }
+
+ __forceinline CubicBezierCurve<Vec2vfx> split() const
+ {
+ const float u0 = 0.0f, u1 = 1.0f;
+ const float dscale = (u1-u0)*(1.0f/(3.0f*(VSIZEX-1)));
+ const vfloatx vu0 = lerp(u0,u1,vfloatx(step)*(1.0f/(VSIZEX-1)));
+ Vec2vfx P0, dP0du; evalN(vu0,P0,dP0du); dP0du = dP0du * Vec2vfx(dscale);
+ const Vec2vfx P3 = shift_right_1(P0);
+ const Vec2vfx dP3du = shift_right_1(dP0du);
+ const Vec2vfx P1 = P0 + dP0du;
+ const Vec2vfx P2 = P3 - dP3du;
+ return CubicBezierCurve<Vec2vfx>(P0,P1,P2,P3);
+ }
+
+ __forceinline CubicBezierCurve<Vec2vfx> split(const BBox1f& u) const
+ {
+ const float u0 = u.lower, u1 = u.upper;
+ const float dscale = (u1-u0)*(1.0f/(3.0f*(VSIZEX-1)));
+ const vfloatx vu0 = lerp(u0,u1,vfloatx(step)*(1.0f/(VSIZEX-1)));
+ Vec2vfx P0, dP0du; evalN(vu0,P0,dP0du); dP0du = dP0du * Vec2vfx(dscale);
+ const Vec2vfx P3 = shift_right_1(P0);
+ const Vec2vfx dP3du = shift_right_1(dP0du);
+ const Vec2vfx P1 = P0 + dP0du;
+ const Vec2vfx P2 = P3 - dP3du;
+ return CubicBezierCurve<Vec2vfx>(P0,P1,P2,P3);
+ }
+
+ __forceinline void eval(float t, Vertex& p, Vertex& dp) const
+ {
+ const Vertex p00 = v0;
+ const Vertex p01 = v1;
+ const Vertex p02 = v2;
+ const Vertex p03 = v3;
+
+ const Vertex p10 = lerp(p00,p01,t);
+ const Vertex p11 = lerp(p01,p02,t);
+ const Vertex p12 = lerp(p02,p03,t);
+ const Vertex p20 = lerp(p10,p11,t);
+ const Vertex p21 = lerp(p11,p12,t);
+ const Vertex p30 = lerp(p20,p21,t);
+
+ p = p30;
+ dp = Vertex(3.0f)*(p21-p20);
+ }
+
+#if 0
+ __forceinline Vertex eval(float t) const
+ {
+ const Vertex p00 = v0;
+ const Vertex p01 = v1;
+ const Vertex p02 = v2;
+ const Vertex p03 = v3;
+
+ const Vertex p10 = lerp(p00,p01,t);
+ const Vertex p11 = lerp(p01,p02,t);
+ const Vertex p12 = lerp(p02,p03,t);
+ const Vertex p20 = lerp(p10,p11,t);
+ const Vertex p21 = lerp(p11,p12,t);
+ const Vertex p30 = lerp(p20,p21,t);
+
+ return p30;
+ }
+#else
+ __forceinline Vertex eval(const float t) const
+ {
+ const Vec4<float> b = BezierBasis::eval(t);
+ return madd(b.x,v0,madd(b.y,v1,madd(b.z,v2,b.w*v3)));
+ }
+#endif
+
+ __forceinline Vertex eval_dt(float t) const
+ {
+ const Vertex p00 = v1-v0;
+ const Vertex p01 = v2-v1;
+ const Vertex p02 = v3-v2;
+ const Vertex p10 = lerp(p00,p01,t);
+ const Vertex p11 = lerp(p01,p02,t);
+ const Vertex p20 = lerp(p10,p11,t);
+ return Vertex(3.0f)*p20;
+ }
+
+ __forceinline Vertex eval_du(const float t) const
+ {
+ const Vec4<float> b = BezierBasis::derivative(t);
+ return madd(b.x,v0,madd(b.y,v1,madd(b.z,v2,b.w*v3)));
+ }
+
+ __forceinline Vertex eval_dudu(const float t) const
+ {
+ const Vec4<float> b = BezierBasis::derivative2(t);
+ return madd(b.x,v0,madd(b.y,v1,madd(b.z,v2,b.w*v3)));
+ }
+
+ __forceinline void evalN(const vfloatx& t, Vec2vfx& p, Vec2vfx& dp) const
+ {
+ const Vec2vfx p00 = v0;
+ const Vec2vfx p01 = v1;
+ const Vec2vfx p02 = v2;
+ const Vec2vfx p03 = v3;
+
+ const Vec2vfx p10 = lerp(p00,p01,t);
+ const Vec2vfx p11 = lerp(p01,p02,t);
+ const Vec2vfx p12 = lerp(p02,p03,t);
+
+ const Vec2vfx p20 = lerp(p10,p11,t);
+ const Vec2vfx p21 = lerp(p11,p12,t);
+
+ const Vec2vfx p30 = lerp(p20,p21,t);
+
+ p = p30;
+ dp = vfloatx(3.0f)*(p21-p20);
+ }
+
+ __forceinline void eval(const float t, Vertex& p, Vertex& dp, Vertex& ddp) const
+ {
+ const Vertex p00 = v0;
+ const Vertex p01 = v1;
+ const Vertex p02 = v2;
+ const Vertex p03 = v3;
+ const Vertex p10 = lerp(p00,p01,t);
+ const Vertex p11 = lerp(p01,p02,t);
+ const Vertex p12 = lerp(p02,p03,t);
+ const Vertex p20 = lerp(p10,p11,t);
+ const Vertex p21 = lerp(p11,p12,t);
+ const Vertex p30 = lerp(p20,p21,t);
+ p = p30;
+ dp = 3.0f*(p21-p20);
+ ddp = eval_dudu(t);
+ }
+
+ __forceinline CubicBezierCurve clip(const Interval1f& u1) const
+ {
+ Vertex f0,df0; eval(u1.lower,f0,df0);
+ Vertex f1,df1; eval(u1.upper,f1,df1);
+ float s = u1.upper-u1.lower;
+ return CubicBezierCurve(f0,f0+s*(1.0f/3.0f)*df0,f1-s*(1.0f/3.0f)*df1,f1);
+ }
+
+ __forceinline QuadraticBezierCurve<Vertex> derivative() const
+ {
+ const Vertex q0 = 3.0f*(v1-v0);
+ const Vertex q1 = 3.0f*(v2-v1);
+ const Vertex q2 = 3.0f*(v3-v2);
+ return QuadraticBezierCurve<Vertex>(q0,q1,q2);
+ }
+
+ __forceinline BBox<Vertex> derivative_bounds(const Interval1f& u1) const
+ {
+ Vertex f0,df0; eval(u1.lower,f0,df0);
+ Vertex f3,df3; eval(u1.upper,f3,df3);
+ const float s = u1.upper-u1.lower;
+ const Vertex f1 = f0+s*(1.0f/3.0f)*df0;
+ const Vertex f2 = f3-s*(1.0f/3.0f)*df3;
+ const Vertex q0 = s*df0;
+ const Vertex q1 = 3.0f*(f2-f1);
+ const Vertex q2 = s*df3;
+ return merge(BBox<Vertex>(q0),BBox<Vertex>(q1),BBox<Vertex>(q2));
+ }
+
+ template<int M>
+ __forceinline Vec4vf<M> veval(const vfloat<M>& t) const
+ {
+ const Vec4vf<M> b = BezierBasis::eval(t);
+ return madd(b.x, Vec4vf<M>(v0), madd(b.y, Vec4vf<M>(v1), madd(b.z, Vec4vf<M>(v2), b.w * Vec4vf<M>(v3))));
+ }
+
+ template<int M>
+ __forceinline Vec4vf<M> veval_du(const vfloat<M>& t) const
+ {
+ const Vec4vf<M> b = BezierBasis::derivative(t);
+ return madd(b.x, Vec4vf<M>(v0), madd(b.y, Vec4vf<M>(v1), madd(b.z, Vec4vf<M>(v2), b.w * Vec4vf<M>(v3))));
+ }
+
+ template<int M>
+ __forceinline Vec4vf<M> veval_dudu(const vfloat<M>& t) const
+ {
+ const Vec4vf<M> b = BezierBasis::derivative2(t);
+ return madd(b.x, Vec4vf<M>(v0), madd(b.y, Vec4vf<M>(v1), madd(b.z, Vec4vf<M>(v2), b.w * Vec4vf<M>(v3))));
+ }
+
+ template<int M>
+ __forceinline void veval(const vfloat<M>& t, Vec4vf<M>& p, Vec4vf<M>& dp) const
+ {
+ const Vec4vf<M> p00 = v0;
+ const Vec4vf<M> p01 = v1;
+ const Vec4vf<M> p02 = v2;
+ const Vec4vf<M> p03 = v3;
+
+ const Vec4vf<M> p10 = lerp(p00,p01,t);
+ const Vec4vf<M> p11 = lerp(p01,p02,t);
+ const Vec4vf<M> p12 = lerp(p02,p03,t);
+ const Vec4vf<M> p20 = lerp(p10,p11,t);
+ const Vec4vf<M> p21 = lerp(p11,p12,t);
+ const Vec4vf<M> p30 = lerp(p20,p21,t);
+
+ p = p30;
+ dp = vfloat<M>(3.0f)*(p21-p20);
+ }
+
+ template<int M, typename Vec = Vec4vf<M>>
+ __forceinline Vec eval0(const int ofs, const int size) const
+ {
+ assert(size <= PrecomputedBezierBasis::N);
+ assert(ofs <= size);
+ return madd(vfloat<M>::loadu(&bezier_basis0.c0[size][ofs]), Vec(v0),
+ madd(vfloat<M>::loadu(&bezier_basis0.c1[size][ofs]), Vec(v1),
+ madd(vfloat<M>::loadu(&bezier_basis0.c2[size][ofs]), Vec(v2),
+ vfloat<M>::loadu(&bezier_basis0.c3[size][ofs]) * Vec(v3))));
+ }
+
+ template<int M, typename Vec = Vec4vf<M>>
+ __forceinline Vec eval1(const int ofs, const int size) const
+ {
+ assert(size <= PrecomputedBezierBasis::N);
+ assert(ofs <= size);
+ return madd(vfloat<M>::loadu(&bezier_basis1.c0[size][ofs]), Vec(v0),
+ madd(vfloat<M>::loadu(&bezier_basis1.c1[size][ofs]), Vec(v1),
+ madd(vfloat<M>::loadu(&bezier_basis1.c2[size][ofs]), Vec(v2),
+ vfloat<M>::loadu(&bezier_basis1.c3[size][ofs]) * Vec(v3))));
+ }
+
+ template<int M, typename Vec = Vec4vf<M>>
+ __forceinline Vec derivative0(const int ofs, const int size) const
+ {
+ assert(size <= PrecomputedBezierBasis::N);
+ assert(ofs <= size);
+ return madd(vfloat<M>::loadu(&bezier_basis0.d0[size][ofs]), Vec(v0),
+ madd(vfloat<M>::loadu(&bezier_basis0.d1[size][ofs]), Vec(v1),
+ madd(vfloat<M>::loadu(&bezier_basis0.d2[size][ofs]), Vec(v2),
+ vfloat<M>::loadu(&bezier_basis0.d3[size][ofs]) * Vec(v3))));
+ }
+
+ template<int M, typename Vec = Vec4vf<M>>
+ __forceinline Vec derivative1(const int ofs, const int size) const
+ {
+ assert(size <= PrecomputedBezierBasis::N);
+ assert(ofs <= size);
+ return madd(vfloat<M>::loadu(&bezier_basis1.d0[size][ofs]), Vec(v0),
+ madd(vfloat<M>::loadu(&bezier_basis1.d1[size][ofs]), Vec(v1),
+ madd(vfloat<M>::loadu(&bezier_basis1.d2[size][ofs]), Vec(v2),
+ vfloat<M>::loadu(&bezier_basis1.d3[size][ofs]) * Vec(v3))));
+ }
+
+ /* calculates bounds of bezier curve geometry */
+ __forceinline BBox3fa accurateBounds() const
+ {
+ const int N = 7;
+ const float scale = 1.0f/(3.0f*(N-1));
+ Vec3vfx pl(pos_inf), pu(neg_inf);
+ for (int i=0; i<=N; i+=VSIZEX)
+ {
+ vintx vi = vintx(i)+vintx(step);
+ vboolx valid = vi <= vintx(N);
+ const Vec3vfx p = eval0<VSIZEX,Vec3vf<VSIZEX>>(i,N);
+ const Vec3vfx dp = derivative0<VSIZEX,Vec3vf<VSIZEX>>(i,N);
+ const Vec3vfx pm = p-Vec3vfx(scale)*select(vi!=vintx(0),dp,Vec3vfx(zero));
+ const Vec3vfx pp = p+Vec3vfx(scale)*select(vi!=vintx(N),dp,Vec3vfx(zero));
+ pl = select(valid,min(pl,p,pm,pp),pl); // FIXME: use masked min
+ pu = select(valid,max(pu,p,pm,pp),pu); // FIXME: use masked min
+ }
+ const Vec3fa lower(reduce_min(pl.x),reduce_min(pl.y),reduce_min(pl.z));
+ const Vec3fa upper(reduce_max(pu.x),reduce_max(pu.y),reduce_max(pu.z));
+ return BBox3fa(lower,upper);
+ }
+
+ /* calculates bounds of bezier curve geometry */
+ __forceinline BBox3fa accurateRoundBounds() const
+ {
+ const int N = 7;
+ const float scale = 1.0f/(3.0f*(N-1));
+ Vec4vfx pl(pos_inf), pu(neg_inf);
+ for (int i=0; i<=N; i+=VSIZEX)
+ {
+ vintx vi = vintx(i)+vintx(step);
+ vboolx valid = vi <= vintx(N);
+ const Vec4vfx p = eval0<VSIZEX>(i,N);
+ const Vec4vfx dp = derivative0<VSIZEX>(i,N);
+ const Vec4vfx pm = p-Vec4vfx(scale)*select(vi!=vintx(0),dp,Vec4vfx(zero));
+ const Vec4vfx pp = p+Vec4vfx(scale)*select(vi!=vintx(N),dp,Vec4vfx(zero));
+ pl = select(valid,min(pl,p,pm,pp),pl); // FIXME: use masked min
+ pu = select(valid,max(pu,p,pm,pp),pu); // FIXME: use masked min
+ }
+ const Vec3fa lower(reduce_min(pl.x),reduce_min(pl.y),reduce_min(pl.z));
+ const Vec3fa upper(reduce_max(pu.x),reduce_max(pu.y),reduce_max(pu.z));
+ const float r_min = reduce_min(pl.w);
+ const float r_max = reduce_max(pu.w);
+ const Vec3fa upper_r = Vec3fa(max(abs(r_min),abs(r_max)));
+ return enlarge(BBox3fa(lower,upper),upper_r);
+ }
+
+ /* calculates bounds when tessellated into N line segments */
+ __forceinline BBox3fa accurateFlatBounds(int N) const
+ {
+ if (likely(N == 4))
+ {
+ const Vec4vf4 pi = eval0<4>(0,4);
+ const Vec3fa lower(reduce_min(pi.x),reduce_min(pi.y),reduce_min(pi.z));
+ const Vec3fa upper(reduce_max(pi.x),reduce_max(pi.y),reduce_max(pi.z));
+ const Vec3fa upper_r = Vec3fa(reduce_max(abs(pi.w)));
+ return enlarge(BBox3fa(min(lower,v3),max(upper,v3)),max(upper_r,Vec3fa(abs(v3.w))));
+ }
+ else
+ {
+ Vec3vfx pl(pos_inf), pu(neg_inf); vfloatx ru(0.0f);
+ for (int i=0; i<N; i+=VSIZEX)
+ {
+ vboolx valid = vintx(i)+vintx(step) < vintx(N);
+ const Vec4vfx pi = eval0<VSIZEX>(i,N);
+
+ pl.x = select(valid,min(pl.x,pi.x),pl.x); // FIXME: use masked min
+ pl.y = select(valid,min(pl.y,pi.y),pl.y);
+ pl.z = select(valid,min(pl.z,pi.z),pl.z);
+
+ pu.x = select(valid,max(pu.x,pi.x),pu.x); // FIXME: use masked min
+ pu.y = select(valid,max(pu.y,pi.y),pu.y);
+ pu.z = select(valid,max(pu.z,pi.z),pu.z);
+
+ ru = select(valid,max(ru,abs(pi.w)),ru);
+ }
+ const Vec3fa lower(reduce_min(pl.x),reduce_min(pl.y),reduce_min(pl.z));
+ const Vec3fa upper(reduce_max(pu.x),reduce_max(pu.y),reduce_max(pu.z));
+ const Vec3fa upper_r(reduce_max(ru));
+ return enlarge(BBox3fa(min(lower,v3),max(upper,v3)),max(upper_r,Vec3fa(abs(v3.w))));
+ }
+ }
+
+ friend __forceinline embree_ostream operator<<(embree_ostream cout, const CubicBezierCurve& curve) {
+ return cout << "CubicBezierCurve { v0 = " << curve.v0 << ", v1 = " << curve.v1 << ", v2 = " << curve.v2 << ", v3 = " << curve.v3 << " }";
+ }
+ };
+
+#if defined(__AVX__)
+ template<>
+ __forceinline CubicBezierCurve<vfloat4> CubicBezierCurve<vfloat4>::clip(const Interval1f& u1) const
+ {
+ const vfloat8 p00 = vfloat8(v0);
+ const vfloat8 p01 = vfloat8(v1);
+ const vfloat8 p02 = vfloat8(v2);
+ const vfloat8 p03 = vfloat8(v3);
+
+ const vfloat8 t(vfloat4(u1.lower),vfloat4(u1.upper));
+ const vfloat8 p10 = lerp(p00,p01,t);
+ const vfloat8 p11 = lerp(p01,p02,t);
+ const vfloat8 p12 = lerp(p02,p03,t);
+ const vfloat8 p20 = lerp(p10,p11,t);
+ const vfloat8 p21 = lerp(p11,p12,t);
+ const vfloat8 p30 = lerp(p20,p21,t);
+
+ const vfloat8 f01 = p30;
+ const vfloat8 df01 = vfloat8(3.0f)*(p21-p20);
+
+ const vfloat4 f0 = extract4<0>(f01), f1 = extract4<1>(f01);
+ const vfloat4 df0 = extract4<0>(df01), df1 = extract4<1>(df01);
+ const float s = u1.upper-u1.lower;
+ return CubicBezierCurve(f0,f0+s*(1.0f/3.0f)*df0,f1-s*(1.0f/3.0f)*df1,f1);
+ }
+#endif
+
+ template<typename Vertex> using BezierCurveT = CubicBezierCurve<Vertex>;
+
+ typedef CubicBezierCurve<float> CubicBezierCurve1f;
+ typedef CubicBezierCurve<Vec2fa> CubicBezierCurve2fa;
+ typedef CubicBezierCurve<Vec3fa> CubicBezierCurve3fa;
+ typedef CubicBezierCurve<Vec3fa> BezierCurve3fa;
+
+ template<> __forceinline int CubicBezierCurve<float>::maxRoots() const
+ {
+ float eps = 1E-4f;
+ bool neg0 = v0 <= 0.0f; bool zero0 = fabs(v0) < eps;
+ bool neg1 = v1 <= 0.0f; bool zero1 = fabs(v1) < eps;
+ bool neg2 = v2 <= 0.0f; bool zero2 = fabs(v2) < eps;
+ bool neg3 = v3 <= 0.0f; bool zero3 = fabs(v3) < eps;
+ return (neg0 != neg1 || zero0) + (neg1 != neg2 || zero1) + (neg2 != neg3 || zero2 || zero3);
+ }
+
+ template<> __forceinline int CubicBezierCurve<Interval1f>::maxRoots() const {
+ return numRoots(v0,v1) + numRoots(v1,v2) + numRoots(v2,v3);
+ }
+
+ __forceinline CubicBezierCurve<Vec3ff> enlargeRadiusToMinWidth(const IntersectContext* context, const CurveGeometry* geom, const Vec3fa& ray_org, const CubicBezierCurve<Vec3ff>& curve)
+ {
+ return CubicBezierCurve<Vec3ff>(enlargeRadiusToMinWidth(context,geom,ray_org,curve.v0),
+ enlargeRadiusToMinWidth(context,geom,ray_org,curve.v1),
+ enlargeRadiusToMinWidth(context,geom,ray_org,curve.v2),
+ enlargeRadiusToMinWidth(context,geom,ray_org,curve.v3));
+ }
+}
diff --git a/thirdparty/embree-aarch64/kernels/subdiv/bezier_patch.h b/thirdparty/embree-aarch64/kernels/subdiv/bezier_patch.h
new file mode 100644
index 0000000000..d87ed41ccb
--- /dev/null
+++ b/thirdparty/embree-aarch64/kernels/subdiv/bezier_patch.h
@@ -0,0 +1,372 @@
+// Copyright 2009-2020 Intel Corporation
+// SPDX-License-Identifier: Apache-2.0
+
+#pragma once
+
+#include "catmullclark_patch.h"
+#include "bezier_curve.h"
+
+namespace embree
+{
+ template<class T, class S>
+ static __forceinline T deCasteljau(const S& uu, const T& v0, const T& v1, const T& v2, const T& v3)
+ {
+ const T v0_1 = lerp(v0,v1,uu);
+ const T v1_1 = lerp(v1,v2,uu);
+ const T v2_1 = lerp(v2,v3,uu);
+ const T v0_2 = lerp(v0_1,v1_1,uu);
+ const T v1_2 = lerp(v1_1,v2_1,uu);
+ const T v0_3 = lerp(v0_2,v1_2,uu);
+ return v0_3;
+ }
+
+ template<class T, class S>
+ static __forceinline T deCasteljau_tangent(const S& uu, const T& v0, const T& v1, const T& v2, const T& v3)
+ {
+ const T v0_1 = lerp(v0,v1,uu);
+ const T v1_1 = lerp(v1,v2,uu);
+ const T v2_1 = lerp(v2,v3,uu);
+ const T v0_2 = lerp(v0_1,v1_1,uu);
+ const T v1_2 = lerp(v1_1,v2_1,uu);
+ return S(3.0f)*(v1_2-v0_2);
+ }
+
+ template<typename Vertex>
+ __forceinline Vertex computeInnerBezierControlPoint(const Vertex v[4][4], const size_t y, const size_t x) {
+ return 1.0f / 36.0f * (16.0f * v[y][x] + 4.0f * (v[y-1][x] + v[y+1][x] + v[y][x-1] + v[y][x+1]) + (v[y-1][x-1] + v[y+1][x+1] + v[y-1][x+1] + v[y+1][x-1]));
+ }
+
+ template<typename Vertex>
+ __forceinline Vertex computeTopEdgeBezierControlPoint(const Vertex v[4][4], const size_t y, const size_t x) {
+ return 1.0f / 18.0f * (8.0f * v[y][x] + 4.0f * v[y-1][x] + 2.0f * (v[y][x-1] + v[y][x+1]) + (v[y-1][x-1] + v[y-1][x+1]));
+ }
+
+ template<typename Vertex>
+ __forceinline Vertex computeBottomEdgeBezierControlPoint(const Vertex v[4][4], const size_t y, const size_t x) {
+ return 1.0f / 18.0f * (8.0f * v[y][x] + 4.0f * v[y+1][x] + 2.0f * (v[y][x-1] + v[y][x+1]) + v[y+1][x-1] + v[y+1][x+1]);
+ }
+
+ template<typename Vertex>
+ __forceinline Vertex computeLeftEdgeBezierControlPoint(const Vertex v[4][4], const size_t y, const size_t x) {
+ return 1.0f / 18.0f * (8.0f * v[y][x] + 4.0f * v[y][x-1] + 2.0f * (v[y-1][x] + v[y+1][x]) + v[y-1][x-1] + v[y+1][x-1]);
+ }
+
+ template<typename Vertex>
+ __forceinline Vertex computeRightEdgeBezierControlPoint(const Vertex v[4][4], const size_t y, const size_t x) {
+ return 1.0f / 18.0f * (8.0f * v[y][x] + 4.0f * v[y][x+1] + 2.0f * (v[y-1][x] + v[y+1][x]) + v[y-1][x+1] + v[y+1][x+1]);
+ }
+
+ template<typename Vertex>
+ __forceinline Vertex computeCornerBezierControlPoint(const Vertex v[4][4], const size_t y, const size_t x, const ssize_t delta_y, const ssize_t delta_x)
+ {
+ return 1.0f / 9.0f * (4.0f * v[y][x] + 2.0f * (v[y+delta_y][x] + v[y][x+delta_x]) + v[y+delta_y][x+delta_x]);
+ }
+
+ template<typename Vertex, typename Vertex_t>
+ class __aligned(64) BezierPatchT
+ {
+ public:
+ Vertex matrix[4][4];
+
+ public:
+
+ __forceinline BezierPatchT() {}
+
+ __forceinline BezierPatchT (const HalfEdge* edge, const char* vertices, size_t stride);
+
+ __forceinline BezierPatchT(const CatmullClarkPatchT<Vertex,Vertex_t>& patch);
+
+ __forceinline BezierPatchT(const CatmullClarkPatchT<Vertex,Vertex_t>& patch,
+ const BezierCurveT<Vertex>* border0,
+ const BezierCurveT<Vertex>* border1,
+ const BezierCurveT<Vertex>* border2,
+ const BezierCurveT<Vertex>* border3);
+
+ __forceinline BezierPatchT(const BSplinePatchT<Vertex,Vertex_t>& source)
+ {
+ /* compute inner bezier control points */
+ matrix[0][0] = computeInnerBezierControlPoint(source.v,1,1);
+ matrix[0][3] = computeInnerBezierControlPoint(source.v,1,2);
+ matrix[3][3] = computeInnerBezierControlPoint(source.v,2,2);
+ matrix[3][0] = computeInnerBezierControlPoint(source.v,2,1);
+
+ /* compute top edge control points */
+ matrix[0][1] = computeRightEdgeBezierControlPoint(source.v,1,1);
+ matrix[0][2] = computeLeftEdgeBezierControlPoint(source.v,1,2);
+
+ /* compute buttom edge control points */
+ matrix[3][1] = computeRightEdgeBezierControlPoint(source.v,2,1);
+ matrix[3][2] = computeLeftEdgeBezierControlPoint(source.v,2,2);
+
+ /* compute left edge control points */
+ matrix[1][0] = computeBottomEdgeBezierControlPoint(source.v,1,1);
+ matrix[2][0] = computeTopEdgeBezierControlPoint(source.v,2,1);
+
+ /* compute right edge control points */
+ matrix[1][3] = computeBottomEdgeBezierControlPoint(source.v,1,2);
+ matrix[2][3] = computeTopEdgeBezierControlPoint(source.v,2,2);
+
+ /* compute corner control points */
+ matrix[1][1] = computeCornerBezierControlPoint(source.v,1,1, 1, 1);
+ matrix[1][2] = computeCornerBezierControlPoint(source.v,1,2, 1,-1);
+ matrix[2][2] = computeCornerBezierControlPoint(source.v,2,2,-1,-1);
+ matrix[2][1] = computeCornerBezierControlPoint(source.v,2,1,-1, 1);
+ }
+
+ static __forceinline Vertex_t bilinear(const Vec4f Bu, const Vertex matrix[4][4], const Vec4f Bv)
+ {
+ const Vertex_t M0 = madd(Bu.x,matrix[0][0],madd(Bu.y,matrix[0][1],madd(Bu.z,matrix[0][2],Bu.w * matrix[0][3])));
+ const Vertex_t M1 = madd(Bu.x,matrix[1][0],madd(Bu.y,matrix[1][1],madd(Bu.z,matrix[1][2],Bu.w * matrix[1][3])));
+ const Vertex_t M2 = madd(Bu.x,matrix[2][0],madd(Bu.y,matrix[2][1],madd(Bu.z,matrix[2][2],Bu.w * matrix[2][3])));
+ const Vertex_t M3 = madd(Bu.x,matrix[3][0],madd(Bu.y,matrix[3][1],madd(Bu.z,matrix[3][2],Bu.w * matrix[3][3])));
+ return madd(Bv.x,M0,madd(Bv.y,M1,madd(Bv.z,M2,Bv.w*M3)));
+ }
+
+ static __forceinline Vertex_t eval(const Vertex matrix[4][4], const float uu, const float vv)
+ {
+ const Vec4f Bu = BezierBasis::eval(uu);
+ const Vec4f Bv = BezierBasis::eval(vv);
+ return bilinear(Bu,matrix,Bv);
+ }
+
+ static __forceinline Vertex_t eval_du(const Vertex matrix[4][4], const float uu, const float vv)
+ {
+ const Vec4f Bu = BezierBasis::derivative(uu);
+ const Vec4f Bv = BezierBasis::eval(vv);
+ return bilinear(Bu,matrix,Bv);
+ }
+
+ static __forceinline Vertex_t eval_dv(const Vertex matrix[4][4], const float uu, const float vv)
+ {
+ const Vec4f Bu = BezierBasis::eval(uu);
+ const Vec4f Bv = BezierBasis::derivative(vv);
+ return bilinear(Bu,matrix,Bv);
+ }
+
+ static __forceinline Vertex_t eval_dudu(const Vertex matrix[4][4], const float uu, const float vv)
+ {
+ const Vec4f Bu = BezierBasis::derivative2(uu);
+ const Vec4f Bv = BezierBasis::eval(vv);
+ return bilinear(Bu,matrix,Bv);
+ }
+
+ static __forceinline Vertex_t eval_dvdv(const Vertex matrix[4][4], const float uu, const float vv)
+ {
+ const Vec4f Bu = BezierBasis::eval(uu);
+ const Vec4f Bv = BezierBasis::derivative2(vv);
+ return bilinear(Bu,matrix,Bv);
+ }
+
+ static __forceinline Vertex_t eval_dudv(const Vertex matrix[4][4], const float uu, const float vv)
+ {
+ const Vec4f Bu = BezierBasis::derivative(uu);
+ const Vec4f Bv = BezierBasis::derivative(vv);
+ return bilinear(Bu,matrix,Bv);
+ }
+
+ static __forceinline Vertex_t normal(const Vertex matrix[4][4], const float uu, const float vv)
+ {
+ const Vertex_t dPdu = eval_du(matrix,uu,vv);
+ const Vertex_t dPdv = eval_dv(matrix,uu,vv);
+ return cross(dPdu,dPdv);
+ }
+
+ __forceinline Vertex_t normal(const float uu, const float vv)
+ {
+ const Vertex_t dPdu = eval_du(matrix,uu,vv);
+ const Vertex_t dPdv = eval_dv(matrix,uu,vv);
+ return cross(dPdu,dPdv);
+ }
+
+ __forceinline Vertex_t eval(const float uu, const float vv) const {
+ return eval(matrix,uu,vv);
+ }
+
+ __forceinline Vertex_t eval_du(const float uu, const float vv) const {
+ return eval_du(matrix,uu,vv);
+ }
+
+ __forceinline Vertex_t eval_dv(const float uu, const float vv) const {
+ return eval_dv(matrix,uu,vv);
+ }
+
+ __forceinline Vertex_t eval_dudu(const float uu, const float vv) const {
+ return eval_dudu(matrix,uu,vv);
+ }
+
+ __forceinline Vertex_t eval_dvdv(const float uu, const float vv) const {
+ return eval_dvdv(matrix,uu,vv);
+ }
+
+ __forceinline Vertex_t eval_dudv(const float uu, const float vv) const {
+ return eval_dudv(matrix,uu,vv);
+ }
+
+ __forceinline void eval(const float u, const float v, Vertex* P, Vertex* dPdu, Vertex* dPdv, Vertex* ddPdudu, Vertex* ddPdvdv, Vertex* ddPdudv, const float dscale = 1.0f) const
+ {
+ if (P) {
+ *P = eval(u,v);
+ }
+ if (dPdu) {
+ assert(dPdu); *dPdu = eval_du(u,v)*dscale;
+ assert(dPdv); *dPdv = eval_dv(u,v)*dscale;
+ }
+ if (ddPdudu) {
+ assert(ddPdudu); *ddPdudu = eval_dudu(u,v)*sqr(dscale);
+ assert(ddPdvdv); *ddPdvdv = eval_dvdv(u,v)*sqr(dscale);
+ assert(ddPdudv); *ddPdudv = eval_dudv(u,v)*sqr(dscale);
+ }
+ }
+
+ template<class vfloat>
+ __forceinline vfloat eval(const size_t i, const vfloat& uu, const vfloat& vv, const Vec4<vfloat>& u_n, const Vec4<vfloat>& v_n) const
+ {
+ const vfloat curve0_x = v_n[0] * vfloat(matrix[0][0][i]) + v_n[1] * vfloat(matrix[1][0][i]) + v_n[2] * vfloat(matrix[2][0][i]) + v_n[3] * vfloat(matrix[3][0][i]);
+ const vfloat curve1_x = v_n[0] * vfloat(matrix[0][1][i]) + v_n[1] * vfloat(matrix[1][1][i]) + v_n[2] * vfloat(matrix[2][1][i]) + v_n[3] * vfloat(matrix[3][1][i]);
+ const vfloat curve2_x = v_n[0] * vfloat(matrix[0][2][i]) + v_n[1] * vfloat(matrix[1][2][i]) + v_n[2] * vfloat(matrix[2][2][i]) + v_n[3] * vfloat(matrix[3][2][i]);
+ const vfloat curve3_x = v_n[0] * vfloat(matrix[0][3][i]) + v_n[1] * vfloat(matrix[1][3][i]) + v_n[2] * vfloat(matrix[2][3][i]) + v_n[3] * vfloat(matrix[3][3][i]);
+ return u_n[0] * curve0_x + u_n[1] * curve1_x + u_n[2] * curve2_x + u_n[3] * curve3_x;
+ }
+
+ template<typename vbool, typename vfloat>
+ __forceinline void eval(const vbool& valid, const vfloat& uu, const vfloat& vv,
+ float* P, float* dPdu, float* dPdv, float* ddPdudu, float* ddPdvdv, float* ddPdudv,
+ const float dscale, const size_t dstride, const size_t N) const
+ {
+ if (P) {
+ const Vec4<vfloat> u_n = BezierBasis::eval(uu);
+ const Vec4<vfloat> v_n = BezierBasis::eval(vv);
+ for (size_t i=0; i<N; i++) vfloat::store(valid,P+i*dstride,eval(i,uu,vv,u_n,v_n));
+ }
+ if (dPdu)
+ {
+ {
+ assert(dPdu);
+ const Vec4<vfloat> u_n = BezierBasis::derivative(uu);
+ const Vec4<vfloat> v_n = BezierBasis::eval(vv);
+ for (size_t i=0; i<N; i++) vfloat::store(valid,dPdu+i*dstride,eval(i,uu,vv,u_n,v_n)*dscale);
+ }
+ {
+ assert(dPdv);
+ const Vec4<vfloat> u_n = BezierBasis::eval(uu);
+ const Vec4<vfloat> v_n = BezierBasis::derivative(vv);
+ for (size_t i=0; i<N; i++) vfloat::store(valid,dPdv+i*dstride,eval(i,uu,vv,u_n,v_n)*dscale);
+ }
+ }
+ if (ddPdudu)
+ {
+ {
+ assert(ddPdudu);
+ const Vec4<vfloat> u_n = BezierBasis::derivative2(uu);
+ const Vec4<vfloat> v_n = BezierBasis::eval(vv);
+ for (size_t i=0; i<N; i++) vfloat::store(valid,ddPdudu+i*dstride,eval(i,uu,vv,u_n,v_n)*sqr(dscale));
+ }
+ {
+ assert(ddPdvdv);
+ const Vec4<vfloat> u_n = BezierBasis::eval(uu);
+ const Vec4<vfloat> v_n = BezierBasis::derivative2(vv);
+ for (size_t i=0; i<N; i++) vfloat::store(valid,ddPdvdv+i*dstride,eval(i,uu,vv,u_n,v_n)*sqr(dscale));
+ }
+ {
+ assert(ddPdudv);
+ const Vec4<vfloat> u_n = BezierBasis::derivative(uu);
+ const Vec4<vfloat> v_n = BezierBasis::derivative(vv);
+ for (size_t i=0; i<N; i++) vfloat::store(valid,ddPdudv+i*dstride,eval(i,uu,vv,u_n,v_n)*sqr(dscale));
+ }
+ }
+ }
+
+ template<typename T>
+ static __forceinline Vec3<T> eval(const Vertex matrix[4][4], const T& uu, const T& vv)
+ {
+ const T one_minus_uu = 1.0f - uu;
+ const T one_minus_vv = 1.0f - vv;
+
+ const T B0_u = one_minus_uu * one_minus_uu * one_minus_uu;
+ const T B0_v = one_minus_vv * one_minus_vv * one_minus_vv;
+ const T B1_u = 3.0f * (one_minus_uu * uu * one_minus_uu);
+ const T B1_v = 3.0f * (one_minus_vv * vv * one_minus_vv);
+ const T B2_u = 3.0f * (uu * one_minus_uu * uu);
+ const T B2_v = 3.0f * (vv * one_minus_vv * vv);
+ const T B3_u = uu * uu * uu;
+ const T B3_v = vv * vv * vv;
+
+ const T x =
+ madd(B0_v,madd(B0_u,matrix[0][0].x,madd(B1_u,matrix[0][1].x,madd(B2_u,matrix[0][2].x,B3_u*matrix[0][3].x))),
+ madd(B1_v,madd(B0_u,matrix[1][0].x,madd(B1_u,matrix[1][1].x,madd(B2_u,matrix[1][2].x,B3_u*matrix[1][3].x))),
+ madd(B2_v,madd(B0_u,matrix[2][0].x,madd(B1_u,matrix[2][1].x,madd(B2_u,matrix[2][2].x,B3_u*matrix[2][3].x))),
+ B3_v*madd(B0_u,matrix[3][0].x,madd(B1_u,matrix[3][1].x,madd(B2_u,matrix[3][2].x,B3_u*matrix[3][3].x))))));
+
+ const T y =
+ madd(B0_v,madd(B0_u,matrix[0][0].y,madd(B1_u,matrix[0][1].y,madd(B2_u,matrix[0][2].y,B3_u*matrix[0][3].y))),
+ madd(B1_v,madd(B0_u,matrix[1][0].y,madd(B1_u,matrix[1][1].y,madd(B2_u,matrix[1][2].y,B3_u*matrix[1][3].y))),
+ madd(B2_v,madd(B0_u,matrix[2][0].y,madd(B1_u,matrix[2][1].y,madd(B2_u,matrix[2][2].y,B3_u*matrix[2][3].y))),
+ B3_v*madd(B0_u,matrix[3][0].y,madd(B1_u,matrix[3][1].y,madd(B2_u,matrix[3][2].y,B3_u*matrix[3][3].y))))));
+
+ const T z =
+ madd(B0_v,madd(B0_u,matrix[0][0].z,madd(B1_u,matrix[0][1].z,madd(B2_u,matrix[0][2].z,B3_u*matrix[0][3].z))),
+ madd(B1_v,madd(B0_u,matrix[1][0].z,madd(B1_u,matrix[1][1].z,madd(B2_u,matrix[1][2].z,B3_u*matrix[1][3].z))),
+ madd(B2_v,madd(B0_u,matrix[2][0].z,madd(B1_u,matrix[2][1].z,madd(B2_u,matrix[2][2].z,B3_u*matrix[2][3].z))),
+ B3_v*madd(B0_u,matrix[3][0].z,madd(B1_u,matrix[3][1].z,madd(B2_u,matrix[3][2].z,B3_u*matrix[3][3].z))))));
+
+ return Vec3<T>(x,y,z);
+ }
+
+ template<typename vfloat>
+ __forceinline Vec3<vfloat> eval(const vfloat& uu, const vfloat& vv) const {
+ return eval(matrix,uu,vv);
+ }
+
+ template<class T>
+ static __forceinline Vec3<T> normal(const Vertex matrix[4][4], const T& uu, const T& vv)
+ {
+
+ const Vec3<T> matrix_00 = Vec3<T>(matrix[0][0].x,matrix[0][0].y,matrix[0][0].z);
+ const Vec3<T> matrix_01 = Vec3<T>(matrix[0][1].x,matrix[0][1].y,matrix[0][1].z);
+ const Vec3<T> matrix_02 = Vec3<T>(matrix[0][2].x,matrix[0][2].y,matrix[0][2].z);
+ const Vec3<T> matrix_03 = Vec3<T>(matrix[0][3].x,matrix[0][3].y,matrix[0][3].z);
+
+ const Vec3<T> matrix_10 = Vec3<T>(matrix[1][0].x,matrix[1][0].y,matrix[1][0].z);
+ const Vec3<T> matrix_11 = Vec3<T>(matrix[1][1].x,matrix[1][1].y,matrix[1][1].z);
+ const Vec3<T> matrix_12 = Vec3<T>(matrix[1][2].x,matrix[1][2].y,matrix[1][2].z);
+ const Vec3<T> matrix_13 = Vec3<T>(matrix[1][3].x,matrix[1][3].y,matrix[1][3].z);
+
+ const Vec3<T> matrix_20 = Vec3<T>(matrix[2][0].x,matrix[2][0].y,matrix[2][0].z);
+ const Vec3<T> matrix_21 = Vec3<T>(matrix[2][1].x,matrix[2][1].y,matrix[2][1].z);
+ const Vec3<T> matrix_22 = Vec3<T>(matrix[2][2].x,matrix[2][2].y,matrix[2][2].z);
+ const Vec3<T> matrix_23 = Vec3<T>(matrix[2][3].x,matrix[2][3].y,matrix[2][3].z);
+
+ const Vec3<T> matrix_30 = Vec3<T>(matrix[3][0].x,matrix[3][0].y,matrix[3][0].z);
+ const Vec3<T> matrix_31 = Vec3<T>(matrix[3][1].x,matrix[3][1].y,matrix[3][1].z);
+ const Vec3<T> matrix_32 = Vec3<T>(matrix[3][2].x,matrix[3][2].y,matrix[3][2].z);
+ const Vec3<T> matrix_33 = Vec3<T>(matrix[3][3].x,matrix[3][3].y,matrix[3][3].z);
+
+ /* tangentU */
+ const Vec3<T> col0 = deCasteljau(vv, matrix_00, matrix_10, matrix_20, matrix_30);
+ const Vec3<T> col1 = deCasteljau(vv, matrix_01, matrix_11, matrix_21, matrix_31);
+ const Vec3<T> col2 = deCasteljau(vv, matrix_02, matrix_12, matrix_22, matrix_32);
+ const Vec3<T> col3 = deCasteljau(vv, matrix_03, matrix_13, matrix_23, matrix_33);
+
+ const Vec3<T> tangentU = deCasteljau_tangent(uu, col0, col1, col2, col3);
+
+ /* tangentV */
+ const Vec3<T> row0 = deCasteljau(uu, matrix_00, matrix_01, matrix_02, matrix_03);
+ const Vec3<T> row1 = deCasteljau(uu, matrix_10, matrix_11, matrix_12, matrix_13);
+ const Vec3<T> row2 = deCasteljau(uu, matrix_20, matrix_21, matrix_22, matrix_23);
+ const Vec3<T> row3 = deCasteljau(uu, matrix_30, matrix_31, matrix_32, matrix_33);
+
+ const Vec3<T> tangentV = deCasteljau_tangent(vv, row0, row1, row2, row3);
+
+ /* normal = tangentU x tangentV */
+ const Vec3<T> n = cross(tangentU,tangentV);
+ return n;
+ }
+
+ template<typename vfloat>
+ __forceinline Vec3<vfloat> normal(const vfloat& uu, const vfloat& vv) const {
+ return normal(matrix,uu,vv);
+ }
+ };
+
+ typedef BezierPatchT<Vec3fa,Vec3fa_t> BezierPatch3fa;
+}
diff --git a/thirdparty/embree-aarch64/kernels/subdiv/bilinear_patch.h b/thirdparty/embree-aarch64/kernels/subdiv/bilinear_patch.h
new file mode 100644
index 0000000000..35748754bd
--- /dev/null
+++ b/thirdparty/embree-aarch64/kernels/subdiv/bilinear_patch.h
@@ -0,0 +1,191 @@
+// Copyright 2009-2020 Intel Corporation
+// SPDX-License-Identifier: Apache-2.0
+
+#pragma once
+
+#include "catmullclark_patch.h"
+#include "bezier_curve.h"
+
+namespace embree
+{
+ template<typename Vertex, typename Vertex_t = Vertex>
+ class __aligned(64) BilinearPatchT
+ {
+ typedef CatmullClark1RingT<Vertex,Vertex_t> CatmullClarkRing;
+ typedef CatmullClarkPatchT<Vertex,Vertex_t> CatmullClarkPatch;
+
+ public:
+ Vertex v[4];
+
+ public:
+
+ __forceinline BilinearPatchT () {}
+
+ __forceinline BilinearPatchT (const HalfEdge* edge, const BufferView<Vertex>& vertices) {
+ init(edge,vertices.getPtr(),vertices.getStride());
+ }
+
+ __forceinline BilinearPatchT (const HalfEdge* edge, const char* vertices, size_t stride) {
+ init(edge,vertices,stride);
+ }
+
+ __forceinline void init (const HalfEdge* edge, const char* vertices, size_t stride)
+ {
+ v[0] = Vertex::loadu(vertices+edge->getStartVertexIndex()*stride); edge = edge->next();
+ v[1] = Vertex::loadu(vertices+edge->getStartVertexIndex()*stride); edge = edge->next();
+ v[2] = Vertex::loadu(vertices+edge->getStartVertexIndex()*stride); edge = edge->next();
+ v[3] = Vertex::loadu(vertices+edge->getStartVertexIndex()*stride); edge = edge->next();
+ }
+
+ __forceinline BilinearPatchT (const CatmullClarkPatch& patch)
+ {
+ v[0] = patch.ring[0].getLimitVertex();
+ v[1] = patch.ring[1].getLimitVertex();
+ v[2] = patch.ring[2].getLimitVertex();
+ v[3] = patch.ring[3].getLimitVertex();
+ }
+
+ __forceinline BBox<Vertex> bounds() const
+ {
+
+ BBox<Vertex> bounds (v[0]);
+ bounds.extend(v[1]);
+ bounds.extend(v[2]);
+ bounds.extend(v[3]);
+ return bounds;
+ }
+
+ __forceinline Vertex eval(const float uu, const float vv) const {
+ return lerp(lerp(v[0],v[1],uu),lerp(v[3],v[2],uu),vv);
+ }
+
+ __forceinline Vertex eval_du(const float uu, const float vv) const {
+ return lerp(v[1]-v[0],v[2]-v[3],vv);
+ }
+
+ __forceinline Vertex eval_dv(const float uu, const float vv) const {
+ return lerp(v[3]-v[0],v[2]-v[1],uu);
+ }
+
+ __forceinline Vertex eval_dudu(const float uu, const float vv) const {
+ return Vertex(zero);
+ }
+
+ __forceinline Vertex eval_dvdv(const float uu, const float vv) const {
+ return Vertex(zero);
+ }
+
+ __forceinline Vertex eval_dudv(const float uu, const float vv) const {
+ return (v[2]-v[3]) - (v[1]-v[0]);
+ }
+
+ __forceinline Vertex normal(const float uu, const float vv) const {
+ return cross(eval_du(uu,vv),eval_dv(uu,vv));
+ }
+
+ __forceinline void eval(const float u, const float v,
+ Vertex* P, Vertex* dPdu, Vertex* dPdv, Vertex* ddPdudu, Vertex* ddPdvdv, Vertex* ddPdudv,
+ const float dscale = 1.0f) const
+ {
+ if (P) {
+ *P = eval(u,v);
+ }
+ if (dPdu) {
+ assert(dPdu); *dPdu = eval_du(u,v)*dscale;
+ assert(dPdv); *dPdv = eval_dv(u,v)*dscale;
+ }
+ if (ddPdudu) {
+ assert(ddPdudu); *ddPdudu = eval_dudu(u,v)*sqr(dscale);
+ assert(ddPdvdv); *ddPdvdv = eval_dvdv(u,v)*sqr(dscale);
+ assert(ddPdudv); *ddPdudv = eval_dudv(u,v)*sqr(dscale);
+ }
+ }
+
+ template<class vfloat>
+ __forceinline Vec3<vfloat> eval(const vfloat& uu, const vfloat& vv) const
+ {
+ const vfloat x = lerp(lerp(v[0].x,v[1].x,uu),lerp(v[3].x,v[2].x,uu),vv);
+ const vfloat y = lerp(lerp(v[0].y,v[1].y,uu),lerp(v[3].y,v[2].y,uu),vv);
+ const vfloat z = lerp(lerp(v[0].z,v[1].z,uu),lerp(v[3].z,v[2].z,uu),vv);
+ return Vec3<vfloat>(x,y,z);
+ }
+
+ template<class vfloat>
+ __forceinline Vec3<vfloat> eval_du(const vfloat& uu, const vfloat& vv) const
+ {
+ const vfloat x = lerp(v[1].x-v[0].x,v[2].x-v[3].x,vv);
+ const vfloat y = lerp(v[1].y-v[0].y,v[2].y-v[3].y,vv);
+ const vfloat z = lerp(v[1].z-v[0].z,v[2].z-v[3].z,vv);
+ return Vec3<vfloat>(x,y,z);
+ }
+
+ template<class vfloat>
+ __forceinline Vec3<vfloat> eval_dv(const vfloat& uu, const vfloat& vv) const
+ {
+ const vfloat x = lerp(v[3].x-v[0].x,v[2].x-v[1].x,uu);
+ const vfloat y = lerp(v[3].y-v[0].y,v[2].y-v[1].y,uu);
+ const vfloat z = lerp(v[3].z-v[0].z,v[2].z-v[1].z,uu);
+ return Vec3<vfloat>(x,y,z);
+ }
+
+ template<typename vfloat>
+ __forceinline Vec3<vfloat> normal(const vfloat& uu, const vfloat& vv) const {
+ return cross(eval_du(uu,vv),eval_dv(uu,vv));
+ }
+
+ template<class vfloat>
+ __forceinline vfloat eval(const size_t i, const vfloat& uu, const vfloat& vv) const {
+ return lerp(lerp(v[0][i],v[1][i],uu),lerp(v[3][i],v[2][i],uu),vv);
+ }
+
+ template<class vfloat>
+ __forceinline vfloat eval_du(const size_t i, const vfloat& uu, const vfloat& vv) const {
+ return lerp(v[1][i]-v[0][i],v[2][i]-v[3][i],vv);
+ }
+
+ template<class vfloat>
+ __forceinline vfloat eval_dv(const size_t i, const vfloat& uu, const vfloat& vv) const {
+ return lerp(v[3][i]-v[0][i],v[2][i]-v[1][i],uu);
+ }
+
+ template<class vfloat>
+ __forceinline vfloat eval_dudu(const size_t i, const vfloat& uu, const vfloat& vv) const {
+ return vfloat(zero);
+ }
+
+ template<class vfloat>
+ __forceinline vfloat eval_dvdv(const size_t i, const vfloat& uu, const vfloat& vv) const {
+ return vfloat(zero);
+ }
+
+ template<class vfloat>
+ __forceinline vfloat eval_dudv(const size_t i, const vfloat& uu, const vfloat& vv) const {
+ return (v[2][i]-v[3][i]) - (v[1][i]-v[0][i]);
+ }
+
+ template<typename vbool, typename vfloat>
+ __forceinline void eval(const vbool& valid, const vfloat& uu, const vfloat& vv,
+ float* P, float* dPdu, float* dPdv, float* ddPdudu, float* ddPdvdv, float* ddPdudv,
+ const float dscale, const size_t dstride, const size_t N) const
+ {
+ if (P) {
+ for (size_t i=0; i<N; i++) vfloat::store(valid,P+i*dstride,eval(i,uu,vv));
+ }
+ if (dPdu) {
+ for (size_t i=0; i<N; i++) {
+ assert(dPdu); vfloat::store(valid,dPdu+i*dstride,eval_du(i,uu,vv)*dscale);
+ assert(dPdv); vfloat::store(valid,dPdv+i*dstride,eval_dv(i,uu,vv)*dscale);
+ }
+ }
+ if (ddPdudu) {
+ for (size_t i=0; i<N; i++) {
+ assert(ddPdudu); vfloat::store(valid,ddPdudu+i*dstride,eval_dudu(i,uu,vv)*sqr(dscale));
+ assert(ddPdvdv); vfloat::store(valid,ddPdvdv+i*dstride,eval_dvdv(i,uu,vv)*sqr(dscale));
+ assert(ddPdudv); vfloat::store(valid,ddPdudv+i*dstride,eval_dudv(i,uu,vv)*sqr(dscale));
+ }
+ }
+ }
+ };
+
+ typedef BilinearPatchT<Vec3fa,Vec3fa_t> BilinearPatch3fa;
+}
diff --git a/thirdparty/embree-aarch64/kernels/subdiv/bspline_curve.h b/thirdparty/embree-aarch64/kernels/subdiv/bspline_curve.h
new file mode 100644
index 0000000000..a325667328
--- /dev/null
+++ b/thirdparty/embree-aarch64/kernels/subdiv/bspline_curve.h
@@ -0,0 +1,319 @@
+// Copyright 2009-2020 Intel Corporation
+// SPDX-License-Identifier: Apache-2.0
+
+#pragma once
+
+#include "../common/default.h"
+#include "bezier_curve.h"
+
+namespace embree
+{
+ class BSplineBasis
+ {
+ public:
+
+ template<typename T>
+ static __forceinline Vec4<T> eval(const T& u)
+ {
+ const T t = u;
+ const T s = T(1.0f) - u;
+ const T n0 = s*s*s;
+ const T n1 = (4.0f*(s*s*s)+(t*t*t)) + (12.0f*((s*t)*s) + 6.0f*((t*s)*t));
+ const T n2 = (4.0f*(t*t*t)+(s*s*s)) + (12.0f*((t*s)*t) + 6.0f*((s*t)*s));
+ const T n3 = t*t*t;
+ return T(1.0f/6.0f)*Vec4<T>(n0,n1,n2,n3);
+ }
+
+ template<typename T>
+ static __forceinline Vec4<T> derivative(const T& u)
+ {
+ const T t = u;
+ const T s = 1.0f - u;
+ const T n0 = -s*s;
+ const T n1 = -t*t - 4.0f*(t*s);
+ const T n2 = s*s + 4.0f*(s*t);
+ const T n3 = t*t;
+ return T(0.5f)*Vec4<T>(n0,n1,n2,n3);
+ }
+
+ template<typename T>
+ static __forceinline Vec4<T> derivative2(const T& u)
+ {
+ const T t = u;
+ const T s = 1.0f - u;
+ const T n0 = s;
+ const T n1 = t - 2.0f*s;
+ const T n2 = s - 2.0f*t;
+ const T n3 = t;
+ return Vec4<T>(n0,n1,n2,n3);
+ }
+ };
+
+ struct PrecomputedBSplineBasis
+ {
+ enum { N = 16 };
+ public:
+ PrecomputedBSplineBasis() {}
+ PrecomputedBSplineBasis(int shift);
+
+ /* basis for bspline evaluation */
+ public:
+ float c0[N+1][N+1];
+ float c1[N+1][N+1];
+ float c2[N+1][N+1];
+ float c3[N+1][N+1];
+
+ /* basis for bspline derivative evaluation */
+ public:
+ float d0[N+1][N+1];
+ float d1[N+1][N+1];
+ float d2[N+1][N+1];
+ float d3[N+1][N+1];
+ };
+ extern PrecomputedBSplineBasis bspline_basis0;
+ extern PrecomputedBSplineBasis bspline_basis1;
+
+ template<typename Vertex>
+ struct BSplineCurveT
+ {
+ Vertex v0,v1,v2,v3;
+
+ __forceinline BSplineCurveT() {}
+
+ __forceinline BSplineCurveT(const Vertex& v0, const Vertex& v1, const Vertex& v2, const Vertex& v3)
+ : v0(v0), v1(v1), v2(v2), v3(v3) {}
+
+ __forceinline Vertex begin() const {
+ return madd(1.0f/6.0f,v0,madd(2.0f/3.0f,v1,1.0f/6.0f*v2));
+ }
+
+ __forceinline Vertex end() const {
+ return madd(1.0f/6.0f,v1,madd(2.0f/3.0f,v2,1.0f/6.0f*v3));
+ }
+
+ __forceinline Vertex center() const {
+ return 0.25f*(v0+v1+v2+v3);
+ }
+
+ __forceinline BBox<Vertex> bounds() const {
+ return merge(BBox<Vertex>(v0),BBox<Vertex>(v1),BBox<Vertex>(v2),BBox<Vertex>(v3));
+ }
+
+ __forceinline friend BSplineCurveT operator -( const BSplineCurveT& a, const Vertex& b ) {
+ return BSplineCurveT(a.v0-b,a.v1-b,a.v2-b,a.v3-b);
+ }
+
+ __forceinline BSplineCurveT<Vec3ff> xfm_pr(const LinearSpace3fa& space, const Vec3fa& p) const
+ {
+ const Vec3ff q0(xfmVector(space,(Vec3fa)v0-p), v0.w);
