summaryrefslogtreecommitdiff
path: root/thirdparty/bullet/BulletDynamics/ConstraintSolver/btGeneric6DofConstraint.cpp
diff options
context:
space:
mode:
authorOussama <o.boukhelf@gmail.com>2019-01-03 14:26:51 +0100
committerRĂ©mi Verschelde <rverschelde@gmail.com>2019-01-07 12:30:35 +0100
commit22b7c9dfa80d0f7abca40f061865c2ab3c136a74 (patch)
tree311cd3f22b012329160f9d43810aea429994af48 /thirdparty/bullet/BulletDynamics/ConstraintSolver/btGeneric6DofConstraint.cpp
parenta6722cf36251ddcb538e6ebed9fa4950342b68ba (diff)
Update Bullet to the latest commit 126b676
Diffstat (limited to 'thirdparty/bullet/BulletDynamics/ConstraintSolver/btGeneric6DofConstraint.cpp')
-rw-r--r--thirdparty/bullet/BulletDynamics/ConstraintSolver/btGeneric6DofConstraint.cpp708
1 files changed, 310 insertions, 398 deletions
diff --git a/thirdparty/bullet/BulletDynamics/ConstraintSolver/btGeneric6DofConstraint.cpp b/thirdparty/bullet/BulletDynamics/ConstraintSolver/btGeneric6DofConstraint.cpp
index c38b8353f0..1f54203532 100644
--- a/thirdparty/bullet/BulletDynamics/ConstraintSolver/btGeneric6DofConstraint.cpp
+++ b/thirdparty/bullet/BulletDynamics/ConstraintSolver/btGeneric6DofConstraint.cpp
@@ -25,83 +25,61 @@ http://gimpact.sf.net
#include "LinearMath/btTransformUtil.h"
#include <new>
-
-
#define D6_USE_OBSOLETE_METHOD false
#define D6_USE_FRAME_OFFSET true
-
-
-
-
-
btGeneric6DofConstraint::btGeneric6DofConstraint(btRigidBody& rbA, btRigidBody& rbB, const btTransform& frameInA, const btTransform& frameInB, bool useLinearReferenceFrameA)
-: btTypedConstraint(D6_CONSTRAINT_TYPE, rbA, rbB)
-, m_frameInA(frameInA)
-, m_frameInB(frameInB),
-m_useLinearReferenceFrameA(useLinearReferenceFrameA),
-m_useOffsetForConstraintFrame(D6_USE_FRAME_OFFSET),
-m_flags(0),
-m_useSolveConstraintObsolete(D6_USE_OBSOLETE_METHOD)
+ : btTypedConstraint(D6_CONSTRAINT_TYPE, rbA, rbB), m_frameInA(frameInA), m_frameInB(frameInB), m_useLinearReferenceFrameA(useLinearReferenceFrameA), m_useOffsetForConstraintFrame(D6_USE_FRAME_OFFSET), m_flags(0), m_useSolveConstraintObsolete(D6_USE_OBSOLETE_METHOD)
{
calculateTransforms();
}
-
-
btGeneric6DofConstraint::btGeneric6DofConstraint(btRigidBody& rbB, const btTransform& frameInB, bool useLinearReferenceFrameB)
- : btTypedConstraint(D6_CONSTRAINT_TYPE, getFixedBody(), rbB),
- m_frameInB(frameInB),
- m_useLinearReferenceFrameA(useLinearReferenceFrameB),
- m_useOffsetForConstraintFrame(D6_USE_FRAME_OFFSET),
- m_flags(0),
- m_useSolveConstraintObsolete(false)
+ : btTypedConstraint(D6_CONSTRAINT_TYPE, getFixedBody(), rbB),
+ m_frameInB(frameInB),
+ m_useLinearReferenceFrameA(useLinearReferenceFrameB),
+ m_useOffsetForConstraintFrame(D6_USE_FRAME_OFFSET),
+ m_flags(0),
+ m_useSolveConstraintObsolete(false)
{
///not providing rigidbody A means implicitly using worldspace for body A
m_frameInA = rbB.getCenterOfMassTransform() * m_frameInB;
calculateTransforms();
}
-
-
-
#define GENERIC_D6_DISABLE_WARMSTARTING 1
-
-
btScalar btGetMatrixElem(const btMatrix3x3& mat, int index);
btScalar btGetMatrixElem(const btMatrix3x3& mat, int index)
{
- int i = index%3;
- int j = index/3;
+ int i = index % 3;
+ int j = index / 3;
return mat[i][j];
}
-
-
///MatrixToEulerXYZ from http://www.geometrictools.com/LibFoundation/Mathematics/Wm4Matrix3.inl.html
-bool matrixToEulerXYZ(const btMatrix3x3& mat,btVector3& xyz);
-bool matrixToEulerXYZ(const btMatrix3x3& mat,btVector3& xyz)
+bool matrixToEulerXYZ(const btMatrix3x3& mat, btVector3& xyz);
+bool matrixToEulerXYZ(const btMatrix3x3& mat, btVector3& xyz)
{
// // rot = cy*cz -cy*sz sy
// // cz*sx*sy+cx*sz cx*cz-sx*sy*sz -cy*sx
// // -cx*cz*sy+sx*sz cz*sx+cx*sy*sz cx*cy
//
- btScalar fi = btGetMatrixElem(mat,2);
+ btScalar fi = btGetMatrixElem(mat, 2);
if (fi < btScalar(1.0f))
{
if (fi > btScalar(-1.0f))
{
- xyz[0] = btAtan2(-btGetMatrixElem(mat,5),btGetMatrixElem(mat,8));
- xyz[1] = btAsin(btGetMatrixElem(mat,2));
- xyz[2] = btAtan2(-btGetMatrixElem(mat,1),btGetMatrixElem(mat,0));
+ xyz[0] = btAtan2(-btGetMatrixElem(mat, 5), btGetMatrixElem(mat, 8));
+ xyz[1] = btAsin(btGetMatrixElem(mat, 2));
+ xyz[2] = btAtan2(-btGetMatrixElem(mat, 1), btGetMatrixElem(mat, 0));
return true;
}
else
{
// WARNING. Not unique. XA - ZA = -atan2(r10,r11)
- xyz[0] = -btAtan2(btGetMatrixElem(mat,3),btGetMatrixElem(mat,4));
+ xyz[0] = -btAtan2(btGetMatrixElem(mat, 3), btGetMatrixElem(mat, 4));
xyz[1] = -SIMD_HALF_PI;
xyz[2] = btScalar(0.0);
return false;
@@ -110,7 +88,7 @@ bool matrixToEulerXYZ(const btMatrix3x3& mat,btVector3& xyz)
else
{
// WARNING. Not unique. XAngle + ZAngle = atan2(r10,r11)
- xyz[0] = btAtan2(btGetMatrixElem(mat,3),btGetMatrixElem(mat,4));
+ xyz[0] = btAtan2(btGetMatrixElem(mat, 3), btGetMatrixElem(mat, 4));
xyz[1] = SIMD_HALF_PI;
xyz[2] = 0.0;
}
@@ -121,52 +99,49 @@ bool matrixToEulerXYZ(const btMatrix3x3& mat,btVector3& xyz)
int btRotationalLimitMotor::testLimitValue(btScalar test_value)
{
- if(m_loLimit>m_hiLimit)
+ if (m_loLimit > m_hiLimit)
{
- m_currentLimit = 0;//Free from violation
+ m_currentLimit = 0; //Free from violation
return 0;
}
if (test_value < m_loLimit)
{
- m_currentLimit = 1;//low limit violation
