diff options
author | RĂ©mi Verschelde <rverschelde@gmail.com> | 2019-01-07 15:08:41 +0100 |
---|---|---|
committer | GitHub <noreply@github.com> | 2019-01-07 15:08:41 +0100 |
commit | dab650fcaa3eb37deee5118d678a3763ac78a58a (patch) | |
tree | 3131df01280f91a61b4721eed132a5b6b21881ba /thirdparty/bullet/LinearMath/btTransformUtil.h | |
parent | a3a537c2cf86ff4bf82385bbd17606654f8013c4 (diff) | |
parent | 22b7c9dfa80d0f7abca40f061865c2ab3c136a74 (diff) |
Merge pull request #24740 from OBKF/update-bullet-physics
Update Bullet physics to commit 126b676
Diffstat (limited to 'thirdparty/bullet/LinearMath/btTransformUtil.h')
-rw-r--r-- | thirdparty/bullet/LinearMath/btTransformUtil.h | 158 |
1 files changed, 70 insertions, 88 deletions
diff --git a/thirdparty/bullet/LinearMath/btTransformUtil.h b/thirdparty/bullet/LinearMath/btTransformUtil.h index 182cc43fab..b874dd6807 100644 --- a/thirdparty/bullet/LinearMath/btTransformUtil.h +++ b/thirdparty/bullet/LinearMath/btTransformUtil.h @@ -12,77 +12,66 @@ subject to the following restrictions: 3. This notice may not be removed or altered from any source distribution. */ - #ifndef BT_TRANSFORM_UTIL_H #define BT_TRANSFORM_UTIL_H #include "btTransform.h" -#define ANGULAR_MOTION_THRESHOLD btScalar(0.5)*SIMD_HALF_PI - - - +#define ANGULAR_MOTION_THRESHOLD btScalar(0.5) * SIMD_HALF_PI -SIMD_FORCE_INLINE btVector3 btAabbSupport(const btVector3& halfExtents,const btVector3& supportDir) +SIMD_FORCE_INLINE btVector3 btAabbSupport(const btVector3& halfExtents, const btVector3& supportDir) { return btVector3(supportDir.x() < btScalar(0.0) ? -halfExtents.x() : halfExtents.x(), - supportDir.y() < btScalar(0.0) ? -halfExtents.y() : halfExtents.y(), - supportDir.z() < btScalar(0.0) ? -halfExtents.z() : halfExtents.z()); + supportDir.y() < btScalar(0.0) ? -halfExtents.y() : halfExtents.y(), + supportDir.z() < btScalar(0.0) ? -halfExtents.z() : halfExtents.z()); } - - - - - /// Utils related to temporal transforms class btTransformUtil { - public: - - static void integrateTransform(const btTransform& curTrans,const btVector3& linvel,const btVector3& angvel,btScalar timeStep,btTransform& predictedTransform) + static void integrateTransform(const btTransform& curTrans, const btVector3& linvel, const btVector3& angvel, btScalar timeStep, btTransform& predictedTransform) { predictedTransform.setOrigin(curTrans.getOrigin() + linvel * timeStep); -// #define QUATERNION_DERIVATIVE - #ifdef QUATERNION_DERIVATIVE + // #define QUATERNION_DERIVATIVE +#ifdef QUATERNION_DERIVATIVE btQuaternion predictedOrn = curTrans.getRotation(); predictedOrn += (angvel * predictedOrn) * (timeStep * btScalar(0.5)); predictedOrn.safeNormalize(); - #else +#else //Exponential map //google for "Practical Parameterization of Rotations Using the Exponential Map", F. Sebastian Grassia btVector3 axis; - btScalar fAngle2 = angvel.length2(); - btScalar fAngle = 0; - if (fAngle2>SIMD_EPSILON) - { - fAngle = btSqrt(fAngle2); - } + btScalar fAngle2 = angvel.length2(); + btScalar fAngle = 0; + if (fAngle2 > SIMD_EPSILON) + { + fAngle = btSqrt(fAngle2); + } //limit the angular motion - if (fAngle*timeStep > ANGULAR_MOTION_THRESHOLD) + if (fAngle * timeStep > ANGULAR_MOTION_THRESHOLD) { fAngle = ANGULAR_MOTION_THRESHOLD / timeStep; } - if ( fAngle < btScalar(0.001) ) + if (fAngle < btScalar(0.001)) { // use Taylor's expansions of sync function - axis = angvel*( btScalar(0.5)*timeStep-(timeStep*timeStep*timeStep)*(btScalar(0.020833333333))*fAngle*fAngle ); + axis = angvel * (btScalar(0.5) * timeStep - (timeStep * timeStep * timeStep) * (btScalar(0.020833333333)) * fAngle * fAngle); } else { // sync(fAngle) = sin(c*fAngle)/t - axis = angvel*( btSin(btScalar(0.5)*fAngle*timeStep)/fAngle ); + axis = angvel * (btSin(btScalar(0.5) * fAngle * timeStep) / fAngle); } - btQuaternion dorn (axis.x(),axis.y(),axis.z(),btCos( fAngle*timeStep*btScalar(0.5) )); + btQuaternion dorn(axis.x(), axis.y(), axis.z(), btCos(fAngle * timeStep * btScalar(0.5))); btQuaternion orn0 = curTrans.getRotation(); btQuaternion predictedOrn = dorn * orn0; predictedOrn.safeNormalize(); - #endif - if (predictedOrn.length2()>SIMD_EPSILON) +#endif + if (predictedOrn.length2() > SIMD_EPSILON) { predictedTransform.setRotation(predictedOrn); } @@ -92,137 +81,133 @@ public: } } - static void calculateVelocityQuaternion(const btVector3& pos0,const btVector3& pos1,const btQuaternion& orn0,const btQuaternion& orn1,btScalar timeStep,btVector3& linVel,btVector3& angVel) + static void calculateVelocityQuaternion(const btVector3& pos0, const btVector3& pos1, const btQuaternion& orn0, const btQuaternion& orn1, btScalar timeStep, btVector3& linVel, btVector3& angVel) { linVel = (pos1 - pos0) / timeStep; btVector3 axis; - btScalar angle; + btScalar angle; if (orn0 != orn1) { - calculateDiffAxisAngleQuaternion(orn0,orn1,axis,angle); + calculateDiffAxisAngleQuaternion(orn0, orn1, axis, angle); angVel = axis * angle / timeStep; - } else + } + else { - angVel.setValue(0,0,0); + angVel.setValue(0, 0, 0); } } - static void calculateDiffAxisAngleQuaternion(const btQuaternion& orn0,const btQuaternion& orn1a,btVector3& axis,btScalar& angle) + static void calculateDiffAxisAngleQuaternion(const btQuaternion& orn0, const btQuaternion& orn1a, btVector3& axis, btScalar& angle) { btQuaternion orn1 = orn0.nearest(orn1a); btQuaternion dorn = orn1 * orn0.inverse(); angle = dorn.getAngle(); - axis = btVector3(dorn.x(),dorn.y(),dorn.z()); + axis = btVector3(dorn.x(), dorn.y(), dorn.z()); axis[3] = btScalar(0.); //check for axis length btScalar len = axis.length2(); - if (len < SIMD_EPSILON*SIMD_EPSILON) - axis = btVector3(btScalar(1.),btScalar(0.),btScalar(0.)); + if (len < SIMD_EPSILON * SIMD_EPSILON) + axis = btVector3(btScalar(1.), btScalar(0.), btScalar(0.)); else axis /= btSqrt(len); } - static void calculateVelocity(const btTransform& transform0,const btTransform& transform1,btScalar timeStep,btVector3& linVel,btVector3& angVel) + static void calculateVelocity(const btTransform& transform0, const btTransform& transform1, btScalar timeStep, btVector3& linVel, btVector3& angVel) { linVel = (transform1.getOrigin() - transform0.getOrigin()) / timeStep; btVector3 axis; - btScalar angle; - calculateDiffAxisAngle(transform0,transform1,axis,angle); + btScalar angle; + calculateDiffAxisAngle(transform0, transform1, axis, angle); angVel = axis * angle / timeStep; } - static void calculateDiffAxisAngle(const btTransform& transform0,const btTransform& transform1,btVector3& axis,btScalar& angle) + static void calculateDiffAxisAngle(const btTransform& transform0, const btTransform& transform1, btVector3& axis, btScalar& angle) { btMatrix3x3 dmat = transform1.getBasis() * transform0.getBasis().inverse(); btQuaternion dorn; dmat.getRotation(dorn); - ///floating point inaccuracy can lead to w component > 1..., which breaks + ///floating point inaccuracy can lead to w component > 1..., which breaks dorn.normalize(); - + angle = dorn.getAngle(); - axis = btVector3(dorn.x(),dorn.y(),dorn.z()); + axis = btVector3(dorn.x(), dorn.y(), dorn.z()); axis[3] = btScalar(0.); //check for axis length btScalar len = axis.length2(); - if (len < SIMD_EPSILON*SIMD_EPSILON) - axis = btVector3(btScalar(1.),btScalar(0.),btScalar(0.)); + if (len < SIMD_EPSILON * SIMD_EPSILON) + axis = btVector3(btScalar(1.), btScalar(0.), btScalar(0.)); else