diff options
author | RĂ©mi Verschelde <rverschelde@gmail.com> | 2018-01-13 14:43:30 +0100 |
---|---|---|
committer | GitHub <noreply@github.com> | 2018-01-13 14:43:30 +0100 |
commit | a3ee252993e8200c856be3fe664937f9461ee268 (patch) | |
tree | af68e434545e20c538f896e28b73f2db7d626edd /thirdparty/bullet/Bullet3OpenCL/NarrowphaseCollision/kernels | |
parent | c01575b3125ce1828f0cacb3f9f00286136f373c (diff) | |
parent | e12c89e8c9896b2e5cdd70dbd2d2acb449ff4b94 (diff) |
Merge pull request #15664 from akien-mga/thirdparty
Bugfix updates to various thirdparty libraries
Diffstat (limited to 'thirdparty/bullet/Bullet3OpenCL/NarrowphaseCollision/kernels')
12 files changed, 15747 insertions, 0 deletions
diff --git a/thirdparty/bullet/Bullet3OpenCL/NarrowphaseCollision/kernels/bvhTraversal.cl b/thirdparty/bullet/Bullet3OpenCL/NarrowphaseCollision/kernels/bvhTraversal.cl new file mode 100644 index 0000000000..faa413441c --- /dev/null +++ b/thirdparty/bullet/Bullet3OpenCL/NarrowphaseCollision/kernels/bvhTraversal.cl @@ -0,0 +1,283 @@ +//keep this enum in sync with the CPU version (in btCollidable.h) +//written by Erwin Coumans + +#define SHAPE_CONVEX_HULL 3 +#define SHAPE_CONCAVE_TRIMESH 5 +#define TRIANGLE_NUM_CONVEX_FACES 5 +#define SHAPE_COMPOUND_OF_CONVEX_HULLS 6 +#define SHAPE_SPHERE 7 + +typedef unsigned int u32; + +#define MAX_NUM_PARTS_IN_BITS 10 + +///btQuantizedBvhNode is a compressed aabb node, 16 bytes. +///Node can be used for leafnode or internal node. Leafnodes can point to 32-bit triangle index (non-negative range). +typedef struct +{ + //12 bytes + unsigned short int m_quantizedAabbMin[3]; + unsigned short int m_quantizedAabbMax[3]; + //4 bytes + int m_escapeIndexOrTriangleIndex; +} btQuantizedBvhNode; + +typedef struct +{ + float4 m_aabbMin; + float4 m_aabbMax; + float4 m_quantization; + int m_numNodes; + int m_numSubTrees; + int m_nodeOffset; + int m_subTreeOffset; + +} b3BvhInfo; + +int getTriangleIndex(const btQuantizedBvhNode* rootNode) +{ + unsigned int x=0; + unsigned int y = (~(x&0))<<(31-MAX_NUM_PARTS_IN_BITS); + // Get only the lower bits where the triangle index is stored + return (rootNode->m_escapeIndexOrTriangleIndex&~(y)); +} + +int isLeaf(const btQuantizedBvhNode* rootNode) +{ + //skipindex is negative (internal node), triangleindex >=0 (leafnode) + return (rootNode->m_escapeIndexOrTriangleIndex >= 0)? 1 : 0; +} + +int getEscapeIndex(const btQuantizedBvhNode* rootNode) +{ + return -rootNode->m_escapeIndexOrTriangleIndex; +} + +typedef struct +{ + //12 bytes + unsigned short int m_quantizedAabbMin[3]; + unsigned short int m_quantizedAabbMax[3]; + //4 bytes, points to the root of the subtree + int m_rootNodeIndex; + //4 bytes + int m_subtreeSize; + int m_padding[3]; +} btBvhSubtreeInfo; + +///keep this in sync with btCollidable.h +typedef struct +{ + int m_numChildShapes; + int blaat2; + int m_shapeType; + int m_shapeIndex; + +} btCollidableGpu; + +typedef struct +{ + float4 m_childPosition; + float4 m_childOrientation; + int m_shapeIndex; + int m_unused0; + int m_unused1; + int m_unused2; +} btGpuChildShape; + + +typedef struct +{ + float4 m_pos; + float4 m_quat; + float4 m_linVel; + float4 m_angVel; + + u32 m_collidableIdx; + float m_invMass; + float m_restituitionCoeff; + float m_frictionCoeff; +} BodyData; + +typedef struct +{ + union + { + float4 m_min; + float m_minElems[4]; + int m_minIndices[4]; + }; + union + { + float4 m_max; + float m_maxElems[4]; + int m_maxIndices[4]; + }; +} btAabbCL; + + +int testQuantizedAabbAgainstQuantizedAabb( + const unsigned short int* aabbMin1, + const unsigned short int* aabbMax1, + const unsigned short int* aabbMin2, + const unsigned short int* aabbMax2) +{ + //int overlap = 1; + if (aabbMin1[0] > aabbMax2[0]) + return 0; + if (aabbMax1[0] < aabbMin2[0]) + return 0; + if (aabbMin1[1] > aabbMax2[1]) + return 0; + if (aabbMax1[1] < aabbMin2[1]) + return 0; + if (aabbMin1[2] > aabbMax2[2]) + return 0; + if (aabbMax1[2] < aabbMin2[2]) + return 0; + return 1; + //overlap = ((aabbMin1[0] > aabbMax2[0]) || (aabbMax1[0] < aabbMin2[0])) ? 0 : overlap; + //overlap = ((aabbMin1[2] > aabbMax2[2]) || (aabbMax1[2] < aabbMin2[2])) ? 0 : overlap; + //overlap = ((aabbMin1[1] > aabbMax2[1]) || (aabbMax1[1] < aabbMin2[1])) ? 0 : overlap; + //return overlap; +} + + +void quantizeWithClamp(unsigned short* out, float4 point2,int isMax, float4 bvhAabbMin, float4 bvhAabbMax, float4 bvhQuantization) +{ + float4 clampedPoint = max(point2,bvhAabbMin); + clampedPoint = min (clampedPoint, bvhAabbMax); + + float4 v = (clampedPoint - bvhAabbMin) * bvhQuantization; + if (isMax) + { + out[0] = (unsigned short) (((unsigned short)(v.x+1.f) | 1)); + out[1] = (unsigned short) (((unsigned short)(v.y+1.f) | 1)); + out[2] = (unsigned short) (((unsigned short)(v.z+1.f) | 1)); + } else + { + out[0] = (unsigned short) (((unsigned short)(v.x) & 0xfffe)); + out[1] = (unsigned short) (((unsigned short)(v.y) & 0xfffe)); + out[2] = (unsigned short) (((unsigned short)(v.z) & 0xfffe)); + } + +} + + +// work-in-progress +__kernel void bvhTraversalKernel( __global const int4* pairs, + __global const BodyData* rigidBodies, + __global const btCollidableGpu* collidables, + __global btAabbCL* aabbs, + __global int4* concavePairsOut, + __global volatile int* numConcavePairsOut, + __global const btBvhSubtreeInfo* subtreeHeadersRoot, + __global const btQuantizedBvhNode* quantizedNodesRoot, + __global const b3BvhInfo* bvhInfos, + int numPairs, + int maxNumConcavePairsCapacity) +{ + int id = get_global_id(0); + if (id>=numPairs) + return; + + int bodyIndexA = pairs[id].x; + int bodyIndexB = pairs[id].y; + int collidableIndexA = rigidBodies[bodyIndexA].m_collidableIdx; + int collidableIndexB = rigidBodies[bodyIndexB].m_collidableIdx; + + //once the broadphase avoids static-static pairs, we can remove this test + if ((rigidBodies[bodyIndexA].m_invMass==0) &&(rigidBodies[bodyIndexB].m_invMass==0)) + { + return; + } + + if (collidables[collidableIndexA].m_shapeType!=SHAPE_CONCAVE_TRIMESH) + return; + + int shapeTypeB = collidables[collidableIndexB].m_shapeType; + + if (shapeTypeB!=SHAPE_CONVEX_HULL && + shapeTypeB!=SHAPE_SPHERE && + shapeTypeB!=SHAPE_COMPOUND_OF_CONVEX_HULLS + ) + return; + + b3BvhInfo bvhInfo = bvhInfos[collidables[collidableIndexA].m_numChildShapes]; + + float4 bvhAabbMin = bvhInfo.m_aabbMin; + float4 bvhAabbMax = bvhInfo.m_aabbMax; + float4 bvhQuantization = bvhInfo.m_quantization; + int numSubtreeHeaders = bvhInfo.m_numSubTrees; + __global const btBvhSubtreeInfo* subtreeHeaders = &subtreeHeadersRoot[bvhInfo.m_subTreeOffset]; + __global const btQuantizedBvhNode* quantizedNodes = &quantizedNodesRoot[bvhInfo.m_nodeOffset]; + + + unsigned short int quantizedQueryAabbMin[3]; + unsigned short int quantizedQueryAabbMax[3]; + quantizeWithClamp(quantizedQueryAabbMin,aabbs[bodyIndexB].m_min,false,bvhAabbMin, bvhAabbMax,bvhQuantization); + quantizeWithClamp(quantizedQueryAabbMax,aabbs[bodyIndexB].m_max,true ,bvhAabbMin, bvhAabbMax,bvhQuantization); + + for (int i=0;i<numSubtreeHeaders;i++) + { + btBvhSubtreeInfo subtree = subtreeHeaders[i]; + + int overlap = testQuantizedAabbAgainstQuantizedAabb(quantizedQueryAabbMin,quantizedQueryAabbMax,subtree.m_quantizedAabbMin,subtree.m_quantizedAabbMax); + if (overlap != 0) + { + int startNodeIndex = subtree.m_rootNodeIndex; + int endNodeIndex = subtree.m_rootNodeIndex+subtree.m_subtreeSize; + int curIndex = startNodeIndex; + int escapeIndex; + int isLeafNode; + int aabbOverlap; + while (curIndex < endNodeIndex) + { + btQuantizedBvhNode rootNode = quantizedNodes[curIndex]; + aabbOverlap = testQuantizedAabbAgainstQuantizedAabb(quantizedQueryAabbMin,quantizedQueryAabbMax,rootNode.m_quantizedAabbMin,rootNode.m_quantizedAabbMax); + isLeafNode = isLeaf(&rootNode); + if (aabbOverlap) + { + if (isLeafNode) + { + int triangleIndex = getTriangleIndex(&rootNode); + if (shapeTypeB==SHAPE_COMPOUND_OF_CONVEX_HULLS) + { + int numChildrenB = collidables[collidableIndexB].m_numChildShapes; + int pairIdx = atomic_add(numConcavePairsOut,numChildrenB); + for (int b=0;b<numChildrenB;b++) + { + if ((pairIdx+b)<maxNumConcavePairsCapacity) + { + int childShapeIndexB = collidables[collidableIndexB].m_shapeIndex+b; + int4 newPair = (int4)(bodyIndexA,bodyIndexB,triangleIndex,childShapeIndexB); + concavePairsOut[pairIdx+b] = newPair; + } + } + } else + { + int pairIdx = atomic_inc(numConcavePairsOut); + if (pairIdx<maxNumConcavePairsCapacity) + { + int4 newPair = (int4)(bodyIndexA,bodyIndexB,triangleIndex,0); + concavePairsOut[pairIdx] = newPair; + } + } + } + curIndex++; + } else + { + if (isLeafNode) + { + curIndex++; + } else + { + escapeIndex = getEscapeIndex(&rootNode); + curIndex += escapeIndex; + } + } + } + } + } + +}
\ No newline at end of file diff --git a/thirdparty/bullet/Bullet3OpenCL/NarrowphaseCollision/kernels/bvhTraversal.h b/thirdparty/bullet/Bullet3OpenCL/NarrowphaseCollision/kernels/bvhTraversal.h new file mode 100644 index 0000000000..4b3b49eae8 --- /dev/null +++ b/thirdparty/bullet/Bullet3OpenCL/NarrowphaseCollision/kernels/bvhTraversal.h @@ -0,0 +1,258 @@ +//this file is autogenerated using stringify.bat (premake --stringify) in the build folder of this project +static const char* bvhTraversalKernelCL= \ +"//keep this enum in sync with the CPU version (in btCollidable.h)\n" +"//written by Erwin Coumans\n" +"#define SHAPE_CONVEX_HULL 3\n" +"#define SHAPE_CONCAVE_TRIMESH 5\n" +"#define TRIANGLE_NUM_CONVEX_FACES 5\n" +"#define SHAPE_COMPOUND_OF_CONVEX_HULLS 6\n" +"#define SHAPE_SPHERE 7\n" +"typedef unsigned int u32;\n" +"#define MAX_NUM_PARTS_IN_BITS 10\n" +"///btQuantizedBvhNode is a compressed aabb node, 16 bytes.\n" +"///Node can be used for leafnode or internal node. Leafnodes can point to 32-bit triangle index (non-negative range).\n" +"typedef struct\n" +"{\n" +" //12 bytes\n" +" unsigned short int m_quantizedAabbMin[3];\n" +" unsigned short int m_quantizedAabbMax[3];\n" +" //4 bytes\n" +" int m_escapeIndexOrTriangleIndex;\n" +"} btQuantizedBvhNode;\n" +"typedef struct\n" +"{\n" +" float4 m_aabbMin;\n" +" float4 m_aabbMax;\n" +" float4 m_quantization;\n" +" int m_numNodes;\n" +" int m_numSubTrees;\n" +" int m_nodeOffset;\n" +" int m_subTreeOffset;\n" +"} b3BvhInfo;\n" +"int getTriangleIndex(const btQuantizedBvhNode* rootNode)\n" +"{\n" +" unsigned int x=0;\n" +" unsigned int y = (~(x&0))<<(31-MAX_NUM_PARTS_IN_BITS);\n" +" // Get only the lower bits where the triangle index is stored\n" +" return (rootNode->m_escapeIndexOrTriangleIndex&~(y));\n" +"}\n" +"int isLeaf(const btQuantizedBvhNode* rootNode)\n" +"{\n" +" //skipindex is negative (internal node), triangleindex >=0 (leafnode)\n" +" return (rootNode->m_escapeIndexOrTriangleIndex >= 0)? 1 : 0;\n" +"}\n" +" \n" +"int getEscapeIndex(const btQuantizedBvhNode* rootNode)\n" +"{\n" +" return -rootNode->m_escapeIndexOrTriangleIndex;\n" +"}\n" +"typedef struct\n" +"{\n" +" //12 bytes\n" +" unsigned short int m_quantizedAabbMin[3];\n" +" unsigned short int m_quantizedAabbMax[3];\n" +" //4 bytes, points to the root of the subtree\n" +" int m_rootNodeIndex;\n" +" //4 bytes\n" +" int m_subtreeSize;\n" +" int m_padding[3];\n" +"} btBvhSubtreeInfo;\n" +"///keep this in sync with btCollidable.h\n" +"typedef struct\n" +"{\n" +" int m_numChildShapes;\n" +" int blaat2;\n" +" int m_shapeType;\n" +" int m_shapeIndex;\n" +" \n" +"} btCollidableGpu;\n" +"typedef struct\n" +"{\n" +" float4 m_childPosition;\n" +" float4 m_childOrientation;\n" +" int m_shapeIndex;\n" +" int m_unused0;\n" +" int m_unused1;\n" +" int m_unused2;\n" +"} btGpuChildShape;\n" +"typedef struct\n" +"{\n" +" float4 m_pos;\n" +" float4 m_quat;\n" +" float4 m_linVel;\n" +" float4 m_angVel;\n" +" u32 m_collidableIdx;\n" +" float m_invMass;\n" +" float m_restituitionCoeff;\n" +" float m_frictionCoeff;\n" +"} BodyData;\n" +"typedef struct \n" +"{\n" +" union\n" +" {\n" +" float4 m_min;\n" +" float m_minElems[4];\n" +" int m_minIndices[4];\n" +" };\n" +" union\n" +" {\n" +" float4 m_max;\n" +" float m_maxElems[4];\n" +" int m_maxIndices[4];\n" +" };\n" +"} btAabbCL;\n" +"int testQuantizedAabbAgainstQuantizedAabb(\n" +" const unsigned short int* aabbMin1,\n" +" const unsigned short int* aabbMax1,\n" +" const unsigned short int* aabbMin2,\n" +" const unsigned short int* aabbMax2)\n" +"{\n" +" //int overlap = 1;\n" +" if (aabbMin1[0] > aabbMax2[0])\n" +" return 0;\n" +" if (aabbMax1[0] < aabbMin2[0])\n" +" return 0;\n" +" if (aabbMin1[1] > aabbMax2[1])\n" +" return 0;\n" +" if (aabbMax1[1] < aabbMin2[1])\n" +" return 0;\n" +" if (aabbMin1[2] > aabbMax2[2])\n" +" return 0;\n" +" if (aabbMax1[2] < aabbMin2[2])\n" +" return 0;\n" +" return 1;\n" +" //overlap = ((aabbMin1[0] > aabbMax2[0]) || (aabbMax1[0] < aabbMin2[0])) ? 0 : overlap;\n" +" //overlap = ((aabbMin1[2] > aabbMax2[2]) || (aabbMax1[2] < aabbMin2[2])) ? 0 : overlap;\n" +" //overlap = ((aabbMin1[1] > aabbMax2[1]) || (aabbMax1[1] < aabbMin2[1])) ? 0 : overlap;\n" +" //return overlap;\n" +"}\n" +"void quantizeWithClamp(unsigned short* out, float4 point2,int isMax, float4 bvhAabbMin, float4 bvhAabbMax, float4 bvhQuantization)\n" +"{\n" +" float4 clampedPoint = max(point2,bvhAabbMin);\n" +" clampedPoint = min (clampedPoint, bvhAabbMax);\n" +" float4 v = (clampedPoint - bvhAabbMin) * bvhQuantization;\n" +" if (isMax)\n" +" {\n" +" out[0] = (unsigned short) (((unsigned short)(v.x+1.f) | 1));\n" +" out[1] = (unsigned short) (((unsigned short)(v.y+1.f) | 1));\n" +" out[2] = (unsigned short) (((unsigned short)(v.z+1.f) | 1));\n" +" } else\n" +" {\n" +" out[0] = (unsigned short) (((unsigned short)(v.x) & 0xfffe));\n" +" out[1] = (unsigned short) (((unsigned short)(v.y) & 0xfffe));\n" +" out[2] = (unsigned short) (((unsigned short)(v.z) & 0xfffe));\n" +" }\n" +"}\n" +"// work-in-progress\n" +"__kernel void bvhTraversalKernel( __global const int4* pairs, \n" +" __global const BodyData* rigidBodies, \n" +" __global const btCollidableGpu* collidables,\n" +" __global btAabbCL* aabbs,\n" +" __global int4* concavePairsOut,\n" +" __global volatile int* numConcavePairsOut,\n" +" __global const btBvhSubtreeInfo* subtreeHeadersRoot,\n" +" __global const btQuantizedBvhNode* quantizedNodesRoot,\n" +" __global const b3BvhInfo* bvhInfos,\n" +" int numPairs,\n" +" int maxNumConcavePairsCapacity)\n" +"{\n" +" int id = get_global_id(0);\n" +" if (id>=numPairs)\n" +" return;\n" +" \n" +" int bodyIndexA = pairs[id].x;\n" +" int bodyIndexB = pairs[id].y;\n" +" int collidableIndexA = rigidBodies[bodyIndexA].m_collidableIdx;\n" +" int collidableIndexB = rigidBodies[bodyIndexB].m_collidableIdx;\n" +" \n" +" //once the broadphase avoids static-static pairs, we can remove this test\n" +" if ((rigidBodies[bodyIndexA].m_invMass==0) &&(rigidBodies[bodyIndexB].m_invMass==0))\n" +" {\n" +" return;\n" +" }\n" +" \n" +" if (collidables[collidableIndexA].m_shapeType!=SHAPE_CONCAVE_TRIMESH)\n" +" return;\n" +" int shapeTypeB = collidables[collidableIndexB].m_shapeType;\n" +" \n" +" if (shapeTypeB!=SHAPE_CONVEX_HULL &&\n" +" shapeTypeB!=SHAPE_SPHERE &&\n" +" shapeTypeB!