- m_currentLimitError = test_value - m_loLimit;
- if(m_currentLimitError>SIMD_PI)
- m_currentLimitError-=SIMD_2_PI;
- else if(m_currentLimitError<-SIMD_PI)
- m_currentLimitError+=SIMD_2_PI;
+ m_currentLimit = 1; //low limit violation
+ m_currentLimitError = test_value - m_loLimit;
+ if (m_currentLimitError > SIMD_PI)
+ m_currentLimitError -= SIMD_2_PI;
+ else if (m_currentLimitError < -SIMD_PI)
+ m_currentLimitError += SIMD_2_PI;
return 1;
}
- else if (test_value> m_hiLimit)
+ else if (test_value > m_hiLimit)
{
- m_currentLimit = 2;//High limit violation
+ m_currentLimit = 2; //High limit violation
m_currentLimitError = test_value - m_hiLimit;
- if(m_currentLimitError>SIMD_PI)
- m_currentLimitError-=SIMD_2_PI;
- else if(m_currentLimitError<-SIMD_PI)
- m_currentLimitError+=SIMD_2_PI;
+ if (m_currentLimitError > SIMD_PI)
+ m_currentLimitError -= SIMD_2_PI;
+ else if (m_currentLimitError < -SIMD_PI)
+ m_currentLimitError += SIMD_2_PI;
return 2;
};
- m_currentLimit = 0;//Free from violation
+ m_currentLimit = 0; //Free from violation
return 0;
-
}
-
-
btScalar btRotationalLimitMotor::solveAngularLimits(
- btScalar timeStep,btVector3& axis,btScalar jacDiagABInv,
- btRigidBody * body0, btRigidBody * body1 )
+ btScalar timeStep, btVector3& axis, btScalar jacDiagABInv,
+ btRigidBody* body0, btRigidBody* body1)
{
- if (needApplyTorques()==false) return 0.0f;
+ if (needApplyTorques() == false) return 0.0f;
btScalar target_velocity = m_targetVelocity;
btScalar maxMotorForce = m_maxMotorForce;
//current error correction
- if (m_currentLimit!=0)
+ if (m_currentLimit != 0)
{
- target_velocity = -m_stopERP*m_currentLimitError/(timeStep);
+ target_velocity = -m_stopERP * m_currentLimitError / (timeStep);
maxMotorForce = m_maxLimitForce;
}
@@ -178,42 +153,37 @@ btScalar btRotationalLimitMotor::solveAngularLimits(
btVector3 angVelB = body1->getAngularVelocity();
btVector3 vel_diff;
- vel_diff = angVelA-angVelB;
-
-
+ vel_diff = angVelA - angVelB;
btScalar rel_vel = axis.dot(vel_diff);
// correction velocity
- btScalar motor_relvel = m_limitSoftness*(target_velocity - m_damping*rel_vel);
+ btScalar motor_relvel = m_limitSoftness * (target_velocity - m_damping * rel_vel);
-
- if ( motor_relvel < SIMD_EPSILON && motor_relvel > -SIMD_EPSILON )
+ if (motor_relvel < SIMD_EPSILON && motor_relvel > -SIMD_EPSILON)
{
- return 0.0f;//no need for applying force
+ return 0.0f; //no need for applying force
}
-
// correction impulse
- btScalar unclippedMotorImpulse = (1+m_bounce)*motor_relvel*jacDiagABInv;
+ btScalar unclippedMotorImpulse = (1 + m_bounce) * motor_relvel * jacDiagABInv;
// clip correction impulse
btScalar clippedMotorImpulse;
///@todo: should clip against accumulated impulse
- if (unclippedMotorImpulse>0.0f)
+ if (unclippedMotorImpulse > 0.0f)
{
- clippedMotorImpulse = unclippedMotorImpulse > maxMotorForce? maxMotorForce: unclippedMotorImpulse;
+ clippedMotorImpulse = unclippedMotorImpulse > maxMotorForce ? maxMotorForce : unclippedMotorImpulse;
}
else
{
- clippedMotorImpulse = unclippedMotorImpulse < -maxMotorForce ? -maxMotorForce: unclippedMotorImpulse;
+ clippedMotorImpulse = unclippedMotorImpulse < -maxMotorForce ? -maxMotorForce : unclippedMotorImpulse;
}
-
// sort with accumulated impulses
- btScalar lo = btScalar(-BT_LARGE_FLOAT);
- btScalar hi = btScalar(BT_LARGE_FLOAT);
+ btScalar lo = btScalar(-BT_LARGE_FLOAT);
+ btScalar hi = btScalar(BT_LARGE_FLOAT);
btScalar oldaccumImpulse = m_accumulatedImpulse;
btScalar sum = oldaccumImpulse + clippedMotorImpulse;
@@ -227,59 +197,50 @@ btScalar btRotationalLimitMotor::solveAngularLimits(
body1->applyTorqueImpulse(-motorImp);
return clippedMotorImpulse;
-
-
}
//////////////////////////// End btRotationalLimitMotor ////////////////////////////////////
-
-
-
//////////////////////////// btTranslationalLimitMotor ////////////////////////////////////
-
int btTranslationalLimitMotor::testLimitValue(int limitIndex, btScalar test_value)
{
btScalar loLimit = m_lowerLimit[limitIndex];
btScalar hiLimit = m_upperLimit[limitIndex];
- if(loLimit > hiLimit)
+ if (loLimit > hiLimit)
{
- m_currentLimit[limitIndex] = 0;//Free from violation
+ m_currentLimit[limitIndex] = 0; //Free from violation
m_currentLimitError[limitIndex] = btScalar(0.f);
return 0;
}
if (test_value < loLimit)
{
- m_currentLimit[limitIndex] = 2;//low limit violation
- m_currentLimitError[limitIndex] = test_value - loLimit;
+ m_currentLimit[limitIndex] = 2; //low limit violation
+ m_currentLimitError[limitIndex] = test_value - loLimit;
return 2;
}
- else if (test_value> hiLimit)
+ else if (test_value > hiLimit)
{
- m_currentLimit[limitIndex] = 1;//High limit violation
+ m_currentLimit[limitIndex] = 1; //High limit violation
m_currentLimitError[limitIndex] = test_value - hiLimit;
return 1;
};
- m_currentLimit[limitIndex] = 0;//Free from violation
+ m_currentLimit[limitIndex] = 0; //Free from violation
m_currentLimitError[limitIndex] = btScalar(0.f);
return 0;
}
-
-
btScalar btTranslationalLimitMotor::solveLinearAxis(
btScalar timeStep,
btScalar jacDiagABInv,
- btRigidBody& body1,const btVector3 &pointInA,
- btRigidBody& body2,const btVector3 &pointInB,