+ const Vec3ff q1(xfmVector(space,(Vec3fa)v1-p), v1.w);
+ const Vec3ff q2(xfmVector(space,(Vec3fa)v2-p), v2.w);
+ const Vec3ff q3(xfmVector(space,(Vec3fa)v3-p), v3.w);
+ return BSplineCurveT<Vec3ff>(q0,q1,q2,q3);
+ }
+
+ __forceinline Vertex eval(const float t) const
+ {
+ const Vec4<float> b = BSplineBasis::eval(t);
+ return madd(b.x,v0,madd(b.y,v1,madd(b.z,v2,b.w*v3)));
+ }
+
+ __forceinline Vertex eval_du(const float t) const
+ {
+ const Vec4<float> b = BSplineBasis::derivative(t);
+ return madd(b.x,v0,madd(b.y,v1,madd(b.z,v2,b.w*v3)));
+ }
+
+ __forceinline Vertex eval_dudu(const float t) const
+ {
+ const Vec4<float> b = BSplineBasis::derivative2(t);
+ return madd(b.x,v0,madd(b.y,v1,madd(b.z,v2,b.w*v3)));
+ }
+
+ __forceinline void eval(const float t, Vertex& p, Vertex& dp, Vertex& ddp) const
+ {
+ p = eval(t);
+ dp = eval_du(t);
+ ddp = eval_dudu(t);
+ }
+
+ template<int M>
+ __forceinline Vec4vf<M> veval(const vfloat<M>& t) const
+ {
+ const Vec4vf<M> b = BSplineBasis::eval(t);
+ return madd(b.x, Vec4vf<M>(v0), madd(b.y, Vec4vf<M>(v1), madd(b.z, Vec4vf<M>(v2), b.w * Vec4vf<M>(v3))));
+ }
+
+ template<int M>
+ __forceinline Vec4vf<M> veval_du(const vfloat<M>& t) const
+ {
+ const Vec4vf<M> b = BSplineBasis::derivative(t);
+ return madd(b.x, Vec4vf<M>(v0), madd(b.y, Vec4vf<M>(v1), madd(b.z, Vec4vf<M>(v2), b.w * Vec4vf<M>(v3))));
+ }
+
+ template<int M>
+ __forceinline Vec4vf<M> veval_dudu(const vfloat<M>& t) const
+ {
+ const Vec4vf<M> b = BSplineBasis::derivative2(t);
+ return madd(b.x, Vec4vf<M>(v0), madd(b.y, Vec4vf<M>(v1), madd(b.z, Vec4vf<M>(v2), b.w * Vec4vf<M>(v3))));
+ }
+
+ template<int M>
+ __forceinline void veval(const vfloat<M>& t, Vec4vf<M>& p, Vec4vf<M>& dp) const
+ {
+ p = veval(t);
+ dp = veval_du(t);
+ }
+
+ template<int M>
+ __forceinline Vec4vf<M> eval0(const int ofs, const int size) const
+ {
+ assert(size <= PrecomputedBSplineBasis::N);
+ assert(ofs <= size);
+ return madd(vfloat<M>::loadu(&bspline_basis0.c0[size][ofs]), Vec4vf<M>(v0),
+ madd(vfloat<M>::loadu(&bspline_basis0.c1[size][ofs]), Vec4vf<M>(v1),
+ madd(vfloat<M>::loadu(&bspline_basis0.c2[size][ofs]), Vec4vf<M>(v2),
+ vfloat<M>::loadu(&bspline_basis0.c3[size][ofs]) * Vec4vf<M>(v3))));
+ }
+
+ template<int M>
+ __forceinline Vec4vf<M> eval1(const int ofs, const int size) const
+ {
+ assert(size <= PrecomputedBSplineBasis::N);
+ assert(ofs <= size);
+ return madd(vfloat<M>::loadu(&bspline_basis1.c0[size][ofs]), Vec4vf<M>(v0),
+ madd(vfloat<M>::loadu(&bspline_basis1.c1[size][ofs]), Vec4vf<M>(v1),
+ madd(vfloat<M>::loadu(&bspline_basis1.c2[size][ofs]), Vec4vf<M>(v2),
+ vfloat<M>::loadu(&bspline_basis1.c3[size][ofs]) * Vec4vf<M>(v3))));
+ }
+
+ template<int M>
+ __forceinline Vec4vf<M> derivative0(const int ofs, const int size) const
+ {
+ assert(size <= PrecomputedBSplineBasis::N);
+ assert(ofs <= size);
+ return madd(vfloat<M>::loadu(&bspline_basis0.d0[size][ofs]), Vec4vf<M>(v0),
+ madd(vfloat<M>::loadu(&bspline_basis0.d1[size][ofs]), Vec4vf<M>(v1),
+ madd(vfloat<M>::loadu(&bspline_basis0.d2[size][ofs]), Vec4vf<M>(v2),
+ vfloat<M>::loadu(&bspline_basis0.d3[size][ofs]) * Vec4vf<M>(v3))));
+ }
+
+ template<int M>
+ __forceinline Vec4vf<M> derivative1(const int ofs, const int size) const
+ {
+ assert(size <= PrecomputedBSplineBasis::N);
+ assert(ofs <= size);
+ return madd(vfloat<M>::loadu(&bspline_basis1.d0[size][ofs]), Vec4vf<M>(v0),
+ madd(vfloat<M>::loadu(&bspline_basis1.d1[size][ofs]), Vec4vf<M>(v1),
+ madd(vfloat<M>::loadu(&bspline_basis1.d2[size][ofs]), Vec4vf<M>(v2),
+ vfloat<M>::loadu(&bspline_basis1.d3[size][ofs]) * Vec4vf<M>(v3))));
+ }
+
+ /* calculates bounds of bspline curve geometry */
+ __forceinline BBox3fa accurateRoundBounds() const
+ {
+ const int N = 7;
+ const float scale = 1.0f/(3.0f*(N-1));
+ Vec4vfx pl(pos_inf), pu(neg_inf);
+ for (int i=0; i<=N; i+=VSIZEX)
+ {
+ vintx vi = vintx(i)+vintx(step);
+ vboolx valid = vi <= vintx(N);
+ const Vec4vfx p = eval0<VSIZEX>(i,N);
+ const Vec4vfx dp = derivative0<VSIZEX>(i,N);
+ const Vec4vfx pm = p-Vec4vfx(scale)*select(vi!=vintx(0),dp,Vec4vfx(zero));
+ const Vec4vfx pp = p+Vec4vfx(scale)*select(vi!=vintx(N),dp,Vec4vfx(zero));
+ pl = select(valid,min(pl,p,pm,pp),pl); // FIXME: use masked min
+ pu = select(valid,max(pu,p,pm,pp),pu); // FIXME: use masked min
+ }
+ const Vec3fa lower(reduce_min(pl.x),reduce_min(pl.y),reduce_min(pl.z));
+ const Vec3fa upper(reduce_max(pu.x),reduce_max(pu.y),reduce_max(pu.z));
+ const float r_min = reduce_min(pl.w);
+ const float r_max = reduce_max(pu.w);
+ const Vec3fa upper_r = Vec3fa(max(abs(r_min),abs(r_max)));
+ return enlarge(BBox3fa(lower,upper),upper_r);
+ }
+
+ /* calculates bounds when tessellated into N line segments */
+ __forceinline BBox3fa accurateFlatBounds(int N) const
+ {
+ if (likely(N == 4))
+ {
+ const Vec4vf4 pi = eval0<4>(0,4);
+ const Vec3fa lower(reduce_min(pi.x),reduce_min(pi.y),reduce_min(pi.z));
+ const Vec3fa upper(reduce_max(pi.x),reduce_max(pi.y),reduce_max(pi.z));
+ const Vec3fa upper_r = Vec3fa(reduce_max(abs(pi.w)));
+ const Vec3ff pe = end();
+ return enlarge(BBox3fa(min(lower,pe),max(upper,pe)),max(upper_r,Vec3fa(abs(pe.w))));
+ }
+ else
+ {
+ Vec3vfx pl(pos_inf), pu(neg_inf); vfloatx ru(0.0f);
+ for (int i=0; i<=N; i+=VSIZEX)
+ {
+ vboolx valid = vintx(i)+vintx(step) <= vintx(N);
+ const Vec4vfx pi = eval0<VSIZEX>(i,N);
+
+ pl.x = select(valid,min(pl.x,pi.x),pl.x); // FIXME: use masked min
+ pl.y = select(valid,min(pl.y,pi.y),pl.y);
+ pl.z = select(valid,min(pl.z,pi.z),pl.z);
+
+ pu.x = select(valid,max(pu.x,pi.x),pu.x); // FIXME: use masked min
+ pu.y = select(valid,max(pu.y,pi.y),pu.y);
+ pu.z = select(valid,max(pu.z,pi.z),pu.z);
+
+ ru = select(valid,max(ru,abs(pi.w)),ru);
+ }
+ const Vec3fa lower(reduce_min(pl.x),reduce_min(pl.y),reduce_min(pl.z));
+ const Vec3fa upper(reduce_max(pu.x),reduce_max(pu.y),reduce_max(pu.z));
+ const Vec3fa upper_r(reduce_max(ru));
+ return enlarge(BBox3fa(lower,upper),upper_r);
+ }
+ }
+
+ friend __forceinline embree_ostream operator<<(embree_ostream cout, const BSplineCurveT& curve) {
+ return cout << "BSplineCurve { v0 = " << curve.v0 << ", v1 = " << curve.v1 << ", v2 = " << curve.v2 << ", v3 = " << curve.v3 << " }";
+ }
+ };
+
+ template<typename Vertex>
+ __forceinline void convert(const BezierCurveT<Vertex>& icurve, BezierCurveT<Vertex>& ocurve) {
+ ocurve = icurve;
+ }
+
+ template<typename Vertex>
+ __forceinline void convert(const BSplineCurveT<Vertex>& icurve, BSplineCurveT<Vertex>& ocurve) {
+ ocurve = icurve;
+ }
+
+ template<typename Vertex>
+ __forceinline void convert(const BezierCurveT<Vertex>& icurve, BSplineCurveT<Vertex>& ocurve)
+ {
+ const Vertex v0 = madd(6.0f,icurve.v0,madd(-7.0f,icurve.v1,2.0f*icurve.v2));
+ const Vertex v1 = msub(2.0f,icurve.v1,icurve.v2);
+ const Vertex v2 = msub(2.0f,icurve.v2,icurve.v1);
+ const Vertex v3 = madd(2.0f,icurve.v1,madd(-7.0f,icurve.v2,6.0f*icurve.v3));
+ ocurve = BSplineCurveT<Vertex>(v0,v1,v2,v3);
+ }
+
+ template<typename Vertex>
+ __forceinline void convert(const BSplineCurveT<Vertex>& icurve, BezierCurveT<Vertex>& ocurve)
+ {
+ const Vertex v0 = madd(1.0f/6.0f,icurve.v0,madd(2.0f/3.0f,icurve.v1,1.0f/6.0f*icurve.v2));
+ const Vertex v1 = madd(2.0f/3.0f,icurve.v1,1.0f/3.0f*icurve.v2);
+ const Vertex v2 = madd(1.0f/3.0f,icurve.v1,2.0f/3.0f*icurve.v2);
+ const Vertex v3 = madd(1.0f/6.0f,icurve.v1,madd(2.0f/3.0f,icurve.v2,1.0f/6.0f*icurve.v3));
+ ocurve = BezierCurveT<Vertex>(v0,v1,v2,v3);
+ }
+
+ __forceinline BSplineCurveT<Vec3ff> enlargeRadiusToMinWidth(const IntersectContext* context, const CurveGeometry* geom, const Vec3fa& ray_org, const BSplineCurveT<Vec3ff>& curve)
+ {
+ return BSplineCurveT<Vec3ff>(enlargeRadiusToMinWidth(context,geom,ray_org,curve.v0),
+ enlargeRadiusToMinWidth(context,geom,ray_org,curve.v1),
+ enlargeRadiusToMinWidth(context,geom,ray_org,curve.v2),
+ enlargeRadiusToMinWidth(context,geom,ray_org,curve.v3));
+ }
+
+ typedef BSplineCurveT<Vec3fa> BSplineCurve3fa;
+}
+
diff --git a/thirdparty/embree-aarch64/kernels/subdiv/bspline_patch.h b/thirdparty/embree-aarch64/kernels/subdiv/bspline_patch.h
new file mode 100644
index 0000000000..9769bc17bd
--- /dev/null
+++ b/thirdparty/embree-aarch64/kernels/subdiv/bspline_patch.h
@@ -0,0 +1,449 @@
+// Copyright 2009-2020 Intel Corporation
+// SPDX-License-Identifier: Apache-2.0
+
+#pragma once
+
+#include "catmullclark_patch.h"
+#include "bspline_curve.h"
+
+namespace embree
+{
+ template<typename Vertex, typename Vertex_t = Vertex>
+ class __aligned(64) BSplinePatchT
+ {
+ typedef CatmullClark1RingT<Vertex,Vertex_t> CatmullClarkRing;
+ typedef CatmullClarkPatchT<Vertex,Vertex_t> CatmullClarkPatch;
+
+ public:
+
+ __forceinline BSplinePatchT () {}
+
+ __forceinline BSplinePatchT (const CatmullClarkPatch& patch) {
+ init(patch);
+ }
+
+ __forceinline BSplinePatchT(const CatmullClarkPatch& patch,
+ const BezierCurveT<Vertex>* border0,
+ const BezierCurveT<Vertex>* border1,
+ const BezierCurveT<Vertex>* border2,
+ const BezierCurveT<Vertex>* border3)
+ {
+ init(patch);
+ }
+
+ __forceinline BSplinePatchT (const HalfEdge* edge, const char* vertices, size_t stride) {
+ init(edge,vertices,stride);
+ }
+
+ __forceinline Vertex hard_corner(const Vertex& v01, const Vertex& v02,
+ const Vertex& v10, const Vertex& v11, const Vertex& v12,
+ const Vertex& v20, const Vertex& v21, const Vertex& v22)
+ {
+ return 4.0f*v11 - 2.0f*(v12+v21) + v22;
+ }
+
+ __forceinline Vertex soft_convex_corner( const Vertex& v01, const Vertex& v02,
+ const Vertex& v10, const Vertex& v11, const Vertex& v12,
+ const Vertex& v20, const Vertex& v21, const Vertex& v22)
+ {
+ return -8.0f*v11 + 4.0f*(v12+v21) + v22;
+ }
+
+ __forceinline Vertex convex_corner(const float vertex_crease_weight,
+ const Vertex& v01, const Vertex& v02,
+ const Vertex& v10, const Vertex& v11, const Vertex& v12,
+ const Vertex& v20, const Vertex& v21, const Vertex& v22)
+ {
+ if (std::isinf(vertex_crease_weight)) return hard_corner(v01,v02,v10,v11,v12,v20,v21,v22);
+ else return soft_convex_corner(v01,v02,v10,v11,v12,v20,v21,v22);
+ }
+
+ __forceinline Vertex load(const HalfEdge* edge, const char* vertices, size_t stride) {
+ return Vertex_t::loadu(vertices+edge->getStartVertexIndex()*stride);
+ }
+
+ __forceinline void init_border(const CatmullClarkRing& edge0,
+ Vertex& v01, Vertex& v02,
+ const Vertex& v11, const Vertex& v12,
+ const Vertex& v21, const Vertex& v22)
+ {
+ if (likely(edge0.has_opposite_back(0)))
+ {
+ v01 = edge0.back(2);
+ v02 = edge0.back(1);
+ } else {
+ v01 = 2.0f*v11-v21;
+ v02 = 2.0f*v12-v22;
+ }
+ }
+
+ __forceinline void init_corner(const CatmullClarkRing& edge0,
+ Vertex& v00, const Vertex& v01, const Vertex& v02,
+ const Vertex& v10, const Vertex& v11, const Vertex& v12,
+ const Vertex& v20, const Vertex& v21, const Vertex& v22)
+ {
+ const bool MAYBE_UNUSED has_back1 = edge0.has_opposite_back(1);
+ const bool has_back0 = edge0.has_opposite_back(0);
+ const bool has_front1 = edge0.has_opposite_front(1);
+ const bool MAYBE_UNUSED has_front2 = edge0.has_opposite_front(2);
+
+ if (likely(has_back0)) {
+ if (likely(has_front1)) { assert(has_back1 && has_front2); v00 = edge0.back(3); }
+ else { assert(!has_back1); v00 = 2.0f*v01-v02; }
+ }
+ else {
+ if (likely(has_front1)) { assert(!has_front2); v00 = 2.0f*v10-v20; }
+ else v00 = convex_corner(edge0.vertex_crease_weight,v01,v02,v10,v11,v12,v20,v21,v22);
+ }
+ }
+
+ void init(const CatmullClarkPatch& patch)
+ {
+ /* fill inner vertices */
+ const Vertex v11 = v[1][1] = patch.ring[0].vtx;
+ const Vertex v12 = v[1][2] = patch.ring[1].vtx;
+ const Vertex v22 = v[2][2] = patch.ring[2].vtx;
+ const Vertex v21 = v[2][1] = patch.ring[3].vtx;
+
+ /* fill border vertices */
+ init_border(patch.ring[0],v[0][1],v[0][2],v11,v12,v21,v22);
+ init_border(patch.ring[1],v[1][3],v[2][3],v12,v22,v11,v21);
+ init_border(patch.ring[2],v[3][2],v[3][1],v22,v21,v12,v11);
+ init_border(patch.ring[3],v[2][0],v[1][0],v21,v11,v22,v12);
+
+ /* fill corner vertices */
+ init_corner(patch.ring[0],v[0][0],v[0][1],v[0][2],v[1][0],v11,v12,v[2][0],v21,v22);
+ init_corner(patch.ring[1],v[0][3],v[1][3],v[2][3],v[0][2],v12,v22,v[0][1],v11,v21);
+ init_corner(patch.ring[2],v[3][3],v[3][2],v[3][1],v[2][3],v22,v21,v[1][3],v12,v11);
+ init_corner(patch.ring[3],v[3][0],v[2][0],v[1][0],v[3][1],v21,v11,v[3][2],v22,v12);
+ }
+
+ void init_border(const HalfEdge* edge0, const char* vertices, size_t stride,
+ Vertex& v01, Vertex& v02,
+ const Vertex& v11, const Vertex& v12,
+ const Vertex& v21, const Vertex& v22)
+ {
+ if (likely(edge0->hasOpposite()))
+ {
+ const HalfEdge* e = edge0->opposite()->next()->next();
+ v01 = load(e,vertices,stride);
+ v02 = load(e->next(),vertices,stride);
+ } else {
+ v01 = 2.0f*v11-v21;
+ v02 = 2.0f*v12-v22;
+ }
+ }
+
+ void init_corner(const HalfEdge* edge0, const char* vertices, size_t stride,
+ Vertex& v00, const Vertex& v01, const Vertex& v02,
+ const Vertex& v10, const Vertex& v11, const Vertex& v12,
+ const Vertex& v20, const Vertex& v21, const Vertex& v22)
+ {
+ const bool has_back0 = edge0->hasOpposite();
+ const bool has_front1 = edge0->prev()->hasOpposite();
+
+ if (likely(has_back0))
+ {
+ const HalfEdge* e = edge0->opposite()->next();
+ if (likely(has_front1))
+ {
+ assert(e->hasOpposite());
+ assert(edge0->prev()->opposite()->prev()->hasOpposite());
+ v00 = load(e->opposite()->prev(),vertices,stride);
+ }
+ else {
+ assert(!e->hasOpposite());
+ v00 = 2.0f*v01-v02;
+ }
+ }
+ else
+ {
+ if (likely(has_front1)) {
+ assert(!edge0->prev()->opposite()->prev()->hasOpposite());
+ v00 = 2.0f*v10-v20;
+ }
+ else {
+ assert(edge0->vertex_crease_weight == 0.0f || std::isinf(edge0->vertex_crease_weight));
+ v00 = convex_corner(edge0->vertex_crease_weight,v01,v02,v10,v11,v12,v20,v21,v22);
+ }
+ }
+ }
+
+ void init(const HalfEdge* edge0, const char* vertices, size_t stride)
+ {
+ assert( edge0->isRegularFace() );
+
+ /* fill inner vertices */
+ const Vertex v11 = v[1][1] = load(edge0,vertices,stride); const HalfEdge* edge1 = edge0->next();
+ const Vertex v12 = v[1][2] = load(edge1,vertices,stride); const HalfEdge* edge2 = edge1->next();
+ const Vertex v22 = v[2][2] = load(edge2,vertices,stride); const HalfEdge* edge3 = edge2->next();
+ const Vertex v21 = v[2][1] = load(edge3,vertices,stride); assert(edge0 == edge3->next());
+
+ /* fill border vertices */
+ init_border(edge0,vertices,stride,v[0][1],v[0][2],v11,v12,v21,v22);
+ init_border(edge1,vertices,stride,v[1][3],v[2][3],v12,v22,v11,v21);
+ init_border(edge2,vertices,stride,v[3][2],v[3][1],v22,v21,v12,v11);
+ init_border(edge3,vertices,stride,v[2][0],v[1][0],v21,v11,v22,v12);
+
+ /* fill corner vertices */
+ init_corner(edge0,vertices,stride,v[0][0],v[0][1],v[0][2],v[1][0],v11,v12,v[2][0],v21,v22);
+ init_corner(edge1,vertices,stride,v[0][3],v[1][3],v[2][3],v[0][2],v12,v22,v[0][1],v11,v21);
+ init_corner(edge2,vertices,stride,v[3][3],v[3][2],v[3][1],v[2][3],v22,v21,v[1][3],v12,v11);
+ init_corner(edge3,vertices,stride,v[3][0],v[2][0],v[1][0],v[3][1],v21,v11,v[3][2],v22,v12);
+ }
+
+ __forceinline BBox<Vertex> bounds() const
+ {
+ const Vertex* const cv = &v[0][0];
+ BBox<Vertex> bounds (cv[0]);
+ for (size_t i=1; i<16 ; i++)
+ bounds.extend( cv[i] );
+ return bounds;
+ }
+
+ __forceinline Vertex eval(const float uu, const float vv) const
+ {
+ const Vec4f v_n = BSplineBasis::eval(vv);
+ const Vertex_t curve0 = madd(v_n[0],v[0][0],madd(v_n[1],v[1][0],madd(v_n[2],v[2][0],v_n[3] * v[3][0])));
+ const Vertex_t curve1 = madd(v_n[0],v[0][1],madd(v_n[1],v[1][1],madd(v_n[2],v[2][1],v_n[3] * v[3][1])));
+ const Vertex_t curve2 = madd(v_n[0],v[0][2],madd(v_n[1],v[1][2],madd(v_n[2],v[2][2],v_n[3] * v[3][2])));
+ const Vertex_t curve3 = madd(v_n[0],v[0][3],madd(v_n[1],v[1][3],madd(v_n[2],v[2][3],v_n[3] * v[3][3])));
+
+ const Vec4f u_n = BSplineBasis::eval(uu);
+ return madd(u_n[0],curve0,madd(u_n[1],curve1,madd(u_n[2],curve2,u_n[3] * curve3)));
+ }
+
+ __forceinline Vertex eval_du(const float uu, const float vv) const
+ {
+ const Vec4f v_n = BSplineBasis::eval(vv);
+ const Vertex_t curve0 = madd(v_n[0],v[0][0],madd(v_n[1],v[1][0],madd(v_n[2],v[2][0],v_n[3] * v[3][0])));
+ const Vertex_t curve1 = madd(v_n[0],v[0][1],madd(v_n[1],v[1][1],madd(v_n[2],v[2][1],v_n[3] * v[3][1])));
+ const Vertex_t curve2 = madd(v_n[0],v[0][2],madd(v_n[1],v[1][2],madd(v_n[2],v[2][2],v_n[3] * v[3][2])));
+ const Vertex_t curve3 = madd(v_n[0],v[0][3],madd(v_n[1],v[1][3],madd(v_n[2],v[2][3],v_n[3] * v[3][3])));
+
+ const Vec4f u_n = BSplineBasis::derivative(uu);
+ return madd(u_n[0],curve0,madd(u_n[1],curve1,madd(u_n[2],curve2,u_n[3] * curve3)));
+ }
+
+ __forceinline Vertex eval_dv(const float uu, const float vv) const
+ {
+ const Vec4f v_n = BSplineBasis::derivative(vv);
+ const Vertex_t curve0 = madd(v_n[0],v[0][0],madd(v_n[1],v[1][0],madd(v_n[2],v[2][0],v_n[3] * v[3][0])));
+ const Vertex_t curve1 = madd(v_n[0],v[0][1],madd(v_n[1],v[1][1],madd(v_n[2],v[2][1],v_n[3] * v[3][1])));
+ const Vertex_t curve2 = madd(v_n[0],v[0][2],madd(v_n[1],v[1][2],madd(v_n[2],v[2][2],v_n[3] * v[3][2])));
+ const Vertex_t curve3 = madd(v_n[0],v[0][3],madd(v_n[1],v[1][3],madd(v_n[2],v[2][3],v_n[3] * v[3][3])));
+
+ const Vec4f u_n = BSplineBasis::eval(uu);
+ return madd(u_n[0],curve0,madd(u_n[1],curve1,madd(u_n[2],curve2,u_n[3] * curve3)));
+ }
+
+ __forceinline Vertex eval_dudu(const float uu, const float vv) const
+ {
+ const Vec4f v_n = BSplineBasis::eval(vv);
+ const Vertex_t curve0 = madd(v_n[0],v[0][0],madd(v_n[1],v[1][0],madd(v_n[2],v[2][0],v_n[3] * v[3][0])));
+ const Vertex_t curve1 = madd(v_n[0],v[0][1],madd(v_n[1],v[1][1],madd(v_n[2],v[2][1],v_n[3] * v[3][1])));
+ const Vertex_t curve2 = madd(v_n[0],v[0][2],madd(v_n[1],v[1][2],madd(v_n[2],v[2][2],v_n[3] * v[3][2])));
+ const Vertex_t curve3 = madd(v_n[0],v[0][3],madd(v_n[1],v[1][3],madd(v_n[2],v[2][3],v_n[3] * v[3][3])));
+
+ const Vec4f u_n = BSplineBasis::derivative2(uu);
+ return madd(u_n[0],curve0,madd(u_n[1],curve1,madd(u_n[2],curve2,u_n[3] * curve3)));
+ }
+
+ __forceinline Vertex eval_dvdv(const float uu, const float vv) const
+ {
+ const Vec4f v_n = BSplineBasis::derivative2(vv);
+ const Vertex_t curve0 = madd(v_n[0],v[0][0],madd(v_n[1],v[1][0],madd(v_n[2],v[2][0],v_n[3] * v[3][0])));
+ const Vertex_t curve1 = madd(v_n[0],v[0][1],madd(v_n[1],v[1][1],madd(v_n[2],v[2][1],v_n[3] * v[3][1])));
+ const Vertex_t curve2 = madd(v_n[0],v[0][2],madd(v_n[1],v[1][2],madd(v_n[2],v[2][2],v_n[3] * v[3][2])));
+ const Vertex_t curve3 = madd(v_n[0],v[0][3],madd(v_n[1],v[1][3],madd(v_n[2],v[2][3],v_n[3] * v[3][3])));
+
+ const Vec4f u_n = BSplineBasis::eval(uu);
+ return madd(u_n[0],curve0,madd(u_n[1],curve1,madd(u_n[2],curve2,u_n[3] * curve3)));
+ }
+
+ __forceinline Vertex eval_dudv(const float uu, const float vv) const
+ {
+ const Vec4f v_n = BSplineBasis::derivative(vv);
+ const Vertex_t curve0 = madd(v_n[0],v[0][0],madd(v_n[1],v[1][0],madd(v_n[2],v[2][0],v_n[3] * v[3][0])));
+ const Vertex_t curve1 = madd(v_n[0],v[0][1],madd(v_n[1],v[1][1],madd(v_n[2],v[2][1],v_n[3] * v[3][1])));
+ const Vertex_t curve2 = madd(v_n[0],v[0][2],madd(v_n[1],v[1][2],madd(v_n[2],v[2][2],v_n[3] * v[3][2])));
+ const Vertex_t curve3 = madd(v_n[0],v[0][3],madd(v_n[1],v[1][3],madd(v_n[2],v[2][3],v_n[3] * v[3][3])));
+
+ const Vec4f u_n = BSplineBasis::derivative(uu);
+ return madd(u_n[0],curve0,madd(u_n[1],curve1,madd(u_n[2],curve2,u_n[3] * curve3)));
+ }
+
+ __forceinline Vertex normal(const float uu, const float vv) const
+ {
+ const Vertex tu = eval_du(uu,vv);
+ const Vertex tv = eval_dv(uu,vv);
+ return cross(tu,tv);
+ }
+
+ template<typename T>
+ __forceinline Vec3<T> eval(const T& uu, const T& vv, const Vec4<T>& u_n, const Vec4<T>& v_n) const
+ {
+ const T curve0_x = madd(v_n[0],T(v[0][0].x),madd(v_n[1],T(v[1][0].x),madd(v_n[2],T(v[2][0].x),v_n[3] * T(v[3][0].x))));
+ const T curve1_x = madd(v_n[0],T(v[0][1].x),madd(v_n[1],T(v[1][1].x),madd(v_n[2],T(v[2][1].x),v_n[3] * T(v[3][1].x))));
+ const T curve2_x = madd(v_n[0],T(v[0][2].x),madd(v_n[1],T(v[1][2].x),madd(v_n[2],T(v[2][2].x),v_n[3] * T(v[3][2].x))));
+ const T curve3_x = madd(v_n[0],T(v[0][3].x),madd(v_n[1],T(v[1][3].x),madd(v_n[2],T(v[2][3].x),v_n[3] * T(v[3][3].x))));
+ const T x = madd(u_n[0],curve0_x,madd(u_n[1],curve1_x,madd(u_n[2],curve2_x,u_n[3] * curve3_x)));
+
+ const T curve0_y = madd(v_n[0],T(v[0][0].y),madd(v_n[1],T(v[1][0].y),madd(v_n[2],T(v[2][0].y),v_n[3] * T(v[3][0].y))));
+ const T curve1_y = madd(v_n[0],T(v[0][1].y),madd(v_n[1],T(v[1][1].y),madd(v_n[2],T(v[2][1].y),v_n[3] * T(v[3][1].y))));
+ const T curve2_y = madd(v_n[0],T(v[0][2].y),madd(v_n[1],T(v[1][2].y),madd(v_n[2],T(v[2][2].y),v_n[3] * T(v[3][2].y))));
+ const T curve3_y = madd(v_n[0],T(v[0][3].y),madd(v_n[1],T(v[1][3].y),madd(v_n[2],T(v[2][3].y),v_n[3] * T(v[3][3].y))));
+ const T y = madd(u_n[0],curve0_y,madd(u_n[1],curve1_y,madd(u_n[2],curve2_y,u_n[3] * curve3_y)));
+
+ const T curve0_z = madd(v_n[0],T(v[0][0].z),madd(v_n[1],T(v[1][0].z),madd(v_n[2],T(v[2][0].z),v_n[3] * T(v[3][0].z))));
+ const T curve1_z = madd(v_n[0],T(v[0][1].z),madd(v_n[1],T(v[1][1].z),madd(v_n[2],T(v[2][1].z),v_n[3] * T(v[3][1].z))));
+ const T curve2_z = madd(v_n[0],T(v[0][2].z),madd(v_n[1],T(v[1][2].z),madd(v_n[2],T(v[2][2].z),v_n[3] * T(v[3][2].z))));
+ const T curve3_z = madd(v_n[0],T(v[0][3].z),madd(v_n[1],T(v[1][3].z),madd(v_n[2],T(v[2][3].z),v_n[3] * T(v[3][3].z))));
+ const T z = madd(u_n[0],curve0_z,madd(u_n[1],curve1_z,madd(u_n[2],curve2_z,u_n[3] * curve3_z)));
+
+ return Vec3<T>(x,y,z);
+ }
+
+ template<typename T>
+ __forceinline Vec3<T> eval(const T& uu, const T& vv) const
+ {
+ const Vec4<T> u_n = BSplineBasis::eval(uu);
+ const Vec4<T> v_n = BSplineBasis::eval(vv);
+ return eval(uu,vv,u_n,v_n);
+ }
+
+ template<typename T>
+ __forceinline Vec3<T> eval_du(const T& uu, const T& vv) const
+ {
+ const Vec4<T> u_n = BSplineBasis::derivative(uu);
+ const Vec4<T> v_n = BSplineBasis::eval(vv);
+ return eval(uu,vv,u_n,v_n);
+ }
+
+ template<typename T>
+ __forceinline Vec3<T> eval_dv(const T& uu, const T& vv) const
+ {
+ const Vec4<T> u_n = BSplineBasis::eval(uu);
+ const Vec4<T> v_n = BSplineBasis::derivative(vv);
+ return eval(uu,vv,u_n,v_n);
+ }
+
+ template<typename T>
+ __forceinline Vec3<T> eval_dudu(const T& uu, const T& vv) const
+ {
+ const Vec4<T> u_n = BSplineBasis::derivative2(uu);
+ const Vec4<T> v_n = BSplineBasis::eval(vv);
+ return eval(uu,vv,u_n,v_n);
+ }
+
+ template<typename T>
+ __forceinline Vec3<T> eval_dvdv(const T& uu, const T& vv) const
+ {
+ const Vec4<T> u_n = BSplineBasis::eval(uu);
+ const Vec4<T> v_n = BSplineBasis::derivative2(vv);
+ return eval(uu,vv,u_n,v_n);
+ }
+
+ template<typename T>
+ __forceinline Vec3<T> eval_dudv(const T& uu, const T& vv) const
+ {
+ const Vec4<T> u_n = BSplineBasis::derivative(uu);
+ const Vec4<T> v_n = BSplineBasis::derivative(vv);
+ return eval(uu,vv,u_n,v_n);
+ }
+
+ template<typename T>
+ __forceinline Vec3<T> normal(const T& uu, const T& vv) const {
+ return cross(eval_du(uu,vv),eval_dv(uu,vv));
+ }
+
+ void eval(const float u, const float v,
+ Vertex* P, Vertex* dPdu, Vertex* dPdv, Vertex* ddPdudu, Vertex* ddPdvdv, Vertex* ddPdudv,
+ const float dscale = 1.0f) const
+ {
+ if (P) {
+ *P = eval(u,v);
+ }
+ if (dPdu) {
+ assert(dPdu); *dPdu = eval_du(u,v)*dscale;
+ assert(dPdv); *dPdv = eval_dv(u,v)*dscale;
+ }
+ if (ddPdudu) {
+ assert(ddPdudu); *ddPdudu = eval_dudu(u,v)*sqr(dscale);
+ assert(ddPdvdv); *ddPdvdv = eval_dvdv(u,v)*sqr(dscale);
+ assert(ddPdudv); *ddPdudv = eval_dudv(u,v)*sqr(dscale);
+ }
+ }
+
+ template<class vfloat>
+ __forceinline vfloat eval(const size_t i, const vfloat& uu, const vfloat& vv, const Vec4<vfloat>& u_n, const Vec4<vfloat>& v_n) const
+ {
+ const vfloat curve0_x = madd(v_n[0],vfloat(v[0][0][i]),madd(v_n[1],vfloat(v[1][0][i]),madd(v_n[2],vfloat(v[2][0][i]),v_n[3] * vfloat(v[3][0][i]))));
+ const vfloat curve1_x = madd(v_n[0],vfloat(v[0][1][i]),madd(v_n[1],vfloat(v[1][1][i]),madd(v_n[2],vfloat(v[2][1][i]),v_n[3] * vfloat(v[3][1][i]))));
+ const vfloat curve2_x = madd(v_n[0],vfloat(v[0][2][i]),madd(v_n[1],vfloat(v[1][2][i]),madd(v_n[2],vfloat(v[2][2][i]),v_n[3] * vfloat(v[3][2][i]))));
+ const vfloat curve3_x = madd(v_n[0],vfloat(v[0][3][i]),madd(v_n[1],vfloat(v[1][3][i]),madd(v_n[2],vfloat(v[2][3][i]),v_n[3] * vfloat(v[3][3][i]))));
+ return madd(u_n[0],curve0_x,madd(u_n[1],curve1_x,madd(u_n[2],curve2_x,u_n[3] * curve3_x)));
+ }
+
+ template<typename vbool, typename vfloat>
+ void eval(const vbool& valid, const vfloat& uu, const vfloat& vv,
+ float* P, float* dPdu, float* dPdv, float* ddPdudu, float* ddPdvdv, float* ddPdudv,
+ const float dscale, const size_t dstride, const size_t N) const
+ {
+ if (P) {
+ const Vec4<vfloat> u_n = BSplineBasis::eval(uu);
+ const Vec4<vfloat> v_n = BSplineBasis::eval(vv);
+ for (size_t i=0; i<N; i++) vfloat::store(valid,P+i*dstride,eval(i,uu,vv,u_n,v_n));
+ }
+ if (dPdu)
+ {
+ {
+ assert(dPdu);
+ const Vec4<vfloat> u_n = BSplineBasis::derivative(uu);
+ const Vec4<vfloat> v_n = BSplineBasis::eval(vv);
+ for (size_t i=0; i<N; i++) vfloat::store(valid,dPdu+i*dstride,eval(i,uu,vv,u_n,v_n)*dscale);
+ }
+ {
+ assert(dPdv);
+ const Vec4<vfloat> u_n = BSplineBasis::eval(uu);
+ const Vec4<vfloat> v_n = BSplineBasis::derivative(vv);
+ for (size_t i=0; i<N; i++) vfloat::store(valid,dPdv+i*dstride,eval(i,uu,vv,u_n,v_n)*dscale);
+ }
+ }
+ if (ddPdudu)
+ {
+ {
+ assert(ddPdudu);
+ const Vec4<vfloat> u_n = BSplineBasis::derivative2(uu);
+ const Vec4<vfloat> v_n = BSplineBasis::eval(vv);
+ for (size_t i=0; i<N; i++) vfloat::store(valid,ddPdudu+i*dstride,eval(i,uu,vv,u_n,v_n)*sqr(dscale));
+ }
+ {
+ assert(ddPdvdv);
+ const Vec4<vfloat> u_n = BSplineBasis::eval(uu);
+ const Vec4<vfloat> v_n = BSplineBasis::derivative2(vv);
+ for (size_t i=0; i<N; i++) vfloat::store(valid,ddPdvdv+i*dstride,eval(i,uu,vv,u_n,v_n)*sqr(dscale));
+ }
+ {
+ assert(ddPdudv);
+ const Vec4<vfloat> u_n = BSplineBasis::derivative(uu);
+ const Vec4<vfloat> v_n = BSplineBasis::derivative(vv);
+ for (size_t i=0; i<N; i++) vfloat::store(valid,ddPdudv+i*dstride,eval(i,uu,vv,u_n,v_n)*sqr(dscale));
+ }
+ }
+ }
+
+ friend __forceinline embree_ostream operator<<(embree_ostream o, const BSplinePatchT& p)
+ {
+ for (size_t y=0; y<4; y++)
+ for (size_t x=0; x<4; x++)
+ o << "[" << y << "][" << x << "] " << p.v[y][x] << embree_endl;
+ return o;
+ }
+
+ public:
+ Vertex v[4][4];
+ };
+
+ typedef BSplinePatchT<Vec3fa,Vec3fa_t> BSplinePatch3fa;
+}
diff --git a/thirdparty/embree-aarch64/kernels/subdiv/catmullclark_coefficients.h b/thirdparty/embree-aarch64/kernels/subdiv/catmullclark_coefficients.h
new file mode 100644
index 0000000000..05031cf6b9
--- /dev/null
+++ b/thirdparty/embree-aarch64/kernels/subdiv/catmullclark_coefficients.h
@@ -0,0 +1,85 @@
+// Copyright 2009-2020 Intel Corporation
+// SPDX-License-Identifier: Apache-2.0
+
+#pragma once
+
+#include "../common/geometry.h"
+
+namespace embree
+{
+ static const size_t MAX_PATCH_VALENCE = 16; //!< maximum number of vertices of a patch
+ static const size_t MAX_RING_FACE_VALENCE = 64; //!< maximum number of faces per ring
+ static const size_t MAX_RING_EDGE_VALENCE = 2*64; //!< maximum number of edges per ring
+
+ class CatmullClarkPrecomputedCoefficients
+ {
+ private:
+
+ float table_cos_2PI_div_n[MAX_RING_FACE_VALENCE+1];
+
+ float* table_limittangent_a[MAX_RING_FACE_VALENCE+1];
+ float* table_limittangent_b[MAX_RING_FACE_VALENCE+1];
+ float table_limittangent_c[MAX_RING_FACE_VALENCE+1];
+
+ __forceinline float set_cos_2PI_div_n(const size_t n) {
+ if (unlikely(n == 0)) return 1.0f;
+ return cosf(2.0f*float(pi)/(float)n);
+ }
+
+ __forceinline float set_limittangent_a(const size_t i, const size_t n)
+ {
+ if (unlikely(n == 0)) return 1.0f;
+ const float c0 = 1.0f/(float)n * 1.0f / sqrtf(4.0f + cosf(float(pi)/(float)n)*cosf(float(pi)/(float)n));
+ const float c1 = (1.0f/(float)n + cosf(float(pi)/(float)n) * c0);
+ return cosf(2.0f*float(pi)*(float)i/(float)n) * c1;
+ }
+
+ __forceinline float set_limittangent_b(const size_t i, const size_t n)
+ {
+ if (unlikely(n == 0)) return 1.0f;
+ const float c0 = 1.0f/(float)n * 1.0f / sqrtf(4.0f + cosf(float(pi)/(float)n)*cosf(float(pi)/(float)n));
+ return cosf((2.0f*float(pi)*i+float(pi))/(float)n) * c0;
+ }
+
+ __forceinline float set_limittangent_c(const size_t n)
+ {
+ if (unlikely(n == 0)) return 1.0f;
+ return 2.0f/16.0f * (5.0f + cosf(2.0f*float(pi)/(float)n) + cosf(float(pi)/(float)n) * sqrtf(18.0f+2.0f*cosf(2.0f*float(pi)/(float)n)));
+ }
+
+ public:
+
+ __forceinline float cos_2PI_div_n(const size_t n)
+ {
+ if (likely(n <= MAX_RING_FACE_VALENCE))
+ return table_cos_2PI_div_n[n];
+ else
+ return set_cos_2PI_div_n(n);
+ }
+
+ __forceinline float limittangent_a(const size_t i, const size_t n)
+ {
+ assert(n <= MAX_RING_FACE_VALENCE);
+ assert(i < n);
+ return table_limittangent_a[n][i];
+ }
+
+ __forceinline float limittangent_b(const size_t i, const size_t n)
+ {
+ assert(n <= MAX_RING_FACE_VALENCE);
+ assert(i < n);
+ return table_limittangent_b[n][i];
+ }
+
+ __forceinline float limittangent_c(const size_t n)
+ {
+ assert(n <= MAX_RING_FACE_VALENCE);
+ return table_limittangent_c[n];
+ }
+
+ static CatmullClarkPrecomputedCoefficients table;
+
+ CatmullClarkPrecomputedCoefficients();
+ ~CatmullClarkPrecomputedCoefficients();
+ };
+}
diff --git a/thirdparty/embree-aarch64/kernels/subdiv/catmullclark_patch.h b/thirdparty/embree-aarch64/kernels/subdiv/catmullclark_patch.h
new file mode 100644
index 0000000000..ab1d63594a
--- /dev/null
+++ b/thirdparty/embree-aarch64/kernels/subdiv/catmullclark_patch.h
@@ -0,0 +1,562 @@
+// Copyright 2009-2020 Intel Corporation
+// SPDX-License-Identifier: Apache-2.0
+
+#pragma once
+
+#include "catmullclark_ring.h"
+#include "bezier_curve.h"
+
+namespace embree
+{
+ template<typename Vertex, typename Vertex_t = Vertex>
+ class __aligned(64) CatmullClarkPatchT
+ {
+ public:
+ typedef CatmullClark1RingT<Vertex,Vertex_t> CatmullClark1Ring;
+ typedef typename CatmullClark1Ring::Type Type;
+
+ array_t<CatmullClark1RingT<Vertex,Vertex_t>,4> ring;
+
+ public:
+ __forceinline CatmullClarkPatchT () {}
+
+ __forceinline CatmullClarkPatchT (const HalfEdge* first_half_edge, const char* vertices, size_t stride) {
+ init(first_half_edge,vertices,stride);
+ }
+
+ __forceinline CatmullClarkPatchT (const HalfEdge* first_half_edge, const BufferView<Vec3fa>& vertices) {
+ init(first_half_edge,vertices.getPtr(),vertices.getStride());
+ }
+
+ __forceinline void init (const HalfEdge* first_half_edge, const char* vertices, size_t stride)
+ {
+ for (unsigned i=0; i<4; i++)
+ ring[i].init(first_half_edge+i,vertices,stride);
+
+ assert(verify());
+ }
+
+ __forceinline size_t bytes() const {
+ return ring[0].bytes()+ring[1].bytes()+ring[2].bytes()+ring[3].bytes();
+ }
+
+ __forceinline void serialize(void* ptr, size_t& ofs) const
+ {
+ for (size_t i=0; i<4; i++)
+ ring[i].serialize((char*)ptr,ofs);
+ }
+
+ __forceinline void deserialize(void* ptr)
+ {
+ size_t ofs = 0;
+ for (size_t i=0; i<4; i++)
+ ring[i].deserialize((char*)ptr,ofs);
+ }
+
+ __forceinline BBox3fa bounds() const
+ {
+ BBox3fa bounds (ring[0].bounds());
+ for (size_t i=1; i<4; i++)
+ bounds.extend(ring[i].bounds());
+ return bounds;
+ }
+
+ __forceinline Type type() const
+ {
+ const int ty0 = ring[0].type() ^ CatmullClark1Ring::TYPE_CREASES;
+ const int ty1 = ring[1].type() ^ CatmullClark1Ring::TYPE_CREASES;
+ const int ty2 = ring[2].type() ^ CatmullClark1Ring::TYPE_CREASES;
+ const int ty3 = ring[3].type() ^ CatmullClark1Ring::TYPE_CREASES;
+ return (Type) ((ty0 & ty1 & ty2 & ty3) ^ CatmullClark1Ring::TYPE_CREASES);
+ }
+
+ __forceinline bool isFinalResolution(float res) const {
+ return ring[0].isFinalResolution(res) && ring[1].isFinalResolution(res) && ring[2].isFinalResolution(res) && ring[3].isFinalResolution(res);
+ }
+
+ static __forceinline void init_regular(const CatmullClark1RingT<Vertex,Vertex_t>& p0,
+ const CatmullClark1RingT<Vertex,Vertex_t>& p1,
+ CatmullClark1RingT<Vertex,Vertex_t>& dest0,
+ CatmullClark1RingT<Vertex,Vertex_t>& dest1)
+ {
+ assert(p1.face_valence > 2);
+ dest1.vertex_level = dest0.vertex_level = p0.edge_level;
+ dest1.face_valence = dest0.face_valence = 4;
+ dest1.edge_valence = dest0.edge_valence = 8;
+ dest1.border_index = dest0.border_index = -1;
+ dest1.vtx = dest0.vtx = (Vertex_t)p0.ring[0];
+ dest1.vertex_crease_weight = dest0.vertex_crease_weight = 0.0f;
+
+ dest1.ring[2] = dest0.ring[0] = (Vertex_t)p0.ring[1];
+ dest1.ring[1] = dest0.ring[7] = (Vertex_t)p1.ring[0];
+ dest1.ring[0] = dest0.ring[6] = (Vertex_t)p1.vtx;
+ dest1.ring[7] = dest0.ring[5] = (Vertex_t)p1.ring[4];
+ dest1.ring[6] = dest0.ring[4] = (Vertex_t)p0.ring[p0.edge_valence-1];
+ dest1.ring[5] = dest0.ring[3] = (Vertex_t)p0.ring[p0.edge_valence-2];
+ dest1.ring[4] = dest0.ring[2] = (Vertex_t)p0.vtx;
+ dest1.ring[3] = dest0.ring[1] = (Vertex_t)p0.ring[2];
+
+ dest1.crease_weight[1] = dest0.crease_weight[0] = 0.0f;
+ dest1.crease_weight[0] = dest0.crease_weight[3] = p1.crease_weight[1];
+ dest1.crease_weight[3] = dest0.crease_weight[2] = 0.0f;
+ dest1.crease_weight[2] = dest0.crease_weight[1] = p0.crease_weight[0];
+
+ if (p0.eval_unique_identifier <= p1.eval_unique_identifier)
+ {
+ dest0.eval_start_index = 3;
+ dest1.eval_start_index = 0;
+ dest0.eval_unique_identifier = p0.eval_unique_identifier;
+ dest1.eval_unique_identifier = p0.eval_unique_identifier;
+ }
+ else
+ {
+ dest0.eval_start_index = 1;
+ dest1.eval_start_index = 2;
+ dest0.eval_unique_identifier = p1.eval_unique_identifier;
+ dest1.eval_unique_identifier = p1.eval_unique_identifier;
+ }
+ }
+
+ static __forceinline void init_border(const CatmullClark1RingT<Vertex,Vertex_t> &p0,
+ const CatmullClark1RingT<Vertex,Vertex_t> &p1,
+ CatmullClark1RingT<Vertex,Vertex_t> &dest0,
+ CatmullClark1RingT<Vertex,Vertex_t> &dest1)
+ {
+ dest1.vertex_level = dest0.vertex_level = p0.edge_level;
+ dest1.face_valence = dest0.face_valence = 3;
+ dest1.edge_valence = dest0.edge_valence = 6;
+ dest0.border_index = 2;
+ dest1.border_index = 4;
+ dest1.vtx = dest0.vtx = (Vertex_t)p0.ring[0];
+ dest1.vertex_crease_weight = dest0.vertex_crease_weight = 0.0f;
+
+ dest1.ring[2] = dest0.ring[0] = (Vertex_t)p0.ring[1];
+ dest1.ring[1] = dest0.ring[5] = (Vertex_t)p1.ring[0];
+ dest1.ring[0] = dest0.ring[4] = (Vertex_t)p1.vtx;
+ dest1.ring[5] = dest0.ring[3] = (Vertex_t)p0.ring[p0.border_index+1]; // dummy
+ dest1.ring[4] = dest0.ring[2] = (Vertex_t)p0.vtx;
+ dest1.ring[3] = dest0.ring[1] = (Vertex_t)p0.ring[2];
+
+ dest1.crease_weight[1] = dest0.crease_weight[0] = 0.0f;
+ dest1.crease_weight[0] = dest0.crease_weight[2] = p1.crease_weight[1];
+ dest1.crease_weight[2] = dest0.crease_weight[1] = p0.crease_weight[0];
+
+ if (p0.eval_unique_identifier <= p1.eval_unique_identifier)
+ {
+ dest0.eval_start_index = 1;
+ dest1.eval_start_index = 2;
+ dest0.eval_unique_identifier = p0.eval_unique_identifier;
+ dest1.eval_unique_identifier = p0.eval_unique_identifier;
+ }
+ else
+ {
+ dest0.eval_start_index = 2;
+ dest1.eval_start_index = 0;
+ dest0.eval_unique_identifier = p1.eval_unique_identifier;
+ dest1.eval_unique_identifier = p1.eval_unique_identifier;
+ }
+ }
+
+ static __forceinline void init_regular(const Vertex_t &center, const Vertex_t center_ring[8], const unsigned int offset, CatmullClark1RingT<Vertex,Vertex_t> &dest)
+ {
+ dest.vertex_level = 0.0f;
+ dest.face_valence = 4;
+ dest.edge_valence = 8;
+ dest.border_index = -1;
+ dest.vtx = (Vertex_t)center;
+ dest.vertex_crease_weight = 0.0f;
+ for (size_t i=0; i<8; i++)
+ dest.ring[i] = (Vertex_t)center_ring[(offset+i)%8];
+ for (size_t i=0; i<4; i++)
+ dest.crease_weight[i] = 0.0f;
+
+ dest.eval_start_index = (8-offset)>>1;
+ if (dest.eval_start_index >= dest.face_valence) dest.eval_start_index -= dest.face_valence;
+ assert( dest.eval_start_index < dest.face_valence );
+ dest.eval_unique_identifier = 0;
+ }
+
+ __noinline void subdivide(array_t<CatmullClarkPatchT,4>& patch) const
+ {
+ ring[0].subdivide(patch[0].ring[0]);
+ ring[1].subdivide(patch[1].ring[1]);
+ ring[2].subdivide(patch[2].ring[2]);
+ ring[3].subdivide(patch[3].ring[3]);
+
+ patch[0].ring[0].edge_level = 0.5f*ring[0].edge_level;
+ patch[0].ring[1].edge_level = 0.25f*(ring[1].edge_level+ring[3].edge_level);
+ patch[0].ring[2].edge_level = 0.25f*(ring[0].edge_level+ring[2].edge_level);
+ patch[0].ring[3].edge_level = 0.5f*ring[3].edge_level;
+
+ patch[1].ring[0].edge_level = 0.5f*ring[0].edge_level;
+ patch[1].ring[1].edge_level = 0.5f*ring[1].edge_level;
+ patch[1].ring[2].edge_level = 0.25f*(ring[0].edge_level+ring[2].edge_level);
+ patch[1].ring[3].edge_level = 0.25f*(ring[1].edge_level+ring[3].edge_level);
+
+ patch[2].ring[0].edge_level = 0.25f*(ring[0].edge_level+ring[2].edge_level);
+ patch[2].ring[1].edge_level = 0.5f*ring[1].edge_level;
+ patch[2].ring[2].edge_level = 0.5f*ring[2].edge_level;
+ patch[2].ring[3].edge_level = 0.25f*(ring[1].edge_level+ring[3].edge_level);
+
+ patch[3].ring[0].edge_level = 0.25f*(ring[0].edge_level+ring[2].edge_level);
+ patch[3].ring[1].edge_level = 0.25f*(ring[1].edge_level+ring[3].edge_level);
+ patch[3].ring[2].edge_level = 0.5f*ring[2].edge_level;
+ patch[3].ring[3].edge_level = 0.5f*ring[3].edge_level;
+
+ const bool regular0 = ring[0].has_last_face() && ring[1].face_valence > 2;
+ if (likely(regular0))
+ init_regular(patch[0].ring[0],patch[1].ring[1],patch[0].ring[1],patch[1].ring[0]);
+ else
+ init_border(patch[0].ring[0],patch[1].ring[1],patch[0].ring[1],patch[1].ring[0]);
+
+ const bool regular1 = ring[1].has_last_face() && ring[2].face_valence > 2;
+ if (likely(regular1))
+ init_regular(patch[1].ring[1],patch[2].ring[2],patch[1].ring[2],patch[2].ring[1]);
+ else
+ init_border(patch[1].ring[1],patch[2].ring[2],patch[1].ring[2],patch[2].ring[1]);
+
+ const bool regular2 = ring[2].has_last_face() && ring[3].face_valence > 2;
+ if (likely(regular2))
+ init_regular(patch[2].ring[2],patch[3].ring[3],patch[2].ring[3],patch[3].ring[2]);
+ else
+ init_border(patch[2].ring[2],patch[3].ring[3],patch[2].ring[3],patch[3].ring[2]);
+
+ const bool regular3 = ring[3].has_last_face() && ring[0].face_valence > 2;
+ if (likely(regular3))
+ init_regular(patch[3].ring[3],patch[0].ring[0],patch[3].ring[0],patch[0].ring[3]);
+ else
+ init_border(patch[3].ring[3],patch[0].ring[0],patch[3].ring[0],patch[0].ring[3]);
+
+ Vertex_t center = (ring[0].vtx + ring[1].vtx + ring[2].vtx + ring[3].vtx) * 0.25f;
+
+ Vertex_t center_ring[8];
+ center_ring[0] = (Vertex_t)patch[3].ring[3].ring[0];
+ center_ring[7] = (Vertex_t)patch[3].ring[3].vtx;
+ center_ring[6] = (Vertex_t)patch[2].ring[2].ring[0];
+ center_ring[5] = (Vertex_t)patch[2].ring[2].vtx;
+ center_ring[4] = (Vertex_t)patch[1].ring[1].ring[0];