=SHAPE_COMPOUND_OF_CONVEX_HULLS\n" +" )\n" +" return;\n" +" b3BvhInfo bvhInfo = bvhInfos[collidables[collidableIndexA].m_numChildShapes];\n" +" float4 bvhAabbMin = bvhInfo.m_aabbMin;\n" +" float4 bvhAabbMax = bvhInfo.m_aabbMax;\n" +" float4 bvhQuantization = bvhInfo.m_quantization;\n" +" int numSubtreeHeaders = bvhInfo.m_numSubTrees;\n" +" __global const btBvhSubtreeInfo* subtreeHeaders = &subtreeHeadersRoot[bvhInfo.m_subTreeOffset];\n" +" __global const btQuantizedBvhNode* quantizedNodes = &quantizedNodesRoot[bvhInfo.m_nodeOffset];\n" +" \n" +" unsigned short int quantizedQueryAabbMin[3];\n" +" unsigned short int quantizedQueryAabbMax[3];\n" +" quantizeWithClamp(quantizedQueryAabbMin,aabbs[bodyIndexB].m_min,false,bvhAabbMin, bvhAabbMax,bvhQuantization);\n" +" quantizeWithClamp(quantizedQueryAabbMax,aabbs[bodyIndexB].m_max,true ,bvhAabbMin, bvhAabbMax,bvhQuantization);\n" +" \n" +" for (int i=0;i<numSubtreeHeaders;i++)\n" +" {\n" +" btBvhSubtreeInfo subtree = subtreeHeaders[i];\n" +" \n" +" int overlap = testQuantizedAabbAgainstQuantizedAabb(quantizedQueryAabbMin,quantizedQueryAabbMax,subtree.m_quantizedAabbMin,subtree.m_quantizedAabbMax);\n" +" if (overlap != 0)\n" +" {\n" +" int startNodeIndex = subtree.m_rootNodeIndex;\n" +" int endNodeIndex = subtree.m_rootNodeIndex+subtree.m_subtreeSize;\n" +" int curIndex = startNodeIndex;\n" +" int escapeIndex;\n" +" int isLeafNode;\n" +" int aabbOverlap;\n" +" while (curIndex < endNodeIndex)\n" +" {\n" +" btQuantizedBvhNode rootNode = quantizedNodes[curIndex];\n" +" aabbOverlap = testQuantizedAabbAgainstQuantizedAabb(quantizedQueryAabbMin,quantizedQueryAabbMax,rootNode.m_quantizedAabbMin,rootNode.m_quantizedAabbMax);\n" +" isLeafNode = isLeaf(&rootNode);\n" +" if (aabbOverlap)\n" +" {\n" +" if (isLeafNode)\n" +" {\n" +" int triangleIndex = getTriangleIndex(&rootNode);\n" +" if (shapeTypeB==SHAPE_COMPOUND_OF_CONVEX_HULLS)\n" +" {\n" +" int numChildrenB = collidables[collidableIndexB].m_numChildShapes;\n" +" int pairIdx = atomic_add(numConcavePairsOut,numChildrenB);\n" +" for (int b=0;b<numChildrenB;b++)\n" +" {\n" +" if ((pairIdx+b)<maxNumConcavePairsCapacity)\n" +" {\n" +" int childShapeIndexB = collidables[collidableIndexB].m_shapeIndex+b;\n" +" int4 newPair = (int4)(bodyIndexA,bodyIndexB,triangleIndex,childShapeIndexB);\n" +" concavePairsOut[pairIdx+b] = newPair;\n" +" }\n" +" }\n" +" } else\n" +" {\n" +" int pairIdx = atomic_inc(numConcavePairsOut);\n" +" if (pairIdx<maxNumConcavePairsCapacity)\n" +" {\n" +" int4 newPair = (int4)(bodyIndexA,bodyIndexB,triangleIndex,0);\n" +" concavePairsOut[pairIdx] = newPair;\n" +" }\n" +" }\n" +" } \n" +" curIndex++;\n" +" } else\n" +" {\n" +" if (isLeafNode)\n" +" {\n" +" curIndex++;\n" +" } else\n" +" {\n" +" escapeIndex = getEscapeIndex(&rootNode);\n" +" curIndex += escapeIndex;\n" +" }\n" +" }\n" +" }\n" +" }\n" +" }\n" +"}\n" +; diff --git a/thirdparty/bullet/Bullet3OpenCL/NarrowphaseCollision/kernels/mpr.cl b/thirdparty/bullet/Bullet3OpenCL/NarrowphaseCollision/kernels/mpr.cl new file mode 100644 index 0000000000..e754f4e1da --- /dev/null +++ b/thirdparty/bullet/Bullet3OpenCL/NarrowphaseCollision/kernels/mpr.cl @@ -0,0 +1,311 @@ + +#include "Bullet3Collision/NarrowPhaseCollision/shared/b3MprPenetration.h" +#include "Bullet3Collision/NarrowPhaseCollision/shared/b3Contact4Data.h" + +#define AppendInc(x, out) out = atomic_inc(x) +#define GET_NPOINTS(x) (x).m_worldNormalOnB.w +#ifdef cl_ext_atomic_counters_32 + #pragma OPENCL EXTENSION cl_ext_atomic_counters_32 : enable +#else + #define counter32_t volatile __global int* +#endif + + +__kernel void mprPenetrationKernel( __global int4* pairs, + __global const b3RigidBodyData_t* rigidBodies, + __global const b3Collidable_t* collidables, + __global const b3ConvexPolyhedronData_t* convexShapes, + __global const float4* vertices, + __global float4* separatingNormals, + __global int* hasSeparatingAxis, + __global struct b3Contact4Data* restrict globalContactsOut, + counter32_t nGlobalContactsOut, + int contactCapacity, + int numPairs) +{ + int i = get_global_id(0); + int pairIndex = i; + if (i<numPairs) + { + int bodyIndexA = pairs[i].x; + int bodyIndexB = pairs[i].y; + + int collidableIndexA = rigidBodies[bodyIndexA].m_collidableIdx; + int collidableIndexB = rigidBodies[bodyIndexB].m_collidableIdx; + + int shapeIndexA = collidables[collidableIndexA].m_shapeIndex; + int shapeIndexB = collidables[collidableIndexB].m_shapeIndex; + + + //once the broadphase avoids static-static pairs, we can remove this test + if ((rigidBodies[bodyIndexA].m_invMass==0) &&(rigidBodies[bodyIndexB].m_invMass==0)) + { + return; + } + + + if ((collidables[collidableIndexA].m_shapeType!=SHAPE_CONVEX_HULL) ||(collidables[collidableIndexB].m_shapeType!=SHAPE_CONVEX_HULL)) + { + return; + } + + float depthOut; + b3Float4 dirOut; + b3Float4 posOut; + + + int res = b3MprPenetration(pairIndex, bodyIndexA, bodyIndexB,rigidBodies,convexShapes,collidables,vertices,separatingNormals,hasSeparatingAxis,&depthOut, &dirOut, &posOut); + + + + + + if (res==0) + { + //add a contact + + int dstIdx; + AppendInc( nGlobalContactsOut, dstIdx ); + if (dstIdx<contactCapacity) + { + pairs[pairIndex].z = dstIdx; + __global struct b3Contact4Data* c = globalContactsOut + dstIdx; + c->m_worldNormalOnB = -dirOut;//normal; + c->m_restituitionCoeffCmp = (0.f*0xffff);c->m_frictionCoeffCmp = (0.7f*0xffff); + c->m_batchIdx = pairIndex; + int bodyA = pairs[pairIndex].x; + int bodyB = pairs[pairIndex].y; + c->m_bodyAPtrAndSignBit = rigidBodies[bodyA].m_invMass==0 ? -bodyA:bodyA; + c->m_bodyBPtrAndSignBit = rigidBodies[bodyB].m_invMass==0 ? -bodyB:bodyB; + c->m_childIndexA = -1; + c->m_childIndexB = -1; + //for (int i=0;i<nContacts;i++) + posOut.w = -depthOut; + c->m_worldPosB[0] = posOut;//localPoints[contactIdx[i]]; + GET_NPOINTS(*c) = 1;//nContacts; + } + } + + } +} + +typedef float4 Quaternion; +#define make_float4 (float4) + +__inline +float dot3F4(float4 a, float4 b) +{ + float4 a1 = make_float4(a.xyz,0.f); + float4 b1 = make_float4(b.xyz,0.f); + return dot(a1, b1); +} + + + + +__inline +float4 cross3(float4 a, float4 b) +{ + return cross(a,b); +} +__inline +Quaternion qtMul(Quaternion a, Quaternion b) +{ + Quaternion ans; + ans = cross3( a, b ); + ans += a.w*b+b.w*a; +// ans.w = a.w*b.w - (a.x*b.x+a.y*b.y+a.z*b.z); + ans.w = a.w*b.w - dot3F4(a, b); + return ans; +} + +__inline +Quaternion qtInvert(Quaternion q) +{ + return (Quaternion)(-q.xyz, q.w); +} + +__inline +float4 qtRotate(Quaternion q, float4 vec) +{ + Quaternion qInv = qtInvert( q ); + float4 vcpy = vec; + vcpy.w = 0.f; + float4 out = qtMul(qtMul(q,vcpy),qInv); + return out; +} + +__inline +float4 transform(const float4* p, const float4* translation, const Quaternion* orientation) +{ + return qtRotate( *orientation, *p ) + (*translation); +} + + +__inline +float4 qtInvRotate(const Quaternion q, float4 vec) +{ + return qtRotate( qtInvert( q ), vec ); +} + + +inline void project(__global const b3ConvexPolyhedronData_t* hull, const float4 pos, const float4 orn, +const float4* dir, __global const float4* vertices, float* min, float* max) +{ + min[0] = FLT_MAX; + max[0] = -FLT_MAX; + int numVerts = hull->m_numVertices; + + const float4 localDir = qtInvRotate(orn,*dir); + float offset = dot(pos,*dir); + for(int i=0;i<numVerts;i++) + { + float dp = dot(vertices[hull->m_vertexOffset+i],localDir); + if(dp < min[0]) + min[0] = dp; + if(dp > max[0]) + max[0] = dp; + } + if(min[0]>max[0]) + { + float tmp = min[0]; + min[0] = max[0]; + max[0] = tmp; + } + min[0] += offset; + max[0] += offset; +} + + +bool findSeparatingAxisUnitSphere( __global const b3ConvexPolyhedronData_t* hullA, __global const b3ConvexPolyhedronData_t* hullB, + const float4 posA1, + const float4 ornA, + const float4 posB1, + const float4 ornB, + const float4 DeltaC2, + __global const float4* vertices, + __global const float4* unitSphereDirections, + int numUnitSphereDirections, + float4* sep, + float* dmin) +{ + + float4 posA = posA1; + posA.w = 0.f; + float4 posB = posB1; + posB.w = 0.f; + + int curPlaneTests=0; + + int curEdgeEdge = 0; + // Test unit sphere directions + for (int i=0;i<numUnitSphereDirections;i++) + { + + float4 crossje; + crossje = unitSphereDirections[i]; + + if (dot3F4(DeltaC2,crossje)>0) + crossje *= -1.f; + { + float dist; + bool result = true; + float Min0,Max0; + float Min1,Max1; + project(hullA,posA,ornA,&crossje,vertices, &Min0, &Max0); + project(hullB,posB,ornB,&crossje,vertices, &Min1, &Max1); + + if(Max0<Min1 || Max1<Min0) + return false; + + float d0 = Max0 - Min1; + float d1 = Max1 - Min0; + dist = d0<d1 ? d0:d1; + result = true; + + if(dist<*dmin) + { + *dmin = dist; + *sep = crossje; + } + } + } + + + if((dot3F4(-DeltaC2,*sep))>0.0f) + { + *sep = -(*sep); + } + return true; +} + + + +__kernel void findSeparatingAxisUnitSphereKernel( __global const int4* pairs, + __global const b3RigidBodyData_t* rigidBodies, + __global const b3Collidable_t* collidables, + __global const b3ConvexPolyhedronData_t* convexShapes, + __global const float4* vertices, + __global const float4* unitSphereDirections, + __global float4* separatingNormals, + __global int* hasSeparatingAxis, + __global float* dmins, + int numUnitSphereDirections, + int numPairs + ) +{ + + int i = get_global_id(0); + + if (i<numPairs) + { + + if (hasSeparatingAxis[i]) + { + + int bodyIndexA = pairs[i].x; + int bodyIndexB = pairs[i].y; + + int collidableIndexA = rigidBodies[bodyIndexA].m_collidableIdx; + int collidableIndexB = rigidBodies[bodyIndexB].m_collidableIdx; + + int shapeIndexA = collidables[collidableIndexA].m_shapeIndex; + int shapeIndexB = collidables[collidableIndexB].m_shapeIndex; + + + int numFacesA = convexShapes[shapeIndexA].m_numFaces; + + float dmin = dmins[i]; + + float4 posA = rigidBodies[bodyIndexA].m_pos; + posA.w = 0.f; + float4 posB = rigidBodies[bodyIndexB].m_pos; + posB.w = 0.f; + float4 c0local = convexShapes[shapeIndexA].m_localCenter; + float4 ornA = rigidBodies[bodyIndexA].m_quat; + float4 c0 = transform(&c0local, &posA, &ornA); + float4 c1local = convexShapes[shapeIndexB].m_localCenter; + float4 ornB =rigidBodies[bodyIndexB].m_quat; + float4 c1 = transform(&c1local,&posB,&ornB); + const float4 DeltaC2 = c0 - c1; + float4 sepNormal = separatingNormals[i]; + + int numEdgeEdgeDirections = convexShapes[shapeIndexA].m_numUniqueEdges*convexShapes[shapeIndexB].m_numUniqueEdges; + if (numEdgeEdgeDirections>numUnitSphereDirections) + { + bool sepEE = findSeparatingAxisUnitSphere( &convexShapes[shapeIndexA], &convexShapes[shapeIndexB],posA,ornA, + posB,ornB, + DeltaC2, + vertices,unitSphereDirections,numUnitSphereDirections,&sepNormal,&dmin); + if (!sepEE) + { + hasSeparatingAxis[i] = 0; + } else + { + hasSeparatingAxis[i] = 1; + separatingNormals[i] = sepNormal; + } + } + } //if (hasSeparatingAxis[i]) + }//(i<numPairs) +} diff --git a/thirdparty/bullet/Bullet3OpenCL/NarrowphaseCollision/kernels/mprKernels.h b/thirdparty/bullet/Bullet3OpenCL/NarrowphaseCollision/kernels/mprKernels.h new file mode 100644 index 0000000000..7ed4b382c3 --- /dev/null +++ b/thirdparty/bullet/Bullet3OpenCL/NarrowphaseCollision/kernels/mprKernels.h @@ -0,0 +1,1446 @@ +//this file is autogenerated using stringify.bat (premake --stringify) in the build folder of this project +static const char* mprKernelsCL= \ +"/***\n" +" * ---------------------------------\n" +" * Copyright (c)2012 Daniel Fiser <danfis@danfis.cz>\n" +" *\n" +" * This file was ported from mpr.c file, part of libccd.\n" +" * The Minkoski Portal Refinement implementation was ported \n" +" * to OpenCL by Erwin Coumans for the Bullet 3 Physics library.\n" +" * at http://github.com/erwincoumans/bullet3\n" +" *\n" +" * Distributed under the OSI-approved BSD License (the \"License\");\n" +" * see <http://www.opensource.org/licenses/bsd-license.php>.\n" +" * This software is distributed WITHOUT ANY WARRANTY; without even the\n" +" * implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.\n" +" * See the License for more information.\n" +" */\n" +"#ifndef B3_MPR_PENETRATION_H\n" +"#define B3_MPR_PENETRATION_H\n" +"#ifndef B3_PLATFORM_DEFINITIONS_H\n" +"#define B3_PLATFORM_DEFINITIONS_H\n" +"struct MyTest\n" +"{\n" +" int bla;\n" +"};\n" +"#ifdef __cplusplus\n" +"#else\n" +"//keep B3_LARGE_FLOAT*B3_LARGE_FLOAT < FLT_MAX\n" +"#define B3_LARGE_FLOAT 1e18f\n" +"#define B3_INFINITY 1e18f\n" +"#define b3Assert(a)\n" +"#define b3ConstArray(a) __global const a*\n" +"#define b3AtomicInc atomic_inc\n" +"#define b3AtomicAdd atomic_add\n" +"#define b3Fabs fabs\n" +"#define b3Sqrt native_sqrt\n" +"#define b3Sin native_sin\n" +"#define b3Cos native_cos\n" +"#define B3_STATIC\n" +"#endif\n" +"#endif\n" +"#ifndef B3_FLOAT4_H\n" +"#define B3_FLOAT4_H\n" +"#ifndef B3_PLATFORM_DEFINITIONS_H\n" +"#ifdef __cplusplus\n" +"#else\n" +"#endif\n" +"#endif\n" +"#ifdef __cplusplus\n" +"#else\n" +" typedef float4 b3Float4;\n" +" #define b3Float4ConstArg const b3Float4\n" +" #define b3MakeFloat4 (float4)\n" +" float b3Dot3F4(b3Float4ConstArg v0,b3Float4ConstArg v1)\n" +" {\n" +" float4 a1 = b3MakeFloat4(v0.xyz,0.f);\n" +" float4 b1 = b3MakeFloat4(v1.xyz,0.f);\n" +" return dot(a1, b1);\n" +" }\n" +" b3Float4 b3Cross3(b3Float4ConstArg v0,b3Float4ConstArg v1)\n" +" {\n" +" float4 a1 = b3MakeFloat4(v0.xyz,0.f);\n" +" float4 b1 = b3MakeFloat4(v1.xyz,0.f);\n" +" return cross(a1, b1);\n" +" }\n" +" #define b3MinFloat4 min\n" +" #define b3MaxFloat4 max\n" +" #define b3Normalized(a) normalize(a)\n" +"#endif \n" +" \n" +"inline bool b3IsAlmostZero(b3Float4ConstArg v)\n" +"{\n" +" if(b3Fabs(v.x)>1e-6 || b3Fabs(v.y)>1e-6 || b3Fabs(v.z)>1e-6) \n" +" return false;\n" +" return true;\n" +"}\n" +"inline int b3MaxDot( b3Float4ConstArg vec, __global const b3Float4* vecArray, int vecLen, float* dotOut )\n" +"{\n" +" float maxDot = -B3_INFINITY;\n" +" int i = 0;\n" +" int ptIndex = -1;\n" +" for( i = 0; i < vecLen; i++ )\n" +" {\n" +" float dot = b3Dot3F4(vecArray[i],vec);\n" +" \n" +" if( dot > maxDot )\n" +" {\n" +" maxDot = dot;\n" +" ptIndex = i;\n" +" }\n" +" }\n" +" b3Assert(ptIndex>=0);\n" +" if (ptIndex<0)\n" +" {\n" +" ptIndex = 0;\n" +" }\n" +" *dotOut = maxDot;\n" +" return ptIndex;\n" +"}\n" +"#endif //B3_FLOAT4_H\n" +"#ifndef B3_RIGIDBODY_DATA_H\n" +"#define B3_RIGIDBODY_DATA_H\n" +"#ifndef B3_FLOAT4_H\n" +"#ifdef __cplusplus\n" +"#else\n" +"#endif \n" +"#endif //B3_FLOAT4_H\n" +"#ifndef B3_QUAT_H\n" +"#define B3_QUAT_H\n" +"#ifndef B3_PLATFORM_DEFINITIONS_H\n" +"#ifdef __cplusplus\n" +"#else\n" +"#endif\n" +"#endif\n" +"#ifndef B3_FLOAT4_H\n" +"#ifdef __cplusplus\n" +"#else\n" +"#endif \n" +"#endif //B3_FLOAT4_H\n" +"#ifdef __cplusplus\n" +"#else\n" +" typedef float4 b3Quat;\n" +" #define b3QuatConstArg const b3Quat\n" +" \n" +" \n" +"inline float4 b3FastNormalize4(float4 v)\n" +"{\n" +" v = (float4)(v.xyz,0.f);\n" +" return fast_normalize(v);\n" +"}\n" +" \n" +"inline b3Quat b3QuatMul(b3Quat a, b3Quat b);\n" +"inline b3Quat b3QuatNormalized(b3QuatConstArg in);\n" +"inline b3Quat b3QuatRotate(b3QuatConstArg q, b3QuatConstArg vec);\n" +"inline b3Quat b3QuatInvert(b3QuatConstArg q);\n" +"inline b3Quat b3QuatInverse(b3QuatConstArg q);\n" +"inline b3Quat b3QuatMul(b3QuatConstArg a, b3QuatConstArg b)\n" +"{\n" +" b3Quat ans;\n" +" ans = b3Cross3( a, b );\n" +" ans += a.w*b+b.w*a;\n" +"// ans.w = a.w*b.w - (a.x*b.x+a.y*b.y+a.z*b.z);\n" +" ans.w = a.w*b.w - b3Dot3F4(a, b);\n" +" return ans;\n" +"}\n" +"inline b3Quat b3QuatNormalized(b3QuatConstArg in)\n" +"{\n" +" b3Quat q;\n" +" q=in;\n" +" //return b3FastNormalize4(in);\n" +" float len = native_sqrt(dot(q, q));\n" +" if(len > 0.f)\n" +" {\n" +" q *= 1.f / len;\n" +" }\n" +" else\n" +" {\n" +" q.x = q.y = q.z = 0.f;\n" +" q.w = 1.f;\n" +" }\n" +" return q;\n" +"}\n" +"inline float4 b3QuatRotate(b3QuatConstArg q, b3QuatConstArg vec)\n" +"{\n" +" b3Quat qInv = b3QuatInvert( q );\n" +" float4 vcpy = vec;\n" +" vcpy.w = 0.f;\n" +" float4 out = b3QuatMul(b3QuatMul(q,vcpy),qInv);\n" +" return out;\n" +"}\n" +"inline b3Quat b3QuatInverse(b3QuatConstArg q)\n" +"{\n" +" return (b3Quat)(-q.xyz, q.w);\n" +"}\n" +"inline b3Quat b3QuatInvert(b3QuatConstArg q)\n" +"{\n" +" return (b3Quat)(-q.xyz, q.w);\n" +"}\n" +"inline float4 b3QuatInvRotate(b3QuatConstArg q, b3QuatConstArg vec)\n" +"{\n" +" return b3QuatRotate( b3QuatInvert( q ), vec );\n" +"}\n" +"inline b3Float4 b3TransformPoint(b3Float4ConstArg point, b3Float4ConstArg translation, b3QuatConstArg orientation)\n" +"{\n" +" return b3QuatRotate( orientation, point ) + (translation);\n" +"}\n" +" \n" +"#endif \n" +"#endif //B3_QUAT_H\n" +"#ifndef B3_MAT3x3_H\n" +"#define B3_MAT3x3_H\n" +"#ifndef B3_QUAT_H\n" +"#ifdef __cplusplus\n" +"#else\n" +"#endif \n" +"#endif //B3_QUAT_H\n" +"#ifdef __cplusplus\n" +"#else\n" +"typedef struct\n" +"{\n" +" b3Float4 m_row[3];\n" +"}b3Mat3x3;\n" +"#define b3Mat3x3ConstArg const b3Mat3x3\n" +"#define b3GetRow(m,row) (m.m_row[row])\n" +"inline b3Mat3x3 b3QuatGetRotationMatrix(b3Quat quat)\n" +"{\n" +" b3Float4 quat2 = (b3Float4)(quat.x*quat.x, quat.y*quat.y, quat.z*quat.z, 0.f);\n" +" b3Mat3x3 out;\n" +" out.m_row[0].x=1-2*quat2.y-2*quat2.z;\n" +" out.m_row[0].y=2*quat.x*quat.y-2*quat.w*quat.z;\n" +" out.m_row[0].z=2*quat.x*quat.z+2*quat.w*quat.y;\n" +" out.m_row[0].w = 0.f;\n" +" out.m_row[1].x=2*quat.x*quat.y+2*quat.w*quat.z;\n" +" out.m_row[1].y=1-2*quat2.x-2*quat2.z;\n" +" out.m_row[1].z=2*quat.y*quat.z-2*quat.w*quat.x;\n" +" out.m_row[1].w = 0.f;\n" +" out.m_row[2].x=2*quat.x*quat.z-2*quat.w*quat.y;\n" +" out.m_row[2].y=2*quat.y*quat.z+2*quat.w*quat.x;\n" +" out.m_row[2].z=1-2*quat2.x-2*quat2.y;\n" +" out.m_row[2].w = 0.f;\n" +" return out;\n" +"}\n" +"inline b3Mat3x3 b3AbsoluteMat3x3(b3Mat3x3ConstArg matIn)\n" +"{\n" +" b3Mat3x3 out;\n" +" out.m_row[0] = fabs(matIn.m_row[0]);\n" +" out.m_row[1] = fabs(matIn.m_row[1]);\n" +" out.m_row[2] = fabs(matIn.m_row[2]);\n" +" return out;\n" +"}\n" +"__inline\n" +"b3Mat3x3 