+ btRigidBody& body1, const btVector3& pointInA,
+ btRigidBody& body2, const btVector3& pointInB,
int limit_index,
- const btVector3 & axis_normal_on_a,
- const btVector3 & anchorPos)
+ const btVector3& axis_normal_on_a,
+ const btVector3& anchorPos)
{
-
///find relative velocity
// btVector3 rel_pos1 = pointInA - body1.getCenterOfMassPosition();
// btVector3 rel_pos2 = pointInB - body2.getCenterOfMassPosition();
@@ -292,14 +253,12 @@ btScalar btTranslationalLimitMotor::solveLinearAxis(
btScalar rel_vel = axis_normal_on_a.dot(vel);
-
-
/// apply displacement correction
//positional error (zeroth order error)
btScalar depth = -(pointInA - pointInB).dot(axis_normal_on_a);
- btScalar lo = btScalar(-BT_LARGE_FLOAT);
- btScalar hi = btScalar(BT_LARGE_FLOAT);
+ btScalar lo = btScalar(-BT_LARGE_FLOAT);
+ btScalar hi = btScalar(BT_LARGE_FLOAT);
btScalar minLimit = m_lowerLimit[limit_index];
btScalar maxLimit = m_upperLimit[limit_index];
@@ -312,7 +271,6 @@ btScalar btTranslationalLimitMotor::solveLinearAxis(
{
depth -= maxLimit;
lo = btScalar(0.);
-
}
else
{
@@ -329,10 +287,7 @@ btScalar btTranslationalLimitMotor::solveLinearAxis(
}
}
- btScalar normalImpulse= m_limitSoftness*(m_restitution*depth/timeStep - m_damping*rel_vel) * jacDiagABInv;
-
-
-
+ btScalar normalImpulse = m_limitSoftness * (m_restitution * depth / timeStep - m_damping * rel_vel) * jacDiagABInv;
btScalar oldNormalImpulse = m_accumulatedImpulse[limit_index];
btScalar sum = oldNormalImpulse + normalImpulse;
@@ -340,11 +295,9 @@ btScalar btTranslationalLimitMotor::solveLinearAxis(
normalImpulse = m_accumulatedImpulse[limit_index] - oldNormalImpulse;
btVector3 impulse_vector = axis_normal_on_a * normalImpulse;
- body1.applyImpulse( impulse_vector, rel_pos1);
+ body1.applyImpulse(impulse_vector, rel_pos1);
body2.applyImpulse(-impulse_vector, rel_pos2);
-
-
return normalImpulse;
}
@@ -352,8 +305,8 @@ btScalar btTranslationalLimitMotor::solveLinearAxis(
void btGeneric6DofConstraint::calculateAngleInfo()
{
- btMatrix3x3 relative_frame = m_calculatedTransformA.getBasis().inverse()*m_calculatedTransformB.getBasis();
- matrixToEulerXYZ(relative_frame,m_calculatedAxisAngleDiff);
+ btMatrix3x3 relative_frame = m_calculatedTransformA.getBasis().inverse() * m_calculatedTransformB.getBasis();
+ matrixToEulerXYZ(relative_frame, m_calculatedAxisAngleDiff);
// in euler angle mode we do not actually constrain the angular velocity
// along the axes axis[0] and axis[2] (although we do use axis[1]) :
//
@@ -378,31 +331,30 @@ void btGeneric6DofConstraint::calculateAngleInfo()
m_calculatedAxis[0].normalize();
m_calculatedAxis[1].normalize();
m_calculatedAxis[2].normalize();
-
}
void btGeneric6DofConstraint::calculateTransforms()
{
- calculateTransforms(m_rbA.getCenterOfMassTransform(),m_rbB.getCenterOfMassTransform());
+ calculateTransforms(m_rbA.getCenterOfMassTransform(), m_rbB.getCenterOfMassTransform());
}
-void btGeneric6DofConstraint::calculateTransforms(const btTransform& transA,const btTransform& transB)
+void btGeneric6DofConstraint::calculateTransforms(const btTransform& transA, const btTransform& transB)
{
m_calculatedTransformA = transA * m_frameInA;
m_calculatedTransformB = transB * m_frameInB;
calculateLinearInfo();
calculateAngleInfo();
- if(m_useOffsetForConstraintFrame)
- { // get weight factors depending on masses
+ if (m_useOffsetForConstraintFrame)
+ { // get weight factors depending on masses
btScalar miA = getRigidBodyA().getInvMass();
btScalar miB = getRigidBodyB().getInvMass();
m_hasStaticBody = (miA < SIMD_EPSILON) || (miB < SIMD_EPSILON);
btScalar miS = miA + miB;
- if(miS > btScalar(0.f))
+ if (miS > btScalar(0.f))
{
m_factA = miB / miS;
}
- else
+ else
{
m_factA = btScalar(0.5f);
}
@@ -410,39 +362,32 @@ void btGeneric6DofConstraint::calculateTransforms(const btTransform& transA,cons
}
}
-
-
void btGeneric6DofConstraint::buildLinearJacobian(
- btJacobianEntry & jacLinear,const btVector3 & normalWorld,
- const btVector3 & pivotAInW,const btVector3 & pivotBInW)
+ btJacobianEntry& jacLinear, const btVector3& normalWorld,
+ const btVector3& pivotAInW, const btVector3& pivotBInW)
{
new (&jacLinear) btJacobianEntry(
- m_rbA.getCenterOfMassTransform().getBasis().transpose(),
- m_rbB.getCenterOfMassTransform().getBasis().transpose(),
- pivotAInW - m_rbA.getCenterOfMassPosition(),
- pivotBInW - m_rbB.getCenterOfMassPosition(),
- normalWorld,
- m_rbA.getInvInertiaDiagLocal(),
- m_rbA.getInvMass(),
- m_rbB.getInvInertiaDiagLocal(),
- m_rbB.getInvMass());
+ m_rbA.getCenterOfMassTransform().getBasis().transpose(),
+ m_rbB.getCenterOfMassTransform().getBasis().transpose(),
+ pivotAInW - m_rbA.getCenterOfMassPosition(),
+ pivotBInW - m_rbB.getCenterOfMassPosition(),
+ normalWorld,
+ m_rbA.getInvInertiaDiagLocal(),
+ m_rbA.getInvMass(),
+ m_rbB.getInvInertiaDiagLocal(),
+ m_rbB.getInvMass());
}
-
-
void btGeneric6DofConstraint::buildAngularJacobian(
- btJacobianEntry & jacAngular,const btVector3 & jointAxisW)
+ btJacobianEntry& jacAngular, const btVector3& jointAxisW)
{
- new (&jacAngular) btJacobianEntry(jointAxisW,
- m_rbA.getCenterOfMassTransform().getBasis().transpose(),
