summaryrefslogtreecommitdiff
path: root/thirdparty/bullet/BulletDynamics/MLCPSolvers/btMLCPSolver.cpp
diff options
context:
space:
mode:
authorRĂ©mi Verschelde <rverschelde@gmail.com>2018-01-13 14:43:30 +0100
committerGitHub <noreply@github.com>2018-01-13 14:43:30 +0100
commita3ee252993e8200c856be3fe664937f9461ee268 (patch)
treeaf68e434545e20c538f896e28b73f2db7d626edd /thirdparty/bullet/BulletDynamics/MLCPSolvers/btMLCPSolver.cpp
parentc01575b3125ce1828f0cacb3f9f00286136f373c (diff)
parente12c89e8c9896b2e5cdd70dbd2d2acb449ff4b94 (diff)
Merge pull request #15664 from akien-mga/thirdparty
Bugfix updates to various thirdparty libraries
Diffstat (limited to 'thirdparty/bullet/BulletDynamics/MLCPSolvers/btMLCPSolver.cpp')
-rw-r--r--thirdparty/bullet/BulletDynamics/MLCPSolvers/btMLCPSolver.cpp639
1 files changed, 639 insertions, 0 deletions
diff --git a/thirdparty/bullet/BulletDynamics/MLCPSolvers/btMLCPSolver.cpp b/thirdparty/bullet/BulletDynamics/MLCPSolvers/btMLCPSolver.cpp
new file mode 100644
index 0000000000..8f54c52626
--- /dev/null
+++ b/thirdparty/bullet/BulletDynamics/MLCPSolvers/btMLCPSolver.cpp
@@ -0,0 +1,639 @@
+/*
+Bullet Continuous Collision Detection and Physics Library
+Copyright (c) 2003-2013 Erwin Coumans http://bulletphysics.org
+
+This software is provided 'as-is', without any express or implied warranty.
+In no event will the authors be held liable for any damages arising from the use of this software.
+Permission is granted to anyone to use this software for any purpose,
+including commercial applications, and to alter it and redistribute it freely,
+subject to the following restrictions:
+
+1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
+2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
+3. This notice may not be removed or altered from any source distribution.
+*/
+///original version written by Erwin Coumans, October 2013
+
+#include "btMLCPSolver.h"
+#include "LinearMath/btMatrixX.h"
+#include "LinearMath/btQuickprof.h"
+#include "btSolveProjectedGaussSeidel.h"
+
+
+btMLCPSolver::btMLCPSolver( btMLCPSolverInterface* solver)
+:m_solver(solver),
+m_fallback(0)
+{
+}
+
+btMLCPSolver::~btMLCPSolver()
+{
+}
+
+bool gUseMatrixMultiply = false;
+bool interleaveContactAndFriction = false;
+
+btScalar btMLCPSolver::solveGroupCacheFriendlySetup(btCollisionObject** bodies, int numBodiesUnUsed, btPersistentManifold** manifoldPtr, int numManifolds,btTypedConstraint** constraints,int numConstraints,const btContactSolverInfo& infoGlobal,btIDebugDraw* debugDrawer)
+{
+ btSequentialImpulseConstraintSolver::solveGroupCacheFriendlySetup( bodies, numBodiesUnUsed, manifoldPtr, numManifolds,constraints,numConstraints,infoGlobal,debugDrawer);
+
+ {
+ BT_PROFILE("gather constraint data");
+
+ int numFrictionPerContact = m_tmpSolverContactConstraintPool.size()==m_tmpSolverContactFrictionConstraintPool.size()? 1 : 2;
+
+
+ // int numBodies = m_tmpSolverBodyPool.size();
+ m_allConstraintPtrArray.resize(0);