mtZero();\n" +"__inline\n" +"b3Mat3x3 mtIdentity();\n" +"__inline\n" +"b3Mat3x3 mtTranspose(b3Mat3x3 m);\n" +"__inline\n" +"b3Mat3x3 mtMul(b3Mat3x3 a, b3Mat3x3 b);\n" +"__inline\n" +"b3Float4 mtMul1(b3Mat3x3 a, b3Float4 b);\n" +"__inline\n" +"b3Float4 mtMul3(b3Float4 a, b3Mat3x3 b);\n" +"__inline\n" +"b3Mat3x3 mtZero()\n" +"{\n" +" b3Mat3x3 m;\n" +" m.m_row[0] = (b3Float4)(0.f);\n" +" m.m_row[1] = (b3Float4)(0.f);\n" +" m.m_row[2] = (b3Float4)(0.f);\n" +" return m;\n" +"}\n" +"__inline\n" +"b3Mat3x3 mtIdentity()\n" +"{\n" +" b3Mat3x3 m;\n" +" m.m_row[0] = (b3Float4)(1,0,0,0);\n" +" m.m_row[1] = (b3Float4)(0,1,0,0);\n" +" m.m_row[2] = (b3Float4)(0,0,1,0);\n" +" return m;\n" +"}\n" +"__inline\n" +"b3Mat3x3 mtTranspose(b3Mat3x3 m)\n" +"{\n" +" b3Mat3x3 out;\n" +" out.m_row[0] = (b3Float4)(m.m_row[0].x, m.m_row[1].x, m.m_row[2].x, 0.f);\n" +" out.m_row[1] = (b3Float4)(m.m_row[0].y, m.m_row[1].y, m.m_row[2].y, 0.f);\n" +" out.m_row[2] = (b3Float4)(m.m_row[0].z, m.m_row[1].z, m.m_row[2].z, 0.f);\n" +" return out;\n" +"}\n" +"__inline\n" +"b3Mat3x3 mtMul(b3Mat3x3 a, b3Mat3x3 b)\n" +"{\n" +" b3Mat3x3 transB;\n" +" transB = mtTranspose( b );\n" +" b3Mat3x3 ans;\n" +" // why this doesn't run when 0ing in the for{}\n" +" a.m_row[0].w = 0.f;\n" +" a.m_row[1].w = 0.f;\n" +" a.m_row[2].w = 0.f;\n" +" for(int i=0; i<3; i++)\n" +" {\n" +"// a.m_row[i].w = 0.f;\n" +" ans.m_row[i].x = b3Dot3F4(a.m_row[i],transB.m_row[0]);\n" +" ans.m_row[i].y = b3Dot3F4(a.m_row[i],transB.m_row[1]);\n" +" ans.m_row[i].z = b3Dot3F4(a.m_row[i],transB.m_row[2]);\n" +" ans.m_row[i].w = 0.f;\n" +" }\n" +" return ans;\n" +"}\n" +"__inline\n" +"b3Float4 mtMul1(b3Mat3x3 a, b3Float4 b)\n" +"{\n" +" b3Float4 ans;\n" +" ans.x = b3Dot3F4( a.m_row[0], b );\n" +" ans.y = b3Dot3F4( a.m_row[1], b );\n" +" ans.z = b3Dot3F4( a.m_row[2], b );\n" +" ans.w = 0.f;\n" +" return ans;\n" +"}\n" +"__inline\n" +"b3Float4 mtMul3(b3Float4 a, b3Mat3x3 b)\n" +"{\n" +" b3Float4 colx = b3MakeFloat4(b.m_row[0].x, b.m_row[1].x, b.m_row[2].x, 0);\n" +" b3Float4 coly = b3MakeFloat4(b.m_row[0].y, b.m_row[1].y, b.m_row[2].y, 0);\n" +" b3Float4 colz = b3MakeFloat4(b.m_row[0].z, b.m_row[1].z, b.m_row[2].z, 0);\n" +" b3Float4 ans;\n" +" ans.x = b3Dot3F4( a, colx );\n" +" ans.y = b3Dot3F4( a, coly );\n" +" ans.z = b3Dot3F4( a, colz );\n" +" return ans;\n" +"}\n" +"#endif\n" +"#endif //B3_MAT3x3_H\n" +"typedef struct b3RigidBodyData b3RigidBodyData_t;\n" +"struct b3RigidBodyData\n" +"{\n" +" b3Float4 m_pos;\n" +" b3Quat m_quat;\n" +" b3Float4 m_linVel;\n" +" b3Float4 m_angVel;\n" +" int m_collidableIdx;\n" +" float m_invMass;\n" +" float m_restituitionCoeff;\n" +" float m_frictionCoeff;\n" +"};\n" +"typedef struct b3InertiaData b3InertiaData_t;\n" +"struct b3InertiaData\n" +"{\n" +" b3Mat3x3 m_invInertiaWorld;\n" +" b3Mat3x3 m_initInvInertia;\n" +"};\n" +"#endif //B3_RIGIDBODY_DATA_H\n" +" \n" +"#ifndef B3_CONVEX_POLYHEDRON_DATA_H\n" +"#define B3_CONVEX_POLYHEDRON_DATA_H\n" +"#ifndef B3_FLOAT4_H\n" +"#ifdef __cplusplus\n" +"#else\n" +"#endif \n" +"#endif //B3_FLOAT4_H\n" +"#ifndef B3_QUAT_H\n" +"#ifdef __cplusplus\n" +"#else\n" +"#endif \n" +"#endif //B3_QUAT_H\n" +"typedef struct b3GpuFace b3GpuFace_t;\n" +"struct b3GpuFace\n" +"{\n" +" b3Float4 m_plane;\n" +" int m_indexOffset;\n" +" int m_numIndices;\n" +" int m_unusedPadding1;\n" +" int m_unusedPadding2;\n" +"};\n" +"typedef struct b3ConvexPolyhedronData b3ConvexPolyhedronData_t;\n" +"struct b3ConvexPolyhedronData\n" +"{\n" +" b3Float4 m_localCenter;\n" +" b3Float4 m_extents;\n" +" b3Float4 mC;\n" +" b3Float4 mE;\n" +" float m_radius;\n" +" int m_faceOffset;\n" +" int m_numFaces;\n" +" int m_numVertices;\n" +" int m_vertexOffset;\n" +" int m_uniqueEdgesOffset;\n" +" int m_numUniqueEdges;\n" +" int m_unused;\n" +"};\n" +"#endif //B3_CONVEX_POLYHEDRON_DATA_H\n" +"#ifndef B3_COLLIDABLE_H\n" +"#define B3_COLLIDABLE_H\n" +"#ifndef B3_FLOAT4_H\n" +"#ifdef __cplusplus\n" +"#else\n" +"#endif \n" +"#endif //B3_FLOAT4_H\n" +"#ifndef B3_QUAT_H\n" +"#ifdef __cplusplus\n" +"#else\n" +"#endif \n" +"#endif //B3_QUAT_H\n" +"enum b3ShapeTypes\n" +"{\n" +" SHAPE_HEIGHT_FIELD=1,\n" +" SHAPE_CONVEX_HULL=3,\n" +" SHAPE_PLANE=4,\n" +" SHAPE_CONCAVE_TRIMESH=5,\n" +" SHAPE_COMPOUND_OF_CONVEX_HULLS=6,\n" +" SHAPE_SPHERE=7,\n" +" MAX_NUM_SHAPE_TYPES,\n" +"};\n" +"typedef struct b3Collidable b3Collidable_t;\n" +"struct b3Collidable\n" +"{\n" +" union {\n" +" int m_numChildShapes;\n" +" int m_bvhIndex;\n" +" };\n" +" union\n" +" {\n" +" float m_radius;\n" +" int m_compoundBvhIndex;\n" +" };\n" +" int m_shapeType;\n" +" int m_shapeIndex;\n" +"};\n" +"typedef struct b3GpuChildShape b3GpuChildShape_t;\n" +"struct b3GpuChildShape\n" +"{\n" +" b3Float4 m_childPosition;\n" +" b3Quat m_childOrientation;\n" +" int m_shapeIndex;\n" +" int m_unused0;\n" +" int m_unused1;\n" +" int m_unused2;\n" +"};\n" +"struct b3CompoundOverlappingPair\n" +"{\n" +" int m_bodyIndexA;\n" +" int m_bodyIndexB;\n" +"// int m_pairType;\n" +" int m_childShapeIndexA;\n" +" int m_childShapeIndexB;\n" +"};\n" +"#endif //B3_COLLIDABLE_H\n" +"#ifdef __cplusplus\n" +"#else\n" +"#define B3_MPR_SQRT sqrt\n" +"#endif\n" +"#define B3_MPR_FMIN(x, y) ((x) < (y) ? (x) : (y))\n" +"#define B3_MPR_FABS fabs\n" +"#define B3_MPR_TOLERANCE 1E-6f\n" +"#define B3_MPR_MAX_ITERATIONS 1000\n" +"struct _b3MprSupport_t \n" +"{\n" +" b3Float4 v; //!< Support point in minkowski sum\n" +" b3Float4 v1; //!< Support point in obj1\n" +" b3Float4 v2; //!< Support point in obj2\n" +"};\n" +"typedef struct _b3MprSupport_t b3MprSupport_t;\n" +"struct _b3MprSimplex_t \n" +"{\n" +" b3MprSupport_t ps[4];\n" +" int last; //!< index of last added point\n" +"};\n" +"typedef struct _b3MprSimplex_t b3MprSimplex_t;\n" +"inline b3MprSupport_t* b3MprSimplexPointW(b3MprSimplex_t *s, int idx)\n" +"{\n" +" return &s->ps[idx];\n" +"}\n" +"inline void b3MprSimplexSetSize(b3MprSimplex_t *s, int size)\n" +"{\n" +" s->last = size - 1;\n" +"}\n" +"inline int b3MprSimplexSize(const b3MprSimplex_t *s)\n" +"{\n" +" return s->last + 1;\n" +"}\n" +"inline const b3MprSupport_t* b3MprSimplexPoint(const b3MprSimplex_t* s, int idx)\n" +"{\n" +" // here is no check on boundaries\n" +" return &s->ps[idx];\n" +"}\n" +"inline void b3MprSupportCopy(b3MprSupport_t *d, const b3MprSupport_t *s)\n" +"{\n" +" *d = *s;\n" +"}\n" +"inline void b3MprSimplexSet(b3MprSimplex_t *s, size_t pos, const b3MprSupport_t *a)\n" +"{\n" +" b3MprSupportCopy(s->ps + pos, a);\n" +"}\n" +"inline void b3MprSimplexSwap(b3MprSimplex_t *s, size_t pos1, size_t pos2)\n" +"{\n" +" b3MprSupport_t supp;\n" +" b3MprSupportCopy(&supp, &s->ps[pos1]);\n" +" b3MprSupportCopy(&s->ps[pos1], &s->ps[pos2]);\n" +" b3MprSupportCopy(&s->ps[pos2], &supp);\n" +"}\n" +"inline int b3MprIsZero(float val)\n" +"{\n" +" return B3_MPR_FABS(val) < FLT_EPSILON;\n" +"}\n" +"inline int b3MprEq(float _a, float _b)\n" +"{\n" +" float ab;\n" +" float a, b;\n" +" ab = B3_MPR_FABS(_a - _b);\n" +" if (B3_MPR_FABS(ab) < FLT_EPSILON)\n" +" return 1;\n" +" a = B3_MPR_FABS(_a);\n" +" b = B3_MPR_FABS(_b);\n" +" if (b > a){\n" +" return ab < FLT_EPSILON * b;\n" +" }else{\n" +" return ab < FLT_EPSILON * a;\n" +" }\n" +"}\n" +"inline int b3MprVec3Eq(const b3Float4* a, const b3Float4 *b)\n" +"{\n" +" return b3MprEq((*a).x, (*b).x)\n" +" && b3MprEq((*a).y, (*b).y)\n" +" && b3MprEq((*a).z, (*b).z);\n" +"}\n" +"inline b3Float4 b3LocalGetSupportVertex(b3Float4ConstArg supportVec,__global const b3ConvexPolyhedronData_t* hull, b3ConstArray(b3Float4) verticesA)\n" +"{\n" +" b3Float4 supVec = b3MakeFloat4(0,0,0,0);\n" +" float maxDot = -B3_LARGE_FLOAT;\n" +" if( 0 < hull->m_numVertices )\n" +" {\n" +" const b3Float4 scaled = supportVec;\n" +" int index = b3MaxDot(scaled, &verticesA[hull->m_vertexOffset], hull->m_numVertices, &maxDot);\n" +" return verticesA[hull->m_vertexOffset+index];\n" +" }\n" +" return supVec;\n" +"}\n" +"B3_STATIC void b3MprConvexSupport(int pairIndex,int bodyIndex, b3ConstArray(b3RigidBodyData_t) cpuBodyBuf, \n" +" b3ConstArray(b3ConvexPolyhedronData_t) cpuConvexData, \n" +" b3ConstArray(b3Collidable_t) cpuCollidables,\n" +" b3ConstArray(b3Float4) cpuVertices,\n" +" __global b3Float4* sepAxis,\n" +" const b3Float4* _dir, b3Float4* outp, int logme)\n" +"{\n" +" //dir is in worldspace, move to local space\n" +" \n" +" b3Float4 pos = cpuBodyBuf[bodyIndex].m_pos;\n" +" b3Quat orn = cpuBodyBuf[bodyIndex].m_quat;\n" +" \n" +" b3Float4 dir = b3MakeFloat4((*_dir).x,(*_dir).y,(*_dir).z,0.f);\n" +" \n" +" const b3Float4 localDir = b3QuatRotate(b3QuatInverse(orn),dir);\n" +" \n" +" //find local support vertex\n" +" int colIndex = cpuBodyBuf[bodyIndex].m_collidableIdx;\n" +" \n" +" b3Assert(cpuCollidables[colIndex].m_shapeType==SHAPE_CONVEX_HULL);\n" +" __global const b3ConvexPolyhedronData_t* hull = &cpuConvexData[cpuCollidables[colIndex].m_shapeIndex];\n" +" \n" +" b3Float4 pInA;\n" +" if (logme)\n" +" {\n" +" b3Float4 supVec = b3MakeFloat4(0,0,0,0);\n" +" float maxDot = -B3_LARGE_FLOAT;\n" +" if( 0 < hull->m_numVertices )\n" +" {\n" +" const b3Float4 scaled = localDir;\n" +" int index = b3MaxDot(scaled, &cpuVertices[hull->m_vertexOffset], hull->m_numVertices, &maxDot);\n" +" pInA = cpuVertices[hull->m_vertexOffset+index];\n" +" \n" +" }\n" +" } else\n" +" {\n" +" pInA = b3LocalGetSupportVertex(localDir,hull,cpuVertices);\n" +" }\n" +" //move vertex to world space\n" +" *outp = b3TransformPoint(pInA,pos,orn);\n" +" \n" +"}\n" +"inline void b3MprSupport(int pairIndex,int bodyIndexA, int bodyIndexB, b3ConstArray(b3RigidBodyData_t) cpuBodyBuf, \n" +" b3ConstArray(b3ConvexPolyhedronData_t) cpuConvexData, \n" +" b3ConstArray(b3Collidable_t) cpuCollidables,\n" +" b3ConstArray(b3Float4) cpuVertices,\n" +" __global b3Float4* sepAxis,\n" +" const b3Float4* _dir, b3MprSupport_t *supp)\n" +"{\n" +" b3Float4 dir;\n" +" dir = *_dir;\n" +" b3MprConvexSupport(pairIndex,bodyIndexA,cpuBodyBuf,cpuConvexData,cpuCollidables,cpuVertices,sepAxis,&dir, &supp->v1,0);\n" +" dir = *_dir*-1.f;\n" +" b3MprConvexSupport(pairIndex,bodyIndexB,cpuBodyBuf,cpuConvexData,cpuCollidables,cpuVertices,sepAxis,&dir, &supp->v2,0);\n" +" supp->v = supp->v1 - supp->v2;\n" +"}\n" +"inline void b3FindOrigin(int bodyIndexA, int bodyIndexB, b3ConstArray(b3RigidBodyData_t) cpuBodyBuf, b3MprSupport_t *center)\n" +"{\n" +" center->v1 = cpuBodyBuf[bodyIndexA].m_pos;\n" +" center->v2 = cpuBodyBuf[bodyIndexB].m_pos;\n" +" center->v = center->v1 - center->v2;\n" +"}\n" +"inline void b3MprVec3Set(b3Float4 *v, float x, float y, float z)\n" +"{\n" +" (*v).x = x;\n" +" (*v).y = y;\n" +" (*v).z = z;\n" +" (*v).w = 0.f;\n" +"}\n" +"inline void b3MprVec3Add(b3Float4 *v, const b3Float4 *w)\n" +"{\n" +" (*v).x += (*w).x;\n" +" (*v).y += (*w).y;\n" +" (*v).z += (*w).z;\n" +"}\n" +"inline void b3MprVec3Copy(b3Float4 *v, const b3Float4 *w)\n" +"{\n" +" *v = *w;\n" +"}\n" +"inline void b3MprVec3Scale(b3Float4 *d, float k)\n" +"{\n" +" *d *= k;\n" +"}\n" +"inline float b3MprVec3Dot(const b3Float4 *a, const b3Float4 *b)\n" +"{\n" +" float dot;\n" +" dot = b3Dot3F4(*a,*b);\n" +" return dot;\n" +"}\n" +"inline float b3MprVec3Len2(const b3Float4 *v)\n" +"{\n" +" return b3MprVec3Dot(v, v);\n" +"}\n" +"inline void b3MprVec3Normalize(b3Float4 *d)\n" +"{\n" +" float k = 1.f / B3_MPR_SQRT(b3MprVec3Len2(d));\n" +" b3MprVec3Scale(d, k);\n" +"}\n" +"inline void b3MprVec3Cross(b3Float4 *d, const b3Float4 *a, const b3Float4 *b)\n" +"{\n" +" *d = b3Cross3(*a,*b);\n" +" \n" +"}\n" +"inline void b3MprVec3Sub2(b3Float4 *d, const b3Float4 *v, const b3Float4 *w)\n" +"{\n" +" *d = *v - *w;\n" +"}\n" +"inline void b3PortalDir(const b3MprSimplex_t *portal, b3Float4 *dir)\n" +"{\n" +" b3Float4 v2v1, v3v1;\n" +" b3MprVec3Sub2(&v2v1, &b3MprSimplexPoint(portal, 2)->v,\n" +" &b3MprSimplexPoint(portal, 1)->v);\n" +" b3MprVec3Sub2(&v3v1, &b3MprSimplexPoint(portal, 3)->v,\n" +" &b3MprSimplexPoint(portal, 1)->v);\n" +" b3MprVec3Cross(dir, &v2v1, &v3v1);\n" +" b3MprVec3Normalize(dir);\n" +"}\n" +"inline int portalEncapsulesOrigin(const b3MprSimplex_t *portal,\n" +" const b3Float4 *dir)\n" +"{\n" +" float dot;\n" +" dot = b3MprVec3Dot(dir, &b3MprSimplexPoint(portal, 1)->v);\n" +" return b3MprIsZero(dot) || dot > 0.f;\n" +"}\n" +"inline int portalReachTolerance(const b3MprSimplex_t *portal,\n" +" const b3MprSupport_t *v4,\n" +" const b3Float4 *dir)\n" +"{\n" +" float dv1, dv2, dv3, dv4;\n" +" float dot1, dot2, dot3;\n" +" // find the smallest dot product of dir and {v1-v4, v2-v4, v3-v4}\n" +" dv1 = b3MprVec3Dot(&b3MprSimplexPoint(portal, 1)->v, dir);\n" +" dv2 = b3MprVec3Dot(&b3MprSimplexPoint(portal, 2)->v, dir);\n" +" dv3 = b3MprVec3Dot(&b3MprSimplexPoint(portal, 3)->v, dir);\n" +" dv4 = b3MprVec3Dot(&v4->v, dir);\n" +" dot1 = dv4 - dv1;\n" +" dot2 = dv4 - dv2;\n" +" dot3 = dv4 - dv3;\n" +" dot1 = B3_MPR_FMIN(dot1, dot2);\n" +" dot1 = B3_MPR_FMIN(dot1, dot3);\n" +" return b3MprEq(dot1, B3_MPR_TOLERANCE) || dot1 < B3_MPR_TOLERANCE;\n" +"}\n" +"inline int portalCanEncapsuleOrigin(const b3MprSimplex_t *portal, \n" +" const b3MprSupport_t *v4,\n" +" const b3Float4 *dir)\n" +"{\n" +" float dot;\n" +" dot = b3MprVec3Dot(&v4->v, dir);\n" +" return b3MprIsZero(dot) || dot > 0.f;\n" +"}\n" +"inline void b3ExpandPortal(b3MprSimplex_t *portal,\n" +" const b3MprSupport_t *v4)\n" +"{\n" +" float dot;\n" +" b3Float4 v4v0;\n" +" b3MprVec3Cross(&v4v0, &v4->v, &b3MprSimplexPoint(portal, 0)->v);\n" +" dot = b3MprVec3Dot(&b3MprSimplexPoint(portal, 1)->v, &v4v0);\n" +" if (dot > 0.f){\n" +" dot = b3MprVec3Dot(&b3MprSimplexPoint(portal, 2)->v, &v4v0);\n" +" if (dot > 0.f){\n" +" b3MprSimplexSet(portal, 1, v4);\n" +" }else{\n" +" b3MprSimplexSet(portal, 3, v4);\n" +" }\n" +" }else{\n" +" dot = b3MprVec3Dot(&b3MprSimplexPoint(portal, 3)->v, &v4v0);\n" +" if (dot > 0.f){\n" +" b3MprSimplexSet(portal, 2, v4);\n" +" }else{\n" +" b3MprSimplexSet(portal, 1, v4);\n" +" }\n" +" }\n" +"}\n" +"B3_STATIC int b3DiscoverPortal(int pairIndex, int bodyIndexA, int bodyIndexB, b3ConstArray(b3RigidBodyData_t) cpuBodyBuf, \n" +" b3ConstArray(b3ConvexPolyhedronData_t) cpuConvexData, \n" +" b3ConstArray(b3Collidable_t) cpuCollidables,\n" +" b3ConstArray(b3Float4) cpuVertices,\n" +" __global b3Float4* sepAxis,\n" +" __global int* hasSepAxis,\n" +" b3MprSimplex_t *portal)\n" +"{\n" +" b3Float4 dir, va, vb;\n" +" float dot;\n" +" int cont;\n" +" \n" +" \n" +" // vertex 0 is center of portal\n" +" b3FindOrigin(bodyIndexA,bodyIndexB,cpuBodyBuf, b3MprSimplexPointW(portal, 0));\n" +" // vertex 0 is center of portal\n" +" b3MprSimplexSetSize(portal, 1);\n" +" \n" +" b3Float4 zero = b3MakeFloat4(0,0,0,0);\n" +" b3Float4* b3mpr_vec3_origin = &zero;\n" +" if (b3MprVec3Eq(&b3MprSimplexPoint(portal, 0)->v, b3mpr_vec3_origin)){\n" +" // Portal's center lies on origin (0,0,0) => we know that objects\n" +" // intersect but we would need to know penetration info.\n" +" // So move center little bit...