- m_rbB.getCenterOfMassTransform().getBasis().transpose(),
- m_rbA.getInvInertiaDiagLocal(),
- m_rbB.getInvInertiaDiagLocal());
-
+ new (&jacAngular) btJacobianEntry(jointAxisW,
+ m_rbA.getCenterOfMassTransform().getBasis().transpose(),
+ m_rbB.getCenterOfMassTransform().getBasis().transpose(),
+ m_rbA.getInvInertiaDiagLocal(),
+ m_rbB.getInvInertiaDiagLocal());
}
-
-
bool btGeneric6DofConstraint::testAngularLimitMotor(int axis_index)
{
btScalar angle = m_calculatedAxisAngleDiff[axis_index];
@@ -453,23 +398,20 @@ bool btGeneric6DofConstraint::testAngularLimitMotor(int axis_index)
return m_angularLimits[axis_index].needApplyTorques();
}
-
-
void btGeneric6DofConstraint::buildJacobian()
{
#ifndef __SPU__
if (m_useSolveConstraintObsolete)
{
-
// Clear accumulated impulses for the next simulation step
m_linearLimits.m_accumulatedImpulse.setValue(btScalar(0.), btScalar(0.), btScalar(0.));
int i;
- for(i = 0; i < 3; i++)
+ for (i = 0; i < 3; i++)
{
m_angularLimits[i].m_accumulatedImpulse = btScalar(0.);
}
//calculates transform
- calculateTransforms(m_rbA.getCenterOfMassTransform(),m_rbB.getCenterOfMassTransform());
+ calculateTransforms(m_rbA.getCenterOfMassTransform(), m_rbB.getCenterOfMassTransform());
// const btVector3& pivotAInW = m_calculatedTransformA.getOrigin();
// const btVector3& pivotBInW = m_calculatedTransformB.getOrigin();
@@ -483,7 +425,7 @@ void btGeneric6DofConstraint::buildJacobian()
btVector3 normalWorld;
//linear part
- for (i=0;i<3;i++)
+ for (i = 0; i < 3; i++)
{
if (m_linearLimits.isLimited(i))
{
@@ -493,56 +435,53 @@ void btGeneric6DofConstraint::buildJacobian()
normalWorld = m_calculatedTransformB.getBasis().getColumn(i);
buildLinearJacobian(
- m_jacLinear[i],normalWorld ,
- pivotAInW,pivotBInW);
-
+ m_jacLinear[i], normalWorld,
+ pivotAInW, pivotBInW);
}
}
// angular part
- for (i=0;i<3;i++)
+ for (i = 0; i < 3; i++)
{
//calculates error angle
if (testAngularLimitMotor(i))
{
normalWorld = this->getAxis(i);
// Create angular atom
- buildAngularJacobian(m_jacAng[i],normalWorld);
+ buildAngularJacobian(m_jacAng[i], normalWorld);
}
}
-
}
-#endif //__SPU__
-
+#endif //__SPU__
}
-
-void btGeneric6DofConstraint::getInfo1 (btConstraintInfo1* info)
+void btGeneric6DofConstraint::getInfo1(btConstraintInfo1* info)
{
if (m_useSolveConstraintObsolete)
{
info->m_numConstraintRows = 0;
info->nub = 0;
- } else
+ }
+ else
{
//prepare constraint
- calculateTransforms(m_rbA.getCenterOfMassTransform(),m_rbB.getCenterOfMassTransform());
+ calculateTransforms(m_rbA.getCenterOfMassTransform(), m_rbB.getCenterOfMassTransform());
info->m_numConstraintRows = 0;
info->nub = 6;
int i;
//test linear limits
- for(i = 0; i < 3; i++)
+ for (i = 0; i < 3; i++)
{
- if(m_linearLimits.needApplyForce(i))
+ if (m_linearLimits.needApplyForce(i))
{
info->m_numConstraintRows++;
info->nub--;
}
}
//test angular limits
- for (i=0;i<3 ;i++ )
+ for (i = 0; i < 3; i++)
{
- if(testAngularLimitMotor(i))
+ if (testAngularLimitMotor(i))
{
info->m_numConstraintRows++;
info->nub--;
@@ -551,13 +490,14 @@ void btGeneric6DofConstraint::getInfo1 (btConstraintInfo1* info)
}
}
-void btGeneric6DofConstraint::getInfo1NonVirtual (btConstraintInfo1* info)
+void btGeneric6DofConstraint::getInfo1NonVirtual(btConstraintInfo1* info)
{
if (m_useSolveConstraintObsolete)
{
info->m_numConstraintRows = 0;
info->nub = 0;
- } else
+ }
+ else
{
//pre-allocate all 6
info->m_numConstraintRows = 6;
@@ -565,8 +505,7 @@ void btGeneric6DofConstraint::getInfo1NonVirtual (btConstraintInfo1* info)
}
}
-
-void btGeneric6DofConstraint::getInfo2 (btConstraintInfo2* info)
+void btGeneric6DofConstraint::getInfo2(btConstraintInfo2* info)
{
btAssert(!m_useSolveConstraintObsolete);
@@ -577,136 +516,124 @@ void btGeneric6DofConstraint::getInfo2 (btConstraintInfo2* info)
const btVector3& angVelA = m_rbA.getAngularVelocity();
const btVector3& angVelB = m_rbB.getAngularVelocity();
- if(m_useOffsetForConstraintFrame)
- { // for stability better to solve angular limits first
- int row = setAngularLimits(info, 0,transA,transB,linVelA,linVelB,angVelA,angVelB);
- setLinearLimits(info, row, transA,transB,linVelA,linVelB,angVelA,angVelB);
+ if (m_useOffsetForConstraintFrame)
+ { // for stability better to solve angular limits first
+ int row = setAngularLimits(info, 0, transA, transB, linVelA, linVelB, angVelA, angVelB);
+ setLinearLimits(info, row, transA, transB, linVelA, linVelB, angVelA, angVelB);
}
else
- { // leave old version for compatibility
- int row = setLinearLimits(info, 0, transA,transB,linVelA,linVelB,angVelA,angVelB);
- setAngularLimits(info, row,transA,transB,linVelA,linVelB,angVelA,angVelB);
+ { // leave old version for compatibility
+ int row = setLinearLimits(info, 0, transA, transB, linVelA, linVelB, angVelA, angVelB);
+ setAngularLimits(info, row, transA, transB, linVelA, linVelB, angVelA, angVelB);
}
-
}
-
-void btGeneric6DofConstraint::getInfo2NonVirtual (btConstraintInfo2* info, const btTransform& transA,const btTransform& transB,const btVector3& linVelA,const btVector3& linVelB,const btVector3& angVelA,const btVector3& angVelB)