+ m_limitDependencies.resize(m_tmpSolverNonContactConstraintPool.size()+m_tmpSolverContactConstraintPool.size()+m_tmpSolverContactFrictionConstraintPool.size());
+ btAssert(m_limitDependencies.size() == m_tmpSolverNonContactConstraintPool.size()+m_tmpSolverContactConstraintPool.size()+m_tmpSolverContactFrictionConstraintPool.size());
+ // printf("m_limitDependencies.size() = %d\n",m_limitDependencies.size());
+
+ int dindex = 0;
+ for (int i=0;i<m_tmpSolverNonContactConstraintPool.size();i++)
+ {
+ m_allConstraintPtrArray.push_back(&m_tmpSolverNonContactConstraintPool[i]);
+ m_limitDependencies[dindex++] = -1;
+ }
+
+ ///The btSequentialImpulseConstraintSolver moves all friction constraints at the very end, we can also interleave them instead
+
+ int firstContactConstraintOffset=dindex;
+
+ if (interleaveContactAndFriction)
+ {
+ for (int i=0;i<m_tmpSolverContactConstraintPool.size();i++)
+ {
+ m_allConstraintPtrArray.push_back(&m_tmpSolverContactConstraintPool[i]);
+ m_limitDependencies[dindex++] = -1;
+ m_allConstraintPtrArray.push_back(&m_tmpSolverContactFrictionConstraintPool[i*numFrictionPerContact]);
+ int findex = (m_tmpSolverContactFrictionConstraintPool[i*numFrictionPerContact].m_frictionIndex*(1+numFrictionPerContact));
+ m_limitDependencies[dindex++] = findex +firstContactConstraintOffset;
+ if (numFrictionPerContact==2)
+ {
+ m_allConstraintPtrArray.push_back(&m_tmpSolverContactFrictionConstraintPool[i*numFrictionPerContact+1]);
+ m_limitDependencies[dindex++] = findex+firstContactConstraintOffset;
+ }
+ }
+ } else
+ {
+ for (int i=0;i<m_tmpSolverContactConstraintPool.size();i++)
+ {
+ m_allConstraintPtrArray.push_back(&m_tmpSolverContactConstraintPool[i]);
+ m_limitDependencies[dindex++] = -1;
+ }
+ for (int i=0;i<m_tmpSolverContactFrictionConstraintPool.size();i++)
+ {
+ m_allConstraintPtrArray.push_back(&m_tmpSolverContactFrictionConstraintPool[i]);
+ m_limitDependencies[dindex++] = m_tmpSolverContactFrictionConstraintPool[i].m_frictionIndex+firstContactConstraintOffset;
+ }
+
+ }
+
+
+ if (!m_allConstraintPtrArray.size())
+ {
+ m_A.resize(0,0);
+ m_b.resize(0);
+ m_x.resize(0);
+ m_lo.resize(0);
+ m_hi.resize(0);
+ return 0.f;
+ }
+ }
+
+
+ if (gUseMatrixMultiply)
+ {
+ BT_PROFILE("createMLCP");
+ createMLCP(infoGlobal);
+ }
+ else
+ {
+ BT_PROFILE("createMLCPFast");
+ createMLCPFast(infoGlobal);
+ }
+
+ return 0.f;
+}
+
+bool btMLCPSolver::solveMLCP(const btContactSolverInfo& infoGlobal)
+{
+ bool result = true;
+
+ if (m_A.rows()==0)
+ return true;
+
+ //if using split impulse, we solve 2 separate (M)LCPs
+ if (infoGlobal.m_splitImpulse)
+ {
+ btMatrixXu Acopy = m_A;
+ btAlignedObjectArray<int> limitDependenciesCopy = m_limitDependencies;
+// printf("solve first LCP\n");
+ result = m_solver->solveMLCP(m_A, m_b, m_x, m_lo,m_hi, m_limitDependencies,infoGlobal.m_numIterations );
+ if (result)
+ result = m_solver->solveMLCP(Acopy, m_bSplit, m_xSplit, m_lo,m_hi, limitDependenciesCopy,infoGlobal.m_numIterations );
