diff options
author | jfons <joan.fonssanchez@gmail.com> | 2021-04-20 18:38:09 +0200 |
---|---|---|
committer | jfons <joan.fonssanchez@gmail.com> | 2021-04-23 15:57:28 +0200 |
commit | 34b3e8f9e2ae076990ecf3b2827eff759ba2abf9 (patch) | |
tree | 854a526a5ba2d6128e44d995d1bc138cf84ee722 /thirdparty/embree-aarch64/kernels/geometry/roundline_intersector.h | |
parent | eeccab26c5641409092547e02ad11e6253ac1b87 (diff) |
Add Embree-aarch64 thirdparty library
Diffstat (limited to 'thirdparty/embree-aarch64/kernels/geometry/roundline_intersector.h')
-rw-r--r-- | thirdparty/embree-aarch64/kernels/geometry/roundline_intersector.h | 710 |
1 files changed, 710 insertions, 0 deletions
diff --git a/thirdparty/embree-aarch64/kernels/geometry/roundline_intersector.h b/thirdparty/embree-aarch64/kernels/geometry/roundline_intersector.h new file mode 100644 index 0000000000..cdf68f486b --- /dev/null +++ b/thirdparty/embree-aarch64/kernels/geometry/roundline_intersector.h @@ -0,0 +1,710 @@ +// Copyright 2009-2020 Intel Corporation +// SPDX-License-Identifier: Apache-2.0 + +#pragma once + +#include "../common/ray.h" +#include "curve_intersector_precalculations.h" + + +/* + + This file implements the intersection of a ray with a round linear + curve segment. We define the geometry of such a round linear curve + segment from point p0 with radius r0 to point p1 with radius r1 + using the cone that touches spheres p0/r0 and p1/r1 tangentially + plus the sphere p1/r1. We denote the tangentially touching cone from + p0/r0 to p1/r1 with cone(p0,r0,p1,r1) and the cone plus the ending + sphere with cone_sphere(p0,r0,p1,r1). + + For multiple connected round linear curve segments this construction + yield a proper shape when viewed from the outside. Using the + following CSG we can also handle the interiour in most common cases: + + round_linear_curve(pl,rl,p0,r0,p1,r1,pr,rr) = + cone_sphere(p0,r0,p1,r1) - cone(pl,rl,p0,r0) - cone(p1,r1,pr,rr) + + Thus by subtracting the neighboring cone geometries, we cut away + parts of the center cone_sphere surface which lie inside the + combined curve. This approach works as long as geometry of the + current cone_sphere penetrates into direct neighbor segments only, + and not into segments further away. + + To construct a cone that touches two spheres at p0 and p1 with r0 + and r1, one has to increase the cone radius at r0 and r1 to obtain + larger radii w0 and w1, such that the infinite cone properly touches + the spheres. From the paper "Ray Tracing Generalized Tube + Primitives: Method and Applications" + (https://www.researchgate.net/publication/334378683_Ray_Tracing_Generalized_Tube_Primitives_Method_and_Applications) + one can derive the following equations for these increased + radii: + + sr = 1.0f / sqrt(1-sqr(dr)/sqr(p1-p0)) + w0 = sr*r0 + w1 = sr*r1 + + Further, we want the cone to start where it touches the sphere at p0 + and to end where it touches sphere at p1. Therefore, we need to + construct clipping locations y0 and y1 for the start and end of the + cone. These start and end clipping location of the cone can get + calculated as: + + Y0 = - r0 * (r1-r0) / length(p1-p0) + Y1 = length(p1-p0) - r1 * (r1-r0) / length(p1-p0) + + Where the cone starts a distance Y0 and ends a distance Y1 away of + point p0 along the cone