+void btGeneric6DofConstraint::getInfo2NonVirtual(btConstraintInfo2* info, const btTransform& transA, const btTransform& transB, const btVector3& linVelA, const btVector3& linVelB, const btVector3& angVelA, const btVector3& angVelB)
{
-
btAssert(!m_useSolveConstraintObsolete);
//prepare constraint
- calculateTransforms(transA,transB);
+ calculateTransforms(transA, transB);
int i;
- for (i=0;i<3 ;i++ )
+ for (i = 0; i < 3; i++)
{
testAngularLimitMotor(i);
}
- if(m_useOffsetForConstraintFrame)
- { // for stability better to solve angular limits first
- int row = setAngularLimits(info, 0,transA,transB,linVelA,linVelB,angVelA,angVelB);
- setLinearLimits(info, row, transA,transB,linVelA,linVelB,angVelA,angVelB);
+ if (m_useOffsetForConstraintFrame)
+ { // for stability better to solve angular limits first
+ int row = setAngularLimits(info, 0, transA, transB, linVelA, linVelB, angVelA, angVelB);
+ setLinearLimits(info, row, transA, transB, linVelA, linVelB, angVelA, angVelB);
}
else
- { // leave old version for compatibility
- int row = setLinearLimits(info, 0, transA,transB,linVelA,linVelB,angVelA,angVelB);
- setAngularLimits(info, row,transA,transB,linVelA,linVelB,angVelA,angVelB);
+ { // leave old version for compatibility
+ int row = setLinearLimits(info, 0, transA, transB, linVelA, linVelB, angVelA, angVelB);
+ setAngularLimits(info, row, transA, transB, linVelA, linVelB, angVelA, angVelB);
}
}
-
-
-int btGeneric6DofConstraint::setLinearLimits(btConstraintInfo2* info, int row, const btTransform& transA,const btTransform& transB,const btVector3& linVelA,const btVector3& linVelB,const btVector3& angVelA,const btVector3& angVelB)
+int btGeneric6DofConstraint::setLinearLimits(btConstraintInfo2* info, int row, const btTransform& transA, const btTransform& transB, const btVector3& linVelA, const btVector3& linVelB, const btVector3& angVelA, const btVector3& angVelB)
{
-// int row = 0;
+ // int row = 0;
//solve linear limits
btRotationalLimitMotor limot;
- for (int i=0;i<3 ;i++ )
+ for (int i = 0; i < 3; i++)
{
- if(m_linearLimits.needApplyForce(i))
- { // re-use rotational motor code
+ if (m_linearLimits.needApplyForce(i))
+ { // re-use rotational motor code
limot.m_bounce = btScalar(0.f);
limot.m_currentLimit = m_linearLimits.m_currentLimit[i];
limot.m_currentPosition = m_linearLimits.m_currentLinearDiff[i];
- limot.m_currentLimitError = m_linearLimits.m_currentLimitError[i];
- limot.m_damping = m_linearLimits.m_damping;
- limot.m_enableMotor = m_linearLimits.m_enableMotor[i];
- limot.m_hiLimit = m_linearLimits.m_upperLimit[i];
- limot.m_limitSoftness = m_linearLimits.m_limitSoftness;
- limot.m_loLimit = m_linearLimits.m_lowerLimit[i];
- limot.m_maxLimitForce = btScalar(0.f);
- limot.m_maxMotorForce = m_linearLimits.m_maxMotorForce[i];
- limot.m_targetVelocity = m_linearLimits.m_targetVelocity[i];
+ limot.m_currentLimitError = m_linearLimits.m_currentLimitError[i];
+ limot.m_damping = m_linearLimits.m_damping;
+ limot.m_enableMotor = m_linearLimits.m_enableMotor[i];
+ limot.m_hiLimit = m_linearLimits.m_upperLimit[i];
+ limot.m_limitSoftness = m_linearLimits.m_limitSoftness;
+ limot.m_loLimit = m_linearLimits.m_lowerLimit[i];
+ limot.m_maxLimitForce = btScalar(0.f);
+ limot.m_maxMotorForce = m_linearLimits.m_maxMotorForce[i];
+ limot.m_targetVelocity = m_linearLimits.m_targetVelocity[i];
btVector3 axis = m_calculatedTransformA.getBasis().getColumn(i);
int flags = m_flags >> (i * BT_6DOF_FLAGS_AXIS_SHIFT);
- limot.m_normalCFM = (flags & BT_6DOF_FLAGS_CFM_NORM) ? m_linearLimits.m_normalCFM[i] : info->cfm[0];
- limot.m_stopCFM = (flags & BT_6DOF_FLAGS_CFM_STOP) ? m_linearLimits.m_stopCFM[i] : info->cfm[0];
- limot.m_stopERP = (flags & BT_6DOF_FLAGS_ERP_STOP) ? m_linearLimits.m_stopERP[i] : info->erp;
- if(m_useOffsetForConstraintFrame)
+ limot.m_normalCFM = (flags & BT_6DOF_FLAGS_CFM_NORM) ? m_linearLimits.m_normalCFM[i] : info->cfm[0];
+ limot.m_stopCFM = (flags & BT_6DOF_FLAGS_CFM_STOP) ? m_linearLimits.m_stopCFM[i] : info->cfm[0];
+ limot.m_stopERP = (flags & BT_6DOF_FLAGS_ERP_STOP) ? m_linearLimits.m_stopERP[i] : info->erp;
+ if (m_useOffsetForConstraintFrame)
{
int indx1 = (i + 1) % 3;
int indx2 = (i + 2) % 3;
- int rotAllowed = 1; // rotations around orthos to current axis
- if(m_angularLimits[indx1].m_currentLimit && m_angularLimits[indx2].m_currentLimit)
+ int rotAllowed = 1; // rotations around orthos to current axis
+ if (m_angularLimits[indx1].m_currentLimit && m_angularLimits[indx2].m_currentLimit)
{
rotAllowed = 0;
}
- row += get_limit_motor_info2(&limot, transA,transB,linVelA,linVelB,angVelA,angVelB, info, row, axis, 0, rotAllowed);
+ row += get_limit_motor_info2(&limot, transA, transB, linVelA, linVelB, angVelA, angVelB, info, row, axis, 0, rotAllowed);
}
else
{
- row += get_limit_motor_info2(&limot, transA,transB,linVelA,linVelB,angVelA,angVelB, info, row, axis, 0);
+ row += get_limit_motor_info2(&limot, transA, transB, linVelA, linVelB, angVelA, angVelB, info, row, axis, 0);
}
}
}
return row;
}
-
-
-int btGeneric6DofConstraint::setAngularLimits(btConstraintInfo2 *info, int row_offset, const btTransform& transA,const btTransform& transB,const btVector3& linVelA,const btVector3& linVelB,const btVector3& angVelA,const btVector3& angVelB)