+
+ } else
+ {
+ result = m_solver->solveMLCP(m_A, m_b, m_x, m_lo,m_hi, m_limitDependencies,infoGlobal.m_numIterations );
+ }
+ return result;
+}
+
+struct btJointNode
+{
+ int jointIndex; // pointer to enclosing dxJoint object
+ int otherBodyIndex; // *other* body this joint is connected to
+ int nextJointNodeIndex;//-1 for null
+ int constraintRowIndex;
+};
+
+
+
+void btMLCPSolver::createMLCPFast(const btContactSolverInfo& infoGlobal)
+{
+ int numContactRows = interleaveContactAndFriction ? 3 : 1;
+
+ int numConstraintRows = m_allConstraintPtrArray.size();
+ int n = numConstraintRows;
+ {
+ BT_PROFILE("init b (rhs)");
+ m_b.resize(numConstraintRows);
+ m_bSplit.resize(numConstraintRows);
+ m_b.setZero();
+ m_bSplit.setZero();
+ for (int i=0;i<numConstraintRows ;i++)
+ {
+ btScalar jacDiag = m_allConstraintPtrArray[i]->m_jacDiagABInv;
+ if (!btFuzzyZero(jacDiag))
+ {
+ btScalar rhs = m_allConstraintPtrArray[i]->m_rhs;
+ btScalar rhsPenetration = m_allConstraintPtrArray[i]->m_rhsPenetration;
+ m_b[i]=rhs/jacDiag;
+ m_bSplit[i] = rhsPenetration/jacDiag;
+ }
+
+ }
+ }
+
+// btScalar* w = 0;
+// int nub = 0;
+
+ m_lo.resize(numConstraintRows);
+ m_hi.resize(numConstraintRows);
+
+ {
+ BT_PROFILE("init lo/ho");
+
+ for (int i=0;i<numConstraintRows;i++)
+ {
+ if (0)//m_limitDependencies[i]>=0)
+ {
+ m_lo[i] = -BT_INFINITY;
+ m_hi[i] = BT_INFINITY;
+ } else
+ {
+ m_lo[i] = m_allConstraintPtrArray[i]->m_lowerLimit;
+ m_hi[i] = m_allConstraintPtrArray[i]->m_upperLimit;
+ }
+ }
+ }
+
+ //
+ int m=m_allConstraintPtrArray.size();
+
+ int numBodies = m_tmpSolverBodyPool.size();
+ btAlignedObjectArray<int> bodyJointNodeArray;
+ {
+ BT_PROFILE("bodyJointNodeArray.resize");
+ bodyJointNodeArray.resize(numBodies,-1);
+ }
+ btAlignedObjectArray<btJointNode> jointNodeArray;
+ {
+ BT_PROFILE("jointNodeArray.reserve");
+ jointNodeArray.reserve(2*m_allConstraintPtrArray.size());
+ }
+
+ btMatrixXu& J3 = m_scratchJ3;
+ {
+ BT_PROFILE("J3.resize");
+ J3.resize(2*m,8);
+ }
+ btMatrixXu& JinvM3 = m_scratchJInvM3;
+ {
+ BT_PROFILE("JinvM3.resize/setZero");
+
+ JinvM3.resize(2*m,8);
+ JinvM3.setZero();
+ J3.setZero();
+ }
+ int cur=0;
+ int rowOffset = 0;
+ btAlignedObjectArray<int>& ofs = m_scratchOfs;
+ {
+ BT_PROFILE("ofs resize");
+ ofs.resize(0);
+ ofs.resizeNoInitialize(m_allConstraintPtrArray.size());
+ }
+ {
+ BT_PROFILE("Compute J and JinvM");
+ int c=0;
+
+ int numRows = 0;
+
+ for (int i=0;i<m_allConstraintPtrArray.size();i+=numRows,c++)
+ {
+ ofs[c] = rowOffset;
+ int sbA = m_allConstraintPtrArray[i]->m_solverBodyIdA;
+ int sbB = m_allConstraintPtrArray[i]->m_solverBodyIdB;
+ btRigidBody* orgBodyA = m_tmpSolverBodyPool[sbA].m_originalBody;
+ btRigidBody* orgBodyB = m_tmpSolverBodyPool[sbB].m_originalBody;
+
+ numRows = i<m_tmpSolverNonContactConstraintPool.size() ? m_tmpConstraintSizesPool[c].m_numConstraintRows : numContactRows ;
+ if (orgBodyA)
+ {
+ {
+ int slotA=-1;