\n" +" b3MprVec3Set(&va, FLT_EPSILON * 10.f, 0.f, 0.f);\n" +" b3MprVec3Add(&b3MprSimplexPointW(portal, 0)->v, &va);\n" +" }\n" +" // vertex 1 = support in direction of origin\n" +" b3MprVec3Copy(&dir, &b3MprSimplexPoint(portal, 0)->v);\n" +" b3MprVec3Scale(&dir, -1.f);\n" +" b3MprVec3Normalize(&dir);\n" +" b3MprSupport(pairIndex,bodyIndexA,bodyIndexB,cpuBodyBuf,cpuConvexData,cpuCollidables,cpuVertices, sepAxis,&dir, b3MprSimplexPointW(portal, 1));\n" +" b3MprSimplexSetSize(portal, 2);\n" +" // test if origin isn't outside of v1\n" +" dot = b3MprVec3Dot(&b3MprSimplexPoint(portal, 1)->v, &dir);\n" +" \n" +" if (b3MprIsZero(dot) || dot < 0.f)\n" +" return -1;\n" +" // vertex 2\n" +" b3MprVec3Cross(&dir, &b3MprSimplexPoint(portal, 0)->v,\n" +" &b3MprSimplexPoint(portal, 1)->v);\n" +" if (b3MprIsZero(b3MprVec3Len2(&dir))){\n" +" if (b3MprVec3Eq(&b3MprSimplexPoint(portal, 1)->v, b3mpr_vec3_origin)){\n" +" // origin lies on v1\n" +" return 1;\n" +" }else{\n" +" // origin lies on v0-v1 segment\n" +" return 2;\n" +" }\n" +" }\n" +" b3MprVec3Normalize(&dir);\n" +" b3MprSupport(pairIndex,bodyIndexA,bodyIndexB,cpuBodyBuf,cpuConvexData,cpuCollidables,cpuVertices, sepAxis,&dir, b3MprSimplexPointW(portal, 2));\n" +" \n" +" dot = b3MprVec3Dot(&b3MprSimplexPoint(portal, 2)->v, &dir);\n" +" if (b3MprIsZero(dot) || dot < 0.f)\n" +" return -1;\n" +" b3MprSimplexSetSize(portal, 3);\n" +" // vertex 3 direction\n" +" b3MprVec3Sub2(&va, &b3MprSimplexPoint(portal, 1)->v,\n" +" &b3MprSimplexPoint(portal, 0)->v);\n" +" b3MprVec3Sub2(&vb, &b3MprSimplexPoint(portal, 2)->v,\n" +" &b3MprSimplexPoint(portal, 0)->v);\n" +" b3MprVec3Cross(&dir, &va, &vb);\n" +" b3MprVec3Normalize(&dir);\n" +" // it is better to form portal faces to be oriented \"outside\" origin\n" +" dot = b3MprVec3Dot(&dir, &b3MprSimplexPoint(portal, 0)->v);\n" +" if (dot > 0.f){\n" +" b3MprSimplexSwap(portal, 1, 2);\n" +" b3MprVec3Scale(&dir, -1.f);\n" +" }\n" +" while (b3MprSimplexSize(portal) < 4){\n" +" b3MprSupport(pairIndex,bodyIndexA,bodyIndexB,cpuBodyBuf,cpuConvexData,cpuCollidables,cpuVertices, sepAxis,&dir, b3MprSimplexPointW(portal, 3));\n" +" \n" +" dot = b3MprVec3Dot(&b3MprSimplexPoint(portal, 3)->v, &dir);\n" +" if (b3MprIsZero(dot) || dot < 0.f)\n" +" return -1;\n" +" cont = 0;\n" +" // test if origin is outside (v1, v0, v3) - set v2 as v3 and\n" +" // continue\n" +" b3MprVec3Cross(&va, &b3MprSimplexPoint(portal, 1)->v,\n" +" &b3MprSimplexPoint(portal, 3)->v);\n" +" dot = b3MprVec3Dot(&va, &b3MprSimplexPoint(portal, 0)->v);\n" +" if (dot < 0.f && !b3MprIsZero(dot)){\n" +" b3MprSimplexSet(portal, 2, b3MprSimplexPoint(portal, 3));\n" +" cont = 1;\n" +" }\n" +" if (!cont){\n" +" // test if origin is outside (v3, v0, v2) - set v1 as v3 and\n" +" // continue\n" +" b3MprVec3Cross(&va, &b3MprSimplexPoint(portal, 3)->v,\n" +" &b3MprSimplexPoint(portal, 2)->v);\n" +" dot = b3MprVec3Dot(&va, &b3MprSimplexPoint(portal, 0)->v);\n" +" if (dot < 0.f && !b3MprIsZero(dot)){\n" +" b3MprSimplexSet(portal, 1, b3MprSimplexPoint(portal, 3));\n" +" cont = 1;\n" +" }\n" +" }\n" +" if (cont){\n" +" b3MprVec3Sub2(&va, &b3MprSimplexPoint(portal, 1)->v,\n" +" &b3MprSimplexPoint(portal, 0)->v);\n" +" b3MprVec3Sub2(&vb, &b3MprSimplexPoint(portal, 2)->v,\n" +" &b3MprSimplexPoint(portal, 0)->v);\n" +" b3MprVec3Cross(&dir, &va, &vb);\n" +" b3MprVec3Normalize(&dir);\n" +" }else{\n" +" b3MprSimplexSetSize(portal, 4);\n" +" }\n" +" }\n" +" return 0;\n" +"}\n" +"B3_STATIC int b3RefinePortal(int pairIndex,int bodyIndexA, int bodyIndexB, b3ConstArray(b3RigidBodyData_t) cpuBodyBuf, \n" +" b3ConstArray(b3ConvexPolyhedronData_t) cpuConvexData, \n" +" b3ConstArray(b3Collidable_t) cpuCollidables,\n" +" b3ConstArray(b3Float4) cpuVertices,\n" +" __global b3Float4* sepAxis,\n" +" b3MprSimplex_t *portal)\n" +"{\n" +" b3Float4 dir;\n" +" b3MprSupport_t v4;\n" +" for (int i=0;i<B3_MPR_MAX_ITERATIONS;i++)\n" +" //while (1)\n" +" {\n" +" // compute direction outside the portal (from v0 throught v1,v2,v3\n" +" // face)\n" +" b3PortalDir(portal, &dir);\n" +" // test if origin is inside the portal\n" +" if (portalEncapsulesOrigin(portal, &dir))\n" +" return 0;\n" +" // get next support point\n" +" \n" +" b3MprSupport(pairIndex,bodyIndexA,bodyIndexB,cpuBodyBuf,cpuConvexData,cpuCollidables,cpuVertices, sepAxis,&dir, &v4);\n" +" // test if v4 can expand portal to contain origin and if portal\n" +" // expanding doesn't reach given tolerance\n" +" if (!portalCanEncapsuleOrigin(portal, &v4, &dir)\n" +" || portalReachTolerance(portal, &v4, &dir))\n" +" {\n" +" return -1;\n" +" }\n" +" // v1-v2-v3 triangle must be rearranged to face outside Minkowski\n" +" // difference (direction from v0).\n" +" b3ExpandPortal(portal, &v4);\n" +" }\n" +" return -1;\n" +"}\n" +"B3_STATIC void b3FindPos(const b3MprSimplex_t *portal, b3Float4 *pos)\n" +"{\n" +" b3Float4 zero = b3MakeFloat4(0,0,0,0);\n" +" b3Float4* b3mpr_vec3_origin = &zero;\n" +" b3Float4 dir;\n" +" size_t i;\n" +" float b[4], sum, inv;\n" +" b3Float4 vec, p1, p2;\n" +" b3PortalDir(portal, &dir);\n" +" // use barycentric coordinates of tetrahedron to find origin\n" +" b3MprVec3Cross(&vec, &b3MprSimplexPoint(portal, 1)->v,\n" +" &b3MprSimplexPoint(portal, 2)->v);\n" +" b[0] = b3MprVec3Dot(&vec, &b3MprSimplexPoint(portal, 3)->v);\n" +" b3MprVec3Cross(&vec, &b3MprSimplexPoint(portal, 3)->v,\n" +" &b3MprSimplexPoint(portal, 2)->v);\n" +" b[1] = b3MprVec3Dot(&vec, &b3MprSimplexPoint(portal, 0)->v);\n" +" b3MprVec3Cross(&vec, &b3MprSimplexPoint(portal, 0)->v,\n" +" &b3MprSimplexPoint(portal, 1)->v);\n" +" b[2] = b3MprVec3Dot(&vec, &b3MprSimplexPoint(portal, 3)->v);\n" +" b3MprVec3Cross(&vec, &b3MprSimplexPoint(portal, 2)->v,\n" +" &b3MprSimplexPoint(portal, 1)->v);\n" +" b[3] = b3MprVec3Dot(&vec, &b3MprSimplexPoint(portal, 0)->v);\n" +" sum = b[0] + b[1] + b[2] + b[3];\n" +" if (b3MprIsZero(sum) || sum < 0.f){\n" +" b[0] = 0.f;\n" +" b3MprVec3Cross(&vec, &b3MprSimplexPoint(portal, 2)->v,\n" +" &b3MprSimplexPoint(portal, 3)->v);\n" +" b[1] = b3MprVec3Dot(&vec, &dir);\n" +" b3MprVec3Cross(&vec, &b3MprSimplexPoint(portal, 3)->v,\n" +" &b3MprSimplexPoint(portal, 1)->v);\n" +" b[2] = b3MprVec3Dot(&vec, &dir);\n" +" b3MprVec3Cross(&vec, &b3MprSimplexPoint(portal, 1)->v,\n" +" &b3MprSimplexPoint(portal, 2)->v);\n" +" b[3] = b3MprVec3Dot(&vec, &dir);\n" +" sum = b[1] + b[2] + b[3];\n" +" }\n" +" inv = 1.f / sum;\n" +" b3MprVec3Copy(&p1, b3mpr_vec3_origin);\n" +" b3MprVec3Copy(&p2, b3mpr_vec3_origin);\n" +" for (i = 0; i < 4; i++){\n" +" b3MprVec3Copy(&vec, &b3MprSimplexPoint(portal, i)->v1);\n" +" b3MprVec3Scale(&vec, b[i]);\n" +" b3MprVec3Add(&p1, &vec);\n" +" b3MprVec3Copy(&vec, &b3MprSimplexPoint(portal, i)->v2);\n" +" b3MprVec3Scale(&vec, b[i]);\n" +" b3MprVec3Add(&p2, &vec);\n" +" }\n" +" b3MprVec3Scale(&p1, inv);\n" +" b3MprVec3Scale(&p2, inv);\n" +" b3MprVec3Copy(pos, &p1);\n" +" b3MprVec3Add(pos, &p2);\n" +" b3MprVec3Scale(pos, 0.5);\n" +"}\n" +"inline float b3MprVec3Dist2(const b3Float4 *a, const b3Float4 *b)\n" +"{\n" +" b3Float4 ab;\n" +" b3MprVec3Sub2(&ab, a, b);\n" +" return b3MprVec3Len2(&ab);\n" +"}\n" +"inline float _b3MprVec3PointSegmentDist2(const b3Float4 *P,\n" +" const b3Float4 *x0,\n" +" const b3Float4 *b,\n" +" b3Float4 *witness)\n" +"{\n" +" // The computation comes from solving equation of segment:\n" +" // S(t) = x0 + t.d\n" +" // where - x0 is initial point of segment\n" +" // - d is direction of segment from x0 (|d| > 0)\n" +" // - t belongs to <0, 1> interval\n" +" // \n" +" // Than, distance from a segment to some point P can be expressed:\n" +" // D(t) = |x0 + t.d - P|^2\n" +" // which is distance from any point on segment. Minimization\n" +" // of this function brings distance from P to segment.\n" +" // Minimization of D(t) leads to simple quadratic equation that's\n" +" // solving is straightforward.\n" +" //\n" +" // Bonus of this method is witness point for free.\n" +" float dist, t;\n" +" b3Float4 d, a;\n" +" // direction of segment\n" +" b3MprVec3Sub2(&d, b, x0);\n" +" // precompute vector from P to x0\n" +" b3MprVec3Sub2(&a, x0, P);\n" +" t = -1.f * b3MprVec3Dot(&a, &d);\n" +" t /= b3MprVec3Len2(&d);\n" +" if (t < 0.f || b3MprIsZero(t)){\n" +" dist = b3MprVec3Dist2(x0, P);\n" +" if (witness)\n" +" b3MprVec3Copy(witness, x0);\n" +" }else if (t > 1.f || b3MprEq(t, 1.f)){\n" +" dist = b3MprVec3Dist2(b, P);\n" +" if (witness)\n" +" b3MprVec3Copy(witness, b);\n" +" }else{\n" +" if (witness){\n" +" b3MprVec3Copy(witness, &d);\n" +" b3MprVec3Scale(witness, t);\n" +" b3MprVec3Add(witness, x0);\n" +" dist = b3MprVec3Dist2(witness, P);\n" +" }else{\n" +" // recycling variables\n" +" b3MprVec3Scale(&d, t);\n" +" b3MprVec3Add(&d, &a);\n" +" dist = b3MprVec3Len2(&d);\n" +" }\n" +" }\n" +" return dist;\n" +"}\n" +"inline float b3MprVec3PointTriDist2(const b3Float4 *P,\n" +" const b3Float4 *x0, const b3Float4 *B,\n" +" const b3Float4 *C,\n" +" b3Float4 *witness)\n" +"{\n" +" // Computation comes from analytic expression for triangle (x0, B, C)\n" +" // T(s, t) = x0 + s.d1 + t.d2, where d1 = B - x0 and d2 = C - x0 and\n" +" // Then equation for distance is:\n" +" // D(s, t) = | T(s, t) - P |^2\n" +" // This leads to minimization of quadratic function of two variables.\n" +" // The solution from is taken only if s is between 0 and 1, t is\n" +" // between 0 and 1 and t + s < 1, otherwise distance from segment is\n" +" // computed.\n" +" b3Float4 d1, d2, a;\n" +" float u, v, w, p, q, r;\n" +" float s, t, dist, dist2;\n" +" b3Float4 witness2;\n" +" b3MprVec3Sub2(&d1, B, x0);\n" +" b3MprVec3Sub2(&d2, C, x0);\n" +" b3MprVec3Sub2(&a, x0, P);\n" +" u = b3MprVec3Dot(&a, &a);\n" +" v = b3MprVec3Dot(&d1, &d1);\n" +" w = b3MprVec3Dot(&d2, &d2);\n" +" p = b3MprVec3Dot(&a, &d1);\n" +" q = b3MprVec3Dot(&a, &d2);\n" +" r = b3MprVec3Dot(&d1, &d2);\n" +" s = (q * r - w * p) / (w * v - r * r);\n" +" t = (-s * r - q) / w;\n" +" if ((b3MprIsZero(s) || s > 0.f)\n" +" && (b3MprEq(s, 1.f) || s < 1.f)\n" +" && (b3MprIsZero(t) || t > 0.f)\n" +" && (b3MprEq(t, 1.f) || t < 1.f)\n" +" && (b3MprEq(t + s, 1.f) || t + s < 1.f)){\n" +" if (witness){\n" +" b3MprVec3Scale(&d1, s);\n" +" b3MprVec3Scale(&d2, t);\n" +" b3MprVec3Copy(witness, x0);\n" +" b3MprVec3Add(witness, &d1);\n" +" b3MprVec3Add(witness, &d2);\n" +" dist = b3MprVec3Dist2(witness, P);\n" +" }else{\n" +" dist = s * s * v;\n" +" dist += t * t * w;\n" +" dist += 2.f * s * t * r;\n" +" dist += 2.f * s * p;\n" +" dist += 2.f * t * q;\n" +" dist += u;\n" +" }\n" +" }else{\n" +" dist = _b3MprVec3PointSegmentDist2(P, x0, B, witness);\n" +" dist2 = _b3MprVec3PointSegmentDist2(P, x0, C, &witness2);\n" +" if (dist2 < dist){\n" +" dist = dist2;\n" +" if (witness)\n" +" b3MprVec3Copy(witness, &witness2);\n" +" }\n" +" dist2 = _b3MprVec3PointSegmentDist2(P, B, C, &witness2);\n" +" if (dist2 < dist){\n" +" dist = dist2;\n" +" if (witness)\n" +" b3MprVec3Copy(witness, &witness2);\n" +" }\n" +" }\n" +" return dist;\n" +"}\n" +"B3_STATIC void b3FindPenetr(int pairIndex,int bodyIndexA, int bodyIndexB, b3ConstArray(b3RigidBodyData_t) cpuBodyBuf, \n" +" b3ConstArray(b3ConvexPolyhedronData_t) cpuConvexData, \n" +" b3ConstArray(b3Collidable_t) cpuCollidables,\n" +" b3ConstArray(b3Float4) cpuVertices,\n" +" __global b3Float4* sepAxis,\n" +" b3MprSimplex_t *portal,\n" +" float *depth, b3Float4 *pdir, b3Float4 *pos)\n" +"{\n" +" b3Float4 dir;\n" +" b3MprSupport_t v4;\n" +" unsigned long iterations;\n" +" b3Float4 zero = b3MakeFloat4(0,0,0,0);\n" +" b3Float4* b3mpr_vec3_origin = &zero;\n" +" iterations = 1UL;\n" +" for (int i=0;i<B3_MPR_MAX_ITERATIONS;i++)\n" +" //while (1)\n" +" {\n" +" // compute portal direction and obtain next support point\n" +" b3PortalDir(portal, &dir);\n" +" \n" +" b3MprSupport(pairIndex,bodyIndexA,bodyIndexB,cpuBodyBuf,cpuConvexData,cpuCollidables,cpuVertices, sepAxis,&dir, &v4);\n" +" // reached tolerance -> find penetration info\n" +" if (portalReachTolerance(portal, &v4, &dir)\n" +" || iterations ==B3_MPR_MAX_ITERATIONS)\n" +" {\n" +" *depth = b3MprVec3PointTriDist2(b3mpr_vec3_origin,&b3MprSimplexPoint(portal, 1)->v,&b3MprSimplexPoint(portal, 2)->v,&b3MprSimplexPoint(portal, 3)->v,pdir);\n" +" *depth = B3_MPR_SQRT(*depth);\n" +" \n" +" if (b3MprIsZero((*pdir).x) && b3MprIsZero((*pdir).y) && b3MprIsZero((*pdir).z))\n" +" {\n" +" \n" +" *pdir = dir;\n" +" } \n" +" b3MprVec3Normalize(pdir);\n" +" \n" +" // barycentric coordinates:\n" +" b3FindPos(portal, pos);\n" +" return;\n" +" }\n" +" b3ExpandPortal(portal, &v4);\n" +" iterations++;\n" +" }\n" +"}\n" +"B3_STATIC void b3FindPenetrTouch(b3MprSimplex_t *portal,float *depth, b3Float4 *dir, b3Float4 *pos)\n" +"{\n" +" // Touching contact on portal's v1 - so depth is zero and direction\n" +" // is unimportant and pos can be guessed\n" +" *depth = 0.f;\n" +" b3Float4 zero = b3MakeFloat4(0,0,0,0);\n" +" b3Float4* b3mpr_vec3_origin = &zero;\n" +" b3MprVec3Copy(dir, b3mpr_vec3_origin);\n" +" b3MprVec3Copy(pos, &b3MprSimplexPoint(portal, 1)->v1);\n" +" b3MprVec3Add(pos, &b3MprSimplexPoint(portal, 1)->v2);\n" +" b3MprVec3Scale(pos, 0.5);\n" +"}\n" +"B3_STATIC void b3FindPenetrSegment(b3MprSimplex_t *portal,\n" +" float *depth, b3Float4 *dir, b3Float4 *pos)\n" +"{\n" +" \n" +" // Origin lies on v0-v1 segment.\n" +" // Depth is distance to v1, direction also and position must be\n" +" // computed\n" +" b3MprVec3Copy(pos, &b3MprSimplexPoint(portal, 1)->v1);\n" +" b3MprVec3Add(pos, &b3MprSimplexPoint(portal, 1)->v2);\n" +" b3MprVec3Scale(pos, 0.5f);\n" +" \n" +" b3MprVec3Copy(dir, &b3MprSimplexPoint(portal, 1)->v);\n" +" *depth = B3_MPR_SQRT(b3MprVec3Len2(dir));\n" +" b3MprVec3Normalize(dir);\n" +"}\n" +"inline int b3MprPenetration(int pairIndex, int bodyIndexA, int bodyIndexB,\n" +" b3ConstArray(b3RigidBodyData_t) cpuBodyBuf,\n" +" b3ConstArray(b3ConvexPolyhedronData_t) cpuConvexData, \n" +" b3ConstArray(b3Collidable_t) cpuCollidables,\n" +" b3ConstArray(b3Float4) cpuVertices,\n" +" __global b3Float4* sepAxis,\n" +" __global int* hasSepAxis,\n" +" float *depthOut, b3Float4* dirOut, b3Float4* posOut)\n" +"{\n" +" \n" +" b3MprSimplex_t portal;\n" +" \n" +"// if (!hasSepAxis[pairIndex])\n" +" // return -1;\n" +" \n" +" hasSepAxis[pairIndex] = 0;\n" +" int res;\n" +" // Phase 1: Portal discovery\n" +" res = b3DiscoverPortal(pairIndex,bodyIndexA,bodyIndexB,cpuBodyBuf,cpuConvexData,cpuCollidables,cpuVertices,sepAxis,hasSepAxis, &portal);\n" +" \n" +" \n" +" //sepAxis[pairIndex] = *pdir;//or -dir?\n" +" switch (res)\n" +" {\n" +" case 0:\n" +" {\n" +" // Phase 2: Portal refinement\n" +" \n" +" res = b3RefinePortal(pairIndex,bodyIndexA,bodyIndexB,cpuBodyBuf,cpuConvexData,cpuCollidables,cpuVertices, sepAxis,&portal);\n" +" if (res < 0)\n" +" return -1;\n" +" // Phase 3. Penetration info\n" +" b3FindPenetr(pairIndex,bodyIndexA,bodyIndexB,cpuBodyBuf,cpuConvexData,cpuCollidables,cpuVertices, sepAxis,&portal, depthOut, dirOut, posOut);\n" +" hasSepAxis[pairIndex] = 1;\n" +" sepAxis[pairIndex] = -*dirOut;\n" +" break;\n" +" }\n" +" case 1:\n" +" {\n" +" // Touching contact on portal's v1.\n" +" b3FindPenetrTouch(&portal, depthOut, dirOut, posOut);\n" +" break;\n" +" }\n" +" case 2:\n" +" {\n" +" \n" +" b3FindPenetrSegment( &portal, depthOut, dirOut, posOut);\n" +" break;\n" +" }\n" +" default:\n" +" {\n" +" hasSepAxis[pairIndex]=0;\n" +" //if (res < 0)\n" +" //{\n" +" // Origin isn't inside portal - no collision.\n" +" return -1;\n" +" //}\n" +" }\n" +" };\n" +" \n" +" return 0;\n" +"};\n" +"#endif //B3_MPR_PENETRATION_H\n" +"#ifndef B3_CONTACT4DATA_H\n" +"#define B3_CONTACT4DATA_H\n" +"#ifndef B3_FLOAT4_H\n" +"#ifdef __cplusplus\n" +"#else\n" +"#endif \n" +"#endif //B3_FLOAT4_H\n" +"typedef struct b3Contact4Data b3Contact4Data_t;\n" +"struct b3Contact4Data\n" +"{\n" +" b3Float4 m_worldPosB[4];\n" +"// b3Float4 m_localPosA[4];\n" +"// b3Float4 m_localPosB[4];\n" +" b3Float4 m_worldNormalOnB; // w: m_nPoints\n" +" unsigned short m_restituitionCoeffCmp;\n" +" unsigned short m_frictionCoeffCmp;\n" +" int m_batchIdx;\n" +" int m_bodyAPtrAndSignBit;//x:m_bodyAPtr, y:m_bodyBPtr\n" +" int m_bodyBPtrAndSignBit;\n" +" int m_childIndexA;\n" +" int m_childIndexB;\n" +" int m_unused1;\n" +" int m_unused2;\n" +"};\n" +"inline int b3Contact4Data_getNumPoints(const struct b3Contact4Data* contact)\n" +"{\n" +" return (int)contact->m_worldNormalOnB.w;\n" +"};\n" +"inline void b3Contact4Data_setNumPoints(struct b3Contact4Data* contact, int numPoints)\n" +"{\n" +" contact->m_worldNormalOnB.w = (float)numPoints;\n" +"};\n" +"#endif //B3_CONTACT4DATA_H\n" +"#define AppendInc(x, out) out = atomic_inc(x)\n" +"#define GET_NPOINTS(x) (x).m_worldNormalOnB.w\n" +"#ifdef cl_ext_atomic_counters_32\n" +" #pragma OPENCL EXTENSION cl_ext_atomic_counters_32 : enable\n" +"#else\n" +" #define counter32_t volatile __global int*\n" +"#endif\n" +"__kernel void mprPenetrationKernel( __global int4* pairs,\n" +" __global const b3RigidBodyData_t* rigidBodies, \n" +" __global const b3Collidable_t* collidables,\n" +" __global const b3ConvexPolyhedronData_t* convexShapes, \n" +" __global const float4* vertices,\n" +" __global float4* separatingNormals,\n" +" __global int* hasSeparatingAxis,\n" +" __global struct b3Contact4Data* restrict globalContactsOut,\n" +" counter32_t nGlobalContactsOut,\n" +" int contactCapacity,\n" +" int numPairs)\n" +"{\n" +" int i = get_global_id(0);\n" +" int pairIndex = i;\n" +" if (i<numPairs)\n" +" {\n" +" int bodyIndexA = pairs[i].x;\n" +" int bodyIndexB = pairs[i].y;\n" +" int collidableIndexA = rigidBodies[bodyIndexA].m_collidableIdx;\n" +" int collidableIndexB = rigidBodies[bodyIndexB].m_collidableIdx;\n" +" \n" +" int shapeIndexA = collidables[collidableIndexA].m_shapeIndex;\n" +" int shapeIndexB = collidables[collidableIndexB].m_shapeIndex;\n" +" \n" +" \n" +" //once the broadphase avoids static-static pairs, we can remove this test\n" +" if ((rigidBodies[bodyIndexA].m_invMass==0) &&(rigidBodies[bodyIndexB].m_invMass==0))\n" +" {\n" +" return;\n" +" }\n" +" \n" +" if ((collidables[collidableIndexA].m_shapeType!=SHAPE_CONVEX_HULL) ||(collidables[collidableIndexB].m_shapeType!