summaryrefslogtreecommitdiff
path: root/thirdparty/bullet/BulletSoftBody/btDeformableNeoHookeanForce.h
diff options
context:
space:
mode:
authorRémi Verschelde <rverschelde@gmail.com>2020-12-17 13:51:12 +0100
committerRémi Verschelde <rverschelde@gmail.com>2020-12-18 13:41:11 +0100
commit3cbf8bde8455f98f9b447237ebfe578aca397574 (patch)
tree175f1f5daee4928a8f78d4d5853d7da99902e940 /thirdparty/bullet/BulletSoftBody/btDeformableNeoHookeanForce.h
parent214a22b98e5d74a9b49346d5021641db6a9899cf (diff)
bullet: Sync with upstream 3.07
Diffstat (limited to 'thirdparty/bullet/BulletSoftBody/btDeformableNeoHookeanForce.h')
-rw-r--r--thirdparty/bullet/BulletSoftBody/btDeformableNeoHookeanForce.h703
1 files changed, 351 insertions, 352 deletions
diff --git a/thirdparty/bullet/BulletSoftBody/btDeformableNeoHookeanForce.h b/thirdparty/bullet/BulletSoftBody/btDeformableNeoHookeanForce.h
index d89bc4aca4..60798c5bcd 100644
--- a/thirdparty/bullet/BulletSoftBody/btDeformableNeoHookeanForce.h
+++ b/thirdparty/bullet/BulletSoftBody/btDeformableNeoHookeanForce.h
@@ -23,30 +23,30 @@ subject to the following restrictions:
class btDeformableNeoHookeanForce : public btDeformableLagrangianForce
{
public:
- typedef btAlignedObjectArray<btVector3> TVStack;
- btScalar m_mu, m_lambda; // Lame Parameters
- btScalar m_E, m_nu; // Young's modulus and Poisson ratio
- btScalar m_mu_damp, m_lambda_damp;
- btDeformableNeoHookeanForce(): m_mu(1), m_lambda(1)
- {
- btScalar damping = 0.05;
- m_mu_damp = damping * m_mu;
- m_lambda_damp = damping * m_lambda;
+ typedef btAlignedObjectArray<btVector3> TVStack;
+ btScalar m_mu, m_lambda; // Lame Parameters
+ btScalar m_E, m_nu; // Young's modulus and Poisson ratio
+ btScalar m_mu_damp, m_lambda_damp;
+ btDeformableNeoHookeanForce() : m_mu(1), m_lambda(1)
+ {
+ btScalar damping = 0.05;
+ m_mu_damp = damping * m_mu;
+ m_lambda_damp = damping * m_lambda;
updateYoungsModulusAndPoissonRatio();
- }
-
- btDeformableNeoHookeanForce(btScalar mu, btScalar lambda, btScalar damping = 0.05): m_mu(mu), m_lambda(lambda)
- {
- m_mu_damp = damping * m_mu;
- m_lambda_damp = damping * m_lambda;
+ }
+
+ btDeformableNeoHookeanForce(btScalar mu, btScalar lambda, btScalar damping = 0.05) : m_mu(mu), m_lambda(lambda)
+ {
+ m_mu_damp = damping * m_mu;
+ m_lambda_damp = damping * m_lambda;
updateYoungsModulusAndPoissonRatio();
- }
+ }
void updateYoungsModulusAndPoissonRatio()
{
// conversion from Lame Parameters to Young's modulus and Poisson ratio
// https://en.wikipedia.org/wiki/Lam%C3%A9_parameters
- m_E = m_mu * (3*m_lambda + 2*m_mu)/(m_lambda + m_mu);
+ m_E = m_mu * (3 * m_lambda + 2 * m_mu) / (m_lambda + m_mu);
m_nu = m_lambda * 0.5 / (m_mu + m_lambda);
}
@@ -55,21 +55,21 @@ public:
// conversion from Young's modulus and Poisson ratio to Lame Parameters
// https://en.wikipedia.org/wiki/Lam%C3%A9_parameters
m_mu = m_E * 0.5 / (1 + m_nu);
- m_lambda = m_E * m_nu / ((1 + m_nu) * (1- 2*m_nu));
+ m_lambda = m_E * m_nu / ((1 + m_nu) * (1 - 2 * m_nu));
}
- void setYoungsModulus(btScalar E)
- {
+ void setYoungsModulus(btScalar E)
+ {
m_E = E;
updateLameParameters();
- }
+ }
void setPoissonRatio(btScalar nu)
{
m_nu = nu;
updateLameParameters();
}
-
+
void setDamping(btScalar damping)
{
m_mu_damp = damping * m_mu;
@@ -83,339 +83,338 @@ public:
updateYoungsModulusAndPoissonRatio();
}
- virtual void addScaledForces(btScalar scale, TVStack& force)
- {
- addScaledDampingForce(scale, force);
- addScaledElasticForce(scale, force);
- }
-
- virtual void addScaledExplicitForce(btScalar scale, TVStack& force)
- {
- addScaledElasticForce(scale, force);
- }
-
- // The damping matrix is calculated using the time n state as described in https://www.math.ucla.edu/~jteran/papers/GSSJT15.pdf to allow line search
- virtual void addScaledDampingForce(btScalar scale, TVStack& force)
- {
- if (m_mu_damp == 0 && m_lambda_damp == 0)
- return;
- int numNodes = getNumNodes();
- btAssert(numNodes <= force.size());
- btVector3 grad_N_hat_1st_col = btVector3(-1,-1,-1);
- for (int i = 0; i < m_softBodies.size(); ++i)
- {
- btSoftBody* psb = m_softBodies[i];
- if (!psb->isActive())
- {
- continue;
- }
- for (int j = 0; j < psb->m_tetras.size(); ++j)
- {
- btSoftBody::Tetra& tetra = psb->m_tetras[j];
- btSoftBody::Node* node0 = tetra.m_n[0];
- btSoftBody::Node* node1 = tetra.m_n[1];
- btSoftBody::Node* node2 = tetra.m_n[2];
- btSoftBody::Node* node3 = tetra.m_n[3];
- size_t id0 = node0->index;
- size_t id1 = node1->index;
- size_t id2 = node2->index;
- size_t id3 = node3->index;
- btMatrix3x3 dF = DsFromVelocity(node0, node1, node2, node3) * tetra.m_Dm_inverse;
- btMatrix3x3 I;
- I.setIdentity();
- btMatrix3x3 dP = (dF + dF.transpose()) * m_mu_damp + I * (dF[0][0]+dF[1][1]+dF[2][2]) * m_lambda_damp;
-// firstPiolaDampingDifferential(psb->m_tetraScratchesTn[j], dF, dP);
- btVector3 df_on_node0 = dP * (tetra.m_Dm_inverse.transpose()*grad_N_hat_1st_col);
- btMatrix3x3 df_on_node123 = dP * tetra.m_Dm_inverse.transpose();
+ virtual void addScaledForces(btScalar scale, TVStack& force)
+ {
+ addScaledDampingForce(scale, force);
+ addScaledElasticForce(scale, force);
+ }
+
+ virtual void addScaledExplicitForce(btScalar scale, TVStack& force)
+ {
+ addScaledElasticForce(scale, force);
+ }
+
+ // The damping matrix is calculated using the time n state as described in https://www.math.ucla.edu/~jteran/papers/GSSJT15.pdf to allow line search
+ virtual void addScaledDampingForce(btScalar scale, TVStack& force)
+ {
+ if (m_mu_damp == 0 && m_lambda_damp == 0)
+ return;
+ int numNodes = getNumNodes();
+ btAssert(numNodes <= force.size());
+ btVector3 grad_N_hat_1st_col = btVector3(-1, -1, -1);
+ for (int i = 0; i < m_softBodies.size(); ++i)
+ {
+ btSoftBody* psb = m_softBodies[i];
+ if (!psb->isActive())
+ {
+ continue;
+ }
+ for (int j = 0; j < psb->m_tetras.size(); ++j)
+ {
+ btSoftBody::Tetra& tetra = psb->m_tetras[j];
+ btSoftBody::Node* node0 = tetra.m_n[0];
+ btSoftBody::Node* node1 = tetra.m_n[1];
+ btSoftBody::Node* node2 = tetra.m_n[2];
+ btSoftBody::Node* node3 = tetra.m_n[3];
+ size_t id0 = node0->index;
+ size_t id1 = node1->index;
+ size_t id2 = node2->index;
+ size_t id3 = node3->index;
+ btMatrix3x3 dF = DsFromVelocity(node0, node1, node2, node3) * tetra.m_Dm_inverse;
+ btMatrix3x3 I;
+ I.setIdentity();
+ btMatrix3x3 dP = (dF + dF.transpose()) * m_mu_damp + I * (dF[0][0] + dF[1][1] + dF[2][2]) * m_lambda_damp;
+ // firstPiolaDampingDifferential(psb->m_tetraScratchesTn[j], dF, dP);
+ btVector3 df_on_node0 = dP * (tetra.m_Dm_inverse.transpose() * grad_N_hat_1st_col);
