summaryrefslogtreecommitdiff
path: root/thirdparty/bullet/BulletDynamics/ConstraintSolver
diff options
context:
space:
mode:
authorRĂ©mi Verschelde <rverschelde@gmail.com>2018-01-13 14:43:30 +0100
committerGitHub <noreply@github.com>2018-01-13 14:43:30 +0100
commita3ee252993e8200c856be3fe664937f9461ee268 (patch)
treeaf68e434545e20c538f896e28b73f2db7d626edd /thirdparty/bullet/BulletDynamics/ConstraintSolver
parentc01575b3125ce1828f0cacb3f9f00286136f373c (diff)
parente12c89e8c9896b2e5cdd70dbd2d2acb449ff4b94 (diff)
Merge pull request #15664 from akien-mga/thirdparty
Bugfix updates to various thirdparty libraries
Diffstat (limited to 'thirdparty/bullet/BulletDynamics/ConstraintSolver')
-rw-r--r--thirdparty/bullet/BulletDynamics/ConstraintSolver/btConeTwistConstraint.cpp1143
-rw-r--r--thirdparty/bullet/BulletDynamics/ConstraintSolver/btConeTwistConstraint.h435
-rw-r--r--thirdparty/bullet/BulletDynamics/ConstraintSolver/btConstraintSolver.h65
-rw-r--r--thirdparty/bullet/BulletDynamics/ConstraintSolver/btContactConstraint.cpp177
-rw-r--r--thirdparty/bullet/BulletDynamics/ConstraintSolver/btContactConstraint.h73
-rw-r--r--thirdparty/bullet/BulletDynamics/ConstraintSolver/btContactSolverInfo.h167
-rw-r--r--thirdparty/bullet/BulletDynamics/ConstraintSolver/btFixedConstraint.cpp37
-rw-r--r--thirdparty/bullet/BulletDynamics/ConstraintSolver/btFixedConstraint.h33
-rw-r--r--thirdparty/bullet/BulletDynamics/ConstraintSolver/btGearConstraint.cpp54
-rw-r--r--thirdparty/bullet/BulletDynamics/ConstraintSolver/btGearConstraint.h160
-rw-r--r--thirdparty/bullet/BulletDynamics/ConstraintSolver/btGeneric6DofConstraint.cpp1063
-rw-r--r--thirdparty/bullet/BulletDynamics/ConstraintSolver/btGeneric6DofConstraint.h647
-rw-r--r--thirdparty/bullet/BulletDynamics/ConstraintSolver/btGeneric6DofSpring2Constraint.cpp1172
-rw-r--r--thirdparty/bullet/BulletDynamics/ConstraintSolver/btGeneric6DofSpring2Constraint.h679
-rw-r--r--thirdparty/bullet/BulletDynamics/ConstraintSolver/btGeneric6DofSpringConstraint.cpp185
-rw-r--r--thirdparty/bullet/BulletDynamics/ConstraintSolver/btGeneric6DofSpringConstraint.h141
-rw-r--r--thirdparty/bullet/BulletDynamics/ConstraintSolver/btHinge2Constraint.cpp66
-rw-r--r--thirdparty/bullet/BulletDynamics/ConstraintSolver/btHinge2Constraint.h60
-rw-r--r--thirdparty/bullet/BulletDynamics/ConstraintSolver/btHingeConstraint.cpp1120
-rw-r--r--thirdparty/bullet/BulletDynamics/ConstraintSolver/btHingeConstraint.h503
-rw-r--r--thirdparty/bullet/BulletDynamics/ConstraintSolver/btJacobianEntry.h155
-rw-r--r--thirdparty/bullet/BulletDynamics/ConstraintSolver/btNNCGConstraintSolver.cpp374
-rw-r--r--thirdparty/bullet/BulletDynamics/ConstraintSolver/btNNCGConstraintSolver.h64
-rw-r--r--thirdparty/bullet/BulletDynamics/ConstraintSolver/btPoint2PointConstraint.cpp229
-rw-r--r--thirdparty/bullet/BulletDynamics/ConstraintSolver/btPoint2PointConstraint.h180
-rw-r--r--thirdparty/bullet/BulletDynamics/ConstraintSolver/btSequentialImpulseConstraintSolver.cpp1973
-rw-r--r--thirdparty/bullet/BulletDynamics/ConstraintSolver/btSequentialImpulseConstraintSolver.h196
-rw-r--r--thirdparty/bullet/BulletDynamics/ConstraintSolver/btSliderConstraint.cpp855
-rw-r--r--thirdparty/bullet/BulletDynamics/ConstraintSolver/btSliderConstraint.h368
-rw-r--r--thirdparty/bullet/BulletDynamics/ConstraintSolver/btSolve2LinearConstraint.cpp255
-rw-r--r--thirdparty/bullet/BulletDynamics/ConstraintSolver/btSolve2LinearConstraint.h107
-rw-r--r--thirdparty/bullet/BulletDynamics/ConstraintSolver/btSolverBody.h306
-rw-r--r--thirdparty/bullet/BulletDynamics/ConstraintSolver/btSolverConstraint.h80
-rw-r--r--thirdparty/bullet/BulletDynamics/ConstraintSolver/btTypedConstraint.cpp222
-rw-r--r--thirdparty/bullet/BulletDynamics/ConstraintSolver/btTypedConstraint.h541
-rw-r--r--thirdparty/bullet/BulletDynamics/ConstraintSolver/btUniversalConstraint.cpp87
-rw-r--r--thirdparty/bullet/BulletDynamics/ConstraintSolver/btUniversalConstraint.h65
37 files changed, 14037 insertions, 0 deletions
diff --git a/thirdparty/bullet/BulletDynamics/ConstraintSolver/btConeTwistConstraint.cpp b/thirdparty/bullet/BulletDynamics/ConstraintSolver/btConeTwistConstraint.cpp
new file mode 100644
index 0000000000..0572256f74
--- /dev/null
+++ b/thirdparty/bullet/BulletDynamics/ConstraintSolver/btConeTwistConstraint.cpp
@@ -0,0 +1,1143 @@
+/*
+Bullet Continuous Collision Detection and Physics Library
+btConeTwistConstraint is Copyright (c) 2007 Starbreeze Studios
+
+This software is provided 'as-is', without any express or implied warranty.
+In no event will the authors be held liable for any damages arising from the use of this software.
+Permission is granted to anyone to use this software for any purpose,
+including commercial applications, and to alter it and redistribute it freely,
+subject to the following restrictions:
+
+1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
+2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
+3. This notice may not be removed or altered from any source distribution.
+
+Written by: Marcus Hennix
+*/
+
+
+#include "btConeTwistConstraint.h"
+#include "BulletDynamics/Dynamics/btRigidBody.h"
+#include "LinearMath/btTransformUtil.h"
+#include "LinearMath/btMinMax.h"
+#include <new>
+
+
+
+//#define CONETWIST_USE_OBSOLETE_SOLVER true
+#define CONETWIST_USE_OBSOLETE_SOLVER false
+#define CONETWIST_DEF_FIX_THRESH btScalar(.05f)
+
+
+SIMD_FORCE_INLINE btScalar computeAngularImpulseDenominator(const btVector3& axis, const btMatrix3x3& invInertiaWorld)
+{
+ btVector3 vec = axis * invInertiaWorld;
+ return axis.dot(vec);
+}
+
+
+
+
+btConeTwistConstraint::btConeTwistConstraint(btRigidBody& rbA,btRigidBody& rbB,
+ const btTransform& rbAFrame,const btTransform& rbBFrame)
+ :btTypedConstraint(CONETWIST_CONSTRAINT_TYPE, rbA,rbB),m_rbAFrame(rbAFrame),m_rbBFrame(rbBFrame),
+ m_angularOnly(false),
+ m_useSolveConstraintObsolete(CONETWIST_USE_OBSOLETE_SOLVER)
+{
+ init();
+}
+
+btConeTwistConstraint::btConeTwistConstraint(btRigidBody& rbA,const btTransform& rbAFrame)
+ :btTypedConstraint(CONETWIST_CONSTRAINT_TYPE,rbA),m_rbAFrame(rbAFrame),
+ m_angularOnly(false),
+ m_useSolveConstraintObsolete(CONETWIST_USE_OBSOLETE_SOLVER)
+{
+ m_rbBFrame = m_rbAFrame;
+ m_rbBFrame.setOrigin(btVector3(0., 0., 0.));
+ init();
+}
+
+
+void btConeTwistConstraint::init()
+{
+ m_angularOnly = false;
+ m_solveTwistLimit = false;
+ m_solveSwingLimit = false;
+ m_bMotorEnabled = false;
+ m_maxMotorImpulse = btScalar(-1);
+
+ setLimit(btScalar(BT_LARGE_FLOAT), btScalar(BT_LARGE_FLOAT), btScalar(BT_LARGE_FLOAT));
+ m_damping = btScalar(0.01);
+ m_fixThresh = CONETWIST_DEF_FIX_THRESH;
+ m_flags = 0;
+ m_linCFM = btScalar(0.f);
+ m_linERP = btScalar(0.7f);
+ m_angCFM = btScalar(0.f);
+}
+
+
+void btConeTwistConstraint::getInfo1 (btConstraintInfo1* info)
+{
+ if (m_useSolveConstraintObsolete)
+ {
+ info->m_numConstraintRows = 0;
+ info->nub = 0;
+ }
+ else
+ {
+ info->m_numConstraintRows = 3;
+ info->nub = 3;
+ calcAngleInfo2(m_rbA.getCenterOfMassTransform(),m_rbB.getCenterOfMassTransform(),m_rbA.getInvInertiaTensorWorld(),m_rbB.getInvInertiaTensorWorld());
+ if(m_solveSwingLimit)
+ {
+ info->m_numConstraintRows++;
+ info->nub--;
+ if((m_swingSpan1 < m_fixThresh) && (m_swingSpan2 < m_fixThresh))
+ {
+ info->m_numConstraintRows++;
+ info->nub--;
+ }
+ }
+ if(m_solveTwistLimit)
+ {
+ info->m_numConstraintRows++;
+ info->nub--;
+ }
+ }
+}
+
+void btConeTwistConstraint::getInfo1NonVirtual (btConstraintInfo1* info)
+{
+ //always reserve 6 rows: object transform is not available on SPU
+ info->m_numConstraintRows = 6;
+ info->nub = 0;
+
+}
+
+
+void btConeTwistConstraint::getInfo2 (btConstraintInfo2* info)
+{
+ getInfo2NonVirtual(info,m_rbA.getCenterOfMassTransform(),m_rbB.getCenterOfMassTransform(),m_rbA.getInvInertiaTensorWorld(),m_rbB.getInvInertiaTensorWorld());
+}
+
+void btConeTwistConstraint::getInfo2NonVirtual (btConstraintInfo2* info,const btTransform& transA,const btTransform& transB,const btMatrix3x3& invInertiaWorldA,const btMatrix3x3& invInertiaWorldB)
+{
+ calcAngleInfo2(transA,transB,invInertiaWorldA,invInertiaWorldB);
+
+ btAssert(!m_useSolveConstraintObsolete);
+ // set jacobian
+ info->m_J1linearAxis[0] = 1;
+ info->m_J1linearAxis[info->rowskip+1] = 1;
+ info->m_J1linearAxis[2*info->rowskip+2] = 1;
+ btVector3 a1 = transA.getBasis() * m_rbAFrame.getOrigin();
+ {
+ btVector3* angular0 = (btVector3*)(info->m_J1angularAxis);
+ btVector3* angular1 = (btVector3*)(info->m_J1angularAxis+info->rowskip);
+ btVector3* angular2 = (btVector3*)(info->m_J1angularAxis+2*info->rowskip);
+ btVector3 a1neg = -a1;
+ a1neg.getSkewSymmetricMatrix(angular0,angular1,angular2);
+ }
+ info->m_J2linearAxis[0] = -1;
+ info->m_J2linearAxis[info->rowskip+1] = -1;
+ info->m_J2linearAxis[2*info->rowskip+2] = -1;
+ btVector3 a2 = transB.getBasis() * m_rbBFrame.getOrigin();
+ {
+ btVector3* angular0 = (btVector3*)(info->m_J2angularAxis);
+ btVector3* angular1 = (btVector3*)(info->m_J2angularAxis+info->rowskip);
+ btVector3* angular2 = (btVector3*)(info->m_J2angularAxis+2*info->rowskip);
+ a2.getSkewSymmetricMatrix(angular0,angular1,angular2);
+ }
+ // set right hand side
+ btScalar linERP = (m_flags & BT_CONETWIST_FLAGS_LIN_ERP) ? m_linERP : info->erp;
+ btScalar k = info->fps * linERP;
+ int j;
+ for (j=0; j<3; j++)
+ {
+ info->m_constraintError[j*info->rowskip] = k * (a2[j] + transB.getOrigin()[j] - a1[j] - transA.getOrigin()[j]);
+ info->m_lowerLimit[j*info->rowskip] = -SIMD_INFINITY;
+ info->m_upperLimit[j*info->rowskip] = SIMD_INFINITY;
+ if(m_flags & BT_CONETWIST_FLAGS_LIN_CFM)
+ {
+ info->cfm[j*info->rowskip] = m_linCFM;
+ }
+ }
+ int row = 3;
+ int srow = row * info->rowskip;
+ btVector3 ax1;
+ // angular limits
+ if(m_solveSwingLimit)
+ {
+ btScalar *J1 = info->m_J1angularAxis;
+ btScalar *J2 = info->m_J2angularAxis;
+ if((m_swingSpan1 < m_fixThresh) && (m_swingSpan2 < m_fixThresh))
+ {
+ btTransform trA = transA*m_rbAFrame;
+ btVector3 p = trA.getBasis().getColumn(1);
+ btVector3 q = trA.getBasis().getColumn(2);
+ int srow1 = srow + info->rowskip;
+ J1[srow+0] = p[0];
+ J1[srow+1] = p[1];
+ J1[srow+2] = p[2];
+ J1[srow1+0] = q[0];
+ J1[srow1+1] = q[1];
+ J1[srow1+2] = q[2];
+ J2[srow+0] = -p[0];
+ J2[srow+1] = -p[1];
+ J2[srow+2] = -p[2];
+ J2[srow1+0] = -q[0];
+ J2[srow1+1] = -q[1];
+ J2[srow1+2] = -q[2];
+ btScalar fact = info->fps * m_relaxationFactor;
+ info->m_constraintError[srow] = fact * m_swingAxis.dot(p);
+ info->m_constraintError[srow1] = fact * m_swingAxis.dot(q);
+ info->m_lowerLimit[srow] = -SIMD_INFINITY;
+ info->m_upperLimit[srow] = SIMD_INFINITY;
+ info->m_lowerLimit[srow1] = -SIMD_INFINITY;
+ info->m_upperLimit[srow1] = SIMD_INFINITY;
+ srow = srow1 + info->rowskip;
+ }
+ else
+ {
+ ax1 = m_swingAxis * m_relaxationFactor * m_relaxationFactor;
+ J1[srow+0] = ax1[0];
+ J1[srow+1] = ax1[1];
+ J1[srow+2] = ax1[2];
+ J2[srow+0] = -ax1[0];
+ J2[srow+1] = -ax1[1];
+ J2[srow+2] = -ax1[2];
+ btScalar k = info->fps * m_biasFactor;
+
+ info->m_constraintError[srow] = k * m_swingCorrection;
+ if(m_flags & BT_CONETWIST_FLAGS_ANG_CFM)
+ {
+ info->cfm[srow] = m_angCFM;
+ }
+ // m_swingCorrection is always positive or 0
+ info->m_lowerLimit[srow] = 0;
+ info->m_upperLimit[srow] = (m_bMotorEnabled && m_maxMotorImpulse >= 0.0f) ? m_maxMotorImpulse : SIMD_INFINITY;
+ srow += info->rowskip;
+ }
+ }
+ if(m_solveTwistLimit)
+ {
+ ax1 = m_twistAxis * m_relaxationFactor * m_relaxationFactor;
+ btScalar *J1 = info->m_J1angularAxis;
+ btScalar *J2 = info->m_J2angularAxis;
+ J1[srow+0] = ax1[0];
+ J1[srow+1] = ax1[1];
+ J1[srow+2] = ax1[2];
+ J2[srow+0] = -ax1[0];
+ J2[srow+1] = -ax1[1];
+ J2[srow+2] = -ax1[2];
+ btScalar k = info->fps * m_biasFactor;
+ info->m_constraintError[srow] = k * m_twistCorrection;
+ if(m_flags & BT_CONETWIST_FLAGS_ANG_CFM)
+ {
+ info->cfm[srow] = m_angCFM;
+ }
+ if(m_twistSpan > 0.0f)
+ {
+
+ if(m_twistCorrection > 0.0f)
+ {
+ info->m_lowerLimit[srow] = 0;
+ info->m_upperLimit[srow] = SIMD_INFINITY;
+ }
+ else
+ {
+ info->m_lowerLimit[srow] = -SIMD_INFINITY;
+ info->m_upperLimit[srow] = 0;
+ }
+ }
+ else
+ {
+ info->m_lowerLimit[srow] = -SIMD_INFINITY;
+ info->m_upperLimit[srow] = SIMD_INFINITY;
+ }
+ srow += info->rowskip;
+ }
+}
+
+
+
+void btConeTwistConstraint::buildJacobian()
+{
+ if (m_useSolveConstraintObsolete)
+ {
+ m_appliedImpulse = btScalar(0.);
+ m_accTwistLimitImpulse = btScalar(0.);
+ m_accSwingLimitImpulse = btScalar(0.);
+ m_accMotorImpulse = btVector3(0.,0.,0.);
+
+ if (!m_angularOnly)
+ {
+ btVector3 pivotAInW = m_rbA.getCenterOfMassTransform()*m_rbAFrame.getOrigin();
+ btVector3 pivotBInW = m_rbB.getCenterOfMassTransform()*m_rbBFrame.getOrigin();
+ btVector3 relPos = pivotBInW - pivotAInW;
+
+ btVector3 normal[3];
+ if (relPos.length2() > SIMD_EPSILON)
+ {
+ normal[0] = relPos.normalized();
+ }
+ else
+ {
+ normal[0].setValue(btScalar(1.0),0,0);
+ }
+
+ btPlaneSpace1(normal[0], normal[1], normal[2]);
+
+ for (int i=0;i<3;i++)
+ {
+ new (&m_jac[i]) btJacobianEntry(
+ m_rbA.getCenterOfMassTransform().getBasis().transpose(),
+ m_rbB.getCenterOfMassTransform().getBasis().transpose(),
+ pivotAInW - m_rbA.getCenterOfMassPosition(),
+ pivotBInW - m_rbB.getCenterOfMassPosition(),
+ normal[i],
+ m_rbA.getInvInertiaDiagLocal(),
+ m_rbA.getInvMass(),
+ m_rbB.getInvInertiaDiagLocal(),
+ m_rbB.getInvMass());
+ }
+ }
+
+ calcAngleInfo2(m_rbA.getCenterOfMassTransform(),m_rbB.getCenterOfMassTransform(),m_rbA.getInvInertiaTensorWorld(),m_rbB.getInvInertiaTensorWorld());
+ }
+}
+
+
+
+void btConeTwistConstraint::solveConstraintObsolete(btSolverBody& bodyA,btSolverBody& bodyB,btScalar timeStep)
+{
+ #ifndef __SPU__
+ if (m_useSolveConstraintObsolete)
+ {
+ btVector3 pivotAInW = m_rbA.getCenterOfMassTransform()*m_rbAFrame.getOrigin();
+ btVector3 pivotBInW = m_rbB.getCenterOfMassTransform()*m_rbBFrame.getOrigin();
+
+ btScalar tau = btScalar(0.3);
+
+ //linear part
+ if (!m_angularOnly)
+ {
+ btVector3 rel_pos1 = pivotAInW - m_rbA.getCenterOfMassPosition();
+ btVector3 rel_pos2 = pivotBInW - m_rbB.getCenterOfMassPosition();
+
+ btVector3 vel1;
+ bodyA.internalGetVelocityInLocalPointObsolete(rel_pos1,vel1);
+ btVector3 vel2;
+ bodyB.internalGetVelocityInLocalPointObsolete(rel_pos2,vel2);
+ btVector3 vel = vel1 - vel2;
+
+ for (int i=0;i<3;i++)
+ {
+ const btVector3& normal = m_jac[i].m_linearJointAxis;
+ btScalar jacDiagABInv = btScalar(1.) / m_jac[i].getDiagonal();
+
+ btScalar rel_vel;
+ rel_vel = normal.dot(vel);
+ //positional error (zeroth order error)
+ btScalar depth = -(pivotAInW - pivotBInW).dot(normal); //this is the error projected on the normal
+ btScalar impulse = depth*tau/timeStep * jacDiagABInv - rel_vel * jacDiagABInv;
+ m_appliedImpulse += impulse;
+
+ btVector3 ftorqueAxis1 = rel_pos1.cross(normal);
+ btVector3 ftorqueAxis2 = rel_pos2.cross(normal);
+ bodyA.internalApplyImpulse(normal*m_rbA.getInvMass(), m_rbA.getInvInertiaTensorWorld()*ftorqueAxis1,impulse);
+ bodyB.internalApplyImpulse(normal*m_rbB.getInvMass(), m_rbB.getInvInertiaTensorWorld()*ftorqueAxis2,-impulse);
+
+ }
+ }
+
+ // apply motor
+ if (m_bMotorEnabled)
+ {
+ // compute current and predicted transforms
+ btTransform trACur = m_rbA.getCenterOfMassTransform();
+ btTransform trBCur = m_rbB.getCenterOfMassTransform();
+ btVector3 omegaA; bodyA.internalGetAngularVelocity(omegaA);
+ btVector3 omegaB; bodyB.internalGetAngularVelocity(omegaB);
+ btTransform trAPred; trAPred.setIdentity();
+ btVector3 zerovec(0,0,0);
+ btTransformUtil::integrateTransform(
+ trACur, zerovec, omegaA, timeStep, trAPred);
+ btTransform trBPred; trBPred.setIdentity();
+ btTransformUtil::integrateTransform(
+ trBCur, zerovec, omegaB, timeStep, trBPred);
+
+ // compute desired transforms in world
+ btTransform trPose(m_qTarget);
+ btTransform trABDes = m_rbBFrame * trPose * m_rbAFrame.inverse();
+ btTransform trADes = trBPred * trABDes;
+ btTransform trBDes = trAPred * trABDes.inverse();
+
+ // compute desired omegas in world
+ btVector3 omegaADes, omegaBDes;
+
+ btTransformUtil::calculateVelocity(trACur, trADes, timeStep, zerovec, omegaADes);
+ btTransformUtil::calculateVelocity(trBCur, trBDes, timeStep, zerovec, omegaBDes);
+
+ // compute delta omegas
+ btVector3 dOmegaA = omegaADes - omegaA;
+ btVector3 dOmegaB = omegaBDes - omegaB;
+
+ // compute weighted avg axis of dOmega (weighting based on inertias)
+ btVector3 axisA, axisB;
+ btScalar kAxisAInv = 0, kAxisBInv = 0;
+
+ if (dOmegaA.length2() > SIMD_EPSILON)
+ {
+ axisA = dOmegaA.normalized();
+ kAxisAInv = getRigidBodyA().computeAngularImpulseDenominator(axisA);
+ }
+
+ if (dOmegaB.length2() > SIMD_EPSILON)
+ {
+ axisB = dOmegaB.normalized();
+ kAxisBInv = getRigidBodyB().computeAngularImpulseDenominator(axisB);
+ }
+
+ btVector3 avgAxis = kAxisAInv * axisA + kAxisBInv * axisB;
+
+ static bool bDoTorque = true;
+ if (bDoTorque && avgAxis.length2() > SIMD_EPSILON)
+ {
+ avgAxis.normalize();
+ kAxisAInv = getRigidBodyA().computeAngularImpulseDenominator(avgAxis);
+ kAxisBInv = getRigidBodyB().computeAngularImpulseDenominator(avgAxis);
+ btScalar kInvCombined = kAxisAInv + kAxisBInv;
+
+ btVector3 impulse = (kAxisAInv * dOmegaA - kAxisBInv * dOmegaB) /
+ (kInvCombined * kInvCombined);
+
+ if (m_maxMotorImpulse >= 0)
+ {
+ btScalar fMaxImpulse = m_maxMotorImpulse;
+ if (m_bNormalizedMotorStrength)
+ fMaxImpulse = fMaxImpulse/kAxisAInv;
+
+ btVector3 newUnclampedAccImpulse = m_accMotorImpulse + impulse;
+ btScalar newUnclampedMag = newUnclampedAccImpulse.length();
+ if (newUnclampedMag > fMaxImpulse)
+ {
+ newUnclampedAccImpulse.normalize();
+ newUnclampedAccImpulse *= fMaxImpulse;
+ impulse = newUnclampedAccImpulse - m_accMotorImpulse;
+ }
+ m_accMotorImpulse += impulse;
+ }
+
+ btScalar impulseMag = impulse.length();
+ btVector3 impulseAxis = impulse / impulseMag;
+
+ bodyA.internalApplyImpulse(btVector3(0,0,0), m_rbA.getInvInertiaTensorWorld()*impulseAxis, impulseMag);
+ bodyB.internalApplyImpulse(btVector3(0,0,0), m_rbB.getInvInertiaTensorWorld()*impulseAxis, -impulseMag);
+
+ }
+ }
+ else if (m_damping > SIMD_EPSILON) // no motor: do a little damping
+ {
+ btVector3 angVelA; bodyA.internalGetAngularVelocity(angVelA);
+ btVector3 angVelB; bodyB.internalGetAngularVelocity(angVelB);
+ btVector3 relVel = angVelB - angVelA;
+ if (relVel.length2() > SIMD_EPSILON)
+ {
+ btVector3 relVelAxis = relVel.normalized();
+ btScalar m_kDamping = btScalar(1.) /
+ (getRigidBodyA().computeAngularImpulseDenominator(relVelAxis) +
+ getRigidBodyB().computeAngularImpulseDenominator(relVelAxis));
+ btVector3 impulse = m_damping * m_kDamping * relVel;
+
+ btScalar impulseMag = impulse.length();
+ btVector3 impulseAxis = impulse / impulseMag;
+ bodyA.internalApplyImpulse(btVector3(0,0,0), m_rbA.getInvInertiaTensorWorld()*impulseAxis, impulseMag);
+ bodyB.internalApplyImpulse(btVector3(0,0,0), m_rbB.getInvInertiaTensorWorld()*impulseAxis, -impulseMag);
+ }
+ }
+
+ // joint limits
+ {
+ ///solve angular part
+ btVector3 angVelA;
+ bodyA.internalGetAngularVelocity(angVelA);
+ btVector3 angVelB;
+ bodyB.internalGetAngularVelocity(angVelB);
+
+ // solve swing limit
+ if (m_solveSwingLimit)
+ {
+ btScalar amplitude = m_swingLimitRatio * m_swingCorrection*m_biasFactor/timeStep;
+ btScalar relSwingVel = (angVelB - angVelA).dot(m_swingAxis);
+ if (relSwingVel > 0)
+ amplitude += m_swingLimitRatio * relSwingVel * m_relaxationFactor;
+ btScalar impulseMag = amplitude * m_kSwing;
+
+ // Clamp the accumulated impulse
+ btScalar temp = m_accSwingLimitImpulse;
+ m_accSwingLimitImpulse = btMax(m_accSwingLimitImpulse + impulseMag, btScalar(0.0) );
+ impulseMag = m_accSwingLimitImpulse - temp;
+
+ btVector3 impulse = m_swingAxis * impulseMag;
+
+ // don't let cone response affect twist
+ // (this can happen since body A's twist doesn't match body B's AND we use an elliptical cone limit)
+ {
+ btVector3 impulseTwistCouple = impulse.dot(m_twistAxisA) * m_twistAxisA;
+ btVector3 impulseNoTwistCouple = impulse - impulseTwistCouple;
+ impulse = impulseNoTwistCouple;
+ }
+
+ impulseMag = impulse.length();
+ btVector3 noTwistSwingAxis = impulse / impulseMag;
+
+ bodyA.internalApplyImpulse(btVector3(0,0,0), m_rbA.getInvInertiaTensorWorld()*noTwistSwingAxis, impulseMag);
+ bodyB.internalApplyImpulse(btVector3(0,0,0), m_rbB.getInvInertiaTensorWorld()*noTwistSwingAxis, -impulseMag);
+ }
+
+
+ // solve twist limit
+ if (m_solveTwistLimit)
+ {
+ btScalar amplitude = m_twistLimitRatio * m_twistCorrection*m_biasFactor/timeStep;
+ btScalar relTwistVel = (angVelB - angVelA).dot( m_twistAxis );
+ if (relTwistVel > 0) // only damp when moving towards limit (m_twistAxis flipping is important)
+ amplitude += m_twistLimitRatio * relTwistVel * m_relaxationFactor;
+ btScalar impulseMag = amplitude * m_kTwist;
+
+ // Clamp the accumulated impulse
+ btScalar temp = m_accTwistLimitImpulse;
+ m_accTwistLimitImpulse = btMax(m_accTwistLimitImpulse + impulseMag, btScalar(0.0) );
+ impulseMag = m_accTwistLimitImpulse - temp;
+
+ // btVector3 impulse = m_twistAxis * impulseMag;
+
+ bodyA.internalApplyImpulse(btVector3(0,0,0), m_rbA.getInvInertiaTensorWorld()*m_twistAxis,impulseMag);
+ bodyB.internalApplyImpulse(btVector3(0,0,0), m_rbB.getInvInertiaTensorWorld()*m_twistAxis,-impulseMag);
+ }
+ }
+ }
+#else
+btAssert(0);
+#endif //__SPU__
+}
+
+
+
+
+void btConeTwistConstraint::updateRHS(btScalar timeStep)
+{
+ (void)timeStep;
+
+}
+
+
+#ifndef __SPU__
+void btConeTwistConstraint::calcAngleInfo()
+{
+ m_swingCorrection = btScalar(0.);
+ m_twistLimitSign = btScalar(0.);
+ m_solveTwistLimit = false;
+ m_solveSwingLimit = false;
+
+ btVector3 b1Axis1(0,0,0),b1Axis2(0,0,0),b1Axis3(0,0,0);
+ btVector3 b2Axis1(0,0,0),b2Axis2(0,0,0);
+
+ b1Axis1 = getRigidBodyA().getCenterOfMassTransform().getBasis() * this->m_rbAFrame.getBasis().getColumn(0);
+ b2Axis1 = getRigidBodyB().getCenterOfMassTransform().getBasis() * this->m_rbBFrame.getBasis().getColumn(0);
+
+ btScalar swing1=btScalar(0.),swing2 = btScalar(0.);
+
+ btScalar swx=btScalar(0.),swy = btScalar(0.);
+ btScalar thresh = btScalar(10.);
+ btScalar fact;
+
+ // Get Frame into world space
+ if (m_swingSpan1 >= btScalar(0.05f))
+ {
+ b1Axis2 = getRigidBodyA().getCenterOfMassTransform().getBasis() * this->m_rbAFrame.getBasis().getColumn(1);
+ swx = b2Axis1.dot(b1Axis1);
+ swy = b2Axis1.dot(b1Axis2);
+ swing1 = btAtan2Fast(swy, swx);
+ fact = (swy*swy + swx*swx) * thresh * thresh;
+ fact = fact / (fact + btScalar(1.0));
+ swing1 *= fact;
+ }
+
+ if (m_swingSpan2 >= btScalar(0.05f))
+ {
+ b1Axis3 = getRigidBodyA().getCenterOfMassTransform().getBasis() * this->m_rbAFrame.getBasis().getColumn(2);
+ swx = b2Axis1.dot(b1Axis1);
+ swy = b2Axis1.dot(b1Axis3);
+ swing2 = btAtan2Fast(swy, swx);
+ fact = (swy*swy + swx*swx) * thresh * thresh;
+ fact = fact / (fact + btScalar(1.0));
+ swing2 *= fact;
+ }
+
+ btScalar RMaxAngle1Sq = 1.0f / (m_swingSpan1*m_swingSpan1);
+ btScalar RMaxAngle2Sq = 1.0f / (m_swingSpan2*m_swingSpan2);
+ btScalar EllipseAngle = btFabs(swing1*swing1)* RMaxAngle1Sq + btFabs(swing2*swing2) * RMaxAngle2Sq;
+
+ if (EllipseAngle > 1.0f)
+ {
+ m_swingCorrection = EllipseAngle-1.0f;
+ m_solveSwingLimit = true;
+ // Calculate necessary axis & factors
+ m_swingAxis = b2Axis1.cross(b1Axis2* b2Axis1.dot(b1Axis2) + b1Axis3* b2Axis1.dot(b1Axis3));
+ m_swingAxis.normalize();
+ btScalar swingAxisSign = (b2Axis1.dot(b1Axis1) >= 0.0f) ? 1.0f : -1.0f;
+ m_swingAxis *= swingAxisSign;
+ }
+
+ // Twist limits
+ if (m_twistSpan >= btScalar(0.))
+ {
+ btVector3 b2Axis2 = getRigidBodyB().getCenterOfMassTransform().getBasis() * this->m_rbBFrame.getBasis().getColumn(1);
+ btQuaternion rotationArc = shortestArcQuat(b2Axis1,b1Axis1);
+ btVector3 TwistRef = quatRotate(rotationArc,b2Axis2);
+ btScalar twist = btAtan2Fast( TwistRef.dot(b1Axis3), TwistRef.dot(b1Axis2) );
+ m_twistAngle = twist;
+
+// btScalar lockedFreeFactor = (m_twistSpan > btScalar(0.05f)) ? m_limitSoftness : btScalar(0.);
+ btScalar lockedFreeFactor = (m_twistSpan > btScalar(0.05f)) ? btScalar(1.0f) : btScalar(0.);
+ if (twist <= -m_twistSpan*lockedFreeFactor)
+ {
+ m_twistCorrection = -(twist + m_twistSpan);
+ m_solveTwistLimit = true;
+ m_twistAxis = (b2Axis1 + b1Axis1) * 0.5f;
+ m_twistAxis.normalize();
+ m_twistAxis *= -1.0f;
+ }
+ else if (twist > m_twistSpan*lockedFreeFactor)
+ {
+ m_twistCorrection = (twist - m_twistSpan);
+ m_solveTwistLimit = true;
+ m_twistAxis = (b2Axis1 + b1Axis1) * 0.5f;
+ m_twistAxis.normalize();
+ }
+ }
+}
+#endif //__SPU__
+
+static btVector3 vTwist(1,0,0); // twist axis in constraint's space
+
+
+
+void btConeTwistConstraint::calcAngleInfo2(const btTransform& transA, const btTransform& transB, const btMatrix3x3& invInertiaWorldA,const btMatrix3x3& invInertiaWorldB)
+{
+ m_swingCorrection = btScalar(0.);
+ m_twistLimitSign = btScalar(0.);
+ m_solveTwistLimit = false;
+ m_solveSwingLimit = false;
+ // compute rotation of A wrt B (in constraint space)
+ if (m_bMotorEnabled && (!m_useSolveConstraintObsolete))
+ { // it is assumed that setMotorTarget() was alredy called
+ // and motor target m_qTarget is within constraint limits
+ // TODO : split rotation to pure swing and pure twist
+ // compute desired transforms in world
+ btTransform trPose(m_qTarget);
+ btTransform trA = transA * m_rbAFrame;
+ btTransform trB = transB * m_rbBFrame;
+ btTransform trDeltaAB = trB * trPose * trA.inverse();
+ btQuaternion qDeltaAB = trDeltaAB.getRotation();
+ btVector3 swingAxis = btVector3(qDeltaAB.x(), qDeltaAB.y(), qDeltaAB.z());
+ btScalar swingAxisLen2 = swingAxis.length2();
+ if(btFuzzyZero(swingAxisLen2))
+ {
+ return;
+ }
+ m_swingAxis = swingAxis;
+ m_swingAxis.normalize();
+ m_swingCorrection = qDeltaAB.getAngle();
+ if(!btFuzzyZero(m_swingCorrection))
+ {
+ m_solveSwingLimit = true;
+ }
+ return;
+ }
+
+
+ {
+ // compute rotation of A wrt B (in constraint space)
+ btQuaternion qA = transA.getRotation() * m_rbAFrame.getRotation();
+ btQuaternion qB = transB.getRotation() * m_rbBFrame.getRotation();
+ btQuaternion qAB = qB.inverse() * qA;
+ // split rotation into cone and twist
+ // (all this is done from B's perspective. Maybe I should be averaging axes...)
+ btVector3 vConeNoTwist = quatRotate(qAB, vTwist); vConeNoTwist.normalize();
+ btQuaternion qABCone = shortestArcQuat(vTwist, vConeNoTwist); qABCone.normalize();
+ btQuaternion qABTwist = qABCone.inverse() * qAB; qABTwist.normalize();
+
+ if (m_swingSpan1 >= m_fixThresh && m_swingSpan2 >= m_fixThresh)
+ {
+ btScalar swingAngle, swingLimit = 0; btVector3 swingAxis;
+ computeConeLimitInfo(qABCone, swingAngle, swingAxis, swingLimit);
+
+ if (swingAngle > swingLimit * m_limitSoftness)
+ {
+ m_solveSwingLimit = true;
+
+ // compute limit ratio: 0->1, where
+ // 0 == beginning of soft limit
+ // 1 == hard/real limit
+ m_swingLimitRatio = 1.f;
+ if (swingAngle < swingLimit && m_limitSoftness < 1.f - SIMD_EPSILON)
+ {
+ m_swingLimitRatio = (swingAngle - swingLimit * m_limitSoftness)/
+ (swingLimit - swingLimit * m_limitSoftness);
+ }
+
+ // swing correction tries to get back to soft limit
+ m_swingCorrection = swingAngle - (swingLimit * m_limitSoftness);
+
+ // adjustment of swing axis (based on ellipse normal)
+ adjustSwingAxisToUseEllipseNormal(swingAxis);
+
+ // Calculate necessary axis & factors
+ m_swingAxis = quatRotate(qB, -swingAxis);
+
+ m_twistAxisA.setValue(0,0,0);
+
+ m_kSwing = btScalar(1.) /
+ (computeAngularImpulseDenominator(m_swingAxis,invInertiaWorldA) +
+ computeAngularImpulseDenominator(m_swingAxis,invInertiaWorldB));
+ }
+ }
+ else
+ {
+ // you haven't set any limits;
+ // or you're trying to set at least one of the swing limits too small. (if so, do you really want a conetwist constraint?)
+ // anyway, we have either hinge or fixed joint
+ btVector3 ivA = transA.getBasis() * m_rbAFrame.getBasis().getColumn(0);
+ btVector3 jvA = transA.getBasis() * m_rbAFrame.getBasis().getColumn(1);
+ btVector3 kvA = transA.getBasis() * m_rbAFrame.getBasis().getColumn(2);
+ btVector3 ivB = transB.getBasis() * m_rbBFrame.getBasis().getColumn(0);
+ btVector3 target;
+ btScalar x = ivB.dot(ivA);
+ btScalar y = ivB.dot(jvA);
+ btScalar z = ivB.dot(kvA);
+ if((m_swingSpan1 < m_fixThresh) && (m_swingSpan2 < m_fixThresh))
+ { // fixed. We'll need to add one more row to constraint
+ if((!btFuzzyZero(y)) || (!(btFuzzyZero(z))))
+ {
+ m_solveSwingLimit = true;
+ m_swingAxis = -ivB.cross(ivA);
+ }
+ }
+ else
+ {
+ if(m_swingSpan1 < m_fixThresh)
+ { // hinge around Y axis
+// if(!(btFuzzyZero(y)))
+ if((!(btFuzzyZero(x))) || (!(btFuzzyZero(z))))
+ {
+ m_solveSwingLimit = true;
+ if(m_swingSpan2 >= m_fixThresh)
+ {
+ y = btScalar(0.f);
+ btScalar span2 = btAtan2(z, x);
+ if(span2 > m_swingSpan2)
+ {
+ x = btCos(m_swingSpan2);
+ z = btSin(m_swingSpan2);
+ }
+ else if(span2 < -m_swingSpan2)
+ {
+ x = btCos(m_swingSpan2);
+ z = -btSin(m_swingSpan2);
+ }
+ }
+ }
+ }
+ else
+ { // hinge around Z axis
+// if(!btFuzzyZero(z))
+ if((!(btFuzzyZero(x))) || (!(btFuzzyZero(y))))
+ {
+ m_solveSwingLimit = true;
+ if(m_swingSpan1 >= m_fixThresh)
+ {
+ z = btScalar(0.f);
+ btScalar span1 = btAtan2(y, x);
+ if(span1 > m_swingSpan1)
+ {
+ x = btCos(m_swingSpan1);
+ y = btSin(m_swingSpan1);
+ }
+ else if(span1 < -m_swingSpan1)
+ {
+ x = btCos(m_swingSpan1);
+ y = -btSin(m_swingSpan1);
+ }
+ }
+ }
+ }
+ target[0] = x * ivA[0] + y * jvA[0] + z * kvA[0];
+ target[1] = x * ivA[1] + y * jvA[1] + z * kvA[1];
+ target[2] = x * ivA[2] + y * jvA[2] + z * kvA[2];
+ target.normalize();
+ m_swingAxis = -ivB.cross(target);
+ m_swingCorrection = m_swingAxis.length();
+
+ if (!btFuzzyZero(m_swingCorrection))
+ m_swingAxis.normalize();
+ }
+ }
+
+ if (m_twistSpan >= btScalar(0.f))
+ {
+ btVector3 twistAxis;
+ computeTwistLimitInfo(qABTwist, m_twistAngle, twistAxis);
+
+ if (m_twistAngle > m_twistSpan*m_limitSoftness)
+ {
+ m_solveTwistLimit = true;
+
+ m_twistLimitRatio = 1.f;
+ if (m_twistAngle < m_twistSpan && m_limitSoftness < 1.f - SIMD_EPSILON)
+ {
+ m_twistLimitRatio = (m_twistAngle - m_twistSpan * m_limitSoftness)/
+ (m_twistSpan - m_twistSpan * m_limitSoftness);
+ }
+
+ // twist correction tries to get back to soft limit
+ m_twistCorrection = m_twistAngle - (m_twistSpan * m_limitSoftness);
+
+ m_twistAxis = quatRotate(qB, -twistAxis);
+
+ m_kTwist = btScalar(1.) /
+ (computeAngularImpulseDenominator(m_twistAxis,invInertiaWorldA) +
+ computeAngularImpulseDenominator(m_twistAxis,invInertiaWorldB));
+ }
+
+ if (m_solveSwingLimit)
+ m_twistAxisA = quatRotate(qA, -twistAxis);
+ }
+ else
+ {
+ m_twistAngle = btScalar(0.f);
+ }
+ }
+}
+
+
+
+// given a cone rotation in constraint space, (pre: twist must already be removed)
+// this method computes its corresponding swing angle and axis.
+// more interestingly, it computes the cone/swing limit (angle) for this cone "pose".
+void btConeTwistConstraint::computeConeLimitInfo(const btQuaternion& qCone,
+ btScalar& swingAngle, // out
+ btVector3& vSwingAxis, // out
+ btScalar& swingLimit) // out
+{
+ swingAngle = qCone.getAngle();
+ if (swingAngle > SIMD_EPSILON)
+ {
+ vSwingAxis = btVector3(qCone.x(), qCone.y(), qCone.z());
+ vSwingAxis.normalize();
+#if 0
+ // non-zero twist?! this should never happen.
+ btAssert(fabs(vSwingAxis.x()) <= SIMD_EPSILON));
+#endif
+
+ // Compute limit for given swing. tricky:
+ // Given a swing axis, we're looking for the intersection with the bounding cone ellipse.
+ // (Since we're dealing with angles, this ellipse is embedded on the surface of a sphere.)
+
+ // For starters, compute the direction from center to surface of ellipse.
+ // This is just the perpendicular (ie. rotate 2D vector by PI/2) of the swing axis.
+ // (vSwingAxis is the cone rotation (in z,y); change vars and rotate to (x,y) coords.)
+ btScalar xEllipse = vSwingAxis.y();
+ btScalar yEllipse = -vSwingAxis.z();
+
+ // Now, we use the slope of the vector (using x/yEllipse) and find the length
+ // of the line that intersects the ellipse:
+ // x^2 y^2
+ // --- + --- = 1, where a and b are semi-major axes 2 and 1 respectively (ie. the limits)
+ // a^2 b^2
+ // Do the math and it should be clear.
+
+ swingLimit = m_swingSpan1; // if xEllipse == 0, we have a pure vSwingAxis.z rotation: just use swingspan1
+ if (fabs(xEllipse) > SIMD_EPSILON)
+ {
+ btScalar surfaceSlope2 = (yEllipse*yEllipse)/(xEllipse*xEllipse);
+ btScalar norm = 1 / (m_swingSpan2 * m_swingSpan2);
+ norm += surfaceSlope2 / (m_swingSpan1 * m_swingSpan1);
+ btScalar swingLimit2 = (1 + surfaceSlope2) / norm;
+ swingLimit = sqrt(swingLimit2);
+ }
+
+ // test!
+ /*swingLimit = m_swingSpan2;
+ if (fabs(vSwingAxis.z()) > SIMD_EPSILON)
+ {
+ btScalar mag_2 = m_swingSpan1*m_swingSpan1 + m_swingSpan2*m_swingSpan2;
+ btScalar sinphi = m_swingSpan2 / sqrt(mag_2);
+ btScalar phi = asin(sinphi);
+ btScalar theta = atan2(fabs(vSwingAxis.y()),fabs(vSwingAxis.z()));
+ btScalar alpha = 3.14159f - theta - phi;
+ btScalar sinalpha = sin(alpha);
+ swingLimit = m_swingSpan1 * sinphi/sinalpha;
+ }*/
+ }
+ else if (swingAngle < 0)
+ {
+ // this should never happen!
+#if 0
+ btAssert(0);
+#endif
+ }
+}
+
+btVector3 btConeTwistConstraint::GetPointForAngle(btScalar fAngleInRadians, btScalar fLength) const
+{
+ // compute x/y in ellipse using cone angle (0 -> 2*PI along surface of cone)
+ btScalar xEllipse = btCos(fAngleInRadians);
+ btScalar yEllipse = btSin(fAngleInRadians);
+
+ // Use the slope of the vector (using x/yEllipse) and find the length
+ // of the line that intersects the ellipse:
+ // x^2 y^2
+ // --- + --- = 1, where a and b are semi-major axes 2 and 1 respectively (ie. the limits)
+ // a^2 b^2
+ // Do the math and it should be clear.
+
+ btScalar swingLimit = m_swingSpan1; // if xEllipse == 0, just use axis b (1)
+ if (fabs(xEllipse) > SIMD_EPSILON)
+ {
+ btScalar surfaceSlope2 = (yEllipse*yEllipse)/(xEllipse*xEllipse);
+ btScalar norm = 1 / (m_swingSpan2 * m_swingSpan2);
+ norm += surfaceSlope2 / (m_swingSpan1 * m_swingSpan1);
+ btScalar swingLimit2 = (1 + surfaceSlope2) / norm;
+ swingLimit = sqrt(swingLimit2);
+ }
+
+ // convert into point in constraint space:
+ // note: twist is x-axis, swing 1 and 2 are along the z and y axes respectively
+ btVector3 vSwingAxis(0, xEllipse, -yEllipse);
+ btQuaternion qSwing(vSwingAxis, swingLimit);
+ btVector3 vPointInConstraintSpace(fLength,0,0);
+ return quatRotate(qSwing, vPointInConstraintSpace);
+}
+
+// given a twist rotation in constraint space, (pre: cone must already be removed)
+// this method computes its corresponding angle and axis.
+void btConeTwistConstraint::computeTwistLimitInfo(const btQuaternion& qTwist,
+ btScalar& twistAngle, // out
+ btVector3& vTwistAxis) // out
+{
+ btQuaternion qMinTwist = qTwist;
+ twistAngle = qTwist.getAngle();
+
+ if (twistAngle > SIMD_PI) // long way around. flip quat and recalculate.
+ {
+ qMinTwist = -(qTwist);
+ twistAngle = qMinTwist.getAngle();
+ }
+ if (twistAngle < 0)
+ {
+ // this should never happen
+#if 0
+ btAssert(0);
+#endif
+ }
+
+ vTwistAxis = btVector3(qMinTwist.x(), qMinTwist.y(), qMinTwist.z());
+ if (twistAngle > SIMD_EPSILON)
+ vTwistAxis.normalize();
+}
+
+
+void btConeTwistConstraint::adjustSwingAxisToUseEllipseNormal(btVector3& vSwingAxis) const
+{
+ // the swing axis is computed as the "twist-free" cone rotation,
+ // but the cone limit is not circular, but elliptical (if swingspan1 != swingspan2).
+ // so, if we're outside the limits, the closest way back inside the cone isn't
+ // along the vector back to the center. better (and more stable) to use the ellipse normal.
+
+ // convert swing axis to direction from center to surface of ellipse
+ // (ie. rotate 2D vector by PI/2)
+ btScalar y = -vSwingAxis.z();
+ btScalar z = vSwingAxis.y();
+
+ // do the math...
+ if (fabs(z) > SIMD_EPSILON) // avoid division by 0. and we don't need an update if z == 0.
+ {
+ // compute gradient/normal of ellipse surface at current "point"
+ btScalar grad = y/z;
+ grad *= m_swingSpan2 / m_swingSpan1;
+
+ // adjust y/z to represent normal at point (instead of vector to point)
+ if (y > 0)
+ y = fabs(grad * z);
+ else
+ y = -fabs(grad * z);
+
+ // convert ellipse direction back to swing axis
+ vSwingAxis.setZ(-y);
+ vSwingAxis.setY( z);
+ vSwingAxis.normalize();
+ }
+}
+
+
+
+void btConeTwistConstraint::setMotorTarget(const btQuaternion &q)
+{
+ //btTransform trACur = m_rbA.getCenterOfMassTransform();
+ //btTransform trBCur = m_rbB.getCenterOfMassTransform();
+// btTransform trABCur = trBCur.inverse() * trACur;
+// btQuaternion qABCur = trABCur.getRotation();
+// btTransform trConstraintCur = (trBCur * m_rbBFrame).inverse() * (trACur * m_rbAFrame);
+ //btQuaternion qConstraintCur = trConstraintCur.getRotation();
+
+ btQuaternion qConstraint = m_rbBFrame.getRotation().inverse() * q * m_rbAFrame.getRotation();
+ setMotorTargetInConstraintSpace(qConstraint);
+}
+
+
+void btConeTwistConstraint::setMotorTargetInConstraintSpace(const btQuaternion &q)
+{
+ m_qTarget = q;
+
+ // clamp motor target to within limits
+ {
+ btScalar softness = 1.f;//m_limitSoftness;
+
+ // split into twist and cone
+ btVector3 vTwisted = quatRotate(m_qTarget, vTwist);
+ btQuaternion qTargetCone = shortestArcQuat(vTwist, vTwisted); qTargetCone.normalize();
+ btQuaternion qTargetTwist = qTargetCone.inverse() * m_qTarget; qTargetTwist.normalize();
+
+ // clamp cone
+ if (m_swingSpan1 >= btScalar(0.05f) && m_swingSpan2 >= btScalar(0.05f))
+ {
+ btScalar swingAngle, swingLimit; btVector3 swingAxis;
+ computeConeLimitInfo(qTargetCone, swingAngle, swingAxis, swingLimit);
+
+ if (fabs(swingAngle) > SIMD_EPSILON)
+ {
+ if (swingAngle > swingLimit*softness)
+ swingAngle = swingLimit*softness;
+ else if (swingAngle < -swingLimit*softness)
+ swingAngle = -swingLimit*softness;
+ qTargetCone = btQuaternion(swingAxis, swingAngle);
+ }
+ }
+
+ // clamp twist
+ if (m_twistSpan >= btScalar(0.05f))
+ {
+ btScalar twistAngle; btVector3 twistAxis;
+ computeTwistLimitInfo(qTargetTwist, twistAngle, twistAxis);
+
+ if (fabs(twistAngle) > SIMD_EPSILON)
+ {
+ // eddy todo: limitSoftness used here???
+ if (twistAngle > m_twistSpan*softness)
+ twistAngle = m_twistSpan*softness;
+ else if (twistAngle < -m_twistSpan*softness)
+ twistAngle = -m_twistSpan*softness;
+ qTargetTwist = btQuaternion(twistAxis, twistAngle);
+ }
+ }
+
+ m_qTarget = qTargetCone * qTargetTwist;
+ }
+}
+
+///override the default global value of a parameter (such as ERP or CFM), optionally provide the axis (0..5).
+///If no axis is provided, it uses the default axis for this constraint.
+void btConeTwistConstraint::setParam(int num, btScalar value, int axis)
+{
+ switch(num)
+ {
+ case BT_CONSTRAINT_ERP :
+ case BT_CONSTRAINT_STOP_ERP :
+ if((axis >= 0) && (axis < 3))
+ {
+ m_linERP = value;
+ m_flags |= BT_CONETWIST_FLAGS_LIN_ERP;
+ }
+ else
+ {
+ m_biasFactor = value;
+ }
+ break;
+ case BT_CONSTRAINT_CFM :
+ case BT_CONSTRAINT_STOP_CFM :
+ if((axis >= 0) && (axis < 3))
+ {
+ m_linCFM = value;
+ m_flags |= BT_CONETWIST_FLAGS_LIN_CFM;
+ }
+ else
+ {
+ m_angCFM = value;
+ m_flags |= BT_CONETWIST_FLAGS_ANG_CFM;
+ }
+ break;
+ default:
+ btAssertConstrParams(0);
+ break;
+ }
+}
+
+///return the local value of parameter
+btScalar btConeTwistConstraint::getParam(int num, int axis) const
+{
+ btScalar retVal = 0;
+ switch(num)
+ {
+ case BT_CONSTRAINT_ERP :
+ case BT_CONSTRAINT_STOP_ERP :
+ if((axis >= 0) && (axis < 3))
+ {
+ btAssertConstrParams(m_flags & BT_CONETWIST_FLAGS_LIN_ERP);
+ retVal = m_linERP;
+ }
+ else if((axis >= 3) && (axis < 6))
+ {
+ retVal = m_biasFactor;
+ }
+ else
+ {
+ btAssertConstrParams(0);
+ }
+ break;
+ case BT_CONSTRAINT_CFM :
+ case BT_CONSTRAINT_STOP_CFM :
+ if((axis >= 0) && (axis < 3))
+ {
+ btAssertConstrParams(m_flags & BT_CONETWIST_FLAGS_LIN_CFM);
+ retVal = m_linCFM;
+ }
+ else if((axis >= 3) && (axis < 6))
+ {
+ btAssertConstrParams(m_flags & BT_CONETWIST_FLAGS_ANG_CFM);
+ retVal = m_angCFM;
+ }
+ else
+ {
+ btAssertConstrParams(0);
+ }
+ break;
+ default :
+ btAssertConstrParams(0);
+ }
+ return retVal;
+}
+
+
+void btConeTwistConstraint::setFrames(const btTransform & frameA, const btTransform & frameB)
+{
+ m_rbAFrame = frameA;
+ m_rbBFrame = frameB;
+ buildJacobian();
+ //calculateTransforms();
+}
+
+
+
+
diff --git a/thirdparty/bullet/BulletDynamics/ConstraintSolver/btConeTwistConstraint.h b/thirdparty/bullet/BulletDynamics/ConstraintSolver/btConeTwistConstraint.h
new file mode 100644
index 0000000000..7a33d01d1e
--- /dev/null
+++ b/thirdparty/bullet/BulletDynamics/ConstraintSolver/btConeTwistConstraint.h
@@ -0,0 +1,435 @@
+/*
+Bullet Continuous Collision Detection and Physics Library
+btConeTwistConstraint is Copyright (c) 2007 Starbreeze Studios
+
+This software is provided 'as-is', without any express or implied warranty.
+In no event will the authors be held liable for any damages arising from the use of this software.
+Permission is granted to anyone to use this software for any purpose,
+including commercial applications, and to alter it and redistribute it freely,
+subject to the following restrictions:
+
+1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
+2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
+3. This notice may not be removed or altered from any source distribution.
+
+Written by: Marcus Hennix
+*/
+
+
+
+/*
+Overview:
+
+btConeTwistConstraint can be used to simulate ragdoll joints (upper arm, leg etc).
+It is a fixed translation, 3 degree-of-freedom (DOF) rotational "joint".
+It divides the 3 rotational DOFs into swing (movement within a cone) and twist.
+Swing is divided into swing1 and swing2 which can have different limits, giving an elliptical shape.
+(Note: the cone's base isn't flat, so this ellipse is "embedded" on the surface of a sphere.)
+
+In the contraint's frame of reference:
+twist is along the x-axis,
+and swing 1 and 2 are along the z and y axes respectively.
+*/
+
+
+
+#ifndef BT_CONETWISTCONSTRAINT_H
+#define BT_CONETWISTCONSTRAINT_H
+
+#include "LinearMath/btVector3.h"
+#include "btJacobianEntry.h"
+#include "btTypedConstraint.h"
+
+#ifdef BT_USE_DOUBLE_PRECISION
+#define btConeTwistConstraintData2 btConeTwistConstraintDoubleData
+#define btConeTwistConstraintDataName "btConeTwistConstraintDoubleData"
+#else
+#define btConeTwistConstraintData2 btConeTwistConstraintData
+#define btConeTwistConstraintDataName "btConeTwistConstraintData"
+#endif //BT_USE_DOUBLE_PRECISION
+
+
+class btRigidBody;
+
+enum btConeTwistFlags
+{
+ BT_CONETWIST_FLAGS_LIN_CFM = 1,
+ BT_CONETWIST_FLAGS_LIN_ERP = 2,
+ BT_CONETWIST_FLAGS_ANG_CFM = 4
+};
+
+///btConeTwistConstraint can be used to simulate ragdoll joints (upper arm, leg etc)
+ATTRIBUTE_ALIGNED16(class) btConeTwistConstraint : public btTypedConstraint
+{
+#ifdef IN_PARALLELL_SOLVER
+public:
+#endif
+ btJacobianEntry m_jac[3]; //3 orthogonal linear constraints
+
+ btTransform m_rbAFrame;
+ btTransform m_rbBFrame;
+
+ btScalar m_limitSoftness;
+ btScalar m_biasFactor;
+ btScalar m_relaxationFactor;
+
+ btScalar m_damping;
+
+ btScalar m_swingSpan1;
+ btScalar m_swingSpan2;
+ btScalar m_twistSpan;
+
+ btScalar m_fixThresh;
+
+ btVector3 m_swingAxis;
+ btVector3 m_twistAxis;
+
+ btScalar m_kSwing;
+ btScalar m_kTwist;
+
+ btScalar m_twistLimitSign;
+ btScalar m_swingCorrection;
+ btScalar m_twistCorrection;
+
+ btScalar m_twistAngle;
+
+ btScalar m_accSwingLimitImpulse;
+ btScalar m_accTwistLimitImpulse;
+
+ bool m_angularOnly;
+ bool m_solveTwistLimit;
+ bool m_solveSwingLimit;
+
+ bool m_useSolveConstraintObsolete;
+
+ // not yet used...
+ btScalar m_swingLimitRatio;
+ btScalar m_twistLimitRatio;
+ btVector3 m_twistAxisA;
+
+ // motor
+ bool m_bMotorEnabled;
+ bool m_bNormalizedMotorStrength;
+ btQuaternion m_qTarget;
+ btScalar m_maxMotorImpulse;
+ btVector3 m_accMotorImpulse;
+
+ // parameters
+ int m_flags;
+ btScalar m_linCFM;
+ btScalar m_linERP;
+ btScalar m_angCFM;
+
+protected:
+
+ void init();
+
+ void computeConeLimitInfo(const btQuaternion& qCone, // in
+ btScalar& swingAngle, btVector3& vSwingAxis, btScalar& swingLimit); // all outs
+
+ void computeTwistLimitInfo(const btQuaternion& qTwist, // in
+ btScalar& twistAngle, btVector3& vTwistAxis); // all outs
+
+ void adjustSwingAxisToUseEllipseNormal(btVector3& vSwingAxis) const;
+
+
+public:
+
+ BT_DECLARE_ALIGNED_ALLOCATOR();
+
+ btConeTwistConstraint(btRigidBody& rbA,btRigidBody& rbB,const btTransform& rbAFrame, const btTransform& rbBFrame);
+
+ btConeTwistConstraint(btRigidBody& rbA,const btTransform& rbAFrame);
+
+ virtual void buildJacobian();
+
+ virtual void getInfo1 (btConstraintInfo1* info);
+
+ void getInfo1NonVirtual(btConstraintInfo1* info);
+
+ virtual void getInfo2 (btConstraintInfo2* info);
+
+ void getInfo2NonVirtual(btConstraintInfo2* info,const btTransform& transA,const btTransform& transB,const btMatrix3x3& invInertiaWorldA,const btMatrix3x3& invInertiaWorldB);
+
+ virtual void solveConstraintObsolete(btSolverBody& bodyA,btSolverBody& bodyB,btScalar timeStep);
+
+
+ void updateRHS(btScalar timeStep);
+
+
+ const btRigidBody& getRigidBodyA() const
+ {
+ return m_rbA;
+ }
+ const btRigidBody& getRigidBodyB() const
+ {
+ return m_rbB;
+ }
+
+ void setAngularOnly(bool angularOnly)
+ {
+ m_angularOnly = angularOnly;
+ }
+
+ bool getAngularOnly() const
+ {
+ return m_angularOnly;
+ }
+
+ void setLimit(int limitIndex,btScalar limitValue)
+ {
+ switch (limitIndex)
+ {
+ case 3:
+ {
+ m_twistSpan = limitValue;
+ break;
+ }
+ case 4:
+ {
+ m_swingSpan2 = limitValue;
+ break;
+ }
+ case 5:
+ {
+ m_swingSpan1 = limitValue;
+ break;
+ }
+ default:
+ {
+ }
+ };
+ }
+
+ btScalar getLimit(int limitIndex) const
+ {
+ switch (limitIndex)
+ {
+ case 3:
+ {
+ return m_twistSpan;
+ break;
+ }
+ case 4:
+ {
+ return m_swingSpan2;
+ break;
+ }
+ case 5:
+ {
+ return m_swingSpan1;
+ break;
+ }
+ default:
+ {
+ btAssert(0 && "Invalid limitIndex specified for btConeTwistConstraint");
+ return 0.0;
+ }
+ };
+ }
+
+ // setLimit(), a few notes:
+ // _softness:
+ // 0->1, recommend ~0.8->1.
+ // describes % of limits where movement is free.
+ // beyond this softness %, the limit is gradually enforced until the "hard" (1.0) limit is reached.
+ // _biasFactor:
+ // 0->1?, recommend 0.3 +/-0.3 or so.
+ // strength with which constraint resists zeroth order (angular, not angular velocity) limit violation.
+ // __relaxationFactor:
+ // 0->1, recommend to stay near 1.
+ // the lower the value, the less the constraint will fight velocities which violate the angular limits.
+ void setLimit(btScalar _swingSpan1,btScalar _swingSpan2,btScalar _twistSpan, btScalar _softness = 1.f, btScalar _biasFactor = 0.3f, btScalar _relaxationFactor = 1.0f)
+ {
+ m_swingSpan1 = _swingSpan1;
+ m_swingSpan2 = _swingSpan2;
+ m_twistSpan = _twistSpan;
+
+ m_limitSoftness = _softness;
+ m_biasFactor = _biasFactor;
+ m_relaxationFactor = _relaxationFactor;
+ }
+
+ const btTransform& getAFrame() const { return m_rbAFrame; };
+ const btTransform& getBFrame() const { return m_rbBFrame; };
+
+ inline int getSolveTwistLimit()
+ {
+ return m_solveTwistLimit;
+ }
+
+ inline int getSolveSwingLimit()
+ {
+ return m_solveSwingLimit;
+ }
+
+ inline btScalar getTwistLimitSign()
+ {
+ return m_twistLimitSign;
+ }
+
+ void calcAngleInfo();
+ void calcAngleInfo2(const btTransform& transA, const btTransform& transB,const btMatrix3x3& invInertiaWorldA,const btMatrix3x3& invInertiaWorldB);
+
+ inline btScalar getSwingSpan1() const
+ {
+ return m_swingSpan1;
+ }
+ inline btScalar getSwingSpan2() const
+ {
+ return m_swingSpan2;
+ }
+ inline btScalar getTwistSpan() const
+ {
+ return m_twistSpan;
+ }
+ inline btScalar getLimitSoftness() const
+ {
+ return m_limitSoftness;
+ }
+ inline btScalar getBiasFactor() const
+ {
+ return m_biasFactor;
+ }
+ inline btScalar getRelaxationFactor() const
+ {
+ return m_relaxationFactor;
+ }
+ inline btScalar getTwistAngle() const
+ {
+ return m_twistAngle;
+ }
+ bool isPastSwingLimit() { return m_solveSwingLimit; }
+
+ btScalar getDamping() const { return m_damping; }
+ void setDamping(btScalar damping) { m_damping = damping; }
+
+ void enableMotor(bool b) { m_bMotorEnabled = b; }
+ bool isMotorEnabled() const { return m_bMotorEnabled; }
+ btScalar getMaxMotorImpulse() const { return m_maxMotorImpulse; }
+ bool isMaxMotorImpulseNormalized() const { return m_bNormalizedMotorStrength; }
+ void setMaxMotorImpulse(btScalar maxMotorImpulse) { m_maxMotorImpulse = maxMotorImpulse; m_bNormalizedMotorStrength = false; }
+ void setMaxMotorImpulseNormalized(btScalar maxMotorImpulse) { m_maxMotorImpulse = maxMotorImpulse; m_bNormalizedMotorStrength = true; }
+
+ btScalar getFixThresh() { return m_fixThresh; }
+ void setFixThresh(btScalar fixThresh) { m_fixThresh = fixThresh; }
+
+ // setMotorTarget:
+ // q: the desired rotation of bodyA wrt bodyB.
+ // note: if q violates the joint limits, the internal target is clamped to avoid conflicting impulses (very bad for stability)
+ // note: don't forget to enableMotor()
+ void setMotorTarget(const btQuaternion &q);
+ const btQuaternion& getMotorTarget() const { return m_qTarget; }
+
+ // same as above, but q is the desired rotation of frameA wrt frameB in constraint space
+ void setMotorTargetInConstraintSpace(const btQuaternion &q);
+
+ btVector3 GetPointForAngle(btScalar fAngleInRadians, btScalar fLength) const;
+
+ ///override the default global value of a parameter (such as ERP or CFM), optionally provide the axis (0..5).
+ ///If no axis is provided, it uses the default axis for this constraint.
+ virtual void setParam(int num, btScalar value, int axis = -1);
+
+ virtual void setFrames(const btTransform& frameA, const btTransform& frameB);
+
+ const btTransform& getFrameOffsetA() const
+ {
+ return m_rbAFrame;
+ }
+
+ const btTransform& getFrameOffsetB() const
+ {
+ return m_rbBFrame;
+ }
+
+
+ ///return the local value of parameter
+ virtual btScalar getParam(int num, int axis = -1) const;
+
+ int getFlags() const
+ {
+ return m_flags;
+ }
+
+ virtual int calculateSerializeBufferSize() const;
+
+ ///fills the dataBuffer and returns the struct name (and 0 on failure)
+ virtual const char* serialize(void* dataBuffer, btSerializer* serializer) const;
+
+};
+
+
+
+struct btConeTwistConstraintDoubleData
+{
+ btTypedConstraintDoubleData m_typeConstraintData;
+ btTransformDoubleData m_rbAFrame;
+ btTransformDoubleData m_rbBFrame;
+
+ //limits
+ double m_swingSpan1;
+ double m_swingSpan2;
+ double m_twistSpan;
+ double m_limitSoftness;
+ double m_biasFactor;
+ double m_relaxationFactor;
+
+ double m_damping;
+
+
+
+};
+
+#ifdef BT_BACKWARDS_COMPATIBLE_SERIALIZATION
+///this structure is not used, except for loading pre-2.82 .bullet files
+struct btConeTwistConstraintData
+{
+ btTypedConstraintData m_typeConstraintData;
+ btTransformFloatData m_rbAFrame;
+ btTransformFloatData m_rbBFrame;
+
+ //limits
+ float m_swingSpan1;
+ float m_swingSpan2;
+ float m_twistSpan;
+ float m_limitSoftness;
+ float m_biasFactor;
+ float m_relaxationFactor;
+
+ float m_damping;
+
+ char m_pad[4];
+
+};
+#endif //BT_BACKWARDS_COMPATIBLE_SERIALIZATION
+//
+
+SIMD_FORCE_INLINE int btConeTwistConstraint::calculateSerializeBufferSize() const
+{
+ return sizeof(btConeTwistConstraintData2);
+
+}
+
+
+ ///fills the dataBuffer and returns the struct name (and 0 on failure)
+SIMD_FORCE_INLINE const char* btConeTwistConstraint::serialize(void* dataBuffer, btSerializer* serializer) const
+{
+ btConeTwistConstraintData2* cone = (btConeTwistConstraintData2*) dataBuffer;
+ btTypedConstraint::serialize(&cone->m_typeConstraintData,serializer);
+
+ m_rbAFrame.serialize(cone->m_rbAFrame);
+ m_rbBFrame.serialize(cone->m_rbBFrame);
+
+ cone->m_swingSpan1 = m_swingSpan1;
+ cone->m_swingSpan2 = m_swingSpan2;
+ cone->m_twistSpan = m_twistSpan;
+ cone->m_limitSoftness = m_limitSoftness;
+ cone->m_biasFactor = m_biasFactor;
+ cone->m_relaxationFactor = m_relaxationFactor;
+ cone->m_damping = m_damping;
+
+ return btConeTwistConstraintDataName;
+}
+
+
+#endif //BT_CONETWISTCONSTRAINT_H
diff --git a/thirdparty/bullet/BulletDynamics/ConstraintSolver/btConstraintSolver.h b/thirdparty/bullet/BulletDynamics/ConstraintSolver/btConstraintSolver.h
new file mode 100644
index 0000000000..890afe6da4
--- /dev/null
+++ b/thirdparty/bullet/BulletDynamics/ConstraintSolver/btConstraintSolver.h
@@ -0,0 +1,65 @@
+/*
+Bullet Continuous Collision Detection and Physics Library
+Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
+
+This software is provided 'as-is', without any express or implied warranty.
+In no event will the authors be held liable for any damages arising from the use of this software.
+Permission is granted to anyone to use this software for any purpose,
+including commercial applications, and to alter it and redistribute it freely,
+subject to the following restrictions:
+
+1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
+2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
+3. This notice may not be removed or altered from any source distribution.
+*/
+
+#ifndef BT_CONSTRAINT_SOLVER_H
+#define BT_CONSTRAINT_SOLVER_H
+
+#include "LinearMath/btScalar.h"
+
+class btPersistentManifold;
+class btRigidBody;
+class btCollisionObject;
+class btTypedConstraint;
+struct btContactSolverInfo;
+struct btBroadphaseProxy;
+class btIDebugDraw;
+class btStackAlloc;
+class btDispatcher;
+/// btConstraintSolver provides solver interface
+
+
+enum btConstraintSolverType
+{
+ BT_SEQUENTIAL_IMPULSE_SOLVER=1,
+ BT_MLCP_SOLVER=2,
+ BT_NNCG_SOLVER=4
+};
+
+class btConstraintSolver
+{
+
+public:
+
+ virtual ~btConstraintSolver() {}
+
+ virtual void prepareSolve (int /* numBodies */, int /* numManifolds */) {;}
+
+ ///solve a group of constraints
+ virtual btScalar solveGroup(btCollisionObject** bodies,int numBodies,btPersistentManifold** manifold,int numManifolds,btTypedConstraint** constraints,int numConstraints, const btContactSolverInfo& info,class btIDebugDraw* debugDrawer,btDispatcher* dispatcher) = 0;
+
+ virtual void allSolved (const btContactSolverInfo& /* info */,class btIDebugDraw* /* debugDrawer */) {;}
+
+ ///clear internal cached data and reset random seed
+ virtual void reset() = 0;
+
+ virtual btConstraintSolverType getSolverType() const=0;
+
+
+};
+
+
+
+
+#endif //BT_CONSTRAINT_SOLVER_H
diff --git a/thirdparty/bullet/BulletDynamics/ConstraintSolver/btContactConstraint.cpp b/thirdparty/bullet/BulletDynamics/ConstraintSolver/btContactConstraint.cpp
new file mode 100644
index 0000000000..1098d0c96b
--- /dev/null
+++ b/thirdparty/bullet/BulletDynamics/ConstraintSolver/btContactConstraint.cpp
@@ -0,0 +1,177 @@
+/*
+Bullet Continuous Collision Detection and Physics Library
+Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
+
+This software is provided 'as-is', without any express or implied warranty.
+In no event will the authors be held liable for any damages arising from the use of this software.
+Permission is granted to anyone to use this software for any purpose,
+including commercial applications, and to alter it and redistribute it freely,
+subject to the following restrictions:
+
+1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
+2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
+3. This notice may not be removed or altered from any source distribution.
+*/
+
+
+#include "btContactConstraint.h"
+#include "BulletDynamics/Dynamics/btRigidBody.h"
+#include "LinearMath/btVector3.h"
+#include "btJacobianEntry.h"
+#include "btContactSolverInfo.h"
+#include "LinearMath/btMinMax.h"
+#include "BulletCollision/NarrowPhaseCollision/btManifoldPoint.h"
+
+
+
+btContactConstraint::btContactConstraint(btPersistentManifold* contactManifold,btRigidBody& rbA,btRigidBody& rbB)
+:btTypedConstraint(CONTACT_CONSTRAINT_TYPE,rbA,rbB),
+ m_contactManifold(*contactManifold)
+{
+
+}
+
+btContactConstraint::~btContactConstraint()
+{
+
+}
+
+void btContactConstraint::setContactManifold(btPersistentManifold* contactManifold)
+{
+ m_contactManifold = *contactManifold;
+}
+
+void btContactConstraint::getInfo1 (btConstraintInfo1* info)
+{
+
+}
+
+void btContactConstraint::getInfo2 (btConstraintInfo2* info)
+{
+
+}
+
+void btContactConstraint::buildJacobian()
+{
+
+}
+
+
+
+
+
+#include "btContactConstraint.h"
+#include "BulletDynamics/Dynamics/btRigidBody.h"
+#include "LinearMath/btVector3.h"
+#include "btJacobianEntry.h"
+#include "btContactSolverInfo.h"
+#include "LinearMath/btMinMax.h"
+#include "BulletCollision/NarrowPhaseCollision/btManifoldPoint.h"
+
+
+
+//response between two dynamic objects without friction and no restitution, assuming 0 penetration depth
+btScalar resolveSingleCollision(
+ btRigidBody* body1,
+ btCollisionObject* colObj2,
+ const btVector3& contactPositionWorld,
+ const btVector3& contactNormalOnB,
+ const btContactSolverInfo& solverInfo,
+ btScalar distance)
+{
+ btRigidBody* body2 = btRigidBody::upcast(colObj2);
+
+
+ const btVector3& normal = contactNormalOnB;
+
+ btVector3 rel_pos1 = contactPositionWorld - body1->getWorldTransform().getOrigin();
+ btVector3 rel_pos2 = contactPositionWorld - colObj2->getWorldTransform().getOrigin();
+
+ btVector3 vel1 = body1->getVelocityInLocalPoint(rel_pos1);
+ btVector3 vel2 = body2? body2->getVelocityInLocalPoint(rel_pos2) : btVector3(0,0,0);
+ btVector3 vel = vel1 - vel2;
+ btScalar rel_vel;
+ rel_vel = normal.dot(vel);
+
+ btScalar combinedRestitution = 0.f;
+ btScalar restitution = combinedRestitution* -rel_vel;
+
+ btScalar positionalError = solverInfo.m_erp *-distance /solverInfo.m_timeStep ;
+ btScalar velocityError = -(1.0f + restitution) * rel_vel;// * damping;
+ btScalar denom0 = body1->computeImpulseDenominator(contactPositionWorld,normal);
+ btScalar denom1 = body2? body2->computeImpulseDenominator(contactPositionWorld,normal) : 0.f;
+ btScalar relaxation = 1.f;
+ btScalar jacDiagABInv = relaxation/(denom0+denom1);
+
+ btScalar penetrationImpulse = positionalError * jacDiagABInv;
+ btScalar velocityImpulse = velocityError * jacDiagABInv;
+
+ btScalar normalImpulse = penetrationImpulse+velocityImpulse;
+ normalImpulse = 0.f > normalImpulse ? 0.f: normalImpulse;
+
+ body1->applyImpulse(normal*(normalImpulse), rel_pos1);
+ if (body2)
+ body2->applyImpulse(-normal*(normalImpulse), rel_pos2);
+
+ return normalImpulse;
+}
+
+
+//bilateral constraint between two dynamic objects
+void resolveSingleBilateral(btRigidBody& body1, const btVector3& pos1,
+ btRigidBody& body2, const btVector3& pos2,
+ btScalar distance, const btVector3& normal,btScalar& impulse ,btScalar timeStep)
+{
+ (void)timeStep;
+ (void)distance;
+
+
+ btScalar normalLenSqr = normal.length2();
+ btAssert(btFabs(normalLenSqr) < btScalar(1.1));
+ if (normalLenSqr > btScalar(1.1))
+ {
+ impulse = btScalar(0.);
+ return;
+ }
+ btVector3 rel_pos1 = pos1 - body1.getCenterOfMassPosition();
+ btVector3 rel_pos2 = pos2 - body2.getCenterOfMassPosition();
+ //this jacobian entry could be re-used for all iterations
+
+ btVector3 vel1 = body1.getVelocityInLocalPoint(rel_pos1);
+ btVector3 vel2 = body2.getVelocityInLocalPoint(rel_pos2);
+ btVector3 vel = vel1 - vel2;
+
+
+ btJacobianEntry jac(body1.getCenterOfMassTransform().getBasis().transpose(),
+ body2.getCenterOfMassTransform().getBasis().transpose(),
+ rel_pos1,rel_pos2,normal,body1.getInvInertiaDiagLocal(),body1.getInvMass(),
+ body2.getInvInertiaDiagLocal(),body2.getInvMass());
+
+ btScalar jacDiagAB = jac.getDiagonal();
+ btScalar jacDiagABInv = btScalar(1.) / jacDiagAB;
+
+ btScalar rel_vel = jac.getRelativeVelocity(
+ body1.getLinearVelocity(),
+ body1.getCenterOfMassTransform().getBasis().transpose() * body1.getAngularVelocity(),
+ body2.getLinearVelocity(),
+ body2.getCenterOfMassTransform().getBasis().transpose() * body2.getAngularVelocity());
+
+
+
+ rel_vel = normal.dot(vel);
+
+ //todo: move this into proper structure
+ btScalar contactDamping = btScalar(0.2);
+
+#ifdef ONLY_USE_LINEAR_MASS
+ btScalar massTerm = btScalar(1.) / (body1.getInvMass() + body2.getInvMass());
+ impulse = - contactDamping * rel_vel * massTerm;
+#else
+ btScalar velocityImpulse = -contactDamping * rel_vel * jacDiagABInv;
+ impulse = velocityImpulse;
+#endif
+}
+
+
+
+
diff --git a/thirdparty/bullet/BulletDynamics/ConstraintSolver/btContactConstraint.h b/thirdparty/bullet/BulletDynamics/ConstraintSolver/btContactConstraint.h
new file mode 100644
index 0000000000..adb2268353
--- /dev/null
+++ b/thirdparty/bullet/BulletDynamics/ConstraintSolver/btContactConstraint.h
@@ -0,0 +1,73 @@
+/*
+Bullet Continuous Collision Detection and Physics Library
+Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
+
+This software is provided 'as-is', without any express or implied warranty.
