summaryrefslogtreecommitdiff
path: root/thirdparty/bullet/LinearMath/btMatrix3x3.h
diff options
context:
space:
mode:
authorRémi Verschelde <rverschelde@gmail.com>2018-01-13 14:01:53 +0100
committerRémi Verschelde <rverschelde@gmail.com>2018-01-13 14:08:45 +0100
commite12c89e8c9896b2e5cdd70dbd2d2acb449ff4b94 (patch)
treeaf68e434545e20c538f896e28b73f2db7d626edd /thirdparty/bullet/LinearMath/btMatrix3x3.h
parent53c65ae7619ac9e80c89a321c70de64f3745e2aa (diff)
bullet: Streamline bundling, remove extraneous src/ folder
Document version and how to extract sources in thirdparty/README.md. Drop unnecessary CMake and Premake files. Simplify SCsub, drop unused one.
Diffstat (limited to 'thirdparty/bullet/LinearMath/btMatrix3x3.h')
-rw-r--r--thirdparty/bullet/LinearMath/btMatrix3x3.h1348
1 files changed, 1348 insertions, 0 deletions
diff --git a/thirdparty/bullet/LinearMath/btMatrix3x3.h b/thirdparty/bullet/LinearMath/btMatrix3x3.h
new file mode 100644
index 0000000000..9f642a1779
--- /dev/null
+++ b/thirdparty/bullet/LinearMath/btMatrix3x3.h
@@ -0,0 +1,1348 @@
+/*
+Copyright (c) 2003-2006 Gino van den Bergen / Erwin Coumans http://continuousphysics.com/Bullet/
+
+This software is provided 'as-is', without any express or implied warranty.
+In no event will the authors be held liable for any damages arising from the use of this software.
+Permission is granted to anyone to use this software for any purpose,
+including commercial applications, and to alter it and redistribute it freely,
+subject to the following restrictions:
+
+1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
+2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
+3. This notice may not be removed or altered from any source distribution.
+*/
+
+
+#ifndef BT_MATRIX3x3_H
+#define BT_MATRIX3x3_H
+
+#include "btVector3.h"
+#include "btQuaternion.h"
+#include <stdio.h>
+
+#ifdef BT_USE_SSE
+//const __m128 ATTRIBUTE_ALIGNED16(v2220) = {2.0f, 2.0f, 2.0f, 0.0f};
+//const __m128 ATTRIBUTE_ALIGNED16(vMPPP) = {-0.0f, +0.0f, +0.0f, +0.0f};
+#define vMPPP (_mm_set_ps (+0.0f, +0.0f, +0.0f, -0.0f))
+#endif
+
+#if defined(BT_USE_SSE)
+#define v1000 (_mm_set_ps(0.0f,0.0f,0.0f,1.0f))
+#define v0100 (_mm_set_ps(0.0f,0.0f,1.0f,0.0f))
+#define v0010 (_mm_set_ps(0.0f,1.0f,0.0f,0.0f))
+#elif defined(BT_USE_NEON)
+const btSimdFloat4 ATTRIBUTE_ALIGNED16(v1000) = {1.0f, 0.0f, 0.0f, 0.0f};
+const btSimdFloat4 ATTRIBUTE_ALIGNED16(v0100) = {0.0f, 1.0f, 0.0f, 0.0f};
+const btSimdFloat4 ATTRIBUTE_ALIGNED16(v0010) = {0.0f, 0.0f, 1.0f, 0.0f};
+#endif
+
+#ifdef BT_USE_DOUBLE_PRECISION
+#define btMatrix3x3Data btMatrix3x3DoubleData
+#else
+#define btMatrix3x3Data btMatrix3x3FloatData
+#endif //BT_USE_DOUBLE_PRECISION
+
+
+/**@brief The btMatrix3x3 class implements a 3x3 rotation matrix, to perform linear algebra in combination with btQuaternion, btTransform and btVector3.
+* Make sure to only include a pure orthogonal matrix without scaling. */
+ATTRIBUTE_ALIGNED16(class) btMatrix3x3 {
+
+ ///Data storage for the matrix, each vector is a row of the matrix
+ btVector3 m_el[3];
+
+public:
+ /** @brief No initializaion constructor */
+ btMatrix3x3 () {}
+
+ // explicit btMatrix3x3(const btScalar *m) { setFromOpenGLSubMatrix(m); }
+
+ /**@brief Constructor from Quaternion */
+ explicit btMatrix3x3(const btQuaternion& q) { setRotation(q); }
+ /*
+ template <typename btScalar>
+ Matrix3x3(const btScalar& yaw, const btScalar& pitch, const btScalar& roll)
+ {
+ setEulerYPR(yaw, pitch, roll);
+ }
+ */
+ /** @brief Constructor with row major formatting */
+ btMatrix3x3(const btScalar& xx, const btScalar& xy, const btScalar& xz,
+ const btScalar& yx, const btScalar& yy, const btScalar& yz,
+ const btScalar& zx, const btScalar& zy, const btScalar& zz)
+ {
+ setValue(xx, xy, xz,
+ yx, yy, yz,
+ zx, zy, zz);
+ }
+
+#if (defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE))|| defined (BT_USE_NEON)
+ SIMD_FORCE_INLINE btMatrix3x3 (const btSimdFloat4 v0, const btSimdFloat4 v1, const btSimdFloat4 v2 )
+ {
+ m_el[0].mVec128 = v0;
+ m_el[1].mVec128 = v1;
+ m_el[2].mVec128 = v2;
+ }
+
+ SIMD_FORCE_INLINE btMatrix3x3 (const btVector3& v0, const btVector3& v1, const btVector3& v2 )
+ {
+ m_el[0] = v0;
+ m_el[1] = v1;
+ m_el[2] = v2;
+ }
+
+ // Copy constructor
+ SIMD_FORCE_INLINE btMatrix3x3(const btMatrix3x3& rhs)
+ {
+ m_el[0].mVec128 = rhs.m_el[0].mVec128;
+ m_el[1].mVec128 = rhs.m_el[1].mVec128;
+ m_el[2].mVec128 = rhs.m_el[2].mVec128;
+ }
+
+ // Assignment Operator
+ SIMD_FORCE_INLINE btMatrix3x3& operator=(const btMatrix3x3& m)
+ {
+ m_el[0].mVec128 = m.m_el[0].mVec128;
+ m_el[1].mVec128 = m.m_el[1].mVec128;
+ m_el[2].mVec128 = m.m_el[2].mVec128;
+
+ return *this;
+ }
+
+#else
+
+ /** @brief Copy constructor */
+ SIMD_FORCE_INLINE btMatrix3x3 (const btMatrix3x3& other)
+ {
+ m_el[0] = other.m_el[0];
+ m_el[1] = other.m_el[1];
+ m_el[2] = other.m_el[2];
+ }
+
+ /** @brief Assignment Operator */
+ SIMD_FORCE_INLINE btMatrix3x3& operator=(const btMatrix3x3& other)
+ {
+ m_el[0] = other.m_el[0];
+ m_el[1] = other.m_el[1];
+ m_el[2] = other.m_el[2];
+ return *this;
+ }
+
+#endif
+
+ /** @brief Get a column of the matrix as a vector
+ * @param i Column number 0 indexed */
+ SIMD_FORCE_INLINE btVector3 getColumn(int i) const
+ {
+ return btVector3(m_el[0][i],m_el[1][i],m_el[2][i]);
+ }
+
+
+ /** @brief Get a row of the matrix as a vector
+ * @param i Row number 0 indexed */
+ SIMD_FORCE_INLINE const btVector3& getRow(int i) const
+ {
+ btFullAssert(0 <= i && i < 3);
+ return m_el[i];
+ }
+
+ /** @brief Get a mutable reference to a row of the matrix as a vector
+ * @param i Row number 0 indexed */
+ SIMD_FORCE_INLINE btVector3& operator[](int i)
+ {
+ btFullAssert(0 <= i && i < 3);
+ return m_el[i];
+ }
+
+ /** @brief Get a const reference to a row of the matrix as a vector
+ * @param i Row number 0 indexed */
+ SIMD_FORCE_INLINE const btVector3& operator[](int i) const
+ {
+ btFullAssert(0 <= i && i < 3);
+ return m_el[i];
+ }
+
+ /** @brief Multiply by the target matrix on the right
+ * @param m Rotation matrix to be applied
+ * Equivilant to this = this * m */
+ btMatrix3x3& operator*=(const btMatrix3x3& m);
+
+ /** @brief Adds by the target matrix on the right
+ * @param m matrix to be applied
+ * Equivilant to this = this + m */
+ btMatrix3x3& operator+=(const btMatrix3x3& m);
+
+ /** @brief Substractss by the target matrix on the right