+ btMatrix3x3 df_on_node123 = dP * tetra.m_Dm_inverse.transpose();
+
+ // damping force differential
+ btScalar scale1 = scale * tetra.m_element_measure;
+ force[id0] -= scale1 * df_on_node0;
+ force[id1] -= scale1 * df_on_node123.getColumn(0);
+ force[id2] -= scale1 * df_on_node123.getColumn(1);
+ force[id3] -= scale1 * df_on_node123.getColumn(2);
+ }
+ }
+ }
+
+ virtual double totalElasticEnergy(btScalar dt)
+ {
+ double energy = 0;
+ for (int i = 0; i < m_softBodies.size(); ++i)
+ {
+ btSoftBody* psb = m_softBodies[i];
+ if (!psb->isActive())
+ {
+ continue;
+ }
+ for (int j = 0; j < psb->m_tetraScratches.size(); ++j)
+ {
+ btSoftBody::Tetra& tetra = psb->m_tetras[j];
+ btSoftBody::TetraScratch& s = psb->m_tetraScratches[j];
+ energy += tetra.m_element_measure * elasticEnergyDensity(s);
+ }
+ }
+ return energy;
+ }
+
+ // The damping energy is formulated as in https://www.math.ucla.edu/~jteran/papers/GSSJT15.pdf to allow line search
+ virtual double totalDampingEnergy(btScalar dt)
+ {
+ double energy = 0;
+ int sz = 0;
+ for (int i = 0; i < m_softBodies.size(); ++i)
+ {
+ btSoftBody* psb = m_softBodies[i];
+ if (!psb->isActive())
+ {
+ continue;
+ }
+ for (int j = 0; j < psb->m_nodes.size(); ++j)
+ {
+ sz = btMax(sz, psb->m_nodes[j].index);
+ }
+ }
+ TVStack dampingForce;
+ dampingForce.resize(sz + 1);
+ for (int i = 0; i < dampingForce.size(); ++i)
+ dampingForce[i].setZero();
+ addScaledDampingForce(0.5, dampingForce);
+ for (int i = 0; i < m_softBodies.size(); ++i)
+ {
+ btSoftBody* psb = m_softBodies[i];
+ for (int j = 0; j < psb->m_nodes.size(); ++j)
+ {
+ const btSoftBody::Node& node = psb->m_nodes[j];
+ energy -= dampingForce[node.index].dot(node.m_v) / dt;
+ }
+ }
+ return energy;
+ }
+
+ double elasticEnergyDensity(const btSoftBody::TetraScratch& s)
+ {
+ double density = 0;
+ density += m_mu * 0.5 * (s.m_trace - 3.);
+ density += m_lambda * 0.5 * (s.m_J - 1. - 0.75 * m_mu / m_lambda) * (s.m_J - 1. - 0.75 * m_mu / m_lambda);
+ density -= m_mu * 0.5 * log(s.m_trace + 1);
+ return density;
+ }
- // damping force differential
- btScalar scale1 = scale * tetra.m_element_measure;
- force[id0] -= scale1 * df_on_node0;
- force[id1] -= scale1 * df_on_node123.getColumn(0);
- force[id2] -= scale1 * df_on_node123.getColumn(1);
- force[id3] -= scale1 * df_on_node123.getColumn(2);
- }
- }
- }
-
- virtual double totalElasticEnergy(btScalar dt)
- {
- double energy = 0;
- for (int i = 0; i < m_softBodies.size(); ++i)
- {
- btSoftBody* psb = m_softBodies[i];
- if (!psb->isActive())
- {
- continue;
- }
- for (int j = 0; j < psb->m_tetraScratches.size(); ++j)
- {
- btSoftBody::Tetra& tetra = psb->m_tetras[j];
- btSoftBody::TetraScratch& s = psb->m_tetraScratches[j];
- energy += tetra.m_element_measure * elasticEnergyDensity(s);
- }
- }
- return energy;
- }
-
- // The damping energy is formulated as in https://www.math.ucla.edu/~jteran/papers/GSSJT15.pdf to allow line search
- virtual double totalDampingEnergy(btScalar dt)
- {
- double energy = 0;
- int sz = 0;
- for (int i = 0; i < m_softBodies.size(); ++i)
- {
- btSoftBody* psb = m_softBodies[i];
- if (!psb->isActive())
- {
- continue;
- }
- for (int j = 0; j < psb->m_nodes.size(); ++j)
- {
- sz = btMax(sz, psb->m_nodes[j].index);
- }
- }
- TVStack dampingForce;
- dampingForce.resize(sz+1);