+In no event will the authors be held liable for any damages arising from the use of this software.
+Permission is granted to anyone to use this software for any purpose,
+including commercial applications, and to alter it and redistribute it freely,
+subject to the following restrictions:
+
+1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
+2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
+3. This notice may not be removed or altered from any source distribution.
+*/
+
+#ifndef BT_CONTACT_CONSTRAINT_H
+#define BT_CONTACT_CONSTRAINT_H
+
+#include "LinearMath/btVector3.h"
+#include "btJacobianEntry.h"
+#include "btTypedConstraint.h"
+#include "BulletCollision/NarrowPhaseCollision/btPersistentManifold.h"
+
+///btContactConstraint can be automatically created to solve contact constraints using the unified btTypedConstraint interface
+ATTRIBUTE_ALIGNED16(class) btContactConstraint : public btTypedConstraint
+{
+protected:
+
+ btPersistentManifold m_contactManifold;
+
+protected:
+
+
+ btContactConstraint(btPersistentManifold* contactManifold,btRigidBody& rbA,btRigidBody& rbB);
+
+public:
+
+ void setContactManifold(btPersistentManifold* contactManifold);
+
+ btPersistentManifold* getContactManifold()
+ {
+ return &m_contactManifold;
+ }
+
+ const btPersistentManifold* getContactManifold() const
+ {
+ return &m_contactManifold;
+ }
+
+ virtual ~btContactConstraint();
+
+ virtual void getInfo1 (btConstraintInfo1* info);
+
+ virtual void getInfo2 (btConstraintInfo2* info);
+
+ ///obsolete methods
+ virtual void buildJacobian();
+
+
+};
+
+///very basic collision resolution without friction
+btScalar resolveSingleCollision(btRigidBody* body1, class btCollisionObject* colObj2, const btVector3& contactPositionWorld,const btVector3& contactNormalOnB, const struct btContactSolverInfo& solverInfo,btScalar distance);
+
+
+///resolveSingleBilateral is an obsolete methods used for vehicle friction between two dynamic objects
+void resolveSingleBilateral(btRigidBody& body1, const btVector3& pos1,
+ btRigidBody& body2, const btVector3& pos2,
+ btScalar distance, const btVector3& normal,btScalar& impulse ,btScalar timeStep);
+
+
+
+#endif //BT_CONTACT_CONSTRAINT_H
diff --git a/thirdparty/bullet/BulletDynamics/ConstraintSolver/btContactSolverInfo.h b/thirdparty/bullet/BulletDynamics/ConstraintSolver/btContactSolverInfo.h
new file mode 100644
index 0000000000..28d0c1dd48
--- /dev/null
+++ b/thirdparty/bullet/BulletDynamics/ConstraintSolver/btContactSolverInfo.h
@@ -0,0 +1,167 @@
+/*
+Bullet Continuous Collision Detection and Physics Library
+Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
+
+This software is provided 'as-is', without any express or implied warranty.
+In no event will the authors be held liable for any damages arising from the use of this software.
+Permission is granted to anyone to use this software for any purpose,
+including commercial applications, and to alter it and redistribute it freely,
+subject to the following restrictions:
+
+1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
+2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
+3. This notice may not be removed or altered from any source distribution.
+*/
+
+#ifndef BT_CONTACT_SOLVER_INFO
+#define BT_CONTACT_SOLVER_INFO
+
+#include "LinearMath/btScalar.h"
+
+enum btSolverMode
+{
+ SOLVER_RANDMIZE_ORDER = 1,
+ SOLVER_FRICTION_SEPARATE = 2,
+ SOLVER_USE_WARMSTARTING = 4,
+ SOLVER_USE_2_FRICTION_DIRECTIONS = 16,
+ SOLVER_ENABLE_FRICTION_DIRECTION_CACHING = 32,
+ SOLVER_DISABLE_VELOCITY_DEPENDENT_FRICTION_DIRECTION = 64,
+ SOLVER_CACHE_FRIENDLY = 128,
+ SOLVER_SIMD = 256,
+ SOLVER_INTERLEAVE_CONTACT_AND_FRICTION_CONSTRAINTS = 512,
+ SOLVER_ALLOW_ZERO_LENGTH_FRICTION_DIRECTIONS = 1024
+};
+
+struct btContactSolverInfoData
+{
+
+
+ btScalar m_tau;
+ btScalar m_damping;//global non-contact constraint damping, can be locally overridden by constraints during 'getInfo2'.
+ btScalar m_friction;
+ btScalar m_timeStep;
+ btScalar m_restitution;
+ int m_numIterations;
+ btScalar m_maxErrorReduction;
+ btScalar m_sor;//successive over-relaxation term
+ btScalar m_erp;//error reduction for non-contact constraints
+ btScalar m_erp2;//error reduction for contact constraints
+ btScalar m_globalCfm;//constraint force mixing for contacts and non-contacts
+ btScalar m_frictionERP;//error reduction for friction constraints
+ btScalar m_frictionCFM;//constraint force mixing for friction constraints
+
+ int m_splitImpulse;
+ btScalar m_splitImpulsePenetrationThreshold;
+ btScalar m_splitImpulseTurnErp;
+ btScalar m_linearSlop;
+ btScalar m_warmstartingFactor;
+
+ int m_solverMode;
+ int m_restingContactRestitutionThreshold;
+ int m_minimumSolverBatchSize;
+ btScalar m_maxGyroscopicForce;
+ btScalar m_singleAxisRollingFrictionThreshold;
+ btScalar m_leastSquaresResidualThreshold;
+ btScalar m_restitutionVelocityThreshold;
+
+};
+
+struct btContactSolverInfo : public btContactSolverInfoData
+{
+
+
+
+ inline btContactSolverInfo()
+ {
+ m_tau = btScalar(0.6);
+ m_damping = btScalar(1.0);
+ m_friction = btScalar(0.3);
+ m_timeStep = btScalar(1.f/60.f);
+ m_restitution = btScalar(0.);
+ m_maxErrorReduction = btScalar(20.);
+ m_numIterations = 10;
+ m_erp = btScalar(0.2);
+ m_erp2 = btScalar(0.2);
+ m_globalCfm = btScalar(0.);
+ m_frictionERP = btScalar(0.2);//positional friction 'anchors' are disabled by default
+ m_frictionCFM = btScalar(0.);
+ m_sor = btScalar(1.);
+ m_splitImpulse = true;
+ m_splitImpulsePenetrationThreshold = -.04f;
+ m_splitImpulseTurnErp = 0.1f;
+ m_linearSlop = btScalar(0.0);
+ m_warmstartingFactor=btScalar(0.85);
+ //m_solverMode = SOLVER_USE_WARMSTARTING | SOLVER_SIMD | SOLVER_DISABLE_VELOCITY_DEPENDENT_FRICTION_DIRECTION|SOLVER_USE_2_FRICTION_DIRECTIONS|SOLVER_ENABLE_FRICTION_DIRECTION_CACHING;// | SOLVER_RANDMIZE_ORDER;
+ m_solverMode = SOLVER_USE_WARMSTARTING | SOLVER_SIMD;// | SOLVER_RANDMIZE_ORDER;
+ m_restingContactRestitutionThreshold = 2;//unused as of 2.81
+ m_minimumSolverBatchSize = 128; //try to combine islands until the amount of constraints reaches this limit
+ m_maxGyroscopicForce = 100.f; ///it is only used for 'explicit' version of gyroscopic force
+ m_singleAxisRollingFrictionThreshold = 1e30f;///if the velocity is above this threshold, it will use a single constraint row (axis), otherwise 3 rows.
+ m_leastSquaresResidualThreshold = 0.f;
+ m_restitutionVelocityThreshold = 0.2f;//if the relative velocity is below this threshold, there is zero restitution
+ }
+};
+
+///do not change those serialization structures, it requires an updated sBulletDNAstr/sBulletDNAstr64
+struct btContactSolverInfoDoubleData
+{
+ double m_tau;
+ double m_damping;//global non-contact constraint damping, can be locally overridden by constraints during 'getInfo2'.
+ double m_friction;
+ double m_timeStep;
+ double m_restitution;
+ double m_maxErrorReduction;
+ double m_sor;
+ double m_erp;//used as Baumgarte factor
+ double m_erp2;//used in Split Impulse
+ double m_globalCfm;//constraint force mixing
+ double m_splitImpulsePenetrationThreshold;
+ double m_splitImpulseTurnErp;
+ double m_linearSlop;
+ double m_warmstartingFactor;
+ double m_maxGyroscopicForce;///it is only used for 'explicit' version of gyroscopic force
+ double m_singleAxisRollingFrictionThreshold;
+
+ int m_numIterations;
+ int m_solverMode;
+ int m_restingContactRestitutionThreshold;
+ int m_minimumSolverBatchSize;
+ int m_splitImpulse;
+ char m_padding[4];
+
+};
+///do not change those serialization structures, it requires an updated sBulletDNAstr/sBulletDNAstr64
+struct btContactSolverInfoFloatData
+{
+ float m_tau;
+ float m_damping;//global non-contact constraint damping, can be locally overridden by constraints during 'getInfo2'.
+ float m_friction;
+ float m_timeStep;
+
+ float m_restitution;
+ float m_maxErrorReduction;
+ float m_sor;
+ float m_erp;//used as Baumgarte factor
+
+ float m_erp2;//used in Split Impulse
+ float m_globalCfm;//constraint force mixing
+ float m_splitImpulsePenetrationThreshold;
+ float m_splitImpulseTurnErp;
+
+ float m_linearSlop;
+ float m_warmstartingFactor;
+ float m_maxGyroscopicForce;
+ float m_singleAxisRollingFrictionThreshold;
+
+ int m_numIterations;
+ int m_solverMode;
+ int m_restingContactRestitutionThreshold;
+ int m_minimumSolverBatchSize;
+
+ int m_splitImpulse;
+ char m_padding[4];
+};
+
+
+
+#endif //BT_CONTACT_SOLVER_INFO
diff --git a/thirdparty/bullet/BulletDynamics/ConstraintSolver/btFixedConstraint.cpp b/thirdparty/bullet/BulletDynamics/ConstraintSolver/btFixedConstraint.cpp
new file mode 100644
index 0000000000..75d81cc08c
--- /dev/null
+++ b/thirdparty/bullet/BulletDynamics/ConstraintSolver/btFixedConstraint.cpp
@@ -0,0 +1,37 @@
+/*
+Bullet Continuous Collision Detection and Physics Library
+Copyright (c) 2013 Erwin Coumans http://bulletphysics.org
+
+This software is provided 'as-is', without any express or implied warranty.
+In no event will the authors be held liable for any damages arising from the use of this software.
+Permission is granted to anyone to use this software for any purpose,
+including commercial applications, and to alter it and redistribute it freely,
+subject to the following restrictions:
+
+1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
+2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
+3. This notice may not be removed or altered from any source distribution.
+*/
+
+
+#include "btFixedConstraint.h"
+#include "BulletDynamics/Dynamics/btRigidBody.h"
+#include "LinearMath/btTransformUtil.h"
+#include <new>
+
+
+btFixedConstraint::btFixedConstraint(btRigidBody& rbA,btRigidBody& rbB, const btTransform& frameInA,const btTransform& frameInB)
+:btGeneric6DofSpring2Constraint(rbA,rbB,frameInA,frameInB)
+{
+ setAngularLowerLimit(btVector3(0,0,0));
+ setAngularUpperLimit(btVector3(0,0,0));
+ setLinearLowerLimit(btVector3(0,0,0));
+ setLinearUpperLimit(btVector3(0,0,0));
+}
+
+
+
+
+btFixedConstraint::~btFixedConstraint ()
+{
+}
diff --git a/thirdparty/bullet/BulletDynamics/ConstraintSolver/btFixedConstraint.h b/thirdparty/bullet/BulletDynamics/ConstraintSolver/btFixedConstraint.h
new file mode 100644
index 0000000000..bff2008b28
--- /dev/null
+++ b/thirdparty/bullet/BulletDynamics/ConstraintSolver/btFixedConstraint.h
@@ -0,0 +1,33 @@
+/*
+Bullet Continuous Collision Detection and Physics Library
+Copyright (c) 2013 Erwin Coumans http://bulletphysics.org
+
+This software is provided 'as-is', without any express or implied warranty.
+In no event will the authors be held liable for any damages arising from the use of this software.
+Permission is granted to anyone to use this software for any purpose,
+including commercial applications, and to alter it and redistribute it freely,
+subject to the following restrictions:
+
+1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
+2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
+3. This notice may not be removed or altered from any source distribution.
+*/
+
+#ifndef BT_FIXED_CONSTRAINT_H
+#define BT_FIXED_CONSTRAINT_H
+
+#include "btGeneric6DofSpring2Constraint.h"
+
+
+ATTRIBUTE_ALIGNED16(class) btFixedConstraint : public btGeneric6DofSpring2Constraint
+{
+
+public:
+ btFixedConstraint(btRigidBody& rbA,btRigidBody& rbB, const btTransform& frameInA,const btTransform& frameInB);
+
+
+ virtual ~btFixedConstraint();
+
+};
+
+#endif //BT_FIXED_CONSTRAINT_H
diff --git a/thirdparty/bullet/BulletDynamics/ConstraintSolver/btGearConstraint.cpp b/thirdparty/bullet/BulletDynamics/ConstraintSolver/btGearConstraint.cpp
new file mode 100644
index 0000000000..bcd457b673
--- /dev/null
+++ b/thirdparty/bullet/BulletDynamics/ConstraintSolver/btGearConstraint.cpp
@@ -0,0 +1,54 @@
+/*
+Bullet Continuous Collision Detection and Physics Library
+Copyright (c) 2012 Advanced Micro Devices, Inc. http://bulletphysics.org
+
+This software is provided 'as-is', without any express or implied warranty.
+In no event will the authors be held liable for any damages arising from the use of this software.
+Permission is granted to anyone to use this software for any purpose,
+including commercial applications, and to alter it and redistribute it freely,
+subject to the following restrictions:
+
+1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
+2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
+3. This notice may not be removed or altered from any source distribution.
+*/
+
+/// Implemented by Erwin Coumans. The idea for the constraint comes from Dimitris Papavasiliou.
+
+#include "btGearConstraint.h"
+
+btGearConstraint::btGearConstraint(btRigidBody& rbA, btRigidBody& rbB, const btVector3& axisInA,const btVector3& axisInB, btScalar ratio)
+:btTypedConstraint(GEAR_CONSTRAINT_TYPE,rbA,rbB),
+m_axisInA(axisInA),
+m_axisInB(axisInB),
+m_ratio(ratio)
+{
+}
+
+btGearConstraint::~btGearConstraint ()
+{
+}
+
+void btGearConstraint::getInfo1 (btConstraintInfo1* info)
+{
+ info->m_numConstraintRows = 1;
+ info->nub = 1;
+}
+
+void btGearConstraint::getInfo2 (btConstraintInfo2* info)
+{
+ btVector3 globalAxisA, globalAxisB;
+
+ globalAxisA = m_rbA.getWorldTransform().getBasis()*this->m_axisInA;
+ globalAxisB = m_rbB.getWorldTransform().getBasis()*this->m_axisInB;
+
+ info->m_J1angularAxis[0] = globalAxisA[0];
+ info->m_J1angularAxis[1] = globalAxisA[1];
+ info->m_J1angularAxis[2] = globalAxisA[2];
+
+ info->m_J2angularAxis[0] = m_ratio*globalAxisB[0];
+ info->m_J2angularAxis[1] = m_ratio*globalAxisB[1];
+ info->m_J2angularAxis[2] = m_ratio*globalAxisB[2];
+
+}
+
diff --git a/thirdparty/bullet/BulletDynamics/ConstraintSolver/btGearConstraint.h b/thirdparty/bullet/BulletDynamics/ConstraintSolver/btGearConstraint.h
new file mode 100644
index 0000000000..e4613455a2
--- /dev/null
+++ b/thirdparty/bullet/BulletDynamics/ConstraintSolver/btGearConstraint.h
@@ -0,0 +1,160 @@
+/*
+Bullet Continuous Collision Detection and Physics Library
+Copyright (c) 2012 Advanced Micro Devices, Inc. http://bulletphysics.org
+
+This software is provided 'as-is', without any express or implied warranty.
+In no event will the authors be held liable for any damages arising from the use of this software.
+Permission is granted to anyone to use this software for any purpose,
+including commercial applications, and to alter it and redistribute it freely,
+subject to the following restrictions:
+
+1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
+2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
+3. This notice may not be removed or altered from any source distribution.
+*/
+
+
+
+#ifndef BT_GEAR_CONSTRAINT_H
+#define BT_GEAR_CONSTRAINT_H
+
+#include "BulletDynamics/ConstraintSolver/btTypedConstraint.h"
+
+
+#ifdef BT_USE_DOUBLE_PRECISION
+#define btGearConstraintData btGearConstraintDoubleData
+#define btGearConstraintDataName "btGearConstraintDoubleData"
+#else
+#define btGearConstraintData btGearConstraintFloatData
+#define btGearConstraintDataName "btGearConstraintFloatData"
+#endif //BT_USE_DOUBLE_PRECISION
+
+
+
+///The btGeatConstraint will couple the angular velocity for two bodies around given local axis and ratio.
+///See Bullet/Demos/ConstraintDemo for an example use.
+class btGearConstraint : public btTypedConstraint
+{
+protected:
+ btVector3 m_axisInA;
+ btVector3 m_axisInB;
+ bool m_useFrameA;
+ btScalar m_ratio;
+
+public:
+ btGearConstraint(btRigidBody& rbA, btRigidBody& rbB, const btVector3& axisInA,const btVector3& axisInB, btScalar ratio=1.f);
+ virtual ~btGearConstraint ();
+
+ ///internal method used by the constraint solver, don't use them directly
+ virtual void getInfo1 (btConstraintInfo1* info);
+
+ ///internal method used by the constraint solver, don't use them directly
+ virtual void getInfo2 (btConstraintInfo2* info);
+
+ void setAxisA(btVector3& axisA)
+ {
+ m_axisInA = axisA;
+ }
+ void setAxisB(btVector3& axisB)
+ {
+ m_axisInB = axisB;
+ }
+ void setRatio(btScalar ratio)
+ {
+ m_ratio = ratio;
+ }
+ const btVector3& getAxisA() const
+ {
+ return m_axisInA;
+ }
+ const btVector3& getAxisB() const
+ {
+ return m_axisInB;
+ }
+ btScalar getRatio() const
+ {
+ return m_ratio;
+ }
+
+
+ virtual void setParam(int num, btScalar value, int axis = -1)
+ {
+ (void) num;
+ (void) value;
+ (void) axis;
+ btAssert(0);
+ }
+
+ ///return the local value of parameter
+ virtual btScalar getParam(int num, int axis = -1) const
+ {
+ (void) num;
+ (void) axis;
+ btAssert(0);
+ return 0.f;
+ }
+
+ virtual int calculateSerializeBufferSize() const;
+
+ ///fills the dataBuffer and returns the struct name (and 0 on failure)
+ virtual const char* serialize(void* dataBuffer, btSerializer* serializer) const;
+};
+
+
+
+
+///do not change those serialization structures, it requires an updated sBulletDNAstr/sBulletDNAstr64
+struct btGearConstraintFloatData
+{
+ btTypedConstraintFloatData m_typeConstraintData;
+
+ btVector3FloatData m_axisInA;
+ btVector3FloatData m_axisInB;
+
+ float m_ratio;
+ char m_padding[4];
+};
+
+struct btGearConstraintDoubleData
+{
+ btTypedConstraintDoubleData m_typeConstraintData;
+
+ btVector3DoubleData m_axisInA;
+ btVector3DoubleData m_axisInB;
+
+ double m_ratio;
+};
+
+SIMD_FORCE_INLINE int btGearConstraint::calculateSerializeBufferSize() const
+{
+ return sizeof(btGearConstraintData);
+}
+
+ ///fills the dataBuffer and returns the struct name (and 0 on failure)
+SIMD_FORCE_INLINE const char* btGearConstraint::serialize(void* dataBuffer, btSerializer* serializer) const
+{
+ btGearConstraintData* gear = (btGearConstraintData*)dataBuffer;
+ btTypedConstraint::serialize(&gear->m_typeConstraintData,serializer);
+
+ m_axisInA.serialize( gear->m_axisInA );
+ m_axisInB.serialize( gear->m_axisInB );
+
+ gear->m_ratio = m_ratio;
+
+ // Fill padding with zeros to appease msan.
+#ifndef BT_USE_DOUBLE_PRECISION
+ gear->m_padding[0] = 0;
+ gear->m_padding[1] = 0;
+ gear->m_padding[2] = 0;
+ gear->m_padding[3] = 0;
+#endif
+
+ return btGearConstraintDataName;
+}
+
+
+
+
+
+
+#endif //BT_GEAR_CONSTRAINT_H
diff --git a/thirdparty/bullet/BulletDynamics/ConstraintSolver/btGeneric6DofConstraint.cpp b/thirdparty/bullet/BulletDynamics/ConstraintSolver/btGeneric6DofConstraint.cpp
new file mode 100644
index 0000000000..fa17254ec3
--- /dev/null
+++ b/thirdparty/bullet/BulletDynamics/ConstraintSolver/btGeneric6DofConstraint.cpp
@@ -0,0 +1,1063 @@
+/*
+Bullet Continuous Collision Detection and Physics Library
+Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
+
+This software is provided 'as-is', without any express or implied warranty.
+In no event will the authors be held liable for any damages arising from the use of this software.
+Permission is granted to anyone to use this software for any purpose,
+including commercial applications, and to alter it and redistribute it freely,
+subject to the following restrictions:
+
+1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
+2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
+3. This notice may not be removed or altered from any source distribution.
+*/
+/*
+2007-09-09
+Refactored by Francisco Le?n
+email: projectileman@yahoo.com
+http://gimpact.sf.net
+*/
+
+#include "btGeneric6DofConstraint.h"
+#include "BulletDynamics/Dynamics/btRigidBody.h"
+#include "LinearMath/btTransformUtil.h"
+#include "LinearMath/btTransformUtil.h"
+#include <new>
+
+
+
+#define D6_USE_OBSOLETE_METHOD false
+#define D6_USE_FRAME_OFFSET true
+
+
+
+
+
+
+btGeneric6DofConstraint::btGeneric6DofConstraint(btRigidBody& rbA, btRigidBody& rbB, const btTransform& frameInA, const btTransform& frameInB, bool useLinearReferenceFrameA)
+: btTypedConstraint(D6_CONSTRAINT_TYPE, rbA, rbB)
+, m_frameInA(frameInA)
+, m_frameInB(frameInB),
+m_useLinearReferenceFrameA(useLinearReferenceFrameA),
+m_useOffsetForConstraintFrame(D6_USE_FRAME_OFFSET),
+m_flags(0),
+m_useSolveConstraintObsolete(D6_USE_OBSOLETE_METHOD)
+{
+ calculateTransforms();
+}
+
+
+
+btGeneric6DofConstraint::btGeneric6DofConstraint(btRigidBody& rbB, const btTransform& frameInB, bool useLinearReferenceFrameB)
+ : btTypedConstraint(D6_CONSTRAINT_TYPE, getFixedBody(), rbB),
+ m_frameInB(frameInB),
+ m_useLinearReferenceFrameA(useLinearReferenceFrameB),
+ m_useOffsetForConstraintFrame(D6_USE_FRAME_OFFSET),
+ m_flags(0),
+ m_useSolveConstraintObsolete(false)
+{
+ ///not providing rigidbody A means implicitly using worldspace for body A
+ m_frameInA = rbB.getCenterOfMassTransform() * m_frameInB;
+ calculateTransforms();
+}
+
+
+
+
+#define GENERIC_D6_DISABLE_WARMSTARTING 1
+
+
+
+btScalar btGetMatrixElem(const btMatrix3x3& mat, int index);
+btScalar btGetMatrixElem(const btMatrix3x3& mat, int index)
+{
+ int i = index%3;
+ int j = index/3;
+ return mat[i][j];
+}
+
+
+
+///MatrixToEulerXYZ from http://www.geometrictools.com/LibFoundation/Mathematics/Wm4Matrix3.inl.html
+bool matrixToEulerXYZ(const btMatrix3x3& mat,btVector3& xyz);
+bool matrixToEulerXYZ(const btMatrix3x3& mat,btVector3& xyz)
+{
+ // // rot = cy*cz -cy*sz sy
+ // // cz*sx*sy+cx*sz cx*cz-sx*sy*sz -cy*sx
+ // // -cx*cz*sy+sx*sz cz*sx+cx*sy*sz cx*cy
+ //
+
+ btScalar fi = btGetMatrixElem(mat,2);
+ if (fi < btScalar(1.0f))
+ {
+ if (fi > btScalar(-1.0f))
+ {
+ xyz[0] = btAtan2(-btGetMatrixElem(mat,5),btGetMatrixElem(mat,8));
+ xyz[1] = btAsin(btGetMatrixElem(mat,2));
+ xyz[2] = btAtan2(-btGetMatrixElem(mat,1),btGetMatrixElem(mat,0));
+ return true;
+ }
+ else
+ {
+ // WARNING. Not unique. XA - ZA = -atan2(r10,r11)
+ xyz[0] = -btAtan2(btGetMatrixElem(mat,3),btGetMatrixElem(mat,4));
+ xyz[1] = -SIMD_HALF_PI;
+ xyz[2] = btScalar(0.0);
+ return false;
+ }
+ }
+ else
+ {
+ // WARNING. Not unique. XAngle + ZAngle = atan2(r10,r11)
+ xyz[0] = btAtan2(btGetMatrixElem(mat,3),btGetMatrixElem(mat,4));
+ xyz[1] = SIMD_HALF_PI;
+ xyz[2] = 0.0;
+ }
+ return false;
+}
+
+//////////////////////////// btRotationalLimitMotor ////////////////////////////////////
+
+int btRotationalLimitMotor::testLimitValue(btScalar test_value)
+{
+ if(m_loLimit>m_hiLimit)
+ {
+ m_currentLimit = 0;//Free from violation
+ return 0;
+ }
+ if (test_value < m_loLimit)
+ {
+ m_currentLimit = 1;//low limit violation
+ m_currentLimitError = test_value - m_loLimit;
+ if(m_currentLimitError>SIMD_PI)
+ m_currentLimitError-=SIMD_2_PI;
+ else if(m_currentLimitError<-SIMD_PI)
+ m_currentLimitError+=SIMD_2_PI;
+ return 1;
+ }
+ else if (test_value> m_hiLimit)
+ {
+ m_currentLimit = 2;//High limit violation
+ m_currentLimitError = test_value - m_hiLimit;
+ if(m_currentLimitError>SIMD_PI)
+ m_currentLimitError-=SIMD_2_PI;
+ else if(m_currentLimitError<-SIMD_PI)
+ m_currentLimitError+=SIMD_2_PI;
+ return 2;
+ };
+
+ m_currentLimit = 0;//Free from violation
+ return 0;
+
+}
+
+
+
+btScalar btRotationalLimitMotor::solveAngularLimits(
+ btScalar timeStep,btVector3& axis,btScalar jacDiagABInv,
+ btRigidBody * body0, btRigidBody * body1 )
+{
+ if (needApplyTorques()==false) return 0.0f;
+
+ btScalar target_velocity = m_targetVelocity;
+ btScalar maxMotorForce = m_maxMotorForce;
+
+ //current error correction
+ if (m_currentLimit!=0)
+ {
+ target_velocity = -m_stopERP*m_currentLimitError/(timeStep);
+ maxMotorForce = m_maxLimitForce;
+ }
+
+ maxMotorForce *= timeStep;
+
+ // current velocity difference
+
+ btVector3 angVelA = body0->getAngularVelocity();
+ btVector3 angVelB = body1->getAngularVelocity();
+
+ btVector3 vel_diff;
+ vel_diff = angVelA-angVelB;
+
+
+
+ btScalar rel_vel = axis.dot(vel_diff);
+
+ // correction velocity
+ btScalar motor_relvel = m_limitSoftness*(target_velocity - m_damping*rel_vel);
+
+
+ if ( motor_relvel < SIMD_EPSILON && motor_relvel > -SIMD_EPSILON )
+ {
+ return 0.0f;//no need for applying force
+ }
+
+
+ // correction impulse
+ btScalar unclippedMotorImpulse = (1+m_bounce)*motor_relvel*jacDiagABInv;
+
+ // clip correction impulse
+ btScalar clippedMotorImpulse;
+
+ ///@todo: should clip against accumulated impulse
+ if (unclippedMotorImpulse>0.0f)
+ {
+ clippedMotorImpulse = unclippedMotorImpulse > maxMotorForce? maxMotorForce: unclippedMotorImpulse;
+ }
+ else
+ {
+ clippedMotorImpulse = unclippedMotorImpulse < -maxMotorForce ? -maxMotorForce: unclippedMotorImpulse;
+ }
+
+
+ // sort with accumulated impulses
+ btScalar lo = btScalar(-BT_LARGE_FLOAT);
+ btScalar hi = btScalar(BT_LARGE_FLOAT);
+
+ btScalar oldaccumImpulse = m_accumulatedImpulse;
+ btScalar sum = oldaccumImpulse + clippedMotorImpulse;
+ m_accumulatedImpulse = sum > hi ? btScalar(0.) : sum < lo ? btScalar(0.) : sum;
+
+ clippedMotorImpulse = m_accumulatedImpulse - oldaccumImpulse;
+
+ btVector3 motorImp = clippedMotorImpulse * axis;
+
+ body0->applyTorqueImpulse(motorImp);
+ body1->applyTorqueImpulse(-motorImp);
+
+ return clippedMotorImpulse;
+
+
+}
+
+//////////////////////////// End btRotationalLimitMotor ////////////////////////////////////
+
+
+
+
+//////////////////////////// btTranslationalLimitMotor ////////////////////////////////////
+
+
+int btTranslationalLimitMotor::testLimitValue(int limitIndex, btScalar test_value)
+{
+ btScalar loLimit = m_lowerLimit[limitIndex];
+ btScalar hiLimit = m_upperLimit[limitIndex];
+ if(loLimit > hiLimit)
+ {
+ m_currentLimit[limitIndex] = 0;//Free from violation
+ m_currentLimitError[limitIndex] = btScalar(0.f);
+ return 0;
+ }
+
+ if (test_value < loLimit)
+ {
+ m_currentLimit[limitIndex] = 2;//low limit violation
+ m_currentLimitError[limitIndex] = test_value - loLimit;
+ return 2;
+ }
+ else if (test_value> hiLimit)
+ {
+ m_currentLimit[limitIndex] = 1;//High limit violation
+ m_currentLimitError[limitIndex] = test_value - hiLimit;
+ return 1;
+ };
+
+ m_currentLimit[limitIndex] = 0;//Free from violation
+ m_currentLimitError[limitIndex] = btScalar(0.f);
+ return 0;
+}
+
+
+
+btScalar btTranslationalLimitMotor::solveLinearAxis(
+ btScalar timeStep,
+ btScalar jacDiagABInv,
+ btRigidBody& body1,const btVector3 &pointInA,
+ btRigidBody& body2,const btVector3 &pointInB,
+ int limit_index,
+ const btVector3 & axis_normal_on_a,
+ const btVector3 & anchorPos)
+{
+
+ ///find relative velocity
+ // btVector3 rel_pos1 = pointInA - body1.getCenterOfMassPosition();
+ // btVector3 rel_pos2 = pointInB - body2.getCenterOfMassPosition();
+ btVector3 rel_pos1 = anchorPos - body1.getCenterOfMassPosition();
+ btVector3 rel_pos2 = anchorPos - body2.getCenterOfMassPosition();
+
+ btVector3 vel1 = body1.getVelocityInLocalPoint(rel_pos1);
+ btVector3 vel2 = body2.getVelocityInLocalPoint(rel_pos2);
+ btVector3 vel = vel1 - vel2;
+
+ btScalar rel_vel = axis_normal_on_a.dot(vel);
+
+
+
+ /// apply displacement correction
+
+ //positional error (zeroth order error)
+ btScalar depth = -(pointInA - pointInB).dot(axis_normal_on_a);
+ btScalar lo = btScalar(-BT_LARGE_FLOAT);
+ btScalar hi = btScalar(BT_LARGE_FLOAT);
+
+ btScalar minLimit = m_lowerLimit[limit_index];
+ btScalar maxLimit = m_upperLimit[limit_index];
+
+ //handle the limits
+ if (minLimit < maxLimit)
+ {
+ {
+ if (depth > maxLimit)
+ {
+ depth -= maxLimit;
+ lo = btScalar(0.);
+
+ }
+ else
+ {
+ if (depth < minLimit)
+ {
+ depth -= minLimit;
+ hi = btScalar(0.);
+ }
+ else
+ {
+ return 0.0f;
+ }
+ }
+ }
+ }
+
+ btScalar normalImpulse= m_limitSoftness*(m_restitution*depth/timeStep - m_damping*rel_vel) * jacDiagABInv;
+
+
+
+
+ btScalar oldNormalImpulse = m_accumulatedImpulse[limit_index];
+ btScalar sum = oldNormalImpulse + normalImpulse;
+ m_accumulatedImpulse[limit_index] = sum > hi ? btScalar(0.) : sum < lo ? btScalar(0.) : sum;
+ normalImpulse = m_accumulatedImpulse[limit_index] - oldNormalImpulse;
+
+ btVector3 impulse_vector = axis_normal_on_a * normalImpulse;
+ body1.applyImpulse( impulse_vector, rel_pos1);
+ body2.applyImpulse(-impulse_vector, rel_pos2);
+
+
+
+ return normalImpulse;
+}
+
+//////////////////////////// btTranslationalLimitMotor ////////////////////////////////////
+
+void btGeneric6DofConstraint::calculateAngleInfo()
+{
+ btMatrix3x3 relative_frame = m_calculatedTransformA.getBasis().inverse()*m_calculatedTransformB.getBasis();
+ matrixToEulerXYZ(relative_frame,m_calculatedAxisAngleDiff);
+ // in euler angle mode we do not actually constrain the angular velocity
+ // along the axes axis[0] and axis[2] (although we do use axis[1]) :
+ //
+ // to get constrain w2-w1 along ...not
+ // ------ --------------------- ------
+ // d(angle[0])/dt = 0 ax[1] x ax[2] ax[0]
+ // d(angle[1])/dt = 0 ax[1]
+ // d(angle[2])/dt = 0 ax[0] x ax[1] ax[2]
+ //
+ // constraining w2-w1 along an axis 'a' means that a'*(w2-w1)=0.
+ // to prove the result for angle[0], write the expression for angle[0] from
+ // GetInfo1 then take the derivative. to prove this for angle[2] it is
+ // easier to take the euler rate expression for d(angle[2])/dt with respect
+ // to the components of w and set that to 0.
+ btVector3 axis0 = m_calculatedTransformB.getBasis().getColumn(0);
+ btVector3 axis2 = m_calculatedTransformA.getBasis().getColumn(2);
+
+ m_calculatedAxis[1] = axis2.cross(axis0);
+ m_calculatedAxis[0] = m_calculatedAxis[1].cross(axis2);
+ m_calculatedAxis[2] = axis0.cross(m_calculatedAxis[1]);
+
+ m_calculatedAxis[0].normalize();
+ m_calculatedAxis[1].normalize();
+ m_calculatedAxis[2].normalize();
+
+}
+
+void btGeneric6DofConstraint::calculateTransforms()
+{
+ calculateTransforms(m_rbA.getCenterOfMassTransform(),m_rbB.getCenterOfMassTransform());
+}
+
+void btGeneric6DofConstraint::calculateTransforms(const btTransform& transA,const btTransform& transB)
+{
+ m_calculatedTransformA = transA * m_frameInA;
+ m_calculatedTransformB = transB * m_frameInB;
+ calculateLinearInfo();
+ calculateAngleInfo();
+ if(m_useOffsetForConstraintFrame)
+ { // get weight factors depending on masses
+ btScalar miA = getRigidBodyA().getInvMass();
+ btScalar miB = getRigidBodyB().getInvMass();
+ m_hasStaticBody = (miA < SIMD_EPSILON) || (miB < SIMD_EPSILON);
+ btScalar miS = miA + miB;
+ if(miS > btScalar(0.f))
+ {
+ m_factA = miB / miS;
+ }
+ else
+ {
+ m_factA = btScalar(0.5f);
+ }
+ m_factB = btScalar(1.0f) - m_factA;
+ }
+}
+
+
+
+void btGeneric6DofConstraint::buildLinearJacobian(
+ btJacobianEntry & jacLinear,const btVector3 & normalWorld,
+ const btVector3 & pivotAInW,const btVector3 & pivotBInW)
+{
+ new (&jacLinear) btJacobianEntry(
+ m_rbA.getCenterOfMassTransform().getBasis().transpose(),
+ m_rbB.getCenterOfMassTransform().getBasis().transpose(),
+ pivotAInW - m_rbA.getCenterOfMassPosition(),
+ pivotBInW - m_rbB.getCenterOfMassPosition(),
+ normalWorld,
+ m_rbA.getInvInertiaDiagLocal(),
+ m_rbA.getInvMass(),
+ m_rbB.getInvInertiaDiagLocal(),
+ m_rbB.getInvMass());
+}
+
+
+
+void btGeneric6DofConstraint::buildAngularJacobian(
+ btJacobianEntry & jacAngular,const btVector3 & jointAxisW)
+{
+ new (&jacAngular) btJacobianEntry(jointAxisW,
+ m_rbA.getCenterOfMassTransform().getBasis().transpose(),
+ m_rbB.getCenterOfMassTransform().getBasis().transpose(),
+ m_rbA.getInvInertiaDiagLocal(),
+ m_rbB.getInvInertiaDiagLocal());
+
+}
+
+
+
+bool btGeneric6DofConstraint::testAngularLimitMotor(int axis_index)
+{
+ btScalar angle = m_calculatedAxisAngleDiff[axis_index];
+ angle = btAdjustAngleToLimits(angle, m_angularLimits[axis_index].m_loLimit, m_angularLimits[axis_index].m_hiLimit);
+ m_angularLimits[axis_index].m_currentPosition = angle;
+ //test limits
+ m_angularLimits[axis_index].testLimitValue(angle);
+ return m_angularLimits[axis_index].needApplyTorques();
+}
+
+
+
+void btGeneric6DofConstraint::buildJacobian()
+{
+#ifndef __SPU__
+ if (m_useSolveConstraintObsolete)
+ {
+
+ // Clear accumulated impulses for the next simulation step
+ m_linearLimits.m_accumulatedImpulse.setValue(btScalar(0.), btScalar(0.), btScalar(0.));
+ int i;
+ for(i = 0; i < 3; i++)
+ {
+ m_angularLimits[i].m_accumulatedImpulse = btScalar(0.);
+ }
+ //calculates transform
+ calculateTransforms(m_rbA.getCenterOfMassTransform(),m_rbB.getCenterOfMassTransform());
+
+ // const btVector3& pivotAInW = m_calculatedTransformA.getOrigin();
+ // const btVector3& pivotBInW = m_calculatedTransformB.getOrigin();
+ calcAnchorPos();
+ btVector3 pivotAInW = m_AnchorPos;
+ btVector3 pivotBInW = m_AnchorPos;
+
+ // not used here
+ // btVector3 rel_pos1 = pivotAInW - m_rbA.getCenterOfMassPosition();
+ // btVector3 rel_pos2 = pivotBInW - m_rbB.getCenterOfMassPosition();
+
+ btVector3 normalWorld;
+ //linear part
+ for (i=0;i<3;i++)
+ {
+ if (m_linearLimits.isLimited(i))
+ {
+ if (m_useLinearReferenceFrameA)
+ normalWorld = m_calculatedTransformA.getBasis().getColumn(i);
+ else
+ normalWorld = m_calculatedTransformB.getBasis().getColumn(i);
+
+ buildLinearJacobian(
+ m_jacLinear[i],normalWorld ,
+ pivotAInW,pivotBInW);
+
+ }
+ }
+
+ // angular part
+ for (i=0;i<3;i++)
+ {
+ //calculates error angle
+ if (testAngularLimitMotor(i))
+ {
+ normalWorld = this->getAxis(i);
+ // Create angular atom
+ buildAngularJacobian(m_jacAng[i],normalWorld);
+ }
+ }
+
+ }
+#endif //__SPU__
+
+}
+
+
+void btGeneric6DofConstraint::getInfo1 (btConstraintInfo1* info)
+{
+ if (m_useSolveConstraintObsolete)
+ {
+ info->m_numConstraintRows = 0;
+ info->nub = 0;
+ } else
+ {
+ //prepare constraint
+ calculateTransforms(m_rbA.getCenterOfMassTransform(),m_rbB.getCenterOfMassTransform());
+ info->m_numConstraintRows = 0;
+ info->nub = 6;
+ int i;
+ //test linear limits
+ for(i = 0; i < 3; i++)
+ {
+ if(m_linearLimits.needApplyForce(i))
+ {
+ info->m_numConstraintRows++;
+ info->nub--;
+ }
+ }
+ //test angular limits
+ for (i=0;i<3 ;i++ )
+ {
+ if(testAngularLimitMotor(i))
+ {
+ info->m_numConstraintRows++;
+ info->nub--;
+ }
+ }
+ }
+}
+
+void btGeneric6DofConstraint::getInfo1NonVirtual (btConstraintInfo1* info)
+{
+ if (m_useSolveConstraintObsolete)
+ {
+ info->m_numConstraintRows = 0;
+ info->nub = 0;
+ } else
+ {
+ //pre-allocate all 6
+ info->m_numConstraintRows = 6;
+ info->nub = 0;
+ }
+}
+
+
+void btGeneric6DofConstraint::getInfo2 (btConstraintInfo2* info)
+{
+ btAssert(!m_useSolveConstraintObsolete);
+
+ const btTransform& transA = m_rbA.getCenterOfMassTransform();
+ const btTransform& transB = m_rbB.getCenterOfMassTransform();
+ const btVector3& linVelA = m_rbA.getLinearVelocity();
+ const btVector3& linVelB = m_rbB.getLinearVelocity();
+ const btVector3& angVelA = m_rbA.getAngularVelocity();
+ const btVector3& angVelB = m_rbB.getAngularVelocity();
+
+ if(m_useOffsetForConstraintFrame)
+ { // for stability better to solve angular limits first
+ int row = setAngularLimits(info, 0,transA,transB,linVelA,linVelB,angVelA,angVelB);
+ setLinearLimits(info, row, transA,transB,linVelA,linVelB,angVelA,angVelB);
+ }
+ else
+ { // leave old version for compatibility
+ int row = setLinearLimits(info, 0, transA,transB,linVelA,linVelB,angVelA,angVelB);
+ setAngularLimits(info, row,transA,transB,linVelA,linVelB,angVelA,angVelB);
+ }
+
+}
+
+
+void btGeneric6DofConstraint::getInfo2NonVirtual (btConstraintInfo2* info, const btTransform& transA,const btTransform& transB,const btVector3& linVelA,const btVector3& linVelB,const btVector3& angVelA,const btVector3& angVelB)
+{
+
+ btAssert(!m_useSolveConstraintObsolete);
+ //prepare constraint
+ calculateTransforms(transA,transB);
+
+ int i;
+ for (i=0;i<3 ;i++ )
+ {
+ testAngularLimitMotor(i);
+ }
+
+ if(m_useOffsetForConstraintFrame)
+ { // for stability better to solve angular limits first
+ int row = setAngularLimits(info, 0,transA,transB,linVelA,linVelB,angVelA,angVelB);
+ setLinearLimits(info, row, transA,transB,linVelA,linVelB,angVelA,angVelB);
+ }
+ else
+ { // leave old version for compatibility
+ int row = setLinearLimits(info, 0, transA,transB,linVelA,linVelB,angVelA,angVelB);
+ setAngularLimits(info, row,transA,transB,linVelA,linVelB,angVelA,angVelB);
+ }
+}
+
+
+
+int btGeneric6DofConstraint::setLinearLimits(btConstraintInfo2* info, int row, const btTransform& transA,const btTransform& transB,const btVector3& linVelA,const btVector3& linVelB,const btVector3& angVelA,const btVector3& angVelB)
+{
+// int row = 0;
+ //solve linear limits
+ btRotationalLimitMotor limot;
+ for (int i=0;i<3 ;i++ )
+ {
+ if(m_linearLimits.needApplyForce(i))
+ { // re-use rotational motor code
+ limot.m_bounce = btScalar(0.f);
+ limot.m_currentLimit = m_linearLimits.m_currentLimit[i];
+ limot.m_currentPosition = m_linearLimits.m_currentLinearDiff[i];
+ limot.m_currentLimitError = m_linearLimits.m_currentLimitError[i];
+ limot.m_damping = m_linearLimits.m_damping;
+ limot.m_enableMotor = m_linearLimits.m_enableMotor[i];
+ limot.m_hiLimit = m_linearLimits.m_upperLimit[i];
+ limot.m_limitSoftness = m_linearLimits.m_limitSoftness;
+ limot.m_loLimit = m_linearLimits.m_lowerLimit[i];
+ limot.m_maxLimitForce = btScalar(0.f);
+ limot.m_maxMotorForce = m_linearLimits.m_maxMotorForce[i];
+ limot.m_targetVelocity = m_linearLimits.m_targetVelocity[i];
+ btVector3 axis = m_calculatedTransformA.getBasis().getColumn(i);
+ int flags = m_flags >> (i * BT_6DOF_FLAGS_AXIS_SHIFT);
+ limot.m_normalCFM = (flags & BT_6DOF_FLAGS_CFM_NORM) ? m_linearLimits.m_normalCFM[i] : info->cfm[0];
+ limot.m_stopCFM = (flags & BT_6DOF_FLAGS_CFM_STOP) ? m_linearLimits.m_stopCFM[i] : info->cfm[0];
+ limot.m_stopERP = (flags & BT_6DOF_FLAGS_ERP_STOP) ? m_linearLimits.m_stopERP[i] : info->erp;
+ if(m_useOffsetForConstraintFrame)
+ {
+ int indx1 = (i + 1) % 3;
+ int indx2 = (i + 2) % 3;
+ int rotAllowed = 1; // rotations around orthos to current axis
+ if(m_angularLimits[indx1].m_currentLimit && m_angularLimits[indx2].m_currentLimit)
+ {
+ rotAllowed = 0;
+ }
+ row += get_limit_motor_info2(&limot, transA,transB,linVelA,linVelB,angVelA,angVelB, info, row, axis, 0, rotAllowed);
+ }
+ else
+ {
+ row += get_limit_motor_info2(&limot, transA,transB,linVelA,linVelB,angVelA,angVelB, info, row, axis, 0);
+ }
+ }
+ }
+ return row;
+}
+
+
+
+int btGeneric6DofConstraint::setAngularLimits(btConstraintInfo2 *info, int row_offset, const btTransform& transA,const btTransform& transB,const btVector3& linVelA,const btVector3& linVelB,const btVector3& angVelA,const btVector3& angVelB)
+{
+ btGeneric6DofConstraint * d6constraint = this;
+ int row = row_offset;
+ //solve angular limits
+ for (int i=0;i<3 ;i++ )
+ {
+ if(d6constraint->getRotationalLimitMotor(i)->needApplyTorques())
+ {
+ btVector3 axis = d6constraint->getAxis(i);
+ int flags = m_flags >> ((i + 3) * BT_6DOF_FLAGS_AXIS_SHIFT);
+ if(!(flags & BT_6DOF_FLAGS_CFM_NORM))
+ {
+ m_angularLimits[i].m_normalCFM = info->cfm[0];
+ }
+ if(!(flags & BT_6DOF_FLAGS_CFM_STOP))
+ {
+ m_angularLimits[i].m_stopCFM = info->cfm[0];
+ }
+ if(!(flags & BT_6DOF_FLAGS_ERP_STOP))
+ {
+ m_angularLimits[i].m_stopERP = info->erp;
+ }
+ row += get_limit_motor_info2(d6constraint->getRotationalLimitMotor(i),
+ transA,transB,linVelA,linVelB,angVelA,angVelB, info,row,axis,1);
+ }
+ }
+
+ return row;
+}
+
+
+
+
+void btGeneric6DofConstraint::updateRHS(btScalar timeStep)
+{
+ (void)timeStep;
+
+}
+
+
+void btGeneric6DofConstraint::setFrames(const btTransform& frameA, const btTransform& frameB)
+{
+ m_frameInA = frameA;
+ m_frameInB = frameB;
+ buildJacobian();
+ calculateTransforms();
+}
+
+
+
+btVector3 btGeneric6DofConstraint::getAxis(int axis_index) const
+{
+ return m_calculatedAxis[axis_index];
+}
+
+
+btScalar btGeneric6DofConstraint::getRelativePivotPosition(int axisIndex) const
+{
+ return m_calculatedLinearDiff[axisIndex];
+}
+
+
+btScalar btGeneric6DofConstraint::getAngle(int axisIndex) const
+{
+ return m_calculatedAxisAngleDiff[axisIndex];
+}
+
+
+
+void btGeneric6DofConstraint::calcAnchorPos(void)
+{
+ btScalar imA = m_rbA.getInvMass();
+ btScalar imB = m_rbB.getInvMass();
+ btScalar weight;
+ if(imB == btScalar(0.0))
+ {
+ weight = btScalar(1.0);
+ }
+ else
+ {
+ weight = imA / (imA + imB);
+ }
+ const btVector3& pA = m_calculatedTransformA.getOrigin();
+ const btVector3& pB = m_calculatedTransformB.getOrigin();
+ m_AnchorPos = pA * weight + pB * (btScalar(1.0) - weight);
+ return;
+}
+
+
+
+void btGeneric6DofConstraint::calculateLinearInfo()
+{
+ m_calculatedLinearDiff = m_calculatedTransformB.getOrigin() - m_calculatedTransformA.getOrigin();
+ m_calculatedLinearDiff = m_calculatedTransformA.getBasis().inverse() * m_calculatedLinearDiff;
+ for(int i = 0; i < 3; i++)
+ {
+ m_linearLimits.m_currentLinearDiff[i] = m_calculatedLinearDiff[i];
+ m_linearLimits.testLimitValue(i, m_calculatedLinearDiff[i]);
+ }
+}
+
+
+
+int btGeneric6DofConstraint::get_limit_motor_info2(
+ btRotationalLimitMotor * limot,
+ const btTransform& transA,const btTransform& transB,const btVector3& linVelA,const btVector3& linVelB,const btVector3& angVelA,const btVector3& angVelB,
+ btConstraintInfo2 *info, int row, btVector3& ax1, int rotational,int rotAllowed)
+{
+ int srow = row * info->rowskip;
+ bool powered = limot->m_enableMotor;
+ int limit = limot->m_currentLimit;
+ if (powered || limit)
+ { // if the joint is powered, or has joint limits, add in the extra row
+ btScalar *J1 = rotational ? info->m_J1angularAxis : info->m_J1linearAxis;
+ btScalar *J2 = rotational ? info->m_J2angularAxis : info->m_J2linearAxis;
+ J1[srow+0] = ax1[0];
+ J1[srow+1] = ax1[1];
+ J1[srow+2] = ax1[2];
+
+ J2[srow+0] = -ax1[0];
+ J2[srow+1] = -ax1[1];
+ J2[srow+2] = -ax1[2];
+
+ if((!rotational))
+ {
+ if (m_useOffsetForConstraintFrame)
+ {
+ btVector3 tmpA, tmpB, relA, relB;
+ // get vector from bodyB to frameB in WCS
+ relB = m_calculatedTransformB.getOrigin() - transB.getOrigin();
+ // get its projection to constraint axis
+ btVector3 projB = ax1 * relB.dot(ax1);
+ // get vector directed from bodyB to constraint axis (and orthogonal to it)
+ btVector3 orthoB = relB - projB;
+ // same for bodyA
+ relA = m_calculatedTransformA.getOrigin() - transA.getOrigin();
+ btVector3 projA = ax1 * relA.dot(ax1);
+ btVector3 orthoA = relA - projA;
+ // get desired offset between frames A and B along constraint axis
+ btScalar desiredOffs = limot->m_currentPosition - limot->m_currentLimitError;
+ // desired vector from projection of center of bodyA to projection of center of bodyB to constraint axis
+ btVector3 totalDist = projA + ax1 * desiredOffs - projB;
+ // get offset vectors relA and relB
+ relA = orthoA + totalDist * m_factA;
+ relB = orthoB - totalDist * m_factB;
+ tmpA = relA.cross(ax1);
+ tmpB = relB.cross(ax1);
+ if(m_hasStaticBody && (!rotAllowed))
+ {
+ tmpA *= m_factA;
+ tmpB *= m_factB;
+ }
+ int i;
+ for (i=0; i<3; i++) info->m_J1angularAxis[srow+i] = tmpA[i];
+ for (i=0; i<3; i++) info->m_J2angularAxis[srow+i] = -tmpB[i];
+ } else
+ {
+ btVector3 ltd; // Linear Torque Decoupling vector
+ btVector3 c = m_calculatedTransformB.getOrigin() - transA.getOrigin();
+ ltd = c.cross(ax1);
+ info->m_J1angularAxis[srow+0] = ltd[0];
+ info->m_J1angularAxis[srow+1] = ltd[1];
+ info->m_J1angularAxis[srow+2] = ltd[2];
+
+ c = m_calculatedTransformB.getOrigin() - transB.getOrigin();
+ ltd = -c.cross(ax1);
+ info->m_J2angularAxis[srow+0] = ltd[0];
+ info->m_J2angularAxis[srow+1] = ltd[1];
+ info->m_J2angularAxis[srow+2] = ltd[2];
+ }
+ }
+ // if we're limited low and high simultaneously, the joint motor is
+ // ineffective
+ if (limit && (limot->m_loLimit == limot->m_hiLimit)) powered = false;
+ info->m_constraintError[srow] = btScalar(0.f);
+ if (powered)
+ {
+ info->cfm[srow] = limot->m_normalCFM;
+ if(!limit)
+ {
+ btScalar tag_vel = rotational ? limot->m_targetVelocity : -limot->m_targetVelocity;
+
+ btScalar mot_fact = getMotorFactor( limot->m_currentPosition,
+ limot->m_loLimit,
+ limot->m_hiLimit,
+ tag_vel,
+ info->fps * limot->m_stopERP);
+ info->m_constraintError[srow] += mot_fact * limot->m_targetVelocity;
+ info->m_lowerLimit[srow] = -limot->m_maxMotorForce;
+ info->m_upperLimit[srow] = limot->m_maxMotorForce;
+ }
+ }
+ if(limit)
+ {
+ btScalar k = info->fps * limot->m_stopERP;
+ if(!rotational)
+ {
+ info->m_constraintError[srow] += k * limot->m_currentLimitError;
+ }
+ else
+ {
+ info->m_constraintError[srow] += -k * limot->m_currentLimitError;
+ }
+ info->cfm[srow] = limot->m_stopCFM;
+ if (limot->m_loLimit == limot->m_hiLimit)
+ { // limited low and high simultaneously
+ info->m_lowerLimit[srow] = -SIMD_INFINITY;
+ info->m_upperLimit[srow] = SIMD_INFINITY;
+ }
+ else
+ {
+ if (limit == 1)
+ {
+ info->m_lowerLimit[srow] = 0;
+ info->m_upperLimit[srow] = SIMD_INFINITY;
+ }
+ else
+ {
+ info->m_lowerLimit[srow] = -SIMD_INFINITY;
+ info->m_upperLimit[srow] = 0;
+ }
+ // deal with bounce
+ if (limot->m_bounce > 0)
+ {
+ // calculate joint velocity
+ btScalar vel;
+ if (rotational)
+ {
+ vel = angVelA.dot(ax1);
+//make sure that if no body -> angVelB == zero vec
+// if (body1)
+ vel -= angVelB.dot(ax1);
+ }
+ else
+ {
+ vel = linVelA.dot(ax1);
+//make sure that if no body -> angVelB == zero vec
+// if (body1)
+ vel -= linVelB.dot(ax1);
+ }
+ // only apply bounce if the velocity is incoming, and if the
+ // resulting c[] exceeds what we already have.
+ if (limit == 1)
+ {
+ if (vel < 0)
+ {
+ btScalar newc = -limot->m_bounce* vel;
+ if (newc > info->m_constraintError[srow])
+ info->m_constraintError[srow] = newc;
+ }
+ }
+ else
+ {
+ if (vel > 0)
+ {
+ btScalar newc = -limot->m_bounce * vel;
+ if (newc < info->m_constraintError[srow])
+ info->m_constraintError[srow] = newc;
+ }
+ }
+ }
+ }
+ }
+ return 1;
+ }
+ else return 0;
+}
+
+
+
+
+
+
+ ///override the default global value of a parameter (such as ERP or CFM), optionally provide the axis (0..5).
+ ///If no axis is provided, it uses the default axis for this constraint.
+void btGeneric6DofConstraint::setParam(int num, btScalar value, int axis)
+{
+ if((axis >= 0) && (axis < 3))
+ {
+ switch(num)
+ {
+ case BT_CONSTRAINT_STOP_ERP :
+ m_linearLimits.m_stopERP[axis] = value;
+ m_flags |= BT_6DOF_FLAGS_ERP_STOP << (axis * BT_6DOF_FLAGS_AXIS_SHIFT);
+ break;
+ case BT_CONSTRAINT_STOP_CFM :
+ m_linearLimits.m_stopCFM[axis] = value;
+ m_flags |= BT_6DOF_FLAGS_CFM_STOP << (axis * BT_6DOF_FLAGS_AXIS_SHIFT);
+ break;
+ case BT_CONSTRAINT_CFM :
+ m_linearLimits.m_normalCFM[axis] = value;
+ m_flags |= BT_6DOF_FLAGS_CFM_NORM << (axis * BT_6DOF_FLAGS_AXIS_SHIFT);
+ break;
+ default :
+ btAssertConstrParams(0);
+ }
+ }
+ else if((axis >=3) && (axis < 6))
+ {
+ switch(num)
+ {
+ case BT_CONSTRAINT_STOP_ERP :
+ m_angularLimits[axis - 3].m_stopERP = value;
+ m_flags |= BT_6DOF_FLAGS_ERP_STOP << (axis * BT_6DOF_FLAGS_AXIS_SHIFT);
+ break;
+ case BT_CONSTRAINT_STOP_CFM :
+ m_angularLimits[axis - 3].m_stopCFM = value;
+ m_flags |= BT_6DOF_FLAGS_CFM_STOP << (axis * BT_6DOF_FLAGS_AXIS_SHIFT);
+ break;
+ case BT_CONSTRAINT_CFM :
+ m_angularLimits[axis - 3].m_normalCFM = value;
+ m_flags |= BT_6DOF_FLAGS_CFM_NORM << (axis * BT_6DOF_FLAGS_AXIS_SHIFT);
+ break;
+ default :
+ btAssertConstrParams(0);
+ }
+ }
+ else
+ {
+ btAssertConstrParams(0);
+ }
+}
+
+ ///return the local value of parameter
+btScalar btGeneric6DofConstraint::getParam(int num, int axis) const
+{
+ btScalar retVal = 0;
+ if((axis >= 0) && (axis < 3))
+ {
+ switch(num)
+ {
+ case BT_CONSTRAINT_STOP_ERP :
+ btAssertConstrParams(m_flags & (BT_6DOF_FLAGS_ERP_STOP << (axis * BT_6DOF_FLAGS_AXIS_SHIFT)));
+ retVal = m_linearLimits.m_stopERP[axis];
+ break;
+ case BT_CONSTRAINT_STOP_CFM :
+ btAssertConstrParams(m_flags & (BT_6DOF_FLAGS_CFM_STOP << (axis * BT_6DOF_FLAGS_AXIS_SHIFT)));
+ retVal = m_linearLimits.m_stopCFM[axis];
+ break;
+ case BT_CONSTRAINT_CFM :
+ btAssertConstrParams(m_flags & (BT_6DOF_FLAGS_CFM_NORM << (axis * BT_6DOF_FLAGS_AXIS_SHIFT)));
+ retVal = m_linearLimits.m_normalCFM[axis];
+ break;
+ default :
+ btAssertConstrParams(0);
+ }
+ }
+ else if((axis >=3) && (axis < 6))
+ {
+ switch(num)
+ {
+ case BT_CONSTRAINT_STOP_ERP :
+ btAssertConstrParams(m_flags & (BT_6DOF_FLAGS_ERP_STOP << (axis * BT_6DOF_FLAGS_AXIS_SHIFT)));
+ retVal = m_angularLimits[axis - 3].m_stopERP;
+ break;
+ case BT_CONSTRAINT_STOP_CFM :
+ btAssertConstrParams(m_flags & (BT_6DOF_FLAGS_CFM_STOP << (axis * BT_6DOF_FLAGS_AXIS_SHIFT)));
+ retVal = m_angularLimits[axis - 3].m_stopCFM;
+ break;
+ case BT_CONSTRAINT_CFM :
+ btAssertConstrParams(m_flags & (BT_6DOF_FLAGS_CFM_NORM << (axis * BT_6DOF_FLAGS_AXIS_SHIFT)));
+ retVal = m_angularLimits[axis - 3].m_normalCFM;
+ break;
+ default :
+ btAssertConstrParams(0);
+ }
+ }
+ else
+ {
+ btAssertConstrParams(0);
+ }
+ return retVal;
+}
+
+
+
+void btGeneric6DofConstraint::setAxis(const btVector3& axis1,const btVector3& axis2)
+{
+ btVector3 zAxis = axis1.normalized();
+ btVector3 yAxis = axis2.normalized();
+ btVector3 xAxis = yAxis.cross(zAxis); // we want right coordinate system
+
+ btTransform frameInW;
+ frameInW.setIdentity();
+ frameInW.getBasis().setValue( xAxis[0], yAxis[0], zAxis[0],
+ xAxis[1], yAxis[1], zAxis[1],
+ xAxis[2], yAxis[2], zAxis[2]);
+
+ // now get constraint frame in local coordinate systems
+ m_frameInA = m_rbA.getCenterOfMassTransform().inverse() * frameInW;
+ m_frameInB = m_rbB.getCenterOfMassTransform().inverse() * frameInW;
+
+ calculateTransforms();
+}
diff --git a/thirdparty/bullet/BulletDynamics/ConstraintSolver/btGeneric6DofConstraint.h b/thirdparty/bullet/BulletDynamics/ConstraintSolver/btGeneric6DofConstraint.h
new file mode 100644
index 0000000000..bea8629c32
--- /dev/null
+++ b/thirdparty/bullet/BulletDynamics/ConstraintSolver/btGeneric6DofConstraint.h
@@ -0,0 +1,647 @@
+/*
+Bullet Continuous Collision Detection and Physics Library
+Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
+
+This software is provided 'as-is', without any express or implied warranty.
+In no event will the authors be held liable for any damages arising from the use of this software.
+Permission is granted to anyone to use this software for any purpose,
+including commercial applications, and to alter it and redistribute it freely,
+subject to the following restrictions:
+
+1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
+2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
+3. This notice may not be removed or altered from any source distribution.
+*/
+
+/// 2009 March: btGeneric6DofConstraint refactored by Roman Ponomarev
+/// Added support for generic constraint solver through getInfo1/getInfo2 methods
+
+/*
+2007-09-09
+btGeneric6DofConstraint Refactored by Francisco Le?n
+email: projectileman@yahoo.com
+http://gimpact.sf.net
+*/
+
+
+#ifndef BT_GENERIC_6DOF_CONSTRAINT_H
+#define BT_GENERIC_6DOF_CONSTRAINT_H
+
+#include "LinearMath/btVector3.h"
+#include "btJacobianEntry.h"
+#include "btTypedConstraint.h"
+
+class btRigidBody;
+
+
+
+#ifdef BT_USE_DOUBLE_PRECISION
+#define btGeneric6DofConstraintData2 btGeneric6DofConstraintDoubleData2
+#define btGeneric6DofConstraintDataName "btGeneric6DofConstraintDoubleData2"
+#else
+#define btGeneric6DofConstraintData2 btGeneric6DofConstraintData
+#define btGeneric6DofConstraintDataName "btGeneric6DofConstraintData"
+#endif //BT_USE_DOUBLE_PRECISION
+
+
+//! Rotation Limit structure for generic joints
+class btRotationalLimitMotor
+{
+public:
+ //! limit_parameters
+ //!@{
+ btScalar m_loLimit;//!< joint limit
+ btScalar m_hiLimit;//!< joint limit
+ btScalar m_targetVelocity;//!< target motor velocity
+ btScalar m_maxMotorForce;//!< max force on motor
+ btScalar m_maxLimitForce;//!< max force on limit
+ btScalar m_damping;//!< Damping.
+ btScalar m_limitSoftness;//! Relaxation factor
+ btScalar m_normalCFM;//!< Constraint force mixing factor
+ btScalar m_stopERP;//!< Error tolerance factor when joint is at limit
+ btScalar m_stopCFM;//!< Constraint force mixing factor when joint is at limit
+ btScalar m_bounce;//!< restitution factor
+ bool m_enableMotor;
+
+ //!@}
+
+ //! temp_variables
+ //!@{
+ btScalar m_currentLimitError;//! How much is violated this limit
+ btScalar m_currentPosition; //! current value of angle
+ int m_currentLimit;//!< 0=free, 1=at lo limit, 2=at hi limit
+ btScalar m_accumulatedImpulse;
+ //!@}
+
+ btRotationalLimitMotor()
+ {
+ m_accumulatedImpulse = 0.f;
+ m_targetVelocity = 0;
+ m_maxMotorForce = 0.1f;
+ m_maxLimitForce = 300.0f;
+ m_loLimit = 1.0f;
+ m_hiLimit = -1.0f;
+ m_normalCFM = 0.f;
+ m_stopERP = 0.2f;
+ m_stopCFM = 0.f;
+ m_bounce = 0.0f;
+ m_damping = 1.0f;
+ m_limitSoftness = 0.5f;
+ m_currentLimit = 0;
+ m_currentLimitError = 0;
+ m_enableMotor = false;
+ }
+
+ btRotationalLimitMotor(const btRotationalLimitMotor & limot)
+ {
+ m_targetVelocity = limot.m_targetVelocity;
+ m_maxMotorForce = limot.m_maxMotorForce;
+ m_limitSoftness = limot.m_limitSoftness;
+ m_loLimit = limot.m_loLimit;
+ m_hiLimit = limot.m_hiLimit;
+ m_normalCFM = limot.m_normalCFM;
+ m_stopERP = limot.m_stopERP;
+ m_stopCFM = limot.m_stopCFM;
+ m_bounce = limot.m_bounce;
+ m_currentLimit = limot.m_currentLimit;
+ m_currentLimitError = limot.m_currentLimitError;
+ m_enableMotor = limot.m_enableMotor;
+ }
+
+
+
+ //! Is limited
+ bool isLimited() const
+ {
+ if(m_loLimit > m_hiLimit) return false;
+ return true;
+ }
+
+ //! Need apply correction
+ bool needApplyTorques() const
+ {
+ if(m_currentLimit == 0 && m_enableMotor == false) return false;
+ return true;
+ }
+
+ //! calculates error
+ /*!
+ calculates m_currentLimit and m_currentLimitError.
+ */
+ int testLimitValue(btScalar test_value);
+
+ //! apply the correction impulses for two bodies
+ btScalar solveAngularLimits(btScalar timeStep,btVector3& axis, btScalar jacDiagABInv,btRigidBody * body0, btRigidBody * body1);
+
+};
+
+
+
+class btTranslationalLimitMotor
+{
+public:
+ btVector3 m_lowerLimit;//!< the constraint lower limits
+ btVector3 m_upperLimit;//!< the constraint upper limits
+ btVector3 m_accumulatedImpulse;
+ //! Linear_Limit_parameters
+ //!@{
+ btScalar m_limitSoftness;//!< Softness for linear limit
+ btScalar m_damping;//!< Damping for linear limit
+ btScalar m_restitution;//! Bounce parameter for linear limit
+ btVector3 m_normalCFM;//!< Constraint force mixing factor
+ btVector3 m_stopERP;//!< Error tolerance factor when joint is at limit
+ btVector3 m_stopCFM;//!< Constraint force mixing factor when joint is at limit
+ //!@}
+ bool m_enableMotor[3];
+ btVector3 m_targetVelocity;//!< target motor velocity
+ btVector3 m_maxMotorForce;//!< max force on motor
+ btVector3 m_currentLimitError;//! How much is violated this limit
+ btVector3 m_currentLinearDiff;//! Current relative offset of constraint frames
+ int m_currentLimit[3];//!< 0=free, 1=at lower limit, 2=at upper limit
+
+ btTranslationalLimitMotor()
+ {
+ m_lowerLimit.setValue(0.f,0.f,0.f);
+ m_upperLimit.setValue(0.f,0.f,0.f);
+ m_accumulatedImpulse.setValue(0.f,0.f,0.f);
+ m_normalCFM.setValue(0.f, 0.f, 0.f);
+ m_stopERP.setValue(0.2f, 0.2f, 0.2f);
+ m_stopCFM.setValue(0.f, 0.f, 0.f);
+
+ m_limitSoftness = 0.7f;
+ m_damping = btScalar(1.0f);
+ m_restitution = btScalar(0.5f);
+ for(int i=0; i < 3; i++)
+ {
+ m_enableMotor[i] = false;
+ m_targetVelocity[i] = btScalar(0.f);
+ m_maxMotorForce[i] = btScalar(0.f);
+ }
+ }
+
+ btTranslationalLimitMotor(const btTranslationalLimitMotor & other )
+ {
+ m_lowerLimit = other.m_lowerLimit;
+ m_upperLimit = other.m_upperLimit;
+ m_accumulatedImpulse = other.m_accumulatedImpulse;
+
+ m_limitSoftness = other.m_limitSoftness ;
+ m_damping = other.m_damping;
+ m_restitution = other.m_restitution;
+ m_normalCFM = other.m_normalCFM;
+ m_stopERP = other.m_stopERP;
+ m_stopCFM = other.m_stopCFM;
+
+ for(int i=0; i < 3; i++)
+ {
+ m_enableMotor[i] = other.m_enableMotor[i];
+ m_targetVelocity[i] = other.m_targetVelocity[i];
+ m_maxMotorForce[i] = other.m_maxMotorForce[i];
+ }
+ }
+
+ //! Test limit
+ /*!
+ - free means upper < lower,
+ - locked means upper == lower
+ - limited means upper > lower
+ - limitIndex: first 3 are linear, next 3 are angular
+ */
+ inline bool isLimited(int limitIndex) const
+ {
+ return (m_upperLimit[limitIndex] >= m_lowerLimit[limitIndex]);
+ }
+ inline bool needApplyForce(int limitIndex) const
+ {
+ if(m_currentLimit[limitIndex] == 0 && m_enableMotor[limitIndex] == false) return false;
+ return true;
+ }
+ int testLimitValue(int limitIndex, btScalar test_value);
+
+
+ btScalar solveLinearAxis(
+ btScalar timeStep,
+ btScalar jacDiagABInv,
+ btRigidBody& body1,const btVector3 &pointInA,
+ btRigidBody& body2,const btVector3 &pointInB,
+ int limit_index,
+ const btVector3 & axis_normal_on_a,
+ const btVector3 & anchorPos);
+
+
+};
+
+enum bt6DofFlags
+{
+ BT_6DOF_FLAGS_CFM_NORM = 1,
+ BT_6DOF_FLAGS_CFM_STOP = 2,
+ BT_6DOF_FLAGS_ERP_STOP = 4
+};
+#define BT_6DOF_FLAGS_AXIS_SHIFT 3 // bits per axis
+
+
+/// btGeneric6DofConstraint between two rigidbodies each with a pivotpoint that descibes the axis location in local space
+/*!
+btGeneric6DofConstraint can leave any of the 6 degree of freedom 'free' or 'locked'.
+currently this limit supports rotational motors<br>
+<ul>
+<li> For Linear limits, use btGeneric6DofConstraint.setLinearUpperLimit, btGeneric6DofConstraint.setLinearLowerLimit. You can set the parameters with the btTranslationalLimitMotor structure accsesible through the btGeneric6DofConstraint.getTranslationalLimitMotor method.
+At this moment translational motors are not supported. May be in the future. </li>
+
+<li> For Angular limits, use the btRotationalLimitMotor structure for configuring the limit.
+This is accessible through btGeneric6DofConstraint.getLimitMotor method,
+This brings support for limit parameters and motors. </li>
+
+<li> Angulars limits have these possible ranges:
+<table border=1 >
+<tr>
+ <td><b>AXIS</b></td>
+ <td><b>MIN ANGLE</b></td>
+ <td><b>MAX ANGLE</b></td>
+</tr><tr>
+ <td>X</td>
+ <td>-PI</td>
+ <td>PI</td>
+</tr><tr>
+ <td>Y</td>
+ <td>-PI/2</td>
+ <td>PI/2</td>
+</tr><tr>
+ <td>Z</td>
+ <td>-PI</td>
+ <td>PI</td>
+</tr>
+</table>
+</li>
+</ul>
+
+*/
+ATTRIBUTE_ALIGNED16(class) btGeneric6DofConstraint : public btTypedConstraint
+{
+protected:
+
+ //! relative_frames
+ //!@{
+ btTransform m_frameInA;//!< the constraint space w.r.t body A
+ btTransform m_frameInB;//!< the constraint space w.r.t body B
+ //!@}
+
+ //! Jacobians
+ //!@{
+ btJacobianEntry m_jacLinear[3];//!< 3 orthogonal linear constraints
+ btJacobianEntry m_jacAng[3];//!< 3 orthogonal angular constraints
+ //!@}
+
+ //! Linear_Limit_parameters
+ //!@{
+ btTranslationalLimitMotor m_linearLimits;
+ //!@}
+
+
+ //! hinge_parameters
+ //!@{
+ btRotationalLimitMotor m_angularLimits[3];
+ //!@}
+
+
+protected:
+ //! temporal variables
+ //!@{
+ btScalar m_timeStep;
+ btTransform m_calculatedTransformA;
+ btTransform m_calculatedTransformB;
+ btVector3 m_calculatedAxisAngleDiff;
+ btVector3 m_calculatedAxis[3];
+ btVector3 m_calculatedLinearDiff;
+ btScalar m_factA;
+ btScalar m_factB;
+ bool m_hasStaticBody;
+
+ btVector3 m_AnchorPos; // point betwen pivots of bodies A and B to solve linear axes
+
+ bool m_useLinearReferenceFrameA;
+ bool m_useOffsetForConstraintFrame;
+
+ int m_flags;
+
+ //!@}
+
+ btGeneric6DofConstraint& operator=(btGeneric6DofConstraint& other)
+ {
+ btAssert(0);
+ (void) other;
+ return *this;
+ }
+
+
+ int setAngularLimits(btConstraintInfo2 *info, int row_offset,const btTransform& transA,const btTransform& transB,const btVector3& linVelA,const btVector3& linVelB,const btVector3& angVelA,const btVector3& angVelB);
+
+ int setLinearLimits(btConstraintInfo2 *info, int row, const btTransform& transA,const btTransform& transB,const btVector3& linVelA,const btVector3& linVelB,const btVector3& angVelA,const btVector3& angVelB);
+
+ void buildLinearJacobian(
+ btJacobianEntry & jacLinear,const btVector3 & normalWorld,
+ const btVector3 & pivotAInW,const btVector3 & pivotBInW);
+
+ void buildAngularJacobian(btJacobianEntry & jacAngular,const btVector3 & jointAxisW);
+
+ // tests linear limits
+ void calculateLinearInfo();
+
+ //! calcs the euler angles between the two bodies.
+ void calculateAngleInfo();
+
+
+
+public:
+
+ BT_DECLARE_ALIGNED_ALLOCATOR();
+
+ ///for backwards compatibility during the transition to 'getInfo/getInfo2'
+ bool m_useSolveConstraintObsolete;
+
+ btGeneric6DofConstraint(btRigidBody& rbA, btRigidBody& rbB, const btTransform& frameInA, const btTransform& frameInB ,bool useLinearReferenceFrameA);
+ btGeneric6DofConstraint(btRigidBody& rbB, const btTransform& frameInB, bool useLinearReferenceFrameB);
+
+ //! Calcs global transform of the offsets
+ /*!
+ Calcs the global transform for the joint offset for body A an B, and also calcs the agle differences between the bodies.