center. The distance between Y1-Y0 can get + calculated as: + + dY = length(p1-p0) - (r1-r0)^2 / length(p1-p0) + + In the code below, Y will always be scaled by length(p1-p0) to + obtain y and you will find the terms r0*(r1-r0) and + (p1-p0)^2-(r1-r0)^2. + + */ + +namespace embree +{ + namespace isa + { + template<int M> + struct RoundLineIntersectorHitM + { + __forceinline RoundLineIntersectorHitM() {} + + __forceinline RoundLineIntersectorHitM(const vfloat<M>& u, const vfloat<M>& v, const vfloat<M>& t, const Vec3vf<M>& Ng) + : vu(u), vv(v), vt(t), vNg(Ng) {} + + __forceinline void finalize() {} + + __forceinline Vec2f uv (const size_t i) const { return Vec2f(vu[i],vv[i]); } + __forceinline float t (const size_t i) const { return vt[i]; } + __forceinline Vec3fa Ng(const size_t i) const { return Vec3fa(vNg.x[i],vNg.y[i],vNg.z[i]); } + + public: + vfloat<M> vu; + vfloat<M> vv; + vfloat<M> vt; + Vec3vf<M> vNg; + }; + + namespace __roundline_internal + { + template<int M> + struct ConeGeometry + { + ConeGeometry (const Vec4vf<M>& a, const Vec4vf<M>& b) + : p0(a.xyz()), p1(b.xyz()), dP(p1-p0), dPdP(dot(dP,dP)), r0(a.w), sqr_r0(sqr(r0)), r1(b.w), dr(r1-r0), drdr(dr*dr), r0dr (r0*dr), g(dPdP - drdr) {} + + /* + + This function tests if a point is accepted by first cone + clipping plane. + + First, we need to project the point onto the line p0->p1: + + Y = (p-p0)*(p1-p0)/length(p1-p0) + + This value y is the distance to the projection point from + p0. The clip distances are calculated as: + + Y0 = - r0 * (r1-r0) / length(p1-p0) + Y1 = length(p1-p0) - r1 * (r1-r0) / length(p1-p0) + + Thus to test if the point p is accepted by the first + clipping plane we need to test Y > Y0 and to test if it + is accepted by the second clipping plane we need to test + Y < Y1. + + By multiplying the calculations with length(p1-p0) these + calculation can get simplied to: + + y = (p-p0)*(p1-p0) + y0 = - r0 * (r1-r0) + y1 = (p1-p0)^2 - r1 * (r1-r0) + + and the test y > y0 and y < y1. + + */ + + __forceinline vbool<M> isClippedByPlane (const vbool<M>& valid_i, const Vec3vf<M>& p) const + { + const Vec3vf<M> p0p = p - p0; + const vfloat<M> y = dot(p0p,dP); + const vfloat<M> cap0 = -r0dr; + const vbool<M> inside_cone = y > cap0; + return valid_i & (p0.x != vfloat<M>(inf)) & (p1.x != vfloat<M>(inf)) & inside_cone; + } + + /* + + This function tests whether a point lies inside the capped cone + tangential to its ending spheres. + + Therefore one has to check if the point is inside the + region defined by the cone clipping planes, which is + performed similar as in the previous function. + + To perform the inside cone test we need to project the + point onto the line p0->p1: + + dP = p1-p0 + Y = (p-p0)*dP/length(dP) + + This value Y is the distance to the projection point from + p0. To obtain a parameter value u going from 0 to 1 along + the line p0->p1 we calculate: + + U = Y/length(dP) + + The radii to use at points p0 and p1 are: + + w0 = sr * r0 + w1 = sr * r1 + dw = w1-w0 + + Using these radii and u one can directly test if the point + lies inside the cone using the formula dP*dP < wy*wy with: + + wy = w0 + u*dw + py = p0 + u*dP - p + + By multiplying the calculations with length(p1-p0) and + inserting the definition of w can obtain simpler equations: + + y = (p-p0)*dP + ry = r0 + y/dP^2 * dr + wy = sr*ry + py = p0 + y/dP^2*dP - p + y0 = - r0 * dr + y1 = dP^2 - r1 * dr + + Thus for the in-cone test we get: + + py^2 < wy^2 + <=> py^2 < sr^2 * ry^2 + <=> py^2 * ( dP^2 - dr^2 ) < dP^2 * ry^2 + + This can further get simplified to: + + (p0-p)^2 * (dP^2 - dr^2) - y^2 < dP^2 * r0^2 + 2.0f*r0*dr*y; + + */ + + __forceinline vbool<M> isInsideCappedCone (const vbool<M>& valid_i, const Vec3vf<M>& p) const + { + const Vec3vf<M> p0p = p - p0; + const vfloat<M> y = dot(p0p,dP); + const vfloat<M> cap0 = -r0dr+vfloat<M>(ulp); + const vfloat<M> cap1 = -r1*dr + dPdP; + + vbool<M> inside_cone = valid_i & (p0.x != vfloat<M>(inf)) & (p1.x != vfloat<M>(inf)); + inside_cone &= y > cap0; // start clipping plane + inside_cone &= y < cap1; // end clipping plane + inside_cone &= sqr(p0p)*g - sqr(y) < dPdP * sqr_r0 + 2.0f*r0dr*y; // in cone test + return inside_cone; + } + + protected: + Vec3vf<M> p0; + Vec3vf<M> p1; + Vec3vf<M> dP; + vfloat<M> dPdP; + vfloat<M> r0; + vfloat<M> sqr_r0; + vfloat<M> r1; + vfloat<M> dr; + vfloat<M> drdr; + vfloat<M> r0dr; + vfloat<M> g; + }; + + template<int M> + struct ConeGeometryIntersector : public ConeGeometry<M> + { + using ConeGeometry<M>::p0; + using ConeGeometry<M>::p1; + using ConeGeometry<M>::dP; + using ConeGeometry<M>::dPdP; + using ConeGeometry<M>::r0; + using ConeGeometry<M>::sqr_r0; + using ConeGeometry<M>::r1; + using ConeGeometry<M>::dr; + using ConeGeometry<M>::r0dr; + using ConeGeometry<M>::g; + + ConeGeometryIntersector (const Vec3vf<M>& ray_org, const Vec3vf<M>& ray_dir, const vfloat<M>& dOdO, const vfloat<M>& rcp_dOdO, const Vec4vf<M>& a, const Vec4vf<M>& b) + : ConeGeometry<M>(a,b), org(ray_org), O(ray_org-p0), dO(ray_dir), dOdO(dOdO), rcp_dOdO(rcp_dOdO), OdP(dot(dP,O)), dOdP(dot(dP,dO)), yp(OdP + r0dr) {} + + /* + + This function intersects a ray with a cone that touches a + start sphere p0/r0 and end sphere p1/r1. + + To find this ray/cone intersections one could just + calculate radii w0 and w1 as described above and use a + standard ray/cone intersection routine with these + radii. However, it turns out that calculations can get + simplified when deriving a specialized ray/cone + intersection for this special case. We perform + calculations relative to the cone origin p0 and define: + + O = ray_org - p0 + dO = ray_dir + dP = p1-p0 + dr = r1-r0 + dw = w1-w0 + + For some t we can compute the potential hit point h = O + t*dO and + project it onto the cone vector dP to obtain u = (h*dP)/(dP*dP). In + case of an intersection, the squared distance from the hit point + projected onto the cone center line to the hit point should be equal + to the squared cone radius at u: + + (u*dP - h)^2 = (w0 + u*dw)^2 + + Inserting the definition of h, u, w0, and dw into this formula, then + factoring out all terms, and sorting by t^2, t^1, and t^0 terms + yields a quadratic equation to solve. + + Inserting u: + ( (h*dP)*dP/dP^2 - h )^2 = ( w0 + (h*dP)*dw/dP^2 )^2 + + Multiplying by dP^4: + ( (h*dP)*dP - h*dP^2 )^2 = ( w0*dP^2 + (h*dP)*dw )^2 + + Inserting w0 and dw: + ( (h*dP)*dP - h*dP^2 )^2 = ( r0*dP^2 + (h*dP)*dr )^2 / (1-dr^2/dP^2) + ( (h*dP)*dP - h*dP^2 )^2 *(dP^2 - dr^2) = dP^2 * ( r0*dP^2 + (h*dP)*dr )^2 + + Now one can insert the definition of h, factor out, and presort by t: + ( ((O + t*dO)*dP)*dP - (O + t*dO)*dP^2 )^2 *(dP^2 - dr^2) = dP^2 * ( r0*dP^2 + ((O + t*dO)*dP)*dr )^2 + ( (O*dP)*dP-O*dP^2 + t*( (dO*dP)*dP - dO*dP^2 ) )^2 *(dP^2 - dr^2) = dP^2 * ( r0*dP^2 + (O*dP)*dr + t*(dO*dP)*dr )^2 + + Factoring out further and sorting by t^2, t^1 and t^0 yields: + + 0 = t^2 * [ ((dO*dP)*dP - dO-dP^2)^2 * (dP^2 - dr^2) - dP^2*(dO*dP)^2*dr^2 ] + + 2*t^1 * [ ((O*dP)*dP - O*dP^2) * ((dO*dP)*dP - dO*dP^2) * (dP^2 - dr^2) - dP^2*(r0*dP^2 + (O*dP)*dr)*(dO*dP)*dr ] + + t^0 * [ ( (O*dP)*dP - O*dP^2)^2 * (dP^2-dr^2) - dP^2*(r0*dP^2 + (O*dP)*dr)^2 ] + + This can be simplified to: + + 0 = t^2 * [ (dP^2 - dr^2)*dO^2 - (dO*dP)^2 ] + + 2*t^1 * [ (dP^2 - dr^2)*(O*dO) - (dO*dP)*(O*dP + r0*dr) ] + + t^0 * [ (dP^2 - dr^2)*O^2 - (O*dP)^2 - r0^2*dP^2 - 2.0f*r0*dr*(O*dP) ] + + Solving this quadratic equation yields the values for t at which the + ray intersects the cone. + + */ + + __forceinline bool intersectCone(vbool<M>& valid, vfloat<M>& lower, vfloat<M>& upper) + { + /* return no hit by default */ + lower = pos_inf; + upper = neg_inf; + + /* compute quadratic equation A*t^2 + B*t + C = 0 */ + const vfloat<M> OO = dot(O,O); + const vfloat<M> OdO = dot(dO,O); + const vfloat<M> A = g * dOdO - sqr(dOdP); + const vfloat<M> B = 2.0f * (g*OdO - dOdP*yp); + const vfloat<M> C = g*OO - sqr(OdP) - sqr_r0*dPdP - 2.0f*r0dr*OdP; + + /* we miss the cone if determinant is smaller than zero */ + const vfloat<M> D = B*B - 4.0f*A*C; + valid &= (D >= 0.0f & g > 0.0f); // if g <= 0 then the cone is inside a sphere end + + /* When rays are parallel to the cone surface, then the + * ray may be inside or outside the cone. We just assume a + * miss in that case, which is fine as rays inside the + * cone would anyway hit the ending spheres in that + * case. */ + valid &= abs(A) > min_rcp_input; + if (unlikely(none(valid))) { + return false; + } + + /* compute distance to front and back hit */ + const vfloat<M> Q = sqrt(D); + const vfloat<M> rcp_2A = rcp(2.0f*A); + t_cone_front = (-B-Q)*rcp_2A; + y_cone_front = yp + t_cone_front*dOdP; + lower = select( (y_cone_front > -(float)ulp) & (y_cone_front <= g) & (g > 0.0f), t_cone_front, vfloat<M>(pos_inf)); +#if !defined (EMBREE_BACKFACE_CULLING_CURVES) + t_cone_back = (-B+Q)*rcp_2A; + y_cone_back = yp + t_cone_back *dOdP; + upper = select( (y_cone_back > -(float)ulp) & (y_cone_back <= g) & (g > 0.0f), t_cone_back , vfloat<M>(neg_inf)); +#endif + return true; + } + + /* + This function intersects the ray with the end sphere at + p1. We already clip away hits that are inside the + neighboring cone segment. + + */ + + __forceinline void intersectEndSphere(vbool<M>& valid, + const ConeGeometry<M>& coneR, + vfloat<M>& lower, vfloat<M>& upper) + { + /* calculate front and back hit with end sphere */ + const Vec3vf<M> O1 = org - p1; + const vfloat<M> O1dO = dot(O1,dO); + const vfloat<M> h2 = sqr(O1dO) - dOdO*(sqr(O1) - sqr(r1)); + const vfloat<M> rhs1 = select( h2 >= 0.0f, sqrt(h2), vfloat<M>(neg_inf) ); + + /* clip away front hit if it is inside next cone segment */ + t_sph1_front = (-O1dO - rhs1)*rcp_dOdO; + const Vec3vf<M> hit_front = org + t_sph1_front*dO; + vbool<M> valid_sph1_front = h2 >= 0.0f & yp + t_sph1_front*dOdP > g & !coneR.isClippedByPlane (valid, hit_front); + lower = select(valid_sph1_front, t_sph1_front, vfloat<M>(pos_inf)); + +#if !defined(EMBREE_BACKFACE_CULLING_CURVES) + /* clip away back hit if it is inside next cone segment */ + t_sph1_back = (-O1dO + rhs1)*rcp_dOdO; + const Vec3vf<M> hit_back = org + t_sph1_back*dO; + vbool<M> valid_sph1_back = h2 >= 0.0f & yp + t_sph1_back*dOdP > g & !coneR.isClippedByPlane (valid, hit_back); + upper = select(valid_sph1_back, t_sph1_back, vfloat<M>(neg_inf)); +#else + upper = vfloat<M>(neg_inf); +#endif + } + + __forceinline void intersectBeginSphere(const vbool<M>& valid, + vfloat<M>& lower, vfloat<M>& upper) + { + /* calculate front and back hit with end sphere */ + const Vec3vf<M> O1 = org - p0; + const vfloat<M> O1dO = dot(O1,dO); + const vfloat<M> h2 = sqr(O1dO) - dOdO*(sqr(O1) - sqr(r0)); + const vfloat<M> rhs1 = select( h2 >= 0.0f, sqrt(h2), vfloat<M>(neg_inf) ); + + /* clip away front hit if it is inside next cone segment */ + t_sph0_front = (-O1dO - rhs1)*rcp_dOdO; + vbool<M> valid_sph1_front = valid & h2 >= 0.0f & yp + t_sph0_front*dOdP < 0; + lower = select(valid_sph1_front, t_sph0_front, vfloat<M>(pos_inf)); + +#if !defined(EMBREE_BACKFACE_CULLING_CURVES) + /* clip away back hit if it is inside next cone segment */ + t_sph0_back = (-O1dO + rhs1)*rcp_dOdO; + vbool<M> valid_sph1_back = valid & h2 >= 0.0f & yp + t_sph0_back*dOdP < 0; + upper = select(valid_sph1_back, t_sph0_back, vfloat<M>(neg_inf)); +#else + upper = vfloat<M>(neg_inf); +#endif + } + + /* + + This function calculates the geometry normal of some cone hit. + + For a given hit point h (relative to p0) with a cone + starting at p0 with radius w0 and ending at p1 with + radius w1 one normally calculates the geometry normal by + first calculating the parmetric u hit location along the + cone: + + u = dot(h,dP)/dP^2 + + Using this value one can now directly calculate the + geometry normal by bending the connection vector (h-u*dP) + from hit to projected hit with some cone dependent value + dw/sqrt(dP^2) * normalize(dP): + + Ng = normalize(h-u*dP) - dw/length(dP) * normalize(dP) + + The length of the vector (h-u*dP) can also get calculated + by interpolating the radii as w0+u*dw which yields: + + Ng = (h-u*dP)/(w0+u*dw) - dw/dP^2 * dP + + Multiplying with (w0+u*dw) yield a scaled Ng': + + Ng' = (h-u*dP) - (w0+u*dw)*dw/dP^2*dP + + Inserting the definition of w0 and dw and refactoring + yield a furhter scaled Ng'': + + Ng'' = (dP^2 - dr^2) (h-q) - (r0+u*dr)*dr*dP + + Now inserting the definition of u gives and multiplying + with the denominator yields: + + Ng''' = (dP^2-dr^2)*(dP^2*h-dot(h,dP)*dP) - (dP^2*r0+dot(h,dP)*dr)*dr*dP + + Factoring out, cancelling terms, dividing by dP^2, and + factoring again yields finally: + + Ng'''' = (dP^2-dr^2)*h - dP*(dot(h,dP) + r0*dr) + + */ + + __forceinline Vec3vf<M> Ng_cone(const vbool<M>& front_hit) const + { +#if !defined(EMBREE_BACKFACE_CULLING_CURVES) + const vfloat<M> y = select(front_hit, y_cone_front, y_cone_back); + const vfloat<M> t = select(front_hit, t_cone_front, t_cone_back); + const Vec3vf<M> h = O + t*dO; + return g*h-dP*y; +#else + const Vec3vf<M> h = O + t_cone_front*dO; + return g*h-dP*y_cone_front; +#endif + } + + /* compute geometry normal of sphere hit as the difference + * vector from hit point to sphere center */ + + __forceinline Vec3vf<M> Ng_sphere1(const vbool<M>& front_hit) const + { +#if !defined(EMBREE_BACKFACE_CULLING_CURVES) + const vfloat<M> t_sph1 = select(front_hit, t_sph1_front, t_sph1_back); + return org+t_sph1*dO-p1; +#else + return org+t_sph1_front*dO-p1; +#endif + } + + __forceinline Vec3vf<M> Ng_sphere0(const vbool<M>& front_hit) const + { +#if !defined(EMBREE_BACKFACE_CULLING_CURVES) + const vfloat<M> t_sph0 = select(front_hit, t_sph0_front, t_sph0_back); + return org+t_sph0*dO-p0; +#else + return org+t_sph0_front*dO-p0; +#endif + } + + /* + This function calculates the u coordinate of a + hit. Therefore we use the hit distance y (which is zero + at the first cone clipping plane) and divide by distance + g between the clipping planes. + + */ + + __forceinline vfloat<M> u_cone(const vbool<M>& front_hit) const + { +#if !defined(EMBREE_BACKFACE_CULLING_CURVES) + const vfloat<M> y = select(front_hit, y_cone_front, y_cone_back); + return clamp(y*rcp(g)); +#else + return clamp(y_cone_front*rcp(g)); +#endif + } + + private: + Vec3vf<M> org; + Vec3vf<M> O; + Vec3vf<M> dO; + vfloat<M> dOdO; + vfloat<M> rcp_dOdO; + vfloat<M> OdP; + vfloat<M> dOdP; + + /* for ray/cone intersection */ + private: + vfloat<M> yp; + vfloat<M> y_cone_front; + vfloat<M> t_cone_front; +#if !defined (EMBREE_BACKFACE_CULLING_CURVES) + vfloat<M> y_cone_back; + vfloat<M> t_cone_back; +#endif + + /* for ray/sphere intersection */ + private: + vfloat<M> t_sph1_front; + vfloat<M> t_sph0_front; +#if !defined (EMBREE_BACKFACE_CULLING_CURVES) + vfloat<M> t_sph1_back; + vfloat<M> t_sph0_back; +#endif + }; + + + template<int M, typename Epilog, typename ray_tfar_func> + static __forceinline bool intersectConeSphere(const vbool<M>& valid_i, + const Vec3vf<M>& ray_org_in, const Vec3vf<M>& ray_dir, + const vfloat<M>& ray_tnear, const ray_tfar_func& ray_tfar, + const Vec4vf<M>& v0, const Vec4vf<M>& v1, + const Vec4vf<M>& vL, const Vec4vf<M>& vR, + const Epilog& epilog) + { + vbool<M> valid = valid_i; + + /* move ray origin closer to make calculations numerically stable */ + const vfloat<M> dOdO = sqr(ray_dir); + const vfloat<M> rcp_dOdO = rcp(dOdO); + const Vec3vf<M> center = vfloat<M>(0.5f)*(v0.xyz()+v1.xyz()); + const vfloat<M> dt = dot(center-ray_org_in,ray_dir)*rcp_dOdO; + const Vec3vf<M> ray_org = ray_org_in + dt*ray_dir; + + /* intersect with cone from v0 to v1 */ + vfloat<M> t_cone_lower, t_cone_upper; + ConeGeometryIntersector<M> cone (ray_org, ray_dir, dOdO, rcp_dOdO, v0, v1); + vbool<M> validCone = valid; + cone.intersectCone(validCone, t_cone_lower, t_cone_upper); + + valid &= (validCone | (cone.g <= 0.0f)); // if cone is entirely in sphere end - check sphere + if (unlikely(none(valid))) + return false; + + /* cone hits inside the neighboring capped cones are inside the geometry and thus ignored */ + const ConeGeometry<M> coneL (v0, vL); + const ConeGeometry<M> coneR (v1, vR); +#if !defined(EMBREE_BACKFACE_CULLING_CURVES) + const Vec3vf<M> hit_lower = ray_org + t_cone_lower*ray_dir; + const Vec3vf<M> hit_upper = ray_org + t_cone_upper*ray_dir; + t_cone_lower = select (!coneL.isInsideCappedCone (validCone, hit_lower) & !coneR.isInsideCappedCone (validCone, hit_lower), t_cone_lower, vfloat<M>(pos_inf)); + t_cone_upper = select (!coneL.isInsideCappedCone (validCone, hit_upper) & !coneR.isInsideCappedCone (validCone, hit_upper), t_cone_upper, vfloat<M>(neg_inf)); +#endif + + /* intersect ending sphere */ + vfloat<M> t_sph1_lower, t_sph1_upper; + vfloat<M> t_sph0_lower = vfloat<M>(pos_inf); + vfloat<M> t_sph0_upper = vfloat<M>(neg_inf); + cone.intersectEndSphere(valid, coneR, t_sph1_lower, t_sph1_upper); + + const vbool<M> isBeginPoint = valid & (vL[0] == vfloat<M>(pos_inf)); + if (unlikely(any(isBeginPoint))) { + cone.intersectBeginSphere (isBeginPoint, t_sph0_lower, t_sph0_upper); + } + + /* CSG union of cone and end sphere */ + vfloat<M> t_sph_lower = min(t_sph0_lower, t_sph1_lower); + vfloat<M> t_cone_sphere_lower = min(t_cone_lower, t_sph_lower); +#if !defined (EMBREE_BACKFACE_CULLING_CURVES) + vfloat<M> t_sph_upper = max(t_sph0_upper, t_sph1_upper); + vfloat<M> t_cone_sphere_upper = max(t_cone_upper, t_sph_upper); + + /* filter out hits that are not in tnear/tfar range */ + const vbool<M> valid_lower = valid & ray_tnear <= dt+t_cone_sphere_lower & dt+t_cone_sphere_lower <= ray_tfar() & t_cone_sphere_lower != vfloat<M>(pos_inf); + const vbool<M> valid_upper = valid & ray_tnear <= dt+t_cone_sphere_upper & dt+t_cone_sphere_upper <= ray_tfar() & t_cone_sphere_upper != vfloat<M>(neg_inf); + + /* check if there is a first hit */ + const vbool<M> valid_first = valid_lower | valid_upper; + if (unlikely(none(valid_first))) + return false; + + /* construct first hit */ + const vfloat<M> t_first = select(valid_lower, t_cone_sphere_lower, t_cone_sphere_upper); + const vbool<M> cone_hit_first = t_first == t_cone_lower | t_first == t_cone_upper; + const vbool<M> sph0_hit_first = t_first == t_sph0_lower | t_first == t_sph0_upper; + const Vec3vf<M> Ng_first = select(cone_hit_first, cone.Ng_cone(valid_lower), select (sph0_hit_first, cone.Ng_sphere0(valid_lower), cone.Ng_sphere1(valid_lower))); + const vfloat<M> u_first = select(cone_hit_first, cone.u_cone(valid_lower), select (sph0_hit_first, vfloat<M>(zero), vfloat<M>(one))); + + /* invoke intersection filter for first hit */ + RoundLineIntersectorHitM<M> hit(u_first,zero,dt+t_first,Ng_first); + const bool is_hit_first = epilog(valid_first, hit); + + /* check for possible second hits before potentially accepted hit */ + const vfloat<M> t_second = t_cone_sphere_upper; + const vbool<M> valid_second = valid_lower & valid_upper & (dt+t_cone_sphere_upper <= ray_tfar()); + if (unlikely(none(valid_second))) + return is_hit_first; + + /* invoke intersection filter for second hit */ + const vbool<M> cone_hit_second = t_second == t_cone_lower | t_second == t_cone_upper; + const vbool<M> sph0_hit_second = t_second == t_sph0_lower | t_second == t_sph0_upper; + const Vec3vf<M> Ng_second = select(cone_hit_second, cone.Ng_cone(false), select (sph0_hit_second, cone.Ng_sphere0(false), cone.Ng_sphere1(false))); + const vfloat<M> u_second = select(cone_hit_second, cone.u_cone(false), select (sph0_hit_second, vfloat<M>(zero), vfloat<M>(one))); + + hit = RoundLineIntersectorHitM<M>(u_second,zero,dt+t_second,Ng_second); + const bool is_hit_second = epilog(valid_second, hit); + + return is_hit_first | is_hit_second; +#else + /* filter out hits that are not in tnear/tfar range */ + const vbool<M> valid_lower = valid & ray_tnear <= dt+t_cone_sphere_lower & dt+t_cone_sphere_lower <= ray_tfar() & t_cone_sphere_lower != vfloat<M>(pos_inf); + + /* check if there is a valid