- for (int i = 0; i < dampingForce.size(); ++i)
- dampingForce[i].setZero();
- addScaledDampingForce(0.5, dampingForce);
- for (int i = 0; i < m_softBodies.size(); ++i)
- {
- btSoftBody* psb = m_softBodies[i];
- for (int j = 0; j < psb->m_nodes.size(); ++j)
- {
- const btSoftBody::Node& node = psb->m_nodes[j];
- energy -= dampingForce[node.index].dot(node.m_v) / dt;
- }
- }
- return energy;
- }
-
- double elasticEnergyDensity(const btSoftBody::TetraScratch& s)
- {
- double density = 0;
- density += m_mu * 0.5 * (s.m_trace - 3.);
- density += m_lambda * 0.5 * (s.m_J - 1. - 0.75 * m_mu / m_lambda)* (s.m_J - 1. - 0.75 * m_mu / m_lambda);
- density -= m_mu * 0.5 * log(s.m_trace+1);
- return density;
- }
-
- virtual void addScaledElasticForce(btScalar scale, TVStack& force)
- {
- int numNodes = getNumNodes();
- btAssert(numNodes <= force.size());
- btVector3 grad_N_hat_1st_col = btVector3(-1,-1,-1);
- for (int i = 0; i < m_softBodies.size(); ++i)
- {
- btSoftBody* psb = m_softBodies[i];
- if (!psb->isActive())
- {
- continue;
- }
- btScalar max_p = psb->m_cfg.m_maxStress;
- for (int j = 0; j < psb->m_tetras.size(); ++j)
- {
- btSoftBody::Tetra& tetra = psb->m_tetras[j];
- btMatrix3x3 P;
- firstPiola(psb->m_tetraScratches[j],P);
+ virtual void addScaledElasticForce(btScalar scale, TVStack& force)
+ {
+ int numNodes = getNumNodes();
+ btAssert(numNodes <= force.size());
+ btVector3 grad_N_hat_1st_col = btVector3(-1, -1, -1);
+ for (int i = 0; i < m_softBodies.size(); ++i)
+ {
+ btSoftBody* psb = m_softBodies[i];
+ if (!psb->isActive())
+ {
+ continue;
+ }
+ btScalar max_p = psb->m_cfg.m_maxStress;
+ for (int j = 0; j < psb->m_tetras.size(); ++j)
+ {
+ btSoftBody::Tetra& tetra = psb->m_tetras[j];
+ btMatrix3x3 P;
+ firstPiola(psb->m_tetraScratches[j], P);
#ifdef USE_SVD
- if (max_p > 0)
- {
- // since we want to clamp the principal stress to max_p, we only need to
- // calculate SVD when sigma_0^2 + sigma_1^2 + sigma_2^2 > max_p * max_p
- btScalar trPTP = (P[0].length2() + P[1].length2() + P[2].length2());
- if (trPTP > max_p * max_p)
- {
- btMatrix3x3 U, V;
- btVector3 sigma;
- singularValueDecomposition(P, U, sigma, V);
- sigma[0] = btMin(sigma[0], max_p);
- sigma[1] = btMin(sigma[1], max_p);
- sigma[2] = btMin(sigma[2], max_p);
- sigma[0] = btMax(sigma[0], -max_p);
- sigma[1] = btMax(sigma[1], -max_p);
- sigma[2] = btMax(sigma[2], -max_p);
- btMatrix3x3 Sigma;
- Sigma.setIdentity();
- Sigma[0][0] = sigma[0];
- Sigma[1][1] = sigma[1];
- Sigma[2][2] = sigma[2];
- P = U * Sigma * V.transpose();
- }
- }
+ if (max_p > 0)
+ {
+ // since we want to clamp the principal stress to max_p, we only need to
+ // calculate SVD when sigma_0^2 + sigma_1^2 + sigma_2^2 > max_p * max_p
+ btScalar trPTP = (P[0].length2() + P[1].length2() + P[2].length2());
+ if (trPTP > max_p * max_p)
+ {
+ btMatrix3x3 U, V;
+ btVector3 sigma;
+ singularValueDecomposition(P, U, sigma, V);
+ sigma[0] = btMin(sigma[0], max_p);
+ sigma[1] = btMin(sigma[1], max_p);
+ sigma[2] = btMin(sigma[2], max_p);
+ sigma[0] = btMax(sigma[0], -max_p);
+ sigma[1] = btMax(sigma[1], -max_p);
+ sigma[2] = btMax(sigma[2], -max_p);
+ btMatrix3x3 Sigma;
+ Sigma.setIdentity();
+ Sigma[0][0] = sigma[0];
+ Sigma[1][1] = sigma[1];
+ Sigma[2][2] = sigma[2];
+ P = U * Sigma * V.transpose();