+ \sa btGeneric6DofConstraint.getCalculatedTransformA , btGeneric6DofConstraint.getCalculatedTransformB, btGeneric6DofConstraint.calculateAngleInfo
+ */
+ void calculateTransforms(const btTransform& transA,const btTransform& transB);
+
+ void calculateTransforms();
+
+ //! Gets the global transform of the offset for body A
+ /*!
+ \sa btGeneric6DofConstraint.getFrameOffsetA, btGeneric6DofConstraint.getFrameOffsetB, btGeneric6DofConstraint.calculateAngleInfo.
+ */
+ const btTransform & getCalculatedTransformA() const
+ {
+ return m_calculatedTransformA;
+ }
+
+ //! Gets the global transform of the offset for body B
+ /*!
+ \sa btGeneric6DofConstraint.getFrameOffsetA, btGeneric6DofConstraint.getFrameOffsetB, btGeneric6DofConstraint.calculateAngleInfo.
+ */
+ const btTransform & getCalculatedTransformB() const
+ {
+ return m_calculatedTransformB;
+ }
+
+ const btTransform & getFrameOffsetA() const
+ {
+ return m_frameInA;
+ }
+
+ const btTransform & getFrameOffsetB() const
+ {
+ return m_frameInB;
+ }
+
+
+ btTransform & getFrameOffsetA()
+ {
+ return m_frameInA;
+ }
+
+ btTransform & getFrameOffsetB()
+ {
+ return m_frameInB;
+ }
+
+
+ //! performs Jacobian calculation, and also calculates angle differences and axis
+ virtual void buildJacobian();
+
+ virtual void getInfo1 (btConstraintInfo1* info);
+
+ void getInfo1NonVirtual (btConstraintInfo1* info);
+
+ virtual void getInfo2 (btConstraintInfo2* info);
+
+ void getInfo2NonVirtual (btConstraintInfo2* info,const btTransform& transA,const btTransform& transB,const btVector3& linVelA,const btVector3& linVelB,const btVector3& angVelA,const btVector3& angVelB);
+
+
+ void updateRHS(btScalar timeStep);
+
+ //! Get the rotation axis in global coordinates
+ /*!
+ \pre btGeneric6DofConstraint.buildJacobian must be called previously.
+ */
+ btVector3 getAxis(int axis_index) const;
+
+ //! Get the relative Euler angle
+ /*!
+ \pre btGeneric6DofConstraint::calculateTransforms() must be called previously.
+ */
+ btScalar getAngle(int axis_index) const;
+
+ //! Get the relative position of the constraint pivot
+ /*!
+ \pre btGeneric6DofConstraint::calculateTransforms() must be called previously.
+ */
+ btScalar getRelativePivotPosition(int axis_index) const;
+
+ void setFrames(const btTransform & frameA, const btTransform & frameB);
+
+ //! Test angular limit.
+ /*!
+ Calculates angular correction and returns true if limit needs to be corrected.
+ \pre btGeneric6DofConstraint::calculateTransforms() must be called previously.
+ */
+ bool testAngularLimitMotor(int axis_index);
+
+ void setLinearLowerLimit(const btVector3& linearLower)
+ {
+ m_linearLimits.m_lowerLimit = linearLower;
+ }
+
+ void getLinearLowerLimit(btVector3& linearLower) const
+ {
+ linearLower = m_linearLimits.m_lowerLimit;
+ }
+
+ void setLinearUpperLimit(const btVector3& linearUpper)
+ {
+ m_linearLimits.m_upperLimit = linearUpper;
+ }
+
+ void getLinearUpperLimit(btVector3& linearUpper) const
+ {
+ linearUpper = m_linearLimits.m_upperLimit;
+ }
+
+ void setAngularLowerLimit(const btVector3& angularLower)
+ {
+ for(int i = 0; i < 3; i++)
+ m_angularLimits[i].m_loLimit = btNormalizeAngle(angularLower[i]);
+ }
+
+ void getAngularLowerLimit(btVector3& angularLower) const
+ {
+ for(int i = 0; i < 3; i++)
+ angularLower[i] = m_angularLimits[i].m_loLimit;
+ }
+
+ void setAngularUpperLimit(const btVector3& angularUpper)
+ {
+ for(int i = 0; i < 3; i++)
+ m_angularLimits[i].m_hiLimit = btNormalizeAngle(angularUpper[i]);
+ }
+
+ void getAngularUpperLimit(btVector3& angularUpper) const
+ {
+ for(int i = 0; i < 3; i++)
+ angularUpper[i] = m_angularLimits[i].m_hiLimit;
+ }
+
+ //! Retrieves the angular limit informacion
+ btRotationalLimitMotor * getRotationalLimitMotor(int index)
+ {
+ return &m_angularLimits[index];
+ }
+
+ //! Retrieves the limit informacion
+ btTranslationalLimitMotor * getTranslationalLimitMotor()
+ {
+ return &m_linearLimits;
+ }
+
+ //first 3 are linear, next 3 are angular
+ void setLimit(int axis, btScalar lo, btScalar hi)
+ {
+ if(axis<3)
+ {
+ m_linearLimits.m_lowerLimit[axis] = lo;
+ m_linearLimits.m_upperLimit[axis] = hi;
+ }
+ else
+ {
+ lo = btNormalizeAngle(lo);
+ hi = btNormalizeAngle(hi);
+ m_angularLimits[axis-3].m_loLimit = lo;
+ m_angularLimits[axis-3].m_hiLimit = hi;
+ }
+ }
+
+ //! Test limit
+ /*!
+ - free means upper < lower,
+ - locked means upper == lower
+ - limited means upper > lower
+ - limitIndex: first 3 are linear, next 3 are angular
+ */
+ bool isLimited(int limitIndex) const
+ {
+ if(limitIndex<3)
+ {
+ return m_linearLimits.isLimited(limitIndex);
+
+ }
+ return m_angularLimits[limitIndex-3].isLimited();
+ }
+
+ virtual void calcAnchorPos(void); // overridable
+
+ int get_limit_motor_info2( btRotationalLimitMotor * limot,
+ const btTransform& transA,const btTransform& transB,const btVector3& linVelA,const btVector3& linVelB,const btVector3& angVelA,const btVector3& angVelB,
+ btConstraintInfo2 *info, int row, btVector3& ax1, int rotational, int rotAllowed = false);
+
+ // access for UseFrameOffset
+ bool getUseFrameOffset() const { return m_useOffsetForConstraintFrame; }
+ void setUseFrameOffset(bool frameOffsetOnOff) { m_useOffsetForConstraintFrame = frameOffsetOnOff; }
+
+ bool getUseLinearReferenceFrameA() const { return m_useLinearReferenceFrameA; }
+ void setUseLinearReferenceFrameA(bool linearReferenceFrameA) { m_useLinearReferenceFrameA = linearReferenceFrameA; }
+
+ ///override the default global value of a parameter (such as ERP or CFM), optionally provide the axis (0..5).
+ ///If no axis is provided, it uses the default axis for this constraint.
+ virtual void setParam(int num, btScalar value, int axis = -1);
+ ///return the local value of parameter
+ virtual btScalar getParam(int num, int axis = -1) const;
+
+ void setAxis( const btVector3& axis1, const btVector3& axis2);
+
+ virtual int getFlags() const
+ {
+ return m_flags;
+ }
+
+ virtual int calculateSerializeBufferSize() const;
+
+ ///fills the dataBuffer and returns the struct name (and 0 on failure)
+ virtual const char* serialize(void* dataBuffer, btSerializer* serializer) const;
+
+
+};
+
+
+struct btGeneric6DofConstraintData
+{
+ btTypedConstraintData m_typeConstraintData;
+ btTransformFloatData m_rbAFrame; // constraint axii. Assumes z is hinge axis.
+ btTransformFloatData m_rbBFrame;
+
+ btVector3FloatData m_linearUpperLimit;
+ btVector3FloatData m_linearLowerLimit;
+
+ btVector3FloatData m_angularUpperLimit;
+ btVector3FloatData m_angularLowerLimit;
+
+ int m_useLinearReferenceFrameA;
+ int m_useOffsetForConstraintFrame;
+};
+
+struct btGeneric6DofConstraintDoubleData2
+{
+ btTypedConstraintDoubleData m_typeConstraintData;
+ btTransformDoubleData m_rbAFrame; // constraint axii. Assumes z is hinge axis.
+ btTransformDoubleData m_rbBFrame;
+
+ btVector3DoubleData m_linearUpperLimit;
+ btVector3DoubleData m_linearLowerLimit;
+
+ btVector3DoubleData m_angularUpperLimit;
+ btVector3DoubleData m_angularLowerLimit;
+
+ int m_useLinearReferenceFrameA;
+ int m_useOffsetForConstraintFrame;
+};
+
+SIMD_FORCE_INLINE int btGeneric6DofConstraint::calculateSerializeBufferSize() const
+{
+ return sizeof(btGeneric6DofConstraintData2);
+}
+
+ ///fills the dataBuffer and returns the struct name (and 0 on failure)
+SIMD_FORCE_INLINE const char* btGeneric6DofConstraint::serialize(void* dataBuffer, btSerializer* serializer) const
+{
+
+ btGeneric6DofConstraintData2* dof = (btGeneric6DofConstraintData2*)dataBuffer;
+ btTypedConstraint::serialize(&dof->m_typeConstraintData,serializer);
+
+ m_frameInA.serialize(dof->m_rbAFrame);
+ m_frameInB.serialize(dof->m_rbBFrame);
+
+
+ int i;
+ for (i=0;i<3;i++)
+ {
+ dof->m_angularLowerLimit.m_floats[i] = m_angularLimits[i].m_loLimit;
+ dof->m_angularUpperLimit.m_floats[i] = m_angularLimits[i].m_hiLimit;
+ dof->m_linearLowerLimit.m_floats[i] = m_linearLimits.m_lowerLimit[i];
+ dof->m_linearUpperLimit.m_floats[i] = m_linearLimits.m_upperLimit[i];
+ }
+
+ dof->m_useLinearReferenceFrameA = m_useLinearReferenceFrameA? 1 : 0;
+ dof->m_useOffsetForConstraintFrame = m_useOffsetForConstraintFrame ? 1 : 0;
+
+ return btGeneric6DofConstraintDataName;
+}
+
+
+
+
+
+#endif //BT_GENERIC_6DOF_CONSTRAINT_H
diff --git a/thirdparty/bullet/BulletDynamics/ConstraintSolver/btGeneric6DofSpring2Constraint.cpp b/thirdparty/bullet/BulletDynamics/ConstraintSolver/btGeneric6DofSpring2Constraint.cpp
new file mode 100644
index 0000000000..f0976ee493
--- /dev/null
+++ b/thirdparty/bullet/BulletDynamics/ConstraintSolver/btGeneric6DofSpring2Constraint.cpp
@@ -0,0 +1,1172 @@
+/*
+Bullet Continuous Collision Detection and Physics Library
+Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
+
+This software is provided 'as-is', without any express or implied warranty.
+In no event will the authors be held liable for any damages arising from the use of this software.
+Permission is granted to anyone to use this software for any purpose,
+including commercial applications, and to alter it and redistribute it freely,
+subject to the following restrictions:
+
+1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
+2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
+3. This notice may not be removed or altered from any source distribution.
+*/
+
+/*
+2014 May: btGeneric6DofSpring2Constraint is created from the original (2.82.2712) btGeneric6DofConstraint by Gabor Puhr and Tamas Umenhoffer
+Pros:
+- Much more accurate and stable in a lot of situation. (Especially when a sleeping chain of RBs connected with 6dof2 is pulled)
+- Stable and accurate spring with minimal energy loss that works with all of the solvers. (latter is not true for the original 6dof spring)
+- Servo motor functionality
+- Much more accurate bouncing. 0 really means zero bouncing (not true for the original 6odf) and there is only a minimal energy loss when the value is 1 (because of the solvers' precision)
+- Rotation order for the Euler system can be set. (One axis' freedom is still limited to pi/2)
+
+Cons:
+- It is slower than the original 6dof. There is no exact ratio, but half speed is a good estimation. (with PGS)
+- At bouncing the correct velocity is calculated, but not the correct position. (it is because of the solver can correct position or velocity, but not both.)
+*/
+
+/// 2009 March: btGeneric6DofConstraint refactored by Roman Ponomarev
+/// Added support for generic constraint solver through getInfo1/getInfo2 methods
+
+/*
+2007-09-09
+btGeneric6DofConstraint Refactored by Francisco Le?n
+email: projectileman@yahoo.com
+http://gimpact.sf.net
+*/
+
+
+
+#include "btGeneric6DofSpring2Constraint.h"
+#include "BulletDynamics/Dynamics/btRigidBody.h"
+#include "LinearMath/btTransformUtil.h"
+#include <new>
+
+
+
+btGeneric6DofSpring2Constraint::btGeneric6DofSpring2Constraint(btRigidBody& rbA, btRigidBody& rbB, const btTransform& frameInA, const btTransform& frameInB, RotateOrder rotOrder)
+ : btTypedConstraint(D6_SPRING_2_CONSTRAINT_TYPE, rbA, rbB)
+ , m_frameInA(frameInA)
+ , m_frameInB(frameInB)
+ , m_rotateOrder(rotOrder)
+ , m_flags(0)
+{
+ calculateTransforms();
+}
+
+
+btGeneric6DofSpring2Constraint::btGeneric6DofSpring2Constraint(btRigidBody& rbB, const btTransform& frameInB, RotateOrder rotOrder)
+ : btTypedConstraint(D6_SPRING_2_CONSTRAINT_TYPE, getFixedBody(), rbB)
+ , m_frameInB(frameInB)
+ , m_rotateOrder(rotOrder)
+ , m_flags(0)
+{
+ ///not providing rigidbody A means implicitly using worldspace for body A
+ m_frameInA = rbB.getCenterOfMassTransform() * m_frameInB;
+ calculateTransforms();
+}
+
+
+btScalar btGeneric6DofSpring2Constraint::btGetMatrixElem(const btMatrix3x3& mat, int index)
+{
+ int i = index%3;
+ int j = index/3;
+ return mat[i][j];
+}
+
+// MatrixToEulerXYZ from http://www.geometrictools.com/LibFoundation/Mathematics/Wm4Matrix3.inl.html
+
+bool btGeneric6DofSpring2Constraint::matrixToEulerXYZ(const btMatrix3x3& mat,btVector3& xyz)
+{
+ // rot = cy*cz -cy*sz sy
+ // cz*sx*sy+cx*sz cx*cz-sx*sy*sz -cy*sx
+ // -cx*cz*sy+sx*sz cz*sx+cx*sy*sz cx*cy
+
+ btScalar fi = btGetMatrixElem(mat,2);
+ if (fi < btScalar(1.0f))
+ {
+ if (fi > btScalar(-1.0f))
+ {
+ xyz[0] = btAtan2(-btGetMatrixElem(mat,5),btGetMatrixElem(mat,8));
+ xyz[1] = btAsin(btGetMatrixElem(mat,2));
+ xyz[2] = btAtan2(-btGetMatrixElem(mat,1),btGetMatrixElem(mat,0));
+ return true;
+ }
+ else
+ {
+ // WARNING. Not unique. XA - ZA = -atan2(r10,r11)
+ xyz[0] = -btAtan2(btGetMatrixElem(mat,3),btGetMatrixElem(mat,4));
+ xyz[1] = -SIMD_HALF_PI;
+ xyz[2] = btScalar(0.0);
+ return false;
+ }
+ }
+ else
+ {
+ // WARNING. Not unique. XAngle + ZAngle = atan2(r10,r11)
+ xyz[0] = btAtan2(btGetMatrixElem(mat,3),btGetMatrixElem(mat,4));
+ xyz[1] = SIMD_HALF_PI;
+ xyz[2] = 0.0;
+ }
+ return false;
+}
+
+bool btGeneric6DofSpring2Constraint::matrixToEulerXZY(const btMatrix3x3& mat,btVector3& xyz)
+{
+ // rot = cy*cz -sz sy*cz
+ // cy*cx*sz+sx*sy cx*cz sy*cx*sz-cy*sx
+ // cy*sx*sz-cx*sy sx*cz sy*sx*sz+cx*cy
+
+ btScalar fi = btGetMatrixElem(mat,1);
+ if (fi < btScalar(1.0f))
+ {
+ if (fi > btScalar(-1.0f))
+ {
+ xyz[0] = btAtan2(btGetMatrixElem(mat,7),btGetMatrixElem(mat,4));
+ xyz[1] = btAtan2(btGetMatrixElem(mat,2),btGetMatrixElem(mat,0));
+ xyz[2] = btAsin(-btGetMatrixElem(mat,1));
+ return true;
+ }
+ else
+ {
+ xyz[0] = -btAtan2(-btGetMatrixElem(mat,6),btGetMatrixElem(mat,8));
+ xyz[1] = btScalar(0.0);
+ xyz[2] = SIMD_HALF_PI;
+ return false;
+ }
+ }
+ else
+ {
+ xyz[0] = btAtan2(-btGetMatrixElem(mat,6),btGetMatrixElem(mat,8));
+ xyz[1] = 0.0;
+ xyz[2] = -SIMD_HALF_PI;
+ }
+ return false;
+}
+
+bool btGeneric6DofSpring2Constraint::matrixToEulerYXZ(const btMatrix3x3& mat,btVector3& xyz)
+{
+ // rot = cy*cz+sy*sx*sz cz*sy*sx-cy*sz cx*sy
+ // cx*sz cx*cz -sx
+ // cy*sx*sz-cz*sy sy*sz+cy*cz*sx cy*cx
+
+ btScalar fi = btGetMatrixElem(mat,5);
+ if (fi < btScalar(1.0f))
+ {
+ if (fi > btScalar(-1.0f))
+ {
+ xyz[0] = btAsin(-btGetMatrixElem(mat,5));
+ xyz[1] = btAtan2(btGetMatrixElem(mat,2),btGetMatrixElem(mat,8));
+ xyz[2] = btAtan2(btGetMatrixElem(mat,3),btGetMatrixElem(mat,4));
+ return true;
+ }
+ else
+ {
+ xyz[0] = SIMD_HALF_PI;
+ xyz[1] = -btAtan2(-btGetMatrixElem(mat,1),btGetMatrixElem(mat,0));
+ xyz[2] = btScalar(0.0);
+ return false;
+ }
+ }
+ else
+ {
+ xyz[0] = -SIMD_HALF_PI;
+ xyz[1] = btAtan2(-btGetMatrixElem(mat,1),btGetMatrixElem(mat,0));
+ xyz[2] = 0.0;
+ }
+ return false;
+}
+
+bool btGeneric6DofSpring2Constraint::matrixToEulerYZX(const btMatrix3x3& mat,btVector3& xyz)
+{
+ // rot = cy*cz sy*sx-cy*cx*sz cx*sy+cy*sz*sx
+ // sz cz*cx -cz*sx
+ // -cz*sy cy*sx+cx*sy*sz cy*cx-sy*sz*sx
+
+ btScalar fi = btGetMatrixElem(mat,3);
+ if (fi < btScalar(1.0f))
+ {
+ if (fi > btScalar(-1.0f))
+ {
+ xyz[0] = btAtan2(-btGetMatrixElem(mat,5),btGetMatrixElem(mat,4));
+ xyz[1] = btAtan2(-btGetMatrixElem(mat,6),btGetMatrixElem(mat,0));
+ xyz[2] = btAsin(btGetMatrixElem(mat,3));
+ return true;
+ }
+ else
+ {
+ xyz[0] = btScalar(0.0);
+ xyz[1] = -btAtan2(btGetMatrixElem(mat,7),btGetMatrixElem(mat,8));
+ xyz[2] = -SIMD_HALF_PI;
+ return false;
+ }
+ }
+ else
+ {
+ xyz[0] = btScalar(0.0);
+ xyz[1] = btAtan2(btGetMatrixElem(mat,7),btGetMatrixElem(mat,8));
+ xyz[2] = SIMD_HALF_PI;
+ }
+ return false;
+}
+
+bool btGeneric6DofSpring2Constraint::matrixToEulerZXY(const btMatrix3x3& mat,btVector3& xyz)
+{
+ // rot = cz*cy-sz*sx*sy -cx*sz cz*sy+cy*sz*sx
+ // cy*sz+cz*sx*sy cz*cx sz*sy-cz*xy*sx
+ // -cx*sy sx cx*cy
+
+ btScalar fi = btGetMatrixElem(mat,7);
+ if (fi < btScalar(1.0f))
+ {
+ if (fi > btScalar(-1.0f))
+ {
+ xyz[0] = btAsin(btGetMatrixElem(mat,7));
+ xyz[1] = btAtan2(-btGetMatrixElem(mat,6),btGetMatrixElem(mat,8));
+ xyz[2] = btAtan2(-btGetMatrixElem(mat,1),btGetMatrixElem(mat,4));
+ return true;
+ }
+ else
+ {
+ xyz[0] = -SIMD_HALF_PI;
+ xyz[1] = btScalar(0.0);
+ xyz[2] = -btAtan2(btGetMatrixElem(mat,2),btGetMatrixElem(mat,0));
+ return false;
+ }
+ }
+ else
+ {
+ xyz[0] = SIMD_HALF_PI;
+ xyz[1] = btScalar(0.0);
+ xyz[2] = btAtan2(btGetMatrixElem(mat,2),btGetMatrixElem(mat,0));
+ }
+ return false;
+}
+
+bool btGeneric6DofSpring2Constraint::matrixToEulerZYX(const btMatrix3x3& mat,btVector3& xyz)
+{
+ // rot = cz*cy cz*sy*sx-cx*sz sz*sx+cz*cx*sy
+ // cy*sz cz*cx+sz*sy*sx cx*sz*sy-cz*sx
+ // -sy cy*sx cy*cx
+
+ btScalar fi = btGetMatrixElem(mat,6);
+ if (fi < btScalar(1.0f))
+ {
+ if (fi > btScalar(-1.0f))
+ {
+ xyz[0] = btAtan2(btGetMatrixElem(mat,7), btGetMatrixElem(mat,8));
+ xyz[1] = btAsin(-btGetMatrixElem(mat,6));
+ xyz[2] = btAtan2(btGetMatrixElem(mat,3),btGetMatrixElem(mat,0));
+ return true;
+ }
+ else
+ {
+ xyz[0] = btScalar(0.0);
+ xyz[1] = SIMD_HALF_PI;
+ xyz[2] = -btAtan2(btGetMatrixElem(mat,1),btGetMatrixElem(mat,2));
+ return false;
+ }
+ }
+ else
+ {
+ xyz[0] = btScalar(0.0);
+ xyz[1] = -SIMD_HALF_PI;
+ xyz[2] = btAtan2(-btGetMatrixElem(mat,1),-btGetMatrixElem(mat,2));
+ }
+ return false;
+}
+
+void btGeneric6DofSpring2Constraint::calculateAngleInfo()
+{
+ btMatrix3x3 relative_frame = m_calculatedTransformA.getBasis().inverse()*m_calculatedTransformB.getBasis();
+ switch (m_rotateOrder)
+ {
+ case RO_XYZ : matrixToEulerXYZ(relative_frame,m_calculatedAxisAngleDiff); break;
+ case RO_XZY : matrixToEulerXZY(relative_frame,m_calculatedAxisAngleDiff); break;
+ case RO_YXZ : matrixToEulerYXZ(relative_frame,m_calculatedAxisAngleDiff); break;
+ case RO_YZX : matrixToEulerYZX(relative_frame,m_calculatedAxisAngleDiff); break;
+ case RO_ZXY : matrixToEulerZXY(relative_frame,m_calculatedAxisAngleDiff); break;
+ case RO_ZYX : matrixToEulerZYX(relative_frame,m_calculatedAxisAngleDiff); break;
+ default : btAssert(false);
+ }
+ // in euler angle mode we do not actually constrain the angular velocity
+ // along the axes axis[0] and axis[2] (although we do use axis[1]) :
+ //
+ // to get constrain w2-w1 along ...not
+ // ------ --------------------- ------
+ // d(angle[0])/dt = 0 ax[1] x ax[2] ax[0]
+ // d(angle[1])/dt = 0 ax[1]
+ // d(angle[2])/dt = 0 ax[0] x ax[1] ax[2]
+ //
+ // constraining w2-w1 along an axis 'a' means that a'*(w2-w1)=0.
+ // to prove the result for angle[0], write the expression for angle[0] from
+ // GetInfo1 then take the derivative. to prove this for angle[2] it is
+ // easier to take the euler rate expression for d(angle[2])/dt with respect
+ // to the components of w and set that to 0.
+ switch (m_rotateOrder)
+ {
+ case RO_XYZ :
+ {
+ //Is this the "line of nodes" calculation choosing planes YZ (B coordinate system) and xy (A coordinate system)? (http://en.wikipedia.org/wiki/Euler_angles)
+ //The two planes are non-homologous, so this is a Tait–Bryan angle formalism and not a proper Euler
+ //Extrinsic rotations are equal to the reversed order intrinsic rotations so the above xyz extrinsic rotations (axes are fixed) are the same as the zy'x" intrinsic rotations (axes are refreshed after each rotation)
+ //that is why xy and YZ planes are chosen (this will describe a zy'x" intrinsic rotation) (see the figure on the left at http://en.wikipedia.org/wiki/Euler_angles under Tait–Bryan angles)
+ // x' = Nperp = N.cross(axis2)
+ // y' = N = axis2.cross(axis0)
+ // z' = z
+ //
+ // x" = X
+ // y" = y'
+ // z" = ??
+ //in other words:
+ //first rotate around z
+ //second rotate around y'= z.cross(X)
+ //third rotate around x" = X
+ //Original XYZ extrinsic rotation order.
+ //Planes: xy and YZ normals: z, X. Plane intersection (N) is z.cross(X)
+ btVector3 axis0 = m_calculatedTransformB.getBasis().getColumn(0);
+ btVector3 axis2 = m_calculatedTransformA.getBasis().getColumn(2);
+ m_calculatedAxis[1] = axis2.cross(axis0);
+ m_calculatedAxis[0] = m_calculatedAxis[1].cross(axis2);
+ m_calculatedAxis[2] = axis0.cross(m_calculatedAxis[1]);
+ break;
+ }
+ case RO_XZY :
+ {
+ //planes: xz,ZY normals: y, X
+ //first rotate around y
+ //second rotate around z'= y.cross(X)
+ //third rotate around x" = X
+ btVector3 axis0 = m_calculatedTransformB.getBasis().getColumn(0);
+ btVector3 axis1 = m_calculatedTransformA.getBasis().getColumn(1);
+ m_calculatedAxis[2] = axis0.cross(axis1);
+ m_calculatedAxis[0] = axis1.cross(m_calculatedAxis[2]);
+ m_calculatedAxis[1] = m_calculatedAxis[2].cross(axis0);
+ break;
+ }
+ case RO_YXZ :
+ {
+ //planes: yx,XZ normals: z, Y
+ //first rotate around z
+ //second rotate around x'= z.cross(Y)
+ //third rotate around y" = Y
+ btVector3 axis1 = m_calculatedTransformB.getBasis().getColumn(1);
+ btVector3 axis2 = m_calculatedTransformA.getBasis().getColumn(2);
+ m_calculatedAxis[0] = axis1.cross(axis2);
+ m_calculatedAxis[1] = axis2.cross(m_calculatedAxis[0]);
+ m_calculatedAxis[2] = m_calculatedAxis[0].cross(axis1);
+ break;
+ }
+ case RO_YZX :
+ {
+ //planes: yz,ZX normals: x, Y
+ //first rotate around x
+ //second rotate around z'= x.cross(Y)
+ //third rotate around y" = Y
+ btVector3 axis0 = m_calculatedTransformA.getBasis().getColumn(0);
+ btVector3 axis1 = m_calculatedTransformB.getBasis().getColumn(1);
+ m_calculatedAxis[2] = axis0.cross(axis1);
+ m_calculatedAxis[0] = axis1.cross(m_calculatedAxis[2]);
+ m_calculatedAxis[1] = m_calculatedAxis[2].cross(axis0);
+ break;
+ }
+ case RO_ZXY :
+ {
+ //planes: zx,XY normals: y, Z
+ //first rotate around y
+ //second rotate around x'= y.cross(Z)
+ //third rotate around z" = Z
+ btVector3 axis1 = m_calculatedTransformA.getBasis().getColumn(1);
+ btVector3 axis2 = m_calculatedTransformB.getBasis().getColumn(2);
+ m_calculatedAxis[0] = axis1.cross(axis2);
+ m_calculatedAxis[1] = axis2.cross(m_calculatedAxis[0]);
+ m_calculatedAxis[2] = m_calculatedAxis[0].cross(axis1);
+ break;
+ }
+ case RO_ZYX :
+ {
+ //planes: zy,YX normals: x, Z
+ //first rotate around x
+ //second rotate around y' = x.cross(Z)
+ //third rotate around z" = Z
+ btVector3 axis0 = m_calculatedTransformA.getBasis().getColumn(0);
+ btVector3 axis2 = m_calculatedTransformB.getBasis().getColumn(2);
+ m_calculatedAxis[1] = axis2.cross(axis0);
+ m_calculatedAxis[0] = m_calculatedAxis[1].cross(axis2);
+ m_calculatedAxis[2] = axis0.cross(m_calculatedAxis[1]);
+ break;
+ }
+ default:
+ btAssert(false);
+ }
+
+ m_calculatedAxis[0].normalize();
+ m_calculatedAxis[1].normalize();
+ m_calculatedAxis[2].normalize();
+
+}
+
+void btGeneric6DofSpring2Constraint::calculateTransforms()
+{
+ calculateTransforms(m_rbA.getCenterOfMassTransform(),m_rbB.getCenterOfMassTransform());
+}
+
+void btGeneric6DofSpring2Constraint::calculateTransforms(const btTransform& transA,const btTransform& transB)
+{
+ m_calculatedTransformA = transA * m_frameInA;
+ m_calculatedTransformB = transB * m_frameInB;
+ calculateLinearInfo();
+ calculateAngleInfo();
+
+ btScalar miA = getRigidBodyA().getInvMass();
+ btScalar miB = getRigidBodyB().getInvMass();
+ m_hasStaticBody = (miA < SIMD_EPSILON) || (miB < SIMD_EPSILON);
+ btScalar miS = miA + miB;
+ if(miS > btScalar(0.f))
+ {
+ m_factA = miB / miS;
+ }
+ else
+ {
+ m_factA = btScalar(0.5f);
+ }
+ m_factB = btScalar(1.0f) - m_factA;
+}
+
+
+void btGeneric6DofSpring2Constraint::testAngularLimitMotor(int axis_index)
+{
+ btScalar angle = m_calculatedAxisAngleDiff[axis_index];
+ angle = btAdjustAngleToLimits(angle, m_angularLimits[axis_index].m_loLimit, m_angularLimits[axis_index].m_hiLimit);
+ m_angularLimits[axis_index].m_currentPosition = angle;
+ m_angularLimits[axis_index].testLimitValue(angle);
+}
+
+
+void btGeneric6DofSpring2Constraint::getInfo1 (btConstraintInfo1* info)
+{
+ //prepare constraint
+ calculateTransforms(m_rbA.getCenterOfMassTransform(),m_rbB.getCenterOfMassTransform());
+ info->m_numConstraintRows = 0;
+ info->nub = 0;
+ int i;
+ //test linear limits
+ for(i = 0; i < 3; i++)
+ {
+ if (m_linearLimits.m_currentLimit[i]==4) info->m_numConstraintRows += 2;
+ else if (m_linearLimits.m_currentLimit[i]!=0) info->m_numConstraintRows += 1;
+ if (m_linearLimits.m_enableMotor[i] ) info->m_numConstraintRows += 1;
+ if (m_linearLimits.m_enableSpring[i]) info->m_numConstraintRows += 1;
+ }
+ //test angular limits
+ for (i=0;i<3 ;i++ )
+ {
+ testAngularLimitMotor(i);
+ if (m_angularLimits[i].m_currentLimit==4) info->m_numConstraintRows += 2;
+ else if (m_angularLimits[i].m_currentLimit!=0) info->m_numConstraintRows += 1;
+ if (m_angularLimits[i].m_enableMotor ) info->m_numConstraintRows += 1;
+ if (m_angularLimits[i].m_enableSpring) info->m_numConstraintRows += 1;
+ }
+}
+
+
+void btGeneric6DofSpring2Constraint::getInfo2 (btConstraintInfo2* info)
+{
+ const btTransform& transA = m_rbA.getCenterOfMassTransform();
+ const btTransform& transB = m_rbB.getCenterOfMassTransform();
+ const btVector3& linVelA = m_rbA.getLinearVelocity();
+ const btVector3& linVelB = m_rbB.getLinearVelocity();
+ const btVector3& angVelA = m_rbA.getAngularVelocity();
+ const btVector3& angVelB = m_rbB.getAngularVelocity();
+
+ // for stability better to solve angular limits first
+ int row = setAngularLimits(info, 0,transA,transB,linVelA,linVelB,angVelA,angVelB);
+ setLinearLimits(info, row, transA,transB,linVelA,linVelB,angVelA,angVelB);
+}
+
+
+int btGeneric6DofSpring2Constraint::setLinearLimits(btConstraintInfo2* info, int row, const btTransform& transA,const btTransform& transB,const btVector3& linVelA,const btVector3& linVelB,const btVector3& angVelA,const btVector3& angVelB)
+{
+ //solve linear limits
+ btRotationalLimitMotor2 limot;
+ for (int i=0;i<3 ;i++ )
+ {
+ if(m_linearLimits.m_currentLimit[i] || m_linearLimits.m_enableMotor[i] || m_linearLimits.m_enableSpring[i])
+ { // re-use rotational motor code
+ limot.m_bounce = m_linearLimits.m_bounce[i];
+ limot.m_currentLimit = m_linearLimits.m_currentLimit[i];
+ limot.m_currentPosition = m_linearLimits.m_currentLinearDiff[i];
+ limot.m_currentLimitError = m_linearLimits.m_currentLimitError[i];
+ limot.m_currentLimitErrorHi = m_linearLimits.m_currentLimitErrorHi[i];
+ limot.m_enableMotor = m_linearLimits.m_enableMotor[i];
+ limot.m_servoMotor = m_linearLimits.m_servoMotor[i];
+ limot.m_servoTarget = m_linearLimits.m_servoTarget[i];
+ limot.m_enableSpring = m_linearLimits.m_enableSpring[i];
+ limot.m_springStiffness = m_linearLimits.m_springStiffness[i];
+ limot.m_springStiffnessLimited = m_linearLimits.m_springStiffnessLimited[i];
+ limot.m_springDamping = m_linearLimits.m_springDamping[i];
+ limot.m_springDampingLimited = m_linearLimits.m_springDampingLimited[i];
+ limot.m_equilibriumPoint = m_linearLimits.m_equilibriumPoint[i];
+ limot.m_hiLimit = m_linearLimits.m_upperLimit[i];
+ limot.m_loLimit = m_linearLimits.m_lowerLimit[i];
+ limot.m_maxMotorForce = m_linearLimits.m_maxMotorForce[i];
+ limot.m_targetVelocity = m_linearLimits.m_targetVelocity[i];
+ btVector3 axis = m_calculatedTransformA.getBasis().getColumn(i);
+ int flags = m_flags >> (i * BT_6DOF_FLAGS_AXIS_SHIFT2);
+ limot.m_stopCFM = (flags & BT_6DOF_FLAGS_CFM_STOP2) ? m_linearLimits.m_stopCFM[i] : info->cfm[0];
+ limot.m_stopERP = (flags & BT_6DOF_FLAGS_ERP_STOP2) ? m_linearLimits.m_stopERP[i] : info->erp;
+ limot.m_motorCFM = (flags & BT_6DOF_FLAGS_CFM_MOTO2) ? m_linearLimits.m_motorCFM[i] : info->cfm[0];
+ limot.m_motorERP = (flags & BT_6DOF_FLAGS_ERP_MOTO2) ? m_linearLimits.m_motorERP[i] : info->erp;
+
+ //rotAllowed is a bit of a magic from the original 6dof. The calculation of it here is something that imitates the original behavior as much as possible.
+ int indx1 = (i + 1) % 3;
+ int indx2 = (i + 2) % 3;
+ int rotAllowed = 1; // rotations around orthos to current axis (it is used only when one of the body is static)
+ #define D6_LIMIT_ERROR_THRESHOLD_FOR_ROTATION 1.0e-3
+ bool indx1Violated = m_angularLimits[indx1].m_currentLimit == 1 ||
+ m_angularLimits[indx1].m_currentLimit == 2 ||
+ ( m_angularLimits[indx1].m_currentLimit == 3 && ( m_angularLimits[indx1].m_currentLimitError < -D6_LIMIT_ERROR_THRESHOLD_FOR_ROTATION || m_angularLimits[indx1].m_currentLimitError > D6_LIMIT_ERROR_THRESHOLD_FOR_ROTATION ) ) ||
+ ( m_angularLimits[indx1].m_currentLimit == 4 && ( m_angularLimits[indx1].m_currentLimitError < -D6_LIMIT_ERROR_THRESHOLD_FOR_ROTATION || m_angularLimits[indx1].m_currentLimitErrorHi > D6_LIMIT_ERROR_THRESHOLD_FOR_ROTATION ) );
+ bool indx2Violated = m_angularLimits[indx2].m_currentLimit == 1 ||
+ m_angularLimits[indx2].m_currentLimit == 2 ||
+ ( m_angularLimits[indx2].m_currentLimit == 3 && ( m_angularLimits[indx2].m_currentLimitError < -D6_LIMIT_ERROR_THRESHOLD_FOR_ROTATION || m_angularLimits[indx2].m_currentLimitError > D6_LIMIT_ERROR_THRESHOLD_FOR_ROTATION ) ) ||
+ ( m_angularLimits[indx2].m_currentLimit == 4 && ( m_angularLimits[indx2].m_currentLimitError < -D6_LIMIT_ERROR_THRESHOLD_FOR_ROTATION || m_angularLimits[indx2].m_currentLimitErrorHi > D6_LIMIT_ERROR_THRESHOLD_FOR_ROTATION ) );
+ if( indx1Violated && indx2Violated )
+ {
+ rotAllowed = 0;
+ }
+ row += get_limit_motor_info2(&limot, transA,transB,linVelA,linVelB,angVelA,angVelB, info, row, axis, 0, rotAllowed);
+
+ }
+ }
+ return row;
+}
+
+
+
+int btGeneric6DofSpring2Constraint::setAngularLimits(btConstraintInfo2 *info, int row_offset, const btTransform& transA,const btTransform& transB,const btVector3& linVelA,const btVector3& linVelB,const btVector3& angVelA,const btVector3& angVelB)
+{
+ int row = row_offset;
+
+ //order of rotational constraint rows
+ int cIdx[] = {0, 1, 2};
+ switch(m_rotateOrder)
+ {
+ case RO_XYZ : cIdx[0] = 0; cIdx[1] = 1; cIdx[2] = 2; break;
+ case RO_XZY : cIdx[0] = 0; cIdx[1] = 2; cIdx[2] = 1; break;
+ case RO_YXZ : cIdx[0] = 1; cIdx[1] = 0; cIdx[2] = 2; break;
+ case RO_YZX : cIdx[0] = 1; cIdx[1] = 2; cIdx[2] = 0; break;
+ case RO_ZXY : cIdx[0] = 2; cIdx[1] = 0; cIdx[2] = 1; break;
+ case RO_ZYX : cIdx[0] = 2; cIdx[1] = 1; cIdx[2] = 0; break;
+ default : btAssert(false);
+ }
+
+ for (int ii = 0; ii < 3 ; ii++ )
+ {
+ int i = cIdx[ii];
+ if(m_angularLimits[i].m_currentLimit || m_angularLimits[i].m_enableMotor || m_angularLimits[i].m_enableSpring)
+ {
+ btVector3 axis = getAxis(i);
+ int flags = m_flags >> ((i + 3) * BT_6DOF_FLAGS_AXIS_SHIFT2);
+ if(!(flags & BT_6DOF_FLAGS_CFM_STOP2))
+ {
+ m_angularLimits[i].m_stopCFM = info->cfm[0];
+ }
+ if(!(flags & BT_6DOF_FLAGS_ERP_STOP2))
+ {
+ m_angularLimits[i].m_stopERP = info->erp;
+ }
+ if(!(flags & BT_6DOF_FLAGS_CFM_MOTO2))
+ {
+ m_angularLimits[i].m_motorCFM = info->cfm[0];
+ }
+ if(!(flags & BT_6DOF_FLAGS_ERP_MOTO2))
+ {
+ m_angularLimits[i].m_motorERP = info->erp;
+ }
+ row += get_limit_motor_info2(&m_angularLimits[i],transA,transB,linVelA,linVelB,angVelA,angVelB, info,row,axis,1);
+ }
+ }
+
+ return row;
+}
+
+
+void btGeneric6DofSpring2Constraint::setFrames(const btTransform& frameA, const btTransform& frameB)
+{
+ m_frameInA = frameA;
+ m_frameInB = frameB;
+ buildJacobian();
+ calculateTransforms();
+}
+
+
+void btGeneric6DofSpring2Constraint::calculateLinearInfo()
+{
+ m_calculatedLinearDiff = m_calculatedTransformB.getOrigin() - m_calculatedTransformA.getOrigin();
+ m_calculatedLinearDiff = m_calculatedTransformA.getBasis().inverse() * m_calculatedLinearDiff;
+ for(int i = 0; i < 3; i++)
+ {
+ m_linearLimits.m_currentLinearDiff[i] = m_calculatedLinearDiff[i];
+ m_linearLimits.testLimitValue(i, m_calculatedLinearDiff[i]);
+ }
+}
+
+void btGeneric6DofSpring2Constraint::calculateJacobi(btRotationalLimitMotor2 * limot, const btTransform& transA,const btTransform& transB, btConstraintInfo2 *info, int srow, btVector3& ax1, int rotational, int rotAllowed)
+{
+ btScalar *J1 = rotational ? info->m_J1angularAxis : info->m_J1linearAxis;
+ btScalar *J2 = rotational ? info->m_J2angularAxis : info->m_J2linearAxis;
+
+ J1[srow+0] = ax1[0];
+ J1[srow+1] = ax1[1];
+ J1[srow+2] = ax1[2];
+
+ J2[srow+0] = -ax1[0];
+ J2[srow+1] = -ax1[1];
+ J2[srow+2] = -ax1[2];
+
+ if(!rotational)
+ {
+ btVector3 tmpA, tmpB, relA, relB;
+ // get vector from bodyB to frameB in WCS
+ relB = m_calculatedTransformB.getOrigin() - transB.getOrigin();
+ // same for bodyA
+ relA = m_calculatedTransformA.getOrigin() - transA.getOrigin();
+ tmpA = relA.cross(ax1);
+ tmpB = relB.cross(ax1);
+ if(m_hasStaticBody && (!rotAllowed))
+ {
+ tmpA *= m_factA;
+ tmpB *= m_factB;
+ }
+ int i;
+ for (i=0; i<3; i++) info->m_J1angularAxis[srow+i] = tmpA[i];
+ for (i=0; i<3; i++) info->m_J2angularAxis[srow+i] = -tmpB[i];
+ }
+}
+
+
+int btGeneric6DofSpring2Constraint::get_limit_motor_info2(
+ btRotationalLimitMotor2 * limot,
+ const btTransform& transA,const btTransform& transB,const btVector3& linVelA,const btVector3& linVelB,const btVector3& angVelA,const btVector3& angVelB,
+ btConstraintInfo2 *info, int row, btVector3& ax1, int rotational,int rotAllowed)
+{
+ int count = 0;
+ int srow = row * info->rowskip;
+
+ if (limot->m_currentLimit==4)
+ {
+ btScalar vel = rotational ? angVelA.dot(ax1) - angVelB.dot(ax1) : linVelA.dot(ax1) - linVelB.dot(ax1);
+
+ calculateJacobi(limot,transA,transB,info,srow,ax1,rotational,rotAllowed);
+ info->m_constraintError[srow] = info->fps * limot->m_stopERP * limot->m_currentLimitError * (rotational ? -1 : 1);
+ if (rotational) {
+ if (info->m_constraintError[srow]-vel*limot->m_stopERP > 0) {
+ btScalar bounceerror = -limot->m_bounce* vel;
+ if (bounceerror > info->m_constraintError[srow]) info->m_constraintError[srow] = bounceerror;
+ }
+ } else {
+ if (info->m_constraintError[srow]-vel*limot->m_stopERP < 0) {
+ btScalar bounceerror = -limot->m_bounce* vel;
+ if (bounceerror < info->m_constraintError[srow]) info->m_constraintError[srow] = bounceerror;
+ }
+ }
+ info->m_lowerLimit[srow] = rotational ? 0 : -SIMD_INFINITY;
+ info->m_upperLimit[srow] = rotational ? SIMD_INFINITY : 0;
+ info->cfm[srow] = limot->m_stopCFM;
+ srow += info->rowskip;
+ ++count;
+
+ calculateJacobi(limot,transA,transB,info,srow,ax1,rotational,rotAllowed);
+ info->m_constraintError[srow] = info->fps * limot->m_stopERP * limot->m_currentLimitErrorHi * (rotational ? -1 : 1);
+ if (rotational) {
+ if (info->m_constraintError[srow]-vel*limot->m_stopERP < 0) {
+ btScalar bounceerror = -limot->m_bounce* vel;
+ if (bounceerror < info->m_constraintError[srow]) info->m_constraintError[srow] = bounceerror;
+ }
+ } else {
+ if (info->m_constraintError[srow]-vel*limot->m_stopERP > 0) {
+ btScalar bounceerror = -limot->m_bounce* vel;
+ if (bounceerror > info->m_constraintError[srow]) info->m_constraintError[srow] = bounceerror;
+ }
+ }
+ info->m_lowerLimit[srow] = rotational ? -SIMD_INFINITY : 0;
+ info->m_upperLimit[srow] = rotational ? 0 : SIMD_INFINITY;
+ info->cfm[srow] = limot->m_stopCFM;
+ srow += info->rowskip;
+ ++count;
+ } else
+ if (limot->m_currentLimit==3)
+ {
+ calculateJacobi(limot,transA,transB,info,srow,ax1,rotational,rotAllowed);
+ info->m_constraintError[srow] = info->fps * limot->m_stopERP * limot->m_currentLimitError * (rotational ? -1 : 1);
+ info->m_lowerLimit[srow] = -SIMD_INFINITY;
+ info->m_upperLimit[srow] = SIMD_INFINITY;
+ info->cfm[srow] = limot->m_stopCFM;
+ srow += info->rowskip;
+ ++count;
+ }
+
+ if (limot->m_enableMotor && !limot->m_servoMotor)
+ {
+ calculateJacobi(limot,transA,transB,info,srow,ax1,rotational,rotAllowed);
+ btScalar tag_vel = rotational ? limot->m_targetVelocity : -limot->m_targetVelocity;
+ btScalar mot_fact = getMotorFactor(limot->m_currentPosition,
+ limot->m_loLimit,
+ limot->m_hiLimit,
+ tag_vel,
+ info->fps * limot->m_motorERP);
+ info->m_constraintError[srow] = mot_fact * limot->m_targetVelocity;
+ info->m_lowerLimit[srow] = -limot->m_maxMotorForce;
+ info->m_upperLimit[srow] = limot->m_maxMotorForce;
+ info->cfm[srow] = limot->m_motorCFM;
+ srow += info->rowskip;
+ ++count;
+ }
+
+ if (limot->m_enableMotor && limot->m_servoMotor)
+ {
+ btScalar error = limot->m_currentPosition - limot->m_servoTarget;
+ btScalar curServoTarget = limot->m_servoTarget;
+ if (rotational)
+ {
+ if (error > SIMD_PI)
+ {
+ error -= SIMD_2_PI;
+ curServoTarget +=SIMD_2_PI;
+ }
+ if (error < -SIMD_PI)
+ {
+ error += SIMD_2_PI;
+ curServoTarget -=SIMD_2_PI;
+ }
+ }
+
+ calculateJacobi(limot,transA,transB,info,srow,ax1,rotational,rotAllowed);
+ btScalar targetvelocity = error<0 ? -limot->m_targetVelocity : limot->m_targetVelocity;
+ btScalar tag_vel = -targetvelocity;
+ btScalar mot_fact;
+ if(error != 0)
+ {
+ btScalar lowLimit;
+ btScalar hiLimit;
+ if(limot->m_loLimit > limot->m_hiLimit)
+ {
+ lowLimit = error > 0 ? curServoTarget : -SIMD_INFINITY;
+ hiLimit = error < 0 ? curServoTarget : SIMD_INFINITY;
+ }
+ else
+ {
+ lowLimit = error > 0 && curServoTarget>limot->m_loLimit ? curServoTarget : limot->m_loLimit;
+ hiLimit = error < 0 && curServoTarget<limot->m_hiLimit ? curServoTarget : limot->m_hiLimit;
+ }
+ mot_fact = getMotorFactor(limot->m_currentPosition, lowLimit, hiLimit, tag_vel, info->fps * limot->m_motorERP);
+ }
+ else
+ {
+ mot_fact = 0;
+ }
+ info->m_constraintError[srow] = mot_fact * targetvelocity * (rotational ? -1 : 1);
+ info->m_lowerLimit[srow] = -limot->m_maxMotorForce;
+ info->m_upperLimit[srow] = limot->m_maxMotorForce;
+ info->cfm[srow] = limot->m_motorCFM;
+ srow += info->rowskip;
+ ++count;
+ }
+
+ if (limot->m_enableSpring)
+ {
+ btScalar error = limot->m_currentPosition - limot->m_equilibriumPoint;
+ calculateJacobi(limot,transA,transB,info,srow,ax1,rotational,rotAllowed);
+
+ //btScalar cfm = 1.0 / ((1.0/info->fps)*limot->m_springStiffness+ limot->m_springDamping);
+ //if(cfm > 0.99999)
+ // cfm = 0.99999;
+ //btScalar erp = (1.0/info->fps)*limot->m_springStiffness / ((1.0/info->fps)*limot->m_springStiffness + limot->m_springDamping);
+ //info->m_constraintError[srow] = info->fps * erp * error * (rotational ? -1.0 : 1.0);
+ //info->m_lowerLimit[srow] = -SIMD_INFINITY;
+ //info->m_upperLimit[srow] = SIMD_INFINITY;
+
+ btScalar dt = BT_ONE / info->fps;
+ btScalar kd = limot->m_springDamping;
+ btScalar ks = limot->m_springStiffness;
+ btScalar vel = rotational ? angVelA.dot(ax1) - angVelB.dot(ax1) : linVelA.dot(ax1) - linVelB.dot(ax1);
+// btScalar erp = 0.1;
+ btScalar cfm = BT_ZERO;
+ btScalar mA = BT_ONE / m_rbA.getInvMass();
+ btScalar mB = BT_ONE / m_rbB.getInvMass();
+ btScalar m = mA > mB ? mB : mA;
+ btScalar angularfreq = sqrt(ks / m);
+
+
+ //limit stiffness (the spring should not be sampled faster that the quarter of its angular frequency)
+ if(limot->m_springStiffnessLimited && 0.25 < angularfreq * dt)
+ {
+ ks = BT_ONE / dt / dt / btScalar(16.0) * m;
+ }
+ //avoid damping that would blow up the spring
+ if(limot->m_springDampingLimited && kd * dt > m)
+ {
+ kd = m / dt;
+ }
+ btScalar fs = ks * error * dt;
+ btScalar fd = -kd * (vel) * (rotational ? -1 : 1) * dt;
+ btScalar f = (fs+fd);
+
+ info->m_constraintError[srow] = (vel + f * (rotational ? -1 : 1)) ;
+
+ btScalar minf = f < fd ? f : fd;
+ btScalar maxf = f < fd ? fd : f;
+ if(!rotational)
+ {
+ info->m_lowerLimit[srow] = minf > 0 ? 0 : minf;
+ info->m_upperLimit[srow] = maxf < 0 ? 0 : maxf;
+ }
+ else
+ {
+ info->m_lowerLimit[srow] = -maxf > 0 ? 0 : -maxf;
+ info->m_upperLimit[srow] = -minf < 0 ? 0 : -minf;
+ }
+
+ info->cfm[srow] = cfm;
+ srow += info->rowskip;
+ ++count;
+ }
+
+ return count;
+}
+
+
+//override the default global value of a parameter (such as ERP or CFM), optionally provide the axis (0..5).
+//If no axis is provided, it uses the default axis for this constraint.
+void btGeneric6DofSpring2Constraint::setParam(int num, btScalar value, int axis)
+{
+ if((axis >= 0) && (axis < 3))
+ {
+ switch(num)
+ {
+ case BT_CONSTRAINT_STOP_ERP :
+ m_linearLimits.m_stopERP[axis] = value;
+ m_flags |= BT_6DOF_FLAGS_ERP_STOP2 << (axis * BT_6DOF_FLAGS_AXIS_SHIFT2);
+ break;
+ case BT_CONSTRAINT_STOP_CFM :
+ m_linearLimits.m_stopCFM[axis] = value;
+ m_flags |= BT_6DOF_FLAGS_CFM_STOP2 << (axis * BT_6DOF_FLAGS_AXIS_SHIFT2);
+ break;
+ case BT_CONSTRAINT_ERP :
+ m_linearLimits.m_motorERP[axis] = value;
+ m_flags |= BT_6DOF_FLAGS_ERP_MOTO2 << (axis * BT_6DOF_FLAGS_AXIS_SHIFT2);
+ break;
+ case BT_CONSTRAINT_CFM :
+ m_linearLimits.m_motorCFM[axis] = value;
+ m_flags |= BT_6DOF_FLAGS_CFM_MOTO2 << (axis * BT_6DOF_FLAGS_AXIS_SHIFT2);
+ break;
+ default :
+ btAssertConstrParams(0);
+ }
+ }
+ else if((axis >=3) && (axis < 6))
+ {
+ switch(num)
+ {
+ case BT_CONSTRAINT_STOP_ERP :
+ m_angularLimits[axis - 3].m_stopERP = value;
+ m_flags |= BT_6DOF_FLAGS_ERP_STOP2 << (axis * BT_6DOF_FLAGS_AXIS_SHIFT2);
+ break;
+ case BT_CONSTRAINT_STOP_CFM :
+ m_angularLimits[axis - 3].m_stopCFM = value;
+ m_flags |= BT_6DOF_FLAGS_CFM_STOP2 << (axis * BT_6DOF_FLAGS_AXIS_SHIFT2);
+ break;
+ case BT_CONSTRAINT_ERP :
+ m_angularLimits[axis - 3].m_motorERP = value;
+ m_flags |= BT_6DOF_FLAGS_ERP_MOTO2 << (axis * BT_6DOF_FLAGS_AXIS_SHIFT2);
+ break;
+ case BT_CONSTRAINT_CFM :
+ m_angularLimits[axis - 3].m_motorCFM = value;
+ m_flags |= BT_6DOF_FLAGS_CFM_MOTO2 << (axis * BT_6DOF_FLAGS_AXIS_SHIFT2);
+ break;
+ default :
+ btAssertConstrParams(0);
+ }
+ }
+ else
+ {
+ btAssertConstrParams(0);
+ }
+}
+
+//return the local value of parameter
+btScalar btGeneric6DofSpring2Constraint::getParam(int num, int axis) const
+{
+ btScalar retVal = 0;
+ if((axis >= 0) && (axis < 3))
+ {
+ switch(num)
+ {
+ case BT_CONSTRAINT_STOP_ERP :
+ btAssertConstrParams(m_flags & (BT_6DOF_FLAGS_ERP_STOP2 << (axis * BT_6DOF_FLAGS_AXIS_SHIFT2)));
+ retVal = m_linearLimits.m_stopERP[axis];
+ break;
+ case BT_CONSTRAINT_STOP_CFM :
+ btAssertConstrParams(m_flags & (BT_6DOF_FLAGS_CFM_STOP2 << (axis * BT_6DOF_FLAGS_AXIS_SHIFT2)));
+ retVal = m_linearLimits.m_stopCFM[axis];
+ break;
+ case BT_CONSTRAINT_ERP :
+ btAssertConstrParams(m_flags & (BT_6DOF_FLAGS_ERP_MOTO2 << (axis * BT_6DOF_FLAGS_AXIS_SHIFT2)));
+ retVal = m_linearLimits.m_motorERP[axis];
+ break;
+ case BT_CONSTRAINT_CFM :
+ btAssertConstrParams(m_flags & (BT_6DOF_FLAGS_CFM_MOTO2 << (axis * BT_6DOF_FLAGS_AXIS_SHIFT2)));
+ retVal = m_linearLimits.m_motorCFM[axis];
+ break;
+ default :
+ btAssertConstrParams(0);
+ }
+ }
+ else if((axis >=3) && (axis < 6))
+ {
+ switch(num)
+ {
+ case BT_CONSTRAINT_STOP_ERP :
+ btAssertConstrParams(m_flags & (BT_6DOF_FLAGS_ERP_STOP2 << (axis * BT_6DOF_FLAGS_AXIS_SHIFT2)));
+ retVal = m_angularLimits[axis - 3].m_stopERP;
+ break;
+ case BT_CONSTRAINT_STOP_CFM :
+ btAssertConstrParams(m_flags & (BT_6DOF_FLAGS_CFM_STOP2 << (axis * BT_6DOF_FLAGS_AXIS_SHIFT2)));
+ retVal = m_angularLimits[axis - 3].m_stopCFM;
+ break;
+ case BT_CONSTRAINT_ERP :
+ btAssertConstrParams(m_flags & (BT_6DOF_FLAGS_ERP_MOTO2 << (axis * BT_6DOF_FLAGS_AXIS_SHIFT2)));
+ retVal = m_angularLimits[axis - 3].m_motorERP;
+ break;
+ case BT_CONSTRAINT_CFM :
+ btAssertConstrParams(m_flags & (BT_6DOF_FLAGS_CFM_MOTO2 << (axis * BT_6DOF_FLAGS_AXIS_SHIFT2)));
+ retVal = m_angularLimits[axis - 3].m_motorCFM;
+ break;
+ default :
+ btAssertConstrParams(0);
+ }
+ }
+ else
+ {
+ btAssertConstrParams(0);
+ }
+ return retVal;
+}
+
+
+
+void btGeneric6DofSpring2Constraint::setAxis(const btVector3& axis1,const btVector3& axis2)
+{
+ btVector3 zAxis = axis1.normalized();
+ btVector3 yAxis = axis2.normalized();
+ btVector3 xAxis = yAxis.cross(zAxis); // we want right coordinate system
+
+ btTransform frameInW;
+ frameInW.setIdentity();
+ frameInW.getBasis().setValue( xAxis[0], yAxis[0], zAxis[0],
+ xAxis[1], yAxis[1], zAxis[1],
+ xAxis[2], yAxis[2], zAxis[2]);
+
+ // now get constraint frame in local coordinate systems
+ m_frameInA = m_rbA.getCenterOfMassTransform().inverse() * frameInW;
+ m_frameInB = m_rbB.getCenterOfMassTransform().inverse() * frameInW;
+
+ calculateTransforms();
+}
+
+void btGeneric6DofSpring2Constraint::setBounce(int index, btScalar bounce)
+{
+ btAssert((index >= 0) && (index < 6));
+ if (index<3)
+ m_linearLimits.m_bounce[index] = bounce;
+ else
+ m_angularLimits[index - 3].m_bounce = bounce;
+}
+
+void btGeneric6DofSpring2Constraint::enableMotor(int index, bool onOff)
+{
+ btAssert((index >= 0) && (index < 6));
+ if (index<3)
+ m_linearLimits.m_enableMotor[index] = onOff;
+ else
+ m_angularLimits[index - 3].m_enableMotor = onOff;
+}
+
+void btGeneric6DofSpring2Constraint::setServo(int index, bool onOff)
+{
+ btAssert((index >= 0) && (index < 6));
+ if (index<3)
+ m_linearLimits.m_servoMotor[index] = onOff;
+ else
+ m_angularLimits[index - 3].m_servoMotor = onOff;
+}
+
+void btGeneric6DofSpring2Constraint::setTargetVelocity(int index, btScalar velocity)
+{
+ btAssert((index >= 0) && (index < 6));
+ if (index<3)
+ m_linearLimits.m_targetVelocity[index] = velocity;
+ else
+ m_angularLimits[index - 3].m_targetVelocity = velocity;
+}
+
+
+
+void btGeneric6DofSpring2Constraint::setServoTarget(int index, btScalar targetOrg)
+{
+ btAssert((index >= 0) && (index < 6));
+ if (index<3)
+ {
+ m_linearLimits.m_servoTarget[index] = targetOrg;
+ }
+ else
+ {
+ //wrap between -PI and PI, see also
+ //https://stackoverflow.com/questions/4633177/c-how-to-wrap-a-float-to-the-interval-pi-pi
+
+ btScalar target = targetOrg+SIMD_PI;
+ if (1)
+ {
+ btScalar m = target - SIMD_2_PI * floor(target/SIMD_2_PI);
+ // handle boundary cases resulted from floating-point cut off:
+ {
+ if (m>=SIMD_2_PI)
+ {
+ target = 0;
+ } else
+ {
+ if (m<0 )
+ {
+ if (SIMD_2_PI+m == SIMD_2_PI)
+ target = 0;
+ else
+ target = SIMD_2_PI+m;
+ }
+ else
+ {
+ target = m;
+ }
+ }
+ }
+ target -= SIMD_PI;
+ }
+
+ m_angularLimits[index - 3].m_servoTarget = target;
+ }
+}
+
+void btGeneric6DofSpring2Constraint::setMaxMotorForce(int index, btScalar force)
+{
+ btAssert((index >= 0) && (index < 6));
+ if (index<3)
+ m_linearLimits.m_maxMotorForce[index] = force;
+ else
+ m_angularLimits[index - 3].m_maxMotorForce = force;
+}
+
+void btGeneric6DofSpring2Constraint::enableSpring(int index, bool onOff)
+{
+ btAssert((index >= 0) && (index < 6));
+ if (index<3)
+ m_linearLimits.m_enableSpring[index] = onOff;
+ else
+ m_angularLimits[index - 3] .m_enableSpring = onOff;
+}
+
+void btGeneric6DofSpring2Constraint::setStiffness(int index, btScalar stiffness, bool limitIfNeeded)
+{
+ btAssert((index >= 0) && (index < 6));
+ if (index<3) {
+ m_linearLimits.m_springStiffness[index] = stiffness;
+ m_linearLimits.m_springStiffnessLimited[index] = limitIfNeeded;
+ } else {
+ m_angularLimits[index - 3].m_springStiffness = stiffness;
+ m_angularLimits[index - 3].m_springStiffnessLimited = limitIfNeeded;
+ }
+}
+
+void btGeneric6DofSpring2Constraint::setDamping(int index, btScalar damping, bool limitIfNeeded)
+{
+ btAssert((index >= 0) && (index < 6));
+ if (index<3) {
+ m_linearLimits.m_springDamping[index] = damping;
+ m_linearLimits.m_springDampingLimited[index] = limitIfNeeded;
+ } else {
+ m_angularLimits[index - 3].m_springDamping = damping;
+ m_angularLimits[index - 3].m_springDampingLimited = limitIfNeeded;
+ }
+}
+
+void btGeneric6DofSpring2Constraint::setEquilibriumPoint()
+{
+ calculateTransforms();
+ int i;
+ for( i = 0; i < 3; i++)
+ m_linearLimits.m_equilibriumPoint[i] = m_calculatedLinearDiff[i];
+ for(i = 0; i < 3; i++)
+ m_angularLimits[i].m_equilibriumPoint = m_calculatedAxisAngleDiff[i];
+}
+
+void btGeneric6DofSpring2Constraint::setEquilibriumPoint(int index)
+{
+ btAssert((index >= 0) && (index < 6));
+ calculateTransforms();
+ if (index<3)
+ m_linearLimits.m_equilibriumPoint[index] = m_calculatedLinearDiff[index];
+ else
+ m_angularLimits[index - 3] .m_equilibriumPoint = m_calculatedAxisAngleDiff[index - 3];
+}
+
+void btGeneric6DofSpring2Constraint::setEquilibriumPoint(int index, btScalar val)
+{
+ btAssert((index >= 0) && (index < 6));
+ if (index<3)
+ m_linearLimits.m_equilibriumPoint[index] = val;
+ else
+ m_angularLimits[index - 3] .m_equilibriumPoint = val;
+}
+
+
+//////////////////////////// btRotationalLimitMotor2 ////////////////////////////////////
+
+void btRotationalLimitMotor2::testLimitValue(btScalar test_value)
+{
+ //we can't normalize the angles here because we would lost the sign that we use later, but it doesn't seem to be a problem
+ if(m_loLimit > m_hiLimit) {
+ m_currentLimit = 0;
+ m_currentLimitError = btScalar(0.f);
+ }
+ else if(m_loLimit == m_hiLimit) {
+ m_currentLimitError = test_value - m_loLimit;
+ m_currentLimit = 3;
+ } else {
+ m_currentLimitError = test_value - m_loLimit;
+ m_currentLimitErrorHi = test_value - m_hiLimit;
+ m_currentLimit = 4;
+ }
+}
+
+//////////////////////////// btTranslationalLimitMotor2 ////////////////////////////////////
+
+void btTranslationalLimitMotor2::testLimitValue(int limitIndex, btScalar test_value)
+{
+ btScalar loLimit = m_lowerLimit[limitIndex];
+ btScalar hiLimit = m_upperLimit[limitIndex];
+ if(loLimit > hiLimit) {
+ m_currentLimitError[limitIndex] = 0;
+ m_currentLimit[limitIndex] = 0;
+ }
+ else if(loLimit == hiLimit) {
+ m_currentLimitError[limitIndex] = test_value - loLimit;
+ m_currentLimit[limitIndex] = 3;
+ } else {
+ m_currentLimitError[limitIndex] = test_value - loLimit;
+ m_currentLimitErrorHi[limitIndex] = test_value - hiLimit;
+ m_currentLimit[limitIndex] = 4;
+ }
+}
+
+
diff --git a/thirdparty/bullet/BulletDynamics/ConstraintSolver/btGeneric6DofSpring2Constraint.h b/thirdparty/bullet/BulletDynamics/ConstraintSolver/btGeneric6DofSpring2Constraint.h
new file mode 100644
index 0000000000..66d1769583
--- /dev/null
+++ b/thirdparty/bullet/BulletDynamics/ConstraintSolver/btGeneric6DofSpring2Constraint.h
@@ -0,0 +1,679 @@
+/*
+Bullet Continuous Collision Detection and Physics Library
+Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
+
+This software is provided 'as-is', without any express or implied warranty.
+In no event will the authors be held liable for any damages arising from the use of this software.
+Permission is granted to anyone to use this software for any purpose,
+including commercial applications, and to alter it and redistribute it freely,
+subject to the following restrictions:
+
+1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
+2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
+3. This notice may not be removed or altered from any source distribution.
+*/
+
+/*
+2014 May: btGeneric6DofSpring2Constraint is created from the original (2.82.2712) btGeneric6DofConstraint by Gabor Puhr and Tamas Umenhoffer
+Pros:
+- Much more accurate and stable in a lot of situation. (Especially when a sleeping chain of RBs connected with 6dof2 is pulled)
+- Stable and accurate spring with minimal energy loss that works with all of the solvers. (latter is not true for the original 6dof spring)
+- Servo motor functionality
+- Much more accurate bouncing. 0 really means zero bouncing (not true for the original 6odf) and there is only a minimal energy loss when the value is 1 (because of the solvers' precision)
+- Rotation order for the Euler system can be set. (One axis' freedom is still limited to pi/2)
+
+Cons:
+- It is slower than the original 6dof. There is no exact ratio, but half speed is a good estimation.
+- At bouncing the correct velocity is calculated, but not the correct position. (it is because of the solver can correct position or velocity, but not both.)
+*/
+
+/// 2009 March: btGeneric6DofConstraint refactored by Roman Ponomarev
+/// Added support for generic constraint solver through getInfo1/getInfo2 methods
+
+/*
+2007-09-09
+btGeneric6DofConstraint Refactored by Francisco Le?n
+email: projectileman@yahoo.com
+http://gimpact.sf.net
+*/
+
+
+#ifndef BT_GENERIC_6DOF_CONSTRAINT2_H
+#define BT_GENERIC_6DOF_CONSTRAINT2_H
+
+#include "LinearMath/btVector3.h"
+#include "btJacobianEntry.h"
+#include "btTypedConstraint.h"
+
+class btRigidBody;
+
+
+#ifdef BT_USE_DOUBLE_PRECISION
+#define btGeneric6DofSpring2ConstraintData2 btGeneric6DofSpring2ConstraintDoubleData2
+#define btGeneric6DofSpring2ConstraintDataName "btGeneric6DofSpring2ConstraintDoubleData2"
+#else
+#define btGeneric6DofSpring2ConstraintData2 btGeneric6DofSpring2ConstraintData
+#define btGeneric6DofSpring2ConstraintDataName "btGeneric6DofSpring2ConstraintData"
+#endif //BT_USE_DOUBLE_PRECISION
+
+enum RotateOrder
+{
+ RO_XYZ=0,
+ RO_XZY,
+ RO_YXZ,
+ RO_YZX,
+ RO_ZXY,
+ RO_ZYX
+};
+
+class btRotationalLimitMotor2
+{
+public:
+// upper < lower means free
+// upper == lower means locked
+// upper > lower means limited
+ btScalar m_loLimit;
+ btScalar m_hiLimit;
+ btScalar m_bounce;
+ btScalar m_stopERP;
+ btScalar m_stopCFM;
+ btScalar m_motorERP;
+ btScalar m_motorCFM;
+ bool m_enableMotor;
+ btScalar m_targetVelocity;
+ btScalar m_maxMotorForce;
+ bool m_servoMotor;
+ btScalar m_servoTarget;
+ bool m_enableSpring;
+ btScalar m_springStiffness;
+ bool m_springStiffnessLimited;
+ btScalar m_springDamping;
+ bool m_springDampingLimited;
+ btScalar m_equilibriumPoint;
+
+ btScalar m_currentLimitError;
+ btScalar m_currentLimitErrorHi;
+ btScalar m_currentPosition;
+ int m_currentLimit;
+
+ btRotationalLimitMotor2()
+ {
+ m_loLimit = 1.0f;
+ m_hiLimit = -1.0f;
+ m_bounce = 0.0f;
+ m_stopERP = 0.2f;
+ m_stopCFM = 0.f;
+ m_motorERP = 0.9f;
+ m_motorCFM = 0.f;
+ m_enableMotor = false;
+ m_targetVelocity = 0;
+ m_maxMotorForce = 0.1f;
+ m_servoMotor = false;
+ m_servoTarget = 0;
+ m_enableSpring = false;
+ m_springStiffness = 0;
+ m_springStiffnessLimited = false;
+ m_springDamping = 0;
+ m_springDampingLimited = false;
+ m_equilibriumPoint = 0;
+
+ m_currentLimitError = 0;
+ m_currentLimitErrorHi = 0;
+ m_currentPosition = 0;
+ m_currentLimit = 0;
+ }
+
+ btRotationalLimitMotor2(const btRotationalLimitMotor2 & limot)
+ {
+ m_loLimit = limot.m_loLimit;
+ m_hiLimit = limot.m_hiLimit;
+ m_bounce = limot.m_bounce;
+ m_stopERP = limot.m_stopERP;
+ m_stopCFM = limot.m_stopCFM;
+ m_motorERP = limot.m_motorERP;
+ m_motorCFM = limot.m_motorCFM;
+ m_enableMotor = limot.m_enableMotor;
+ m_targetVelocity = limot.m_targetVelocity;
+ m_maxMotorForce = limot.m_maxMotorForce;
+ m_servoMotor = limot.m_servoMotor;
+ m_servoTarget = limot.m_servoTarget;
+ m_enableSpring = limot.m_enableSpring;
+ m_springStiffness = limot.m_springStiffness;
+ m_springStiffnessLimited = limot.m_springStiffnessLimited;
+ m_springDamping = limot.m_springDamping;
+ m_springDampingLimited = limot.m_springDampingLimited;
+ m_equilibriumPoint = limot.m_equilibriumPoint;
+
+ m_currentLimitError = limot.m_currentLimitError;
+ m_currentLimitErrorHi = limot.m_currentLimitErrorHi;
+ m_currentPosition = limot.m_currentPosition;
+ m_currentLimit = limot.m_currentLimit;
+ }
+
+
+ bool isLimited()
+ {
+ if(m_loLimit > m_hiLimit) return false;
+ return true;
+ }
+
+ void testLimitValue(btScalar test_value);
+};
+
+
+
+class btTranslationalLimitMotor2
+{
+public:
+// upper < lower means free
+// upper == lower means locked
+// upper > lower means limited
+ btVector3 m_lowerLimit;
+ btVector3 m_upperLimit;
+ btVector3 m_bounce;
+ btVector3 m_stopERP;
+ btVector3 m_stopCFM;
+ btVector3 m_motorERP;
+ btVector3 m_motorCFM;
+ bool m_enableMotor[3];
+ bool m_servoMotor[3];
+ bool m_enableSpring[3];
+ btVector3 m_servoTarget;
+ btVector3 m_springStiffness;
+ bool m_springStiffnessLimited[3];
+ btVector3 m_springDamping;
+ bool m_springDampingLimited[3];
+ btVector3 m_equilibriumPoint;
+ btVector3 m_targetVelocity;
+ btVector3 m_maxMotorForce;
+
+ btVector3 m_currentLimitError;
+ btVector3 m_currentLimitErrorHi;
+ btVector3 m_currentLinearDiff;
+ int m_currentLimit[3];
+
+ btTranslationalLimitMotor2()
+ {
+ m_lowerLimit .setValue(0.f , 0.f , 0.f );
+ m_upperLimit .setValue(0.f , 0.f , 0.f );
+ m_bounce .setValue(0.f , 0.f , 0.f );
+ m_stopERP .setValue(0.2f, 0.2f, 0.2f);
+ m_stopCFM .setValue(0.f , 0.f , 0.f );
+ m_motorERP .setValue(0.9f, 0.9f, 0.9f);
+ m_motorCFM .setValue(0.f , 0.f , 0.f );
+
+ m_currentLimitError .setValue(0.f , 0.f , 0.f );
+ m_currentLimitErrorHi.setValue(0.f , 0.f , 0.f );
+ m_currentLinearDiff .setValue(0.f , 0.f , 0.f );
+
+ for(int i=0; i < 3; i++)
+ {
+ m_enableMotor[i] = false;
+ m_servoMotor[i] = false;
+ m_enableSpring[i] = false;
+ m_servoTarget[i] = btScalar(0.f);
+ m_springStiffness[i] = btScalar(0.f);
+ m_springStiffnessLimited[i] = false;
+ m_springDamping[i] = btScalar(0.f);
+ m_springDampingLimited[i] = false;
+ m_equilibriumPoint[i] = btScalar(0.f);
+ m_targetVelocity[i] = btScalar(0.f);
+ m_maxMotorForce[i] = btScalar(0.f);
+
+ m_currentLimit[i] = 0;
+ }
+ }
+
+ btTranslationalLimitMotor2(const btTranslationalLimitMotor2 & other )
+ {
+ m_lowerLimit = other.m_lowerLimit;
+ m_upperLimit = other.m_upperLimit;
+ m_bounce = other.m_bounce;
+ m_stopERP = other.m_stopERP;
+ m_stopCFM = other.m_stopCFM;
+ m_motorERP = other.m_motorERP;
+ m_motorCFM = other.m_motorCFM;
+
+ m_currentLimitError = other.m_currentLimitError;
+ m_currentLimitErrorHi = other.m_currentLimitErrorHi;
+ m_currentLinearDiff = other.m_currentLinearDiff;
+
+ for(int i=0; i < 3; i++)
+ {
+ m_enableMotor[i] = other.m_enableMotor[i];
+ m_servoMotor[i] = other.m_servoMotor[i];
+ m_enableSpring[i] = other.m_enableSpring[i];
+ m_servoTarget[i] = other.m_servoTarget[i];
+ m_springStiffness[i] = other.m_springStiffness[i];
+ m_springStiffnessLimited[i] = other.m_springStiffnessLimited[i];
+ m_springDamping[i] = other.m_springDamping[i];
+ m_springDampingLimited[i] = other.m_springDampingLimited[i];
+ m_equilibriumPoint[i] = other.m_equilibriumPoint[i];
+ m_targetVelocity[i] = other.m_targetVelocity[i];
+ m_maxMotorForce[i] = other.m_maxMotorForce[i];
+
+ m_currentLimit[i] = other.m_currentLimit[i];
+ }
+ }
+
+ inline bool isLimited(int limitIndex)
+ {
+ return (m_upperLimit[limitIndex] >= m_lowerLimit[limitIndex]);
+ }
+
+ void testLimitValue(int limitIndex, btScalar test_value);
+};
+
+enum bt6DofFlags2
+{
+ BT_6DOF_FLAGS_CFM_STOP2 = 1,
+ BT_6DOF_FLAGS_ERP_STOP2 = 2,
+ BT_6DOF_FLAGS_CFM_MOTO2 = 4,
+ BT_6DOF_FLAGS_ERP_MOTO2 = 8
+};
+#define BT_6DOF_FLAGS_AXIS_SHIFT2 4 // bits per axis
+
+
+ATTRIBUTE_ALIGNED16(class) btGeneric6DofSpring2Constraint : public btTypedConstraint
+{
+protected:
+
+ btTransform m_frameInA;
+ btTransform m_frameInB;
+
+ btJacobianEntry m_jacLinear[3];
+ btJacobianEntry m_jacAng[3];
+
+ btTranslationalLimitMotor2 m_linearLimits;
+ btRotationalLimitMotor2 m_angularLimits[3];
+
+ RotateOrder m_rotateOrder;
+
+protected:
+
+ btTransform m_calculatedTransformA;
+ btTransform m_calculatedTransformB;
+ btVector3 m_calculatedAxisAngleDiff;
+ btVector3 m_calculatedAxis[3];
+ btVector3 m_calculatedLinearDiff;
+ btScalar m_factA;
+ btScalar m_factB;
+ bool m_hasStaticBody;
+ int m_flags;
+
+ btGeneric6DofSpring2Constraint& operator=(btGeneric6DofSpring2Constraint&)
+ {
+ btAssert(0);
+ return *this;
+ }
+
+ int setAngularLimits(btConstraintInfo2 *info, int row_offset,const btTransform& transA,const btTransform& transB,const btVector3& linVelA,const btVector3& linVelB,const btVector3& angVelA,const btVector3& angVelB);
+ int setLinearLimits(btConstraintInfo2 *info, int row, const btTransform& transA,const btTransform& transB,const btVector3& linVelA,const btVector3& linVelB,const btVector3& angVelA,const btVector3& angVelB);
+
+ void calculateLinearInfo();
+ void calculateAngleInfo();
+ void testAngularLimitMotor(int axis_index);
+
+ void calculateJacobi(btRotationalLimitMotor2* limot, const btTransform& transA,const btTransform& transB, btConstraintInfo2* info, int srow, btVector3& ax1, int rotational, int rotAllowed);
+ int get_limit_motor_info2(btRotationalLimitMotor2* limot,
+ const btTransform& transA,const btTransform& transB,const btVector3& linVelA,const btVector3& linVelB,const btVector3& angVelA,const btVector3& angVelB,
+ btConstraintInfo2* info, int row, btVector3& ax1, int rotational, int rotAllowed = false);
+
+public:
+
+ BT_DECLARE_ALIGNED_ALLOCATOR();
+
+ btGeneric6DofSpring2Constraint(btRigidBody& rbA, btRigidBody& rbB, const btTransform& frameInA, const btTransform& frameInB, RotateOrder rotOrder = RO_XYZ);
+ btGeneric6DofSpring2Constraint(btRigidBody& rbB, const btTransform& frameInB, RotateOrder rotOrder = RO_XYZ);
+
+ virtual void buildJacobian() {}
+ virtual void getInfo1 (btConstraintInfo1* info);
+ virtual void getInfo2 (btConstraintInfo2* info);
+ virtual int calculateSerializeBufferSize() const;
+ virtual const char* serialize(void* dataBuffer, btSerializer* serializer) const;
+
+ btRotationalLimitMotor2* getRotationalLimitMotor(int index) { return &m_angularLimits[index]; }
+ btTranslationalLimitMotor2* getTranslationalLimitMotor() { return &m_linearLimits; }
+
+ // Calculates the global transform for the joint offset for body A an B, and also calculates the angle differences between the bodies.