=SHAPE_CONVEX_HULL))\n" +" {\n" +" return;\n" +" }\n" +" float depthOut;\n" +" b3Float4 dirOut;\n" +" b3Float4 posOut;\n" +" int res = b3MprPenetration(pairIndex, bodyIndexA, bodyIndexB,rigidBodies,convexShapes,collidables,vertices,separatingNormals,hasSeparatingAxis,&depthOut, &dirOut, &posOut);\n" +" \n" +" \n" +" \n" +" \n" +" if (res==0)\n" +" {\n" +" //add a contact\n" +" int dstIdx;\n" +" AppendInc( nGlobalContactsOut, dstIdx );\n" +" if (dstIdx<contactCapacity)\n" +" {\n" +" pairs[pairIndex].z = dstIdx;\n" +" __global struct b3Contact4Data* c = globalContactsOut + dstIdx;\n" +" c->m_worldNormalOnB = -dirOut;//normal;\n" +" c->m_restituitionCoeffCmp = (0.f*0xffff);c->m_frictionCoeffCmp = (0.7f*0xffff);\n" +" c->m_batchIdx = pairIndex;\n" +" int bodyA = pairs[pairIndex].x;\n" +" int bodyB = pairs[pairIndex].y;\n" +" c->m_bodyAPtrAndSignBit = rigidBodies[bodyA].m_invMass==0 ? -bodyA:bodyA;\n" +" c->m_bodyBPtrAndSignBit = rigidBodies[bodyB].m_invMass==0 ? -bodyB:bodyB;\n" +" c->m_childIndexA = -1;\n" +" c->m_childIndexB = -1;\n" +" //for (int i=0;i<nContacts;i++)\n" +" posOut.w = -depthOut;\n" +" c->m_worldPosB[0] = posOut;//localPoints[contactIdx[i]];\n" +" GET_NPOINTS(*c) = 1;//nContacts;\n" +" }\n" +" }\n" +" }\n" +"}\n" +"typedef float4 Quaternion;\n" +"#define make_float4 (float4)\n" +"__inline\n" +"float dot3F4(float4 a, float4 b)\n" +"{\n" +" float4 a1 = make_float4(a.xyz,0.f);\n" +" float4 b1 = make_float4(b.xyz,0.f);\n" +" return dot(a1, b1);\n" +"}\n" +"__inline\n" +"float4 cross3(float4 a, float4 b)\n" +"{\n" +" return cross(a,b);\n" +"}\n" +"__inline\n" +"Quaternion qtMul(Quaternion a, Quaternion b)\n" +"{\n" +" Quaternion ans;\n" +" ans = cross3( a, b );\n" +" ans += a.w*b+b.w*a;\n" +"// ans.w = a.w*b.w - (a.x*b.x+a.y*b.y+a.z*b.z);\n" +" ans.w = a.w*b.w - dot3F4(a, b);\n" +" return ans;\n" +"}\n" +"__inline\n" +"Quaternion qtInvert(Quaternion q)\n" +"{\n" +" return (Quaternion)(-q.xyz, q.w);\n" +"}\n" +"__inline\n" +"float4 qtRotate(Quaternion q, float4 vec)\n" +"{\n" +" Quaternion qInv = qtInvert( q );\n" +" float4 vcpy = vec;\n" +" vcpy.w = 0.f;\n" +" float4 out = qtMul(qtMul(q,vcpy),qInv);\n" +" return out;\n" +"}\n" +"__inline\n" +"float4 transform(const float4* p, const float4* translation, const Quaternion* orientation)\n" +"{\n" +" return qtRotate( *orientation, *p ) + (*translation);\n" +"}\n" +"__inline\n" +"float4 qtInvRotate(const Quaternion q, float4 vec)\n" +"{\n" +" return qtRotate( qtInvert( q ), vec );\n" +"}\n" +"inline void project(__global const b3ConvexPolyhedronData_t* hull, const float4 pos, const float4 orn, \n" +"const float4* dir, __global const float4* vertices, float* min, float* max)\n" +"{\n" +" min[0] = FLT_MAX;\n" +" max[0] = -FLT_MAX;\n" +" int numVerts = hull->m_numVertices;\n" +" const float4 localDir = qtInvRotate(orn,*dir);\n" +" float offset = dot(pos,*dir);\n" +" for(int i=0;i<numVerts;i++)\n" +" {\n" +" float dp = dot(vertices[hull->m_vertexOffset+i],localDir);\n" +" if(dp < min[0]) \n" +" min[0] = dp;\n" +" if(dp > max[0]) \n" +" max[0] = dp;\n" +" }\n" +" if(min[0]>max[0])\n" +" {\n" +" float tmp = min[0];\n" +" min[0] = max[0];\n" +" max[0] = tmp;\n" +" }\n" +" min[0] += offset;\n" +" max[0] += offset;\n" +"}\n" +"bool findSeparatingAxisUnitSphere( __global const b3ConvexPolyhedronData_t* hullA, __global const b3ConvexPolyhedronData_t* hullB, \n" +" const float4 posA1,\n" +" const float4 ornA,\n" +" const float4 posB1,\n" +" const float4 ornB,\n" +" const float4 DeltaC2,\n" +" __global const float4* vertices,\n" +" __global const float4* unitSphereDirections,\n" +" int numUnitSphereDirections,\n" +" float4* sep,\n" +" float* dmin)\n" +"{\n" +" \n" +" float4 posA = posA1;\n" +" posA.w = 0.f;\n" +" float4 posB = posB1;\n" +" posB.w = 0.f;\n" +" int curPlaneTests=0;\n" +" int curEdgeEdge = 0;\n" +" // Test unit sphere directions\n" +" for (int i=0;i<numUnitSphereDirections;i++)\n" +" {\n" +" float4 crossje;\n" +" crossje = unitSphereDirections[i]; \n" +" if (dot3F4(DeltaC2,crossje)>0)\n" +" crossje *= -1.f;\n" +" {\n" +" float dist;\n" +" bool result = true;\n" +" float Min0,Max0;\n" +" float Min1,Max1;\n" +" project(hullA,posA,ornA,&crossje,vertices, &Min0, &Max0);\n" +" project(hullB,posB,ornB,&crossje,vertices, &Min1, &Max1);\n" +" \n" +" if(Max0<Min1 || Max1<Min0)\n" +" return false;\n" +" \n" +" float d0 = Max0 - Min1;\n" +" float d1 = Max1 - Min0;\n" +" dist = d0<d1 ? d0:d1;\n" +" result = true;\n" +" \n" +" if(dist<*dmin)\n" +" {\n" +" *dmin = dist;\n" +" *sep = crossje;\n" +" }\n" +" }\n" +" }\n" +" \n" +" if((dot3F4(-DeltaC2,*sep))>0.0f)\n" +" {\n" +" *sep = -(*sep);\n" +" }\n" +" return true;\n" +"}\n" +"__kernel void findSeparatingAxisUnitSphereKernel( __global const int4* pairs, \n" +" __global const b3RigidBodyData_t* rigidBodies, \n" +" __global const b3Collidable_t* collidables,\n" +" __global const b3ConvexPolyhedronData_t* convexShapes, \n" +" __global const float4* vertices,\n" +" __global const float4* unitSphereDirections,\n" +" __global float4* separatingNormals,\n" +" __global int* hasSeparatingAxis,\n" +" __global float* dmins,\n" +" int numUnitSphereDirections,\n" +" int numPairs\n" +" )\n" +"{\n" +" int i = get_global_id(0);\n" +" \n" +" if (i<numPairs)\n" +" {\n" +" if (hasSeparatingAxis[i])\n" +" {\n" +" \n" +" int bodyIndexA = pairs[i].x;\n" +" int bodyIndexB = pairs[i].y;\n" +" \n" +" int collidableIndexA = rigidBodies[bodyIndexA].m_collidableIdx;\n" +" int collidableIndexB = rigidBodies[bodyIndexB].m_collidableIdx;\n" +" \n" +" int shapeIndexA = collidables[collidableIndexA].m_shapeIndex;\n" +" int shapeIndexB = collidables[collidableIndexB].m_shapeIndex;\n" +" \n" +" \n" +" int numFacesA = convexShapes[shapeIndexA].m_numFaces;\n" +" \n" +" float dmin = dmins[i];\n" +" \n" +" float4 posA = rigidBodies[bodyIndexA].m_pos;\n" +" posA.w = 0.f;\n" +" float4 posB = rigidBodies[bodyIndexB].m_pos;\n" +" posB.w = 0.f;\n" +" float4 c0local = convexShapes[shapeIndexA].m_localCenter;\n" +" float4 ornA = rigidBodies[bodyIndexA].m_quat;\n" +" float4 c0 = transform(&c0local, &posA, &ornA);\n" +" float4 c1local = convexShapes[shapeIndexB].m_localCenter;\n" +" float4 ornB =rigidBodies[bodyIndexB].m_quat;\n" +" float4 c1 = transform(&c1local,&posB,&ornB);\n" +" const float4 DeltaC2 = c0 - c1;\n" +" float4 sepNormal = separatingNormals[i];\n" +" \n" +" int numEdgeEdgeDirections = convexShapes[shapeIndexA].m_numUniqueEdges*convexShapes[shapeIndexB].m_numUniqueEdges;\n" +" if (numEdgeEdgeDirections>numUnitSphereDirections)\n" +" {\n" +" bool sepEE = findSeparatingAxisUnitSphere( &convexShapes[shapeIndexA], &convexShapes[shapeIndexB],posA,ornA,\n" +" posB,ornB,\n" +" DeltaC2,\n" +" vertices,unitSphereDirections,numUnitSphereDirections,&sepNormal,&dmin);\n" +" if (!sepEE)\n" +" {\n" +" hasSeparatingAxis[i] = 0;\n" +" } else\n" +" {\n" +" hasSeparatingAxis[i] = 1;\n" +" separatingNormals[i] = sepNormal;\n" +" }\n" +" }\n" +" } //if (hasSeparatingAxis[i])\n" +" }//(i<numPairs)\n" +"}\n" +; diff --git a/thirdparty/bullet/Bullet3OpenCL/NarrowphaseCollision/kernels/primitiveContacts.cl b/thirdparty/bullet/Bullet3OpenCL/NarrowphaseCollision/kernels/primitiveContacts.cl new file mode 100644 index 0000000000..9c9e920f13 --- /dev/null +++ b/thirdparty/bullet/Bullet3OpenCL/NarrowphaseCollision/kernels/primitiveContacts.cl @@ -0,0 +1,1374 @@ +#include "Bullet3Collision/NarrowPhaseCollision/shared/b3Contact4Data.h" + +#define SHAPE_CONVEX_HULL 3 +#define SHAPE_PLANE 4 +#define SHAPE_CONCAVE_TRIMESH 5 +#define SHAPE_COMPOUND_OF_CONVEX_HULLS 6 +#define SHAPE_SPHERE 7 + + +#pragma OPENCL EXTENSION cl_amd_printf : enable +#pragma OPENCL EXTENSION cl_khr_local_int32_base_atomics : enable +#pragma OPENCL EXTENSION cl_khr_global_int32_base_atomics : enable +#pragma OPENCL EXTENSION cl_khr_local_int32_extended_atomics : enable +#pragma OPENCL EXTENSION cl_khr_global_int32_extended_atomics : enable + +#ifdef cl_ext_atomic_counters_32 +#pragma OPENCL EXTENSION cl_ext_atomic_counters_32 : enable +#else +#define counter32_t volatile __global int* +#endif + +#define GET_GROUP_IDX get_group_id(0) +#define GET_LOCAL_IDX get_local_id(0) +#define GET_GLOBAL_IDX get_global_id(0) +#define GET_GROUP_SIZE get_local_size(0) +#define GET_NUM_GROUPS get_num_groups(0) +#define GROUP_LDS_BARRIER barrier(CLK_LOCAL_MEM_FENCE) +#define GROUP_MEM_FENCE mem_fence(CLK_LOCAL_MEM_FENCE) +#define AtomInc(x) atom_inc(&(x)) +#define AtomInc1(x, out) out = atom_inc(&(x)) +#define AppendInc(x, out) out = atomic_inc(x) +#define AtomAdd(x, value) atom_add(&(x), value) +#define AtomCmpxhg(x, cmp, value) atom_cmpxchg( &(x), cmp, value ) +#define AtomXhg(x, value) atom_xchg ( &(x), value ) + +#define max2 max +#define min2 min + +typedef unsigned int u32; + + + + +typedef struct +{ + union + { + float4 m_min; + float m_minElems[4]; + int m_minIndices[4]; + }; + union + { + float4 m_max; + float m_maxElems[4]; + int m_maxIndices[4]; + }; +} btAabbCL; + +///keep this in sync with btCollidable.h +typedef struct +{ + int m_numChildShapes; + float m_radius; + int m_shapeType; + int m_shapeIndex; + +} btCollidableGpu; + +typedef struct +{ + float4 m_childPosition; + float4 m_childOrientation; + int m_shapeIndex; + int m_unused0; + int m_unused1; + int m_unused2; +} btGpuChildShape; + +#define GET_NPOINTS(x) (x).m_worldNormalOnB.w + +typedef struct +{ + float4 m_pos; + float4 m_quat; + float4 m_linVel; + float4 m_angVel; + + u32 m_collidableIdx; + float m_invMass; + float m_restituitionCoeff; + float m_frictionCoeff; +} BodyData; + + +typedef struct +{ + float4 m_localCenter; + float4 m_extents; + float4 mC; + float4 mE; + + float m_radius; + int m_faceOffset; + int m_numFaces; + int m_numVertices; + + int m_vertexOffset; + int m_uniqueEdgesOffset; + int m_numUniqueEdges; + int m_unused; + +} ConvexPolyhedronCL; + +typedef struct +{ + float4 m_plane; + int m_indexOffset; + int m_numIndices; +} btGpuFace; + +#define SELECT_UINT4( b, a, condition ) select( b,a,condition ) + +#define make_float4 (float4) +#define make_float2 (float2) +#define make_uint4 (uint4) +#define make_int4 (int4) +#define make_uint2 (uint2) +#define make_int2 (int2) + + +__inline +float fastDiv(float numerator, float denominator) +{ + return native_divide(numerator, denominator); +// return numerator/denominator; +} + +__inline +float4 fastDiv4(float4 numerator, float4 denominator) +{ + return native_divide(numerator, denominator); +} + + +__inline +float4 cross3(float4 a, float4 b) +{ + return cross(a,b); +} + +//#define dot3F4 dot + +__inline +float dot3F4(float4 a, float4 b) +{ + float4 a1 = make_float4(a.xyz,0.f); + float4 b1 = make_float4(b.xyz,0.f); + return dot(a1, b1); +} + +__inline +float4 fastNormalize4(float4 v) +{ + return fast_normalize(v); +} + + +/////////////////////////////////////// +// Quaternion +/////////////////////////////////////// + +typedef float4 Quaternion; + +__inline +Quaternion qtMul(Quaternion a, Quaternion b); + +__inline +Quaternion qtNormalize(Quaternion in); + +__inline +float4 qtRotate(Quaternion q, float4 vec); + +__inline +Quaternion qtInvert(Quaternion q); + + + + +__inline +Quaternion qtMul(Quaternion a, Quaternion b) +{ + Quaternion ans; + ans = cross3( a, b ); + ans += a.w*b+b.w*a; +// ans.w = a.w*b.w - (a.x*b.x+a.y*b.y+a.z*b.z); + ans.w = a.w*b.w - dot3F4(a, b); + return ans; +} + +__inline +Quaternion qtNormalize(Quaternion in) +{ + return fastNormalize4(in); +// in /= length( in ); +// return in; +} +__inline +float4 qtRotate(Quaternion q, float4 vec) +{ + Quaternion qInv = qtInvert( q ); + float4 vcpy = vec; + vcpy.w = 0.f; + float4 out = qtMul(qtMul(q,vcpy),qInv); + return out; +} + +__inline +Quaternion qtInvert(Quaternion q) +{ + return (Quaternion)(-q.xyz, q.w); +} + +__inline +float4 qtInvRotate(const Quaternion q, float4 vec) +{ + return qtRotate( qtInvert( q ), vec ); +} + +__inline +float4 transform(const float4* p, const float4* translation, const Quaternion* orientation) +{ + return qtRotate( *orientation, *p ) + (*translation); +} + +void trInverse(float4 translationIn, Quaternion orientationIn, + float4* translationOut, Quaternion* orientationOut) +{ + *orientationOut = qtInvert(orientationIn); + *translationOut = qtRotate(*orientationOut, -translationIn); +} + +void trMul(float4 translationA, Quaternion orientationA, + float4 translationB, Quaternion orientationB, + float4* translationOut, Quaternion* orientationOut) +{ + *orientationOut = qtMul(orientationA,orientationB); + *translationOut = transform(&translationB,&translationA,&orientationA); +} + + + +__inline +float4 normalize3(const float4 a) +{ + float4 n = make_float4(a.x, a.y, a.z, 0.f); + return fastNormalize4( n ); +} + + +__inline float4 lerp3(const float4 a,const float4 b, float t) +{ + return make_float4( a.x + (b.x - a.x) * t, + a.y + (b.y - a.y) * t, + a.z + (b.z - a.z) * t, + 0.f); +} + + +float signedDistanceFromPointToPlane(float4 point, float4 planeEqn, float4* closestPointOnFace) +{ + float4 n = (float4)(planeEqn.x, planeEqn.y, planeEqn.z, 0); + float dist = dot3F4(n, point) + planeEqn.w; + *closestPointOnFace = point - dist * n; + return dist; +} + + + +inline bool IsPointInPolygon(float4 p, + const btGpuFace* face, + __global const float4* baseVertex, + __global const int* convexIndices, + float4* out) +{ + float4 a; + float4 b; + float4 ab; + float4 ap; + float4 v; + + float4 plane = make_float4(face->m_plane.x,face->m_plane.y,face->m_plane.z,0.f); + + if (face->m_numIndices<2) + return false; + + + float4 v0 = baseVertex[convexIndices[face->m_indexOffset + face->m_numIndices-1]]; + + b = v0; + + for(unsigned i=0; i != face->m_numIndices; ++i) + { + a = b; + float4 vi = baseVertex[convexIndices[face->m_indexOffset + i]]; + b = vi; + ab = b-a; + ap = p-a; + v = cross3(ab,plane); + + if (dot(ap, v) > 0.f) + { + float ab_m2 = dot(ab, ab); + float rt = ab_m2 != 0.f ? dot(ab, ap) / ab_m2 : 0.f; + if (rt <= 0.f) + { + *out = a; + } + else if (rt >= 1.f) + { + *out = b; + } + else + { + float s = 1.f - rt; + out[0].x = s * a.x + rt * b.x; + out[0].y = s * a.y + rt * b.y; + out[0].z = s * a.z + rt * b.z; + } + return false; + } + } + return true; +} + + + + +void computeContactSphereConvex(int pairIndex, + int bodyIndexA, int bodyIndexB, + int collidableIndexA, int collidableIndexB, + __global const BodyData* rigidBodies, + __global const btCollidableGpu* collidables, + __global const ConvexPolyhedronCL* convexShapes, + __global const float4* convexVertices, + __global const int* convexIndices, + __global const btGpuFace* faces, + __global struct b3Contact4Data* restrict globalContactsOut, + counter32_t nGlobalContactsOut, + int maxContactCapacity, + float4 spherePos2, + float radius, + float4 pos, + float4 quat + ) +{ + + float4 invPos; + float4 invOrn; + + trInverse(pos,quat, &invPos,&invOrn); + + float4 spherePos = transform(&spherePos2,&invPos,&invOrn); + + int shapeIndex = collidables[collidableIndexB].m_shapeIndex; + int numFaces = convexShapes[shapeIndex].m_numFaces; + float4 closestPnt = (float4)(0, 0, 0, 0); + float4 hitNormalWorld = (float4)(0, 0, 0, 0); + float minDist = -1000000.f; + bool bCollide = true; + + for ( int f = 0; f < numFaces; f++ ) + { + btGpuFace face = faces[convexShapes[shapeIndex].m_faceOffset+f]; + + // set up a plane equation + float4 planeEqn; + float4 n1 = face.m_plane; + n1.w = 0.f; + planeEqn = n1; + planeEqn.w = face.m_plane.w; + + + // compute a signed distance from the vertex in cloth to the face of rigidbody. + float4 pntReturn; + float dist = signedDistanceFromPointToPlane(spherePos, planeEqn, &pntReturn); + + // If the distance is positive, the plane is a separating plane. + if ( dist > radius ) + { + bCollide = false; + break; + } + + + if (dist>0) + { + //might hit an edge or vertex + float4 out; + float4 zeroPos = make_float4(0,0,0,0); + + bool isInPoly = IsPointInPolygon(spherePos, + &face, + &convexVertices[convexShapes[shapeIndex].m_vertexOffset], + convexIndices, + &out); + if (isInPoly) + { + if (dist>minDist) + { + minDist = dist; + closestPnt = pntReturn; + hitNormalWorld = planeEqn; + + } + } else + { + float4 tmp = spherePos-out; + float l2 = dot(tmp,tmp); + if (l2<radius*radius) + { + dist = sqrt(l2); + if (dist>minDist) + { + minDist = dist; + closestPnt = out; + hitNormalWorld = tmp/dist; + + } + + } else + { + bCollide = false; + break; + } + } + } else + { + if ( dist > minDist ) + { + minDist = dist; + closestPnt = pntReturn; + hitNormalWorld.xyz = planeEqn.xyz; + } + } + + } + + + + if (bCollide && minDist > -10000) + { + float4 normalOnSurfaceB1 = qtRotate(quat,-hitNormalWorld); + float4 pOnB1 = transform(&closestPnt,&pos,&quat); + + float actualDepth = minDist-radius; + if (actualDepth<=0.f) + { + + + pOnB1.w = actualDepth; + + int dstIdx; + AppendInc( nGlobalContactsOut, dstIdx ); + + + if (1)//dstIdx < maxContactCapacity) + { + __global struct b3Contact4Data* c = &globalContactsOut[dstIdx]; + c->m_worldNormalOnB = -normalOnSurfaceB1; + c->m_restituitionCoeffCmp = (0.f*0xffff);c->m_frictionCoeffCmp = (0.7f*0xffff); + c->m_batchIdx = pairIndex; + c->m_bodyAPtrAndSignBit = rigidBodies[bodyIndexA].m_invMass==0?