+ * @param m matrix to be applied
+ * Equivilant to this = this - m */
+ btMatrix3x3& operator-=(const btMatrix3x3& m);
+
+ /** @brief Set from the rotational part of a 4x4 OpenGL matrix
+ * @param m A pointer to the beginning of the array of scalars*/
+ void setFromOpenGLSubMatrix(const btScalar *m)
+ {
+ m_el[0].setValue(m[0],m[4],m[8]);
+ m_el[1].setValue(m[1],m[5],m[9]);
+ m_el[2].setValue(m[2],m[6],m[10]);
+
+ }
+ /** @brief Set the values of the matrix explicitly (row major)
+ * @param xx Top left
+ * @param xy Top Middle
+ * @param xz Top Right
+ * @param yx Middle Left
+ * @param yy Middle Middle
+ * @param yz Middle Right
+ * @param zx Bottom Left
+ * @param zy Bottom Middle
+ * @param zz Bottom Right*/
+ void setValue(const btScalar& xx, const btScalar& xy, const btScalar& xz,
+ const btScalar& yx, const btScalar& yy, const btScalar& yz,
+ const btScalar& zx, const btScalar& zy, const btScalar& zz)
+ {
+ m_el[0].setValue(xx,xy,xz);
+ m_el[1].setValue(yx,yy,yz);
+ m_el[2].setValue(zx,zy,zz);
+ }
+
+ /** @brief Set the matrix from a quaternion
+ * @param q The Quaternion to match */
+ void setRotation(const btQuaternion& q)
+ {
+ btScalar d = q.length2();
+ btFullAssert(d != btScalar(0.0));
+ btScalar s = btScalar(2.0) / d;
+
+ #if defined BT_USE_SIMD_VECTOR3 && defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
+ __m128 vs, Q = q.get128();
+ __m128i Qi = btCastfTo128i(Q);
+ __m128 Y, Z;
+ __m128 V1, V2, V3;
+ __m128 V11, V21, V31;
+ __m128 NQ = _mm_xor_ps(Q, btvMzeroMask);
+ __m128i NQi = btCastfTo128i(NQ);
+
+ V1 = btCastiTo128f(_mm_shuffle_epi32 (Qi, BT_SHUFFLE(1,0,2,3))); // Y X Z W
+ V2 = _mm_shuffle_ps(NQ, Q, BT_SHUFFLE(0,0,1,3)); // -X -X Y W
+ V3 = btCastiTo128f(_mm_shuffle_epi32 (Qi, BT_SHUFFLE(2,1,0,3))); // Z Y X W
+ V1 = _mm_xor_ps(V1, vMPPP); // change the sign of the first element
+
+ V11 = btCastiTo128f(_mm_shuffle_epi32 (Qi, BT_SHUFFLE(1,1,0,3))); // Y Y X W
+ V21 = _mm_unpackhi_ps(Q, Q); // Z Z W W
+ V31 = _mm_shuffle_ps(Q, NQ, BT_SHUFFLE(0,2,0,3)); // X Z -X -W
+
+ V2 = V2 * V1; //
+ V1 = V1 * V11; //
+ V3 = V3 * V31; //
+
+ V11 = _mm_shuffle_ps(NQ, Q, BT_SHUFFLE(2,3,1,3)); // -Z -W Y W
+ V11 = V11 * V21; //
+ V21 = _mm_xor_ps(V21, vMPPP); // change the sign of the first element
+ V31 = _mm_shuffle_ps(Q, NQ, BT_SHUFFLE(3,3,1,3)); // W W -Y -W
+ V31 = _mm_xor_ps(V31, vMPPP); // change the sign of the first element
+ Y = btCastiTo128f(_mm_shuffle_epi32 (NQi, BT_SHUFFLE(3,2,0,3))); // -W -Z -X -W
+ Z = btCastiTo128f(_mm_shuffle_epi32 (Qi, BT_SHUFFLE(1,0,1,3))); // Y X Y W
+
+ vs = _mm_load_ss(&s);
+ V21 = V21 * Y;
+ V31 = V31 * Z;
+
+ V1 = V1 + V11;
+ V2 = V2 + V21;
+ V3 = V3 + V31;
+
+ vs = bt_splat3_ps(vs, 0);
+ // s ready
+ V1 = V1 * vs;
+ V2 = V2 * vs;
+ V3 = V3 * vs;
+
+ V1 = V1 + v1000;
+ V2 = V2 + v0100;
+ V3 = V3 + v0010;
+
+ m_el[0] = V1;
+ m_el[1] = V2;
+ m_el[2] = V3;
+ #else
+ btScalar xs = q.x() * s, ys = q.y() * s, zs = q.z() * s;
+ btScalar wx = q.w() * xs, wy = q.w() * ys, wz = q.w() * zs;
+ btScalar xx = q.x() * xs, xy = q.x() * ys, xz = q.x() * zs;
+ btScalar yy = q.y() * ys, yz = q.y() * zs, zz = q.z() * zs;
+ setValue(
+ btScalar(1.0) - (yy + zz), xy - wz, xz + wy,
+ xy + wz, btScalar(1.0) - (xx + zz), yz - wx,
+ xz - wy, yz + wx, btScalar(1.0) - (xx + yy));
+ #endif
+ }
+
+
+ /** @brief Set the matrix from euler angles using YPR around YXZ respectively
+ * @param yaw Yaw about Y axis
+ * @param pitch Pitch about X axis
+ * @param roll Roll about Z axis
+ */
+ void setEulerYPR(const btScalar& yaw, const btScalar& pitch, const btScalar& roll)
+ {
+ setEulerZYX(roll, pitch, yaw);
+ }
+
+ /** @brief Set the matrix from euler angles YPR around ZYX axes
+ * @param eulerX Roll about X axis
+ * @param eulerY Pitch around Y axis
+ * @param eulerZ Yaw aboud Z axis
+ *
+ * These angles are used to produce a rotation matrix. The euler
+ * angles are applied in ZYX order. I.e a vector is first rotated
+ * about X then Y and then Z
+ **/
+ void setEulerZYX(btScalar eulerX,btScalar eulerY,btScalar eulerZ) {
+ ///@todo proposed to reverse this since it's labeled zyx but takes arguments xyz and it will match all other parts of the code
+ btScalar ci ( btCos(eulerX));
+ btScalar cj ( btCos(eulerY));
+ btScalar ch ( btCos(eulerZ));
+ btScalar si ( btSin(eulerX));
+ btScalar sj ( btSin(eulerY));
+ btScalar sh ( btSin(eulerZ));
+ btScalar cc = ci * ch;
+ btScalar cs = ci * sh;
+ btScalar sc = si * ch;
+ btScalar ss = si * sh;
+
+ setValue(cj * ch, sj * sc - cs, sj * cc + ss,
+ cj * sh, sj * ss + cc, sj * cs - sc,
+ -sj, cj * si, cj * ci);
+ }
+
+ /**@brief Set the matrix to the identity */
+ void setIdentity()
+ {
+#if (defined(BT_USE_SSE_IN_API)&& defined (BT_USE_SSE)) || defined(BT_USE_NEON)
+ m_el[0] = v1000;
+ m_el[1] = v0100;
+ m_el[2] = v0010;
+#else
+ setValue(btScalar(1.0), btScalar(0.0), btScalar(0.0),
+ btScalar(0.0), btScalar(1.0), btScalar(0.0),
+ btScalar(0.0), btScalar(0.0), btScalar(1.0));
+#endif
+ }
+
+ static const btMatrix3x3& getIdentity()
+ {
+#if (defined(BT_USE_SSE_IN_API)&& defined (BT_USE_SSE)) || defined(BT_USE_NEON)
+ static const btMatrix3x3
+ identityMatrix(v1000, v0100, v0010);
+#else
+ static const btMatrix3x3
+ identityMatrix(
+ btScalar(1.0), btScalar(0.0), btScalar(0.0),
+ btScalar(0.0), btScalar(1.0), btScalar(0.0),
+ btScalar(0.0), btScalar(0.0), btScalar(1.0));
+#endif
+ return identityMatrix;
+ }
+
+ /**@brief Fill the rotational part of an OpenGL matrix and clear the shear/perspective
+ * @param m The array to be filled */
+ void getOpenGLSubMatrix(btScalar *m) const
+ {
+#if defined BT_USE_SIMD_VECTOR3 && defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
+ __m128 v0 = m_el[0].mVec128;
+ __m128 v1 = m_el[1].mVec128;
+ __m128 v2 = m_el[2].mVec128; // x2 y2 z2 w2
+ __m128 *vm = (__m128 *)m;
+ __m128 vT;
+
+ v2 = _mm_and_ps(v2, btvFFF0fMask); // x2 y2 z2 0
+
+ vT = _mm_unpackhi_ps(v0, v1); // z0 z1 * *
+ v0 = _mm_unpacklo_ps(v0, v1); // x0 x1 y0 y1
+
+ v1 = _mm_shuffle_ps(v0, v2, BT_SHUFFLE(2, 3, 1, 3) ); // y0 y1 y2 0
+ v0 = _mm_shuffle_ps(v0, v2, BT_SHUFFLE(0, 1, 0, 3) ); // x0 x1 x2 0
+ v2 = btCastdTo128f(_mm_move_sd(btCastfTo128d(v2), btCastfTo128d(vT))); // z0 z1 z2 0
+
+ vm[0] = v0;
+ vm[1] = v1;
+ vm[2] = v2;
+#elif defined(BT_USE_NEON)
+ // note: zeros the w channel. We can preserve it at the cost of two more vtrn instructions.
