diff options
author | RĂ©mi Verschelde <rverschelde@gmail.com> | 2018-01-13 14:43:30 +0100 |
---|---|---|
committer | GitHub <noreply@github.com> | 2018-01-13 14:43:30 +0100 |
commit | a3ee252993e8200c856be3fe664937f9461ee268 (patch) | |
tree | af68e434545e20c538f896e28b73f2db7d626edd /thirdparty/bullet/BulletInverseDynamics/details/MultiBodyTreeImpl.cpp | |
parent | c01575b3125ce1828f0cacb3f9f00286136f373c (diff) | |
parent | e12c89e8c9896b2e5cdd70dbd2d2acb449ff4b94 (diff) |
Merge pull request #15664 from akien-mga/thirdparty
Bugfix updates to various thirdparty libraries
Diffstat (limited to 'thirdparty/bullet/BulletInverseDynamics/details/MultiBodyTreeImpl.cpp')
-rw-r--r-- | thirdparty/bullet/BulletInverseDynamics/details/MultiBodyTreeImpl.cpp | 1028 |
1 files changed, 1028 insertions, 0 deletions
diff --git a/thirdparty/bullet/BulletInverseDynamics/details/MultiBodyTreeImpl.cpp b/thirdparty/bullet/BulletInverseDynamics/details/MultiBodyTreeImpl.cpp new file mode 100644 index 0000000000..b35c55df61 --- /dev/null +++ b/thirdparty/bullet/BulletInverseDynamics/details/MultiBodyTreeImpl.cpp @@ -0,0 +1,1028 @@ +#include "MultiBodyTreeImpl.hpp" + +namespace btInverseDynamics { + +MultiBodyTree::MultiBodyImpl::MultiBodyImpl(int num_bodies_, int num_dofs_) + : m_num_bodies(num_bodies_), m_num_dofs(num_dofs_) +#if (defined BT_ID_HAVE_MAT3X) && (defined BT_ID_WITH_JACOBIANS) + ,m_m3x(3,m_num_dofs) +#endif +{ + +#if (defined BT_ID_HAVE_MAT3X) && (defined BT_ID_WITH_JACOBIANS) + resize(m_m3x,m_num_dofs); +#endif + m_body_list.resize(num_bodies_); + m_parent_index.resize(num_bodies_); + m_child_indices.resize(num_bodies_); + m_user_int.resize(num_bodies_); + m_user_ptr.resize(num_bodies_); + + m_world_gravity(0) = 0.0; + m_world_gravity(1) = 0.0; + m_world_gravity(2) = -9.8; +} + +const char *MultiBodyTree::MultiBodyImpl::jointTypeToString(const JointType &type) const { + switch (type) { + case FIXED: + return "fixed"; + case REVOLUTE: + return "revolute"; + case PRISMATIC: + return "prismatic"; + case FLOATING: + return "floating"; + } + return "error: invalid"; +} + +inline void indent(const int &level) { + for (int j = 0; j < level; j++) + id_printf(" "); // indent +} + +void MultiBodyTree::MultiBodyImpl::printTree() { + id_printf("body %.2d[%s]: root\n", 0, jointTypeToString(m_body_list[0].m_joint_type)); + printTree(0, 0); +} + +void MultiBodyTree::MultiBodyImpl::printTreeData() { + for (idArrayIdx i = 0; i < m_body_list.size(); i++) { + RigidBody &body = m_body_list[i]; + id_printf("body: %d\n", static_cast<int>(i)); + id_printf("type: %s\n", jointTypeToString(body.m_joint_type)); + id_printf("q_index= %d\n", body.m_q_index); + id_printf("Jac_JR= [%f;%f;%f]\n", body.m_Jac_JR(0), body.m_Jac_JR(1), body.m_Jac_JR(2)); + id_printf("Jac_JT= [%f;%f;%f]\n", body.m_Jac_JT(0), body.m_Jac_JT(1), body.m_Jac_JT(2)); + + id_printf("mass = %f\n", body.m_mass); + id_printf("mass * com = [%f %f %f]\n", body.m_body_mass_com(0), body.m_body_mass_com(1), + body.m_body_mass_com(2)); + id_printf("I_o= [%f %f %f;\n" + " %f %f %f;\n" + " %f %f %f]\n", + body.m_body_I_body(0, 0), body.m_body_I_body(0, 1), body.m_body_I_body(0, 2), + body.m_body_I_body(1, 0), body.m_body_I_body(1, 1), body.m_body_I_body(1, 2), + body.m_body_I_body(2, 0), body.m_body_I_body(2, 1), body.m_body_I_body(2, 2)); + + id_printf("parent_pos_parent_body_ref= [%f %f %f]\n", body.m_parent_pos_parent_body_ref(0), + body.m_parent_pos_parent_body_ref(1), body.m_parent_pos_parent_body_ref(2)); + } +} +int MultiBodyTree::MultiBodyImpl::bodyNumDoFs(const JointType &type) const { + switch (type) { + case FIXED: + return 0; + case REVOLUTE: + case PRISMATIC: + return 1; + case FLOATING: + return 6; + } + error_message("unknown joint type %d\n", type); + return 0; +} + +void MultiBodyTree::MultiBodyImpl::printTree(int index, int indentation) { + // this is adapted from URDF2Bullet. + // TODO: fix this and print proper graph (similar to git --log --graph) + int num_children = m_child_indices[index].size(); + + indentation += 2; + int count = 0; + + for (int i = 0; i < num_children; i++) { + int child_index = m_child_indices[index][i]; + indent(indentation); + id_printf("body %.2d[%s]: %.2d is child no. %d (qi= %d .. %d) \n", index, + jointTypeToString(m_body_list[index].m_joint_type), child_index, (count++) + 1, + m_body_list[index].m_q_index, + m_body_list[index].m_q_index + bodyNumDoFs(m_body_list[index].m_joint_type)); + // first grandchild + printTree(child_index, indentation); + } +} + +int MultiBodyTree::MultiBodyImpl::setGravityInWorldFrame(const vec3 &gravity) { + m_world_gravity = gravity; + return 0; +} + +int MultiBodyTree::MultiBodyImpl::generateIndexSets() { + m_body_revolute_list.resize(0); + m_body_prismatic_list.resize(0); + int q_index = 0; + for (idArrayIdx i = 0; i < m_body_list.size(); i++) { + RigidBody &body = m_body_list[i]; + body.m_q_index = -1; + switch (body.m_joint_type) { + case REVOLUTE: + m_body_revolute_list.push_back(i); + body.m_q_index = q_index; + q_index++; + break; + case PRISMATIC: + m_body_prismatic_list.push_back(i); + body.m_q_index = q_index; + q_index++; + break; + case FIXED: + // do nothing + break; + case FLOATING: + m_body_floating_list.push_back(i); + body.m_q_index = q_index; + q_index += 6; + break; + default: + error_message("unsupported joint type %d\n", body.m_joint_type); + return -1; + } + } + // sanity check + if (q_index != m_num_dofs) { + error_message("internal error, q_index= %d but num_dofs %d\n", q_index, m_num_dofs); + return -1; + } + + m_child_indices.resize(m_body_list.size()); + + for (idArrayIdx child = 1; child < m_parent_index.size(); child++) { + const int &parent = m_parent_index[child]; + if (parent >= 0 && parent < (static_cast<int>(m_parent_index.size()) - 1)) { + m_child_indices[parent].push_back(child); + } else { + if (-1 == parent) { + // multiple bodies are directly linked to the environment, ie, not a single root + error_message("building index sets parent(%zu)= -1 (multiple roots)\n", child); + } else { + // should never happen + error_message( + "building index sets. parent_index[%zu]= %d, but m_parent_index.size()= %d\n", + child, parent, static_cast<int>(m_parent_index.size())); + } + return -1; + } + } + + return 0; +} + +void MultiBodyTree::MultiBodyImpl::calculateStaticData() { + // relative kinematics that are not a function of q, u, dot_u + for (idArrayIdx i = 0; i < m_body_list.size(); i++) { + RigidBody &body = m_body_list[i]; + switch (body.m_joint_type) { + case REVOLUTE: + body.m_parent_vel_rel(0) = 0; + body.m_parent_vel_rel(1) = 0; + body.m_parent_vel_rel(2) = 0; + body.m_parent_acc_rel(0) = 0; + body.m_parent_acc_rel(1) = 0; + body.m_parent_acc_rel(2) = 0; + body.m_parent_pos_parent_body = body.m_parent_pos_parent_body_ref; + break; + case PRISMATIC: + body.m_body_T_parent = body.m_body_T_parent_ref; + body.m_parent_Jac_JT = body.m_body_T_parent_ref.transpose() * body.m_Jac_JT; + body.m_body_ang_vel_rel(0) = 0; + body.m_body_ang_vel_rel(1) = 0; + body.m_body_ang_vel_rel(2) = 0; + body.m_body_ang_acc_rel(0) = 0; + body.m_body_ang_acc_rel(1) = 0; + body.m_body_ang_acc_rel(2) = 0; + break; + case FIXED: + body.m_parent_pos_parent_body = body.m_parent_pos_parent_body_ref; + body.m_body_T_parent = body.m_body_T_parent_ref; + body.m_body_ang_vel_rel(0) = 0; + body.m_body_ang_vel_rel(1) = 0; + body.m_body_ang_vel_rel(2) = 0; + body.m_parent_vel_rel(0) = 0; + body.m_parent_vel_rel(1) = 0; + body.m_parent_vel_rel(2) = 0; + body.m_body_ang_acc_rel(0) = 0; + body.m_body_ang_acc_rel(1) = 0; + body.m_body_ang_acc_rel(2) = 0; + body.m_parent_acc_rel(0) = 0; + body.m_parent_acc_rel(1) = 0; + body.m_parent_acc_rel(2) = 0; + break; + case FLOATING: + // no static data + break; + } + + // resize & initialize jacobians to zero. +#if (defined BT_ID_HAVE_MAT3X) && (defined BT_ID_WITH_JACOBIANS) + body.m_body_dot_Jac_T_u(0) = 0.0; + body.m_body_dot_Jac_T_u(1) = 0.0; + body.m_body_dot_Jac_T_u(2) = 0.0; + body.m_body_dot_Jac_R_u(0) = 0.0; + body.m_body_dot_Jac_R_u(1) = 0.0; + body.m_body_dot_Jac_R_u(2) = 0.0; + resize(body.m_body_Jac_T,m_num_dofs); + resize(body.m_body_Jac_R,m_num_dofs); + body.m_body_Jac_T.setZero(); + body.m_body_Jac_R.setZero(); +#endif // + } +} + +int MultiBodyTree::MultiBodyImpl::calculateInverseDynamics(const vecx &q, const vecx &u, + const vecx &dot_u, vecx *joint_forces) { + if (q.size() != m_num_dofs || u.size() != m_num_dofs || dot_u.size() != m_num_dofs || + joint_forces->size() != m_num_dofs) { + error_message("wrong vector dimension. system has %d DOFs,\n" + "but dim(q)= %d, dim(u)= %d, dim(dot_u)= %d, dim(joint_forces)= %d\n", + m_num_dofs, static_cast<int>(q.size()), static_cast<int>(u.size()), + static_cast<int>(dot_u.size()), static_cast<int>(joint_forces->size())); + return -1; + } + // 1. relative kinematics + if(-1 == calculateKinematics(q,u,dot_u, POSITION_VELOCITY_ACCELERATION)) { + error_message("error in calculateKinematics\n"); + return -1; + } + // 2. update contributions to equations of motion for every body. + for (idArrayIdx i = 0; i < m_body_list.size(); i++) { + RigidBody &body = m_body_list[i]; + // 3.4 update dynamic terms (rate of change of angular & linear momentum) + body.m_eom_lhs_rotational = + body.m_body_I_body * body.m_body_ang_acc + body.m_body_mass_com.cross(body.m_body_acc) + + body.m_body_ang_vel.cross(body.m_body_I_body * body.m_body_ang_vel) - + body.m_body_moment_user; + body.m_eom_lhs_translational = + body.m_body_ang_acc.cross(body.m_body_mass_com) + body.m_mass * body.m_body_acc + + body.m_body_ang_vel.cross(body.m_body_ang_vel.cross(body.m_body_mass_com)) - + body.m_body_force_user; + } + + // 