diff options
author | AndreaCatania <info@andreacatania.com> | 2017-08-01 14:30:58 +0200 |
---|---|---|
committer | AndreaCatania <info@andreacatania.com> | 2017-11-04 20:08:26 +0100 |
commit | ed047261f06f814eeb88a1f6ee2dd8abd7a14034 (patch) | |
tree | 3addbdbfa8ca5068226a644a0dbbbee0ed691303 /thirdparty/bullet/src/Bullet3OpenCL/BroadphaseCollision/kernels | |
parent | 3cbcf5c2ddadf1cd630137d6bd438634b8517b00 (diff) |
Vendor thirdparty Bullet source for upcoming physics server backend
Diffstat (limited to 'thirdparty/bullet/src/Bullet3OpenCL/BroadphaseCollision/kernels')
6 files changed, 2642 insertions, 0 deletions
diff --git a/thirdparty/bullet/src/Bullet3OpenCL/BroadphaseCollision/kernels/gridBroadphase.cl b/thirdparty/bullet/src/Bullet3OpenCL/BroadphaseCollision/kernels/gridBroadphase.cl new file mode 100644 index 0000000000..ded4796d33 --- /dev/null +++ b/thirdparty/bullet/src/Bullet3OpenCL/BroadphaseCollision/kernels/gridBroadphase.cl @@ -0,0 +1,216 @@ + + +int getPosHash(int4 gridPos, __global float4* pParams) +{ + int4 gridDim = *((__global int4*)(pParams + 1)); + gridPos.x &= gridDim.x - 1; + gridPos.y &= gridDim.y - 1; + gridPos.z &= gridDim.z - 1; + int hash = gridPos.z * gridDim.y * gridDim.x + gridPos.y * gridDim.x + gridPos.x; + return hash; +} + +int4 getGridPos(float4 worldPos, __global float4* pParams) +{ + int4 gridPos; + int4 gridDim = *((__global int4*)(pParams + 1)); + gridPos.x = (int)floor(worldPos.x * pParams[0].x) & (gridDim.x - 1); + gridPos.y = (int)floor(worldPos.y * pParams[0].y) & (gridDim.y - 1); + gridPos.z = (int)floor(worldPos.z * pParams[0].z) & (gridDim.z - 1); + return gridPos; +} + + +// calculate grid hash value for each body using its AABB +__kernel void kCalcHashAABB(int numObjects, __global float4* allpAABB, __global const int* smallAabbMapping, __global int2* pHash, __global float4* pParams ) +{ + int index = get_global_id(0); + if(index >= numObjects) + { + return; + } + float4 bbMin = allpAABB[smallAabbMapping[index]*2]; + float4 bbMax = allpAABB[smallAabbMapping[index]*2 + 1]; + float4 pos; + pos.x = (bbMin.x + bbMax.x) * 0.5f; + pos.y = (bbMin.y + bbMax.y) * 0.5f; + pos.z = (bbMin.z + bbMax.z) * 0.5f; + pos.w = 0.f; + // get address in grid + int4 gridPos = getGridPos(pos, pParams); + int gridHash = getPosHash(gridPos, pParams); + // store grid hash and body index + int2 hashVal; + hashVal.x = gridHash; + hashVal.y = index; + pHash[index] = hashVal; +} + +__kernel void kClearCellStart( int numCells, + __global int* pCellStart ) +{ + int index = get_global_id(0); + if(index >= numCells) + { + return; + } + pCellStart[index] = -1; +} + +__kernel void kFindCellStart(int numObjects, __global int2* pHash, __global int* cellStart ) +{ + __local int sharedHash[513]; + int index = get_global_id(0); + int2 sortedData; + + if(index < numObjects) + { + sortedData = pHash[index]; + // Load hash data into shared memory so that we can look + // at neighboring body's hash value without loading + // two hash values per thread + sharedHash[get_local_id(0) + 1] = sortedData.x; + if((index > 0) && (get_local_id(0) == 0)) + { + // first thread in block must load neighbor body hash + sharedHash[0] = pHash[index-1].x; + } + } + barrier(CLK_LOCAL_MEM_FENCE); + if(index < numObjects) + { + if((index == 0) || (sortedData.x != sharedHash[get_local_id(0)])) + { + cellStart[sortedData.x] = index; + } + } +} + +int testAABBOverlap(float4 min0, float4 max0, float4 min1, float4 max1) +{ + return (min0.x <= max1.x)&& (min1.x <= max0.x) && + (min0.y <= max1.y)&& (min1.y <= max0.y) && + (min0.z <= max1.z)&& (min1.z <= max0.z); +} + + + + +//search for AABB 'index' against other AABBs' in this cell +void findPairsInCell( int numObjects, + int4 gridPos, + int index, + __global int2* pHash, + __global int* pCellStart, + __global float4* allpAABB, + __global const int* smallAabbMapping, + __global float4* pParams, + volatile __global int* pairCount, + __global int4* pPairBuff2, + int maxPairs + ) +{ + int4 pGridDim = *((__global int4*)(pParams + 1)); + int maxBodiesPerCell = pGridDim.w; + int gridHash = getPosHash(gridPos, pParams); + // get start of bucket for this cell + int bucketStart = pCellStart[gridHash]; + if (bucketStart == -1) + { + return; // cell empty + } + // iterate over bodies in this cell + int2 sortedData = pHash[index]; + int unsorted_indx = sortedData.y; + float4 min0 = allpAABB[smallAabbMapping[unsorted_indx]*2 + 0]; + float4 max0 = allpAABB[smallAabbMapping[unsorted_indx]*2 + 1]; + int handleIndex = as_int(min0.w); + + int bucketEnd = bucketStart + maxBodiesPerCell; + bucketEnd = (bucketEnd > numObjects) ? numObjects : bucketEnd; + for(int index2 = bucketStart; index2 < bucketEnd; index2++) + { + int2 cellData = pHash[index2]; + if (cellData.x != gridHash) + { + break; // no longer in same bucket + } + int unsorted_indx2 = cellData.y; + //if (unsorted_indx2 < unsorted_indx) // check not colliding with self + if (unsorted_indx2 != unsorted_indx) // check not colliding with self + { + float4 min1 = allpAABB[smallAabbMapping[unsorted_indx2]*2 + 0]; + float4 max1 = allpAABB[smallAabbMapping[unsorted_indx2]*2 + 1]; + if(testAABBOverlap(min0, max0, min1, max1)) + { + if (pairCount) + { + int handleIndex2 = as_int(min1.w); + if (handleIndex<handleIndex2) + { + int curPair = atomic_add(pairCount,1); + if (curPair<maxPairs) + { + int4 newpair; + newpair.x = handleIndex; + newpair.y = handleIndex2; + newpair.z = -1; + newpair.w = -1; + pPairBuff2[curPair] = newpair; + } + } + + } + } + } + } +} + +__kernel void kFindOverlappingPairs( int numObjects, + __global float4* allpAABB, + __global const int* smallAabbMapping, + __global int2* pHash, + __global int* pCellStart, + __global float4* pParams , + volatile __global int* pairCount, + __global int4* pPairBuff2, + int maxPairs + ) + +{ + int index = get_global_id(0); + if(index >= numObjects) + { + return; + } + int2 sortedData = pHash[index]; + int unsorted_indx = sortedData.y; + float4 bbMin = allpAABB[smallAabbMapping[unsorted_indx]*2 + 0]; + float4 bbMax = allpAABB[smallAabbMapping[unsorted_indx]*2 + 1]; + float4 pos; + pos.x = (bbMin.x + bbMax.x) * 0.5f; + pos.y = (bbMin.y + bbMax.y) * 0.5f; + pos.z = (bbMin.z + bbMax.z) * 0.5f; + // get address in grid + int4 gridPosA = getGridPos(pos, pParams); + int4 gridPosB; + // examine only neighbouring cells + for(int z=-1; z<=1; z++) + { + gridPosB.z = gridPosA.z + z; + for(int y=-1; y<=1; y++) + { + gridPosB.y = gridPosA.y + y; + for(int x=-1; x<=1; x++) + { + gridPosB.x = gridPosA.x + x; + findPairsInCell(numObjects, gridPosB, index, pHash, pCellStart, allpAABB,smallAabbMapping, pParams, pairCount,pPairBuff2, maxPairs); + } + } + } +} + + + + + diff --git a/thirdparty/bullet/src/Bullet3OpenCL/BroadphaseCollision/kernels/gridBroadphaseKernels.h b/thirdparty/bullet/src/Bullet3OpenCL/BroadphaseCollision/kernels/gridBroadphaseKernels.h new file mode 100644 index 0000000000..dad42477c3 --- /dev/null +++ b/thirdparty/bullet/src/Bullet3OpenCL/BroadphaseCollision/kernels/gridBroadphaseKernels.h @@ -0,0 +1,199 @@ +//this file is autogenerated using stringify.bat (premake --stringify) in the build folder of this project +static const char* gridBroadphaseCL= \ +"int getPosHash(int4 gridPos, __global float4* pParams)\n" +"{\n" +" int4 gridDim = *((__global int4*)(pParams + 1));\n" +" gridPos.x &= gridDim.x - 1;\n" +" gridPos.y &= gridDim.y - 1;\n" +" gridPos.z &= gridDim.z - 1;\n" +" int hash = gridPos.z * gridDim.y * gridDim.x + gridPos.y * gridDim.x + gridPos.x;\n" +" return hash;\n" +"} \n" +"int4 getGridPos(float4 worldPos, __global float4* pParams)\n" +"{\n" +" int4 gridPos;\n" +" int4 gridDim = *((__global int4*)(pParams + 1));\n" +" gridPos.x = (int)floor(worldPos.x * pParams[0].x) & (gridDim.x - 1);\n" +" gridPos.y = (int)floor(worldPos.y * pParams[0].y) & (gridDim.y - 1);\n" +" gridPos.z = (int)floor(worldPos.z * pParams[0].z) & (gridDim.z - 1);\n" +" return gridPos;\n" +"}\n" +"// calculate grid hash value for each body using its AABB\n" +"__kernel void kCalcHashAABB(int numObjects, __global float4* allpAABB, __global const int* smallAabbMapping, __global int2* pHash, __global float4* pParams )\n" +"{\n" +" int index = get_global_id(0);\n" +" if(index >= numObjects)\n" +" {\n" +" return;\n" +" }\n" +" float4 bbMin = allpAABB[smallAabbMapping[index]*2];\n" +" float4 bbMax = allpAABB[smallAabbMapping[index]*2 + 1];\n" +" float4 pos;\n" +" pos.x = (bbMin.x + bbMax.x) * 0.5f;\n" +" pos.y = (bbMin.y + bbMax.y) * 0.5f;\n" +" pos.z = (bbMin.z + bbMax.z) * 0.5f;\n" +" pos.w = 0.f;\n" +" // get address in grid\n" +" int4 gridPos = getGridPos(pos, pParams);\n" +" int gridHash = getPosHash(gridPos, pParams);\n" +" // store grid hash and body index\n" +" int2 hashVal;\n" +" hashVal.x = gridHash;\n" +" hashVal.y = index;\n" +" pHash[index] = hashVal;\n" +"}\n" +"__kernel void kClearCellStart( int numCells, \n" +" __global int* pCellStart )\n" +"{\n" +" int index = get_global_id(0);\n" +" if(index >= numCells)\n" +" {\n" +" return;\n" +" }\n" +" pCellStart[index] = -1;\n" +"}\n" +"__kernel void kFindCellStart(int numObjects, __global int2* pHash, __global int* cellStart )\n" +"{\n" +" __local int sharedHash[513];\n" +" int index = get_global_id(0);\n" +" int2 sortedData;\n" +" if(index < numObjects)\n" +" {\n" +" sortedData = pHash[index];\n" +" // Load hash data into shared memory so that we can look \n" +" // at neighboring body's hash value without loading\n" +" // two hash values per thread\n" +" sharedHash[get_local_id(0) + 1] = sortedData.x;\n" +" if((index > 0) && (get_local_id(0) == 0))\n" +" {\n" +" // first thread in block must load neighbor body hash\n" +" sharedHash[0] = pHash[index-1].x;\n" +" }\n" +" }\n" +" barrier(CLK_LOCAL_MEM_FENCE);\n" +" if(index < numObjects)\n" +" {\n" +" if((index == 0) || (sortedData.x != sharedHash[get_local_id(0)]))\n" +" {\n" +" cellStart[sortedData.x] = index;\n" +" }\n" +" }\n" +"}\n" +"int testAABBOverlap(float4 min0, float4 max0, float4 min1, float4 max1)\n" +"{\n" +" return (min0.x <= max1.x)&& (min1.x <= max0.x) && \n" +" (min0.y <= max1.y)&& (min1.y <= max0.y) && \n" +" (min0.z <= max1.z)&& (min1.z <= max0.z); \n" +"}\n" +"//search for AABB 'index' against other AABBs' in this cell\n" +"void findPairsInCell( int numObjects,\n" +" int4 gridPos,\n" +" int index,\n" +" __global int2* pHash,\n" +" __global int* pCellStart,\n" +" __global float4* allpAABB, \n" +" __global const int* smallAabbMapping,\n" +" __global float4* pParams,\n" +" volatile __global int* pairCount,\n" +" __global int4* pPairBuff2,\n" +" int maxPairs\n" +" )\n" +"{\n" +" int4 pGridDim = *((__global int4*)(pParams + 1));\n" +" int maxBodiesPerCell = pGridDim.w;\n" +" int gridHash = getPosHash(gridPos, pParams);\n" +" // get start of bucket for this cell\n" +" int bucketStart = pCellStart[gridHash];\n" +" if (bucketStart == -1)\n" +" {\n" +" return; // cell empty\n" +" }\n" +" // iterate over bodies in this cell\n" +" int2 sortedData = pHash[index];\n" +" int unsorted_indx = sortedData.y;\n" +" float4 min0 = allpAABB[smallAabbMapping[unsorted_indx]*2 + 0]; \n" +" float4 max0 = allpAABB[smallAabbMapping[unsorted_indx]*2 + 1];\n" +" int handleIndex = as_int(min0.w);\n" +" \n" +" int bucketEnd = bucketStart + maxBodiesPerCell;\n" +" bucketEnd = (bucketEnd > numObjects) ? numObjects : bucketEnd;\n" +" for(int index2 = bucketStart; index2 < bucketEnd; index2++) \n" +" {\n" +" int2 cellData = pHash[index2];\n" +" if (cellData.x != gridHash)\n" +" {\n" +" break; // no longer in same bucket\n" +" }\n" +" int unsorted_indx2 = cellData.y;\n" +" //if (unsorted_indx2 < unsorted_indx) // check not colliding with self\n" +" if (unsorted_indx2 != unsorted_indx) // check not colliding with self\n" +" { \n" +" float4 min1 = allpAABB[smallAabbMapping[unsorted_indx2]*2 + 0];\n" +" float4 max1 = allpAABB[smallAabbMapping[unsorted_indx2]*2 + 1];\n" +" if(testAABBOverlap(min0, max0, min1, max1))\n" +" {\n" +" if (pairCount)\n" +" {\n" +" int handleIndex2 = as_int(min1.w);\n" +" if (handleIndex<handleIndex2)\n" +" {\n" +" int curPair = atomic_add(pairCount,1);\n" +" if (curPair<maxPairs)\n" +" {\n" +" int4 newpair;\n" +" newpair.x = handleIndex;\n" +" newpair.y = handleIndex2;\n" +" newpair.z = -1;\n" +" newpair.w = -1;\n" +" pPairBuff2[curPair] = newpair;\n" +" }\n" +" }\n" +" \n" +" }\n" +" }\n" +" }\n" +" }\n" +"}\n" +"__kernel void kFindOverlappingPairs( int numObjects,\n" +" __global float4* allpAABB, \n" +" __global const int* smallAabbMapping,\n" +" __global int2* pHash, \n" +" __global int* pCellStart, \n" +" __global float4* pParams ,\n" +" volatile __global int* pairCount,\n" +" __global int4* pPairBuff2,\n" +" int maxPairs\n" +" )\n" +"{\n" +" int index = get_global_id(0);\n" +" if(index >= numObjects)\n" +" {\n" +" return;\n" +" }\n" +" int2 sortedData = pHash[index];\n" +" int unsorted_indx = sortedData.y;\n" +" float4 bbMin = allpAABB[smallAabbMapping[unsorted_indx]*2 + 0];\n" +" float4 bbMax = allpAABB[smallAabbMapping[unsorted_indx]*2 + 1];\n" +" float4 pos;\n" +" pos.x = (bbMin.x + bbMax.x) * 0.5f;\n" +" pos.y = (bbMin.y + bbMax.y) * 0.5f;\n" +" pos.z = (bbMin.z + bbMax.z) * 0.5f;\n" +" // get address in grid\n" +" int4 gridPosA = getGridPos(pos, pParams);\n" +" int4 gridPosB; \n" +" // examine only neighbouring cells\n" +" for(int z=-1; z<=1; z++) \n" +" {\n" +" gridPosB.z = gridPosA.z + z;\n" +" for(int y=-1; y<=1; y++) \n" +" {\n" +" gridPosB.y = gridPosA.y + y;\n" +" for(int x=-1; x<=1; x++) \n" +" {\n" +" gridPosB.x = gridPosA.x + x;\n" +" findPairsInCell(numObjects, gridPosB, index, pHash, pCellStart, allpAABB,smallAabbMapping, pParams, pairCount,pPairBuff2, maxPairs);\n" +" }\n" +" }\n" +" }\n" +"}\n" +; diff --git a/thirdparty/bullet/src/Bullet3OpenCL/BroadphaseCollision/kernels/parallelLinearBvh.cl b/thirdparty/bullet/src/Bullet3OpenCL/BroadphaseCollision/kernels/parallelLinearBvh.cl new file mode 100644 index 0000000000..c375b9bf37 --- /dev/null +++ b/thirdparty/bullet/src/Bullet3OpenCL/BroadphaseCollision/kernels/parallelLinearBvh.cl @@ -0,0 +1,767 @@ +/* +This software is provided 'as-is', without any express or implied warranty. +In no event will the authors be held liable for any damages arising from the use of this software. +Permission is granted to anyone to use this software for any purpose, +including commercial applications, and to alter it and redistribute it freely, +subject to the following restrictions: + +1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. +2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. +3. This notice may not be removed or altered from any source distribution. +*/ +//Initial Author Jackson Lee, 2014 + +typedef float b3Scalar; +typedef float4 b3Vector3; +#define b3Max max +#define b3Min min +#define b3Sqrt sqrt + +typedef struct +{ + unsigned int m_key; + unsigned int m_value; +} SortDataCL; + +typedef struct +{ + union + { + float4 m_min; + float m_minElems[4]; + int m_minIndices[4]; + }; + union + { + float4 m_max; + float m_maxElems[4]; + int m_maxIndices[4]; + }; +} b3AabbCL; + + +unsigned int interleaveBits(unsigned int x) +{ + //........ ........ ......12 3456789A //x + //....1..2 ..3..4.. 5..6..7. .8..9..A //x after interleaving bits + + //......12 3456789A ......12 3456789A //x ^ (x << 16) + //11111111 ........ ........ 11111111 //0x FF 00 00 FF + //......12 ........ ........ 3456789A //x = (x ^ (x << 16)) & 0xFF0000FF; + + //......12 ........ 3456789A 3456789A //x ^ (x << 8) + //......11 ........ 1111.... ....1111 //0x 03 00 F0 0F + //......12 ........ 3456.... ....789A //x = (x ^ (x << 8)) & 0x0300F00F; + + //..12..12 ....3456 3456.... 789A789A //x ^ (x << 4) + //......11 ....11.. ..11.... 11....11 //0x 03 0C 30 C3 + //......12 ....34.. ..56.... 78....9A //x = (x ^ (x << 4)) & 0x030C30C3; + + //....1212 ..3434.. 5656..78 78..9A9A //x ^ (x << 2) + //....1..1 ..1..1.. 1..1..1. .1..1..1 //0x 09 24 92 49 + //....1..2 ..3..4.. 5..6..7. .8..9..A //x = (x ^ (x << 2)) & 0x09249249; + + //........ ........ ......11 11111111 //0x000003FF + x &= 0x000003FF; //Clear all bits above bit 10 + + x = (x ^ (x << 16)) & 0xFF0000FF; + x = (x ^ (x << 8)) & 0x0300F00F; + x = (x ^ (x << 4)) & 0x030C30C3; + x = (x ^ (x << 2)) & 0x09249249; + + return x; +} +unsigned int getMortonCode(unsigned int x, unsigned int y, unsigned int z) +{ + return interleaveBits(x) << 0 | interleaveBits(y) << 1 | interleaveBits(z) << 2; +} + +__kernel void separateAabbs(__global b3AabbCL* unseparatedAabbs, __global int* aabbIndices, __global b3AabbCL* out_aabbs, int numAabbsToSeparate) +{ + int separatedAabbIndex = get_global_id(0); + if(separatedAabbIndex >= numAabbsToSeparate) return; + + int unseparatedAabbIndex = aabbIndices[separatedAabbIndex]; + out_aabbs[separatedAabbIndex] = unseparatedAabbs[unseparatedAabbIndex]; +} + +//Should replace with an optimized parallel reduction +__kernel void findAllNodesMergedAabb(__global b3AabbCL* out_mergedAabb, int numAabbsNeedingMerge) +{ + //Each time this kernel is added to the command queue, + //the number of AABBs needing to be merged is halved + // + //Example with 159 AABBs: + // numRemainingAabbs == 159 / 2 + 159 % 2 == 80 + // numMergedAabbs == 159 - 80 == 79 + //So, indices [0, 78] are merged with [0 + 80, 78 + 80] + + int numRemainingAabbs = numAabbsNeedingMerge / 2 + numAabbsNeedingMerge % 2; + int numMergedAabbs = numAabbsNeedingMerge - numRemainingAabbs; + + int aabbIndex = get_global_id(0); + if(aabbIndex >= numMergedAabbs) return; + + int otherAabbIndex = aabbIndex + numRemainingAabbs; + + b3AabbCL aabb = out_mergedAabb[aabbIndex]; + b3AabbCL otherAabb = out_mergedAabb[otherAabbIndex]; + + b3AabbCL mergedAabb; + mergedAabb.m_min = b3Min(aabb.m_min, otherAabb.m_min); + mergedAabb.m_max = b3Max(aabb.m_max, otherAabb.m_max); + out_mergedAabb[aabbIndex] = mergedAabb; +} + +__kernel void assignMortonCodesAndAabbIndicies(__global b3AabbCL* worldSpaceAabbs, __global b3AabbCL* mergedAabbOfAllNodes, + __global SortDataCL* out_mortonCodesAndAabbIndices, int numAabbs) +{ + int leafNodeIndex = get_global_id(0); //Leaf node index == AABB index + if(leafNodeIndex >= numAabbs) return; + + b3AabbCL mergedAabb = mergedAabbOfAllNodes[0]; + b3Vector3 gridCenter = (mergedAabb.m_min + mergedAabb.m_max) * 0.5f; + b3Vector3 gridCellSize = (mergedAabb.m_max - mergedAabb.m_min) / (float)1024; + + b3AabbCL aabb = worldSpaceAabbs[leafNodeIndex]; + b3Vector3 aabbCenter = (aabb.m_min + aabb.m_max) * 0.5f; + b3Vector3 aabbCenterRelativeToGrid = aabbCenter - gridCenter; + + //Quantize into integer coordinates + //floor() is needed to prevent the center cell, at (0,0,0) from being twice the size + b3Vector3 gridPosition = aabbCenterRelativeToGrid / gridCellSize; + + int4 discretePosition; + discretePosition.x = (int)( (gridPosition.x >= 0.0f) ? gridPosition.x : floor(gridPosition.x) ); + discretePosition.y = (int)( (gridPosition.y >= 0.0f) ? gridPosition.y : floor(gridPosition.y) ); + discretePosition.z = (int)( (gridPosition.z >= 0.0f) ? gridPosition.z : floor(gridPosition.z) ); + + //Clamp coordinates into [-512, 511], then convert range from [-512, 511] to [0, 1023] + discretePosition = b3Max( -512, b3Min(discretePosition, 511) ); + discretePosition += 512; + + //Interleave bits(assign a morton code, also known as a z-curve) + unsigned int mortonCode = getMortonCode(discretePosition.x, discretePosition.y, discretePosition.z); + + // + SortDataCL mortonCodeIndexPair; + mortonCodeIndexPair.m_key = mortonCode; + mortonCodeIndexPair.m_value = leafNodeIndex; + + out_mortonCodesAndAabbIndices[leafNodeIndex] = mortonCodeIndexPair; +} + +#define B3_PLVBH_TRAVERSE_MAX_STACK_SIZE 128 + +//The most significant bit(0x80000000) of a int32 is used to distinguish between leaf and internal nodes. +//If it is set, then the index is for an internal node; otherwise, it is a leaf node. +//In both cases, the bit should be cleared to access the actual node index. +int isLeafNode(int index) { return (index >> 31 == 0); } +int getIndexWithInternalNodeMarkerRemoved(int index) { return index & (~0x80000000); } +int getIndexWithInternalNodeMarkerSet(int isLeaf, int index) { return (isLeaf) ? index : (index | 0x80000000); } + +//From sap.cl +#define NEW_PAIR_MARKER -1 + +bool TestAabbAgainstAabb2(const b3AabbCL* aabb1, const b3AabbCL* aabb2) +{ + bool overlap = true; + overlap = (aabb1->m_min.x > aabb2->m_max.x || aabb1->m_max.x < aabb2->m_min.x) ? false : overlap; + overlap = (aabb1->m_min.z > aabb2->m_max.z || aabb1->m_max.z < aabb2->m_min.z) ? false : overlap; + overlap = (aabb1->m_min.y > aabb2->m_max.y || aabb1->m_max.y < aabb2->m_min.y) ? false : overlap; + return overlap; +} +//From sap.cl + +__kernel void plbvhCalculateOverlappingPairs(__global b3AabbCL* rigidAabbs, + + __global int* rootNodeIndex, + __global int2* internalNodeChildIndices, + __global b3AabbCL* internalNodeAabbs, + __global int2* internalNodeLeafIndexRanges, + + __global SortDataCL* mortonCodesAndAabbIndices, + __global int* out_numPairs, __global int4* out_overlappingPairs, + int maxPairs, int numQueryAabbs) +{ + //Using get_group_id()/get_local_id() is Faster than get_global_id(0) since + //mortonCodesAndAabbIndices[] contains rigid body indices sorted along the z-curve (more spatially coherent) + int queryBvhNodeIndex = get_group_id(0) * get_local_size(0) + get_local_id(0); + if(queryBvhNodeIndex >= numQueryAabbs) return; + + int queryRigidIndex = mortonCodesAndAabbIndices[queryBvhNodeIndex].m_value; + b3AabbCL queryAabb = rigidAabbs[queryRigidIndex]; + + int stack[B3_PLVBH_TRAVERSE_MAX_STACK_SIZE]; + + int stackSize = 1; + stack[0] = *rootNodeIndex; + + while(stackSize) + { + int internalOrLeafNodeIndex = stack[ stackSize - 1 ]; + --stackSize; + + int isLeaf = isLeafNode(internalOrLeafNodeIndex); //Internal node if false + int bvhNodeIndex = getIndexWithInternalNodeMarkerRemoved(internalOrLeafNodeIndex); + + //Optimization - if the BVH is structured as a binary radix tree, then + //each internal node corresponds to a contiguous range of leaf nodes(internalNodeLeafIndexRanges[]). + //This can be used to avoid testing each AABB-AABB pair twice, including preventing each node from colliding with itself. + { + int highestLeafIndex = (isLeaf) ? bvhNodeIndex : internalNodeLeafIndexRanges[bvhNodeIndex].y; + if(highestLeafIndex <= queryBvhNodeIndex) continue; + } + + //bvhRigidIndex is not used if internal node + int bvhRigidIndex = (isLeaf) ? mortonCodesAndAabbIndices[bvhNodeIndex].m_value : -1; + + b3AabbCL bvhNodeAabb = (isLeaf) ? rigidAabbs[bvhRigidIndex] : internalNodeAabbs[bvhNodeIndex]; + if( TestAabbAgainstAabb2(&queryAabb, &bvhNodeAabb) ) + { + if(isLeaf) + { + int4 pair; + pair.x = rigidAabbs[queryRigidIndex].m_minIndices[3]; + pair.y = rigidAabbs[bvhRigidIndex].m_minIndices[3]; + pair.z = NEW_PAIR_MARKER; + pair.w = NEW_PAIR_MARKER; + + int pairIndex = atomic_inc(out_numPairs); + if(pairIndex < maxPairs) out_overlappingPairs[pairIndex] = pair; + } + + if(!isLeaf) //Internal node + { + if(stackSize + 2 > B3_PLVBH_TRAVERSE_MAX_STACK_SIZE) + { + //Error + } + else + { + stack[ stackSize++ ] = internalNodeChildIndices[bvhNodeIndex].x; + stack[ stackSize++ ] = internalNodeChildIndices[bvhNodeIndex].y; + } + } + } + + } +} + + +//From rayCastKernels.cl +typedef struct +{ + float4 m_from; + float4 m_to; +} b3RayInfo; +//From rayCastKernels.cl + +b3Vector3 b3Vector3_normalize(b3Vector3 v) +{ + b3Vector3 normal = (b3Vector3){v.x, v.y, v.z, 0.f}; + return normalize(normal); //OpenCL normalize == vector4 normalize +} +b3Scalar b3Vector3_length2(b3Vector3 v) { return v.x*v.x + v.y*v.y + v.z*v.z; } +b3Scalar b3Vector3_dot(b3Vector3 a, b3Vector3 b) { return a.x*b.x + a.y*b.y + a.z*b.z; } + +int rayIntersectsAabb(b3Vector3 rayOrigin, b3Scalar rayLength, b3Vector3 rayNormalizedDirection, b3AabbCL aabb) +{ + //AABB is considered as 3 pairs of 2 planes( {x_min, x_max}, {y_min, y_max}, {z_min, z_max} ). + //t_min is the point of intersection with the closer plane, t_max is the point of intersection with the farther plane. + // + //if (rayNormalizedDirection.x < 0.0f), then max.x will be the near plane + //and min.x will be the far plane; otherwise, it is reversed. + // + //In