+ static const uint32x2_t zMask = (const uint32x2_t) {static_cast<uint32_t>(-1), 0 };
+ float32x4_t *vm = (float32x4_t *)m;
+ float32x4x2_t top = vtrnq_f32( m_el[0].mVec128, m_el[1].mVec128 ); // {x0 x1 z0 z1}, {y0 y1 w0 w1}
+ float32x2x2_t bl = vtrn_f32( vget_low_f32(m_el[2].mVec128), vdup_n_f32(0.0f) ); // {x2 0 }, {y2 0}
+ float32x4_t v0 = vcombine_f32( vget_low_f32(top.val[0]), bl.val[0] );
+ float32x4_t v1 = vcombine_f32( vget_low_f32(top.val[1]), bl.val[1] );
+ float32x2_t q = (float32x2_t) vand_u32( (uint32x2_t) vget_high_f32( m_el[2].mVec128), zMask );
+ float32x4_t v2 = vcombine_f32( vget_high_f32(top.val[0]), q ); // z0 z1 z2 0
+
+ vm[0] = v0;
+ vm[1] = v1;
+ vm[2] = v2;
+#else
+ m[0] = btScalar(m_el[0].x());
+ m[1] = btScalar(m_el[1].x());
+ m[2] = btScalar(m_el[2].x());
+ m[3] = btScalar(0.0);
+ m[4] = btScalar(m_el[0].y());
+ m[5] = btScalar(m_el[1].y());
+ m[6] = btScalar(m_el[2].y());
+ m[7] = btScalar(0.0);
+ m[8] = btScalar(m_el[0].z());
+ m[9] = btScalar(m_el[1].z());
+ m[10] = btScalar(m_el[2].z());
+ m[11] = btScalar(0.0);
+#endif
+ }
+
+ /**@brief Get the matrix represented as a quaternion
+ * @param q The quaternion which will be set */
+ void getRotation(btQuaternion& q) const
+ {
+#if (defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE))|| defined (BT_USE_NEON)
+ btScalar trace = m_el[0].x() + m_el[1].y() + m_el[2].z();
+ btScalar s, x;
+
+ union {
+ btSimdFloat4 vec;
+ btScalar f[4];
+ } temp;
+
+ if (trace > btScalar(0.0))
+ {
+ x = trace + btScalar(1.0);
+
+ temp.f[0]=m_el[2].y() - m_el[1].z();
+ temp.f[1]=m_el[0].z() - m_el[2].x();
+ temp.f[2]=m_el[1].x() - m_el[0].y();
+ temp.f[3]=x;
+ //temp.f[3]= s * btScalar(0.5);
+ }
+ else
+ {
+ int i, j, k;
+ if(m_el[0].x() < m_el[1].y())
+ {
+ if( m_el[1].y() < m_el[2].z() )
+ { i = 2; j = 0; k = 1; }
+ else
+ { i = 1; j = 2; k = 0; }
+ }
+ else
+ {
+ if( m_el[0].x() < m_el[2].z())
+ { i = 2; j = 0; k = 1; }
+ else
+ { i = 0; j = 1; k = 2; }
+ }
+
+ x = m_el[i][i] - m_el[j][j] - m_el[k][k] + btScalar(1.0);
+
+ temp.f[3] = (m_el[k][j] - m_el[j][k]);
+ temp.f[j] = (m_el[j][i] + m_el[i][j]);
+ temp.f[k] = (m_el[k][i] + m_el[i][k]);
+ temp.f[i] = x;
+ //temp.f[i] = s * btScalar(0.5);
+ }
+
+ s = btSqrt(x);
+ q.set128(temp.vec);
+ s = btScalar(0.5) / s;
+
+ q *= s;
+#else
+ btScalar trace = m_el[0].x() + m_el[1].y() + m_el[2].z();
+
+ btScalar temp[4];
+
+ if (trace > btScalar(0.0))
+ {
+ btScalar s = btSqrt(trace + btScalar(1.0));
+ temp[3]=(s * btScalar(0.5));
+ s = btScalar(0.5) / s;
+
+ temp[0]=((m_el[2].y() - m_el[1].z()) * s);
+ temp[1]=((m_el[0].z() - m_el[2].x()) * s);
+ temp[2]=((m_el[1].x() - m_el[0].y()) * s);
+ }
+ else
+ {
+ int i = m_el[0].x() < m_el[1].y() ?
+ (m_el[1].y() < m_el[2].z() ? 2 : 1) :
+ (m_el[0].x() < m_el[2].z() ? 2 : 0);
+ int j = (i + 1) % 3;
+ int k = (i + 2) % 3;
+
+ btScalar s = btSqrt(m_el[i][i] - m_el[j][j] - m_el[k][k] + btScalar(1.0));
+ temp[i] = s * btScalar(0.5);
+ s = btScalar(0.5) / s;
+
+ temp[3] = (m_el[k][j] - m_el[j][k]) * s;
+ temp[j] = (m_el[j][i] + m_el[i][j]) * s;
+ temp[k] = (m_el[k][i] + m_el[i][k]) * s;
+ }
+ q.setValue(temp[0],temp[1],temp[2],temp[3]);
+#endif
+ }
+
+ /**@brief Get the matrix represented as euler angles around YXZ, roundtrip with setEulerYPR
+ * @param yaw Yaw around Y axis
+ * @param pitch Pitch around X axis
+ * @param roll around Z axis */
+ void getEulerYPR(btScalar& yaw, btScalar& pitch, btScalar& roll) const
+ {
+
+ // first use the normal calculus
+ yaw = btScalar(btAtan2(m_el[1].x(), m_el[0].x()));
+ pitch = btScalar(btAsin(-m_el[2].x()));
+ roll = btScalar(btAtan2(m_el[2].y(), m_el[2].z()));
+
+ // on pitch = +/-HalfPI
+ if (btFabs(pitch)==SIMD_HALF_PI)
+ {
+ if (yaw>0)
+ yaw-=SIMD_PI;
+ else
+ yaw+=SIMD_PI;
+
+ if (roll>0)
+ roll-=SIMD_PI;
+ else
+ roll+=SIMD_PI;
+ }
+ };
+
+
+ /**@brief Get the matrix represented as euler angles around ZYX
+ * @param yaw Yaw around X axis
+ * @param pitch Pitch around Y axis
+ * @param roll around X axis
+ * @param solution_number Which solution of two possible solutions ( 1 or 2) are possible values*/
+ void getEulerZYX(btScalar& yaw, btScalar& pitch, btScalar& roll, unsigned int solution_number = 1) const
+ {
+ struct Euler
+ {
+ btScalar yaw;
+ btScalar pitch;
+ btScalar roll;
+ };
+
+ Euler euler_out;
+ Euler euler_out2; //second solution
+ //get the pointer to the raw data
+
+ // Check that pitch is not at a singularity
+ if (btFabs(m_el[2].x()) >= 1)
+ {
+ euler_out.yaw = 0;
+ euler_out2.yaw = 0;
+
+ // From difference of angles formula
+ btScalar delta = btAtan2(m_el[0].x(),m_el[0].z());