+ //find free jointNode slot for sbA
+ slotA =jointNodeArray.size();
+ jointNodeArray.expand();//NonInitializing();
+ int prevSlot = bodyJointNodeArray[sbA];
+ bodyJointNodeArray[sbA] = slotA;
+ jointNodeArray[slotA].nextJointNodeIndex = prevSlot;
+ jointNodeArray[slotA].jointIndex = c;
+ jointNodeArray[slotA].constraintRowIndex = i;
+ jointNodeArray[slotA].otherBodyIndex = orgBodyB ? sbB : -1;
+ }
+ for (int row=0;row<numRows;row++,cur++)
+ {
+ btVector3 normalInvMass = m_allConstraintPtrArray[i+row]->m_contactNormal1 * orgBodyA->getInvMass();
+ btVector3 relPosCrossNormalInvInertia = m_allConstraintPtrArray[i+row]->m_relpos1CrossNormal * orgBodyA->getInvInertiaTensorWorld();
+
+ for (int r=0;r<3;r++)
+ {
+ J3.setElem(cur,r,m_allConstraintPtrArray[i+row]->m_contactNormal1[r]);
+ J3.setElem(cur,r+4,m_allConstraintPtrArray[i+row]->m_relpos1CrossNormal[r]);
+ JinvM3.setElem(cur,r,normalInvMass[r]);
+ JinvM3.setElem(cur,r+4,relPosCrossNormalInvInertia[r]);
+ }
+ J3.setElem(cur,3,0);
+ JinvM3.setElem(cur,3,0);
+ J3.setElem(cur,7,0);
+ JinvM3.setElem(cur,7,0);
+ }
+ } else
+ {
+ cur += numRows;
+ }
+ if (orgBodyB)
+ {
+
+ {
+ int slotB=-1;
+ //find free jointNode slot for sbA
+ slotB =jointNodeArray.size();
+ jointNodeArray.expand();//NonInitializing();
+ int prevSlot = bodyJointNodeArray[sbB];
+ bodyJointNodeArray[sbB] = slotB;
+ jointNodeArray[slotB].nextJointNodeIndex = prevSlot;
+ jointNodeArray[slotB].jointIndex = c;
+ jointNodeArray[slotB].otherBodyIndex = orgBodyA ? sbA : -1;
+ jointNodeArray[slotB].constraintRowIndex = i;
+ }
+
+ for (int row=0;row<numRows;row++,cur++)
+ {
+ btVector3 normalInvMassB = m_allConstraintPtrArray[i+row]->m_contactNormal2*orgBodyB->getInvMass();
+ btVector3 relPosInvInertiaB = m_allConstraintPtrArray[i+row]->m_relpos2CrossNormal * orgBodyB->getInvInertiaTensorWorld();
+
+ for (int r=0;r<3;r++)
+ {
+ J3.setElem(cur,r,m_allConstraintPtrArray[i+row]->m_contactNormal2[r]);
+ J3.setElem(cur,r+4,m_allConstraintPtrArray[i+row]->m_relpos2CrossNormal[r]);
+ JinvM3.setElem(cur,r,normalInvMassB[r]);
+ JinvM3.setElem(cur,r+4,relPosInvInertiaB[r]);
+ }
+ J3.setElem(cur,3,0);
+ JinvM3.setElem(cur,3,0);
+ J3.setElem(cur,7,0);
+ JinvM3.setElem(cur,7,0);
+ }
+ }
+ else
+ {
+ cur += numRows;
+ }
+ rowOffset+=numRows;
+
+ }
+
+ }
+
+
+ //compute JinvM = J*invM.
+ const btScalar* JinvM = JinvM3.getBufferPointer();
+
+ const btScalar* Jptr = J3.getBufferPointer();
+ {
+ BT_PROFILE("m_A.resize");
+ m_A.resize(n,n);
+ }
+
+ {
+ BT_PROFILE("m_A.setZero");
+ m_A.setZero();
+ }
+ int c=0;
+ {
+ int numRows = 0;
+ BT_PROFILE("Compute A");
+ for (int i=0;i<m_allConstraintPtrArray.size();i+= numRows,c++)
+ {
+ int row__ = ofs[c];
+ int sbA = m_allConstraintPtrArray[i]->m_solverBodyIdA;
+ int sbB = m_allConstraintPtrArray[i]->m_solverBodyIdB;
+ // btRigidBody* orgBodyA = m_tmpSolverBodyPool[sbA].m_originalBody;
+ // btRigidBody* orgBodyB = m_tmpSolverBodyPool[sbB].m_originalBody;
+