order for there to be a collision, the t_min and t_max of each pair must overlap. + //This can be tested for by selecting the highest t_min and lowest t_max and comparing them. + + int4 isNegative = isless( rayNormalizedDirection, ((b3Vector3){0.0f, 0.0f, 0.0f, 0.0f}) ); //isless(x,y) returns (x < y) + + //When using vector types, the select() function checks the most signficant bit, + //but isless() sets the least significant bit. + isNegative <<= 31; + + //select(b, a, condition) == condition ? a : b + //When using select() with vector types, (condition[i]) is true if its most significant bit is 1 + b3Vector3 t_min = ( select(aabb.m_min, aabb.m_max, isNegative) - rayOrigin ) / rayNormalizedDirection; + b3Vector3 t_max = ( select(aabb.m_max, aabb.m_min, isNegative) - rayOrigin ) / rayNormalizedDirection; + + b3Scalar t_min_final = 0.0f; + b3Scalar t_max_final = rayLength; + + //Must use fmin()/fmax(); if one of the parameters is NaN, then the parameter that is not NaN is returned. + //Behavior of min()/max() with NaNs is undefined. (See OpenCL Specification 1.2 [6.12.2] and [6.12.4]) + //Since the innermost fmin()/fmax() is always not NaN, this should never return NaN. + t_min_final = fmax( t_min.z, fmax(t_min.y, fmax(t_min.x, t_min_final)) ); + t_max_final = fmin( t_max.z, fmin(t_max.y, fmin(t_max.x, t_max_final)) ); + + return (t_min_final <= t_max_final); +} + +__kernel void plbvhRayTraverse(__global b3AabbCL* rigidAabbs, + + __global int* rootNodeIndex, + __global int2* internalNodeChildIndices, + __global b3AabbCL* internalNodeAabbs, + __global int2* internalNodeLeafIndexRanges, + __global SortDataCL* mortonCodesAndAabbIndices, + + __global b3RayInfo* rays, + + __global int* out_numRayRigidPairs, + __global int2* out_rayRigidPairs, + int maxRayRigidPairs, int numRays) +{ + int rayIndex = get_global_id(0); + if(rayIndex >= numRays) return; + + // + b3Vector3 rayFrom = rays[rayIndex].m_from; + b3Vector3 rayTo = rays[rayIndex].m_to; + b3Vector3 rayNormalizedDirection = b3Vector3_normalize(rayTo - rayFrom); + b3Scalar rayLength = b3Sqrt( b3Vector3_length2(rayTo - rayFrom) ); + + // + int stack[B3_PLVBH_TRAVERSE_MAX_STACK_SIZE]; + + int stackSize = 1; + stack[0] = *rootNodeIndex; + + while(stackSize) + { + int internalOrLeafNodeIndex = stack[ stackSize - 1 ]; + --stackSize; + + int isLeaf = isLeafNode(internalOrLeafNodeIndex); //Internal node if false + int bvhNodeIndex = getIndexWithInternalNodeMarkerRemoved(internalOrLeafNodeIndex); + + //bvhRigidIndex is not used if internal node + int bvhRigidIndex = (isLeaf) ? mortonCodesAndAabbIndices[bvhNodeIndex].m_value : -1; + + b3AabbCL bvhNodeAabb = (isLeaf) ? rigidAabbs[bvhRigidIndex] : internalNodeAabbs[bvhNodeIndex]; + if( rayIntersectsAabb(rayFrom, rayLength, rayNormalizedDirection, bvhNodeAabb) ) + { + if(isLeaf) + { + int2 rayRigidPair; + rayRigidPair.x = rayIndex; + rayRigidPair.y = rigidAabbs[bvhRigidIndex].m_minIndices[3]; + + int pairIndex = atomic_inc(out_numRayRigidPairs); + if(pairIndex < maxRayRigidPairs) out_rayRigidPairs[pairIndex] = rayRigidPair; + } + + if(!isLeaf) //Internal node + { + if(stackSize + 2 > B3_PLVBH_TRAVERSE_MAX_STACK_SIZE) + { + //Error + } + else + { + stack[ stackSize++ ] = internalNodeChildIndices[bvhNodeIndex].x; + stack[ stackSize++ ] = internalNodeChildIndices[bvhNodeIndex].y; + } + } + } + } +} + +__kernel void plbvhLargeAabbAabbTest(__global b3AabbCL* smallAabbs, __global b3AabbCL* largeAabbs, + __global int* out_numPairs, __global int4* out_overlappingPairs, + int maxPairs, int numLargeAabbRigids, int numSmallAabbRigids) +{ + int smallAabbIndex = get_global_id(0); + if(smallAabbIndex >= numSmallAabbRigids) return; + + b3AabbCL smallAabb = smallAabbs[smallAabbIndex]; + for(int i = 0; i < numLargeAabbRigids; ++i) + { + b3AabbCL largeAabb = largeAabbs[i]; + if( TestAabbAgainstAabb2(&smallAabb, &largeAabb) ) + { + int4 pair; + pair.x = largeAabb.m_minIndices[3]; + pair.y = smallAabb.m_minIndices[3]; + pair.z = NEW_PAIR_MARKER; + pair.w = NEW_PAIR_MARKER; + + int pairIndex = atomic_inc(out_numPairs); + if(pairIndex < maxPairs) out_overlappingPairs[pairIndex] = pair; + } + } +} +__kernel void plbvhLargeAabbRayTest(__global b3AabbCL* largeRigidAabbs, __global b3RayInfo* rays, + __global int* out_numRayRigidPairs, __global int2* out_rayRigidPairs, + int numLargeAabbRigids, int maxRayRigidPairs, int numRays) +{ + int rayIndex = get_global_id(0); + if(rayIndex >= numRays) return; + + b3Vector3 rayFrom = rays[rayIndex].m_from; + b3Vector3 rayTo = rays[rayIndex].m_to; + b3Vector3 rayNormalizedDirection = b3Vector3_normalize(rayTo - rayFrom); + b3Scalar rayLength = b3Sqrt( b3Vector3_length2(rayTo - rayFrom) ); + + for(int i = 0; i < numLargeAabbRigids; ++i) + { + b3AabbCL rigidAabb = largeRigidAabbs[i]; + if( rayIntersectsAabb(rayFrom, rayLength, rayNormalizedDirection, rigidAabb) ) + { + int2 rayRigidPair; + rayRigidPair.x = rayIndex; + rayRigidPair.y = rigidAabb.m_minIndices[3]; + + int pairIndex = atomic_inc(out_numRayRigidPairs); + if(pairIndex < maxRayRigidPairs) out_rayRigidPairs[pairIndex] = rayRigidPair; + } + } +} + + +//Set so that it is always greater than the actual common prefixes, and never selected as a parent node. +//If there are no duplicates, then the highest common prefix is 32 or 64, depending on the number of bits used for the z-curve. +//Duplicate common prefixes increase the highest common prefix at most by the number of bits used to index the leaf node. +//Since 32 bit ints are used to index leaf nodes, the max prefix is 64(32 + 32 bit z-curve) or 96(32 + 64 bit z-curve). +#define B3_PLBVH_INVALID_COMMON_PREFIX 128 + +#define B3_PLBVH_ROOT_NODE_MARKER -1 + +#define b3Int64 long + +int computeCommonPrefixLength(b3Int64 i, b3Int64 j) { return (int)clz(i ^ j); } +b3Int64 computeCommonPrefix(b3Int64 i, b3Int64 j) +{ + //This function only needs to return (i & j) in order for the algorithm to work, + //but it may help with debugging to mask out the lower bits. + + b3Int64 commonPrefixLength = (b3Int64)computeCommonPrefixLength(i, j); + + b3Int64 sharedBits = i & j; + b3Int64 bitmask = ((b3Int64)(~0)) << (64 - commonPrefixLength); //Set all bits after the common prefix to 0 + + return sharedBits & bitmask; +} + +//Same as computeCommonPrefixLength(), but allows for prefixes with different lengths +int getSharedPrefixLength(b3Int64 prefixA, int prefixLengthA, b3Int64 prefixB, int prefixLengthB) +{ + return b3Min( computeCommonPrefixLength(prefixA, prefixB), b3Min(prefixLengthA, prefixLengthB) ); +} + +__kernel void computeAdjacentPairCommonPrefix(__global SortDataCL* mortonCodesAndAabbIndices, + __global b3Int64* out_commonPrefixes, + __global int* out_commonPrefixLengths, + int numInternalNodes) +{ + int internalNodeIndex = get_global_id(0); + if (internalNodeIndex >= numInternalNodes) return; + + //Here, (internalNodeIndex + 1) is never out of bounds since it is a leaf node index, + //and the number of internal nodes is always numLeafNodes - 1 + int leftLeafIndex = internalNodeIndex; + int rightLeafIndex = internalNodeIndex + 1; + + int leftLeafMortonCode = mortonCodesAndAabbIndices[leftLeafIndex].m_key; + int rightLeafMortonCode = mortonCodesAndAabbIndices[rightLeafIndex].m_key; + + //Binary radix tree construction algorithm does not work if there are duplicate morton codes. + //Append the index of each leaf node to each morton code so that there are no duplicates. + //The algorithm also requires that the morton codes are sorted in ascending order; this requirement + //is also satisfied with this method, as (leftLeafIndex < rightLeafIndex) is always true. + // + //upsample(a, b) == ( ((b3Int64)a) << 32) | b + b3Int64 nonduplicateLeftMortonCode = upsample(leftLeafMortonCode, leftLeafIndex); + b3Int64 nonduplicateRightMortonCode = upsample(rightLeafMortonCode, rightLeafIndex); + + out_commonPrefixes[internalNodeIndex] = computeCommonPrefix(nonduplicateLeftMortonCode, nonduplicateRightMortonCode); + out_commonPrefixLengths[internalNodeIndex] = computeCommonPrefixLength(nonduplicateLeftMortonCode, nonduplicateRightMortonCode); +} + + +__kernel void buildBinaryRadixTreeLeafNodes(__global int* commonPrefixLengths, __global int* out_leafNodeParentNodes, + __global int2* out_childNodes, int numLeafNodes) +{ + int leafNodeIndex = get_global_id(0); + if (leafNodeIndex >= numLeafNodes) return; + + int numInternalNodes = numLeafNodes - 1; + + int leftSplitIndex = leafNodeIndex - 1; + int rightSplitIndex = leafNodeIndex; + + int leftCommonPrefix = (leftSplitIndex >= 0) ? commonPrefixLengths[leftSplitIndex] : B3_PLBVH_INVALID_COMMON_PREFIX; + int rightCommonPrefix = (rightSplitIndex < numInternalNodes) ? commonPrefixLengths[rightSplitIndex] : B3_PLBVH_INVALID_COMMON_PREFIX; + + //Parent node is the highest adjacent common prefix that is lower than the node's common prefix + //Leaf nodes are considered as having the highest common prefix + int isLeftHigherCommonPrefix = (leftCommonPrefix > rightCommonPrefix); + + //Handle cases for the edge nodes; the first and last node + //For leaf nodes, leftCommonPrefix and rightCommonPrefix should never both be B3_PLBVH_INVALID_COMMON_PREFIX + if(leftCommonPrefix == B3_PLBVH_INVALID_COMMON_PREFIX) isLeftHigherCommonPrefix = false; + if(rightCommonPrefix == B3_PLBVH_INVALID_COMMON_PREFIX) isLeftHigherCommonPrefix = true; + + int parentNodeIndex = (isLeftHigherCommonPrefix) ? leftSplitIndex : rightSplitIndex; + out_leafNodeParentNodes[leafNodeIndex] = parentNodeIndex; + + int isRightChild = (isLeftHigherCommonPrefix); //If the left node is the parent, then this node is its right child and vice versa + + //out_childNodesAsInt[0] == int2.x == left child + //out_childNodesAsInt[1] == int2.y == right child + int isLeaf = 1; + __global int* out_childNodesAsInt = (__global int*)(&out_childNodes[parentNodeIndex]); + out_childNodesAsInt[isRightChild] = getIndexWithInternalNodeMarkerSet(isLeaf, leafNodeIndex); +} + +__kernel void buildBinaryRadixTreeInternalNodes(__global b3Int64* commonPrefixes, __global int* commonPrefixLengths, + __global int2* out_childNodes, + __global int* out_internalNodeParentNodes, __global int* out_rootNodeIndex, + int numInternalNodes) +{ + int internalNodeIndex = get_group_id(0) * get_local_size(0) + get_local_id(0); + if(internalNodeIndex >= numInternalNodes) return; + + b3Int64 nodePrefix = commonPrefixes[internalNodeIndex]; + int nodePrefixLength = commonPrefixLengths[internalNodeIndex]; + +//#define USE_LINEAR_SEARCH +#ifdef USE_LINEAR_SEARCH + int leftIndex = -1; + int rightIndex = -1; + + //Find nearest element to left with a lower common prefix + for(int i = internalNodeIndex - 1; i >= 0; --i) + { + int nodeLeftSharedPrefixLength = getSharedPrefixLength(nodePrefix, nodePrefixLength, commonPrefixes[i], commonPrefixLengths[i]); + if(nodeLeftSharedPrefixLength < nodePrefixLength) + { + leftIndex = i; + break; + } + } + + //Find nearest element to right with a lower common prefix + for(int i = internalNodeIndex + 1; i < numInternalNodes; ++i) + { + int nodeRightSharedPrefixLength = getSharedPrefixLength(nodePrefix, nodePrefixLength, commonPrefixes[i], commonPrefixLengths[i]); + if(nodeRightSharedPrefixLength < nodePrefixLength) + { + rightIndex = i; + break; + } + } + +#else //Use binary search + + //Find nearest element to left with a lower common prefix + int leftIndex = -1; + { + int lower = 0; + int upper = internalNodeIndex - 1; + + while(lower <= upper) + { + int mid = (lower + upper) / 2; + b3Int64 midPrefix = commonPrefixes[mid]; + int midPrefixLength = commonPrefixLengths[mid]; + + int nodeMidSharedPrefixLength = getSharedPrefixLength(nodePrefix, nodePrefixLength, midPrefix, midPrefixLength); + if(nodeMidSharedPrefixLength < nodePrefixLength) + { + int right = mid + 1; + if(right < internalNodeIndex) + { + b3Int64 rightPrefix = commonPrefixes[right]; + int rightPrefixLength = commonPrefixLengths[right]; + + int nodeRightSharedPrefixLength = getSharedPrefixLength(nodePrefix, nodePrefixLength, rightPrefix, rightPrefixLength); + if(nodeRightSharedPrefixLength < nodePrefixLength) + { + lower = right; + leftIndex = right; + } + else + { + leftIndex = mid; + break; + } + } + else + { + leftIndex = mid; + break; + } + } + else upper = mid - 1; + } + } + + //Find nearest element to right with a lower common prefix + int rightIndex = -1; + { + int lower = internalNodeIndex + 1; + int upper = numInternalNodes - 1; + + while(lower <= upper) + { + int mid = (lower + upper) / 2; + b3Int64 midPrefix = commonPrefixes[mid]; + int midPrefixLength = commonPrefixLengths[mid]; + + int nodeMidSharedPrefixLength = getSharedPrefixLength(nodePrefix, nodePrefixLength, midPrefix, midPrefixLength); + if(nodeMidSharedPrefixLength < nodePrefixLength) + { + int left = mid - 1; + if(left > internalNodeIndex) + { + b3Int64 leftPrefix = commonPrefixes[left]; + int leftPrefixLength = commonPrefixLengths[left]; + + int nodeLeftSharedPrefixLength = getSharedPrefixLength(nodePrefix, nodePrefixLength, leftPrefix, leftPrefixLength); + if(nodeLeftSharedPrefixLength < nodePrefixLength) + { + upper = left; + rightIndex = left; + } + else + { + rightIndex = mid; + break; + } + } + else + { + rightIndex = mid; + break; + } + } + else lower = mid + 1; + } + } +#endif + + //Select parent + { + int leftPrefixLength = (leftIndex != -1) ? commonPrefixLengths[leftIndex] : B3_PLBVH_INVALID_COMMON_PREFIX; + int rightPrefixLength = (rightIndex != -1) ? commonPrefixLengths[rightIndex] : B3_PLBVH_INVALID_COMMON_PREFIX; + + int isLeftHigherPrefixLength = (leftPrefixLength > rightPrefixLength); + + if(leftPrefixLength == B3_PLBVH_INVALID_COMMON_PREFIX) isLeftHigherPrefixLength = false; + else if(rightPrefixLength == B3_PLBVH_INVALID_COMMON_PREFIX) isLeftHigherPrefixLength = true; + + int parentNodeIndex = (isLeftHigherPrefixLength) ? leftIndex : rightIndex; + + int isRootNode = (leftIndex == -1 && rightIndex == -1); + out_internalNodeParentNodes[internalNodeIndex] = (!isRootNode) ? parentNodeIndex : B3_PLBVH_ROOT_NODE_MARKER; + + int isLeaf = 0; + if(!isRootNode) + { + int isRightChild = (isLeftHigherPrefixLength); //If the left node is the parent, then this node is its right child and vice versa + + //out_childNodesAsInt[0] == int2.x == left child + //out_childNodesAsInt[1] == int2.y == right child + __global int* out_childNodesAsInt = (__global int*)(&out_childNodes[parentNodeIndex]); + out_childNodesAsInt[isRightChild] = getIndexWithInternalNodeMarkerSet(isLeaf, internalNodeIndex); + } + else *out_rootNodeIndex = getIndexWithInternalNodeMarkerSet(isLeaf, internalNodeIndex); + } +} + +__kernel void findDistanceFromRoot(__global int* rootNodeIndex, __global int* internalNodeParentNodes, + __global int* out_maxDistanceFromRoot, __global int* out_distanceFromRoot, int numInternalNodes) +{ + if( get_global_id(0) == 0 ) atomic_xchg(out_maxDistanceFromRoot, 0); + + int internalNodeIndex = get_global_id(0); + if(internalNodeIndex >= numInternalNodes) return; + + // + int distanceFromRoot = 0; + { + int parentIndex = internalNodeParentNodes[internalNodeIndex]; + while(parentIndex != B3_PLBVH_ROOT_NODE_MARKER) + { + parentIndex = internalNodeParentNodes[parentIndex]; + ++distanceFromRoot; + } + } + out_distanceFromRoot[internalNodeIndex] = distanceFromRoot; + + // + __local int localMaxDistanceFromRoot; + if( get_local_id(0) == 0 ) localMaxDistanceFromRoot = 0; + barrier(CLK_LOCAL_MEM_FENCE); + + atomic_max(&localMaxDistanceFromRoot, distanceFromRoot); + barrier(CLK_LOCAL_MEM_FENCE); + + if( get_local_id(0) == 0 ) atomic_max(out_maxDistanceFromRoot, localMaxDistanceFromRoot); +} + +__kernel void buildBinaryRadixTreeAabbsRecursive(__global int* distanceFromRoot, __global SortDataCL* mortonCodesAndAabbIndices, + __global int2* childNodes, + __global b3AabbCL* leafNodeAabbs, __global b3AabbCL* internalNodeAabbs, + int maxDistanceFromRoot, int processedDistance, int numInternalNodes) +{ + int internalNodeIndex = get_global_id(0); + if(internalNodeIndex >= numInternalNodes) return; + + int distance = distanceFromRoot[internalNodeIndex]; + + if(distance == processedDistance) + { + int leftChildIndex = childNodes[internalNodeIndex].x; + int rightChildIndex = childNodes[internalNodeIndex].y; + + int isLeftChildLeaf = isLeafNode(leftChildIndex); + int isRightChildLeaf = isLeafNode(rightChildIndex); + + leftChildIndex = getIndexWithInternalNodeMarkerRemoved(leftChildIndex); + rightChildIndex = getIndexWithInternalNodeMarkerRemoved(rightChildIndex); + + //leftRigidIndex/rightRigidIndex is not used if internal node + int leftRigidIndex = (isLeftChildLeaf) ? mortonCodesAndAabbIndices[leftChildIndex].m_value : -1; + int rightRigidIndex = (isRightChildLeaf) ? mortonCodesAndAabbIndices[rightChildIndex].m_value : -1; + + b3AabbCL leftChildAabb = (isLeftChildLeaf) ? leafNodeAabbs[leftRigidIndex] : internalNodeAabbs[leftChildIndex]; + b3AabbCL rightChildAabb = (isRightChildLeaf) ? leafNodeAabbs[rightRigidIndex] : internalNodeAabbs[rightChildIndex]; + + b3AabbCL mergedAabb; + mergedAabb.m_min = b3Min(leftChildAabb.m_min, rightChildAabb.m_min); + mergedAabb.m_max = b3Max(leftChildAabb.m_max, rightChildAabb.m_max); + internalNodeAabbs[internalNodeIndex] = mergedAabb; + } +} + +__kernel void findLeafIndexRanges(__global int2* internalNodeChildNodes, __global int2* out_leafIndexRanges, int numInternalNodes) +{ + int internalNodeIndex = get_global_id(0); + if(internalNodeIndex >= numInternalNodes) return; + + int numLeafNodes = numInternalNodes + 1; + + int2 childNodes = internalNodeChildNodes[internalNodeIndex]; + + int2 leafIndexRange; //x == min leaf index, y == max leaf index + + //Find lowest leaf index covered by this internal node + { + int lowestIndex = childNodes.x; //childNodes.x == Left child + while( !isLeafNode(lowestIndex) ) lowestIndex = internalNodeChildNodes[ getIndexWithInternalNodeMarkerRemoved(lowestIndex) ].x; + leafIndexRange.x = lowestIndex; + } + + //Find highest leaf index covered by this internal node + { + int highestIndex = childNodes.y; //childNodes.y == Right child + while( !isLeafNode(highestIndex) ) highestIndex = internalNodeChildNodes[ getIndexWithInternalNodeMarkerRemoved(highestIndex) ].y; + leafIndexRange.y = highestIndex; + } + + // + out_leafIndexRanges[internalNodeIndex] = leafIndexRange; +} diff --git a/thirdparty/bullet/src/Bullet3OpenCL/BroadphaseCollision/kernels/parallelLinearBvhKernels.h b/thirdparty/bullet/src/Bullet3OpenCL/BroadphaseCollision/kernels/parallelLinearBvhKernels.h new file mode 100644 index 0000000000..5eb8f45b16 --- /dev/null +++ b/thirdparty/bullet/src/Bullet3OpenCL/BroadphaseCollision/kernels/parallelLinearBvhKernels.h @@ -0,0 +1,729 @@ +//this file is autogenerated using stringify.bat (premake --stringify) in the build folder of this project +static const char* parallelLinearBvhCL= \ +"/*\n" +"This software is provided 'as-is', without any express or implied warranty.\n" +"In no event will the authors be held liable for any damages arising from the use of this software.\n" +"Permission is granted to anyone to use this software for any purpose,\n" +"including commercial applications, and to alter it and redistribute it freely,\n" +"subject to the following restrictions:\n" +"1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.\n" +"2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.\n" +"3. This notice may not be removed or altered from any source distribution.\n" +"*/\n" +"//Initial Author Jackson Lee, 2014\n" +"typedef float b3Scalar;\n" +"typedef float4 b3Vector3;\n" +"#define b3Max max\n" +"#define b3Min min\n" +"#define b3Sqrt sqrt\n" +"typedef struct\n" +"{\n" +" unsigned int m_key;\n" +" unsigned int m_value;\n" +"} SortDataCL;\n" +"typedef struct \n" +"{\n" +" union\n" +" {\n" +" float4 m_min;\n" +" float m_minElems[4];\n" +" int m_minIndices[4];\n" +" };\n" +" union\n" +" {\n" +" float4 m_max;\n" +" float m_maxElems[4];\n" +" int m_maxIndices[4];\n" +" };\n" +"} b3AabbCL;\n" +"unsigned int interleaveBits(unsigned int x)\n" +"{\n" +" //........ ........ ......12 3456789A //x\n" +" //....1..2 ..3..4.. 5..6..7. .8..9..A //x after interleaving bits\n" +" \n" +" //......12 3456789A ......12 3456789A //x ^ (x << 16)\n" +" //11111111 ........ ........ 11111111 //0x FF 00 00 FF\n" +" //......12 ........ ........ 3456789A //x = (x ^ (x << 16)) & 0xFF0000FF;\n" +" \n" +" //......12 ........ 3456789A 3456789A //x ^ (x << 8)\n" +" //......11 ........ 1111.... ....1111 //0x 03 00 F0 0F\n" +" //......12 ........ 3456.... ....789A //x = (x ^ (x << 8)) & 0x0300F00F;\n" +" \n" +" //..12..12 ....3456 3456.... 789A789A //x ^ (x << 4)\n" +" //......11 ....11.. ..11.... 11....11 //0x 03 0C 30 C3\n" +" //......12 ....34.. ..56.... 78....9A //x = (x ^ (x << 4)) & 0x030C30C3;\n" +" \n" +" //....1212 ..3434.. 5656..78 78..9A9A //x ^ (x << 2)\n" +" //....1..1 ..1..1.. 1..1..1. .1..1..1 //0x 09 24 92 49\n" +" //....1..2 ..3..4.. 5..6..7. .8..9..A //x = (x ^ (x << 2)) & 0x09249249;\n" +" \n" +" //........ ........ ......11 11111111 //0x000003FF\n" +" x &= 0x000003FF; //Clear all bits above bit 10\n" +" \n" +" x = (x ^ (x << 16)) & 0xFF0000FF;\n" +" x = (x ^ (x << 8)) & 0x0300F00F;\n" +" x = (x ^ (x << 4)) & 0x030C30C3;\n" +" x = (x ^ (x << 2)) & 0x09249249;\n" +" \n" +" return x;\n" +"}\n" +"unsigned int getMortonCode(unsigned int x, unsigned int y, unsigned int z)\n" +"{\n" +" return interleaveBits(x) << 0 | interleaveBits(y) << 1 | interleaveBits(z) << 2;\n" +"}\n" +"__kernel void separateAabbs(__global b3AabbCL* unseparatedAabbs, __global int* aabbIndices, __global b3AabbCL* out_aabbs, int numAabbsToSeparate)\n" +"{\n" +" int separatedAabbIndex = get_global_id(0);\n" +" if(separatedAabbIndex >= numAabbsToSeparate) return;\n" +" int unseparatedAabbIndex = aabbIndices[separatedAabbIndex];\n" +" out_aabbs[separatedAabbIndex] = unseparatedAabbs[unseparatedAabbIndex];\n" +"}\n" +"//Should replace with an optimized parallel reduction\n" +"__kernel void findAllNodesMergedAabb(__global b3AabbCL* out_mergedAabb, int numAabbsNeedingMerge)\n" +"{\n" +" //Each time this kernel is added to the command queue, \n" +" //the number of AABBs needing to be merged is halved\n" +" //\n" +" //Example with 159 AABBs:\n" +" // numRemainingAabbs == 159 / 2 + 159 % 2 == 80\n" +" // numMergedAabbs == 159 - 80 == 79\n" +" //So, indices [0, 78] are merged with [0 + 80, 78 + 80]\n" +" \n" +" int numRemainingAabbs = numAabbsNeedingMerge / 2 + numAabbsNeedingMerge % 2;\n" +" int numMergedAabbs = numAabbsNeedingMerge - numRemainingAabbs;\n" +" \n" +" int aabbIndex = get_global_id(0);\n" +" if(aabbIndex >= numMergedAabbs) return;\n" +" \n" +" int otherAabbIndex = aabbIndex + numRemainingAabbs;\n" +" \n" +" b3AabbCL aabb = out_mergedAabb[aabbIndex];\n" +" b3AabbCL otherAabb = out_mergedAabb[otherAabbIndex];\n" +" \n" +" b3AabbCL mergedAabb;\n" +" mergedAabb.m_min = b3Min(aabb.m_min, otherAabb.m_min);\n" +" mergedAabb.m_max = b3Max(aabb.m_max, otherAabb.m_max);\n" +" out_mergedAabb[aabbIndex] = mergedAabb;\n" +"}\n" +"__kernel void assignMortonCodesAndAabbIndicies(__global b3AabbCL* worldSpaceAabbs, __global b3AabbCL* mergedAabbOfAllNodes, \n" +" __global SortDataCL* out_mortonCodesAndAabbIndices, int numAabbs)\n" +"{\n" +" int leafNodeIndex = get_global_id(0); //Leaf node index == AABB index\n" +" if(leafNodeIndex >= numAabbs) return;\n" +" \n" +" b3AabbCL mergedAabb = mergedAabbOfAllNodes[0];\n" +" b3Vector3 gridCenter = (mergedAabb.m_min + mergedAabb.m_max) * 0.5f;\n" +" b3Vector3 gridCellSize = (mergedAabb.m_max - mergedAabb.m_min) / (float)1024;\n" +" \n" +" b3AabbCL aabb = worldSpaceAabbs[leafNodeIndex];\n" +" b3Vector3 aabbCenter = (aabb.m_min + aabb.m_max) * 0.5f;\n" +" b3Vector3 aabbCenterRelativeToGrid = aabbCenter - gridCenter;\n" +" \n" +" //Quantize into integer coordinates\n" +" //floor() is needed to prevent the center cell, at (0,0,0) from being twice the size\n" +" b3Vector3 gridPosition = aabbCenterRelativeToGrid / gridCellSize;\n" +" \n" +" int4 discretePosition;\n" +" discretePosition.x = (int)( (gridPosition.x >= 0.0f) ? gridPosition.x : floor(gridPosition.x) );\n" +" discretePosition.y = (int)( (gridPosition.y >= 0.0f) ? gridPosition.y : floor(gridPosition.y) );\n" +" discretePosition.z = (int)( (gridPosition.z >= 0.0f) ? gridPosition.z : floor(gridPosition.z) );\n" +" \n" +" //Clamp coordinates into [-512, 511], then convert range from [-512, 511] to [0, 1023]\n" +" discretePosition = b3Max( -512, b3Min(discretePosition, 511) );\n" +" discretePosition += 512;\n" +" \n" +" //Interleave bits(assign a morton code, also known as a z-curve)\n" +" unsigned int mortonCode = getMortonCode(discretePosition.x, discretePosition.y, discretePosition.z);\n" +" \n" +" //\n" +" SortDataCL mortonCodeIndexPair;\n" +" mortonCodeIndexPair.m_key = mortonCode;\n" +" mortonCodeIndexPair.m_value = leafNodeIndex;\n" +" \n" +" out_mortonCodesAndAabbIndices[leafNodeIndex] = mortonCodeIndexPair;\n" +"}\n" +"#define B3_PLVBH_TRAVERSE_MAX_STACK_SIZE 128\n" +"//The most significant bit(0x80000000) of a int32 is used to distinguish between leaf and internal nodes.