+ if (m_el[2].x() > 0) //gimbal locked up
+ {
+ euler_out.pitch = SIMD_PI / btScalar(2.0);
+ euler_out2.pitch = SIMD_PI / btScalar(2.0);
+ euler_out.roll = euler_out.pitch + delta;
+ euler_out2.roll = euler_out.pitch + delta;
+ }
+ else // gimbal locked down
+ {
+ euler_out.pitch = -SIMD_PI / btScalar(2.0);
+ euler_out2.pitch = -SIMD_PI / btScalar(2.0);
+ euler_out.roll = -euler_out.pitch + delta;
+ euler_out2.roll = -euler_out.pitch + delta;
+ }
+ }
+ else
+ {
+ euler_out.pitch = - btAsin(m_el[2].x());
+ euler_out2.pitch = SIMD_PI - euler_out.pitch;
+
+ euler_out.roll = btAtan2(m_el[2].y()/btCos(euler_out.pitch),
+ m_el[2].z()/btCos(euler_out.pitch));
+ euler_out2.roll = btAtan2(m_el[2].y()/btCos(euler_out2.pitch),
+ m_el[2].z()/btCos(euler_out2.pitch));
+
+ euler_out.yaw = btAtan2(m_el[1].x()/btCos(euler_out.pitch),
+ m_el[0].x()/btCos(euler_out.pitch));
+ euler_out2.yaw = btAtan2(m_el[1].x()/btCos(euler_out2.pitch),
+ m_el[0].x()/btCos(euler_out2.pitch));
+ }
+
+ if (solution_number == 1)
+ {
+ yaw = euler_out.yaw;
+ pitch = euler_out.pitch;
+ roll = euler_out.roll;
+ }
+ else
+ {
+ yaw = euler_out2.yaw;
+ pitch = euler_out2.pitch;
+ roll = euler_out2.roll;
+ }
+ }
+
+ /**@brief Create a scaled copy of the matrix
+ * @param s Scaling vector The elements of the vector will scale each column */
+
+ btMatrix3x3 scaled(const btVector3& s) const
+ {
+#if (defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE))|| defined (BT_USE_NEON)
+ return btMatrix3x3(m_el[0] * s, m_el[1] * s, m_el[2] * s);
+#else
+ return btMatrix3x3(
+ m_el[0].x() * s.x(), m_el[0].y() * s.y(), m_el[0].z() * s.z(),
+ m_el[1].x() * s.x(), m_el[1].y() * s.y(), m_el[1].z() * s.z(),
+ m_el[2].x() * s.x(), m_el[2].y() * s.y(), m_el[2].z() * s.z());
+#endif
+ }
+
+ /**@brief Return the determinant of the matrix */
+ btScalar determinant() const;
+ /**@brief Return the adjoint of the matrix */
+ btMatrix3x3 adjoint() const;
+ /**@brief Return the matrix with all values non negative */
+ btMatrix3x3 absolute() const;
+ /**@brief Return the transpose of the matrix */
+ btMatrix3x3 transpose() const;
+ /**@brief Return the inverse of the matrix */
+ btMatrix3x3 inverse() const;
+
+ /// Solve A * x = b, where b is a column vector. This is more efficient
+ /// than computing the inverse in one-shot cases.
+ ///Solve33 is from Box2d, thanks to Erin Catto,
+ btVector3 solve33(const btVector3& b) const
+ {
+ btVector3 col1 = getColumn(0);
+ btVector3 col2 = getColumn(1);
+ btVector3 col3 = getColumn(2);
+
+ btScalar det = btDot(col1, btCross(col2, col3));
+ if (btFabs(det)>SIMD_EPSILON)
+ {
+ det = 1.0f / det;
+ }
+ btVector3 x;
+ x[0] = det * btDot(b, btCross(col2, col3));
+ x[1] = det * btDot(col1, btCross(b, col3));
+ x[2] = det * btDot(col1, btCross(col2, b));
+ return x;
+ }
+
+ btMatrix3x3 transposeTimes(const btMatrix3x3& m) const;
+ btMatrix3x3 timesTranspose(const btMatrix3x3& m) const;
+
+ SIMD_FORCE_INLINE btScalar tdotx(const btVector3& v) const
+ {
+ return m_el[0].x() * v.x() + m_el[1].x() * v.y() + m_el[2].x() * v.z();
+ }
+ SIMD_FORCE_INLINE btScalar tdoty(const btVector3& v) const
+ {
+ return m_el[0].y() * v.x() + m_el[1].y() * v.y() + m_el[2].y() * v.z();
+ }
+ SIMD_FORCE_INLINE btScalar tdotz(const btVector3& v) const
+ {
+ return m_el[0].z() * v.x() + m_el[1].z() * v.y() + m_el[2].z() * v.z();
+ }
+
+ ///extractRotation is from "A robust method to extract the rotational part of deformations"
+ ///See http://dl.acm.org/citation.cfm?doid=2994258.2994269
+ SIMD_FORCE_INLINE void extractRotation(btQuaternion &q,btScalar tolerance = 1.0e-9, int maxIter=100)
+ {
+ int iter =0;
+ btScalar w;
+ const btMatrix3x3& A=*this;
+ for(iter = 0; iter < maxIter; iter++)
+ {
+ btMatrix3x3 R(q);
+ btVector3 omega = (R.getColumn(0).cross(A.getColumn(0)) + R.getColumn(1).cross(A.getColumn(1))
+ + R.getColumn(2).cross(A.getColumn(2))
+ ) * (btScalar(1.0) / btFabs(R.getColumn(0).dot(A.getColumn(0)) + R.getColumn
+ (1).dot(A.getColumn(1)) + R.getColumn(2).dot(A.getColumn(2))) +
+ tolerance);
+ w = omega.norm();
+ if(w < tolerance)
+ break;
+ q = btQuaternion(btVector3((btScalar(1.0) / w) * omega),w) *
+ q;
+ q.normalize();
+ }
+ }
+
+
+
+ /**@brief diagonalizes this matrix
+ * @param rot stores the rotation from the coordinate system in which the matrix is diagonal to the original
+ * coordinate system, i.e., old_this = rot * new_this * rot^T.
+ * @param threshold See iteration
+ * @param maxIter The iteration stops when we hit the given tolerance or when maxIter have been executed.