axis /= btSqrt(len); } - }; - -///The btConvexSeparatingDistanceUtil can help speed up convex collision detection +///The btConvexSeparatingDistanceUtil can help speed up convex collision detection ///by conservatively updating a cached separating distance/vector instead of re-calculating the closest distance -class btConvexSeparatingDistanceUtil +class btConvexSeparatingDistanceUtil { - btQuaternion m_ornA; - btQuaternion m_ornB; - btVector3 m_posA; - btVector3 m_posB; - - btVector3 m_separatingNormal; + btQuaternion m_ornA; + btQuaternion m_ornB; + btVector3 m_posA; + btVector3 m_posB; - btScalar m_boundingRadiusA; - btScalar m_boundingRadiusB; - btScalar m_separatingDistance; + btVector3 m_separatingNormal; -public: + btScalar m_boundingRadiusA; + btScalar m_boundingRadiusB; + btScalar m_separatingDistance; - btConvexSeparatingDistanceUtil(btScalar boundingRadiusA,btScalar boundingRadiusB) - :m_boundingRadiusA(boundingRadiusA), - m_boundingRadiusB(boundingRadiusB), - m_separatingDistance(0.f) +public: + btConvexSeparatingDistanceUtil(btScalar boundingRadiusA, btScalar boundingRadiusB) + : m_boundingRadiusA(boundingRadiusA), + m_boundingRadiusB(boundingRadiusB), + m_separatingDistance(0.f) { } - btScalar getConservativeSeparatingDistance() + btScalar getConservativeSeparatingDistance() { return m_separatingDistance; } - void updateSeparatingDistance(const btTransform& transA,const btTransform& transB) + void updateSeparatingDistance(const btTransform& transA, const btTransform& transB) { const btVector3& toPosA = transA.getOrigin(); const btVector3& toPosB = transB.getOrigin(); btQuaternion toOrnA = transA.getRotation(); btQuaternion toOrnB = transB.getRotation(); - if (m_separatingDistance>0.f) + if (m_separatingDistance > 0.f) { - - - btVector3 linVelA,angVelA,linVelB,angVelB; - btTransformUtil::calculateVelocityQuaternion(m_posA,toPosA,m_ornA,toOrnA,btScalar(1.),linVelA,angVelA); - btTransformUtil::calculateVelocityQuaternion(m_posB,toPosB,m_ornB,toOrnB,btScalar(1.),linVelB,angVelB); + btVector3 linVelA, angVelA, linVelB, angVelB; + btTransformUtil::calculateVelocityQuaternion(m_posA, toPosA, m_ornA, toOrnA, btScalar(1.), linVelA, angVelA); + btTransformUtil::calculateVelocityQuaternion(m_posB, toPosB, m_ornB, toOrnB, btScalar(1.), linVelB, angVelB); btScalar maxAngularProjectedVelocity = angVelA.length() * m_boundingRadiusA + angVelB.length() * m_boundingRadiusB; - btVector3 relLinVel = (linVelB-linVelA); + btVector3 relLinVel = (linVelB - linVelA); btScalar relLinVelocLength = relLinVel.dot(m_separatingNormal); - if (relLinVelocLength<0.f) + if (relLinVelocLength < 0.f) { relLinVelocLength = 0.f; } - - btScalar projectedMotion = maxAngularProjectedVelocity +relLinVelocLength; + + btScalar projectedMotion = maxAngularProjectedVelocity + relLinVelocLength; m_separatingDistance -= projectedMotion; } - + m_posA = toPosA; m_posB = toPosB; m_ornA = toOrnA; m_ornB = toOrnB; } - void initSeparatingDistance(const btVector3& separatingVector,btScalar separatingDistance,const btTransform& transA,const btTransform& transB) + void initSeparatingDistance(const btVector3& separatingVector, btScalar separatingDistance, const btTransform& transA, const btTransform& transB) { m_separatingDistance = separatingDistance; - if (m_separatingDistance>0.f) + if (m_separatingDistance > 0.f) { m_separatingNormal = separatingVector; - + const btVector3& toPosA = transA.getOrigin(); const btVector3& toPosB = transB.getOrigin(); btQuaternion toOrnA = transA.getRotation(); @@ -233,9 +218,6 @@ public: m_ornB = toOrnB; } } - }; - -#endif //BT_TRANSFORM_UTIL_H - +#endif //BT_TRANSFORM_UTIL_H |