+ center_ring[3] = (Vertex_t)patch[1].ring[1].vtx;
+ center_ring[2] = (Vertex_t)patch[0].ring[0].ring[0];
+ center_ring[1] = (Vertex_t)patch[0].ring[0].vtx;
+
+ init_regular(center,center_ring,0,patch[0].ring[2]);
+ init_regular(center,center_ring,2,patch[1].ring[3]);
+ init_regular(center,center_ring,4,patch[2].ring[0]);
+ init_regular(center,center_ring,6,patch[3].ring[1]);
+
+ assert(patch[0].verify());
+ assert(patch[1].verify());
+ assert(patch[2].verify());
+ assert(patch[3].verify());
+ }
+
+ bool verify() const {
+ return ring[0].hasValidPositions() && ring[1].hasValidPositions() && ring[2].hasValidPositions() && ring[3].hasValidPositions();
+ }
+
+ __forceinline void init( FinalQuad& quad ) const
+ {
+ quad.vtx[0] = (Vertex_t)ring[0].vtx;
+ quad.vtx[1] = (Vertex_t)ring[1].vtx;
+ quad.vtx[2] = (Vertex_t)ring[2].vtx;
+ quad.vtx[3] = (Vertex_t)ring[3].vtx;
+ };
+
+ friend __forceinline embree_ostream operator<<(embree_ostream o, const CatmullClarkPatchT &p)
+ {
+ o << "CatmullClarkPatch { " << embree_endl;
+ for (size_t i=0; i<4; i++)
+ o << "ring" << i << ": " << p.ring[i] << embree_endl;
+ o << "}" << embree_endl;
+ return o;
+ }
+ };
+
+ typedef CatmullClarkPatchT<Vec3fa,Vec3fa_t> CatmullClarkPatch3fa;
+
+ template<typename Vertex, typename Vertex_t = Vertex>
+ class __aligned(64) GeneralCatmullClarkPatchT
+ {
+ public:
+ typedef CatmullClarkPatchT<Vertex,Vertex_t> CatmullClarkPatch;
+ typedef CatmullClark1RingT<Vertex,Vertex_t> CatmullClark1Ring;
+ typedef BezierCurveT<Vertex> BezierCurve;
+
+ static const unsigned SIZE = MAX_PATCH_VALENCE;
+ DynamicStackArray<GeneralCatmullClark1RingT<Vertex,Vertex_t>,8,SIZE> ring;
+ unsigned N;
+
+ __forceinline GeneralCatmullClarkPatchT ()
+ : N(0) {}
+
+ GeneralCatmullClarkPatchT (const HalfEdge* h, const char* vertices, size_t stride) {
+ init(h,vertices,stride);
+ }
+
+ __forceinline GeneralCatmullClarkPatchT (const HalfEdge* first_half_edge, const BufferView<Vec3fa>& vertices) {
+ init(first_half_edge,vertices.getPtr(),vertices.getStride());
+ }
+
+ __forceinline void init (const HalfEdge* h, const char* vertices, size_t stride)
+ {
+ unsigned int i = 0;
+ const HalfEdge* edge = h;
+ do {
+ ring[i].init(edge,vertices,stride);
+ edge = edge->next();
+ i++;
+ } while ((edge != h) && (i < SIZE));
+ N = i;
+ }
+
+ __forceinline unsigned size() const {
+ return N;
+ }
+
+ __forceinline bool isQuadPatch() const {
+ return (N == 4) && ring[0].only_quads && ring[1].only_quads && ring[2].only_quads && ring[3].only_quads;
+ }
+
+ static __forceinline void init_regular(const CatmullClark1RingT<Vertex,Vertex_t>& p0,
+ const CatmullClark1RingT<Vertex,Vertex_t>& p1,
+ CatmullClark1RingT<Vertex,Vertex_t>& dest0,
+ CatmullClark1RingT<Vertex,Vertex_t>& dest1)
+ {
+ assert(p1.face_valence > 2);
+ dest1.vertex_level = dest0.vertex_level = p0.edge_level;
+ dest1.face_valence = dest0.face_valence = 4;
+ dest1.edge_valence = dest0.edge_valence = 8;
+ dest1.border_index = dest0.border_index = -1;
+ dest1.vtx = dest0.vtx = (Vertex_t)p0.ring[0];
+ dest1.vertex_crease_weight = dest0.vertex_crease_weight = 0.0f;
+
+ dest1.ring[2] = dest0.ring[0] = (Vertex_t)p0.ring[1];
+ dest1.ring[1] = dest0.ring[7] = (Vertex_t)p1.ring[0];
+ dest1.ring[0] = dest0.ring[6] = (Vertex_t)p1.vtx;
+ dest1.ring[7] = dest0.ring[5] = (Vertex_t)p1.ring[4];
+ dest1.ring[6] = dest0.ring[4] = (Vertex_t)p0.ring[p0.edge_valence-1];
+ dest1.ring[5] = dest0.ring[3] = (Vertex_t)p0.ring[p0.edge_valence-2];
+ dest1.ring[4] = dest0.ring[2] = (Vertex_t)p0.vtx;
+ dest1.ring[3] = dest0.ring[1] = (Vertex_t)p0.ring[2];
+
+ dest1.crease_weight[1] = dest0.crease_weight[0] = 0.0f;
+ dest1.crease_weight[0] = dest0.crease_weight[3] = p1.crease_weight[1];
+ dest1.crease_weight[3] = dest0.crease_weight[2] = 0.0f;
+ dest1.crease_weight[2] = dest0.crease_weight[1] = p0.crease_weight[0];
+
+ if (p0.eval_unique_identifier <= p1.eval_unique_identifier)
+ {
+ dest0.eval_start_index = 3;
+ dest1.eval_start_index = 0;
+ dest0.eval_unique_identifier = p0.eval_unique_identifier;
+ dest1.eval_unique_identifier = p0.eval_unique_identifier;
+ }
+ else
+ {
+ dest0.eval_start_index = 1;
+ dest1.eval_start_index = 2;
+ dest0.eval_unique_identifier = p1.eval_unique_identifier;
+ dest1.eval_unique_identifier = p1.eval_unique_identifier;
+ }
+ }
+
+
+ static __forceinline void init_border(const CatmullClark1RingT<Vertex,Vertex_t> &p0,
+ const CatmullClark1RingT<Vertex,Vertex_t> &p1,
+ CatmullClark1RingT<Vertex,Vertex_t> &dest0,
+ CatmullClark1RingT<Vertex,Vertex_t> &dest1)
+ {
+ dest1.vertex_level = dest0.vertex_level = p0.edge_level;
+ dest1.face_valence = dest0.face_valence = 3;
+ dest1.edge_valence = dest0.edge_valence = 6;
+ dest0.border_index = 2;
+ dest1.border_index = 4;
+ dest1.vtx = dest0.vtx = (Vertex_t)p0.ring[0];
+ dest1.vertex_crease_weight = dest0.vertex_crease_weight = 0.0f;
+
+ dest1.ring[2] = dest0.ring[0] = (Vertex_t)p0.ring[1];
+ dest1.ring[1] = dest0.ring[5] = (Vertex_t)p1.ring[0];
+ dest1.ring[0] = dest0.ring[4] = (Vertex_t)p1.vtx;
+ dest1.ring[5] = dest0.ring[3] = (Vertex_t)p0.ring[p0.border_index+1]; // dummy
+ dest1.ring[4] = dest0.ring[2] = (Vertex_t)p0.vtx;
+ dest1.ring[3] = dest0.ring[1] = (Vertex_t)p0.ring[2];
+
+ dest1.crease_weight[1] = dest0.crease_weight[0] = 0.0f;
+ dest1.crease_weight[0] = dest0.crease_weight[2] = p1.crease_weight[1];
+ dest1.crease_weight[2] = dest0.crease_weight[1] = p0.crease_weight[0];
+
+ if (p0.eval_unique_identifier <= p1.eval_unique_identifier)
+ {
+ dest0.eval_start_index = 1;
+ dest1.eval_start_index = 2;
+ dest0.eval_unique_identifier = p0.eval_unique_identifier;
+ dest1.eval_unique_identifier = p0.eval_unique_identifier;
+ }
+ else
+ {
+ dest0.eval_start_index = 2;
+ dest1.eval_start_index = 0;
+ dest0.eval_unique_identifier = p1.eval_unique_identifier;
+ dest1.eval_unique_identifier = p1.eval_unique_identifier;
+ }
+ }
+
+ static __forceinline void init_regular(const Vertex_t &center, const array_t<Vertex_t,2*SIZE>& center_ring, const float vertex_level, const unsigned int N, const unsigned int offset, CatmullClark1RingT<Vertex,Vertex_t> &dest)
+ {
+ assert(N<(MAX_RING_FACE_VALENCE));
+ assert(2*N<(MAX_RING_EDGE_VALENCE));
+ dest.vertex_level = vertex_level;
+ dest.face_valence = N;
+ dest.edge_valence = 2*N;
+ dest.border_index = -1;
+ dest.vtx = (Vertex_t)center;
+ dest.vertex_crease_weight = 0.0f;
+ for (unsigned i=0; i<2*N; i++) {
+ dest.ring[i] = (Vertex_t)center_ring[(2*N+offset+i-1)%(2*N)];
+ assert(isvalid(dest.ring[i]));
+ }
+ for (unsigned i=0; i<N; i++)
+ dest.crease_weight[i] = 0.0f;
+
+ assert(offset <= 2*N);
+ dest.eval_start_index = (2*N-offset)>>1;
+ if (dest.eval_start_index >= dest.face_valence) dest.eval_start_index -= dest.face_valence;
+
+ assert( dest.eval_start_index < dest.face_valence );
+ dest.eval_unique_identifier = 0;
+ }
+
+ __noinline void subdivide(array_t<CatmullClarkPatch,SIZE>& patch, unsigned& N_o) const
+ {
+ N_o = N;
+ assert( N );
+ for (unsigned i=0; i<N; i++) {
+ unsigned ip1 = (i+1)%N; // FIXME: %
+ ring[i].subdivide(patch[i].ring[0]);
+ patch[i] .ring[0].edge_level = 0.5f*ring[i].edge_level;
+ patch[ip1].ring[3].edge_level = 0.5f*ring[i].edge_level;
+
+ assert( patch[i].ring[0].hasValidPositions() );
+
+ }
+ assert(N < 2*SIZE);
+ Vertex_t center = Vertex_t(0.0f);
+ array_t<Vertex_t,2*SIZE> center_ring;
+ float center_vertex_level = 2.0f; // guarantees that irregular vertices get always isolated also for non-quads
+
+ for (unsigned i=0; i<N; i++)
+ {
+ unsigned ip1 = (i+1)%N; // FIXME: %
+ unsigned im1 = (i+N-1)%N; // FIXME: %
+ bool regular = ring[i].has_last_face() && ring[ip1].face_valence > 2;
+ if (likely(regular)) init_regular(patch[i].ring[0],patch[ip1].ring[0],patch[i].ring[1],patch[ip1].ring[3]);
+ else init_border (patch[i].ring[0],patch[ip1].ring[0],patch[i].ring[1],patch[ip1].ring[3]);
+
+ assert( patch[i].ring[1].hasValidPositions() );
+ assert( patch[ip1].ring[3].hasValidPositions() );
+
+ float level = 0.25f*(ring[im1].edge_level+ring[ip1].edge_level);
+ patch[i].ring[1].edge_level = patch[ip1].ring[2].edge_level = level;
+ center_vertex_level = max(center_vertex_level,level);
+
+ center += ring[i].vtx;
+ center_ring[2*i+0] = (Vertex_t)patch[i].ring[0].vtx;
+ center_ring[2*i+1] = (Vertex_t)patch[i].ring[0].ring[0];
+ }
+ center /= float(N);
+
+ for (unsigned int i=0; i<N; i++) {
+ init_regular(center,center_ring,center_vertex_level,N,2*i,patch[i].ring[2]);
+
+ assert( patch[i].ring[2].hasValidPositions() );
+ }
+ }
+
+ void init(CatmullClarkPatch& patch) const
+ {
+ assert(size() == 4);
+ ring[0].convert(patch.ring[0]);
+ ring[1].convert(patch.ring[1]);
+ ring[2].convert(patch.ring[2]);
+ ring[3].convert(patch.ring[3]);
+ }
+
+ static void fix_quad_ring_order (array_t<CatmullClarkPatch,GeneralCatmullClarkPatchT::SIZE>& patches)
+ {
+ CatmullClark1Ring patches1ring1 = patches[1].ring[1];
+ patches[1].ring[1] = patches[1].ring[0]; // FIXME: optimize these assignments
+ patches[1].ring[0] = patches[1].ring[3];
+ patches[1].ring[3] = patches[1].ring[2];
+ patches[1].ring[2] = patches1ring1;
+
+ CatmullClark1Ring patches2ring2 = patches[2].ring[2];
+ patches[2].ring[2] = patches[2].ring[0];
+ patches[2].ring[0] = patches2ring2;
+ CatmullClark1Ring patches2ring3 = patches[2].ring[3];
+ patches[2].ring[3] = patches[2].ring[1];
+ patches[2].ring[1] = patches2ring3;
+
+ CatmullClark1Ring patches3ring3 = patches[3].ring[3];
+ patches[3].ring[3] = patches[3].ring[0];
+ patches[3].ring[0] = patches[3].ring[1];
+ patches[3].ring[1] = patches[3].ring[2];
+ patches[3].ring[2] = patches3ring3;
+ }
+
+ __forceinline void getLimitBorder(BezierCurve curves[GeneralCatmullClarkPatchT::SIZE]) const
+ {
+ Vertex P0 = ring[0].getLimitVertex();
+ for (unsigned i=0; i<N; i++)
+ {
+ const unsigned i0 = i, i1 = i+1==N ? 0 : i+1;
+ const Vertex P1 = madd(1.0f/3.0f,ring[i0].getLimitTangent(),P0);
+ const Vertex P3 = ring[i1].getLimitVertex();
+ const Vertex P2 = madd(1.0f/3.0f,ring[i1].getSecondLimitTangent(),P3);
+ new (&curves[i]) BezierCurve(P0,P1,P2,P3);
+ P0 = P3;
+ }
+ }
+
+ __forceinline void getLimitBorder(BezierCurve curves[2], const unsigned subPatch) const
+ {
+ const unsigned i0 = subPatch;
+ const Vertex t0_p = ring[i0].getLimitTangent();
+ const Vertex t0_m = ring[i0].getSecondLimitTangent();
+
+ const unsigned i1 = subPatch+1 == N ? 0 : subPatch+1;
+ const Vertex t1_p = ring[i1].getLimitTangent();
+ const Vertex t1_m = ring[i1].getSecondLimitTangent();
+
+ const unsigned i2 = subPatch == 0 ? N-1 : subPatch-1;
+ const Vertex t2_p = ring[i2].getLimitTangent();
+ const Vertex t2_m = ring[i2].getSecondLimitTangent();
+
+ const Vertex b00 = ring[i0].getLimitVertex();
+ const Vertex b03 = ring[i1].getLimitVertex();
+ const Vertex b33 = ring[i2].getLimitVertex();
+
+ const Vertex b01 = madd(1.0/3.0f,t0_p,b00);
+ const Vertex b11 = madd(1.0/3.0f,t0_m,b00);
+
+ //const Vertex b13 = madd(1.0/3.0f,t1_p,b03);
+ const Vertex b02 = madd(1.0/3.0f,t1_m,b03);
+
+ const Vertex b22 = madd(1.0/3.0f,t2_p,b33);
+ const Vertex b23 = madd(1.0/3.0f,t2_m,b33);
+
+ new (&curves[0]) BezierCurve(b00,b01,b02,b03);
+ new (&curves[1]) BezierCurve(b33,b22,b11,b00);
+ }
+
+ friend __forceinline embree_ostream operator<<(embree_ostream o, const GeneralCatmullClarkPatchT &p)
+ {
+ o << "GeneralCatmullClarkPatch { " << embree_endl;
+ for (unsigned i=0; i<p.N; i++)
+ o << "ring" << i << ": " << p.ring[i] << embree_endl;
+ o << "}" << embree_endl;
+ return o;
+ }
+ };
+
+ typedef GeneralCatmullClarkPatchT<Vec3fa,Vec3fa_t> GeneralCatmullClarkPatch3fa;
+}
diff --git a/thirdparty/embree-aarch64/kernels/subdiv/catmullclark_ring.h b/thirdparty/embree-aarch64/kernels/subdiv/catmullclark_ring.h
new file mode 100644
index 0000000000..73b41fd4ff
--- /dev/null
+++ b/thirdparty/embree-aarch64/kernels/subdiv/catmullclark_ring.h
@@ -0,0 +1,826 @@
+// Copyright 2009-2020 Intel Corporation
+// SPDX-License-Identifier: Apache-2.0
+
+#pragma once
+
+#include "../common/geometry.h"
+#include "../common/buffer.h"
+#include "half_edge.h"
+#include "catmullclark_coefficients.h"
+
+namespace embree
+{
+ struct __aligned(64) FinalQuad {
+ Vec3fa vtx[4];
+ };
+
+ template<typename Vertex, typename Vertex_t = Vertex>
+ struct __aligned(64) CatmullClark1RingT
+ {
+ ALIGNED_STRUCT_(64);
+
+ int border_index; //!< edge index where border starts
+ unsigned int face_valence; //!< number of adjacent quad faces
+ unsigned int edge_valence; //!< number of adjacent edges (2*face_valence)
+ float vertex_crease_weight; //!< weight of vertex crease (0 if no vertex crease)
+ DynamicStackArray<float,16,MAX_RING_FACE_VALENCE> crease_weight; //!< edge crease weights for each adjacent edge
+ float vertex_level; //!< maximum level of all adjacent edges
+ float edge_level; //!< level of first edge
+ unsigned int eval_start_index; //!< topology dependent index to start evaluation
+ unsigned int eval_unique_identifier; //!< topology dependent unique identifier for this ring
+ Vertex vtx; //!< center vertex
+ DynamicStackArray<Vertex,32,MAX_RING_EDGE_VALENCE> ring; //!< ring of neighboring vertices
+
+ public:
+ CatmullClark1RingT ()
+ : eval_start_index(0), eval_unique_identifier(0) {} // FIXME: default constructor should be empty
+
+ /*! calculates number of bytes required to serialize this structure */
+ __forceinline size_t bytes() const
+ {
+ size_t ofs = 0;
+ ofs += sizeof(border_index);
+ ofs += sizeof(face_valence);
+ assert(2*face_valence == edge_valence);
+ ofs += sizeof(vertex_crease_weight);
+ ofs += face_valence*sizeof(float);
+ ofs += sizeof(vertex_level);
+ ofs += sizeof(edge_level);
+ ofs += sizeof(eval_start_index);
+ ofs += sizeof(eval_unique_identifier);
+ ofs += sizeof(vtx);
+ ofs += edge_valence*sizeof(Vertex);
+ return ofs;
+ }
+
+ template<typename Ty>
+ static __forceinline void store(char* ptr, size_t& ofs, const Ty& v) {
+ *(Ty*)&ptr[ofs] = v; ofs += sizeof(Ty);
+ }
+
+ template<typename Ty>
+ static __forceinline void load(char* ptr, size_t& ofs, Ty& v) {
+ v = *(Ty*)&ptr[ofs]; ofs += sizeof(Ty);
+ }
+
+ /*! serializes the ring to some memory location */
+ __forceinline void serialize(char* ptr, size_t& ofs) const
+ {
+ store(ptr,ofs,border_index);
+ store(ptr,ofs,face_valence);
+ store(ptr,ofs,vertex_crease_weight);
+ for (size_t i=0; i<face_valence; i++)
+ store(ptr,ofs,crease_weight[i]);
+ store(ptr,ofs,vertex_level);
+ store(ptr,ofs,edge_level);
+ store(ptr,ofs,eval_start_index);
+ store(ptr,ofs,eval_unique_identifier);
+ Vertex_t::storeu(&ptr[ofs],vtx); ofs += sizeof(Vertex);
+ for (size_t i=0; i<edge_valence; i++) {
+ Vertex_t::storeu(&ptr[ofs],ring[i]); ofs += sizeof(Vertex);
+ }
+ }
+
+ /*! deserializes the ring from some memory location */
+ __forceinline void deserialize(char* ptr, size_t& ofs)
+ {
+ load(ptr,ofs,border_index);
+ load(ptr,ofs,face_valence);
+ edge_valence = 2*face_valence;
+ load(ptr,ofs,vertex_crease_weight);
+ for (size_t i=0; i<face_valence; i++)
+ load(ptr,ofs,crease_weight[i]);
+ load(ptr,ofs,vertex_level);
+ load(ptr,ofs,edge_level);
+ load(ptr,ofs,eval_start_index);
+ load(ptr,ofs,eval_unique_identifier);
+ vtx = Vertex_t::loadu(&ptr[ofs]); ofs += sizeof(Vertex);
+ for (size_t i=0; i<edge_valence; i++) {
+ ring[i] = Vertex_t::loadu(&ptr[ofs]); ofs += sizeof(Vertex);
+ }
+ }
+
+ __forceinline bool hasBorder() const {
+ return border_index != -1;
+ }
+
+ __forceinline const Vertex& front(size_t i) const {
+ assert(edge_valence>i);
+ return ring[i];
+ }
+
+ __forceinline const Vertex& back(size_t i) const {
+ assert(edge_valence>=i);
+ return ring[edge_valence-i];
+ }
+
+ __forceinline bool has_last_face() const {
+ return (size_t)border_index != (size_t)edge_valence-2;
+ }
+
+ __forceinline bool has_opposite_front(size_t i) const {
+ return (size_t)border_index != 2*i;
+ }
+
+ __forceinline bool has_opposite_back(size_t i) const {
+ return (size_t)border_index != ((size_t)edge_valence-2-2*i);
+ }
+
+ __forceinline BBox3fa bounds() const
+ {
+ BBox3fa bounds ( vtx );
+ for (size_t i = 0; i<edge_valence ; i++)
+ bounds.extend( ring[i] );
+ return bounds;
+ }
+
+ /*! initializes the ring from the half edge structure */
+ __forceinline void init(const HalfEdge* const h, const char* vertices, size_t stride)
+ {
+ border_index = -1;
+ vtx = Vertex_t::loadu(vertices+h->getStartVertexIndex()*stride);
+ vertex_crease_weight = h->vertex_crease_weight;
+
+ HalfEdge* p = (HalfEdge*) h;
+
+ unsigned i=0;
+ unsigned min_vertex_index = (unsigned)-1;
+ unsigned min_vertex_index_face = (unsigned)-1;
+ edge_level = p->edge_level;
+ vertex_level = 0.0f;
+
+ do
+ {
+ vertex_level = max(vertex_level,p->edge_level);
+ crease_weight[i/2] = p->edge_crease_weight;
+ assert(p->hasOpposite() || p->edge_crease_weight == float(inf));
+
+ /* store first two vertices of face */
+ p = p->next();
+ const unsigned index0 = p->getStartVertexIndex();
+ ring[i++] = Vertex_t::loadu(vertices+index0*stride);
+ if (index0 < min_vertex_index) { min_vertex_index = index0; min_vertex_index_face = i>>1; }
+ p = p->next();
+
+ const unsigned index1 = p->getStartVertexIndex();
+ ring[i++] = Vertex_t::loadu(vertices+index1*stride);
+ p = p->next();
+
+ /* continue with next face */
+ if (likely(p->hasOpposite()))
+ p = p->opposite();
+
+ /* if there is no opposite go the long way to the other side of the border */
+ else
+ {
+ /* find minimum start vertex */
+ const unsigned index0 = p->getStartVertexIndex();
+ if (index0 < min_vertex_index) { min_vertex_index = index0; min_vertex_index_face = i>>1; }
+
+ /*! mark first border edge and store dummy vertex for face between the two border edges */
+ border_index = i;
+ crease_weight[i/2] = inf;
+ ring[i++] = Vertex_t::loadu(vertices+index0*stride);
+ ring[i++] = vtx; // dummy vertex
+
+ /*! goto other side of border */
+ p = (HalfEdge*) h;
+ while (p->hasOpposite())
+ p = p->opposite()->next();
+ }
+
+ } while (p != h);
+
+ edge_valence = i;
+ face_valence = i >> 1;
+ eval_unique_identifier = min_vertex_index;
+ eval_start_index = min_vertex_index_face;
+
+ assert( hasValidPositions() );
+ }
+
+ __forceinline void subdivide(CatmullClark1RingT& dest) const
+ {
+ dest.edge_level = 0.5f*edge_level;
+ dest.vertex_level = 0.5f*vertex_level;
+ dest.face_valence = face_valence;
+ dest.edge_valence = edge_valence;
+ dest.border_index = border_index;
+ dest.vertex_crease_weight = max(0.0f,vertex_crease_weight-1.0f);
+ dest.eval_start_index = eval_start_index;
+ dest.eval_unique_identifier = eval_unique_identifier;
+
+ /* calculate face points */
+ Vertex_t S = Vertex_t(0.0f);
+ for (size_t i=0; i<face_valence; i++)
+ {
+ size_t face_index = i + eval_start_index; if (face_index >= face_valence) face_index -= face_valence; assert(face_index < face_valence);
+ size_t index0 = 2*face_index+0; if (index0 >= edge_valence) index0 -= edge_valence; assert(index0 < edge_valence);
+ size_t index1 = 2*face_index+1; if (index1 >= edge_valence) index1 -= edge_valence; assert(index1 < edge_valence);
+ size_t index2 = 2*face_index+2; if (index2 >= edge_valence) index2 -= edge_valence; assert(index2 < edge_valence);
+ S += dest.ring[index1] = ((vtx + ring[index1]) + (ring[index0] + ring[index2])) * 0.25f;
+ }
+
+ /* calculate new edge points */
+ size_t num_creases = 0;
+ array_t<size_t,MAX_RING_FACE_VALENCE> crease_id;
+
+ for (size_t i=0; i<face_valence; i++)
+ {
+ size_t face_index = i + eval_start_index;
+ if (face_index >= face_valence) face_index -= face_valence;
+ const float edge_crease = crease_weight[face_index];
+ dest.crease_weight[face_index] = max(edge_crease-1.0f,0.0f);
+
+ size_t index = 2*face_index;
+ size_t prev_index = face_index == 0 ? edge_valence-1 : 2*face_index-1;
+ size_t next_index = 2*face_index+1;
+
+ const Vertex_t v = vtx + ring[index];
+ const Vertex_t f = dest.ring[prev_index] + dest.ring[next_index];
+ S += ring[index];
+
+ /* fast path for regular edge points */
+ if (likely(edge_crease <= 0.0f)) {
+ dest.ring[index] = (v+f) * 0.25f;
+ }
+
+ /* slower path for hard edge rule */
+ else {
+ crease_id[num_creases++] = face_index;
+ dest.ring[index] = v*0.5f;
+
+ /* even slower path for blended edge rule */
+ if (unlikely(edge_crease < 1.0f)) {
+ dest.ring[index] = lerp((v+f)*0.25f,v*0.5f,edge_crease);
+ }
+ }
+ }
+
+ /* compute new vertex using smooth rule */
+ const float inv_face_valence = 1.0f / (float)face_valence;
+ const Vertex_t v_smooth = (Vertex_t) madd(inv_face_valence,S,(float(face_valence)-2.0f)*vtx)*inv_face_valence;
+ dest.vtx = v_smooth;
+
+ /* compute new vertex using vertex_crease_weight rule */
+ if (unlikely(vertex_crease_weight > 0.0f))
+ {
+ if (vertex_crease_weight >= 1.0f) {
+ dest.vtx = vtx;
+ } else {
+ dest.vtx = lerp(v_smooth,vtx,vertex_crease_weight);
+ }
+ return;
+ }
+
+ /* no edge crease rule and dart rule */
+ if (likely(num_creases <= 1))
+ return;
+
+ /* compute new vertex using crease rule */
+ if (likely(num_creases == 2))
+ {
+ /* update vertex using crease rule */
+ const size_t crease0 = crease_id[0], crease1 = crease_id[1];
+ const Vertex_t v_sharp = (Vertex_t)(ring[2*crease0] + 6.0f*vtx + ring[2*crease1]) * (1.0f / 8.0f);
+ dest.vtx = v_sharp;
+
+ /* update crease_weights using chaikin rule */
+ const float crease_weight0 = crease_weight[crease0], crease_weight1 = crease_weight[crease1];
+ dest.crease_weight[crease0] = max(0.25f*(3.0f*crease_weight0 + crease_weight1)-1.0f,0.0f);
+ dest.crease_weight[crease1] = max(0.25f*(3.0f*crease_weight1 + crease_weight0)-1.0f,0.0f);
+
+ /* interpolate between sharp and smooth rule */
+ const float v_blend = 0.5f*(crease_weight0+crease_weight1);
+ if (unlikely(v_blend < 1.0f)) {
+ dest.vtx = lerp(v_smooth,v_sharp,v_blend);
+ }
+ }
+
+ /* compute new vertex using corner rule */
+ else {
+ dest.vtx = vtx;
+ }
+ }
+
+ __forceinline bool isRegular1() const
+ {
+ if (border_index == -1) {
+ if (face_valence == 4) return true;
+ } else {
+ if (face_valence < 4) return true;
+ }
+ return false;
+ }
+
+ __forceinline size_t numEdgeCreases() const
+ {
+ ssize_t numCreases = 0;
+ for (size_t i=0; i<face_valence; i++) {
+ numCreases += crease_weight[i] > 0.0f;
+ }
+ return numCreases;
+ }
+
+ enum Type {
+ TYPE_NONE = 0, //!< invalid type
+ TYPE_REGULAR = 1, //!< regular patch when ignoring creases
+ TYPE_REGULAR_CREASES = 2, //!< regular patch when considering creases
+ TYPE_GREGORY = 4, //!< gregory patch when ignoring creases
+ TYPE_GREGORY_CREASES = 8, //!< gregory patch when considering creases
+ TYPE_CREASES = 16 //!< patch has crease features
+ };
+
+ __forceinline Type type() const
+ {
+ /* check if there is an edge crease anywhere */
+ const size_t numCreases = numEdgeCreases();
+ const bool noInnerCreases = hasBorder() ? numCreases == 2 : numCreases == 0;
+
+ Type crease_mask = (Type) (TYPE_REGULAR | TYPE_GREGORY);
+ if (noInnerCreases ) crease_mask = (Type) (crease_mask | TYPE_REGULAR_CREASES | TYPE_GREGORY_CREASES);
+ if (numCreases != 0) crease_mask = (Type) (crease_mask | TYPE_CREASES);
+
+ /* calculate if this vertex is regular */
+ bool hasBorder = border_index != -1;
+ if (face_valence == 2 && hasBorder) {
+ if (vertex_crease_weight == 0.0f ) return (Type) (crease_mask & (TYPE_REGULAR | TYPE_REGULAR_CREASES | TYPE_GREGORY | TYPE_GREGORY_CREASES | TYPE_CREASES));
+ else if (vertex_crease_weight == float(inf)) return (Type) (crease_mask & (TYPE_REGULAR | TYPE_REGULAR_CREASES | TYPE_GREGORY | TYPE_GREGORY_CREASES | TYPE_CREASES));
+ else return TYPE_CREASES;
+ }
+ else if (vertex_crease_weight != 0.0f) return TYPE_CREASES;
+ else if (face_valence == 3 && hasBorder) return (Type) (crease_mask & (TYPE_REGULAR | TYPE_REGULAR_CREASES | TYPE_GREGORY | TYPE_GREGORY_CREASES | TYPE_CREASES));
+ else if (face_valence == 4 && !hasBorder) return (Type) (crease_mask & (TYPE_REGULAR | TYPE_REGULAR_CREASES | TYPE_GREGORY | TYPE_GREGORY_CREASES | TYPE_CREASES));
+ else return (Type) (crease_mask & (TYPE_GREGORY | TYPE_GREGORY_CREASES | TYPE_CREASES));
+ }
+
+ __forceinline bool isFinalResolution(float res) const {
+ return vertex_level <= res;
+ }
+
+ /* computes the limit vertex */
+ __forceinline Vertex getLimitVertex() const
+ {
+ /* return hard corner */
+ if (unlikely(std::isinf(vertex_crease_weight)))
+ return vtx;
+
+ /* border vertex rule */
+ if (unlikely(border_index != -1))
+ {
+ const unsigned int second_border_index = border_index+2 >= int(edge_valence) ? 0 : border_index+2;
+ return (4.0f * vtx + (ring[border_index] + ring[second_border_index])) * 1.0f/6.0f;
+ }
+
+ Vertex_t F( 0.0f );
+ Vertex_t E( 0.0f );
+
+ assert(eval_start_index < face_valence);
+
+ for (size_t i=0; i<face_valence; i++) {
+ size_t index = i+eval_start_index;
+ if (index >= face_valence) index -= face_valence;
+ F += ring[2*index+1];
+ E += ring[2*index];
+ }
+
+ const float n = (float)face_valence;
+ return (Vertex_t)(n*n*vtx+4.0f*E+F) / ((n+5.0f)*n);
+ }
+
+ /* gets limit tangent in the direction of egde vtx -> ring[0] */
+ __forceinline Vertex getLimitTangent() const
+ {
+ if (unlikely(std::isinf(vertex_crease_weight)))
+ return ring[0] - vtx;
+
+ /* border vertex rule */
+ if (unlikely(border_index != -1))
+ {
+ if (border_index != (int)edge_valence-2 ) {
+ return ring[0] - vtx;
+ }
+ else
+ {
+ const unsigned int second_border_index = border_index+2 >= int(edge_valence) ? 0 : border_index+2;
+ return (ring[second_border_index] - ring[border_index]) * 0.5f;
+ }
+ }
+
+ Vertex_t alpha( 0.0f );
+ Vertex_t beta ( 0.0f );
+
+ const size_t n = face_valence;
+
+ assert(eval_start_index < face_valence);
+
+ Vertex_t q( 0.0f );
+ for (size_t i=0; i<face_valence; i++)
+ {
+ size_t index = i+eval_start_index;
+ if (index >= face_valence) index -= face_valence;
+ const float a = CatmullClarkPrecomputedCoefficients::table.limittangent_a(index,n);
+ const float b = CatmullClarkPrecomputedCoefficients::table.limittangent_b(index,n);
+ alpha += a * ring[2*index];
+ beta += b * ring[2*index+1];
+ }
+
+ const float sigma = CatmullClarkPrecomputedCoefficients::table.limittangent_c(n);
+ return sigma * (alpha + beta);
+ }
+
+ /* gets limit tangent in the direction of egde vtx -> ring[edge_valence-2] */
+ __forceinline Vertex getSecondLimitTangent() const
+ {
+ if (unlikely(std::isinf(vertex_crease_weight)))
+ return ring[2] - vtx;
+
+ /* border vertex rule */
+ if (unlikely(border_index != -1))
+ {
+ if (border_index != 2) {
+ return ring[2] - vtx;
+ }
+ else {
+ const unsigned int second_border_index = border_index+2 >= int(edge_valence) ? 0 : border_index+2;
+ return (ring[border_index] - ring[second_border_index]) * 0.5f;
+ }
+ }
+
+ Vertex_t alpha( 0.0f );
+ Vertex_t beta ( 0.0f );
+
+ const size_t n = face_valence;
+
+ assert(eval_start_index < face_valence);
+
+ for (size_t i=0; i<face_valence; i++)
+ {
+ size_t index = i+eval_start_index;
+ if (index >= face_valence) index -= face_valence;
+
+ size_t prev_index = index == 0 ? face_valence-1 : index-1; // need to be bit-wise exact in cosf eval
+ const float a = CatmullClarkPrecomputedCoefficients::table.limittangent_a(prev_index,n);
+ const float b = CatmullClarkPrecomputedCoefficients::table.limittangent_b(prev_index,n);
+ alpha += a * ring[2*index];
+ beta += b * ring[2*index+1];
+ }
+
+ const float sigma = CatmullClarkPrecomputedCoefficients::table.limittangent_c(n);
+ return sigma* (alpha + beta);
+ }
+
+ /* gets surface normal */
+ const Vertex getNormal() const {
+ return cross(getLimitTangent(),getSecondLimitTangent());
+ }
+
+ /* returns center of the n-th quad in the 1-ring */
+ __forceinline Vertex getQuadCenter(const size_t index) const
+ {
+ const Vertex_t &p0 = vtx;
+ const Vertex_t &p1 = ring[2*index+0];
+ const Vertex_t &p2 = ring[2*index+1];
+ const Vertex_t &p3 = index == face_valence-1 ? ring[0] : ring[2*index+2];
+ const Vertex p = (p0+p1+p2+p3) * 0.25f;
+ return p;
+ }
+
+ /* returns center of the n-th edge in the 1-ring */
+ __forceinline Vertex getEdgeCenter(const size_t index) const {
+ return (vtx + ring[index*2]) * 0.5f;
+ }
+
+ bool hasValidPositions() const
+ {
+ for (size_t i=0; i<edge_valence; i++) {
+ if (!isvalid(ring[i]))
+ return false;
+ }
+ return true;
+ }
+
+ friend __forceinline embree_ostream operator<<(embree_ostream o, const CatmullClark1RingT &c)
+ {
+ o << "vtx " << c.vtx << " size = " << c.edge_valence << ", " <<
+ "hard_edge = " << c.border_index << ", face_valence " << c.face_valence <<
+ ", edge_level = " << c.edge_level << ", vertex_level = " << c.vertex_level << ", eval_start_index: " << c.eval_start_index << ", ring: " << embree_endl;
+
+ for (unsigned int i=0; i<min(c.edge_valence,(unsigned int)MAX_RING_FACE_VALENCE); i++) {
+ o << i << " -> " << c.ring[i];
+ if (i % 2 == 0) o << " crease = " << c.crease_weight[i/2];
+ o << embree_endl;
+ }
+ return o;
+ }
+ };
+
+ typedef CatmullClark1RingT<Vec3fa,Vec3fa_t> CatmullClark1Ring3fa;
+
+ template<typename Vertex, typename Vertex_t = Vertex>
+ struct __aligned(64) GeneralCatmullClark1RingT
+ {
+ ALIGNED_STRUCT_(64);
+
+ typedef CatmullClark1RingT<Vertex,Vertex_t> CatmullClark1Ring;
+
+ struct Face
+ {
+ __forceinline Face() {}
+ __forceinline Face (int size, float crease_weight)
+ : size(size), crease_weight(crease_weight) {}
+
+ // FIXME: add member that returns total number of vertices
+
+ int size; // number of vertices-2 of nth face in ring
+ float crease_weight;
+ };
+
+ Vertex vtx;
+ DynamicStackArray<Vertex,32,MAX_RING_EDGE_VALENCE> ring;
+ DynamicStackArray<Face,16,MAX_RING_FACE_VALENCE> faces;
+ unsigned int face_valence;
+ unsigned int edge_valence;
+ int border_face;
+ float vertex_crease_weight;
+ float vertex_level; //!< maximum level of adjacent edges
+ float edge_level; // level of first edge
+ bool only_quads; // true if all faces are quads
+ unsigned int eval_start_face_index;
+ unsigned int eval_start_vertex_index;
+ unsigned int eval_unique_identifier;
+
+ public:
+ GeneralCatmullClark1RingT()
+ : eval_start_face_index(0), eval_start_vertex_index(0), eval_unique_identifier(0) {}
+
+ __forceinline bool isRegular() const
+ {
+ if (border_face == -1 && face_valence == 4) return true;
+ return false;
+ }
+
+ __forceinline bool has_last_face() const {
+ return border_face != (int)face_valence-1;
+ }
+
+ __forceinline bool has_second_face() const {
+ return (border_face == -1) || (border_face >= 2);
+ }
+
+ bool hasValidPositions() const
+ {
+ for (size_t i=0; i<edge_valence; i++) {
+ if (!isvalid(ring[i]))
+ return false;
+ }
+ return true;
+ }
+
+ __forceinline void init(const HalfEdge* const h, const char* vertices, size_t stride)
+ {
+ only_quads = true;
+ border_face = -1;
+ vtx = Vertex_t::loadu(vertices+h->getStartVertexIndex()*stride);
+ vertex_crease_weight = h->vertex_crease_weight;
+ HalfEdge* p = (HalfEdge*) h;
+
+ unsigned int e=0, f=0;
+ unsigned min_vertex_index = (unsigned)-1;
+ unsigned min_vertex_index_face = (unsigned)-1;
+ unsigned min_vertex_index_vertex = (unsigned)-1;
+ edge_level = p->edge_level;
+ vertex_level = 0.0f;
+ do
+ {
+ HalfEdge* p_prev = p->prev();
+ HalfEdge* p_next = p->next();
+ const float crease_weight = p->edge_crease_weight;
+ assert(p->hasOpposite() || p->edge_crease_weight == float(inf));
+ vertex_level = max(vertex_level,p->edge_level);
+
+ /* find minimum start vertex */
+ unsigned vertex_index = p_next->getStartVertexIndex();
+ if (vertex_index < min_vertex_index) { min_vertex_index = vertex_index; min_vertex_index_face = f; min_vertex_index_vertex = e; }
+
+ /* store first N-2 vertices of face */
+ unsigned int vn = 0;
+ for (p = p_next; p!=p_prev; p=p->next()) {
+ ring[e++] = Vertex_t::loadu(vertices+p->getStartVertexIndex()*stride);
+ vn++;
+ }
+ faces[f++] = Face(vn,crease_weight);
+ only_quads &= (vn == 2);
+
+ /* continue with next face */
+ if (likely(p->hasOpposite()))
+ p = p->opposite();
+
+ /* if there is no opposite go the long way to the other side of the border */
+ else
+ {
+ /* find minimum start vertex */
+ unsigned vertex_index = p->getStartVertexIndex();
+ if (vertex_index < min_vertex_index) { min_vertex_index = vertex_index; min_vertex_index_face = f; min_vertex_index_vertex = e; }
+
+ /*! mark first border edge and store dummy vertex for face between the two border edges */
+ border_face = f;
+ faces[f++] = Face(2,inf);
+ ring[e++] = Vertex_t::loadu(vertices+p->getStartVertexIndex()*stride);
+ ring[e++] = vtx; // dummy vertex
+
+ /*! goto other side of border */
+ p = (HalfEdge*) h;
+ while (p->hasOpposite())
+ p = p->opposite()->next();
+ }
+
+ } while (p != h);
+
+ edge_valence = e;
+ face_valence = f;
+ eval_unique_identifier = min_vertex_index;
+ eval_start_face_index = min_vertex_index_face;
+ eval_start_vertex_index = min_vertex_index_vertex;
+
+ assert( hasValidPositions() );
+ }
+
+ __forceinline void subdivide(CatmullClark1Ring& dest) const
+ {
+ dest.edge_level = 0.5f*edge_level;
+ dest.vertex_level = 0.5f*vertex_level;
+ dest.face_valence = face_valence;
+ dest.edge_valence = 2*face_valence;
+ dest.border_index = border_face == -1 ? -1 : 2*border_face; // FIXME:
+ dest.vertex_crease_weight = max(0.0f,vertex_crease_weight-1.0f);
+ dest.eval_start_index = eval_start_face_index;
+ dest.eval_unique_identifier = eval_unique_identifier;
+ assert(dest.face_valence <= MAX_RING_FACE_VALENCE);
+
+ /* calculate face points */
+ Vertex_t S = Vertex_t(0.0f);
+ for (size_t face=0, v=eval_start_vertex_index; face<face_valence; face++) {
+ size_t f = (face + eval_start_face_index)%face_valence;
+
+ Vertex_t F = vtx;
+ for (size_t k=v; k<=v+faces[f].size; k++) F += ring[k%edge_valence]; // FIXME: optimize
+ S += dest.ring[2*f+1] = F/float(faces[f].size+2);
+ v+=faces[f].size;
+ v%=edge_valence;
+ }
+
+ /* calculate new edge points */
+ size_t num_creases = 0;
+ array_t<size_t,MAX_RING_FACE_VALENCE> crease_id;
+ Vertex_t C = Vertex_t(0.0f);
+ for (size_t face=0, j=eval_start_vertex_index; face<face_valence; face++)
+ {
+ size_t i = (face + eval_start_face_index)%face_valence;
+
+ const Vertex_t v = vtx + ring[j];
+ Vertex_t f = dest.ring[2*i+1];
+ if (i == 0) f += dest.ring[dest.edge_valence-1];
+ else f += dest.ring[2*i-1];
+ S += ring[j];
+ dest.crease_weight[i] = max(faces[i].crease_weight-1.0f,0.0f);
+
+ /* fast path for regular edge points */
+ if (likely(faces[i].crease_weight <= 0.0f)) {
+ dest.ring[2*i] = (v+f) * 0.25f;
+ }
+
+ /* slower path for hard edge rule */
+ else {
+ C += ring[j]; crease_id[num_creases++] = i;
+ dest.ring[2*i] = v*0.5f;
+
+ /* even slower path for blended edge rule */
+ if (unlikely(faces[i].crease_weight < 1.0f)) {
+ dest.ring[2*i] = lerp((v+f)*0.25f,v*0.5f,faces[i].crease_weight);
+ }
+ }
+ j+=faces[i].size;
+ j%=edge_valence;
+ }
+
+ /* compute new vertex using smooth rule */
+ const float inv_face_valence = 1.0f / (float)face_valence;
+ const Vertex_t v_smooth = (Vertex_t) madd(inv_face_valence,S,(float(face_valence)-2.0f)*vtx)*inv_face_valence;
+ dest.vtx = v_smooth;
+
+ /* compute new vertex using vertex_crease_weight rule */
+ if (unlikely(vertex_crease_weight > 0.0f))
+ {
+ if (vertex_crease_weight >= 1.0f) {
+ dest.vtx = vtx;
+ } else {
+ dest.vtx = lerp(vtx,v_smooth,vertex_crease_weight);
+ }
+ return;
+ }
+
+ if (likely(num_creases <= 1))
+ return;
+
+ /* compute new vertex using crease rule */
+ if (likely(num_creases == 2)) {
+ const Vertex_t v_sharp = (Vertex_t)(C + 6.0f * vtx) * (1.0f / 8.0f);
+ const float crease_weight0 = faces[crease_id[0]].crease_weight;
+ const float crease_weight1 = faces[crease_id[1]].crease_weight;
+ dest.vtx = v_sharp;
+ dest.crease_weight[crease_id[0]] = max(0.25f*(3.0f*crease_weight0 + crease_weight1)-1.0f,0.0f);
+ dest.crease_weight[crease_id[1]] = max(0.25f*(3.0f*crease_weight1 + crease_weight0)-1.0f,0.0f);
+ const float v_blend = 0.5f*(crease_weight0+crease_weight1);
+ if (unlikely(v_blend < 1.0f)) {
+ dest.vtx = lerp(v_sharp,v_smooth,v_blend);
+ }
+ }
+
+ /* compute new vertex using corner rule */
+ else {
+ dest.vtx = vtx;
+ }
+ }
+
+ void convert(CatmullClark1Ring& dst) const
+ {
+ dst.edge_level = edge_level;
+ dst.vertex_level = vertex_level;
+ dst.vtx = vtx;
+ dst.face_valence = face_valence;
+ dst.edge_valence = 2*face_valence;
+ dst.border_index = border_face == -1 ? -1 : 2*border_face;
+ for (size_t i=0; i<face_valence; i++)
+ dst.crease_weight[i] = faces[i].crease_weight;
+ dst.vertex_crease_weight = vertex_crease_weight;
+ for (size_t i=0; i<edge_valence; i++) dst.ring[i] = ring[i];
+
+ dst.eval_start_index = eval_start_face_index;
+ dst.eval_unique_identifier = eval_unique_identifier;
+
+ assert( dst.hasValidPositions() );
+ }
+
+
+ /* gets limit tangent in the direction of egde vtx -> ring[0] */
+ __forceinline Vertex getLimitTangent() const
+ {
+ CatmullClark1Ring cc_vtx;
+
+ /* fast path for quad only rings */
+ if (only_quads)
+ {
+ convert(cc_vtx);
+ return cc_vtx.getLimitTangent();
+ }
+
+ subdivide(cc_vtx);
+ return 2.0f * cc_vtx.getLimitTangent();
+ }
+
+ /* gets limit tangent in the direction of egde vtx -> ring[edge_valence-2] */
+ __forceinline Vertex getSecondLimitTangent() const
+ {
+ CatmullClark1Ring cc_vtx;
+
+ /* fast path for quad only rings */
+ if (only_quads)
+ {
+ convert(cc_vtx);
+ return cc_vtx.getSecondLimitTangent();
+ }
+
+ subdivide(cc_vtx);
+ return 2.0f * cc_vtx.getSecondLimitTangent();
+ }
+
+
+ /* gets limit vertex */
+ __forceinline Vertex getLimitVertex() const
+ {
+ CatmullClark1Ring cc_vtx;
+
+ /* fast path for quad only rings */
+ if (only_quads)
+ convert(cc_vtx);
+ else
+ subdivide(cc_vtx);
+ return cc_vtx.getLimitVertex();
+ }
+
+ friend __forceinline embree_ostream operator<<(embree_ostream o, const GeneralCatmullClark1RingT &c)
+ {
+ o << "vtx " << c.vtx << " size = " << c.edge_valence << ", border_face = " << c.border_face << ", " << " face_valence = " << c.face_valence <<
+ ", edge_level = " << c.edge_level << ", vertex_level = " << c.vertex_level << ", ring: " << embree_endl;
+ for (size_t v=0, f=0; f<c.face_valence; v+=c.faces[f++].size) {
+ for (size_t i=v; i<v+c.faces[f].size; i++) {
+ o << i << " -> " << c.ring[i];
+ if (i == v) o << " crease = " << c.faces[f].crease_weight;
+ o << embree_endl;
+ }
+ }
+ return o;
+ }
+ };
+}
diff --git a/thirdparty/embree-aarch64/kernels/subdiv/catmullrom_curve.h b/thirdparty/embree-aarch64/kernels/subdiv/catmullrom_curve.h
new file mode 100644
index 0000000000..b244af481c
--- /dev/null
+++ b/thirdparty/embree-aarch64/kernels/subdiv/catmullrom_curve.h
@@ -0,0 +1,296 @@
+// Copyright 2009-2020 Intel Corporation
+// SPDX-License-Identifier: Apache-2.0
+
+#pragma once
+
+#include "../common/default.h"
+#include "../common/scene_curves.h"
+
+/*
+
+ Implements Catmul Rom curves with control points p0, p1, p2, p3. At
+ t=0 the curve goes through p1, with tangent (p2-p0)/3, and for t=1
+ the curve goes through p2 with tangent (p3-p2)/2.