+ */
+ void diagonalize(btMatrix3x3& rot, btScalar tolerance = 1.0e-9, int maxIter=100)
+ {
+ btQuaternion r;
+ r = btQuaternion::getIdentity();
+ extractRotation(r,tolerance,maxIter);
+ rot.setRotation(r);
+ btMatrix3x3 rotInv = btMatrix3x3(r.inverse());
+ btMatrix3x3 old = *this;
+ setValue(old.tdotx( rotInv[0]), old.tdoty( rotInv[0]), old.tdotz( rotInv[0]),
+ old.tdotx( rotInv[1]), old.tdoty( rotInv[1]), old.tdotz( rotInv[1]),
+ old.tdotx( rotInv[2]), old.tdoty( rotInv[2]), old.tdotz( rotInv[2]));
+ }
+
+
+
+
+ /**@brief Calculate the matrix cofactor
+ * @param r1 The first row to use for calculating the cofactor
+ * @param c1 The first column to use for calculating the cofactor
+ * @param r1 The second row to use for calculating the cofactor
+ * @param c1 The second column to use for calculating the cofactor
+ * See http://en.wikipedia.org/wiki/Cofactor_(linear_algebra) for more details
+ */
+ btScalar cofac(int r1, int c1, int r2, int c2) const
+ {
+ return m_el[r1][c1] * m_el[r2][c2] - m_el[r1][c2] * m_el[r2][c1];
+ }
+
+ void serialize(struct btMatrix3x3Data& dataOut) const;
+
+ void serializeFloat(struct btMatrix3x3FloatData& dataOut) const;
+
+ void deSerialize(const struct btMatrix3x3Data& dataIn);
+
+ void deSerializeFloat(const struct btMatrix3x3FloatData& dataIn);
+
+ void deSerializeDouble(const struct btMatrix3x3DoubleData& dataIn);
+
+};
+
+
+SIMD_FORCE_INLINE btMatrix3x3&
+btMatrix3x3::operator*=(const btMatrix3x3& m)
+{
+#if defined BT_USE_SIMD_VECTOR3 && defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
+ __m128 rv00, rv01, rv02;
+ __m128 rv10, rv11, rv12;
+ __m128 rv20, rv21, rv22;
+ __m128 mv0, mv1, mv2;
+
+ rv02 = m_el[0].mVec128;
+ rv12 = m_el[1].mVec128;
+ rv22 = m_el[2].mVec128;
+
+ mv0 = _mm_and_ps(m[0].mVec128, btvFFF0fMask);
+ mv1 = _mm_and_ps(m[1].mVec128, btvFFF0fMask);
+ mv2 = _mm_and_ps(m[2].mVec128, btvFFF0fMask);
+
+ // rv0
+ rv00 = bt_splat_ps(rv02, 0);
+ rv01 = bt_splat_ps(rv02, 1);
+ rv02 = bt_splat_ps(rv02, 2);
+
+ rv00 = _mm_mul_ps(rv00, mv0);
+ rv01 = _mm_mul_ps(rv01, mv1);
+ rv02 = _mm_mul_ps(rv02, mv2);
+
+ // rv1
+ rv10 = bt_splat_ps(rv12, 0);
+ rv11 = bt_splat_ps(rv12, 1);
+ rv12 = bt_splat_ps(rv12, 2);
+
+ rv10 = _mm_mul_ps(rv10, mv0);
+ rv11 = _mm_mul_ps(rv11, mv1);
+ rv12 = _mm_mul_ps(rv12, mv2);
+
+ // rv2
+ rv20 = bt_splat_ps(rv22, 0);
+ rv21 = bt_splat_ps(rv22, 1);
+ rv22 = bt_splat_ps(rv22, 2);
+
+ rv20 = _mm_mul_ps(rv20, mv0);
+ rv21 = _mm_mul_ps(rv21, mv1);
+ rv22 = _mm_mul_ps(rv22, mv2);
+
+ rv00 = _mm_add_ps(rv00, rv01);
+ rv10 = _mm_add_ps(rv10, rv11);
+ rv20 = _mm_add_ps(rv20, rv21);
+
+ m_el[0].mVec128 = _mm_add_ps(rv00, rv02);
+ m_el[1].mVec128 = _mm_add_ps(rv10, rv12);
+ m_el[2].mVec128 = _mm_add_ps(rv20, rv22);
+
+#elif defined(BT_USE_NEON)
+
+ float32x4_t rv0, rv1, rv2;
+ float32x4_t v0, v1, v2;
+ float32x4_t mv0, mv1, mv2;
+
+ v0 = m_el[0].mVec128;
+ v1 = m_el[1].mVec128;
+ v2 = m_el[2].mVec128;
+
+ mv0 = (float32x4_t) vandq_s32((int32x4_t)m[0].mVec128, btvFFF0Mask);
+ mv1 = (float32x4_t) vandq_s32((int32x4_t)m[1].mVec128, btvFFF0Mask);
+ mv2 = (float32x4_t) vandq_s32((int32x4_t)m[2].mVec128, btvFFF0Mask);
+
+ rv0 = vmulq_lane_f32(mv0, vget_low_f32(v0), 0);
+ rv1 = vmulq_lane_f32(mv0, vget_low_f32(v1), 0);
+ rv2 = vmulq_lane_f32(mv0, vget_low_f32(v2), 0);
+
+ rv0 = vmlaq_lane_f32(rv0, mv1, vget_low_f32(v0), 1);
+ rv1 = vmlaq_lane_f32(rv1, mv1, vget_low_f32(v1), 1);
+ rv2 = vmlaq_lane_f32(rv2, mv1, vget_low_f32(v2), 1);
+
+ rv0 = vmlaq_lane_f32(rv0, mv2, vget_high_f32(v0), 0);
+ rv1 = vmlaq_lane_f32(rv1, mv2, vget_high_f32(v1), 0);
+ rv2 = vmlaq_lane_f32(rv2, mv2, vget_high_f32(v2), 0);
+
+ m_el[0].mVec128 = rv0;
+ m_el[1].mVec128 = rv1;
+ m_el[2].mVec128 = rv2;
+#else
+ setValue(
+ m.tdotx(m_el[0]), m.tdoty(m_el[0]), m.tdotz(m_el[0]),
+ m.tdotx(m_el[1]), m.tdoty(m_el[1]), m.tdotz(m_el[1]),
+ m.tdotx(m_el[2]), m.tdoty(m_el[2]), m.tdotz(m_el[2]));
+#endif
+ return *this;
+}
+
+SIMD_FORCE_INLINE btMatrix3x3&
+btMatrix3x3::operator+=(const btMatrix3x3& m)
+{
+#if (defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE))|| defined (BT_USE_NEON)
+ m_el[0].mVec128 = m_el[0].mVec128 + m.m_el[0].mVec128;
+ m_el[1].mVec128 = m_el[1].mVec128 + m.m_el[1].mVec128;
+ m_el[2].mVec128 = m_el[2].mVec128 + m.m_el[2].mVec128;
+#else
+ setValue(
+ m_el[0][0]+m.m_el[0][0],
+ m_el[0][1]+m.m_el[0][1],
+ m_el[0][2]+m.m_el[0][2],
+ m_el[1][0]+m.m_el[1][0],
+ m_el[1][1]+m.m_el[1][1],
+ m_el[1][2]+m.m_el[1][2],
+ m_el[2][0]+m.m_el[2][0],
+ m_el[2][1]+m.m_el[2][1],
+ m_el[2][2]+m.m_el[2][2]);
+#endif
+ return *this;
+}
+
+SIMD_FORCE_INLINE btMatrix3x3
+operator*(const btMatrix3x3& m, const btScalar & k)
+{
+#if (defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE))
+ __m128 vk = bt_splat_ps(_mm_load_ss((float *)&k), 0x80);
+ return btMatrix3x3(
+ _mm_mul_ps(m[0].mVec128, vk),
+ _mm_mul_ps(m[1].mVec128, vk),
+ _mm_mul_ps(m[2].mVec128, vk));
+#elif defined(BT_USE_NEON)
+ return btMatrix3x3(
+ vmulq_n_f32(m[0].mVec128, k),
+ vmulq_n_f32(m[1].mVec128, k),
+ vmulq_n_f32(m[2].mVec128, k));
+#else
+ return btMatrix3x3(
+ m[0].x()*k,m[0].y()*k,m[0].z()*k,
+ m[1].x()*k,m[1].y()*k,m[1].z()*k,
+ m[2].x()*k,m[2].y()*k,m[2].z()*k);
+#endif
+}
+
+SIMD_FORCE_INLINE btMatrix3x3
+operator+(const btMatrix3x3& m1, const btMatrix3x3& m2)
+{
+#if (defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE))|| defined (BT_USE_NEON)
+ return btMatrix3x3(
+ m1[0].mVec128 + m2[0].mVec128,
+ m1[1].mVec128 + m2[1].mVec128,
+ m1[2].mVec128 + m2[2].mVec128);