+int btGeneric6DofConstraint::setAngularLimits(btConstraintInfo2* info, int row_offset, const btTransform& transA, const btTransform& transB, const btVector3& linVelA, const btVector3& linVelB, const btVector3& angVelA, const btVector3& angVelB)
{
- btGeneric6DofConstraint * d6constraint = this;
+ btGeneric6DofConstraint* d6constraint = this;
int row = row_offset;
//solve angular limits
- for (int i=0;i<3 ;i++ )
+ for (int i = 0; i < 3; i++)
{
- if(d6constraint->getRotationalLimitMotor(i)->needApplyTorques())
+ if (d6constraint->getRotationalLimitMotor(i)->needApplyTorques())
{
btVector3 axis = d6constraint->getAxis(i);
int flags = m_flags >> ((i + 3) * BT_6DOF_FLAGS_AXIS_SHIFT);
- if(!(flags & BT_6DOF_FLAGS_CFM_NORM))
+ if (!(flags & BT_6DOF_FLAGS_CFM_NORM))
{
m_angularLimits[i].m_normalCFM = info->cfm[0];
}
- if(!(flags & BT_6DOF_FLAGS_CFM_STOP))
+ if (!(flags & BT_6DOF_FLAGS_CFM_STOP))
{
m_angularLimits[i].m_stopCFM = info->cfm[0];
}
- if(!(flags & BT_6DOF_FLAGS_ERP_STOP))
+ if (!(flags & BT_6DOF_FLAGS_ERP_STOP))
{
m_angularLimits[i].m_stopERP = info->erp;
}
row += get_limit_motor_info2(d6constraint->getRotationalLimitMotor(i),
- transA,transB,linVelA,linVelB,angVelA,angVelB, info,row,axis,1);
+ transA, transB, linVelA, linVelB, angVelA, angVelB, info, row, axis, 1);
}
}
return row;
}
-
-
-
-void btGeneric6DofConstraint::updateRHS(btScalar timeStep)
+void btGeneric6DofConstraint::updateRHS(btScalar timeStep)
{
(void)timeStep;
-
}
-
void btGeneric6DofConstraint::setFrames(const btTransform& frameA, const btTransform& frameB)
{
m_frameInA = frameA;
@@ -715,33 +642,27 @@ void btGeneric6DofConstraint::setFrames(const btTransform& frameA, const btTrans
calculateTransforms();
}
-
-
btVector3 btGeneric6DofConstraint::getAxis(int axis_index) const
{
return m_calculatedAxis[axis_index];
}
-
-btScalar btGeneric6DofConstraint::getRelativePivotPosition(int axisIndex) const
+btScalar btGeneric6DofConstraint::getRelativePivotPosition(int axisIndex) const
{
return m_calculatedLinearDiff[axisIndex];
}
-
btScalar btGeneric6DofConstraint::getAngle(int axisIndex) const
{
return m_calculatedAxisAngleDiff[axisIndex];
}
-
-
void btGeneric6DofConstraint::calcAnchorPos(void)
{
btScalar imA = m_rbA.getInvMass();
btScalar imB = m_rbB.getInvMass();
btScalar weight;
- if(imB == btScalar(0.0))
+ if (imB == btScalar(0.0))
{
weight = btScalar(1.0);
}
@@ -755,43 +676,39 @@ void btGeneric6DofConstraint::calcAnchorPos(void)
return;
}
-
-
void btGeneric6DofConstraint::calculateLinearInfo()
{
m_calculatedLinearDiff = m_calculatedTransformB.getOrigin() - m_calculatedTransformA.getOrigin();
m_calculatedLinearDiff = m_calculatedTransformA.getBasis().inverse() * m_calculatedLinearDiff;
- for(int i = 0; i < 3; i++)
+ for (int i = 0; i < 3; i++)
{
m_linearLimits.m_currentLinearDiff[i] = m_calculatedLinearDiff[i];
m_linearLimits.testLimitValue(i, m_calculatedLinearDiff[i]);
}
}
-
-
int btGeneric6DofConstraint::get_limit_motor_info2(
- btRotationalLimitMotor * limot,
- const btTransform& transA,const btTransform& transB,const btVector3& linVelA,const btVector3& linVelB,const btVector3& angVelA,const btVector3& angVelB,
- btConstraintInfo2 *info, int row, btVector3& ax1, int rotational,int rotAllowed)
-{
- int srow = row * info->rowskip;
- bool powered = limot->m_enableMotor;
- int limit = limot->m_currentLimit;
- if (powered || limit)
- { // if the joint is powered, or has joint limits, add in the extra row
- btScalar *J1 = rotational ? info->m_J1angularAxis : info->m_J1linearAxis;
- btScalar *J2 = rotational ? info->m_J2angularAxis : info->m_J2linearAxis;
- J1[srow+0] = ax1[0];
- J1[srow+1] = ax1[1];
- J1[srow+2] = ax1[2];
-
- J2[srow+0] = -ax1[0];
- J2[srow+1] = -ax1[1];
- J2[srow+2] = -ax1[2];
-
- if((!rotational))
- {
+ btRotationalLimitMotor* limot,
+ const btTransform& transA, const btTransform& transB, const btVector3& linVelA, const btVector3& linVelB, const btVector3& angVelA, const btVector3& angVelB,
+ btConstraintInfo2* info, int row, btVector3& ax1, int rotational, int rotAllowed)
+{
+ int srow = row * info->rowskip;
+ bool powered = limot->m_enableMotor;
+ int limit = limot->m_currentLimit;
+ if (powered || limit)
+ { // if the joint is powered, or has joint limits, add in the extra row
+ btScalar* J1 = rotational ? info->m_J1angularAxis : info->m_J1linearAxis;
+ btScalar* J2 = rotational ? info->m_J2angularAxis : info->m_J2linearAxis;
+ J1[srow + 0] = ax1[0];
+ J1[srow + 1] = ax1[1];
+ J1[srow + 2] = ax1[2];
+
+ J2[srow + 0] = -ax1[0];
+ J2[srow + 1] = -ax1[1];
+ J2[srow + 2] = -ax1[2];
+
+ if ((!rotational))
+ {
if (m_useOffsetForConstraintFrame)
{
btVector3 tmpA, tmpB, relA, relB;
@@ -814,55 +731,56 @@ int btGeneric6DofConstraint::get_limit_motor_info2(
relB = orthoB - totalDist * m_factB;
tmpA = relA.cross(ax1);
tmpB = relB.cross(ax1);
- if(m_hasStaticBody && (!rotAllowed))
+ if (m_hasStaticBody && (!rotAllowed))
{
tmpA *= m_factA;
tmpB *= m_factB;
}
int i;
- for (i=0; i<3; i++) info->m_J1angularAxis[srow+i] = tmpA[i];
- for (i=0; i<3; i++) info->m_J2angularAxis[srow+i] = -tmpB[i];
- } else
+ for (i = 0; i < 3; i++) info->m_J1angularAxis[srow + i] = tmpA[i];