\n" +"//If it is set, then the index is for an internal node; otherwise, it is a leaf node. \n" +"//In both cases, the bit should be cleared to access the actual node index.\n" +"int isLeafNode(int index) { return (index >> 31 == 0); }\n" +"int getIndexWithInternalNodeMarkerRemoved(int index) { return index & (~0x80000000); }\n" +"int getIndexWithInternalNodeMarkerSet(int isLeaf, int index) { return (isLeaf) ? index : (index | 0x80000000); }\n" +"//From sap.cl\n" +"#define NEW_PAIR_MARKER -1\n" +"bool TestAabbAgainstAabb2(const b3AabbCL* aabb1, const b3AabbCL* aabb2)\n" +"{\n" +" bool overlap = true;\n" +" overlap = (aabb1->m_min.x > aabb2->m_max.x || aabb1->m_max.x < aabb2->m_min.x) ? false : overlap;\n" +" overlap = (aabb1->m_min.z > aabb2->m_max.z || aabb1->m_max.z < aabb2->m_min.z) ? false : overlap;\n" +" overlap = (aabb1->m_min.y > aabb2->m_max.y || aabb1->m_max.y < aabb2->m_min.y) ? false : overlap;\n" +" return overlap;\n" +"}\n" +"//From sap.cl\n" +"__kernel void plbvhCalculateOverlappingPairs(__global b3AabbCL* rigidAabbs, \n" +" __global int* rootNodeIndex, \n" +" __global int2* internalNodeChildIndices, \n" +" __global b3AabbCL* internalNodeAabbs,\n" +" __global int2* internalNodeLeafIndexRanges,\n" +" \n" +" __global SortDataCL* mortonCodesAndAabbIndices,\n" +" __global int* out_numPairs, __global int4* out_overlappingPairs, \n" +" int maxPairs, int numQueryAabbs)\n" +"{\n" +" //Using get_group_id()/get_local_id() is Faster than get_global_id(0) since\n" +" //mortonCodesAndAabbIndices[] contains rigid body indices sorted along the z-curve (more spatially coherent)\n" +" int queryBvhNodeIndex = get_group_id(0) * get_local_size(0) + get_local_id(0);\n" +" if(queryBvhNodeIndex >= numQueryAabbs) return;\n" +" \n" +" int queryRigidIndex = mortonCodesAndAabbIndices[queryBvhNodeIndex].m_value;\n" +" b3AabbCL queryAabb = rigidAabbs[queryRigidIndex];\n" +" \n" +" int stack[B3_PLVBH_TRAVERSE_MAX_STACK_SIZE];\n" +" \n" +" int stackSize = 1;\n" +" stack[0] = *rootNodeIndex;\n" +" \n" +" while(stackSize)\n" +" {\n" +" int internalOrLeafNodeIndex = stack[ stackSize - 1 ];\n" +" --stackSize;\n" +" \n" +" int isLeaf = isLeafNode(internalOrLeafNodeIndex); //Internal node if false\n" +" int bvhNodeIndex = getIndexWithInternalNodeMarkerRemoved(internalOrLeafNodeIndex);\n" +" \n" +" //Optimization - if the BVH is structured as a binary radix tree, then\n" +" //each internal node corresponds to a contiguous range of leaf nodes(internalNodeLeafIndexRanges[]).\n" +" //This can be used to avoid testing each AABB-AABB pair twice, including preventing each node from colliding with itself.\n" +" {\n" +" int highestLeafIndex = (isLeaf) ? bvhNodeIndex : internalNodeLeafIndexRanges[bvhNodeIndex].y;\n" +" if(highestLeafIndex <= queryBvhNodeIndex) continue;\n" +" }\n" +" \n" +" //bvhRigidIndex is not used if internal node\n" +" int bvhRigidIndex = (isLeaf) ? mortonCodesAndAabbIndices[bvhNodeIndex].m_value : -1;\n" +" \n" +" b3AabbCL bvhNodeAabb = (isLeaf) ? rigidAabbs[bvhRigidIndex] : internalNodeAabbs[bvhNodeIndex];\n" +" if( TestAabbAgainstAabb2(&queryAabb, &bvhNodeAabb) )\n" +" {\n" +" if(isLeaf)\n" +" {\n" +" int4 pair;\n" +" pair.x = rigidAabbs[queryRigidIndex].m_minIndices[3];\n" +" pair.y = rigidAabbs[bvhRigidIndex].m_minIndices[3];\n" +" pair.z = NEW_PAIR_MARKER;\n" +" pair.w = NEW_PAIR_MARKER;\n" +" \n" +" int pairIndex = atomic_inc(out_numPairs);\n" +" if(pairIndex < maxPairs) out_overlappingPairs[pairIndex] = pair;\n" +" }\n" +" \n" +" if(!isLeaf) //Internal node\n" +" {\n" +" if(stackSize + 2 > B3_PLVBH_TRAVERSE_MAX_STACK_SIZE)\n" +" {\n" +" //Error\n" +" }\n" +" else\n" +" {\n" +" stack[ stackSize++ ] = internalNodeChildIndices[bvhNodeIndex].x;\n" +" stack[ stackSize++ ] = internalNodeChildIndices[bvhNodeIndex].y;\n" +" }\n" +" }\n" +" }\n" +" \n" +" }\n" +"}\n" +"//From rayCastKernels.cl\n" +"typedef struct\n" +"{\n" +" float4 m_from;\n" +" float4 m_to;\n" +"} b3RayInfo;\n" +"//From rayCastKernels.cl\n" +"b3Vector3 b3Vector3_normalize(b3Vector3 v)\n" +"{\n" +" b3Vector3 normal = (b3Vector3){v.x, v.y, v.z, 0.f};\n" +" return normalize(normal); //OpenCL normalize == vector4 normalize\n" +"}\n" +"b3Scalar b3Vector3_length2(b3Vector3 v) { return v.x*v.x + v.y*v.y + v.z*v.z; }\n" +"b3Scalar b3Vector3_dot(b3Vector3 a, b3Vector3 b) { return a.x*b.x + a.y*b.y + a.z*b.z; }\n" +"int rayIntersectsAabb(b3Vector3 rayOrigin, b3Scalar rayLength, b3Vector3 rayNormalizedDirection, b3AabbCL aabb)\n" +"{\n" +" //AABB is considered as 3 pairs of 2 planes( {x_min, x_max}, {y_min, y_max}, {z_min, z_max} ).\n" +" //t_min is the point of intersection with the closer plane, t_max is the point of intersection with the farther plane.\n" +" //\n" +" //if (rayNormalizedDirection.x < 0.0f), then max.x will be the near plane \n" +" //and min.x will be the far plane; otherwise, it is reversed.\n" +" //\n" +" //In order for there to be a collision, the t_min and t_max of each pair must overlap.\n" +" //This can be tested for by selecting the highest t_min and lowest t_max and comparing them.\n" +" \n" +" int4 isNegative = isless( rayNormalizedDirection, ((b3Vector3){0.0f, 0.0f, 0.0f, 0.0f}) ); //isless(x,y) returns (x < y)\n" +" \n" +" //When using vector types, the select() function checks the most signficant bit, \n" +" //but isless() sets the least significant bit.\n" +" isNegative <<= 31;\n" +" //select(b, a, condition) == condition ? a : b\n" +" //When using select() with vector types, (condition[i]) is true if its most significant bit is 1\n" +" b3Vector3 t_min = ( select(aabb.m_min, aabb.m_max, isNegative) - rayOrigin ) / rayNormalizedDirection;\n" +" b3Vector3 t_max = ( select(aabb.m_max, aabb.m_min, isNegative) - rayOrigin ) / rayNormalizedDirection;\n" +" \n" +" b3Scalar t_min_final = 0.0f;\n" +" b3Scalar t_max_final = rayLength;\n" +" \n" +" //Must use fmin()/fmax(); if one of the parameters is NaN, then the parameter that is not NaN is returned. \n" +" //Behavior of min()/max() with NaNs is undefined. (See OpenCL Specification 1.2 [6.12.2] and [6.12.4])\n" +" //Since the innermost fmin()/fmax() is always not NaN, this should never return NaN.\n" +" t_min_final = fmax( t_min.z, fmax(t_min.y, fmax(t_min.x, t_min_final)) );\n" +" t_max_final = fmin( t_max.z, fmin(t_max.y, fmin(t_max.x, t_max_final)) );\n" +" \n" +" return (t_min_final <= t_max_final);\n" +"}\n" +"__kernel void plbvhRayTraverse(__global b3AabbCL* rigidAabbs,\n" +" __global int* rootNodeIndex, \n" +" __global int2* internalNodeChildIndices, \n" +" __global b3AabbCL* internalNodeAabbs,\n" +" __global int2* internalNodeLeafIndexRanges,\n" +" __global SortDataCL* mortonCodesAndAabbIndices,\n" +" \n" +" __global b3RayInfo* rays,\n" +" \n" +" __global int* out_numRayRigidPairs, \n" +" __global int2* out_rayRigidPairs,\n" +" int maxRayRigidPairs, int numRays)\n" +"{\n" +" int rayIndex = get_global_id(0);\n" +" if(rayIndex >= numRays) return;\n" +" \n" +" //\n" +" b3Vector3 rayFrom = rays[rayIndex].m_from;\n" +" b3Vector3 rayTo = rays[rayIndex].m_to;\n" +" b3Vector3 rayNormalizedDirection = b3Vector3_normalize(rayTo - rayFrom);\n" +" b3Scalar rayLength = b3Sqrt( b3Vector3_length2(rayTo - rayFrom) );\n" +" \n" +" //\n" +" int stack[B3_PLVBH_TRAVERSE_MAX_STACK_SIZE];\n" +" \n" +" int stackSize = 1;\n" +" stack[0] = *rootNodeIndex;\n" +" \n" +" while(stackSize)\n" +" {\n" +" int internalOrLeafNodeIndex = stack[ stackSize - 1 ];\n" +" --stackSize;\n" +" \n" +" int isLeaf = isLeafNode(internalOrLeafNodeIndex); //Internal node if false\n" +" int bvhNodeIndex = getIndexWithInternalNodeMarkerRemoved(internalOrLeafNodeIndex);\n" +" \n" +" //bvhRigidIndex is not used if internal node\n" +" int bvhRigidIndex = (isLeaf) ? mortonCodesAndAabbIndices[bvhNodeIndex].m_value : -1;\n" +" \n" +" b3AabbCL bvhNodeAabb = (isLeaf) ? rigidAabbs[bvhRigidIndex] : internalNodeAabbs[bvhNodeIndex];\n" +" if( rayIntersectsAabb(rayFrom, rayLength, rayNormalizedDirection, bvhNodeAabb) )\n" +" {\n" +" if(isLeaf)\n" +" {\n" +" int2 rayRigidPair;\n" +" rayRigidPair.x = rayIndex;\n" +" rayRigidPair.y = rigidAabbs[bvhRigidIndex].m_minIndices[3];\n" +" \n" +" int pairIndex = atomic_inc(out_numRayRigidPairs);\n" +" if(pairIndex < maxRayRigidPairs) out_rayRigidPairs[pairIndex] = rayRigidPair;\n" +" }\n" +" \n" +" if(!isLeaf) //Internal node\n" +" {\n" +" if(stackSize + 2 > B3_PLVBH_TRAVERSE_MAX_STACK_SIZE)\n" +" {\n" +" //Error\n" +" }\n" +" else\n" +" {\n" +" stack[ stackSize++ ] = internalNodeChildIndices[bvhNodeIndex].x;\n" +" stack[ stackSize++ ] = internalNodeChildIndices[bvhNodeIndex].y;\n" +" }\n" +" }\n" +" }\n" +" }\n" +"}\n" +"__kernel void plbvhLargeAabbAabbTest(__global b3AabbCL* smallAabbs, __global b3AabbCL* largeAabbs, \n" +" __global int* out_numPairs, __global int4* out_overlappingPairs, \n" +" int maxPairs, int numLargeAabbRigids, int numSmallAabbRigids)\n" +"{\n" +" int smallAabbIndex = get_global_id(0);\n" +" if(smallAabbIndex >= numSmallAabbRigids) return;\n" +" \n" +" b3AabbCL smallAabb = smallAabbs[smallAabbIndex];\n" +" for(int i = 0; i < numLargeAabbRigids; ++i)\n" +" {\n" +" b3AabbCL largeAabb = largeAabbs[i];\n" +" if( TestAabbAgainstAabb2(&smallAabb, &largeAabb) )\n" +" {\n" +" int4 pair;\n" +" pair.x = largeAabb.m_minIndices[3];\n" +" pair.y = smallAabb.m_minIndices[3];\n" +" pair.z = NEW_PAIR_MARKER;\n" +" pair.w = NEW_PAIR_MARKER;\n" +" \n" +" int pairIndex = atomic_inc(out_numPairs);\n" +" if(pairIndex < maxPairs) out_overlappingPairs[pairIndex] = pair;\n" +" }\n" +" }\n" +"}\n" +"__kernel void plbvhLargeAabbRayTest(__global b3AabbCL* largeRigidAabbs, __global b3RayInfo* rays,\n" +" __global int* out_numRayRigidPairs, __global int2* out_rayRigidPairs,\n" +" int numLargeAabbRigids, int maxRayRigidPairs, int numRays)\n" +"{\n" +" int rayIndex = get_global_id(0);\n" +" if(rayIndex >= numRays) return;\n" +" \n" +" b3Vector3 rayFrom = rays[rayIndex].m_from;\n" +" b3Vector3 rayTo = rays[rayIndex].m_to;\n" +" b3Vector3 rayNormalizedDirection = b3Vector3_normalize(rayTo - rayFrom);\n" +" b3Scalar rayLength = b3Sqrt( b3Vector3_length2(rayTo - rayFrom) );\n" +" \n" +" for(int i = 0; i < numLargeAabbRigids; ++i)\n" +" {\n" +" b3AabbCL rigidAabb = largeRigidAabbs[i];\n" +" if( rayIntersectsAabb(rayFrom, rayLength, rayNormalizedDirection, rigidAabb) )\n" +" {\n" +" int2 rayRigidPair;\n" +" rayRigidPair.x = rayIndex;\n" +" rayRigidPair.y = rigidAabb.m_minIndices[3];\n" +" \n" +" int pairIndex = atomic_inc(out_numRayRigidPairs);\n" +" if(pairIndex < maxRayRigidPairs) out_rayRigidPairs[pairIndex] = rayRigidPair;\n" +" }\n" +" }\n" +"}\n" +"//Set so that it is always greater than the actual common prefixes, and never selected as a parent node.\n" +"//If there are no duplicates, then the highest common prefix is 32 or 64, depending on the number of bits used for the z-curve.\n" +"//Duplicate common prefixes increase the highest common prefix at most by the number of bits used to index the leaf node.\n" +"//Since 32 bit ints are used to index leaf nodes, the max prefix is 64(32 + 32 bit z-curve) or 96(32 + 64 bit z-curve).