-bodyIndexA:bodyIndexA; + c->m_bodyBPtrAndSignBit = rigidBodies[bodyIndexB].m_invMass==0?-bodyIndexB:bodyIndexB; + c->m_worldPosB[0] = pOnB1; + c->m_childIndexA = -1; + c->m_childIndexB = -1; + + GET_NPOINTS(*c) = 1; + } + + } + }//if (hasCollision) + +} + + + +int extractManifoldSequential(const float4* p, int nPoints, float4 nearNormal, int4* contactIdx) +{ + if( nPoints == 0 ) + return 0; + + if (nPoints <=4) + return nPoints; + + + if (nPoints >64) + nPoints = 64; + + float4 center = make_float4(0.f); + { + + for (int i=0;i<nPoints;i++) + center += p[i]; + center /= (float)nPoints; + } + + + + // sample 4 directions + + float4 aVector = p[0] - center; + float4 u = cross3( nearNormal, aVector ); + float4 v = cross3( nearNormal, u ); + u = normalize3( u ); + v = normalize3( v ); + + + //keep point with deepest penetration + float minW= FLT_MAX; + + int minIndex=-1; + + float4 maxDots; + maxDots.x = FLT_MIN; + maxDots.y = FLT_MIN; + maxDots.z = FLT_MIN; + maxDots.w = FLT_MIN; + + // idx, distance + for(int ie = 0; ie<nPoints; ie++ ) + { + if (p[ie].w<minW) + { + minW = p[ie].w; + minIndex=ie; + } + float f; + float4 r = p[ie]-center; + f = dot3F4( u, r ); + if (f<maxDots.x) + { + maxDots.x = f; + contactIdx[0].x = ie; + } + + f = dot3F4( -u, r ); + if (f<maxDots.y) + { + maxDots.y = f; + contactIdx[0].y = ie; + } + + + f = dot3F4( v, r ); + if (f<maxDots.z) + { + maxDots.z = f; + contactIdx[0].z = ie; + } + + f = dot3F4( -v, r ); + if (f<maxDots.w) + { + maxDots.w = f; + contactIdx[0].w = ie; + } + + } + + if (contactIdx[0].x != minIndex && contactIdx[0].y != minIndex && contactIdx[0].z != minIndex && contactIdx[0].w != minIndex) + { + //replace the first contact with minimum (todo: replace contact with least penetration) + contactIdx[0].x = minIndex; + } + + return 4; + +} + +#define MAX_PLANE_CONVEX_POINTS 64 + +int computeContactPlaneConvex(int pairIndex, + int bodyIndexA, int bodyIndexB, + int collidableIndexA, int collidableIndexB, + __global const BodyData* rigidBodies, + __global const btCollidableGpu*collidables, + __global const ConvexPolyhedronCL* convexShapes, + __global const float4* convexVertices, + __global const int* convexIndices, + __global const btGpuFace* faces, + __global struct b3Contact4Data* restrict globalContactsOut, + counter32_t nGlobalContactsOut, + int maxContactCapacity, + float4 posB, + Quaternion ornB + ) +{ + int resultIndex=-1; + + int shapeIndex = collidables[collidableIndexB].m_shapeIndex; + __global const ConvexPolyhedronCL* hullB = &convexShapes[shapeIndex]; + + float4 posA; + posA = rigidBodies[bodyIndexA].m_pos; + Quaternion ornA; + ornA = rigidBodies[bodyIndexA].m_quat; + + int numContactsOut = 0; + int numWorldVertsB1= 0; + + float4 planeEq; + planeEq = faces[collidables[collidableIndexA].m_shapeIndex].m_plane; + float4 planeNormal = make_float4(planeEq.x,planeEq.y,planeEq.z,0.f); + float4 planeNormalWorld; + planeNormalWorld = qtRotate(ornA,planeNormal); + float planeConstant = planeEq.w; + + float4 invPosA;Quaternion invOrnA; + float4 convexInPlaneTransPos1; Quaternion convexInPlaneTransOrn1; + { + + trInverse(posA,ornA,&invPosA,&invOrnA); + trMul(invPosA,invOrnA,posB,ornB,&convexInPlaneTransPos1,&convexInPlaneTransOrn1); + } + float4 invPosB;Quaternion invOrnB; + float4 planeInConvexPos1; Quaternion planeInConvexOrn1; + { + + trInverse(posB,ornB,&invPosB,&invOrnB); + trMul(invPosB,invOrnB,posA,ornA,&planeInConvexPos1,&planeInConvexOrn1); + } + + + float4 planeNormalInConvex = qtRotate(planeInConvexOrn1,-planeNormal); + float maxDot = -1e30; + int hitVertex=-1; + float4 hitVtx; + + + + float4 contactPoints[MAX_PLANE_CONVEX_POINTS]; + int numPoints = 0; + + int4 contactIdx; + contactIdx=make_int4(0,1,2,3); + + + for (int i=0;i<hullB->m_numVertices;i++) + { + float4 vtx = convexVertices[hullB->m_vertexOffset+i]; + float curDot = dot(vtx,planeNormalInConvex); + + + if (curDot>maxDot) + { + hitVertex=i; + maxDot=curDot; + hitVtx = vtx; + //make sure the deepest points is always included + if (numPoints==MAX_PLANE_CONVEX_POINTS) + numPoints--; + } + + if (numPoints<MAX_PLANE_CONVEX_POINTS) + { + float4 vtxWorld = transform(&vtx, &posB, &ornB); + float4 vtxInPlane = transform(&vtxWorld, &invPosA, &invOrnA);//oplaneTransform.inverse()*vtxWorld; + float dist = dot(planeNormal,vtxInPlane)-planeConstant; + if (dist<0.f) + { + vtxWorld.w = dist; + contactPoints[numPoints] = vtxWorld; + numPoints++; + } + } + + } + + int numReducedPoints = numPoints; + if (numPoints>4) + { + numReducedPoints = extractManifoldSequential( contactPoints, numPoints, planeNormalInConvex, &contactIdx); + } + + if (numReducedPoints>0) + { + int dstIdx; + AppendInc( nGlobalContactsOut, dstIdx ); + + if (dstIdx < maxContactCapacity) + { + resultIndex = dstIdx; + __global struct b3Contact4Data* c = &globalContactsOut[dstIdx]; + c->m_worldNormalOnB = -planeNormalWorld; + //c->setFrictionCoeff(0.7); + //c->setRestituitionCoeff(0.f); + c->m_restituitionCoeffCmp = (0.f*0xffff);c->m_frictionCoeffCmp = (0.7f*0xffff); + c->m_batchIdx = pairIndex; + c->m_bodyAPtrAndSignBit = rigidBodies[bodyIndexA].m_invMass==0?-bodyIndexA:bodyIndexA; + c->m_bodyBPtrAndSignBit = rigidBodies[bodyIndexB].m_invMass==0?-bodyIndexB:bodyIndexB; + c->m_childIndexA = -1; + c->m_childIndexB = -1; + + switch (numReducedPoints) + { + case 4: + c->m_worldPosB[3] = contactPoints[contactIdx.w]; + case 3: + c->m_worldPosB[2] = contactPoints[contactIdx.z]; + case 2: + c->m_worldPosB[1] = contactPoints[contactIdx.y]; + case 1: + c->m_worldPosB[0] = contactPoints[contactIdx.x]; + default: + { + } + }; + + GET_NPOINTS(*c) = numReducedPoints; + }//if (dstIdx < numPairs) + } + + return resultIndex; +} + + +void computeContactPlaneSphere(int pairIndex, + int bodyIndexA, int bodyIndexB, + int collidableIndexA, int collidableIndexB, + __global const BodyData* rigidBodies, + __global const btCollidableGpu* collidables, + __global const btGpuFace* faces, + __global struct b3Contact4Data* restrict globalContactsOut, + counter32_t nGlobalContactsOut, + int maxContactCapacity) +{ + float4 planeEq = faces[collidables[collidableIndexA].m_shapeIndex].m_plane; + float radius = collidables[collidableIndexB].m_radius; + float4 posA1 = rigidBodies[bodyIndexA].m_pos; + float4 ornA1 = rigidBodies[bodyIndexA].m_quat; + float4 posB1 = rigidBodies[bodyIndexB].m_pos; + float4 ornB1 = rigidBodies[bodyIndexB].m_quat; + + bool hasCollision = false; + float4 planeNormal1 = make_float4(planeEq.x,planeEq.y,planeEq.z,0.f); + float planeConstant = planeEq.w; + float4 convexInPlaneTransPos1; Quaternion convexInPlaneTransOrn1; + { + float4 invPosA;Quaternion invOrnA; + trInverse(posA1,ornA1,&invPosA,&invOrnA); + trMul(invPosA,invOrnA,posB1,ornB1,&convexInPlaneTransPos1,&convexInPlaneTransOrn1); + } + float4 planeInConvexPos1; Quaternion planeInConvexOrn1; + { + float4 invPosB;Quaternion invOrnB; + trInverse(posB1,ornB1,&invPosB,&invOrnB); + trMul(invPosB,invOrnB,posA1,ornA1,&planeInConvexPos1,&planeInConvexOrn1); + } + float4 vtx1 = qtRotate(planeInConvexOrn1,-planeNormal1)*radius; + float4 vtxInPlane1 = transform(&vtx1,&convexInPlaneTransPos1,&convexInPlaneTransOrn1); + float distance = dot3F4(planeNormal1,vtxInPlane1) - planeConstant; + hasCollision = distance < 0.f;//m_manifoldPtr->getContactBreakingThreshold(); + if (hasCollision) + { + float4 vtxInPlaneProjected1 = vtxInPlane1 - distance*planeNormal1; + float4 vtxInPlaneWorld1 = transform(&vtxInPlaneProjected1,&posA1,&ornA1); + float4 normalOnSurfaceB1 = qtRotate(ornA1,planeNormal1); + float4 pOnB1 = vtxInPlaneWorld1+normalOnSurfaceB1*distance; + pOnB1.w = distance; + + int dstIdx; + AppendInc( nGlobalContactsOut, dstIdx ); + + if (dstIdx < maxContactCapacity) + { + __global struct b3Contact4Data* c = &globalContactsOut[dstIdx]; + c->m_worldNormalOnB = -normalOnSurfaceB1; + c->m_restituitionCoeffCmp = (0.f*0xffff);c->m_frictionCoeffCmp = (0.7f*0xffff); + c->m_batchIdx = pairIndex; + c->m_bodyAPtrAndSignBit = rigidBodies[bodyIndexA].m_invMass==0?-bodyIndexA:bodyIndexA; + c->m_bodyBPtrAndSignBit = rigidBodies[bodyIndexB].m_invMass==0?-bodyIndexB:bodyIndexB; + c->m_worldPosB[0] = pOnB1; + c->m_childIndexA = -1; + c->m_childIndexB = -1; + GET_NPOINTS(*c) = 1; + }//if (dstIdx < numPairs) + }//if (hasCollision) +} + + +__kernel void primitiveContactsKernel( __global int4* pairs, + __global const BodyData* rigidBodies, + __global const btCollidableGpu* collidables, + __global const ConvexPolyhedronCL* convexShapes, + __global const float4* vertices, + __global const float4* uniqueEdges, + __global const btGpuFace* faces, + __global const int* indices, + __global struct b3Contact4Data* restrict globalContactsOut, + counter32_t nGlobalContactsOut, + int numPairs, int maxContactCapacity) +{ + + int i = get_global_id(0); + int pairIndex = i; + + float4 worldVertsB1[64]; + float4 worldVertsB2[64]; + int capacityWorldVerts = 64; + + float4 localContactsOut[64]; + int localContactCapacity=64; + + float minDist = -1e30f; + float maxDist = 0.02f; + + if (i<numPairs) + { + + int bodyIndexA = pairs[i].x; + int bodyIndexB = pairs[i].y; + + int collidableIndexA = rigidBodies[bodyIndexA].m_collidableIdx; + int collidableIndexB = rigidBodies[bodyIndexB].m_collidableIdx; + + if (collidables[collidableIndexA].m_shapeType == SHAPE_PLANE && + collidables[collidableIndexB].m_shapeType == SHAPE_CONVEX_HULL) + { + + float4 posB; + posB = rigidBodies[bodyIndexB].m_pos; + Quaternion ornB; + ornB = rigidBodies[bodyIndexB].m_quat; + int contactIndex = computeContactPlaneConvex(pairIndex, bodyIndexA, bodyIndexB, collidableIndexA, collidableIndexB, + rigidBodies,collidables,convexShapes,vertices,indices, + faces, globalContactsOut, nGlobalContactsOut,maxContactCapacity, posB,ornB); + if (contactIndex>=0) + pairs[pairIndex].z = contactIndex; + + return; + } + + + if (collidables[collidableIndexA].m_shapeType == SHAPE_CONVEX_HULL && + collidables[collidableIndexB].m_shapeType == SHAPE_PLANE) + { + + float4 posA; + posA = rigidBodies[bodyIndexA].m_pos; + Quaternion ornA; + ornA = rigidBodies[bodyIndexA].m_quat; + + + int contactIndex = computeContactPlaneConvex( pairIndex, bodyIndexB,bodyIndexA, collidableIndexB,collidableIndexA, + rigidBodies,collidables,convexShapes,vertices,indices, + faces, globalContactsOut, nGlobalContactsOut,maxContactCapacity,posA,ornA); + + if (contactIndex>=0) + pairs[pairIndex].z = contactIndex; + + return; + } + + if (collidables[collidableIndexA].m_shapeType == SHAPE_PLANE && + collidables[collidableIndexB].m_shapeType == SHAPE_SPHERE) + { + computeContactPlaneSphere(pairIndex, bodyIndexA, bodyIndexB, collidableIndexA, collidableIndexB, + rigidBodies,collidables,faces, globalContactsOut, nGlobalContactsOut,maxContactCapacity); + return; + } + + + if (collidables[collidableIndexA].m_shapeType == SHAPE_SPHERE && + collidables[collidableIndexB].m_shapeType == SHAPE_PLANE) + { + + + computeContactPlaneSphere( pairIndex, bodyIndexB,bodyIndexA, collidableIndexB,collidableIndexA, + rigidBodies,collidables, + faces, globalContactsOut, nGlobalContactsOut,maxContactCapacity); + + return; + } + + + + + if (collidables[collidableIndexA].m_shapeType == SHAPE_SPHERE && + collidables[collidableIndexB].m_shapeType == SHAPE_CONVEX_HULL) + { + + float4 spherePos = rigidBodies[bodyIndexA].m_pos; + float sphereRadius = collidables[collidableIndexA].m_radius; + float4 convexPos = rigidBodies[bodyIndexB].m_pos; + float4 convexOrn = rigidBodies[bodyIndexB].m_quat; + + computeContactSphereConvex(pairIndex, bodyIndexA, bodyIndexB, collidableIndexA, collidableIndexB, + rigidBodies,collidables,convexShapes,vertices,indices,faces, globalContactsOut, nGlobalContactsOut,maxContactCapacity, + spherePos,sphereRadius,convexPos,convexOrn); + + return; + } + + if (collidables[collidableIndexA].m_shapeType == SHAPE_CONVEX_HULL && + collidables[collidableIndexB].m_shapeType == SHAPE_SPHERE) + { + + float4 spherePos = rigidBodies[bodyIndexB].m_pos; + float sphereRadius = collidables[collidableIndexB].m_radius; + float4 convexPos = rigidBodies[bodyIndexA].m_pos; + float4 convexOrn = rigidBodies[bodyIndexA].m_quat; + + computeContactSphereConvex(pairIndex, bodyIndexB, bodyIndexA, collidableIndexB, collidableIndexA, + rigidBodies,collidables,convexShapes,vertices,indices,faces, globalContactsOut, nGlobalContactsOut,maxContactCapacity, + spherePos,sphereRadius,convexPos,convexOrn); + return; + } + + + + + + + if (collidables[collidableIndexA].m_shapeType == SHAPE_SPHERE && + collidables[collidableIndexB].m_shapeType == SHAPE_SPHERE) + { + //sphere-sphere + float radiusA = collidables[collidableIndexA].m_radius; + float radiusB = collidables[collidableIndexB].m_radius; + float4 posA = rigidBodies[bodyIndexA].m_pos; + float4 posB = rigidBodies[bodyIndexB].m_pos; + + float4 diff = posA-posB; + float len = length(diff); + + ///iff distance positive, don't generate a new contact + if ( len <= (radiusA+radiusB)) + { + ///distance (negative means penetration) + float dist = len - (radiusA+radiusB); + float4 normalOnSurfaceB = make_float4(1.f,0.f,0.f,0.f); + if (len > 0.00001) + { + normalOnSurfaceB = diff / len; + } + float4 contactPosB = posB + normalOnSurfaceB*radiusB; + contactPosB.w = dist; + + int dstIdx; + AppendInc( nGlobalContactsOut, dstIdx ); + + if (dstIdx < maxContactCapacity) + { + __global struct b3Contact4Data* c = &globalContactsOut[dstIdx]; + c->m_worldNormalOnB = normalOnSurfaceB; + c->m_restituitionCoeffCmp = (0.f*0xffff);c->m_frictionCoeffCmp = (0.7f*0xffff); + c->m_batchIdx = pairIndex; + int bodyA = pairs[pairIndex].x; + int bodyB = pairs[pairIndex].y; + c->m_bodyAPtrAndSignBit = rigidBodies[bodyA].m_invMass==0?-bodyA:bodyA; + c->m_bodyBPtrAndSignBit = rigidBodies[bodyB].m_invMass==0?