3. calculate full set of forces at parent joint + // (not directly calculating the joint force along the free direction + // simplifies inclusion of fixed joints. + // An alternative would be to fuse bodies in a pre-processing step, + // but that would make changing masses online harder (eg, payload masses + // added with fixed joints to a gripper) + // Also, this enables adding zero weight bodies as a way to calculate frame poses + // for force elements, etc. + + for (int body_idx = m_body_list.size() - 1; body_idx >= 0; body_idx--) { + // sum of forces and moments acting on this body from its children + vec3 sum_f_children; + vec3 sum_m_children; + setZero(sum_f_children); + setZero(sum_m_children); + for (idArrayIdx child_list_idx = 0; child_list_idx < m_child_indices[body_idx].size(); + child_list_idx++) { + const RigidBody &child = m_body_list[m_child_indices[body_idx][child_list_idx]]; + vec3 child_joint_force_in_this_frame = + child.m_body_T_parent.transpose() * child.m_force_at_joint; + sum_f_children -= child_joint_force_in_this_frame; + sum_m_children -= child.m_body_T_parent.transpose() * child.m_moment_at_joint + + child.m_parent_pos_parent_body.cross(child_joint_force_in_this_frame); + } + RigidBody &body = m_body_list[body_idx]; + + body.m_force_at_joint = body.m_eom_lhs_translational - sum_f_children; + body.m_moment_at_joint = body.m_eom_lhs_rotational - sum_m_children; + } + + // 4. Calculate Joint forces. + // These are the components of force_at_joint/moment_at_joint + // in the free directions given by Jac_JT/Jac_JR + // 4.1 revolute joints + for (idArrayIdx i = 0; i < m_body_revolute_list.size(); i++) { + RigidBody &body = m_body_list[m_body_revolute_list[i]]; + // (*joint_forces)(body.m_q_index) = body.m_Jac_JR.transpose() * body.m_moment_at_joint; + (*joint_forces)(body.m_q_index) = body.m_Jac_JR.dot(body.m_moment_at_joint); + } + // 4.2 for prismatic joints + for (idArrayIdx i = 0; i < m_body_prismatic_list.size(); i++) { + RigidBody &body = m_body_list[m_body_prismatic_list[i]]; + // (*joint_forces)(body.m_q_index) = body.m_Jac_JT.transpose() * body.m_force_at_joint; + (*joint_forces)(body.m_q_index) = body.m_Jac_JT.dot(body.m_force_at_joint); + } + // 4.3 floating bodies (6-DoF joints) + for (idArrayIdx i = 0; i < m_body_floating_list.size(); i++) { + RigidBody &body = m_body_list[m_body_floating_list[i]]; + (*joint_forces)(body.m_q_index + 0) = body.m_moment_at_joint(0); + (*joint_forces)(body.m_q_index + 1) = body.m_moment_at_joint(1); + (*joint_forces)(body.m_q_index + 2) = body.m_moment_at_joint(2); + + (*joint_forces)(body.m_q_index + 3) = body.m_force_at_joint(0); + (*joint_forces)(body.m_q_index + 4) = body.m_force_at_joint(1); + (*joint_forces)(body.m_q_index + 5) = body.m_force_at_joint(2); + } + + return 0; +} + +int MultiBodyTree::MultiBodyImpl::calculateKinematics(const vecx &q, const vecx &u, const vecx& dot_u, + const KinUpdateType type) { + if (q.size() != m_num_dofs || u.size() != m_num_dofs || dot_u.size() != m_num_dofs ) { + error_message("wrong vector dimension. system has %d DOFs,\n" + "but dim(q)= %d, dim(u)= %d, dim(dot_u)= %d\n", + m_num_dofs, static_cast<int>(q.size()), static_cast<int>(u.size()), + static_cast<int>(dot_u.size())); + return -1; + } + if(type != POSITION_ONLY && type != POSITION_VELOCITY && type != POSITION_VELOCITY_ACCELERATION) { + error_message("invalid type %d\n", type); + return -1; + } + + // 1. update relative kinematics + // 1.1 for revolute + for (idArrayIdx i = 0; i < m_body_revolute_list.size(); i++) { + RigidBody &body = m_body_list[m_body_revolute_list[i]]; + mat33 T; + bodyTParentFromAxisAngle(body.m_Jac_JR, q(body.m_q_index), &T); + body.m_body_T_parent = T * body.m_body_T_parent_ref; + if(type >= POSITION_VELOCITY) { + body.m_body_ang_vel_rel = body.m_Jac_JR * u(body.m_q_index); + } + if(type >= POSITION_VELOCITY_ACCELERATION) { + body.m_body_ang_acc_rel = body.m_Jac_JR * dot_u(body.m_q_index); + } + } + // 1.2 for prismatic + for (idArrayIdx i = 0; i < m_body_prismatic_list.size(); i++) { + RigidBody &body = m_body_list[m_body_prismatic_list[i]]; + body.m_parent_pos_parent_body = + body.m_parent_pos_parent_body_ref + body.m_parent_Jac_JT * q(body.m_q_index); + if(type >= POSITION_VELOCITY) { + body.m_parent_vel_rel = + body.m_body_T_parent_ref.transpose() * body.m_Jac_JT * u(body.m_q_index); + } + if(type >= POSITION_VELOCITY_ACCELERATION) { + body.m_parent_acc_rel = body.m_parent_Jac_JT * dot_u(body.m_q_index); + } + } + // 1.3 fixed joints: nothing to do + // 1.4 6dof joints: + for (idArrayIdx i = 0; i < m_body_floating_list.size(); i++) { + RigidBody &body = m_body_list[m_body_floating_list[i]]; + + body.m_body_T_parent = transformZ(q(body.m_q_index + 2)) * + transformY(q(body.m_q_index + 