+ for (i = 0; i < 3; i++) info->m_J2angularAxis[srow + i] = -tmpB[i];
+ }
+ else
{
- btVector3 ltd; // Linear Torque Decoupling vector
+ btVector3 ltd; // Linear Torque Decoupling vector
btVector3 c = m_calculatedTransformB.getOrigin() - transA.getOrigin();
ltd = c.cross(ax1);
- info->m_J1angularAxis[srow+0] = ltd[0];
- info->m_J1angularAxis[srow+1] = ltd[1];
- info->m_J1angularAxis[srow+2] = ltd[2];
+ info->m_J1angularAxis[srow + 0] = ltd[0];
+ info->m_J1angularAxis[srow + 1] = ltd[1];
+ info->m_J1angularAxis[srow + 2] = ltd[2];
c = m_calculatedTransformB.getOrigin() - transB.getOrigin();
ltd = -c.cross(ax1);
- info->m_J2angularAxis[srow+0] = ltd[0];
- info->m_J2angularAxis[srow+1] = ltd[1];
- info->m_J2angularAxis[srow+2] = ltd[2];
+ info->m_J2angularAxis[srow + 0] = ltd[0];
+ info->m_J2angularAxis[srow + 1] = ltd[1];
+ info->m_J2angularAxis[srow + 2] = ltd[2];
}
- }
- // if we're limited low and high simultaneously, the joint motor is
- // ineffective
- if (limit && (limot->m_loLimit == limot->m_hiLimit)) powered = false;
- info->m_constraintError[srow] = btScalar(0.f);
- if (powered)
- {
+ }
+ // if we're limited low and high simultaneously, the joint motor is
+ // ineffective
+ if (limit && (limot->m_loLimit == limot->m_hiLimit)) powered = false;
+ info->m_constraintError[srow] = btScalar(0.f);
+ if (powered)
+ {
info->cfm[srow] = limot->m_normalCFM;
- if(!limit)
- {
+ if (!limit)
+ {
btScalar tag_vel = rotational ? limot->m_targetVelocity : -limot->m_targetVelocity;
- btScalar mot_fact = getMotorFactor( limot->m_currentPosition,
- limot->m_loLimit,
- limot->m_hiLimit,
- tag_vel,
- info->fps * limot->m_stopERP);
+ btScalar mot_fact = getMotorFactor(limot->m_currentPosition,
+ limot->m_loLimit,
+ limot->m_hiLimit,
+ tag_vel,
+ info->fps * limot->m_stopERP);
info->m_constraintError[srow] += mot_fact * limot->m_targetVelocity;
- info->m_lowerLimit[srow] = -limot->m_maxMotorForce / info->fps;
- info->m_upperLimit[srow] = limot->m_maxMotorForce / info->fps;
- }
- }
- if(limit)
- {
- btScalar k = info->fps * limot->m_stopERP;
- if(!rotational)
+ info->m_lowerLimit[srow] = -limot->m_maxMotorForce / info->fps;
+ info->m_upperLimit[srow] = limot->m_maxMotorForce / info->fps;
+ }
+ }
+ if (limit)
+ {
+ btScalar k = info->fps * limot->m_stopERP;
+ if (!rotational)
{
info->m_constraintError[srow] += k * limot->m_currentLimitError;
}
@@ -871,116 +789,112 @@ int btGeneric6DofConstraint::get_limit_motor_info2(
info->m_constraintError[srow] += -k * limot->m_currentLimitError;
}
info->cfm[srow] = limot->m_stopCFM;
- if (limot->m_loLimit == limot->m_hiLimit)
- { // limited low and high simultaneously
- info->m_lowerLimit[srow] = -SIMD_INFINITY;
- info->m_upperLimit[srow] = SIMD_INFINITY;
- }
- else
- {
- if (limit == 1)
- {
- info->m_lowerLimit[srow] = 0;
- info->m_upperLimit[srow] = SIMD_INFINITY;
- }
- else
- {
- info->m_lowerLimit[srow] = -SIMD_INFINITY;
- info->m_upperLimit[srow] = 0;
- }
- // deal with bounce
- if (limot->m_bounce > 0)
- {
- // calculate joint velocity
- btScalar vel;
- if (rotational)
- {
- vel = angVelA.dot(ax1);
-//make sure that if no body -> angVelB == zero vec
-// if (body1)
- vel -= angVelB.dot(ax1);
- }
- else
- {
- vel = linVelA.dot(ax1);
-//make sure that if no body -> angVelB == zero vec
-// if (body1)
- vel -= linVelB.dot(ax1);
- }
- // only apply bounce if the velocity is incoming, and if the
- // resulting c[] exceeds what we already have.
- if (limit == 1)
- {
- if (vel < 0)
- {
- btScalar newc = -limot->m_bounce* vel;
- if (newc > info->m_constraintError[srow])
+ if (limot->m_loLimit == limot->m_hiLimit)
+ { // limited low and high simultaneously
+ info->m_lowerLimit[srow] = -SIMD_INFINITY;
+ info->m_upperLimit[srow] = SIMD_INFINITY;
+ }
+ else
+ {
+ if (limit == 1)
+ {
+ info->m_lowerLimit[srow] = 0;
+ info->m_upperLimit[srow] = SIMD_INFINITY;
+ }
+ else
+ {
+ info->m_lowerLimit[srow] = -SIMD_INFINITY;
+ info->m_upperLimit[srow] = 0;
+ }
+ // deal with bounce
+ if (limot->m_bounce > 0)
+ {
+ // calculate joint velocity
+ btScalar vel;
+ if (rotational)
+ {
+ vel = angVelA.dot(ax1);
+ //make sure that if no body -> angVelB == zero vec
+ // if (body1)
+ vel -= angVelB.dot(ax1);
+ }
+ else
+ {
+ vel = linVelA.dot(ax1);
+ //make sure that if no body -> angVelB == zero vec
+ // if (body1)
+ vel -= linVelB.dot(ax1);
+ }
+ // only apply bounce if the velocity is incoming, and if the
+ // resulting c[] exceeds what we already have.
+ if (limit == 1)
+ {
+ if (vel < 0)
+ {
+ btScalar newc = -limot->m_bounce * vel;
+ if (newc > info->m_constraintError[srow])
info->m_constraintError[srow] = newc;
- }
- }
- else
- {
- if (vel > 0)
- {
- btScalar newc = -limot->m_bounce * vel;
- if (newc < info->m_constraintError[srow])
+ }
+ }
+ else
+ {
+ if (vel > 0)
+ {
+ btScalar newc = -limot->m_bounce * vel;
+ if (newc < info->m_constraintError[srow])
info->m_constraintError[srow] = newc;
- }
- }
- }
- }
- }
- return 1;
- }
- else return 0;
+ }
+ }
+ }
+ }
+ }
+ return 1;
+ }
+ else
+ return 0;
}
-
-
-
-
-
- ///override the default global value of a parameter (such as ERP or CFM), optionally provide the axis (0..5).
