summaryrefslogtreecommitdiff
path: root/thirdparty/embree-aarch64/kernels/builders/heuristic_timesplit_array.h
diff options
context:
space:
mode:
authorjfons <joan.fonssanchez@gmail.com>2021-04-20 18:38:09 +0200
committerjfons <joan.fonssanchez@gmail.com>2021-04-23 15:57:28 +0200
commit34b3e8f9e2ae076990ecf3b2827eff759ba2abf9 (patch)
tree854a526a5ba2d6128e44d995d1bc138cf84ee722 /thirdparty/embree-aarch64/kernels/builders/heuristic_timesplit_array.h
parenteeccab26c5641409092547e02ad11e6253ac1b87 (diff)
Add Embree-aarch64 thirdparty library
Diffstat (limited to 'thirdparty/embree-aarch64/kernels/builders/heuristic_timesplit_array.h')
-rw-r--r--thirdparty/embree-aarch64/kernels/builders/heuristic_timesplit_array.h237
1 files changed, 237 insertions, 0 deletions
diff --git a/thirdparty/embree-aarch64/kernels/builders/heuristic_timesplit_array.h b/thirdparty/embree-aarch64/kernels/builders/heuristic_timesplit_array.h
new file mode 100644
index 0000000000..c999941a11
--- /dev/null
+++ b/thirdparty/embree-aarch64/kernels/builders/heuristic_timesplit_array.h
@@ -0,0 +1,237 @@
+// Copyright 2009-2020 Intel Corporation
+// SPDX-License-Identifier: Apache-2.0
+
+#pragma once
+
+#include "../common/primref_mb.h"
+#include "../../common/algorithms/parallel_filter.h"
+
+#define MBLUR_TIME_SPLIT_THRESHOLD 1.25f
+
+namespace embree
+{
+ namespace isa
+ {
+ /*! Performs standard object binning */
+ template<typename PrimRefMB, typename RecalculatePrimRef, size_t BINS>
+ struct HeuristicMBlurTemporalSplit
+ {
+ typedef BinSplit<MBLUR_NUM_OBJECT_BINS> Split;
+ typedef mvector<PrimRefMB>* PrimRefVector;
+ typedef typename PrimRefMB::BBox BBox;
+
+ static const size_t PARALLEL_THRESHOLD = 3 * 1024;
+ static const size_t PARALLEL_FIND_BLOCK_SIZE = 1024;
+ static const size_t PARALLEL_PARTITION_BLOCK_SIZE = 128;
+
+ HeuristicMBlurTemporalSplit (MemoryMonitorInterface* device, const RecalculatePrimRef& recalculatePrimRef)
+ : device(device), recalculatePrimRef(recalculatePrimRef) {}
+
+ struct TemporalBinInfo
+ {
+ __forceinline TemporalBinInfo () {
+ }
+
+ __forceinline TemporalBinInfo (EmptyTy)
+ {
+ for (size_t i=0; i<BINS-1; i++)
+ {
+ count0[i] = count1[i] = 0;
+ bounds0[i] = bounds1[i] = empty;
+ }
+ }
+
+ void bin(const PrimRefMB* prims, size_t begin, size_t end, BBox1f time_range, const SetMB& set, const RecalculatePrimRef& recalculatePrimRef)
+ {
+ for (int b=0; b<BINS-1; b++)
+ {
+ const float t = float(b+1)/float(BINS);
+ const float ct = lerp(time_range.lower,time_range.upper,t);
+ const float center_time = set.align_time(ct);
+ if (center_time <= time_range.lower) continue;
+ if (center_time >= time_range.upper) continue;
+ const BBox1f dt0(time_range.lower,center_time);
+ const BBox1f dt1(center_time,time_range.upper);
+
+ /* find linear bounds for both time segments */
+ for (size_t i=begin; i<end; i++)
+ {
+ if (prims[i].time_range_overlap(dt0))
+ {
+ const LBBox3fa bn0 = recalculatePrimRef.linearBounds(prims[i],dt0);
+#if MBLUR_BIN_LBBOX
+ bounds0[b].extend(bn0);
+#else