+ void calculateTransforms(const btTransform& transA,const btTransform& transB);
+ void calculateTransforms();
+
+ // Gets the global transform of the offset for body A
+ const btTransform & getCalculatedTransformA() const { return m_calculatedTransformA; }
+ // Gets the global transform of the offset for body B
+ const btTransform & getCalculatedTransformB() const { return m_calculatedTransformB; }
+
+ const btTransform & getFrameOffsetA() const { return m_frameInA; }
+ const btTransform & getFrameOffsetB() const { return m_frameInB; }
+
+ btTransform & getFrameOffsetA() { return m_frameInA; }
+ btTransform & getFrameOffsetB() { return m_frameInB; }
+
+ // Get the rotation axis in global coordinates ( btGeneric6DofSpring2Constraint::calculateTransforms() must be called previously )
+ btVector3 getAxis(int axis_index) const { return m_calculatedAxis[axis_index]; }
+
+ // Get the relative Euler angle ( btGeneric6DofSpring2Constraint::calculateTransforms() must be called previously )
+ btScalar getAngle(int axis_index) const { return m_calculatedAxisAngleDiff[axis_index]; }
+
+ // Get the relative position of the constraint pivot ( btGeneric6DofSpring2Constraint::calculateTransforms() must be called previously )
+ btScalar getRelativePivotPosition(int axis_index) const { return m_calculatedLinearDiff[axis_index]; }
+
+ void setFrames(const btTransform & frameA, const btTransform & frameB);
+
+ void setLinearLowerLimit(const btVector3& linearLower) { m_linearLimits.m_lowerLimit = linearLower; }
+ void getLinearLowerLimit(btVector3& linearLower) { linearLower = m_linearLimits.m_lowerLimit; }
+ void setLinearUpperLimit(const btVector3& linearUpper) { m_linearLimits.m_upperLimit = linearUpper; }
+ void getLinearUpperLimit(btVector3& linearUpper) { linearUpper = m_linearLimits.m_upperLimit; }
+
+ void setAngularLowerLimit(const btVector3& angularLower)
+ {
+ for(int i = 0; i < 3; i++)
+ m_angularLimits[i].m_loLimit = btNormalizeAngle(angularLower[i]);
+ }
+
+ void setAngularLowerLimitReversed(const btVector3& angularLower)
+ {
+ for(int i = 0; i < 3; i++)
+ m_angularLimits[i].m_hiLimit = btNormalizeAngle(-angularLower[i]);
+ }
+
+ void getAngularLowerLimit(btVector3& angularLower)
+ {
+ for(int i = 0; i < 3; i++)
+ angularLower[i] = m_angularLimits[i].m_loLimit;
+ }
+
+ void getAngularLowerLimitReversed(btVector3& angularLower)
+ {
+ for(int i = 0; i < 3; i++)
+ angularLower[i] = -m_angularLimits[i].m_hiLimit;
+ }
+
+ void setAngularUpperLimit(const btVector3& angularUpper)
+ {
+ for(int i = 0; i < 3; i++)
+ m_angularLimits[i].m_hiLimit = btNormalizeAngle(angularUpper[i]);
+ }
+
+ void setAngularUpperLimitReversed(const btVector3& angularUpper)
+ {
+ for(int i = 0; i < 3; i++)
+ m_angularLimits[i].m_loLimit = btNormalizeAngle(-angularUpper[i]);
+ }
+
+ void getAngularUpperLimit(btVector3& angularUpper)
+ {
+ for(int i = 0; i < 3; i++)
+ angularUpper[i] = m_angularLimits[i].m_hiLimit;
+ }
+
+ void getAngularUpperLimitReversed(btVector3& angularUpper)
+ {
+ for(int i = 0; i < 3; i++)
+ angularUpper[i] = -m_angularLimits[i].m_loLimit;
+ }
+
+ //first 3 are linear, next 3 are angular
+
+ void setLimit(int axis, btScalar lo, btScalar hi)
+ {
+ if(axis<3)
+ {
+ m_linearLimits.m_lowerLimit[axis] = lo;
+ m_linearLimits.m_upperLimit[axis] = hi;
+ }
+ else
+ {
+ lo = btNormalizeAngle(lo);
+ hi = btNormalizeAngle(hi);
+ m_angularLimits[axis-3].m_loLimit = lo;
+ m_angularLimits[axis-3].m_hiLimit = hi;
+ }
+ }
+
+ void setLimitReversed(int axis, btScalar lo, btScalar hi)
+ {
+ if(axis<3)
+ {
+ m_linearLimits.m_lowerLimit[axis] = lo;
+ m_linearLimits.m_upperLimit[axis] = hi;
+ }
+ else
+ {
+ lo = btNormalizeAngle(lo);
+ hi = btNormalizeAngle(hi);
+ m_angularLimits[axis-3].m_hiLimit = -lo;
+ m_angularLimits[axis-3].m_loLimit = -hi;
+ }
+ }
+
+ bool isLimited(int limitIndex)
+ {
+ if(limitIndex<3)
+ {
+ return m_linearLimits.isLimited(limitIndex);
+ }
+ return m_angularLimits[limitIndex-3].isLimited();
+ }
+
+ void setRotationOrder(RotateOrder order) { m_rotateOrder = order; }
+ RotateOrder getRotationOrder() { return m_rotateOrder; }
+
+ void setAxis( const btVector3& axis1, const btVector3& axis2);
+
+ void setBounce(int index, btScalar bounce);
+
+ void enableMotor(int index, bool onOff);
+ void setServo(int index, bool onOff); // set the type of the motor (servo or not) (the motor has to be turned on for servo also)
+ void setTargetVelocity(int index, btScalar velocity);
+ void setServoTarget(int index, btScalar target);
+ void setMaxMotorForce(int index, btScalar force);
+
+ void enableSpring(int index, bool onOff);
+ void setStiffness(int index, btScalar stiffness, bool limitIfNeeded = true); // if limitIfNeeded is true the system will automatically limit the stiffness in necessary situations where otherwise the spring would move unrealistically too widely
+ void setDamping(int index, btScalar damping, bool limitIfNeeded = true); // if limitIfNeeded is true the system will automatically limit the damping in necessary situations where otherwise the spring would blow up
+ void setEquilibriumPoint(); // set the current constraint position/orientation as an equilibrium point for all DOF
+ void setEquilibriumPoint(int index); // set the current constraint position/orientation as an equilibrium point for given DOF
+ void setEquilibriumPoint(int index, btScalar val);
+
+ //override the default global value of a parameter (such as ERP or CFM), optionally provide the axis (0..5).
+ //If no axis is provided, it uses the default axis for this constraint.
+ virtual void setParam(int num, btScalar value, int axis = -1);
+ virtual btScalar getParam(int num, int axis = -1) const;
+
+ static btScalar btGetMatrixElem(const btMatrix3x3& mat, int index);
+ static bool matrixToEulerXYZ(const btMatrix3x3& mat,btVector3& xyz);
+ static bool matrixToEulerXZY(const btMatrix3x3& mat,btVector3& xyz);
+ static bool matrixToEulerYXZ(const btMatrix3x3& mat,btVector3& xyz);
+ static bool matrixToEulerYZX(const btMatrix3x3& mat,btVector3& xyz);
+ static bool matrixToEulerZXY(const btMatrix3x3& mat,btVector3& xyz);
+ static bool matrixToEulerZYX(const btMatrix3x3& mat,btVector3& xyz);
+};
+
+
+struct btGeneric6DofSpring2ConstraintData
+{
+ btTypedConstraintData m_typeConstraintData;
+ btTransformFloatData m_rbAFrame;
+ btTransformFloatData m_rbBFrame;
+
+ btVector3FloatData m_linearUpperLimit;
+ btVector3FloatData m_linearLowerLimit;
+ btVector3FloatData m_linearBounce;
+ btVector3FloatData m_linearStopERP;
+ btVector3FloatData m_linearStopCFM;
+ btVector3FloatData m_linearMotorERP;
+ btVector3FloatData m_linearMotorCFM;
+ btVector3FloatData m_linearTargetVelocity;
+ btVector3FloatData m_linearMaxMotorForce;
+ btVector3FloatData m_linearServoTarget;
+ btVector3FloatData m_linearSpringStiffness;
+ btVector3FloatData m_linearSpringDamping;
+ btVector3FloatData m_linearEquilibriumPoint;
+ char m_linearEnableMotor[4];
+ char m_linearServoMotor[4];
+ char m_linearEnableSpring[4];
+ char m_linearSpringStiffnessLimited[4];
+ char m_linearSpringDampingLimited[4];
+ char m_padding1[4];
+
+ btVector3FloatData m_angularUpperLimit;
+ btVector3FloatData m_angularLowerLimit;
+ btVector3FloatData m_angularBounce;
+ btVector3FloatData m_angularStopERP;
+ btVector3FloatData m_angularStopCFM;
+ btVector3FloatData m_angularMotorERP;
+ btVector3FloatData m_angularMotorCFM;
+ btVector3FloatData m_angularTargetVelocity;
+ btVector3FloatData m_angularMaxMotorForce;
+ btVector3FloatData m_angularServoTarget;
+ btVector3FloatData m_angularSpringStiffness;
+ btVector3FloatData m_angularSpringDamping;
+ btVector3FloatData m_angularEquilibriumPoint;
+ char m_angularEnableMotor[4];
+ char m_angularServoMotor[4];
+ char m_angularEnableSpring[4];
+ char m_angularSpringStiffnessLimited[4];
+ char m_angularSpringDampingLimited[4];
+
+ int m_rotateOrder;
+};
+
+struct btGeneric6DofSpring2ConstraintDoubleData2
+{
+ btTypedConstraintDoubleData m_typeConstraintData;
+ btTransformDoubleData m_rbAFrame;
+ btTransformDoubleData m_rbBFrame;
+
+ btVector3DoubleData m_linearUpperLimit;
+ btVector3DoubleData m_linearLowerLimit;
+ btVector3DoubleData m_linearBounce;
+ btVector3DoubleData m_linearStopERP;
+ btVector3DoubleData m_linearStopCFM;
+ btVector3DoubleData m_linearMotorERP;
+ btVector3DoubleData m_linearMotorCFM;
+ btVector3DoubleData m_linearTargetVelocity;
+ btVector3DoubleData m_linearMaxMotorForce;
+ btVector3DoubleData m_linearServoTarget;
+ btVector3DoubleData m_linearSpringStiffness;
+ btVector3DoubleData m_linearSpringDamping;
+ btVector3DoubleData m_linearEquilibriumPoint;
+ char m_linearEnableMotor[4];
+ char m_linearServoMotor[4];
+ char m_linearEnableSpring[4];
+ char m_linearSpringStiffnessLimited[4];
+ char m_linearSpringDampingLimited[4];
+ char m_padding1[4];
+
+ btVector3DoubleData m_angularUpperLimit;
+ btVector3DoubleData m_angularLowerLimit;
+ btVector3DoubleData m_angularBounce;
+ btVector3DoubleData m_angularStopERP;
+ btVector3DoubleData m_angularStopCFM;
+ btVector3DoubleData m_angularMotorERP;
+ btVector3DoubleData m_angularMotorCFM;
+ btVector3DoubleData m_angularTargetVelocity;
+ btVector3DoubleData m_angularMaxMotorForce;
+ btVector3DoubleData m_angularServoTarget;
+ btVector3DoubleData m_angularSpringStiffness;
+ btVector3DoubleData m_angularSpringDamping;
+ btVector3DoubleData m_angularEquilibriumPoint;
+ char m_angularEnableMotor[4];
+ char m_angularServoMotor[4];
+ char m_angularEnableSpring[4];
+ char m_angularSpringStiffnessLimited[4];
+ char m_angularSpringDampingLimited[4];
+
+ int m_rotateOrder;
+};
+
+SIMD_FORCE_INLINE int btGeneric6DofSpring2Constraint::calculateSerializeBufferSize() const
+{
+ return sizeof(btGeneric6DofSpring2ConstraintData2);
+}
+
+SIMD_FORCE_INLINE const char* btGeneric6DofSpring2Constraint::serialize(void* dataBuffer, btSerializer* serializer) const
+{
+ btGeneric6DofSpring2ConstraintData2* dof = (btGeneric6DofSpring2ConstraintData2*)dataBuffer;
+ btTypedConstraint::serialize(&dof->m_typeConstraintData,serializer);
+
+ m_frameInA.serialize(dof->m_rbAFrame);
+ m_frameInB.serialize(dof->m_rbBFrame);
+
+ int i;
+ for (i=0;i<3;i++)
+ {
+ dof->m_angularLowerLimit.m_floats[i] = m_angularLimits[i].m_loLimit;
+ dof->m_angularUpperLimit.m_floats[i] = m_angularLimits[i].m_hiLimit;
+ dof->m_angularBounce.m_floats[i] = m_angularLimits[i].m_bounce;
+ dof->m_angularStopERP.m_floats[i] = m_angularLimits[i].m_stopERP;
+ dof->m_angularStopCFM.m_floats[i] = m_angularLimits[i].m_stopCFM;
+ dof->m_angularMotorERP.m_floats[i] = m_angularLimits[i].m_motorERP;
+ dof->m_angularMotorCFM.m_floats[i] = m_angularLimits[i].m_motorCFM;
+ dof->m_angularTargetVelocity.m_floats[i] = m_angularLimits[i].m_targetVelocity;
+ dof->m_angularMaxMotorForce.m_floats[i] = m_angularLimits[i].m_maxMotorForce;
+ dof->m_angularServoTarget.m_floats[i] = m_angularLimits[i].m_servoTarget;
+ dof->m_angularSpringStiffness.m_floats[i] = m_angularLimits[i].m_springStiffness;
+ dof->m_angularSpringDamping.m_floats[i] = m_angularLimits[i].m_springDamping;
+ dof->m_angularEquilibriumPoint.m_floats[i] = m_angularLimits[i].m_equilibriumPoint;
+ }
+ dof->m_angularLowerLimit.m_floats[3] = 0;
+ dof->m_angularUpperLimit.m_floats[3] = 0;
+ dof->m_angularBounce.m_floats[3] = 0;
+ dof->m_angularStopERP.m_floats[3] = 0;
+ dof->m_angularStopCFM.m_floats[3] = 0;
+ dof->m_angularMotorERP.m_floats[3] = 0;
+ dof->m_angularMotorCFM.m_floats[3] = 0;
+ dof->m_angularTargetVelocity.m_floats[3] = 0;
+ dof->m_angularMaxMotorForce.m_floats[3] = 0;
+ dof->m_angularServoTarget.m_floats[3] = 0;
+ dof->m_angularSpringStiffness.m_floats[3] = 0;
+ dof->m_angularSpringDamping.m_floats[3] = 0;
+ dof->m_angularEquilibriumPoint.m_floats[3] = 0;
+ for (i=0;i<4;i++)
+ {
+ dof->m_angularEnableMotor[i] = i < 3 ? ( m_angularLimits[i].m_enableMotor ? 1 : 0 ) : 0;
+ dof->m_angularServoMotor[i] = i < 3 ? ( m_angularLimits[i].m_servoMotor ? 1 : 0 ) : 0;
+ dof->m_angularEnableSpring[i] = i < 3 ? ( m_angularLimits[i].m_enableSpring ? 1 : 0 ) : 0;
+ dof->m_angularSpringStiffnessLimited[i] = i < 3 ? ( m_angularLimits[i].m_springStiffnessLimited ? 1 : 0 ) : 0;
+ dof->m_angularSpringDampingLimited[i] = i < 3 ? ( m_angularLimits[i].m_springDampingLimited ? 1 : 0 ) : 0;
+ }
+
+ m_linearLimits.m_lowerLimit.serialize( dof->m_linearLowerLimit );
+ m_linearLimits.m_upperLimit.serialize( dof->m_linearUpperLimit );
+ m_linearLimits.m_bounce.serialize( dof->m_linearBounce );
+ m_linearLimits.m_stopERP.serialize( dof->m_linearStopERP );
+ m_linearLimits.m_stopCFM.serialize( dof->m_linearStopCFM );
+ m_linearLimits.m_motorERP.serialize( dof->m_linearMotorERP );
+ m_linearLimits.m_motorCFM.serialize( dof->m_linearMotorCFM );
+ m_linearLimits.m_targetVelocity.serialize( dof->m_linearTargetVelocity );
+ m_linearLimits.m_maxMotorForce.serialize( dof->m_linearMaxMotorForce );
+ m_linearLimits.m_servoTarget.serialize( dof->m_linearServoTarget );
+ m_linearLimits.m_springStiffness.serialize( dof->m_linearSpringStiffness );
+ m_linearLimits.m_springDamping.serialize( dof->m_linearSpringDamping );
+ m_linearLimits.m_equilibriumPoint.serialize( dof->m_linearEquilibriumPoint );
+ for (i=0;i<4;i++)
+ {
+ dof->m_linearEnableMotor[i] = i < 3 ? ( m_linearLimits.m_enableMotor[i] ? 1 : 0 ) : 0;
+ dof->m_linearServoMotor[i] = i < 3 ? ( m_linearLimits.m_servoMotor[i] ? 1 : 0 ) : 0;
+ dof->m_linearEnableSpring[i] = i < 3 ? ( m_linearLimits.m_enableSpring[i] ? 1 : 0 ) : 0;
+ dof->m_linearSpringStiffnessLimited[i] = i < 3 ? ( m_linearLimits.m_springStiffnessLimited[i] ? 1 : 0 ) : 0;
+ dof->m_linearSpringDampingLimited[i] = i < 3 ? ( m_linearLimits.m_springDampingLimited[i] ? 1 : 0 ) : 0;
+ }
+
+ dof->m_rotateOrder = m_rotateOrder;
+
+ dof->m_padding1[0] = 0;
+ dof->m_padding1[1] = 0;
+ dof->m_padding1[2] = 0;
+ dof->m_padding1[3] = 0;
+
+ return btGeneric6DofSpring2ConstraintDataName;
+}
+
+
+
+
+
+#endif //BT_GENERIC_6DOF_CONSTRAINT_H
diff --git a/thirdparty/bullet/BulletDynamics/ConstraintSolver/btGeneric6DofSpringConstraint.cpp b/thirdparty/bullet/BulletDynamics/ConstraintSolver/btGeneric6DofSpringConstraint.cpp
new file mode 100644
index 0000000000..6f765884ec
--- /dev/null
+++ b/thirdparty/bullet/BulletDynamics/ConstraintSolver/btGeneric6DofSpringConstraint.cpp
@@ -0,0 +1,185 @@
+/*
+Bullet Continuous Collision Detection and Physics Library, http://bulletphysics.org
+Copyright (C) 2006, 2007 Sony Computer Entertainment Inc.
+
+This software is provided 'as-is', without any express or implied warranty.
+In no event will the authors be held liable for any damages arising from the use of this software.
+Permission is granted to anyone to use this software for any purpose,
+including commercial applications, and to alter it and redistribute it freely,
+subject to the following restrictions:
+
+1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
+2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
+3. This notice may not be removed or altered from any source distribution.
+*/
+
+#include "btGeneric6DofSpringConstraint.h"
+#include "BulletDynamics/Dynamics/btRigidBody.h"
+#include "LinearMath/btTransformUtil.h"
+
+
+btGeneric6DofSpringConstraint::btGeneric6DofSpringConstraint(btRigidBody& rbA, btRigidBody& rbB, const btTransform& frameInA, const btTransform& frameInB ,bool useLinearReferenceFrameA)
+ : btGeneric6DofConstraint(rbA, rbB, frameInA, frameInB, useLinearReferenceFrameA)
+{
+ init();
+}
+
+
+btGeneric6DofSpringConstraint::btGeneric6DofSpringConstraint(btRigidBody& rbB, const btTransform& frameInB, bool useLinearReferenceFrameB)
+ : btGeneric6DofConstraint(rbB, frameInB, useLinearReferenceFrameB)
+{
+ init();
+}
+
+
+void btGeneric6DofSpringConstraint::init()
+{
+ m_objectType = D6_SPRING_CONSTRAINT_TYPE;
+
+ for(int i = 0; i < 6; i++)
+ {
+ m_springEnabled[i] = false;
+ m_equilibriumPoint[i] = btScalar(0.f);
+ m_springStiffness[i] = btScalar(0.f);
+ m_springDamping[i] = btScalar(1.f);
+ }
+}
+
+
+void btGeneric6DofSpringConstraint::enableSpring(int index, bool onOff)
+{
+ btAssert((index >= 0) && (index < 6));
+ m_springEnabled[index] = onOff;
+ if(index < 3)
+ {
+ m_linearLimits.m_enableMotor[index] = onOff;
+ }
+ else
+ {
+ m_angularLimits[index - 3].m_enableMotor = onOff;
+ }
+}
+
+
+
+void btGeneric6DofSpringConstraint::setStiffness(int index, btScalar stiffness)
+{
+ btAssert((index >= 0) && (index < 6));
+ m_springStiffness[index] = stiffness;
+}
+
+
+void btGeneric6DofSpringConstraint::setDamping(int index, btScalar damping)
+{
+ btAssert((index >= 0) && (index < 6));
+ m_springDamping[index] = damping;
+}
+
+
+void btGeneric6DofSpringConstraint::setEquilibriumPoint()
+{
+ calculateTransforms();
+ int i;
+
+ for( i = 0; i < 3; i++)
+ {
+ m_equilibriumPoint[i] = m_calculatedLinearDiff[i];
+ }
+ for(i = 0; i < 3; i++)
+ {
+ m_equilibriumPoint[i + 3] = m_calculatedAxisAngleDiff[i];
+ }
+}
+
+
+
+void btGeneric6DofSpringConstraint::setEquilibriumPoint(int index)
+{
+ btAssert((index >= 0) && (index < 6));
+ calculateTransforms();
+ if(index < 3)
+ {
+ m_equilibriumPoint[index] = m_calculatedLinearDiff[index];
+ }
+ else
+ {
+ m_equilibriumPoint[index] = m_calculatedAxisAngleDiff[index - 3];
+ }
+}
+
+void btGeneric6DofSpringConstraint::setEquilibriumPoint(int index, btScalar val)
+{
+ btAssert((index >= 0) && (index < 6));
+ m_equilibriumPoint[index] = val;
+}
+
+
+void btGeneric6DofSpringConstraint::internalUpdateSprings(btConstraintInfo2* info)
+{
+ // it is assumed that calculateTransforms() have been called before this call
+ int i;
+ //btVector3 relVel = m_rbB.getLinearVelocity() - m_rbA.getLinearVelocity();
+ for(i = 0; i < 3; i++)
+ {
+ if(m_springEnabled[i])
+ {
+ // get current position of constraint
+ btScalar currPos = m_calculatedLinearDiff[i];
+ // calculate difference
+ btScalar delta = currPos - m_equilibriumPoint[i];
+ // spring force is (delta * m_stiffness) according to Hooke's Law
+ btScalar force = delta * m_springStiffness[i];
+ btScalar velFactor = info->fps * m_springDamping[i] / btScalar(info->m_numIterations);
+ m_linearLimits.m_targetVelocity[i] = velFactor * force;
+ m_linearLimits.m_maxMotorForce[i] = btFabs(force) / info->fps;
+ }
+ }
+ for(i = 0; i < 3; i++)
+ {
+ if(m_springEnabled[i + 3])
+ {
+ // get current position of constraint
+ btScalar currPos = m_calculatedAxisAngleDiff[i];
+ // calculate difference
+ btScalar delta = currPos - m_equilibriumPoint[i+3];
+ // spring force is (-delta * m_stiffness) according to Hooke's Law
+ btScalar force = -delta * m_springStiffness[i+3];
+ btScalar velFactor = info->fps * m_springDamping[i+3] / btScalar(info->m_numIterations);
+ m_angularLimits[i].m_targetVelocity = velFactor * force;
+ m_angularLimits[i].m_maxMotorForce = btFabs(force) / info->fps;
+ }
+ }
+}
+
+
+void btGeneric6DofSpringConstraint::getInfo2(btConstraintInfo2* info)
+{
+ // this will be called by constraint solver at the constraint setup stage
+ // set current motor parameters
+ internalUpdateSprings(info);
+ // do the rest of job for constraint setup
+ btGeneric6DofConstraint::getInfo2(info);
+}
+
+
+void btGeneric6DofSpringConstraint::setAxis(const btVector3& axis1,const btVector3& axis2)
+{
+ btVector3 zAxis = axis1.normalized();
+ btVector3 yAxis = axis2.normalized();
+ btVector3 xAxis = yAxis.cross(zAxis); // we want right coordinate system
+
+ btTransform frameInW;
+ frameInW.setIdentity();
+ frameInW.getBasis().setValue( xAxis[0], yAxis[0], zAxis[0],
+ xAxis[1], yAxis[1], zAxis[1],
+ xAxis[2], yAxis[2], zAxis[2]);
+
+ // now get constraint frame in local coordinate systems
+ m_frameInA = m_rbA.getCenterOfMassTransform().inverse() * frameInW;
+ m_frameInB = m_rbB.getCenterOfMassTransform().inverse() * frameInW;
+
+ calculateTransforms();
+}
+
+
+
diff --git a/thirdparty/bullet/BulletDynamics/ConstraintSolver/btGeneric6DofSpringConstraint.h b/thirdparty/bullet/BulletDynamics/ConstraintSolver/btGeneric6DofSpringConstraint.h
new file mode 100644
index 0000000000..dac59c6889
--- /dev/null
+++ b/thirdparty/bullet/BulletDynamics/ConstraintSolver/btGeneric6DofSpringConstraint.h
@@ -0,0 +1,141 @@
+/*
+Bullet Continuous Collision Detection and Physics Library, http://bulletphysics.org
+Copyright (C) 2006, 2007 Sony Computer Entertainment Inc.
+
+This software is provided 'as-is', without any express or implied warranty.
+In no event will the authors be held liable for any damages arising from the use of this software.
+Permission is granted to anyone to use this software for any purpose,
+including commercial applications, and to alter it and redistribute it freely,
+subject to the following restrictions:
+
+1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
+2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
+3. This notice may not be removed or altered from any source distribution.
+*/
+
+#ifndef BT_GENERIC_6DOF_SPRING_CONSTRAINT_H
+#define BT_GENERIC_6DOF_SPRING_CONSTRAINT_H
+
+
+#include "LinearMath/btVector3.h"
+#include "btTypedConstraint.h"
+#include "btGeneric6DofConstraint.h"
+
+#ifdef BT_USE_DOUBLE_PRECISION
+#define btGeneric6DofSpringConstraintData2 btGeneric6DofSpringConstraintDoubleData2
+#define btGeneric6DofSpringConstraintDataName "btGeneric6DofSpringConstraintDoubleData2"
+#else
+#define btGeneric6DofSpringConstraintData2 btGeneric6DofSpringConstraintData
+#define btGeneric6DofSpringConstraintDataName "btGeneric6DofSpringConstraintData"
+#endif //BT_USE_DOUBLE_PRECISION
+
+
+
+/// Generic 6 DOF constraint that allows to set spring motors to any translational and rotational DOF
+
+/// DOF index used in enableSpring() and setStiffness() means:
+/// 0 : translation X
+/// 1 : translation Y
+/// 2 : translation Z
+/// 3 : rotation X (3rd Euler rotational around new position of X axis, range [-PI+epsilon, PI-epsilon] )
+/// 4 : rotation Y (2nd Euler rotational around new position of Y axis, range [-PI/2+epsilon, PI/2-epsilon] )
+/// 5 : rotation Z (1st Euler rotational around Z axis, range [-PI+epsilon, PI-epsilon] )
+
+ATTRIBUTE_ALIGNED16(class) btGeneric6DofSpringConstraint : public btGeneric6DofConstraint
+{
+protected:
+ bool m_springEnabled[6];
+ btScalar m_equilibriumPoint[6];
+ btScalar m_springStiffness[6];
+ btScalar m_springDamping[6]; // between 0 and 1 (1 == no damping)
+ void init();
+ void internalUpdateSprings(btConstraintInfo2* info);
+public:
+
+ BT_DECLARE_ALIGNED_ALLOCATOR();
+
+ btGeneric6DofSpringConstraint(btRigidBody& rbA, btRigidBody& rbB, const btTransform& frameInA, const btTransform& frameInB ,bool useLinearReferenceFrameA);
+ btGeneric6DofSpringConstraint(btRigidBody& rbB, const btTransform& frameInB, bool useLinearReferenceFrameB);
+ void enableSpring(int index, bool onOff);
+ void setStiffness(int index, btScalar stiffness);
+ void setDamping(int index, btScalar damping);
+ void setEquilibriumPoint(); // set the current constraint position/orientation as an equilibrium point for all DOF
+ void setEquilibriumPoint(int index); // set the current constraint position/orientation as an equilibrium point for given DOF
+ void setEquilibriumPoint(int index, btScalar val);
+
+ bool isSpringEnabled(int index) const
+ {
+ return m_springEnabled[index];
+ }
+
+ btScalar getStiffness(int index) const
+ {
+ return m_springStiffness[index];
+ }
+
+ btScalar getDamping(int index) const
+ {
+ return m_springDamping[index];
+ }
+
+ btScalar getEquilibriumPoint(int index) const
+ {
+ return m_equilibriumPoint[index];
+ }
+
+ virtual void setAxis( const btVector3& axis1, const btVector3& axis2);
+
+ virtual void getInfo2 (btConstraintInfo2* info);
+
+ virtual int calculateSerializeBufferSize() const;
+ ///fills the dataBuffer and returns the struct name (and 0 on failure)
+ virtual const char* serialize(void* dataBuffer, btSerializer* serializer) const;
+
+};
+
+
+struct btGeneric6DofSpringConstraintData
+{
+ btGeneric6DofConstraintData m_6dofData;
+
+ int m_springEnabled[6];
+ float m_equilibriumPoint[6];
+ float m_springStiffness[6];
+ float m_springDamping[6];
+};
+
+struct btGeneric6DofSpringConstraintDoubleData2
+{
+ btGeneric6DofConstraintDoubleData2 m_6dofData;
+
+ int m_springEnabled[6];
+ double m_equilibriumPoint[6];
+ double m_springStiffness[6];
+ double m_springDamping[6];
+};
+
+
+SIMD_FORCE_INLINE int btGeneric6DofSpringConstraint::calculateSerializeBufferSize() const
+{
+ return sizeof(btGeneric6DofSpringConstraintData2);
+}
+
+ ///fills the dataBuffer and returns the struct name (and 0 on failure)
+SIMD_FORCE_INLINE const char* btGeneric6DofSpringConstraint::serialize(void* dataBuffer, btSerializer* serializer) const
+{
+ btGeneric6DofSpringConstraintData2* dof = (btGeneric6DofSpringConstraintData2*)dataBuffer;
+ btGeneric6DofConstraint::serialize(&dof->m_6dofData,serializer);
+
+ int i;
+ for (i=0;i<6;i++)
+ {
+ dof->m_equilibriumPoint[i] = m_equilibriumPoint[i];
+ dof->m_springDamping[i] = m_springDamping[i];
+ dof->m_springEnabled[i] = m_springEnabled[i]? 1 : 0;
+ dof->m_springStiffness[i] = m_springStiffness[i];
+ }
+ return btGeneric6DofSpringConstraintDataName;
+}
+
+#endif // BT_GENERIC_6DOF_SPRING_CONSTRAINT_H
+
diff --git a/thirdparty/bullet/BulletDynamics/ConstraintSolver/btHinge2Constraint.cpp b/thirdparty/bullet/BulletDynamics/ConstraintSolver/btHinge2Constraint.cpp
new file mode 100644
index 0000000000..4be2aabe4d
--- /dev/null
+++ b/thirdparty/bullet/BulletDynamics/ConstraintSolver/btHinge2Constraint.cpp
@@ -0,0 +1,66 @@
+/*
+Bullet Continuous Collision Detection and Physics Library, http://bulletphysics.org
+Copyright (C) 2006, 2007 Sony Computer Entertainment Inc.
+
+This software is provided 'as-is', without any express or implied warranty.
+In no event will the authors be held liable for any damages arising from the use of this software.
+Permission is granted to anyone to use this software for any purpose,
+including commercial applications, and to alter it and redistribute it freely,
+subject to the following restrictions:
+
+1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
+2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
+3. This notice may not be removed or altered from any source distribution.
+*/
+
+
+
+#include "btHinge2Constraint.h"
+#include "BulletDynamics/Dynamics/btRigidBody.h"
+#include "LinearMath/btTransformUtil.h"
+
+
+
+// constructor
+// anchor, axis1 and axis2 are in world coordinate system
+// axis1 must be orthogonal to axis2
+btHinge2Constraint::btHinge2Constraint(btRigidBody& rbA, btRigidBody& rbB, btVector3& anchor, btVector3& axis1, btVector3& axis2)
+: btGeneric6DofSpring2Constraint(rbA, rbB, btTransform::getIdentity(), btTransform::getIdentity(),RO_XYZ),
+ m_anchor(anchor),
+ m_axis1(axis1),
+ m_axis2(axis2)
+{
+ // build frame basis
+ // 6DOF constraint uses Euler angles and to define limits
+ // it is assumed that rotational order is :
+ // Z - first, allowed limits are (-PI,PI);
+ // new position of Y - second (allowed limits are (-PI/2 + epsilon, PI/2 - epsilon), where epsilon is a small positive number
+ // used to prevent constraint from instability on poles;
+ // new position of X, allowed limits are (-PI,PI);
+ // So to simulate ODE Universal joint we should use parent axis as Z, child axis as Y and limit all other DOFs
+ // Build the frame in world coordinate system first
+ btVector3 zAxis = axis1.normalize();
+ btVector3 xAxis = axis2.normalize();
+ btVector3 yAxis = zAxis.cross(xAxis); // we want right coordinate system
+ btTransform frameInW;
+ frameInW.setIdentity();
+ frameInW.getBasis().setValue( xAxis[0], yAxis[0], zAxis[0],
+ xAxis[1], yAxis[1], zAxis[1],
+ xAxis[2], yAxis[2], zAxis[2]);
+ frameInW.setOrigin(anchor);
+ // now get constraint frame in local coordinate systems
+ m_frameInA = rbA.getCenterOfMassTransform().inverse() * frameInW;
+ m_frameInB = rbB.getCenterOfMassTransform().inverse() * frameInW;
+ // sei limits
+ setLinearLowerLimit(btVector3(0.f, 0.f, -1.f));
+ setLinearUpperLimit(btVector3(0.f, 0.f, 1.f));
+ // like front wheels of a car
+ setAngularLowerLimit(btVector3(1.f, 0.f, -SIMD_HALF_PI * 0.5f));
+ setAngularUpperLimit(btVector3(-1.f, 0.f, SIMD_HALF_PI * 0.5f));
+ // enable suspension
+ enableSpring(2, true);
+ setStiffness(2, SIMD_PI * SIMD_PI * 4.f);
+ setDamping(2, 0.01f);
+ setEquilibriumPoint();
+}
+
diff --git a/thirdparty/bullet/BulletDynamics/ConstraintSolver/btHinge2Constraint.h b/thirdparty/bullet/BulletDynamics/ConstraintSolver/btHinge2Constraint.h
new file mode 100644
index 0000000000..06a8e3ecd1
--- /dev/null
+++ b/thirdparty/bullet/BulletDynamics/ConstraintSolver/btHinge2Constraint.h
@@ -0,0 +1,60 @@
+/*
+Bullet Continuous Collision Detection and Physics Library, http://bulletphysics.org
+Copyright (C) 2006, 2007 Sony Computer Entertainment Inc.
+
+This software is provided 'as-is', without any express or implied warranty.
+In no event will the authors be held liable for any damages arising from the use of this software.
+Permission is granted to anyone to use this software for any purpose,
+including commercial applications, and to alter it and redistribute it freely,
+subject to the following restrictions:
+
+1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
+2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
+3. This notice may not be removed or altered from any source distribution.
+*/
+
+#ifndef BT_HINGE2_CONSTRAINT_H
+#define BT_HINGE2_CONSTRAINT_H
+
+
+
+#include "LinearMath/btVector3.h"
+#include "btTypedConstraint.h"
+#include "btGeneric6DofSpring2Constraint.h"
+
+
+
+// Constraint similar to ODE Hinge2 Joint
+// has 3 degrees of frredom:
+// 2 rotational degrees of freedom, similar to Euler rotations around Z (axis 1) and X (axis 2)
+// 1 translational (along axis Z) with suspension spring
+
+ATTRIBUTE_ALIGNED16(class) btHinge2Constraint : public btGeneric6DofSpring2Constraint
+{
+protected:
+ btVector3 m_anchor;
+ btVector3 m_axis1;
+ btVector3 m_axis2;
+public:
+ BT_DECLARE_ALIGNED_ALLOCATOR();
+
+ // constructor
+ // anchor, axis1 and axis2 are in world coordinate system
+ // axis1 must be orthogonal to axis2
+ btHinge2Constraint(btRigidBody& rbA, btRigidBody& rbB, btVector3& anchor, btVector3& axis1, btVector3& axis2);
+ // access
+ const btVector3& getAnchor() { return m_calculatedTransformA.getOrigin(); }
+ const btVector3& getAnchor2() { return m_calculatedTransformB.getOrigin(); }
+ const btVector3& getAxis1() { return m_axis1; }
+ const btVector3& getAxis2() { return m_axis2; }
+ btScalar getAngle1() { return getAngle(2); }
+ btScalar getAngle2() { return getAngle(0); }
+ // limits
+ void setUpperLimit(btScalar ang1max) { setAngularUpperLimit(btVector3(-1.f, 0.f, ang1max)); }
+ void setLowerLimit(btScalar ang1min) { setAngularLowerLimit(btVector3( 1.f, 0.f, ang1min)); }
+};
+
+
+
+#endif // BT_HINGE2_CONSTRAINT_H
+
diff --git a/thirdparty/bullet/BulletDynamics/ConstraintSolver/btHingeConstraint.cpp b/thirdparty/bullet/BulletDynamics/ConstraintSolver/btHingeConstraint.cpp
new file mode 100644
index 0000000000..7e5e6f9e54
--- /dev/null
+++ b/thirdparty/bullet/BulletDynamics/ConstraintSolver/btHingeConstraint.cpp
@@ -0,0 +1,1120 @@
+/*
+Bullet Continuous Collision Detection and Physics Library
+Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
+
+This software is provided 'as-is', without any express or implied warranty.
+In no event will the authors be held liable for any damages arising from the use of this software.
+Permission is granted to anyone to use this software for any purpose,
+including commercial applications, and to alter it and redistribute it freely,
+subject to the following restrictions:
+
+1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
+2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
+3. This notice may not be removed or altered from any source distribution.
+*/
+
+
+#include "btHingeConstraint.h"
+#include "BulletDynamics/Dynamics/btRigidBody.h"
+#include "LinearMath/btTransformUtil.h"
+#include "LinearMath/btMinMax.h"
+#include <new>
+#include "btSolverBody.h"
+
+
+
+//#define HINGE_USE_OBSOLETE_SOLVER false
+#define HINGE_USE_OBSOLETE_SOLVER false
+
+#define HINGE_USE_FRAME_OFFSET true
+
+#ifndef __SPU__
+
+
+
+
+
+btHingeConstraint::btHingeConstraint(btRigidBody& rbA,btRigidBody& rbB, const btVector3& pivotInA,const btVector3& pivotInB,
+ const btVector3& axisInA,const btVector3& axisInB, bool useReferenceFrameA)
+ :btTypedConstraint(HINGE_CONSTRAINT_TYPE, rbA,rbB),
+#ifdef _BT_USE_CENTER_LIMIT_
+ m_limit(),
+#endif
+ m_angularOnly(false),
+ m_enableAngularMotor(false),
+ m_useSolveConstraintObsolete(HINGE_USE_OBSOLETE_SOLVER),
+ m_useOffsetForConstraintFrame(HINGE_USE_FRAME_OFFSET),
+ m_useReferenceFrameA(useReferenceFrameA),
+ m_flags(0),
+ m_normalCFM(0),
+ m_normalERP(0),
+ m_stopCFM(0),
+ m_stopERP(0)
+{
+ m_rbAFrame.getOrigin() = pivotInA;
+
+ // since no frame is given, assume this to be zero angle and just pick rb transform axis
+ btVector3 rbAxisA1 = rbA.getCenterOfMassTransform().getBasis().getColumn(0);
+
+ btVector3 rbAxisA2;
+ btScalar projection = axisInA.dot(rbAxisA1);
+ if (projection >= 1.0f - SIMD_EPSILON) {
+ rbAxisA1 = -rbA.getCenterOfMassTransform().getBasis().getColumn(2);
+ rbAxisA2 = rbA.getCenterOfMassTransform().getBasis().getColumn(1);
+ } else if (projection <= -1.0f + SIMD_EPSILON) {
+ rbAxisA1 = rbA.getCenterOfMassTransform().getBasis().getColumn(2);
+ rbAxisA2 = rbA.getCenterOfMassTransform().getBasis().getColumn(1);
+ } else {
+ rbAxisA2 = axisInA.cross(rbAxisA1);
+ rbAxisA1 = rbAxisA2.cross(axisInA);
+ }
+
+ m_rbAFrame.getBasis().setValue( rbAxisA1.getX(),rbAxisA2.getX(),axisInA.getX(),
+ rbAxisA1.getY(),rbAxisA2.getY(),axisInA.getY(),
+ rbAxisA1.getZ(),rbAxisA2.getZ(),axisInA.getZ() );
+
+ btQuaternion rotationArc = shortestArcQuat(axisInA,axisInB);
+ btVector3 rbAxisB1 = quatRotate(rotationArc,rbAxisA1);
+ btVector3 rbAxisB2 = axisInB.cross(rbAxisB1);
+
+ m_rbBFrame.getOrigin() = pivotInB;
+ m_rbBFrame.getBasis().setValue( rbAxisB1.getX(),rbAxisB2.getX(),axisInB.getX(),
+ rbAxisB1.getY(),rbAxisB2.getY(),axisInB.getY(),
+ rbAxisB1.getZ(),rbAxisB2.getZ(),axisInB.getZ() );
+
+#ifndef _BT_USE_CENTER_LIMIT_
+ //start with free
+ m_lowerLimit = btScalar(1.0f);
+ m_upperLimit = btScalar(-1.0f);
+ m_biasFactor = 0.3f;
+ m_relaxationFactor = 1.0f;
+ m_limitSoftness = 0.9f;
+ m_solveLimit = false;
+#endif
+ m_referenceSign = m_useReferenceFrameA ? btScalar(-1.f) : btScalar(1.f);
+}
+
+
+
+btHingeConstraint::btHingeConstraint(btRigidBody& rbA,const btVector3& pivotInA,const btVector3& axisInA, bool useReferenceFrameA)
+:btTypedConstraint(HINGE_CONSTRAINT_TYPE, rbA),
+#ifdef _BT_USE_CENTER_LIMIT_
+m_limit(),
+#endif
+m_angularOnly(false), m_enableAngularMotor(false),
+m_useSolveConstraintObsolete(HINGE_USE_OBSOLETE_SOLVER),
+m_useOffsetForConstraintFrame(HINGE_USE_FRAME_OFFSET),
+m_useReferenceFrameA(useReferenceFrameA),
+m_flags(0),
+m_normalCFM(0),
+m_normalERP(0),
+m_stopCFM(0),
+m_stopERP(0)
+{
+
+ // since no frame is given, assume this to be zero angle and just pick rb transform axis
+ // fixed axis in worldspace
+ btVector3 rbAxisA1, rbAxisA2;
+ btPlaneSpace1(axisInA, rbAxisA1, rbAxisA2);
+
+ m_rbAFrame.getOrigin() = pivotInA;
+ m_rbAFrame.getBasis().setValue( rbAxisA1.getX(),rbAxisA2.getX(),axisInA.getX(),
+ rbAxisA1.getY(),rbAxisA2.getY(),axisInA.getY(),
+ rbAxisA1.getZ(),rbAxisA2.getZ(),axisInA.getZ() );
+
+ btVector3 axisInB = rbA.getCenterOfMassTransform().getBasis() * axisInA;
+
+ btQuaternion rotationArc = shortestArcQuat(axisInA,axisInB);
+ btVector3 rbAxisB1 = quatRotate(rotationArc,rbAxisA1);
+ btVector3 rbAxisB2 = axisInB.cross(rbAxisB1);
+
+
+ m_rbBFrame.getOrigin() = rbA.getCenterOfMassTransform()(pivotInA);
+ m_rbBFrame.getBasis().setValue( rbAxisB1.getX(),rbAxisB2.getX(),axisInB.getX(),
+ rbAxisB1.getY(),rbAxisB2.getY(),axisInB.getY(),
+ rbAxisB1.getZ(),rbAxisB2.getZ(),axisInB.getZ() );
+
+#ifndef _BT_USE_CENTER_LIMIT_
+ //start with free
+ m_lowerLimit = btScalar(1.0f);
+ m_upperLimit = btScalar(-1.0f);
+ m_biasFactor = 0.3f;
+ m_relaxationFactor = 1.0f;
+ m_limitSoftness = 0.9f;
+ m_solveLimit = false;
+#endif
+ m_referenceSign = m_useReferenceFrameA ? btScalar(-1.f) : btScalar(1.f);
+}
+
+
+
+btHingeConstraint::btHingeConstraint(btRigidBody& rbA,btRigidBody& rbB,
+ const btTransform& rbAFrame, const btTransform& rbBFrame, bool useReferenceFrameA)
+:btTypedConstraint(HINGE_CONSTRAINT_TYPE, rbA,rbB),m_rbAFrame(rbAFrame),m_rbBFrame(rbBFrame),
+#ifdef _BT_USE_CENTER_LIMIT_
+m_limit(),
+#endif
+m_angularOnly(false),
+m_enableAngularMotor(false),
+m_useSolveConstraintObsolete(HINGE_USE_OBSOLETE_SOLVER),
+m_useOffsetForConstraintFrame(HINGE_USE_FRAME_OFFSET),
+m_useReferenceFrameA(useReferenceFrameA),
+m_flags(0),
+m_normalCFM(0),
+m_normalERP(0),
+m_stopCFM(0),
+m_stopERP(0)
+{
+#ifndef _BT_USE_CENTER_LIMIT_
+ //start with free
+ m_lowerLimit = btScalar(1.0f);
+ m_upperLimit = btScalar(-1.0f);
+ m_biasFactor = 0.3f;
+ m_relaxationFactor = 1.0f;
+ m_limitSoftness = 0.9f;
+ m_solveLimit = false;
+#endif
+ m_referenceSign = m_useReferenceFrameA ? btScalar(-1.f) : btScalar(1.f);
+}
+
+
+
+btHingeConstraint::btHingeConstraint(btRigidBody& rbA, const btTransform& rbAFrame, bool useReferenceFrameA)
+:btTypedConstraint(HINGE_CONSTRAINT_TYPE, rbA),m_rbAFrame(rbAFrame),m_rbBFrame(rbAFrame),
+#ifdef _BT_USE_CENTER_LIMIT_
+m_limit(),
+#endif
+m_angularOnly(false),
+m_enableAngularMotor(false),
+m_useSolveConstraintObsolete(HINGE_USE_OBSOLETE_SOLVER),
+m_useOffsetForConstraintFrame(HINGE_USE_FRAME_OFFSET),
+m_useReferenceFrameA(useReferenceFrameA),
+m_flags(0),
+m_normalCFM(0),
+m_normalERP(0),
+m_stopCFM(0),
+m_stopERP(0)
+{
+ ///not providing rigidbody B means implicitly using worldspace for body B
+
+ m_rbBFrame.getOrigin() = m_rbA.getCenterOfMassTransform()(m_rbAFrame.getOrigin());
+#ifndef _BT_USE_CENTER_LIMIT_
+ //start with free
+ m_lowerLimit = btScalar(1.0f);
+ m_upperLimit = btScalar(-1.0f);
+ m_biasFactor = 0.3f;
+ m_relaxationFactor = 1.0f;
+ m_limitSoftness = 0.9f;
+ m_solveLimit = false;
+#endif
+ m_referenceSign = m_useReferenceFrameA ? btScalar(-1.f) : btScalar(1.f);
+}
+
+
+
+void btHingeConstraint::buildJacobian()
+{
+ if (m_useSolveConstraintObsolete)
+ {
+ m_appliedImpulse = btScalar(0.);
+ m_accMotorImpulse = btScalar(0.);
+
+ if (!m_angularOnly)
+ {
+ btVector3 pivotAInW = m_rbA.getCenterOfMassTransform()*m_rbAFrame.getOrigin();
+ btVector3 pivotBInW = m_rbB.getCenterOfMassTransform()*m_rbBFrame.getOrigin();
+ btVector3 relPos = pivotBInW - pivotAInW;
+
+ btVector3 normal[3];
+ if (relPos.length2() > SIMD_EPSILON)
+ {
+ normal[0] = relPos.normalized();
+ }
+ else
+ {
+ normal[0].setValue(btScalar(1.0),0,0);
+ }
+
+ btPlaneSpace1(normal[0], normal[1], normal[2]);
+
+ for (int i=0;i<3;i++)
+ {
+ new (&m_jac[i]) btJacobianEntry(
+ m_rbA.getCenterOfMassTransform().getBasis().transpose(),
+ m_rbB.getCenterOfMassTransform().getBasis().transpose(),
+ pivotAInW - m_rbA.getCenterOfMassPosition(),
+ pivotBInW - m_rbB.getCenterOfMassPosition(),
+ normal[i],
+ m_rbA.getInvInertiaDiagLocal(),
+ m_rbA.getInvMass(),
+ m_rbB.getInvInertiaDiagLocal(),
+ m_rbB.getInvMass());
+ }
+ }
+
+ //calculate two perpendicular jointAxis, orthogonal to hingeAxis
+ //these two jointAxis require equal angular velocities for both bodies
+
+ //this is unused for now, it's a todo
+ btVector3 jointAxis0local;
+ btVector3 jointAxis1local;
+
+ btPlaneSpace1(m_rbAFrame.getBasis().getColumn(2),jointAxis0local,jointAxis1local);
+
+ btVector3 jointAxis0 = getRigidBodyA().getCenterOfMassTransform().getBasis() * jointAxis0local;
+ btVector3 jointAxis1 = getRigidBodyA().getCenterOfMassTransform().getBasis() * jointAxis1local;
+ btVector3 hingeAxisWorld = getRigidBodyA().getCenterOfMassTransform().getBasis() * m_rbAFrame.getBasis().getColumn(2);
+
+ new (&m_jacAng[0]) btJacobianEntry(jointAxis0,
+ m_rbA.getCenterOfMassTransform().getBasis().transpose(),
+ m_rbB.getCenterOfMassTransform().getBasis().transpose(),
+ m_rbA.getInvInertiaDiagLocal(),
+ m_rbB.getInvInertiaDiagLocal());
+
+ new (&m_jacAng[1]) btJacobianEntry(jointAxis1,
+ m_rbA.getCenterOfMassTransform().getBasis().transpose(),
+ m_rbB.getCenterOfMassTransform().getBasis().transpose(),
+ m_rbA.getInvInertiaDiagLocal(),
+ m_rbB.getInvInertiaDiagLocal());
+
+ new (&m_jacAng[2]) btJacobianEntry(hingeAxisWorld,
+ m_rbA.getCenterOfMassTransform().getBasis().transpose(),
+ m_rbB.getCenterOfMassTransform().getBasis().transpose(),
+ m_rbA.getInvInertiaDiagLocal(),
+ m_rbB.getInvInertiaDiagLocal());
+
+ // clear accumulator
+ m_accLimitImpulse = btScalar(0.);
+
+ // test angular limit
+ testLimit(m_rbA.getCenterOfMassTransform(),m_rbB.getCenterOfMassTransform());
+
+ //Compute K = J*W*J' for hinge axis
+ btVector3 axisA = getRigidBodyA().getCenterOfMassTransform().getBasis() * m_rbAFrame.getBasis().getColumn(2);
+ m_kHinge = 1.0f / (getRigidBodyA().computeAngularImpulseDenominator(axisA) +
+ getRigidBodyB().computeAngularImpulseDenominator(axisA));
+
+ }
+}
+
+
+#endif //__SPU__
+
+
+static inline btScalar btNormalizeAnglePositive(btScalar angle)
+{
+ return btFmod(btFmod(angle, btScalar(2.0*SIMD_PI)) + btScalar(2.0*SIMD_PI), btScalar(2.0*SIMD_PI));
+}
+
+
+
+static btScalar btShortestAngularDistance(btScalar accAngle, btScalar curAngle)
+{
+ btScalar result = btNormalizeAngle(btNormalizeAnglePositive(btNormalizeAnglePositive(curAngle) -
+ btNormalizeAnglePositive(accAngle)));
+ return result;
+}
+
+static btScalar btShortestAngleUpdate(btScalar accAngle, btScalar curAngle)
+{
+ btScalar tol(0.3);
+ btScalar result = btShortestAngularDistance(accAngle, curAngle);
+
+ if (btFabs(result) > tol)
+ return curAngle;
+ else
+ return accAngle + result;
+
+ return curAngle;
+}
+
+
+btScalar btHingeAccumulatedAngleConstraint::getAccumulatedHingeAngle()
+{
+ btScalar hingeAngle = getHingeAngle();
+ m_accumulatedAngle = btShortestAngleUpdate(m_accumulatedAngle,hingeAngle);
+ return m_accumulatedAngle;
+}
+void btHingeAccumulatedAngleConstraint::setAccumulatedHingeAngle(btScalar accAngle)
+{
+ m_accumulatedAngle = accAngle;
+}
+
+void btHingeAccumulatedAngleConstraint::getInfo1(btConstraintInfo1* info)
+{
+ //update m_accumulatedAngle
+ btScalar curHingeAngle = getHingeAngle();
+ m_accumulatedAngle = btShortestAngleUpdate(m_accumulatedAngle,curHingeAngle);
+
+ btHingeConstraint::getInfo1(info);
+
+}
+
+
+void btHingeConstraint::getInfo1(btConstraintInfo1* info)
+{
+
+
+ if (m_useSolveConstraintObsolete)
+ {
+ info->m_numConstraintRows = 0;
+ info->nub = 0;
+ }
+ else
+ {
+ info->m_numConstraintRows = 5; // Fixed 3 linear + 2 angular
+ info->nub = 1;
+ //always add the row, to avoid computation (data is not available yet)
+ //prepare constraint
+ testLimit(m_rbA.getCenterOfMassTransform(),m_rbB.getCenterOfMassTransform());
+ if(getSolveLimit() || getEnableAngularMotor())
+ {
+ info->m_numConstraintRows++; // limit 3rd anguar as well
+ info->nub--;
+ }
+
+ }
+}
+
+void btHingeConstraint::getInfo1NonVirtual(btConstraintInfo1* info)
+{
+ if (m_useSolveConstraintObsolete)
+ {
+ info->m_numConstraintRows = 0;
+ info->nub = 0;
+ }
+ else
+ {
+ //always add the 'limit' row, to avoid computation (data is not available yet)
+ info->m_numConstraintRows = 6; // Fixed 3 linear + 2 angular
+ info->nub = 0;
+ }
+}
+
+void btHingeConstraint::getInfo2 (btConstraintInfo2* info)
+{
+ if(m_useOffsetForConstraintFrame)
+ {
+ getInfo2InternalUsingFrameOffset(info, m_rbA.getCenterOfMassTransform(),m_rbB.getCenterOfMassTransform(),m_rbA.getAngularVelocity(),m_rbB.getAngularVelocity());
+ }
+ else
+ {
+ getInfo2Internal(info, m_rbA.getCenterOfMassTransform(),m_rbB.getCenterOfMassTransform(),m_rbA.getAngularVelocity(),m_rbB.getAngularVelocity());
+ }
+}
+
+
+void btHingeConstraint::getInfo2NonVirtual (btConstraintInfo2* info,const btTransform& transA,const btTransform& transB,const btVector3& angVelA,const btVector3& angVelB)
+{
+ ///the regular (virtual) implementation getInfo2 already performs 'testLimit' during getInfo1, so we need to do it now
+ testLimit(transA,transB);
+
+ getInfo2Internal(info,transA,transB,angVelA,angVelB);
+}
+
+
+void btHingeConstraint::getInfo2Internal(btConstraintInfo2* info, const btTransform& transA,const btTransform& transB,const btVector3& angVelA,const btVector3& angVelB)
+{
+
+ btAssert(!m_useSolveConstraintObsolete);
+ int i, skip = info->rowskip;
+ // transforms in world space
+ btTransform trA = transA*m_rbAFrame;
+ btTransform trB = transB*m_rbBFrame;
+ // pivot point
+ btVector3 pivotAInW = trA.getOrigin();
+ btVector3 pivotBInW = trB.getOrigin();
+#if 0
+ if (0)
+ {
+ for (i=0;i<6;i++)
+ {
+ info->m_J1linearAxis[i*skip]=0;
+ info->m_J1linearAxis[i*skip+1]=0;
+ info->m_J1linearAxis[i*skip+2]=0;
+
+ info->m_J1angularAxis[i*skip]=0;
+ info->m_J1angularAxis[i*skip+1]=0;
+ info->m_J1angularAxis[i*skip+2]=0;
+
+ info->m_J2linearAxis[i*skip]=0;
+ info->m_J2linearAxis[i*skip+1]=0;
+ info->m_J2linearAxis[i*skip+2]=0;
+
+ info->m_J2angularAxis[i*skip]=0;
+ info->m_J2angularAxis[i*skip+1]=0;
+ info->m_J2angularAxis[i*skip+2]=0;
+
+ info->m_constraintError[i*skip]=0.f;
+ }
+ }
+#endif //#if 0
+ // linear (all fixed)
+
+ if (!m_angularOnly)
+ {
+ info->m_J1linearAxis[0] = 1;
+ info->m_J1linearAxis[skip + 1] = 1;
+ info->m_J1linearAxis[2 * skip + 2] = 1;
+
+ info->m_J2linearAxis[0] = -1;
+ info->m_J2linearAxis[skip + 1] = -1;
+ info->m_J2linearAxis[2 * skip + 2] = -1;
+ }
+
+
+
+
+ btVector3 a1 = pivotAInW - transA.getOrigin();
+ {
+ btVector3* angular0 = (btVector3*)(info->m_J1angularAxis);
+ btVector3* angular1 = (btVector3*)(info->m_J1angularAxis + skip);
+ btVector3* angular2 = (btVector3*)(info->m_J1angularAxis + 2 * skip);
+ btVector3 a1neg = -a1;
+ a1neg.getSkewSymmetricMatrix(angular0,angular1,angular2);
+ }
+ btVector3 a2 = pivotBInW - transB.getOrigin();
+ {
+ btVector3* angular0 = (btVector3*)(info->m_J2angularAxis);
+ btVector3* angular1 = (btVector3*)(info->m_J2angularAxis + skip);
+ btVector3* angular2 = (btVector3*)(info->m_J2angularAxis + 2 * skip);
+ a2.getSkewSymmetricMatrix(angular0,angular1,angular2);
+ }
+ // linear RHS
+ btScalar normalErp = (m_flags & BT_HINGE_FLAGS_ERP_NORM) ? m_normalERP : info->erp;
+
+ btScalar k = info->fps * normalErp;
+ if (!m_angularOnly)
+ {
+ for(i = 0; i < 3; i++)
+ {
+ info->m_constraintError[i * skip] = k * (pivotBInW[i] - pivotAInW[i]);
+ }
+ }
+ // make rotations around X and Y equal
+ // the hinge axis should be the only unconstrained
+ // rotational axis, the angular velocity of the two bodies perpendicular to
+ // the hinge axis should be equal. thus the constraint equations are
+ // p*w1 - p*w2 = 0
+ // q*w1 - q*w2 = 0
+ // where p and q are unit vectors normal to the hinge axis, and w1 and w2
+ // are the angular velocity vectors of the two bodies.
+ // get hinge axis (Z)
+ btVector3 ax1 = trA.getBasis().getColumn(2);
+ // get 2 orthos to hinge axis (X, Y)
+ btVector3 p = trA.getBasis().getColumn(0);
+ btVector3 q = trA.getBasis().getColumn(1);
+ // set the two hinge angular rows
+ int s3 = 3 * info->rowskip;
+ int s4 = 4 * info->rowskip;
+
+ info->m_J1angularAxis[s3 + 0] = p[0];
+ info->m_J1angularAxis[s3 + 1] = p[1];
+ info->m_J1angularAxis[s3 + 2] = p[2];
+ info->m_J1angularAxis[s4 + 0] = q[0];
+ info->m_J1angularAxis[s4 + 1] = q[1];
+ info->m_J1angularAxis[s4 + 2] = q[2];
+
+ info->m_J2angularAxis[s3 + 0] = -p[0];
+ info->m_J2angularAxis[s3 + 1] = -p[1];
+ info->m_J2angularAxis[s3 + 2] = -p[2];
+ info->m_J2angularAxis[s4 + 0] = -q[0];
+ info->m_J2angularAxis[s4 + 1] = -q[1];
+ info->m_J2angularAxis[s4 + 2] = -q[2];
+ // compute the right hand side of the constraint equation. set relative
+ // body velocities along p and q to bring the hinge back into alignment.
+ // if ax1,ax2 are the unit length hinge axes as computed from body1 and
+ // body2, we need to rotate both bodies along the axis u = (ax1 x ax2).
+ // if `theta' is the angle between ax1 and ax2, we need an angular velocity
+ // along u to cover angle erp*theta in one step :
+ // |angular_velocity| = angle/time = erp*theta / stepsize
+ // = (erp*fps) * theta
+ // angular_velocity = |angular_velocity| * (ax1 x ax2) / |ax1 x ax2|
+ // = (erp*fps) * theta * (ax1 x ax2) / sin(theta)
+ // ...as ax1 and ax2 are unit length. if theta is smallish,
+ // theta ~= sin(theta), so
+ // angular_velocity = (erp*fps) * (ax1 x ax2)
+ // ax1 x ax2 is in the plane space of ax1, so we project the angular
+ // velocity to p and q to find the right hand side.
+ btVector3 ax2 = trB.getBasis().getColumn(2);
+ btVector3 u = ax1.cross(ax2);
+ info->m_constraintError[s3] = k * u.dot(p);
+ info->m_constraintError[s4] = k * u.dot(q);
+ // check angular limits
+ int nrow = 4; // last filled row
+ int srow;
+ btScalar limit_err = btScalar(0.0);
+ int limit = 0;
+ if(getSolveLimit())
+ {
+#ifdef _BT_USE_CENTER_LIMIT_
+ limit_err = m_limit.getCorrection() * m_referenceSign;
+#else
+ limit_err = m_correction * m_referenceSign;
+#endif
+ limit = (limit_err > btScalar(0.0)) ? 1 : 2;
+
+ }
+ // if the hinge has joint limits or motor, add in the extra row
+ bool powered = getEnableAngularMotor();
+ if(limit || powered)
+ {
+ nrow++;
+ srow = nrow * info->rowskip;
+ info->m_J1angularAxis[srow+0] = ax1[0];
+ info->m_J1angularAxis[srow+1] = ax1[1];
+ info->m_J1angularAxis[srow+2] = ax1[2];
+
+ info->m_J2angularAxis[srow+0] = -ax1[0];
+ info->m_J2angularAxis[srow+1] = -ax1[1];
+ info->m_J2angularAxis[srow+2] = -ax1[2];
+
+ btScalar lostop = getLowerLimit();
+ btScalar histop = getUpperLimit();
+ if(limit && (lostop == histop))
+ { // the joint motor is ineffective
+ powered = false;
+ }
+ info->m_constraintError[srow] = btScalar(0.0f);
+ btScalar currERP = (m_flags & BT_HINGE_FLAGS_ERP_STOP) ? m_stopERP : normalErp;
+ if(powered)
+ {
+ if(m_flags & BT_HINGE_FLAGS_CFM_NORM)
+ {
+ info->cfm[srow] = m_normalCFM;
+ }
+ btScalar mot_fact = getMotorFactor(m_hingeAngle, lostop, histop, m_motorTargetVelocity, info->fps * currERP);
+ info->m_constraintError[srow] += mot_fact * m_motorTargetVelocity * m_referenceSign;
+ info->m_lowerLimit[srow] = - m_maxMotorImpulse;
+ info->m_upperLimit[srow] = m_maxMotorImpulse;
+ }
+ if(limit)
+ {
+ k = info->fps * currERP;
+ info->m_constraintError[srow] += k * limit_err;
+ if(m_flags & BT_HINGE_FLAGS_CFM_STOP)
+ {
+ info->cfm[srow] = m_stopCFM;
+ }
+ if(lostop == histop)
+ {
+ // limited low and high simultaneously
+ info->m_lowerLimit[srow] = -SIMD_INFINITY;
+ info->m_upperLimit[srow] = SIMD_INFINITY;
+ }
+ else if(limit == 1)
+ { // low limit
+ info->m_lowerLimit[srow] = 0;
+ info->m_upperLimit[srow] = SIMD_INFINITY;
+ }
+ else
+ { // high limit
+ info->m_lowerLimit[srow] = -SIMD_INFINITY;
+ info->m_upperLimit[srow] = 0;
+ }
+ // bounce (we'll use slider parameter abs(1.0 - m_dampingLimAng) for that)
+#ifdef _BT_USE_CENTER_LIMIT_
+ btScalar bounce = m_limit.getRelaxationFactor();
+#else
+ btScalar bounce = m_relaxationFactor;
+#endif
+ if(bounce > btScalar(0.0))
+ {
+ btScalar vel = angVelA.dot(ax1);
+ vel -= angVelB.dot(ax1);
+ // only apply bounce if the velocity is incoming, and if the
+ // resulting c[] exceeds what we already have.
+ if(limit == 1)
+ { // low limit
+ if(vel < 0)
+ {
+ btScalar newc = -bounce * vel;
+ if(newc > info->m_constraintError[srow])
+ {
+ info->m_constraintError[srow] = newc;
+ }
+ }
+ }
+ else
+ { // high limit - all those computations are reversed
+ if(vel > 0)
+ {
+ btScalar newc = -bounce * vel;
+ if(newc < info->m_constraintError[srow])
+ {
+ info->m_constraintError[srow] = newc;
+ }
+ }
+ }
+ }
+#ifdef _BT_USE_CENTER_LIMIT_
+ info->m_constraintError[srow] *= m_limit.getBiasFactor();
+#else
+ info->m_constraintError[srow] *= m_biasFactor;
+#endif
+ } // if(limit)
+ } // if angular limit or powered
+}
+
+
+void btHingeConstraint::setFrames(const btTransform & frameA, const btTransform & frameB)
+{
+ m_rbAFrame = frameA;
+ m_rbBFrame = frameB;
+ buildJacobian();
+}
+
+
+void btHingeConstraint::updateRHS(btScalar timeStep)
+{
+ (void)timeStep;
+
+}
+
+
+
+
+btScalar btHingeConstraint::getHingeAngle()
+{
+ return getHingeAngle(m_rbA.getCenterOfMassTransform(),m_rbB.getCenterOfMassTransform());
+}
+
+btScalar btHingeConstraint::getHingeAngle(const btTransform& transA,const btTransform& transB)
+{
+ const btVector3 refAxis0 = transA.getBasis() * m_rbAFrame.getBasis().getColumn(0);
+ const btVector3 refAxis1 = transA.getBasis() * m_rbAFrame.getBasis().getColumn(1);
+ const btVector3 swingAxis = transB.getBasis() * m_rbBFrame.getBasis().getColumn(1);
+// btScalar angle = btAtan2Fast(swingAxis.dot(refAxis0), swingAxis.dot(refAxis1));
+ btScalar angle = btAtan2(swingAxis.dot(refAxis0), swingAxis.dot(refAxis1));
+ return m_referenceSign * angle;
+}
+
+
+
+void btHingeConstraint::testLimit(const btTransform& transA,const btTransform& transB)
+{
+ // Compute limit information
+ m_hingeAngle = getHingeAngle(transA,transB);
+#ifdef _BT_USE_CENTER_LIMIT_
+ m_limit.test(m_hingeAngle);
+#else
+ m_correction = btScalar(0.);
+ m_limitSign = btScalar(0.);
+ m_solveLimit = false;
+ if (m_lowerLimit <= m_upperLimit)
+ {
+ m_hingeAngle = btAdjustAngleToLimits(m_hingeAngle, m_lowerLimit, m_upperLimit);
+ if (m_hingeAngle <= m_lowerLimit)
+ {
+ m_correction = (m_lowerLimit - m_hingeAngle);
+ m_limitSign = 1.0f;
+ m_solveLimit = true;
+ }
+ else if (m_hingeAngle >= m_upperLimit)
+ {
+ m_correction = m_upperLimit - m_hingeAngle;
+ m_limitSign = -1.0f;
+ m_solveLimit = true;
+ }
+ }
+#endif
+ return;
+}
+
+
+static btVector3 vHinge(0, 0, btScalar(1));
+
+void btHingeConstraint::setMotorTarget(const btQuaternion& qAinB, btScalar dt)
+{
+ // convert target from body to constraint space
+ btQuaternion qConstraint = m_rbBFrame.getRotation().inverse() * qAinB * m_rbAFrame.getRotation();
+ qConstraint.normalize();
+
+ // extract "pure" hinge component
+ btVector3 vNoHinge = quatRotate(qConstraint, vHinge); vNoHinge.normalize();
+ btQuaternion qNoHinge = shortestArcQuat(vHinge, vNoHinge);
+ btQuaternion qHinge = qNoHinge.inverse() * qConstraint;
+ qHinge.normalize();
+
+ // compute angular target, clamped to limits
+ btScalar targetAngle = qHinge.getAngle();
+ if (targetAngle > SIMD_PI) // long way around. flip quat and recalculate.
+ {
+ qHinge = -(qHinge);
+ targetAngle = qHinge.getAngle();
+ }
+ if (qHinge.getZ() < 0)
+ targetAngle = -targetAngle;
+
+ setMotorTarget(targetAngle, dt);
+}
+
+void btHingeConstraint::setMotorTarget(btScalar targetAngle, btScalar dt)
+{
+#ifdef _BT_USE_CENTER_LIMIT_
+ m_limit.fit(targetAngle);
+#else
+ if (m_lowerLimit < m_upperLimit)
+ {
+ if (targetAngle < m_lowerLimit)
+ targetAngle = m_lowerLimit;
+ else if (targetAngle > m_upperLimit)
+ targetAngle = m_upperLimit;
+ }
+#endif
+ // compute angular velocity
+ btScalar curAngle = getHingeAngle(m_rbA.getCenterOfMassTransform(),m_rbB.getCenterOfMassTransform());
+ btScalar dAngle = targetAngle - curAngle;
+ m_motorTargetVelocity = dAngle / dt;
+}
+
+
+
+void btHingeConstraint::getInfo2InternalUsingFrameOffset(btConstraintInfo2* info, const btTransform& transA,const btTransform& transB,const btVector3& angVelA,const btVector3& angVelB)
+{
+ btAssert(!m_useSolveConstraintObsolete);
+ int i, s = info->rowskip;
+ // transforms in world space
+ btTransform trA = transA*m_rbAFrame;
+ btTransform trB = transB*m_rbBFrame;
+ // pivot point
+// btVector3 pivotAInW = trA.getOrigin();
+// btVector3 pivotBInW = trB.getOrigin();
+#if 1
+ // difference between frames in WCS
+ btVector3 ofs = trB.getOrigin() - trA.getOrigin();
+ // now get weight factors depending on masses
+ btScalar miA = getRigidBodyA().getInvMass();
+ btScalar miB = getRigidBodyB().getInvMass();
+ bool hasStaticBody = (miA < SIMD_EPSILON) || (miB < SIMD_EPSILON);
+ btScalar miS = miA + miB;
+ btScalar factA, factB;
+ if(miS > btScalar(0.f))
+ {
+ factA = miB / miS;
+ }
+ else
+ {
+ factA = btScalar(0.5f);
+ }
+ factB = btScalar(1.0f) - factA;
+ // get the desired direction of hinge axis
+ // as weighted sum of Z-orthos of frameA and frameB in WCS
+ btVector3 ax1A = trA.getBasis().getColumn(2);
+ btVector3 ax1B = trB.getBasis().getColumn(2);
+ btVector3 ax1 = ax1A * factA + ax1B * factB;
+ ax1.normalize();
+ // fill first 3 rows
+ // we want: velA + wA x relA == velB + wB x relB
+ btTransform bodyA_trans = transA;
+ btTransform bodyB_trans = transB;
+ int s0 = 0;
+ int s1 = s;
+ int s2 = s * 2;
+ int nrow = 2; // last filled row
+ btVector3 tmpA, tmpB, relA, relB, p, q;
+ // get vector from bodyB to frameB in WCS
+ relB = trB.getOrigin() - bodyB_trans.getOrigin();
+ // get its projection to hinge axis
+ btVector3 projB = ax1 * relB.dot(ax1);
+ // get vector directed from bodyB to hinge axis (and orthogonal to it)
+ btVector3 orthoB = relB - projB;
+ // same for bodyA
+ relA = trA.getOrigin() - bodyA_trans.getOrigin();
+ btVector3 projA = ax1 * relA.dot(ax1);
+ btVector3 orthoA = relA - projA;
+ btVector3 totalDist = projA - projB;
+ // get offset vectors relA and relB
+ relA = orthoA + totalDist * factA;
+ relB = orthoB - totalDist * factB;
+ // now choose average ortho to hinge axis
+ p = orthoB * factA + orthoA * factB;
+ btScalar len2 = p.length2();
+ if(len2 > SIMD_EPSILON)
+ {
+ p /= btSqrt(len2);
+ }
+ else
+ {
+ p = trA.getBasis().getColumn(1);
+ }
+ // make one more ortho
+ q = ax1.cross(p);
+ // fill three rows
+ tmpA = relA.cross(p);
+ tmpB = relB.cross(p);
+ for (i=0; i<3; i++) info->m_J1angularAxis[s0+i] = tmpA[i];
+ for (i=0; i<3; i++) info->m_J2angularAxis[s0+i] = -tmpB[i];
+ tmpA = relA.cross(q);
+ tmpB = relB.cross(q);
+ if(hasStaticBody && getSolveLimit())
+ { // to make constraint between static and dynamic objects more rigid
+ // remove wA (or wB) from equation if angular limit is hit
+ tmpB *= factB;
+ tmpA *= factA;
+ }
+ for (i=0; i<3; i++) info->m_J1angularAxis[s1+i] = tmpA[i];
+ for (i=0; i<3; i++) info->m_J2angularAxis[s1+i] = -tmpB[i];
+ tmpA = relA.cross(ax1);
+ tmpB = relB.cross(ax1);
+ if(hasStaticBody)
+ { // to make constraint between static and dynamic objects more rigid
+ // remove wA (or wB) from equation
+ tmpB *= factB;
+ tmpA *= factA;
+ }
+ for (i=0; i<3; i++) info->m_J1angularAxis[s2+i] = tmpA[i];
+ for (i=0; i<3; i++) info->m_J2angularAxis[s2+i] = -tmpB[i];
+
+ btScalar normalErp = (m_flags & BT_HINGE_FLAGS_ERP_NORM)? m_normalERP : info->erp;
+ btScalar k = info->fps * normalErp;
+
+ if (!m_angularOnly)
+ {
+ for (i=0; i<3; i++) info->m_J1linearAxis[s0+i] = p[i];
+ for (i=0; i<3; i++) info->m_J1linearAxis[s1+i] = q[i];
+ for (i=0; i<3; i++) info->m_J1linearAxis[s2+i] = ax1[i];
+
+ for (i=0; i<3; i++) info->m_J2linearAxis[s0+i] = -p[i];
+ for (i=0; i<3; i++) info->m_J2linearAxis[s1+i] = -q[i];
+ for (i=0; i<3; i++) info->m_J2linearAxis[s2+i] = -ax1[i];
+
+ // compute three elements of right hand side
+
+ btScalar rhs = k * p.dot(ofs);
+ info->m_constraintError[s0] = rhs;
+ rhs = k * q.dot(ofs);
+ info->m_constraintError[s1] = rhs;
+ rhs = k * ax1.dot(ofs);
+ info->m_constraintError[s2] = rhs;
+ }
+ // the hinge axis should be the only unconstrained
+ // rotational axis, the angular velocity of the two bodies perpendicular to
+ // the hinge axis should be equal. thus the constraint equations are
+ // p*w1 - p*w2 = 0
+ // q*w1 - q*w2 = 0
+ // where p and q are unit vectors normal to the hinge axis, and w1 and w2
+ // are the angular velocity vectors of the two bodies.
