summaryrefslogtreecommitdiff
path: root/thirdparty/bullet/BulletSoftBody/poly34.h
diff options
context:
space:
mode:
authorRĂ©mi Verschelde <remi@verschelde.fr>2022-03-10 08:01:04 +0100
committerGitHub <noreply@github.com>2022-03-10 08:01:04 +0100
commite19da630091a1837d9ed8ce6602befe6fe8dd46d (patch)
tree77fb520fba0676e08967232db2c05dc0665470a6 /thirdparty/bullet/BulletSoftBody/poly34.h
parent1571c982cac806ecd96f27c35f6ff0942f94b5a5 (diff)
parent3d7f1555865a981b7144becfc58d3f3f34362f5f (diff)
Merge pull request #58946 from akien-mga/remove-unused-bullet-code
Remove unused Bullet module and thirdparty code
Diffstat (limited to 'thirdparty/bullet/BulletSoftBody/poly34.h')
-rw-r--r--thirdparty/bullet/BulletSoftBody/poly34.h38
1 files changed, 0 insertions, 38 deletions
diff --git a/thirdparty/bullet/BulletSoftBody/poly34.h b/thirdparty/bullet/BulletSoftBody/poly34.h
deleted file mode 100644
index 35a52c5fec..0000000000
--- a/thirdparty/bullet/BulletSoftBody/poly34.h
+++ /dev/null
@@ -1,38 +0,0 @@
-// poly34.h : solution of cubic and quartic equation
-// (c) Khashin S.I. http://math.ivanovo.ac.ru/dalgebra/Khashin/index.html
-// khash2 (at) gmail.com
-
-#ifndef POLY_34
-#define POLY_34
-#include "LinearMath/btScalar.h"
-// x - array of size 2
-// return 2: 2 real roots x[0], x[1]
-// return 0: pair of complex roots: x[0]i*x[1]
-int SolveP2(btScalar* x, btScalar a, btScalar b); // solve equation x^2 + a*x + b = 0
-
-// x - array of size 3
-// return 3: 3 real roots x[0], x[1], x[2]
-// return 1: 1 real root x[0] and pair of complex roots: x[1]i*x[2]
-int SolveP3(btScalar* x, btScalar a, btScalar b, btScalar c); // solve cubic equation x^3 + a*x^2 + b*x + c = 0
-
-// x - array of size 4
-// return 4: 4 real roots x[0], x[1], x[2], x[3], possible multiple roots
-// return 2: 2 real roots x[0], x[1] and complex x[2]i*x[3],
-// return 0: two pair of complex roots: x[0]i*x[1], x[2]i*x[3],
-int SolveP4(btScalar* x, btScalar a, btScalar b, btScalar c, btScalar d); // solve equation x^4 + a*x^3 + b*x^2 + c*x + d = 0 by Dekart-Euler method
-
-// x - array of size 5
-// return 5: 5 real roots x[0], x[1], x[2], x[3], x[4], possible multiple roots
-// return 3: 3 real roots x[0], x[1], x[2] and complex x[3]i*x[4],
-// return 1: 1 real root x[0] and two pair of complex roots: x[1]i*x[2], x[3]i*x[4],
-int SolveP5(btScalar* x, btScalar a, btScalar b, btScalar c, btScalar d, btScalar e); // solve equation x^5 + a*x^4 + b*x^3 + c*x^2 + d*x + e = 0
-
-//-----------------------------------------------------------------------------
-// And some additional functions for internal use.
-// Your may remove this definitions from here
-int SolveP4Bi(btScalar* x, btScalar b, btScalar d); // solve equation x^4 + b*x^2 + d = 0
-int SolveP4De(btScalar* x, btScalar b, btScalar c, btScalar d); // solve equation x^4 + b*x^2 + c*x + d = 0
-void CSqrt(btScalar x, btScalar y, btScalar& a, btScalar& b); // returns as a+i*s, sqrt(x+i*y)
-btScalar N4Step(btScalar x, btScalar a, btScalar b, btScalar c, btScalar d); // one Newton step for x^4 + a*x^3 + b*x^2 + c*x + d
-btScalar SolveP5_1(btScalar a, btScalar b, btScalar c, btScalar d, btScalar e); // return real root of x^5 + a*x^4 + b*x^3 + c*x^2 + d*x + e = 0
-#endif