- ///If no axis is provided, it uses the default axis for this constraint.
+///override the default global value of a parameter (such as ERP or CFM), optionally provide the axis (0..5).
+///If no axis is provided, it uses the default axis for this constraint.
void btGeneric6DofConstraint::setParam(int num, btScalar value, int axis)
{
- if((axis >= 0) && (axis < 3))
+ if ((axis >= 0) && (axis < 3))
{
- switch(num)
+ switch (num)
{
- case BT_CONSTRAINT_STOP_ERP :
+ case BT_CONSTRAINT_STOP_ERP:
m_linearLimits.m_stopERP[axis] = value;
m_flags |= BT_6DOF_FLAGS_ERP_STOP << (axis * BT_6DOF_FLAGS_AXIS_SHIFT);
break;
- case BT_CONSTRAINT_STOP_CFM :
+ case BT_CONSTRAINT_STOP_CFM:
m_linearLimits.m_stopCFM[axis] = value;
m_flags |= BT_6DOF_FLAGS_CFM_STOP << (axis * BT_6DOF_FLAGS_AXIS_SHIFT);
break;
- case BT_CONSTRAINT_CFM :
+ case BT_CONSTRAINT_CFM:
m_linearLimits.m_normalCFM[axis] = value;
m_flags |= BT_6DOF_FLAGS_CFM_NORM << (axis * BT_6DOF_FLAGS_AXIS_SHIFT);
break;
- default :
+ default:
btAssertConstrParams(0);
}
}
- else if((axis >=3) && (axis < 6))
+ else if ((axis >= 3) && (axis < 6))
{
- switch(num)
+ switch (num)
{
- case BT_CONSTRAINT_STOP_ERP :
+ case BT_CONSTRAINT_STOP_ERP:
m_angularLimits[axis - 3].m_stopERP = value;
m_flags |= BT_6DOF_FLAGS_ERP_STOP << (axis * BT_6DOF_FLAGS_AXIS_SHIFT);
break;
- case BT_CONSTRAINT_STOP_CFM :
+ case BT_CONSTRAINT_STOP_CFM:
m_angularLimits[axis - 3].m_stopCFM = value;
m_flags |= BT_6DOF_FLAGS_CFM_STOP << (axis * BT_6DOF_FLAGS_AXIS_SHIFT);
break;
- case BT_CONSTRAINT_CFM :
+ case BT_CONSTRAINT_CFM:
m_angularLimits[axis - 3].m_normalCFM = value;
m_flags |= BT_6DOF_FLAGS_CFM_NORM << (axis * BT_6DOF_FLAGS_AXIS_SHIFT);
break;
- default :
+ default:
btAssertConstrParams(0);
}
}
@@ -990,47 +904,47 @@ void btGeneric6DofConstraint::setParam(int num, btScalar value, int axis)
}
}
- ///return the local value of parameter
-btScalar btGeneric6DofConstraint::getParam(int num, int axis) const
+///return the local value of parameter
+btScalar btGeneric6DofConstraint::getParam(int num, int axis) const
{
btScalar retVal = 0;
- if((axis >= 0) && (axis < 3))
+ if ((axis >= 0) && (axis < 3))
{
- switch(num)
+ switch (num)
{
- case BT_CONSTRAINT_STOP_ERP :
+ case BT_CONSTRAINT_STOP_ERP:
btAssertConstrParams(m_flags & (BT_6DOF_FLAGS_ERP_STOP << (axis * BT_6DOF_FLAGS_AXIS_SHIFT)));
retVal = m_linearLimits.m_stopERP[axis];
break;
- case BT_CONSTRAINT_STOP_CFM :
+ case BT_CONSTRAINT_STOP_CFM:
btAssertConstrParams(m_flags & (BT_6DOF_FLAGS_CFM_STOP << (axis * BT_6DOF_FLAGS_AXIS_SHIFT)));
retVal = m_linearLimits.m_stopCFM[axis];
break;
- case BT_CONSTRAINT_CFM :
+ case BT_CONSTRAINT_CFM:
btAssertConstrParams(m_flags & (BT_6DOF_FLAGS_CFM_NORM << (axis * BT_6DOF_FLAGS_AXIS_SHIFT)));
retVal = m_linearLimits.m_normalCFM[axis];
break;
- default :
+ default:
btAssertConstrParams(0);
}
}
- else if((axis >=3) && (axis < 6))
+ else if ((axis >= 3) && (axis < 6))
{
- switch(num)
+ switch (num)
{
- case BT_CONSTRAINT_STOP_ERP :
+ case BT_CONSTRAINT_STOP_ERP:
btAssertConstrParams(m_flags & (BT_6DOF_FLAGS_ERP_STOP << (axis * BT_6DOF_FLAGS_AXIS_SHIFT)));
retVal = m_angularLimits[axis - 3].m_stopERP;
break;
- case BT_CONSTRAINT_STOP_CFM :
+ case BT_CONSTRAINT_STOP_CFM:
btAssertConstrParams(m_flags & (BT_6DOF_FLAGS_CFM_STOP << (axis * BT_6DOF_FLAGS_AXIS_SHIFT)));
retVal = m_angularLimits[axis - 3].m_stopCFM;
break;
- case BT_CONSTRAINT_CFM :
+ case BT_CONSTRAINT_CFM:
btAssertConstrParams(m_flags & (BT_6DOF_FLAGS_CFM_NORM << (axis * BT_6DOF_FLAGS_AXIS_SHIFT)));
retVal = m_angularLimits[axis - 3].m_normalCFM;
break;
- default :
+ default:
btAssertConstrParams(0);
}
}
@@ -1041,23 +955,21 @@ btScalar btGeneric6DofConstraint::getParam(int num, int axis) const
return retVal;
}
-
-
-void btGeneric6DofConstraint::setAxis(const btVector3& axis1,const btVector3& axis2)
+void btGeneric6DofConstraint::setAxis(const btVector3& axis1, const btVector3& axis2)
{
btVector3 zAxis = axis1.normalized();
btVector3 yAxis = axis2.normalized();
- btVector3 xAxis = yAxis.cross(zAxis); // we want right coordinate system
-
+ btVector3 xAxis = yAxis.cross(zAxis); // we want right coordinate system
+
btTransform frameInW;
frameInW.setIdentity();
- frameInW.getBasis().setValue( xAxis[0], yAxis[0], zAxis[0],
- xAxis[1], yAxis[1], zAxis[1],
- xAxis[2], yAxis[2], zAxis[2]);
-
+ frameInW.getBasis().setValue(xAxis[0], yAxis[0], zAxis[0],
+ xAxis[1], yAxis[1], zAxis[1],
+ xAxis[2], yAxis[2], zAxis[2]);
+
// now get constraint frame in local coordinate systems
m_frameInA = m_rbA.getCenterOfMassTransform().inverse() * frameInW;
m_frameInB = m_rbB.getCenterOfMassTransform().inverse() * frameInW;
-
+
calculateTransforms();
}