+
+ */
+
+namespace embree
+{
+ class CatmullRomBasis
+ {
+ public:
+
+ template<typename T>
+ static __forceinline Vec4<T> eval(const T& u)
+ {
+ const T t = u;
+ const T s = T(1.0f) - u;
+ const T n0 = - t * s * s;
+ const T n1 = 2.0f + t * t * (3.0f * t - 5.0f);
+ const T n2 = 2.0f + s * s * (3.0f * s - 5.0f);
+ const T n3 = - s * t * t;
+ return T(0.5f) * Vec4<T>(n0, n1, n2, n3);
+ }
+
+ template<typename T>
+ static __forceinline Vec4<T> derivative(const T& u)
+ {
+ const T t = u;
+ const T s = 1.0f - u;
+ const T n0 = - s * s + 2.0f * s * t;
+ const T n1 = 2.0f * t * (3.0f * t - 5.0f) + 3.0f * t * t;
+ const T n2 = 2.0f * s * (3.0f * t + 2.0f) - 3.0f * s * s;
+ const T n3 = -2.0f * s * t + t * t;
+ return T(0.5f) * Vec4<T>(n0, n1, n2, n3);
+ }
+
+ template<typename T>
+ static __forceinline Vec4<T> derivative2(const T& u)
+ {
+ const T t = u;
+ const T n0 = -3.0f * t + 2.0f;
+ const T n1 = 9.0f * t - 5.0f;
+ const T n2 = -9.0f * t + 4.0f;
+ const T n3 = 3.0f * t - 1.0f;
+ return Vec4<T>(n0, n1, n2, n3);
+ }
+ };
+
+ struct PrecomputedCatmullRomBasis
+ {
+ enum { N = 16 };
+ public:
+ PrecomputedCatmullRomBasis() {}
+ PrecomputedCatmullRomBasis(int shift);
+
+ /* basis for bspline evaluation */
+ public:
+ float c0[N+1][N+1];
+ float c1[N+1][N+1];
+ float c2[N+1][N+1];
+ float c3[N+1][N+1];
+
+ /* basis for bspline derivative evaluation */
+ public:
+ float d0[N+1][N+1];
+ float d1[N+1][N+1];
+ float d2[N+1][N+1];
+ float d3[N+1][N+1];
+ };
+ extern PrecomputedCatmullRomBasis catmullrom_basis0;
+ extern PrecomputedCatmullRomBasis catmullrom_basis1;
+
+ template<typename Vertex>
+ struct CatmullRomCurveT
+ {
+ Vertex v0,v1,v2,v3;
+
+ __forceinline CatmullRomCurveT() {}
+
+ __forceinline CatmullRomCurveT(const Vertex& v0, const Vertex& v1, const Vertex& v2, const Vertex& v3)
+ : v0(v0), v1(v1), v2(v2), v3(v3) {}
+
+ __forceinline Vertex begin() const {
+ return madd(1.0f/6.0f,v0,madd(2.0f/3.0f,v1,1.0f/6.0f*v2));
+ }
+
+ __forceinline Vertex end() const {
+ return madd(1.0f/6.0f,v1,madd(2.0f/3.0f,v2,1.0f/6.0f*v3));
+ }
+
+ __forceinline Vertex center() const {
+ return 0.25f*(v0+v1+v2+v3);
+ }
+
+ __forceinline BBox<Vertex> bounds() const {
+ return merge(BBox<Vertex>(v0),BBox<Vertex>(v1),BBox<Vertex>(v2),BBox<Vertex>(v3));
+ }
+
+ __forceinline friend CatmullRomCurveT operator -( const CatmullRomCurveT& a, const Vertex& b ) {
+ return CatmullRomCurveT(a.v0-b,a.v1-b,a.v2-b,a.v3-b);
+ }
+
+ __forceinline CatmullRomCurveT<Vec3ff> xfm_pr(const LinearSpace3fa& space, const Vec3fa& p) const
+ {
+ const Vec3ff q0(xfmVector(space,v0-p), v0.w);
+ const Vec3ff q1(xfmVector(space,v1-p), v1.w);
+ const Vec3ff q2(xfmVector(space,v2-p), v2.w);
+ const Vec3ff q3(xfmVector(space,v3-p), v3.w);
+ return CatmullRomCurveT<Vec3ff>(q0,q1,q2,q3);
+ }
+
+ __forceinline Vertex eval(const float t) const
+ {
+ const Vec4<float> b = CatmullRomBasis::eval(t);
+ return madd(b.x,v0,madd(b.y,v1,madd(b.z,v2,b.w*v3)));
+ }
+
+ __forceinline Vertex eval_du(const float t) const
+ {
+ const Vec4<float> b = CatmullRomBasis::derivative(t);
+ return madd(b.x,v0,madd(b.y,v1,madd(b.z,v2,b.w*v3)));
+ }
+
+ __forceinline Vertex eval_dudu(const float t) const
+ {
+ const Vec4<float> b = CatmullRomBasis::derivative2(t);
+ return madd(b.x,v0,madd(b.y,v1,madd(b.z,v2,b.w*v3)));
+ }
+
+ __forceinline void eval(const float t, Vertex& p, Vertex& dp, Vertex& ddp) const
+ {
+ p = eval(t);
+ dp = eval_du(t);
+ ddp = eval_dudu(t);
+ }
+
+ template<int M>
+ __forceinline Vec4vf<M> veval(const vfloat<M>& t) const
+ {
+ const Vec4vf<M> b = CatmullRomBasis::eval(t);
+ return madd(b.x, Vec4vf<M>(v0), madd(b.y, Vec4vf<M>(v1), madd(b.z, Vec4vf<M>(v2), b.w * Vec4vf<M>(v3))));
+ }
+
+ template<int M>
+ __forceinline Vec4vf<M> veval_du(const vfloat<M>& t) const
+ {
+ const Vec4vf<M> b = CatmullRomBasis::derivative(t);
+ return madd(b.x, Vec4vf<M>(v0), madd(b.y, Vec4vf<M>(v1), madd(b.z, Vec4vf<M>(v2), b.w * Vec4vf<M>(v3))));
+ }
+
+ template<int M>
+ __forceinline Vec4vf<M> veval_dudu(const vfloat<M>& t) const
+ {
+ const Vec4vf<M> b = CatmullRomBasis::derivative2(t);
+ return madd(b.x, Vec4vf<M>(v0), madd(b.y, Vec4vf<M>(v1), madd(b.z, Vec4vf<M>(v2), b.w * Vec4vf<M>(v3))));
+ }
+
+ template<int M>
+ __forceinline void veval(const vfloat<M>& t, Vec4vf<M>& p, Vec4vf<M>& dp) const
+ {
+ p = veval(t);
+ dp = veval_du(t);
+ }
+
+ template<int M>
+ __forceinline Vec4vf<M> eval0(const int ofs, const int size) const
+ {
+ assert(size <= PrecomputedCatmullRomBasis::N);
+ assert(ofs <= size);
+ return madd(vfloat<M>::loadu(&catmullrom_basis0.c0[size][ofs]), Vec4vf<M>(v0),
+ madd(vfloat<M>::loadu(&catmullrom_basis0.c1[size][ofs]), Vec4vf<M>(v1),
+ madd(vfloat<M>::loadu(&catmullrom_basis0.c2[size][ofs]), Vec4vf<M>(v2),
+ vfloat<M>::loadu(&catmullrom_basis0.c3[size][ofs]) * Vec4vf<M>(v3))));
+ }
+
+ template<int M>
+ __forceinline Vec4vf<M> eval1(const int ofs, const int size) const
+ {
+ assert(size <= PrecomputedCatmullRomBasis::N);
+ assert(ofs <= size);
+ return madd(vfloat<M>::loadu(&catmullrom_basis1.c0[size][ofs]), Vec4vf<M>(v0),
+ madd(vfloat<M>::loadu(&catmullrom_basis1.c1[size][ofs]), Vec4vf<M>(v1),
+ madd(vfloat<M>::loadu(&catmullrom_basis1.c2[size][ofs]), Vec4vf<M>(v2),
+ vfloat<M>::loadu(&catmullrom_basis1.c3[size][ofs]) * Vec4vf<M>(v3))));
+ }
+
+ template<int M>
+ __forceinline Vec4vf<M> derivative0(const int ofs, const int size) const
+ {
+ assert(size <= PrecomputedCatmullRomBasis::N);
+ assert(ofs <= size);
+ return madd(vfloat<M>::loadu(&catmullrom_basis0.d0[size][ofs]), Vec4vf<M>(v0),
+ madd(vfloat<M>::loadu(&catmullrom_basis0.d1[size][ofs]), Vec4vf<M>(v1),
+ madd(vfloat<M>::loadu(&catmullrom_basis0.d2[size][ofs]), Vec4vf<M>(v2),
+ vfloat<M>::loadu(&catmullrom_basis0.d3[size][ofs]) * Vec4vf<M>(v3))));
+ }
+
+ template<int M>
+ __forceinline Vec4vf<M> derivative1(const int ofs, const int size) const
+ {
+ assert(size <= PrecomputedCatmullRomBasis::N);
+ assert(ofs <= size);
+ return madd(vfloat<M>::loadu(&catmullrom_basis1.d0[size][ofs]), Vec4vf<M>(v0),
+ madd(vfloat<M>::loadu(&catmullrom_basis1.d1[size][ofs]), Vec4vf<M>(v1),
+ madd(vfloat<M>::loadu(&catmullrom_basis1.d2[size][ofs]), Vec4vf<M>(v2),
+ vfloat<M>::loadu(&catmullrom_basis1.d3[size][ofs]) * Vec4vf<M>(v3))));
+ }
+
+ /* calculates bounds of catmull-rom curve geometry */
+ __forceinline BBox3fa accurateRoundBounds() const
+ {
+ const int N = 7;
+ const float scale = 1.0f/(3.0f*(N-1));
+ Vec4vfx pl(pos_inf), pu(neg_inf);
+ for (int i=0; i<=N; i+=VSIZEX)
+ {
+ vintx vi = vintx(i)+vintx(step);
+ vboolx valid = vi <= vintx(N);
+ const Vec4vfx p = eval0<VSIZEX>(i,N);
+ const Vec4vfx dp = derivative0<VSIZEX>(i,N);
+ const Vec4vfx pm = p-Vec4vfx(scale)*select(vi!=vintx(0),dp,Vec4vfx(zero));
+ const Vec4vfx pp = p+Vec4vfx(scale)*select(vi!=vintx(N),dp,Vec4vfx(zero));
+ pl = select(valid,min(pl,p,pm,pp),pl); // FIXME: use masked min
+ pu = select(valid,max(pu,p,pm,pp),pu); // FIXME: use masked min
+ }
+ const Vec3fa lower(reduce_min(pl.x),reduce_min(pl.y),reduce_min(pl.z));
+ const Vec3fa upper(reduce_max(pu.x),reduce_max(pu.y),reduce_max(pu.z));
+ const float r_min = reduce_min(pl.w);
+ const float r_max = reduce_max(pu.w);
+ const Vec3fa upper_r = Vec3fa(max(abs(r_min),abs(r_max)));
+ return enlarge(BBox3fa(lower,upper),upper_r);
+ }
+
+ /* calculates bounds when tessellated into N line segments */
+ __forceinline BBox3fa accurateFlatBounds(int N) const
+ {
+ if (likely(N == 4))
+ {
+ const Vec4vf4 pi = eval0<4>(0,4);
+ const Vec3fa lower(reduce_min(pi.x),reduce_min(pi.y),reduce_min(pi.z));
+ const Vec3fa upper(reduce_max(pi.x),reduce_max(pi.y),reduce_max(pi.z));
+ const Vec3fa upper_r = Vec3fa(reduce_max(abs(pi.w)));
+ const Vec3ff pe = end();
+ return enlarge(BBox3fa(min(lower,pe),max(upper,pe)),max(upper_r,Vec3fa(abs(pe.w))));
+ }
+ else
+ {
+ Vec3vfx pl(pos_inf), pu(neg_inf); vfloatx ru(0.0f);
+ for (int i=0; i<=N; i+=VSIZEX)
+ {
+ vboolx valid = vintx(i)+vintx(step) <= vintx(N);
+ const Vec4vfx pi = eval0<VSIZEX>(i,N);
+
+ pl.x = select(valid,min(pl.x,pi.x),pl.x); // FIXME: use masked min
+ pl.y = select(valid,min(pl.y,pi.y),pl.y);
+ pl.z = select(valid,min(pl.z,pi.z),pl.z);
+
+ pu.x = select(valid,max(pu.x,pi.x),pu.x); // FIXME: use masked min
+ pu.y = select(valid,max(pu.y,pi.y),pu.y);
+ pu.z = select(valid,max(pu.z,pi.z),pu.z);
+
+ ru = select(valid,max(ru,abs(pi.w)),ru);
+ }
+ const Vec3fa lower(reduce_min(pl.x),reduce_min(pl.y),reduce_min(pl.z));
+ const Vec3fa upper(reduce_max(pu.x),reduce_max(pu.y),reduce_max(pu.z));
+ const Vec3fa upper_r(reduce_max(ru));
+ return enlarge(BBox3fa(lower,upper),upper_r);
+ }
+ }
+
+ friend __forceinline embree_ostream operator<<(embree_ostream cout, const CatmullRomCurveT& curve) {
+ return cout << "CatmullRomCurve { v0 = " << curve.v0 << ", v1 = " << curve.v1 << ", v2 = " << curve.v2 << ", v3 = " << curve.v3 << " }";
+ }
+ };
+
+ __forceinline CatmullRomCurveT<Vec3ff> enlargeRadiusToMinWidth(const IntersectContext* context, const CurveGeometry* geom, const Vec3fa& ray_org, const CatmullRomCurveT<Vec3ff>& curve)
+ {
+ return CatmullRomCurveT<Vec3ff>(enlargeRadiusToMinWidth(context,geom,ray_org,curve.v0),
+ enlargeRadiusToMinWidth(context,geom,ray_org,curve.v1),
+ enlargeRadiusToMinWidth(context,geom,ray_org,curve.v2),
+ enlargeRadiusToMinWidth(context,geom,ray_org,curve.v3));
+ }
+
+ typedef CatmullRomCurveT<Vec3fa> CatmullRomCurve3fa;
+}
+
diff --git a/thirdparty/embree-aarch64/kernels/subdiv/feature_adaptive_eval.h b/thirdparty/embree-aarch64/kernels/subdiv/feature_adaptive_eval.h
new file mode 100644
index 0000000000..23f24c360c
--- /dev/null
+++ b/thirdparty/embree-aarch64/kernels/subdiv/feature_adaptive_eval.h
@@ -0,0 +1,226 @@
+// Copyright 2009-2020 Intel Corporation
+// SPDX-License-Identifier: Apache-2.0
+
+#pragma once
+
+#include "patch.h"
+
+namespace embree
+{
+ namespace isa
+ {
+ template<typename Vertex, typename Vertex_t = Vertex>
+ struct FeatureAdaptiveEval
+ {
+ public:
+
+ typedef PatchT<Vertex,Vertex_t> Patch;
+ typedef typename Patch::Ref Ref;
+ typedef GeneralCatmullClarkPatchT<Vertex,Vertex_t> GeneralCatmullClarkPatch;
+ typedef CatmullClark1RingT<Vertex,Vertex_t> CatmullClarkRing;
+ typedef CatmullClarkPatchT<Vertex,Vertex_t> CatmullClarkPatch;
+ typedef BSplinePatchT<Vertex,Vertex_t> BSplinePatch;
+ typedef BezierPatchT<Vertex,Vertex_t> BezierPatch;
+ typedef GregoryPatchT<Vertex,Vertex_t> GregoryPatch;
+ typedef BilinearPatchT<Vertex,Vertex_t> BilinearPatch;
+ typedef BezierCurveT<Vertex> BezierCurve;
+
+ public:
+
+ FeatureAdaptiveEval (const HalfEdge* edge, const char* vertices, size_t stride, const float u, const float v,
+ Vertex* P, Vertex* dPdu, Vertex* dPdv, Vertex* ddPdudu, Vertex* ddPdvdv, Vertex* ddPdudv)
+ : P(P), dPdu(dPdu), dPdv(dPdv), ddPdudu(ddPdudu), ddPdvdv(ddPdvdv), ddPdudv(ddPdudv)
+ {
+ switch (edge->patch_type) {
+ case HalfEdge::BILINEAR_PATCH: BilinearPatch(edge,vertices,stride).eval(u,v,P,dPdu,dPdv,ddPdudu,ddPdvdv,ddPdudv,1.0f); break;
+ case HalfEdge::REGULAR_QUAD_PATCH: RegularPatchT(edge,vertices,stride).eval(u,v,P,dPdu,dPdv,ddPdudu,ddPdvdv,ddPdudv,1.0f); break;
+#if PATCH_USE_GREGORY == 2
+ case HalfEdge::IRREGULAR_QUAD_PATCH: GregoryPatch(edge,vertices,stride).eval(u,v,P,dPdu,dPdv,ddPdudu,ddPdvdv,ddPdudv,1.0f); break;
+#endif
+ default: {
+ GeneralCatmullClarkPatch patch(edge,vertices,stride);
+ eval(patch,Vec2f(u,v),0);
+ break;
+ }
+ }
+ }
+
+ FeatureAdaptiveEval (CatmullClarkPatch& patch, const float u, const float v, float dscale, size_t depth,
+ Vertex* P, Vertex* dPdu, Vertex* dPdv, Vertex* ddPdudu, Vertex* ddPdvdv, Vertex* ddPdudv)
+ : P(P), dPdu(dPdu), dPdv(dPdv), ddPdudu(ddPdudu), ddPdvdv(ddPdvdv), ddPdudv(ddPdudv)
+ {
+ eval(patch,Vec2f(u,v),dscale,depth);
+ }
+
+ void eval_general_quad(const GeneralCatmullClarkPatch& patch, array_t<CatmullClarkPatch,GeneralCatmullClarkPatch::SIZE>& patches, const Vec2f& uv, size_t depth)
+ {
+ float u = uv.x, v = uv.y;
+ if (v < 0.5f) {
+ if (u < 0.5f) {
+#if PATCH_USE_GREGORY == 2
+ BezierCurve borders[2]; patch.getLimitBorder(borders,0);
+ BezierCurve border0l,border0r; borders[0].subdivide(border0l,border0r);
+ BezierCurve border2l,border2r; borders[1].subdivide(border2l,border2r);
+ eval(patches[0],Vec2f(2.0f*u,2.0f*v),2.0f,depth+1, &border0l, nullptr, nullptr, &border2r);
+#else
+ eval(patches[0],Vec2f(2.0f*u,2.0f*v),2.0f,depth+1);
+#endif
+ if (dPdu && dPdv) {
+ const Vertex dpdx = *dPdu, dpdy = *dPdv;
+ *dPdu = dpdx; *dPdv = dpdy;
+ }
+ }
+ else {
+#if PATCH_USE_GREGORY == 2
+ BezierCurve borders[2]; patch.getLimitBorder(borders,1);
+ BezierCurve border0l,border0r; borders[0].subdivide(border0l,border0r);
+ BezierCurve border2l,border2r; borders[1].subdivide(border2l,border2r);
+ eval(patches[1],Vec2f(2.0f*v,2.0f-2.0f*u),2.0f,depth+1, &border0l, nullptr, nullptr, &border2r);
+#else
+ eval(patches[1],Vec2f(2.0f*v,2.0f-2.0f*u),2.0f,depth+1);
+#endif
+ if (dPdu && dPdv) {
+ const Vertex dpdx = *dPdu, dpdy = *dPdv;
+ *dPdu = -dpdy; *dPdv = dpdx;
+ }
+ }
+ } else {
+ if (u > 0.5f) {
+#if PATCH_USE_GREGORY == 2
+ BezierCurve borders[2]; patch.getLimitBorder(borders,2);
+ BezierCurve border0l,border0r; borders[0].subdivide(border0l,border0r);
+ BezierCurve border2l,border2r; borders[1].subdivide(border2l,border2r);
+ eval(patches[2],Vec2f(2.0f-2.0f*u,2.0f-2.0f*v),2.0f,depth+1, &border0l, nullptr, nullptr, &border2r);
+#else
+ eval(patches[2],Vec2f(2.0f-2.0f*u,2.0f-2.0f*v),2.0f,depth+1);
+#endif
+ if (dPdu && dPdv) {
+ const Vertex dpdx = *dPdu, dpdy = *dPdv;
+ *dPdu = -dpdx; *dPdv = -dpdy;
+ }
+ }
+ else {
+#if PATCH_USE_GREGORY == 2
+ BezierCurve borders[2]; patch.getLimitBorder(borders,3);
+ BezierCurve border0l,border0r; borders[0].subdivide(border0l,border0r);
+ BezierCurve border2l,border2r; borders[1].subdivide(border2l,border2r);
+ eval(patches[3],Vec2f(2.0f-2.0f*v,2.0f*u),2.0f,depth+1, &border0l, nullptr, nullptr, &border2r);
+#else
+ eval(patches[3],Vec2f(2.0f-2.0f*v,2.0f*u),2.0f,depth+1);
+#endif
+ if (dPdu && dPdv) {
+ const Vertex dpdx = *dPdu, dpdy = *dPdv;
+ *dPdu = dpdy; *dPdv = -dpdx;
+ }
+ }
+ }
+ }
+
+ __forceinline bool final(const CatmullClarkPatch& patch, const typename CatmullClarkRing::Type type, size_t depth)
+ {
+ const int max_eval_depth = (type & CatmullClarkRing::TYPE_CREASES) ? PATCH_MAX_EVAL_DEPTH_CREASE : PATCH_MAX_EVAL_DEPTH_IRREGULAR;
+//#if PATCH_MIN_RESOLUTION
+// return patch.isFinalResolution(PATCH_MIN_RESOLUTION) || depth>=(size_t)max_eval_depth;
+//#else
+ return depth>=(size_t)max_eval_depth;
+//#endif
+ }
+
+ void eval(CatmullClarkPatch& patch, Vec2f uv, float dscale, size_t depth,
+ BezierCurve* border0 = nullptr, BezierCurve* border1 = nullptr, BezierCurve* border2 = nullptr, BezierCurve* border3 = nullptr)
+ {
+ while (true)
+ {
+ typename CatmullClarkPatch::Type ty = patch.type();
+
+ if (unlikely(final(patch,ty,depth)))
+ {
+ if (ty & CatmullClarkRing::TYPE_REGULAR) {
+ RegularPatch(patch,border0,border1,border2,border3).eval(uv.x,uv.y,P,dPdu,dPdv,ddPdudu,ddPdvdv,ddPdudv,dscale);
+ PATCH_DEBUG_SUBDIVISION(234423,c,c,-1);
+ return;
+ } else {
+ IrregularFillPatch(patch,border0,border1,border2,border3).eval(uv.x,uv.y,P,dPdu,dPdv,ddPdudu,ddPdvdv,ddPdudv,dscale);
+ PATCH_DEBUG_SUBDIVISION(34534,c,-1,c);
+ return;
+ }
+ }
+ else if (ty & CatmullClarkRing::TYPE_REGULAR_CREASES) {
+ assert(depth > 0);
+ RegularPatch(patch,border0,border1,border2,border3).eval(uv.x,uv.y,P,dPdu,dPdv,ddPdudu,ddPdvdv,ddPdudv,dscale);
+ PATCH_DEBUG_SUBDIVISION(43524,c,c,-1);
+ return;
+ }
+#if PATCH_USE_GREGORY == 2
+ else if (ty & CatmullClarkRing::TYPE_GREGORY_CREASES) {
+ assert(depth > 0);
+ GregoryPatch(patch,border0,border1,border2,border3).eval(uv.x,uv.y,P,dPdu,dPdv,ddPdudu,ddPdvdv,ddPdudv,dscale);
+ PATCH_DEBUG_SUBDIVISION(23498,c,-1,c);
+ return;
+ }
+#endif
+ else
+ {
+ array_t<CatmullClarkPatch,4> patches;
+ patch.subdivide(patches); // FIXME: only have to generate one of the patches
+
+ const float u = uv.x, v = uv.y;
+ if (v < 0.5f) {
+ if (u < 0.5f) { patch = patches[0]; uv = Vec2f(2.0f*u,2.0f*v); dscale *= 2.0f; }
+ else { patch = patches[1]; uv = Vec2f(2.0f*u-1.0f,2.0f*v); dscale *= 2.0f; }
+ } else {
+ if (u > 0.5f) { patch = patches[2]; uv = Vec2f(2.0f*u-1.0f,2.0f*v-1.0f); dscale *= 2.0f; }
+ else { patch = patches[3]; uv = Vec2f(2.0f*u,2.0f*v-1.0f); dscale *= 2.0f; }
+ }
+ depth++;
+ }
+ }
+ }
+
+ void eval(const GeneralCatmullClarkPatch& patch, const Vec2f& uv, const size_t depth)
+ {
+ /* convert into standard quad patch if possible */
+ if (likely(patch.isQuadPatch()))
+ {
+ CatmullClarkPatch qpatch; patch.init(qpatch);
+ return eval(qpatch,uv,1.0f,depth);
+ }
+
+ /* subdivide patch */
+ unsigned N;
+ array_t<CatmullClarkPatch,GeneralCatmullClarkPatch::SIZE> patches;
+ patch.subdivide(patches,N); // FIXME: only have to generate one of the patches
+
+ /* parametrization for quads */
+ if (N == 4)
+ eval_general_quad(patch,patches,uv,depth);
+
+ /* parametrization for arbitrary polygons */
+ else
+ {
+ const unsigned l = (unsigned) floor(0.5f*uv.x); const float u = 2.0f*frac(0.5f*uv.x)-0.5f;
+ const unsigned h = (unsigned) floor(0.5f*uv.y); const float v = 2.0f*frac(0.5f*uv.y)-0.5f;
+ const unsigned i = 4*h+l; assert(i<N);
+ if (i >= N) return;
+
+#if PATCH_USE_GREGORY == 2
+ BezierCurve borders[2]; patch.getLimitBorder(borders,i);
+ BezierCurve border0l,border0r; borders[0].subdivide(border0l,border0r);
+ BezierCurve border2l,border2r; borders[1].subdivide(border2l,border2r);
+ eval(patches[i],Vec2f(u,v),1.0f,depth+1, &border0l, nullptr, nullptr, &border2r);
+#else
+ eval(patches[i],Vec2f(u,v),1.0f,depth+1);
+#endif
+ }
+ }
+
+ private:
+ Vertex* const P;
+ Vertex* const dPdu;
+ Vertex* const dPdv;
+ Vertex* const ddPdudu;
+ Vertex* const ddPdvdv;
+ Vertex* const ddPdudv;
+ };
+ }
+}
diff --git a/thirdparty/embree-aarch64/kernels/subdiv/feature_adaptive_eval_grid.h b/thirdparty/embree-aarch64/kernels/subdiv/feature_adaptive_eval_grid.h
new file mode 100644
index 0000000000..76583b2e5d
--- /dev/null
+++ b/thirdparty/embree-aarch64/kernels/subdiv/feature_adaptive_eval_grid.h
@@ -0,0 +1,359 @@
+// Copyright 2009-2020 Intel Corporation
+// SPDX-License-Identifier: Apache-2.0
+
+#pragma once
+
+#include "patch.h"
+#include "catmullclark_patch.h"
+#include "bspline_patch.h"
+#include "gregory_patch.h"
+#include "tessellation.h"
+
+namespace embree
+{
+ namespace isa
+ {
+ struct FeatureAdaptiveEvalGrid
+ {
+ typedef CatmullClark1Ring3fa CatmullClarkRing;
+ typedef CatmullClarkPatch3fa CatmullClarkPatch;
+ typedef BilinearPatch3fa BilinearPatch;
+ typedef BSplinePatch3fa BSplinePatch;
+ typedef BezierPatch3fa BezierPatch;
+ typedef GregoryPatch3fa GregoryPatch;
+
+ private:
+ const unsigned x0,x1;
+ const unsigned y0,y1;
+ const unsigned swidth,sheight;
+ const float rcp_swidth, rcp_sheight;
+ float* const Px;
+ float* const Py;
+ float* const Pz;
+ float* const U;
+ float* const V;
+ float* const Nx;
+ float* const Ny;
+ float* const Nz;
+ const unsigned dwidth;
+ //const unsigned dheight;
+ unsigned count;
+
+
+ public:
+ FeatureAdaptiveEvalGrid (const GeneralCatmullClarkPatch3fa& patch, unsigned subPatch,
+ const unsigned x0, const unsigned x1, const unsigned y0, const unsigned y1, const unsigned swidth, const unsigned sheight,
+ float* Px, float* Py, float* Pz, float* U, float* V,
+ float* Nx, float* Ny, float* Nz,
+ const unsigned dwidth, const unsigned dheight)
+ : x0(x0), x1(x1), y0(y0), y1(y1), swidth(swidth), sheight(sheight), rcp_swidth(1.0f/(swidth-1.0f)), rcp_sheight(1.0f/(sheight-1.0f)),
+ Px(Px), Py(Py), Pz(Pz), U(U), V(V), Nx(Nx), Ny(Ny), Nz(Nz), dwidth(dwidth), /*dheight(dheight),*/ count(0)
+ {
+ assert(swidth < (2<<20) && sheight < (2<<20));
+ const BBox2f srange(Vec2f(0.0f,0.0f),Vec2f(float(swidth-1),float(sheight-1)));
+ const BBox2f erange(Vec2f((float)x0,(float)y0),Vec2f((float)x1,(float)y1));
+
+ /* convert into standard quad patch if possible */
+ if (likely(patch.isQuadPatch()))
+ {
+ CatmullClarkPatch3fa qpatch; patch.init(qpatch);
+ eval(qpatch, srange, erange, 0);
+ assert(count == (x1-x0+1)*(y1-y0+1));
+ return;
+ }
+
+ /* subdivide patch */
+ unsigned N;
+ array_t<CatmullClarkPatch3fa,GeneralCatmullClarkPatch3fa::SIZE> patches;
+ patch.subdivide(patches,N);
+
+ if (N == 4)
+ {
+ const Vec2f c = srange.center();
+ const BBox2f srange0(srange.lower,c);
+ const BBox2f srange1(Vec2f(c.x,srange.lower.y),Vec2f(srange.upper.x,c.y));
+ const BBox2f srange2(c,srange.upper);
+ const BBox2f srange3(Vec2f(srange.lower.x,c.y),Vec2f(c.x,srange.upper.y));
+
+#if PATCH_USE_GREGORY == 2
+ BezierCurve3fa borders[GeneralCatmullClarkPatch3fa::SIZE]; patch.getLimitBorder(borders);
+ BezierCurve3fa border0l,border0r; borders[0].subdivide(border0l,border0r);
+ BezierCurve3fa border1l,border1r; borders[1].subdivide(border1l,border1r);
+ BezierCurve3fa border2l,border2r; borders[2].subdivide(border2l,border2r);
+ BezierCurve3fa border3l,border3r; borders[3].subdivide(border3l,border3r);
+ GeneralCatmullClarkPatch3fa::fix_quad_ring_order(patches);
+ eval(patches[0],srange0,intersect(srange0,erange),1,&border0l,nullptr,nullptr,&border3r);
+ eval(patches[1],srange1,intersect(srange1,erange),1,&border0r,&border1l,nullptr,nullptr);
+ eval(patches[2],srange2,intersect(srange2,erange),1,nullptr,&border1r,&border2l,nullptr);
+ eval(patches[3],srange3,intersect(srange3,erange),1,nullptr,nullptr,&border2r,&border3l);
+#else
+ GeneralCatmullClarkPatch3fa::fix_quad_ring_order(patches);
+ eval(patches[0],srange0,intersect(srange0,erange),1);
+ eval(patches[1],srange1,intersect(srange1,erange),1);
+ eval(patches[2],srange2,intersect(srange2,erange),1);
+ eval(patches[3],srange3,intersect(srange3,erange),1);
+#endif
+ }
+ else
+ {
+ assert(subPatch < N);
+
+#if PATCH_USE_GREGORY == 2
+ BezierCurve3fa borders[2]; patch.getLimitBorder(borders,subPatch);
+ BezierCurve3fa border0l,border0r; borders[0].subdivide(border0l,border0r);
+ BezierCurve3fa border2l,border2r; borders[1].subdivide(border2l,border2r);
+ eval(patches[subPatch], srange, erange, 1, &border0l, nullptr, nullptr, &border2r);
+#else
+ eval(patches[subPatch], srange, erange, 1);
+#endif
+
+ }
+ assert(count == (x1-x0+1)*(y1-y0+1));
+ }
+
+ FeatureAdaptiveEvalGrid (const CatmullClarkPatch3fa& patch,
+ const BBox2f& srange, const BBox2f& erange, const unsigned depth,
+ const unsigned x0, const unsigned x1, const unsigned y0, const unsigned y1, const unsigned swidth, const unsigned sheight,
+ float* Px, float* Py, float* Pz, float* U, float* V,
+ float* Nx, float* Ny, float* Nz,
+ const unsigned dwidth, const unsigned dheight)
+ : x0(x0), x1(x1), y0(y0), y1(y1), swidth(swidth), sheight(sheight), rcp_swidth(1.0f/(swidth-1.0f)), rcp_sheight(1.0f/(sheight-1.0f)),
+ Px(Px), Py(Py), Pz(Pz), U(U), V(V), Nx(Nx), Ny(Ny), Nz(Nz), dwidth(dwidth), /*dheight(dheight),*/ count(0)
+ {
+ eval(patch,srange,erange,depth);
+ }
+
+ template<typename Patch>
+ void evalLocalGrid(const Patch& patch, const BBox2f& srange, const int lx0, const int lx1, const int ly0, const int ly1)
+ {
+ const float scale_x = rcp(srange.upper.x-srange.lower.x);
+ const float scale_y = rcp(srange.upper.y-srange.lower.y);
+ count += (lx1-lx0)*(ly1-ly0);
+
+#if 0
+ for (unsigned iy=ly0; iy<ly1; iy++) {
+ for (unsigned ix=lx0; ix<lx1; ix++) {
+ const float lu = select(ix == swidth -1, float(1.0f), (float(ix)-srange.lower.x)*scale_x);
+ const float lv = select(iy == sheight-1, float(1.0f), (float(iy)-srange.lower.y)*scale_y);
+ const Vec3fa p = patch.eval(lu,lv);
+ const float u = float(ix)*rcp_swidth;
+ const float v = float(iy)*rcp_sheight;
+ const int ofs = (iy-y0)*dwidth+(ix-x0);
+ Px[ofs] = p.x;
+ Py[ofs] = p.y;
+ Pz[ofs] = p.z;
+ U[ofs] = u;
+ V[ofs] = v;
+ }
+ }
+#else
+ foreach2(lx0,lx1,ly0,ly1,[&](const vboolx& valid, const vintx& ix, const vintx& iy) {
+ const vfloatx lu = select(ix == swidth -1, vfloatx(1.0f), (vfloatx(ix)-srange.lower.x)*scale_x);
+ const vfloatx lv = select(iy == sheight-1, vfloatx(1.0f), (vfloatx(iy)-srange.lower.y)*scale_y);
+ const Vec3vfx p = patch.eval(lu,lv);
+ Vec3vfx n = zero;
+ if (unlikely(Nx != nullptr)) n = normalize_safe(patch.normal(lu,lv));
+ const vfloatx u = vfloatx(ix)*rcp_swidth;
+ const vfloatx v = vfloatx(iy)*rcp_sheight;
+ const vintx ofs = (iy-y0)*dwidth+(ix-x0);
+ if (likely(all(valid)) && all(iy==iy[0])) {
+ const unsigned ofs2 = ofs[0];
+ vfloatx::storeu(Px+ofs2,p.x);
+ vfloatx::storeu(Py+ofs2,p.y);
+ vfloatx::storeu(Pz+ofs2,p.z);
+ vfloatx::storeu(U+ofs2,u);
+ vfloatx::storeu(V+ofs2,v);
+ if (unlikely(Nx != nullptr)) {
+ vfloatx::storeu(Nx+ofs2,n.x);
+ vfloatx::storeu(Ny+ofs2,n.y);
+ vfloatx::storeu(Nz+ofs2,n.z);
+ }
+ } else {
+ foreach_unique_index(valid,iy,[&](const vboolx& valid, const int iy0, const int j) {
+ const unsigned ofs2 = ofs[j]-j;
+ vfloatx::storeu(valid,Px+ofs2,p.x);
+ vfloatx::storeu(valid,Py+ofs2,p.y);
+ vfloatx::storeu(valid,Pz+ofs2,p.z);
+ vfloatx::storeu(valid,U+ofs2,u);
+ vfloatx::storeu(valid,V+ofs2,v);
+ if (unlikely(Nx != nullptr)) {
+ vfloatx::storeu(valid,Nx+ofs2,n.x);
+ vfloatx::storeu(valid,Ny+ofs2,n.y);
+ vfloatx::storeu(valid,Nz+ofs2,n.z);
+ }
+ });
+ }
+ });
+#endif
+ }
+
+ __forceinline bool final(const CatmullClarkPatch3fa& patch, const CatmullClarkRing::Type type, unsigned depth)
+ {
+ const unsigned max_eval_depth = (type & CatmullClarkRing::TYPE_CREASES) ? PATCH_MAX_EVAL_DEPTH_CREASE : PATCH_MAX_EVAL_DEPTH_IRREGULAR;
+//#if PATCH_MIN_RESOLUTION
+// return patch.isFinalResolution(PATCH_MIN_RESOLUTION) || depth>=max_eval_depth;
+//#else
+ return depth>=max_eval_depth;
+//#endif
+ }
+
+ void eval(const CatmullClarkPatch3fa& patch, const BBox2f& srange, const BBox2f& erange, const unsigned depth,
+ const BezierCurve3fa* border0 = nullptr, const BezierCurve3fa* border1 = nullptr, const BezierCurve3fa* border2 = nullptr, const BezierCurve3fa* border3 = nullptr)
+ {
+ if (erange.empty())
+ return;
+
+ int lx0 = (int) ceilf(erange.lower.x);
+ int lx1 = (int) ceilf(erange.upper.x) + (erange.upper.x == x1 && (srange.lower.x < erange.upper.x || erange.upper.x == 0));
+ int ly0 = (int) ceilf(erange.lower.y);
+ int ly1 = (int) ceilf(erange.upper.y) + (erange.upper.y == y1 && (srange.lower.y < erange.upper.y || erange.upper.y == 0));
+ if (lx0 >= lx1 || ly0 >= ly1) return;
+
+ CatmullClarkPatch::Type ty = patch.type();
+
+ if (unlikely(final(patch,ty,depth)))
+ {
+ if (ty & CatmullClarkRing::TYPE_REGULAR) {
+ RegularPatch rpatch(patch,border0,border1,border2,border3);
+ evalLocalGrid(rpatch,srange,lx0,lx1,ly0,ly1);
+ return;
+ } else {
+ IrregularFillPatch ipatch(patch,border0,border1,border2,border3);
+ evalLocalGrid(ipatch,srange,lx0,lx1,ly0,ly1);
+ return;
+ }
+ }
+ else if (ty & CatmullClarkRing::TYPE_REGULAR_CREASES) {
+ assert(depth > 0);
+ RegularPatch rpatch(patch,border0,border1,border2,border3);
+ evalLocalGrid(rpatch,srange,lx0,lx1,ly0,ly1);
+ return;
+ }
+#if PATCH_USE_GREGORY == 2
+ else if (ty & CatmullClarkRing::TYPE_GREGORY_CREASES) {
+ assert(depth > 0);
+ GregoryPatch gpatch(patch,border0,border1,border2,border3);
+ evalLocalGrid(gpatch,srange,lx0,lx1,ly0,ly1);
+ }
+#endif
+ else
+ {
+ array_t<CatmullClarkPatch3fa,4> patches;
+ patch.subdivide(patches);
+
+ const Vec2f c = srange.center();
+ const BBox2f srange0(srange.lower,c);
+ const BBox2f srange1(Vec2f(c.x,srange.lower.y),Vec2f(srange.upper.x,c.y));
+ const BBox2f srange2(c,srange.upper);
+ const BBox2f srange3(Vec2f(srange.lower.x,c.y),Vec2f(c.x,srange.upper.y));
+
+ eval(patches[0],srange0,intersect(srange0,erange),depth+1);
+ eval(patches[1],srange1,intersect(srange1,erange),depth+1);
+ eval(patches[2],srange2,intersect(srange2,erange),depth+1);
+ eval(patches[3],srange3,intersect(srange3,erange),depth+1);
+ }
+ }
+ };
+
+ template<typename Eval, typename Patch>
+ bool stitch_col(const Patch& patch, int subPatch,
+ const bool right, const unsigned y0, const unsigned y1, const int fine_y, const int coarse_y,
+ float* Px, float* Py, float* Pz, float* U, float* V, float* Nx, float* Ny, float* Nz, const unsigned dx0, const unsigned dwidth, const unsigned dheight)
+ {
+ assert(coarse_y <= fine_y);
+ if (likely(fine_y == coarse_y))
+ return false;
+
+ const unsigned y0s = stitch(y0,fine_y,coarse_y);
+ const unsigned y1s = stitch(y1,fine_y,coarse_y);
+ const unsigned M = y1s-y0s+1 + VSIZEX;
+
+ dynamic_large_stack_array(float,px,M,64*sizeof(float));
+ dynamic_large_stack_array(float,py,M,64*sizeof(float));
+ dynamic_large_stack_array(float,pz,M,64*sizeof(float));
+ dynamic_large_stack_array(float,u,M,64*sizeof(float));
+ dynamic_large_stack_array(float,v,M,64*sizeof(float));
+ dynamic_large_stack_array(float,nx,M,64*sizeof(float));
+ dynamic_large_stack_array(float,ny,M,64*sizeof(float));
+ dynamic_large_stack_array(float,nz,M,64*sizeof(float));
+ const bool has_Nxyz = Nx; assert(!Nx || (Ny && Nz));
+ Eval(patch,subPatch, right,right, y0s,y1s, 2,coarse_y+1, px,py,pz,u,v,
+ has_Nxyz ? (float*)nx : nullptr,has_Nxyz ? (float*)ny : nullptr ,has_Nxyz ? (float*)nz : nullptr, 1,4097);
+
+ for (unsigned y=y0; y<=y1; y++)
+ {
+ const unsigned ys = stitch(y,fine_y,coarse_y)-y0s;
+ Px[(y-y0)*dwidth+dx0] = px[ys];
+ Py[(y-y0)*dwidth+dx0] = py[ys];
+ Pz[(y-y0)*dwidth+dx0] = pz[ys];
+ U [(y-y0)*dwidth+dx0] = u[ys];
+ V [(y-y0)*dwidth+dx0] = v[ys];
+ if (unlikely(has_Nxyz)) {
+ Nx[(y-y0)*dwidth+dx0] = nx[ys];
+ Ny[(y-y0)*dwidth+dx0] = ny[ys];
+ Nz[(y-y0)*dwidth+dx0] = nz[ys];
+ }
+ }
+ return true;
+ }
+
+ template<typename Eval, typename Patch>
+ bool stitch_row(const Patch& patch, int subPatch,
+ const bool bottom, const unsigned x0, const unsigned x1, const int fine_x, const int coarse_x,
+ float* Px, float* Py, float* Pz, float* U, float* V, float* Nx, float* Ny, float* Nz, const unsigned dy0, const unsigned dwidth, const unsigned dheight)
+ {
+ assert(coarse_x <= fine_x);
+ if (likely(fine_x == coarse_x))
+ return false;
+
+ const unsigned x0s = stitch(x0,fine_x,coarse_x);
+ const unsigned x1s = stitch(x1,fine_x,coarse_x);
+ const unsigned M = x1s-x0s+1 + VSIZEX;
+
+ dynamic_large_stack_array(float,px,M,32*sizeof(float));
+ dynamic_large_stack_array(float,py,M,32*sizeof(float));
+ dynamic_large_stack_array(float,pz,M,32*sizeof(float));
+ dynamic_large_stack_array(float,u,M,32*sizeof(float));
+ dynamic_large_stack_array(float,v,M,32*sizeof(float));
+ dynamic_large_stack_array(float,nx,M,32*sizeof(float));
+ dynamic_large_stack_array(float,ny,M,32*sizeof(float));
+ dynamic_large_stack_array(float,nz,M,32*sizeof(float));
+ const bool has_Nxyz = Nx; assert(!Nx || (Ny && Nz));
+ Eval(patch,subPatch, x0s,x1s, bottom,bottom, coarse_x+1,2, px,py,pz,u,v,
+ has_Nxyz ? (float*)nx :nullptr, has_Nxyz ? (float*)ny : nullptr , has_Nxyz ? (float*)nz : nullptr, 4097,1);
+
+ for (unsigned x=x0; x<=x1; x++)
+ {
+ const unsigned xs = stitch(x,fine_x,coarse_x)-x0s;
+ Px[dy0*dwidth+x-x0] = px[xs];
+ Py[dy0*dwidth+x-x0] = py[xs];
+ Pz[dy0*dwidth+x-x0] = pz[xs];
+ U [dy0*dwidth+x-x0] = u[xs];
+ V [dy0*dwidth+x-x0] = v[xs];
+ if (unlikely(has_Nxyz)) {
+ Nx[dy0*dwidth+x-x0] = nx[xs];
+ Ny[dy0*dwidth+x-x0] = ny[xs];
+ Nz[dy0*dwidth+x-x0] = nz[xs];
+ }
+ }
+ return true;
+ }
+
+ template<typename Eval, typename Patch>
+ void feature_adaptive_eval_grid (const Patch& patch, unsigned subPatch, const float levels[4],
+ const unsigned x0, const unsigned x1, const unsigned y0, const unsigned y1, const unsigned swidth, const unsigned sheight,
+ float* Px, float* Py, float* Pz, float* U, float* V, float* Nx, float* Ny, float* Nz, const unsigned dwidth, const unsigned dheight)
+ {
+ bool sl = false, sr = false, st = false, sb = false;
+ if (levels) {
+ sl = x0 == 0 && stitch_col<Eval,Patch>(patch,subPatch,0,y0,y1,sheight-1,int(levels[3]), Px,Py,Pz,U,V,Nx,Ny,Nz, 0 ,dwidth,dheight);
+ sr = x1 == swidth-1 && stitch_col<Eval,Patch>(patch,subPatch,1,y0,y1,sheight-1,int(levels[1]), Px,Py,Pz,U,V,Nx,Ny,Nz, x1-x0,dwidth,dheight);
+ st = y0 == 0 && stitch_row<Eval,Patch>(patch,subPatch,0,x0,x1,swidth-1,int(levels[0]), Px,Py,Pz,U,V,Nx,Ny,Nz, 0 ,dwidth,dheight);
+ sb = y1 == sheight-1 && stitch_row<Eval,Patch>(patch,subPatch,1,x0,x1,swidth-1,int(levels[2]), Px,Py,Pz,U,V,Nx,Ny,Nz, y1-y0,dwidth,dheight);
+ }
+ const unsigned ofs = st*dwidth+sl;
+ Eval(patch,subPatch,x0+sl,x1-sr,y0+st,y1-sb, swidth,sheight, Px+ofs,Py+ofs,Pz+ofs,U+ofs,V+ofs,Nx?Nx+ofs:nullptr,Ny?Ny+ofs:nullptr,Nz?Nz+ofs:nullptr, dwidth,dheight);
+ }
+ }
+}
+
diff --git a/thirdparty/embree-aarch64/kernels/subdiv/feature_adaptive_eval_simd.h b/thirdparty/embree-aarch64/kernels/subdiv/feature_adaptive_eval_simd.h
new file mode 100644
index 0000000000..fa3216730f
--- /dev/null
+++ b/thirdparty/embree-aarch64/kernels/subdiv/feature_adaptive_eval_simd.h
@@ -0,0 +1,186 @@
+// Copyright 2009-2020 Intel Corporation
+// SPDX-License-Identifier: Apache-2.0
+
+#pragma once
+
+#include "patch.h"
+
+namespace embree
+{
+ namespace isa
+ {
+ template<typename vbool, typename vint, typename vfloat, typename Vertex, typename Vertex_t = Vertex>
+ struct FeatureAdaptiveEvalSimd
+ {
+ public:
+
+ typedef PatchT<Vertex,Vertex_t> Patch;
+ typedef typename Patch::Ref Ref;
+ typedef GeneralCatmullClarkPatchT<Vertex,Vertex_t> GeneralCatmullClarkPatch;
+ typedef CatmullClark1RingT<Vertex,Vertex_t> CatmullClarkRing;
+ typedef CatmullClarkPatchT<Vertex,Vertex_t> CatmullClarkPatch;
+ typedef BSplinePatchT<Vertex,Vertex_t> BSplinePatch;
+ typedef BezierPatchT<Vertex,Vertex_t> BezierPatch;
+ typedef GregoryPatchT<Vertex,Vertex_t> GregoryPatch;
+ typedef BilinearPatchT<Vertex,Vertex_t> BilinearPatch;
+ typedef BezierCurveT<Vertex> BezierCurve;
+
+ FeatureAdaptiveEvalSimd (const HalfEdge* edge, const char* vertices, size_t stride, const vbool& valid, const vfloat& u, const vfloat& v,