+ int s3 = 3 * s;
+ int s4 = 4 * s;
+ info->m_J1angularAxis[s3 + 0] = p[0];
+ info->m_J1angularAxis[s3 + 1] = p[1];
+ info->m_J1angularAxis[s3 + 2] = p[2];
+ info->m_J1angularAxis[s4 + 0] = q[0];
+ info->m_J1angularAxis[s4 + 1] = q[1];
+ info->m_J1angularAxis[s4 + 2] = q[2];
+
+ info->m_J2angularAxis[s3 + 0] = -p[0];
+ info->m_J2angularAxis[s3 + 1] = -p[1];
+ info->m_J2angularAxis[s3 + 2] = -p[2];
+ info->m_J2angularAxis[s4 + 0] = -q[0];
+ info->m_J2angularAxis[s4 + 1] = -q[1];
+ info->m_J2angularAxis[s4 + 2] = -q[2];
+ // compute the right hand side of the constraint equation. set relative
+ // body velocities along p and q to bring the hinge back into alignment.
+ // if ax1A,ax1B are the unit length hinge axes as computed from bodyA and
+ // bodyB, we need to rotate both bodies along the axis u = (ax1 x ax2).
+ // if "theta" is the angle between ax1 and ax2, we need an angular velocity
+ // along u to cover angle erp*theta in one step :
+ // |angular_velocity| = angle/time = erp*theta / stepsize
+ // = (erp*fps) * theta
+ // angular_velocity = |angular_velocity| * (ax1 x ax2) / |ax1 x ax2|
+ // = (erp*fps) * theta * (ax1 x ax2) / sin(theta)
+ // ...as ax1 and ax2 are unit length. if theta is smallish,
+ // theta ~= sin(theta), so
+ // angular_velocity = (erp*fps) * (ax1 x ax2)
+ // ax1 x ax2 is in the plane space of ax1, so we project the angular
+ // velocity to p and q to find the right hand side.
+ k = info->fps * normalErp;//??
+
+ btVector3 u = ax1A.cross(ax1B);
+ info->m_constraintError[s3] = k * u.dot(p);
+ info->m_constraintError[s4] = k * u.dot(q);
+#endif
+ // check angular limits
+ nrow = 4; // last filled row
+ int srow;
+ btScalar limit_err = btScalar(0.0);
+ int limit = 0;
+ if(getSolveLimit())
+ {
+#ifdef _BT_USE_CENTER_LIMIT_
+ limit_err = m_limit.getCorrection() * m_referenceSign;
+#else
+ limit_err = m_correction * m_referenceSign;
+#endif
+ limit = (limit_err > btScalar(0.0)) ? 1 : 2;
+
+ }
+ // if the hinge has joint limits or motor, add in the extra row
+ bool powered = getEnableAngularMotor();
+ if(limit || powered)
+ {
+ nrow++;
+ srow = nrow * info->rowskip;
+ info->m_J1angularAxis[srow+0] = ax1[0];
+ info->m_J1angularAxis[srow+1] = ax1[1];
+ info->m_J1angularAxis[srow+2] = ax1[2];
+
+ info->m_J2angularAxis[srow+0] = -ax1[0];
+ info->m_J2angularAxis[srow+1] = -ax1[1];
+ info->m_J2angularAxis[srow+2] = -ax1[2];
+
+ btScalar lostop = getLowerLimit();
+ btScalar histop = getUpperLimit();
+ if(limit && (lostop == histop))
+ { // the joint motor is ineffective
+ powered = false;
+ }
+ info->m_constraintError[srow] = btScalar(0.0f);
+ btScalar currERP = (m_flags & BT_HINGE_FLAGS_ERP_STOP) ? m_stopERP : normalErp;
+ if(powered)
+ {
+ if(m_flags & BT_HINGE_FLAGS_CFM_NORM)
+ {
+ info->cfm[srow] = m_normalCFM;
+ }
+ btScalar mot_fact = getMotorFactor(m_hingeAngle, lostop, histop, m_motorTargetVelocity, info->fps * currERP);
+ info->m_constraintError[srow] += mot_fact * m_motorTargetVelocity * m_referenceSign;
+ info->m_lowerLimit[srow] = - m_maxMotorImpulse;
+ info->m_upperLimit[srow] = m_maxMotorImpulse;
+ }
+ if(limit)
+ {
+ k = info->fps * currERP;
+ info->m_constraintError[srow] += k * limit_err;
+ if(m_flags & BT_HINGE_FLAGS_CFM_STOP)
+ {
+ info->cfm[srow] = m_stopCFM;
+ }
+ if(lostop == histop)
+ {
+ // limited low and high simultaneously
+ info->m_lowerLimit[srow] = -SIMD_INFINITY;
+ info->m_upperLimit[srow] = SIMD_INFINITY;
+ }
+ else if(limit == 1)
+ { // low limit
+ info->m_lowerLimit[srow] = 0;
+ info->m_upperLimit[srow] = SIMD_INFINITY;
+ }
+ else
+ { // high limit
+ info->m_lowerLimit[srow] = -SIMD_INFINITY;
+ info->m_upperLimit[srow] = 0;
+ }
+ // bounce (we'll use slider parameter abs(1.0 - m_dampingLimAng) for that)
+#ifdef _BT_USE_CENTER_LIMIT_
+ btScalar bounce = m_limit.getRelaxationFactor();
+#else
+ btScalar bounce = m_relaxationFactor;
+#endif
+ if(bounce > btScalar(0.0))
+ {
+ btScalar vel = angVelA.dot(ax1);
+ vel -= angVelB.dot(ax1);
+ // only apply bounce if the velocity is incoming, and if the
+ // resulting c[] exceeds what we already have.
+ if(limit == 1)
+ { // low limit
+ if(vel < 0)
+ {
+ btScalar newc = -bounce * vel;
+ if(newc > info->m_constraintError[srow])
+ {
+ info->m_constraintError[srow] = newc;
+ }
+ }
+ }
+ else
+ { // high limit - all those computations are reversed
+ if(vel > 0)
+ {
+ btScalar newc = -bounce * vel;
+ if(newc < info->m_constraintError[srow])
+ {
+ info->m_constraintError[srow] = newc;
+ }
+ }
+ }
+ }
+#ifdef _BT_USE_CENTER_LIMIT_
+ info->m_constraintError[srow] *= m_limit.getBiasFactor();
+#else
+ info->m_constraintError[srow] *= m_biasFactor;
+#endif
+ } // if(limit)
+ } // if angular limit or powered
+}
+
+
+///override the default global value of a parameter (such as ERP or CFM), optionally provide the axis (0..5).
+///If no axis is provided, it uses the default axis for this constraint.
+void btHingeConstraint::setParam(int num, btScalar value, int axis)
+{
+ if((axis == -1) || (axis == 5))
+ {
+ switch(num)
+ {
+ case BT_CONSTRAINT_STOP_ERP :
+ m_stopERP = value;
+ m_flags |= BT_HINGE_FLAGS_ERP_STOP;
+ break;
+ case BT_CONSTRAINT_STOP_CFM :
+ m_stopCFM = value;
+ m_flags |= BT_HINGE_FLAGS_CFM_STOP;
+ break;
+ case BT_CONSTRAINT_CFM :
+ m_normalCFM = value;
+ m_flags |= BT_HINGE_FLAGS_CFM_NORM;
+ break;
+ case BT_CONSTRAINT_ERP:
+ m_normalERP = value;
+ m_flags |= BT_HINGE_FLAGS_ERP_NORM;
+ break;
+ default :
+ btAssertConstrParams(0);
+ }
+ }
+ else
+ {
+ btAssertConstrParams(0);
+ }
+}
+
+///return the local value of parameter
+btScalar btHingeConstraint::getParam(int num, int axis) const
+{
+ btScalar retVal = 0;
+ if((axis == -1) || (axis == 5))
+ {
+ switch(num)
+ {
+ case BT_CONSTRAINT_STOP_ERP :
+ btAssertConstrParams(m_flags & BT_HINGE_FLAGS_ERP_STOP);
+ retVal = m_stopERP;
+ break;
+ case BT_CONSTRAINT_STOP_CFM :
+ btAssertConstrParams(m_flags & BT_HINGE_FLAGS_CFM_STOP);
+ retVal = m_stopCFM;
+ break;
+ case BT_CONSTRAINT_CFM :
+ btAssertConstrParams(m_flags & BT_HINGE_FLAGS_CFM_NORM);
+ retVal = m_normalCFM;
+ break;
+ case BT_CONSTRAINT_ERP:
+ btAssertConstrParams(m_flags & BT_HINGE_FLAGS_ERP_NORM);
+ retVal = m_normalERP;
+ break;
+ default :
+ btAssertConstrParams(0);
+ }
+ }
+ else
+ {
+ btAssertConstrParams(0);
+ }
+ return retVal;
+}
+
+
diff --git a/thirdparty/bullet/BulletDynamics/ConstraintSolver/btHingeConstraint.h b/thirdparty/bullet/BulletDynamics/ConstraintSolver/btHingeConstraint.h
new file mode 100644
index 0000000000..3c3df24dba
--- /dev/null
+++ b/thirdparty/bullet/BulletDynamics/ConstraintSolver/btHingeConstraint.h
@@ -0,0 +1,503 @@
+/*
+Bullet Continuous Collision Detection and Physics Library
+Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
+
+This software is provided 'as-is', without any express or implied warranty.
+In no event will the authors be held liable for any damages arising from the use of this software.
+Permission is granted to anyone to use this software for any purpose,
+including commercial applications, and to alter it and redistribute it freely,
+subject to the following restrictions:
+
+1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
+2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
+3. This notice may not be removed or altered from any source distribution.
+*/
+
+/* Hinge Constraint by Dirk Gregorius. Limits added by Marcus Hennix at Starbreeze Studios */
+
+#ifndef BT_HINGECONSTRAINT_H
+#define BT_HINGECONSTRAINT_H
+
+#define _BT_USE_CENTER_LIMIT_ 1
+
+
+#include "LinearMath/btVector3.h"
+#include "btJacobianEntry.h"
+#include "btTypedConstraint.h"
+
+class btRigidBody;
+
+#ifdef BT_USE_DOUBLE_PRECISION
+#define btHingeConstraintData btHingeConstraintDoubleData2 //rename to 2 for backwards compatibility, so we can still load the 'btHingeConstraintDoubleData' version
+#define btHingeConstraintDataName "btHingeConstraintDoubleData2"
+#else
+#define btHingeConstraintData btHingeConstraintFloatData
+#define btHingeConstraintDataName "btHingeConstraintFloatData"
+#endif //BT_USE_DOUBLE_PRECISION
+
+
+
+enum btHingeFlags
+{
+ BT_HINGE_FLAGS_CFM_STOP = 1,
+ BT_HINGE_FLAGS_ERP_STOP = 2,
+ BT_HINGE_FLAGS_CFM_NORM = 4,
+ BT_HINGE_FLAGS_ERP_NORM = 8
+};
+
+
+/// hinge constraint between two rigidbodies each with a pivotpoint that descibes the axis location in local space
+/// axis defines the orientation of the hinge axis
+ATTRIBUTE_ALIGNED16(class) btHingeConstraint : public btTypedConstraint
+{
+#ifdef IN_PARALLELL_SOLVER
+public:
+#endif
+ btJacobianEntry m_jac[3]; //3 orthogonal linear constraints
+ btJacobianEntry m_jacAng[3]; //2 orthogonal angular constraints+ 1 for limit/motor
+
+ btTransform m_rbAFrame; // constraint axii. Assumes z is hinge axis.
+ btTransform m_rbBFrame;
+
+ btScalar m_motorTargetVelocity;
+ btScalar m_maxMotorImpulse;
+
+
+#ifdef _BT_USE_CENTER_LIMIT_
+ btAngularLimit m_limit;
+#else
+ btScalar m_lowerLimit;
+ btScalar m_upperLimit;
+ btScalar m_limitSign;
+ btScalar m_correction;
+
+ btScalar m_limitSoftness;
+ btScalar m_biasFactor;
+ btScalar m_relaxationFactor;
+
+ bool m_solveLimit;
+#endif
+
+ btScalar m_kHinge;
+
+
+ btScalar m_accLimitImpulse;
+ btScalar m_hingeAngle;
+ btScalar m_referenceSign;
+
+ bool m_angularOnly;
+ bool m_enableAngularMotor;
+ bool m_useSolveConstraintObsolete;
+ bool m_useOffsetForConstraintFrame;
+ bool m_useReferenceFrameA;
+
+ btScalar m_accMotorImpulse;
+
+ int m_flags;
+ btScalar m_normalCFM;
+ btScalar m_normalERP;
+ btScalar m_stopCFM;
+ btScalar m_stopERP;
+
+
+public:
+
+ BT_DECLARE_ALIGNED_ALLOCATOR();
+
+ btHingeConstraint(btRigidBody& rbA,btRigidBody& rbB, const btVector3& pivotInA,const btVector3& pivotInB, const btVector3& axisInA,const btVector3& axisInB, bool useReferenceFrameA = false);
+
+ btHingeConstraint(btRigidBody& rbA,const btVector3& pivotInA,const btVector3& axisInA, bool useReferenceFrameA = false);
+
+ btHingeConstraint(btRigidBody& rbA,btRigidBody& rbB, const btTransform& rbAFrame, const btTransform& rbBFrame, bool useReferenceFrameA = false);
+
+ btHingeConstraint(btRigidBody& rbA,const btTransform& rbAFrame, bool useReferenceFrameA = false);
+
+
+ virtual void buildJacobian();
+
+ virtual void getInfo1 (btConstraintInfo1* info);
+
+ void getInfo1NonVirtual(btConstraintInfo1* info);
+
+ virtual void getInfo2 (btConstraintInfo2* info);
+
+ void getInfo2NonVirtual(btConstraintInfo2* info,const btTransform& transA,const btTransform& transB,const btVector3& angVelA,const btVector3& angVelB);
+
+ void getInfo2Internal(btConstraintInfo2* info,const btTransform& transA,const btTransform& transB,const btVector3& angVelA,const btVector3& angVelB);
+ void getInfo2InternalUsingFrameOffset(btConstraintInfo2* info,const btTransform& transA,const btTransform& transB,const btVector3& angVelA,const btVector3& angVelB);
+
+
+ void updateRHS(btScalar timeStep);
+
+ const btRigidBody& getRigidBodyA() const
+ {
+ return m_rbA;
+ }
+ const btRigidBody& getRigidBodyB() const
+ {
+ return m_rbB;
+ }
+
+ btRigidBody& getRigidBodyA()
+ {
+ return m_rbA;
+ }
+
+ btRigidBody& getRigidBodyB()
+ {
+ return m_rbB;
+ }
+
+ btTransform& getFrameOffsetA()
+ {
+ return m_rbAFrame;
+ }
+
+ btTransform& getFrameOffsetB()
+ {
+ return m_rbBFrame;
+ }
+
+ void setFrames(const btTransform& frameA, const btTransform& frameB);
+
+ void setAngularOnly(bool angularOnly)
+ {
+ m_angularOnly = angularOnly;
+ }
+
+ void enableAngularMotor(bool enableMotor,btScalar targetVelocity,btScalar maxMotorImpulse)
+ {
+ m_enableAngularMotor = enableMotor;
+ m_motorTargetVelocity = targetVelocity;
+ m_maxMotorImpulse = maxMotorImpulse;
+ }
+
+ // extra motor API, including ability to set a target rotation (as opposed to angular velocity)
+ // note: setMotorTarget sets angular velocity under the hood, so you must call it every tick to
+ // maintain a given angular target.
+ void enableMotor(bool enableMotor) { m_enableAngularMotor = enableMotor; }
+ void setMaxMotorImpulse(btScalar maxMotorImpulse) { m_maxMotorImpulse = maxMotorImpulse; }
+ void setMotorTargetVelocity(btScalar motorTargetVelocity) { m_motorTargetVelocity = motorTargetVelocity; }
+ void setMotorTarget(const btQuaternion& qAinB, btScalar dt); // qAinB is rotation of body A wrt body B.
+ void setMotorTarget(btScalar targetAngle, btScalar dt);
+
+
+ void setLimit(btScalar low,btScalar high,btScalar _softness = 0.9f, btScalar _biasFactor = 0.3f, btScalar _relaxationFactor = 1.0f)
+ {
+#ifdef _BT_USE_CENTER_LIMIT_
+ m_limit.set(low, high, _softness, _biasFactor, _relaxationFactor);
+#else
+ m_lowerLimit = btNormalizeAngle(low);
+ m_upperLimit = btNormalizeAngle(high);
+ m_limitSoftness = _softness;
+ m_biasFactor = _biasFactor;
+ m_relaxationFactor = _relaxationFactor;
+#endif
+ }
+
+ btScalar getLimitSoftness() const
+ {
+#ifdef _BT_USE_CENTER_LIMIT_
+ return m_limit.getSoftness();
+#else
+ return m_limitSoftness;
+#endif
+ }
+
+ btScalar getLimitBiasFactor() const
+ {
+#ifdef _BT_USE_CENTER_LIMIT_
+ return m_limit.getBiasFactor();
+#else
+ return m_biasFactor;
+#endif
+ }
+
+ btScalar getLimitRelaxationFactor() const
+ {
+#ifdef _BT_USE_CENTER_LIMIT_
+ return m_limit.getRelaxationFactor();
+#else
+ return m_relaxationFactor;
+#endif
+ }
+
+ void setAxis(btVector3& axisInA)
+ {
+ btVector3 rbAxisA1, rbAxisA2;
+ btPlaneSpace1(axisInA, rbAxisA1, rbAxisA2);
+ btVector3 pivotInA = m_rbAFrame.getOrigin();
+// m_rbAFrame.getOrigin() = pivotInA;
+ m_rbAFrame.getBasis().setValue( rbAxisA1.getX(),rbAxisA2.getX(),axisInA.getX(),
+ rbAxisA1.getY(),rbAxisA2.getY(),axisInA.getY(),
+ rbAxisA1.getZ(),rbAxisA2.getZ(),axisInA.getZ() );
+
+ btVector3 axisInB = m_rbA.getCenterOfMassTransform().getBasis() * axisInA;
+
+ btQuaternion rotationArc = shortestArcQuat(axisInA,axisInB);
+ btVector3 rbAxisB1 = quatRotate(rotationArc,rbAxisA1);
+ btVector3 rbAxisB2 = axisInB.cross(rbAxisB1);
+
+ m_rbBFrame.getOrigin() = m_rbB.getCenterOfMassTransform().inverse()(m_rbA.getCenterOfMassTransform()(pivotInA));
+
+ m_rbBFrame.getBasis().setValue( rbAxisB1.getX(),rbAxisB2.getX(),axisInB.getX(),
+ rbAxisB1.getY(),rbAxisB2.getY(),axisInB.getY(),
+ rbAxisB1.getZ(),rbAxisB2.getZ(),axisInB.getZ() );
+ m_rbBFrame.getBasis() = m_rbB.getCenterOfMassTransform().getBasis().inverse() * m_rbBFrame.getBasis();
+
+ }
+
+ bool hasLimit() const {
+#ifdef _BT_USE_CENTER_LIMIT_
+ return m_limit.getHalfRange() > 0;
+#else
+ return m_lowerLimit <= m_upperLimit;
+#endif
+ }
+
+ btScalar getLowerLimit() const
+ {
+#ifdef _BT_USE_CENTER_LIMIT_
+ return m_limit.getLow();
+#else
+ return m_lowerLimit;
+#endif
+ }
+
+ btScalar getUpperLimit() const
+ {
+#ifdef _BT_USE_CENTER_LIMIT_
+ return m_limit.getHigh();
+#else
+ return m_upperLimit;
+#endif
+ }
+
+
+ ///The getHingeAngle gives the hinge angle in range [-PI,PI]
+ btScalar getHingeAngle();
+
+ btScalar getHingeAngle(const btTransform& transA,const btTransform& transB);
+
+ void testLimit(const btTransform& transA,const btTransform& transB);
+
+
+ const btTransform& getAFrame() const { return m_rbAFrame; };
+ const btTransform& getBFrame() const { return m_rbBFrame; };
+
+ btTransform& getAFrame() { return m_rbAFrame; };
+ btTransform& getBFrame() { return m_rbBFrame; };
+
+ inline int getSolveLimit()
+ {
+#ifdef _BT_USE_CENTER_LIMIT_
+ return m_limit.isLimit();
+#else
+ return m_solveLimit;
+#endif
+ }
+
+ inline btScalar getLimitSign()
+ {
+#ifdef _BT_USE_CENTER_LIMIT_
+ return m_limit.getSign();
+#else
+ return m_limitSign;
+#endif
+ }
+
+ inline bool getAngularOnly()
+ {
+ return m_angularOnly;
+ }
+ inline bool getEnableAngularMotor()
+ {
+ return m_enableAngularMotor;
+ }
+ inline btScalar getMotorTargetVelocity()
+ {
+ return m_motorTargetVelocity;
+ }
+ inline btScalar getMaxMotorImpulse()
+ {
+ return m_maxMotorImpulse;
+ }
+ // access for UseFrameOffset
+ bool getUseFrameOffset() { return m_useOffsetForConstraintFrame; }
+ void setUseFrameOffset(bool frameOffsetOnOff) { m_useOffsetForConstraintFrame = frameOffsetOnOff; }
+ // access for UseReferenceFrameA
+ bool getUseReferenceFrameA() const { return m_useReferenceFrameA; }
+ void setUseReferenceFrameA(bool useReferenceFrameA) { m_useReferenceFrameA = useReferenceFrameA; }
+
+ ///override the default global value of a parameter (such as ERP or CFM), optionally provide the axis (0..5).
+ ///If no axis is provided, it uses the default axis for this constraint.
+ virtual void setParam(int num, btScalar value, int axis = -1);
+ ///return the local value of parameter
+ virtual btScalar getParam(int num, int axis = -1) const;
+
+ virtual int getFlags() const
+ {
+ return m_flags;
+ }
+
+ virtual int calculateSerializeBufferSize() const;
+
+ ///fills the dataBuffer and returns the struct name (and 0 on failure)
+ virtual const char* serialize(void* dataBuffer, btSerializer* serializer) const;
+
+
+};
+
+
+//only for backward compatibility
+#ifdef BT_BACKWARDS_COMPATIBLE_SERIALIZATION
+///this structure is not used, except for loading pre-2.82 .bullet files
+struct btHingeConstraintDoubleData
+{
+ btTypedConstraintData m_typeConstraintData;
+ btTransformDoubleData m_rbAFrame; // constraint axii. Assumes z is hinge axis.
+ btTransformDoubleData m_rbBFrame;
+ int m_useReferenceFrameA;
+ int m_angularOnly;
+ int m_enableAngularMotor;
+ float m_motorTargetVelocity;
+ float m_maxMotorImpulse;
+
+ float m_lowerLimit;
+ float m_upperLimit;
+ float m_limitSoftness;
+ float m_biasFactor;
+ float m_relaxationFactor;
+
+};
+#endif //BT_BACKWARDS_COMPATIBLE_SERIALIZATION
+
+///The getAccumulatedHingeAngle returns the accumulated hinge angle, taking rotation across the -PI/PI boundary into account
+ATTRIBUTE_ALIGNED16(class) btHingeAccumulatedAngleConstraint : public btHingeConstraint
+{
+protected:
+ btScalar m_accumulatedAngle;
+public:
+
+ BT_DECLARE_ALIGNED_ALLOCATOR();
+
+ btHingeAccumulatedAngleConstraint(btRigidBody& rbA,btRigidBody& rbB, const btVector3& pivotInA,const btVector3& pivotInB, const btVector3& axisInA,const btVector3& axisInB, bool useReferenceFrameA = false)
+ :btHingeConstraint(rbA,rbB,pivotInA,pivotInB, axisInA,axisInB, useReferenceFrameA )
+ {
+ m_accumulatedAngle=getHingeAngle();
+ }
+
+ btHingeAccumulatedAngleConstraint(btRigidBody& rbA,const btVector3& pivotInA,const btVector3& axisInA, bool useReferenceFrameA = false)
+ :btHingeConstraint(rbA,pivotInA,axisInA, useReferenceFrameA)
+ {
+ m_accumulatedAngle=getHingeAngle();
+ }
+
+ btHingeAccumulatedAngleConstraint(btRigidBody& rbA,btRigidBody& rbB, const btTransform& rbAFrame, const btTransform& rbBFrame, bool useReferenceFrameA = false)
+ :btHingeConstraint(rbA,rbB, rbAFrame, rbBFrame, useReferenceFrameA )
+ {
+ m_accumulatedAngle=getHingeAngle();
+ }
+
+ btHingeAccumulatedAngleConstraint(btRigidBody& rbA,const btTransform& rbAFrame, bool useReferenceFrameA = false)
+ :btHingeConstraint(rbA,rbAFrame, useReferenceFrameA )
+ {
+ m_accumulatedAngle=getHingeAngle();
+ }
+ btScalar getAccumulatedHingeAngle();
+ void setAccumulatedHingeAngle(btScalar accAngle);
+ virtual void getInfo1 (btConstraintInfo1* info);
+
+};
+
+struct btHingeConstraintFloatData
+{
+ btTypedConstraintData m_typeConstraintData;
+ btTransformFloatData m_rbAFrame; // constraint axii. Assumes z is hinge axis.
+ btTransformFloatData m_rbBFrame;
+ int m_useReferenceFrameA;
+ int m_angularOnly;
+
+ int m_enableAngularMotor;
+ float m_motorTargetVelocity;
+ float m_maxMotorImpulse;
+
+ float m_lowerLimit;
+ float m_upperLimit;
+ float m_limitSoftness;
+ float m_biasFactor;
+ float m_relaxationFactor;
+
+};
+
+
+
+///do not change those serialization structures, it requires an updated sBulletDNAstr/sBulletDNAstr64
+struct btHingeConstraintDoubleData2
+{
+ btTypedConstraintDoubleData m_typeConstraintData;
+ btTransformDoubleData m_rbAFrame; // constraint axii. Assumes z is hinge axis.
+ btTransformDoubleData m_rbBFrame;
+ int m_useReferenceFrameA;
+ int m_angularOnly;
+ int m_enableAngularMotor;
+ double m_motorTargetVelocity;
+ double m_maxMotorImpulse;
+
+ double m_lowerLimit;
+ double m_upperLimit;
+ double m_limitSoftness;
+ double m_biasFactor;
+ double m_relaxationFactor;
+ char m_padding1[4];
+
+};
+
+
+
+
+SIMD_FORCE_INLINE int btHingeConstraint::calculateSerializeBufferSize() const
+{
+ return sizeof(btHingeConstraintData);
+}
+
+ ///fills the dataBuffer and returns the struct name (and 0 on failure)
+SIMD_FORCE_INLINE const char* btHingeConstraint::serialize(void* dataBuffer, btSerializer* serializer) const
+{
+ btHingeConstraintData* hingeData = (btHingeConstraintData*)dataBuffer;
+ btTypedConstraint::serialize(&hingeData->m_typeConstraintData,serializer);
+
+ m_rbAFrame.serialize(hingeData->m_rbAFrame);
+ m_rbBFrame.serialize(hingeData->m_rbBFrame);
+
+ hingeData->m_angularOnly = m_angularOnly;
+ hingeData->m_enableAngularMotor = m_enableAngularMotor;
+ hingeData->m_maxMotorImpulse = float(m_maxMotorImpulse);
+ hingeData->m_motorTargetVelocity = float(m_motorTargetVelocity);
+ hingeData->m_useReferenceFrameA = m_useReferenceFrameA;
+#ifdef _BT_USE_CENTER_LIMIT_
+ hingeData->m_lowerLimit = float(m_limit.getLow());
+ hingeData->m_upperLimit = float(m_limit.getHigh());
+ hingeData->m_limitSoftness = float(m_limit.getSoftness());
+ hingeData->m_biasFactor = float(m_limit.getBiasFactor());
+ hingeData->m_relaxationFactor = float(m_limit.getRelaxationFactor());
+#else
+ hingeData->m_lowerLimit = float(m_lowerLimit);
+ hingeData->m_upperLimit = float(m_upperLimit);
+ hingeData->m_limitSoftness = float(m_limitSoftness);
+ hingeData->m_biasFactor = float(m_biasFactor);
+ hingeData->m_relaxationFactor = float(m_relaxationFactor);
+#endif
+
+ // Fill padding with zeros to appease msan.
+#ifdef BT_USE_DOUBLE_PRECISION
+ hingeData->m_padding1[0] = 0;
+ hingeData->m_padding1[1] = 0;
+ hingeData->m_padding1[2] = 0;
+ hingeData->m_padding1[3] = 0;
+#endif
+
+ return btHingeConstraintDataName;
+}
+
+#endif //BT_HINGECONSTRAINT_H
diff --git a/thirdparty/bullet/BulletDynamics/ConstraintSolver/btJacobianEntry.h b/thirdparty/bullet/BulletDynamics/ConstraintSolver/btJacobianEntry.h
new file mode 100644
index 0000000000..125580d199
--- /dev/null
+++ b/thirdparty/bullet/BulletDynamics/ConstraintSolver/btJacobianEntry.h
@@ -0,0 +1,155 @@
+/*
+Bullet Continuous Collision Detection and Physics Library
+Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
+
+This software is provided 'as-is', without any express or implied warranty.
+In no event will the authors be held liable for any damages arising from the use of this software.
+Permission is granted to anyone to use this software for any purpose,
+including commercial applications, and to alter it and redistribute it freely,
+subject to the following restrictions:
+
+1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
+2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
+3. This notice may not be removed or altered from any source distribution.
+*/
+
+#ifndef BT_JACOBIAN_ENTRY_H
+#define BT_JACOBIAN_ENTRY_H
+
+#include "LinearMath/btMatrix3x3.h"
+
+
+//notes:
+// Another memory optimization would be to store m_1MinvJt in the remaining 3 w components
+// which makes the btJacobianEntry memory layout 16 bytes
+// if you only are interested in angular part, just feed massInvA and massInvB zero
+
+/// Jacobian entry is an abstraction that allows to describe constraints
+/// it can be used in combination with a constraint solver
+/// Can be used to relate the effect of an impulse to the constraint error
+ATTRIBUTE_ALIGNED16(class) btJacobianEntry
+{
+public:
+ btJacobianEntry() {};
+ //constraint between two different rigidbodies
+ btJacobianEntry(
+ const btMatrix3x3& world2A,
+ const btMatrix3x3& world2B,
+ const btVector3& rel_pos1,const btVector3& rel_pos2,
+ const btVector3& jointAxis,
+ const btVector3& inertiaInvA,
+ const btScalar massInvA,
+ const btVector3& inertiaInvB,
+ const btScalar massInvB)
+ :m_linearJointAxis(jointAxis)
+ {
+ m_aJ = world2A*(rel_pos1.cross(m_linearJointAxis));
+ m_bJ = world2B*(rel_pos2.cross(-m_linearJointAxis));
+ m_0MinvJt = inertiaInvA * m_aJ;
+ m_1MinvJt = inertiaInvB * m_bJ;
+ m_Adiag = massInvA + m_0MinvJt.dot(m_aJ) + massInvB + m_1MinvJt.dot(m_bJ);
+
+ btAssert(m_Adiag > btScalar(0.0));
+ }
+
+ //angular constraint between two different rigidbodies
+ btJacobianEntry(const btVector3& jointAxis,
+ const btMatrix3x3& world2A,
+ const btMatrix3x3& world2B,
+ const btVector3& inertiaInvA,
+ const btVector3& inertiaInvB)
+ :m_linearJointAxis(btVector3(btScalar(0.),btScalar(0.),btScalar(0.)))
+ {
+ m_aJ= world2A*jointAxis;
+ m_bJ = world2B*-jointAxis;
+ m_0MinvJt = inertiaInvA * m_aJ;
+ m_1MinvJt = inertiaInvB * m_bJ;
+ m_Adiag = m_0MinvJt.dot(m_aJ) + m_1MinvJt.dot(m_bJ);
+
+ btAssert(m_Adiag > btScalar(0.0));
+ }
+
+ //angular constraint between two different rigidbodies
+ btJacobianEntry(const btVector3& axisInA,
+ const btVector3& axisInB,
+ const btVector3& inertiaInvA,
+ const btVector3& inertiaInvB)
+ : m_linearJointAxis(btVector3(btScalar(0.),btScalar(0.),btScalar(0.)))
+ , m_aJ(axisInA)
+ , m_bJ(-axisInB)
+ {
+ m_0MinvJt = inertiaInvA * m_aJ;
+ m_1MinvJt = inertiaInvB * m_bJ;
+ m_Adiag = m_0MinvJt.dot(m_aJ) + m_1MinvJt.dot(m_bJ);
+
+ btAssert(m_Adiag > btScalar(0.0));
+ }
+
+ //constraint on one rigidbody
+ btJacobianEntry(
+ const btMatrix3x3& world2A,
+ const btVector3& rel_pos1,const btVector3& rel_pos2,
+ const btVector3& jointAxis,
+ const btVector3& inertiaInvA,
+ const btScalar massInvA)
+ :m_linearJointAxis(jointAxis)
+ {
+ m_aJ= world2A*(rel_pos1.cross(jointAxis));
+ m_bJ = world2A*(rel_pos2.cross(-jointAxis));
+ m_0MinvJt = inertiaInvA * m_aJ;
+ m_1MinvJt = btVector3(btScalar(0.),btScalar(0.),btScalar(0.));
+ m_Adiag = massInvA + m_0MinvJt.dot(m_aJ);
+
+ btAssert(m_Adiag > btScalar(0.0));
+ }
+
+ btScalar getDiagonal() const { return m_Adiag; }
+
+ // for two constraints on the same rigidbody (for example vehicle friction)
+ btScalar getNonDiagonal(const btJacobianEntry& jacB, const btScalar massInvA) const
+ {
+ const btJacobianEntry& jacA = *this;
+ btScalar lin = massInvA * jacA.m_linearJointAxis.dot(jacB.m_linearJointAxis);
+ btScalar ang = jacA.m_0MinvJt.dot(jacB.m_aJ);
+ return lin + ang;
+ }
+
+
+
+ // for two constraints on sharing two same rigidbodies (for example two contact points between two rigidbodies)
+ btScalar getNonDiagonal(const btJacobianEntry& jacB,const btScalar massInvA,const btScalar massInvB) const
+ {
+ const btJacobianEntry& jacA = *this;
+ btVector3 lin = jacA.m_linearJointAxis * jacB.m_linearJointAxis;
+ btVector3 ang0 = jacA.m_0MinvJt * jacB.m_aJ;
+ btVector3 ang1 = jacA.m_1MinvJt * jacB.m_bJ;
+ btVector3 lin0 = massInvA * lin ;
+ btVector3 lin1 = massInvB * lin;
+ btVector3 sum = ang0+ang1+lin0+lin1;
+ return sum[0]+sum[1]+sum[2];
+ }
+
+ btScalar getRelativeVelocity(const btVector3& linvelA,const btVector3& angvelA,const btVector3& linvelB,const btVector3& angvelB)
+ {
+ btVector3 linrel = linvelA - linvelB;
+ btVector3 angvela = angvelA * m_aJ;
+ btVector3 angvelb = angvelB * m_bJ;
+ linrel *= m_linearJointAxis;
+ angvela += angvelb;
+ angvela += linrel;
+ btScalar rel_vel2 = angvela[0]+angvela[1]+angvela[2];
+ return rel_vel2 + SIMD_EPSILON;
+ }
+//private:
+
+ btVector3 m_linearJointAxis;
+ btVector3 m_aJ;
+ btVector3 m_bJ;
+ btVector3 m_0MinvJt;
+ btVector3 m_1MinvJt;
+ //Optimization: can be stored in the w/last component of one of the vectors
+ btScalar m_Adiag;
+
+};
+
+#endif //BT_JACOBIAN_ENTRY_H
diff --git a/thirdparty/bullet/BulletDynamics/ConstraintSolver/btNNCGConstraintSolver.cpp b/thirdparty/bullet/BulletDynamics/ConstraintSolver/btNNCGConstraintSolver.cpp
new file mode 100644
index 0000000000..f3979be358
--- /dev/null
+++ b/thirdparty/bullet/BulletDynamics/ConstraintSolver/btNNCGConstraintSolver.cpp
@@ -0,0 +1,374 @@
+/*
+Bullet Continuous Collision Detection and Physics Library
+Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
+
+This software is provided 'as-is', without any express or implied warranty.
+In no event will the authors be held liable for any damages arising from the use of this software.
+Permission is granted to anyone to use this software for any purpose,
+including commercial applications, and to alter it and redistribute it freely,
+subject to the following restrictions:
+
+1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
+2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
+3. This notice may not be removed or altered from any source distribution.
+*/
+
+#include "btNNCGConstraintSolver.h"
+
+
+
+
+
+
+btScalar btNNCGConstraintSolver::solveGroupCacheFriendlySetup(btCollisionObject** bodies,int numBodies,btPersistentManifold** manifoldPtr, int numManifolds,btTypedConstraint** constraints,int numConstraints,const btContactSolverInfo& infoGlobal,btIDebugDraw* debugDrawer)
+{
+ btScalar val = btSequentialImpulseConstraintSolver::solveGroupCacheFriendlySetup( bodies,numBodies,manifoldPtr, numManifolds, constraints,numConstraints,infoGlobal,debugDrawer);
+
+ m_pNC.resizeNoInitialize(m_tmpSolverNonContactConstraintPool.size());
+ m_pC.resizeNoInitialize(m_tmpSolverContactConstraintPool.size());
+ m_pCF.resizeNoInitialize(m_tmpSolverContactFrictionConstraintPool.size());
+ m_pCRF.resizeNoInitialize(m_tmpSolverContactRollingFrictionConstraintPool.size());
+
+ m_deltafNC.resizeNoInitialize(m_tmpSolverNonContactConstraintPool.size());
+ m_deltafC.resizeNoInitialize(m_tmpSolverContactConstraintPool.size());
+ m_deltafCF.resizeNoInitialize(m_tmpSolverContactFrictionConstraintPool.size());
+ m_deltafCRF.resizeNoInitialize(m_tmpSolverContactRollingFrictionConstraintPool.size());
+
+ return val;
+}
+
+btScalar btNNCGConstraintSolver::solveSingleIteration(int iteration, btCollisionObject** /*bodies */,int /*numBodies*/,btPersistentManifold** /*manifoldPtr*/, int /*numManifolds*/,btTypedConstraint** constraints,int numConstraints,const btContactSolverInfo& infoGlobal,btIDebugDraw* /*debugDrawer*/)
+{
+
+ int numNonContactPool = m_tmpSolverNonContactConstraintPool.size();
+ int numConstraintPool = m_tmpSolverContactConstraintPool.size();
+ int numFrictionPool = m_tmpSolverContactFrictionConstraintPool.size();
+
+ if (infoGlobal.m_solverMode & SOLVER_RANDMIZE_ORDER)
+ {
+ if (1) // uncomment this for a bit less random ((iteration & 7) == 0)
+ {
+
+ for (int j=0; j<numNonContactPool; ++j) {
+ int tmp = m_orderNonContactConstraintPool[j];
+ int swapi = btRandInt2(j+1);
+ m_orderNonContactConstraintPool[j] = m_orderNonContactConstraintPool[swapi];
+ m_orderNonContactConstraintPool[swapi] = tmp;
+ }
+
+ //contact/friction constraints are not solved more than
+ if (iteration< infoGlobal.m_numIterations)
+ {
+ for (int j=0; j<numConstraintPool; ++j) {
+ int tmp = m_orderTmpConstraintPool[j];
+ int swapi = btRandInt2(j+1);
+ m_orderTmpConstraintPool[j] = m_orderTmpConstraintPool[swapi];
+ m_orderTmpConstraintPool[swapi] = tmp;
+ }
+
+ for (int j=0; j<numFrictionPool; ++j) {
+ int tmp = m_orderFrictionConstraintPool[j];
+ int swapi = btRandInt2(j+1);
+ m_orderFrictionConstraintPool[j] = m_orderFrictionConstraintPool[swapi];
+ m_orderFrictionConstraintPool[swapi] = tmp;
+ }
+ }
+ }
+ }
+
+
+ btScalar deltaflengthsqr = 0;
+ {
+ for (int j=0;j<m_tmpSolverNonContactConstraintPool.size();j++)
+ {
+ btSolverConstraint& constraint = m_tmpSolverNonContactConstraintPool[m_orderNonContactConstraintPool[j]];
+ if (iteration < constraint.m_overrideNumSolverIterations)
+ {
+ btScalar deltaf = resolveSingleConstraintRowGeneric(m_tmpSolverBodyPool[constraint.m_solverBodyIdA],m_tmpSolverBodyPool[constraint.m_solverBodyIdB],constraint);
+ m_deltafNC[j] = deltaf;
+ deltaflengthsqr += deltaf * deltaf;
+ }
+ }
+ }
+
+
+ if (m_onlyForNoneContact)
+ {
+ if (iteration==0)
+ {
+ for (int j=0;j<m_tmpSolverNonContactConstraintPool.size();j++) m_pNC[j] = m_deltafNC[j];
+ } else {
+ // deltaflengthsqrprev can be 0 only if the solver solved the problem exactly in the previous iteration. In this case we should have quit, but mainly for debug reason with this 'hack' it is now allowed to continue the calculation
+ btScalar beta = m_deltafLengthSqrPrev>0 ? deltaflengthsqr / m_deltafLengthSqrPrev : 2;
+ if (beta>1)
+ {
+ for (int j=0;j<m_tmpSolverNonContactConstraintPool.size();j++) m_pNC[j] = 0;
+ } else
+ {
+ for (int j=0;j<m_tmpSolverNonContactConstraintPool.size();j++)
+ {
+ btSolverConstraint& constraint = m_tmpSolverNonContactConstraintPool[m_orderNonContactConstraintPool[j]];
+ if (iteration < constraint.m_overrideNumSolverIterations)
+ {
+ btScalar additionaldeltaimpulse = beta * m_pNC[j];
+ constraint.m_appliedImpulse = btScalar(constraint.m_appliedImpulse) + additionaldeltaimpulse;
+ m_pNC[j] = beta * m_pNC[j] + m_deltafNC[j];
+ btSolverBody& body1 = m_tmpSolverBodyPool[constraint.m_solverBodyIdA];
+ btSolverBody& body2 = m_tmpSolverBodyPool[constraint.m_solverBodyIdB];
+ const btSolverConstraint& c = constraint;
+ body1.internalApplyImpulse(c.m_contactNormal1*body1.internalGetInvMass(),c.m_angularComponentA,additionaldeltaimpulse);
+ body2.internalApplyImpulse(c.m_contactNormal2*body2.internalGetInvMass(),c.m_angularComponentB,additionaldeltaimpulse);
+ }
+ }
+ }
+ }
+ m_deltafLengthSqrPrev = deltaflengthsqr;
+ }
+
+
+
+ {
+
+ if (iteration< infoGlobal.m_numIterations)
+ {
+ for (int j=0;j<numConstraints;j++)
+ {
+ if (constraints[j]->isEnabled())
+ {
+ int bodyAid = getOrInitSolverBody(constraints[j]->getRigidBodyA(),infoGlobal.m_timeStep);
+ int bodyBid = getOrInitSolverBody(constraints[j]->getRigidBodyB(),infoGlobal.m_timeStep);
+ btSolverBody& bodyA = m_tmpSolverBodyPool[bodyAid];
+ btSolverBody& bodyB = m_tmpSolverBodyPool[bodyBid];
+ constraints[j]->solveConstraintObsolete(bodyA,bodyB,infoGlobal.m_timeStep);
+ }
+ }
+
+ ///solve all contact constraints
+ if (infoGlobal.m_solverMode & SOLVER_INTERLEAVE_CONTACT_AND_FRICTION_CONSTRAINTS)
+ {
+ int numPoolConstraints = m_tmpSolverContactConstraintPool.size();
+ int multiplier = (infoGlobal.m_solverMode & SOLVER_USE_2_FRICTION_DIRECTIONS)? 2 : 1;
+
+ for (int c=0;c<numPoolConstraints;c++)
+ {
+ btScalar totalImpulse =0;
+
+ {
+ const btSolverConstraint& solveManifold = m_tmpSolverContactConstraintPool[m_orderTmpConstraintPool[c]];
+ btScalar deltaf = resolveSingleConstraintRowLowerLimit(m_tmpSolverBodyPool[solveManifold.m_solverBodyIdA],m_tmpSolverBodyPool[solveManifold.m_solverBodyIdB],solveManifold);
+ m_deltafC[c] = deltaf;
+ deltaflengthsqr += deltaf*deltaf;
+ totalImpulse = solveManifold.m_appliedImpulse;
+ }
+ bool applyFriction = true;
+ if (applyFriction)
+ {
+ {
+
+ btSolverConstraint& solveManifold = m_tmpSolverContactFrictionConstraintPool[m_orderFrictionConstraintPool[c*multiplier]];
+
+ if (totalImpulse>btScalar(0))
+ {
+ solveManifold.m_lowerLimit = -(solveManifold.m_friction*totalImpulse);
+ solveManifold.m_upperLimit = solveManifold.m_friction*totalImpulse;
+ btScalar deltaf = resolveSingleConstraintRowGeneric(m_tmpSolverBodyPool[solveManifold.m_solverBodyIdA],m_tmpSolverBodyPool[solveManifold.m_solverBodyIdB],solveManifold);
+ m_deltafCF[c*multiplier] = deltaf;
+ deltaflengthsqr += deltaf*deltaf;
+ } else {
+ m_deltafCF[c*multiplier] = 0;
+ }
+ }
+
+ if (infoGlobal.m_solverMode & SOLVER_USE_2_FRICTION_DIRECTIONS)
+ {
+
+ btSolverConstraint& solveManifold = m_tmpSolverContactFrictionConstraintPool[m_orderFrictionConstraintPool[c*multiplier+1]];
+
+ if (totalImpulse>btScalar(0))
+ {
+ solveManifold.m_lowerLimit = -(solveManifold.m_friction*totalImpulse);
+ solveManifold.m_upperLimit = solveManifold.m_friction*totalImpulse;
+ btScalar deltaf = resolveSingleConstraintRowGeneric(m_tmpSolverBodyPool[solveManifold.m_solverBodyIdA],m_tmpSolverBodyPool[solveManifold.m_solverBodyIdB],solveManifold);
+ m_deltafCF[c*multiplier+1] = deltaf;
+ deltaflengthsqr += deltaf*deltaf;
+ } else {
+ m_deltafCF[c*multiplier+1] = 0;
+ }
+ }
+ }
+ }
+
+ }
+ else//SOLVER_INTERLEAVE_CONTACT_AND_FRICTION_CONSTRAINTS
+ {
+ //solve the friction constraints after all contact constraints, don't interleave them
+ int numPoolConstraints = m_tmpSolverContactConstraintPool.size();
+ int j;
+
+ for (j=0;j<numPoolConstraints;j++)
+ {
+ const btSolverConstraint& solveManifold = m_tmpSolverContactConstraintPool[m_orderTmpConstraintPool[j]];
+ btScalar deltaf = resolveSingleConstraintRowLowerLimit(m_tmpSolverBodyPool[solveManifold.m_solverBodyIdA],m_tmpSolverBodyPool[solveManifold.m_solverBodyIdB],solveManifold);
+ m_deltafC[j] = deltaf;
+ deltaflengthsqr += deltaf*deltaf;
+ }
+
+
+
+ ///solve all friction constraints
+
+ int numFrictionPoolConstraints = m_tmpSolverContactFrictionConstraintPool.size();
+ for (j=0;j<numFrictionPoolConstraints;j++)
+ {
+ btSolverConstraint& solveManifold = m_tmpSolverContactFrictionConstraintPool[m_orderFrictionConstraintPool[j]];
+ btScalar totalImpulse = m_tmpSolverContactConstraintPool[solveManifold.m_frictionIndex].m_appliedImpulse;
+
+ if (totalImpulse>btScalar(0))
+ {
+ solveManifold.m_lowerLimit = -(solveManifold.m_friction*totalImpulse);
+ solveManifold.m_upperLimit = solveManifold.m_friction*totalImpulse;
+
+ btScalar deltaf = resolveSingleConstraintRowGeneric(m_tmpSolverBodyPool[solveManifold.m_solverBodyIdA],m_tmpSolverBodyPool[solveManifold.m_solverBodyIdB],solveManifold);
+ m_deltafCF[j] = deltaf;
+ deltaflengthsqr += deltaf*deltaf;
+ } else {
+ m_deltafCF[j] = 0;
+ }
+ }
+ }
+
+ {
+ int numRollingFrictionPoolConstraints = m_tmpSolverContactRollingFrictionConstraintPool.size();
+ for (int j=0;j<numRollingFrictionPoolConstraints;j++)
+ {
+
+ btSolverConstraint& rollingFrictionConstraint = m_tmpSolverContactRollingFrictionConstraintPool[j];
+ btScalar totalImpulse = m_tmpSolverContactConstraintPool[rollingFrictionConstraint.m_frictionIndex].m_appliedImpulse;
+ if (totalImpulse>btScalar(0))
+ {
+ btScalar rollingFrictionMagnitude = rollingFrictionConstraint.m_friction*totalImpulse;
+ if (rollingFrictionMagnitude>rollingFrictionConstraint.m_friction)
+ rollingFrictionMagnitude = rollingFrictionConstraint.m_friction;
+
+ rollingFrictionConstraint.m_lowerLimit = -rollingFrictionMagnitude;
+ rollingFrictionConstraint.m_upperLimit = rollingFrictionMagnitude;
+
+ btScalar deltaf = resolveSingleConstraintRowGeneric(m_tmpSolverBodyPool[rollingFrictionConstraint.m_solverBodyIdA],m_tmpSolverBodyPool[rollingFrictionConstraint.m_solverBodyIdB],rollingFrictionConstraint);
+ m_deltafCRF[j] = deltaf;
+ deltaflengthsqr += deltaf*deltaf;
+ } else {
+ m_deltafCRF[j] = 0;
+ }
+ }
+ }
+
+ }
+
+
+
+ }
+
+
+
+
+ if (!m_onlyForNoneContact)
+ {
+ if (iteration==0)
+ {
+ for (int j=0;j<m_tmpSolverNonContactConstraintPool.size();j++) m_pNC[j] = m_deltafNC[j];
+ for (int j=0;j<m_tmpSolverContactConstraintPool.size();j++) m_pC[j] = m_deltafC[j];
+ for (int j=0;j<m_tmpSolverContactFrictionConstraintPool.size();j++) m_pCF[j] = m_deltafCF[j];
+ for (int j=0;j<m_tmpSolverContactRollingFrictionConstraintPool.size();j++) m_pCRF[j] = m_deltafCRF[j];
+ } else
+ {
+ // deltaflengthsqrprev can be 0 only if the solver solved the problem exactly in the previous iteration. In this case we should have quit, but mainly for debug reason with this 'hack' it is now allowed to continue the calculation
+ btScalar beta = m_deltafLengthSqrPrev>0 ? deltaflengthsqr / m_deltafLengthSqrPrev : 2;
+ if (beta>1) {
+ for (int j=0;j<m_tmpSolverNonContactConstraintPool.size();j++) m_pNC[j] = 0;
+ for (int j=0;j<m_tmpSolverContactConstraintPool.size();j++) m_pC[j] = 0;
+ for (int j=0;j<m_tmpSolverContactFrictionConstraintPool.size();j++) m_pCF[j] = 0;
+ for (int j=0;j<m_tmpSolverContactRollingFrictionConstraintPool.size();j++) m_pCRF[j] = 0;
+ } else {
+ for (int j=0;j<m_tmpSolverNonContactConstraintPool.size();j++)
+ {
+ btSolverConstraint& constraint = m_tmpSolverNonContactConstraintPool[m_orderNonContactConstraintPool[j]];
+ if (iteration < constraint.m_overrideNumSolverIterations) {
+ btScalar additionaldeltaimpulse = beta * m_pNC[j];
+ constraint.m_appliedImpulse = btScalar(constraint.m_appliedImpulse) + additionaldeltaimpulse;
+ m_pNC[j] = beta * m_pNC[j] + m_deltafNC[j];
+ btSolverBody& body1 = m_tmpSolverBodyPool[constraint.m_solverBodyIdA];
+ btSolverBody& body2 = m_tmpSolverBodyPool[constraint.m_solverBodyIdB];
+ const btSolverConstraint& c = constraint;
+ body1.internalApplyImpulse(c.m_contactNormal1*body1.internalGetInvMass(),c.m_angularComponentA,additionaldeltaimpulse);
+ body2.internalApplyImpulse(c.m_contactNormal2*body2.internalGetInvMass(),c.m_angularComponentB,additionaldeltaimpulse);
+ }
+ }
+ for (int j=0;j<m_tmpSolverContactConstraintPool.size();j++)
+ {
+ btSolverConstraint& constraint = m_tmpSolverContactConstraintPool[m_orderTmpConstraintPool[j]];
+ if (iteration< infoGlobal.m_numIterations) {
+ btScalar additionaldeltaimpulse = beta * m_pC[j];
+ constraint.m_appliedImpulse = btScalar(constraint.m_appliedImpulse) + additionaldeltaimpulse;
+ m_pC[j] = beta * m_pC[j] + m_deltafC[j];
+ btSolverBody& body1 = m_tmpSolverBodyPool[constraint.m_solverBodyIdA];
+ btSolverBody& body2 = m_tmpSolverBodyPool[constraint.m_solverBodyIdB];
+ const btSolverConstraint& c = constraint;
+ body1.internalApplyImpulse(c.m_contactNormal1*body1.internalGetInvMass(),c.m_angularComponentA,additionaldeltaimpulse);
+ body2.internalApplyImpulse(c.m_contactNormal2*body2.internalGetInvMass(),c.m_angularComponentB,additionaldeltaimpulse);
+ }
+ }
+ for (int j=0;j<m_tmpSolverContactFrictionConstraintPool.size();j++)
+ {
+ btSolverConstraint& constraint = m_tmpSolverContactFrictionConstraintPool[m_orderFrictionConstraintPool[j]];
+ if (iteration< infoGlobal.m_numIterations) {
+ btScalar additionaldeltaimpulse = beta * m_pCF[j];
+ constraint.m_appliedImpulse = btScalar(constraint.m_appliedImpulse) + additionaldeltaimpulse;
+ m_pCF[j] = beta * m_pCF[j] + m_deltafCF[j];
+ btSolverBody& body1 = m_tmpSolverBodyPool[constraint.m_solverBodyIdA];
+ btSolverBody& body2 = m_tmpSolverBodyPool[constraint.m_solverBodyIdB];
+ const btSolverConstraint& c = constraint;
+ body1.internalApplyImpulse(c.m_contactNormal1*body1.internalGetInvMass(),c.m_angularComponentA,additionaldeltaimpulse);
+ body2.internalApplyImpulse(c.m_contactNormal2*body2.internalGetInvMass(),c.m_angularComponentB,additionaldeltaimpulse);
+ }
+ }
+ {
+ for (int j=0;j<m_tmpSolverContactRollingFrictionConstraintPool.size();j++)
+ {
+ btSolverConstraint& constraint = m_tmpSolverContactRollingFrictionConstraintPool[j];
+ if (iteration< infoGlobal.m_numIterations) {
+ btScalar additionaldeltaimpulse = beta * m_pCRF[j];
+ constraint.m_appliedImpulse = btScalar(constraint.m_appliedImpulse) + additionaldeltaimpulse;
+ m_pCRF[j] = beta * m_pCRF[j] + m_deltafCRF[j];
+ btSolverBody& body1 = m_tmpSolverBodyPool[constraint.m_solverBodyIdA];
+ btSolverBody& body2 = m_tmpSolverBodyPool[constraint.m_solverBodyIdB];
+ const btSolverConstraint& c = constraint;
+ body1.internalApplyImpulse(c.m_contactNormal1*body1.internalGetInvMass(),c.m_angularComponentA,additionaldeltaimpulse);
+ body2.internalApplyImpulse(c.m_contactNormal2*body2.internalGetInvMass(),c.m_angularComponentB,additionaldeltaimpulse);
+ }
+ }
+ }
+ }
+ }
+ m_deltafLengthSqrPrev = deltaflengthsqr;
+ }
+
+ return deltaflengthsqr;
+}
+
+btScalar btNNCGConstraintSolver::solveGroupCacheFriendlyFinish(btCollisionObject** bodies,int numBodies,const btContactSolverInfo& infoGlobal)
+{
+ m_pNC.resizeNoInitialize(0);
+ m_pC.resizeNoInitialize(0);
+ m_pCF.resizeNoInitialize(0);
+ m_pCRF.resizeNoInitialize(0);
+
+ m_deltafNC.resizeNoInitialize(0);
+ m_deltafC.resizeNoInitialize(0);
+ m_deltafCF.resizeNoInitialize(0);
+ m_deltafCRF.resizeNoInitialize(0);
+
+ return btSequentialImpulseConstraintSolver::solveGroupCacheFriendlyFinish(bodies, numBodies, infoGlobal);
+}
+
+
+
diff --git a/thirdparty/bullet/BulletDynamics/ConstraintSolver/btNNCGConstraintSolver.h b/thirdparty/bullet/BulletDynamics/ConstraintSolver/btNNCGConstraintSolver.h
new file mode 100644
index 0000000000..a300929cd5
--- /dev/null
+++ b/thirdparty/bullet/BulletDynamics/ConstraintSolver/btNNCGConstraintSolver.h
@@ -0,0 +1,64 @@
+/*
+Bullet Continuous Collision Detection and Physics Library
+Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
+
+This software is provided 'as-is', without any express or implied warranty.
+In no event will the authors be held liable for any damages arising from the use of this software.
+Permission is granted to anyone to use this software for any purpose,
+including commercial applications, and to alter it and redistribute it freely,
+subject to the following restrictions:
+
+1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
+2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
+3. This notice may not be removed or altered from any source distribution.
+*/
+
+#ifndef BT_NNCG_CONSTRAINT_SOLVER_H
+#define BT_NNCG_CONSTRAINT_SOLVER_H
+
+#include "btSequentialImpulseConstraintSolver.h"
+
+ATTRIBUTE_ALIGNED16(class) btNNCGConstraintSolver : public btSequentialImpulseConstraintSolver
+{
+protected:
+
+ btScalar m_deltafLengthSqrPrev;
+
+ btAlignedObjectArray<btScalar> m_pNC; // p for None Contact constraints
+ btAlignedObjectArray<btScalar> m_pC; // p for Contact constraints
+ btAlignedObjectArray<btScalar> m_pCF; // p for ContactFriction constraints
+ btAlignedObjectArray<btScalar> m_pCRF; // p for ContactRollingFriction constraints
+
+ //These are recalculated in every iterations. We just keep these to prevent reallocation in each iteration.
+ btAlignedObjectArray<btScalar> m_deltafNC; // deltaf for NoneContact constraints
+ btAlignedObjectArray<btScalar> m_deltafC; // deltaf for Contact constraints
+ btAlignedObjectArray<btScalar> m_deltafCF; // deltaf for ContactFriction constraints
+ btAlignedObjectArray<btScalar> m_deltafCRF; // deltaf for ContactRollingFriction constraints
+
+
+protected:
+
+ virtual btScalar solveGroupCacheFriendlyFinish(btCollisionObject** bodies,int numBodies,const btContactSolverInfo& infoGlobal);
+ virtual btScalar solveSingleIteration(int iteration, btCollisionObject** bodies ,int numBodies,btPersistentManifold** manifoldPtr, int numManifolds,btTypedConstraint** constraints,int numConstraints,const btContactSolverInfo& infoGlobal,btIDebugDraw* debugDrawer);
+
+ virtual btScalar solveGroupCacheFriendlySetup(btCollisionObject** bodies,int numBodies,btPersistentManifold** manifoldPtr, int numManifolds,btTypedConstraint** constraints,int numConstraints,const btContactSolverInfo& infoGlobal,btIDebugDraw* debugDrawer);
+
+public:
+
+ BT_DECLARE_ALIGNED_ALLOCATOR();
+
+ btNNCGConstraintSolver() : btSequentialImpulseConstraintSolver(), m_onlyForNoneContact(false) {}
+
+ virtual btConstraintSolverType getSolverType() const
+ {
+ return BT_NNCG_SOLVER;
+ }
+
+ bool m_onlyForNoneContact;
+};
+
+
+
+
+#endif //BT_NNCG_CONSTRAINT_SOLVER_H
+
diff --git a/thirdparty/bullet/BulletDynamics/ConstraintSolver/btPoint2PointConstraint.cpp b/thirdparty/bullet/BulletDynamics/ConstraintSolver/btPoint2PointConstraint.cpp
new file mode 100644
index 0000000000..3c0430b903
--- /dev/null
+++ b/thirdparty/bullet/BulletDynamics/ConstraintSolver/btPoint2PointConstraint.cpp
@@ -0,0 +1,229 @@
+/*
+Bullet Continuous Collision Detection and Physics Library
+Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
+
+This software is provided 'as-is', without any express or implied warranty.
+In no event will the authors be held liable for any damages arising from the use of this software.
+Permission is granted to anyone to use this software for any purpose,
+including commercial applications, and to alter it and redistribute it freely,
+subject to the following restrictions:
+
+1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
+2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
+3. This notice may not be removed or altered from any source distribution.
+*/
+
+
+#include "btPoint2PointConstraint.h"
+#include "BulletDynamics/Dynamics/btRigidBody.h"
+#include <new>
+
+
+
+
+
+btPoint2PointConstraint::btPoint2PointConstraint(btRigidBody& rbA,btRigidBody& rbB, const btVector3& pivotInA,const btVector3& pivotInB)
+:btTypedConstraint(POINT2POINT_CONSTRAINT_TYPE,rbA,rbB),m_pivotInA(pivotInA),m_pivotInB(pivotInB),
+m_flags(0),
+m_useSolveConstraintObsolete(false)
+{
+
+}
+
+
+btPoint2PointConstraint::btPoint2PointConstraint(btRigidBody& rbA,const btVector3& pivotInA)
+:btTypedConstraint(POINT2POINT_CONSTRAINT_TYPE,rbA),m_pivotInA(pivotInA),m_pivotInB(rbA.getCenterOfMassTransform()(pivotInA)),
+m_flags(0),
+m_useSolveConstraintObsolete(false)
+{
+
+}
+
+void btPoint2PointConstraint::buildJacobian()
+{
+
+ ///we need it for both methods
+ {
+ m_appliedImpulse = btScalar(0.);
+
+ btVector3 normal(0,0,0);
+
+ for (int i=0;i<3;i++)
+ {
+ normal[i] = 1;
+ new (&m_jac[i]) btJacobianEntry(
+ m_rbA.getCenterOfMassTransform().getBasis().transpose(),
+ m_rbB.getCenterOfMassTransform().getBasis().transpose(),
+ m_rbA.getCenterOfMassTransform()*m_pivotInA - m_rbA.getCenterOfMassPosition(),
+ m_rbB.getCenterOfMassTransform()*m_pivotInB - m_rbB.getCenterOfMassPosition(),
+ normal,
+ m_rbA.getInvInertiaDiagLocal(),
+ m_rbA.getInvMass(),
+ m_rbB.getInvInertiaDiagLocal(),
+ m_rbB.getInvMass());
+ normal[i] = 0;
+ }
+ }
+
+
+}
+
+void btPoint2PointConstraint::getInfo1 (btConstraintInfo1* info)
+{
+ getInfo1NonVirtual(info);
+}
+
+void btPoint2PointConstraint::getInfo1NonVirtual (btConstraintInfo1* info)
+{
+ if (m_useSolveConstraintObsolete)
+ {
+ info->m_numConstraintRows = 0;
+ info->nub = 0;
+ } else
+ {
+ info->m_numConstraintRows = 3;
+ info->nub = 3;
+ }
+}
+
+
+
+
+void btPoint2PointConstraint::getInfo2 (btConstraintInfo2* info)
+{
+ getInfo2NonVirtual(info, m_rbA.getCenterOfMassTransform(),m_rbB.getCenterOfMassTransform());
+}
+
+void btPoint2PointConstraint::getInfo2NonVirtual (btConstraintInfo2* info, const btTransform& body0_trans, const btTransform& body1_trans)
+{
+ btAssert(!m_useSolveConstraintObsolete);
+
+ //retrieve matrices
+
+ // anchor points in global coordinates with respect to body PORs.
+
+ // set jacobian
+ info->m_J1linearAxis[0] = 1;
+ info->m_J1linearAxis[info->rowskip+1] = 1;
+ info->m_J1linearAxis[2*info->rowskip+2] = 1;
+
+ btVector3 a1 = body0_trans.getBasis()*getPivotInA();
+ {
+ btVector3* angular0 = (btVector3*)(info->m_J1angularAxis);
+ btVector3* angular1 = (btVector3*)(info->m_J1angularAxis+info->rowskip);
+ btVector3* angular2 = (btVector3*)(info->m_J1angularAxis+2*info->rowskip);
+ btVector3 a1neg = -a1;
+ a1neg.getSkewSymmetricMatrix(angular0,angular1,angular2);
+ }
+
+ info->m_J2linearAxis[0] = -1;
+ info->m_J2linearAxis[info->rowskip+1] = -1;
+ info->m_J2linearAxis[2*info->rowskip+2] = -1;
+
+ btVector3 a2 = body1_trans.getBasis()*getPivotInB();
+
+ {
+ // btVector3 a2n = -a2;
+ btVector3* angular0 = (btVector3*)(info->m_J2angularAxis);
+ btVector3* angular1 = (btVector3*)(info->m_J2angularAxis+info->rowskip);
+ btVector3* angular2 = (btVector3*)(info->m_J2angularAxis+2*info->rowskip);
+ a2.getSkewSymmetricMatrix(angular0,angular1,angular2);
+ }
+
+
+
+ // set right hand side
+ btScalar currERP = (m_flags & BT_P2P_FLAGS_ERP) ? m_erp : info->erp;
+ btScalar k = info->fps * currERP;
+ int j;
+ for (j=0; j<3; j++)
+ {
+ info->m_constraintError[j*info->rowskip] = k * (a2[j] + body1_trans.getOrigin()[j] - a1[j] - body0_trans.getOrigin()[j]);
+ //printf("info->m_constraintError[%d]=%f\n",j,info->m_constraintError[j]);
+ }
+ if(m_flags & BT_P2P_FLAGS_CFM)
+ {
+ for (j=0; j<3; j++)
+ {
+ info->cfm[j*info->rowskip] = m_cfm;
+ }
+ }
+
+ btScalar impulseClamp = m_setting.m_impulseClamp;//
+ for (j=0; j<3; j++)
+ {
+ if (m_setting.m_impulseClamp > 0)
+ {
+ info->m_lowerLimit[j*info->rowskip] = -impulseClamp;
+ info->m_upperLimit[j*info->rowskip] = impulseClamp;
+ }
+ }
+ info->m_damping = m_setting.m_damping;
+
+}
+
+
+
+void btPoint2PointConstraint::updateRHS(btScalar timeStep)
+{
+ (void)timeStep;
+
+}
+
+///override the default global value of a parameter (such as ERP or CFM), optionally provide the axis (0..5).
+///If no axis is provided, it uses the default axis for this constraint.
+void btPoint2PointConstraint::setParam(int num, btScalar value, int axis)
+{
+ if(axis != -1)
+ {
+ btAssertConstrParams(0);
+ }
+ else
+ {
+ switch(num)
+ {
+ case BT_CONSTRAINT_ERP :
+ case BT_CONSTRAINT_STOP_ERP :
+ m_erp = value;
+ m_flags |= BT_P2P_FLAGS_ERP;
+ break;
+ case BT_CONSTRAINT_CFM :
+ case BT_CONSTRAINT_STOP_CFM :
+ m_cfm = value;
+ m_flags |= BT_P2P_FLAGS_CFM;
+ break;
+ default:
+ btAssertConstrParams(0);
+ }
+ }
+}
+
+///return the local value of parameter
+btScalar btPoint2PointConstraint::getParam(int num, int axis) const
+{
+ btScalar retVal(SIMD_INFINITY);
+ if(axis != -1)
+ {
+ btAssertConstrParams(0);
+ }
+ else
+ {
+ switch(num)
+ {
+ case BT_CONSTRAINT_ERP :
+ case BT_CONSTRAINT_STOP_ERP :
+ btAssertConstrParams(m_flags & BT_P2P_FLAGS_ERP);
+ retVal = m_erp;
+ break;
+ case BT_CONSTRAINT_CFM :
+ case BT_CONSTRAINT_STOP_CFM :
+ btAssertConstrParams(m_flags & BT_P2P_FLAGS_CFM);
+ retVal = m_cfm;
+ break;
+ default:
+ btAssertConstrParams(0);
+ }
+ }
+ return retVal;
+}
+
diff --git a/thirdparty/bullet/BulletDynamics/ConstraintSolver/btPoint2PointConstraint.h b/thirdparty/bullet/BulletDynamics/ConstraintSolver/btPoint2PointConstraint.h
new file mode 100644
index 0000000000..8fa03d719d
--- /dev/null
+++ b/thirdparty/bullet/BulletDynamics/ConstraintSolver/btPoint2PointConstraint.h
@@ -0,0 +1,180 @@
+/*
+Bullet Continuous Collision Detection and Physics Library
+Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
+
+This software is provided 'as-is', without any express or implied warranty.
+In no event will the authors be held liable for any damages arising from the use of this software.
+Permission is granted to anyone to use this software for any purpose,
+including commercial applications, and to alter it and redistribute it freely,
+subject to the following restrictions:
+
+1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
+2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
+3. This notice may not be removed or altered from any source distribution.
+*/
+
+#ifndef BT_POINT2POINTCONSTRAINT_H
+#define BT_POINT2POINTCONSTRAINT_H
+
+#include "LinearMath/btVector3.h"
+#include "btJacobianEntry.h"
+#include "btTypedConstraint.h"
+
+class btRigidBody;
+
+
+#ifdef BT_USE_DOUBLE_PRECISION
+#define btPoint2PointConstraintData2 btPoint2PointConstraintDoubleData2
+#define btPoint2PointConstraintDataName "btPoint2PointConstraintDoubleData2"
+#else
+#define btPoint2PointConstraintData2 btPoint2PointConstraintFloatData
+#define btPoint2PointConstraintDataName "btPoint2PointConstraintFloatData"
+#endif //BT_USE_DOUBLE_PRECISION
+
+struct btConstraintSetting
+{
+ btConstraintSetting() :
+ m_tau(btScalar(0.3)),
+ m_damping(btScalar(1.)),
+ m_impulseClamp(btScalar(0.))
+ {
+ }
+ btScalar m_tau;
+ btScalar m_damping;
+ btScalar m_impulseClamp;
+};
+
+enum btPoint2PointFlags
+{
+ BT_P2P_FLAGS_ERP = 1,
+ BT_P2P_FLAGS_CFM = 2
+};
+
+/// point to point constraint between two rigidbodies each with a pivotpoint that descibes the 'ballsocket' location in local space
+ATTRIBUTE_ALIGNED16(class) btPoint2PointConstraint : public btTypedConstraint
+{
+#ifdef IN_PARALLELL_SOLVER
+public:
+#endif
+ btJacobianEntry m_jac[3]; //3 orthogonal linear constraints
+
+ btVector3 m_pivotInA;
+ btVector3 m_pivotInB;
+
+ int m_flags;
+ btScalar m_erp;
+ btScalar m_cfm;
+
+public:
+
+ BT_DECLARE_ALIGNED_ALLOCATOR();
+
+ ///for backwards compatibility during the transition to 'getInfo/getInfo2'
+ bool m_useSolveConstraintObsolete;
+
+ btConstraintSetting m_setting;
+
+ btPoint2PointConstraint(btRigidBody& rbA,btRigidBody& rbB, const btVector3& pivotInA,const btVector3& pivotInB);
+
+ btPoint2PointConstraint(btRigidBody& rbA,const btVector3& pivotInA);
+
+
+ virtual void buildJacobian();
+
+ virtual void getInfo1 (btConstraintInfo1* info);
+
+ void getInfo1NonVirtual (btConstraintInfo1* info);
+
+ virtual void getInfo2 (btConstraintInfo2* info);
+
+ void getInfo2NonVirtual (btConstraintInfo2* info, const btTransform& body0_trans, const btTransform& body1_trans);
+
+ void updateRHS(btScalar timeStep);
+
+ void setPivotA(const btVector3& pivotA)
+ {
+ m_pivotInA = pivotA;
+ }
+
+ void setPivotB(const btVector3& pivotB)
+ {
+ m_pivotInB = pivotB;
+ }
+
+ const btVector3& getPivotInA() const
+ {
+ return m_pivotInA;
+ }
+
+ const btVector3& getPivotInB() const
+ {
+ return m_pivotInB;
+ }
+
+ ///override the default global value of a parameter (such as ERP or CFM), optionally provide the axis (0..5).
+ ///If no axis is provided, it uses the default axis for this constraint.
+ virtual void setParam(int num, btScalar value, int axis = -1);
+ ///return the local value of parameter
+ virtual btScalar getParam(int num, int axis = -1) const;
+
+ virtual int getFlags() const
+ {
+ return m_flags;
+ }
+
+ virtual int calculateSerializeBufferSize() const;
+
+ ///fills the dataBuffer and returns the struct name (and 0 on failure)
+ virtual const char* serialize(void* dataBuffer, btSerializer* serializer) const;
+
+
+};
+
+///do not change those serialization structures, it requires an updated sBulletDNAstr/sBulletDNAstr64
+struct btPoint2PointConstraintFloatData
+{
+ btTypedConstraintData m_typeConstraintData;
+ btVector3FloatData m_pivotInA;
+ btVector3FloatData m_pivotInB;
+};
+
+///do not change those serialization structures, it requires an updated sBulletDNAstr/sBulletDNAstr64
+struct btPoint2PointConstraintDoubleData2
+{
+ btTypedConstraintDoubleData m_typeConstraintData;
+ btVector3DoubleData m_pivotInA;
+ btVector3DoubleData m_pivotInB;
+};
+
+#ifdef BT_BACKWARDS_COMPATIBLE_SERIALIZATION
+///do not change those serialization structures, it requires an updated sBulletDNAstr/sBulletDNAstr64
+///this structure is not used, except for loading pre-2.82 .bullet files
+///do not change those serialization structures, it requires an updated sBulletDNAstr/sBulletDNAstr64
+struct btPoint2PointConstraintDoubleData
+{
+ btTypedConstraintData m_typeConstraintData;
+ btVector3DoubleData m_pivotInA;
+ btVector3DoubleData m_pivotInB;
+};
+#endif //BT_BACKWARDS_COMPATIBLE_SERIALIZATION
+
+
+SIMD_FORCE_INLINE int btPoint2PointConstraint::calculateSerializeBufferSize() const
+{
+ return sizeof(btPoint2PointConstraintData2);
+
+}
+
+ ///fills the dataBuffer and returns the struct name (and 0 on failure)
+SIMD_FORCE_INLINE const char* btPoint2PointConstraint::serialize(void* dataBuffer, btSerializer* serializer) const
+{
+ btPoint2PointConstraintData2* p2pData = (btPoint2PointConstraintData2*)dataBuffer;
+
+ btTypedConstraint::serialize(&p2pData->m_typeConstraintData,serializer);
+ m_pivotInA.serialize(p2pData->m_pivotInA);
+ m_pivotInB.serialize(p2pData->m_pivotInB);
+
+ return btPoint2PointConstraintDataName;
+}
+
+#endif //BT_POINT2POINTCONSTRAINT_H
diff --git a/thirdparty/bullet/BulletDynamics/ConstraintSolver/btSequentialImpulseConstraintSolver.cpp b/thirdparty/bullet/BulletDynamics/ConstraintSolver/btSequentialImpulseConstraintSolver.cpp
new file mode 100644
index 0000000000..b0d57a3e87
--- /dev/null
+++ b/thirdparty/bullet/BulletDynamics/ConstraintSolver/btSequentialImpulseConstraintSolver.cpp
@@ -0,0 +1,1973 @@
+/*
+Bullet Continuous Collision Detection and Physics Library
+Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
+
+This software is provided 'as-is', without any express or implied warranty.
+In no event will the authors be held liable for any damages arising from the use of this software.
+Permission is granted to anyone to use this software for any purpose,
+including commercial applications, and to alter it and redistribute it freely,
+subject to the following restrictions:
+
+1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
+2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
+3. This notice may not be removed or altered from any source distribution.
+*/
+
+//#define COMPUTE_IMPULSE_DENOM 1
+//#define BT_ADDITIONAL_DEBUG
+
+//It is not necessary (redundant) to refresh contact manifolds, this refresh has been moved to the collision algorithms.