\n" +"#define B3_PLBVH_INVALID_COMMON_PREFIX 128\n" +"#define B3_PLBVH_ROOT_NODE_MARKER -1\n" +"#define b3Int64 long\n" +"int computeCommonPrefixLength(b3Int64 i, b3Int64 j) { return (int)clz(i ^ j); }\n" +"b3Int64 computeCommonPrefix(b3Int64 i, b3Int64 j) \n" +"{\n" +" //This function only needs to return (i & j) in order for the algorithm to work,\n" +" //but it may help with debugging to mask out the lower bits.\n" +" b3Int64 commonPrefixLength = (b3Int64)computeCommonPrefixLength(i, j);\n" +" b3Int64 sharedBits = i & j;\n" +" b3Int64 bitmask = ((b3Int64)(~0)) << (64 - commonPrefixLength); //Set all bits after the common prefix to 0\n" +" \n" +" return sharedBits & bitmask;\n" +"}\n" +"//Same as computeCommonPrefixLength(), but allows for prefixes with different lengths\n" +"int getSharedPrefixLength(b3Int64 prefixA, int prefixLengthA, b3Int64 prefixB, int prefixLengthB)\n" +"{\n" +" return b3Min( computeCommonPrefixLength(prefixA, prefixB), b3Min(prefixLengthA, prefixLengthB) );\n" +"}\n" +"__kernel void computeAdjacentPairCommonPrefix(__global SortDataCL* mortonCodesAndAabbIndices,\n" +" __global b3Int64* out_commonPrefixes,\n" +" __global int* out_commonPrefixLengths,\n" +" int numInternalNodes)\n" +"{\n" +" int internalNodeIndex = get_global_id(0);\n" +" if (internalNodeIndex >= numInternalNodes) return;\n" +" \n" +" //Here, (internalNodeIndex + 1) is never out of bounds since it is a leaf node index,\n" +" //and the number of internal nodes is always numLeafNodes - 1\n" +" int leftLeafIndex = internalNodeIndex;\n" +" int rightLeafIndex = internalNodeIndex + 1;\n" +" \n" +" int leftLeafMortonCode = mortonCodesAndAabbIndices[leftLeafIndex].m_key;\n" +" int rightLeafMortonCode = mortonCodesAndAabbIndices[rightLeafIndex].m_key;\n" +" \n" +" //Binary radix tree construction algorithm does not work if there are duplicate morton codes.\n" +" //Append the index of each leaf node to each morton code so that there are no duplicates.\n" +" //The algorithm also requires that the morton codes are sorted in ascending order; this requirement\n" +" //is also satisfied with this method, as (leftLeafIndex < rightLeafIndex) is always true.\n" +" //\n" +" //upsample(a, b) == ( ((b3Int64)a) << 32) | b\n" +" b3Int64 nonduplicateLeftMortonCode = upsample(leftLeafMortonCode, leftLeafIndex);\n" +" b3Int64 nonduplicateRightMortonCode = upsample(rightLeafMortonCode, rightLeafIndex);\n" +" \n" +" out_commonPrefixes[internalNodeIndex] = computeCommonPrefix(nonduplicateLeftMortonCode, nonduplicateRightMortonCode);\n" +" out_commonPrefixLengths[internalNodeIndex] = computeCommonPrefixLength(nonduplicateLeftMortonCode, nonduplicateRightMortonCode);\n" +"}\n" +"__kernel void buildBinaryRadixTreeLeafNodes(__global int* commonPrefixLengths, __global int* out_leafNodeParentNodes,\n" +" __global int2* out_childNodes, int numLeafNodes)\n" +"{\n" +" int leafNodeIndex = get_global_id(0);\n" +" if (leafNodeIndex >= numLeafNodes) return;\n" +" \n" +" int numInternalNodes = numLeafNodes - 1;\n" +" \n" +" int leftSplitIndex = leafNodeIndex - 1;\n" +" int rightSplitIndex = leafNodeIndex;\n" +" \n" +" int leftCommonPrefix = (leftSplitIndex >= 0) ? commonPrefixLengths[leftSplitIndex] : B3_PLBVH_INVALID_COMMON_PREFIX;\n" +" int rightCommonPrefix = (rightSplitIndex < numInternalNodes) ? commonPrefixLengths[rightSplitIndex] : B3_PLBVH_INVALID_COMMON_PREFIX;\n" +" \n" +" //Parent node is the highest adjacent common prefix that is lower than the node's common prefix\n" +" //Leaf nodes are considered as having the highest common prefix\n" +" int isLeftHigherCommonPrefix = (leftCommonPrefix > rightCommonPrefix);\n" +" \n" +" //Handle cases for the edge nodes; the first and last node\n" +" //For leaf nodes, leftCommonPrefix and rightCommonPrefix should never both be B3_PLBVH_INVALID_COMMON_PREFIX\n" +" if(leftCommonPrefix == B3_PLBVH_INVALID_COMMON_PREFIX) isLeftHigherCommonPrefix = false;\n" +" if(rightCommonPrefix == B3_PLBVH_INVALID_COMMON_PREFIX) isLeftHigherCommonPrefix = true;\n" +" \n" +" int parentNodeIndex = (isLeftHigherCommonPrefix) ? leftSplitIndex : rightSplitIndex;\n" +" out_leafNodeParentNodes[leafNodeIndex] = parentNodeIndex;\n" +" \n" +" int isRightChild = (isLeftHigherCommonPrefix); //If the left node is the parent, then this node is its right child and vice versa\n" +" \n" +" //out_childNodesAsInt[0] == int2.x == left child\n" +" //out_childNodesAsInt[1] == int2.y == right child\n" +" int isLeaf = 1;\n" +" __global int* out_childNodesAsInt = (__global int*)(&out_childNodes[parentNodeIndex]);\n" +" out_childNodesAsInt[isRightChild] = getIndexWithInternalNodeMarkerSet(isLeaf, leafNodeIndex);\n" +"}\n" +"__kernel void buildBinaryRadixTreeInternalNodes(__global b3Int64* commonPrefixes, __global int* commonPrefixLengths,\n" +" __global int2* out_childNodes,\n" +" __global int* out_internalNodeParentNodes, __global int* out_rootNodeIndex,\n" +" int numInternalNodes)\n" +"{\n" +" int internalNodeIndex = get_group_id(0) * get_local_size(0) + get_local_id(0);\n" +" if(internalNodeIndex >= numInternalNodes) return;\n" +" \n" +" b3Int64 nodePrefix = commonPrefixes[internalNodeIndex];\n" +" int nodePrefixLength = commonPrefixLengths[internalNodeIndex];\n" +" \n" +"//#define USE_LINEAR_SEARCH\n" +"#ifdef USE_LINEAR_SEARCH\n" +" int leftIndex = -1;\n" +" int rightIndex = -1;\n" +" \n" +" //Find nearest element to left with a lower common prefix\n" +" for(int i = internalNodeIndex - 1; i >= 0; --i)\n" +" {\n" +" int nodeLeftSharedPrefixLength = getSharedPrefixLength(nodePrefix, nodePrefixLength, commonPrefixes[i], commonPrefixLengths[i]);\n" +" if(nodeLeftSharedPrefixLength < nodePrefixLength)\n" +" {\n" +" leftIndex = i;\n" +" break;\n" +" }\n" +" }\n" +" \n" +" //Find nearest element to right with a lower common prefix\n" +" for(int i = internalNodeIndex + 1; i < numInternalNodes; ++i)\n" +" {\n" +" int nodeRightSharedPrefixLength = getSharedPrefixLength(nodePrefix, nodePrefixLength, commonPrefixes[i], commonPrefixLengths[i]);\n" +" if(nodeRightSharedPrefixLength < nodePrefixLength)\n" +" {\n" +" rightIndex = i;\n" +" break;\n" +" }\n" +" }\n" +" \n" +"#else //Use binary search\n" +" //Find nearest element to left with a lower common prefix\n" +" int leftIndex = -1;\n" +" {\n" +" int lower = 0;\n" +" int upper = internalNodeIndex - 1;\n" +" \n" +" while(lower <= upper)\n" +" {\n" +" int mid = (lower + upper) / 2;\n" +" b3Int64 midPrefix = commonPrefixes[mid];\n" +" int midPrefixLength = commonPrefixLengths[mid];\n" +" \n" +" int nodeMidSharedPrefixLength = getSharedPrefixLength(nodePrefix, nodePrefixLength, midPrefix, midPrefixLength);\n" +" if(nodeMidSharedPrefixLength < nodePrefixLength) \n" +" {\n" +" int right = mid + 1;\n" +" if(right < internalNodeIndex)\n" +" {\n" +" b3Int64 rightPrefix = commonPrefixes[right];\n" +" int rightPrefixLength = commonPrefixLengths[right];\n" +" \n" +" int nodeRightSharedPrefixLength = getSharedPrefixLength(nodePrefix, nodePrefixLength, rightPrefix, rightPrefixLength);\n" +" if(nodeRightSharedPrefixLength < nodePrefixLength) \n" +" {\n" +" lower = right;\n" +" leftIndex = right;\n" +" }\n" +" else \n" +" {\n" +" leftIndex = mid;\n" +" break;\n" +" }\n" +" }\n" +" else \n" +" {\n" +" leftIndex = mid;\n" +" break;\n" +" }\n" +" }\n" +" else upper = mid - 1;\n" +" }\n" +" }\n" +" \n" +" //Find nearest element to right with a lower common prefix\n" +" int rightIndex = -1;\n" +" {\n" +" int lower = internalNodeIndex + 1;\n" +" int upper = numInternalNodes - 1;\n" +" \n" +" while(lower <= upper)\n" +" {\n" +" int mid = (lower + upper) / 2;\n" +" b3Int64 midPrefix = commonPrefixes[mid];\n" +" int midPrefixLength = commonPrefixLengths[mid];\n" +" \n" +" int nodeMidSharedPrefixLength = getSharedPrefixLength(nodePrefix, nodePrefixLength, midPrefix, midPrefixLength);\n" +" if(nodeMidSharedPrefixLength < nodePrefixLength) \n" +" {\n" +" int left = mid - 1;\n" +" if(left > internalNodeIndex)\n" +" {\n" +" b3Int64 leftPrefix = commonPrefixes[left];\n" +" int leftPrefixLength = commonPrefixLengths[left];\n" +" \n" +" int nodeLeftSharedPrefixLength = getSharedPrefixLength(nodePrefix, nodePrefixLength, leftPrefix, leftPrefixLength);\n" +" if(nodeLeftSharedPrefixLength < nodePrefixLength) \n" +" {\n" +" upper = left;\n" +" rightIndex = left;\n" +" }\n" +" else \n" +" {\n" +" rightIndex = mid;\n" +" break;\n" +" }\n" +" }\n" +" else \n" +" {\n" +" rightIndex = mid;\n" +" break;\n" +" }\n" +" }\n" +" else lower = mid + 1;\n" +" }\n" +" }\n" +"#endif\n" +" \n" +" //Select parent\n" +" {\n" +" int leftPrefixLength = (leftIndex != -1) ? commonPrefixLengths[leftIndex] : B3_PLBVH_INVALID_COMMON_PREFIX;\n" +" int rightPrefixLength = (rightIndex != -1) ? commonPrefixLengths[rightIndex] : B3_PLBVH_INVALID_COMMON_PREFIX;\n" +" \n" +" int isLeftHigherPrefixLength = (leftPrefixLength > rightPrefixLength);\n" +" \n" +" if(leftPrefixLength == B3_PLBVH_INVALID_COMMON_PREFIX) isLeftHigherPrefixLength = false;\n" +" else if(rightPrefixLength == B3_PLBVH_INVALID_COMMON_PREFIX) isLeftHigherPrefixLength = true;\n" +" \n" +" int parentNodeIndex = (isLeftHigherPrefixLength) ? leftIndex : rightIndex;\n" +" \n" +" int isRootNode = (leftIndex == -1 && rightIndex == -1);\n" +" out_internalNodeParentNodes[internalNodeIndex] = (!isRootNode) ? parentNodeIndex : B3_PLBVH_ROOT_NODE_MARKER;\n" +" \n" +" int isLeaf = 0;\n" +" if(!isRootNode)\n" +" {\n" +" int isRightChild = (isLeftHigherPrefixLength); //If the left node is the parent, then this node is its right child and vice versa\n" +" \n" +" //out_childNodesAsInt[0] == int2.x == left child\n" +" //out_childNodesAsInt[1] == int2.y == right child\n" +" __global int* out_childNodesAsInt = (__global int*)(&out_childNodes[parentNodeIndex]);\n" +" out_childNodesAsInt[isRightChild] = getIndexWithInternalNodeMarkerSet(isLeaf, internalNodeIndex);\n" +" }\n" +" else *out_rootNodeIndex = getIndexWithInternalNodeMarkerSet(isLeaf, internalNodeIndex);\n" +" }\n" +"}\n" +"__kernel void findDistanceFromRoot(__global int* rootNodeIndex, __global int* internalNodeParentNodes,\n" +" __global int* out_maxDistanceFromRoot, __global int* out_distanceFromRoot, int numInternalNodes)\n" +"{\n" +" if( get_global_id(0) == 0 ) atomic_xchg(out_maxDistanceFromRoot, 0);\n" +" int internalNodeIndex = get_global_id(0);\n" +" if(internalNodeIndex >= numInternalNodes) return;\n" +" \n" +" //\n" +" int distanceFromRoot = 0;\n" +" {\n" +" int parentIndex = internalNodeParentNodes[internalNodeIndex];\n" +" while(parentIndex != B3_PLBVH_ROOT_NODE_MARKER)\n" +" {\n" +" parentIndex = internalNodeParentNodes[parentIndex];\n" +" ++distanceFromRoot;\n" +" }\n" +" }\n" +" out_distanceFromRoot[internalNodeIndex] = distanceFromRoot;\n" +" \n" +" //\n" +" __local int localMaxDistanceFromRoot;\n" +" if( get_local_id(0) == 0 ) localMaxDistanceFromRoot = 0;\n" +" barrier(CLK_LOCAL_MEM_FENCE);\n" +" \n" +" atomic_max(&localMaxDistanceFromRoot, distanceFromRoot);\n" +" barrier(CLK_LOCAL_MEM_FENCE);\n" +" \n" +" if( get_local_id(0) == 0 ) atomic_max(out_maxDistanceFromRoot, localMaxDistanceFromRoot);\n" +"}\n" +"__kernel void buildBinaryRadixTreeAabbsRecursive(__global int* distanceFromRoot, __global SortDataCL* mortonCodesAndAabbIndices,\n" +" __global int2* childNodes,\n" +" __global b3AabbCL* leafNodeAabbs, __global b3AabbCL* internalNodeAabbs,\n" +" int maxDistanceFromRoot, int processedDistance, int numInternalNodes)\n" +"{\n" +" int internalNodeIndex = get_global_id(0);\n" +" if(internalNodeIndex >= numInternalNodes) return;\n" +" \n" +" int distance = distanceFromRoot[internalNodeIndex];\n" +" \n" +" if(distance == processedDistance)\n" +" {\n" +" int leftChildIndex = childNodes[internalNodeIndex].x;\n" +" int rightChildIndex = childNodes[internalNodeIndex].y;\n" +" \n" +" int isLeftChildLeaf = isLeafNode(leftChildIndex);\n" +" int isRightChildLeaf = isLeafNode(rightChildIndex);\n" +" \n" +" leftChildIndex = getIndexWithInternalNodeMarkerRemoved(leftChildIndex);\n" +" rightChildIndex = getIndexWithInternalNodeMarkerRemoved(rightChildIndex);\n" +" \n" +" //leftRigidIndex/rightRigidIndex is not used if internal node\n" +" int leftRigidIndex = (isLeftChildLeaf) ? mortonCodesAndAabbIndices[leftChildIndex].m_value : -1;\n" +" int rightRigidIndex = (isRightChildLeaf) ? mortonCodesAndAabbIndices[rightChildIndex].m_value : -1;\n" +" \n" +" b3AabbCL leftChildAabb = (isLeftChildLeaf) ? leafNodeAabbs[leftRigidIndex] : internalNodeAabbs[leftChildIndex];\n" +" b3AabbCL rightChildAabb = (isRightChildLeaf) ? leafNodeAabbs[rightRigidIndex] : internalNodeAabbs[rightChildIndex];\n" +" \n" +" b3AabbCL mergedAabb;\n" +" mergedAabb.m_min = b3Min(leftChildAabb.m_min, rightChildAabb.m_min);\n" +" mergedAabb.m_max = b3Max(leftChildAabb.m_max, rightChildAabb.m_max);\n" +" internalNodeAabbs[internalNodeIndex] = mergedAabb;\n" +" }\n" +"}\n" +"__kernel void findLeafIndexRanges(__global int2* internalNodeChildNodes, __global int2* out_leafIndexRanges, int numInternalNodes)\n" +"{\n" +" int internalNodeIndex = get_global_id(0);\n" +" if(internalNodeIndex >= numInternalNodes) return;\n" +" \n" +" int numLeafNodes = numInternalNodes + 1;\n" +" \n" +" int2 childNodes = internalNodeChildNodes[internalNodeIndex];\n" +" \n" +" int2 leafIndexRange; //x == min leaf index, y == max leaf index\n" +" \n" +" //Find lowest leaf index covered by this internal node\n" +" {\n" +" int lowestIndex = childNodes.x; //childNodes.x == Left child\n" +" while( !isLeafNode(lowestIndex) ) lowestIndex = internalNodeChildNodes[ getIndexWithInternalNodeMarkerRemoved(lowestIndex) ].x;\n" +" leafIndexRange.x = lowestIndex;\n" +" }\n" +" \n" +" //Find highest leaf index covered by this internal node\n" +" {\n" +" int highestIndex = childNodes.y; //childNodes.y == Right child\n" +" while( !isLeafNode(highestIndex) ) highestIndex = internalNodeChildNodes[ getIndexWithInternalNodeMarkerRemoved(highestIndex) ].y;\n" +" leafIndexRange.y = highestIndex;\n" +" }\n" +" \n" +" //\n" +" out_leafIndexRanges[internalNodeIndex] = leafIndexRange;\n" +"}\n" +; diff --git a/thirdparty/bullet/src/Bullet3OpenCL/BroadphaseCollision/kernels/sap.cl b/thirdparty/bullet/src/Bullet3OpenCL/BroadphaseCollision/kernels/sap.cl new file mode 100644 index 0000000000..93f77a6433 --- /dev/null +++ b/thirdparty/bullet/src/Bullet3OpenCL/BroadphaseCollision/kernels/sap.cl @@ -0,0 +1,389 @@ +/* +Copyright (c) 2012 Advanced Micro Devices, Inc. + +This software is provided 'as-is', without any express or implied warranty. +In no event will the authors be held liable for any damages arising from the use of this software. +Permission is granted to anyone to use this software for any purpose, +including commercial applications, and to alter it and redistribute it freely, +subject to the following restrictions: + +1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. +2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. +3. This notice may not be removed or altered from any source distribution. +*/ +//Originally written by Erwin Coumans + +#define NEW_PAIR_MARKER -1 + +typedef struct +{ + union + { + float4 m_min; + float m_minElems[4]; + int m_minIndices[4]; + }; + union + { + float4 m_max; + float m_maxElems[4]; + int m_maxIndices[4]; + }; +} btAabbCL; + + +/// conservative test for overlap between two aabbs +bool TestAabbAgainstAabb2(const btAabbCL* aabb1, __local const btAabbCL* aabb2); +bool TestAabbAgainstAabb2(const btAabbCL* aabb1, __local const btAabbCL* aabb2) +{ + bool overlap = true; + overlap = (aabb1->m_min.x > aabb2->m_max.x || aabb1->m_max.x < aabb2->m_min.x) ? false : overlap; + overlap = (aabb1->m_min.z > aabb2->m_max.z || aabb1->m_max.z < aabb2->m_min.z) ? false : overlap; + overlap = (aabb1->m_min.y > aabb2->m_max.y || aabb1->m_max.y < aabb2->m_min.y) ? false : overlap; + return overlap; +} +bool TestAabbAgainstAabb2GlobalGlobal(__global const btAabbCL* aabb1, __global const btAabbCL* aabb2); +bool TestAabbAgainstAabb2GlobalGlobal(__global const btAabbCL* aabb1, __global const btAabbCL* aabb2) +{ + bool overlap = true; + overlap = (aabb1->m_min.x > aabb2->m_max.x || aabb1->m_max.x < aabb2->m_min.x) ? false : overlap; + overlap = (aabb1->m_min.z > aabb2->m_max.z || aabb1->m_max.z < aabb2->m_min.z) ? false : overlap; + overlap = (aabb1->m_min.y > aabb2->m_max.y || aabb1->m_max.y < aabb2->m_min.y) ? false : overlap; + return overlap; +} + +bool TestAabbAgainstAabb2Global(const btAabbCL* aabb1, __global const btAabbCL* aabb2); +bool TestAabbAgainstAabb2Global(const btAabbCL* aabb1, __global const btAabbCL* aabb2) +{ + bool overlap = true; + overlap = (aabb1->m_min.x > aabb2->m_max.x || aabb1->m_max.x < aabb2->m_min.x) ? false : overlap; + overlap = (aabb1->m_min.z > aabb2->m_max.z || aabb1->m_max.z < aabb2->m_min.z) ? false : overlap; + overlap = (aabb1->m_min.y > aabb2->m_max.y || aabb1->m_max.y < aabb2->m_min.y) ? false : overlap; + return overlap; +} + + +__kernel void computePairsKernelTwoArrays( __global const btAabbCL* unsortedAabbs, __global const int* unsortedAabbMapping, __global const int* unsortedAabbMapping2, volatile __global int4* pairsOut,volatile __global int* pairCount, int numUnsortedAabbs, int numUnSortedAabbs2, int axis, int maxPairs) +{ + int i = get_global_id(0); + if (i>=numUnsortedAabbs) + return; + + int j = get_global_id(1); + if (j>=numUnSortedAabbs2) + return; + + + __global const btAabbCL* unsortedAabbPtr = &unsortedAabbs[unsortedAabbMapping[i]]; + __global const btAabbCL* unsortedAabbPtr2 = &unsortedAabbs[unsortedAabbMapping2[j]]; + + if (TestAabbAgainstAabb2GlobalGlobal(unsortedAabbPtr,unsortedAabbPtr2)) + { + int4 myPair; + + int xIndex = unsortedAabbPtr[0].m_minIndices[3]; + int yIndex = unsortedAabbPtr2[0].m_minIndices[3]; + if (xIndex>yIndex) + { + int tmp = xIndex; + xIndex=yIndex; + yIndex=tmp; + } + + myPair.x = xIndex; + myPair.y = yIndex; + myPair.z = NEW_PAIR_MARKER; + myPair.w = NEW_PAIR_MARKER; + + + int curPair = atomic_inc (pairCount); + if (curPair<maxPairs) + { + pairsOut[curPair] = myPair; //flush to main memory + } + } +} + + + +__kernel void computePairsKernelBruteForce( __global const btAabbCL* aabbs, volatile __global int4* pairsOut,volatile __global int* pairCount, int numObjects, int axis, int maxPairs) +{ + int i = get_global_id(0); + if (i>=numObjects) + return; + for (int j=i+1;j<numObjects;j++) + { + if (TestAabbAgainstAabb2GlobalGlobal(&aabbs[i],&aabbs[j])) + { + int4 myPair; + myPair.x = aabbs[i].m_minIndices[3]; + myPair.y = aabbs[j].m_minIndices[3]; + myPair.z = NEW_PAIR_MARKER; + myPair.w = NEW_PAIR_MARKER; + + int curPair = atomic_inc (pairCount); + if (curPair<maxPairs) + { + pairsOut[curPair] = myPair; //flush to main memory + } + } + } +} + +__kernel void computePairsKernelOriginal( __global const btAabbCL* aabbs, volatile __global int4* pairsOut,volatile __global int* pairCount, int numObjects, int axis, int maxPairs) +{ + int i = get_global_id(0); + if (i>=numObjects) + return; + for (int j=i+1;j<numObjects;j++) + { + if(aabbs[i].m_maxElems[axis] < (aabbs[j].m_minElems[axis])) + { + break; + } + if (TestAabbAgainstAabb2GlobalGlobal(&aabbs[i],&aabbs[j])) + { + int4 myPair; + myPair.x = aabbs[i].m_minIndices[3]; + myPair.y = aabbs[j].m_minIndices[3]; + myPair.z = NEW_PAIR_MARKER; + myPair.w = NEW_PAIR_MARKER; + + int curPair = atomic_inc (pairCount); + if (curPair<maxPairs) + { + pairsOut[curPair] = myPair; //flush to main memory + } + } + } +} + + + + +__kernel void computePairsKernelBarrier( __global const btAabbCL* aabbs, volatile __global int4* pairsOut,volatile __global int* pairCount, int numObjects, int axis, int maxPairs) +{ + int i = get_global_id(0); + int localId = get_local_id(0); + + __local int numActiveWgItems[1]; + __local int breakRequest[1]; + + if (localId==0) + { + numActiveWgItems[0] = 0; + breakRequest[0] = 0; + } + barrier(CLK_LOCAL_MEM_FENCE); + atomic_inc(numActiveWgItems); + barrier(CLK_LOCAL_MEM_FENCE); + int localBreak = 0; + + int j=i+1; + do + { + barrier(CLK_LOCAL_MEM_FENCE); + + if (j<numObjects) + { + if(aabbs[i].m_maxElems[axis] < (aabbs[j].m_minElems[axis])) + { + if (!localBreak) + { + atomic_inc(breakRequest); + localBreak = 1; + } + } + } + + barrier(CLK_LOCAL_MEM_FENCE); + + if (j>=numObjects && !localBreak) + { + atomic_inc(breakRequest); + localBreak = 1; + } + barrier(CLK_LOCAL_MEM_FENCE); + + if (!localBreak) + { + if (TestAabbAgainstAabb2GlobalGlobal(&aabbs[i],&aabbs[j])) + { + int4 myPair; + myPair.x = aabbs[i].m_minIndices[3]; + myPair.y = aabbs[j].m_minIndices[3]; + myPair.z = NEW_PAIR_MARKER; + myPair.w = NEW_PAIR_MARKER; + + int curPair = atomic_inc (pairCount); + if (curPair<maxPairs) + { + pairsOut[curPair] = myPair; //flush to main memory + } + } + } + j++; + + } while (breakRequest[0]<numActiveWgItems[0]); +} + + +__kernel void computePairsKernelLocalSharedMemory( __global const btAabbCL* aabbs, volatile __global int4* pairsOut,volatile __global int* pairCount, int numObjects, int axis, int maxPairs) +{ + int i = get_global_id(0); + int localId = get_local_id(0); + + __local int numActiveWgItems[1]; + __local int breakRequest[1]; + __local btAabbCL localAabbs[128];// = aabbs[i]; + + btAabbCL myAabb; + + myAabb = (i<numObjects)? aabbs[i]:aabbs[0]; + float testValue = myAabb.m_maxElems[axis]; + + if (localId==0) + { + numActiveWgItems[0] = 0; + breakRequest[0] = 0; + } + int localCount=0; + int block=0; + localAabbs[localId] = (i+block)<numObjects? aabbs[i+block] : aabbs[0]; + localAabbs[localId+64] = (i+block+64)<numObjects? aabbs[i+block+64]: aabbs[0]; + + barrier(CLK_LOCAL_MEM_FENCE); + atomic_inc(numActiveWgItems); + barrier(CLK_LOCAL_MEM_FENCE); + int localBreak = 0; + + int j=i+1; + do + { + barrier(CLK_LOCAL_MEM_FENCE); + + if (j<numObjects) + { + if(testValue < (localAabbs[localCount+localId+1].m_minElems[axis])) + { + if (!localBreak) + { + atomic_inc(breakRequest); + localBreak = 1; + } + } + } + + barrier(CLK_LOCAL_MEM_FENCE); + + if (j>=numObjects && !localBreak) + { + atomic_inc(breakRequest); + localBreak = 1; + } + barrier(CLK_LOCAL_MEM_FENCE); + + if (!localBreak) + { + if (TestAabbAgainstAabb2(&myAabb,&localAabbs[localCount+localId+1])) + { + int4 myPair; + myPair.x = myAabb.m_minIndices[3]; + myPair.y = localAabbs[localCount+localId+1].m_minIndices[3]; + myPair.z = NEW_PAIR_MARKER; + myPair.w = NEW_PAIR_MARKER; + + int curPair = atomic_inc (pairCount); + if (curPair<maxPairs) + { + pairsOut[curPair] = myPair; //flush to main memory + } + } + } + + barrier(CLK_LOCAL_MEM_FENCE); + + localCount++; + if (localCount==64) + { + localCount = 0; + block+=64; + localAabbs[localId] = ((i+block)<numObjects) ? aabbs[i+block] : aabbs[0]; + localAabbs[localId+64] = ((i+64+block)<numObjects) ? aabbs[i+block+64] : aabbs[0]; + } + j++; + + } while (breakRequest[0]<numActiveWgItems[0]); + +} + + + + +//http://stereopsis.com/radix.html +unsigned int FloatFlip(float fl); +unsigned int FloatFlip(float fl) +{ + unsigned int f = *(unsigned int*)&fl; + unsigned int mask = -(int)(f >> 31) | 0x80000000; + return f ^ mask; +} +float IFloatFlip(unsigned int f); +float IFloatFlip(unsigned int f) +{ + unsigned int mask = ((f >> 31) - 1) | 0x80000000; + unsigned int fl = f ^ mask; + return *(float*)&fl; +} + + + + +__kernel void copyAabbsKernel( __global const btAabbCL* allAabbs, __global btAabbCL* destAabbs, int numObjects) +{ + int i = get_global_id(0); + if (i>=numObjects) + return; + int src = destAabbs[i].m_maxIndices[3]; + destAabbs[i] = allAabbs[src]; + destAabbs[i].m_maxIndices[3] = src; +} + + +__kernel void flipFloatKernel( __global const btAabbCL* allAabbs, __global const int* smallAabbMapping, __global int2* sortData, int numObjects, int axis) +{ + int i = get_global_id(0); + if (i>=numObjects) + return; + + + sortData[i].x = FloatFlip(allAabbs[smallAabbMapping[i]].m_minElems[axis]); + sortData[i].y = i; + +} + + +__kernel void scatterKernel( __global const btAabbCL* allAabbs, __global const int* smallAabbMapping, volatile __global const int2* sortData, __global btAabbCL* sortedAabbs, int numObjects) +{ + int i = get_global_id(0); + if (i>=numObjects) + return; + + sortedAabbs[i] = allAabbs[smallAabbMapping[sortData[i].y]]; +} + + + +__kernel void prepareSumVarianceKernel( __global const btAabbCL* allAabbs, __global const int* smallAabbMapping, __global float4* sum, __global float4* sum2,int numAabbs) +{ + int i = get_global_id(0); + if (i>=numAabbs) + return; + + btAabbCL smallAabb = allAabbs[smallAabbMapping[i]]; + + float4 s; + s = (smallAabb.m_max+smallAabb.m_min)*0.5f; + sum[i]=s; + sum2[i]=s*s; +} diff --git a/thirdparty/bullet/src/Bullet3OpenCL/BroadphaseCollision/kernels/sapKernels.h b/thirdparty/bullet/src/Bullet3OpenCL/BroadphaseCollision/kernels/sapKernels.h new file mode 100644 index 0000000000..04d40fcf26 --- /dev/null +++ b/thirdparty/bullet/src/Bullet3OpenCL/BroadphaseCollision/kernels/sapKernels.h @@ -0,0 +1,342 @@ +//this file is autogenerated using stringify.bat (premake --stringify) in the build folder of this project +static const char* sapCL= \ +"/*\n" +"Copyright (c) 2012 Advanced Micro Devices, Inc. \n" +"This software is provided 'as-is', without any express or implied warranty.