+ float* P, float* dPdu, float* dPdv, float* ddPdudu, float* ddPdvdv, float* ddPdudv, const size_t dstride, const size_t N)
+ : P(P), dPdu(dPdu), dPdv(dPdv), ddPdudu(ddPdudu), ddPdvdv(ddPdvdv), ddPdudv(ddPdudv), dstride(dstride), N(N)
+ {
+ switch (edge->patch_type) {
+ case HalfEdge::BILINEAR_PATCH: BilinearPatch(edge,vertices,stride).eval(valid,u,v,P,dPdu,dPdv,ddPdudu,ddPdvdv,ddPdudv,1.0f,dstride,N); break;
+ case HalfEdge::REGULAR_QUAD_PATCH: RegularPatchT(edge,vertices,stride).eval(valid,u,v,P,dPdu,dPdv,ddPdudu,ddPdvdv,ddPdudv,1.0f,dstride,N); break;
+#if PATCH_USE_GREGORY == 2
+ case HalfEdge::IRREGULAR_QUAD_PATCH: GregoryPatchT<Vertex,Vertex_t>(edge,vertices,stride).eval(valid,u,v,P,dPdu,dPdv,ddPdudu,ddPdvdv,ddPdudv,1.0f,dstride,N); break;
+#endif
+ default: {
+ GeneralCatmullClarkPatch patch(edge,vertices,stride);
+ eval_direct(valid,patch,Vec2<vfloat>(u,v),0);
+ break;
+ }
+ }
+ }
+
+ FeatureAdaptiveEvalSimd (const CatmullClarkPatch& patch, const vbool& valid, const vfloat& u, const vfloat& v, float dscale, size_t depth,
+ float* P, float* dPdu, float* dPdv, float* ddPdudu, float* ddPdvdv, float* ddPdudv, const size_t dstride, const size_t N)
+ : P(P), dPdu(dPdu), dPdv(dPdv), ddPdudu(ddPdudu), ddPdvdv(ddPdvdv), ddPdudv(ddPdudv), dstride(dstride), N(N)
+ {
+ eval_direct(valid,patch,Vec2<vfloat>(u,v),dscale,depth);
+ }
+
+ template<size_t N>
+ __forceinline void eval_quad_direct(const vbool& valid, array_t<CatmullClarkPatch,N>& patches, const Vec2<vfloat>& uv, float dscale, size_t depth)
+ {
+ const vfloat u = uv.x, v = uv.y;
+ const vbool u0_mask = u < 0.5f, u1_mask = u >= 0.5f;
+ const vbool v0_mask = v < 0.5f, v1_mask = v >= 0.5f;
+ const vbool u0v0_mask = valid & u0_mask & v0_mask;
+ const vbool u0v1_mask = valid & u0_mask & v1_mask;
+ const vbool u1v0_mask = valid & u1_mask & v0_mask;
+ const vbool u1v1_mask = valid & u1_mask & v1_mask;
+ if (any(u0v0_mask)) eval_direct(u0v0_mask,patches[0],Vec2<vfloat>(2.0f*u,2.0f*v),2.0f*dscale,depth+1);
+ if (any(u1v0_mask)) eval_direct(u1v0_mask,patches[1],Vec2<vfloat>(2.0f*u-1.0f,2.0f*v),2.0f*dscale,depth+1);
+ if (any(u1v1_mask)) eval_direct(u1v1_mask,patches[2],Vec2<vfloat>(2.0f*u-1.0f,2.0f*v-1.0f),2.0f*dscale,depth+1);
+ if (any(u0v1_mask)) eval_direct(u0v1_mask,patches[3],Vec2<vfloat>(2.0f*u,2.0f*v-1.0f),2.0f*dscale,depth+1);
+ }
+
+ template<size_t N>
+ __forceinline void eval_general_quad_direct(const vbool& valid, const GeneralCatmullClarkPatch& patch, array_t<CatmullClarkPatch,N>& patches, const Vec2<vfloat>& uv, float dscale, size_t depth)
+ {
+#if PATCH_USE_GREGORY == 2
+ BezierCurve borders[GeneralCatmullClarkPatch::SIZE]; patch.getLimitBorder(borders);
+ BezierCurve border0l,border0r; borders[0].subdivide(border0l,border0r);
+ BezierCurve border1l,border1r; borders[1].subdivide(border1l,border1r);
+ BezierCurve border2l,border2r; borders[2].subdivide(border2l,border2r);
+ BezierCurve border3l,border3r; borders[3].subdivide(border3l,border3r);
+#endif
+ GeneralCatmullClarkPatch::fix_quad_ring_order(patches);
+ const vfloat u = uv.x, v = uv.y;
+ const vbool u0_mask = u < 0.5f, u1_mask = u >= 0.5f;
+ const vbool v0_mask = v < 0.5f, v1_mask = v >= 0.5f;
+ const vbool u0v0_mask = valid & u0_mask & v0_mask;
+ const vbool u0v1_mask = valid & u0_mask & v1_mask;
+ const vbool u1v0_mask = valid & u1_mask & v0_mask;
+ const vbool u1v1_mask = valid & u1_mask & v1_mask;
+#if PATCH_USE_GREGORY == 2
+ if (any(u0v0_mask)) eval_direct(u0v0_mask,patches[0],Vec2<vfloat>(2.0f*u,2.0f*v),2.0f*dscale,depth+1,&border0l,nullptr,nullptr,&border3r);
+ if (any(u1v0_mask)) eval_direct(u1v0_mask,patches[1],Vec2<vfloat>(2.0f*u-1.0f,2.0f*v),2.0f*dscale,depth+1,&border0r,&border1l,nullptr,nullptr);
+ if (any(u1v1_mask)) eval_direct(u1v1_mask,patches[2],Vec2<vfloat>(2.0f*u-1.0f,2.0f*v-1.0f),2.0f*dscale,depth+1,nullptr,&border1r,&border2l,nullptr);
+ if (any(u0v1_mask)) eval_direct(u0v1_mask,patches[3],Vec2<vfloat>(2.0f*u,2.0f*v-1.0f),2.0f*dscale,depth+1,nullptr,nullptr,&border2r,&border3l);
+#else
+ if (any(u0v0_mask)) eval_direct(u0v0_mask,patches[0],Vec2<vfloat>(2.0f*u,2.0f*v),2.0f*dscale,depth+1);
+ if (any(u1v0_mask)) eval_direct(u1v0_mask,patches[1],Vec2<vfloat>(2.0f*u-1.0f,2.0f*v),2.0f*dscale,depth+1);
+ if (any(u1v1_mask)) eval_direct(u1v1_mask,patches[2],Vec2<vfloat>(2.0f*u-1.0f,2.0f*v-1.0f),2.0f*dscale,depth+1);
+ if (any(u0v1_mask)) eval_direct(u0v1_mask,patches[3],Vec2<vfloat>(2.0f*u,2.0f*v-1.0f),2.0f*dscale,depth+1);
+#endif
+ }
+
+ __forceinline bool final(const CatmullClarkPatch& patch, const typename CatmullClarkRing::Type type, size_t depth)
+ {
+ const size_t max_eval_depth = (type & CatmullClarkRing::TYPE_CREASES) ? PATCH_MAX_EVAL_DEPTH_CREASE : PATCH_MAX_EVAL_DEPTH_IRREGULAR;
+//#if PATCH_MIN_RESOLUTION
+// return patch.isFinalResolution(PATCH_MIN_RESOLUTION) || depth>=max_eval_depth;
+//#else
+ return depth>=max_eval_depth;
+//#endif
+ }
+
+ void eval_direct(const vbool& valid, const CatmullClarkPatch& patch, const Vec2<vfloat>& uv, float dscale, size_t depth,
+ BezierCurve* border0 = nullptr, BezierCurve* border1 = nullptr, BezierCurve* border2 = nullptr, BezierCurve* border3 = nullptr)
+ {
+ typename CatmullClarkPatch::Type ty = patch.type();
+
+ if (unlikely(final(patch,ty,depth)))
+ {
+ if (ty & CatmullClarkRing::TYPE_REGULAR) {
+ RegularPatch(patch,border0,border1,border2,border3).eval(valid,uv.x,uv.y,P,dPdu,dPdv,ddPdudu,ddPdvdv,ddPdudv,dscale,dstride,N);
+ } else {
+ IrregularFillPatch(patch,border0,border1,border2,border3).eval(valid,uv.x,uv.y,P,dPdu,dPdv,ddPdudu,ddPdvdv,ddPdudv,dscale,dstride,N);
+ }
+ }
+ else if (ty & CatmullClarkRing::TYPE_REGULAR_CREASES) {
+ assert(depth > 0); RegularPatch(patch,border0,border1,border2,border3).eval(valid,uv.x,uv.y,P,dPdu,dPdv,ddPdudu,ddPdvdv,ddPdudv,dscale,dstride,N);
+ }
+#if PATCH_USE_GREGORY == 2
+ else if (ty & CatmullClarkRing::TYPE_GREGORY_CREASES) {
+ assert(depth > 0); GregoryPatch(patch,border0,border1,border2,border3).eval(valid,uv.x,uv.y,P,dPdu,dPdv,ddPdudu,ddPdvdv,ddPdudv,dscale,dstride,N);
+ }
+#endif
+ else
+ {
+ array_t<CatmullClarkPatch,4> patches;
+ patch.subdivide(patches); // FIXME: only have to generate one of the patches
+ eval_quad_direct(valid,patches,uv,dscale,depth);
+ }
+ }
+
+ void eval_direct(const vbool& valid, const GeneralCatmullClarkPatch& patch, const Vec2<vfloat>& uv, const size_t depth)
+ {
+ /* convert into standard quad patch if possible */
+ if (likely(patch.isQuadPatch())) {
+ CatmullClarkPatch qpatch; patch.init(qpatch);
+ return eval_direct(valid,qpatch,uv,1.0f,depth);
+ }
+
+ /* subdivide patch */
+ unsigned Nc;
+ array_t<CatmullClarkPatch,GeneralCatmullClarkPatch::SIZE> patches;
+ patch.subdivide(patches,Nc); // FIXME: only have to generate one of the patches
+
+ /* parametrization for quads */
+ if (Nc == 4)
+ eval_general_quad_direct(valid,patch,patches,uv,1.0f,depth);
+
+ /* parametrization for arbitrary polygons */
+ else
+ {
+ const vint l = (vint)floor(0.5f*uv.x); const vfloat u = 2.0f*frac(0.5f*uv.x)-0.5f;
+ const vint h = (vint)floor(0.5f*uv.y); const vfloat v = 2.0f*frac(0.5f*uv.y)-0.5f;
+ const vint i = (h<<2)+l; assert(all(valid,i<Nc));
+ foreach_unique(valid,i,[&](const vbool& valid, const int i) {
+#if PATCH_USE_GREGORY == 2
+ BezierCurve borders[2]; patch.getLimitBorder(borders,i);
+ BezierCurve border0l,border0r; borders[0].subdivide(border0l,border0r);
+ BezierCurve border2l,border2r; borders[1].subdivide(border2l,border2r);
+ eval_direct(valid,patches[i],Vec2<vfloat>(u,v),1.0f,depth+1, &border0l, nullptr, nullptr, &border2r);
+#else
+ eval_direct(valid,patches[i],Vec2<vfloat>(u,v),1.0f,depth+1);
+#endif
+ });
+ }
+ }
+
+ private:
+ float* const P;
+ float* const dPdu;
+ float* const dPdv;
+ float* const ddPdudu;
+ float* const ddPdvdv;
+ float* const ddPdudv;
+ const size_t dstride;
+ const size_t N;
+ };
+ }
+}
diff --git a/thirdparty/embree-aarch64/kernels/subdiv/gregory_patch.h b/thirdparty/embree-aarch64/kernels/subdiv/gregory_patch.h
new file mode 100644
index 0000000000..2a7c4b1f2c
--- /dev/null
+++ b/thirdparty/embree-aarch64/kernels/subdiv/gregory_patch.h
@@ -0,0 +1,893 @@
+// Copyright 2009-2020 Intel Corporation
+// SPDX-License-Identifier: Apache-2.0
+
+#pragma once
+
+#include "catmullclark_patch.h"
+#include "bezier_patch.h"
+#include "bezier_curve.h"
+#include "catmullclark_coefficients.h"
+
+namespace embree
+{
+ template<typename Vertex, typename Vertex_t = Vertex>
+ class __aligned(64) GregoryPatchT
+ {
+ typedef CatmullClarkPatchT<Vertex,Vertex_t> CatmullClarkPatch;
+ typedef GeneralCatmullClarkPatchT<Vertex,Vertex_t> GeneralCatmullClarkPatch;
+ typedef CatmullClark1RingT<Vertex,Vertex_t> CatmullClark1Ring;
+ typedef BezierCurveT<Vertex> BezierCurve;
+
+ public:
+ Vertex v[4][4];
+ Vertex f[2][2];
+
+ __forceinline GregoryPatchT() {}
+
+ __forceinline GregoryPatchT(const CatmullClarkPatch& patch) {
+ init(patch);
+ }
+
+ __forceinline GregoryPatchT(const CatmullClarkPatch& patch,
+ const BezierCurve* border0, const BezierCurve* border1, const BezierCurve* border2, const BezierCurve* border3)
+ {
+ init_crackfix(patch,border0,border1,border2,border3);
+ }
+
+ __forceinline GregoryPatchT (const HalfEdge* edge, const char* vertices, size_t stride) {
+ init(CatmullClarkPatch(edge,vertices,stride));
+ }
+
+ __forceinline Vertex& p0() { return v[0][0]; }
+ __forceinline Vertex& p1() { return v[0][3]; }
+ __forceinline Vertex& p2() { return v[3][3]; }
+ __forceinline Vertex& p3() { return v[3][0]; }
+
+ __forceinline Vertex& e0_p() { return v[0][1]; }
+ __forceinline Vertex& e0_m() { return v[1][0]; }
+ __forceinline Vertex& e1_p() { return v[1][3]; }
+ __forceinline Vertex& e1_m() { return v[0][2]; }
+ __forceinline Vertex& e2_p() { return v[3][2]; }
+ __forceinline Vertex& e2_m() { return v[2][3]; }
+ __forceinline Vertex& e3_p() { return v[2][0]; }
+ __forceinline Vertex& e3_m() { return v[3][1]; }
+
+ __forceinline Vertex& f0_p() { return v[1][1]; }
+ __forceinline Vertex& f1_p() { return v[1][2]; }
+ __forceinline Vertex& f2_p() { return v[2][2]; }
+ __forceinline Vertex& f3_p() { return v[2][1]; }
+ __forceinline Vertex& f0_m() { return f[0][0]; }
+ __forceinline Vertex& f1_m() { return f[0][1]; }
+ __forceinline Vertex& f2_m() { return f[1][1]; }
+ __forceinline Vertex& f3_m() { return f[1][0]; }
+
+ __forceinline const Vertex& p0() const { return v[0][0]; }
+ __forceinline const Vertex& p1() const { return v[0][3]; }
+ __forceinline const Vertex& p2() const { return v[3][3]; }
+ __forceinline const Vertex& p3() const { return v[3][0]; }
+
+ __forceinline const Vertex& e0_p() const { return v[0][1]; }
+ __forceinline const Vertex& e0_m() const { return v[1][0]; }
+ __forceinline const Vertex& e1_p() const { return v[1][3]; }
+ __forceinline const Vertex& e1_m() const { return v[0][2]; }
+ __forceinline const Vertex& e2_p() const { return v[3][2]; }
+ __forceinline const Vertex& e2_m() const { return v[2][3]; }
+ __forceinline const Vertex& e3_p() const { return v[2][0]; }
+ __forceinline const Vertex& e3_m() const { return v[3][1]; }
+
+ __forceinline const Vertex& f0_p() const { return v[1][1]; }
+ __forceinline const Vertex& f1_p() const { return v[1][2]; }
+ __forceinline const Vertex& f2_p() const { return v[2][2]; }
+ __forceinline const Vertex& f3_p() const { return v[2][1]; }
+ __forceinline const Vertex& f0_m() const { return f[0][0]; }
+ __forceinline const Vertex& f1_m() const { return f[0][1]; }
+ __forceinline const Vertex& f2_m() const { return f[1][1]; }
+ __forceinline const Vertex& f3_m() const { return f[1][0]; }
+
+ __forceinline Vertex initCornerVertex(const CatmullClarkPatch& irreg_patch, const size_t index) {
+ return irreg_patch.ring[index].getLimitVertex();
+ }
+
+ __forceinline Vertex initPositiveEdgeVertex(const CatmullClarkPatch& irreg_patch, const size_t index, const Vertex& p_vtx) {
+ return madd(1.0f/3.0f,irreg_patch.ring[index].getLimitTangent(),p_vtx);
+ }
+
+ __forceinline Vertex initNegativeEdgeVertex(const CatmullClarkPatch& irreg_patch, const size_t index, const Vertex& p_vtx) {
+ return madd(1.0f/3.0f,irreg_patch.ring[index].getSecondLimitTangent(),p_vtx);
+ }
+
+ __forceinline Vertex initPositiveEdgeVertex2(const CatmullClarkPatch& irreg_patch, const size_t index, const Vertex& p_vtx)
+ {
+ CatmullClark1Ring3fa r0,r1,r2;
+ irreg_patch.ring[index].subdivide(r0);
+ r0.subdivide(r1);
+ r1.subdivide(r2);
+ return madd(8.0f/3.0f,r2.getLimitTangent(),p_vtx);
+ }
+
+ __forceinline Vertex initNegativeEdgeVertex2(const CatmullClarkPatch& irreg_patch, const size_t index, const Vertex& p_vtx)
+ {
+ CatmullClark1Ring3fa r0,r1,r2;
+ irreg_patch.ring[index].subdivide(r0);
+ r0.subdivide(r1);
+ r1.subdivide(r2);
+ return madd(8.0f/3.0f,r2.getSecondLimitTangent(),p_vtx);
+ }
+
+ void initFaceVertex(const CatmullClarkPatch& irreg_patch,
+ const size_t index,
+ const Vertex& p_vtx,
+ const Vertex& e0_p_vtx,
+ const Vertex& e1_m_vtx,
+ const unsigned int face_valence_p1,
+ const Vertex& e0_m_vtx,
+ const Vertex& e3_p_vtx,
+ const unsigned int face_valence_p3,
+ Vertex& f_p_vtx,
+ Vertex& f_m_vtx)
+ {
+ const unsigned int face_valence = irreg_patch.ring[index].face_valence;
+ const unsigned int edge_valence = irreg_patch.ring[index].edge_valence;
+ const unsigned int border_index = irreg_patch.ring[index].border_index;
+
+ const Vertex& vtx = irreg_patch.ring[index].vtx;
+ const Vertex e_i = irreg_patch.ring[index].getEdgeCenter(0);
+ const Vertex c_i_m_1 = irreg_patch.ring[index].getQuadCenter(0);
+ const Vertex e_i_m_1 = irreg_patch.ring[index].getEdgeCenter(1);
+
+ Vertex c_i, e_i_p_1;
+ const bool hasHardEdge0 =
+ std::isinf(irreg_patch.ring[index].vertex_crease_weight) &&
+ std::isinf(irreg_patch.ring[index].crease_weight[0]);
+
+ if (unlikely((border_index == edge_valence-2) || hasHardEdge0))
+ {
+ /* mirror quad center and edge mid-point */
+ c_i = madd(2.0f, e_i - c_i_m_1, c_i_m_1);
+ e_i_p_1 = madd(2.0f, vtx - e_i_m_1, e_i_m_1);
+ }
+ else
+ {
+ c_i = irreg_patch.ring[index].getQuadCenter( face_valence-1 );
+ e_i_p_1 = irreg_patch.ring[index].getEdgeCenter( face_valence-1 );
+ }
+
+ Vertex c_i_m_2, e_i_m_2;
+ const bool hasHardEdge1 =
+ std::isinf(irreg_patch.ring[index].vertex_crease_weight) &&
+ std::isinf(irreg_patch.ring[index].crease_weight[1]);
+
+ if (unlikely(border_index == 2 || hasHardEdge1))
+ {
+ /* mirror quad center and edge mid-point */
+ c_i_m_2 = madd(2.0f, e_i_m_1 - c_i_m_1, c_i_m_1);
+ e_i_m_2 = madd(2.0f, vtx - e_i, + e_i);
+ }
+ else
+ {
+ c_i_m_2 = irreg_patch.ring[index].getQuadCenter( 1 );
+ e_i_m_2 = irreg_patch.ring[index].getEdgeCenter( 2 );
+ }
+
+ const float d = 3.0f;
+ //const float c = cosf(2.0f*M_PI/(float)face_valence);
+ //const float c_e_p = cosf(2.0f*M_PI/(float)face_valence_p1);
+ //const float c_e_m = cosf(2.0f*M_PI/(float)face_valence_p3);
+
+ const float c = CatmullClarkPrecomputedCoefficients::table.cos_2PI_div_n(face_valence);
+ const float c_e_p = CatmullClarkPrecomputedCoefficients::table.cos_2PI_div_n(face_valence_p1);
+ const float c_e_m = CatmullClarkPrecomputedCoefficients::table.cos_2PI_div_n(face_valence_p3);
+
+ const Vertex r_e_p = 1.0f/3.0f * (e_i_m_1 - e_i_p_1) + 2.0f/3.0f * (c_i_m_1 - c_i);
+ const Vertex r_e_m = 1.0f/3.0f * (e_i - e_i_m_2) + 2.0f/3.0f * (c_i_m_1 - c_i_m_2);
+
+ f_p_vtx = 1.0f / d * (c_e_p * p_vtx + (d - 2.0f*c - c_e_p) * e0_p_vtx + 2.0f*c* e1_m_vtx + r_e_p);
+ f_m_vtx = 1.0f / d * (c_e_m * p_vtx + (d - 2.0f*c - c_e_m) * e0_m_vtx + 2.0f*c* e3_p_vtx + r_e_m);
+ }
+
+ __noinline void init(const CatmullClarkPatch& patch)
+ {
+ assert( patch.ring[0].hasValidPositions() );
+ assert( patch.ring[1].hasValidPositions() );
+ assert( patch.ring[2].hasValidPositions() );
+ assert( patch.ring[3].hasValidPositions() );
+
+ p0() = initCornerVertex(patch,0);
+ p1() = initCornerVertex(patch,1);
+ p2() = initCornerVertex(patch,2);
+ p3() = initCornerVertex(patch,3);
+
+ e0_p() = initPositiveEdgeVertex(patch,0, p0());
+ e1_p() = initPositiveEdgeVertex(patch,1, p1());
+ e2_p() = initPositiveEdgeVertex(patch,2, p2());
+ e3_p() = initPositiveEdgeVertex(patch,3, p3());
+
+ e0_m() = initNegativeEdgeVertex(patch,0, p0());
+ e1_m() = initNegativeEdgeVertex(patch,1, p1());
+ e2_m() = initNegativeEdgeVertex(patch,2, p2());
+ e3_m() = initNegativeEdgeVertex(patch,3, p3());
+
+ const unsigned int face_valence_p0 = patch.ring[0].face_valence;
+ const unsigned int face_valence_p1 = patch.ring[1].face_valence;
+ const unsigned int face_valence_p2 = patch.ring[2].face_valence;
+ const unsigned int face_valence_p3 = patch.ring[3].face_valence;
+
+ initFaceVertex(patch,0,p0(),e0_p(),e1_m(),face_valence_p1,e0_m(),e3_p(),face_valence_p3,f0_p(),f0_m() );
+ initFaceVertex(patch,1,p1(),e1_p(),e2_m(),face_valence_p2,e1_m(),e0_p(),face_valence_p0,f1_p(),f1_m() );
+ initFaceVertex(patch,2,p2(),e2_p(),e3_m(),face_valence_p3,e2_m(),e1_p(),face_valence_p1,f2_p(),f2_m() );
+ initFaceVertex(patch,3,p3(),e3_p(),e0_m(),face_valence_p0,e3_m(),e2_p(),face_valence_p3,f3_p(),f3_m() );
+
+ }
+
+ __noinline void init_crackfix(const CatmullClarkPatch& patch,
+ const BezierCurve* border0,
+ const BezierCurve* border1,
+ const BezierCurve* border2,
+ const BezierCurve* border3)
+ {
+ assert( patch.ring[0].hasValidPositions() );
+ assert( patch.ring[1].hasValidPositions() );
+ assert( patch.ring[2].hasValidPositions() );
+ assert( patch.ring[3].hasValidPositions() );
+
+ p0() = initCornerVertex(patch,0);
+ p1() = initCornerVertex(patch,1);
+ p2() = initCornerVertex(patch,2);
+ p3() = initCornerVertex(patch,3);
+
+ e0_p() = initPositiveEdgeVertex(patch,0, p0());
+ e1_p() = initPositiveEdgeVertex(patch,1, p1());
+ e2_p() = initPositiveEdgeVertex(patch,2, p2());
+ e3_p() = initPositiveEdgeVertex(patch,3, p3());
+
+ e0_m() = initNegativeEdgeVertex(patch,0, p0());
+ e1_m() = initNegativeEdgeVertex(patch,1, p1());
+ e2_m() = initNegativeEdgeVertex(patch,2, p2());
+ e3_m() = initNegativeEdgeVertex(patch,3, p3());
+
+ if (unlikely(border0 != nullptr))
+ {
+ p0() = border0->v0;
+ e0_p() = border0->v1;
+ e1_m() = border0->v2;
+ p1() = border0->v3;
+ }
+
+ if (unlikely(border1 != nullptr))
+ {
+ p1() = border1->v0;
+ e1_p() = border1->v1;
+ e2_m() = border1->v2;
+ p2() = border1->v3;
+ }
+
+ if (unlikely(border2 != nullptr))
+ {
+ p2() = border2->v0;
+ e2_p() = border2->v1;
+ e3_m() = border2->v2;
+ p3() = border2->v3;
+ }
+
+ if (unlikely(border3 != nullptr))
+ {
+ p3() = border3->v0;
+ e3_p() = border3->v1;
+ e0_m() = border3->v2;
+ p0() = border3->v3;
+ }
+
+ const unsigned int face_valence_p0 = patch.ring[0].face_valence;
+ const unsigned int face_valence_p1 = patch.ring[1].face_valence;
+ const unsigned int face_valence_p2 = patch.ring[2].face_valence;
+ const unsigned int face_valence_p3 = patch.ring[3].face_valence;
+
+ initFaceVertex(patch,0,p0(),e0_p(),e1_m(),face_valence_p1,e0_m(),e3_p(),face_valence_p3,f0_p(),f0_m() );
+ initFaceVertex(patch,1,p1(),e1_p(),e2_m(),face_valence_p2,e1_m(),e0_p(),face_valence_p0,f1_p(),f1_m() );
+ initFaceVertex(patch,2,p2(),e2_p(),e3_m(),face_valence_p3,e2_m(),e1_p(),face_valence_p1,f2_p(),f2_m() );
+ initFaceVertex(patch,3,p3(),e3_p(),e0_m(),face_valence_p0,e3_m(),e2_p(),face_valence_p3,f3_p(),f3_m() );
+ }
+
+
+ void computeGregoryPatchFacePoints(const unsigned int face_valence,
+ const Vertex& r_e_p,
+ const Vertex& r_e_m,
+ const Vertex& p_vtx,
+ const Vertex& e0_p_vtx,
+ const Vertex& e1_m_vtx,
+ const unsigned int face_valence_p1,
+ const Vertex& e0_m_vtx,
+ const Vertex& e3_p_vtx,
+ const unsigned int face_valence_p3,
+ Vertex& f_p_vtx,
+ Vertex& f_m_vtx,
+ const float d = 3.0f)
+ {
+ //const float c = cosf(2.0*M_PI/(float)face_valence);
+ //const float c_e_p = cosf(2.0*M_PI/(float)face_valence_p1);
+ //const float c_e_m = cosf(2.0*M_PI/(float)face_valence_p3);
+
+ const float c = CatmullClarkPrecomputedCoefficients::table.cos_2PI_div_n(face_valence);
+ const float c_e_p = CatmullClarkPrecomputedCoefficients::table.cos_2PI_div_n(face_valence_p1);
+ const float c_e_m = CatmullClarkPrecomputedCoefficients::table.cos_2PI_div_n(face_valence_p3);
+
+
+ f_p_vtx = 1.0f / d * (c_e_p * p_vtx + (d - 2.0f*c - c_e_p) * e0_p_vtx + 2.0f*c* e1_m_vtx + r_e_p);
+ f_m_vtx = 1.0f / d * (c_e_m * p_vtx + (d - 2.0f*c - c_e_m) * e0_m_vtx + 2.0f*c* e3_p_vtx + r_e_m);
+ f_p_vtx = 1.0f / d * (c_e_p * p_vtx + (d - 2.0f*c - c_e_p) * e0_p_vtx + 2.0f*c* e1_m_vtx + r_e_p);
+ f_m_vtx = 1.0f / d * (c_e_m * p_vtx + (d - 2.0f*c - c_e_m) * e0_m_vtx + 2.0f*c* e3_p_vtx + r_e_m);
+ }
+
+ __noinline void init(const GeneralCatmullClarkPatch& patch)
+ {
+ assert(patch.size() == 4);
+#if 0
+ CatmullClarkPatch qpatch; patch.init(qpatch);
+ init(qpatch);
+#else
+ const float face_valence_p0 = patch.ring[0].face_valence;
+ const float face_valence_p1 = patch.ring[1].face_valence;
+ const float face_valence_p2 = patch.ring[2].face_valence;
+ const float face_valence_p3 = patch.ring[3].face_valence;
+
+ Vertex p0_r_p, p0_r_m;
+ patch.ring[0].computeGregoryPatchEdgePoints( p0(), e0_p(), e0_m(), p0_r_p, p0_r_m );
+
+ Vertex p1_r_p, p1_r_m;
+ patch.ring[1].computeGregoryPatchEdgePoints( p1(), e1_p(), e1_m(), p1_r_p, p1_r_m );
+
+ Vertex p2_r_p, p2_r_m;
+ patch.ring[2].computeGregoryPatchEdgePoints( p2(), e2_p(), e2_m(), p2_r_p, p2_r_m );
+
+ Vertex p3_r_p, p3_r_m;
+ patch.ring[3].computeGregoryPatchEdgePoints( p3(), e3_p(), e3_m(), p3_r_p, p3_r_m );
+
+ computeGregoryPatchFacePoints(face_valence_p0, p0_r_p, p0_r_m, p0(), e0_p(), e1_m(), face_valence_p1, e0_m(), e3_p(), face_valence_p3, f0_p(), f0_m() );
+ computeGregoryPatchFacePoints(face_valence_p1, p1_r_p, p1_r_m, p1(), e1_p(), e2_m(), face_valence_p2, e1_m(), e0_p(), face_valence_p0, f1_p(), f1_m() );
+ computeGregoryPatchFacePoints(face_valence_p2, p2_r_p, p2_r_m, p2(), e2_p(), e3_m(), face_valence_p3, e2_m(), e1_p(), face_valence_p1, f2_p(), f2_m() );
+ computeGregoryPatchFacePoints(face_valence_p3, p3_r_p, p3_r_m, p3(), e3_p(), e0_m(), face_valence_p0, e3_m(), e2_p(), face_valence_p3, f3_p(), f3_m() );
+
+#endif
+ }
+
+
+ __forceinline void convert_to_bezier()
+ {
+ f0_p() = (f0_p() + f0_m()) * 0.5f;
+ f1_p() = (f1_p() + f1_m()) * 0.5f;
+ f2_p() = (f2_p() + f2_m()) * 0.5f;
+ f3_p() = (f3_p() + f3_m()) * 0.5f;
+ f0_m() = Vertex( zero );
+ f1_m() = Vertex( zero );
+ f2_m() = Vertex( zero );
+ f3_m() = Vertex( zero );
+ }
+
+ static __forceinline void computeInnerVertices(const Vertex matrix[4][4], const Vertex f_m[2][2], const float uu, const float vv,
+ Vertex_t& matrix_11, Vertex_t& matrix_12, Vertex_t& matrix_22, Vertex_t& matrix_21)
+ {
+ if (unlikely(uu == 0.0f || uu == 1.0f || vv == 0.0f || vv == 1.0f))
+ {
+ matrix_11 = matrix[1][1];
+ matrix_12 = matrix[1][2];
+ matrix_22 = matrix[2][2];
+ matrix_21 = matrix[2][1];
+ }
+ else
+ {
+ const Vertex_t f0_p = matrix[1][1];
+ const Vertex_t f1_p = matrix[1][2];
+ const Vertex_t f2_p = matrix[2][2];
+ const Vertex_t f3_p = matrix[2][1];
+
+ const Vertex_t f0_m = f_m[0][0];
+ const Vertex_t f1_m = f_m[0][1];
+ const Vertex_t f2_m = f_m[1][1];
+ const Vertex_t f3_m = f_m[1][0];
+
+ matrix_11 = ( uu * f0_p + vv * f0_m)*rcp(uu+vv);
+ matrix_12 = ((1.0f-uu) * f1_m + vv * f1_p)*rcp(1.0f-uu+vv);
+ matrix_22 = ((1.0f-uu) * f2_p + (1.0f-vv) * f2_m)*rcp(2.0f-uu-vv);
+ matrix_21 = ( uu * f3_m + (1.0f-vv) * f3_p)*rcp(1.0f+uu-vv);
+ }
+ }
+
+ template<typename vfloat>
+ static __forceinline void computeInnerVertices(const Vertex v[4][4], const Vertex f[2][2],
+ size_t i, const vfloat& uu, const vfloat& vv, vfloat& matrix_11, vfloat& matrix_12, vfloat& matrix_22, vfloat& matrix_21)
+ {
+ const auto m_border = (uu == 0.0f) | (uu == 1.0f) | (vv == 0.0f) | (vv == 1.0f);
+
+ const vfloat f0_p = v[1][1][i];
+ const vfloat f1_p = v[1][2][i];
+ const vfloat f2_p = v[2][2][i];
+ const vfloat f3_p = v[2][1][i];
+
+ const vfloat f0_m = f[0][0][i];
+ const vfloat f1_m = f[0][1][i];
+ const vfloat f2_m = f[1][1][i];
+ const vfloat f3_m = f[1][0][i];
+
+ const vfloat one_minus_uu = vfloat(1.0f) - uu;
+ const vfloat one_minus_vv = vfloat(1.0f) - vv;
+
+ const vfloat f0_i = ( uu * f0_p + vv * f0_m) * rcp(uu+vv);
+ const vfloat f1_i = (one_minus_uu * f1_m + vv * f1_p) * rcp(one_minus_uu+vv);
+ const vfloat f2_i = (one_minus_uu * f2_p + one_minus_vv * f2_m) * rcp(one_minus_uu+one_minus_vv);
+ const vfloat f3_i = ( uu * f3_m + one_minus_vv * f3_p) * rcp(uu+one_minus_vv);
+
+ matrix_11 = select(m_border,f0_p,f0_i);
+ matrix_12 = select(m_border,f1_p,f1_i);
+ matrix_22 = select(m_border,f2_p,f2_i);
+ matrix_21 = select(m_border,f3_p,f3_i);
+ }
+
+ static __forceinline Vertex eval(const Vertex matrix[4][4], const Vertex f[2][2], const float& uu, const float& vv)
+ {
+ Vertex_t v_11, v_12, v_22, v_21;
+ computeInnerVertices(matrix,f,uu,vv,v_11, v_12, v_22, v_21);
+
+ const Vec4<float> Bu = BezierBasis::eval(uu);
+ const Vec4<float> Bv = BezierBasis::eval(vv);
+
+ return madd(Bv.x,madd(Bu.x,matrix[0][0],madd(Bu.y,matrix[0][1],madd(Bu.z,matrix[0][2],Bu.w * matrix[0][3]))),
+ madd(Bv.y,madd(Bu.x,matrix[1][0],madd(Bu.y,v_11 ,madd(Bu.z,v_12 ,Bu.w * matrix[1][3]))),
+ madd(Bv.z,madd(Bu.x,matrix[2][0],madd(Bu.y,v_21 ,madd(Bu.z,v_22 ,Bu.w * matrix[2][3]))),
+ Bv.w*madd(Bu.x,matrix[3][0],madd(Bu.y,matrix[3][1],madd(Bu.z,matrix[3][2],Bu.w * matrix[3][3]))))));
+ }
+
+ static __forceinline Vertex eval_du(const Vertex matrix[4][4], const Vertex f[2][2], const float uu, const float vv) // approximative derivative
+ {
+ Vertex_t v_11, v_12, v_22, v_21;
+ computeInnerVertices(matrix,f,uu,vv,v_11, v_12, v_22, v_21);
+
+ const Vec4<float> Bu = BezierBasis::derivative(uu);
+ const Vec4<float> Bv = BezierBasis::eval(vv);
+
+ return madd(Bv.x,madd(Bu.x,matrix[0][0],madd(Bu.y,matrix[0][1],madd(Bu.z,matrix[0][2],Bu.w * matrix[0][3]))),
+ madd(Bv.y,madd(Bu.x,matrix[1][0],madd(Bu.y,v_11 ,madd(Bu.z,v_12 ,Bu.w * matrix[1][3]))),
+ madd(Bv.z,madd(Bu.x,matrix[2][0],madd(Bu.y,v_21 ,madd(Bu.z,v_22 ,Bu.w * matrix[2][3]))),
+ Bv.w*madd(Bu.x,matrix[3][0],madd(Bu.y,matrix[3][1],madd(Bu.z,matrix[3][2],Bu.w * matrix[3][3]))))));
+ }
+
+ static __forceinline Vertex eval_dv(const Vertex matrix[4][4], const Vertex f[2][2], const float uu, const float vv) // approximative derivative
+ {
+ Vertex_t v_11, v_12, v_22, v_21;
+ computeInnerVertices(matrix,f,uu,vv,v_11, v_12, v_22, v_21);
+
+ const Vec4<float> Bu = BezierBasis::eval(uu);
+ const Vec4<float> Bv = BezierBasis::derivative(vv);
+
+ return madd(Bv.x,madd(Bu.x,matrix[0][0],madd(Bu.y,matrix[0][1],madd(Bu.z,matrix[0][2],Bu.w * matrix[0][3]))),
+ madd(Bv.y,madd(Bu.x,matrix[1][0],madd(Bu.y,v_11 ,madd(Bu.z,v_12 ,Bu.w * matrix[1][3]))),
+ madd(Bv.z,madd(Bu.x,matrix[2][0],madd(Bu.y,v_21 ,madd(Bu.z,v_22 ,Bu.w * matrix[2][3]))),
+ Bv.w*madd(Bu.x,matrix[3][0],madd(Bu.y,matrix[3][1],madd(Bu.z,matrix[3][2],Bu.w * matrix[3][3]))))));
+ }
+
+ static __forceinline Vertex eval_dudu(const Vertex matrix[4][4], const Vertex f[2][2], const float uu, const float vv) // approximative derivative
+ {
+ Vertex_t v_11, v_12, v_22, v_21;
+ computeInnerVertices(matrix,f,uu,vv,v_11, v_12, v_22, v_21);
+
+ const Vec4<float> Bu = BezierBasis::derivative2(uu);
+ const Vec4<float> Bv = BezierBasis::eval(vv);
+
+ return madd(Bv.x,madd(Bu.x,matrix[0][0],madd(Bu.y,matrix[0][1],madd(Bu.z,matrix[0][2],Bu.w * matrix[0][3]))),
+ madd(Bv.y,madd(Bu.x,matrix[1][0],madd(Bu.y,v_11 ,madd(Bu.z,v_12 ,Bu.w * matrix[1][3]))),
+ madd(Bv.z,madd(Bu.x,matrix[2][0],madd(Bu.y,v_21 ,madd(Bu.z,v_22 ,Bu.w * matrix[2][3]))),
+ Bv.w*madd(Bu.x,matrix[3][0],madd(Bu.y,matrix[3][1],madd(Bu.z,matrix[3][2],Bu.w * matrix[3][3]))))));
+ }
+
+ static __forceinline Vertex eval_dvdv(const Vertex matrix[4][4], const Vertex f[2][2], const float uu, const float vv) // approximative derivative
+ {
+ Vertex_t v_11, v_12, v_22, v_21;
+ computeInnerVertices(matrix,f,uu,vv,v_11, v_12, v_22, v_21);
+
+ const Vec4<float> Bu = BezierBasis::eval(uu);
+ const Vec4<float> Bv = BezierBasis::derivative2(vv);
+
+ return madd(Bv.x,madd(Bu.x,matrix[0][0],madd(Bu.y,matrix[0][1],madd(Bu.z,matrix[0][2],Bu.w * matrix[0][3]))),
+ madd(Bv.y,madd(Bu.x,matrix[1][0],madd(Bu.y,v_11 ,madd(Bu.z,v_12 ,Bu.w * matrix[1][3]))),
+ madd(Bv.z,madd(Bu.x,matrix[2][0],madd(Bu.y,v_21 ,madd(Bu.z,v_22 ,Bu.w * matrix[2][3]))),
+ Bv.w*madd(Bu.x,matrix[3][0],madd(Bu.y,matrix[3][1],madd(Bu.z,matrix[3][2],Bu.w * matrix[3][3]))))));
+ }
+
+ static __forceinline Vertex eval_dudv(const Vertex matrix[4][4], const Vertex f[2][2], const float uu, const float vv) // approximative derivative
+ {
+ Vertex_t v_11, v_12, v_22, v_21;
+ computeInnerVertices(matrix,f,uu,vv,v_11, v_12, v_22, v_21);
+
+ const Vec4<float> Bu = BezierBasis::derivative(uu);
+ const Vec4<float> Bv = BezierBasis::derivative(vv);
+
+ return madd(Bv.x,madd(Bu.x,matrix[0][0],madd(Bu.y,matrix[0][1],madd(Bu.z,matrix[0][2],Bu.w * matrix[0][3]))),
+ madd(Bv.y,madd(Bu.x,matrix[1][0],madd(Bu.y,v_11 ,madd(Bu.z,v_12 ,Bu.w * matrix[1][3]))),
+ madd(Bv.z,madd(Bu.x,matrix[2][0],madd(Bu.y,v_21 ,madd(Bu.z,v_22 ,Bu.w * matrix[2][3]))),
+ Bv.w*madd(Bu.x,matrix[3][0],madd(Bu.y,matrix[3][1],madd(Bu.z,matrix[3][2],Bu.w * matrix[3][3]))))));
+ }
+
+ __forceinline Vertex eval(const float uu, const float vv) const {
+ return eval(v,f,uu,vv);
+ }
+
+ __forceinline Vertex eval_du( const float uu, const float vv) const {
+ return eval_du(v,f,uu,vv);
+ }
+
+ __forceinline Vertex eval_dv( const float uu, const float vv) const {
+ return eval_dv(v,f,uu,vv);
+ }
+
+ __forceinline Vertex eval_dudu( const float uu, const float vv) const {
+ return eval_dudu(v,f,uu,vv);
+ }
+
+ __forceinline Vertex eval_dvdv( const float uu, const float vv) const {
+ return eval_dvdv(v,f,uu,vv);
+ }
+
+ __forceinline Vertex eval_dudv( const float uu, const float vv) const {
+ return eval_dudv(v,f,uu,vv);
+ }
+
+ static __forceinline Vertex normal(const Vertex matrix[4][4], const Vertex f_m[2][2], const float uu, const float vv) // FIXME: why not using basis functions
+ {
+ /* interpolate inner vertices */
+ Vertex_t matrix_11, matrix_12, matrix_22, matrix_21;
+ computeInnerVertices(matrix,f_m,uu,vv,matrix_11, matrix_12, matrix_22, matrix_21);
+
+ /* tangentU */
+ const Vertex_t col0 = deCasteljau(vv, (Vertex_t)matrix[0][0], (Vertex_t)matrix[1][0], (Vertex_t)matrix[2][0], (Vertex_t)matrix[3][0]);
+ const Vertex_t col1 = deCasteljau(vv, (Vertex_t)matrix[0][1], (Vertex_t)matrix_11 , (Vertex_t)matrix_21 , (Vertex_t)matrix[3][1]);
+ const Vertex_t col2 = deCasteljau(vv, (Vertex_t)matrix[0][2], (Vertex_t)matrix_12 , (Vertex_t)matrix_22 , (Vertex_t)matrix[3][2]);
+ const Vertex_t col3 = deCasteljau(vv, (Vertex_t)matrix[0][3], (Vertex_t)matrix[1][3], (Vertex_t)matrix[2][3], (Vertex_t)matrix[3][3]);
+
+ const Vertex_t tangentU = deCasteljau_tangent(uu, col0, col1, col2, col3);
+
+ /* tangentV */
+ const Vertex_t row0 = deCasteljau(uu, (Vertex_t)matrix[0][0], (Vertex_t)matrix[0][1], (Vertex_t)matrix[0][2], (Vertex_t)matrix[0][3]);
+ const Vertex_t row1 = deCasteljau(uu, (Vertex_t)matrix[1][0], (Vertex_t)matrix_11 , (Vertex_t)matrix_12 , (Vertex_t)matrix[1][3]);
+ const Vertex_t row2 = deCasteljau(uu, (Vertex_t)matrix[2][0], (Vertex_t)matrix_21 , (Vertex_t)matrix_22 , (Vertex_t)matrix[2][3]);
+ const Vertex_t row3 = deCasteljau(uu, (Vertex_t)matrix[3][0], (Vertex_t)matrix[3][1], (Vertex_t)matrix[3][2], (Vertex_t)matrix[3][3]);
+
+ const Vertex_t tangentV = deCasteljau_tangent(vv, row0, row1, row2, row3);
+
+ /* normal = tangentU x tangentV */
+ const Vertex_t n = cross(tangentU,tangentV);
+
+ return n;
+ }
+
+ __forceinline Vertex normal( const float uu, const float vv) const {
+ return normal(v,f,uu,vv);
+ }
+
+ __forceinline void eval(const float u, const float v,
+ Vertex* P, Vertex* dPdu, Vertex* dPdv,
+ Vertex* ddPdudu, Vertex* ddPdvdv, Vertex* ddPdudv,
+ const float dscale = 1.0f) const
+ {
+ if (P) {
+ *P = eval(u,v);
+ }
+ if (dPdu) {
+ assert(dPdu); *dPdu = eval_du(u,v)*dscale;
+ assert(dPdv); *dPdv = eval_dv(u,v)*dscale;
+ }
+ if (ddPdudu) {
+ assert(ddPdudu); *ddPdudu = eval_dudu(u,v)*sqr(dscale);
+ assert(ddPdvdv); *ddPdvdv = eval_dvdv(u,v)*sqr(dscale);
+ assert(ddPdudv); *ddPdudv = eval_dudv(u,v)*sqr(dscale);
+ }
+ }
+
+ template<class vfloat>
+ static __forceinline vfloat eval(const Vertex v[4][4], const Vertex f[2][2],
+ const size_t i, const vfloat& uu, const vfloat& vv, const Vec4<vfloat>& u_n, const Vec4<vfloat>& v_n,
+ vfloat& matrix_11, vfloat& matrix_12, vfloat& matrix_22, vfloat& matrix_21)
+ {
+ const vfloat curve0_x = madd(v_n[0],vfloat(v[0][0][i]),madd(v_n[1],vfloat(v[1][0][i]),madd(v_n[2],vfloat(v[2][0][i]),v_n[3] * vfloat(v[3][0][i]))));
+ const vfloat curve1_x = madd(v_n[0],vfloat(v[0][1][i]),madd(v_n[1],vfloat(matrix_11 ),madd(v_n[2],vfloat(matrix_21 ),v_n[3] * vfloat(v[3][1][i]))));
+ const vfloat curve2_x = madd(v_n[0],vfloat(v[0][2][i]),madd(v_n[1],vfloat(matrix_12 ),madd(v_n[2],vfloat(matrix_22 ),v_n[3] * vfloat(v[3][2][i]))));
+ const vfloat curve3_x = madd(v_n[0],vfloat(v[0][3][i]),madd(v_n[1],vfloat(v[1][3][i]),madd(v_n[2],vfloat(v[2][3][i]),v_n[3] * vfloat(v[3][3][i]))));
+ return madd(u_n[0],curve0_x,madd(u_n[1],curve1_x,madd(u_n[2],curve2_x,u_n[3] * curve3_x)));
+ }
+
+ template<typename vbool, typename vfloat>
+ static __forceinline void eval(const Vertex v[4][4], const Vertex f[2][2],
+ const vbool& valid, const vfloat& uu, const vfloat& vv,
+ float* P, float* dPdu, float* dPdv, float* ddPdudu, float* ddPdvdv, float* ddPdudv,
+ const float dscale, const size_t dstride, const size_t N)
+ {
+ if (P) {
+ const Vec4<vfloat> u_n = BezierBasis::eval(uu);
+ const Vec4<vfloat> v_n = BezierBasis::eval(vv);
+ for (size_t i=0; i<N; i++) {