hit */ + if (unlikely(none(valid_lower))) + return false; + + /* construct first hit */ + const vbool<M> cone_hit_first = t_cone_sphere_lower == t_cone_lower | t_cone_sphere_lower == t_cone_upper; + const vbool<M> sph0_hit_first = t_cone_sphere_lower == t_sph0_lower | t_cone_sphere_lower == t_sph0_upper; + const Vec3vf<M> Ng_first = select(cone_hit_first, cone.Ng_cone(valid_lower), select (sph0_hit_first, cone.Ng_sphere0(valid_lower), cone.Ng_sphere1(valid_lower))); + const vfloat<M> u_first = select(cone_hit_first, cone.u_cone(valid_lower), select (sph0_hit_first, vfloat<M>(zero), vfloat<M>(one))); + + /* invoke intersection filter for first hit */ + RoundLineIntersectorHitM<M> hit(u_first,zero,dt+t_cone_sphere_lower,Ng_first); + const bool is_hit_first = epilog(valid_lower, hit); + + return is_hit_first; +#endif + } + + } // end namespace __roundline_internal + + template<int M> + struct RoundLinearCurveIntersector1 + { + typedef CurvePrecalculations1 Precalculations; + + struct ray_tfar { + Ray& ray; + __forceinline ray_tfar(Ray& ray) : ray(ray) {} + __forceinline vfloat<M> operator() () const { return ray.tfar; }; + }; + + template<typename Epilog> + static __forceinline bool intersect(const vbool<M>& valid_i, + Ray& ray, + IntersectContext* context, + const LineSegments* geom, + const Precalculations& pre, + const Vec4vf<M>& v0i, const Vec4vf<M>& v1i, + const Vec4vf<M>& vLi, const Vec4vf<M>& vRi, + const Epilog& epilog) + { + const Vec3vf<M> ray_org(ray.org.x, ray.org.y, ray.org.z); + const Vec3vf<M> ray_dir(ray.dir.x, ray.dir.y, ray.dir.z); + const vfloat<M> ray_tnear(ray.tnear()); + const Vec4vf<M> v0 = enlargeRadiusToMinWidth(context,geom,ray_org,v0i); + const Vec4vf<M> v1 = enlargeRadiusToMinWidth(context,geom,ray_org,v1i); + const Vec4vf<M> vL = enlargeRadiusToMinWidth(context,geom,ray_org,vLi); + const Vec4vf<M> vR = enlargeRadiusToMinWidth(context,geom,ray_org,vRi); + return __roundline_internal::intersectConeSphere(valid_i,ray_org,ray_dir,ray_tnear,ray_tfar(ray),v0,v1,vL,vR,epilog); + } + }; + + template<int M, int K> + struct RoundLinearCurveIntersectorK + { + typedef CurvePrecalculationsK<K> Precalculations; + + struct ray_tfar { + RayK<K>& ray; + size_t k; + __forceinline ray_tfar(RayK<K>& ray, size_t k) : ray(ray), k(k) {} + __forceinline vfloat<M> operator() () const { return ray.tfar[k]; }; + }; + + template<typename Epilog> + static __forceinline bool intersect(const vbool<M>& valid_i, + RayK<K>& ray, size_t k, + IntersectContext* context, + const LineSegments* geom, + const Precalculations& pre, + const Vec4vf<M>& v0i, const Vec4vf<M>& v1i, + const Vec4vf<M>& vLi, const Vec4vf<M>& vRi, + const Epilog& epilog) + { + const Vec3vf<M> ray_org(ray.org.x[k], ray.org.y[k], ray.org.z[k]); + const Vec3vf<M> ray_dir(ray.dir.x[k], ray.dir.y[k], ray.dir.z[k]); + const vfloat<M> ray_tnear = ray.tnear()[k]; + const Vec4vf<M> v0 = enlargeRadiusToMinWidth(context,geom,ray_org,v0i); + const Vec4vf<M> v1 = enlargeRadiusToMinWidth(context,geom,ray_org,v1i); + const Vec4vf<M> vL = enlargeRadiusToMinWidth(context,geom,ray_org,vLi); + const Vec4vf<M> vR = enlargeRadiusToMinWidth(context,geom,ray_org,vRi); + return __roundline_internal::intersectConeSphere(valid_i,ray_org,ray_dir,ray_tnear,ray_tfar(ray,k),v0,v1,vL,vR,epilog); + } + }; + } +} |