diff options
author | PouleyKetchoupp <pouleyketchoup@gmail.com> | 2020-04-27 10:15:23 +0200 |
---|---|---|
committer | PouleyKetchoupp <pouleyketchoup@gmail.com> | 2020-04-27 11:37:47 +0200 |
commit | 3e7db60d56d5c25d7aa3fded4b90f36ca341159c (patch) | |
tree | 33d0aa97c6f4dde686449fc66bb9755a8bc52fb3 /thirdparty/bullet/BulletSoftBody/poly34.h | |
parent | 43f0767390cabd337b31cf777fa5c04251c68fbc (diff) |
Update to bullet master (2.90)
Diffstat (limited to 'thirdparty/bullet/BulletSoftBody/poly34.h')
-rw-r--r-- | thirdparty/bullet/BulletSoftBody/poly34.h | 38 |
1 files changed, 38 insertions, 0 deletions
diff --git a/thirdparty/bullet/BulletSoftBody/poly34.h b/thirdparty/bullet/BulletSoftBody/poly34.h new file mode 100644 index 0000000000..32ad5d7da5 --- /dev/null +++ b/thirdparty/bullet/BulletSoftBody/poly34.h @@ -0,0 +1,38 @@ +// poly34.h : solution of cubic and quartic equation +// (c) Khashin S.I. http://math.ivanovo.ac.ru/dalgebra/Khashin/index.html +// khash2 (at) gmail.com + +#ifndef POLY_34 +#define POLY_34 +#include "LinearMath/btScalar.h" +// x - array of size 2 +// return 2: 2 real roots x[0], x[1] +// return 0: pair of complex roots: x[0]i*x[1] +int SolveP2(btScalar* x, btScalar a, btScalar b); // solve equation x^2 + a*x + b = 0 + +// x - array of size 3 +// return 3: 3 real roots x[0], x[1], x[2] +// return 1: 1 real root x[0] and pair of complex roots: x[1]i*x[2] +int SolveP3(btScalar* x, btScalar a, btScalar b, btScalar c); // solve cubic equation x^3 + a*x^2 + b*x + c = 0 + +// x - array of size 4 +// return 4: 4 real roots x[0], x[1], x[2], x[3], possible multiple roots +// return 2: 2 real roots x[0], x[1] and complex x[2]i*x[3], +// return 0: two pair of complex roots: x[0]i*x[1], x[2]i*x[3], +int SolveP4(btScalar* x, btScalar a, btScalar b, btScalar c, btScalar d); // solve equation x^4 + a*x^3 + b*x^2 + c*x + d = 0 by Dekart-Euler method + +// x - array of size 5 +// return 5: 5 real roots x[0], x[1], x[2], x[3], x[4], possible multiple roots +// return 3: 3 real roots x[0], x[1], x[2] and complex x[3]i*x[4], +// return 1: 1 real root x[0] and two pair of complex roots: x[1]i*x[2], x[3]i*x[4], +int SolveP5(btScalar* x, btScalar a, btScalar b, btScalar c, btScalar d, btScalar e); // solve equation x^5 + a*x^4 + b*x^3 + c*x^2 + d*x + e = 0 + +//----------------------------------------------------------------------------- +// And some additional functions for internal use. +// Your may remove this definitions from here +int SolveP4Bi(btScalar* x, btScalar b, btScalar d); // solve equation x^4 + b*x^2 + d = 0 +int SolveP4De(btScalar* x, btScalar b, btScalar c, btScalar d); // solve equation x^4 + b*x^2 + c*x + d = 0 +void CSqrt(btScalar x, btScalar y, btScalar& a, btScalar& b); // returns as a+i*s, sqrt(x+i*y) +btScalar N4Step(btScalar x, btScalar a, btScalar b, btScalar c, btScalar d); // one Newton step for x^4 + a*x^3 + b*x^2 + c*x + d +btScalar SolveP5_1(btScalar a, btScalar b, btScalar c, btScalar d, btScalar e); // return real root of x^5 + a*x^4 + b*x^3 + c*x^2 + d*x + e = 0 +#endif |