+ numRows = i<m_tmpSolverNonContactConstraintPool.size() ? m_tmpConstraintSizesPool[c].m_numConstraintRows : numContactRows ;
+
+ const btScalar *JinvMrow = JinvM + 2*8*(size_t)row__;
+
+ {
+ int startJointNodeA = bodyJointNodeArray[sbA];
+ while (startJointNodeA>=0)
+ {
+ int j0 = jointNodeArray[startJointNodeA].jointIndex;
+ int cr0 = jointNodeArray[startJointNodeA].constraintRowIndex;
+ if (j0<c)
+ {
+
+ int numRowsOther = cr0 < m_tmpSolverNonContactConstraintPool.size() ? m_tmpConstraintSizesPool[j0].m_numConstraintRows : numContactRows;
+ size_t ofsother = (m_allConstraintPtrArray[cr0]->m_solverBodyIdB == sbA) ? 8*numRowsOther : 0;
+ //printf("%d joint i %d and j0: %d: ",count++,i,j0);
+ m_A.multiplyAdd2_p8r ( JinvMrow,
+ Jptr + 2*8*(size_t)ofs[j0] + ofsother, numRows, numRowsOther, row__,ofs[j0]);
+ }
+ startJointNodeA = jointNodeArray[startJointNodeA].nextJointNodeIndex;
+ }
+ }
+
+ {
+ int startJointNodeB = bodyJointNodeArray[sbB];
+ while (startJointNodeB>=0)
+ {
+ int j1 = jointNodeArray[startJointNodeB].jointIndex;
+ int cj1 = jointNodeArray[startJointNodeB].constraintRowIndex;
+
+ if (j1<c)
+ {
+ int numRowsOther = cj1 < m_tmpSolverNonContactConstraintPool.size() ? m_tmpConstraintSizesPool[j1].m_numConstraintRows : numContactRows;
+ size_t ofsother = (m_allConstraintPtrArray[cj1]->m_solverBodyIdB == sbB) ? 8*numRowsOther : 0;
+ m_A.multiplyAdd2_p8r ( JinvMrow + 8*(size_t)numRows,
+ Jptr + 2*8*(size_t)ofs[j1] + ofsother, numRows, numRowsOther, row__,ofs[j1]);
+ }
+ startJointNodeB = jointNodeArray[startJointNodeB].nextJointNodeIndex;
+ }
+ }
+ }
+
+ {
+ BT_PROFILE("compute diagonal");
+ // compute diagonal blocks of m_A
+
+ int row__ = 0;
+ int numJointRows = m_allConstraintPtrArray.size();
+
+ int jj=0;
+ for (;row__<numJointRows;)
+ {
+
+ //int sbA = m_allConstraintPtrArray[row__]->m_solverBodyIdA;
+ int sbB = m_allConstraintPtrArray[row__]->m_solverBodyIdB;
+ // btRigidBody* orgBodyA = m_tmpSolverBodyPool[sbA].m_originalBody;
+ btRigidBody* orgBodyB = m_tmpSolverBodyPool[sbB].m_originalBody;
+
+
+ const unsigned int infom = row__ < m_tmpSolverNonContactConstraintPool.size() ? m_tmpConstraintSizesPool[jj].m_numConstraintRows : numContactRows;
+
+ const btScalar *JinvMrow = JinvM + 2*8*(size_t)row__;
+ const btScalar *Jrow = Jptr + 2*8*(size_t)row__;
+ m_A.multiply2_p8r (JinvMrow, Jrow, infom, infom, row__,row__);
+ if (orgBodyB)
+ {
+ m_A.multiplyAdd2_p8r (JinvMrow + 8*(size_t)infom, Jrow + 8*(size_t)infom, infom, infom, row__,row__);
+ }
+ row__ += infom;
+ jj++;
+ }
+ }
+ }
+
+ if (1)
+ {
+ // add cfm to the diagonal of m_A
+ for ( int i=0; i<m_A.rows(); ++i)
+ {
+ m_A.setElem(i,i,m_A(i,i)+ infoGlobal.m_globalCfm/ infoGlobal.m_timeStep);
+ }
+ }
+
+ ///fill the upper triangle of the matrix, to make it symmetric
+ {
+ BT_PROFILE("fill the upper triangle ");
+ m_A.copyLowerToUpperTriangle();
+ }
+
+ {
+ BT_PROFILE("resize/init x");
+ m_x.resize(numConstraintRows);
+ m_xSplit.resize(numConstraintRows);
+