1)) * transformX(q(body.m_q_index)); + body.m_parent_pos_parent_body(0) = q(body.m_q_index + 3); + body.m_parent_pos_parent_body(1) = q(body.m_q_index + 4); + body.m_parent_pos_parent_body(2) = q(body.m_q_index + 5); + body.m_parent_pos_parent_body = body.m_body_T_parent * body.m_parent_pos_parent_body; + + if(type >= POSITION_VELOCITY) { + body.m_body_ang_vel_rel(0) = u(body.m_q_index + 0); + body.m_body_ang_vel_rel(1) = u(body.m_q_index + 1); + body.m_body_ang_vel_rel(2) = u(body.m_q_index + 2); + + body.m_parent_vel_rel(0) = u(body.m_q_index + 3); + body.m_parent_vel_rel(1) = u(body.m_q_index + 4); + body.m_parent_vel_rel(2) = u(body.m_q_index + 5); + + body.m_parent_vel_rel = body.m_body_T_parent.transpose() * body.m_parent_vel_rel; + } + if(type >= POSITION_VELOCITY_ACCELERATION) { + body.m_body_ang_acc_rel(0) = dot_u(body.m_q_index + 0); + body.m_body_ang_acc_rel(1) = dot_u(body.m_q_index + 1); + body.m_body_ang_acc_rel(2) = dot_u(body.m_q_index + 2); + + body.m_parent_acc_rel(0) = dot_u(body.m_q_index + 3); + body.m_parent_acc_rel(1) = dot_u(body.m_q_index + 4); + body.m_parent_acc_rel(2) = dot_u(body.m_q_index + 5); + + body.m_parent_acc_rel = body.m_body_T_parent.transpose() * body.m_parent_acc_rel; + } + } + + // 2. absolute kinematic quantities (vector valued) + // NOTE: this should be optimized by specializing for different body types + // (e.g., relative rotation is always zero for prismatic joints, etc.) + + // calculations for root body + { + RigidBody &body = m_body_list[0]; + // 3.1 update absolute positions and orientations: + // will be required if we add force elements (eg springs between bodies, + // or contacts) + // not required right now, added here for debugging purposes + body.m_body_pos = body.m_body_T_parent * body.m_parent_pos_parent_body; + body.m_body_T_world = body.m_body_T_parent; + + if(type >= POSITION_VELOCITY) { + // 3.2 update absolute velocities + body.m_body_ang_vel = body.m_body_ang_vel_rel; + body.m_body_vel = body.m_parent_vel_rel; + } + if(type >= POSITION_VELOCITY_ACCELERATION) { + // 3.3 update absolute accelerations + // NOTE: assumption: dot(J_JR) = 0; true here, but not for general joints + body.m_body_ang_acc = body.m_body_ang_acc_rel; + body.m_body_acc = body.m_body_T_parent * body.m_parent_acc_rel; + // add gravitational acceleration to root body + // this is an efficient way to add gravitational terms, + // but it does mean that the kinematics are no longer + // correct at the acceleration level + // NOTE: To get correct acceleration kinematics, just set world_gravity to zero + body.m_body_acc = body.m_body_acc - body.m_body_T_parent * m_world_gravity; + } + } + + for (idArrayIdx i = 1; i < m_body_list.size(); i++) { + RigidBody &body = m_body_list[i]; + RigidBody &parent = m_body_list[m_parent_index[i]]; + // 2.1 update absolute positions and orientations: + // will be required if we add force elements (eg springs between bodies, + // or contacts) not required right now added here for debugging purposes + body.m_body_pos = + body.m_body_T_parent * (parent.m_body_pos + body.m_parent_pos_parent_body); + body.m_body_T_world = body.m_body_T_parent * parent.m_body_T_world; + + if(type >= POSITION_VELOCITY) { + // 2.2 update absolute velocities + body.m_body_ang_vel = + body.m_body_T_parent * parent.m_body_ang_vel + body.m_body_ang_vel_rel; + + body.m_body_vel = + body.m_body_T_parent * + (parent.m_body_vel + parent.m_body_ang_vel.cross(body.m_parent_pos_parent_body) + + body.m_parent_vel_rel); + } + if(type >= POSITION_VELOCITY_ACCELERATION) { + // 2.3 update absolute accelerations + // NOTE: assumption: dot(J_JR) = 0; true here, but not for general joints + body.m_body_ang_acc = + body.m_body_T_parent * parent.m_body_ang_acc - + body.m_body_ang_vel_rel.cross(body.m_body_T_parent * parent.m_body_ang_vel) + + body.m_body_ang_acc_rel; + body.m_body_acc = + body.m_body_T_parent * + (parent.m_body_acc + parent.m_body_ang_acc.cross(body.m_parent_pos_parent_body) + + parent.m_body_ang_vel.cross(parent.m_body_ang_vel.cross(body.m_parent_pos_parent_body)) + + 2.0 * parent.m_body_ang_vel.cross(body.m_parent_vel_rel) + body.m_parent_acc_rel); + } + } + + return 0; +} + +#if (defined BT_ID_HAVE_MAT3X) && (defined BT_ID_WITH_JACOBIANS) + +void MultiBodyTree::MultiBodyImpl::addRelativeJacobianComponent(RigidBody&body) { + const int& idx=body.m_q_index; + switch(body.m_joint_type) { + case FIXED: + break; + case REVOLUTE: + setMat3xElem(0,idx, body.m_Jac_JR(0), &body.m_body_Jac_R); + setMat3xElem(1,idx, body.m_Jac_JR(1), &body.m_body_Jac_R); + setMat3xElem(2,idx, body.m_Jac_JR(2), &body.m_body_Jac_R); + break; + case PRISMATIC: + setMat3xElem(0,idx, body.m_body_T_parent_ref(0,0)*body.m_Jac_JT(0) + +body.m_body_T_parent_ref(1,0)*body.m_Jac_JT(1) + +body.m_body_T_parent_ref(2,0)*body.m_Jac_JT(2), + &body.m_body_Jac_T); + setMat3xElem(1,idx,body.m_body_T_parent_ref(0,1)*body.m_Jac_JT(0) + +body.m_body_T_parent_ref(1,1)*body.m_Jac_JT(1) + +body.m_body_T_parent_ref(2,1)*body.m_Jac_JT(2), + &body.m_body_Jac_T); + setMat3xElem(2,idx, body.m_body_T_parent_ref(0,2)*body.m_Jac_JT(0) + +body.m_body_T_parent_ref(1,2)*body.m_Jac_JT(1) + +body.m_body_T_parent_ref(2,2)*body.m_Jac_JT(2), + &body.m_body_Jac_T); + break; + case FLOATING: + setMat3xElem(0,idx+0, 1.0, &body.m_body_Jac_R); + setMat3xElem(1,idx+1, 1.0, &body.m_body_Jac_R); + setMat3xElem(2,idx+2, 1.0, &body.m_body_Jac_R); + // body_Jac_T = body_T_parent.transpose(); + setMat3xElem(0,idx+3, body.m_body_T_parent(0,0), &body.m_body_Jac_T); + setMat3xElem(0,idx+4, body.m_body_T_parent(1,0), &body.m_body_Jac_T); + setMat3xElem(0,idx+5, body.m_body_T_parent(2,0), &body.m_body_Jac_T); + + setMat3xElem(1,idx+3, body.m_body_T_parent(0,1), &body.m_body_Jac_T); + setMat3xElem(1,idx+4, body.m_body_T_parent(1,1), &body.m_body_Jac_T); + setMat3xElem(1,idx+5, body.m_body_T_parent(2,1), &body.m_body_Jac_T); + + setMat3xElem(2,idx+3, body.m_body_T_parent(0,2), &body.m_body_Jac_T); + setMat3xElem(2,idx+4, body.m_body_T_parent(1,2), &body.m_body_Jac_T); + setMat3xElem(2,idx+5, body.m_body_T_parent(2,2), &body.m_body_Jac_T); + + break; + } +} + +int MultiBodyTree::MultiBodyImpl::calculateJacobians(const vecx& q, const vecx& u, const KinUpdateType type) { + if (q.size() != m_num_dofs || u.size() != m_num_dofs) { + error_message("wrong vector dimension. system has %d DOFs,\n" + "but dim(q)= %d, dim(u)= %d\n", + m_num_dofs, static_cast<int>(q.size()), static_cast<int>(u.size())); + return -1; + } + if(type != POSITION_ONLY && type != POSITION_VELOCITY) { + error_message("invalid type %d\n", type); + return -1; + } + + addRelativeJacobianComponent(m_body_list[0]); + for (idArrayIdx i = 1; i < m_body_list.size(); i++) { + RigidBody &body = m_body_list[i]; + RigidBody &parent = m_body_list[m_parent_index[i]]; + + mul(body.m_body_T_parent, parent.m_body_Jac_R,& body.m_body_Jac_R); + body.m_body_Jac_T = parent.m_body_Jac_T; + mul(tildeOperator(body.m_parent_pos_parent_body),parent.m_body_Jac_R,&m_m3x); + sub(body.m_body_Jac_T,m_m3x, &body.m_body_Jac_T); + + addRelativeJacobianComponent(body); + mul(body.m_body_T_parent, body.m_body_Jac_T,&body.m_body_Jac_T); + + if(type >= POSITION_VELOCITY) { + body.m_body_dot_Jac_R_u = body.m_body_T_parent * parent.m_body_dot_Jac_R_u - + body.m_body_ang_vel_rel.cross(body.m_body_T_parent * parent.m_body_ang_vel); + body.m_body_dot_Jac_T_u = body.m_body_T_parent * + (parent.m_body_dot_Jac_T_u + parent.m_body_dot_Jac_R_u.cross(body.m_parent_pos_parent_body) + + parent.m_body_ang_vel.cross(parent.m_body_ang_vel.cross(body.m_parent_pos_parent_body)) + + 2.0 * parent.m_body_ang_vel.cross(body.m_parent_vel_rel)); + } + } + return 0; +} +#endif + +static inline void setSixDoFJacobians(const int dof, vec3 &Jac_JR, vec3 &Jac_JT) { + switch (dof) { + // rotational part + case 0: + Jac_JR(0) = 1; + Jac_JR(1) = 0; + Jac_JR(2) = 0; + setZero(Jac_JT); + break; + case 1: + Jac_JR(0) = 0; + Jac_JR(1) = 1; + Jac_JR(2) = 0; + setZero(Jac_JT); + break; + case 2: + Jac_JR(0) = 0; + Jac_JR(1) = 0; + Jac_JR(2) = 1; + setZero(Jac_JT); + break; + // translational part + case 3: + setZero(Jac_JR); + Jac_JT(0) = 1; + Jac_JT(1) = 0; + Jac_JT(2) = 0; + break; + case 4: + setZero(Jac_JR); + Jac_JT(0) = 0; + Jac_JT(1) = 1; + Jac_JT(2) = 0; + break; + case 5: + setZero(Jac_JR); + Jac_JT(0) = 0; + Jac_JT(1) = 0; + Jac_JT(2) = 1; + break; + } +} + +static inline int jointNumDoFs(const JointType &type) { + switch (type) { + case FIXED: + return 0; + case REVOLUTE: + case PRISMATIC: + return 1; + case FLOATING: + return 6; + } + // this should never happen + error_message("invalid joint type\n"); + // TODO add configurable abort/crash function + abort(); + return 0; +} + +int MultiBodyTree::MultiBodyImpl::calculateMassMatrix(const vecx &q, const bool update_kinematics, + const bool initialize_matrix, + const bool set_lower_triangular_matrix, + matxx *mass_matrix) { +// This calculates the joint space mass matrix for the multibody system. +// The algorithm is essentially an implementation of "method 3" +// in "Efficient Dynamic Simulation of Robotic Mechanisms" (Walker and Orin, 1982) +// (Later named "Composite Rigid Body Algorithm" by Featherstone). +// +// This implementation, however, handles branched systems and uses a formulation centered +// on the origin of the body-fixed frame to avoid re-computing various quantities at the com. + + if (q.size() != m_num_dofs || mass_matrix->rows() != m_num_dofs || + mass_matrix->cols() != m_num_dofs) { + error_message("Dimension error. System has %d DOFs,\n" + "but dim(q)= %d, dim(mass_matrix)= %d x %d\n", + m_num_dofs, static_cast<int>(q.size()), static_cast<int>(mass_matrix->rows()), + static_cast<int>(mass_matrix->cols())); + return -1; + } + + // TODO add optimized zeroing function? + if (initialize_matrix) { + for (int i = 0; i < m_num_dofs; i++) { + for (int j = 0; j < m_num_dofs; j++) { + setMatxxElem(i, j, 0.0, mass_matrix); + } + } + } + + if (update_kinematics) { + // 1. update relative kinematics + // 1.1 for revolute joints + for (idArrayIdx i = 0; i < m_body_revolute_list.size(); i++) { + RigidBody &body = m_body_list[m_body_revolute_list[i]]; + // from reference orientation (q=0) of body-fixed frame to current orientation + mat33 body_T_body_ref; + bodyTParentFromAxisAngle(body.m_Jac_JR, q(body.m_q_index), &body_T_body_ref); + body.m_body_T_parent = body_T_body_ref * body.m_body_T_parent_ref; + } + // 1.2 for prismatic joints + for (idArrayIdx i = 0; i < m_body_prismatic_list.size(); i++) { + RigidBody &body = m_body_list[m_body_prismatic_list[i]]; + // body.m_body_T_parent= fixed + body.m_parent_pos_parent_body = + body.m_parent_pos_parent_body_ref + body.m_parent_Jac_JT * q(body.m_q_index); + } + // 1.3 fixed joints: nothing to do + // 1.4 6dof joints: + for (idArrayIdx i = 0; i < m_body_floating_list.size(); i++) { + RigidBody &body = m_body_list[m_body_floating_list[i]]; + + body.m_body_T_parent = transformZ(q(body.m_q_index + 2)) * + transformY(q(body.m_q_index + 1)) * + transformX(q(body.m_q_index)); + body.m_parent_pos_parent_body(0) = q(body.m_q_index + 3); + body.m_parent_pos_parent_body(1) = q(body.m_q_index + 4); + body.m_parent_pos_parent_body(2) = q(body.m_q_index + 5); + + body.m_parent_pos_parent_body = body.m_body_T_parent * body.m_parent_pos_parent_body; + } + } + for (int i = m_body_list.size() - 1; i >= 0; i--) { + RigidBody &body = m_body_list[i]; + // calculate mass, center of mass and inertia of "composite rigid body", + // ie, sub-tree starting at current body + body.m_subtree_mass = body.m_mass; + body.m_body_subtree_mass_com = body.m_body_mass_com; + body.m_body_subtree_I_body = body.m_body_I_body; + + for (idArrayIdx c = 0; c < m_child_indices[i].size(); c++) { + RigidBody &child = m_body_list[m_child_indices[i][c]]; + mat33 body_T_child = child.m_body_T_parent.transpose(); + + body.m_subtree_mass += child.m_subtree_mass; + body.m_body_subtree_mass_com += body_T_child * child.m_body_subtree_mass_com + + child.m_parent_pos_parent_body * child.m_subtree_mass; + body.m_body_subtree_I_body += + body_T_child * child.m_body_subtree_I_body * child.m_body_T_parent; + + if (child.m_subtree_mass > 0) { + // Shift the reference point for the child subtree inertia using the + // Huygens-Steiner ("parallel axis") theorem. + // (First shift from child origin to child com, then from there to this body's + // origin) + vec3 r_com = body_T_child * child.m_body_subtree_mass_com / child.m_subtree_mass; + mat33 tilde_r_child_com = tildeOperator(r_com); + mat33 tilde_r_body_com = tildeOperator(child.m_parent_pos_parent_body + r_com); + body.m_body_subtree_I_body += + child.m_subtree_mass * + (tilde_r_child_com * tilde_r_child_com - tilde_r_body_com * tilde_r_body_com); + } + } + } + + for (int i = m_body_list.size() - 1; i >= 0; i--) { + const RigidBody &body = m_body_list[i]; + + // determine DoF-range for body + const int q_index_min = body.m_q_index; + const int q_index_max = q_index_min + jointNumDoFs(body.m_joint_type) - 1; + // loop over the DoFs used by this body + // local joint jacobians (ok as is for 1-DoF joints) + vec3 Jac_JR = body.m_Jac_JR; + vec3 Jac_JT = body.m_Jac_JT; + for (int col = q_index_max; col >= q_index_min; col--) { + // set jacobians for 6-DoF joints + if (FLOATING == body.m_joint_type) { + setSixDoFJacobians(col - q_index_min, Jac_JR, Jac_JT); + } + + vec3 body_eom_rot = + body.m_body_subtree_I_body * Jac_JR + body.m_body_subtree_mass_com.cross(Jac_JT); + vec3 body_eom_trans = + body.m_subtree_mass * Jac_JT - body.m_body_subtree_mass_com.cross(Jac_JR); + setMatxxElem(col, col, Jac_JR.dot(body_eom_rot) + Jac_JT.dot(body_eom_trans), mass_matrix); + + // rest of the mass matrix column upwards + { + // 1. for multi-dof joints, rest of the dofs of this body + for (int row = col - 1; row >= q_index_min; row--) { + if (FLOATING != body.m_joint_type) { + error_message("??