+
+#include "btSequentialImpulseConstraintSolver.h"
+#include "BulletCollision/NarrowPhaseCollision/btPersistentManifold.h"
+
+#include "LinearMath/btIDebugDraw.h"
+#include "LinearMath/btCpuFeatureUtility.h"
+
+//#include "btJacobianEntry.h"
+#include "LinearMath/btMinMax.h"
+#include "BulletDynamics/ConstraintSolver/btTypedConstraint.h"
+#include <new>
+#include "LinearMath/btStackAlloc.h"
+#include "LinearMath/btQuickprof.h"
+//#include "btSolverBody.h"
+//#include "btSolverConstraint.h"
+#include "LinearMath/btAlignedObjectArray.h"
+#include <string.h> //for memset
+
+int gNumSplitImpulseRecoveries = 0;
+
+#include "BulletDynamics/Dynamics/btRigidBody.h"
+
+//#define VERBOSE_RESIDUAL_PRINTF 1
+///This is the scalar reference implementation of solving a single constraint row, the innerloop of the Projected Gauss Seidel/Sequential Impulse constraint solver
+///Below are optional SSE2 and SSE4/FMA3 versions. We assume most hardware has SSE2. For SSE4/FMA3 we perform a CPU feature check.
+static btSimdScalar gResolveSingleConstraintRowGeneric_scalar_reference(btSolverBody& body1, btSolverBody& body2, const btSolverConstraint& c)
+{
+ btScalar deltaImpulse = c.m_rhs - btScalar(c.m_appliedImpulse)*c.m_cfm;
+ const btScalar deltaVel1Dotn = c.m_contactNormal1.dot(body1.internalGetDeltaLinearVelocity()) + c.m_relpos1CrossNormal.dot(body1.internalGetDeltaAngularVelocity());
+ const btScalar deltaVel2Dotn = c.m_contactNormal2.dot(body2.internalGetDeltaLinearVelocity()) + c.m_relpos2CrossNormal.dot(body2.internalGetDeltaAngularVelocity());
+
+ // const btScalar delta_rel_vel = deltaVel1Dotn-deltaVel2Dotn;
+ deltaImpulse -= deltaVel1Dotn*c.m_jacDiagABInv;
+ deltaImpulse -= deltaVel2Dotn*c.m_jacDiagABInv;
+
+ const btScalar sum = btScalar(c.m_appliedImpulse) + deltaImpulse;
+ if (sum < c.m_lowerLimit)
+ {
+ deltaImpulse = c.m_lowerLimit - c.m_appliedImpulse;
+ c.m_appliedImpulse = c.m_lowerLimit;
+ }
+ else if (sum > c.m_upperLimit)
+ {
+ deltaImpulse = c.m_upperLimit - c.m_appliedImpulse;
+ c.m_appliedImpulse = c.m_upperLimit;
+ }
+ else
+ {
+ c.m_appliedImpulse = sum;
+ }
+
+ body1.internalApplyImpulse(c.m_contactNormal1*body1.internalGetInvMass(), c.m_angularComponentA, deltaImpulse);
+ body2.internalApplyImpulse(c.m_contactNormal2*body2.internalGetInvMass(), c.m_angularComponentB, deltaImpulse);
+
+ return deltaImpulse;
+}
+
+
+static btSimdScalar gResolveSingleConstraintRowLowerLimit_scalar_reference(btSolverBody& body1, btSolverBody& body2, const btSolverConstraint& c)
+{
+ btScalar deltaImpulse = c.m_rhs - btScalar(c.m_appliedImpulse)*c.m_cfm;
+ const btScalar deltaVel1Dotn = c.m_contactNormal1.dot(body1.internalGetDeltaLinearVelocity()) + c.m_relpos1CrossNormal.dot(body1.internalGetDeltaAngularVelocity());
+ const btScalar deltaVel2Dotn = c.m_contactNormal2.dot(body2.internalGetDeltaLinearVelocity()) + c.m_relpos2CrossNormal.dot(body2.internalGetDeltaAngularVelocity());
+
+ deltaImpulse -= deltaVel1Dotn*c.m_jacDiagABInv;
+ deltaImpulse -= deltaVel2Dotn*c.m_jacDiagABInv;
+ const btScalar sum = btScalar(c.m_appliedImpulse) + deltaImpulse;
+ if (sum < c.m_lowerLimit)
+ {
+ deltaImpulse = c.m_lowerLimit - c.m_appliedImpulse;
+ c.m_appliedImpulse = c.m_lowerLimit;
+ }
+ else
+ {
+ c.m_appliedImpulse = sum;
+ }
+ body1.internalApplyImpulse(c.m_contactNormal1*body1.internalGetInvMass(), c.m_angularComponentA, deltaImpulse);
+ body2.internalApplyImpulse(c.m_contactNormal2*body2.internalGetInvMass(), c.m_angularComponentB, deltaImpulse);
+
+ return deltaImpulse;
+}
+
+
+
+#ifdef USE_SIMD
+#include <emmintrin.h>
+
+
+#define btVecSplat(x, e) _mm_shuffle_ps(x, x, _MM_SHUFFLE(e,e,e,e))
+static inline __m128 btSimdDot3( __m128 vec0, __m128 vec1 )
+{
+ __m128 result = _mm_mul_ps( vec0, vec1);
+ return _mm_add_ps( btVecSplat( result, 0 ), _mm_add_ps( btVecSplat( result, 1 ), btVecSplat( result, 2 ) ) );
+}
+
+#if defined (BT_ALLOW_SSE4)
+#include <intrin.h>
+
+#define USE_FMA 1
+#define USE_FMA3_INSTEAD_FMA4 1
+#define USE_SSE4_DOT 1
+
+#define SSE4_DP(a, b) _mm_dp_ps(a, b, 0x7f)
+#define SSE4_DP_FP(a, b) _mm_cvtss_f32(_mm_dp_ps(a, b, 0x7f))
+
+#if USE_SSE4_DOT
+#define DOT_PRODUCT(a, b) SSE4_DP(a, b)
+#else
+#define DOT_PRODUCT(a, b) btSimdDot3(a, b)
+#endif
+
+#if USE_FMA
+#if USE_FMA3_INSTEAD_FMA4
+// a*b + c
+#define FMADD(a, b, c) _mm_fmadd_ps(a, b, c)
+// -(a*b) + c
+#define FMNADD(a, b, c) _mm_fnmadd_ps(a, b, c)
+#else // USE_FMA3
+// a*b + c
+#define FMADD(a, b, c) _mm_macc_ps(a, b, c)
+// -(a*b) + c
+#define FMNADD(a, b, c) _mm_nmacc_ps(a, b, c)
+#endif
+#else // USE_FMA
+// c + a*b
+#define FMADD(a, b, c) _mm_add_ps(c, _mm_mul_ps(a, b))
+// c - a*b
+#define FMNADD(a, b, c) _mm_sub_ps(c, _mm_mul_ps(a, b))
+#endif
+#endif
+
+// Project Gauss Seidel or the equivalent Sequential Impulse
+static btSimdScalar gResolveSingleConstraintRowGeneric_sse2(btSolverBody& body1, btSolverBody& body2, const btSolverConstraint& c)
+{
+ __m128 cpAppliedImp = _mm_set1_ps(c.m_appliedImpulse);
+ __m128 lowerLimit1 = _mm_set1_ps(c.m_lowerLimit);
+ __m128 upperLimit1 = _mm_set1_ps(c.m_upperLimit);
+ btSimdScalar deltaImpulse = _mm_sub_ps(_mm_set1_ps(c.m_rhs), _mm_mul_ps(_mm_set1_ps(c.m_appliedImpulse), _mm_set1_ps(c.m_cfm)));
+ __m128 deltaVel1Dotn = _mm_add_ps(btSimdDot3(c.m_contactNormal1.mVec128, body1.internalGetDeltaLinearVelocity().mVec128), btSimdDot3(c.m_relpos1CrossNormal.mVec128, body1.internalGetDeltaAngularVelocity().mVec128));
+ __m128 deltaVel2Dotn = _mm_add_ps(btSimdDot3(c.m_contactNormal2.mVec128, body2.internalGetDeltaLinearVelocity().mVec128), btSimdDot3(c.m_relpos2CrossNormal.mVec128, body2.internalGetDeltaAngularVelocity().mVec128));
+ deltaImpulse = _mm_sub_ps(deltaImpulse, _mm_mul_ps(deltaVel1Dotn, _mm_set1_ps(c.m_jacDiagABInv)));
+ deltaImpulse = _mm_sub_ps(deltaImpulse, _mm_mul_ps(deltaVel2Dotn, _mm_set1_ps(c.m_jacDiagABInv)));
+ btSimdScalar sum = _mm_add_ps(cpAppliedImp, deltaImpulse);
+ btSimdScalar resultLowerLess, resultUpperLess;
+ resultLowerLess = _mm_cmplt_ps(sum, lowerLimit1);
+ resultUpperLess = _mm_cmplt_ps(sum, upperLimit1);
+ __m128 lowMinApplied = _mm_sub_ps(lowerLimit1, cpAppliedImp);
+ deltaImpulse = _mm_or_ps(_mm_and_ps(resultLowerLess, lowMinApplied), _mm_andnot_ps(resultLowerLess, deltaImpulse));
+ c.m_appliedImpulse = _mm_or_ps(_mm_and_ps(resultLowerLess, lowerLimit1), _mm_andnot_ps(resultLowerLess, sum));
+ __m128 upperMinApplied = _mm_sub_ps(upperLimit1, cpAppliedImp);
+ deltaImpulse = _mm_or_ps(_mm_and_ps(resultUpperLess, deltaImpulse), _mm_andnot_ps(resultUpperLess, upperMinApplied));
+ c.m_appliedImpulse = _mm_or_ps(_mm_and_ps(resultUpperLess, c.m_appliedImpulse), _mm_andnot_ps(resultUpperLess, upperLimit1));
+ __m128 linearComponentA = _mm_mul_ps(c.m_contactNormal1.mVec128, body1.internalGetInvMass().mVec128);
+ __m128 linearComponentB = _mm_mul_ps((c.m_contactNormal2).mVec128, body2.internalGetInvMass().mVec128);
+ __m128 impulseMagnitude = deltaImpulse;
+ body1.internalGetDeltaLinearVelocity().mVec128 = _mm_add_ps(body1.internalGetDeltaLinearVelocity().mVec128, _mm_mul_ps(linearComponentA, impulseMagnitude));
+ body1.internalGetDeltaAngularVelocity().mVec128 = _mm_add_ps(body1.internalGetDeltaAngularVelocity().mVec128, _mm_mul_ps(c.m_angularComponentA.mVec128, impulseMagnitude));
+ body2.internalGetDeltaLinearVelocity().mVec128 = _mm_add_ps(body2.internalGetDeltaLinearVelocity().mVec128, _mm_mul_ps(linearComponentB, impulseMagnitude));
+ body2.internalGetDeltaAngularVelocity().mVec128 = _mm_add_ps(body2.internalGetDeltaAngularVelocity().mVec128, _mm_mul_ps(c.m_angularComponentB.mVec128, impulseMagnitude));
+ return deltaImpulse;
+}
+
+
+// Enhanced version of gResolveSingleConstraintRowGeneric_sse2 with SSE4.1 and FMA3
+static btSimdScalar gResolveSingleConstraintRowGeneric_sse4_1_fma3(btSolverBody& body1, btSolverBody& body2, const btSolverConstraint& c)
+{
+#if defined (BT_ALLOW_SSE4)
+ __m128 tmp = _mm_set_ps1(c.m_jacDiagABInv);
+ __m128 deltaImpulse = _mm_set_ps1(c.m_rhs - btScalar(c.m_appliedImpulse)*c.m_cfm);
+ const __m128 lowerLimit = _mm_set_ps1(c.m_lowerLimit);
+ const __m128 upperLimit = _mm_set_ps1(c.m_upperLimit);
+ const __m128 deltaVel1Dotn = _mm_add_ps(DOT_PRODUCT(c.m_contactNormal1.mVec128, body1.internalGetDeltaLinearVelocity().mVec128), DOT_PRODUCT(c.m_relpos1CrossNormal.mVec128, body1.internalGetDeltaAngularVelocity().mVec128));
+ const __m128 deltaVel2Dotn = _mm_add_ps(DOT_PRODUCT(c.m_contactNormal2.mVec128, body2.internalGetDeltaLinearVelocity().mVec128), DOT_PRODUCT(c.m_relpos2CrossNormal.mVec128, body2.internalGetDeltaAngularVelocity().mVec128));
+ deltaImpulse = FMNADD(deltaVel1Dotn, tmp, deltaImpulse);
+ deltaImpulse = FMNADD(deltaVel2Dotn, tmp, deltaImpulse);
+ tmp = _mm_add_ps(c.m_appliedImpulse, deltaImpulse); // sum
+ const __m128 maskLower = _mm_cmpgt_ps(tmp, lowerLimit);
+ const __m128 maskUpper = _mm_cmpgt_ps(upperLimit, tmp);
+ deltaImpulse = _mm_blendv_ps(_mm_sub_ps(lowerLimit, c.m_appliedImpulse), _mm_blendv_ps(_mm_sub_ps(upperLimit, c.m_appliedImpulse), deltaImpulse, maskUpper), maskLower);
+ c.m_appliedImpulse = _mm_blendv_ps(lowerLimit, _mm_blendv_ps(upperLimit, tmp, maskUpper), maskLower);
+ body1.internalGetDeltaLinearVelocity().mVec128 = FMADD(_mm_mul_ps(c.m_contactNormal1.mVec128, body1.internalGetInvMass().mVec128), deltaImpulse, body1.internalGetDeltaLinearVelocity().mVec128);
+ body1.internalGetDeltaAngularVelocity().mVec128 = FMADD(c.m_angularComponentA.mVec128, deltaImpulse, body1.internalGetDeltaAngularVelocity().mVec128);
+ body2.internalGetDeltaLinearVelocity().mVec128 = FMADD(_mm_mul_ps(c.m_contactNormal2.mVec128, body2.internalGetInvMass().mVec128), deltaImpulse, body2.internalGetDeltaLinearVelocity().mVec128);
+ body2.internalGetDeltaAngularVelocity().mVec128 = FMADD(c.m_angularComponentB.mVec128, deltaImpulse, body2.internalGetDeltaAngularVelocity().mVec128);
+ return deltaImpulse;
+#else
+ return gResolveSingleConstraintRowGeneric_sse2(body1,body2,c);
+#endif
+}
+
+
+
+static btSimdScalar gResolveSingleConstraintRowLowerLimit_sse2(btSolverBody& body1, btSolverBody& body2, const btSolverConstraint& c)
+{
+ __m128 cpAppliedImp = _mm_set1_ps(c.m_appliedImpulse);
+ __m128 lowerLimit1 = _mm_set1_ps(c.m_lowerLimit);
+ __m128 upperLimit1 = _mm_set1_ps(c.m_upperLimit);
+ btSimdScalar deltaImpulse = _mm_sub_ps(_mm_set1_ps(c.m_rhs), _mm_mul_ps(_mm_set1_ps(c.m_appliedImpulse), _mm_set1_ps(c.m_cfm)));
+ __m128 deltaVel1Dotn = _mm_add_ps(btSimdDot3(c.m_contactNormal1.mVec128, body1.internalGetDeltaLinearVelocity().mVec128), btSimdDot3(c.m_relpos1CrossNormal.mVec128, body1.internalGetDeltaAngularVelocity().mVec128));
+ __m128 deltaVel2Dotn = _mm_add_ps(btSimdDot3(c.m_contactNormal2.mVec128, body2.internalGetDeltaLinearVelocity().mVec128), btSimdDot3(c.m_relpos2CrossNormal.mVec128, body2.internalGetDeltaAngularVelocity().mVec128));
+ deltaImpulse = _mm_sub_ps(deltaImpulse, _mm_mul_ps(deltaVel1Dotn, _mm_set1_ps(c.m_jacDiagABInv)));
+ deltaImpulse = _mm_sub_ps(deltaImpulse, _mm_mul_ps(deltaVel2Dotn, _mm_set1_ps(c.m_jacDiagABInv)));
+ btSimdScalar sum = _mm_add_ps(cpAppliedImp, deltaImpulse);
+ btSimdScalar resultLowerLess, resultUpperLess;
+ resultLowerLess = _mm_cmplt_ps(sum, lowerLimit1);
+ resultUpperLess = _mm_cmplt_ps(sum, upperLimit1);
+ __m128 lowMinApplied = _mm_sub_ps(lowerLimit1, cpAppliedImp);
+ deltaImpulse = _mm_or_ps(_mm_and_ps(resultLowerLess, lowMinApplied), _mm_andnot_ps(resultLowerLess, deltaImpulse));
+ c.m_appliedImpulse = _mm_or_ps(_mm_and_ps(resultLowerLess, lowerLimit1), _mm_andnot_ps(resultLowerLess, sum));
+ __m128 linearComponentA = _mm_mul_ps(c.m_contactNormal1.mVec128, body1.internalGetInvMass().mVec128);
+ __m128 linearComponentB = _mm_mul_ps(c.m_contactNormal2.mVec128, body2.internalGetInvMass().mVec128);
+ __m128 impulseMagnitude = deltaImpulse;
+ body1.internalGetDeltaLinearVelocity().mVec128 = _mm_add_ps(body1.internalGetDeltaLinearVelocity().mVec128, _mm_mul_ps(linearComponentA, impulseMagnitude));
+ body1.internalGetDeltaAngularVelocity().mVec128 = _mm_add_ps(body1.internalGetDeltaAngularVelocity().mVec128, _mm_mul_ps(c.m_angularComponentA.mVec128, impulseMagnitude));
+ body2.internalGetDeltaLinearVelocity().mVec128 = _mm_add_ps(body2.internalGetDeltaLinearVelocity().mVec128, _mm_mul_ps(linearComponentB, impulseMagnitude));
+ body2.internalGetDeltaAngularVelocity().mVec128 = _mm_add_ps(body2.internalGetDeltaAngularVelocity().mVec128, _mm_mul_ps(c.m_angularComponentB.mVec128, impulseMagnitude));
+ return deltaImpulse;
+}
+
+
+// Enhanced version of gResolveSingleConstraintRowGeneric_sse2 with SSE4.1 and FMA3
+static btSimdScalar gResolveSingleConstraintRowLowerLimit_sse4_1_fma3(btSolverBody& body1, btSolverBody& body2, const btSolverConstraint& c)
+{
+#ifdef BT_ALLOW_SSE4
+ __m128 tmp = _mm_set_ps1(c.m_jacDiagABInv);
+ __m128 deltaImpulse = _mm_set_ps1(c.m_rhs - btScalar(c.m_appliedImpulse)*c.m_cfm);
+ const __m128 lowerLimit = _mm_set_ps1(c.m_lowerLimit);
+ const __m128 deltaVel1Dotn = _mm_add_ps(DOT_PRODUCT(c.m_contactNormal1.mVec128, body1.internalGetDeltaLinearVelocity().mVec128), DOT_PRODUCT(c.m_relpos1CrossNormal.mVec128, body1.internalGetDeltaAngularVelocity().mVec128));
+ const __m128 deltaVel2Dotn = _mm_add_ps(DOT_PRODUCT(c.m_contactNormal2.mVec128, body2.internalGetDeltaLinearVelocity().mVec128), DOT_PRODUCT(c.m_relpos2CrossNormal.mVec128, body2.internalGetDeltaAngularVelocity().mVec128));
+ deltaImpulse = FMNADD(deltaVel1Dotn, tmp, deltaImpulse);
+ deltaImpulse = FMNADD(deltaVel2Dotn, tmp, deltaImpulse);
+ tmp = _mm_add_ps(c.m_appliedImpulse, deltaImpulse);
+ const __m128 mask = _mm_cmpgt_ps(tmp, lowerLimit);
+ deltaImpulse = _mm_blendv_ps(_mm_sub_ps(lowerLimit, c.m_appliedImpulse), deltaImpulse, mask);
+ c.m_appliedImpulse = _mm_blendv_ps(lowerLimit, tmp, mask);
+ body1.internalGetDeltaLinearVelocity().mVec128 = FMADD(_mm_mul_ps(c.m_contactNormal1.mVec128, body1.internalGetInvMass().mVec128), deltaImpulse, body1.internalGetDeltaLinearVelocity().mVec128);
+ body1.internalGetDeltaAngularVelocity().mVec128 = FMADD(c.m_angularComponentA.mVec128, deltaImpulse, body1.internalGetDeltaAngularVelocity().mVec128);
+ body2.internalGetDeltaLinearVelocity().mVec128 = FMADD(_mm_mul_ps(c.m_contactNormal2.mVec128, body2.internalGetInvMass().mVec128), deltaImpulse, body2.internalGetDeltaLinearVelocity().mVec128);
+ body2.internalGetDeltaAngularVelocity().mVec128 = FMADD(c.m_angularComponentB.mVec128, deltaImpulse, body2.internalGetDeltaAngularVelocity().mVec128);
+ return deltaImpulse;
+#else
+ return gResolveSingleConstraintRowLowerLimit_sse2(body1,body2,c);
+#endif //BT_ALLOW_SSE4
+}
+
+
+#endif //USE_SIMD
+
+
+
+btSimdScalar btSequentialImpulseConstraintSolver::resolveSingleConstraintRowGenericSIMD(btSolverBody& body1,btSolverBody& body2,const btSolverConstraint& c)
+{
+ return m_resolveSingleConstraintRowGeneric(body1, body2, c);
+}
+
+// Project Gauss Seidel or the equivalent Sequential Impulse
+btSimdScalar btSequentialImpulseConstraintSolver::resolveSingleConstraintRowGeneric(btSolverBody& body1,btSolverBody& body2,const btSolverConstraint& c)
+{
+ return m_resolveSingleConstraintRowGeneric(body1, body2, c);
+}
+
+btSimdScalar btSequentialImpulseConstraintSolver::resolveSingleConstraintRowLowerLimitSIMD(btSolverBody& body1,btSolverBody& body2,const btSolverConstraint& c)
+{
+ return m_resolveSingleConstraintRowLowerLimit(body1, body2, c);
+}
+
+
+btSimdScalar btSequentialImpulseConstraintSolver::resolveSingleConstraintRowLowerLimit(btSolverBody& body1,btSolverBody& body2,const btSolverConstraint& c)
+{
+ return m_resolveSingleConstraintRowLowerLimit(body1, body2, c);
+}
+
+
+static btSimdScalar gResolveSplitPenetrationImpulse_scalar_reference(
+ btSolverBody& body1,
+ btSolverBody& body2,
+ const btSolverConstraint& c)
+{
+ btScalar deltaImpulse = 0.f;
+
+ if (c.m_rhsPenetration)
+ {
+ gNumSplitImpulseRecoveries++;
+ deltaImpulse = c.m_rhsPenetration-btScalar(c.m_appliedPushImpulse)*c.m_cfm;
+ const btScalar deltaVel1Dotn = c.m_contactNormal1.dot(body1.internalGetPushVelocity()) + c.m_relpos1CrossNormal.dot(body1.internalGetTurnVelocity());
+ const btScalar deltaVel2Dotn = c.m_contactNormal2.dot(body2.internalGetPushVelocity()) + c.m_relpos2CrossNormal.dot(body2.internalGetTurnVelocity());
+
+ deltaImpulse -= deltaVel1Dotn*c.m_jacDiagABInv;
+ deltaImpulse -= deltaVel2Dotn*c.m_jacDiagABInv;
+ const btScalar sum = btScalar(c.m_appliedPushImpulse) + deltaImpulse;
+ if (sum < c.m_lowerLimit)
+ {
+ deltaImpulse = c.m_lowerLimit-c.m_appliedPushImpulse;
+ c.m_appliedPushImpulse = c.m_lowerLimit;
+ }
+ else
+ {
+ c.m_appliedPushImpulse = sum;
+ }
+ body1.internalApplyPushImpulse(c.m_contactNormal1*body1.internalGetInvMass(),c.m_angularComponentA,deltaImpulse);
+ body2.internalApplyPushImpulse(c.m_contactNormal2*body2.internalGetInvMass(),c.m_angularComponentB,deltaImpulse);
+ }
+ return deltaImpulse;
+}
+
+static btSimdScalar gResolveSplitPenetrationImpulse_sse2(btSolverBody& body1,btSolverBody& body2,const btSolverConstraint& c)
+{
+#ifdef USE_SIMD
+ if (!c.m_rhsPenetration)
+ return 0.f;
+
+ gNumSplitImpulseRecoveries++;
+
+ __m128 cpAppliedImp = _mm_set1_ps(c.m_appliedPushImpulse);
+ __m128 lowerLimit1 = _mm_set1_ps(c.m_lowerLimit);
+ __m128 upperLimit1 = _mm_set1_ps(c.m_upperLimit);
+ __m128 deltaImpulse = _mm_sub_ps(_mm_set1_ps(c.m_rhsPenetration), _mm_mul_ps(_mm_set1_ps(c.m_appliedPushImpulse),_mm_set1_ps(c.m_cfm)));
+ __m128 deltaVel1Dotn = _mm_add_ps(btSimdDot3(c.m_contactNormal1.mVec128,body1.internalGetPushVelocity().mVec128), btSimdDot3(c.m_relpos1CrossNormal.mVec128,body1.internalGetTurnVelocity().mVec128));
+ __m128 deltaVel2Dotn = _mm_add_ps(btSimdDot3(c.m_contactNormal2.mVec128,body2.internalGetPushVelocity().mVec128), btSimdDot3(c.m_relpos2CrossNormal.mVec128,body2.internalGetTurnVelocity().mVec128));
+ deltaImpulse = _mm_sub_ps(deltaImpulse,_mm_mul_ps(deltaVel1Dotn,_mm_set1_ps(c.m_jacDiagABInv)));
+ deltaImpulse = _mm_sub_ps(deltaImpulse,_mm_mul_ps(deltaVel2Dotn,_mm_set1_ps(c.m_jacDiagABInv)));
+ btSimdScalar sum = _mm_add_ps(cpAppliedImp,deltaImpulse);
+ btSimdScalar resultLowerLess,resultUpperLess;
+ resultLowerLess = _mm_cmplt_ps(sum,lowerLimit1);
+ resultUpperLess = _mm_cmplt_ps(sum,upperLimit1);
+ __m128 lowMinApplied = _mm_sub_ps(lowerLimit1,cpAppliedImp);
+ deltaImpulse = _mm_or_ps( _mm_and_ps(resultLowerLess, lowMinApplied), _mm_andnot_ps(resultLowerLess, deltaImpulse) );
+ c.m_appliedPushImpulse = _mm_or_ps( _mm_and_ps(resultLowerLess, lowerLimit1), _mm_andnot_ps(resultLowerLess, sum) );
+ __m128 linearComponentA = _mm_mul_ps(c.m_contactNormal1.mVec128,body1.internalGetInvMass().mVec128);
+ __m128 linearComponentB = _mm_mul_ps(c.m_contactNormal2.mVec128,body2.internalGetInvMass().mVec128);
+ __m128 impulseMagnitude = deltaImpulse;
+ body1.internalGetPushVelocity().mVec128 = _mm_add_ps(body1.internalGetPushVelocity().mVec128,_mm_mul_ps(linearComponentA,impulseMagnitude));
+ body1.internalGetTurnVelocity().mVec128 = _mm_add_ps(body1.internalGetTurnVelocity().mVec128 ,_mm_mul_ps(c.m_angularComponentA.mVec128,impulseMagnitude));
+ body2.internalGetPushVelocity().mVec128 = _mm_add_ps(body2.internalGetPushVelocity().mVec128,_mm_mul_ps(linearComponentB,impulseMagnitude));
+ body2.internalGetTurnVelocity().mVec128 = _mm_add_ps(body2.internalGetTurnVelocity().mVec128 ,_mm_mul_ps(c.m_angularComponentB.mVec128,impulseMagnitude));
+ return deltaImpulse;
+#else
+ return gResolveSplitPenetrationImpulse_scalar_reference(body1,body2,c);
+#endif
+}
+
+
+btSequentialImpulseConstraintSolver::btSequentialImpulseConstraintSolver()
+{
+ m_btSeed2 = 0;
+ m_cachedSolverMode = 0;
+ setupSolverFunctions( false );
+}
+
+void btSequentialImpulseConstraintSolver::setupSolverFunctions( bool useSimd )
+{
+ m_resolveSingleConstraintRowGeneric = gResolveSingleConstraintRowGeneric_scalar_reference;
+ m_resolveSingleConstraintRowLowerLimit = gResolveSingleConstraintRowLowerLimit_scalar_reference;
+ m_resolveSplitPenetrationImpulse = gResolveSplitPenetrationImpulse_scalar_reference;
+
+ if ( useSimd )
+ {
+#ifdef USE_SIMD
+ m_resolveSingleConstraintRowGeneric = gResolveSingleConstraintRowGeneric_sse2;
+ m_resolveSingleConstraintRowLowerLimit = gResolveSingleConstraintRowLowerLimit_sse2;
+ m_resolveSplitPenetrationImpulse = gResolveSplitPenetrationImpulse_sse2;
+
+#ifdef BT_ALLOW_SSE4
+ int cpuFeatures = btCpuFeatureUtility::getCpuFeatures();
+ if ((cpuFeatures & btCpuFeatureUtility::CPU_FEATURE_FMA3) && (cpuFeatures & btCpuFeatureUtility::CPU_FEATURE_SSE4_1))
+ {
+ m_resolveSingleConstraintRowGeneric = gResolveSingleConstraintRowGeneric_sse4_1_fma3;
+ m_resolveSingleConstraintRowLowerLimit = gResolveSingleConstraintRowLowerLimit_sse4_1_fma3;
+ }
+#endif//BT_ALLOW_SSE4
+#endif //USE_SIMD
+ }
+}
+
+ btSequentialImpulseConstraintSolver::~btSequentialImpulseConstraintSolver()
+ {
+ }
+
+ btSingleConstraintRowSolver btSequentialImpulseConstraintSolver::getScalarConstraintRowSolverGeneric()
+ {
+ return gResolveSingleConstraintRowGeneric_scalar_reference;
+ }
+
+ btSingleConstraintRowSolver btSequentialImpulseConstraintSolver::getScalarConstraintRowSolverLowerLimit()
+ {
+ return gResolveSingleConstraintRowLowerLimit_scalar_reference;
+ }
+
+
+#ifdef USE_SIMD
+ btSingleConstraintRowSolver btSequentialImpulseConstraintSolver::getSSE2ConstraintRowSolverGeneric()
+ {
+ return gResolveSingleConstraintRowGeneric_sse2;
+ }
+ btSingleConstraintRowSolver btSequentialImpulseConstraintSolver::getSSE2ConstraintRowSolverLowerLimit()
+ {
+ return gResolveSingleConstraintRowLowerLimit_sse2;
+ }
+#ifdef BT_ALLOW_SSE4
+ btSingleConstraintRowSolver btSequentialImpulseConstraintSolver::getSSE4_1ConstraintRowSolverGeneric()
+ {
+ return gResolveSingleConstraintRowGeneric_sse4_1_fma3;
+ }
+ btSingleConstraintRowSolver btSequentialImpulseConstraintSolver::getSSE4_1ConstraintRowSolverLowerLimit()
+ {
+ return gResolveSingleConstraintRowLowerLimit_sse4_1_fma3;
+ }
+#endif //BT_ALLOW_SSE4
+#endif //USE_SIMD
+
+unsigned long btSequentialImpulseConstraintSolver::btRand2()
+{
+ m_btSeed2 = (1664525L*m_btSeed2 + 1013904223L) & 0xffffffff;
+ return m_btSeed2;
+}
+
+
+
+//See ODE: adam's all-int straightforward(?) dRandInt (0..n-1)
+int btSequentialImpulseConstraintSolver::btRandInt2 (int n)
+{
+ // seems good; xor-fold and modulus
+ const unsigned long un = static_cast<unsigned long>(n);
+ unsigned long r = btRand2();
+
+ // note: probably more aggressive than it needs to be -- might be
+ // able to get away without one or two of the innermost branches.
+ if (un <= 0x00010000UL) {
+ r ^= (r >> 16);
+ if (un <= 0x00000100UL) {
+ r ^= (r >> 8);
+ if (un <= 0x00000010UL) {
+ r ^= (r >> 4);
+ if (un <= 0x00000004UL) {
+ r ^= (r >> 2);
+ if (un <= 0x00000002UL) {
+ r ^= (r >> 1);
+ }
+ }
+ }
+ }
+ }
+
+ return (int) (r % un);
+}
+
+
+
+void btSequentialImpulseConstraintSolver::initSolverBody(btSolverBody* solverBody, btCollisionObject* collisionObject, btScalar timeStep)
+{
+
+ btRigidBody* rb = collisionObject? btRigidBody::upcast(collisionObject) : 0;
+
+ solverBody->internalGetDeltaLinearVelocity().setValue(0.f,0.f,0.f);
+ solverBody->internalGetDeltaAngularVelocity().setValue(0.f,0.f,0.f);
+ solverBody->internalGetPushVelocity().setValue(0.f,0.f,0.f);
+ solverBody->internalGetTurnVelocity().setValue(0.f,0.f,0.f);
+
+ if (rb)
+ {
+ solverBody->m_worldTransform = rb->getWorldTransform();
+ solverBody->internalSetInvMass(btVector3(rb->getInvMass(),rb->getInvMass(),rb->getInvMass())*rb->getLinearFactor());
+ solverBody->m_originalBody = rb;
+ solverBody->m_angularFactor = rb->getAngularFactor();
+ solverBody->m_linearFactor = rb->getLinearFactor();
+ solverBody->m_linearVelocity = rb->getLinearVelocity();
+ solverBody->m_angularVelocity = rb->getAngularVelocity();
+ solverBody->m_externalForceImpulse = rb->getTotalForce()*rb->getInvMass()*timeStep;
+ solverBody->m_externalTorqueImpulse = rb->getTotalTorque()*rb->getInvInertiaTensorWorld()*timeStep ;
+
+ } else
+ {
+ solverBody->m_worldTransform.setIdentity();
+ solverBody->internalSetInvMass(btVector3(0,0,0));
+ solverBody->m_originalBody = 0;
+ solverBody->m_angularFactor.setValue(1,1,1);
+ solverBody->m_linearFactor.setValue(1,1,1);
+ solverBody->m_linearVelocity.setValue(0,0,0);
+ solverBody->m_angularVelocity.setValue(0,0,0);
+ solverBody->m_externalForceImpulse.setValue(0,0,0);
+ solverBody->m_externalTorqueImpulse.setValue(0,0,0);
+ }
+
+
+}
+
+
+
+
+
+
+btScalar btSequentialImpulseConstraintSolver::restitutionCurve(btScalar rel_vel, btScalar restitution, btScalar velocityThreshold)
+{
+ //printf("rel_vel =%f\n", rel_vel);
+ if (btFabs(rel_vel)<velocityThreshold)
+ return 0.;
+
+ btScalar rest = restitution * -rel_vel;
+ return rest;
+}
+
+
+
+void btSequentialImpulseConstraintSolver::applyAnisotropicFriction(btCollisionObject* colObj,btVector3& frictionDirection, int frictionMode)
+{
+
+
+ if (colObj && colObj->hasAnisotropicFriction(frictionMode))
+ {
+ // transform to local coordinates
+ btVector3 loc_lateral = frictionDirection * colObj->getWorldTransform().getBasis();
+ const btVector3& friction_scaling = colObj->getAnisotropicFriction();
+ //apply anisotropic friction
+ loc_lateral *= friction_scaling;
+ // ... and transform it back to global coordinates
+ frictionDirection = colObj->getWorldTransform().getBasis() * loc_lateral;
+ }
+
+}
+
+
+
+
+void btSequentialImpulseConstraintSolver::setupFrictionConstraint(btSolverConstraint& solverConstraint, const btVector3& normalAxis,int solverBodyIdA,int solverBodyIdB,btManifoldPoint& cp,const btVector3& rel_pos1,const btVector3& rel_pos2,btCollisionObject* colObj0,btCollisionObject* colObj1, btScalar relaxation, const btContactSolverInfo& infoGlobal, btScalar desiredVelocity, btScalar cfmSlip)
+{
+
+
+ btSolverBody& solverBodyA = m_tmpSolverBodyPool[solverBodyIdA];
+ btSolverBody& solverBodyB = m_tmpSolverBodyPool[solverBodyIdB];
+
+ btRigidBody* body0 = m_tmpSolverBodyPool[solverBodyIdA].m_originalBody;
+ btRigidBody* body1 = m_tmpSolverBodyPool[solverBodyIdB].m_originalBody;
+
+ solverConstraint.m_solverBodyIdA = solverBodyIdA;
+ solverConstraint.m_solverBodyIdB = solverBodyIdB;
+
+ solverConstraint.m_friction = cp.m_combinedFriction;
+ solverConstraint.m_originalContactPoint = 0;
+
+ solverConstraint.m_appliedImpulse = 0.f;
+ solverConstraint.m_appliedPushImpulse = 0.f;
+
+ if (body0)
+ {
+ solverConstraint.m_contactNormal1 = normalAxis;
+ btVector3 ftorqueAxis1 = rel_pos1.cross(solverConstraint.m_contactNormal1);
+ solverConstraint.m_relpos1CrossNormal = ftorqueAxis1;
+ solverConstraint.m_angularComponentA = body0->getInvInertiaTensorWorld()*ftorqueAxis1*body0->getAngularFactor();
+ }else
+ {
+ solverConstraint.m_contactNormal1.setZero();
+ solverConstraint.m_relpos1CrossNormal.setZero();
+ solverConstraint.m_angularComponentA .setZero();
+ }
+
+ if (body1)
+ {
+ solverConstraint.m_contactNormal2 = -normalAxis;
+ btVector3 ftorqueAxis1 = rel_pos2.cross(solverConstraint.m_contactNormal2);
+ solverConstraint.m_relpos2CrossNormal = ftorqueAxis1;
+ solverConstraint.m_angularComponentB = body1->getInvInertiaTensorWorld()*ftorqueAxis1*body1->getAngularFactor();
+ } else
+ {
+ solverConstraint.m_contactNormal2.setZero();
+ solverConstraint.m_relpos2CrossNormal.setZero();
+ solverConstraint.m_angularComponentB.setZero();
+ }
+
+ {
+ btVector3 vec;
+ btScalar denom0 = 0.f;
+ btScalar denom1 = 0.f;
+ if (body0)
+ {
+ vec = ( solverConstraint.m_angularComponentA).cross(rel_pos1);
+ denom0 = body0->getInvMass() + normalAxis.dot(vec);
+ }
+ if (body1)
+ {
+ vec = ( -solverConstraint.m_angularComponentB).cross(rel_pos2);
+ denom1 = body1->getInvMass() + normalAxis.dot(vec);
+ }
+ btScalar denom = relaxation/(denom0+denom1);
+ solverConstraint.m_jacDiagABInv = denom;
+ }
+
+ {
+
+
+ btScalar rel_vel;
+ btScalar vel1Dotn = solverConstraint.m_contactNormal1.dot(body0?solverBodyA.m_linearVelocity+solverBodyA.m_externalForceImpulse:btVector3(0,0,0))
+ + solverConstraint.m_relpos1CrossNormal.dot(body0?solverBodyA.m_angularVelocity:btVector3(0,0,0));
+ btScalar vel2Dotn = solverConstraint.m_contactNormal2.dot(body1?solverBodyB.m_linearVelocity+solverBodyB.m_externalForceImpulse:btVector3(0,0,0))
+ + solverConstraint.m_relpos2CrossNormal.dot(body1?solverBodyB.m_angularVelocity:btVector3(0,0,0));
+
+ rel_vel = vel1Dotn+vel2Dotn;
+
+// btScalar positionalError = 0.f;
+
+ btScalar velocityError = desiredVelocity - rel_vel;
+ btScalar velocityImpulse = velocityError * solverConstraint.m_jacDiagABInv;
+
+ btScalar penetrationImpulse = btScalar(0);
+
+ if (cp.m_contactPointFlags & BT_CONTACT_FLAG_FRICTION_ANCHOR)
+ {
+ btScalar distance = (cp.getPositionWorldOnA() - cp.getPositionWorldOnB()).dot(normalAxis);
+ btScalar positionalError = -distance * infoGlobal.m_frictionERP/infoGlobal.m_timeStep;
+ penetrationImpulse = positionalError*solverConstraint.m_jacDiagABInv;
+ }
+
+ solverConstraint.m_rhs = penetrationImpulse + velocityImpulse;
+ solverConstraint.m_rhsPenetration = 0.f;
+ solverConstraint.m_cfm = cfmSlip;
+ solverConstraint.m_lowerLimit = -solverConstraint.m_friction;
+ solverConstraint.m_upperLimit = solverConstraint.m_friction;
+
+ }
+}
+
+btSolverConstraint& btSequentialImpulseConstraintSolver::addFrictionConstraint(const btVector3& normalAxis,int solverBodyIdA,int solverBodyIdB,int frictionIndex,btManifoldPoint& cp,const btVector3& rel_pos1,const btVector3& rel_pos2,btCollisionObject* colObj0,btCollisionObject* colObj1, btScalar relaxation, const btContactSolverInfo& infoGlobal, btScalar desiredVelocity, btScalar cfmSlip)
+{
+ btSolverConstraint& solverConstraint = m_tmpSolverContactFrictionConstraintPool.expandNonInitializing();
+ solverConstraint.m_frictionIndex = frictionIndex;
+ setupFrictionConstraint(solverConstraint, normalAxis, solverBodyIdA, solverBodyIdB, cp, rel_pos1, rel_pos2,
+ colObj0, colObj1, relaxation, infoGlobal, desiredVelocity, cfmSlip);
+ return solverConstraint;
+}
+
+
+void btSequentialImpulseConstraintSolver::setupTorsionalFrictionConstraint( btSolverConstraint& solverConstraint, const btVector3& normalAxis1,int solverBodyIdA,int solverBodyIdB,
+ btManifoldPoint& cp,btScalar combinedTorsionalFriction, const btVector3& rel_pos1,const btVector3& rel_pos2,
+ btCollisionObject* colObj0,btCollisionObject* colObj1, btScalar relaxation,
+ btScalar desiredVelocity, btScalar cfmSlip)
+
+{
+ btVector3 normalAxis(0,0,0);
+
+
+ solverConstraint.m_contactNormal1 = normalAxis;
+ solverConstraint.m_contactNormal2 = -normalAxis;
+ btSolverBody& solverBodyA = m_tmpSolverBodyPool[solverBodyIdA];
+ btSolverBody& solverBodyB = m_tmpSolverBodyPool[solverBodyIdB];
+
+ btRigidBody* body0 = m_tmpSolverBodyPool[solverBodyIdA].m_originalBody;
+ btRigidBody* body1 = m_tmpSolverBodyPool[solverBodyIdB].m_originalBody;
+
+ solverConstraint.m_solverBodyIdA = solverBodyIdA;
+ solverConstraint.m_solverBodyIdB = solverBodyIdB;
+
+ solverConstraint.m_friction = combinedTorsionalFriction;
+ solverConstraint.m_originalContactPoint = 0;
+
+ solverConstraint.m_appliedImpulse = 0.f;
+ solverConstraint.m_appliedPushImpulse = 0.f;
+
+ {
+ btVector3 ftorqueAxis1 = -normalAxis1;
+ solverConstraint.m_relpos1CrossNormal = ftorqueAxis1;
+ solverConstraint.m_angularComponentA = body0 ? body0->getInvInertiaTensorWorld()*ftorqueAxis1*body0->getAngularFactor() : btVector3(0,0,0);
+ }
+ {
+ btVector3 ftorqueAxis1 = normalAxis1;
+ solverConstraint.m_relpos2CrossNormal = ftorqueAxis1;
+ solverConstraint.m_angularComponentB = body1 ? body1->getInvInertiaTensorWorld()*ftorqueAxis1*body1->getAngularFactor() : btVector3(0,0,0);
+ }
+
+
+ {
+ btVector3 iMJaA = body0?body0->getInvInertiaTensorWorld()*solverConstraint.m_relpos1CrossNormal:btVector3(0,0,0);
+ btVector3 iMJaB = body1?body1->getInvInertiaTensorWorld()*solverConstraint.m_relpos2CrossNormal:btVector3(0,0,0);
+ btScalar sum = 0;
+ sum += iMJaA.dot(solverConstraint.m_relpos1CrossNormal);
+ sum += iMJaB.dot(solverConstraint.m_relpos2CrossNormal);
+ solverConstraint.m_jacDiagABInv = btScalar(1.)/sum;
+ }
+
+ {
+
+
+ btScalar rel_vel;
+ btScalar vel1Dotn = solverConstraint.m_contactNormal1.dot(body0?solverBodyA.m_linearVelocity+solverBodyA.m_externalForceImpulse:btVector3(0,0,0))
+ + solverConstraint.m_relpos1CrossNormal.dot(body0?solverBodyA.m_angularVelocity:btVector3(0,0,0));
+ btScalar vel2Dotn = solverConstraint.m_contactNormal2.dot(body1?solverBodyB.m_linearVelocity+solverBodyB.m_externalForceImpulse:btVector3(0,0,0))
+ + solverConstraint.m_relpos2CrossNormal.dot(body1?solverBodyB.m_angularVelocity:btVector3(0,0,0));
+
+ rel_vel = vel1Dotn+vel2Dotn;
+
+// btScalar positionalError = 0.f;
+
+ btSimdScalar velocityError = desiredVelocity - rel_vel;
+ btSimdScalar velocityImpulse = velocityError * btSimdScalar(solverConstraint.m_jacDiagABInv);
+ solverConstraint.m_rhs = velocityImpulse;
+ solverConstraint.m_cfm = cfmSlip;
+ solverConstraint.m_lowerLimit = -solverConstraint.m_friction;
+ solverConstraint.m_upperLimit = solverConstraint.m_friction;
+
+ }
+}
+
+
+
+
+
+
+
+
+btSolverConstraint& btSequentialImpulseConstraintSolver::addTorsionalFrictionConstraint(const btVector3& normalAxis,int solverBodyIdA,int solverBodyIdB,int frictionIndex,btManifoldPoint& cp,btScalar combinedTorsionalFriction, const btVector3& rel_pos1,const btVector3& rel_pos2,btCollisionObject* colObj0,btCollisionObject* colObj1, btScalar relaxation, btScalar desiredVelocity, btScalar cfmSlip)
+{
+ btSolverConstraint& solverConstraint = m_tmpSolverContactRollingFrictionConstraintPool.expandNonInitializing();
+ solverConstraint.m_frictionIndex = frictionIndex;
+ setupTorsionalFrictionConstraint(solverConstraint, normalAxis, solverBodyIdA, solverBodyIdB, cp, combinedTorsionalFriction,rel_pos1, rel_pos2,
+ colObj0, colObj1, relaxation, desiredVelocity, cfmSlip);
+ return solverConstraint;
+}
+
+
+int btSequentialImpulseConstraintSolver::getOrInitSolverBody(btCollisionObject& body,btScalar timeStep)
+{
+#if BT_THREADSAFE
+ int solverBodyId = -1;
+ if ( !body.isStaticOrKinematicObject() )
+ {
+ // dynamic body
+ // Dynamic bodies can only be in one island, so it's safe to write to the companionId
+ solverBodyId = body.getCompanionId();
+ if ( solverBodyId < 0 )
+ {
+ if ( btRigidBody* rb = btRigidBody::upcast( &body ) )
+ {
+ solverBodyId = m_tmpSolverBodyPool.size();
+ btSolverBody& solverBody = m_tmpSolverBodyPool.expand();
+ initSolverBody( &solverBody, &body, timeStep );
+ body.setCompanionId( solverBodyId );
+ }
+ }
+ }
+ else if (body.isKinematicObject())
+ {
+ //
+ // NOTE: must test for kinematic before static because some kinematic objects also
+ // identify as "static"
+ //
+ // Kinematic bodies can be in multiple islands at once, so it is a
+ // race condition to write to them, so we use an alternate method
+ // to record the solverBodyId
+ int uniqueId = body.getWorldArrayIndex();
+ const int INVALID_SOLVER_BODY_ID = -1;
+ if (uniqueId >= m_kinematicBodyUniqueIdToSolverBodyTable.size())
+ {
+ m_kinematicBodyUniqueIdToSolverBodyTable.resize(uniqueId + 1, INVALID_SOLVER_BODY_ID);
+ }
+ solverBodyId = m_kinematicBodyUniqueIdToSolverBodyTable[ uniqueId ];
+ // if no table entry yet,
+ if ( solverBodyId == INVALID_SOLVER_BODY_ID )
+ {
+ // create a table entry for this body
+ btRigidBody* rb = btRigidBody::upcast( &body );
+ solverBodyId = m_tmpSolverBodyPool.size();
+ btSolverBody& solverBody = m_tmpSolverBodyPool.expand();
+ initSolverBody( &solverBody, &body, timeStep );
+ m_kinematicBodyUniqueIdToSolverBodyTable[ uniqueId ] = solverBodyId;
+ }
+ }
+ else
+ {
+ // all fixed bodies (inf mass) get mapped to a single solver id
+ if ( m_fixedBodyId < 0 )
+ {
+ m_fixedBodyId = m_tmpSolverBodyPool.size();
+ btSolverBody& fixedBody = m_tmpSolverBodyPool.expand();
+ initSolverBody( &fixedBody, 0, timeStep );
+ }
+ solverBodyId = m_fixedBodyId;
+ }
+ btAssert( solverBodyId < m_tmpSolverBodyPool.size() );
+ return solverBodyId;
+#else // BT_THREADSAFE
+
+ int solverBodyIdA = -1;
+
+ if (body.getCompanionId() >= 0)
+ {
+ //body has already been converted
+ solverBodyIdA = body.getCompanionId();
+ btAssert(solverBodyIdA < m_tmpSolverBodyPool.size());
+ } else
+ {
+ btRigidBody* rb = btRigidBody::upcast(&body);
+ //convert both active and kinematic objects (for their velocity)
+ if (rb && (rb->getInvMass() || rb->isKinematicObject()))
+ {
+ solverBodyIdA = m_tmpSolverBodyPool.size();
+ btSolverBody& solverBody = m_tmpSolverBodyPool.expand();
+ initSolverBody(&solverBody,&body,timeStep);
+ body.setCompanionId(solverBodyIdA);
+ } else
+ {
+
+ if (m_fixedBodyId<0)
+ {
+ m_fixedBodyId = m_tmpSolverBodyPool.size();
+ btSolverBody& fixedBody = m_tmpSolverBodyPool.expand();
+ initSolverBody(&fixedBody,0,timeStep);
+ }
+ return m_fixedBodyId;
+// return 0;//assume first one is a fixed solver body
+ }
+ }
+
+ return solverBodyIdA;
+#endif // BT_THREADSAFE
+
+}
+#include <stdio.h>
+
+
+void btSequentialImpulseConstraintSolver::setupContactConstraint(btSolverConstraint& solverConstraint,
+ int solverBodyIdA, int solverBodyIdB,
+ btManifoldPoint& cp, const btContactSolverInfo& infoGlobal,
+ btScalar& relaxation,
+ const btVector3& rel_pos1, const btVector3& rel_pos2)
+{
+
+ // const btVector3& pos1 = cp.getPositionWorldOnA();
+ // const btVector3& pos2 = cp.getPositionWorldOnB();
+
+ btSolverBody* bodyA = &m_tmpSolverBodyPool[solverBodyIdA];
+ btSolverBody* bodyB = &m_tmpSolverBodyPool[solverBodyIdB];
+
+ btRigidBody* rb0 = bodyA->m_originalBody;
+ btRigidBody* rb1 = bodyB->m_originalBody;
+
+// btVector3 rel_pos1 = pos1 - colObj0->getWorldTransform().getOrigin();
+// btVector3 rel_pos2 = pos2 - colObj1->getWorldTransform().getOrigin();
+ //rel_pos1 = pos1 - bodyA->getWorldTransform().getOrigin();
+ //rel_pos2 = pos2 - bodyB->getWorldTransform().getOrigin();
+
+ relaxation = infoGlobal.m_sor;
+ btScalar invTimeStep = btScalar(1)/infoGlobal.m_timeStep;
+
+ //cfm = 1 / ( dt * kp + kd )
+ //erp = dt * kp / ( dt * kp + kd )
+
+ btScalar cfm = infoGlobal.m_globalCfm;
+ btScalar erp = infoGlobal.m_erp2;
+
+ if ((cp.m_contactPointFlags&BT_CONTACT_FLAG_HAS_CONTACT_CFM) || (cp.m_contactPointFlags&BT_CONTACT_FLAG_HAS_CONTACT_ERP))
+ {
+ if (cp.m_contactPointFlags&BT_CONTACT_FLAG_HAS_CONTACT_CFM)
+ cfm = cp.m_contactCFM;
+ if (cp.m_contactPointFlags&BT_CONTACT_FLAG_HAS_CONTACT_ERP)
+ erp = cp.m_contactERP;
+ } else
+ {
+ if (cp.m_contactPointFlags & BT_CONTACT_FLAG_CONTACT_STIFFNESS_DAMPING)
+ {
+ btScalar denom = ( infoGlobal.m_timeStep * cp.m_combinedContactStiffness1 + cp.m_combinedContactDamping1 );
+ if (denom < SIMD_EPSILON)
+ {
+ denom = SIMD_EPSILON;
+ }
+ cfm = btScalar(1) / denom;
+ erp = (infoGlobal.m_timeStep * cp.m_combinedContactStiffness1) / denom;
+ }
+ }
+
+ cfm *= invTimeStep;
+
+
+ btVector3 torqueAxis0 = rel_pos1.cross(cp.m_normalWorldOnB);
+ solverConstraint.m_angularComponentA = rb0 ? rb0->getInvInertiaTensorWorld()*torqueAxis0*rb0->getAngularFactor() : btVector3(0,0,0);
+ btVector3 torqueAxis1 = rel_pos2.cross(cp.m_normalWorldOnB);
+ solverConstraint.m_angularComponentB = rb1 ? rb1->getInvInertiaTensorWorld()*-torqueAxis1*rb1->getAngularFactor() : btVector3(0,0,0);
+
+ {
+#ifdef COMPUTE_IMPULSE_DENOM
+ btScalar denom0 = rb0->computeImpulseDenominator(pos1,cp.m_normalWorldOnB);
+ btScalar denom1 = rb1->computeImpulseDenominator(pos2,cp.m_normalWorldOnB);
+#else
+ btVector3 vec;
+ btScalar denom0 = 0.f;
+ btScalar denom1 = 0.f;
+ if (rb0)
+ {
+ vec = ( solverConstraint.m_angularComponentA).cross(rel_pos1);
+ denom0 = rb0->getInvMass() + cp.m_normalWorldOnB.dot(vec);
+ }
+ if (rb1)
+ {
+ vec = ( -solverConstraint.m_angularComponentB).cross(rel_pos2);
+ denom1 = rb1->getInvMass() + cp.m_normalWorldOnB.dot(vec);
+ }
+#endif //COMPUTE_IMPULSE_DENOM
+
+ btScalar denom = relaxation/(denom0+denom1+cfm);
+ solverConstraint.m_jacDiagABInv = denom;
+ }
+
+ if (rb0)
+ {
+ solverConstraint.m_contactNormal1 = cp.m_normalWorldOnB;
+ solverConstraint.m_relpos1CrossNormal = torqueAxis0;
+ } else
+ {
+ solverConstraint.m_contactNormal1.setZero();
+ solverConstraint.m_relpos1CrossNormal.setZero();
+ }
+ if (rb1)
+ {
+ solverConstraint.m_contactNormal2 = -cp.m_normalWorldOnB;
+ solverConstraint.m_relpos2CrossNormal = -torqueAxis1;
+ }else
+ {
+ solverConstraint.m_contactNormal2.setZero();
+ solverConstraint.m_relpos2CrossNormal.setZero();
+ }
+
+ btScalar restitution = 0.f;
+ btScalar penetration = cp.getDistance()+infoGlobal.m_linearSlop;
+
+ {
+ btVector3 vel1,vel2;
+
+ vel1 = rb0? rb0->getVelocityInLocalPoint(rel_pos1) : btVector3(0,0,0);
+ vel2 = rb1? rb1->getVelocityInLocalPoint(rel_pos2) : btVector3(0,0,0);
+
+ // btVector3 vel2 = rb1 ? rb1->getVelocityInLocalPoint(rel_pos2) : btVector3(0,0,0);
+ btVector3 vel = vel1 - vel2;
+ btScalar rel_vel = cp.m_normalWorldOnB.dot(vel);
+
+
+
+ solverConstraint.m_friction = cp.m_combinedFriction;
+
+
+ restitution = restitutionCurve(rel_vel, cp.m_combinedRestitution, infoGlobal.m_restitutionVelocityThreshold);
+ if (restitution <= btScalar(0.))
+ {
+ restitution = 0.f;
+ };
+ }
+
+
+ ///warm starting (or zero if disabled)
+ if (infoGlobal.m_solverMode & SOLVER_USE_WARMSTARTING)
+ {
+ solverConstraint.m_appliedImpulse = cp.m_appliedImpulse * infoGlobal.m_warmstartingFactor;
+ if (rb0)
+ bodyA->internalApplyImpulse(solverConstraint.m_contactNormal1*bodyA->internalGetInvMass()*rb0->getLinearFactor(),solverConstraint.m_angularComponentA,solverConstraint.m_appliedImpulse);
+ if (rb1)
+ bodyB->internalApplyImpulse(-solverConstraint.m_contactNormal2*bodyB->internalGetInvMass()*rb1->getLinearFactor(),-solverConstraint.m_angularComponentB,-(btScalar)solverConstraint.m_appliedImpulse);
+ } else
+ {
+ solverConstraint.m_appliedImpulse = 0.f;
+ }
+
+ solverConstraint.m_appliedPushImpulse = 0.f;
+
+ {
+
+ btVector3 externalForceImpulseA = bodyA->m_originalBody ? bodyA->m_externalForceImpulse: btVector3(0,0,0);
+ btVector3 externalTorqueImpulseA = bodyA->m_originalBody ? bodyA->m_externalTorqueImpulse: btVector3(0,0,0);
+ btVector3 externalForceImpulseB = bodyB->m_originalBody ? bodyB->m_externalForceImpulse: btVector3(0,0,0);
+ btVector3 externalTorqueImpulseB = bodyB->m_originalBody ?bodyB->m_externalTorqueImpulse : btVector3(0,0,0);
+
+
+ btScalar vel1Dotn = solverConstraint.m_contactNormal1.dot(bodyA->m_linearVelocity+externalForceImpulseA)
+ + solverConstraint.m_relpos1CrossNormal.dot(bodyA->m_angularVelocity+externalTorqueImpulseA);
+ btScalar vel2Dotn = solverConstraint.m_contactNormal2.dot(bodyB->m_linearVelocity+externalForceImpulseB)
+ + solverConstraint.m_relpos2CrossNormal.dot(bodyB->m_angularVelocity+externalTorqueImpulseB);
+ btScalar rel_vel = vel1Dotn+vel2Dotn;
+
+ btScalar positionalError = 0.f;
+ btScalar velocityError = restitution - rel_vel;// * damping;
+
+
+
+ if (penetration>0)
+ {
+ positionalError = 0;
+
+ velocityError -= penetration *invTimeStep;
+ } else
+ {
+ positionalError = -penetration * erp*invTimeStep;
+
+ }
+
+ btScalar penetrationImpulse = positionalError*solverConstraint.m_jacDiagABInv;
+ btScalar velocityImpulse = velocityError *solverConstraint.m_jacDiagABInv;
+
+ if (!infoGlobal.m_splitImpulse || (penetration > infoGlobal.m_splitImpulsePenetrationThreshold))
+ {
+ //combine position and velocity into rhs
+ solverConstraint.m_rhs = penetrationImpulse+velocityImpulse;//-solverConstraint.m_contactNormal1.dot(bodyA->m_externalForce*bodyA->m_invMass-bodyB->m_externalForce/bodyB->m_invMass)*solverConstraint.m_jacDiagABInv;
+ solverConstraint.m_rhsPenetration = 0.f;
+
+ } else
+ {
+ //split position and velocity into rhs and m_rhsPenetration
+ solverConstraint.m_rhs = velocityImpulse;
+ solverConstraint.m_rhsPenetration = penetrationImpulse;
+ }
+ solverConstraint.m_cfm = cfm*solverConstraint.m_jacDiagABInv;
+ solverConstraint.m_lowerLimit = 0;
+ solverConstraint.m_upperLimit = 1e10f;
+ }
+
+
+
+
+}
+
+
+
+void btSequentialImpulseConstraintSolver::setFrictionConstraintImpulse( btSolverConstraint& solverConstraint,
+ int solverBodyIdA, int solverBodyIdB,
+ btManifoldPoint& cp, const btContactSolverInfo& infoGlobal)
+{
+
+ btSolverBody* bodyA = &m_tmpSolverBodyPool[solverBodyIdA];
+ btSolverBody* bodyB = &m_tmpSolverBodyPool[solverBodyIdB];
+
+ btRigidBody* rb0 = bodyA->m_originalBody;
+ btRigidBody* rb1 = bodyB->m_originalBody;
+
+ {
+ btSolverConstraint& frictionConstraint1 = m_tmpSolverContactFrictionConstraintPool[solverConstraint.m_frictionIndex];
+ if (infoGlobal.m_solverMode & SOLVER_USE_WARMSTARTING)
+ {
+ frictionConstraint1.m_appliedImpulse = cp.m_appliedImpulseLateral1 * infoGlobal.m_warmstartingFactor;
+ if (rb0)
+ bodyA->internalApplyImpulse(frictionConstraint1.m_contactNormal1*rb0->getInvMass()*rb0->getLinearFactor(),frictionConstraint1.m_angularComponentA,frictionConstraint1.m_appliedImpulse);
+ if (rb1)
+ bodyB->internalApplyImpulse(-frictionConstraint1.m_contactNormal2*rb1->getInvMass()*rb1->getLinearFactor(),-frictionConstraint1.m_angularComponentB,-(btScalar)frictionConstraint1.m_appliedImpulse);
+ } else
+ {
+ frictionConstraint1.m_appliedImpulse = 0.f;
+ }
+ }
+
+ if ((infoGlobal.m_solverMode & SOLVER_USE_2_FRICTION_DIRECTIONS))
+ {
+ btSolverConstraint& frictionConstraint2 = m_tmpSolverContactFrictionConstraintPool[solverConstraint.m_frictionIndex+1];
+ if (infoGlobal.m_solverMode & SOLVER_USE_WARMSTARTING)
+ {
+ frictionConstraint2.m_appliedImpulse = cp.m_appliedImpulseLateral2 * infoGlobal.m_warmstartingFactor;
+ if (rb0)
+ bodyA->internalApplyImpulse(frictionConstraint2.m_contactNormal1*rb0->getInvMass(),frictionConstraint2.m_angularComponentA,frictionConstraint2.m_appliedImpulse);
+ if (rb1)
+ bodyB->internalApplyImpulse(-frictionConstraint2.m_contactNormal2*rb1->getInvMass(),-frictionConstraint2.m_angularComponentB,-(btScalar)frictionConstraint2.m_appliedImpulse);
+ } else
+ {
+ frictionConstraint2.m_appliedImpulse = 0.f;
+ }
+ }
+}
+
+
+
+
+void btSequentialImpulseConstraintSolver::convertContact(btPersistentManifold* manifold,const btContactSolverInfo& infoGlobal)
+{
+ btCollisionObject* colObj0=0,*colObj1=0;
+
+ colObj0 = (btCollisionObject*)manifold->getBody0();
+ colObj1 = (btCollisionObject*)manifold->getBody1();
+
+ int solverBodyIdA = getOrInitSolverBody(*colObj0,infoGlobal.m_timeStep);
+ int solverBodyIdB = getOrInitSolverBody(*colObj1,infoGlobal.m_timeStep);
+
+// btRigidBody* bodyA = btRigidBody::upcast(colObj0);
+// btRigidBody* bodyB = btRigidBody::upcast(colObj1);
+
+ btSolverBody* solverBodyA = &m_tmpSolverBodyPool[solverBodyIdA];
+ btSolverBody* solverBodyB = &m_tmpSolverBodyPool[solverBodyIdB];
+
+
+
+ ///avoid collision response between two static objects
+ if (!solverBodyA || (solverBodyA->m_invMass.fuzzyZero() && (!solverBodyB || solverBodyB->m_invMass.fuzzyZero())))
+ return;
+
+ int rollingFriction=1;
+ for (int j=0;j<manifold->getNumContacts();j++)
+ {
+
+ btManifoldPoint& cp = manifold->getContactPoint(j);
+
+ if (cp.getDistance() <= manifold->getContactProcessingThreshold())
+ {
+ btVector3 rel_pos1;
+ btVector3 rel_pos2;
+ btScalar relaxation;
+
+
+ int frictionIndex = m_tmpSolverContactConstraintPool.size();
+ btSolverConstraint& solverConstraint = m_tmpSolverContactConstraintPool.expandNonInitializing();
+ solverConstraint.m_solverBodyIdA = solverBodyIdA;
+ solverConstraint.m_solverBodyIdB = solverBodyIdB;
+
+ solverConstraint.m_originalContactPoint = &cp;
+
+ const btVector3& pos1 = cp.getPositionWorldOnA();
+ const btVector3& pos2 = cp.getPositionWorldOnB();
+
+ rel_pos1 = pos1 - colObj0->getWorldTransform().getOrigin();
+ rel_pos2 = pos2 - colObj1->getWorldTransform().getOrigin();
+
+ btVector3 vel1;
+ btVector3 vel2;
+
+ solverBodyA->getVelocityInLocalPointNoDelta(rel_pos1,vel1);
+ solverBodyB->getVelocityInLocalPointNoDelta(rel_pos2,vel2 );
+
+ btVector3 vel = vel1 - vel2;
+ btScalar rel_vel = cp.m_normalWorldOnB.dot(vel);
+
+ setupContactConstraint(solverConstraint, solverBodyIdA, solverBodyIdB, cp, infoGlobal, relaxation, rel_pos1, rel_pos2);
+
+
+
+
+ /////setup the friction constraints
+
+ solverConstraint.m_frictionIndex = m_tmpSolverContactFrictionConstraintPool.size();
+
+ if ((cp.m_combinedRollingFriction>0.f) && (rollingFriction>0))
+ {
+
+ {
+ addTorsionalFrictionConstraint(cp.m_normalWorldOnB,solverBodyIdA,solverBodyIdB,frictionIndex,cp,cp.m_combinedSpinningFriction, rel_pos1,rel_pos2,colObj0,colObj1, relaxation);
+ btVector3 axis0,axis1;
+ btPlaneSpace1(cp.m_normalWorldOnB,axis0,axis1);
+ axis0.normalize();
+ axis1.normalize();
+
+ applyAnisotropicFriction(colObj0,axis0,btCollisionObject::CF_ANISOTROPIC_ROLLING_FRICTION);
+ applyAnisotropicFriction(colObj1,axis0,btCollisionObject::CF_ANISOTROPIC_ROLLING_FRICTION);
+ applyAnisotropicFriction(colObj0,axis1,btCollisionObject::CF_ANISOTROPIC_ROLLING_FRICTION);
+ applyAnisotropicFriction(colObj1,axis1,btCollisionObject::CF_ANISOTROPIC_ROLLING_FRICTION);
+ if (axis0.length()>0.001)
+ addTorsionalFrictionConstraint(axis0,solverBodyIdA,solverBodyIdB,frictionIndex,cp,
+ cp.m_combinedRollingFriction, rel_pos1,rel_pos2,colObj0,colObj1, relaxation);
+ if (axis1.length()>0.001)
+ addTorsionalFrictionConstraint(axis1,solverBodyIdA,solverBodyIdB,frictionIndex,cp,
+ cp.m_combinedRollingFriction, rel_pos1,rel_pos2,colObj0,colObj1, relaxation);
+
+ }
+ }
+
+ ///Bullet has several options to set the friction directions
+ ///By default, each contact has only a single friction direction that is recomputed automatically very frame
+ ///based on the relative linear velocity.
+ ///If the relative velocity it zero, it will automatically compute a friction direction.
+
+ ///You can also enable two friction directions, using the SOLVER_USE_2_FRICTION_DIRECTIONS.
+ ///In that case, the second friction direction will be orthogonal to both contact normal and first friction direction.
+ ///
+ ///If you choose SOLVER_DISABLE_VELOCITY_DEPENDENT_FRICTION_DIRECTION, then the friction will be independent from the relative projected velocity.
+ ///
+ ///The user can manually override the friction directions for certain contacts using a contact callback,
+ ///and set the cp.m_lateralFrictionInitialized to true
+ ///In that case, you can set the target relative motion in each friction direction (cp.m_contactMotion1 and cp.m_contactMotion2)
+ ///this will give a conveyor belt effect
+ ///
+
+ if (!(infoGlobal.m_solverMode & SOLVER_ENABLE_FRICTION_DIRECTION_CACHING) || !(cp.m_contactPointFlags&BT_CONTACT_FLAG_LATERAL_FRICTION_INITIALIZED))
+ {
+ cp.m_lateralFrictionDir1 = vel - cp.m_normalWorldOnB * rel_vel;
+ btScalar lat_rel_vel = cp.m_lateralFrictionDir1.length2();
+ if (!(infoGlobal.m_solverMode & SOLVER_DISABLE_VELOCITY_DEPENDENT_FRICTION_DIRECTION) && lat_rel_vel > SIMD_EPSILON)
+ {
+ cp.m_lateralFrictionDir1 *= 1.f/btSqrt(lat_rel_vel);
+ applyAnisotropicFriction(colObj0,cp.m_lateralFrictionDir1,btCollisionObject::CF_ANISOTROPIC_FRICTION);
+ applyAnisotropicFriction(colObj1,cp.m_lateralFrictionDir1,btCollisionObject::CF_ANISOTROPIC_FRICTION);
+ addFrictionConstraint(cp.m_lateralFrictionDir1,solverBodyIdA,solverBodyIdB,frictionIndex,cp,rel_pos1,rel_pos2,colObj0,colObj1, relaxation,infoGlobal);
+
+ if((infoGlobal.m_solverMode & SOLVER_USE_2_FRICTION_DIRECTIONS))
+ {
+ cp.m_lateralFrictionDir2 = cp.m_lateralFrictionDir1.cross(cp.m_normalWorldOnB);
+ cp.m_lateralFrictionDir2.normalize();//??
+ applyAnisotropicFriction(colObj0,cp.m_lateralFrictionDir2,btCollisionObject::CF_ANISOTROPIC_FRICTION);
+ applyAnisotropicFriction(colObj1,cp.m_lateralFrictionDir2,btCollisionObject::CF_ANISOTROPIC_FRICTION);
+ addFrictionConstraint(cp.m_lateralFrictionDir2,solverBodyIdA,solverBodyIdB,frictionIndex,cp,rel_pos1,rel_pos2,colObj0,colObj1, relaxation, infoGlobal);
+ }
+
+ } else
+ {
+ btPlaneSpace1(cp.m_normalWorldOnB,cp.m_lateralFrictionDir1,cp.m_lateralFrictionDir2);
+
+ applyAnisotropicFriction(colObj0,cp.m_lateralFrictionDir1,btCollisionObject::CF_ANISOTROPIC_FRICTION);
+ applyAnisotropicFriction(colObj1,cp.m_lateralFrictionDir1,btCollisionObject::CF_ANISOTROPIC_FRICTION);
+ addFrictionConstraint(cp.m_lateralFrictionDir1,solverBodyIdA,solverBodyIdB,frictionIndex,cp,rel_pos1,rel_pos2,colObj0,colObj1, relaxation, infoGlobal);
+
+ if ((infoGlobal.m_solverMode & SOLVER_USE_2_FRICTION_DIRECTIONS))
+ {
+ applyAnisotropicFriction(colObj0,cp.m_lateralFrictionDir2,btCollisionObject::CF_ANISOTROPIC_FRICTION);
+ applyAnisotropicFriction(colObj1,cp.m_lateralFrictionDir2,btCollisionObject::CF_ANISOTROPIC_FRICTION);
+ addFrictionConstraint(cp.m_lateralFrictionDir2,solverBodyIdA,solverBodyIdB,frictionIndex,cp,rel_pos1,rel_pos2,colObj0,colObj1, relaxation, infoGlobal);
+ }
+
+
+ if ((infoGlobal.m_solverMode & SOLVER_USE_2_FRICTION_DIRECTIONS) && (infoGlobal.m_solverMode & SOLVER_DISABLE_VELOCITY_DEPENDENT_FRICTION_DIRECTION))
+ {
+ cp.m_contactPointFlags|=BT_CONTACT_FLAG_LATERAL_FRICTION_INITIALIZED;
+ }
+ }
+
+ } else
+ {
+ addFrictionConstraint(cp.m_lateralFrictionDir1,solverBodyIdA,solverBodyIdB,frictionIndex,cp,rel_pos1,rel_pos2,colObj0,colObj1, relaxation, infoGlobal, cp.m_contactMotion1, cp.m_frictionCFM);
+
+ if ((infoGlobal.m_solverMode & SOLVER_USE_2_FRICTION_DIRECTIONS))
+ addFrictionConstraint(cp.m_lateralFrictionDir2,solverBodyIdA,solverBodyIdB,frictionIndex,cp,rel_pos1,rel_pos2,colObj0,colObj1, relaxation, infoGlobal, cp.m_contactMotion2, cp.m_frictionCFM);
+
+ }
+ setFrictionConstraintImpulse( solverConstraint, solverBodyIdA, solverBodyIdB, cp, infoGlobal);
+
+
+
+
+ }
+ }
+}
+
+void btSequentialImpulseConstraintSolver::convertContacts(btPersistentManifold** manifoldPtr,int numManifolds, const btContactSolverInfo& infoGlobal)
+{
+ int i;
+ btPersistentManifold* manifold = 0;
+// btCollisionObject* colObj0=0,*colObj1=0;
+
+
+ for (i=0;i<numManifolds;i++)
+ {
+ manifold = manifoldPtr[i];
+ convertContact(manifold,infoGlobal);
+ }
+}
+
+btScalar btSequentialImpulseConstraintSolver::solveGroupCacheFriendlySetup(btCollisionObject** bodies, int numBodies, btPersistentManifold** manifoldPtr, int numManifolds,btTypedConstraint** constraints,int numConstraints,const btContactSolverInfo& infoGlobal,btIDebugDraw* debugDrawer)
+{
+ m_fixedBodyId = -1;
+ BT_PROFILE("solveGroupCacheFriendlySetup");
+ (void)debugDrawer;
+
+ // if solver mode has changed,
+ if ( infoGlobal.m_solverMode != m_cachedSolverMode )
+ {
+ // update solver functions to use SIMD or non-SIMD
+ bool useSimd = !!( infoGlobal.m_solverMode & SOLVER_SIMD );
+ setupSolverFunctions( useSimd );
+ m_cachedSolverMode = infoGlobal.m_solverMode;
+ }
+ m_maxOverrideNumSolverIterations = 0;
+
+#ifdef BT_ADDITIONAL_DEBUG
+ //make sure that dynamic bodies exist for all (enabled) constraints
+ for (int i=0;i<numConstraints;i++)
+ {
+ btTypedConstraint* constraint = constraints[i];
+ if (constraint->isEnabled())
+ {
+ if (!constraint->getRigidBodyA().isStaticOrKinematicObject())
+ {
+ bool found=false;
+ for (int b=0;b<numBodies;b++)
+ {
+
+ if (&constraint->getRigidBodyA()==bodies[b])
+ {
+ found = true;
+ break;
+ }
+ }
+ btAssert(found);
+ }
+ if (!constraint->getRigidBodyB().isStaticOrKinematicObject())
+ {
+ bool found=false;
+ for (int b=0;b<numBodies;b++)
+ {
+ if (&constraint->getRigidBodyB()==bodies[b])
+ {
+ found = true;
+ break;
+ }
+ }
+ btAssert(found);
+ }
+ }
+ }
+ //make sure that dynamic bodies exist for all contact manifolds
+ for (int i=0;i<numManifolds;i++)
+ {
+ if (!manifoldPtr[i]->getBody0()->isStaticOrKinematicObject())
+ {
+ bool found=false;
+ for (int b=0;b<numBodies;b++)
+ {
+
+ if (manifoldPtr[i]->getBody0()==bodies[b])
+ {
+ found = true;
+ break;
+ }
+ }
+ btAssert(found);
+ }
+ if (!manifoldPtr[i]->getBody1()->isStaticOrKinematicObject())
+ {
+ bool found=false;
+ for (int b=0;b<numBodies;b++)
+ {
+ if (manifoldPtr[i]->getBody1()==bodies[b])
+ {
+ found = true;
+ break;
+ }
+ }
+ btAssert(found);
+ }
+ }
+#endif //BT_ADDITIONAL_DEBUG
+
+
+ for (int i = 0; i < numBodies; i++)
+ {
+ bodies[i]->setCompanionId(-1);
+ }
+#if BT_THREADSAFE
+ m_kinematicBodyUniqueIdToSolverBodyTable.resize( 0 );
+#endif // BT_THREADSAFE
+
+ m_tmpSolverBodyPool.reserve(numBodies+1);
+ m_tmpSolverBodyPool.resize(0);
+
+ //btSolverBody& fixedBody = m_tmpSolverBodyPool.expand();
+ //initSolverBody(&fixedBody,0);
+
+ //convert all bodies
+
+
+ for (int i=0;i<numBodies;i++)
+ {
+ int bodyId = getOrInitSolverBody(*bodies[i],infoGlobal.m_timeStep);
+
+ btRigidBody* body = btRigidBody::upcast(bodies[i]);
+ if (body && body->getInvMass())
+ {
+ btSolverBody& solverBody = m_tmpSolverBodyPool[bodyId];
+ btVector3 gyroForce (0,0,0);
+ if (body->getFlags()&BT_ENABLE_GYROSCOPIC_FORCE_EXPLICIT)
+ {
+ gyroForce = body->computeGyroscopicForceExplicit(infoGlobal.m_maxGyroscopicForce);
+ solverBody.m_externalTorqueImpulse -= gyroForce*body->getInvInertiaTensorWorld()*infoGlobal.m_timeStep;
+ }
+ if (body->getFlags()&BT_ENABLE_GYROSCOPIC_FORCE_IMPLICIT_WORLD)
+ {
+ gyroForce = body->computeGyroscopicImpulseImplicit_World(infoGlobal.m_timeStep);
+ solverBody.m_externalTorqueImpulse += gyroForce;
+ }
+ if (body->getFlags()&BT_ENABLE_GYROSCOPIC_FORCE_IMPLICIT_BODY)
+ {
+ gyroForce = body->computeGyroscopicImpulseImplicit_Body(infoGlobal.m_timeStep);
+ solverBody.m_externalTorqueImpulse += gyroForce;
+
+ }
+
+
+ }
+ }
+
+ if (1)
+ {
+ int j;
+ for (j=0;j<numConstraints;j++)
+ {
+ btTypedConstraint* constraint = constraints[j];
+ constraint->buildJacobian();
+ constraint->internalSetAppliedImpulse(0.0f);
+ }
+ }
+
+ //btRigidBody* rb0=0,*rb1=0;
+
+ //if (1)
+ {
+ {
+
+ int totalNumRows = 0;
+ int i;
+
+ m_tmpConstraintSizesPool.resizeNoInitialize(numConstraints);
+ //calculate the total number of contraint rows
+ for (i=0;i<numConstraints;i++)
+ {
+ btTypedConstraint::btConstraintInfo1& info1 = m_tmpConstraintSizesPool[i];
+ btJointFeedback* fb = constraints[i]->getJointFeedback();
+ if (fb)
+ {
+ fb->m_appliedForceBodyA.setZero();
+ fb->m_appliedTorqueBodyA.setZero();
+ fb->m_appliedForceBodyB.setZero();
+ fb->m_appliedTorqueBodyB.setZero();
+ }
+
+ if (constraints[i]->isEnabled())
+ {
+ }
+ if (constraints[i]->isEnabled())
+ {
+ constraints[i]->getInfo1(&info1);
+ } else
+ {
+ info1.m_numConstraintRows = 0;
+ info1.nub = 0;
+ }
+ totalNumRows += info1.m_numConstraintRows;
+ }
+ m_tmpSolverNonContactConstraintPool.resizeNoInitialize(totalNumRows);
+
+
+ ///setup the btSolverConstraints
+ int currentRow = 0;
+
+ for (i=0;i<numConstraints;i++)
+ {
+ const btTypedConstraint::btConstraintInfo1& info1 = m_tmpConstraintSizesPool[i];
+
+ if (info1.m_numConstraintRows)
+ {
+ btAssert(currentRow<totalNumRows);
+
+ btSolverConstraint* currentConstraintRow = &m_tmpSolverNonContactConstraintPool[currentRow];
+ btTypedConstraint* constraint = constraints[i];
+ btRigidBody& rbA = constraint->getRigidBodyA();
+ btRigidBody& rbB = constraint->getRigidBodyB();
+
+ int solverBodyIdA = getOrInitSolverBody(rbA,infoGlobal.m_timeStep);
+ int solverBodyIdB = getOrInitSolverBody(rbB,infoGlobal.m_timeStep);
+
+ btSolverBody* bodyAPtr = &m_tmpSolverBodyPool[solverBodyIdA];
+ btSolverBody* bodyBPtr = &m_tmpSolverBodyPool[solverBodyIdB];
+
+
+
+
+ int overrideNumSolverIterations = constraint->getOverrideNumSolverIterations() > 0 ? constraint->getOverrideNumSolverIterations() : infoGlobal.m_numIterations;
+ if (overrideNumSolverIterations>m_maxOverrideNumSolverIterations)
+ m_maxOverrideNumSolverIterations = overrideNumSolverIterations;
+
+
+ int j;
+ for ( j=0;j<info1.m_numConstraintRows;j++)
+ {
+ memset(&currentConstraintRow[j],0,sizeof(btSolverConstraint));
+ currentConstraintRow[j].m_lowerLimit = -SIMD_INFINITY;
+ currentConstraintRow[j].m_upperLimit = SIMD_INFINITY;
+ currentConstraintRow[j].m_appliedImpulse = 0.f;
+ currentConstraintRow[j].m_appliedPushImpulse = 0.f;
+ currentConstraintRow[j].m_solverBodyIdA = solverBodyIdA;
+ currentConstraintRow[j].m_solverBodyIdB = solverBodyIdB;
+ currentConstraintRow[j].m_overrideNumSolverIterations = overrideNumSolverIterations;
+ }
+
+ bodyAPtr->internalGetDeltaLinearVelocity().setValue(0.f,0.f,0.f);
+ bodyAPtr->internalGetDeltaAngularVelocity().setValue(0.f,0.f,0.f);
+ bodyAPtr->internalGetPushVelocity().setValue(0.f,0.f,0.f);
+ bodyAPtr->internalGetTurnVelocity().setValue(0.f,0.f,0.f);
+ bodyBPtr->internalGetDeltaLinearVelocity().setValue(0.f,0.f,0.f);
+ bodyBPtr->internalGetDeltaAngularVelocity().setValue(0.f,0.f,0.f);
+ bodyBPtr->internalGetPushVelocity().setValue(0.f,0.f,0.f);
+ bodyBPtr->internalGetTurnVelocity().setValue(0.f,0.f,0.f);
+
+
+ btTypedConstraint::btConstraintInfo2 info2;
+ info2.fps = 1.f/infoGlobal.m_timeStep;
+ info2.erp = infoGlobal.m_erp;
+ info2.m_J1linearAxis = currentConstraintRow->m_contactNormal1;
+ info2.m_J1angularAxis = currentConstraintRow->m_relpos1CrossNormal;
+ info2.m_J2linearAxis = currentConstraintRow->m_contactNormal2;
+ info2.m_J2angularAxis = currentConstraintRow->m_relpos2CrossNormal;
+ info2.rowskip = sizeof(btSolverConstraint)/sizeof(btScalar);//check this
+ ///the size of btSolverConstraint needs be a multiple of btScalar
+ btAssert(info2.rowskip*sizeof(btScalar)== sizeof(btSolverConstraint));
+ info2.m_constraintError = &currentConstraintRow->m_rhs;
+ currentConstraintRow->m_cfm = infoGlobal.m_globalCfm;
+ info2.m_damping = infoGlobal.m_damping;
+ info2.cfm = &currentConstraintRow->m_cfm;
+ info2.m_lowerLimit = &currentConstraintRow->m_lowerLimit;
+ info2.m_upperLimit = &currentConstraintRow->m_upperLimit;
+ info2.m_numIterations = infoGlobal.m_numIterations;
+ constraints[i]->getInfo2(&info2);
+
+ ///finalize the constraint setup
+ for ( j=0;j<info1.m_numConstraintRows;j++)
+ {
+ btSolverConstraint& solverConstraint = currentConstraintRow[j];
+
+ if (solverConstraint.m_upperLimit>=constraints[i]->getBreakingImpulseThreshold())
+ {
+ solverConstraint.m_upperLimit = constraints[i]->getBreakingImpulseThreshold();
+ }
+
+ if (solverConstraint.m_lowerLimit<=-constraints[i]->getBreakingImpulseThreshold())
+ {
+ solverConstraint.m_lowerLimit = -constraints[i]->getBreakingImpulseThreshold();
+ }
+
+ solverConstraint.m_originalContactPoint = constraint;
+
+ {
+ const btVector3& ftorqueAxis1 = solverConstraint.m_relpos1CrossNormal;
+ solverConstraint.m_angularComponentA = constraint->getRigidBodyA().getInvInertiaTensorWorld()*ftorqueAxis1*constraint->getRigidBodyA().getAngularFactor();
+ }
+ {
+ const btVector3& ftorqueAxis2 = solverConstraint.m_relpos2CrossNormal;
+ solverConstraint.m_angularComponentB = constraint->getRigidBodyB().getInvInertiaTensorWorld()*ftorqueAxis2*constraint->getRigidBodyB().getAngularFactor();
+ }
+
+ {
+ btVector3 iMJlA = solverConstraint.m_contactNormal1*rbA.getInvMass();
+ btVector3 iMJaA = rbA.getInvInertiaTensorWorld()*solverConstraint.m_relpos1CrossNormal;
+ btVector3 iMJlB = solverConstraint.m_contactNormal2*rbB.getInvMass();//sign of normal?