+ if (infoGlobal.m_solverMode&SOLVER_USE_WARMSTARTING)
+ {
+ for (int i=0;i<m_allConstraintPtrArray.size();i++)
+ {
+ const btSolverConstraint& c = *m_allConstraintPtrArray[i];
+ m_x[i]=c.m_appliedImpulse;
+ m_xSplit[i] = c.m_appliedPushImpulse;
+ }
+ } else
+ {
+ m_x.setZero();
+ m_xSplit.setZero();
+ }
+ }
+
+}
+
+void btMLCPSolver::createMLCP(const btContactSolverInfo& infoGlobal)
+{
+ int numBodies = this->m_tmpSolverBodyPool.size();
+ int numConstraintRows = m_allConstraintPtrArray.size();
+
+ m_b.resize(numConstraintRows);
+ if (infoGlobal.m_splitImpulse)
+ m_bSplit.resize(numConstraintRows);
+
+ m_bSplit.setZero();
+ m_b.setZero();
+
+ for (int i=0;i<numConstraintRows ;i++)
+ {
+ if (m_allConstraintPtrArray[i]->m_jacDiagABInv)
+ {
+ m_b[i]=m_allConstraintPtrArray[i]->m_rhs/m_allConstraintPtrArray[i]->m_jacDiagABInv;
+ if (infoGlobal.m_splitImpulse)
+ m_bSplit[i] = m_allConstraintPtrArray[i]->m_rhsPenetration/m_allConstraintPtrArray[i]->m_jacDiagABInv;
+ }
+ }
+
+ btMatrixXu& Minv = m_scratchMInv;
+ Minv.resize(6*numBodies,6*numBodies);
+ Minv.setZero();
+ for (int i=0;i<numBodies;i++)
+ {
+ const btSolverBody& rb = m_tmpSolverBodyPool[i];
+ const btVector3& invMass = rb.m_invMass;
+ setElem(Minv,i*6+0,i*6+0,invMass[0]);
+ setElem(Minv,i*6+1,i*6+1,invMass[1]);
+ setElem(Minv,i*6+2,i*6+2,invMass[2]);
+ btRigidBody* orgBody = m_tmpSolverBodyPool[i].m_originalBody;
+
+ for (int r=0;r<3;r++)
+ for (int c=0;c<3;c++)
+ setElem(Minv,i*6+3+r,i*6+3+c,orgBody? orgBody->getInvInertiaTensorWorld()[r][c] : 0);
+ }
+
+ btMatrixXu& J = m_scratchJ;
+ J.resize(numConstraintRows,6*numBodies);
+ J.setZero();
+
+ m_lo.resize(numConstraintRows);
+ m_hi.resize(numConstraintRows);
+
+ for (int i=0;i<numConstraintRows;i++)
+ {
+
+ m_lo[i] = m_allConstraintPtrArray[i]->m_lowerLimit;
+ m_hi[i] = m_allConstraintPtrArray[i]->m_upperLimit;
+
+ int bodyIndex0 = m_allConstraintPtrArray[i]->m_solverBodyIdA;
+ int bodyIndex1 = m_allConstraintPtrArray[i]->m_solverBodyIdB;
+ if (m_tmpSolverBodyPool[bodyIndex0].m_originalBody)
+ {
+ setElem(J,i,6*bodyIndex0+0,m_allConstraintPtrArray[i]->m_contactNormal1[0]);
+ setElem(J,i,6*bodyIndex0+1,m_allConstraintPtrArray[i]->m_contactNormal1[1]);
+ setElem(J,i,6*bodyIndex0+2,m_allConstraintPtrArray[i]->m_contactNormal1[2]);
+ setElem(J,i,6*bodyIndex0+3,m_allConstraintPtrArray[i]->m_relpos1CrossNormal[0]);
+ setElem(J,i,6*bodyIndex0+4,m_allConstraintPtrArray[i]->m_relpos1CrossNormal[1]);
+ setElem(J,i,6*bodyIndex0+5,m_allConstraintPtrArray[i]->m_relpos1CrossNormal[2]);
+ }
+ if (m_tmpSolverBodyPool[bodyIndex1].m_originalBody)
+ {
+ setElem(J,i,6*bodyIndex1+0,m_allConstraintPtrArray[i]->m_contactNormal2[0]);
+ setElem(J,i,6*bodyIndex1+1,m_allConstraintPtrArray[i]->m_contactNormal2[1]);
+ setElem(J,i,6*bodyIndex1+2,m_allConstraintPtrArray[i]->m_contactNormal2[2]);
+ setElem(J,i,6*bodyIndex1+3,m_allConstraintPtrArray[i]->m_relpos2CrossNormal[0]);
+ setElem(J,i,6*bodyIndex1+4,m_allConstraintPtrArray[i]->m_relpos2CrossNormal[1]);