+ }
+ }
#endif
-// btVector3 force_on_node0 = P * (tetra.m_Dm_inverse.transpose()*grad_N_hat_1st_col);
- btMatrix3x3 force_on_node123 = P * tetra.m_Dm_inverse.transpose();
- btVector3 force_on_node0 = force_on_node123 * grad_N_hat_1st_col;
-
- btSoftBody::Node* node0 = tetra.m_n[0];
- btSoftBody::Node* node1 = tetra.m_n[1];
- btSoftBody::Node* node2 = tetra.m_n[2];
- btSoftBody::Node* node3 = tetra.m_n[3];
- size_t id0 = node0->index;
- size_t id1 = node1->index;
- size_t id2 = node2->index;
- size_t id3 = node3->index;
-
- // elastic force
- btScalar scale1 = scale * tetra.m_element_measure;
- force[id0] -= scale1 * force_on_node0;
- force[id1] -= scale1 * force_on_node123.getColumn(0);
- force[id2] -= scale1 * force_on_node123.getColumn(1);
- force[id3] -= scale1 * force_on_node123.getColumn(2);
- }
- }
- }
-
- // The damping matrix is calculated using the time n state as described in https://www.math.ucla.edu/~jteran/papers/GSSJT15.pdf to allow line search
- virtual void addScaledDampingForceDifferential(btScalar scale, const TVStack& dv, TVStack& df)
- {
- if (m_mu_damp == 0 && m_lambda_damp == 0)
- return;
- int numNodes = getNumNodes();
- btAssert(numNodes <= df.size());
- btVector3 grad_N_hat_1st_col = btVector3(-1,-1,-1);
- for (int i = 0; i < m_softBodies.size(); ++i)
- {
- btSoftBody* psb = m_softBodies[i];
- if (!psb->isActive())
- {
- continue;
- }
- for (int j = 0; j < psb->m_tetras.size(); ++j)
- {
- btSoftBody::Tetra& tetra = psb->m_tetras[j];
- btSoftBody::Node* node0 = tetra.m_n[0];
- btSoftBody::Node* node1 = tetra.m_n[1];
- btSoftBody::Node* node2 = tetra.m_n[2];
- btSoftBody::Node* node3 = tetra.m_n[3];
- size_t id0 = node0->index;
- size_t id1 = node1->index;
- size_t id2 = node2->index;
- size_t id3 = node3->index;
- btMatrix3x3 dF = Ds(id0, id1, id2, id3, dv) * tetra.m_Dm_inverse;
- btMatrix3x3 I;
- I.setIdentity();
- btMatrix3x3 dP = (dF + dF.transpose()) * m_mu_damp + I * (dF[0][0]+dF[1][1]+dF[2][2]) * m_lambda_damp;
-// firstPiolaDampingDifferential(psb->m_tetraScratchesTn[j], dF, dP);
-// btVector3 df_on_node0 = dP * (tetra.m_Dm_inverse.transpose()*grad_N_hat_1st_col);
- btMatrix3x3 df_on_node123 = dP * tetra.m_Dm_inverse.transpose();
- btVector3 df_on_node0 = df_on_node123 * grad_N_hat_1st_col;
+ // btVector3 force_on_node0 = P * (tetra.m_Dm_inverse.transpose()*grad_N_hat_1st_col);
+ btMatrix3x3 force_on_node123 = P * tetra.m_Dm_inverse.transpose();
+ btVector3 force_on_node0 = force_on_node123 * grad_N_hat_1st_col;
+
+ btSoftBody::Node* node0 = tetra.m_n[0];
+ btSoftBody::Node* node1 = tetra.m_n[1];
+ btSoftBody::Node* node2 = tetra.m_n[2];
+ btSoftBody::Node* node3 = tetra.m_n[3];
+ size_t id0 = node0->index;
+ size_t id1 = node1->index;
+ size_t id2 = node2->index;
+ size_t id3 = node3->index;
+
+ // elastic force
+ btScalar scale1 = scale * tetra.m_element_measure;
+ force[id0] -= scale1 * force_on_node0;
+ force[id1] -= scale1 * force_on_node123.getColumn(0);
+ force[id2] -= scale1 * force_on_node123.getColumn(1);
+ force[id3] -= scale1 * force_on_node123.getColumn(2);
+ }
+ }
+ }
+
+ // The damping matrix is calculated using the time n state as described in https://www.math.ucla.edu/~jteran/papers/GSSJT15.pdf to allow line search