\n" +"In no event will the authors be held liable for any damages arising from the use of this software.\n" +"Permission is granted to anyone to use this software for any purpose, \n" +"including commercial applications, and to alter it and redistribute it freely, \n" +"subject to the following restrictions:\n" +"1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.\n" +"2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.\n" +"3. This notice may not be removed or altered from any source distribution.\n" +"*/\n" +"//Originally written by Erwin Coumans\n" +"#define NEW_PAIR_MARKER -1\n" +"typedef struct \n" +"{\n" +" union\n" +" {\n" +" float4 m_min;\n" +" float m_minElems[4];\n" +" int m_minIndices[4];\n" +" };\n" +" union\n" +" {\n" +" float4 m_max;\n" +" float m_maxElems[4];\n" +" int m_maxIndices[4];\n" +" };\n" +"} btAabbCL;\n" +"/// conservative test for overlap between two aabbs\n" +"bool TestAabbAgainstAabb2(const btAabbCL* aabb1, __local const btAabbCL* aabb2);\n" +"bool TestAabbAgainstAabb2(const btAabbCL* aabb1, __local const btAabbCL* aabb2)\n" +"{\n" +" bool overlap = true;\n" +" overlap = (aabb1->m_min.x > aabb2->m_max.x || aabb1->m_max.x < aabb2->m_min.x) ? false : overlap;\n" +" overlap = (aabb1->m_min.z > aabb2->m_max.z || aabb1->m_max.z < aabb2->m_min.z) ? false : overlap;\n" +" overlap = (aabb1->m_min.y > aabb2->m_max.y || aabb1->m_max.y < aabb2->m_min.y) ? false : overlap;\n" +" return overlap;\n" +"}\n" +"bool TestAabbAgainstAabb2GlobalGlobal(__global const btAabbCL* aabb1, __global const btAabbCL* aabb2);\n" +"bool TestAabbAgainstAabb2GlobalGlobal(__global const btAabbCL* aabb1, __global const btAabbCL* aabb2)\n" +"{\n" +" bool overlap = true;\n" +" overlap = (aabb1->m_min.x > aabb2->m_max.x || aabb1->m_max.x < aabb2->m_min.x) ? false : overlap;\n" +" overlap = (aabb1->m_min.z > aabb2->m_max.z || aabb1->m_max.z < aabb2->m_min.z) ? false : overlap;\n" +" overlap = (aabb1->m_min.y > aabb2->m_max.y || aabb1->m_max.y < aabb2->m_min.y) ? false : overlap;\n" +" return overlap;\n" +"}\n" +"bool TestAabbAgainstAabb2Global(const btAabbCL* aabb1, __global const btAabbCL* aabb2);\n" +"bool TestAabbAgainstAabb2Global(const btAabbCL* aabb1, __global const btAabbCL* aabb2)\n" +"{\n" +" bool overlap = true;\n" +" overlap = (aabb1->m_min.x > aabb2->m_max.x || aabb1->m_max.x < aabb2->m_min.x) ? false : overlap;\n" +" overlap = (aabb1->m_min.z > aabb2->m_max.z || aabb1->m_max.z < aabb2->m_min.z) ? false : overlap;\n" +" overlap = (aabb1->m_min.y > aabb2->m_max.y || aabb1->m_max.y < aabb2->m_min.y) ? false : overlap;\n" +" return overlap;\n" +"}\n" +"__kernel void computePairsKernelTwoArrays( __global const btAabbCL* unsortedAabbs, __global const int* unsortedAabbMapping, __global const int* unsortedAabbMapping2, volatile __global int4* pairsOut,volatile __global int* pairCount, int numUnsortedAabbs, int numUnSortedAabbs2, int axis, int maxPairs)\n" +"{\n" +" int i = get_global_id(0);\n" +" if (i>=numUnsortedAabbs)\n" +" return;\n" +" int j = get_global_id(1);\n" +" if (j>=numUnSortedAabbs2)\n" +" return;\n" +" __global const btAabbCL* unsortedAabbPtr = &unsortedAabbs[unsortedAabbMapping[i]];\n" +" __global const btAabbCL* unsortedAabbPtr2 = &unsortedAabbs[unsortedAabbMapping2[j]];\n" +" if (TestAabbAgainstAabb2GlobalGlobal(unsortedAabbPtr,unsortedAabbPtr2))\n" +" {\n" +" int4 myPair;\n" +" \n" +" int xIndex = unsortedAabbPtr[0].m_minIndices[3];\n" +" int yIndex = unsortedAabbPtr2[0].m_minIndices[3];\n" +" if (xIndex>yIndex)\n" +" {\n" +" int tmp = xIndex;\n" +" xIndex=yIndex;\n" +" yIndex=tmp;\n" +" }\n" +" \n" +" myPair.x = xIndex;\n" +" myPair.y = yIndex;\n" +" myPair.z = NEW_PAIR_MARKER;\n" +" myPair.w = NEW_PAIR_MARKER;\n" +" int curPair = atomic_inc (pairCount);\n" +" if (curPair<maxPairs)\n" +" {\n" +" pairsOut[curPair] = myPair; //flush to main memory\n" +" }\n" +" }\n" +"}\n" +"__kernel void computePairsKernelBruteForce( __global const btAabbCL* aabbs, volatile __global int4* pairsOut,volatile __global int* pairCount, int numObjects, int axis, int maxPairs)\n" +"{\n" +" int i = get_global_id(0);\n" +" if (i>=numObjects)\n" +" return;\n" +" for (int j=i+1;j<numObjects;j++)\n" +" {\n" +" if (TestAabbAgainstAabb2GlobalGlobal(&aabbs[i],&aabbs[j]))\n" +" {\n" +" int4 myPair;\n" +" myPair.x = aabbs[i].m_minIndices[3];\n" +" myPair.y = aabbs[j].m_minIndices[3];\n" +" myPair.z = NEW_PAIR_MARKER;\n" +" myPair.w = NEW_PAIR_MARKER;\n" +" int curPair = atomic_inc (pairCount);\n" +" if (curPair<maxPairs)\n" +" {\n" +" pairsOut[curPair] = myPair; //flush to main memory\n" +" }\n" +" }\n" +" }\n" +"}\n" +"__kernel void computePairsKernelOriginal( __global const btAabbCL* aabbs, volatile __global int4* pairsOut,volatile __global int* pairCount, int numObjects, int axis, int maxPairs)\n" +"{\n" +" int i = get_global_id(0);\n" +" if (i>=numObjects)\n" +" return;\n" +" for (int j=i+1;j<numObjects;j++)\n" +" {\n" +" if(aabbs[i].m_maxElems[axis] < (aabbs[j].m_minElems[axis])) \n" +" {\n" +" break;\n" +" }\n" +" if (TestAabbAgainstAabb2GlobalGlobal(&aabbs[i],&aabbs[j]))\n" +" {\n" +" int4 myPair;\n" +" myPair.x = aabbs[i].m_minIndices[3];\n" +" myPair.y = aabbs[j].m_minIndices[3];\n" +" myPair.z = NEW_PAIR_MARKER;\n" +" myPair.w = NEW_PAIR_MARKER;\n" +" int curPair = atomic_inc (pairCount);\n" +" if (curPair<maxPairs)\n" +" {\n" +" pairsOut[curPair] = myPair; //flush to main memory\n" +" }\n" +" }\n" +" }\n" +"}\n" +"__kernel void computePairsKernelBarrier( __global const btAabbCL* aabbs, volatile __global int4* pairsOut,volatile __global int* pairCount, int numObjects, int axis, int maxPairs)\n" +"{\n" +" int i = get_global_id(0);\n" +" int localId = get_local_id(0);\n" +" __local int numActiveWgItems[1];\n" +" __local int breakRequest[1];\n" +" if (localId==0)\n" +" {\n" +" numActiveWgItems[0] = 0;\n" +" breakRequest[0] = 0;\n" +" }\n" +" barrier(CLK_LOCAL_MEM_FENCE);\n" +" atomic_inc(numActiveWgItems);\n" +" barrier(CLK_LOCAL_MEM_FENCE);\n" +" int localBreak = 0;\n" +" int j=i+1;\n" +" do\n" +" {\n" +" barrier(CLK_LOCAL_MEM_FENCE);\n" +" \n" +" if (j<numObjects)\n" +" {\n" +" if(aabbs[i].m_maxElems[axis] < (aabbs[j].m_minElems[axis])) \n" +" {\n" +" if (!localBreak)\n" +" {\n" +" atomic_inc(breakRequest);\n" +" localBreak = 1;\n" +" }\n" +" }\n" +" }\n" +" \n" +" barrier(CLK_LOCAL_MEM_FENCE);\n" +" \n" +" if (j>=numObjects && !localBreak)\n" +" {\n" +" atomic_inc(breakRequest);\n" +" localBreak = 1;\n" +" }\n" +" barrier(CLK_LOCAL_MEM_FENCE);\n" +" \n" +" if (!localBreak)\n" +" {\n" +" if (TestAabbAgainstAabb2GlobalGlobal(&aabbs[i],&aabbs[j]))\n" +" {\n" +" int4 myPair;\n" +" myPair.x = aabbs[i].m_minIndices[3];\n" +" myPair.y = aabbs[j].m_minIndices[3];\n" +" myPair.z = NEW_PAIR_MARKER;\n" +" myPair.w = NEW_PAIR_MARKER;\n" +" int curPair = atomic_inc (pairCount);\n" +" if (curPair<maxPairs)\n" +" {\n" +" pairsOut[curPair] = myPair; //flush to main memory\n" +" }\n" +" }\n" +" }\n" +" j++;\n" +" } while (breakRequest[0]<numActiveWgItems[0]);\n" +"}\n" +"__kernel void computePairsKernelLocalSharedMemory( __global const btAabbCL* aabbs, volatile __global int4* pairsOut,volatile __global int* pairCount, int numObjects, int axis, int maxPairs)\n" +"{\n" +" int i = get_global_id(0);\n" +" int localId = get_local_id(0);\n" +" __local int numActiveWgItems[1];\n" +" __local int breakRequest[1];\n" +" __local btAabbCL localAabbs[128];// = aabbs[i];\n" +" \n" +" btAabbCL myAabb;\n" +" \n" +" myAabb = (i<numObjects)? aabbs[i]:aabbs[0];\n" +" float testValue = myAabb.m_maxElems[axis];\n" +" \n" +" if (localId==0)\n" +" {\n" +" numActiveWgItems[0] = 0;\n" +" breakRequest[0] = 0;\n" +" }\n" +" int localCount=0;\n" +" int block=0;\n" +" localAabbs[localId] = (i+block)<numObjects? aabbs[i+block] : aabbs[0];\n" +" localAabbs[localId+64] = (i+block+64)<numObjects? aabbs[i+block+64]: aabbs[0];\n" +" \n" +" barrier(CLK_LOCAL_MEM_FENCE);\n" +" atomic_inc(numActiveWgItems);\n" +" barrier(CLK_LOCAL_MEM_FENCE);\n" +" int localBreak = 0;\n" +" \n" +" int j=i+1;\n" +" do\n" +" {\n" +" barrier(CLK_LOCAL_MEM_FENCE);\n" +" \n" +" if (j<numObjects)\n" +" {\n" +" if(testValue < (localAabbs[localCount+localId+1].m_minElems[axis])) \n" +" {\n" +" if (!localBreak)\n" +" {\n" +" atomic_inc(breakRequest);\n" +" localBreak = 1;\n" +" }\n" +" }\n" +" }\n" +" \n" +" barrier(CLK_LOCAL_MEM_FENCE);\n" +" \n" +" if (j>=numObjects && !localBreak)\n" +" {\n" +" atomic_inc(breakRequest);\n" +" localBreak = 1;\n" +" }\n" +" barrier(CLK_LOCAL_MEM_FENCE);\n" +" \n" +" if (!localBreak)\n" +" {\n" +" if (TestAabbAgainstAabb2(&myAabb,&localAabbs[localCount+localId+1]))\n" +" {\n" +" int4 myPair;\n" +" myPair.x = myAabb.m_minIndices[3];\n" +" myPair.y = localAabbs[localCount+localId+1].m_minIndices[3];\n" +" myPair.z = NEW_PAIR_MARKER;\n" +" myPair.w = NEW_PAIR_MARKER;\n" +" int curPair = atomic_inc (pairCount);\n" +" if (curPair<maxPairs)\n" +" {\n" +" pairsOut[curPair] = myPair; //flush to main memory\n" +" }\n" +" }\n" +" }\n" +" \n" +" barrier(CLK_LOCAL_MEM_FENCE);\n" +" localCount++;\n" +" if (localCount==64)\n" +" {\n" +" localCount = 0;\n" +" block+=64; \n" +" localAabbs[localId] = ((i+block)<numObjects) ? aabbs[i+block] : aabbs[0];\n" +" localAabbs[localId+64] = ((i+64+block)<numObjects) ? aabbs[i+block+64] : aabbs[0];\n" +" }\n" +" j++;\n" +" \n" +" } while (breakRequest[0]<numActiveWgItems[0]);\n" +" \n" +"}\n" +"//http://stereopsis.com/radix.html\n" +"unsigned int FloatFlip(float fl);\n" +"unsigned int FloatFlip(float fl)\n" +"{\n" +" unsigned int f = *(unsigned int*)&fl;\n" +" unsigned int mask = -(int)(f >> 31) | 0x80000000;\n" +" return f ^ mask;\n" +"}\n" +"float IFloatFlip(unsigned int f);\n" +"float IFloatFlip(unsigned int f)\n" +"{\n" +" unsigned int mask = ((f >> 31) - 1) | 0x80000000;\n" +" unsigned int fl = f ^ mask;\n" +" return *(float*)&fl;\n" +"}\n" +"__kernel void copyAabbsKernel( __global const btAabbCL* allAabbs, __global btAabbCL* destAabbs, int numObjects)\n" +"{\n" +" int i = get_global_id(0);\n" +" if (i>=numObjects)\n" +" return;\n" +" int src = destAabbs[i].m_maxIndices[3];\n" +" destAabbs[i] = allAabbs[src];\n" +" destAabbs[i].m_maxIndices[3] = src;\n" +"}\n" +"__kernel void flipFloatKernel( __global const btAabbCL* allAabbs, __global const int* smallAabbMapping, __global int2* sortData, int numObjects, int axis)\n" +"{\n" +" int i = get_global_id(0);\n" +" if (i>=numObjects)\n" +" return;\n" +" \n" +" \n" +" sortData[i].x = FloatFlip(allAabbs[smallAabbMapping[i]].m_minElems[axis]);\n" +" sortData[i].y = i;\n" +" \n" +"}\n" +"__kernel void scatterKernel( __global const btAabbCL* allAabbs, __global const int* smallAabbMapping, volatile __global const int2* sortData, __global btAabbCL* sortedAabbs, int numObjects)\n" +"{\n" +" int i = get_global_id(0);\n" +" if (i>=numObjects)\n" +" return;\n" +" \n" +" sortedAabbs[i] = allAabbs[smallAabbMapping[sortData[i].y]];\n" +"}\n" +"__kernel void prepareSumVarianceKernel( __global const btAabbCL* allAabbs, __global const int* smallAabbMapping, __global float4* sum, __global float4* sum2,int numAabbs)\n" +"{\n" +" int i = get_global_id(0);\n" +" if (i>=numAabbs)\n" +" return;\n" +" \n" +" btAabbCL smallAabb = allAabbs[smallAabbMapping[i]];\n" +" \n" +" float4 s;\n" +" s = (smallAabb.m_max+smallAabb.m_min)*0.5f;\n" +" sum[i]=s;\n" +" sum2[i]=s*s; \n" +"}\n" +; |