\n"); + return -1; + } + setSixDoFJacobians(row - q_index_min, Jac_JR, Jac_JT); + const double Mrc = Jac_JR.dot(body_eom_rot) + Jac_JT.dot(body_eom_trans); + setMatxxElem(col, row, Mrc, mass_matrix); + } + // 2. ancestor dofs + int child_idx = i; + int parent_idx = m_parent_index[i]; + while (parent_idx >= 0) { + const RigidBody &child_body = m_body_list[child_idx]; + const RigidBody &parent_body = m_body_list[parent_idx]; + + const mat33 parent_T_child = child_body.m_body_T_parent.transpose(); + body_eom_rot = parent_T_child * body_eom_rot; + body_eom_trans = parent_T_child * body_eom_trans; + body_eom_rot += child_body.m_parent_pos_parent_body.cross(body_eom_trans); + + const int parent_body_q_index_min = parent_body.m_q_index; + const int parent_body_q_index_max = + parent_body_q_index_min + jointNumDoFs(parent_body.m_joint_type) - 1; + vec3 Jac_JR = parent_body.m_Jac_JR; + vec3 Jac_JT = parent_body.m_Jac_JT; + for (int row = parent_body_q_index_max; row >= parent_body_q_index_min; row--) { + // set jacobians for 6-DoF joints + if (FLOATING == parent_body.m_joint_type) { + setSixDoFJacobians(row - parent_body_q_index_min, Jac_JR, Jac_JT); + } + const double Mrc = Jac_JR.dot(body_eom_rot) + Jac_JT.dot(body_eom_trans); + setMatxxElem(col, row, Mrc, mass_matrix); + } + + child_idx = parent_idx; + parent_idx = m_parent_index[child_idx]; + } + } + } + } + + if (set_lower_triangular_matrix) { + for (int col = 0; col < m_num_dofs; col++) { + for (int row = 0; row < col; row++) { + setMatxxElem(row, col, (*mass_matrix)(col, row), mass_matrix); + } + } + } + return 0; +} + +// utility macro +#define CHECK_IF_BODY_INDEX_IS_VALID(index) \ + do { \ + if (index < 0 || index >= m_num_bodies) { \ + error_message("invalid index %d (num_bodies= %d)\n", index, m_num_bodies); \ + return -1; \ + } \ + } while (0) + +int MultiBodyTree::MultiBodyImpl::getParentIndex(const int body_index, int *p) { + CHECK_IF_BODY_INDEX_IS_VALID(body_index); + *p = m_parent_index[body_index]; + return 0; +} + +int MultiBodyTree::MultiBodyImpl::getUserInt(const int body_index, int *user_int) const { + CHECK_IF_BODY_INDEX_IS_VALID(body_index); + *user_int = m_user_int[body_index]; + return 0; +} +int MultiBodyTree::MultiBodyImpl::getUserPtr(const int body_index, void **user_ptr) const { + CHECK_IF_BODY_INDEX_IS_VALID(body_index); + *user_ptr = m_user_ptr[body_index]; + return 0; +} + +int MultiBodyTree::MultiBodyImpl::setUserInt(const int body_index, const int user_int) { + CHECK_IF_BODY_INDEX_IS_VALID(body_index); + m_user_int[body_index] = user_int; + return 0; +} + +int MultiBodyTree::MultiBodyImpl::setUserPtr(const int body_index, void *const user_ptr) { + CHECK_IF_BODY_INDEX_IS_VALID(body_index); + m_user_ptr[body_index] = user_ptr; + return 0; +} + +int MultiBodyTree::MultiBodyImpl::getBodyOrigin(int body_index, vec3 *world_origin) const { + CHECK_IF_BODY_INDEX_IS_VALID(body_index); + const RigidBody &body = m_body_list[body_index]; + *world_origin = body.m_body_T_world.transpose() * body.m_body_pos; + return 0; +} + +int MultiBodyTree::MultiBodyImpl::getBodyCoM(int body_index, vec3 *world_com) const { + CHECK_IF_BODY_INDEX_IS_VALID(body_index); + const RigidBody &body = m_body_list[body_index]; + if (body.m_mass > 0) { + *world_com = body.m_body_T_world.transpose() * + (body.m_body_pos + body.m_body_mass_com / body.m_mass); + } else { + *world_com = body.m_body_T_world.transpose() * (body.m_body_pos); + } + return 0; +} + +int MultiBodyTree::MultiBodyImpl::getBodyTransform(int body_index, mat33 *world_T_body) const { + CHECK_IF_BODY_INDEX_IS_VALID(body_index); + const RigidBody &body = m_body_list[body_index]; + *world_T_body = body.m_body_T_world.transpose(); + return 0; +} +int MultiBodyTree::MultiBodyImpl::getBodyAngularVelocity(int body_index, vec3 *world_omega) const { + CHECK_IF_BODY_INDEX_IS_VALID(body_index); + const RigidBody &body = m_body_list[body_index]; + *world_omega = body.m_body_T_world.transpose() * body.m_body_ang_vel; + return 0; +} +int MultiBodyTree::MultiBodyImpl::getBodyLinearVelocity(int body_index, + vec3 *world_velocity) const { + CHECK_IF_BODY_INDEX_IS_VALID(body_index); + const RigidBody &body = m_body_list[body_index]; + *world_velocity = body.m_body_T_world.transpose() * body.m_body_vel; + return 0; +} + +int MultiBodyTree::MultiBodyImpl::getBodyLinearVelocityCoM(int body_index, + vec3 *world_velocity) const { + CHECK_IF_BODY_INDEX_IS_VALID(body_index); + const RigidBody &body = m_body_list[body_index]; + vec3 com; + if (body.m_mass > 0) { + com = body.m_body_mass_com / body.m_mass; + } else { + com(0) = 0; + com(1) = 0; + com(2) = 0; + } + + *world_velocity = + body.m_body_T_world.transpose() * (body.m_body_vel + body.m_body_ang_vel.cross(com)); + return 0; +} + +int MultiBodyTree::MultiBodyImpl::getBodyAngularAcceleration(int body_index, + vec3 *world_dot_omega) const { + CHECK_IF_BODY_INDEX_IS_VALID(body_index); + const RigidBody &body = m_body_list[body_index]; + *world_dot_omega = body.m_body_T_world.transpose() * body.m_body_ang_acc; + return 0; +} +int MultiBodyTree::MultiBodyImpl::getBodyLinearAcceleration(int body_index, + vec3 *world_acceleration) const { + CHECK_IF_BODY_INDEX_IS_VALID(body_index); + const RigidBody &body = m_body_list[body_index]; + *world_acceleration = body.m_body_T_world.transpose() * body.m_body_acc; + return 0; +} + +int