+ virtual void addScaledDampingForceDifferential(btScalar scale, const TVStack& dv, TVStack& df)
+ {
+ if (m_mu_damp == 0 && m_lambda_damp == 0)
+ return;
+ int numNodes = getNumNodes();
+ btAssert(numNodes <= df.size());
+ btVector3 grad_N_hat_1st_col = btVector3(-1, -1, -1);
+ for (int i = 0; i < m_softBodies.size(); ++i)
+ {
+ btSoftBody* psb = m_softBodies[i];
+ if (!psb->isActive())
+ {
+ continue;
+ }
+ for (int j = 0; j < psb->m_tetras.size(); ++j)
+ {
+ btSoftBody::Tetra& tetra = psb->m_tetras[j];
+ btSoftBody::Node* node0 = tetra.m_n[0];
+ btSoftBody::Node* node1 = tetra.m_n[1];
+ btSoftBody::Node* node2 = tetra.m_n[2];
+ btSoftBody::Node* node3 = tetra.m_n[3];
+ size_t id0 = node0->index;
+ size_t id1 = node1->index;
+ size_t id2 = node2->index;
+ size_t id3 = node3->index;
+ btMatrix3x3 dF = Ds(id0, id1, id2, id3, dv) * tetra.m_Dm_inverse;
+ btMatrix3x3 I;
+ I.setIdentity();
+ btMatrix3x3 dP = (dF + dF.transpose()) * m_mu_damp + I * (dF[0][0] + dF[1][1] + dF[2][2]) * m_lambda_damp;
+ // firstPiolaDampingDifferential(psb->m_tetraScratchesTn[j], dF, dP);
+ // btVector3 df_on_node0 = dP * (tetra.m_Dm_inverse.transpose()*grad_N_hat_1st_col);
+ btMatrix3x3 df_on_node123 = dP * tetra.m_Dm_inverse.transpose();
+ btVector3 df_on_node0 = df_on_node123 * grad_N_hat_1st_col;
+
+ // damping force differential
+ btScalar scale1 = scale * tetra.m_element_measure;
+ df[id0] -= scale1 * df_on_node0;
+ df[id1] -= scale1 * df_on_node123.getColumn(0);
+ df[id2] -= scale1 * df_on_node123.getColumn(1);
+ df[id3] -= scale1 * df_on_node123.getColumn(2);
+ }
+ }
+ }
+
+ virtual void buildDampingForceDifferentialDiagonal(btScalar scale, TVStack& diagA) {}
+
+ virtual void addScaledElasticForceDifferential(btScalar scale, const TVStack& dx, TVStack& df)
+ {
+ int numNodes = getNumNodes();
+ btAssert(numNodes <= df.size());
+ btVector3 grad_N_hat_1st_col = btVector3(-1, -1, -1);
+ for (int i = 0; i < m_softBodies.size(); ++i)
+ {
+ btSoftBody* psb = m_softBodies[i];
+ if (!psb->isActive())
+ {
+ continue;
+ }
+ for (int j = 0; j < psb->m_tetras.size(); ++j)
+ {
+ btSoftBody::Tetra& tetra = psb->m_tetras[j];
+ btSoftBody::Node* node0 = tetra.m_n[0];
+ btSoftBody::Node* node1 = tetra.m_n[1];
+ btSoftBody::Node* node2 = tetra.m_n[2];
+ btSoftBody::Node* node3 = tetra.m_n[3];
+ size_t id0 = node0->index;
+ size_t id1 = node1->index;
+ size_t id2 = node2->index;
+ size_t id3 = node3->index;
+ btMatrix3x3 dF = Ds(id0, id1, id2, id3, dx) * tetra.m_Dm_inverse;
+ btMatrix3x3 dP;
+ firstPiolaDifferential(psb->m_tetraScratches[j], dF, dP);
+ // btVector3 df_on_node0 = dP * (tetra.m_Dm_inverse.transpose()*grad_N_hat_1st_col);
+ btMatrix3x3 df_on_node123 = dP * tetra.m_Dm_inverse.transpose();
+ btVector3 df_on_node0 = df_on_node123 * grad_N_hat_1st_col;
+
+ // elastic force differential
+ btScalar scale1 = scale * tetra.m_element_measure;
+ df[id0] -= scale1 * df_on_node0;
+ df[id1] -= scale1 * df_on_node123.getColumn(0);
+ df[id2] -= scale1 * df_on_node123.getColumn(1);
+ df[id3] -= scale1 * df_on_node123.getColumn(2);
+ }
+ }
+ }
+
+ void firstPiola(const btSoftBody::TetraScratch& s, btMatrix3x3& P)
+ {
+ btScalar c1 = (m_mu * (1. - 1. / (s.m_trace + 1.)));
+ btScalar c2 = (m_lambda * (s.m_J - 1.) - 0.75 * m_mu);
+ P = s.m_F * c1 + s.m_cofF * c2;
+ }
+
+ // Let P be the first piola stress.