-bodyB:bodyB; + c->m_worldPosB[0] = contactPosB; + c->m_childIndexA = -1; + c->m_childIndexB = -1; + GET_NPOINTS(*c) = 1; + }//if (dstIdx < numPairs) + }//if ( len <= (radiusA+radiusB)) + + return; + }//SHAPE_SPHERE SHAPE_SPHERE + + }// if (i<numPairs) + +} + + +// work-in-progress +__kernel void processCompoundPairsPrimitivesKernel( __global const int4* gpuCompoundPairs, + __global const BodyData* rigidBodies, + __global const btCollidableGpu* collidables, + __global const ConvexPolyhedronCL* convexShapes, + __global const float4* vertices, + __global const float4* uniqueEdges, + __global const btGpuFace* faces, + __global const int* indices, + __global btAabbCL* aabbs, + __global const btGpuChildShape* gpuChildShapes, + __global struct b3Contact4Data* restrict globalContactsOut, + counter32_t nGlobalContactsOut, + int numCompoundPairs, int maxContactCapacity + ) +{ + + int i = get_global_id(0); + if (i<numCompoundPairs) + { + int bodyIndexA = gpuCompoundPairs[i].x; + int bodyIndexB = gpuCompoundPairs[i].y; + + int childShapeIndexA = gpuCompoundPairs[i].z; + int childShapeIndexB = gpuCompoundPairs[i].w; + + int collidableIndexA = -1; + int collidableIndexB = -1; + + float4 ornA = rigidBodies[bodyIndexA].m_quat; + float4 posA = rigidBodies[bodyIndexA].m_pos; + + float4 ornB = rigidBodies[bodyIndexB].m_quat; + float4 posB = rigidBodies[bodyIndexB].m_pos; + + if (childShapeIndexA >= 0) + { + collidableIndexA = gpuChildShapes[childShapeIndexA].m_shapeIndex; + float4 childPosA = gpuChildShapes[childShapeIndexA].m_childPosition; + float4 childOrnA = gpuChildShapes[childShapeIndexA].m_childOrientation; + float4 newPosA = qtRotate(ornA,childPosA)+posA; + float4 newOrnA = qtMul(ornA,childOrnA); + posA = newPosA; + ornA = newOrnA; + } else + { + collidableIndexA = rigidBodies[bodyIndexA].m_collidableIdx; + } + + if (childShapeIndexB>=0) + { + collidableIndexB = gpuChildShapes[childShapeIndexB].m_shapeIndex; + float4 childPosB = gpuChildShapes[childShapeIndexB].m_childPosition; + float4 childOrnB = gpuChildShapes[childShapeIndexB].m_childOrientation; + float4 newPosB = transform(&childPosB,&posB,&ornB); + float4 newOrnB = qtMul(ornB,childOrnB); + posB = newPosB; + ornB = newOrnB; + } else + { + collidableIndexB = rigidBodies[bodyIndexB].m_collidableIdx; + } + + int shapeIndexA = collidables[collidableIndexA].m_shapeIndex; + int shapeIndexB = collidables[collidableIndexB].m_shapeIndex; + + int shapeTypeA = collidables[collidableIndexA].m_shapeType; + int shapeTypeB = collidables[collidableIndexB].m_shapeType; + + int pairIndex = i; + if ((shapeTypeA == SHAPE_PLANE) && (shapeTypeB==SHAPE_CONVEX_HULL)) + { + + computeContactPlaneConvex( pairIndex, bodyIndexA,bodyIndexB, collidableIndexA,collidableIndexB, + rigidBodies,collidables,convexShapes,vertices,indices, + faces, globalContactsOut, nGlobalContactsOut,maxContactCapacity,posB,ornB); + return; + } + + if ((shapeTypeA == SHAPE_CONVEX_HULL) && (shapeTypeB==SHAPE_PLANE)) + { + + computeContactPlaneConvex( pairIndex, bodyIndexB,bodyIndexA, collidableIndexB,collidableIndexA, + rigidBodies,collidables,convexShapes,vertices,indices, + faces, globalContactsOut, nGlobalContactsOut,maxContactCapacity,posA,ornA); + return; + } + + if ((shapeTypeA == SHAPE_CONVEX_HULL) && (shapeTypeB == SHAPE_SPHERE)) + { + float4 spherePos = rigidBodies[bodyIndexB].m_pos; + float sphereRadius = collidables[collidableIndexB].m_radius; + float4 convexPos = posA; + float4 convexOrn = ornA; + + computeContactSphereConvex(pairIndex, bodyIndexB, bodyIndexA , collidableIndexB,collidableIndexA, + rigidBodies,collidables,convexShapes,vertices,indices,faces, globalContactsOut, nGlobalContactsOut,maxContactCapacity, + spherePos,sphereRadius,convexPos,convexOrn); + + return; + } + + if ((shapeTypeA == SHAPE_SPHERE) && (shapeTypeB == SHAPE_CONVEX_HULL)) + { + + float4 spherePos = rigidBodies[bodyIndexA].m_pos; + float sphereRadius = collidables[collidableIndexA].m_radius; + float4 convexPos = posB; + float4 convexOrn = ornB; + + + computeContactSphereConvex(pairIndex, bodyIndexA, bodyIndexB, collidableIndexA, collidableIndexB, + rigidBodies,collidables,convexShapes,vertices,indices,faces, globalContactsOut, nGlobalContactsOut,maxContactCapacity, + spherePos,sphereRadius,convexPos,convexOrn); + + return; + } + }// if (i<numCompoundPairs) +} + + +bool pointInTriangle(const float4* vertices, const float4* normal, float4 *p ) +{ + + const float4* p1 = &vertices[0]; + const float4* p2 = &vertices[1]; + const float4* p3 = &vertices[2]; + + float4 edge1; edge1 = (*p2 - *p1); + float4 edge2; edge2 = ( *p3 - *p2 ); + float4 edge3; edge3 = ( *p1 - *p3 ); + + + float4 p1_to_p; p1_to_p = ( *p - *p1 ); + float4 p2_to_p; p2_to_p = ( *p - *p2 ); + float4 p3_to_p; p3_to_p = ( *p - *p3 ); + + float4 edge1_normal; edge1_normal = ( cross(edge1,*normal)); + float4 edge2_normal; edge2_normal = ( cross(edge2,*normal)); + float4 edge3_normal; edge3_normal = ( cross(edge3,*normal)); + + + + float r1, r2, r3; + r1 = dot(edge1_normal,p1_to_p ); + r2 = dot(edge2_normal,p2_to_p ); + r3 = dot(edge3_normal,p3_to_p ); + + if ( r1 > 0 && r2 > 0 && r3 > 0 ) + return true; + if ( r1 <= 0 && r2 <= 0 && r3 <= 0 ) + return true; + return false; + +} + + +float segmentSqrDistance(float4 from, float4 to,float4 p, float4* nearest) +{ + float4 diff = p - from; + float4 v = to - from; + float t = dot(v,diff); + + if (t > 0) + { + float dotVV = dot(v,v); + if (t < dotVV) + { + t /= dotVV; + diff -= t*v; + } else + { + t = 1; + diff -= v; + } + } else + { + t = 0; + } + *nearest = from + t*v; + return dot(diff,diff); +} + + +void computeContactSphereTriangle(int pairIndex, + int bodyIndexA, int bodyIndexB, + int collidableIndexA, int collidableIndexB, + __global const BodyData* rigidBodies, + __global const btCollidableGpu* collidables, + const float4* triangleVertices, + __global struct b3Contact4Data* restrict globalContactsOut, + counter32_t nGlobalContactsOut, + int maxContactCapacity, + float4 spherePos2, + float radius, + float4 pos, + float4 quat, + int faceIndex + ) +{ + + float4 invPos; + float4 invOrn; + + trInverse(pos,quat, &invPos,&invOrn); + float4 spherePos = transform(&spherePos2,&invPos,&invOrn); + int numFaces = 3; + float4 closestPnt = (float4)(0, 0, 0, 0); + float4 hitNormalWorld = (float4)(0, 0, 0, 0); + float minDist = -1000000.f; + bool bCollide = false; + + + ////////////////////////////////////// + + float4 sphereCenter; + sphereCenter = spherePos; + + const float4* vertices = triangleVertices; + float contactBreakingThreshold = 0.f;//todo? + float radiusWithThreshold = radius + contactBreakingThreshold; + float4 edge10; + edge10 = vertices[1]-vertices[0]; + edge10.w = 0.f;//is this needed? + float4 edge20; + edge20 = vertices[2]-vertices[0]; + edge20.w = 0.f;//is this needed? + float4 normal = cross3(edge10,edge20); + normal = normalize(normal); + float4 p1ToCenter; + p1ToCenter = sphereCenter - vertices[0]; + + float distanceFromPlane = dot(p1ToCenter,normal); + + if (distanceFromPlane < 0.f) + { + //triangle facing the other way + distanceFromPlane *= -1.f; + normal *= -1.f; + } + hitNormalWorld = normal; + + bool isInsideContactPlane = distanceFromPlane < radiusWithThreshold; + + // Check for contact / intersection + bool hasContact = false; + float4 contactPoint; + if (isInsideContactPlane) + { + + if (pointInTriangle(vertices,&normal, &sphereCenter)) + { + // Inside the contact wedge - touches a point on the shell plane + hasContact = true; + contactPoint = sphereCenter - normal*distanceFromPlane; + + } else { + // Could be inside one of the contact capsules + float contactCapsuleRadiusSqr = radiusWithThreshold*radiusWithThreshold; + float4 nearestOnEdge; + int numEdges = 3; + for (int i = 0; i < numEdges; i++) + { + float4 pa =vertices[i]; + float4 pb = vertices[(i+1)%3]; + + float distanceSqr = segmentSqrDistance(pa,pb,sphereCenter, &nearestOnEdge); + if (distanceSqr < contactCapsuleRadiusSqr) + { + // Yep, we're inside a capsule + hasContact = true; + contactPoint = nearestOnEdge; + + } + + } + } + } + + if (hasContact) + { + + closestPnt = contactPoint; + float4 contactToCenter = sphereCenter - contactPoint; + minDist = length(contactToCenter); + if (minDist>FLT_EPSILON) + { + hitNormalWorld = normalize(contactToCenter);//*(1./minDist); + bCollide = true; + } + + } + + + ///////////////////////////////////// + + if (bCollide && minDist > -10000) + { + + float4 normalOnSurfaceB1 = qtRotate(quat,-hitNormalWorld); + float4 pOnB1 = transform(&closestPnt,&pos,&quat); + float actualDepth = minDist-radius; + + + if (actualDepth<=0.f) + { + pOnB1.w = actualDepth; + int dstIdx; + + + float lenSqr = dot3F4(normalOnSurfaceB1,normalOnSurfaceB1); + if (lenSqr>FLT_EPSILON) + { + AppendInc( nGlobalContactsOut, dstIdx ); + + if (dstIdx < maxContactCapacity) + { + __global struct b3Contact4Data* c = &globalContactsOut[dstIdx]; + c->m_worldNormalOnB = -normalOnSurfaceB1; + c->m_restituitionCoeffCmp = (0.f*0xffff);c->m_frictionCoeffCmp = (0.7f*0xffff); + c->m_batchIdx = pairIndex; + c->m_bodyAPtrAndSignBit = rigidBodies[bodyIndexA].m_invMass==0?-bodyIndexA:bodyIndexA; + c->m_bodyBPtrAndSignBit = rigidBodies[bodyIndexB].m_invMass==0?-bodyIndexB:bodyIndexB; + c->m_worldPosB[0] = pOnB1; + + c->m_childIndexA = -1; + c->m_childIndexB = faceIndex; + + GET_NPOINTS(*c) = 1; + } + } + + } + }//if (hasCollision) + +} + + + +// work-in-progress +__kernel void findConcaveSphereContactsKernel( __global int4* concavePairs, + __global const BodyData* rigidBodies, + __global const btCollidableGpu* collidables, + __global const ConvexPolyhedronCL* convexShapes, + __global const float4* vertices, + __global const float4* uniqueEdges, + __global const btGpuFace* faces, + __global const int* indices, + __global btAabbCL* aabbs, + __global struct b3Contact4Data* restrict globalContactsOut, + counter32_t nGlobalContactsOut, + int numConcavePairs, int maxContactCapacity + ) +{ + + int i = get_global_id(0); + if (i>=numConcavePairs) + return; + int pairIdx = i; + + int bodyIndexA = concavePairs[i].x; + int bodyIndexB = concavePairs[i].y; + + int collidableIndexA = rigidBodies[bodyIndexA].m_collidableIdx; + int collidableIndexB = rigidBodies[bodyIndexB].m_collidableIdx; + + int shapeIndexA = collidables[collidableIndexA].m_shapeIndex; + int shapeIndexB = collidables[collidableIndexB].m_shapeIndex; + + if (collidables[collidableIndexB].m_shapeType==SHAPE_SPHERE) + { + int f = concavePairs[i].z; + btGpuFace face = faces[convexShapes[shapeIndexA].m_faceOffset+f]; + + float4 verticesA[3]; + for (int i=0;i<3;i++) + { + int index = indices[face.m_indexOffset+i]; + float4 vert = vertices[convexShapes[shapeIndexA].m_vertexOffset+index]; + verticesA[i] = vert; + } + + float4 spherePos = rigidBodies[bodyIndexB].m_pos; + float sphereRadius = collidables[collidableIndexB].m_radius; + float4 convexPos = rigidBodies[bodyIndexA].m_pos; + float4 convexOrn = rigidBodies[bodyIndexA].m_quat; + + computeContactSphereTriangle(i, bodyIndexB, bodyIndexA, collidableIndexB, collidableIndexA, + rigidBodies,collidables, + verticesA, + globalContactsOut, nGlobalContactsOut,maxContactCapacity, + spherePos,sphereRadius,convexPos,convexOrn, f); + + return; + } +}
\ No newline at end of file diff --git a/thirdparty/bullet/Bullet3OpenCL/NarrowphaseCollision/kernels/primitiveContacts.h b/thirdparty/bullet/Bullet3OpenCL/NarrowphaseCollision/kernels/primitiveContacts.h new file mode 100644 index 0000000000..b0103fe674 --- /dev/null +++ b/thirdparty/bullet/Bullet3OpenCL/NarrowphaseCollision/kernels/primitiveContacts.h @@ -0,0 +1,1289 @@ +//this file is autogenerated using stringify.bat (premake --stringify) in the build folder of this project +static const char* primitiveContactsKernelsCL= \ +"#ifndef B3_CONTACT4DATA_H\n" +"#define B3_CONTACT4DATA_H\n" +"#ifndef B3_FLOAT4_H\n" +"#define B3_FLOAT4_H\n" +"#ifndef B3_PLATFORM_DEFINITIONS_H\n" +"#define B3_PLATFORM_DEFINITIONS_H\n" +"struct MyTest\n" +"{\n" +" int bla;\n" +"};\n" +"#ifdef __cplusplus\n" +"#else\n" +"//keep B3_LARGE_FLOAT*B3_LARGE_FLOAT < FLT_MAX\n" +"#define B3_LARGE_FLOAT 1e18f\n" +"#define B3_INFINITY 1e18f\n" +"#define b3Assert(a)\n" +"#define b3ConstArray(a) __global const a*\n" +"#define b3AtomicInc atomic_inc\n" +"#define b3AtomicAdd atomic_add\n" +"#define b3Fabs fabs\n" +"#define b3Sqrt native_sqrt\n" +"#define b3Sin native_sin\n" +"#define b3Cos native_cos\n" +"#define B3_STATIC\n" +"#endif\n" +"#endif\n" +"#ifdef __cplusplus\n" +"#else\n" +" typedef float4 b3Float4;\n" +" #define b3Float4ConstArg const b3Float4\n" +" #define b3MakeFloat4 (float4)\n" +" float b3Dot3F4(b3Float4ConstArg v0,b3Float4ConstArg v1)\n" +" {\n" +" float4 a1 = b3MakeFloat4(v0.xyz,0.f);\n" +" float4 b1 = b3MakeFloat4(v1.xyz,0.f);\n" +" return dot(a1, b1);\n" +" }\n" +" b3Float4 b3Cross3(b3Float4ConstArg v0,b3Float4ConstArg v1)\n" +" {\n" +" float4 a1 = b3MakeFloat4(v0.xyz,0.f);\n" +" float4 b1 = b3MakeFloat4(v1.xyz,0.f);\n" +" return cross(a1, b1);\n" +" }\n" +" #define b3MinFloat4 min\n" +" #define b3MaxFloat4 max\n" +" #define b3Normalized(a) normalize(a)\n" +"#endif \n" +" \n" +"inline bool b3IsAlmostZero(b3Float4ConstArg v)\n" +"{\n" +" if(b3Fabs(v.x)>1e-6 || b3Fabs(v.y)>1e-6 || b3Fabs(v.z)>1e-6) \n" +" return false;\n" +" return true;\n" +"}\n" +"inline int b3MaxDot( b3Float4ConstArg vec, __global const b3Float4* vecArray, int vecLen, float* dotOut )\n" +"{\n" +" float maxDot = -B3_INFINITY;\n" +" int i = 0;\n" +" int ptIndex = -1;\n" +" for( i = 0; i < vecLen; i++ )\n" +" {\n" +" float dot = b3Dot3F4(vecArray[i],vec);\n" +" \n" +" if( dot > maxDot )\n" +" {\n" +" maxDot = dot;\n" +" ptIndex = i;\n" +" }\n" +" }\n" +" b3Assert(ptIndex>=0);\n" +" if (ptIndex<0)\n" +" {\n" +" ptIndex = 0;\n" +" }\n" +" *dotOut = maxDot;\n" +" return ptIndex;\n" +"}\n" +"#endif //B3_FLOAT4_H\n" +"typedef struct b3Contact4Data b3Contact4Data_t;\n" +"struct b3Contact4Data\n" +"{\n" +" b3Float4 m_worldPosB[4];\n" +"// b3Float4 m_localPosA[4];\n" +"// b3Float4 m_localPosB[4];\n" +" b3Float4 m_worldNormalOnB; // w: m_nPoints\n" +" unsigned short m_restituitionCoeffCmp;\n" +" unsigned short m_frictionCoeffCmp;\n" +" int m_batchIdx;\n" +" int m_bodyAPtrAndSignBit;//x:m_bodyAPtr, y:m_bodyBPtr\n" +" int m_bodyBPtrAndSignBit;\n" +" int m_childIndexA;\n" +" int m_childIndexB;\n" +" int m_unused1;\n" +" int m_unused2;\n" +"};\n" +"inline int b3Contact4Data_getNumPoints(const struct b3Contact4Data* contact)\n" +"{\n" +" return (int)contact->m_worldNormalOnB.w;\n" +"};\n" +"inline void b3Contact4Data_setNumPoints(struct b3Contact4Data* contact, int numPoints)\n" +"{\n" +" contact->m_worldNormalOnB.w = (float)numPoints;\n" +"};\n" +"#endif //B3_CONTACT4DATA_H\n" +"#define SHAPE_CONVEX_HULL 3\n" +"#define SHAPE_PLANE 4\n" +"#define SHAPE_CONCAVE_TRIMESH 5\n" +"#define SHAPE_COMPOUND_OF_CONVEX_HULLS 6\n" +"#define SHAPE_SPHERE 7\n" +"#pragma OPENCL EXTENSION cl_amd_printf : enable\n" +"#pragma OPENCL EXTENSION cl_khr_local_int32_base_atomics : enable\n" +"#pragma OPENCL EXTENSION cl_khr_global_int32_base_atomics : enable\n" +"#pragma OPENCL EXTENSION cl_khr_local_int32_extended_atomics : enable\n" +"#pragma OPENCL EXTENSION cl_khr_global_int32_extended_atomics : enable\n" +"#ifdef cl_ext_atomic_counters_32\n" +"#pragma OPENCL EXTENSION cl_ext_atomic_counters_32 : enable\n" +"#else\n" +"#define counter32_t volatile __global int*\n" +"#endif\n" +"#define GET_GROUP_IDX get_group_id(0)\n" +"#define GET_LOCAL_IDX get_local_id(0)\n" +"#define GET_GLOBAL_IDX get_global_id(0)\n" +"#define GET_GROUP_SIZE get_local_size(0)\n" +"#define GET_NUM_GROUPS get_num_groups(0)\n" +"#define GROUP_LDS_BARRIER barrier(CLK_LOCAL_MEM_FENCE)\n" +"#define GROUP_MEM_FENCE mem_fence(CLK_LOCAL_MEM_FENCE)\n" +"#define AtomInc(x) atom_inc(&(x))\n" +"#define AtomInc1(x, out) out = atom_inc(&(x))\n" +"#define AppendInc(x, out) out = atomic_inc(x)\n" +"#define AtomAdd(x, value) atom_add(&(x), value)\n" +"#define AtomCmpxhg(x, cmp, value) atom_cmpxchg( &(x), cmp, value )\n" +"#define AtomXhg(x, value) atom_xchg ( &(x), value )\n" +"#define max2 max\n" +"#define min2 min\n" +"typedef unsigned int u32;\n" +"typedef struct \n" +"{\n" +" union\n" +" {\n" +" float4 m_min;\n" +" float m_minElems[4];\n" +" int m_minIndices[4];\n" +" };\n" +" union\n" +" {\n" +" float4 m_max;\n" +" float m_maxElems[4];\n" +" int m_maxIndices[4];\n" +" };\n" +"} btAabbCL;\n" +"///keep this in sync with btCollidable.h\n" +"typedef struct\n" +"{\n" +" int m_numChildShapes;\n" +" float m_radius;\n" +" int m_shapeType;\n" +" int m_shapeIndex;\n" +" \n" +"} btCollidableGpu;\n" +"typedef struct\n" +"{\n" +" float4 m_childPosition;\n" +" float4 m_childOrientation;\n" +" int m_shapeIndex;\n" +" int m_unused0;\n" +" int m_unused1;\n" +" int m_unused2;\n" +"} btGpuChildShape;\n" +"#define GET_NPOINTS(x) (x).m_worldNormalOnB.w\n" +"typedef struct\n" +"{\n" +" float4 m_pos;\n" +" float4 m_quat;\n" +" float4 m_linVel;\n" +" float4 m_angVel;\n" +" u32 m_collidableIdx; \n" +" float m_invMass;\n" +" float m_restituitionCoeff;\n" +" float m_frictionCoeff;\n" +"} BodyData;\n" +"typedef struct \n" +"{\n" +" float4 m_localCenter;\n" +" float4 m_extents;\n" +" float4 mC;\n" +" float4 mE;\n" +" \n" +" float m_radius;\n" +" int m_faceOffset;\n" +" int m_numFaces;\n" +" int m_numVertices;\n" +" \n" +" int m_vertexOffset;\n" +" int m_uniqueEdgesOffset;\n" +" int m_numUniqueEdges;\n" +" int m_unused;\n" +"} ConvexPolyhedronCL;\n" +"typedef struct\n" +"{\n" +" float4 m_plane;\n" +" int m_indexOffset;\n" +" int m_numIndices;\n" +"} btGpuFace;\n" +"#define SELECT_UINT4( b, a, condition ) select( b,a,condition )\n" +"#define make_float4 (float4)\n" +"#define make_float2 (float2)\n" +"#define make_uint4 (uint4)\n" +"#define make_int4 (int4)\n" +"#define make_uint2 (uint2)\n" +"#define make_int2 (int2)\n" +"__inline\n" +"float fastDiv(float numerator, float denominator)\n" +"{\n" +" return native_divide(numerator, denominator); \n" +"// return numerator/denominator; \n" +"}\n" +"__inline\n" +"float4 fastDiv4(float4 numerator, float4 denominator)\n" +"{\n" +" return native_divide(numerator, denominator); \n" +"}\n" +"__inline\n" +"float4 cross3(float4 a, float4 b)\n" +"{\n" +" return cross(a,b);\n" +"}\n" +"//#define dot3F4 dot\n" +"__inline\n" +"float dot3F4(float4 a, float4 b)\n" +"{\n" +" float4 a1 = make_float4(a.xyz,0.f);\n" +" float4 b1 = make_float4(b.xyz,0.f);\n" +" return dot(a1, b1);\n" +"}\n" +"__inline\n" +"float4 fastNormalize4(float4 v)\n" +"{\n" +" return fast_normalize(v);\n" +"}\n" +"///////////////////////////////////////\n" +"// Quaternion\n" +"///////////////////////////////////////\n" +"typedef