+ bounds0[b].extend(bn0.interpolate(0.5f));
+#endif
+ count0[b] += prims[i].timeSegmentRange(dt0).size();
+ }
+
+ if (prims[i].time_range_overlap(dt1))
+ {
+ const LBBox3fa bn1 = recalculatePrimRef.linearBounds(prims[i],dt1);
+#if MBLUR_BIN_LBBOX
+ bounds1[b].extend(bn1);
+#else
+ bounds1[b].extend(bn1.interpolate(0.5f));
+#endif
+ count1[b] += prims[i].timeSegmentRange(dt1).size();
+ }
+ }
+ }
+ }
+
+ __forceinline void bin_parallel(const PrimRefMB* prims, size_t begin, size_t end, size_t blockSize, size_t parallelThreshold, BBox1f time_range, const SetMB& set, const RecalculatePrimRef& recalculatePrimRef)
+ {
+ if (likely(end-begin < parallelThreshold)) {
+ bin(prims,begin,end,time_range,set,recalculatePrimRef);
+ }
+ else
+ {
+ auto bin = [&](const range<size_t>& r) -> TemporalBinInfo {
+ TemporalBinInfo binner(empty); binner.bin(prims, r.begin(), r.end(), time_range, set, recalculatePrimRef); return binner;
+ };
+ *this = parallel_reduce(begin,end,blockSize,TemporalBinInfo(empty),bin,merge2);
+ }
+ }
+
+ /*! merges in other binning information */
+ __forceinline void merge (const TemporalBinInfo& other)
+ {
+ for (size_t i=0; i<BINS-1; i++)
+ {
+ count0[i] += other.count0[i];
+ count1[i] += other.count1[i];
+ bounds0[i].extend(other.bounds0[i]);
+ bounds1[i].extend(other.bounds1[i]);
+ }
+ }
+
+ static __forceinline const TemporalBinInfo merge2(const TemporalBinInfo& a, const TemporalBinInfo& b) {
+ TemporalBinInfo r = a; r.merge(b); return r;
+ }
+
+ Split best(int logBlockSize, BBox1f time_range, const SetMB& set)
+ {
+ float bestSAH = inf;
+ float bestPos = 0.0f;
+ for (int b=0; b<BINS-1; b++)
+ {
+ float t = float(b+1)/float(BINS);
+ float ct = lerp(time_range.lower,time_range.upper,t);
+ const float center_time = set.align_time(ct);
+ if (center_time <= time_range.lower) continue;
+ if (center_time >= time_range.upper) continue;
+ const BBox1f dt0(time_range.lower,center_time);
+ const BBox1f dt1(center_time,time_range.upper);
+
+ /* calculate sah */
+ const size_t lCount = (count0[b]+(size_t(1) << logBlockSize)-1) >> int(logBlockSize);
+ const size_t rCount = (count1[b]+(size_t(1) << logBlockSize)-1) >> int(logBlockSize);
+ float sah0 = expectedApproxHalfArea(bounds0[b])*float(lCount)*dt0.size();
+ float sah1 = expectedApproxHalfArea(bounds1[b])*float(rCount)*dt1.size();
+ if (unlikely(lCount == 0)) sah0 = 0.0f; // happens for initial splits when objects not alive over entire shutter time
+ if (unlikely(rCount == 0)) sah1 = 0.0f;
+ const float sah = sah0+sah1;
+ if (sah < bestSAH) {
+ bestSAH = sah;
+ bestPos = center_time;
+ }
+ }
+ return Split(bestSAH*MBLUR_TIME_SPLIT_THRESHOLD,(unsigned)Split::SPLIT_TEMPORAL,0,bestPos);
+ }
+
+ public:
+ size_t count0[BINS-1];
+ size_t count1[BINS-1];
+ BBox bounds0[BINS-1];
+ BBox bounds1[BINS-1];
+ };
+
+ /*! finds the best split */
+ const Split find(const SetMB& set, const size_t logBlockSize)
+ {
+ assert(set.size() > 0);
+ TemporalBinInfo binner(empty);