+#else
+ return btMatrix3x3(
+ m1[0][0]+m2[0][0],
+ m1[0][1]+m2[0][1],
+ m1[0][2]+m2[0][2],
+
+ m1[1][0]+m2[1][0],
+ m1[1][1]+m2[1][1],
+ m1[1][2]+m2[1][2],
+
+ m1[2][0]+m2[2][0],
+ m1[2][1]+m2[2][1],
+ m1[2][2]+m2[2][2]);
+#endif
+}
+
+SIMD_FORCE_INLINE btMatrix3x3
+operator-(const btMatrix3x3& m1, const btMatrix3x3& m2)
+{
+#if (defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE))|| defined (BT_USE_NEON)
+ return btMatrix3x3(
+ m1[0].mVec128 - m2[0].mVec128,
+ m1[1].mVec128 - m2[1].mVec128,
+ m1[2].mVec128 - m2[2].mVec128);
+#else
+ return btMatrix3x3(
+ m1[0][0]-m2[0][0],
+ m1[0][1]-m2[0][1],
+ m1[0][2]-m2[0][2],
+
+ m1[1][0]-m2[1][0],
+ m1[1][1]-m2[1][1],
+ m1[1][2]-m2[1][2],
+
+ m1[2][0]-m2[2][0],
+ m1[2][1]-m2[2][1],
+ m1[2][2]-m2[2][2]);
+#endif
+}
+
+
+SIMD_FORCE_INLINE btMatrix3x3&
+btMatrix3x3::operator-=(const btMatrix3x3& m)
+{
+#if (defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE))|| defined (BT_USE_NEON)
+ m_el[0].mVec128 = m_el[0].mVec128 - m.m_el[0].mVec128;
+ m_el[1].mVec128 = m_el[1].mVec128 - m.m_el[1].mVec128;
+ m_el[2].mVec128 = m_el[2].mVec128 - m.m_el[2].mVec128;
+#else
+ setValue(
+ m_el[0][0]-m.m_el[0][0],
+ m_el[0][1]-m.m_el[0][1],
+ m_el[0][2]-m.m_el[0][2],
+ m_el[1][0]-m.m_el[1][0],
+ m_el[1][1]-m.m_el[1][1],
+ m_el[1][2]-m.m_el[1][2],
+ m_el[2][0]-m.m_el[2][0],
+ m_el[2][1]-m.m_el[2][1],
+ m_el[2][2]-m.m_el[2][2]);
+#endif
+ return *this;
+}
+
+
+SIMD_FORCE_INLINE btScalar
+btMatrix3x3::determinant() const
+{
+ return btTriple((*this)[0], (*this)[1], (*this)[2]);
+}
+
+
+SIMD_FORCE_INLINE btMatrix3x3
+btMatrix3x3::absolute() const
+{
+#if defined BT_USE_SIMD_VECTOR3 && (defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE))
+ return btMatrix3x3(
+ _mm_and_ps(m_el[0].mVec128, btvAbsfMask),
+ _mm_and_ps(m_el[1].mVec128, btvAbsfMask),
+ _mm_and_ps(m_el[2].mVec128, btvAbsfMask));
+#elif defined(BT_USE_NEON)
+ return btMatrix3x3(
+ (float32x4_t)vandq_s32((int32x4_t)m_el[0].mVec128, btv3AbsMask),
+ (float32x4_t)vandq_s32((int32x4_t)m_el[1].mVec128, btv3AbsMask),
+ (float32x4_t)vandq_s32((int32x4_t)m_el[2].mVec128, btv3AbsMask));
+#else
+ return btMatrix3x3(
+ btFabs(m_el[0].x()), btFabs(m_el[0].y()), btFabs(m_el[0].z()),
+ btFabs(m_el[1].x()), btFabs(m_el[1].y()), btFabs(m_el[1].z()),
+ btFabs(m_el[2].x()), btFabs(m_el[2].y()), btFabs(m_el[2].z()));
+#endif
+}
+
+SIMD_FORCE_INLINE btMatrix3x3
+btMatrix3x3::transpose() const
+{
+#if defined BT_USE_SIMD_VECTOR3 && (defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE))
+ __m128 v0 = m_el[0].mVec128;
+ __m128 v1 = m_el[1].mVec128;
+ __m128 v2 = m_el[2].mVec128; // x2 y2 z2 w2
+ __m128 vT;
+
+ v2 = _mm_and_ps(v2, btvFFF0fMask); // x2 y2 z2 0
+
+ vT = _mm_unpackhi_ps(v0, v1); // z0 z1 * *
+ v0 = _mm_unpacklo_ps(v0, v1); // x0 x1 y0 y1
+
+ v1 = _mm_shuffle_ps(v0, v2, BT_SHUFFLE(2, 3, 1, 3) ); // y0 y1 y2 0
+ v0 = _mm_shuffle_ps(v0, v2, BT_SHUFFLE(0, 1, 0, 3) ); // x0 x1 x2 0
+ v2 = btCastdTo128f(_mm_move_sd(btCastfTo128d(v2), btCastfTo128d(vT))); // z0 z1 z2 0
+
+
+ return btMatrix3x3( v0, v1, v2 );
+#elif defined(BT_USE_NEON)
+ // note: zeros the w channel. We can preserve it at the cost of two more vtrn instructions.
+ static const uint32x2_t zMask = (const uint32x2_t) {static_cast<uint32_t>(-1), 0 };
+ float32x4x2_t top = vtrnq_f32( m_el[0].mVec128, m_el[1].mVec128 ); // {x0 x1 z0 z1}, {y0 y1 w0 w1}
+ float32x2x2_t bl = vtrn_f32( vget_low_f32(m_el[2].mVec128), vdup_n_f32(0.0f) ); // {x2 0 }, {y2 0}
+ float32x4_t v0 = vcombine_f32( vget_low_f32(top.val[0]), bl.val[0] );
+ float32x4_t v1 = vcombine_f32( vget_low_f32(top.val[1]), bl.val[1] );
+ float32x2_t q = (float32x2_t) vand_u32( (uint32x2_t) vget_high_f32( m_el[2].mVec128), zMask );
+ float32x4_t v2 = vcombine_f32( vget_high_f32(top.val[0]), q ); // z0 z1 z2 0
+ return btMatrix3x3( v0, v1, v2 );
+#else
+ return btMatrix3x3( m_el[0].x(), m_el[1].x(), m_el[2].x(),
+ m_el[0].y(), m_el[1].y(), m_el[2].y(),
+ m_el[0].z(), m_el[1].z(), m_el[2].z());
+#endif
+}
+
+SIMD_FORCE_INLINE btMatrix3x3
+btMatrix3x3::adjoint() const
+{
+ return btMatrix3x3(cofac(1, 1, 2, 2), cofac(0, 2, 2, 1), cofac(0, 1, 1, 2),
+ cofac(1, 2, 2, 0), cofac(0, 0, 2, 2), cofac(0, 2, 1, 0),
+ cofac(1, 0, 2, 1), cofac(0, 1, 2, 0), cofac(0, 0, 1, 1));
+}
+
+SIMD_FORCE_INLINE btMatrix3x3
+btMatrix3x3::inverse() const
+{
+ btVector3 co(cofac(1, 1, 2, 2), cofac(1, 2, 2, 0), cofac(1, 0, 2, 1));
+ btScalar det = (*this)[0].dot(co);
+ //btFullAssert(det != btScalar(0.0));
+ btAssert(det != btScalar(0.0));
+ btScalar s = btScalar(1.0) / det;
+ return btMatrix3x3(co.x() * s, cofac(0, 2, 2, 1) * s, cofac(0, 1, 1, 2) * s,
+ co.y() * s, cofac(0, 0, 2, 2) * s, cofac(0, 2, 1, 0) * s,
+ co.z() * s, cofac(0, 1, 2, 0) * s, cofac(0, 0, 1, 1) * s);
+}
+
+SIMD_FORCE_INLINE btMatrix3x3
+btMatrix3x3::transposeTimes(const btMatrix3x3& m) const
+{
+#if defined BT_USE_SIMD_VECTOR3 && (defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE))
+ // zeros w
+// static const __m128i xyzMask = (const __m128i){ -1ULL, 0xffffffffULL };
+ __m128 row = m_el[0].mVec128;
+ __m128 m0 = _mm_and_ps( m.getRow(0).mVec128, btvFFF0fMask );
+ __m128 m1 = _mm_and_ps( m.getRow(1).mVec128, btvFFF0fMask);
+ __m128 m2 = _mm_and_ps( m.getRow(2).mVec128, btvFFF0fMask );
+ __m128 r0 = _mm_mul_ps(m0, _mm_shuffle_ps(row, row, 0));
+ __m128 r1 = _mm_mul_ps(m0, _mm_shuffle_ps(row, row, 0x55));
+ __m128 r2 = _mm_mul_ps(m0, _mm_shuffle_ps(row, row, 0xaa));
+ row = m_el[1].mVec128;
+ r0 = _mm_add_ps( r0, _mm_mul_ps(m1, _mm_shuffle_ps(row, row, 0)));