+ btVector3 iMJaB = rbB.getInvInertiaTensorWorld()*solverConstraint.m_relpos2CrossNormal;
+
+ btScalar sum = iMJlA.dot(solverConstraint.m_contactNormal1);
+ sum += iMJaA.dot(solverConstraint.m_relpos1CrossNormal);
+ sum += iMJlB.dot(solverConstraint.m_contactNormal2);
+ sum += iMJaB.dot(solverConstraint.m_relpos2CrossNormal);
+ btScalar fsum = btFabs(sum);
+ btAssert(fsum > SIMD_EPSILON);
+ btScalar sorRelaxation = 1.f;//todo: get from globalInfo?
+ solverConstraint.m_jacDiagABInv = fsum>SIMD_EPSILON?sorRelaxation/sum : 0.f;
+ }
+
+
+
+ {
+ btScalar rel_vel;
+ btVector3 externalForceImpulseA = bodyAPtr->m_originalBody ? bodyAPtr->m_externalForceImpulse : btVector3(0,0,0);
+ btVector3 externalTorqueImpulseA = bodyAPtr->m_originalBody ? bodyAPtr->m_externalTorqueImpulse : btVector3(0,0,0);
+
+ btVector3 externalForceImpulseB = bodyBPtr->m_originalBody ? bodyBPtr->m_externalForceImpulse : btVector3(0,0,0);
+ btVector3 externalTorqueImpulseB = bodyBPtr->m_originalBody ?bodyBPtr->m_externalTorqueImpulse : btVector3(0,0,0);
+
+ btScalar vel1Dotn = solverConstraint.m_contactNormal1.dot(rbA.getLinearVelocity()+externalForceImpulseA)
+ + solverConstraint.m_relpos1CrossNormal.dot(rbA.getAngularVelocity()+externalTorqueImpulseA);
+
+ btScalar vel2Dotn = solverConstraint.m_contactNormal2.dot(rbB.getLinearVelocity()+externalForceImpulseB)
+ + solverConstraint.m_relpos2CrossNormal.dot(rbB.getAngularVelocity()+externalTorqueImpulseB);
+
+ rel_vel = vel1Dotn+vel2Dotn;
+ btScalar restitution = 0.f;
+ btScalar positionalError = solverConstraint.m_rhs;//already filled in by getConstraintInfo2
+ btScalar velocityError = restitution - rel_vel * info2.m_damping;
+ btScalar penetrationImpulse = positionalError*solverConstraint.m_jacDiagABInv;
+ btScalar velocityImpulse = velocityError *solverConstraint.m_jacDiagABInv;
+ solverConstraint.m_rhs = penetrationImpulse+velocityImpulse;
+ solverConstraint.m_appliedImpulse = 0.f;
+
+
+ }
+ }
+ }
+ currentRow+=m_tmpConstraintSizesPool[i].m_numConstraintRows;
+ }
+ }
+
+ convertContacts(manifoldPtr,numManifolds,infoGlobal);
+
+ }
+
+// btContactSolverInfo info = infoGlobal;
+
+
+ int numNonContactPool = m_tmpSolverNonContactConstraintPool.size();
+ int numConstraintPool = m_tmpSolverContactConstraintPool.size();
+ int numFrictionPool = m_tmpSolverContactFrictionConstraintPool.size();
+
+ ///@todo: use stack allocator for such temporarily memory, same for solver bodies/constraints
+ m_orderNonContactConstraintPool.resizeNoInitialize(numNonContactPool);
+ if ((infoGlobal.m_solverMode & SOLVER_USE_2_FRICTION_DIRECTIONS))
+ m_orderTmpConstraintPool.resizeNoInitialize(numConstraintPool*2);
+ else
+ m_orderTmpConstraintPool.resizeNoInitialize(numConstraintPool);
+
+ m_orderFrictionConstraintPool.resizeNoInitialize(numFrictionPool);
+ {
+ int i;
+ for (i=0;i<numNonContactPool;i++)
+ {
+ m_orderNonContactConstraintPool[i] = i;
+ }
+ for (i=0;i<numConstraintPool;i++)
+ {
+ m_orderTmpConstraintPool[i] = i;
+ }
+ for (i=0;i<numFrictionPool;i++)
+ {
+ m_orderFrictionConstraintPool[i] = i;
+ }
+ }
+
+ return 0.f;
+
+}
+
+
+btScalar btSequentialImpulseConstraintSolver::solveSingleIteration(int iteration, btCollisionObject** /*bodies */,int /*numBodies*/,btPersistentManifold** /*manifoldPtr*/, int /*numManifolds*/,btTypedConstraint** constraints,int numConstraints,const btContactSolverInfo& infoGlobal,btIDebugDraw* /*debugDrawer*/)
+{
+ btScalar leastSquaresResidual = 0.f;
+
+ int numNonContactPool = m_tmpSolverNonContactConstraintPool.size();
+ int numConstraintPool = m_tmpSolverContactConstraintPool.size();
+ int numFrictionPool = m_tmpSolverContactFrictionConstraintPool.size();
+
+ if (infoGlobal.m_solverMode & SOLVER_RANDMIZE_ORDER)
+ {
+ if (1) // uncomment this for a bit less random ((iteration & 7) == 0)
+ {
+
+ for (int j=0; j<numNonContactPool; ++j) {
+ int tmp = m_orderNonContactConstraintPool[j];
+ int swapi = btRandInt2(j+1);
+ m_orderNonContactConstraintPool[j] = m_orderNonContactConstraintPool[swapi];
+ m_orderNonContactConstraintPool[swapi] = tmp;
+ }
+
+ //contact/friction constraints are not solved more than
+ if (iteration< infoGlobal.m_numIterations)
+ {
+ for (int j=0; j<numConstraintPool; ++j) {
+ int tmp = m_orderTmpConstraintPool[j];
+ int swapi = btRandInt2(j+1);
+ m_orderTmpConstraintPool[j] = m_orderTmpConstraintPool[swapi];
+ m_orderTmpConstraintPool[swapi] = tmp;
+ }
+
+ for (int j=0; j<numFrictionPool; ++j) {
+ int tmp = m_orderFrictionConstraintPool[j];
+ int swapi = btRandInt2(j+1);
+ m_orderFrictionConstraintPool[j] = m_orderFrictionConstraintPool[swapi];
+ m_orderFrictionConstraintPool[swapi] = tmp;
+ }
+ }
+ }
+ }
+
+ ///solve all joint constraints
+ for (int j=0;j<m_tmpSolverNonContactConstraintPool.size();j++)
+ {
+ btSolverConstraint& constraint = m_tmpSolverNonContactConstraintPool[m_orderNonContactConstraintPool[j]];
+ if (iteration < constraint.m_overrideNumSolverIterations)
+ {
+ btScalar residual = resolveSingleConstraintRowGeneric(m_tmpSolverBodyPool[constraint.m_solverBodyIdA],m_tmpSolverBodyPool[constraint.m_solverBodyIdB],constraint);
+ leastSquaresResidual += residual*residual;
+ }
+ }
+
+ if (iteration< infoGlobal.m_numIterations)
+ {
+ for (int j=0;j<numConstraints;j++)
+ {
+ if (constraints[j]->isEnabled())
+ {
+ int bodyAid = getOrInitSolverBody(constraints[j]->getRigidBodyA(),infoGlobal.m_timeStep);
+ int bodyBid = getOrInitSolverBody(constraints[j]->getRigidBodyB(),infoGlobal.m_timeStep);
+ btSolverBody& bodyA = m_tmpSolverBodyPool[bodyAid];
+ btSolverBody& bodyB = m_tmpSolverBodyPool[bodyBid];
+ constraints[j]->solveConstraintObsolete(bodyA,bodyB,infoGlobal.m_timeStep);
+ }
+ }
+
+ ///solve all contact constraints
+ if (infoGlobal.m_solverMode & SOLVER_INTERLEAVE_CONTACT_AND_FRICTION_CONSTRAINTS)
+ {
+ int numPoolConstraints = m_tmpSolverContactConstraintPool.size();
+ int multiplier = (infoGlobal.m_solverMode & SOLVER_USE_2_FRICTION_DIRECTIONS)? 2 : 1;
+
+ for (int c=0;c<numPoolConstraints;c++)
+ {
+ btScalar totalImpulse =0;
+
+ {
+ const btSolverConstraint& solveManifold = m_tmpSolverContactConstraintPool[m_orderTmpConstraintPool[c]];
+ btScalar residual = resolveSingleConstraintRowLowerLimit(m_tmpSolverBodyPool[solveManifold.m_solverBodyIdA],m_tmpSolverBodyPool[solveManifold.m_solverBodyIdB],solveManifold);
+ leastSquaresResidual += residual*residual;
+
+ totalImpulse = solveManifold.m_appliedImpulse;
+ }
+ bool applyFriction = true;
+ if (applyFriction)
+ {
+ {
+
+ btSolverConstraint& solveManifold = m_tmpSolverContactFrictionConstraintPool[m_orderFrictionConstraintPool[c*multiplier]];
+
+ if (totalImpulse>btScalar(0))
+ {
+ solveManifold.m_lowerLimit = -(solveManifold.m_friction*totalImpulse);
+ solveManifold.m_upperLimit = solveManifold.m_friction*totalImpulse;
+
+ btScalar residual = resolveSingleConstraintRowGeneric(m_tmpSolverBodyPool[solveManifold.m_solverBodyIdA],m_tmpSolverBodyPool[solveManifold.m_solverBodyIdB],solveManifold);
+ leastSquaresResidual += residual*residual;
+ }
+ }
+
+ if (infoGlobal.m_solverMode & SOLVER_USE_2_FRICTION_DIRECTIONS)
+ {
+
+ btSolverConstraint& solveManifold = m_tmpSolverContactFrictionConstraintPool[m_orderFrictionConstraintPool[c*multiplier+1]];
+
+ if (totalImpulse>btScalar(0))
+ {
+ solveManifold.m_lowerLimit = -(solveManifold.m_friction*totalImpulse);
+ solveManifold.m_upperLimit = solveManifold.m_friction*totalImpulse;
+
+ btScalar residual = resolveSingleConstraintRowGeneric(m_tmpSolverBodyPool[solveManifold.m_solverBodyIdA],m_tmpSolverBodyPool[solveManifold.m_solverBodyIdB],solveManifold);
+ leastSquaresResidual += residual*residual;
+ }
+ }
+ }
+ }
+
+ }
+ else//SOLVER_INTERLEAVE_CONTACT_AND_FRICTION_CONSTRAINTS
+ {
+ //solve the friction constraints after all contact constraints, don't interleave them
+ int numPoolConstraints = m_tmpSolverContactConstraintPool.size();
+ int j;
+
+ for (j=0;j<numPoolConstraints;j++)
+ {
+ const btSolverConstraint& solveManifold = m_tmpSolverContactConstraintPool[m_orderTmpConstraintPool[j]];
+ btScalar residual = resolveSingleConstraintRowLowerLimit(m_tmpSolverBodyPool[solveManifold.m_solverBodyIdA],m_tmpSolverBodyPool[solveManifold.m_solverBodyIdB],solveManifold);
+ leastSquaresResidual += residual*residual;
+ }
+
+
+
+ ///solve all friction constraints
+
+ int numFrictionPoolConstraints = m_tmpSolverContactFrictionConstraintPool.size();
+ for (j=0;j<numFrictionPoolConstraints;j++)
+ {
+ btSolverConstraint& solveManifold = m_tmpSolverContactFrictionConstraintPool[m_orderFrictionConstraintPool[j]];
+ btScalar totalImpulse = m_tmpSolverContactConstraintPool[solveManifold.m_frictionIndex].m_appliedImpulse;
+
+ if (totalImpulse>btScalar(0))
+ {
+ solveManifold.m_lowerLimit = -(solveManifold.m_friction*totalImpulse);
+ solveManifold.m_upperLimit = solveManifold.m_friction*totalImpulse;
+
+ btScalar residual = resolveSingleConstraintRowGeneric(m_tmpSolverBodyPool[solveManifold.m_solverBodyIdA],m_tmpSolverBodyPool[solveManifold.m_solverBodyIdB],solveManifold);
+ leastSquaresResidual += residual*residual;
+ }
+ }
+ }
+
+
+ int numRollingFrictionPoolConstraints = m_tmpSolverContactRollingFrictionConstraintPool.size();
+ for (int j=0;j<numRollingFrictionPoolConstraints;j++)
+ {
+
+ btSolverConstraint& rollingFrictionConstraint = m_tmpSolverContactRollingFrictionConstraintPool[j];
+ btScalar totalImpulse = m_tmpSolverContactConstraintPool[rollingFrictionConstraint.m_frictionIndex].m_appliedImpulse;
+ if (totalImpulse>btScalar(0))
+ {
+ btScalar rollingFrictionMagnitude = rollingFrictionConstraint.m_friction*totalImpulse;
+ if (rollingFrictionMagnitude>rollingFrictionConstraint.m_friction)
+ rollingFrictionMagnitude = rollingFrictionConstraint.m_friction;
+
+ rollingFrictionConstraint.m_lowerLimit = -rollingFrictionMagnitude;
+ rollingFrictionConstraint.m_upperLimit = rollingFrictionMagnitude;
+
+ btScalar residual = resolveSingleConstraintRowGeneric(m_tmpSolverBodyPool[rollingFrictionConstraint.m_solverBodyIdA],m_tmpSolverBodyPool[rollingFrictionConstraint.m_solverBodyIdB],rollingFrictionConstraint);
+ leastSquaresResidual += residual*residual;
+ }
+ }
+
+
+ }
+ return leastSquaresResidual;
+}
+
+
+void btSequentialImpulseConstraintSolver::solveGroupCacheFriendlySplitImpulseIterations(btCollisionObject** bodies,int numBodies,btPersistentManifold** manifoldPtr, int numManifolds,btTypedConstraint** constraints,int numConstraints,const btContactSolverInfo& infoGlobal,btIDebugDraw* debugDrawer)
+{
+ int iteration;
+ if (infoGlobal.m_splitImpulse)
+ {
+ {
+ for ( iteration = 0;iteration<infoGlobal.m_numIterations;iteration++)
+ {
+ btScalar leastSquaresResidual =0.f;
+ {
+ int numPoolConstraints = m_tmpSolverContactConstraintPool.size();
+ int j;
+ for (j=0;j<numPoolConstraints;j++)
+ {
+ const btSolverConstraint& solveManifold = m_tmpSolverContactConstraintPool[m_orderTmpConstraintPool[j]];
+
+ btScalar residual = resolveSplitPenetrationImpulse(m_tmpSolverBodyPool[solveManifold.m_solverBodyIdA],m_tmpSolverBodyPool[solveManifold.m_solverBodyIdB],solveManifold);
+ leastSquaresResidual += residual*residual;
+ }
+ }
+ if (leastSquaresResidual <= infoGlobal.m_leastSquaresResidualThreshold || iteration>=(infoGlobal.m_numIterations-1))
+ {
+#ifdef VERBOSE_RESIDUAL_PRINTF
+ printf("residual = %f at iteration #%d\n",leastSquaresResidual,iteration);
+#endif
+ break;
+ }
+ }
+ }
+ }
+}
+
+btScalar btSequentialImpulseConstraintSolver::solveGroupCacheFriendlyIterations(btCollisionObject** bodies ,int numBodies,btPersistentManifold** manifoldPtr, int numManifolds,btTypedConstraint** constraints,int numConstraints,const btContactSolverInfo& infoGlobal,btIDebugDraw* debugDrawer)
+{
+ BT_PROFILE("solveGroupCacheFriendlyIterations");
+
+ {
+ ///this is a special step to resolve penetrations (just for contacts)
+ solveGroupCacheFriendlySplitImpulseIterations(bodies ,numBodies,manifoldPtr, numManifolds,constraints,numConstraints,infoGlobal,debugDrawer);
+
+ int maxIterations = m_maxOverrideNumSolverIterations > infoGlobal.m_numIterations? m_maxOverrideNumSolverIterations : infoGlobal.m_numIterations;
+
+ for ( int iteration = 0 ; iteration< maxIterations ; iteration++)
+ //for ( int iteration = maxIterations-1 ; iteration >= 0;iteration--)
+ {
+ m_leastSquaresResidual = solveSingleIteration(iteration, bodies ,numBodies,manifoldPtr, numManifolds,constraints,numConstraints,infoGlobal,debugDrawer);
+
+ if (m_leastSquaresResidual <= infoGlobal.m_leastSquaresResidualThreshold || (iteration>= (maxIterations-1)))
+ {
+#ifdef VERBOSE_RESIDUAL_PRINTF
+ printf("residual = %f at iteration #%d\n",m_leastSquaresResidual,iteration);
+#endif
+ break;
+ }
+ }
+
+ }
+ return 0.f;
+}
+
+btScalar btSequentialImpulseConstraintSolver::solveGroupCacheFriendlyFinish(btCollisionObject** bodies,int numBodies,const btContactSolverInfo& infoGlobal)
+{
+ int numPoolConstraints = m_tmpSolverContactConstraintPool.size();
+ int i,j;
+
+ if (infoGlobal.m_solverMode & SOLVER_USE_WARMSTARTING)
+ {
+ for (j=0;j<numPoolConstraints;j++)
+ {
+ const btSolverConstraint& solveManifold = m_tmpSolverContactConstraintPool[j];
+ btManifoldPoint* pt = (btManifoldPoint*) solveManifold.m_originalContactPoint;
+ btAssert(pt);
+ pt->m_appliedImpulse = solveManifold.m_appliedImpulse;
+ // float f = m_tmpSolverContactFrictionConstraintPool[solveManifold.m_frictionIndex].m_appliedImpulse;
+ // printf("pt->m_appliedImpulseLateral1 = %f\n", f);
+ pt->m_appliedImpulseLateral1 = m_tmpSolverContactFrictionConstraintPool[solveManifold.m_frictionIndex].m_appliedImpulse;
+ //printf("pt->m_appliedImpulseLateral1 = %f\n", pt->m_appliedImpulseLateral1);
+ if ((infoGlobal.m_solverMode & SOLVER_USE_2_FRICTION_DIRECTIONS))
+ {
+ pt->m_appliedImpulseLateral2 = m_tmpSolverContactFrictionConstraintPool[solveManifold.m_frictionIndex+1].m_appliedImpulse;
+ }
+ //do a callback here?
+ }
+ }
+
+ numPoolConstraints = m_tmpSolverNonContactConstraintPool.size();
+ for (j=0;j<numPoolConstraints;j++)
+ {
+ const btSolverConstraint& solverConstr = m_tmpSolverNonContactConstraintPool[j];
+ btTypedConstraint* constr = (btTypedConstraint*)solverConstr.m_originalContactPoint;
+ btJointFeedback* fb = constr->getJointFeedback();
+ if (fb)
+ {
+ fb->m_appliedForceBodyA += solverConstr.m_contactNormal1*solverConstr.m_appliedImpulse*constr->getRigidBodyA().getLinearFactor()/infoGlobal.m_timeStep;
+ fb->m_appliedForceBodyB += solverConstr.m_contactNormal2*solverConstr.m_appliedImpulse*constr->getRigidBodyB().getLinearFactor()/infoGlobal.m_timeStep;
+ fb->m_appliedTorqueBodyA += solverConstr.m_relpos1CrossNormal* constr->getRigidBodyA().getAngularFactor()*solverConstr.m_appliedImpulse/infoGlobal.m_timeStep;
+ fb->m_appliedTorqueBodyB += solverConstr.m_relpos2CrossNormal* constr->getRigidBodyB().getAngularFactor()*solverConstr.m_appliedImpulse/infoGlobal.m_timeStep; /*RGM ???? */
+
+ }
+
+ constr->internalSetAppliedImpulse(solverConstr.m_appliedImpulse);
+ if (btFabs(solverConstr.m_appliedImpulse)>=constr->getBreakingImpulseThreshold())
+ {
+ constr->setEnabled(false);
+ }
+ }
+
+
+
+ for ( i=0;i<m_tmpSolverBodyPool.size();i++)
+ {
+ btRigidBody* body = m_tmpSolverBodyPool[i].m_originalBody;
+ if (body)
+ {
+ if (infoGlobal.m_splitImpulse)
+ m_tmpSolverBodyPool[i].writebackVelocityAndTransform(infoGlobal.m_timeStep, infoGlobal.m_splitImpulseTurnErp);
+ else
+ m_tmpSolverBodyPool[i].writebackVelocity();
+
+ m_tmpSolverBodyPool[i].m_originalBody->setLinearVelocity(
+ m_tmpSolverBodyPool[i].m_linearVelocity+
+ m_tmpSolverBodyPool[i].m_externalForceImpulse);
+
+ m_tmpSolverBodyPool[i].m_originalBody->setAngularVelocity(
+ m_tmpSolverBodyPool[i].m_angularVelocity+
+ m_tmpSolverBodyPool[i].m_externalTorqueImpulse);
+
+ if (infoGlobal.m_splitImpulse)
+ m_tmpSolverBodyPool[i].m_originalBody->setWorldTransform(m_tmpSolverBodyPool[i].m_worldTransform);
+
+ m_tmpSolverBodyPool[i].m_originalBody->setCompanionId(-1);
+ }
+ }
+
+ m_tmpSolverContactConstraintPool.resizeNoInitialize(0);
+ m_tmpSolverNonContactConstraintPool.resizeNoInitialize(0);
+ m_tmpSolverContactFrictionConstraintPool.resizeNoInitialize(0);
+ m_tmpSolverContactRollingFrictionConstraintPool.resizeNoInitialize(0);
+
+ m_tmpSolverBodyPool.resizeNoInitialize(0);
+ return 0.f;
+}
+
+
+
+/// btSequentialImpulseConstraintSolver Sequentially applies impulses
+btScalar btSequentialImpulseConstraintSolver::solveGroup(btCollisionObject** bodies,int numBodies,btPersistentManifold** manifoldPtr, int numManifolds,btTypedConstraint** constraints,int numConstraints,const btContactSolverInfo& infoGlobal,btIDebugDraw* debugDrawer,btDispatcher* /*dispatcher*/)
+{
+
+ BT_PROFILE("solveGroup");
+ //you need to provide at least some bodies
+
+ solveGroupCacheFriendlySetup( bodies, numBodies, manifoldPtr, numManifolds,constraints, numConstraints,infoGlobal,debugDrawer);
+
+ solveGroupCacheFriendlyIterations(bodies, numBodies, manifoldPtr, numManifolds,constraints, numConstraints,infoGlobal,debugDrawer);
+
+ solveGroupCacheFriendlyFinish(bodies, numBodies, infoGlobal);
+
+ return 0.f;
+}
+
+void btSequentialImpulseConstraintSolver::reset()
+{
+ m_btSeed2 = 0;
+}
diff --git a/thirdparty/bullet/BulletDynamics/ConstraintSolver/btSequentialImpulseConstraintSolver.h b/thirdparty/bullet/BulletDynamics/ConstraintSolver/btSequentialImpulseConstraintSolver.h
new file mode 100644
index 0000000000..16c7eb74c1
--- /dev/null
+++ b/thirdparty/bullet/BulletDynamics/ConstraintSolver/btSequentialImpulseConstraintSolver.h
@@ -0,0 +1,196 @@
+/*
+Bullet Continuous Collision Detection and Physics Library
+Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
+
+This software is provided 'as-is', without any express or implied warranty.
+In no event will the authors be held liable for any damages arising from the use of this software.
+Permission is granted to anyone to use this software for any purpose,
+including commercial applications, and to alter it and redistribute it freely,
+subject to the following restrictions:
+
+1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
+2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
+3. This notice may not be removed or altered from any source distribution.
+*/
+
+#ifndef BT_SEQUENTIAL_IMPULSE_CONSTRAINT_SOLVER_H
+#define BT_SEQUENTIAL_IMPULSE_CONSTRAINT_SOLVER_H
+
+class btIDebugDraw;
+class btPersistentManifold;
+class btDispatcher;
+class btCollisionObject;
+#include "BulletDynamics/ConstraintSolver/btTypedConstraint.h"
+#include "BulletDynamics/ConstraintSolver/btContactSolverInfo.h"
+#include "BulletDynamics/ConstraintSolver/btSolverBody.h"
+#include "BulletDynamics/ConstraintSolver/btSolverConstraint.h"
+#include "BulletCollision/NarrowPhaseCollision/btManifoldPoint.h"
+#include "BulletDynamics/ConstraintSolver/btConstraintSolver.h"
+
+typedef btSimdScalar(*btSingleConstraintRowSolver)(btSolverBody&, btSolverBody&, const btSolverConstraint&);
+
+///The btSequentialImpulseConstraintSolver is a fast SIMD implementation of the Projected Gauss Seidel (iterative LCP) method.
+ATTRIBUTE_ALIGNED16(class) btSequentialImpulseConstraintSolver : public btConstraintSolver
+{
+protected:
+ btAlignedObjectArray<btSolverBody> m_tmpSolverBodyPool;
+ btConstraintArray m_tmpSolverContactConstraintPool;
+ btConstraintArray m_tmpSolverNonContactConstraintPool;
+ btConstraintArray m_tmpSolverContactFrictionConstraintPool;
+ btConstraintArray m_tmpSolverContactRollingFrictionConstraintPool;
+
+ btAlignedObjectArray<int> m_orderTmpConstraintPool;
+ btAlignedObjectArray<int> m_orderNonContactConstraintPool;
+ btAlignedObjectArray<int> m_orderFrictionConstraintPool;
+ btAlignedObjectArray<btTypedConstraint::btConstraintInfo1> m_tmpConstraintSizesPool;
+ int m_maxOverrideNumSolverIterations;
+ int m_fixedBodyId;
+ // When running solvers on multiple threads, a race condition exists for Kinematic objects that
+ // participate in more than one solver.
+ // The getOrInitSolverBody() function writes the companionId of each body (storing the index of the solver body
+ // for the current solver). For normal dynamic bodies it isn't an issue because they can only be in one island
+ // (and therefore one thread) at a time. But kinematic bodies can be in multiple islands at once.
+ // To avoid this race condition, this solver does not write the companionId, instead it stores the solver body
+ // index in this solver-local table, indexed by the uniqueId of the body.
+ btAlignedObjectArray<int> m_kinematicBodyUniqueIdToSolverBodyTable; // only used for multithreading
+
+ btSingleConstraintRowSolver m_resolveSingleConstraintRowGeneric;
+ btSingleConstraintRowSolver m_resolveSingleConstraintRowLowerLimit;
+ btSingleConstraintRowSolver m_resolveSplitPenetrationImpulse;
+ int m_cachedSolverMode; // used to check if SOLVER_SIMD flag has been changed
+ void setupSolverFunctions( bool useSimd );
+
+ btScalar m_leastSquaresResidual;
+
+ void setupFrictionConstraint( btSolverConstraint& solverConstraint, const btVector3& normalAxis,int solverBodyIdA,int solverBodyIdB,
+ btManifoldPoint& cp,const btVector3& rel_pos1,const btVector3& rel_pos2,
+ btCollisionObject* colObj0,btCollisionObject* colObj1, btScalar relaxation,
+ const btContactSolverInfo& infoGlobal,
+ btScalar desiredVelocity=0., btScalar cfmSlip=0.);
+
+ void setupTorsionalFrictionConstraint( btSolverConstraint& solverConstraint, const btVector3& normalAxis,int solverBodyIdA,int solverBodyIdB,
+ btManifoldPoint& cp,btScalar combinedTorsionalFriction, const btVector3& rel_pos1,const btVector3& rel_pos2,
+ btCollisionObject* colObj0,btCollisionObject* colObj1, btScalar relaxation,
+ btScalar desiredVelocity=0., btScalar cfmSlip=0.);
+
+ btSolverConstraint& addFrictionConstraint(const btVector3& normalAxis,int solverBodyIdA,int solverBodyIdB,int frictionIndex,btManifoldPoint& cp,const btVector3& rel_pos1,const btVector3& rel_pos2,btCollisionObject* colObj0,btCollisionObject* colObj1, btScalar relaxation, const btContactSolverInfo& infoGlobal, btScalar desiredVelocity=0., btScalar cfmSlip=0.);
+ btSolverConstraint& addTorsionalFrictionConstraint(const btVector3& normalAxis,int solverBodyIdA,int solverBodyIdB,int frictionIndex,btManifoldPoint& cp,btScalar torsionalFriction, const btVector3& rel_pos1,const btVector3& rel_pos2,btCollisionObject* colObj0,btCollisionObject* colObj1, btScalar relaxation, btScalar desiredVelocity=0, btScalar cfmSlip=0.f);
+
+
+ void setupContactConstraint(btSolverConstraint& solverConstraint, int solverBodyIdA, int solverBodyIdB, btManifoldPoint& cp,
+ const btContactSolverInfo& infoGlobal,btScalar& relaxation, const btVector3& rel_pos1, const btVector3& rel_pos2);
+
+ static void applyAnisotropicFriction(btCollisionObject* colObj,btVector3& frictionDirection, int frictionMode);
+
+ void setFrictionConstraintImpulse( btSolverConstraint& solverConstraint, int solverBodyIdA,int solverBodyIdB,
+ btManifoldPoint& cp, const btContactSolverInfo& infoGlobal);
+
+ ///m_btSeed2 is used for re-arranging the constraint rows. improves convergence/quality of friction
+ unsigned long m_btSeed2;
+
+
+ btScalar restitutionCurve(btScalar rel_vel, btScalar restitution, btScalar velocityThreshold);
+
+ virtual void convertContacts(btPersistentManifold** manifoldPtr, int numManifolds, const btContactSolverInfo& infoGlobal);
+
+ void convertContact(btPersistentManifold* manifold,const btContactSolverInfo& infoGlobal);
+
+
+ btSimdScalar resolveSplitPenetrationSIMD(btSolverBody& bodyA,btSolverBody& bodyB, const btSolverConstraint& contactConstraint)
+ {
+ return m_resolveSplitPenetrationImpulse( bodyA, bodyB, contactConstraint );
+ }
+
+ btSimdScalar resolveSplitPenetrationImpulseCacheFriendly(btSolverBody& bodyA,btSolverBody& bodyB, const btSolverConstraint& contactConstraint)
+ {
+ return m_resolveSplitPenetrationImpulse( bodyA, bodyB, contactConstraint );
+ }
+
+ //internal method
+ int getOrInitSolverBody(btCollisionObject& body,btScalar timeStep);
+ void initSolverBody(btSolverBody* solverBody, btCollisionObject* collisionObject, btScalar timeStep);
+
+ btSimdScalar resolveSingleConstraintRowGeneric(btSolverBody& bodyA,btSolverBody& bodyB,const btSolverConstraint& contactConstraint);
+ btSimdScalar resolveSingleConstraintRowGenericSIMD(btSolverBody& bodyA,btSolverBody& bodyB,const btSolverConstraint& contactConstraint);
+ btSimdScalar resolveSingleConstraintRowLowerLimit(btSolverBody& bodyA,btSolverBody& bodyB,const btSolverConstraint& contactConstraint);
+ btSimdScalar resolveSingleConstraintRowLowerLimitSIMD(btSolverBody& bodyA,btSolverBody& bodyB,const btSolverConstraint& contactConstraint);
+ btSimdScalar resolveSplitPenetrationImpulse(btSolverBody& bodyA,btSolverBody& bodyB, const btSolverConstraint& contactConstraint)
+ {
+ return m_resolveSplitPenetrationImpulse( bodyA, bodyB, contactConstraint );
+ }
+
+protected:
+
+
+ virtual void solveGroupCacheFriendlySplitImpulseIterations(btCollisionObject** bodies,int numBodies,btPersistentManifold** manifoldPtr, int numManifolds,btTypedConstraint** constraints,int numConstraints,const btContactSolverInfo& infoGlobal,btIDebugDraw* debugDrawer);
+ virtual btScalar solveGroupCacheFriendlyFinish(btCollisionObject** bodies,int numBodies,const btContactSolverInfo& infoGlobal);
+ virtual btScalar solveSingleIteration(int iteration, btCollisionObject** bodies ,int numBodies,btPersistentManifold** manifoldPtr, int numManifolds,btTypedConstraint** constraints,int numConstraints,const btContactSolverInfo& infoGlobal,btIDebugDraw* debugDrawer);
+
+ virtual btScalar solveGroupCacheFriendlySetup(btCollisionObject** bodies,int numBodies,btPersistentManifold** manifoldPtr, int numManifolds,btTypedConstraint** constraints,int numConstraints,const btContactSolverInfo& infoGlobal,btIDebugDraw* debugDrawer);
+ virtual btScalar solveGroupCacheFriendlyIterations(btCollisionObject** bodies,int numBodies,btPersistentManifold** manifoldPtr, int numManifolds,btTypedConstraint** constraints,int numConstraints,const btContactSolverInfo& infoGlobal,btIDebugDraw* debugDrawer);
+
+
+public:
+
+ BT_DECLARE_ALIGNED_ALLOCATOR();
+
+ btSequentialImpulseConstraintSolver();
+ virtual ~btSequentialImpulseConstraintSolver();
+
+ virtual btScalar solveGroup(btCollisionObject** bodies,int numBodies,btPersistentManifold** manifold,int numManifolds,btTypedConstraint** constraints,int numConstraints,const btContactSolverInfo& info, btIDebugDraw* debugDrawer,btDispatcher* dispatcher);
+
+ ///clear internal cached data and reset random seed
+ virtual void reset();
+
+ unsigned long btRand2();
+
+ int btRandInt2 (int n);
+
+ void setRandSeed(unsigned long seed)
+ {
+ m_btSeed2 = seed;
+ }
+ unsigned long getRandSeed() const
+ {
+ return m_btSeed2;
+ }
+
+
+ virtual btConstraintSolverType getSolverType() const
+ {
+ return BT_SEQUENTIAL_IMPULSE_SOLVER;
+ }
+
+ btSingleConstraintRowSolver getActiveConstraintRowSolverGeneric()
+ {
+ return m_resolveSingleConstraintRowGeneric;
+ }
+ void setConstraintRowSolverGeneric(btSingleConstraintRowSolver rowSolver)
+ {
+ m_resolveSingleConstraintRowGeneric = rowSolver;
+ }
+ btSingleConstraintRowSolver getActiveConstraintRowSolverLowerLimit()
+ {
+ return m_resolveSingleConstraintRowLowerLimit;
+ }
+ void setConstraintRowSolverLowerLimit(btSingleConstraintRowSolver rowSolver)
+ {
+ m_resolveSingleConstraintRowLowerLimit = rowSolver;
+ }
+
+ ///Various implementations of solving a single constraint row using a generic equality constraint, using scalar reference, SSE2 or SSE4
+ btSingleConstraintRowSolver getScalarConstraintRowSolverGeneric();
+ btSingleConstraintRowSolver getSSE2ConstraintRowSolverGeneric();
+ btSingleConstraintRowSolver getSSE4_1ConstraintRowSolverGeneric();
+
+ ///Various implementations of solving a single constraint row using an inequality (lower limit) constraint, using scalar reference, SSE2 or SSE4
+ btSingleConstraintRowSolver getScalarConstraintRowSolverLowerLimit();
+ btSingleConstraintRowSolver getSSE2ConstraintRowSolverLowerLimit();
+ btSingleConstraintRowSolver getSSE4_1ConstraintRowSolverLowerLimit();
+};
+
+
+
+
+#endif //BT_SEQUENTIAL_IMPULSE_CONSTRAINT_SOLVER_H
+
diff --git a/thirdparty/bullet/BulletDynamics/ConstraintSolver/btSliderConstraint.cpp b/thirdparty/bullet/BulletDynamics/ConstraintSolver/btSliderConstraint.cpp
new file mode 100644
index 0000000000..d63cef0316
--- /dev/null
+++ b/thirdparty/bullet/BulletDynamics/ConstraintSolver/btSliderConstraint.cpp
@@ -0,0 +1,855 @@
+/*
+Bullet Continuous Collision Detection and Physics Library
+Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
+
+This software is provided 'as-is', without any express or implied warranty.
+In no event will the authors be held liable for any damages arising from the use of this software.
+Permission is granted to anyone to use this software for any purpose,
+including commercial applications, and to alter it and redistribute it freely,
+subject to the following restrictions:
+
+1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
+2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
+3. This notice may not be removed or altered from any source distribution.
+*/
+
+/*
+Added by Roman Ponomarev (rponom@gmail.com)
+April 04, 2008
+*/
+
+
+
+#include "btSliderConstraint.h"
+#include "BulletDynamics/Dynamics/btRigidBody.h"
+#include "LinearMath/btTransformUtil.h"
+#include <new>
+
+#define USE_OFFSET_FOR_CONSTANT_FRAME true
+
+void btSliderConstraint::initParams()
+{
+ m_lowerLinLimit = btScalar(1.0);
+ m_upperLinLimit = btScalar(-1.0);
+ m_lowerAngLimit = btScalar(0.);
+ m_upperAngLimit = btScalar(0.);
+ m_softnessDirLin = SLIDER_CONSTRAINT_DEF_SOFTNESS;
+ m_restitutionDirLin = SLIDER_CONSTRAINT_DEF_RESTITUTION;
+ m_dampingDirLin = btScalar(0.);
+ m_cfmDirLin = SLIDER_CONSTRAINT_DEF_CFM;
+ m_softnessDirAng = SLIDER_CONSTRAINT_DEF_SOFTNESS;
+ m_restitutionDirAng = SLIDER_CONSTRAINT_DEF_RESTITUTION;
+ m_dampingDirAng = btScalar(0.);
+ m_cfmDirAng = SLIDER_CONSTRAINT_DEF_CFM;
+ m_softnessOrthoLin = SLIDER_CONSTRAINT_DEF_SOFTNESS;
+ m_restitutionOrthoLin = SLIDER_CONSTRAINT_DEF_RESTITUTION;
+ m_dampingOrthoLin = SLIDER_CONSTRAINT_DEF_DAMPING;
+ m_cfmOrthoLin = SLIDER_CONSTRAINT_DEF_CFM;
+ m_softnessOrthoAng = SLIDER_CONSTRAINT_DEF_SOFTNESS;
+ m_restitutionOrthoAng = SLIDER_CONSTRAINT_DEF_RESTITUTION;
+ m_dampingOrthoAng = SLIDER_CONSTRAINT_DEF_DAMPING;
+ m_cfmOrthoAng = SLIDER_CONSTRAINT_DEF_CFM;
+ m_softnessLimLin = SLIDER_CONSTRAINT_DEF_SOFTNESS;
+ m_restitutionLimLin = SLIDER_CONSTRAINT_DEF_RESTITUTION;
+ m_dampingLimLin = SLIDER_CONSTRAINT_DEF_DAMPING;
+ m_cfmLimLin = SLIDER_CONSTRAINT_DEF_CFM;
+ m_softnessLimAng = SLIDER_CONSTRAINT_DEF_SOFTNESS;
+ m_restitutionLimAng = SLIDER_CONSTRAINT_DEF_RESTITUTION;
+ m_dampingLimAng = SLIDER_CONSTRAINT_DEF_DAMPING;
+ m_cfmLimAng = SLIDER_CONSTRAINT_DEF_CFM;
+
+ m_poweredLinMotor = false;
+ m_targetLinMotorVelocity = btScalar(0.);
+ m_maxLinMotorForce = btScalar(0.);
+ m_accumulatedLinMotorImpulse = btScalar(0.0);
+
+ m_poweredAngMotor = false;
+ m_targetAngMotorVelocity = btScalar(0.);
+ m_maxAngMotorForce = btScalar(0.);
+ m_accumulatedAngMotorImpulse = btScalar(0.0);
+
+ m_flags = 0;
+ m_flags = 0;
+
+ m_useOffsetForConstraintFrame = USE_OFFSET_FOR_CONSTANT_FRAME;
+
+ calculateTransforms(m_rbA.getCenterOfMassTransform(),m_rbB.getCenterOfMassTransform());
+}
+
+
+
+
+
+btSliderConstraint::btSliderConstraint(btRigidBody& rbA, btRigidBody& rbB, const btTransform& frameInA, const btTransform& frameInB, bool useLinearReferenceFrameA)
+ : btTypedConstraint(SLIDER_CONSTRAINT_TYPE, rbA, rbB),
+ m_useSolveConstraintObsolete(false),
+ m_frameInA(frameInA),
+ m_frameInB(frameInB),
+ m_useLinearReferenceFrameA(useLinearReferenceFrameA)
+{
+ initParams();
+}
+
+
+
+btSliderConstraint::btSliderConstraint(btRigidBody& rbB, const btTransform& frameInB, bool useLinearReferenceFrameA)
+ : btTypedConstraint(SLIDER_CONSTRAINT_TYPE, getFixedBody(), rbB),
+ m_useSolveConstraintObsolete(false),
+ m_frameInB(frameInB),
+ m_useLinearReferenceFrameA(useLinearReferenceFrameA)
+{
+ ///not providing rigidbody A means implicitly using worldspace for body A
+ m_frameInA = rbB.getCenterOfMassTransform() * m_frameInB;
+// m_frameInA.getOrigin() = m_rbA.getCenterOfMassTransform()(m_frameInA.getOrigin());
+
+ initParams();
+}
+
+
+
+
+
+
+void btSliderConstraint::getInfo1(btConstraintInfo1* info)
+{
+ if (m_useSolveConstraintObsolete)
+ {
+ info->m_numConstraintRows = 0;
+ info->nub = 0;
+ }
+ else
+ {
+ info->m_numConstraintRows = 4; // Fixed 2 linear + 2 angular
+ info->nub = 2;
+ //prepare constraint
+ calculateTransforms(m_rbA.getCenterOfMassTransform(),m_rbB.getCenterOfMassTransform());
+ testAngLimits();
+ testLinLimits();
+ if(getSolveLinLimit() || getPoweredLinMotor())
+ {
+ info->m_numConstraintRows++; // limit 3rd linear as well
+ info->nub--;
+ }
+ if(getSolveAngLimit() || getPoweredAngMotor())
+ {
+ info->m_numConstraintRows++; // limit 3rd angular as well
+ info->nub--;
+ }
+ }
+}
+
+void btSliderConstraint::getInfo1NonVirtual(btConstraintInfo1* info)
+{
+
+ info->m_numConstraintRows = 6; // Fixed 2 linear + 2 angular + 1 limit (even if not used)
+ info->nub = 0;
+}
+
+void btSliderConstraint::getInfo2(btConstraintInfo2* info)
+{
+ getInfo2NonVirtual(info,m_rbA.getCenterOfMassTransform(),m_rbB.getCenterOfMassTransform(), m_rbA.getLinearVelocity(),m_rbB.getLinearVelocity(), m_rbA.getInvMass(),m_rbB.getInvMass());
+}
+
+
+
+
+
+
+
+void btSliderConstraint::calculateTransforms(const btTransform& transA,const btTransform& transB)
+{
+ if(m_useLinearReferenceFrameA || (!m_useSolveConstraintObsolete))
+ {
+ m_calculatedTransformA = transA * m_frameInA;
+ m_calculatedTransformB = transB * m_frameInB;
+ }
+ else
+ {
+ m_calculatedTransformA = transB * m_frameInB;
+ m_calculatedTransformB = transA * m_frameInA;
+ }
+ m_realPivotAInW = m_calculatedTransformA.getOrigin();
+ m_realPivotBInW = m_calculatedTransformB.getOrigin();
+ m_sliderAxis = m_calculatedTransformA.getBasis().getColumn(0); // along X
+ if(m_useLinearReferenceFrameA || m_useSolveConstraintObsolete)
+ {
+ m_delta = m_realPivotBInW - m_realPivotAInW;
+ }
+ else
+ {
+ m_delta = m_realPivotAInW - m_realPivotBInW;
+ }
+ m_projPivotInW = m_realPivotAInW + m_sliderAxis.dot(m_delta) * m_sliderAxis;
+ btVector3 normalWorld;
+ int i;
+ //linear part
+ for(i = 0; i < 3; i++)
+ {
+ normalWorld = m_calculatedTransformA.getBasis().getColumn(i);
+ m_depth[i] = m_delta.dot(normalWorld);
+ }
+}
+
+
+
+void btSliderConstraint::testLinLimits(void)
+{
+ m_solveLinLim = false;
+ m_linPos = m_depth[0];
+ if(m_lowerLinLimit <= m_upperLinLimit)
+ {
+ if(m_depth[0] > m_upperLinLimit)
+ {
+ m_depth[0] -= m_upperLinLimit;
+ m_solveLinLim = true;
+ }
+ else if(m_depth[0] < m_lowerLinLimit)
+ {
+ m_depth[0] -= m_lowerLinLimit;
+ m_solveLinLim = true;
+ }
+ else
+ {
+ m_depth[0] = btScalar(0.);
+ }
+ }
+ else
+ {
+ m_depth[0] = btScalar(0.);
+ }
+}
+
+
+
+void btSliderConstraint::testAngLimits(void)
+{
+ m_angDepth = btScalar(0.);
+ m_solveAngLim = false;
+ if(m_lowerAngLimit <= m_upperAngLimit)
+ {
+ const btVector3 axisA0 = m_calculatedTransformA.getBasis().getColumn(1);
+ const btVector3 axisA1 = m_calculatedTransformA.getBasis().getColumn(2);
+ const btVector3 axisB0 = m_calculatedTransformB.getBasis().getColumn(1);
+// btScalar rot = btAtan2Fast(axisB0.dot(axisA1), axisB0.dot(axisA0));
+ btScalar rot = btAtan2(axisB0.dot(axisA1), axisB0.dot(axisA0));
+ rot = btAdjustAngleToLimits(rot, m_lowerAngLimit, m_upperAngLimit);
+ m_angPos = rot;
+ if(rot < m_lowerAngLimit)
+ {
+ m_angDepth = rot - m_lowerAngLimit;
+ m_solveAngLim = true;
+ }
+ else if(rot > m_upperAngLimit)
+ {
+ m_angDepth = rot - m_upperAngLimit;
+ m_solveAngLim = true;
+ }
+ }
+}
+
+btVector3 btSliderConstraint::getAncorInA(void)
+{
+ btVector3 ancorInA;
+ ancorInA = m_realPivotAInW + (m_lowerLinLimit + m_upperLinLimit) * btScalar(0.5) * m_sliderAxis;
+ ancorInA = m_rbA.getCenterOfMassTransform().inverse() * ancorInA;
+ return ancorInA;
+}
+
+
+
+btVector3 btSliderConstraint::getAncorInB(void)
+{
+ btVector3 ancorInB;
+ ancorInB = m_frameInB.getOrigin();
+ return ancorInB;
+}
+
+
+void btSliderConstraint::getInfo2NonVirtual(btConstraintInfo2* info, const btTransform& transA,const btTransform& transB, const btVector3& linVelA,const btVector3& linVelB, btScalar rbAinvMass,btScalar rbBinvMass )
+{
+ const btTransform& trA = getCalculatedTransformA();
+ const btTransform& trB = getCalculatedTransformB();
+
+ btAssert(!m_useSolveConstraintObsolete);
+ int i, s = info->rowskip;
+
+ btScalar signFact = m_useLinearReferenceFrameA ? btScalar(1.0f) : btScalar(-1.0f);
+
+ // difference between frames in WCS
+ btVector3 ofs = trB.getOrigin() - trA.getOrigin();
+ // now get weight factors depending on masses
+ btScalar miA = rbAinvMass;
+ btScalar miB = rbBinvMass;
+ bool hasStaticBody = (miA < SIMD_EPSILON) || (miB < SIMD_EPSILON);
+ btScalar miS = miA + miB;
+ btScalar factA, factB;
+ if(miS > btScalar(0.f))
+ {
+ factA = miB / miS;
+ }
+ else
+ {
+ factA = btScalar(0.5f);
+ }
+ factB = btScalar(1.0f) - factA;
+ btVector3 ax1, p, q;
+ btVector3 ax1A = trA.getBasis().getColumn(0);
+ btVector3 ax1B = trB.getBasis().getColumn(0);
+ if(m_useOffsetForConstraintFrame)
+ {
+ // get the desired direction of slider axis
+ // as weighted sum of X-orthos of frameA and frameB in WCS
+ ax1 = ax1A * factA + ax1B * factB;
+ ax1.normalize();
+ // construct two orthos to slider axis
+ btPlaneSpace1 (ax1, p, q);
+ }
+ else
+ { // old way - use frameA
+ ax1 = trA.getBasis().getColumn(0);
+ // get 2 orthos to slider axis (Y, Z)
+ p = trA.getBasis().getColumn(1);
+ q = trA.getBasis().getColumn(2);
+ }
+ // make rotations around these orthos equal
+ // the slider axis should be the only unconstrained
+ // rotational axis, the angular velocity of the two bodies perpendicular to
+ // the slider axis should be equal. thus the constraint equations are
+ // p*w1 - p*w2 = 0
+ // q*w1 - q*w2 = 0
+ // where p and q are unit vectors normal to the slider axis, and w1 and w2
+ // are the angular velocity vectors of the two bodies.
+ info->m_J1angularAxis[0] = p[0];
+ info->m_J1angularAxis[1] = p[1];
+ info->m_J1angularAxis[2] = p[2];
+ info->m_J1angularAxis[s+0] = q[0];
+ info->m_J1angularAxis[s+1] = q[1];
+ info->m_J1angularAxis[s+2] = q[2];
+
+ info->m_J2angularAxis[0] = -p[0];
+ info->m_J2angularAxis[1] = -p[1];
+ info->m_J2angularAxis[2] = -p[2];
+ info->m_J2angularAxis[s+0] = -q[0];
+ info->m_J2angularAxis[s+1] = -q[1];
+ info->m_J2angularAxis[s+2] = -q[2];
+ // compute the right hand side of the constraint equation. set relative
+ // body velocities along p and q to bring the slider back into alignment.
+ // if ax1A,ax1B are the unit length slider axes as computed from bodyA and
+ // bodyB, we need to rotate both bodies along the axis u = (ax1 x ax2).
+ // if "theta" is the angle between ax1 and ax2, we need an angular velocity
+ // along u to cover angle erp*theta in one step :
+ // |angular_velocity| = angle/time = erp*theta / stepsize
+ // = (erp*fps) * theta
+ // angular_velocity = |angular_velocity| * (ax1 x ax2) / |ax1 x ax2|
+ // = (erp*fps) * theta * (ax1 x ax2) / sin(theta)
+ // ...as ax1 and ax2 are unit length. if theta is smallish,
+ // theta ~= sin(theta), so
+ // angular_velocity = (erp*fps) * (ax1 x ax2)
+ // ax1 x ax2 is in the plane space of ax1, so we project the angular
+ // velocity to p and q to find the right hand side.
+// btScalar k = info->fps * info->erp * getSoftnessOrthoAng();
+ btScalar currERP = (m_flags & BT_SLIDER_FLAGS_ERP_ORTANG) ? m_softnessOrthoAng : m_softnessOrthoAng * info->erp;
+ btScalar k = info->fps * currERP;
+
+ btVector3 u = ax1A.cross(ax1B);
+ info->m_constraintError[0] = k * u.dot(p);
+ info->m_constraintError[s] = k * u.dot(q);
+ if(m_flags & BT_SLIDER_FLAGS_CFM_ORTANG)
+ {
+ info->cfm[0] = m_cfmOrthoAng;
+ info->cfm[s] = m_cfmOrthoAng;
+ }
+
+ int nrow = 1; // last filled row
+ int srow;
+ btScalar limit_err;
+ int limit;
+
+ // next two rows.
+ // we want: velA + wA x relA == velB + wB x relB ... but this would
+ // result in three equations, so we project along two orthos to the slider axis
+
+ btTransform bodyA_trans = transA;
+ btTransform bodyB_trans = transB;
+ nrow++;
+ int s2 = nrow * s;
+ nrow++;
+ int s3 = nrow * s;
+ btVector3 tmpA(0,0,0), tmpB(0,0,0), relA(0,0,0), relB(0,0,0), c(0,0,0);
+ if(m_useOffsetForConstraintFrame)
+ {
+ // get vector from bodyB to frameB in WCS
+ relB = trB.getOrigin() - bodyB_trans.getOrigin();
+ // get its projection to slider axis
+ btVector3 projB = ax1 * relB.dot(ax1);
+ // get vector directed from bodyB to slider axis (and orthogonal to it)
+ btVector3 orthoB = relB - projB;
+ // same for bodyA
+ relA = trA.getOrigin() - bodyA_trans.getOrigin();
+ btVector3 projA = ax1 * relA.dot(ax1);
+ btVector3 orthoA = relA - projA;
+ // get desired offset between frames A and B along slider axis
+ btScalar sliderOffs = m_linPos - m_depth[0];
+ // desired vector from projection of center of bodyA to projection of center of bodyB to slider axis
+ btVector3 totalDist = projA + ax1 * sliderOffs - projB;
+ // get offset vectors relA and relB
+ relA = orthoA + totalDist * factA;
+ relB = orthoB - totalDist * factB;
+ // now choose average ortho to slider axis
+ p = orthoB * factA + orthoA * factB;
+ btScalar len2 = p.length2();
+ if(len2 > SIMD_EPSILON)
+ {
+ p /= btSqrt(len2);
+ }
+ else
+ {
+ p = trA.getBasis().getColumn(1);
+ }
+ // make one more ortho
+ q = ax1.cross(p);
+ // fill two rows
+ tmpA = relA.cross(p);
+ tmpB = relB.cross(p);
+ for (i=0; i<3; i++) info->m_J1angularAxis[s2+i] = tmpA[i];
+ for (i=0; i<3; i++) info->m_J2angularAxis[s2+i] = -tmpB[i];
+ tmpA = relA.cross(q);
+ tmpB = relB.cross(q);
+ if(hasStaticBody && getSolveAngLimit())
+ { // to make constraint between static and dynamic objects more rigid
+ // remove wA (or wB) from equation if angular limit is hit
+ tmpB *= factB;
+ tmpA *= factA;
+ }
+ for (i=0; i<3; i++) info->m_J1angularAxis[s3+i] = tmpA[i];
+ for (i=0; i<3; i++) info->m_J2angularAxis[s3+i] = -tmpB[i];
+ for (i=0; i<3; i++) info->m_J1linearAxis[s2+i] = p[i];
+ for (i=0; i<3; i++) info->m_J1linearAxis[s3+i] = q[i];
+ for (i=0; i<3; i++) info->m_J2linearAxis[s2+i] = -p[i];
+ for (i=0; i<3; i++) info->m_J2linearAxis[s3+i] = -q[i];
+ }
+ else
+ { // old way - maybe incorrect if bodies are not on the slider axis
+ // see discussion "Bug in slider constraint" http://bulletphysics.org/Bullet/phpBB3/viewtopic.php?f=9&t=4024&start=0
+ c = bodyB_trans.getOrigin() - bodyA_trans.getOrigin();
+ btVector3 tmp = c.cross(p);
+ for (i=0; i<3; i++) info->m_J1angularAxis[s2+i] = factA*tmp[i];
+ for (i=0; i<3; i++) info->m_J2angularAxis[s2+i] = factB*tmp[i];
+ tmp = c.cross(q);
+ for (i=0; i<3; i++) info->m_J1angularAxis[s3+i] = factA*tmp[i];
+ for (i=0; i<3; i++) info->m_J2angularAxis[s3+i] = factB*tmp[i];
+
+ for (i=0; i<3; i++) info->m_J1linearAxis[s2+i] = p[i];
+ for (i=0; i<3; i++) info->m_J1linearAxis[s3+i] = q[i];
+ for (i=0; i<3; i++) info->m_J2linearAxis[s2+i] = -p[i];
+ for (i=0; i<3; i++) info->m_J2linearAxis[s3+i] = -q[i];
+ }
+ // compute two elements of right hand side
+
+ // k = info->fps * info->erp * getSoftnessOrthoLin();
+ currERP = (m_flags & BT_SLIDER_FLAGS_ERP_ORTLIN) ? m_softnessOrthoLin : m_softnessOrthoLin * info->erp;
+ k = info->fps * currERP;
+
+ btScalar rhs = k * p.dot(ofs);
+ info->m_constraintError[s2] = rhs;
+ rhs = k * q.dot(ofs);
+ info->m_constraintError[s3] = rhs;
+ if(m_flags & BT_SLIDER_FLAGS_CFM_ORTLIN)
+ {
+ info->cfm[s2] = m_cfmOrthoLin;
+ info->cfm[s3] = m_cfmOrthoLin;
+ }
+
+
+ // check linear limits
+ limit_err = btScalar(0.0);
+ limit = 0;
+ if(getSolveLinLimit())
+ {
+ limit_err = getLinDepth() * signFact;
+ limit = (limit_err > btScalar(0.0)) ? 2 : 1;
+ }
+ bool powered = getPoweredLinMotor();
+ // if the slider has joint limits or motor, add in the extra row
+ if (limit || powered)
+ {
+ nrow++;
+ srow = nrow * info->rowskip;
+ info->m_J1linearAxis[srow+0] = ax1[0];
+ info->m_J1linearAxis[srow+1] = ax1[1];
+ info->m_J1linearAxis[srow+2] = ax1[2];
+ info->m_J2linearAxis[srow+0] = -ax1[0];
+ info->m_J2linearAxis[srow+1] = -ax1[1];
+ info->m_J2linearAxis[srow+2] = -ax1[2];
+ // linear torque decoupling step:
+ //
+ // we have to be careful that the linear constraint forces (+/- ax1) applied to the two bodies
+ // do not create a torque couple. in other words, the points that the
+ // constraint force is applied at must lie along the same ax1 axis.
+ // a torque couple will result in limited slider-jointed free
+ // bodies from gaining angular momentum.
+ if(m_useOffsetForConstraintFrame)
+ {
+ // this is needed only when bodyA and bodyB are both dynamic.
+ if(!hasStaticBody)
+ {
+ tmpA = relA.cross(ax1);
+ tmpB = relB.cross(ax1);
+ info->m_J1angularAxis[srow+0] = tmpA[0];
+ info->m_J1angularAxis[srow+1] = tmpA[1];
+ info->m_J1angularAxis[srow+2] = tmpA[2];
+ info->m_J2angularAxis[srow+0] = -tmpB[0];
+ info->m_J2angularAxis[srow+1] = -tmpB[1];
+ info->m_J2angularAxis[srow+2] = -tmpB[2];
+ }
+ }
+ else
+ { // The old way. May be incorrect if bodies are not on the slider axis
+ btVector3 ltd; // Linear Torque Decoupling vector (a torque)
+ ltd = c.cross(ax1);
+ info->m_J1angularAxis[srow+0] = factA*ltd[0];
+ info->m_J1angularAxis[srow+1] = factA*ltd[1];
+ info->m_J1angularAxis[srow+2] = factA*ltd[2];
+ info->m_J2angularAxis[srow+0] = factB*ltd[0];
+ info->m_J2angularAxis[srow+1] = factB*ltd[1];
+ info->m_J2angularAxis[srow+2] = factB*ltd[2];
+ }
+ // right-hand part
+ btScalar lostop = getLowerLinLimit();
+ btScalar histop = getUpperLinLimit();
+ if(limit && (lostop == histop))
+ { // the joint motor is ineffective
+ powered = false;
+ }
+ info->m_constraintError[srow] = 0.;
+ info->m_lowerLimit[srow] = 0.;
+ info->m_upperLimit[srow] = 0.;
+ currERP = (m_flags & BT_SLIDER_FLAGS_ERP_LIMLIN) ? m_softnessLimLin : info->erp;
+ if(powered)
+ {
+ if(m_flags & BT_SLIDER_FLAGS_CFM_DIRLIN)
+ {
+ info->cfm[srow] = m_cfmDirLin;
+ }
+ btScalar tag_vel = getTargetLinMotorVelocity();
+ btScalar mot_fact = getMotorFactor(m_linPos, m_lowerLinLimit, m_upperLinLimit, tag_vel, info->fps * currERP);
+ info->m_constraintError[srow] -= signFact * mot_fact * getTargetLinMotorVelocity();
+ info->m_lowerLimit[srow] += -getMaxLinMotorForce() / info->fps;
+ info->m_upperLimit[srow] += getMaxLinMotorForce() / info->fps;
+ }
+ if(limit)
+ {
+ k = info->fps * currERP;
+ info->m_constraintError[srow] += k * limit_err;
+ if(m_flags & BT_SLIDER_FLAGS_CFM_LIMLIN)
+ {
+ info->cfm[srow] = m_cfmLimLin;
+ }
+ if(lostop == histop)
+ { // limited low and high simultaneously
+ info->m_lowerLimit[srow] = -SIMD_INFINITY;
+ info->m_upperLimit[srow] = SIMD_INFINITY;
+ }
+ else if(limit == 1)
+ { // low limit
+ info->m_lowerLimit[srow] = -SIMD_INFINITY;
+ info->m_upperLimit[srow] = 0;
+ }
+ else
+ { // high limit
+ info->m_lowerLimit[srow] = 0;
+ info->m_upperLimit[srow] = SIMD_INFINITY;
+ }
+ // bounce (we'll use slider parameter abs(1.0 - m_dampingLimLin) for that)
+ btScalar bounce = btFabs(btScalar(1.0) - getDampingLimLin());
+ if(bounce > btScalar(0.0))
+ {
+ btScalar vel = linVelA.dot(ax1);
+ vel -= linVelB.dot(ax1);
+ vel *= signFact;
+ // only apply bounce if the velocity is incoming, and if the
+ // resulting c[] exceeds what we already have.
+ if(limit == 1)
+ { // low limit
+ if(vel < 0)
+ {
+ btScalar newc = -bounce * vel;
+ if (newc > info->m_constraintError[srow])
+ {
+ info->m_constraintError[srow] = newc;
+ }
+ }
+ }
+ else
+ { // high limit - all those computations are reversed
+ if(vel > 0)
+ {
+ btScalar newc = -bounce * vel;
+ if(newc < info->m_constraintError[srow])
+ {
+ info->m_constraintError[srow] = newc;
+ }
+ }
+ }
+ }
+ info->m_constraintError[srow] *= getSoftnessLimLin();
+ } // if(limit)
+ } // if linear limit
+ // check angular limits
+ limit_err = btScalar(0.0);
+ limit = 0;
+ if(getSolveAngLimit())
+ {
+ limit_err = getAngDepth();
+ limit = (limit_err > btScalar(0.0)) ? 1 : 2;
+ }
+ // if the slider has joint limits, add in the extra row
+ powered = getPoweredAngMotor();
+ if(limit || powered)
+ {
+ nrow++;
+ srow = nrow * info->rowskip;
+ info->m_J1angularAxis[srow+0] = ax1[0];
+ info->m_J1angularAxis[srow+1] = ax1[1];
+ info->m_J1angularAxis[srow+2] = ax1[2];
+
+ info->m_J2angularAxis[srow+0] = -ax1[0];
+ info->m_J2angularAxis[srow+1] = -ax1[1];
+ info->m_J2angularAxis[srow+2] = -ax1[2];
+
+ btScalar lostop = getLowerAngLimit();
+ btScalar histop = getUpperAngLimit();
+ if(limit && (lostop == histop))
+ { // the joint motor is ineffective
+ powered = false;
+ }
+ currERP = (m_flags & BT_SLIDER_FLAGS_ERP_LIMANG) ? m_softnessLimAng : info->erp;
+ if(powered)
+ {
+ if(m_flags & BT_SLIDER_FLAGS_CFM_DIRANG)
+ {
+ info->cfm[srow] = m_cfmDirAng;
+ }
+ btScalar mot_fact = getMotorFactor(m_angPos, m_lowerAngLimit, m_upperAngLimit, getTargetAngMotorVelocity(), info->fps * currERP);
+ info->m_constraintError[srow] = mot_fact * getTargetAngMotorVelocity();
+ info->m_lowerLimit[srow] = -getMaxAngMotorForce() / info->fps;
+ info->m_upperLimit[srow] = getMaxAngMotorForce() / info->fps;
+ }
+ if(limit)
+ {
+ k = info->fps * currERP;
+ info->m_constraintError[srow] += k * limit_err;
+ if(m_flags & BT_SLIDER_FLAGS_CFM_LIMANG)
+ {
+ info->cfm[srow] = m_cfmLimAng;
+ }
+ if(lostop == histop)
+ {
+ // limited low and high simultaneously
+ info->m_lowerLimit[srow] = -SIMD_INFINITY;
+ info->m_upperLimit[srow] = SIMD_INFINITY;
+ }
+ else if(limit == 1)
+ { // low limit
+ info->m_lowerLimit[srow] = 0;
+ info->m_upperLimit[srow] = SIMD_INFINITY;
+ }
+ else
+ { // high limit
+ info->m_lowerLimit[srow] = -SIMD_INFINITY;
+ info->m_upperLimit[srow] = 0;
+ }
+ // bounce (we'll use slider parameter abs(1.0 - m_dampingLimAng) for that)
+ btScalar bounce = btFabs(btScalar(1.0) - getDampingLimAng());
+ if(bounce > btScalar(0.0))
+ {
+ btScalar vel = m_rbA.getAngularVelocity().dot(ax1);
+ vel -= m_rbB.getAngularVelocity().dot(ax1);
+ // only apply bounce if the velocity is incoming, and if the
+ // resulting c[] exceeds what we already have.
+ if(limit == 1)
+ { // low limit
+ if(vel < 0)
+ {
+ btScalar newc = -bounce * vel;
+ if(newc > info->m_constraintError[srow])
+ {
+ info->m_constraintError[srow] = newc;
+ }
+ }
+ }
+ else
+ { // high limit - all those computations are reversed
+ if(vel > 0)
+ {
+ btScalar newc = -bounce * vel;
+ if(newc < info->m_constraintError[srow])
+ {
+ info->m_constraintError[srow] = newc;
+ }
+ }
+ }
+ }
+ info->m_constraintError[srow] *= getSoftnessLimAng();
+ } // if(limit)
+ } // if angular limit or powered
+}
+
+
+///override the default global value of a parameter (such as ERP or CFM), optionally provide the axis (0..5).
+///If no axis is provided, it uses the default axis for this constraint.
+void btSliderConstraint::setParam(int num, btScalar value, int axis)
+{
+ switch(num)
+ {
+ case BT_CONSTRAINT_STOP_ERP :
+ if(axis < 1)
+ {
+ m_softnessLimLin = value;
+ m_flags |= BT_SLIDER_FLAGS_ERP_LIMLIN;
+ }
+ else if(axis < 3)
+ {
+ m_softnessOrthoLin = value;
+ m_flags |= BT_SLIDER_FLAGS_ERP_ORTLIN;
+ }
+ else if(axis == 3)
+ {
+ m_softnessLimAng = value;
+ m_flags |= BT_SLIDER_FLAGS_ERP_LIMANG;
+ }
+ else if(axis < 6)
+ {
+ m_softnessOrthoAng = value;
+ m_flags |= BT_SLIDER_FLAGS_ERP_ORTANG;
+ }
+ else
+ {
+ btAssertConstrParams(0);
+ }
+ break;
+ case BT_CONSTRAINT_CFM :
+ if(axis < 1)
+ {
+ m_cfmDirLin = value;
+ m_flags |= BT_SLIDER_FLAGS_CFM_DIRLIN;
+ }
+ else if(axis == 3)
+ {
+ m_cfmDirAng = value;
+ m_flags |= BT_SLIDER_FLAGS_CFM_DIRANG;
+ }
+ else
+ {
+ btAssertConstrParams(0);
+ }
+ break;
+ case BT_CONSTRAINT_STOP_CFM :
+ if(axis < 1)
+ {
+ m_cfmLimLin = value;
+ m_flags |= BT_SLIDER_FLAGS_CFM_LIMLIN;
+ }
+ else if(axis < 3)
+ {
+ m_cfmOrthoLin = value;
+ m_flags |= BT_SLIDER_FLAGS_CFM_ORTLIN;
+ }
+ else if(axis == 3)
+ {
+ m_cfmLimAng = value;
+ m_flags |= BT_SLIDER_FLAGS_CFM_LIMANG;
+ }
+ else if(axis < 6)
+ {
+ m_cfmOrthoAng = value;
+ m_flags |= BT_SLIDER_FLAGS_CFM_ORTANG;
+ }
+ else
+ {
+ btAssertConstrParams(0);
+ }
+ break;
+ }
+}
+
+///return the local value of parameter
+btScalar btSliderConstraint::getParam(int num, int axis) const
+{
+ btScalar retVal(SIMD_INFINITY);
+ switch(num)
+ {
+ case BT_CONSTRAINT_STOP_ERP :
+ if(axis < 1)
+ {
+ btAssertConstrParams(m_flags & BT_SLIDER_FLAGS_ERP_LIMLIN);
+ retVal = m_softnessLimLin;
+ }
+ else if(axis < 3)
+ {
+ btAssertConstrParams(m_flags & BT_SLIDER_FLAGS_ERP_ORTLIN);
+ retVal = m_softnessOrthoLin;
+ }
+ else if(axis == 3)
+ {
+ btAssertConstrParams(m_flags & BT_SLIDER_FLAGS_ERP_LIMANG);
+ retVal = m_softnessLimAng;
+ }
+ else if(axis < 6)
+ {
+ btAssertConstrParams(m_flags & BT_SLIDER_FLAGS_ERP_ORTANG);
+ retVal = m_softnessOrthoAng;
+ }
+ else
+ {
+ btAssertConstrParams(0);
+ }
+ break;
+ case BT_CONSTRAINT_CFM :
+ if(axis < 1)
+ {
+ btAssertConstrParams(m_flags & BT_SLIDER_FLAGS_CFM_DIRLIN);
+ retVal = m_cfmDirLin;
+ }
+ else if(axis == 3)
+ {
+ btAssertConstrParams(m_flags & BT_SLIDER_FLAGS_CFM_DIRANG);
+ retVal = m_cfmDirAng;
+ }
+ else
+ {
+ btAssertConstrParams(0);
+ }
+ break;
+ case BT_CONSTRAINT_STOP_CFM :
+ if(axis < 1)
+ {
+ btAssertConstrParams(m_flags & BT_SLIDER_FLAGS_CFM_LIMLIN);
+ retVal = m_cfmLimLin;
+ }
+ else if(axis < 3)
+ {
+ btAssertConstrParams(m_flags & BT_SLIDER_FLAGS_CFM_ORTLIN);
+ retVal = m_cfmOrthoLin;
+ }
+ else if(axis == 3)
+ {
+ btAssertConstrParams(m_flags & BT_SLIDER_FLAGS_CFM_LIMANG);
+ retVal = m_cfmLimAng;
+ }
+ else if(axis < 6)
+ {
+ btAssertConstrParams(m_flags & BT_SLIDER_FLAGS_CFM_ORTANG);
+ retVal = m_cfmOrthoAng;
+ }
+ else
+ {
+ btAssertConstrParams(0);
+ }
+ break;
+ }
+ return retVal;
+}
+
+
+
diff --git a/thirdparty/bullet/BulletDynamics/ConstraintSolver/btSliderConstraint.h b/thirdparty/bullet/BulletDynamics/ConstraintSolver/btSliderConstraint.h
new file mode 100644
index 0000000000..1957f08a96
--- /dev/null
+++ b/thirdparty/bullet/BulletDynamics/ConstraintSolver/btSliderConstraint.h
@@ -0,0 +1,368 @@
+/*
+Bullet Continuous Collision Detection and Physics Library
+Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
+
+This software is provided 'as-is', without any express or implied warranty.