+ vfloat matrix_11, matrix_12, matrix_22, matrix_21;
+ computeInnerVertices(v,f,i,uu,vv,matrix_11,matrix_12,matrix_22,matrix_21); // FIXME: calculated multiple times
+ vfloat::store(valid,P+i*dstride,eval(v,f,i,uu,vv,u_n,v_n,matrix_11,matrix_12,matrix_22,matrix_21));
+ }
+ }
+ if (dPdu)
+ {
+ {
+ assert(dPdu);
+ const Vec4<vfloat> u_n = BezierBasis::derivative(uu);
+ const Vec4<vfloat> v_n = BezierBasis::eval(vv);
+ for (size_t i=0; i<N; i++) {
+ vfloat matrix_11, matrix_12, matrix_22, matrix_21;
+ computeInnerVertices(v,f,i,uu,vv,matrix_11,matrix_12,matrix_22,matrix_21); // FIXME: calculated multiple times
+ vfloat::store(valid,dPdu+i*dstride,eval(v,f,i,uu,vv,u_n,v_n,matrix_11,matrix_12,matrix_22,matrix_21)*dscale);
+ }
+ }
+ {
+ assert(dPdv);
+ const Vec4<vfloat> u_n = BezierBasis::eval(uu);
+ const Vec4<vfloat> v_n = BezierBasis::derivative(vv);
+ for (size_t i=0; i<N; i++) {
+ vfloat matrix_11, matrix_12, matrix_22, matrix_21;
+ computeInnerVertices(v,f,i,uu,vv,matrix_11,matrix_12,matrix_22,matrix_21); // FIXME: calculated multiple times
+ vfloat::store(valid,dPdv+i*dstride,eval(v,f,i,uu,vv,u_n,v_n,matrix_11,matrix_12,matrix_22,matrix_21)*dscale);
+ }
+ }
+ }
+ if (ddPdudu)
+ {
+ {
+ assert(ddPdudu);
+ const Vec4<vfloat> u_n = BezierBasis::derivative2(uu);
+ const Vec4<vfloat> v_n = BezierBasis::eval(vv);
+ for (size_t i=0; i<N; i++) {
+ vfloat matrix_11, matrix_12, matrix_22, matrix_21;
+ computeInnerVertices(v,f,i,uu,vv,matrix_11,matrix_12,matrix_22,matrix_21); // FIXME: calculated multiple times
+ vfloat::store(valid,ddPdudu+i*dstride,eval(v,f,i,uu,vv,u_n,v_n,matrix_11,matrix_12,matrix_22,matrix_21)*sqr(dscale));
+ }
+ }
+ {
+ assert(ddPdvdv);
+ const Vec4<vfloat> u_n = BezierBasis::eval(uu);
+ const Vec4<vfloat> v_n = BezierBasis::derivative2(vv);
+ for (size_t i=0; i<N; i++) {
+ vfloat matrix_11, matrix_12, matrix_22, matrix_21;
+ computeInnerVertices(v,f,i,uu,vv,matrix_11,matrix_12,matrix_22,matrix_21); // FIXME: calculated multiple times
+ vfloat::store(valid,ddPdvdv+i*dstride,eval(v,f,i,uu,vv,u_n,v_n,matrix_11,matrix_12,matrix_22,matrix_21)*sqr(dscale));
+ }
+ }
+ {
+ assert(ddPdudv);
+ const Vec4<vfloat> u_n = BezierBasis::derivative(uu);
+ const Vec4<vfloat> v_n = BezierBasis::derivative(vv);
+ for (size_t i=0; i<N; i++) {
+ vfloat matrix_11, matrix_12, matrix_22, matrix_21;
+ computeInnerVertices(v,f,i,uu,vv,matrix_11,matrix_12,matrix_22,matrix_21); // FIXME: calculated multiple times
+ vfloat::store(valid,ddPdudv+i*dstride,eval(v,f,i,uu,vv,u_n,v_n,matrix_11,matrix_12,matrix_22,matrix_21)*sqr(dscale));
+ }
+ }
+ }
+ }
+
+ template<typename vbool, typename vfloat>
+ __forceinline void eval(const vbool& valid, const vfloat& uu, const vfloat& vv,
+ float* P, float* dPdu, float* dPdv, float* ddPdudu, float* ddPdvdv, float* ddPdudv,
+ const float dscale, const size_t dstride, const size_t N) const {
+ eval(v,f,valid,uu,vv,P,dPdu,dPdv,ddPdudu,ddPdvdv,ddPdudv,dscale,dstride,N);
+ }
+
+ template<class T>
+ static __forceinline Vec3<T> eval_t(const Vertex matrix[4][4], const Vec3<T> f[2][2], const T& uu, const T& vv)
+ {
+ typedef typename T::Bool M;
+ const M m_border = (uu == 0.0f) | (uu == 1.0f) | (vv == 0.0f) | (vv == 1.0f);
+
+ const Vec3<T> f0_p = Vec3<T>(matrix[1][1].x,matrix[1][1].y,matrix[1][1].z);
+ const Vec3<T> f1_p = Vec3<T>(matrix[1][2].x,matrix[1][2].y,matrix[1][2].z);
+ const Vec3<T> f2_p = Vec3<T>(matrix[2][2].x,matrix[2][2].y,matrix[2][2].z);
+ const Vec3<T> f3_p = Vec3<T>(matrix[2][1].x,matrix[2][1].y,matrix[2][1].z);
+
+ const Vec3<T> f0_m = f[0][0];
+ const Vec3<T> f1_m = f[0][1];
+ const Vec3<T> f2_m = f[1][1];
+ const Vec3<T> f3_m = f[1][0];
+
+ const T one_minus_uu = T(1.0f) - uu;
+ const T one_minus_vv = T(1.0f) - vv;
+
+ const Vec3<T> f0_i = ( uu * f0_p + vv * f0_m) * rcp(uu+vv);
+ const Vec3<T> f1_i = (one_minus_uu * f1_m + vv * f1_p) * rcp(one_minus_uu+vv);
+ const Vec3<T> f2_i = (one_minus_uu * f2_p + one_minus_vv * f2_m) * rcp(one_minus_uu+one_minus_vv);
+ const Vec3<T> f3_i = ( uu * f3_m + one_minus_vv * f3_p) * rcp(uu+one_minus_vv);
+
+ const Vec3<T> F0( select(m_border,f0_p.x,f0_i.x), select(m_border,f0_p.y,f0_i.y), select(m_border,f0_p.z,f0_i.z) );
+ const Vec3<T> F1( select(m_border,f1_p.x,f1_i.x), select(m_border,f1_p.y,f1_i.y), select(m_border,f1_p.z,f1_i.z) );
+ const Vec3<T> F2( select(m_border,f2_p.x,f2_i.x), select(m_border,f2_p.y,f2_i.y), select(m_border,f2_p.z,f2_i.z) );
+ const Vec3<T> F3( select(m_border,f3_p.x,f3_i.x), select(m_border,f3_p.y,f3_i.y), select(m_border,f3_p.z,f3_i.z) );
+
+ const T B0_u = one_minus_uu * one_minus_uu * one_minus_uu;
+ const T B0_v = one_minus_vv * one_minus_vv * one_minus_vv;
+ const T B1_u = 3.0f * (one_minus_uu * uu * one_minus_uu);
+ const T B1_v = 3.0f * (one_minus_vv * vv * one_minus_vv);
+ const T B2_u = 3.0f * (uu * one_minus_uu * uu);
+ const T B2_v = 3.0f * (vv * one_minus_vv * vv);
+ const T B3_u = uu * uu * uu;
+ const T B3_v = vv * vv * vv;
+
+ const T x = madd(B0_v,madd(B0_u,matrix[0][0].x,madd(B1_u,matrix[0][1].x,madd(B2_u,matrix[0][2].x,B3_u * matrix[0][3].x))),
+ madd(B1_v,madd(B0_u,matrix[1][0].x,madd(B1_u,F0.x ,madd(B2_u,F1.x ,B3_u * matrix[1][3].x))),
+ madd(B2_v,madd(B0_u,matrix[2][0].x,madd(B1_u,F3.x ,madd(B2_u,F2.x ,B3_u * matrix[2][3].x))),
+ B3_v*madd(B0_u,matrix[3][0].x,madd(B1_u,matrix[3][1].x,madd(B2_u,matrix[3][2].x,B3_u * matrix[3][3].x))))));
+
+ const T y = madd(B0_v,madd(B0_u,matrix[0][0].y,madd(B1_u,matrix[0][1].y,madd(B2_u,matrix[0][2].y,B3_u * matrix[0][3].y))),
+ madd(B1_v,madd(B0_u,matrix[1][0].y,madd(B1_u,F0.y ,madd(B2_u,F1.y ,B3_u * matrix[1][3].y))),
+ madd(B2_v,madd(B0_u,matrix[2][0].y,madd(B1_u,F3.y ,madd(B2_u,F2.y ,B3_u * matrix[2][3].y))),
+ B3_v*madd(B0_u,matrix[3][0].y,madd(B1_u,matrix[3][1].y,madd(B2_u,matrix[3][2].y,B3_u * matrix[3][3].y))))));
+
+ const T z = madd(B0_v,madd(B0_u,matrix[0][0].z,madd(B1_u,matrix[0][1].z,madd(B2_u,matrix[0][2].z,B3_u * matrix[0][3].z))),
+ madd(B1_v,madd(B0_u,matrix[1][0].z,madd(B1_u,F0.z ,madd(B2_u,F1.z ,B3_u * matrix[1][3].z))),
+ madd(B2_v,madd(B0_u,matrix[2][0].z,madd(B1_u,F3.z ,madd(B2_u,F2.z ,B3_u * matrix[2][3].z))),
+ B3_v*madd(B0_u,matrix[3][0].z,madd(B1_u,matrix[3][1].z,madd(B2_u,matrix[3][2].z,B3_u * matrix[3][3].z))))));
+
+ return Vec3<T>(x,y,z);
+ }
+
+ template<class T>
+ __forceinline Vec3<T> eval(const T& uu, const T& vv) const
+ {
+ Vec3<T> ff[2][2];
+ ff[0][0] = Vec3<T>(f[0][0]);
+ ff[0][1] = Vec3<T>(f[0][1]);
+ ff[1][1] = Vec3<T>(f[1][1]);
+ ff[1][0] = Vec3<T>(f[1][0]);
+ return eval_t(v,ff,uu,vv);
+ }
+
+ template<class T>
+ static __forceinline Vec3<T> normal_t(const Vertex matrix[4][4], const Vec3<T> f[2][2], const T& uu, const T& vv)
+ {
+ typedef typename T::Bool M;
+
+ const Vec3<T> f0_p = Vec3<T>(matrix[1][1].x,matrix[1][1].y,matrix[1][1].z);
+ const Vec3<T> f1_p = Vec3<T>(matrix[1][2].x,matrix[1][2].y,matrix[1][2].z);
+ const Vec3<T> f2_p = Vec3<T>(matrix[2][2].x,matrix[2][2].y,matrix[2][2].z);
+ const Vec3<T> f3_p = Vec3<T>(matrix[2][1].x,matrix[2][1].y,matrix[2][1].z);
+
+ const Vec3<T> f0_m = f[0][0];
+ const Vec3<T> f1_m = f[0][1];
+ const Vec3<T> f2_m = f[1][1];
+ const Vec3<T> f3_m = f[1][0];
+
+ const T one_minus_uu = T(1.0f) - uu;
+ const T one_minus_vv = T(1.0f) - vv;
+
+ const Vec3<T> f0_i = ( uu * f0_p + vv * f0_m) * rcp(uu+vv);
+ const Vec3<T> f1_i = (one_minus_uu * f1_m + vv * f1_p) * rcp(one_minus_uu+vv);
+ const Vec3<T> f2_i = (one_minus_uu * f2_p + one_minus_vv * f2_m) * rcp(one_minus_uu+one_minus_vv);
+ const Vec3<T> f3_i = ( uu * f3_m + one_minus_vv * f3_p) * rcp(uu+one_minus_vv);
+
+#if 1
+ const M m_corner0 = (uu == 0.0f) & (vv == 0.0f);
+ const M m_corner1 = (uu == 1.0f) & (vv == 0.0f);
+ const M m_corner2 = (uu == 1.0f) & (vv == 1.0f);
+ const M m_corner3 = (uu == 0.0f) & (vv == 1.0f);
+ const Vec3<T> matrix_11( select(m_corner0,f0_p.x,f0_i.x), select(m_corner0,f0_p.y,f0_i.y), select(m_corner0,f0_p.z,f0_i.z) );
+ const Vec3<T> matrix_12( select(m_corner1,f1_p.x,f1_i.x), select(m_corner1,f1_p.y,f1_i.y), select(m_corner1,f1_p.z,f1_i.z) );
+ const Vec3<T> matrix_22( select(m_corner2,f2_p.x,f2_i.x), select(m_corner2,f2_p.y,f2_i.y), select(m_corner2,f2_p.z,f2_i.z) );
+ const Vec3<T> matrix_21( select(m_corner3,f3_p.x,f3_i.x), select(m_corner3,f3_p.y,f3_i.y), select(m_corner3,f3_p.z,f3_i.z) );
+#else
+ const M m_border = (uu == 0.0f) | (uu == 1.0f) | (vv == 0.0f) | (vv == 1.0f);
+ const Vec3<T> matrix_11( select(m_border,f0_p.x,f0_i.x), select(m_border,f0_p.y,f0_i.y), select(m_border,f0_p.z,f0_i.z) );
+ const Vec3<T> matrix_12( select(m_border,f1_p.x,f1_i.x), select(m_border,f1_p.y,f1_i.y), select(m_border,f1_p.z,f1_i.z) );
+ const Vec3<T> matrix_22( select(m_border,f2_p.x,f2_i.x), select(m_border,f2_p.y,f2_i.y), select(m_border,f2_p.z,f2_i.z) );
+ const Vec3<T> matrix_21( select(m_border,f3_p.x,f3_i.x), select(m_border,f3_p.y,f3_i.y), select(m_border,f3_p.z,f3_i.z) );
+#endif
+
+ const Vec3<T> matrix_00 = Vec3<T>(matrix[0][0].x,matrix[0][0].y,matrix[0][0].z);
+ const Vec3<T> matrix_10 = Vec3<T>(matrix[1][0].x,matrix[1][0].y,matrix[1][0].z);
+ const Vec3<T> matrix_20 = Vec3<T>(matrix[2][0].x,matrix[2][0].y,matrix[2][0].z);
+ const Vec3<T> matrix_30 = Vec3<T>(matrix[3][0].x,matrix[3][0].y,matrix[3][0].z);
+
+ const Vec3<T> matrix_01 = Vec3<T>(matrix[0][1].x,matrix[0][1].y,matrix[0][1].z);
+ const Vec3<T> matrix_02 = Vec3<T>(matrix[0][2].x,matrix[0][2].y,matrix[0][2].z);
+ const Vec3<T> matrix_03 = Vec3<T>(matrix[0][3].x,matrix[0][3].y,matrix[0][3].z);
+
+ const Vec3<T> matrix_31 = Vec3<T>(matrix[3][1].x,matrix[3][1].y,matrix[3][1].z);
+ const Vec3<T> matrix_32 = Vec3<T>(matrix[3][2].x,matrix[3][2].y,matrix[3][2].z);
+ const Vec3<T> matrix_33 = Vec3<T>(matrix[3][3].x,matrix[3][3].y,matrix[3][3].z);
+
+ const Vec3<T> matrix_13 = Vec3<T>(matrix[1][3].x,matrix[1][3].y,matrix[1][3].z);
+ const Vec3<T> matrix_23 = Vec3<T>(matrix[2][3].x,matrix[2][3].y,matrix[2][3].z);
+
+ /* tangentU */
+ const Vec3<T> col0 = deCasteljau(vv, matrix_00, matrix_10, matrix_20, matrix_30);
+ const Vec3<T> col1 = deCasteljau(vv, matrix_01, matrix_11, matrix_21, matrix_31);
+ const Vec3<T> col2 = deCasteljau(vv, matrix_02, matrix_12, matrix_22, matrix_32);
+ const Vec3<T> col3 = deCasteljau(vv, matrix_03, matrix_13, matrix_23, matrix_33);
+
+ const Vec3<T> tangentU = deCasteljau_tangent(uu, col0, col1, col2, col3);
+
+ /* tangentV */
+ const Vec3<T> row0 = deCasteljau(uu, matrix_00, matrix_01, matrix_02, matrix_03);
+ const Vec3<T> row1 = deCasteljau(uu, matrix_10, matrix_11, matrix_12, matrix_13);
+ const Vec3<T> row2 = deCasteljau(uu, matrix_20, matrix_21, matrix_22, matrix_23);
+ const Vec3<T> row3 = deCasteljau(uu, matrix_30, matrix_31, matrix_32, matrix_33);
+
+ const Vec3<T> tangentV = deCasteljau_tangent(vv, row0, row1, row2, row3);
+
+ /* normal = tangentU x tangentV */
+ const Vec3<T> n = cross(tangentU,tangentV);
+ return n;
+ }
+
+ template<class T>
+ __forceinline Vec3<T> normal(const T& uu, const T& vv) const
+ {
+ Vec3<T> ff[2][2];
+ ff[0][0] = Vec3<T>(f[0][0]);
+ ff[0][1] = Vec3<T>(f[0][1]);
+ ff[1][1] = Vec3<T>(f[1][1]);
+ ff[1][0] = Vec3<T>(f[1][0]);
+ return normal_t(v,ff,uu,vv);
+ }
+
+ __forceinline BBox<Vertex> bounds() const
+ {
+ const Vertex *const cv = &v[0][0];
+ BBox<Vertex> bounds (cv[0]);
+ for (size_t i=1; i<16; i++)
+ bounds.extend( cv[i] );
+ bounds.extend(f[0][0]);
+ bounds.extend(f[1][0]);
+ bounds.extend(f[1][1]);
+ bounds.extend(f[1][1]);
+ return bounds;
+ }
+
+ friend embree_ostream operator<<(embree_ostream o, const GregoryPatchT& p)
+ {
+ for (size_t y=0; y<4; y++)
+ for (size_t x=0; x<4; x++)
+ o << "v[" << y << "][" << x << "] " << p.v[y][x] << embree_endl;
+
+ for (size_t y=0; y<2; y++)
+ for (size_t x=0; x<2; x++)
+ o << "f[" << y << "][" << x << "] " << p.f[y][x] << embree_endl;
+ return o;
+ }
+ };
+
+ typedef GregoryPatchT<Vec3fa,Vec3fa_t> GregoryPatch3fa;
+
+ template<typename Vertex, typename Vertex_t>
+ __forceinline BezierPatchT<Vertex,Vertex_t>::BezierPatchT (const HalfEdge* edge, const char* vertices, size_t stride)
+ {
+ CatmullClarkPatchT<Vertex,Vertex_t> patch(edge,vertices,stride);
+ GregoryPatchT<Vertex,Vertex_t> gpatch(patch);
+ gpatch.convert_to_bezier();
+ for (size_t y=0; y<4; y++)
+ for (size_t x=0; x<4; x++)
+ matrix[y][x] = (Vertex_t)gpatch.v[y][x];
+ }
+
+ template<typename Vertex, typename Vertex_t>
+ __forceinline BezierPatchT<Vertex,Vertex_t>::BezierPatchT(const CatmullClarkPatchT<Vertex,Vertex_t>& patch)
+ {
+ GregoryPatchT<Vertex,Vertex_t> gpatch(patch);
+ gpatch.convert_to_bezier();
+ for (size_t y=0; y<4; y++)
+ for (size_t x=0; x<4; x++)
+ matrix[y][x] = (Vertex_t)gpatch.v[y][x];
+ }
+
+ template<typename Vertex, typename Vertex_t>
+ __forceinline BezierPatchT<Vertex,Vertex_t>::BezierPatchT(const CatmullClarkPatchT<Vertex,Vertex_t>& patch,
+ const BezierCurveT<Vertex>* border0,
+ const BezierCurveT<Vertex>* border1,
+ const BezierCurveT<Vertex>* border2,
+ const BezierCurveT<Vertex>* border3)
+ {
+ GregoryPatchT<Vertex,Vertex_t> gpatch(patch,border0,border1,border2,border3);
+ gpatch.convert_to_bezier();
+ for (size_t y=0; y<4; y++)
+ for (size_t x=0; x<4; x++)
+ matrix[y][x] = (Vertex_t)gpatch.v[y][x];
+ }
+}
diff --git a/thirdparty/embree-aarch64/kernels/subdiv/gregory_patch_dense.h b/thirdparty/embree-aarch64/kernels/subdiv/gregory_patch_dense.h
new file mode 100644
index 0000000000..85effd02cf
--- /dev/null
+++ b/thirdparty/embree-aarch64/kernels/subdiv/gregory_patch_dense.h
@@ -0,0 +1,113 @@
+// Copyright 2009-2020 Intel Corporation
+// SPDX-License-Identifier: Apache-2.0
+
+#pragma once
+
+#include "gregory_patch.h"
+
+namespace embree
+{
+ class __aligned(64) DenseGregoryPatch3fa
+ {
+ typedef Vec3fa Vec3fa_4x4[4][4];
+ public:
+
+ __forceinline DenseGregoryPatch3fa (const GregoryPatch3fa& patch)
+ {
+ for (size_t y=0; y<4; y++)
+ for (size_t x=0; x<4; x++)
+ matrix[y][x] = Vec3ff(patch.v[y][x], 0.0f);
+
+ matrix[0][0].w = patch.f[0][0].x;
+ matrix[0][1].w = patch.f[0][0].y;
+ matrix[0][2].w = patch.f[0][0].z;
+ matrix[0][3].w = 0.0f;
+
+ matrix[1][0].w = patch.f[0][1].x;
+ matrix[1][1].w = patch.f[0][1].y;
+ matrix[1][2].w = patch.f[0][1].z;
+ matrix[1][3].w = 0.0f;
+
+ matrix[2][0].w = patch.f[1][1].x;
+ matrix[2][1].w = patch.f[1][1].y;
+ matrix[2][2].w = patch.f[1][1].z;
+ matrix[2][3].w = 0.0f;
+
+ matrix[3][0].w = patch.f[1][0].x;
+ matrix[3][1].w = patch.f[1][0].y;
+ matrix[3][2].w = patch.f[1][0].z;
+ matrix[3][3].w = 0.0f;
+ }
+
+ __forceinline void extract_f_m(Vec3fa f_m[2][2]) const
+ {
+ f_m[0][0] = Vec3fa( matrix[0][0].w, matrix[0][1].w, matrix[0][2].w );
+ f_m[0][1] = Vec3fa( matrix[1][0].w, matrix[1][1].w, matrix[1][2].w );
+ f_m[1][1] = Vec3fa( matrix[2][0].w, matrix[2][1].w, matrix[2][2].w );
+ f_m[1][0] = Vec3fa( matrix[3][0].w, matrix[3][1].w, matrix[3][2].w );
+ }
+
+ __forceinline Vec3fa eval(const float uu, const float vv) const
+ {
+ __aligned(64) Vec3fa f_m[2][2]; extract_f_m(f_m);
+ return GregoryPatch3fa::eval(*(Vec3fa_4x4*)&matrix,f_m,uu,vv);
+ }
+
+ __forceinline Vec3fa normal(const float uu, const float vv) const
+ {
+ __aligned(64) Vec3fa f_m[2][2]; extract_f_m(f_m);
+ return GregoryPatch3fa::normal(*(Vec3fa_4x4*)&matrix,f_m,uu,vv);
+ }
+
+ template<class T>
+ __forceinline Vec3<T> eval(const T &uu, const T &vv) const
+ {
+ Vec3<T> f_m[2][2];
+ f_m[0][0] = Vec3<T>( matrix[0][0].w, matrix[0][1].w, matrix[0][2].w );
+ f_m[0][1] = Vec3<T>( matrix[1][0].w, matrix[1][1].w, matrix[1][2].w );
+ f_m[1][1] = Vec3<T>( matrix[2][0].w, matrix[2][1].w, matrix[2][2].w );
+ f_m[1][0] = Vec3<T>( matrix[3][0].w, matrix[3][1].w, matrix[3][2].w );
+ return GregoryPatch3fa::eval_t(*(Vec3fa_4x4*)&matrix,f_m,uu,vv);
+ }
+
+ template<class T>
+ __forceinline Vec3<T> normal(const T &uu, const T &vv) const
+ {
+ Vec3<T> f_m[2][2];
+ f_m[0][0] = Vec3<T>( matrix[0][0].w, matrix[0][1].w, matrix[0][2].w );
+ f_m[0][1] = Vec3<T>( matrix[1][0].w, matrix[1][1].w, matrix[1][2].w );
+ f_m[1][1] = Vec3<T>( matrix[2][0].w, matrix[2][1].w, matrix[2][2].w );
+ f_m[1][0] = Vec3<T>( matrix[3][0].w, matrix[3][1].w, matrix[3][2].w );
+ return GregoryPatch3fa::normal_t(*(Vec3fa_4x4*)&matrix,f_m,uu,vv);
+ }
+
+ __forceinline void eval(const float u, const float v,
+ Vec3fa* P, Vec3fa* dPdu, Vec3fa* dPdv, Vec3fa* ddPdudu, Vec3fa* ddPdvdv, Vec3fa* ddPdudv,
+ const float dscale = 1.0f) const
+ {
+ __aligned(64) Vec3fa f_m[2][2]; extract_f_m(f_m);
+ if (P) {
+ *P = GregoryPatch3fa::eval(*(Vec3fa_4x4*)&matrix,f_m,u,v);
+ }
+ if (dPdu) {
+ assert(dPdu); *dPdu = GregoryPatch3fa::eval_du(*(Vec3fa_4x4*)&matrix,f_m,u,v)*dscale;
+ assert(dPdv); *dPdv = GregoryPatch3fa::eval_dv(*(Vec3fa_4x4*)&matrix,f_m,u,v)*dscale;
+ }
+ if (ddPdudu) {
+ assert(ddPdudu); *ddPdudu = GregoryPatch3fa::eval_dudu(*(Vec3fa_4x4*)&matrix,f_m,u,v)*sqr(dscale);
+ assert(ddPdvdv); *ddPdvdv = GregoryPatch3fa::eval_dvdv(*(Vec3fa_4x4*)&matrix,f_m,u,v)*sqr(dscale);
+ assert(ddPdudv); *ddPdudv = GregoryPatch3fa::eval_dudv(*(Vec3fa_4x4*)&matrix,f_m,u,v)*sqr(dscale);
+ }
+ }
+
+ template<typename vbool, typename vfloat>
+ __forceinline void eval(const vbool& valid, const vfloat& uu, const vfloat& vv, float* P, float* dPdu, float* dPdv, const float dscale, const size_t dstride, const size_t N) const
+ {
+ __aligned(64) Vec3fa f_m[2][2]; extract_f_m(f_m);
+ GregoryPatch3fa::eval(matrix,f_m,valid,uu,vv,P,dPdu,dPdv,dscale,dstride,N);
+ }
+
+ private:
+ Vec3ff matrix[4][4]; // f_p/m points are stored in 4th component
+ };
+}
diff --git a/thirdparty/embree-aarch64/kernels/subdiv/gridrange.h b/thirdparty/embree-aarch64/kernels/subdiv/gridrange.h
new file mode 100644
index 0000000000..4fd741c879
--- /dev/null
+++ b/thirdparty/embree-aarch64/kernels/subdiv/gridrange.h
@@ -0,0 +1,96 @@
+// Copyright 2009-2020 Intel Corporation
+// SPDX-License-Identifier: Apache-2.0
+
+#pragma once
+
+#include "../common/default.h"
+
+namespace embree
+{
+ struct __aligned(16) GridRange
+ {
+ unsigned int u_start;
+ unsigned int u_end;
+ unsigned int v_start;
+ unsigned int v_end;
+
+ __forceinline GridRange() {}
+
+ __forceinline GridRange(unsigned int u_start, unsigned int u_end, unsigned int v_start, unsigned int v_end)
+ : u_start(u_start), u_end(u_end), v_start(v_start), v_end(v_end) {}
+
+ __forceinline unsigned int width() const {
+ return u_end-u_start+1;
+ }
+
+ __forceinline unsigned int height() const {
+ return v_end-v_start+1;
+ }
+
+ __forceinline bool hasLeafSize() const
+ {
+ const unsigned int u_size = u_end-u_start+1;
+ const unsigned int v_size = v_end-v_start+1;
+ assert(u_size >= 1);
+ assert(v_size >= 1);
+ return u_size <= 3 && v_size <= 3;
+ }
+
+ static __forceinline unsigned int split(unsigned int start,unsigned int end)
+ {
+ const unsigned int center = (start+end)/2;
+ assert (center > start);
+ assert (center < end);
+ return center;
+ }
+
+ __forceinline void split(GridRange& r0, GridRange& r1) const
+ {
+ assert( hasLeafSize() == false );
+ const unsigned int u_size = u_end-u_start+1;
+ const unsigned int v_size = v_end-v_start+1;
+ r0 = *this;
+ r1 = *this;
+
+ if (u_size >= v_size)
+ {
+ const unsigned int u_mid = split(u_start,u_end);
+ r0.u_end = u_mid;
+ r1.u_start = u_mid;
+ }
+ else
+ {
+ const unsigned int v_mid = split(v_start,v_end);
+ r0.v_end = v_mid;
+ r1.v_start = v_mid;
+ }
+ }
+
+ __forceinline unsigned int splitIntoSubRanges(GridRange r[4]) const
+ {
+ assert( !hasLeafSize() );
+ unsigned int children = 0;
+ GridRange first,second;
+ split(first,second);
+
+ if (first.hasLeafSize()) {
+ r[0] = first;
+ children++;
+ }
+ else {
+ first.split(r[0],r[1]);
+ children += 2;
+ }
+
+ if (second.hasLeafSize()) {
+ r[children] = second;
+ children++;
+ }
+ else {
+ second.split(r[children+0],r[children+1]);
+ children += 2;
+ }
+ return children;
+ }
+ };
+}
diff --git a/thirdparty/embree-aarch64/kernels/subdiv/half_edge.h b/thirdparty/embree-aarch64/kernels/subdiv/half_edge.h
new file mode 100644
index 0000000000..fb350ca71f
--- /dev/null
+++ b/thirdparty/embree-aarch64/kernels/subdiv/half_edge.h
@@ -0,0 +1,371 @@
+// Copyright 2009-2020 Intel Corporation
+// SPDX-License-Identifier: Apache-2.0
+
+#pragma once
+
+#include "catmullclark_coefficients.h"
+
+namespace embree
+{
+ class __aligned(32) HalfEdge
+ {
+ friend class SubdivMesh;
+ public:
+
+ enum PatchType : char {
+ BILINEAR_PATCH = 0, //!< a bilinear patch
+ REGULAR_QUAD_PATCH = 1, //!< a regular quad patch can be represented as a B-Spline
+ IRREGULAR_QUAD_PATCH = 2, //!< an irregular quad patch can be represented as a Gregory patch
+ COMPLEX_PATCH = 3 //!< these patches need subdivision and cannot be processed by the above fast code paths
+ };
+
+ enum VertexType : char {
+ REGULAR_VERTEX = 0, //!< regular vertex
+ NON_MANIFOLD_EDGE_VERTEX = 1, //!< vertex of a non-manifold edge
+ };
+
+ __forceinline friend PatchType max( const PatchType& ty0, const PatchType& ty1) {
+ return (PatchType) max((int)ty0,(int)ty1);
+ }
+
+ struct Edge
+ {
+ /*! edge constructor */
+ __forceinline Edge(const uint32_t v0, const uint32_t v1)
+ : v0(v0), v1(v1) {}
+
+ /*! create an 64 bit identifier that is unique for the not oriented edge */
+ __forceinline operator uint64_t() const
+ {
+ uint32_t p0 = v0, p1 = v1;
+ if (p0<p1) std::swap(p0,p1);
+ return (((uint64_t)p0) << 32) | (uint64_t)p1;
+ }
+
+ public:
+ uint32_t v0,v1; //!< start and end vertex of the edge
+ };
+
+ HalfEdge ()
+ : vtx_index(-1), next_half_edge_ofs(0), prev_half_edge_ofs(0), opposite_half_edge_ofs(0), edge_crease_weight(0),
+ vertex_crease_weight(0), edge_level(0), patch_type(COMPLEX_PATCH), vertex_type(REGULAR_VERTEX)
+ {
+ static_assert(sizeof(HalfEdge) == 32, "invalid half edge size");
+ }
+
+ __forceinline bool hasOpposite() const { return opposite_half_edge_ofs != 0; }
+ __forceinline void setOpposite(HalfEdge* opposite) { opposite_half_edge_ofs = int(opposite-this); }
+
+ __forceinline HalfEdge* next() { assert( next_half_edge_ofs != 0 ); return &this[next_half_edge_ofs]; }
+ __forceinline const HalfEdge* next() const { assert( next_half_edge_ofs != 0 ); return &this[next_half_edge_ofs]; }
+
+ __forceinline HalfEdge* prev() { assert( prev_half_edge_ofs != 0 ); return &this[prev_half_edge_ofs]; }
+ __forceinline const HalfEdge* prev() const { assert( prev_half_edge_ofs != 0 ); return &this[prev_half_edge_ofs]; }
+
+ __forceinline HalfEdge* opposite() { assert( opposite_half_edge_ofs != 0 ); return &this[opposite_half_edge_ofs]; }
+ __forceinline const HalfEdge* opposite() const { assert( opposite_half_edge_ofs != 0 ); return &this[opposite_half_edge_ofs]; }
+
+ __forceinline HalfEdge* rotate() { return opposite()->next(); }
+ __forceinline const HalfEdge* rotate() const { return opposite()->next(); }
+
+ __forceinline unsigned int getStartVertexIndex() const { return vtx_index; }
+ __forceinline unsigned int getEndVertexIndex () const { return next()->vtx_index; }
+ __forceinline Edge getEdge () const { return Edge(getStartVertexIndex(),getEndVertexIndex()); }
+
+
+ /*! tests if the start vertex of the edge is regular */
+ __forceinline PatchType vertexType() const
+ {
+ const HalfEdge* p = this;
+ size_t face_valence = 0;
+ bool hasBorder = false;
+
+ do
+ {
+ /* we need subdivision to handle edge creases */
+ if (p->hasOpposite() && p->edge_crease_weight > 0.0f)
+ return COMPLEX_PATCH;
+
+ face_valence++;
+
+ /* test for quad */
+ const HalfEdge* pp = p;
+ pp = pp->next(); if (pp == p) return COMPLEX_PATCH;
+ pp = pp->next(); if (pp == p) return COMPLEX_PATCH;
+ pp = pp->next(); if (pp == p) return COMPLEX_PATCH;
+ pp = pp->next(); if (pp != p) return COMPLEX_PATCH;
+
+ /* continue with next face */
+ p = p->prev();
+ if (likely(p->hasOpposite()))
+ p = p->opposite();
+
+ /* if there is no opposite go the long way to the other side of the border */
+ else
+ {
+ face_valence++;
+ hasBorder = true;
+ p = this;
+ while (p->hasOpposite())
+ p = p->rotate();
+ }
+ } while (p != this);
+
+ /* calculate vertex type */
+ if (face_valence == 2 && hasBorder) {
+ if (vertex_crease_weight == 0.0f ) return REGULAR_QUAD_PATCH;
+ else if (vertex_crease_weight == float(inf)) return REGULAR_QUAD_PATCH;
+ else return COMPLEX_PATCH;
+ }
+ else if (vertex_crease_weight != 0.0f) return COMPLEX_PATCH;
+ else if (face_valence == 3 && hasBorder) return REGULAR_QUAD_PATCH;
+ else if (face_valence == 4 && !hasBorder) return REGULAR_QUAD_PATCH;
+ else return IRREGULAR_QUAD_PATCH;
+ }
+
+ /*! tests if this edge is part of a bilinear patch */
+ __forceinline bool bilinearVertex() const {
+ return vertex_crease_weight == float(inf) && edge_crease_weight == float(inf);
+ }
+
+ /*! calculates the type of the patch */
+ __forceinline PatchType patchType() const
+ {
+ const HalfEdge* p = this;
+ PatchType ret = REGULAR_QUAD_PATCH;
+ bool bilinear = true;
+
+ ret = max(ret,p->vertexType());
+ bilinear &= p->bilinearVertex();
+ if ((p = p->next()) == this) return COMPLEX_PATCH;
+
+ ret = max(ret,p->vertexType());
+ bilinear &= p->bilinearVertex();
+ if ((p = p->next()) == this) return COMPLEX_PATCH;
+
+ ret = max(ret,p->vertexType());
+ bilinear &= p->bilinearVertex();
+ if ((p = p->next()) == this) return COMPLEX_PATCH;
+
+ ret = max(ret,p->vertexType());
+ bilinear &= p->bilinearVertex();
+ if ((p = p->next()) != this) return COMPLEX_PATCH;
+
+ if (bilinear) return BILINEAR_PATCH;
+ return ret;
+ }
+
+ /*! tests if the face is a regular b-spline face */
+ __forceinline bool isRegularFace() const {
+ return patch_type == REGULAR_QUAD_PATCH;
+ }
+
+ /*! tests if the face can be diced (using bspline or gregory patch) */
+ __forceinline bool isGregoryFace() const {
+ return patch_type == IRREGULAR_QUAD_PATCH || patch_type == REGULAR_QUAD_PATCH;
+ }
+
+ /*! tests if the base vertex of this half edge is a corner vertex */
+ __forceinline bool isCorner() const {
+ return !hasOpposite() && !prev()->hasOpposite();
+ }
+
+ /*! tests if the vertex is attached to any border */
+ __forceinline bool vertexHasBorder() const
+ {
+ const HalfEdge* p = this;
+ do {
+ if (!p->hasOpposite()) return true;
+ p = p->rotate();
+ } while (p != this);
+ return false;
+ }
+
+ /*! tests if the face this half edge belongs to has some border */
+ __forceinline bool faceHasBorder() const
+ {
+ const HalfEdge* p = this;
+ do {
+ if (p->vertexHasBorder()) return true;
+ p = p->next();
+ } while (p != this);
+ return false;
+ }
+
+ /*! calculates conservative bounds of a catmull clark subdivision face */
+ __forceinline BBox3fa bounds(const BufferView<Vec3fa>& vertices) const
+ {
+ BBox3fa bounds = this->get1RingBounds(vertices);
+ for (const HalfEdge* p=this->next(); p!=this; p=p->next())
+ bounds.extend(p->get1RingBounds(vertices));
+ return bounds;
+ }
+
+ /*! tests if this is a valid patch */
+ __forceinline bool valid(const BufferView<Vec3fa>& vertices) const
+ {
+ size_t N = 1;
+ if (!this->validRing(vertices)) return false;
+ for (const HalfEdge* p=this->next(); p!=this; p=p->next(), N++) {
+ if (!p->validRing(vertices)) return false;
+ }
+ return N >= 3 && N <= MAX_PATCH_VALENCE;
+ }
+
+ /*! counts number of polygon edges */
+ __forceinline unsigned int numEdges() const
+ {
+ unsigned int N = 1;
+ for (const HalfEdge* p=this->next(); p!=this; p=p->next(), N++);
+ return N;
+ }
+
+ /*! calculates face and edge valence */
+ __forceinline void calculateFaceValenceAndEdgeValence(size_t& faceValence, size_t& edgeValence) const
+ {
+ faceValence = 0;
+ edgeValence = 0;
+
+ const HalfEdge* p = this;
+ do
+ {
+ /* calculate bounds of current face */
+ unsigned int numEdges = p->numEdges();
+ assert(numEdges >= 3);
+ edgeValence += numEdges-2;
+
+ faceValence++;
+ p = p->prev();
+
+ /* continue with next face */
+ if (likely(p->hasOpposite()))
+ p = p->opposite();
+
+ /* if there is no opposite go the long way to the other side of the border */
+ else {
+ faceValence++;
+ edgeValence++;
+ p = this;
+ while (p->hasOpposite())
+ p = p->opposite()->next();
+ }
+
+ } while (p != this);
+ }
+
+ /*! stream output */
+ friend __forceinline std::ostream &operator<<(std::ostream &o, const HalfEdge &h)
+ {
+ return o << "{ " <<
+ "vertex = " << h.vtx_index << ", " << //" -> " << h.next()->vtx_index << ", " <<
+ "prev = " << h.prev_half_edge_ofs << ", " <<
+ "next = " << h.next_half_edge_ofs << ", " <<
+ "opposite = " << h.opposite_half_edge_ofs << ", " <<
+ "edge_crease = " << h.edge_crease_weight << ", " <<
+ "vertex_crease = " << h.vertex_crease_weight << ", " <<
+ //"edge_level = " << h.edge_level <<
+ " }";
+ }
+
+ private:
+
+ /*! calculates the bounds of the face associated with the half-edge */
+ __forceinline BBox3fa getFaceBounds(const BufferView<Vec3fa>& vertices) const
+ {
+ BBox3fa b = vertices[getStartVertexIndex()];
+ for (const HalfEdge* p = next(); p!=this; p=p->next()) {
+ b.extend(vertices[p->getStartVertexIndex()]);
+ }
+ return b;
+ }
+
+ /*! calculates the bounds of the 1-ring associated with the vertex of the half-edge */
+ __forceinline BBox3fa get1RingBounds(const BufferView<Vec3fa>& vertices) const
+ {
+ BBox3fa bounds = empty;
+ const HalfEdge* p = this;
+ do
+ {
+ /* calculate bounds of current face */
+ bounds.extend(p->getFaceBounds(vertices));
+ p = p->prev();
+
+ /* continue with next face */
+ if (likely(p->hasOpposite()))
+ p = p->opposite();
+
+ /* if there is no opposite go the long way to the other side of the border */
+ else {
+ p = this;
+ while (p->hasOpposite())
+ p = p->opposite()->next();
+ }
+
+ } while (p != this);
+
+ return bounds;
+ }
+
+ /*! tests if this is a valid face */
+ __forceinline bool validFace(const BufferView<Vec3fa>& vertices, size_t& N) const
+ {
+ const Vec3fa v = vertices[getStartVertexIndex()];
+ if (!isvalid(v)) return false;
+ size_t n = 1;
+ for (const HalfEdge* p = next(); p!=this; p=p->next(), n++) {
+ const Vec3fa v = vertices[p->getStartVertexIndex()];
+ if (!isvalid(v)) return false;
+ }
+ N += n-2;
+ return n >= 3 && n <= MAX_PATCH_VALENCE;
+ }
+
+ /*! tests if this is a valid ring */
+ __forceinline bool validRing(const BufferView<Vec3fa>& vertices) const
+ {
+ size_t faceValence = 0;
+ size_t edgeValence = 0;
+
+ const HalfEdge* p = this;
+ do
+ {
+ /* calculate bounds of current face */
+ if (!p->validFace(vertices,edgeValence))
+ return false;
+
+ faceValence++;
+ p = p->prev();
+
+ /* continue with next face */
+ if (likely(p->hasOpposite()))
+ p = p->opposite();
+
+ /* if there is no opposite go the long way to the other side of the border */
+ else {
+ faceValence++;
+ edgeValence++;
+ p = this;
+ while (p->hasOpposite())
+ p = p->opposite()->next();
+ }
+
+ } while (p != this);
+
+ return faceValence <= MAX_RING_FACE_VALENCE && edgeValence <= MAX_RING_EDGE_VALENCE;
+ }
+
+ private:
+ unsigned int vtx_index; //!< index of edge start vertex
+ int next_half_edge_ofs; //!< relative offset to next half edge of face
+ int prev_half_edge_ofs; //!< relative offset to previous half edge of face
+ int opposite_half_edge_ofs; //!< relative offset to opposite half edge
+
+ public:
+ float edge_crease_weight; //!< crease weight attached to edge
+ float vertex_crease_weight; //!< crease weight attached to start vertex
+ float edge_level; //!< subdivision factor for edge
+ PatchType patch_type; //!< stores type of subdiv patch
+ VertexType vertex_type; //!< stores type of the start vertex
+ char align[2];
+ };
+}
diff --git a/thirdparty/embree-aarch64/kernels/subdiv/hermite_curve.h b/thirdparty/embree-aarch64/kernels/subdiv/hermite_curve.h
new file mode 100644
index 0000000000..9fab79cf0c
--- /dev/null
+++ b/thirdparty/embree-aarch64/kernels/subdiv/hermite_curve.h
@@ -0,0 +1,38 @@
+// Copyright 2009-2020 Intel Corporation
+// SPDX-License-Identifier: Apache-2.0
+
+#pragma once
+
+#include "../common/default.h"
+#include "bezier_curve.h"
+
+namespace embree
+{
+ template<typename Vertex>
+ struct HermiteCurveT : BezierCurveT<Vertex>
+ {
+ __forceinline HermiteCurveT() {}
+
+ __forceinline HermiteCurveT(const BezierCurveT<Vertex>& curve)
+ : BezierCurveT<Vertex>(curve) {}
+
+ __forceinline HermiteCurveT(const Vertex& v0, const Vertex& t0, const Vertex& v1, const Vertex& t1)
+ : BezierCurveT<Vertex>(v0,madd(1.0f/3.0f,t0,v0),nmadd(1.0f/3.0f,t1,v1),v1) {}
+
+ __forceinline HermiteCurveT<Vec3ff> xfm_pr(const LinearSpace3fa& space, const Vec3fa& p) const
+ {
+ const Vec3ff q0(xfmVector(space,this->v0-p), this->v0.w);
+ const Vec3ff q1(xfmVector(space,this->v1-p), this->v1.w);
+ const Vec3ff q2(xfmVector(space,this->v2-p), this->v2.w);
+ const Vec3ff q3(xfmVector(space,this->v3-p), this->v3.w);
+ return BezierCurveT<Vec3ff>(q0,q1,q2,q3);
+ }
+ };
+
+ __forceinline HermiteCurveT<Vec3ff> enlargeRadiusToMinWidth(const IntersectContext* context, const CurveGeometry* geom, const Vec3fa& ray_org, const HermiteCurveT<Vec3ff>& curve) {
+ return HermiteCurveT<Vec3ff>(enlargeRadiusToMinWidth(context,geom,ray_org,BezierCurveT<Vec3ff>(curve)));
+ }
+
+ typedef HermiteCurveT<Vec3fa> HermiteCurve3fa;
+}
+
diff --git a/thirdparty/embree-aarch64/kernels/subdiv/linear_bezier_patch.h b/thirdparty/embree-aarch64/kernels/subdiv/linear_bezier_patch.h
new file mode 100644
index 0000000000..f4a854af7f
--- /dev/null
+++ b/thirdparty/embree-aarch64/kernels/subdiv/linear_bezier_patch.h
@@ -0,0 +1,403 @@
+// Copyright 2009-2020 Intel Corporation
+// SPDX-License-Identifier: Apache-2.0
+
+#pragma once
+
+#include "bezier_curve.h"
+
+namespace embree
+{
+ namespace isa
+ {
+ template<typename V>
+ struct TensorLinearQuadraticBezierSurface
+ {
+ QuadraticBezierCurve<V> L;
+ QuadraticBezierCurve<V> R;
+
+ __forceinline TensorLinearQuadraticBezierSurface() {}
+
+ __forceinline TensorLinearQuadraticBezierSurface(const TensorLinearQuadraticBezierSurface<V>& curve)