+ r1 = _mm_add_ps( r1, _mm_mul_ps(m1, _mm_shuffle_ps(row, row, 0x55)));
+ r2 = _mm_add_ps( r2, _mm_mul_ps(m1, _mm_shuffle_ps(row, row, 0xaa)));
+ row = m_el[2].mVec128;
+ r0 = _mm_add_ps( r0, _mm_mul_ps(m2, _mm_shuffle_ps(row, row, 0)));
+ r1 = _mm_add_ps( r1, _mm_mul_ps(m2, _mm_shuffle_ps(row, row, 0x55)));
+ r2 = _mm_add_ps( r2, _mm_mul_ps(m2, _mm_shuffle_ps(row, row, 0xaa)));
+ return btMatrix3x3( r0, r1, r2 );
+
+#elif defined BT_USE_NEON
+ // zeros w
+ static const uint32x4_t xyzMask = (const uint32x4_t){ static_cast<uint32_t>(-1), static_cast<uint32_t>(-1), static_cast<uint32_t>(-1), 0 };
+ float32x4_t m0 = (float32x4_t) vandq_u32( (uint32x4_t) m.getRow(0).mVec128, xyzMask );
+ float32x4_t m1 = (float32x4_t) vandq_u32( (uint32x4_t) m.getRow(1).mVec128, xyzMask );
+ float32x4_t m2 = (float32x4_t) vandq_u32( (uint32x4_t) m.getRow(2).mVec128, xyzMask );
+ float32x4_t row = m_el[0].mVec128;
+ float32x4_t r0 = vmulq_lane_f32( m0, vget_low_f32(row), 0);
+ float32x4_t r1 = vmulq_lane_f32( m0, vget_low_f32(row), 1);
+ float32x4_t r2 = vmulq_lane_f32( m0, vget_high_f32(row), 0);
+ row = m_el[1].mVec128;
+ r0 = vmlaq_lane_f32( r0, m1, vget_low_f32(row), 0);
+ r1 = vmlaq_lane_f32( r1, m1, vget_low_f32(row), 1);
+ r2 = vmlaq_lane_f32( r2, m1, vget_high_f32(row), 0);
+ row = m_el[2].mVec128;
+ r0 = vmlaq_lane_f32( r0, m2, vget_low_f32(row), 0);
+ r1 = vmlaq_lane_f32( r1, m2, vget_low_f32(row), 1);
+ r2 = vmlaq_lane_f32( r2, m2, vget_high_f32(row), 0);
+ return btMatrix3x3( r0, r1, r2 );
+#else
+ return btMatrix3x3(
+ m_el[0].x() * m[0].x() + m_el[1].x() * m[1].x() + m_el[2].x() * m[2].x(),
+ m_el[0].x() * m[0].y() + m_el[1].x() * m[1].y() + m_el[2].x() * m[2].y(),
+ m_el[0].x() * m[0].z() + m_el[1].x() * m[1].z() + m_el[2].x() * m[2].z(),
+ m_el[0].y() * m[0].x() + m_el[1].y() * m[1].x() + m_el[2].y() * m[2].x(),
+ m_el[0].y() * m[0].y() + m_el[1].y() * m[1].y() + m_el[2].y() * m[2].y(),
+ m_el[0].y() * m[0].z() + m_el[1].y() * m[1].z() + m_el[2].y() * m[2].z(),
+ m_el[0].z() * m[0].x() + m_el[1].z() * m[1].x() + m_el[2].z() * m[2].x(),
+ m_el[0].z() * m[0].y() + m_el[1].z() * m[1].y() + m_el[2].z() * m[2].y(),
+ m_el[0].z() * m[0].z() + m_el[1].z() * m[1].z() + m_el[2].z() * m[2].z());
+#endif
+}
+
+SIMD_FORCE_INLINE btMatrix3x3
+btMatrix3x3::timesTranspose(const btMatrix3x3& m) const
+{
+#if (defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE))
+ __m128 a0 = m_el[0].mVec128;
+ __m128 a1 = m_el[1].mVec128;
+ __m128 a2 = m_el[2].mVec128;
+
+ btMatrix3x3 mT = m.transpose(); // we rely on transpose() zeroing w channel so that we don't have to do it here
+ __m128 mx = mT[0].mVec128;
+ __m128 my = mT[1].mVec128;
+ __m128 mz = mT[2].mVec128;
+
+ __m128 r0 = _mm_mul_ps(mx, _mm_shuffle_ps(a0, a0, 0x00));
+ __m128 r1 = _mm_mul_ps(mx, _mm_shuffle_ps(a1, a1, 0x00));
+ __m128 r2 = _mm_mul_ps(mx, _mm_shuffle_ps(a2, a2, 0x00));
+ r0 = _mm_add_ps(r0, _mm_mul_ps(my, _mm_shuffle_ps(a0, a0, 0x55)));
+ r1 = _mm_add_ps(r1, _mm_mul_ps(my, _mm_shuffle_ps(a1, a1, 0x55)));
+ r2 = _mm_add_ps(r2, _mm_mul_ps(my, _mm_shuffle_ps(a2, a2, 0x55)));
+ r0 = _mm_add_ps(r0, _mm_mul_ps(mz, _mm_shuffle_ps(a0, a0, 0xaa)));
+ r1 = _mm_add_ps(r1, _mm_mul_ps(mz, _mm_shuffle_ps(a1, a1, 0xaa)));
+ r2 = _mm_add_ps(r2, _mm_mul_ps(mz, _mm_shuffle_ps(a2, a2, 0xaa)));
+ return btMatrix3x3( r0, r1, r2);
+
+#elif defined BT_USE_NEON
+ float32x4_t a0 = m_el[0].mVec128;
+ float32x4_t a1 = m_el[1].mVec128;
+ float32x4_t a2 = m_el[2].mVec128;
+
+ btMatrix3x3 mT = m.transpose(); // we rely on transpose() zeroing w channel so that we don't have to do it here
+ float32x4_t mx = mT[0].mVec128;
+ float32x4_t my = mT[1].mVec128;
+ float32x4_t mz = mT[2].mVec128;
+
+ float32x4_t r0 = vmulq_lane_f32( mx, vget_low_f32(a0), 0);
+ float32x4_t r1 = vmulq_lane_f32( mx, vget_low_f32(a1), 0);
+ float32x4_t r2 = vmulq_lane_f32( mx, vget_low_f32(a2), 0);
+ r0 = vmlaq_lane_f32( r0, my, vget_low_f32(a0), 1);
+ r1 = vmlaq_lane_f32( r1, my, vget_low_f32(a1), 1);
+ r2 = vmlaq_lane_f32( r2, my, vget_low_f32(a2), 1);
+ r0 = vmlaq_lane_f32( r0, mz, vget_high_f32(a0), 0);
+ r1 = vmlaq_lane_f32( r1, mz, vget_high_f32(a1), 0);
+ r2 = vmlaq_lane_f32( r2, mz, vget_high_f32(a2), 0);
+ return btMatrix3x3( r0, r1, r2 );
+
+#else
+ return btMatrix3x3(
+ m_el[0].dot(m[0]), m_el[0].dot(m[1]), m_el[0].dot(m[2]),
+ m_el[1].dot(m[0]), m_el[1].dot(m[1]), m_el[1].dot(m[2]),
+ m_el[2].dot(m[0]), m_el[2].dot(m[1]), m_el[2].dot(m[2]));
+#endif
+}
+
+SIMD_FORCE_INLINE btVector3
+operator*(const btMatrix3x3& m, const btVector3& v)
+{
+#if (defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE))|| defined (BT_USE_NEON)
+ return v.dot3(m[0], m[1], m[2]);
+#else
+ return btVector3(m[0].dot(v), m[1].dot(v), m[2].dot(v));
+#endif
+}
+
+
+SIMD_FORCE_INLINE btVector3
+operator*(const btVector3& v, const btMatrix3x3& m)
+{
+#if defined BT_USE_SIMD_VECTOR3 && (defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE))
+
+ const __m128 vv = v.mVec128;
+
+ __m128 c0 = bt_splat_ps( vv, 0);
+ __m128 c1 = bt_splat_ps( vv, 1);
+ __m128 c2 = bt_splat_ps( vv, 2);
+
+ c0 = _mm_mul_ps(c0, _mm_and_ps(m[0].mVec128, btvFFF0fMask) );
+ c1 = _mm_mul_ps(c1, _mm_and_ps(m[1].mVec128, btvFFF0fMask) );
+ c0 = _mm_add_ps(c0, c1);
+ c2 = _mm_mul_ps(c2, _mm_and_ps(m[2].mVec128, btvFFF0fMask) );
+
+ return btVector3(_mm_add_ps(c0, c2));
+#elif defined(BT_USE_NEON)
+ const float32x4_t vv = v.mVec128;
+ const float32x2_t vlo = vget_low_f32(vv);
+ const float32x2_t vhi = vget_high_f32(vv);