+In no event will the authors be held liable for any damages arising from the use of this software.
+Permission is granted to anyone to use this software for any purpose,
+including commercial applications, and to alter it and redistribute it freely,
+subject to the following restrictions:
+
+1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
+2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
+3. This notice may not be removed or altered from any source distribution.
+*/
+
+/*
+Added by Roman Ponomarev (rponom@gmail.com)
+April 04, 2008
+
+TODO:
+ - add clamping od accumulated impulse to improve stability
+ - add conversion for ODE constraint solver
+*/
+
+#ifndef BT_SLIDER_CONSTRAINT_H
+#define BT_SLIDER_CONSTRAINT_H
+
+#include "LinearMath/btScalar.h"//for BT_USE_DOUBLE_PRECISION
+
+#ifdef BT_USE_DOUBLE_PRECISION
+#define btSliderConstraintData2 btSliderConstraintDoubleData
+#define btSliderConstraintDataName "btSliderConstraintDoubleData"
+#else
+#define btSliderConstraintData2 btSliderConstraintData
+#define btSliderConstraintDataName "btSliderConstraintData"
+#endif //BT_USE_DOUBLE_PRECISION
+
+#include "LinearMath/btVector3.h"
+#include "btJacobianEntry.h"
+#include "btTypedConstraint.h"
+
+
+
+class btRigidBody;
+
+
+
+#define SLIDER_CONSTRAINT_DEF_SOFTNESS (btScalar(1.0))
+#define SLIDER_CONSTRAINT_DEF_DAMPING (btScalar(1.0))
+#define SLIDER_CONSTRAINT_DEF_RESTITUTION (btScalar(0.7))
+#define SLIDER_CONSTRAINT_DEF_CFM (btScalar(0.f))
+
+
+enum btSliderFlags
+{
+ BT_SLIDER_FLAGS_CFM_DIRLIN = (1 << 0),
+ BT_SLIDER_FLAGS_ERP_DIRLIN = (1 << 1),
+ BT_SLIDER_FLAGS_CFM_DIRANG = (1 << 2),
+ BT_SLIDER_FLAGS_ERP_DIRANG = (1 << 3),
+ BT_SLIDER_FLAGS_CFM_ORTLIN = (1 << 4),
+ BT_SLIDER_FLAGS_ERP_ORTLIN = (1 << 5),
+ BT_SLIDER_FLAGS_CFM_ORTANG = (1 << 6),
+ BT_SLIDER_FLAGS_ERP_ORTANG = (1 << 7),
+ BT_SLIDER_FLAGS_CFM_LIMLIN = (1 << 8),
+ BT_SLIDER_FLAGS_ERP_LIMLIN = (1 << 9),
+ BT_SLIDER_FLAGS_CFM_LIMANG = (1 << 10),
+ BT_SLIDER_FLAGS_ERP_LIMANG = (1 << 11)
+};
+
+
+ATTRIBUTE_ALIGNED16(class) btSliderConstraint : public btTypedConstraint
+{
+protected:
+ ///for backwards compatibility during the transition to 'getInfo/getInfo2'
+ bool m_useSolveConstraintObsolete;
+ bool m_useOffsetForConstraintFrame;
+ btTransform m_frameInA;
+ btTransform m_frameInB;
+ // use frameA fo define limits, if true
+ bool m_useLinearReferenceFrameA;
+ // linear limits
+ btScalar m_lowerLinLimit;
+ btScalar m_upperLinLimit;
+ // angular limits
+ btScalar m_lowerAngLimit;
+ btScalar m_upperAngLimit;
+ // softness, restitution and damping for different cases
+ // DirLin - moving inside linear limits
+ // LimLin - hitting linear limit
+ // DirAng - moving inside angular limits
+ // LimAng - hitting angular limit
+ // OrthoLin, OrthoAng - against constraint axis
+ btScalar m_softnessDirLin;
+ btScalar m_restitutionDirLin;
+ btScalar m_dampingDirLin;
+ btScalar m_cfmDirLin;
+
+ btScalar m_softnessDirAng;
+ btScalar m_restitutionDirAng;
+ btScalar m_dampingDirAng;
+ btScalar m_cfmDirAng;
+
+ btScalar m_softnessLimLin;
+ btScalar m_restitutionLimLin;
+ btScalar m_dampingLimLin;
+ btScalar m_cfmLimLin;
+
+ btScalar m_softnessLimAng;
+ btScalar m_restitutionLimAng;
+ btScalar m_dampingLimAng;
+ btScalar m_cfmLimAng;
+
+ btScalar m_softnessOrthoLin;
+ btScalar m_restitutionOrthoLin;
+ btScalar m_dampingOrthoLin;
+ btScalar m_cfmOrthoLin;
+
+ btScalar m_softnessOrthoAng;
+ btScalar m_restitutionOrthoAng;
+ btScalar m_dampingOrthoAng;
+ btScalar m_cfmOrthoAng;
+
+ // for interlal use
+ bool m_solveLinLim;
+ bool m_solveAngLim;
+
+ int m_flags;
+
+ btJacobianEntry m_jacLin[3];
+ btScalar m_jacLinDiagABInv[3];
+
+ btJacobianEntry m_jacAng[3];
+
+ btScalar m_timeStep;
+ btTransform m_calculatedTransformA;
+ btTransform m_calculatedTransformB;
+
+ btVector3 m_sliderAxis;
+ btVector3 m_realPivotAInW;
+ btVector3 m_realPivotBInW;
+ btVector3 m_projPivotInW;
+ btVector3 m_delta;
+ btVector3 m_depth;
+ btVector3 m_relPosA;
+ btVector3 m_relPosB;
+
+ btScalar m_linPos;
+ btScalar m_angPos;
+
+ btScalar m_angDepth;
+ btScalar m_kAngle;
+
+ bool m_poweredLinMotor;
+ btScalar m_targetLinMotorVelocity;
+ btScalar m_maxLinMotorForce;
+ btScalar m_accumulatedLinMotorImpulse;
+
+ bool m_poweredAngMotor;
+ btScalar m_targetAngMotorVelocity;
+ btScalar m_maxAngMotorForce;
+ btScalar m_accumulatedAngMotorImpulse;
+
+ //------------------------
+ void initParams();
+public:
+ BT_DECLARE_ALIGNED_ALLOCATOR();
+
+ // constructors
+ btSliderConstraint(btRigidBody& rbA, btRigidBody& rbB, const btTransform& frameInA, const btTransform& frameInB ,bool useLinearReferenceFrameA);
+ btSliderConstraint(btRigidBody& rbB, const btTransform& frameInB, bool useLinearReferenceFrameA);
+
+ // overrides
+
+ virtual void getInfo1 (btConstraintInfo1* info);
+
+ void getInfo1NonVirtual(btConstraintInfo1* info);
+
+ virtual void getInfo2 (btConstraintInfo2* info);
+
+ void getInfo2NonVirtual(btConstraintInfo2* info, const btTransform& transA, const btTransform& transB,const btVector3& linVelA,const btVector3& linVelB, btScalar rbAinvMass,btScalar rbBinvMass);
+
+
+ // access
+ const btRigidBody& getRigidBodyA() const { return m_rbA; }
+ const btRigidBody& getRigidBodyB() const { return m_rbB; }
+ const btTransform & getCalculatedTransformA() const { return m_calculatedTransformA; }
+ const btTransform & getCalculatedTransformB() const { return m_calculatedTransformB; }
+ const btTransform & getFrameOffsetA() const { return m_frameInA; }
+ const btTransform & getFrameOffsetB() const { return m_frameInB; }
+ btTransform & getFrameOffsetA() { return m_frameInA; }
+ btTransform & getFrameOffsetB() { return m_frameInB; }
+ btScalar getLowerLinLimit() { return m_lowerLinLimit; }
+ void setLowerLinLimit(btScalar lowerLimit) { m_lowerLinLimit = lowerLimit; }
+ btScalar getUpperLinLimit() { return m_upperLinLimit; }
+ void setUpperLinLimit(btScalar upperLimit) { m_upperLinLimit = upperLimit; }
+ btScalar getLowerAngLimit() { return m_lowerAngLimit; }
+ void setLowerAngLimit(btScalar lowerLimit) { m_lowerAngLimit = btNormalizeAngle(lowerLimit); }
+ btScalar getUpperAngLimit() { return m_upperAngLimit; }
+ void setUpperAngLimit(btScalar upperLimit) { m_upperAngLimit = btNormalizeAngle(upperLimit); }
+ bool getUseLinearReferenceFrameA() { return m_useLinearReferenceFrameA; }
+ btScalar getSoftnessDirLin() { return m_softnessDirLin; }
+ btScalar getRestitutionDirLin() { return m_restitutionDirLin; }
+ btScalar getDampingDirLin() { return m_dampingDirLin ; }
+ btScalar getSoftnessDirAng() { return m_softnessDirAng; }
+ btScalar getRestitutionDirAng() { return m_restitutionDirAng; }
+ btScalar getDampingDirAng() { return m_dampingDirAng; }
+ btScalar getSoftnessLimLin() { return m_softnessLimLin; }
+ btScalar getRestitutionLimLin() { return m_restitutionLimLin; }
+ btScalar getDampingLimLin() { return m_dampingLimLin; }
+ btScalar getSoftnessLimAng() { return m_softnessLimAng; }
+ btScalar getRestitutionLimAng() { return m_restitutionLimAng; }
+ btScalar getDampingLimAng() { return m_dampingLimAng; }
+ btScalar getSoftnessOrthoLin() { return m_softnessOrthoLin; }
+ btScalar getRestitutionOrthoLin() { return m_restitutionOrthoLin; }
+ btScalar getDampingOrthoLin() { return m_dampingOrthoLin; }
+ btScalar getSoftnessOrthoAng() { return m_softnessOrthoAng; }
+ btScalar getRestitutionOrthoAng() { return m_restitutionOrthoAng; }
+ btScalar getDampingOrthoAng() { return m_dampingOrthoAng; }
+ void setSoftnessDirLin(btScalar softnessDirLin) { m_softnessDirLin = softnessDirLin; }
+ void setRestitutionDirLin(btScalar restitutionDirLin) { m_restitutionDirLin = restitutionDirLin; }
+ void setDampingDirLin(btScalar dampingDirLin) { m_dampingDirLin = dampingDirLin; }
+ void setSoftnessDirAng(btScalar softnessDirAng) { m_softnessDirAng = softnessDirAng; }
+ void setRestitutionDirAng(btScalar restitutionDirAng) { m_restitutionDirAng = restitutionDirAng; }
+ void setDampingDirAng(btScalar dampingDirAng) { m_dampingDirAng = dampingDirAng; }
+ void setSoftnessLimLin(btScalar softnessLimLin) { m_softnessLimLin = softnessLimLin; }
+ void setRestitutionLimLin(btScalar restitutionLimLin) { m_restitutionLimLin = restitutionLimLin; }
+ void setDampingLimLin(btScalar dampingLimLin) { m_dampingLimLin = dampingLimLin; }
+ void setSoftnessLimAng(btScalar softnessLimAng) { m_softnessLimAng = softnessLimAng; }
+ void setRestitutionLimAng(btScalar restitutionLimAng) { m_restitutionLimAng = restitutionLimAng; }
+ void setDampingLimAng(btScalar dampingLimAng) { m_dampingLimAng = dampingLimAng; }
+ void setSoftnessOrthoLin(btScalar softnessOrthoLin) { m_softnessOrthoLin = softnessOrthoLin; }
+ void setRestitutionOrthoLin(btScalar restitutionOrthoLin) { m_restitutionOrthoLin = restitutionOrthoLin; }
+ void setDampingOrthoLin(btScalar dampingOrthoLin) { m_dampingOrthoLin = dampingOrthoLin; }
+ void setSoftnessOrthoAng(btScalar softnessOrthoAng) { m_softnessOrthoAng = softnessOrthoAng; }
+ void setRestitutionOrthoAng(btScalar restitutionOrthoAng) { m_restitutionOrthoAng = restitutionOrthoAng; }
+ void setDampingOrthoAng(btScalar dampingOrthoAng) { m_dampingOrthoAng = dampingOrthoAng; }
+ void setPoweredLinMotor(bool onOff) { m_poweredLinMotor = onOff; }
+ bool getPoweredLinMotor() { return m_poweredLinMotor; }
+ void setTargetLinMotorVelocity(btScalar targetLinMotorVelocity) { m_targetLinMotorVelocity = targetLinMotorVelocity; }
+ btScalar getTargetLinMotorVelocity() { return m_targetLinMotorVelocity; }
+ void setMaxLinMotorForce(btScalar maxLinMotorForce) { m_maxLinMotorForce = maxLinMotorForce; }
+ btScalar getMaxLinMotorForce() { return m_maxLinMotorForce; }
+ void setPoweredAngMotor(bool onOff) { m_poweredAngMotor = onOff; }
+ bool getPoweredAngMotor() { return m_poweredAngMotor; }
+ void setTargetAngMotorVelocity(btScalar targetAngMotorVelocity) { m_targetAngMotorVelocity = targetAngMotorVelocity; }
+ btScalar getTargetAngMotorVelocity() { return m_targetAngMotorVelocity; }
+ void setMaxAngMotorForce(btScalar maxAngMotorForce) { m_maxAngMotorForce = maxAngMotorForce; }
+ btScalar getMaxAngMotorForce() { return m_maxAngMotorForce; }
+
+ btScalar getLinearPos() const { return m_linPos; }
+ btScalar getAngularPos() const { return m_angPos; }
+
+
+
+ // access for ODE solver
+ bool getSolveLinLimit() { return m_solveLinLim; }
+ btScalar getLinDepth() { return m_depth[0]; }
+ bool getSolveAngLimit() { return m_solveAngLim; }
+ btScalar getAngDepth() { return m_angDepth; }
+ // shared code used by ODE solver
+ void calculateTransforms(const btTransform& transA,const btTransform& transB);
+ void testLinLimits();
+ void testAngLimits();
+ // access for PE Solver
+ btVector3 getAncorInA();
+ btVector3 getAncorInB();
+ // access for UseFrameOffset
+ bool getUseFrameOffset() { return m_useOffsetForConstraintFrame; }
+ void setUseFrameOffset(bool frameOffsetOnOff) { m_useOffsetForConstraintFrame = frameOffsetOnOff; }
+
+ void setFrames(const btTransform& frameA, const btTransform& frameB)
+ {
+ m_frameInA=frameA;
+ m_frameInB=frameB;
+ calculateTransforms(m_rbA.getCenterOfMassTransform(),m_rbB.getCenterOfMassTransform());
+ buildJacobian();
+ }
+
+
+ ///override the default global value of a parameter (such as ERP or CFM), optionally provide the axis (0..5).
+ ///If no axis is provided, it uses the default axis for this constraint.
+ virtual void setParam(int num, btScalar value, int axis = -1);
+ ///return the local value of parameter
+ virtual btScalar getParam(int num, int axis = -1) const;
+
+ virtual int getFlags() const
+ {
+ return m_flags;
+ }
+
+ virtual int calculateSerializeBufferSize() const;
+
+ ///fills the dataBuffer and returns the struct name (and 0 on failure)
+ virtual const char* serialize(void* dataBuffer, btSerializer* serializer) const;
+
+
+};
+
+
+///do not change those serialization structures, it requires an updated sBulletDNAstr/sBulletDNAstr64
+
+
+struct btSliderConstraintData
+{
+ btTypedConstraintData m_typeConstraintData;
+ btTransformFloatData m_rbAFrame; // constraint axii. Assumes z is hinge axis.
+ btTransformFloatData m_rbBFrame;
+
+ float m_linearUpperLimit;
+ float m_linearLowerLimit;
+
+ float m_angularUpperLimit;
+ float m_angularLowerLimit;
+
+ int m_useLinearReferenceFrameA;
+ int m_useOffsetForConstraintFrame;
+
+};
+
+
+struct btSliderConstraintDoubleData
+{
+ btTypedConstraintDoubleData m_typeConstraintData;
+ btTransformDoubleData m_rbAFrame; // constraint axii. Assumes z is hinge axis.
+ btTransformDoubleData m_rbBFrame;
+
+ double m_linearUpperLimit;
+ double m_linearLowerLimit;
+
+ double m_angularUpperLimit;
+ double m_angularLowerLimit;
+
+ int m_useLinearReferenceFrameA;
+ int m_useOffsetForConstraintFrame;
+
+};
+
+SIMD_FORCE_INLINE int btSliderConstraint::calculateSerializeBufferSize() const
+{
+ return sizeof(btSliderConstraintData2);
+}
+
+ ///fills the dataBuffer and returns the struct name (and 0 on failure)
+SIMD_FORCE_INLINE const char* btSliderConstraint::serialize(void* dataBuffer, btSerializer* serializer) const
+{
+
+ btSliderConstraintData2* sliderData = (btSliderConstraintData2*) dataBuffer;
+ btTypedConstraint::serialize(&sliderData->m_typeConstraintData,serializer);
+
+ m_frameInA.serialize(sliderData->m_rbAFrame);
+ m_frameInB.serialize(sliderData->m_rbBFrame);
+
+ sliderData->m_linearUpperLimit = m_upperLinLimit;
+ sliderData->m_linearLowerLimit = m_lowerLinLimit;
+
+ sliderData->m_angularUpperLimit = m_upperAngLimit;
+ sliderData->m_angularLowerLimit = m_lowerAngLimit;
+
+ sliderData->m_useLinearReferenceFrameA = m_useLinearReferenceFrameA;
+ sliderData->m_useOffsetForConstraintFrame = m_useOffsetForConstraintFrame;
+
+ return btSliderConstraintDataName;
+}
+
+
+
+#endif //BT_SLIDER_CONSTRAINT_H
+
diff --git a/thirdparty/bullet/BulletDynamics/ConstraintSolver/btSolve2LinearConstraint.cpp b/thirdparty/bullet/BulletDynamics/ConstraintSolver/btSolve2LinearConstraint.cpp
new file mode 100644
index 0000000000..0c7dbd668b
--- /dev/null
+++ b/thirdparty/bullet/BulletDynamics/ConstraintSolver/btSolve2LinearConstraint.cpp
@@ -0,0 +1,255 @@
+/*
+Bullet Continuous Collision Detection and Physics Library
+Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
+
+This software is provided 'as-is', without any express or implied warranty.
+In no event will the authors be held liable for any damages arising from the use of this software.
+Permission is granted to anyone to use this software for any purpose,
+including commercial applications, and to alter it and redistribute it freely,
+subject to the following restrictions:
+
+1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
+2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
+3. This notice may not be removed or altered from any source distribution.
+*/
+
+
+
+#include "btSolve2LinearConstraint.h"
+
+#include "BulletDynamics/Dynamics/btRigidBody.h"
+#include "LinearMath/btVector3.h"
+#include "btJacobianEntry.h"
+
+
+void btSolve2LinearConstraint::resolveUnilateralPairConstraint(
+ btRigidBody* body1,
+ btRigidBody* body2,
+
+ const btMatrix3x3& world2A,
+ const btMatrix3x3& world2B,
+
+ const btVector3& invInertiaADiag,
+ const btScalar invMassA,
+ const btVector3& linvelA,const btVector3& angvelA,
+ const btVector3& rel_posA1,
+ const btVector3& invInertiaBDiag,
+ const btScalar invMassB,
+ const btVector3& linvelB,const btVector3& angvelB,
+ const btVector3& rel_posA2,
+
+ btScalar depthA, const btVector3& normalA,
+ const btVector3& rel_posB1,const btVector3& rel_posB2,
+ btScalar depthB, const btVector3& normalB,
+ btScalar& imp0,btScalar& imp1)
+{
+ (void)linvelA;
+ (void)linvelB;
+ (void)angvelB;
+ (void)angvelA;
+
+
+
+ imp0 = btScalar(0.);
+ imp1 = btScalar(0.);
+
+ btScalar len = btFabs(normalA.length()) - btScalar(1.);
+ if (btFabs(len) >= SIMD_EPSILON)
+ return;
+
+ btAssert(len < SIMD_EPSILON);
+
+
+ //this jacobian entry could be re-used for all iterations
+ btJacobianEntry jacA(world2A,world2B,rel_posA1,rel_posA2,normalA,invInertiaADiag,invMassA,
+ invInertiaBDiag,invMassB);
+ btJacobianEntry jacB(world2A,world2B,rel_posB1,rel_posB2,normalB,invInertiaADiag,invMassA,
+ invInertiaBDiag,invMassB);
+
+ //const btScalar vel0 = jacA.getRelativeVelocity(linvelA,angvelA,linvelB,angvelB);
+ //const btScalar vel1 = jacB.getRelativeVelocity(linvelA,angvelA,linvelB,angvelB);
+
+ const btScalar vel0 = normalA.dot(body1->getVelocityInLocalPoint(rel_posA1)-body2->getVelocityInLocalPoint(rel_posA1));
+ const btScalar vel1 = normalB.dot(body1->getVelocityInLocalPoint(rel_posB1)-body2->getVelocityInLocalPoint(rel_posB1));
+
+// btScalar penetrationImpulse = (depth*contactTau*timeCorrection) * massTerm;//jacDiagABInv
+ btScalar massTerm = btScalar(1.) / (invMassA + invMassB);
+
+
+ // calculate rhs (or error) terms
+ const btScalar dv0 = depthA * m_tau * massTerm - vel0 * m_damping;
+ const btScalar dv1 = depthB * m_tau * massTerm - vel1 * m_damping;
+
+
+ // dC/dv * dv = -C
+
+ // jacobian * impulse = -error
+ //
+
+ //impulse = jacobianInverse * -error
+
+ // inverting 2x2 symmetric system (offdiagonal are equal!)
+ //
+
+
+ btScalar nonDiag = jacA.getNonDiagonal(jacB,invMassA,invMassB);
+ btScalar invDet = btScalar(1.0) / (jacA.getDiagonal() * jacB.getDiagonal() - nonDiag * nonDiag );
+
+ //imp0 = dv0 * jacA.getDiagonal() * invDet + dv1 * -nonDiag * invDet;
+ //imp1 = dv1 * jacB.getDiagonal() * invDet + dv0 * - nonDiag * invDet;
+
+ imp0 = dv0 * jacA.getDiagonal() * invDet + dv1 * -nonDiag * invDet;
+ imp1 = dv1 * jacB.getDiagonal() * invDet + dv0 * - nonDiag * invDet;
+
+ //[a b] [d -c]
+ //[c d] inverse = (1 / determinant) * [-b a] where determinant is (ad - bc)
+
+ //[jA nD] * [imp0] = [dv0]
+ //[nD jB] [imp1] [dv1]
+
+}
+
+
+
+void btSolve2LinearConstraint::resolveBilateralPairConstraint(
+ btRigidBody* body1,
+ btRigidBody* body2,
+ const btMatrix3x3& world2A,
+ const btMatrix3x3& world2B,
+
+ const btVector3& invInertiaADiag,
+ const btScalar invMassA,
+ const btVector3& linvelA,const btVector3& angvelA,
+ const btVector3& rel_posA1,
+ const btVector3& invInertiaBDiag,
+ const btScalar invMassB,
+ const btVector3& linvelB,const btVector3& angvelB,
+ const btVector3& rel_posA2,
+
+ btScalar depthA, const btVector3& normalA,
+ const btVector3& rel_posB1,const btVector3& rel_posB2,
+ btScalar depthB, const btVector3& normalB,
+ btScalar& imp0,btScalar& imp1)
+{
+
+ (void)linvelA;
+ (void)linvelB;
+ (void)angvelA;
+ (void)angvelB;
+
+
+
+ imp0 = btScalar(0.);
+ imp1 = btScalar(0.);
+
+ btScalar len = btFabs(normalA.length()) - btScalar(1.);
+ if (btFabs(len) >= SIMD_EPSILON)
+ return;
+
+ btAssert(len < SIMD_EPSILON);
+
+
+ //this jacobian entry could be re-used for all iterations
+ btJacobianEntry jacA(world2A,world2B,rel_posA1,rel_posA2,normalA,invInertiaADiag,invMassA,
+ invInertiaBDiag,invMassB);
+ btJacobianEntry jacB(world2A,world2B,rel_posB1,rel_posB2,normalB,invInertiaADiag,invMassA,
+ invInertiaBDiag,invMassB);
+
+ //const btScalar vel0 = jacA.getRelativeVelocity(linvelA,angvelA,linvelB,angvelB);
+ //const btScalar vel1 = jacB.getRelativeVelocity(linvelA,angvelA,linvelB,angvelB);
+
+ const btScalar vel0 = normalA.dot(body1->getVelocityInLocalPoint(rel_posA1)-body2->getVelocityInLocalPoint(rel_posA1));
+ const btScalar vel1 = normalB.dot(body1->getVelocityInLocalPoint(rel_posB1)-body2->getVelocityInLocalPoint(rel_posB1));
+
+ // calculate rhs (or error) terms
+ const btScalar dv0 = depthA * m_tau - vel0 * m_damping;
+ const btScalar dv1 = depthB * m_tau - vel1 * m_damping;
+
+ // dC/dv * dv = -C
+
+ // jacobian * impulse = -error
+ //
+
+ //impulse = jacobianInverse * -error
+
+ // inverting 2x2 symmetric system (offdiagonal are equal!)
+ //
+
+
+ btScalar nonDiag = jacA.getNonDiagonal(jacB,invMassA,invMassB);
+ btScalar invDet = btScalar(1.0) / (jacA.getDiagonal() * jacB.getDiagonal() - nonDiag * nonDiag );
+
+ //imp0 = dv0 * jacA.getDiagonal() * invDet + dv1 * -nonDiag * invDet;
+ //imp1 = dv1 * jacB.getDiagonal() * invDet + dv0 * - nonDiag * invDet;
+
+ imp0 = dv0 * jacA.getDiagonal() * invDet + dv1 * -nonDiag * invDet;
+ imp1 = dv1 * jacB.getDiagonal() * invDet + dv0 * - nonDiag * invDet;
+
+ //[a b] [d -c]
+ //[c d] inverse = (1 / determinant) * [-b a] where determinant is (ad - bc)
+
+ //[jA nD] * [imp0] = [dv0]
+ //[nD jB] [imp1] [dv1]
+
+ if ( imp0 > btScalar(0.0))
+ {
+ if ( imp1 > btScalar(0.0) )
+ {
+ //both positive
+ }
+ else
+ {
+ imp1 = btScalar(0.);
+
+ // now imp0>0 imp1<0
+ imp0 = dv0 / jacA.getDiagonal();
+ if ( imp0 > btScalar(0.0) )
+ {
+ } else
+ {
+ imp0 = btScalar(0.);
+ }
+ }
+ }
+ else
+ {
+ imp0 = btScalar(0.);
+
+ imp1 = dv1 / jacB.getDiagonal();
+ if ( imp1 <= btScalar(0.0) )
+ {
+ imp1 = btScalar(0.);
+ // now imp0>0 imp1<0
+ imp0 = dv0 / jacA.getDiagonal();
+ if ( imp0 > btScalar(0.0) )
+ {
+ } else
+ {
+ imp0 = btScalar(0.);
+ }
+ } else
+ {
+ }
+ }
+}
+
+
+/*
+void btSolve2LinearConstraint::resolveAngularConstraint( const btMatrix3x3& invInertiaAWS,
+ const btScalar invMassA,
+ const btVector3& linvelA,const btVector3& angvelA,
+ const btVector3& rel_posA1,
+ const btMatrix3x3& invInertiaBWS,
+ const btScalar invMassB,
+ const btVector3& linvelB,const btVector3& angvelB,
+ const btVector3& rel_posA2,
+
+ btScalar depthA, const btVector3& normalA,
+ const btVector3& rel_posB1,const btVector3& rel_posB2,
+ btScalar depthB, const btVector3& normalB,
+ btScalar& imp0,btScalar& imp1)
+{
+
+}
+*/
+
diff --git a/thirdparty/bullet/BulletDynamics/ConstraintSolver/btSolve2LinearConstraint.h b/thirdparty/bullet/BulletDynamics/ConstraintSolver/btSolve2LinearConstraint.h
new file mode 100644
index 0000000000..e8bfabf864
--- /dev/null
+++ b/thirdparty/bullet/BulletDynamics/ConstraintSolver/btSolve2LinearConstraint.h
@@ -0,0 +1,107 @@
+/*
+Bullet Continuous Collision Detection and Physics Library
+Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
+
+This software is provided 'as-is', without any express or implied warranty.
+In no event will the authors be held liable for any damages arising from the use of this software.
+Permission is granted to anyone to use this software for any purpose,
+including commercial applications, and to alter it and redistribute it freely,
+subject to the following restrictions:
+
+1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
+2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
+3. This notice may not be removed or altered from any source distribution.
+*/
+
+#ifndef BT_SOLVE_2LINEAR_CONSTRAINT_H
+#define BT_SOLVE_2LINEAR_CONSTRAINT_H
+
+#include "LinearMath/btMatrix3x3.h"
+#include "LinearMath/btVector3.h"
+
+
+class btRigidBody;
+
+
+
+/// constraint class used for lateral tyre friction.
+class btSolve2LinearConstraint
+{
+ btScalar m_tau;
+ btScalar m_damping;
+
+public:
+
+ btSolve2LinearConstraint(btScalar tau,btScalar damping)
+ {
+ m_tau = tau;
+ m_damping = damping;
+ }
+ //
+ // solve unilateral constraint (equality, direct method)
+ //
+ void resolveUnilateralPairConstraint(
+ btRigidBody* body0,
+ btRigidBody* body1,
+
+ const btMatrix3x3& world2A,
+ const btMatrix3x3& world2B,
+
+ const btVector3& invInertiaADiag,
+ const btScalar invMassA,
+ const btVector3& linvelA,const btVector3& angvelA,
+ const btVector3& rel_posA1,
+ const btVector3& invInertiaBDiag,
+ const btScalar invMassB,
+ const btVector3& linvelB,const btVector3& angvelB,
+ const btVector3& rel_posA2,
+
+ btScalar depthA, const btVector3& normalA,
+ const btVector3& rel_posB1,const btVector3& rel_posB2,
+ btScalar depthB, const btVector3& normalB,
+ btScalar& imp0,btScalar& imp1);
+
+
+ //
+ // solving 2x2 lcp problem (inequality, direct solution )
+ //
+ void resolveBilateralPairConstraint(
+ btRigidBody* body0,
+ btRigidBody* body1,
+ const btMatrix3x3& world2A,
+ const btMatrix3x3& world2B,
+
+ const btVector3& invInertiaADiag,
+ const btScalar invMassA,
+ const btVector3& linvelA,const btVector3& angvelA,
+ const btVector3& rel_posA1,
+ const btVector3& invInertiaBDiag,
+ const btScalar invMassB,
+ const btVector3& linvelB,const btVector3& angvelB,
+ const btVector3& rel_posA2,
+
+ btScalar depthA, const btVector3& normalA,
+ const btVector3& rel_posB1,const btVector3& rel_posB2,
+ btScalar depthB, const btVector3& normalB,
+ btScalar& imp0,btScalar& imp1);
+
+/*
+ void resolveAngularConstraint( const btMatrix3x3& invInertiaAWS,
+ const btScalar invMassA,
+ const btVector3& linvelA,const btVector3& angvelA,
+ const btVector3& rel_posA1,
+ const btMatrix3x3& invInertiaBWS,
+ const btScalar invMassB,
+ const btVector3& linvelB,const btVector3& angvelB,
+ const btVector3& rel_posA2,
+
+ btScalar depthA, const btVector3& normalA,
+ const btVector3& rel_posB1,const btVector3& rel_posB2,
+ btScalar depthB, const btVector3& normalB,
+ btScalar& imp0,btScalar& imp1);
+
+*/
+
+};
+
+#endif //BT_SOLVE_2LINEAR_CONSTRAINT_H
diff --git a/thirdparty/bullet/BulletDynamics/ConstraintSolver/btSolverBody.h b/thirdparty/bullet/BulletDynamics/ConstraintSolver/btSolverBody.h
new file mode 100644
index 0000000000..27ccefe416
--- /dev/null
+++ b/thirdparty/bullet/BulletDynamics/ConstraintSolver/btSolverBody.h
@@ -0,0 +1,306 @@
+/*
+Bullet Continuous Collision Detection and Physics Library
+Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
+
+This software is provided 'as-is', without any express or implied warranty.
+In no event will the authors be held liable for any damages arising from the use of this software.
+Permission is granted to anyone to use this software for any purpose,
+including commercial applications, and to alter it and redistribute it freely,
+subject to the following restrictions:
+
+1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
+2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
+3. This notice may not be removed or altered from any source distribution.
+*/
+
+#ifndef BT_SOLVER_BODY_H
+#define BT_SOLVER_BODY_H
+
+class btRigidBody;
+#include "LinearMath/btVector3.h"
+#include "LinearMath/btMatrix3x3.h"
+
+#include "LinearMath/btAlignedAllocator.h"
+#include "LinearMath/btTransformUtil.h"
+
+///Until we get other contributions, only use SIMD on Windows, when using Visual Studio 2008 or later, and not double precision
+#ifdef BT_USE_SSE
+#define USE_SIMD 1
+#endif //
+
+
+#ifdef USE_SIMD
+
+struct btSimdScalar
+{
+ SIMD_FORCE_INLINE btSimdScalar()
+ {
+
+ }
+
+ SIMD_FORCE_INLINE btSimdScalar(float fl)
+ :m_vec128 (_mm_set1_ps(fl))
+ {
+ }
+
+ SIMD_FORCE_INLINE btSimdScalar(__m128 v128)
+ :m_vec128(v128)
+ {
+ }
+ union
+ {
+ __m128 m_vec128;
+ float m_floats[4];
+ int m_ints[4];
+ btScalar m_unusedPadding;
+ };
+ SIMD_FORCE_INLINE __m128 get128()
+ {
+ return m_vec128;
+ }
+
+ SIMD_FORCE_INLINE const __m128 get128() const
+ {
+ return m_vec128;
+ }
+
+ SIMD_FORCE_INLINE void set128(__m128 v128)
+ {
+ m_vec128 = v128;
+ }
+
+ SIMD_FORCE_INLINE operator __m128()
+ {
+ return m_vec128;
+ }
+ SIMD_FORCE_INLINE operator const __m128() const
+ {
+ return m_vec128;
+ }
+
+ SIMD_FORCE_INLINE operator float() const
+ {
+ return m_floats[0];
+ }
+
+};
+
+///@brief Return the elementwise product of two btSimdScalar
+SIMD_FORCE_INLINE btSimdScalar
+operator*(const btSimdScalar& v1, const btSimdScalar& v2)
+{
+ return btSimdScalar(_mm_mul_ps(v1.get128(),v2.get128()));
+}
+
+///@brief Return the elementwise product of two btSimdScalar
+SIMD_FORCE_INLINE btSimdScalar
+operator+(const btSimdScalar& v1, const btSimdScalar& v2)
+{
+ return btSimdScalar(_mm_add_ps(v1.get128(),v2.get128()));
+}
+
+
+#else
+#define btSimdScalar btScalar
+#endif
+
+///The btSolverBody is an internal datastructure for the constraint solver. Only necessary data is packed to increase cache coherence/performance.
+ATTRIBUTE_ALIGNED16 (struct) btSolverBody
+{
+ BT_DECLARE_ALIGNED_ALLOCATOR();
+ btTransform m_worldTransform;
+ btVector3 m_deltaLinearVelocity;
+ btVector3 m_deltaAngularVelocity;
+ btVector3 m_angularFactor;
+ btVector3 m_linearFactor;
+ btVector3 m_invMass;
+ btVector3 m_pushVelocity;
+ btVector3 m_turnVelocity;
+ btVector3 m_linearVelocity;
+ btVector3 m_angularVelocity;
+ btVector3 m_externalForceImpulse;
+ btVector3 m_externalTorqueImpulse;
+
+ btRigidBody* m_originalBody;
+ void setWorldTransform(const btTransform& worldTransform)
+ {
+ m_worldTransform = worldTransform;
+ }
+
+ const btTransform& getWorldTransform() const
+ {
+ return m_worldTransform;
+ }
+
+
+
+ SIMD_FORCE_INLINE void getVelocityInLocalPointNoDelta(const btVector3& rel_pos, btVector3& velocity ) const
+ {
+ if (m_originalBody)
+ velocity = m_linearVelocity + m_externalForceImpulse + (m_angularVelocity+m_externalTorqueImpulse).cross(rel_pos);
+ else
+ velocity.setValue(0,0,0);
+ }
+
+
+ SIMD_FORCE_INLINE void getVelocityInLocalPointObsolete(const btVector3& rel_pos, btVector3& velocity ) const
+ {
+ if (m_originalBody)
+ velocity = m_linearVelocity+m_deltaLinearVelocity + (m_angularVelocity+m_deltaAngularVelocity).cross(rel_pos);
+ else
+ velocity.setValue(0,0,0);
+ }
+
+ SIMD_FORCE_INLINE void getAngularVelocity(btVector3& angVel) const
+ {
+ if (m_originalBody)
+ angVel =m_angularVelocity+m_deltaAngularVelocity;
+ else
+ angVel.setValue(0,0,0);
+ }
+
+
+ //Optimization for the iterative solver: avoid calculating constant terms involving inertia, normal, relative position
+ SIMD_FORCE_INLINE void applyImpulse(const btVector3& linearComponent, const btVector3& angularComponent,const btScalar impulseMagnitude)
+ {
+ if (m_originalBody)
+ {
+ m_deltaLinearVelocity += linearComponent*impulseMagnitude*m_linearFactor;
+ m_deltaAngularVelocity += angularComponent*(impulseMagnitude*m_angularFactor);
+ }
+ }
+
+ SIMD_FORCE_INLINE void internalApplyPushImpulse(const btVector3& linearComponent, const btVector3& angularComponent,btScalar impulseMagnitude)
+ {
+ if (m_originalBody)
+ {
+ m_pushVelocity += linearComponent*impulseMagnitude*m_linearFactor;
+ m_turnVelocity += angularComponent*(impulseMagnitude*m_angularFactor);
+ }
+ }
+
+
+
+ const btVector3& getDeltaLinearVelocity() const
+ {
+ return m_deltaLinearVelocity;
+ }
+
+ const btVector3& getDeltaAngularVelocity() const
+ {
+ return m_deltaAngularVelocity;
+ }
+
+ const btVector3& getPushVelocity() const
+ {
+ return m_pushVelocity;
+ }
+
+ const btVector3& getTurnVelocity() const
+ {
+ return m_turnVelocity;
+ }
+
+
+ ////////////////////////////////////////////////
+ ///some internal methods, don't use them
+
+ btVector3& internalGetDeltaLinearVelocity()
+ {
+ return m_deltaLinearVelocity;
+ }
+
+ btVector3& internalGetDeltaAngularVelocity()
+ {
+ return m_deltaAngularVelocity;
+ }
+
+ const btVector3& internalGetAngularFactor() const
+ {
+ return m_angularFactor;
+ }
+
+ const btVector3& internalGetInvMass() const
+ {
+ return m_invMass;
+ }
+
+ void internalSetInvMass(const btVector3& invMass)
+ {
+ m_invMass = invMass;
+ }
+
+ btVector3& internalGetPushVelocity()
+ {
+ return m_pushVelocity;
+ }
+
+ btVector3& internalGetTurnVelocity()
+ {
+ return m_turnVelocity;
+ }
+
+ SIMD_FORCE_INLINE void internalGetVelocityInLocalPointObsolete(const btVector3& rel_pos, btVector3& velocity ) const
+ {
+ velocity = m_linearVelocity+m_deltaLinearVelocity + (m_angularVelocity+m_deltaAngularVelocity).cross(rel_pos);
+ }
+
+ SIMD_FORCE_INLINE void internalGetAngularVelocity(btVector3& angVel) const
+ {
+ angVel = m_angularVelocity+m_deltaAngularVelocity;
+ }
+
+
+ //Optimization for the iterative solver: avoid calculating constant terms involving inertia, normal, relative position
+ SIMD_FORCE_INLINE void internalApplyImpulse(const btVector3& linearComponent, const btVector3& angularComponent,const btScalar impulseMagnitude)
+ {
+ if (m_originalBody)
+ {
+ m_deltaLinearVelocity += linearComponent*impulseMagnitude*m_linearFactor;
+ m_deltaAngularVelocity += angularComponent*(impulseMagnitude*m_angularFactor);
+ }
+ }
+
+
+
+
+ void writebackVelocity()
+ {
+ if (m_originalBody)
+ {
+ m_linearVelocity +=m_deltaLinearVelocity;
+ m_angularVelocity += m_deltaAngularVelocity;
+
+ //m_originalBody->setCompanionId(-1);
+ }
+ }
+
+
+ void writebackVelocityAndTransform(btScalar timeStep, btScalar splitImpulseTurnErp)
+ {
+ (void) timeStep;
+ if (m_originalBody)
+ {
+ m_linearVelocity += m_deltaLinearVelocity;
+ m_angularVelocity += m_deltaAngularVelocity;
+
+ //correct the position/orientation based on push/turn recovery
+ btTransform newTransform;
+ if (m_pushVelocity[0]!=0.f || m_pushVelocity[1]!=0 || m_pushVelocity[2]!=0 || m_turnVelocity[0]!=0.f || m_turnVelocity[1]!=0 || m_turnVelocity[2]!=0)
+ {
+ // btQuaternion orn = m_worldTransform.getRotation();
+ btTransformUtil::integrateTransform(m_worldTransform,m_pushVelocity,m_turnVelocity*splitImpulseTurnErp,timeStep,newTransform);
+ m_worldTransform = newTransform;
+ }
+ //m_worldTransform.setRotation(orn);
+ //m_originalBody->setCompanionId(-1);
+ }
+ }
+
+
+
+};
+
+#endif //BT_SOLVER_BODY_H
+
+
diff --git a/thirdparty/bullet/BulletDynamics/ConstraintSolver/btSolverConstraint.h b/thirdparty/bullet/BulletDynamics/ConstraintSolver/btSolverConstraint.h
new file mode 100644
index 0000000000..5515e6b311
--- /dev/null
+++ b/thirdparty/bullet/BulletDynamics/ConstraintSolver/btSolverConstraint.h
@@ -0,0 +1,80 @@
+/*
+Bullet Continuous Collision Detection and Physics Library
+Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
+
+This software is provided 'as-is', without any express or implied warranty.
+In no event will the authors be held liable for any damages arising from the use of this software.
+Permission is granted to anyone to use this software for any purpose,
+including commercial applications, and to alter it and redistribute it freely,
+subject to the following restrictions:
+
+1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
+2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
+3. This notice may not be removed or altered from any source distribution.
+*/
+
+#ifndef BT_SOLVER_CONSTRAINT_H
+#define BT_SOLVER_CONSTRAINT_H
+
+class btRigidBody;
+#include "LinearMath/btVector3.h"
+#include "LinearMath/btMatrix3x3.h"
+#include "btJacobianEntry.h"
+#include "LinearMath/btAlignedObjectArray.h"
+
+//#define NO_FRICTION_TANGENTIALS 1
+#include "btSolverBody.h"
+
+
+///1D constraint along a normal axis between bodyA and bodyB. It can be combined to solve contact and friction constraints.
+ATTRIBUTE_ALIGNED16 (struct) btSolverConstraint
+{
+ BT_DECLARE_ALIGNED_ALLOCATOR();
+
+ btVector3 m_relpos1CrossNormal;
+ btVector3 m_contactNormal1;
+
+ btVector3 m_relpos2CrossNormal;
+ btVector3 m_contactNormal2; //usually m_contactNormal2 == -m_contactNormal1, but not always
+
+ btVector3 m_angularComponentA;
+ btVector3 m_angularComponentB;
+
+ mutable btSimdScalar m_appliedPushImpulse;
+ mutable btSimdScalar m_appliedImpulse;
+
+ btScalar m_friction;
+ btScalar m_jacDiagABInv;
+ btScalar m_rhs;
+ btScalar m_cfm;
+
+ btScalar m_lowerLimit;
+ btScalar m_upperLimit;
+ btScalar m_rhsPenetration;
+ union
+ {
+ void* m_originalContactPoint;
+ btScalar m_unusedPadding4;
+ int m_numRowsForNonContactConstraint;
+ };
+
+ int m_overrideNumSolverIterations;
+ int m_frictionIndex;
+ int m_solverBodyIdA;
+ int m_solverBodyIdB;
+
+
+ enum btSolverConstraintType
+ {
+ BT_SOLVER_CONTACT_1D = 0,
+ BT_SOLVER_FRICTION_1D
+ };
+};
+
+typedef btAlignedObjectArray<btSolverConstraint> btConstraintArray;
+
+
+#endif //BT_SOLVER_CONSTRAINT_H
+
+
+
diff --git a/thirdparty/bullet/BulletDynamics/ConstraintSolver/btTypedConstraint.cpp b/thirdparty/bullet/BulletDynamics/ConstraintSolver/btTypedConstraint.cpp
new file mode 100644
index 0000000000..9f04f28053
--- /dev/null
+++ b/thirdparty/bullet/BulletDynamics/ConstraintSolver/btTypedConstraint.cpp
@@ -0,0 +1,222 @@
+/*
+Bullet Continuous Collision Detection and Physics Library
+Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
+
+This software is provided 'as-is', without any express or implied warranty.
+In no event will the authors be held liable for any damages arising from the use of this software.
+Permission is granted to anyone to use this software for any purpose,
+including commercial applications, and to alter it and redistribute it freely,
+subject to the following restrictions:
+
+1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
+2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
+3. This notice may not be removed or altered from any source distribution.
+*/
+
+
+#include "btTypedConstraint.h"
+#include "BulletDynamics/Dynamics/btRigidBody.h"
+#include "LinearMath/btSerializer.h"
+
+
+#define DEFAULT_DEBUGDRAW_SIZE btScalar(0.05f)
+
+btTypedConstraint::btTypedConstraint(btTypedConstraintType type, btRigidBody& rbA)
+:btTypedObject(type),
+m_userConstraintType(-1),
+m_userConstraintPtr((void*)-1),
+m_breakingImpulseThreshold(SIMD_INFINITY),
+m_isEnabled(true),
+m_needsFeedback(false),
+m_overrideNumSolverIterations(-1),
+m_rbA(rbA),
+m_rbB(getFixedBody()),
+m_appliedImpulse(btScalar(0.)),
+m_dbgDrawSize(DEFAULT_DEBUGDRAW_SIZE),
+m_jointFeedback(0)
+{
+}
+
+
+btTypedConstraint::btTypedConstraint(btTypedConstraintType type, btRigidBody& rbA,btRigidBody& rbB)
+:btTypedObject(type),
+m_userConstraintType(-1),
+m_userConstraintPtr((void*)-1),
+m_breakingImpulseThreshold(SIMD_INFINITY),
+m_isEnabled(true),
+m_needsFeedback(false),
+m_overrideNumSolverIterations(-1),
+m_rbA(rbA),
+m_rbB(rbB),
+m_appliedImpulse(btScalar(0.)),
+m_dbgDrawSize(DEFAULT_DEBUGDRAW_SIZE),
+m_jointFeedback(0)
+{
+}
+
+
+
+
+btScalar btTypedConstraint::getMotorFactor(btScalar pos, btScalar lowLim, btScalar uppLim, btScalar vel, btScalar timeFact)
+{
+ if(lowLim > uppLim)
+ {
+ return btScalar(1.0f);
+ }
+ else if(lowLim == uppLim)
+ {
+ return btScalar(0.0f);
+ }
+ btScalar lim_fact = btScalar(1.0f);
+ btScalar delta_max = vel / timeFact;
+ if(delta_max < btScalar(0.0f))
+ {
+ if((pos >= lowLim) && (pos < (lowLim - delta_max)))
+ {
+ lim_fact = (lowLim - pos) / delta_max;
+ }
+ else if(pos < lowLim)
+ {
+ lim_fact = btScalar(0.0f);
+ }
+ else
+ {
+ lim_fact = btScalar(1.0f);
+ }
+ }
+ else if(delta_max > btScalar(0.0f))
+ {
+ if((pos <= uppLim) && (pos > (uppLim - delta_max)))
+ {
+ lim_fact = (uppLim - pos) / delta_max;
+ }
+ else if(pos > uppLim)
+ {
+ lim_fact = btScalar(0.0f);
+ }
+ else
+ {
+ lim_fact = btScalar(1.0f);
+ }
+ }
+ else
+ {
+ lim_fact = btScalar(0.0f);
+ }
+ return lim_fact;
+}
+
+///fills the dataBuffer and returns the struct name (and 0 on failure)
+const char* btTypedConstraint::serialize(void* dataBuffer, btSerializer* serializer) const
+{
+ btTypedConstraintData2* tcd = (btTypedConstraintData2*) dataBuffer;
+
+ tcd->m_rbA = (btRigidBodyData*)serializer->getUniquePointer(&m_rbA);
+ tcd->m_rbB = (btRigidBodyData*)serializer->getUniquePointer(&m_rbB);
+ char* name = (char*) serializer->findNameForPointer(this);
+ tcd->m_name = (char*)serializer->getUniquePointer(name);
+ if (tcd->m_name)
+ {
+ serializer->serializeName(name);
+ }
+
+ tcd->m_objectType = m_objectType;
+ tcd->m_needsFeedback = m_needsFeedback;
+ tcd->m_overrideNumSolverIterations = m_overrideNumSolverIterations;
+ tcd->m_breakingImpulseThreshold = m_breakingImpulseThreshold;
+ tcd->m_isEnabled = m_isEnabled? 1: 0;
+
+ tcd->m_userConstraintId =m_userConstraintId;
+ tcd->m_userConstraintType =m_userConstraintType;
+
+ tcd->m_appliedImpulse = m_appliedImpulse;
+ tcd->m_dbgDrawSize = m_dbgDrawSize;
+
+ tcd->m_disableCollisionsBetweenLinkedBodies = false;
+
+ int i;
+ for (i=0;i<m_rbA.getNumConstraintRefs();i++)
+ if (m_rbA.getConstraintRef(i) == this)
+ tcd->m_disableCollisionsBetweenLinkedBodies = true;
+ for (i=0;i<m_rbB.getNumConstraintRefs();i++)
+ if (m_rbB.getConstraintRef(i) == this)
+ tcd->m_disableCollisionsBetweenLinkedBodies = true;
+
+ return btTypedConstraintDataName;
+}
+
+btRigidBody& btTypedConstraint::getFixedBody()
+{
+ static btRigidBody s_fixed(0, 0,0);
+ s_fixed.setMassProps(btScalar(0.),btVector3(btScalar(0.),btScalar(0.),btScalar(0.)));
+ return s_fixed;
+}
+
+
+void btAngularLimit::set(btScalar low, btScalar high, btScalar _softness, btScalar _biasFactor, btScalar _relaxationFactor)
+{
+ m_halfRange = (high - low) / 2.0f;
+ m_center = btNormalizeAngle(low + m_halfRange);
+ m_softness = _softness;
+ m_biasFactor = _biasFactor;
+ m_relaxationFactor = _relaxationFactor;
+}
+
+void btAngularLimit::test(const btScalar angle)
+{
+ m_correction = 0.0f;
+ m_sign = 0.0f;
+ m_solveLimit = false;
+
+ if (m_halfRange >= 0.0f)
+ {
+ btScalar deviation = btNormalizeAngle(angle - m_center);
+ if (deviation < -m_halfRange)
+ {
+ m_solveLimit = true;
+ m_correction = - (deviation + m_halfRange);
+ m_sign = +1.0f;
+ }
+ else if (deviation > m_halfRange)
+ {
+ m_solveLimit = true;
+ m_correction = m_halfRange - deviation;
+ m_sign = -1.0f;
+ }
+ }
+}
+
+
+btScalar btAngularLimit::getError() const
+{
+ return m_correction * m_sign;
+}
+
+void btAngularLimit::fit(btScalar& angle) const
+{
+ if (m_halfRange > 0.0f)
+ {
+ btScalar relativeAngle = btNormalizeAngle(angle - m_center);
+ if (!btEqual(relativeAngle, m_halfRange))
+ {
+ if (relativeAngle > 0.0f)
+ {
+ angle = getHigh();
+ }
+ else
+ {
+ angle = getLow();
+ }
+ }
+ }
+}
+
+btScalar btAngularLimit::getLow() const
+{
+ return btNormalizeAngle(m_center - m_halfRange);
+}
+
+btScalar btAngularLimit::getHigh() const
+{
+ return btNormalizeAngle(m_center + m_halfRange);
+}
diff --git a/thirdparty/bullet/BulletDynamics/ConstraintSolver/btTypedConstraint.h b/thirdparty/bullet/BulletDynamics/ConstraintSolver/btTypedConstraint.h
new file mode 100644
index 0000000000..8a2a2d1ae7
--- /dev/null
+++ b/thirdparty/bullet/BulletDynamics/ConstraintSolver/btTypedConstraint.h
@@ -0,0 +1,541 @@
+/*
+Bullet Continuous Collision Detection and Physics Library
+Copyright (c) 2003-2010 Erwin Coumans http://continuousphysics.com/Bullet/
+
+This software is provided 'as-is', without any express or implied warranty.
+In no event will the authors be held liable for any damages arising from the use of this software.
+Permission is granted to anyone to use this software for any purpose,
+including commercial applications, and to alter it and redistribute it freely,
+subject to the following restrictions:
+
+1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
+2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
+3. This notice may not be removed or altered from any source distribution.
+*/
+
+#ifndef BT_TYPED_CONSTRAINT_H
+#define BT_TYPED_CONSTRAINT_H
+
+
+#include "LinearMath/btScalar.h"
+#include "btSolverConstraint.h"
+#include "BulletDynamics/Dynamics/btRigidBody.h"
+
+#ifdef BT_USE_DOUBLE_PRECISION
+#define btTypedConstraintData2 btTypedConstraintDoubleData
+#define btTypedConstraintDataName "btTypedConstraintDoubleData"
+#else
+#define btTypedConstraintData2 btTypedConstraintFloatData
+#define btTypedConstraintDataName "btTypedConstraintFloatData"
+#endif //BT_USE_DOUBLE_PRECISION
+
+
+class btSerializer;
+
+//Don't change any of the existing enum values, so add enum types at the end for serialization compatibility
+enum btTypedConstraintType
+{
+ POINT2POINT_CONSTRAINT_TYPE=3,
+ HINGE_CONSTRAINT_TYPE,
+ CONETWIST_CONSTRAINT_TYPE,
+ D6_CONSTRAINT_TYPE,
+ SLIDER_CONSTRAINT_TYPE,
+ CONTACT_CONSTRAINT_TYPE,
+ D6_SPRING_CONSTRAINT_TYPE,
+ GEAR_CONSTRAINT_TYPE,
+ FIXED_CONSTRAINT_TYPE,
+ D6_SPRING_2_CONSTRAINT_TYPE,
+ MAX_CONSTRAINT_TYPE
+};
+
+
+enum btConstraintParams
+{
+ BT_CONSTRAINT_ERP=1,
+ BT_CONSTRAINT_STOP_ERP,
+ BT_CONSTRAINT_CFM,
+ BT_CONSTRAINT_STOP_CFM
+};
+
+#if 1
+ #define btAssertConstrParams(_par) btAssert(_par)
+#else
+ #define btAssertConstrParams(_par)
+#endif
+
+
+ATTRIBUTE_ALIGNED16(struct) btJointFeedback
+{
+ BT_DECLARE_ALIGNED_ALLOCATOR();
+ btVector3 m_appliedForceBodyA;
+ btVector3 m_appliedTorqueBodyA;
+ btVector3 m_appliedForceBodyB;
+ btVector3 m_appliedTorqueBodyB;
+};
+
+
+///TypedConstraint is the baseclass for Bullet constraints and vehicles
+ATTRIBUTE_ALIGNED16(class) btTypedConstraint : public btTypedObject
+{
+ int m_userConstraintType;
+
+ union
+ {
+ int m_userConstraintId;
+ void* m_userConstraintPtr;
+ };
+
+ btScalar m_breakingImpulseThreshold;
+ bool m_isEnabled;
+ bool m_needsFeedback;
+ int m_overrideNumSolverIterations;
+
+
+ btTypedConstraint& operator=(btTypedConstraint& other)
+ {
+ btAssert(0);
+ (void) other;
+ return *this;
+ }
+
+protected:
+ btRigidBody& m_rbA;
+ btRigidBody& m_rbB;
+ btScalar m_appliedImpulse;
+ btScalar m_dbgDrawSize;
+ btJointFeedback* m_jointFeedback;
+
+ ///internal method used by the constraint solver, don't use them directly
+ btScalar getMotorFactor(btScalar pos, btScalar lowLim, btScalar uppLim, btScalar vel, btScalar timeFact);
+
+
+public:
+
+ BT_DECLARE_ALIGNED_ALLOCATOR();
+
+ virtual ~btTypedConstraint() {};
+ btTypedConstraint(btTypedConstraintType type, btRigidBody& rbA);
+ btTypedConstraint(btTypedConstraintType type, btRigidBody& rbA,btRigidBody& rbB);
+
+ struct btConstraintInfo1 {
+ int m_numConstraintRows,nub;
+ };
+
+ static btRigidBody& getFixedBody();
+
+ struct btConstraintInfo2 {
+ // integrator parameters: frames per second (1/stepsize), default error
+ // reduction parameter (0..1).
+ btScalar fps,erp;
+
+ // for the first and second body, pointers to two (linear and angular)
+ // n*3 jacobian sub matrices, stored by rows. these matrices will have
+ // been initialized to 0 on entry. if the second body is zero then the
+ // J2xx pointers may be 0.
+ btScalar *m_J1linearAxis,*m_J1angularAxis,*m_J2linearAxis,*m_J2angularAxis;
+
+ // elements to jump from one row to the next in J's
+ int rowskip;
+
+ // right hand sides of the equation J*v = c + cfm * lambda. cfm is the
+ // "constraint force mixing" vector. c is set to zero on entry, cfm is
+ // set to a constant value (typically very small or zero) value on entry.
+ btScalar *m_constraintError,*cfm;
+
+ // lo and hi limits for variables (set to -/+ infinity on entry).
+ btScalar *m_lowerLimit,*m_upperLimit;
+
+ // number of solver iterations
+ int m_numIterations;
+
+ //damping of the velocity
+ btScalar m_damping;
+ };
+
+ int getOverrideNumSolverIterations() const
+ {
+ return m_overrideNumSolverIterations;
+ }
+
+ ///override the number of constraint solver iterations used to solve this constraint
+ ///-1 will use the default number of iterations, as specified in SolverInfo.m_numIterations
+ void setOverrideNumSolverIterations(int overideNumIterations)
+ {
+ m_overrideNumSolverIterations = overideNumIterations;
+ }
+
+ ///internal method used by the constraint solver, don't use them directly
+ virtual void buildJacobian() {};
+
+ ///internal method used by the constraint solver, don't use them directly
+ virtual void setupSolverConstraint(btConstraintArray& ca, int solverBodyA,int solverBodyB, btScalar timeStep)
+ {
+ (void)ca;
+ (void)solverBodyA;
+ (void)solverBodyB;
+ (void)timeStep;
+ }
+
+ ///internal method used by the constraint solver, don't use them directly
+ virtual void getInfo1 (btConstraintInfo1* info)=0;
+
+ ///internal method used by the constraint solver, don't use them directly
+ virtual void getInfo2 (btConstraintInfo2* info)=0;
+
+ ///internal method used by the constraint solver, don't use them directly
+ void internalSetAppliedImpulse(btScalar appliedImpulse)
+ {
+ m_appliedImpulse = appliedImpulse;
+ }
+ ///internal method used by the constraint solver, don't use them directly
+ btScalar internalGetAppliedImpulse()
+ {
+ return m_appliedImpulse;
+ }
+
+
+ btScalar getBreakingImpulseThreshold() const
+ {
+ return m_breakingImpulseThreshold;
+ }
+
+ void setBreakingImpulseThreshold(btScalar threshold)
+ {
+ m_breakingImpulseThreshold = threshold;
+ }
+
+ bool isEnabled() const
+ {
+ return m_isEnabled;
+ }
+
+ void setEnabled(bool enabled)
+ {
+ m_isEnabled=enabled;
+ }
+
+
+ ///internal method used by the constraint solver, don't use them directly
+ virtual void solveConstraintObsolete(btSolverBody& /*bodyA*/,btSolverBody& /*bodyB*/,btScalar /*timeStep*/) {};
+
+
+ const btRigidBody& getRigidBodyA() const
+ {
+ return m_rbA;
+ }
+ const btRigidBody& getRigidBodyB() const
+ {
+ return m_rbB;
+ }
+
+ btRigidBody& getRigidBodyA()
+ {
+ return m_rbA;
+ }
+ btRigidBody& getRigidBodyB()
+ {
+ return m_rbB;
+ }
+
+ int getUserConstraintType() const
+ {
+ return m_userConstraintType ;
+ }
+
+ void setUserConstraintType(int userConstraintType)
+ {
+ m_userConstraintType = userConstraintType;
+ };
+
+ void setUserConstraintId(int uid)
+ {
+ m_userConstraintId = uid;
+ }
+
+ int getUserConstraintId() const
+ {
+ return m_userConstraintId;
+ }
+
+ void setUserConstraintPtr(void* ptr)
+ {
+ m_userConstraintPtr = ptr;
+ }
+
+ void* getUserConstraintPtr()
+ {
+ return m_userConstraintPtr;
+ }
+
+ void setJointFeedback(btJointFeedback* jointFeedback)
+ {
+ m_jointFeedback = jointFeedback;
+ }
+
+ const btJointFeedback* getJointFeedback() const
+ {
+ return m_jointFeedback;
+ }
+
+ btJointFeedback* getJointFeedback()
+ {
+ return m_jointFeedback;
+ }
+
+
+ int getUid() const
+ {
+ return m_userConstraintId;
+ }
+
+ bool needsFeedback() const
+ {
+ return m_needsFeedback;
+ }
+
+ ///enableFeedback will allow to read the applied linear and angular impulse
+ ///use getAppliedImpulse, getAppliedLinearImpulse and getAppliedAngularImpulse to read feedback information
+ void enableFeedback(bool needsFeedback)
+ {
+ m_needsFeedback = needsFeedback;
+ }
+
+ ///getAppliedImpulse is an estimated total applied impulse.
+ ///This feedback could be used to determine breaking constraints or playing sounds.
+ btScalar getAppliedImpulse() const
+ {
+ btAssert(m_needsFeedback);
+ return m_appliedImpulse;
+ }
+
+ btTypedConstraintType getConstraintType () const
+ {
+ return btTypedConstraintType(m_objectType);
+ }
+
+ void setDbgDrawSize(btScalar dbgDrawSize)
+ {
+ m_dbgDrawSize = dbgDrawSize;
+ }
+ btScalar getDbgDrawSize()
+ {
+ return m_dbgDrawSize;
+ }
+
+ ///override the default global value of a parameter (such as ERP or CFM), optionally provide the axis (0..5).
+ ///If no axis is provided, it uses the default axis for this constraint.
+ virtual void setParam(int num, btScalar value, int axis = -1) = 0;
+
+ ///return the local value of parameter
+ virtual btScalar getParam(int num, int axis = -1) const = 0;
+
+ virtual int calculateSerializeBufferSize() const;
+
+ ///fills the dataBuffer and returns the struct name (and 0 on failure)
+ virtual const char* serialize(void* dataBuffer, btSerializer* serializer) const;
+
+};
+
+// returns angle in range [-SIMD_2_PI, SIMD_2_PI], closest to one of the limits
+// all arguments should be normalized angles (i.e. in range [-SIMD_PI, SIMD_PI])
+SIMD_FORCE_INLINE btScalar btAdjustAngleToLimits(btScalar angleInRadians, btScalar angleLowerLimitInRadians, btScalar angleUpperLimitInRadians)
+{
+ if(angleLowerLimitInRadians >= angleUpperLimitInRadians)
+ {
+ return angleInRadians;
+ }
+ else if(angleInRadians < angleLowerLimitInRadians)
+ {
+ btScalar diffLo = btFabs(btNormalizeAngle(angleLowerLimitInRadians - angleInRadians));
+ btScalar diffHi = btFabs(btNormalizeAngle(angleUpperLimitInRadians - angleInRadians));
+ return (diffLo < diffHi) ? angleInRadians : (angleInRadians + SIMD_2_PI);
+ }
+ else if(angleInRadians > angleUpperLimitInRadians)
+ {
+ btScalar diffHi = btFabs(btNormalizeAngle(angleInRadians - angleUpperLimitInRadians));
+ btScalar diffLo = btFabs(btNormalizeAngle(angleInRadians - angleLowerLimitInRadians));
+ return (diffLo < diffHi) ? (angleInRadians - SIMD_2_PI) : angleInRadians;
+ }
+ else
+ {
+ return angleInRadians;
+ }
+}
+
+///do not change those serialization structures, it requires an updated sBulletDNAstr/sBulletDNAstr64
+struct btTypedConstraintFloatData
+{
+ btRigidBodyFloatData *m_rbA;
+ btRigidBodyFloatData *m_rbB;
+ char *m_name;
+
+ int m_objectType;
+ int m_userConstraintType;
+ int m_userConstraintId;
+ int m_needsFeedback;
+
+ float m_appliedImpulse;
+ float m_dbgDrawSize;
+
+ int m_disableCollisionsBetweenLinkedBodies;
+ int m_overrideNumSolverIterations;
+
+ float m_breakingImpulseThreshold;
+ int m_isEnabled;
+
+};
+
+///do not change those serialization structures, it requires an updated sBulletDNAstr/sBulletDNAstr64
+
+#define BT_BACKWARDS_COMPATIBLE_SERIALIZATION
+#ifdef BT_BACKWARDS_COMPATIBLE_SERIALIZATION
+///this structure is not used, except for loading pre-2.82 .bullet files
+struct btTypedConstraintData
+{
+ btRigidBodyData *m_rbA;
+ btRigidBodyData *m_rbB;
+ char *m_name;
+
+ int m_objectType;
+ int m_userConstraintType;
+ int m_userConstraintId;
+ int m_needsFeedback;
+
+ float m_appliedImpulse;
+ float m_dbgDrawSize;
+
+ int m_disableCollisionsBetweenLinkedBodies;
+ int m_overrideNumSolverIterations;
+
+ float m_breakingImpulseThreshold;
+ int m_isEnabled;
+
+};
+#endif //BACKWARDS_COMPATIBLE
+
+struct btTypedConstraintDoubleData
+{
+ btRigidBodyDoubleData *m_rbA;
+ btRigidBodyDoubleData *m_rbB;
+ char *m_name;
+
+ int m_objectType;
+ int m_userConstraintType;
+ int m_userConstraintId;
+ int m_needsFeedback;
+
+ double m_appliedImpulse;
+ double m_dbgDrawSize;
+
+ int m_disableCollisionsBetweenLinkedBodies;
+ int m_overrideNumSolverIterations;
+
+ double m_breakingImpulseThreshold;
+ int m_isEnabled;
+ char padding[4];
+
+};
+
+
+SIMD_FORCE_INLINE int btTypedConstraint::calculateSerializeBufferSize() const
+{
+ return sizeof(btTypedConstraintData2);
+}
+
+
+
+class btAngularLimit
+{
+private:
+ btScalar
+ m_center,
+ m_halfRange,
+ m_softness,
+ m_biasFactor,
+ m_relaxationFactor,
+ m_correction,
+ m_sign;
+
+ bool
+ m_solveLimit;
+
+public:
+ /// Default constructor initializes limit as inactive, allowing free constraint movement
+ btAngularLimit()
+ :m_center(0.0f),
+ m_halfRange(-1.0f),
+ m_softness(0.9f),
+ m_biasFactor(0.3f),
+ m_relaxationFactor(1.0f),
+ m_correction(0.0f),
+ m_sign(0.0f),
+ m_solveLimit(false)
+ {}
+
+ /// Sets all limit's parameters.
+ /// When low > high limit becomes inactive.
+ /// When high - low > 2PI limit is ineffective too becouse no angle can exceed the limit
+ void set(btScalar low, btScalar high, btScalar _softness = 0.9f, btScalar _biasFactor = 0.3f, btScalar _relaxationFactor = 1.0f);
+
+ /// Checks conastaint angle against limit. If limit is active and the angle violates the limit
+ /// correction is calculated.
+ void test(const btScalar angle);
+
+ /// Returns limit's softness
+ inline btScalar getSoftness() const
+ {
+ return m_softness;
+ }
+
+ /// Returns limit's bias factor
+ inline btScalar getBiasFactor() const
+ {
+ return m_biasFactor;
+ }
+
+ /// Returns limit's relaxation factor
+ inline btScalar getRelaxationFactor() const
+ {
+ return m_relaxationFactor;
+ }
+
+ /// Returns correction value evaluated when test() was invoked
+ inline btScalar getCorrection() const
+ {
+ return m_correction;
+ }
+
+ /// Returns sign value evaluated when test() was invoked
+ inline btScalar getSign() const
+ {
+ return m_sign;
+ }
+
+ /// Gives half of the distance between min and max limit angle
+ inline btScalar getHalfRange() const
+ {
+ return m_halfRange;
+ }
+
+ /// Returns true when the last test() invocation recognized limit violation
+ inline bool isLimit() const
+ {
+ return m_solveLimit;
+ }
+
+ /// Checks given angle against limit. If limit is active and angle doesn't fit it, the angle
+ /// returned is modified so it equals to the limit closest to given angle.
+ void fit(btScalar& angle) const;
+
+ /// Returns correction value multiplied by sign value
+ btScalar getError() const;
+
+ btScalar getLow() const;
+
+ btScalar getHigh() const;
+
+};
+
+
+
+#endif //BT_TYPED_CONSTRAINT_H
diff --git a/thirdparty/bullet/BulletDynamics/ConstraintSolver/btUniversalConstraint.cpp b/thirdparty/bullet/BulletDynamics/ConstraintSolver/btUniversalConstraint.cpp
new file mode 100644
index 0000000000..b009f41aec
--- /dev/null
+++ b/thirdparty/bullet/BulletDynamics/ConstraintSolver/btUniversalConstraint.cpp
@@ -0,0 +1,87 @@
+/*
+Bullet Continuous Collision Detection and Physics Library, http://bulletphysics.org
+Copyright (C) 2006, 2007 Sony Computer Entertainment Inc.
+
+This software is provided 'as-is', without any express or implied warranty.
+In no event will the authors be held liable for any damages arising from the use of this software.
+Permission is granted to anyone to use this software for any purpose,
+including commercial applications, and to alter it and redistribute it freely,
+subject to the following restrictions:
+
+1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
+2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
+3. This notice may not be removed or altered from any source distribution.
+*/
+
+
+
+#include "btUniversalConstraint.h"
+#include "BulletDynamics/Dynamics/btRigidBody.h"
+#include "LinearMath/btTransformUtil.h"
+
+
+
+#define UNIV_EPS btScalar(0.01f)
+
+
+// constructor
+// anchor, axis1 and axis2 are in world coordinate system
+// axis1 must be orthogonal to axis2
+btUniversalConstraint::btUniversalConstraint(btRigidBody& rbA, btRigidBody& rbB, const btVector3& anchor, const btVector3& axis1, const btVector3& axis2)
+: btGeneric6DofConstraint(rbA, rbB, btTransform::getIdentity(), btTransform::getIdentity(), true),
+ m_anchor(anchor),
+ m_axis1(axis1),
+ m_axis2(axis2)
+{
+ // build frame basis
+ // 6DOF constraint uses Euler angles and to define limits
+ // it is assumed that rotational order is :
+ // Z - first, allowed limits are (-PI,PI);
+ // new position of Y - second (allowed limits are (-PI/2 + epsilon, PI/2 - epsilon), where epsilon is a small positive number
+ // used to prevent constraint from instability on poles;
+ // new position of X, allowed limits are (-PI,PI);
+ // So to simulate ODE Universal joint we should use parent axis as Z, child axis as Y and limit all other DOFs
+ // Build the frame in world coordinate system first
+ btVector3 zAxis = m_axis1.normalize();
+ btVector3 yAxis = m_axis2.normalize();
+ btVector3 xAxis = yAxis.cross(zAxis); // we want right coordinate system
+ btTransform frameInW;
+ frameInW.setIdentity();
+ frameInW.getBasis().setValue( xAxis[0], yAxis[0], zAxis[0],
+ xAxis[1], yAxis[1], zAxis[1],
+ xAxis[2], yAxis[2], zAxis[2]);
+ frameInW.setOrigin(anchor);
+ // now get constraint frame in local coordinate systems
+ m_frameInA = rbA.getCenterOfMassTransform().inverse() * frameInW;
+ m_frameInB = rbB.getCenterOfMassTransform().inverse() * frameInW;
+ // sei limits
+ setLinearLowerLimit(btVector3(0., 0., 0.));
+ setLinearUpperLimit(btVector3(0., 0., 0.));
+ setAngularLowerLimit(btVector3(0.f, -SIMD_HALF_PI + UNIV_EPS, -SIMD_PI + UNIV_EPS));
+ setAngularUpperLimit(btVector3(0.f, SIMD_HALF_PI - UNIV_EPS, SIMD_PI - UNIV_EPS));
+}
+
+void btUniversalConstraint::setAxis(const btVector3& axis1,const btVector3& axis2)
+{
+ m_axis1 = axis1;
+ m_axis2 = axis2;
+
+ btVector3 zAxis = axis1.normalized();
+ btVector3 yAxis = axis2.normalized();
+ btVector3 xAxis = yAxis.cross(zAxis); // we want right coordinate system
+
+ btTransform frameInW;
+ frameInW.setIdentity();
+ frameInW.getBasis().setValue( xAxis[0], yAxis[0], zAxis[0],
+ xAxis[1], yAxis[1], zAxis[1],
+ xAxis[2], yAxis[2], zAxis[2]);
+ frameInW.setOrigin(m_anchor);
+
+ // now get constraint frame in local coordinate systems
+ m_frameInA = m_rbA.getCenterOfMassTransform().inverse() * frameInW;
+ m_frameInB = m_rbB.getCenterOfMassTransform().inverse() * frameInW;
+
+ calculateTransforms();
+}
+
+
diff --git a/thirdparty/bullet/BulletDynamics/ConstraintSolver/btUniversalConstraint.h b/thirdparty/bullet/BulletDynamics/ConstraintSolver/btUniversalConstraint.h
new file mode 100644
index 0000000000..9e70841043
--- /dev/null
+++ b/thirdparty/bullet/BulletDynamics/ConstraintSolver/btUniversalConstraint.h
@@ -0,0 +1,65 @@
+/*
+Bullet Continuous Collision Detection and Physics Library, http://bulletphysics.org
+Copyright (C) 2006, 2007 Sony Computer Entertainment Inc.
+
+This software is provided 'as-is', without any express or implied warranty.
+In no event will the authors be held liable for any damages arising from the use of this software.
+Permission is granted to anyone to use this software for any purpose,
+including commercial applications, and to alter it and redistribute it freely,
+subject to the following restrictions:
+
+1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
+2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
+3. This notice may not be removed or altered from any source distribution.
+*/
+
+#ifndef BT_UNIVERSAL_CONSTRAINT_H
+#define BT_UNIVERSAL_CONSTRAINT_H
+
+
+
+#include "LinearMath/btVector3.h"
+#include "btTypedConstraint.h"
+#include "btGeneric6DofConstraint.h"
+
+
+
+/// Constraint similar to ODE Universal Joint
+/// has 2 rotatioonal degrees of freedom, similar to Euler rotations around Z (axis 1)
+/// and Y (axis 2)
+/// Description from ODE manual :
+/// "Given axis 1 on body 1, and axis 2 on body 2 that is perpendicular to axis 1, it keeps them perpendicular.
+/// In other words, rotation of the two bodies about the direction perpendicular to the two axes will be equal."
+
+ATTRIBUTE_ALIGNED16(class) btUniversalConstraint : public btGeneric6DofConstraint
+{
+protected:
+ btVector3 m_anchor;
+ btVector3 m_axis1;
+ btVector3 m_axis2;
+public:
+
+ BT_DECLARE_ALIGNED_ALLOCATOR();
+
+ // constructor
+ // anchor, axis1 and axis2 are in world coordinate system
+ // axis1 must be orthogonal to axis2
+ btUniversalConstraint(btRigidBody& rbA, btRigidBody& rbB, const btVector3& anchor, const btVector3& axis1, const btVector3& axis2);
+ // access
+ const btVector3& getAnchor() { return m_calculatedTransformA.getOrigin(); }
+ const btVector3& getAnchor2() { return m_calculatedTransformB.getOrigin(); }
+ const btVector3& getAxis1() { return m_axis1; }
+ const btVector3& getAxis2() { return m_axis2; }
+ btScalar getAngle1() { return getAngle(2); }
+ btScalar getAngle2() { return getAngle(1); }
+ // limits
+ void setUpperLimit(btScalar ang1max, btScalar ang2max) { setAngularUpperLimit(btVector3(0.f, ang1max, ang2max)); }
+ void setLowerLimit(btScalar ang1min, btScalar ang2min) { setAngularLowerLimit(btVector3(0.f, ang1min, ang2min)); }
+
+ void setAxis( const btVector3& axis1, const btVector3& axis2);
+};
+
+
+
+#endif // BT_UNIVERSAL_CONSTRAINT_H
+