+ : L(curve.L), R(curve.R) {}
+
+ __forceinline TensorLinearQuadraticBezierSurface& operator= (const TensorLinearQuadraticBezierSurface& other) {
+ L = other.L; R = other.R; return *this;
+ }
+
+ __forceinline TensorLinearQuadraticBezierSurface(const QuadraticBezierCurve<V>& L, const QuadraticBezierCurve<V>& R)
+ : L(L), R(R) {}
+
+ __forceinline BBox<V> bounds() const {
+ return merge(L.bounds(),R.bounds());
+ }
+ };
+
+ template<>
+ struct TensorLinearQuadraticBezierSurface<Vec2fa>
+ {
+ QuadraticBezierCurve<vfloat4> LR;
+
+ __forceinline TensorLinearQuadraticBezierSurface() {}
+
+ __forceinline TensorLinearQuadraticBezierSurface(const TensorLinearQuadraticBezierSurface<Vec2fa>& curve)
+ : LR(curve.LR) {}
+
+ __forceinline TensorLinearQuadraticBezierSurface& operator= (const TensorLinearQuadraticBezierSurface& other) {
+ LR = other.LR; return *this;
+ }
+
+ __forceinline TensorLinearQuadraticBezierSurface(const QuadraticBezierCurve<vfloat4>& LR)
+ : LR(LR) {}
+
+ __forceinline BBox<Vec2fa> bounds() const
+ {
+ const BBox<vfloat4> b = LR.bounds();
+ const BBox<Vec2fa> bl(Vec2fa(b.lower),Vec2fa(b.upper));
+ const BBox<Vec2fa> br(Vec2fa(shuffle<2,3,2,3>(b.lower)),Vec2fa(shuffle<2,3,2,3>(b.upper)));
+ return merge(bl,br);
+ }
+ };
+
+ template<typename V>
+ struct TensorLinearCubicBezierSurface
+ {
+ CubicBezierCurve<V> L;
+ CubicBezierCurve<V> R;
+
+ __forceinline TensorLinearCubicBezierSurface() {}
+
+ __forceinline TensorLinearCubicBezierSurface(const TensorLinearCubicBezierSurface& curve)
+ : L(curve.L), R(curve.R) {}
+
+ __forceinline TensorLinearCubicBezierSurface& operator= (const TensorLinearCubicBezierSurface& other) {
+ L = other.L; R = other.R; return *this;
+ }
+
+ __forceinline TensorLinearCubicBezierSurface(const CubicBezierCurve<V>& L, const CubicBezierCurve<V>& R)
+ : L(L), R(R) {}
+
+ template<template<typename T> class SourceCurve>
+ __forceinline static TensorLinearCubicBezierSurface fromCenterAndNormalCurve(const SourceCurve<Vec3ff>& center, const SourceCurve<Vec3fa>& normal)
+ {
+ SourceCurve<Vec3ff> vcurve = center;
+ SourceCurve<Vec3fa> ncurve = normal;
+
+ /* here we construct a patch which follows the curve l(t) =
+ * p(t) +/- r(t)*normalize(cross(n(t),dp(t))) */
+
+ const Vec3ff p0 = vcurve.eval(0.0f);
+ const Vec3ff dp0 = vcurve.eval_du(0.0f);
+ const Vec3ff ddp0 = vcurve.eval_dudu(0.0f);
+
+ const Vec3fa n0 = ncurve.eval(0.0f);
+ const Vec3fa dn0 = ncurve.eval_du(0.0f);
+
+ const Vec3ff p1 = vcurve.eval(1.0f);
+ const Vec3ff dp1 = vcurve.eval_du(1.0f);
+ const Vec3ff ddp1 = vcurve.eval_dudu(1.0f);
+
+ const Vec3fa n1 = ncurve.eval(1.0f);
+ const Vec3fa dn1 = ncurve.eval_du(1.0f);
+
+ const Vec3fa bt0 = cross(n0,dp0);
+ const Vec3fa dbt0 = cross(dn0,dp0) + cross(n0,ddp0);
+
+ const Vec3fa bt1 = cross(n1,dp1);
+ const Vec3fa dbt1 = cross(dn1,dp1) + cross(n1,ddp1);
+
+ const Vec3fa k0 = normalize(bt0);
+ const Vec3fa dk0 = dnormalize(bt0,dbt0);
+
+ const Vec3fa k1 = normalize(bt1);
+ const Vec3fa dk1 = dnormalize(bt1,dbt1);
+
+ const Vec3fa l0 = p0 - p0.w*k0;
+ const Vec3fa dl0 = dp0 - (dp0.w*k0 + p0.w*dk0);
+
+ const Vec3fa r0 = p0 + p0.w*k0;
+ const Vec3fa dr0 = dp0 + (dp0.w*k0 + p0.w*dk0);
+
+ const Vec3fa l1 = p1 - p1.w*k1;
+ const Vec3fa dl1 = dp1 - (dp1.w*k1 + p1.w*dk1);
+
+ const Vec3fa r1 = p1 + p1.w*k1;
+ const Vec3fa dr1 = dp1 + (dp1.w*k1 + p1.w*dk1);
+
+ const float scale = 1.0f/3.0f;
+ CubicBezierCurve<V> L(l0,l0+scale*dl0,l1-scale*dl1,l1);
+ CubicBezierCurve<V> R(r0,r0+scale*dr0,r1-scale*dr1,r1);
+ return TensorLinearCubicBezierSurface(L,R);
+ }
+
+ __forceinline BBox<V> bounds() const {
+ return merge(L.bounds(),R.bounds());
+ }
+
+ __forceinline BBox3fa accurateBounds() const {
+ return merge(L.accurateBounds(),R.accurateBounds());
+ }
+
+ __forceinline CubicBezierCurve<Interval1f> reduce_v() const {
+ return merge(CubicBezierCurve<Interval<V>>(L),CubicBezierCurve<Interval<V>>(R));
+ }
+
+ __forceinline LinearBezierCurve<Interval1f> reduce_u() const {
+ return LinearBezierCurve<Interval1f>(L.bounds(),R.bounds());
+ }
+
+ __forceinline TensorLinearCubicBezierSurface<float> xfm(const V& dx) const {
+ return TensorLinearCubicBezierSurface<float>(L.xfm(dx),R.xfm(dx));
+ }
+
+ __forceinline TensorLinearCubicBezierSurface<vfloatx> vxfm(const V& dx) const {
+ return TensorLinearCubicBezierSurface<vfloatx>(L.vxfm(dx),R.vxfm(dx));
+ }
+
+ __forceinline TensorLinearCubicBezierSurface<float> xfm(const V& dx, const V& p) const {
+ return TensorLinearCubicBezierSurface<float>(L.xfm(dx,p),R.xfm(dx,p));
+ }
+
+ __forceinline TensorLinearCubicBezierSurface<Vec3fa> xfm(const LinearSpace3fa& space) const {
+ return TensorLinearCubicBezierSurface(L.xfm(space),R.xfm(space));
+ }
+
+ __forceinline TensorLinearCubicBezierSurface<Vec3fa> xfm(const LinearSpace3fa& space, const Vec3fa& p) const {
+ return TensorLinearCubicBezierSurface(L.xfm(space,p),R.xfm(space,p));
+ }
+
+ __forceinline TensorLinearCubicBezierSurface<Vec3fa> xfm(const LinearSpace3fa& space, const Vec3fa& p, const float s) const {
+ return TensorLinearCubicBezierSurface(L.xfm(space,p,s),R.xfm(space,p,s));
+ }
+
+ __forceinline TensorLinearCubicBezierSurface clip_u(const Interval1f& u) const {
+ return TensorLinearCubicBezierSurface(L.clip(u),R.clip(u));
+ }
+
+ __forceinline TensorLinearCubicBezierSurface clip_v(const Interval1f& v) const {
+ return TensorLinearCubicBezierSurface(clerp(L,R,V(v.lower)),clerp(L,R,V(v.upper)));
+ }
+
+ __forceinline TensorLinearCubicBezierSurface clip(const Interval1f& u, const Interval1f& v) const {
+ return clip_v(v).clip_u(u);
+ }
+
+ __forceinline void split_u(TensorLinearCubicBezierSurface& left, TensorLinearCubicBezierSurface& right, const float u = 0.5f) const
+ {
+ CubicBezierCurve<V> L0,L1; L.split(L0,L1,u);
+ CubicBezierCurve<V> R0,R1; R.split(R0,R1,u);
+ new (&left ) TensorLinearCubicBezierSurface(L0,R0);
+ new (&right) TensorLinearCubicBezierSurface(L1,R1);
+ }
+
+ __forceinline TensorLinearCubicBezierSurface<Vec2vfx> vsplit_u(vboolx& valid, const BBox1f& u) const {
+ valid = true; clear(valid,VSIZEX-1);
+ return TensorLinearCubicBezierSurface<Vec2vfx>(L.split(u),R.split(u));
+ }
+
+ __forceinline V eval(const float u, const float v) const {
+ return clerp(L,R,V(v)).eval(u);
+ }
+
+ __forceinline V eval_du(const float u, const float v) const {
+ return clerp(L,R,V(v)).eval_dt(u);
+ }
+
+ __forceinline V eval_dv(const float u, const float v) const {
+ return (R-L).eval(u);
+ }
+
+ __forceinline void eval(const float u, const float v, V& p, V& dpdu, V& dpdv) const
+ {
+ V p0, dp0du; L.eval(u,p0,dp0du);
+ V p1, dp1du; R.eval(u,p1,dp1du);
+ p = lerp(p0,p1,v);
+ dpdu = lerp(dp0du,dp1du,v);
+ dpdv = p1-p0;
+ }
+
+ __forceinline TensorLinearQuadraticBezierSurface<V> derivative_u() const {
+ return TensorLinearQuadraticBezierSurface<V>(L.derivative(),R.derivative());
+ }
+
+ __forceinline CubicBezierCurve<V> derivative_v() const {
+ return R-L;
+ }
+
+ __forceinline V axis_u() const {
+ return (L.end()-L.begin())+(R.end()-R.begin());
+ }
+
+ __forceinline V axis_v() const {
+ return (R.begin()-L.begin())+(R.end()-L.end());
+ }
+
+ friend embree_ostream operator<<(embree_ostream cout, const TensorLinearCubicBezierSurface& a)
+ {
+ return cout << "TensorLinearCubicBezierSurface" << embree_endl
+ << "{" << embree_endl
+ << " L = " << a.L << ", " << embree_endl
+ << " R = " << a.R << embree_endl
+ << "}";
+ }
+
+ friend __forceinline TensorLinearCubicBezierSurface clerp(const TensorLinearCubicBezierSurface& a, const TensorLinearCubicBezierSurface& b, const float t) {
+ return TensorLinearCubicBezierSurface(clerp(a.L,b.L,V(t)), clerp(a.R,b.R,V(t)));
+ }
+ };
+
+ template<>
+ struct TensorLinearCubicBezierSurface<Vec2fa>
+ {
+ CubicBezierCurve<vfloat4> LR;
+
+ __forceinline TensorLinearCubicBezierSurface() {}
+
+ __forceinline TensorLinearCubicBezierSurface(const TensorLinearCubicBezierSurface& curve)
+ : LR(curve.LR) {}
+
+ __forceinline TensorLinearCubicBezierSurface& operator= (const TensorLinearCubicBezierSurface& other) {
+ LR = other.LR; return *this;
+ }
+
+ __forceinline TensorLinearCubicBezierSurface(const CubicBezierCurve<vfloat4>& LR)
+ : LR(LR) {}
+
+ __forceinline TensorLinearCubicBezierSurface(const CubicBezierCurve<Vec2fa>& L, const CubicBezierCurve<Vec2fa>& R)
+ : LR(shuffle<0,1,0,1>(vfloat4(L.v0),vfloat4(R.v0)),shuffle<0,1,0,1>(vfloat4(L.v1),vfloat4(R.v1)),shuffle<0,1,0,1>(vfloat4(L.v2),vfloat4(R.v2)),shuffle<0,1,0,1>(vfloat4(L.v3),vfloat4(R.v3))) {}
+
+ __forceinline CubicBezierCurve<Vec2fa> getL() const {
+ return CubicBezierCurve<Vec2fa>(Vec2fa(LR.v0),Vec2fa(LR.v1),Vec2fa(LR.v2),Vec2fa(LR.v3));
+ }
+
+ __forceinline CubicBezierCurve<Vec2fa> getR() const {
+ return CubicBezierCurve<Vec2fa>(Vec2fa(shuffle<2,3,2,3>(LR.v0)),Vec2fa(shuffle<2,3,2,3>(LR.v1)),Vec2fa(shuffle<2,3,2,3>(LR.v2)),Vec2fa(shuffle<2,3,2,3>(LR.v3)));
+ }
+
+ __forceinline BBox<Vec2fa> bounds() const
+ {
+ const BBox<vfloat4> b = LR.bounds();
+ const BBox<Vec2fa> bl(Vec2fa(b.lower),Vec2fa(b.upper));
+ const BBox<Vec2fa> br(Vec2fa(shuffle<2,3,2,3>(b.lower)),Vec2fa(shuffle<2,3,2,3>(b.upper)));
+ return merge(bl,br);
+ }
+
+ __forceinline BBox1f bounds(const Vec2fa& axis) const
+ {
+ const CubicBezierCurve<vfloat4> LRx = LR;
+ const CubicBezierCurve<vfloat4> LRy(shuffle<1,0,3,2>(LR.v0),shuffle<1,0,3,2>(LR.v1),shuffle<1,0,3,2>(LR.v2),shuffle<1,0,3,2>(LR.v3));
+ const CubicBezierCurve<vfloat4> LRa = cmadd(shuffle<0>(vfloat4(axis)),LRx,shuffle<1>(vfloat4(axis))*LRy);
+ const BBox<vfloat4> Lb = LRa.bounds();
+ const BBox<vfloat4> Rb(shuffle<3>(Lb.lower),shuffle<3>(Lb.upper));
+ const BBox<vfloat4> b = merge(Lb,Rb);
+ return BBox1f(b.lower[0],b.upper[0]);
+ }
+
+ __forceinline TensorLinearCubicBezierSurface<float> xfm(const Vec2fa& dx) const
+ {
+ const CubicBezierCurve<vfloat4> LRx = LR;
+ const CubicBezierCurve<vfloat4> LRy(shuffle<1,0,3,2>(LR.v0),shuffle<1,0,3,2>(LR.v1),shuffle<1,0,3,2>(LR.v2),shuffle<1,0,3,2>(LR.v3));
+ const CubicBezierCurve<vfloat4> LRa = cmadd(shuffle<0>(vfloat4(dx)),LRx,shuffle<1>(vfloat4(dx))*LRy);
+ return TensorLinearCubicBezierSurface<float>(CubicBezierCurve<float>(LRa.v0[0],LRa.v1[0],LRa.v2[0],LRa.v3[0]),
+ CubicBezierCurve<float>(LRa.v0[2],LRa.v1[2],LRa.v2[2],LRa.v3[2]));
+ }
+
+ __forceinline TensorLinearCubicBezierSurface<float> xfm(const Vec2fa& dx, const Vec2fa& p) const
+ {
+ const vfloat4 pxyxy = shuffle<0,1,0,1>(vfloat4(p));
+ const CubicBezierCurve<vfloat4> LRx = LR-pxyxy;
+ const CubicBezierCurve<vfloat4> LRy(shuffle<1,0,3,2>(LR.v0),shuffle<1,0,3,2>(LR.v1),shuffle<1,0,3,2>(LR.v2),shuffle<1,0,3,2>(LR.v3));
+ const CubicBezierCurve<vfloat4> LRa = cmadd(shuffle<0>(vfloat4(dx)),LRx,shuffle<1>(vfloat4(dx))*LRy);
+ return TensorLinearCubicBezierSurface<float>(CubicBezierCurve<float>(LRa.v0[0],LRa.v1[0],LRa.v2[0],LRa.v3[0]),
+ CubicBezierCurve<float>(LRa.v0[2],LRa.v1[2],LRa.v2[2],LRa.v3[2]));
+ }
+
+ __forceinline TensorLinearCubicBezierSurface clip_u(const Interval1f& u) const {
+ return TensorLinearCubicBezierSurface(LR.clip(u));
+ }
+
+ __forceinline TensorLinearCubicBezierSurface clip_v(const Interval1f& v) const
+ {
+ const CubicBezierCurve<vfloat4> LL(shuffle<0,1,0,1>(LR.v0),shuffle<0,1,0,1>(LR.v1),shuffle<0,1,0,1>(LR.v2),shuffle<0,1,0,1>(LR.v3));
+ const CubicBezierCurve<vfloat4> RR(shuffle<2,3,2,3>(LR.v0),shuffle<2,3,2,3>(LR.v1),shuffle<2,3,2,3>(LR.v2),shuffle<2,3,2,3>(LR.v3));
+ return TensorLinearCubicBezierSurface(clerp(LL,RR,vfloat4(v.lower,v.lower,v.upper,v.upper)));
+ }
+
+ __forceinline TensorLinearCubicBezierSurface clip(const Interval1f& u, const Interval1f& v) const {
+ return clip_v(v).clip_u(u);
+ }
+
+ __forceinline void split_u(TensorLinearCubicBezierSurface& left, TensorLinearCubicBezierSurface& right, const float u = 0.5f) const
+ {
+ CubicBezierCurve<vfloat4> LR0,LR1; LR.split(LR0,LR1,u);
+ new (&left ) TensorLinearCubicBezierSurface(LR0);
+ new (&right) TensorLinearCubicBezierSurface(LR1);
+ }
+
+ __forceinline TensorLinearCubicBezierSurface<Vec2vfx> vsplit_u(vboolx& valid, const BBox1f& u) const {
+ valid = true; clear(valid,VSIZEX-1);
+ return TensorLinearCubicBezierSurface<Vec2vfx>(getL().split(u),getR().split(u));
+ }
+
+ __forceinline Vec2fa eval(const float u, const float v) const
+ {
+ const vfloat4 p = LR.eval(u);
+ return Vec2fa(lerp(shuffle<0,1,0,1>(p),shuffle<2,3,2,3>(p),v));
+ }
+
+ __forceinline Vec2fa eval_du(const float u, const float v) const
+ {
+ const vfloat4 dpdu = LR.eval_dt(u);
+ return Vec2fa(lerp(shuffle<0,1,0,1>(dpdu),shuffle<2,3,2,3>(dpdu),v));
+ }
+
+ __forceinline Vec2fa eval_dv(const float u, const float v) const
+ {
+ const vfloat4 p = LR.eval(u);
+ return Vec2fa(shuffle<2,3,2,3>(p)-shuffle<0,1,0,1>(p));
+ }
+
+ __forceinline void eval(const float u, const float v, Vec2fa& p, Vec2fa& dpdu, Vec2fa& dpdv) const
+ {
+ vfloat4 p0, dp0du; LR.eval(u,p0,dp0du);
+ p = Vec2fa(lerp(shuffle<0,1,0,1>(p0),shuffle<2,3,2,3>(p0),v));
+ dpdu = Vec2fa(lerp(shuffle<0,1,0,1>(dp0du),shuffle<2,3,2,3>(dp0du),v));
+ dpdv = Vec2fa(shuffle<2,3,2,3>(p0)-shuffle<0,1,0,1>(p0));
+ }
+
+ __forceinline TensorLinearQuadraticBezierSurface<Vec2fa> derivative_u() const {
+ return TensorLinearQuadraticBezierSurface<Vec2fa>(LR.derivative());
+ }
+
+ __forceinline CubicBezierCurve<Vec2fa> derivative_v() const {
+ return getR()-getL();
+ }
+
+ __forceinline Vec2fa axis_u() const
+ {
+ const CubicBezierCurve<Vec2fa> L = getL();
+ const CubicBezierCurve<Vec2fa> R = getR();
+ return (L.end()-L.begin())+(R.end()-R.begin());
+ }
+
+ __forceinline Vec2fa axis_v() const
+ {
+ const CubicBezierCurve<Vec2fa> L = getL();
+ const CubicBezierCurve<Vec2fa> R = getR();
+ return (R.begin()-L.begin())+(R.end()-L.end());
+ }
+
+ friend embree_ostream operator<<(embree_ostream cout, const TensorLinearCubicBezierSurface& a)
+ {
+ return cout << "TensorLinearCubicBezierSurface" << embree_endl
+ << "{" << embree_endl
+ << " L = " << a.getL() << ", " << embree_endl
+ << " R = " << a.getR() << embree_endl
+ << "}";
+ }
+ };
+
+ typedef TensorLinearCubicBezierSurface<float> TensorLinearCubicBezierSurface1f;
+ typedef TensorLinearCubicBezierSurface<Vec2fa> TensorLinearCubicBezierSurface2fa;
+ typedef TensorLinearCubicBezierSurface<Vec3fa> TensorLinearCubicBezierSurface3fa;
+ }
+}
diff --git a/thirdparty/embree-aarch64/kernels/subdiv/patch.h b/thirdparty/embree-aarch64/kernels/subdiv/patch.h
new file mode 100644
index 0000000000..d58241b96d
--- /dev/null
+++ b/thirdparty/embree-aarch64/kernels/subdiv/patch.h
@@ -0,0 +1,371 @@
+// Copyright 2009-2020 Intel Corporation
+// SPDX-License-Identifier: Apache-2.0
+
+#pragma once
+
+#include "catmullclark_patch.h"
+#include "bilinear_patch.h"
+#include "bspline_patch.h"
+#include "bezier_patch.h"
+#include "gregory_patch.h"
+#include "tessellation_cache.h"
+
+#if 1
+#define PATCH_DEBUG_SUBDIVISION(ptr,x,y,z)
+#else
+#define PATCH_DEBUG_SUBDIVISION(ptr,x,y,z) \
+ { \
+ size_t hex = (size_t)ptr; \
+ for (size_t i=0; i<4; i++) hex = hex ^ (hex >> 8); \
+ const float c = (float)(((hex >> 0) ^ (hex >> 4) ^ (hex >> 8) ^ (hex >> 12) ^ (hex >> 16))&0xf)/15.0f; \
+ if (P) *P = Vertex(0.5f+0.5f*x,0.5f+0.5f*y,0.5f+0.5f*z,0.0f); \
+ }
+#endif
+
+#define PATCH_MAX_CACHE_DEPTH 2
+//#define PATCH_MIN_RESOLUTION 1 // FIXME: not yet completely implemented
+#define PATCH_MAX_EVAL_DEPTH_IRREGULAR 10 // maximum evaluation depth at irregular vertices (has to be larger or equal than PATCH_MAX_CACHE_DEPTH)
+#define PATCH_MAX_EVAL_DEPTH_CREASE 10 // maximum evaluation depth at crease features (has to be larger or equal than PATCH_MAX_CACHE_DEPTH)
+#define PATCH_USE_GREGORY 1 // 0 = no gregory, 1 = fill, 2 = as early as possible
+
+#if PATCH_USE_GREGORY==2
+#define PATCH_USE_BEZIER_PATCH 1 // enable use of bezier instead of b-spline patches
+#else
+#define PATCH_USE_BEZIER_PATCH 0 // enable use of bezier instead of b-spline patches
+#endif
+
+#if PATCH_USE_BEZIER_PATCH
+# define RegularPatch BezierPatch
+# define RegularPatchT BezierPatchT<Vertex,Vertex_t>
+#else
+# define RegularPatch BSplinePatch
+# define RegularPatchT BSplinePatchT<Vertex,Vertex_t>
+#endif
+
+#if PATCH_USE_GREGORY
+#define IrregularFillPatch GregoryPatch
+#define IrregularFillPatchT GregoryPatchT<Vertex,Vertex_t>
+#else
+#define IrregularFillPatch BilinearPatch
+#define IrregularFillPatchT BilinearPatchT<Vertex,Vertex_t>
+#endif
+
+namespace embree
+{
+ template<typename Vertex, typename Vertex_t = Vertex>
+ struct __aligned(64) PatchT
+ {
+ public:
+
+ typedef GeneralCatmullClarkPatchT<Vertex,Vertex_t> GeneralCatmullClarkPatch;
+ typedef CatmullClarkPatchT<Vertex,Vertex_t> CatmullClarkPatch;
+ typedef CatmullClark1RingT<Vertex,Vertex_t> CatmullClarkRing;
+ typedef BezierCurveT<Vertex> BezierCurve;
+
+ enum Type {
+ INVALID_PATCH = 0,
+ BILINEAR_PATCH = 1,
+ BSPLINE_PATCH = 2,
+ BEZIER_PATCH = 3,
+ GREGORY_PATCH = 4,
+ SUBDIVIDED_GENERAL_PATCH = 7,
+ SUBDIVIDED_QUAD_PATCH = 8,
+ EVAL_PATCH = 9,
+ };
+
+ struct Ref
+ {
+ __forceinline Ref(void* p = nullptr)
+ : ptr((size_t)p) {}
+
+ __forceinline operator bool() const { return ptr != 0; }
+ __forceinline operator size_t() const { return ptr; }
+
+ __forceinline Ref (Type ty, void* in)
+ : ptr(((size_t)in)+ty) { assert((((size_t)in) & 0xF) == 0); }
+
+ __forceinline Type type () const { return (Type)(ptr & 0xF); }
+ __forceinline void* object() const { return (void*) (ptr & ~0xF); }
+
+ size_t ptr;
+ };
+
+ struct EvalPatch
+ {
+ /* creates EvalPatch from a CatmullClarkPatch */
+ template<typename Allocator>
+ __noinline static Ref create(const Allocator& alloc, const CatmullClarkPatch& patch)
+ {
+ size_t ofs = 0, bytes = patch.bytes();
+ void* ptr = alloc(bytes);
+ patch.serialize(ptr,ofs);
+ assert(ofs == bytes);
+ return Ref(EVAL_PATCH, ptr);
+ }
+ };
+
+ struct BilinearPatch
+ {
+ /* creates BilinearPatch from a CatmullClarkPatch */
+ template<typename Allocator>
+ __noinline static Ref create(const Allocator& alloc, const CatmullClarkPatch& patch,
+ const BezierCurve* border0, const BezierCurve* border1, const BezierCurve* border2, const BezierCurve* border3) {
+ return Ref(BILINEAR_PATCH, new (alloc(sizeof(BilinearPatch))) BilinearPatch(patch));
+ }
+
+ __forceinline BilinearPatch (const CatmullClarkPatch& patch)
+ : patch(patch) {}
+
+ /* creates BilinearPatch from 4 vertices */
+ template<typename Allocator>
+ __noinline static Ref create(const Allocator& alloc, const HalfEdge* edge, const char* vertices, size_t stride) {
+ return Ref(BILINEAR_PATCH, new (alloc(sizeof(BilinearPatch))) BilinearPatch(edge,vertices,stride));
+ }
+
+ __forceinline BilinearPatch (const HalfEdge* edge, const char* vertices, size_t stride)
+ : patch(edge,vertices,stride) {}
+
+ public:
+ BilinearPatchT<Vertex,Vertex_t> patch;
+ };
+
+ struct BSplinePatch
+ {
+ /* creates BSplinePatch from a half edge */
+ template<typename Allocator>
+ __noinline static Ref create(const Allocator& alloc, const HalfEdge* edge, const char* vertices, size_t stride) {
+ return Ref(BSPLINE_PATCH, new (alloc(sizeof(BSplinePatch))) BSplinePatch(edge,vertices,stride));
+ }
+
+ __forceinline BSplinePatch (const HalfEdge* edge, const char* vertices, size_t stride)
+ : patch(edge,vertices,stride) {}
+
+ /* creates BSplinePatch from a CatmullClarkPatch */
+ template<typename Allocator>
+ __noinline static Ref create(const Allocator& alloc, const CatmullClarkPatch& patch,
+ const BezierCurve* border0, const BezierCurve* border1, const BezierCurve* border2, const BezierCurve* border3) {
+ return Ref(BSPLINE_PATCH, new (alloc(sizeof(BSplinePatch))) BSplinePatch(patch,border0,border1,border2,border3));
+ }
+
+ __forceinline BSplinePatch (const CatmullClarkPatch& patch, const BezierCurve* border0, const BezierCurve* border1, const BezierCurve* border2, const BezierCurve* border3)
+ : patch(patch,border0,border1,border2,border3) {}
+
+ public:
+ BSplinePatchT<Vertex,Vertex_t> patch;
+ };
+
+ struct BezierPatch
+ {
+ /* creates BezierPatch from a half edge */
+ template<typename Allocator>
+ __noinline static Ref create(const Allocator& alloc, const HalfEdge* edge, const char* vertices, size_t stride) {
+ return Ref(BEZIER_PATCH, new (alloc(sizeof(BezierPatch))) BezierPatch(edge,vertices,stride));
+ }
+
+ __forceinline BezierPatch (const HalfEdge* edge, const char* vertices, size_t stride)
+ : patch(edge,vertices,stride) {}
+
+ /* creates Bezier from a CatmullClarkPatch */
+ template<typename Allocator>
+ __noinline static Ref create(const Allocator& alloc, const CatmullClarkPatch& patch,
+ const BezierCurve* border0, const BezierCurve* border1, const BezierCurve* border2, const BezierCurve* border3) {
+ return Ref(BEZIER_PATCH, new (alloc(sizeof(BezierPatch))) BezierPatch(patch,border0,border1,border2,border3));
+ }
+
+ __forceinline BezierPatch (const CatmullClarkPatch& patch, const BezierCurve* border0, const BezierCurve* border1, const BezierCurve* border2, const BezierCurve* border3)
+ : patch(patch,border0,border1,border2,border3) {}
+
+ public:
+ BezierPatchT<Vertex,Vertex_t> patch;
+ };
+
+ struct GregoryPatch
+ {
+ /* creates GregoryPatch from half edge */
+ template<typename Allocator>
+ __noinline static Ref create(const Allocator& alloc, const HalfEdge* edge, const char* vertices, size_t stride) {
+ return Ref(GREGORY_PATCH, new (alloc(sizeof(GregoryPatch))) GregoryPatch(edge,vertices,stride));
+ }
+
+ __forceinline GregoryPatch (const HalfEdge* edge, const char* vertices, size_t stride)
+ : patch(CatmullClarkPatch(edge,vertices,stride)) {}
+
+ /* creates GregoryPatch from CatmullClarkPatch */
+ template<typename Allocator>
+ __noinline static Ref create(const Allocator& alloc, const CatmullClarkPatch& patch,
+ const BezierCurve* border0, const BezierCurve* border1, const BezierCurve* border2, const BezierCurve* border3) {
+ return Ref(GREGORY_PATCH, new (alloc(sizeof(GregoryPatch))) GregoryPatch(patch,border0,border1,border2,border3));
+ }
+
+ __forceinline GregoryPatch (const CatmullClarkPatch& patch, const BezierCurve* border0, const BezierCurve* border1, const BezierCurve* border2, const BezierCurve* border3)
+ : patch(patch,border0,border1,border2,border3) {}
+
+ public:
+ GregoryPatchT<Vertex,Vertex_t> patch;
+ };
+
+ struct SubdividedQuadPatch
+ {
+ template<typename Allocator>
+ __noinline static Ref create(const Allocator& alloc, Ref children[4]) {
+ return Ref(SUBDIVIDED_QUAD_PATCH, new (alloc(sizeof(SubdividedQuadPatch))) SubdividedQuadPatch(children));
+ }
+
+ __forceinline SubdividedQuadPatch(Ref children[4]) {
+ for (size_t i=0; i<4; i++) child[i] = children[i];
+ }
+
+ public:
+ Ref child[4];
+ };
+
+ struct SubdividedGeneralPatch
+ {
+ template<typename Allocator>
+ __noinline static Ref create(const Allocator& alloc, Ref* children, const unsigned N) {
+ return Ref(SUBDIVIDED_GENERAL_PATCH, new (alloc(sizeof(SubdividedGeneralPatch))) SubdividedGeneralPatch(children,N));
+ }
+
+ __forceinline SubdividedGeneralPatch(Ref* children, const unsigned N) : N(N) {
+ for (unsigned i=0; i<N; i++) child[i] = children[i];
+ }
+
+ unsigned N;
+ Ref child[MAX_PATCH_VALENCE];
+ };
+
+ /*! Default constructor. */
+ __forceinline PatchT () {}
+
+ template<typename Allocator>
+ __noinline static Ref create(const Allocator& alloc, const HalfEdge* edge, const char* vertices, size_t stride)
+ {
+ if (PATCH_MAX_CACHE_DEPTH == 0)
+ return nullptr;
+
+ Ref child(0);
+ switch (edge->patch_type) {
+ case HalfEdge::BILINEAR_PATCH: child = BilinearPatch::create(alloc,edge,vertices,stride); break;
+ case HalfEdge::REGULAR_QUAD_PATCH: child = RegularPatch::create(alloc,edge,vertices,stride); break;
+#if PATCH_USE_GREGORY == 2
+ case HalfEdge::IRREGULAR_QUAD_PATCH: child = GregoryPatch::create(alloc,edge,vertices,stride); break;
+#endif
+ default: {
+ GeneralCatmullClarkPatch patch(edge,vertices,stride);
+ child = PatchT::create(alloc,patch,edge,vertices,stride,0);
+ }
+ }
+ return child;
+ }
+
+ template<typename Allocator>
+ __noinline static Ref create(const Allocator& alloc, GeneralCatmullClarkPatch& patch, const HalfEdge* edge, const char* vertices, size_t stride, size_t depth)
+ {
+ /* convert into standard quad patch if possible */
+ if (likely(patch.isQuadPatch()))
+ {
+ CatmullClarkPatch qpatch; patch.init(qpatch);
+ return PatchT::create(alloc,qpatch,edge,vertices,stride,depth);
+ }
+
+ /* do only cache up to some depth */
+ if (depth >= PATCH_MAX_CACHE_DEPTH)
+ return nullptr;
+
+ /* subdivide patch */
+ unsigned N;
+ array_t<CatmullClarkPatch,GeneralCatmullClarkPatch::SIZE> patches;
+ patch.subdivide(patches,N);
+
+ if (N == 4)
+ {
+ Ref child[4];
+#if PATCH_USE_GREGORY == 2
+ BezierCurve borders[GeneralCatmullClarkPatch::SIZE]; patch.getLimitBorder(borders);
+ BezierCurve border0l,border0r; borders[0].subdivide(border0l,border0r);
+ BezierCurve border1l,border1r; borders[1].subdivide(border1l,border1r);
+ BezierCurve border2l,border2r; borders[2].subdivide(border2l,border2r);
+ BezierCurve border3l,border3r; borders[3].subdivide(border3l,border3r);
+ GeneralCatmullClarkPatch::fix_quad_ring_order(patches);
+ child[0] = PatchT::create(alloc,patches[0],edge,vertices,stride,depth+1,&border0l,nullptr,nullptr,&border3r);
+ child[1] = PatchT::create(alloc,patches[1],edge,vertices,stride,depth+1,&border0r,&border1l,nullptr,nullptr);
+ child[2] = PatchT::create(alloc,patches[2],edge,vertices,stride,depth+1,nullptr,&border1r,&border2l,nullptr);
+ child[3] = PatchT::create(alloc,patches[3],edge,vertices,stride,depth+1,nullptr,nullptr,&border2r,&border3l);
+#else
+ GeneralCatmullClarkPatch::fix_quad_ring_order(patches);
+ for (size_t i=0; i<4; i++)
+ child[i] = PatchT::create(alloc,patches[i],edge,vertices,stride,depth+1);
+#endif
+ return SubdividedQuadPatch::create(alloc,child);
+ }
+ else
+ {
+ assert(N<MAX_PATCH_VALENCE);
+ Ref child[MAX_PATCH_VALENCE];
+
+#if PATCH_USE_GREGORY == 2
+ BezierCurve borders[GeneralCatmullClarkPatch::SIZE];
+ patch.getLimitBorder(borders);
+
+ for (size_t i0=0; i0<N; i0++) {
+ const size_t i2 = i0==0 ? N-1 : i0-1;
+ BezierCurve border0l,border0r; borders[i0].subdivide(border0l,border0r);
+ BezierCurve border2l,border2r; borders[i2].subdivide(border2l,border2r);
+ child[i0] = PatchT::create(alloc,patches[i0],edge,vertices,stride,depth+1, &border0l, nullptr, nullptr, &border2r);
+ }
+#else
+ for (size_t i=0; i<N; i++)
+ child[i] = PatchT::create(alloc,patches[i],edge,vertices,stride,depth+1);
+#endif
+ return SubdividedGeneralPatch::create(alloc,child,N);
+ }
+
+ return nullptr;
+ }
+
+ static __forceinline bool final(const CatmullClarkPatch& patch, const typename CatmullClarkRing::Type type, size_t depth)
+ {
+ const size_t max_eval_depth = (type & CatmullClarkRing::TYPE_CREASES) ? PATCH_MAX_EVAL_DEPTH_CREASE : PATCH_MAX_EVAL_DEPTH_IRREGULAR;
+//#if PATCH_MIN_RESOLUTION
+// return patch.isFinalResolution(PATCH_MIN_RESOLUTION) || depth>=max_eval_depth;
+//#else
+ return depth>=max_eval_depth;
+//#endif
+ }
+
+ template<typename Allocator>
+ __noinline static Ref create(const Allocator& alloc, CatmullClarkPatch& patch, const HalfEdge* edge, const char* vertices, size_t stride, size_t depth,
+ const BezierCurve* border0 = nullptr, const BezierCurve* border1 = nullptr, const BezierCurve* border2 = nullptr, const BezierCurve* border3 = nullptr)
+ {
+ const typename CatmullClarkPatch::Type ty = patch.type();
+ if (unlikely(final(patch,ty,depth))) {
+ if (ty & CatmullClarkRing::TYPE_REGULAR) return RegularPatch::create(alloc,patch,border0,border1,border2,border3);
+ else return IrregularFillPatch::create(alloc,patch,border0,border1,border2,border3);
+ }
+ else if (ty & CatmullClarkRing::TYPE_REGULAR_CREASES) {
+ assert(depth > 0); return RegularPatch::create(alloc,patch,border0,border1,border2,border3);
+ }
+#if PATCH_USE_GREGORY == 2
+ else if (ty & CatmullClarkRing::TYPE_GREGORY_CREASES) {
+ assert(depth > 0); return GregoryPatch::create(alloc,patch,border0,border1,border2,border3);
+ }
+#endif
+ else if (depth >= PATCH_MAX_CACHE_DEPTH) {
+ return EvalPatch::create(alloc,patch);
+ }
+
+ else
+ {
+ Ref child[4];
+ array_t<CatmullClarkPatch,4> patches;
+ patch.subdivide(patches);
+
+ for (size_t i=0; i<4; i++)
+ child[i] = PatchT::create(alloc,patches[i],edge,vertices,stride,depth+1);
+ return SubdividedQuadPatch::create(alloc,child);
+ }
+ }
+ };
+
+ typedef PatchT<Vec3fa,Vec3fa_t> Patch3fa;
+}
diff --git a/thirdparty/embree-aarch64/kernels/subdiv/patch_eval.h b/thirdparty/embree-aarch64/kernels/subdiv/patch_eval.h
new file mode 100644
index 0000000000..482d015fa3
--- /dev/null
+++ b/thirdparty/embree-aarch64/kernels/subdiv/patch_eval.h
@@ -0,0 +1,129 @@
+// Copyright 2009-2020 Intel Corporation
+// SPDX-License-Identifier: Apache-2.0
+
+#pragma once
+
+#include "patch.h"
+#include "feature_adaptive_eval.h"
+
+namespace embree
+{
+ namespace isa
+ {
+ template<typename Vertex, typename Vertex_t = Vertex>
+ struct PatchEval
+ {
+ public:
+
+ typedef PatchT<Vertex,Vertex_t> Patch;
+ typedef typename Patch::Ref Ref;
+ typedef CatmullClarkPatchT<Vertex,Vertex_t> CatmullClarkPatch;
+
+ PatchEval (SharedLazyTessellationCache::CacheEntry& entry, size_t commitCounter,
+ const HalfEdge* edge, const char* vertices, size_t stride, const float u, const float v,
+ Vertex* P, Vertex* dPdu, Vertex* dPdv, Vertex* ddPdudu, Vertex* ddPdvdv, Vertex* ddPdudv)
+ : P(P), dPdu(dPdu), dPdv(dPdv), ddPdudu(ddPdudu), ddPdvdv(ddPdvdv), ddPdudv(ddPdudv)
+ {
+ /* conservative time for the very first allocation */
+ auto time = SharedLazyTessellationCache::sharedLazyTessellationCache.getTime(commitCounter);
+
+ Ref patch = SharedLazyTessellationCache::lookup(entry,commitCounter,[&] () {
+ auto alloc = [&](size_t bytes) { return SharedLazyTessellationCache::malloc(bytes); };
+ return Patch::create(alloc,edge,vertices,stride);
+ },true);
+
+ auto curTime = SharedLazyTessellationCache::sharedLazyTessellationCache.getTime(commitCounter);
+ const bool allAllocationsValid = SharedLazyTessellationCache::validTime(time,curTime);
+
+ if (patch && allAllocationsValid && eval(patch,u,v,1.0f,0)) {
+ SharedLazyTessellationCache::unlock();
+ return;
+ }
+ SharedLazyTessellationCache::unlock();
+ FeatureAdaptiveEval<Vertex,Vertex_t>(edge,vertices,stride,u,v,P,dPdu,dPdv,ddPdudu,ddPdvdv,ddPdudv);
+ PATCH_DEBUG_SUBDIVISION(edge,c,-1,-1);
+ }
+
+ __forceinline bool eval_quad(const typename Patch::SubdividedQuadPatch* This, const float u, const float v, const float dscale, const size_t depth)
+ {
+ if (v < 0.5f) {
+ if (u < 0.5f) return eval(This->child[0],2.0f*u,2.0f*v,2.0f*dscale,depth+1);
+ else return eval(This->child[1],2.0f*u-1.0f,2.0f*v,2.0f*dscale,depth+1);
+ } else {
+ if (u > 0.5f) return eval(This->child[2],2.0f*u-1.0f,2.0f*v-1.0f,2.0f*dscale,depth+1);
+ else return eval(This->child[3],2.0f*u,2.0f*v-1.0f,2.0f*dscale,depth+1);
+ }
+ }
+
+ bool eval_general(const typename Patch::SubdividedGeneralPatch* This, const float U, const float V, const size_t depth)
+ {
+ const unsigned l = (unsigned) floor(0.5f*U); const float u = 2.0f*frac(0.5f*U)-0.5f;
+ const unsigned h = (unsigned) floor(0.5f*V); const float v = 2.0f*frac(0.5f*V)-0.5f;
+ const unsigned i = 4*h+l; assert(i<This->N);
+ return eval(This->child[i],u,v,1.0f,depth+1);
+ }
+
+ bool eval(Ref This, const float& u, const float& v, const float dscale, const size_t depth)
+ {
+ if (!This) return false;
+ //PRINT(depth);
+ //PRINT2(u,v);
+
+ switch (This.type())
+ {
+ case Patch::BILINEAR_PATCH: {
+ //PRINT("bilinear");
+ ((typename Patch::BilinearPatch*)This.object())->patch.eval(u,v,P,dPdu,dPdv,ddPdudu,ddPdvdv,ddPdudv,dscale);
+ PATCH_DEBUG_SUBDIVISION(This,-1,c,c);
+ return true;
+ }
+ case Patch::BSPLINE_PATCH: {
+ //PRINT("bspline");
+ ((typename Patch::BSplinePatch*)This.object())->patch.eval(u,v,P,dPdu,dPdv,ddPdudu,ddPdvdv,ddPdudv,dscale);
+ PATCH_DEBUG_SUBDIVISION(This,-1,c,-1);
+ return true;
+ }
+ case Patch::BEZIER_PATCH: {
+ //PRINT("bezier");
+ ((typename Patch::BezierPatch*)This.object())->patch.eval(u,v,P,dPdu,dPdv,ddPdudu,ddPdvdv,ddPdudv,dscale);
+ PATCH_DEBUG_SUBDIVISION(This,-1,c,-1);
+ return true;
+ }
+ case Patch::GREGORY_PATCH: {
+ //PRINT("gregory");
+ ((typename Patch::GregoryPatch*)This.object())->patch.eval(u,v,P,dPdu,dPdv,ddPdudu,ddPdvdv,ddPdudv,dscale);
+ PATCH_DEBUG_SUBDIVISION(This,-1,-1,c);
+ return true;
+ }
+ case Patch::SUBDIVIDED_QUAD_PATCH: {
+ //PRINT("subdivided quad");
+ return eval_quad(((typename Patch::SubdividedQuadPatch*)This.object()),u,v,dscale,depth);
+ }
+ case Patch::SUBDIVIDED_GENERAL_PATCH: {
+ //PRINT("general_patch");
+ assert(dscale == 1.0f);
+ return eval_general(((typename Patch::SubdividedGeneralPatch*)This.object()),u,v,depth);
+ }
+ case Patch::EVAL_PATCH: {
+ //PRINT("eval_patch");
+ CatmullClarkPatch patch; patch.deserialize(This.object());
+ FeatureAdaptiveEval<Vertex,Vertex_t>(patch,u,v,dscale,depth,P,dPdu,dPdv,ddPdudu,ddPdvdv,ddPdudv);
+ return true;
+ }
+ default:
+ assert(false);
+ return false;
+ }
+ }
+
+ private:
+ Vertex* const P;
+ Vertex* const dPdu;
+ Vertex* const dPdv;
+ Vertex* const ddPdudu;
+ Vertex* const ddPdvdv;
+ Vertex* const ddPdudv;
+ };
+ }
+}
+
diff --git a/thirdparty/embree-aarch64/kernels/subdiv/patch_eval_grid.h b/thirdparty/embree-aarch64/kernels/subdiv/patch_eval_grid.h
new file mode 100644
index 0000000000..c05db55f4c
--- /dev/null
+++ b/thirdparty/embree-aarch64/kernels/subdiv/patch_eval_grid.h
@@ -0,0 +1,245 @@
+// Copyright 2009-2020 Intel Corporation
+// SPDX-License-Identifier: Apache-2.0
+
+#pragma once
+
+#include "patch.h"
+#include "feature_adaptive_eval_grid.h"
+
+namespace embree
+{
+ namespace isa
+ {
+ struct PatchEvalGrid
+ {
+ typedef Patch3fa Patch;
+ typedef Patch::Ref Ref;