+ setElem(J,i,6*bodyIndex1+5,m_allConstraintPtrArray[i]->m_relpos2CrossNormal[2]);
+ }
+ }
+
+ btMatrixXu& J_transpose = m_scratchJTranspose;
+ J_transpose= J.transpose();
+
+ btMatrixXu& tmp = m_scratchTmp;
+
+ {
+ {
+ BT_PROFILE("J*Minv");
+ tmp = J*Minv;
+
+ }
+ {
+ BT_PROFILE("J*tmp");
+ m_A = tmp*J_transpose;
+ }
+ }
+
+ if (1)
+ {
+ // add cfm to the diagonal of m_A
+ for ( int i=0; i<m_A.rows(); ++i)
+ {
+ m_A.setElem(i,i,m_A(i,i)+ infoGlobal.m_globalCfm / infoGlobal.m_timeStep);
+ }
+ }
+
+ m_x.resize(numConstraintRows);
+ if (infoGlobal.m_splitImpulse)
+ m_xSplit.resize(numConstraintRows);
+// m_x.setZero();
+
+ for (int i=0;i<m_allConstraintPtrArray.size();i++)
+ {
+ const btSolverConstraint& c = *m_allConstraintPtrArray[i];
+ m_x[i]=c.m_appliedImpulse;
+ if (infoGlobal.m_splitImpulse)
+ m_xSplit[i] = c.m_appliedPushImpulse;
+ }
+
+}
+
+
+btScalar btMLCPSolver::solveGroupCacheFriendlyIterations(btCollisionObject** bodies ,int numBodies,btPersistentManifold** manifoldPtr, int numManifolds,btTypedConstraint** constraints,int numConstraints,const btContactSolverInfo& infoGlobal,btIDebugDraw* debugDrawer)
+{
+ bool result = true;
+ {
+ BT_PROFILE("solveMLCP");
+// printf("m_A(%d,%d)\n", m_A.rows(),m_A.cols());
+ result = solveMLCP(infoGlobal);
+ }
+
+ //check if solution is valid, and otherwise fallback to btSequentialImpulseConstraintSolver::solveGroupCacheFriendlyIterations
+ if (result)
+ {
+ BT_PROFILE("process MLCP results");
+ for (int i=0;i<m_allConstraintPtrArray.size();i++)
+ {
+ {
+ btSolverConstraint& c = *m_allConstraintPtrArray[i];
+ int sbA = c.m_solverBodyIdA;
+ int sbB = c.m_solverBodyIdB;
+ //btRigidBody* orgBodyA = m_tmpSolverBodyPool[sbA].m_originalBody;
+ // btRigidBody* orgBodyB = m_tmpSolverBodyPool[sbB].m_originalBody;
+
+ btSolverBody& solverBodyA = m_tmpSolverBodyPool[sbA];
+ btSolverBody& solverBodyB = m_tmpSolverBodyPool[sbB];
+
+ {
+ btScalar deltaImpulse = m_x[i]-c.m_appliedImpulse;
+ c.m_appliedImpulse = m_x[i];
+ solverBodyA.internalApplyImpulse(c.m_contactNormal1*solverBodyA.internalGetInvMass(),c.m_angularComponentA,deltaImpulse);
+ solverBodyB.internalApplyImpulse(c.m_contactNormal2*solverBodyB.internalGetInvMass(),c.m_angularComponentB,deltaImpulse);
+ }
+
+ if (infoGlobal.m_splitImpulse)
+ {
+ btScalar deltaImpulse = m_xSplit[i] - c.m_appliedPushImpulse;
+ solverBodyA.internalApplyPushImpulse(c.m_contactNormal1*solverBodyA.internalGetInvMass(),c.m_angularComponentA,deltaImpulse);
+ solverBodyB.internalApplyPushImpulse(c.m_contactNormal2*solverBodyB.internalGetInvMass(),c.m_angularComponentB,deltaImpulse);
+ c.m_appliedPushImpulse = m_xSplit[i];
+ }
+
+ }
+ }
+ }
+ else
+ {
+ // printf("m_fallback = %d\n",m_fallback);
+ m_fallback++;
+ btSequentialImpulseConstraintSolver::solveGroupCacheFriendlyIterations(bodies ,numBodies,manifoldPtr, numManifolds,constraints,numConstraints,infoGlobal,debugDrawer);
+ }
+
+ return 0.f;
+}
+
+