+
+ float32x4_t c0, c1, c2;
+
+ c0 = (float32x4_t) vandq_s32((int32x4_t)m[0].mVec128, btvFFF0Mask);
+ c1 = (float32x4_t) vandq_s32((int32x4_t)m[1].mVec128, btvFFF0Mask);
+ c2 = (float32x4_t) vandq_s32((int32x4_t)m[2].mVec128, btvFFF0Mask);
+
+ c0 = vmulq_lane_f32(c0, vlo, 0);
+ c1 = vmulq_lane_f32(c1, vlo, 1);
+ c2 = vmulq_lane_f32(c2, vhi, 0);
+ c0 = vaddq_f32(c0, c1);
+ c0 = vaddq_f32(c0, c2);
+
+ return btVector3(c0);
+#else
+ return btVector3(m.tdotx(v), m.tdoty(v), m.tdotz(v));
+#endif
+}
+
+SIMD_FORCE_INLINE btMatrix3x3
+operator*(const btMatrix3x3& m1, const btMatrix3x3& m2)
+{
+#if defined BT_USE_SIMD_VECTOR3 && (defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE))
+
+ __m128 m10 = m1[0].mVec128;
+ __m128 m11 = m1[1].mVec128;
+ __m128 m12 = m1[2].mVec128;
+
+ __m128 m2v = _mm_and_ps(m2[0].mVec128, btvFFF0fMask);
+
+ __m128 c0 = bt_splat_ps( m10, 0);
+ __m128 c1 = bt_splat_ps( m11, 0);
+ __m128 c2 = bt_splat_ps( m12, 0);
+
+ c0 = _mm_mul_ps(c0, m2v);
+ c1 = _mm_mul_ps(c1, m2v);
+ c2 = _mm_mul_ps(c2, m2v);
+
+ m2v = _mm_and_ps(m2[1].mVec128, btvFFF0fMask);
+
+ __m128 c0_1 = bt_splat_ps( m10, 1);
+ __m128 c1_1 = bt_splat_ps( m11, 1);
+ __m128 c2_1 = bt_splat_ps( m12, 1);
+
+ c0_1 = _mm_mul_ps(c0_1, m2v);
+ c1_1 = _mm_mul_ps(c1_1, m2v);
+ c2_1 = _mm_mul_ps(c2_1, m2v);
+
+ m2v = _mm_and_ps(m2[2].mVec128, btvFFF0fMask);
+
+ c0 = _mm_add_ps(c0, c0_1);
+ c1 = _mm_add_ps(c1, c1_1);
+ c2 = _mm_add_ps(c2, c2_1);
+
+ m10 = bt_splat_ps( m10, 2);
+ m11 = bt_splat_ps( m11, 2);
+ m12 = bt_splat_ps( m12, 2);
+
+ m10 = _mm_mul_ps(m10, m2v);
+ m11 = _mm_mul_ps(m11, m2v);
+ m12 = _mm_mul_ps(m12, m2v);
+
+ c0 = _mm_add_ps(c0, m10);
+ c1 = _mm_add_ps(c1, m11);
+ c2 = _mm_add_ps(c2, m12);
+
+ return btMatrix3x3(c0, c1, c2);
+
+#elif defined(BT_USE_NEON)
+
+ float32x4_t rv0, rv1, rv2;
+ float32x4_t v0, v1, v2;
+ float32x4_t mv0, mv1, mv2;
+
+ v0 = m1[0].mVec128;
+ v1 = m1[1].mVec128;
+ v2 = m1[2].mVec128;
+
+ mv0 = (float32x4_t) vandq_s32((int32x4_t)m2[0].mVec128, btvFFF0Mask);
+ mv1 = (float32x4_t) vandq_s32((int32x4_t)m2[1].mVec128, btvFFF0Mask);
+ mv2 = (float32x4_t) vandq_s32((int32x4_t)m2[2].mVec128, btvFFF0Mask);
+
+ rv0 = vmulq_lane_f32(mv0, vget_low_f32(v0), 0);
+ rv1 = vmulq_lane_f32(mv0, vget_low_f32(v1), 0);
+ rv2 = vmulq_lane_f32(mv0, vget_low_f32(v2), 0);
+
+ rv0 = vmlaq_lane_f32(rv0, mv1, vget_low_f32(v0), 1);
+ rv1 = vmlaq_lane_f32(rv1, mv1, vget_low_f32(v1), 1);
+ rv2 = vmlaq_lane_f32(rv2, mv1, vget_low_f32(v2), 1);
+
+ rv0 = vmlaq_lane_f32(rv0, mv2, vget_high_f32(v0), 0);
+ rv1 = vmlaq_lane_f32(rv1, mv2, vget_high_f32(v1), 0);
+ rv2 = vmlaq_lane_f32(rv2, mv2, vget_high_f32(v2), 0);
+
+ return btMatrix3x3(rv0, rv1, rv2);
+
+#else
+ return btMatrix3x3(
+ m2.tdotx( m1[0]), m2.tdoty( m1[0]), m2.tdotz( m1[0]),
+ m2.tdotx( m1[1]), m2.tdoty( m1[1]), m2.tdotz( m1[1]),
+ m2.tdotx( m1[2]), m2.tdoty( m1[2]), m2.tdotz( m1[2]));
+#endif
+}
+
+/*
+SIMD_FORCE_INLINE btMatrix3x3 btMultTransposeLeft(const btMatrix3x3& m1, const btMatrix3x3& m2) {
+return btMatrix3x3(
+m1[0][0] * m2[0][0] + m1[1][0] * m2[1][0] + m1[2][0] * m2[2][0],
+m1[0][0] * m2[0][1] + m1[1][0] * m2[1][1] + m1[2][0] * m2[2][1],
+m1[0][0] * m2[0][2] + m1[1][0] * m2[1][2] + m1[2][0] * m2[2][2],
+m1[0][1] * m2[0][0] + m1[1][1] * m2[1][0] + m1[2][1] * m2[2][0],
+m1[0][1] * m2[0][1] + m1[1][1] * m2[1][1] + m1[2][1] * m2[2][1],
+m1[0][1] * m2[0][2] + m1[1][1] * m2[1][2] + m1[2][1] * m2[2][2],
+m1[0][2] * m2[0][0] + m1[1][2] * m2[1][0] + m1[2][2] * m2[2][0],
+m1[0][2] * m2[0][1] + m1[1][2] * m2[1][1] + m1[2][2] * m2[2][1],
+m1[0][2] * m2[0][2] + m1[1][2] * m2[1][2] + m1[2][2] * m2[2][2]);
+}
+*/
+
+/**@brief Equality operator between two matrices
+* It will test all elements are equal. */
+SIMD_FORCE_INLINE bool operator==(const btMatrix3x3& m1, const btMatrix3x3& m2)
+{
+#if (defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE))
+
+ __m128 c0, c1, c2;
+
+ c0 = _mm_cmpeq_ps(m1[0].mVec128, m2[0].mVec128);
+ c1 = _mm_cmpeq_ps(m1[1].mVec128, m2[1].mVec128);
+ c2 = _mm_cmpeq_ps(m1[2].mVec128, m2[2].mVec128);
+
+ c0 = _mm_and_ps(c0, c1);
+ c0 = _mm_and_ps(c0, c2);
+
+ int m = _mm_movemask_ps((__m128)c0);
+ return (0x7 == (m & 0x7));
+
+#else
+ return
+ ( m1[0][0] == m2[0][0] && m1[1][0] == m2[1][0] && m1[2][0] == m2[2][0] &&
+ m1[0][1] == m2[0][1] && m1[1][1] == m2[1][1] && m1[2][1] == m2[2][1] &&
+ m1[0][2] == m2[0][2] && m1[1][2] == m2[1][2] && m1[2][2] == m2[2][2] );
+#endif
+}
+
+///for serialization
+struct btMatrix3x3FloatData
+{
+ btVector3FloatData m_el[3];
+};
+
+///for serialization
+struct btMatrix3x3DoubleData
+{
+ btVector3DoubleData m_el[3];
+};
+
+
+
+
+SIMD_FORCE_INLINE void btMatrix3x3::serialize(struct btMatrix3x3Data& dataOut) const
+{
+ for (int i=0;i<3;i++)
+ m_el[i].serialize(dataOut.m_el[i]);
+}
+
+SIMD_FORCE_INLINE void btMatrix3x3::serializeFloat(struct btMatrix3x3FloatData& dataOut) const
+{
+ for (int i=0;i<3;i++)
+ m_el[i].serializeFloat(dataOut.m_el[i]);
+}
+
+
+SIMD_FORCE_INLINE void btMatrix3x3::deSerialize(const struct btMatrix3x3Data& dataIn)
+{
+ for (int i=0;i<3;i++)
+ m_el[i].deSerialize(dataIn.m_el[i]);
+}
+
+SIMD_FORCE_INLINE void btMatrix3x3::deSerializeFloat(const struct btMatrix3x3FloatData& dataIn)
+{
+ for (int i=0;i<3;i++)
+ m_el[i].deSerializeFloat(dataIn.m_el[i]);
+}
+
+SIMD_FORCE_INLINE void btMatrix3x3::deSerializeDouble(const struct btMatrix3x3DoubleData& dataIn)
+{
+ for (int i=0;i<3;i++)
+ m_el[i].deSerializeDouble(dataIn.m_el[i]);
+}
+
+#endif //BT_MATRIX3x3_H
+