+ typedef GeneralCatmullClarkPatch3fa GeneralCatmullClarkPatch;
+ typedef CatmullClarkPatch3fa CatmullClarkPatch;
+ typedef BSplinePatch3fa BSplinePatch;
+ typedef BezierPatch3fa BezierPatch;
+ typedef GregoryPatch3fa GregoryPatch;
+ typedef BilinearPatch3fa BilinearPatch;
+
+ private:
+ const unsigned x0,x1;
+ const unsigned y0,y1;
+ const unsigned swidth,sheight;
+ const float rcp_swidth, rcp_sheight;
+ float* const Px;
+ float* const Py;
+ float* const Pz;
+ float* const U;
+ float* const V;
+ float* const Nx;
+ float* const Ny;
+ float* const Nz;
+ const unsigned dwidth,dheight;
+ unsigned count;
+
+ public:
+
+ PatchEvalGrid (Ref patch, unsigned subPatch,
+ const unsigned x0, const unsigned x1, const unsigned y0, const unsigned y1, const unsigned swidth, const unsigned sheight,
+ float* Px, float* Py, float* Pz, float* U, float* V,
+ float* Nx, float* Ny, float* Nz,
+ const unsigned dwidth, const unsigned dheight)
+ : x0(x0), x1(x1), y0(y0), y1(y1), swidth(swidth), sheight(sheight), rcp_swidth(1.0f/(swidth-1.0f)), rcp_sheight(1.0f/(sheight-1.0f)),
+ Px(Px), Py(Py), Pz(Pz), U(U), V(V), Nx(Nx), Ny(Ny), Nz(Nz), dwidth(dwidth), dheight(dheight), count(0)
+ {
+ assert(swidth < (2<<20) && sheight < (2<<20));
+ const BBox2f srange(Vec2f(0.0f,0.0f),Vec2f(float(swidth-1),float(sheight-1)));
+ const BBox2f erange(Vec2f(float(x0),float(y0)),Vec2f((float)x1,(float)y1));
+ bool done MAYBE_UNUSED = eval(patch,subPatch,srange,erange);
+ assert(done);
+ assert(count == (x1-x0+1)*(y1-y0+1));
+ }
+
+ template<typename Patch>
+ __forceinline void evalLocalGrid(const Patch* patch, const BBox2f& srange, const int lx0, const int lx1, const int ly0, const int ly1)
+ {
+ const float scale_x = rcp(srange.upper.x-srange.lower.x);
+ const float scale_y = rcp(srange.upper.y-srange.lower.y);
+ count += (lx1-lx0)*(ly1-ly0);
+
+#if 0
+ for (unsigned iy=ly0; iy<ly1; iy++) {
+ for (unsigned ix=lx0; ix<lx1; ix++) {
+ const float lu = select(ix == swidth -1, float(1.0f), (float(ix)-srange.lower.x)*scale_x);
+ const float lv = select(iy == sheight-1, float(1.0f), (float(iy)-srange.lower.y)*scale_y);
+ const Vec3fa p = patch->patch.eval(lu,lv);
+ const float u = float(ix)*rcp_swidth;
+ const float v = float(iy)*rcp_sheight;
+ const int ofs = (iy-y0)*dwidth+(ix-x0);
+ Px[ofs] = p.x;
+ Py[ofs] = p.y;
+ Pz[ofs] = p.z;
+ U[ofs] = u;
+ V[ofs] = v;
+ }
+ }
+#else
+ foreach2(lx0,lx1,ly0,ly1,[&](const vboolx& valid, const vintx& ix, const vintx& iy) {
+ const vfloatx lu = select(ix == swidth -1, vfloatx(1.0f), (vfloatx(ix)-srange.lower.x)*scale_x);
+ const vfloatx lv = select(iy == sheight-1, vfloatx(1.0f), (vfloatx(iy)-srange.lower.y)*scale_y);
+ const Vec3vfx p = patch->patch.eval(lu,lv);
+ Vec3vfx n = zero;
+ if (unlikely(Nx != nullptr)) n = normalize_safe(patch->patch.normal(lu,lv));
+ const vfloatx u = vfloatx(ix)*rcp_swidth;
+ const vfloatx v = vfloatx(iy)*rcp_sheight;
+ const vintx ofs = (iy-y0)*dwidth+(ix-x0);
+ if (likely(all(valid)) && all(iy==iy[0])) {
+ const unsigned ofs2 = ofs[0];
+ vfloatx::storeu(Px+ofs2,p.x);
+ vfloatx::storeu(Py+ofs2,p.y);
+ vfloatx::storeu(Pz+ofs2,p.z);
+ vfloatx::storeu(U+ofs2,u);
+ vfloatx::storeu(V+ofs2,v);
+ if (unlikely(Nx != nullptr)) {
+ vfloatx::storeu(Nx+ofs2,n.x);
+ vfloatx::storeu(Ny+ofs2,n.y);
+ vfloatx::storeu(Nz+ofs2,n.z);
+ }
+ } else {
+ foreach_unique_index(valid,iy,[&](const vboolx& valid, const int iy0, const int j) {
+ const unsigned ofs2 = ofs[j]-j;
+ vfloatx::storeu(valid,Px+ofs2,p.x);
+ vfloatx::storeu(valid,Py+ofs2,p.y);
+ vfloatx::storeu(valid,Pz+ofs2,p.z);
+ vfloatx::storeu(valid,U+ofs2,u);
+ vfloatx::storeu(valid,V+ofs2,v);
+ if (unlikely(Nx != nullptr)) {
+ vfloatx::storeu(valid,Nx+ofs2,n.x);
+ vfloatx::storeu(valid,Ny+ofs2,n.y);
+ vfloatx::storeu(valid,Nz+ofs2,n.z);
+ }
+ });
+ }
+ });
+#endif
+ }
+
+ bool eval(Ref This, const BBox2f& srange, const BBox2f& erange, const unsigned depth)
+ {
+ if (erange.empty())
+ return true;
+
+ const int lx0 = (int) ceilf(erange.lower.x);
+ const int lx1 = (int) ceilf(erange.upper.x) + (erange.upper.x == x1 && (srange.lower.x < erange.upper.x || erange.upper.x == 0));
+ const int ly0 = (int) ceilf(erange.lower.y);
+ const int ly1 = (int) ceilf(erange.upper.y) + (erange.upper.y == y1 && (srange.lower.y < erange.upper.y || erange.upper.y == 0));
+ if (lx0 >= lx1 || ly0 >= ly1)
+ return true;
+
+ if (!This)
+ return false;
+
+ switch (This.type())
+ {
+ case Patch::BILINEAR_PATCH: {
+ evalLocalGrid((Patch::BilinearPatch*)This.object(),srange,lx0,lx1,ly0,ly1);
+ return true;
+ }
+ case Patch::BSPLINE_PATCH: {
+ evalLocalGrid((Patch::BSplinePatch*)This.object(),srange,lx0,lx1,ly0,ly1);
+ return true;
+ }
+ case Patch::BEZIER_PATCH: {
+ evalLocalGrid((Patch::BezierPatch*)This.object(),srange,lx0,lx1,ly0,ly1);
+ return true;
+ }
+ case Patch::GREGORY_PATCH: {
+ evalLocalGrid((Patch::GregoryPatch*)This.object(),srange,lx0,lx1,ly0,ly1);
+ return true;
+ }
+ case Patch::SUBDIVIDED_QUAD_PATCH:
+ {
+ const Vec2f c = srange.center();
+ const BBox2f srange0(srange.lower,c);
+ const BBox2f srange1(Vec2f(c.x,srange.lower.y),Vec2f(srange.upper.x,c.y));
+ const BBox2f srange2(c,srange.upper);
+ const BBox2f srange3(Vec2f(srange.lower.x,c.y),Vec2f(c.x,srange.upper.y));
+
+ Patch::SubdividedQuadPatch* patch = (Patch::SubdividedQuadPatch*)This.object();
+ eval(patch->child[0],srange0,intersect(srange0,erange),depth+1);
+ eval(patch->child[1],srange1,intersect(srange1,erange),depth+1);
+ eval(patch->child[2],srange2,intersect(srange2,erange),depth+1);
+ eval(patch->child[3],srange3,intersect(srange3,erange),depth+1);
+ return true;
+ }
+ case Patch::EVAL_PATCH: {
+ CatmullClarkPatch patch; patch.deserialize(This.object());
+ FeatureAdaptiveEvalGrid(patch,srange,erange,depth,x0,x1,y0,y1,swidth,sheight,Px,Py,Pz,U,V,Nx,Ny,Nz,dwidth,dheight);
+ count += (lx1-lx0)*(ly1-ly0);
+ return true;
+ }
+ default:
+ assert(false);
+ return false;
+ }
+ }
+
+ bool eval(Ref This, unsigned subPatch, const BBox2f& srange, const BBox2f& erange)
+ {
+ if (!This)
+ return false;
+
+ switch (This.type())
+ {
+ case Patch::SUBDIVIDED_GENERAL_PATCH: {
+ Patch::SubdividedGeneralPatch* patch = (Patch::SubdividedGeneralPatch*)This.object();
+ assert(subPatch < patch->N);
+ return eval(patch->child[subPatch],srange,erange,1);
+ }
+ default:
+ assert(subPatch == 0);
+ return eval(This,srange,erange,0);
+ }
+ }
+ };
+
+ __forceinline unsigned patch_eval_subdivision_count (const HalfEdge* h)
+ {
+ const unsigned N = h->numEdges();
+ if (N == 4) return 1;
+ else return N;
+ }
+
+ template<typename Tessellator>
+ inline void patch_eval_subdivision (const HalfEdge* h, Tessellator tessellator)
+ {
+ const unsigned N = h->numEdges();
+ int neighborSubdiv[GeneralCatmullClarkPatch3fa::SIZE]; // FIXME: use array_t
+ float levels[GeneralCatmullClarkPatch3fa::SIZE];
+ for (unsigned i=0; i<N; i++) {
+ assert(i<GeneralCatmullClarkPatch3fa::SIZE);
+ neighborSubdiv[i] = h->hasOpposite() ? h->opposite()->numEdges() != 4 : 0;
+ levels[i] = h->edge_level;
+ h = h->next();
+ }
+ if (N == 4)
+ {
+ const Vec2f uv[4] = { Vec2f(0.0f,0.0f), Vec2f(1.0f,0.0f), Vec2f(1.0f,1.0f), Vec2f(0.0f,1.0f) };
+ tessellator(uv,neighborSubdiv,levels,0);
+ }
+ else
+ {
+ for (unsigned i=0; i<N; i++)
+ {
+ assert(i<MAX_PATCH_VALENCE);
+ static_assert(MAX_PATCH_VALENCE <= 16, "MAX_PATCH_VALENCE > 16");
+ const int h = (i >> 2) & 3, l = i & 3;
+ const Vec2f subPatchID((float)l,(float)h);
+ const Vec2f uv[4] = { 2.0f*subPatchID + (0.5f+Vec2f(0.0f,0.0f)),
+ 2.0f*subPatchID + (0.5f+Vec2f(1.0f,0.0f)),
+ 2.0f*subPatchID + (0.5f+Vec2f(1.0f,1.0f)),
+ 2.0f*subPatchID + (0.5f+Vec2f(0.0f,1.0f)) };
+ const int neighborSubdiv1[4] = { 0,0,0,0 };
+ const float levels1[4] = { 0.5f*levels[(i+0)%N], 0.5f*levels[(i+0)%N], 0.5f*levels[(i+N-1)%N], 0.5f*levels[(i+N-1)%N] };
+ tessellator(uv,neighborSubdiv1,levels1,i);
+ }
+ }
+ }
+ }
+}
+
diff --git a/thirdparty/embree-aarch64/kernels/subdiv/patch_eval_simd.h b/thirdparty/embree-aarch64/kernels/subdiv/patch_eval_simd.h
new file mode 100644
index 0000000000..28016d9e20
--- /dev/null
+++ b/thirdparty/embree-aarch64/kernels/subdiv/patch_eval_simd.h
@@ -0,0 +1,127 @@
+// Copyright 2009-2020 Intel Corporation
+// SPDX-License-Identifier: Apache-2.0
+
+#pragma once
+
+#include "patch.h"
+#include "feature_adaptive_eval_simd.h"
+
+namespace embree
+{
+ namespace isa
+ {
+ template<typename vbool, typename vint, typename vfloat, typename Vertex, typename Vertex_t = Vertex>
+ struct PatchEvalSimd
+ {
+ public:
+
+ typedef PatchT<Vertex,Vertex_t> Patch;
+ typedef typename Patch::Ref Ref;
+ typedef CatmullClarkPatchT<Vertex,Vertex_t> CatmullClarkPatch;
+
+ PatchEvalSimd (SharedLazyTessellationCache::CacheEntry& entry, size_t commitCounter,
+ const HalfEdge* edge, const char* vertices, size_t stride, const vbool& valid0, const vfloat& u, const vfloat& v,
+ float* P, float* dPdu, float* dPdv, float* ddPdudu, float* ddPdvdv, float* ddPdudv, const size_t dstride, const size_t N)
+ : P(P), dPdu(dPdu), dPdv(dPdv), ddPdudu(ddPdudu), ddPdvdv(ddPdvdv), ddPdudv(ddPdudv), dstride(dstride), N(N)
+ {
+ /* conservative time for the very first allocation */
+ auto time = SharedLazyTessellationCache::sharedLazyTessellationCache.getTime(commitCounter);
+
+ Ref patch = SharedLazyTessellationCache::lookup(entry,commitCounter,[&] () {
+ auto alloc = [](size_t bytes) { return SharedLazyTessellationCache::malloc(bytes); };
+ return Patch::create(alloc,edge,vertices,stride);
+ }, true);
+
+ auto curTime = SharedLazyTessellationCache::sharedLazyTessellationCache.getTime(commitCounter);
+ const bool allAllocationsValid = SharedLazyTessellationCache::validTime(time,curTime);
+
+ patch = allAllocationsValid ? patch : nullptr;
+
+ /* use cached data structure for calculations */
+ const vbool valid1 = patch ? eval(valid0,patch,u,v,1.0f,0) : vbool(false);
+ SharedLazyTessellationCache::unlock();
+ const vbool valid2 = valid0 & !valid1;
+ if (any(valid2)) {
+ FeatureAdaptiveEvalSimd<vbool,vint,vfloat,Vertex,Vertex_t>(edge,vertices,stride,valid2,u,v,P,dPdu,dPdv,ddPdudu,ddPdvdv,ddPdudv,dstride,N);
+ }
+ }
+
+ vbool eval_quad(const vbool& valid, const typename Patch::SubdividedQuadPatch* This, const vfloat& u, const vfloat& v, const float dscale, const size_t depth)
+ {
+ vbool ret = false;
+ const vbool u0_mask = u < 0.5f, u1_mask = u >= 0.5f;
+ const vbool v0_mask = v < 0.5f, v1_mask = v >= 0.5f;
+ const vbool u0v0_mask = valid & u0_mask & v0_mask;
+ const vbool u0v1_mask = valid & u0_mask & v1_mask;
+ const vbool u1v0_mask = valid & u1_mask & v0_mask;
+ const vbool u1v1_mask = valid & u1_mask & v1_mask;
+ if (any(u0v0_mask)) ret |= eval(u0v0_mask,This->child[0],2.0f*u,2.0f*v,2.0f*dscale,depth+1);
+ if (any(u1v0_mask)) ret |= eval(u1v0_mask,This->child[1],2.0f*u-1.0f,2.0f*v,2.0f*dscale,depth+1);
+ if (any(u1v1_mask)) ret |= eval(u1v1_mask,This->child[2],2.0f*u-1.0f,2.0f*v-1.0f,2.0f*dscale,depth+1);
+ if (any(u0v1_mask)) ret |= eval(u0v1_mask,This->child[3],2.0f*u,2.0f*v-1.0f,2.0f*dscale,depth+1);
+ return ret;
+ }
+
+ vbool eval_general(const vbool& valid, const typename Patch::SubdividedGeneralPatch* patch, const vfloat& U, const vfloat& V, const size_t depth)
+ {
+ vbool ret = false;
+ const vint l = (vint)floor(0.5f*U); const vfloat u = 2.0f*frac(0.5f*U)-0.5f;
+ const vint h = (vint)floor(0.5f*V); const vfloat v = 2.0f*frac(0.5f*V)-0.5f;
+ const vint i = (h<<2)+l; assert(all(valid,i<patch->N));
+ foreach_unique(valid,i,[&](const vbool& valid, const int i) {
+ ret |= eval(valid,patch->child[i],u,v,1.0f,depth+1);
+ });
+ return ret;
+ }
+
+ vbool eval(const vbool& valid, Ref This, const vfloat& u, const vfloat& v, const float dscale, const size_t depth)
+ {
+ if (!This) return false;
+ switch (This.type())
+ {
+ case Patch::BILINEAR_PATCH: {
+ ((typename Patch::BilinearPatch*)This.object())->patch.eval(valid,u,v,P,dPdu,dPdv,ddPdudu,ddPdvdv,ddPdudv,dscale,dstride,N);
+ return valid;
+ }
+ case Patch::BSPLINE_PATCH: {
+ ((typename Patch::BSplinePatch*)This.object())->patch.eval(valid,u,v,P,dPdu,dPdv,ddPdudu,ddPdvdv,ddPdudv,dscale,dstride,N);
+ return valid;
+ }
+ case Patch::BEZIER_PATCH: {
+ ((typename Patch::BezierPatch*)This.object())->patch.eval(valid,u,v,P,dPdu,dPdv,ddPdudu,ddPdvdv,ddPdudv,dscale,dstride,N);
+ return valid;
+ }
+ case Patch::GREGORY_PATCH: {
+ ((typename Patch::GregoryPatch*)This.object())->patch.eval(valid,u,v,P,dPdu,dPdv,ddPdudu,ddPdvdv,ddPdudv,dscale,dstride,N);
+ return valid;
+ }
+ case Patch::SUBDIVIDED_QUAD_PATCH: {
+ return eval_quad(valid,((typename Patch::SubdividedQuadPatch*)This.object()),u,v,dscale,depth);
+ }
+ case Patch::SUBDIVIDED_GENERAL_PATCH: {
+ assert(dscale == 1.0f);
+ return eval_general(valid,((typename Patch::SubdividedGeneralPatch*)This.object()),u,v,depth);
+ }
+ case Patch::EVAL_PATCH: {
+ CatmullClarkPatch patch; patch.deserialize(This.object());
+ FeatureAdaptiveEvalSimd<vbool,vint,vfloat,Vertex,Vertex_t>(patch,valid,u,v,dscale,depth,P,dPdu,dPdv,ddPdudu,ddPdvdv,ddPdudv,dstride,N);
+ return valid;
+ }
+ default:
+ assert(false);
+ return false;
+ }
+ }
+
+ private:
+ float* const P;
+ float* const dPdu;
+ float* const dPdv;
+ float* const ddPdudu;
+ float* const ddPdvdv;
+ float* const ddPdudv;
+ const size_t dstride;
+ const size_t N;
+ };
+ }
+}
diff --git a/thirdparty/embree-aarch64/kernels/subdiv/subdivpatch1base.h b/thirdparty/embree-aarch64/kernels/subdiv/subdivpatch1base.h
new file mode 100644
index 0000000000..d5bc403cca
--- /dev/null
+++ b/thirdparty/embree-aarch64/kernels/subdiv/subdivpatch1base.h
@@ -0,0 +1,156 @@
+// Copyright 2009-2020 Intel Corporation
+// SPDX-License-Identifier: Apache-2.0
+
+#pragma once
+
+#include "../geometry/primitive.h"
+#include "bspline_patch.h"
+#include "bezier_patch.h"
+#include "gregory_patch.h"
+#include "gregory_patch_dense.h"
+#include "tessellation.h"
+#include "tessellation_cache.h"
+#include "gridrange.h"
+#include "patch_eval_grid.h"
+#include "feature_adaptive_eval_grid.h"
+#include "../common/scene_subdiv_mesh.h"
+
+namespace embree
+{
+ struct __aligned(64) SubdivPatch1Base
+ {
+ public:
+
+ enum Type {
+ INVALID_PATCH = 0,
+ BSPLINE_PATCH = 1,
+ BEZIER_PATCH = 2,
+ GREGORY_PATCH = 3,
+ EVAL_PATCH = 5,
+ BILINEAR_PATCH = 6,
+ };
+
+ enum Flags {
+ TRANSITION_PATCH = 16,
+ };
+
+ /*! Default constructor. */
+ __forceinline SubdivPatch1Base () {}
+
+ SubdivPatch1Base (const unsigned int gID,
+ const unsigned int pID,
+ const unsigned int subPatch,
+ const SubdivMesh *const mesh,
+ const size_t time,
+ const Vec2f uv[4],
+ const float edge_level[4],
+ const int subdiv[4],
+ const int simd_width);
+
+ __forceinline bool needsStitching() const {
+ return flags & TRANSITION_PATCH;
+ }
+
+ __forceinline Vec2f getUV(const size_t i) const {
+ return Vec2f((float)u[i],(float)v[i]) * (8.0f/0x10000);
+ }
+
+ static void computeEdgeLevels(const float edge_level[4], const int subdiv[4], float level[4]);
+ static Vec2i computeGridSize(const float level[4]);
+ bool updateEdgeLevels(const float edge_level[4], const int subdiv[4], const SubdivMesh *const mesh, const int simd_width);
+
+ public:
+
+ __forceinline size_t getGridBytes() const {
+ const size_t grid_size_xyzuv = (grid_size_simd_blocks * VSIZEX) * 4;
+ return 64*((grid_size_xyzuv+15) / 16);
+ }
+
+ __forceinline void write_lock() { mtx.lock(); }
+ __forceinline void write_unlock() { mtx.unlock(); }
+ __forceinline bool try_write_lock() { return mtx.try_lock(); }
+ //__forceinline bool try_read_lock() { return mtx.try_read_lock(); }
+
+ __forceinline void resetRootRef() {
+ //assert( mtx.hasInitialState() );
+ root_ref = SharedLazyTessellationCache::Tag();
+ }
+
+ __forceinline SharedLazyTessellationCache::CacheEntry& entry() {
+ return (SharedLazyTessellationCache::CacheEntry&) root_ref;
+ }
+
+ public:
+ __forceinline unsigned int geomID() const {
+ return geom;
+ }
+
+ __forceinline unsigned int primID() const {
+ return prim;
+ }
+
+ public:
+ SharedLazyTessellationCache::Tag root_ref;
+ SpinLock mtx;
+
+ unsigned short u[4]; //!< 16bit discretized u,v coordinates
+ unsigned short v[4];
+ float level[4];
+
+ unsigned char flags;
+ unsigned char type;
+ unsigned short grid_u_res;
+ unsigned int geom; //!< geometry ID of the subdivision mesh this patch belongs to
+ unsigned int prim; //!< primitive ID of this subdivision patch
+ unsigned short grid_v_res;
+
+ unsigned short grid_size_simd_blocks;
+ unsigned int time_;
+
+ struct PatchHalfEdge {
+ const HalfEdge* edge;
+ unsigned subPatch;
+ };
+
+ Vec3fa patch_v[4][4];
+
+ const HalfEdge *edge() const { return ((PatchHalfEdge*)patch_v)->edge; }
+ unsigned time() const { return time_; }
+ unsigned subPatch() const { return ((PatchHalfEdge*)patch_v)->subPatch; }
+
+ void set_edge(const HalfEdge *h) const { ((PatchHalfEdge*)patch_v)->edge = h; }
+ void set_subPatch(const unsigned s) const { ((PatchHalfEdge*)patch_v)->subPatch = s; }
+ };
+
+ namespace isa
+ {
+ Vec3fa patchEval(const SubdivPatch1Base& patch, const float uu, const float vv);
+ Vec3fa patchNormal(const SubdivPatch1Base& patch, const float uu, const float vv);
+
+ template<typename simdf>
+ Vec3<simdf> patchEval(const SubdivPatch1Base& patch, const simdf& uu, const simdf& vv);
+
+ template<typename simdf>
+ Vec3<simdf> patchNormal(const SubdivPatch1Base& patch, const simdf& uu, const simdf& vv);
+
+
+ /* eval grid over patch and stich edges when required */
+ void evalGrid(const SubdivPatch1Base& patch,
+ const unsigned x0, const unsigned x1,
+ const unsigned y0, const unsigned y1,
+ const unsigned swidth, const unsigned sheight,
+ float *__restrict__ const grid_x,
+ float *__restrict__ const grid_y,
+ float *__restrict__ const grid_z,
+ float *__restrict__ const grid_u,
+ float *__restrict__ const grid_v,
+ const SubdivMesh* const geom);
+
+ /* eval grid over patch and stich edges when required */
+ BBox3fa evalGridBounds(const SubdivPatch1Base& patch,
+ const unsigned x0, const unsigned x1,
+ const unsigned y0, const unsigned y1,
+ const unsigned swidth, const unsigned sheight,
+ const SubdivMesh* const geom);
+ }
+}
diff --git a/thirdparty/embree-aarch64/kernels/subdiv/tessellation.h b/thirdparty/embree-aarch64/kernels/subdiv/tessellation.h
new file mode 100644
index 0000000000..bda1e2d559
--- /dev/null
+++ b/thirdparty/embree-aarch64/kernels/subdiv/tessellation.h
@@ -0,0 +1,161 @@
+// Copyright 2009-2020 Intel Corporation
+// SPDX-License-Identifier: Apache-2.0
+
+#pragma once
+
+namespace embree
+{
+ /* adjust discret tessellation level for feature-adaptive pre-subdivision */
+ __forceinline float adjustTessellationLevel(float l, const size_t sublevel)
+ {
+ for (size_t i=0; i<sublevel; i++) l *= 0.5f;
+ float r = ceilf(l);
+ for (size_t i=0; i<sublevel; i++) r *= 2.0f;
+ return r;
+ }
+
+ __forceinline int stitch(const int x, const int fine, const int coarse) {
+ return (2*x+1)*coarse/(2*fine);
+ }
+
+ __forceinline void stitchGridEdges(const unsigned int low_rate,
+ const unsigned int high_rate,
+ const unsigned int x0,
+ const unsigned int x1,
+ float * __restrict__ const uv_array,
+ const unsigned int uv_array_step)
+ {
+#if 1
+ const float inv_low_rate = rcp((float)(low_rate-1));
+ for (unsigned x=x0; x<=x1; x++) {
+ uv_array[(x-x0)*uv_array_step] = float(stitch(x,high_rate-1,low_rate-1))*inv_low_rate;
+ }
+ if (unlikely(x1 == high_rate-1))
+ uv_array[(x1-x0)*uv_array_step] = 1.0f;
+#else
+ assert(low_rate < high_rate);
+ assert(high_rate >= 2);
+
+ const float inv_low_rate = rcp((float)(low_rate-1));
+ const unsigned int dy = low_rate - 1;
+ const unsigned int dx = high_rate - 1;
+
+ int p = 2*dy-dx;
+
+ unsigned int offset = 0;
+ unsigned int y = 0;
+ float value = 0.0f;
+ for(unsigned int x=0;x<high_rate-1; x++) // '<=' would be correct but we will leave the 1.0f at the end
+ {
+ uv_array[offset] = value;
+
+ offset += uv_array_step;
+ if (unlikely(p > 0))
+ {
+ y++;
+ value = (float)y * inv_low_rate;
+ p -= 2*dx;
+ }
+ p += 2*dy;
+ }
+#endif
+ }
+
+ __forceinline void stitchUVGrid(const float edge_levels[4],
+ const unsigned int swidth,
+ const unsigned int sheight,
+ const unsigned int x0,
+ const unsigned int y0,
+ const unsigned int grid_u_res,
+ const unsigned int grid_v_res,
+ float * __restrict__ const u_array,
+ float * __restrict__ const v_array)
+ {
+ const unsigned int x1 = x0+grid_u_res-1;
+ const unsigned int y1 = y0+grid_v_res-1;
+ const unsigned int int_edge_points0 = (unsigned int)edge_levels[0] + 1;
+ const unsigned int int_edge_points1 = (unsigned int)edge_levels[1] + 1;
+ const unsigned int int_edge_points2 = (unsigned int)edge_levels[2] + 1;
+ const unsigned int int_edge_points3 = (unsigned int)edge_levels[3] + 1;
+
+ if (unlikely(y0 == 0 && int_edge_points0 < swidth))
+ stitchGridEdges(int_edge_points0,swidth,x0,x1,u_array,1);
+
+ if (unlikely(y1 == sheight-1 && int_edge_points2 < swidth))
+ stitchGridEdges(int_edge_points2,swidth,x0,x1,&u_array[(grid_v_res-1)*grid_u_res],1);
+
+ if (unlikely(x0 == 0 && int_edge_points1 < sheight))
+ stitchGridEdges(int_edge_points1,sheight,y0,y1,&v_array[grid_u_res-1],grid_u_res);
+
+ if (unlikely(x1 == swidth-1 && int_edge_points3 < sheight))
+ stitchGridEdges(int_edge_points3,sheight,y0,y1,v_array,grid_u_res);
+ }
+
+ __forceinline void gridUVTessellator(const float edge_levels[4],
+ const unsigned int swidth,
+ const unsigned int sheight,
+ const unsigned int x0,
+ const unsigned int y0,
+ const unsigned int grid_u_res,
+ const unsigned int grid_v_res,
+ float * __restrict__ const u_array,
+ float * __restrict__ const v_array)
+ {
+ assert( grid_u_res >= 1);
+ assert( grid_v_res >= 1);
+ assert( edge_levels[0] >= 1.0f );
+ assert( edge_levels[1] >= 1.0f );
+ assert( edge_levels[2] >= 1.0f );
+ assert( edge_levels[3] >= 1.0f );
+
+#if defined(__AVX__)
+ const vint8 grid_u_segments = vint8(swidth)-1;
+ const vint8 grid_v_segments = vint8(sheight)-1;
+
+ const vfloat8 inv_grid_u_segments = rcp(vfloat8(grid_u_segments));
+ const vfloat8 inv_grid_v_segments = rcp(vfloat8(grid_v_segments));
+
+ unsigned int index = 0;
+ vint8 v_i( zero );
+ for (unsigned int y=0;y<grid_v_res;y++,index+=grid_u_res,v_i += 1)
+ {
+ vint8 u_i ( step );
+
+ const vbool8 m_v = v_i < grid_v_segments;
+
+ for (unsigned int x=0;x<grid_u_res;x+=8, u_i += 8)
+ {
+ const vbool8 m_u = u_i < grid_u_segments;
+ const vfloat8 u = select(m_u, vfloat8(x0+u_i) * inv_grid_u_segments, 1.0f);
+ const vfloat8 v = select(m_v, vfloat8(y0+v_i) * inv_grid_v_segments, 1.0f);
+ vfloat8::storeu(&u_array[index + x],u);
+ vfloat8::storeu(&v_array[index + x],v);
+ }
+ }
+ #else
+ const vint4 grid_u_segments = vint4(swidth)-1;
+ const vint4 grid_v_segments = vint4(sheight)-1;
+
+ const vfloat4 inv_grid_u_segments = rcp(vfloat4(grid_u_segments));
+ const vfloat4 inv_grid_v_segments = rcp(vfloat4(grid_v_segments));
+
+ unsigned int index = 0;
+ vint4 v_i( zero );
+ for (unsigned int y=0;y<grid_v_res;y++,index+=grid_u_res,v_i += 1)
+ {
+ vint4 u_i ( step );
+
+ const vbool4 m_v = v_i < grid_v_segments;
+
+ for (unsigned int x=0;x<grid_u_res;x+=4, u_i += 4)
+ {
+ const vbool4 m_u = u_i < grid_u_segments;
+ const vfloat4 u = select(m_u, vfloat4(x0+u_i) * inv_grid_u_segments, 1.0f);
+ const vfloat4 v = select(m_v, vfloat4(y0+v_i) * inv_grid_v_segments, 1.0f);
+ vfloat4::storeu(&u_array[index + x],u);
+ vfloat4::storeu(&v_array[index + x],v);
+ }
+ }
+#endif
+ }
+}
diff --git a/thirdparty/embree-aarch64/kernels/subdiv/tessellation_cache.h b/thirdparty/embree-aarch64/kernels/subdiv/tessellation_cache.h
new file mode 100644
index 0000000000..5c215288b6
--- /dev/null
+++ b/thirdparty/embree-aarch64/kernels/subdiv/tessellation_cache.h
@@ -0,0 +1,325 @@
+// Copyright 2009-2020 Intel Corporation
+// SPDX-License-Identifier: Apache-2.0
+
+#pragma once
+
+#include "../common/default.h"
+
+/* force a complete cache invalidation when running out of allocation space */
+#define FORCE_SIMPLE_FLUSH 0
+
+#define THREAD_BLOCK_ATOMIC_ADD 4
+
+#if defined(DEBUG)
+#define CACHE_STATS(x)
+#else
+#define CACHE_STATS(x)
+#endif
+
+namespace embree
+{
+ class SharedTessellationCacheStats
+ {
+ public:
+ /* stats */
+ static std::atomic<size_t> cache_accesses;
+ static std::atomic<size_t> cache_hits;
+ static std::atomic<size_t> cache_misses;
+ static std::atomic<size_t> cache_flushes;
+ static size_t cache_num_patches;
+ __aligned(64) static SpinLock mtx;
+
+ /* print stats for debugging */
+ static void printStats();
+ static void clearStats();
+ };
+
+ void resizeTessellationCache(size_t new_size);
+ void resetTessellationCache();
+
+ ////////////////////////////////////////////////////////////////////////////////
+ ////////////////////////////////////////////////////////////////////////////////
+ ////////////////////////////////////////////////////////////////////////////////
+
+ struct __aligned(64) ThreadWorkState
+ {
+ ALIGNED_STRUCT_(64);
+
+ std::atomic<size_t> counter;
+ ThreadWorkState* next;
+ bool allocated;
+
+ __forceinline ThreadWorkState(bool allocated = false)
+ : counter(0), next(nullptr), allocated(allocated)
+ {
+ assert( ((size_t)this % 64) == 0 );
+ }
+ };
+
+ class __aligned(64) SharedLazyTessellationCache
+ {
+ public:
+
+ static const size_t NUM_CACHE_SEGMENTS = 8;
+ static const size_t NUM_PREALLOC_THREAD_WORK_STATES = 512;
+ static const size_t COMMIT_INDEX_SHIFT = 32+8;
+#if defined(__X86_64__) || defined(__aarch64__)
+ static const size_t REF_TAG_MASK = 0xffffffffff;
+#else
+ static const size_t REF_TAG_MASK = 0x7FFFFFFF;
+#endif
+ static const size_t MAX_TESSELLATION_CACHE_SIZE = REF_TAG_MASK+1;
+ static const size_t BLOCK_SIZE = 64;
+
+
+ /*! Per thread tessellation ref cache */
+ static __thread ThreadWorkState* init_t_state;
+ static ThreadWorkState* current_t_state;
+
+ static __forceinline ThreadWorkState *threadState()
+ {
+ if (unlikely(!init_t_state))
+ /* sets init_t_state, can't return pointer due to macosx icc bug*/
+ SharedLazyTessellationCache::sharedLazyTessellationCache.getNextRenderThreadWorkState();
+ return init_t_state;
+ }
+
+ struct Tag
+ {
+ __forceinline Tag() : data(0) {}
+
+ __forceinline Tag(void* ptr, size_t combinedTime) {
+ init(ptr,combinedTime);
+ }
+
+ __forceinline Tag(size_t ptr, size_t combinedTime) {
+ init((void*)ptr,combinedTime);
+ }
+
+ __forceinline void init(void* ptr, size_t combinedTime)
+ {
+ if (ptr == nullptr) {
+ data = 0;
+ return;
+ }
+ int64_t new_root_ref = (int64_t) ptr;
+ new_root_ref -= (int64_t)SharedLazyTessellationCache::sharedLazyTessellationCache.getDataPtr();
+ assert( new_root_ref <= (int64_t)REF_TAG_MASK );
+ new_root_ref |= (int64_t)combinedTime << COMMIT_INDEX_SHIFT;
+ data = new_root_ref;
+ }
+
+ __forceinline int64_t get() const { return data.load(); }
+ __forceinline void set( int64_t v ) { data.store(v); }
+ __forceinline void reset() { data.store(0); }
+
+ private:
+ atomic<int64_t> data;
+ };
+
+ static __forceinline size_t extractCommitIndex(const int64_t v) { return v >> SharedLazyTessellationCache::COMMIT_INDEX_SHIFT; }
+
+ struct CacheEntry
+ {
+ Tag tag;
+ SpinLock mutex;
+ };
+
+ private:
+
+ float *data;
+ bool hugepages;
+ size_t size;
+ size_t maxBlocks;
+ ThreadWorkState *threadWorkState;
+
+ __aligned(64) std::atomic<size_t> localTime;
+ __aligned(64) std::atomic<size_t> next_block;
+ __aligned(64) SpinLock reset_state;
+ __aligned(64) SpinLock linkedlist_mtx;
+ __aligned(64) std::atomic<size_t> switch_block_threshold;
+ __aligned(64) std::atomic<size_t> numRenderThreads;
+
+
+ public:
+
+
+ SharedLazyTessellationCache();
+ ~SharedLazyTessellationCache();
+
+ void getNextRenderThreadWorkState();
+
+ __forceinline size_t maxAllocSize() const {
+ return switch_block_threshold;
+ }
+
+ __forceinline size_t getCurrentIndex() { return localTime.load(); }
+ __forceinline void addCurrentIndex(const size_t i=1) { localTime.fetch_add(i); }
+
+ __forceinline size_t getTime(const size_t globalTime) {
+ return localTime.load()+NUM_CACHE_SEGMENTS*globalTime;
+ }
+
+
+ __forceinline size_t lockThread (ThreadWorkState *const t_state, const ssize_t plus=1) { return t_state->counter.fetch_add(plus); }
+ __forceinline size_t unlockThread(ThreadWorkState *const t_state, const ssize_t plus=-1) { assert(isLocked(t_state)); return t_state->counter.fetch_add(plus); }
+
+ __forceinline bool isLocked(ThreadWorkState *const t_state) { return t_state->counter.load() != 0; }
+
+ static __forceinline void lock () { sharedLazyTessellationCache.lockThread(threadState()); }
+ static __forceinline void unlock() { sharedLazyTessellationCache.unlockThread(threadState()); }
+ static __forceinline bool isLocked() { return sharedLazyTessellationCache.isLocked(threadState()); }
+ static __forceinline size_t getState() { return threadState()->counter.load(); }
+ static __forceinline void lockThreadLoop() { sharedLazyTessellationCache.lockThreadLoop(threadState()); }
+
+ static __forceinline size_t getTCacheTime(const size_t globalTime) {
+ return sharedLazyTessellationCache.getTime(globalTime);
+ }
+
+ /* per thread lock */
+ __forceinline void lockThreadLoop (ThreadWorkState *const t_state)
+ {
+ while(1)
+ {
+ size_t lock = SharedLazyTessellationCache::sharedLazyTessellationCache.lockThread(t_state,1);
+ if (unlikely(lock >= THREAD_BLOCK_ATOMIC_ADD))
+ {
+ /* lock failed wait until sync phase is over */
+ sharedLazyTessellationCache.unlockThread(t_state,-1);
+ sharedLazyTessellationCache.waitForUsersLessEqual(t_state,0);
+ }
+ else
+ break;
+ }
+ }
+
+ static __forceinline void* lookup(CacheEntry& entry, size_t globalTime)
+ {
+ const int64_t subdiv_patch_root_ref = entry.tag.get();
+ CACHE_STATS(SharedTessellationCacheStats::cache_accesses++);
+
+ if (likely(subdiv_patch_root_ref != 0))
+ {
+ const size_t subdiv_patch_root = (subdiv_patch_root_ref & REF_TAG_MASK) + (size_t)sharedLazyTessellationCache.getDataPtr();
+ const size_t subdiv_patch_cache_index = extractCommitIndex(subdiv_patch_root_ref);
+
+ if (likely( sharedLazyTessellationCache.validCacheIndex(subdiv_patch_cache_index,globalTime) ))
+ {
+ CACHE_STATS(SharedTessellationCacheStats::cache_hits++);
+ return (void*) subdiv_patch_root;
+ }
+ }
+ CACHE_STATS(SharedTessellationCacheStats::cache_misses++);
+ return nullptr;
+ }
+
+ template<typename Constructor>
+ static __forceinline auto lookup (CacheEntry& entry, size_t globalTime, const Constructor constructor, const bool before=false) -> decltype(constructor())
+ {
+ ThreadWorkState *t_state = SharedLazyTessellationCache::threadState();
+
+ while (true)
+ {
+ sharedLazyTessellationCache.lockThreadLoop(t_state);
+ void* patch = SharedLazyTessellationCache::lookup(entry,globalTime);
+ if (patch) return (decltype(constructor())) patch;
+
+ if (entry.mutex.try_lock())
+ {
+ if (!validTag(entry.tag,globalTime))
+ {
+ auto timeBefore = sharedLazyTessellationCache.getTime(globalTime);
+ auto ret = constructor(); // thread is locked here!
+ assert(ret);
+ /* this should never return nullptr */
+ auto timeAfter = sharedLazyTessellationCache.getTime(globalTime);
+ auto time = before ? timeBefore : timeAfter;
+ __memory_barrier();
+ entry.tag = SharedLazyTessellationCache::Tag(ret,time);
+ __memory_barrier();
+ entry.mutex.unlock();
+ return ret;
+ }
+ entry.mutex.unlock();
+ }
+ SharedLazyTessellationCache::sharedLazyTessellationCache.unlockThread(t_state);
+ }
+ }
+
+ __forceinline bool validCacheIndex(const size_t i, const size_t globalTime)
+ {
+#if FORCE_SIMPLE_FLUSH == 1
+ return i == getTime(globalTime);
+#else
+ return i+(NUM_CACHE_SEGMENTS-1) >= getTime(globalTime);
+#endif
+ }
+
+ static __forceinline bool validTime(const size_t oldtime, const size_t newTime)
+ {
+ return oldtime+(NUM_CACHE_SEGMENTS-1) >= newTime;
+ }
+
+
+ static __forceinline bool validTag(const Tag& tag, size_t globalTime)
+ {
+ const int64_t subdiv_patch_root_ref = tag.get();
+ if (subdiv_patch_root_ref == 0) return false;
+ const size_t subdiv_patch_cache_index = extractCommitIndex(subdiv_patch_root_ref);
+ return sharedLazyTessellationCache.validCacheIndex(subdiv_patch_cache_index,globalTime);
+ }
+
+ void waitForUsersLessEqual(ThreadWorkState *const t_state,
+ const unsigned int users);
+
+ __forceinline size_t alloc(const size_t blocks)
+ {
+ if (unlikely(blocks >= switch_block_threshold))
+ throw_RTCError(RTC_ERROR_INVALID_OPERATION,"allocation exceeds size of tessellation cache segment");
+
+ assert(blocks < switch_block_threshold);
+ size_t index = next_block.fetch_add(blocks);
+ if (unlikely(index + blocks >= switch_block_threshold)) return (size_t)-1;
+ return index;
+ }
+
+ static __forceinline void* malloc(const size_t bytes)
+ {
+ size_t block_index = -1;
+ ThreadWorkState *const t_state = threadState();
+ while (true)
+ {
+ block_index = sharedLazyTessellationCache.alloc((bytes+BLOCK_SIZE-1)/BLOCK_SIZE);
+ if (block_index == (size_t)-1)
+ {
+ sharedLazyTessellationCache.unlockThread(t_state);
+ sharedLazyTessellationCache.allocNextSegment();
+ sharedLazyTessellationCache.lockThread(t_state);
+ continue;
+ }
+ break;
+ }
+ return sharedLazyTessellationCache.getBlockPtr(block_index);
+ }
+
+ __forceinline void *getBlockPtr(const size_t block_index)
+ {
+ assert(block_index < maxBlocks);
+ assert(data);
+ assert(block_index*16 <= size);
+ return (void*)&data[block_index*16];
+ }
+
+ __forceinline void* getDataPtr() { return data; }
+ __forceinline size_t getNumUsedBytes() { return next_block * BLOCK_SIZE; }
+ __forceinline size_t getMaxBlocks() { return maxBlocks; }
+ __forceinline size_t getSize() { return size; }
+
+ void allocNextSegment();
+ void realloc(const size_t newSize);
+
+ void reset();
+
+ static SharedLazyTessellationCache sharedLazyTessellationCache;
+ };
+}