+ // This function calculates the dP = dP/dF * dF
+ void firstPiolaDifferential(const btSoftBody::TetraScratch& s, const btMatrix3x3& dF, btMatrix3x3& dP)
+ {
+ btScalar c1 = m_mu * (1. - 1. / (s.m_trace + 1.));
+ btScalar c2 = (2. * m_mu) * DotProduct(s.m_F, dF) * (1. / ((1. + s.m_trace) * (1. + s.m_trace)));
+ btScalar c3 = (m_lambda * DotProduct(s.m_cofF, dF));
+ dP = dF * c1 + s.m_F * c2;
+ addScaledCofactorMatrixDifferential(s.m_F, dF, m_lambda * (s.m_J - 1.) - 0.75 * m_mu, dP);
+ dP += s.m_cofF * c3;
+ }
- // damping force differential
- btScalar scale1 = scale * tetra.m_element_measure;
- df[id0] -= scale1 * df_on_node0;
- df[id1] -= scale1 * df_on_node123.getColumn(0);
- df[id2] -= scale1 * df_on_node123.getColumn(1);
- df[id3] -= scale1 * df_on_node123.getColumn(2);
- }
- }
- }
-
- virtual void buildDampingForceDifferentialDiagonal(btScalar scale, TVStack& diagA){}
-
- virtual void addScaledElasticForceDifferential(btScalar scale, const TVStack& dx, TVStack& df)
- {
- int numNodes = getNumNodes();
- btAssert(numNodes <= df.size());
- btVector3 grad_N_hat_1st_col = btVector3(-1,-1,-1);
- for (int i = 0; i < m_softBodies.size(); ++i)
- {
- btSoftBody* psb = m_softBodies[i];
- if (!psb->isActive())
- {
- continue;
- }
- for (int j = 0; j < psb->m_tetras.size(); ++j)
- {
- btSoftBody::Tetra& tetra = psb->m_tetras[j];
- btSoftBody::Node* node0 = tetra.m_n[0];
- btSoftBody::Node* node1 = tetra.m_n[1];
- btSoftBody::Node* node2 = tetra.m_n[2];
- btSoftBody::Node* node3 = tetra.m_n[3];
- size_t id0 = node0->index;
- size_t id1 = node1->index;
- size_t id2 = node2->index;
- size_t id3 = node3->index;
- btMatrix3x3 dF = Ds(id0, id1, id2, id3, dx) * tetra.m_Dm_inverse;
- btMatrix3x3 dP;
- firstPiolaDifferential(psb->m_tetraScratches[j], dF, dP);
-// btVector3 df_on_node0 = dP * (tetra.m_Dm_inverse.transpose()*grad_N_hat_1st_col);
- btMatrix3x3 df_on_node123 = dP * tetra.m_Dm_inverse.transpose();
- btVector3 df_on_node0 = df_on_node123 * grad_N_hat_1st_col;
-
- // elastic force differential
- btScalar scale1 = scale * tetra.m_element_measure;
- df[id0] -= scale1 * df_on_node0;
- df[id1] -= scale1 * df_on_node123.getColumn(0);
- df[id2] -= scale1 * df_on_node123.getColumn(1);
- df[id3] -= scale1 * df_on_node123.getColumn(2);
- }
- }
- }
-
- void firstPiola(const btSoftBody::TetraScratch& s, btMatrix3x3& P)
- {
- btScalar c1 = (m_mu * ( 1. - 1. / (s.m_trace + 1.)));
- btScalar c2 = (m_lambda * (s.m_J - 1.) - 0.75 * m_mu);
- P = s.m_F * c1 + s.m_cofF * c2;
- }
-
- // Let P be the first piola stress.
- // This function calculates the dP = dP/dF * dF
- void firstPiolaDifferential(const btSoftBody::TetraScratch& s, const btMatrix3x3& dF, btMatrix3x3& dP)
- {
- btScalar c1 = m_mu * ( 1. - 1. / (s.m_trace + 1.));
- btScalar c2 = (2.*m_mu) * DotProduct(s.m_F, dF) * (1./((1.+s.m_trace)*(1.+s.m_trace)));
- btScalar c3 = (m_lambda * DotProduct(s.m_cofF, dF));
- dP = dF * c1 + s.m_F * c2;
- addScaledCofactorMatrixDifferential(s.m_F, dF, m_lambda*(s.m_J-1.) - 0.75*m_mu, dP);
- dP += s.m_cofF * c3;
- }
-
- // Let Q be the damping stress.
- // This function calculates the dP = dQ/dF * dF
- void firstPiolaDampingDifferential(const btSoftBody::TetraScratch& s, const btMatrix3x3& dF, btMatrix3x3& dP)
- {
- btScalar c1 = (m_mu_damp * ( 1. - 1. / (s.m_trace + 1.)));
- btScalar c2 = ((2.*m_mu_damp) * DotProduct(s.m_F, dF) *(1./((1.+s.m_trace)*(1.+s.m_trace))));
- btScalar c3 = (m_lambda_damp * DotProduct(s.m_cofF, dF));
- dP = dF * c1 + s.m_F * c2;
- addScaledCofactorMatrixDifferential(s.m_F, dF, m_lambda_damp*(s.m_J-1.) - 0.75*m_mu_damp, dP);
- dP += s.m_cofF * c3;
- }
-