+ binner.bin_parallel(set.prims->data(),set.begin(),set.end(),PARALLEL_FIND_BLOCK_SIZE,PARALLEL_THRESHOLD,set.time_range,set,recalculatePrimRef);
+ Split tsplit = binner.best((int)logBlockSize,set.time_range,set);
+ if (!tsplit.valid()) tsplit.data = Split::SPLIT_FALLBACK; // use fallback split
+ return tsplit;
+ }
+
+ __forceinline std::unique_ptr<mvector<PrimRefMB>> split(const Split& tsplit, const SetMB& set, SetMB& lset, SetMB& rset)
+ {
+ assert(tsplit.sah != float(inf));
+ assert(tsplit.fpos > set.time_range.lower);
+ assert(tsplit.fpos < set.time_range.upper);
+
+ float center_time = tsplit.fpos;
+ const BBox1f time_range0(set.time_range.lower,center_time);
+ const BBox1f time_range1(center_time,set.time_range.upper);
+ mvector<PrimRefMB>& prims = *set.prims;
+
+ /* calculate primrefs for first time range */
+ std::unique_ptr<mvector<PrimRefMB>> new_vector(new mvector<PrimRefMB>(device, set.size()));
+ PrimRefVector lprims = new_vector.get();
+
+ auto reduction_func0 = [&] (const range<size_t>& r) {
+ PrimInfoMB pinfo = empty;
+ for (size_t i=r.begin(); i<r.end(); i++)
+ {
+ if (likely(prims[i].time_range_overlap(time_range0)))
+ {
+ const PrimRefMB& prim = recalculatePrimRef(prims[i],time_range0);
+ (*lprims)[i-set.begin()] = prim;
+ pinfo.add_primref(prim);
+ }
+ else
+ {
+ (*lprims)[i-set.begin()] = prims[i];
+ }
+ }
+ return pinfo;
+ };
+ PrimInfoMB linfo = parallel_reduce(set.object_range,PARALLEL_PARTITION_BLOCK_SIZE,PARALLEL_THRESHOLD,PrimInfoMB(empty),reduction_func0,PrimInfoMB::merge2);
+
+ /* primrefs for first time range are in lprims[0 .. set.size()) */
+ /* some primitives may need to be filtered out */
+ if (linfo.size() != set.size())
+ linfo.object_range._end = parallel_filter(lprims->data(), size_t(0), set.size(), size_t(1024),
+ [&](const PrimRefMB& prim) { return prim.time_range_overlap(time_range0); });
+
+ lset = SetMB(linfo,lprims,time_range0);
+
+ /* calculate primrefs for second time range */
+ auto reduction_func1 = [&] (const range<size_t>& r) {
+ PrimInfoMB pinfo = empty;
+ for (size_t i=r.begin(); i<r.end(); i++)
+ {
+ if (likely(prims[i].time_range_overlap(time_range1)))
+ {
+ const PrimRefMB& prim = recalculatePrimRef(prims[i],time_range1);
+ prims[i] = prim;
+ pinfo.add_primref(prim);
+ }
+ }
+ return pinfo;
+ };
+ PrimInfoMB rinfo = parallel_reduce(set.object_range,PARALLEL_PARTITION_BLOCK_SIZE,PARALLEL_THRESHOLD,PrimInfoMB(empty),reduction_func1,PrimInfoMB::merge2);
+ rinfo.object_range = range<size_t>(set.begin(), set.begin() + rinfo.size());
+
+ /* primrefs for second time range are in prims[set.begin() .. set.end()) */
+ /* some primitives may need to be filtered out */
+ if (rinfo.size() != set.size())
+ rinfo.object_range._end = parallel_filter(prims.data(), set.begin(), set.end(), size_t(1024),
+ [&](const PrimRefMB& prim) { return prim.time_range_overlap(time_range1); });
+
+ rset = SetMB(rinfo,&prims,time_range1);
+
+ return new_vector;
+ }
+
+ private:
+ MemoryMonitorInterface* device; // device to report memory usage to
+ const RecalculatePrimRef recalculatePrimRef;
+ };
+ }
+}