MultiBodyTree::MultiBodyImpl::getJointType(const int body_index, JointType *joint_type) const { + CHECK_IF_BODY_INDEX_IS_VALID(body_index); + *joint_type = m_body_list[body_index].m_joint_type; + return 0; +} + +int MultiBodyTree::MultiBodyImpl::getJointTypeStr(const int body_index, + const char **joint_type) const { + CHECK_IF_BODY_INDEX_IS_VALID(body_index); + *joint_type = jointTypeToString(m_body_list[body_index].m_joint_type); + return 0; +} + +int MultiBodyTree::MultiBodyImpl::getParentRParentBodyRef(const int body_index, vec3* r) const{ + CHECK_IF_BODY_INDEX_IS_VALID(body_index); + *r=m_body_list[body_index].m_parent_pos_parent_body_ref; + return 0; +} + +int MultiBodyTree::MultiBodyImpl::getBodyTParentRef(const int body_index, mat33* T) const{ + CHECK_IF_BODY_INDEX_IS_VALID(body_index); + *T=m_body_list[body_index].m_body_T_parent_ref; + return 0; +} + +int MultiBodyTree::MultiBodyImpl::getBodyAxisOfMotion(const int body_index, vec3* axis) const{ + CHECK_IF_BODY_INDEX_IS_VALID(body_index); + if(m_body_list[body_index].m_joint_type == REVOLUTE) { + *axis = m_body_list[body_index].m_Jac_JR; + return 0; + } + if(m_body_list[body_index].m_joint_type == PRISMATIC) { + *axis = m_body_list[body_index].m_Jac_JT; + return 0; + } + setZero(*axis); + return 0; +} + +int MultiBodyTree::MultiBodyImpl::getDoFOffset(const int body_index, int *q_index) const { + CHECK_IF_BODY_INDEX_IS_VALID(body_index); + *q_index = m_body_list[body_index].m_q_index; + return 0; +} + +int MultiBodyTree::MultiBodyImpl::setBodyMass(const int body_index, const idScalar mass) { + CHECK_IF_BODY_INDEX_IS_VALID(body_index); + m_body_list[body_index].m_mass = mass; + return 0; +} + +int MultiBodyTree::MultiBodyImpl::setBodyFirstMassMoment(const int body_index, + const vec3& first_mass_moment) { + CHECK_IF_BODY_INDEX_IS_VALID(body_index); + m_body_list[body_index].m_body_mass_com = first_mass_moment; + return 0; +} +int MultiBodyTree::MultiBodyImpl::setBodySecondMassMoment(const int body_index, + const mat33& second_mass_moment) { + CHECK_IF_BODY_INDEX_IS_VALID(body_index); + m_body_list[body_index].m_body_I_body = second_mass_moment; + return 0; +} +int MultiBodyTree::MultiBodyImpl::getBodyMass(const int body_index, idScalar *mass) const { + CHECK_IF_BODY_INDEX_IS_VALID(body_index); + *mass = m_body_list[body_index].m_mass; + return 0; +} +int MultiBodyTree::MultiBodyImpl::getBodyFirstMassMoment(const int body_index, + vec3 *first_mass_moment) const { + CHECK_IF_BODY_INDEX_IS_VALID(body_index); + *first_mass_moment = m_body_list[body_index].m_body_mass_com; + return 0; +} +int MultiBodyTree::MultiBodyImpl::getBodySecondMassMoment(const int body_index, + mat33 *second_mass_moment) const { + CHECK_IF_BODY_INDEX_IS_VALID(body_index); + *second_mass_moment = m_body_list[body_index].m_body_I_body; + return 0; +} + +void MultiBodyTree::MultiBodyImpl::clearAllUserForcesAndMoments() { + for (int index = 0; index < m_num_bodies; index++) { + RigidBody &body = m_body_list[index]; + setZero(body.m_body_force_user); + setZero(body.m_body_moment_user); + } +} + +int MultiBodyTree::MultiBodyImpl::addUserForce(const int body_index, const vec3 &body_force) { + CHECK_IF_BODY_INDEX_IS_VALID(body_index); + m_body_list[body_index].m_body_force_user += body_force; + return 0; +} + +int MultiBodyTree::MultiBodyImpl::addUserMoment(const int body_index, const vec3 &body_moment) { + CHECK_IF_BODY_INDEX_IS_VALID(body_index); + m_body_list[body_index].m_body_moment_user += body_moment; + return 0; +} + +#if (defined BT_ID_HAVE_MAT3X) && (defined BT_ID_WITH_JACOBIANS) +int MultiBodyTree::MultiBodyImpl::getBodyDotJacobianTransU(const int body_index, vec3* world_dot_jac_trans_u) const { + CHECK_IF_BODY_INDEX_IS_VALID(body_index); + const RigidBody &body = m_body_list[body_index]; + *world_dot_jac_trans_u = body.m_body_T_world.transpose() * body.m_body_dot_Jac_T_u; + return 0; +} + +int MultiBodyTree::MultiBodyImpl::getBodyDotJacobianRotU(const int body_index, vec3* world_dot_jac_rot_u) const{ + CHECK_IF_BODY_INDEX_IS_VALID(body_index); + const RigidBody &body = m_body_list[body_index]; + *world_dot_jac_rot_u = body.m_body_T_world.transpose() * body.m_body_dot_Jac_R_u; + return 0; +} + +int MultiBodyTree::MultiBodyImpl::getBodyJacobianTrans(const int body_index, mat3x* world_jac_trans) const{ + CHECK_IF_BODY_INDEX_IS_VALID(body_index); + const RigidBody &body = m_body_list[body_index]; + mul(body.m_body_T_world.transpose(), body.m_body_Jac_T, world_jac_trans); + return 0; +} + +int MultiBodyTree::MultiBodyImpl::getBodyJacobianRot(const int body_index, mat3x* world_jac_rot) const{ + CHECK_IF_BODY_INDEX_IS_VALID(body_index); + const RigidBody &body = m_body_list[body_index]; + mul(body.m_body_T_world.transpose(), body.m_body_Jac_R,world_jac_rot); + return 0; +} + +#endif +} |