summaryrefslogtreecommitdiff
path: root/thirdparty/bullet/BulletSoftBody/poly34.h
diff options
context:
space:
mode:
authorPouleyKetchoupp <pouleyketchoup@gmail.com>2020-04-27 10:15:23 +0200
committerPouleyKetchoupp <pouleyketchoup@gmail.com>2020-04-27 11:37:47 +0200
commit3e7db60d56d5c25d7aa3fded4b90f36ca341159c (patch)
tree33d0aa97c6f4dde686449fc66bb9755a8bc52fb3 /thirdparty/bullet/BulletSoftBody/poly34.h
parent43f0767390cabd337b31cf777fa5c04251c68fbc (diff)
Update to bullet master (2.90)
Diffstat (limited to 'thirdparty/bullet/BulletSoftBody/poly34.h')
-rw-r--r--thirdparty/bullet/BulletSoftBody/poly34.h38
1 files changed, 38 insertions, 0 deletions
diff --git a/thirdparty/bullet/BulletSoftBody/poly34.h b/thirdparty/bullet/BulletSoftBody/poly34.h
new file mode 100644
index 0000000000..32ad5d7da5
--- /dev/null
+++ b/thirdparty/bullet/BulletSoftBody/poly34.h
@@ -0,0 +1,38 @@
+// poly34.h : solution of cubic and quartic equation
+// (c) Khashin S.I. http://math.ivanovo.ac.ru/dalgebra/Khashin/index.html
+// khash2 (at) gmail.com
+
+#ifndef POLY_34
+#define POLY_34
+#include "LinearMath/btScalar.h"
+// x - array of size 2
+// return 2: 2 real roots x[0], x[1]
+// return 0: pair of complex roots: x[0]i*x[1]
+int SolveP2(btScalar* x, btScalar a, btScalar b); // solve equation x^2 + a*x + b = 0
+
+// x - array of size 3
+// return 3: 3 real roots x[0], x[1], x[2]
+// return 1: 1 real root x[0] and pair of complex roots: x[1]i*x[2]
+int SolveP3(btScalar* x, btScalar a, btScalar b, btScalar c); // solve cubic equation x^3 + a*x^2 + b*x + c = 0
+
+// x - array of size 4
+// return 4: 4 real roots x[0], x[1], x[2], x[3], possible multiple roots
+// return 2: 2 real roots x[0], x[1] and complex x[2]i*x[3],
+// return 0: two pair of complex roots: x[0]i*x[1], x[2]i*x[3],
+int SolveP4(btScalar* x, btScalar a, btScalar b, btScalar c, btScalar d); // solve equation x^4 + a*x^3 + b*x^2 + c*x + d = 0 by Dekart-Euler method
+
+// x - array of size 5
+// return 5: 5 real roots x[0], x[1], x[2], x[3], x[4], possible multiple roots
+// return 3: 3 real roots x[0], x[1], x[2] and complex x[3]i*x[4],
+// return 1: 1 real root x[0] and two pair of complex roots: x[1]i*x[2], x[3]i*x[4],
+int SolveP5(btScalar* x, btScalar a, btScalar b, btScalar c, btScalar d, btScalar e); // solve equation x^5 + a*x^4 + b*x^3 + c*x^2 + d*x + e = 0
+
+//-----------------------------------------------------------------------------
+// And some additional functions for internal use.
+// Your may remove this definitions from here
+int SolveP4Bi(btScalar* x, btScalar b, btScalar d); // solve equation x^4 + b*x^2 + d = 0
+int SolveP4De(btScalar* x, btScalar b, btScalar c, btScalar d); // solve equation x^4 + b*x^2 + c*x + d = 0
+void CSqrt(btScalar x, btScalar y, btScalar& a, btScalar& b); // returns as a+i*s, sqrt(x+i*y)
+btScalar N4Step(btScalar x, btScalar a, btScalar b, btScalar c, btScalar d); // one Newton step for x^4 + a*x^3 + b*x^2 + c*x + d
+btScalar SolveP5_1(btScalar a, btScalar b, btScalar c, btScalar d, btScalar e); // return real root of x^5 + a*x^4 + b*x^3 + c*x^2 + d*x + e = 0
+#endif