- btScalar DotProduct(const btMatrix3x3& A, const btMatrix3x3& B)
- {
- btScalar ans = 0;
- for (int i = 0; i < 3; ++i)
- {
- ans += A[i].dot(B[i]);
- }
- return ans;
- }
-
- // Let C(A) be the cofactor of the matrix A
- // Let H = the derivative of C(A) with respect to A evaluated at F = A
- // This function calculates H*dF
- void addScaledCofactorMatrixDifferential(const btMatrix3x3& F, const btMatrix3x3& dF, btScalar scale, btMatrix3x3& M)
- {
- M[0][0] += scale * (dF[1][1] * F[2][2] + F[1][1] * dF[2][2] - dF[2][1] * F[1][2] - F[2][1] * dF[1][2]);
- M[1][0] += scale * (dF[2][1] * F[0][2] + F[2][1] * dF[0][2] - dF[0][1] * F[2][2] - F[0][1] * dF[2][2]);
- M[2][0] += scale * (dF[0][1] * F[1][2] + F[0][1] * dF[1][2] - dF[1][1] * F[0][2] - F[1][1] * dF[0][2]);
- M[0][1] += scale * (dF[2][0] * F[1][2] + F[2][0] * dF[1][2] - dF[1][0] * F[2][2] - F[1][0] * dF[2][2]);
- M[1][1] += scale * (dF[0][0] * F[2][2] + F[0][0] * dF[2][2] - dF[2][0] * F[0][2] - F[2][0] * dF[0][2]);
- M[2][1] += scale * (dF[1][0] * F[0][2] + F[1][0] * dF[0][2] - dF[0][0] * F[1][2] - F[0][0] * dF[1][2]);
- M[0][2] += scale * (dF[1][0] * F[2][1] + F[1][0] * dF[2][1] - dF[2][0] * F[1][1] - F[2][0] * dF[1][1]);
- M[1][2] += scale * (dF[2][0] * F[0][1] + F[2][0] * dF[0][1] - dF[0][0] * F[2][1] - F[0][0] * dF[2][1]);
- M[2][2] += scale * (dF[0][0] * F[1][1] + F[0][0] * dF[1][1] - dF[1][0] * F[0][1] - F[1][0] * dF[0][1]);
- }
-
- virtual btDeformableLagrangianForceType getForceType()
- {
- return BT_NEOHOOKEAN_FORCE;
- }
-
+ // Let Q be the damping stress.
+ // This function calculates the dP = dQ/dF * dF
+ void firstPiolaDampingDifferential(const btSoftBody::TetraScratch& s, const btMatrix3x3& dF, btMatrix3x3& dP)
+ {
+ btScalar c1 = (m_mu_damp * (1. - 1. / (s.m_trace + 1.)));
+ btScalar c2 = ((2. * m_mu_damp) * DotProduct(s.m_F, dF) * (1. / ((1. + s.m_trace) * (1. + s.m_trace))));
+ btScalar c3 = (m_lambda_damp * DotProduct(s.m_cofF, dF));
+ dP = dF * c1 + s.m_F * c2;
+ addScaledCofactorMatrixDifferential(s.m_F, dF, m_lambda_damp * (s.m_J - 1.) - 0.75 * m_mu_damp, dP);
+ dP += s.m_cofF * c3;
+ }
+
+ btScalar DotProduct(const btMatrix3x3& A, const btMatrix3x3& B)
+ {
+ btScalar ans = 0;
+ for (int i = 0; i < 3; ++i)
+ {
+ ans += A[i].dot(B[i]);
+ }
+ return ans;
+ }
+
+ // Let C(A) be the cofactor of the matrix A
+ // Let H = the derivative of C(A) with respect to A evaluated at F = A
+ // This function calculates H*dF
+ void addScaledCofactorMatrixDifferential(const btMatrix3x3& F, const btMatrix3x3& dF, btScalar scale, btMatrix3x3& M)
+ {
+ M[0][0] += scale * (dF[1][1] * F[2][2] + F[1][1] * dF[2][2] - dF[2][1] * F[1][2] - F[2][1] * dF[1][2]);
+ M[1][0] += scale * (dF[2][1] * F[0][2] + F[2][1] * dF[0][2] - dF[0][1] * F[2][2] - F[0][1] * dF[2][2]);
+ M[2][0] += scale * (dF[0][1] * F[1][2] + F[0][1] * dF[1][2] - dF[1][1] * F[0][2] - F[1][1] * dF[0][2]);
+ M[0][1] += scale * (dF[2][0] * F[1][2] + F[2][0] * dF[1][2] - dF[1][0] * F[2][2] - F[1][0] * dF[2][2]);
+ M[1][1] += scale * (dF[0][0] * F[2][2] + F[0][0] * dF[2][2] - dF[2][0] * F[0][2] - F[2][0] * dF[0][2]);
+ M[2][1] += scale * (dF[1][0] * F[0][2] + F[1][0] * dF[0][2] - dF[0][0] * F[1][2] - F[0][0] * dF[1][2]);
+ M[0][2] += scale * (dF[1][0] * F[2][1] + F[1][0] * dF[2][1] - dF[2][0] * F[1][1] - F[2][0] * dF[1][1]);
+ M[1][2] += scale * (dF[2][0] * F[0][1] + F[2][0] * dF[0][1] - dF[0][0] * F[2][1] - F[0][0] * dF[2][1]);
+ M[2][2] += scale * (dF[0][0] * F[1][1] + F[0][0] * dF[1][1] - dF[1][0] * F[0][1] - F[1][0] * dF[0][1]);
+ }
+
+ virtual btDeformableLagrangianForceType getForceType()
+ {
+ return BT_NEOHOOKEAN_FORCE;
+ }
};
#endif /* BT_NEOHOOKEAN_H */