float4 Quaternion;\n" +"__inline\n" +"Quaternion qtMul(Quaternion a, Quaternion b);\n" +"__inline\n" +"Quaternion qtNormalize(Quaternion in);\n" +"__inline\n" +"float4 qtRotate(Quaternion q, float4 vec);\n" +"__inline\n" +"Quaternion qtInvert(Quaternion q);\n" +"__inline\n" +"Quaternion qtMul(Quaternion a, Quaternion b)\n" +"{\n" +" Quaternion ans;\n" +" ans = cross3( a, b );\n" +" ans += a.w*b+b.w*a;\n" +"// ans.w = a.w*b.w - (a.x*b.x+a.y*b.y+a.z*b.z);\n" +" ans.w = a.w*b.w - dot3F4(a, b);\n" +" return ans;\n" +"}\n" +"__inline\n" +"Quaternion qtNormalize(Quaternion in)\n" +"{\n" +" return fastNormalize4(in);\n" +"// in /= length( in );\n" +"// return in;\n" +"}\n" +"__inline\n" +"float4 qtRotate(Quaternion q, float4 vec)\n" +"{\n" +" Quaternion qInv = qtInvert( q );\n" +" float4 vcpy = vec;\n" +" vcpy.w = 0.f;\n" +" float4 out = qtMul(qtMul(q,vcpy),qInv);\n" +" return out;\n" +"}\n" +"__inline\n" +"Quaternion qtInvert(Quaternion q)\n" +"{\n" +" return (Quaternion)(-q.xyz, q.w);\n" +"}\n" +"__inline\n" +"float4 qtInvRotate(const Quaternion q, float4 vec)\n" +"{\n" +" return qtRotate( qtInvert( q ), vec );\n" +"}\n" +"__inline\n" +"float4 transform(const float4* p, const float4* translation, const Quaternion* orientation)\n" +"{\n" +" return qtRotate( *orientation, *p ) + (*translation);\n" +"}\n" +"void trInverse(float4 translationIn, Quaternion orientationIn,\n" +" float4* translationOut, Quaternion* orientationOut)\n" +"{\n" +" *orientationOut = qtInvert(orientationIn);\n" +" *translationOut = qtRotate(*orientationOut, -translationIn);\n" +"}\n" +"void trMul(float4 translationA, Quaternion orientationA,\n" +" float4 translationB, Quaternion orientationB,\n" +" float4* translationOut, Quaternion* orientationOut)\n" +"{\n" +" *orientationOut = qtMul(orientationA,orientationB);\n" +" *translationOut = transform(&translationB,&translationA,&orientationA);\n" +"}\n" +"__inline\n" +"float4 normalize3(const float4 a)\n" +"{\n" +" float4 n = make_float4(a.x, a.y, a.z, 0.f);\n" +" return fastNormalize4( n );\n" +"}\n" +"__inline float4 lerp3(const float4 a,const float4 b, float t)\n" +"{\n" +" return make_float4( a.x + (b.x - a.x) * t,\n" +" a.y + (b.y - a.y) * t,\n" +" a.z + (b.z - a.z) * t,\n" +" 0.f);\n" +"}\n" +"float signedDistanceFromPointToPlane(float4 point, float4 planeEqn, float4* closestPointOnFace)\n" +"{\n" +" float4 n = (float4)(planeEqn.x, planeEqn.y, planeEqn.z, 0);\n" +" float dist = dot3F4(n, point) + planeEqn.w;\n" +" *closestPointOnFace = point - dist * n;\n" +" return dist;\n" +"}\n" +"inline bool IsPointInPolygon(float4 p, \n" +" const btGpuFace* face,\n" +" __global const float4* baseVertex,\n" +" __global const int* convexIndices,\n" +" float4* out)\n" +"{\n" +" float4 a;\n" +" float4 b;\n" +" float4 ab;\n" +" float4 ap;\n" +" float4 v;\n" +" float4 plane = make_float4(face->m_plane.x,face->m_plane.y,face->m_plane.z,0.f);\n" +" \n" +" if (face->m_numIndices<2)\n" +" return false;\n" +" \n" +" float4 v0 = baseVertex[convexIndices[face->m_indexOffset + face->m_numIndices-1]];\n" +" \n" +" b = v0;\n" +" for(unsigned i=0; i != face->m_numIndices; ++i)\n" +" {\n" +" a = b;\n" +" float4 vi = baseVertex[convexIndices[face->m_indexOffset + i]];\n" +" b = vi;\n" +" ab = b-a;\n" +" ap = p-a;\n" +" v = cross3(ab,plane);\n" +" if (dot(ap, v) > 0.f)\n" +" {\n" +" float ab_m2 = dot(ab, ab);\n" +" float rt = ab_m2 != 0.f ? dot(ab, ap) / ab_m2 : 0.f;\n" +" if (rt <= 0.f)\n" +" {\n" +" *out = a;\n" +" }\n" +" else if (rt >= 1.f) \n" +" {\n" +" *out = b;\n" +" }\n" +" else\n" +" {\n" +" float s = 1.f - rt;\n" +" out[0].x = s * a.x + rt * b.x;\n" +" out[0].y = s * a.y + rt * b.y;\n" +" out[0].z = s * a.z + rt * b.z;\n" +" }\n" +" return false;\n" +" }\n" +" }\n" +" return true;\n" +"}\n" +"void computeContactSphereConvex(int pairIndex,\n" +" int bodyIndexA, int bodyIndexB, \n" +" int collidableIndexA, int collidableIndexB, \n" +" __global const BodyData* rigidBodies, \n" +" __global const btCollidableGpu* collidables,\n" +" __global const ConvexPolyhedronCL* convexShapes,\n" +" __global const float4* convexVertices,\n" +" __global const int* convexIndices,\n" +" __global const btGpuFace* faces,\n" +" __global struct b3Contact4Data* restrict globalContactsOut,\n" +" counter32_t nGlobalContactsOut,\n" +" int maxContactCapacity,\n" +" float4 spherePos2,\n" +" float radius,\n" +" float4 pos,\n" +" float4 quat\n" +" )\n" +"{\n" +" float4 invPos;\n" +" float4 invOrn;\n" +" trInverse(pos,quat, &invPos,&invOrn);\n" +" float4 spherePos = transform(&spherePos2,&invPos,&invOrn);\n" +" int shapeIndex = collidables[collidableIndexB].m_shapeIndex;\n" +" int numFaces = convexShapes[shapeIndex].m_numFaces;\n" +" float4 closestPnt = (float4)(0, 0, 0, 0);\n" +" float4 hitNormalWorld = (float4)(0, 0, 0, 0);\n" +" float minDist = -1000000.f;\n" +" bool bCollide = true;\n" +" for ( int f = 0; f < numFaces; f++ )\n" +" {\n" +" btGpuFace face = faces[convexShapes[shapeIndex].m_faceOffset+f];\n" +" // set up a plane equation \n" +" float4 planeEqn;\n" +" float4 n1 = face.m_plane;\n" +" n1.w = 0.f;\n" +" planeEqn = n1;\n" +" planeEqn.w = face.m_plane.w;\n" +" \n" +" \n" +" // compute a signed distance from the vertex in cloth to the face of rigidbody.\n" +" float4 pntReturn;\n" +" float dist = signedDistanceFromPointToPlane(spherePos, planeEqn, &pntReturn);\n" +" // If the distance is positive, the plane is a separating plane. \n" +" if ( dist > radius )\n" +" {\n" +" bCollide = false;\n" +" break;\n" +" }\n" +" if (dist>0)\n" +" {\n" +" //might hit an edge or vertex\n" +" float4 out;\n" +" float4 zeroPos = make_float4(0,0,0,0);\n" +" bool isInPoly = IsPointInPolygon(spherePos,\n" +" &face,\n" +" &convexVertices[convexShapes[shapeIndex].m_vertexOffset],\n" +" convexIndices,\n" +" &out);\n" +" if (isInPoly)\n" +" {\n" +" if (dist>minDist)\n" +" {\n" +" minDist = dist;\n" +" closestPnt = pntReturn;\n" +" hitNormalWorld = planeEqn;\n" +" \n" +" }\n" +" } else\n" +" {\n" +" float4 tmp = spherePos-out;\n" +" float l2 = dot(tmp,tmp);\n" +" if (l2<radius*radius)\n" +" {\n" +" dist = sqrt(l2);\n" +" if (dist>minDist)\n" +" {\n" +" minDist = dist;\n" +" closestPnt = out;\n" +" hitNormalWorld = tmp/dist;\n" +" \n" +" }\n" +" \n" +" } else\n" +" {\n" +" bCollide = false;\n" +" break;\n" +" }\n" +" }\n" +" } else\n" +" {\n" +" if ( dist > minDist )\n" +" {\n" +" minDist = dist;\n" +" closestPnt = pntReturn;\n" +" hitNormalWorld.xyz = planeEqn.xyz;\n" +" }\n" +" }\n" +" \n" +" }\n" +" \n" +" if (bCollide && minDist > -10000)\n" +" {\n" +" float4 normalOnSurfaceB1 = qtRotate(quat,-hitNormalWorld);\n" +" float4 pOnB1 = transform(&closestPnt,&pos,&quat);\n" +" \n" +" float actualDepth = minDist-radius;\n" +" if (actualDepth<=0.f)\n" +" {\n" +" \n" +" pOnB1.w = actualDepth;\n" +" int dstIdx;\n" +" AppendInc( nGlobalContactsOut, dstIdx );\n" +" \n" +" \n" +" if (1)//dstIdx < maxContactCapacity)\n" +" {\n" +" __global struct b3Contact4Data* c = &globalContactsOut[dstIdx];\n" +" c->m_worldNormalOnB = -normalOnSurfaceB1;\n" +" c->m_restituitionCoeffCmp = (0.f*0xffff);c->m_frictionCoeffCmp = (0.7f*0xffff);\n" +" c->m_batchIdx = pairIndex;\n" +" c->m_bodyAPtrAndSignBit = rigidBodies[bodyIndexA].m_invMass==0?-bodyIndexA:bodyIndexA;\n" +" c->m_bodyBPtrAndSignBit = rigidBodies[bodyIndexB].m_invMass==0?-bodyIndexB:bodyIndexB;\n" +" c->m_worldPosB[0] = pOnB1;\n" +" c->m_childIndexA = -1;\n" +" c->m_childIndexB = -1;\n" +" GET_NPOINTS(*c) = 1;\n" +" } \n" +" }\n" +" }//if (hasCollision)\n" +"}\n" +" \n" +"int extractManifoldSequential(const float4* p, int nPoints, float4 nearNormal, int4* contactIdx)\n" +"{\n" +" if( nPoints == 0 )\n" +" return 0;\n" +" \n" +" if (nPoints <=4)\n" +" return nPoints;\n" +" \n" +" \n" +" if (nPoints >64)\n" +" nPoints = 64;\n" +" \n" +" float4 center = make_float4(0.f);\n" +" {\n" +" \n" +" for (int i=0;i<nPoints;i++)\n" +" center += p[i];\n" +" center /= (float)nPoints;\n" +" }\n" +" \n" +" \n" +" \n" +" // sample 4 directions\n" +" \n" +" float4 aVector = p[0] - center;\n" +" float4 u = cross3( nearNormal, aVector );\n" +" float4 v = cross3( nearNormal, u );\n" +" u = normalize3( u );\n" +" v = normalize3( v );\n" +" \n" +" \n" +" //keep point with deepest penetration\n" +" float minW= FLT_MAX;\n" +" \n" +" int minIndex=-1;\n" +" \n" +" float4 maxDots;\n" +" maxDots.x = FLT_MIN;\n" +" maxDots.y = FLT_MIN;\n" +" maxDots.z = FLT_MIN;\n" +" maxDots.w = FLT_MIN;\n" +" \n" +" // idx, distance\n" +" for(int ie = 0; ie<nPoints; ie++ )\n" +" {\n" +" if (p[ie].w<minW)\n" +" {\n" +" minW = p[ie].w;\n" +" minIndex=ie;\n" +" }\n" +" float f;\n" +" float4 r = p[ie]-center;\n" +" f = dot3F4( u, r );\n" +" if (f<maxDots.x)\n" +" {\n" +" maxDots.x = f;\n" +" contactIdx[0].x = ie;\n" +" }\n" +" \n" +" f = dot3F4( -u, r );\n" +" if (f<maxDots.y)\n" +" {\n" +" maxDots.y = f;\n" +" contactIdx[0].y = ie;\n" +" }\n" +" \n" +" \n" +" f = dot3F4( v, r );\n" +" if (f<maxDots.z)\n" +" {\n" +" maxDots.z = f;\n" +" contactIdx[0].z = ie;\n" +" }\n" +" \n" +" f = dot3F4( -v, r );\n" +" if (f<maxDots.w)\n" +" {\n" +" maxDots.w = f;\n" +" contactIdx[0].w = ie;\n" +" }\n" +" \n" +" }\n" +" \n" +" if (contactIdx[0].x != minIndex && contactIdx[0].y != minIndex && contactIdx[0].z != minIndex && contactIdx[0].w != minIndex)\n" +" {\n" +" //replace the first contact with minimum (todo: replace contact with least penetration)\n" +" contactIdx[0].x = minIndex;\n" +" }\n" +" \n" +" return 4;\n" +" \n" +"}\n" +"#define MAX_PLANE_CONVEX_POINTS 64\n" +"int computeContactPlaneConvex(int pairIndex,\n" +" int bodyIndexA, int bodyIndexB, \n" +" int collidableIndexA, int collidableIndexB, \n" +" __global const BodyData* rigidBodies, \n" +" __global const btCollidableGpu*collidables,\n" +" __global const ConvexPolyhedronCL* convexShapes,\n" +" __global const float4* convexVertices,\n" +" __global const int* convexIndices,\n" +" __global const btGpuFace* faces,\n" +" __global struct b3Contact4Data* restrict globalContactsOut,\n" +" counter32_t nGlobalContactsOut,\n" +" int maxContactCapacity,\n" +" float4 posB,\n" +" Quaternion ornB\n" +" )\n" +"{\n" +" int resultIndex=-1;\n" +" int shapeIndex = collidables[collidableIndexB].m_shapeIndex;\n" +" __global const ConvexPolyhedronCL* hullB = &convexShapes[shapeIndex];\n" +" \n" +" float4 posA;\n" +" posA = rigidBodies[bodyIndexA].m_pos;\n" +" Quaternion ornA;\n" +" ornA = rigidBodies[bodyIndexA].m_quat;\n" +" int numContactsOut = 0;\n" +" int numWorldVertsB1= 0;\n" +" float4 planeEq;\n" +" planeEq = faces[collidables[collidableIndexA].m_shapeIndex].m_plane;\n" +" float4 planeNormal = make_float4(planeEq.x,planeEq.y,planeEq.z,0.f);\n" +" float4 planeNormalWorld;\n" +" planeNormalWorld = qtRotate(ornA,planeNormal);\n" +" float planeConstant = planeEq.w;\n" +" \n" +" float4 invPosA;Quaternion invOrnA;\n" +" float4 convexInPlaneTransPos1; Quaternion convexInPlaneTransOrn1;\n" +" {\n" +" \n" +" trInverse(posA,ornA,&invPosA,&invOrnA);\n" +" trMul(invPosA,invOrnA,posB,ornB,&convexInPlaneTransPos1,&convexInPlaneTransOrn1);\n" +" }\n" +" float4 invPosB;Quaternion invOrnB;\n" +" float4 planeInConvexPos1; Quaternion planeInConvexOrn1;\n" +" {\n" +" \n" +" trInverse(posB,ornB,&invPosB,&invOrnB);\n" +" trMul(invPosB,invOrnB,posA,ornA,&planeInConvexPos1,&planeInConvexOrn1); \n" +" }\n" +" \n" +" float4 planeNormalInConvex = qtRotate(planeInConvexOrn1,-planeNormal);\n" +" float maxDot = -1e30;\n" +" int hitVertex=-1;\n" +" float4 hitVtx;\n" +" float4 contactPoints[MAX_PLANE_CONVEX_POINTS];\n" +" int numPoints = 0;\n" +" int4 contactIdx;\n" +" contactIdx=make_int4(0,1,2,3);\n" +" \n" +" \n" +" for (int i=0;i<hullB->m_numVertices;i++)\n" +" {\n" +" float4 vtx = convexVertices[hullB->m_vertexOffset+i];\n" +" float curDot = dot(vtx,planeNormalInConvex);\n" +" if (curDot>maxDot)\n" +" {\n" +" hitVertex=i;\n" +" maxDot=curDot;\n" +" hitVtx = vtx;\n" +" //make sure the deepest points is always included\n" +" if (numPoints==MAX_PLANE_CONVEX_POINTS)\n" +" numPoints--;\n" +" }\n" +" if (numPoints<MAX_PLANE_CONVEX_POINTS)\n" +" {\n" +" float4 vtxWorld = transform(&vtx, &posB, &ornB);\n" +" float4 vtxInPlane = transform(&vtxWorld, &invPosA, &invOrnA);//oplaneTransform.inverse()*vtxWorld;\n" +" float dist = dot(planeNormal,vtxInPlane)-planeConstant;\n" +" if (dist<0.f)\n" +" {\n" +" vtxWorld.w = dist;\n" +" contactPoints[numPoints] = vtxWorld;\n" +" numPoints++;\n" +" }\n" +" }\n" +" }\n" +" int numReducedPoints = numPoints;\n" +" if (numPoints>4)\n" +" {\n" +" numReducedPoints = extractManifoldSequential( contactPoints, numPoints, planeNormalInConvex, &contactIdx);\n" +" }\n" +" if (numReducedPoints>0)\n" +" {\n" +" int dstIdx;\n" +" AppendInc( nGlobalContactsOut, dstIdx );\n" +" if (dstIdx < maxContactCapacity)\n" +" {\n" +" resultIndex = dstIdx;\n" +" __global struct b3Contact4Data* c = &globalContactsOut[dstIdx];\n" +" c->m_worldNormalOnB = -planeNormalWorld;\n" +" //c->setFrictionCoeff(0.7);\n" +" //c->setRestituitionCoeff(0.f);\n" +" c->m_restituitionCoeffCmp = (0.f*0xffff);c->m_frictionCoeffCmp = (0.7f*0xffff);\n" +" c->m_batchIdx = pairIndex;\n" +" c->m_bodyAPtrAndSignBit = rigidBodies[bodyIndexA].m_invMass==0?-bodyIndexA:bodyIndexA;\n" +" c->m_bodyBPtrAndSignBit = rigidBodies[bodyIndexB].m_invMass==0?-bodyIndexB:bodyIndexB;\n" +" c->m_childIndexA = -1;\n" +" c->m_childIndexB = -1;\n" +" switch (numReducedPoints)\n" +" {\n" +" case 4:\n" +" c->m_worldPosB[3] = contactPoints[contactIdx.w];\n" +" case 3:\n" +" c->m_worldPosB[2] = contactPoints[contactIdx.z];\n" +" case 2:\n" +" c->m_worldPosB[1] = contactPoints[contactIdx.y];\n" +" case 1:\n" +" c->m_worldPosB[0] = contactPoints[contactIdx.x];\n" +" default:\n" +" {\n" +" }\n" +" };\n" +" \n" +" GET_NPOINTS(*c) = numReducedPoints;\n" +" }//if (dstIdx < numPairs)\n" +" } \n" +" return resultIndex;\n" +"}\n" +"void computeContactPlaneSphere(int pairIndex,\n" +" int bodyIndexA, int bodyIndexB, \n" +" int collidableIndexA, int collidableIndexB, \n" +" __global const BodyData* rigidBodies, \n" +" __global const btCollidableGpu* collidables,\n" +" __global const btGpuFace* faces,\n" +" __global struct b3Contact4Data* restrict globalContactsOut,\n" +" counter32_t nGlobalContactsOut,\n" +" int maxContactCapacity)\n" +"{\n" +" float4 planeEq = faces[collidables[collidableIndexA].m_shapeIndex].m_plane;\n" +" float radius = collidables[collidableIndexB].m_radius;\n" +" float4 posA1 = rigidBodies[bodyIndexA].m_pos;\n" +" float4 ornA1 = rigidBodies[bodyIndexA].m_quat;\n" +" float4 posB1 = rigidBodies[bodyIndexB].m_pos;\n" +" float4 ornB1 = rigidBodies[bodyIndexB].m_quat;\n" +" \n" +" bool hasCollision = false;\n" +" float4 planeNormal1 = make_float4(planeEq.x,planeEq.y,planeEq.z,0.f);\n" +" float planeConstant = planeEq.w;\n" +" float4 convexInPlaneTransPos1; Quaternion convexInPlaneTransOrn1;\n" +" {\n" +" float4 invPosA;Quaternion invOrnA;\n" +" trInverse(posA1,ornA1,&invPosA,&invOrnA);\n" +" trMul(invPosA,invOrnA,posB1,ornB1,&convexInPlaneTransPos1,&convexInPlaneTransOrn1);\n" +" }\n" +" float4 planeInConvexPos1; Quaternion planeInConvexOrn1;\n" +" {\n" +" float4 invPosB;Quaternion invOrnB;\n" +" trInverse(posB1,ornB1,&invPosB,&invOrnB);\n" +" trMul(invPosB,invOrnB,posA1,ornA1,&planeInConvexPos1,&planeInConvexOrn1); \n" +" }\n" +" float4 vtx1 = qtRotate(planeInConvexOrn1,-planeNormal1)*radius;\n" +" float4 vtxInPlane1 = transform(&vtx1,&convexInPlaneTransPos1,&convexInPlaneTransOrn1);\n" +" float distance = dot3F4(planeNormal1,vtxInPlane1) - planeConstant;\n" +" hasCollision = distance < 0.f;//m_manifoldPtr->getContactBreakingThreshold();\n" +" if (hasCollision)\n" +" {\n" +" float4 vtxInPlaneProjected1 = vtxInPlane1 - distance*planeNormal1;\n" +" float4 vtxInPlaneWorld1 = transform(&vtxInPlaneProjected1,&posA1,&ornA1);\n" +" float4 normalOnSurfaceB1 = qtRotate(ornA1,planeNormal1);\n" +" float4 pOnB1 = vtxInPlaneWorld1+normalOnSurfaceB1*distance;\n" +" pOnB1.w = distance;\n" +" int dstIdx;\n" +" AppendInc( nGlobalContactsOut, dstIdx );\n" +" \n" +" if (dstIdx < maxContactCapacity)\n" +" {\n" +" __global struct b3Contact4Data* c = &globalContactsOut[dstIdx];\n" +" c->m_worldNormalOnB = -normalOnSurfaceB1;\n" +" c->m_restituitionCoeffCmp = (0.f*0xffff);c->m_frictionCoeffCmp = (0.7f*0xffff);\n" +" c->m_batchIdx = pairIndex;\n" +" c->m_bodyAPtrAndSignBit = rigidBodies[bodyIndexA].m_invMass==0?-bodyIndexA:bodyIndexA;\n" +" c->m_bodyBPtrAndSignBit = rigidBodies[bodyIndexB].m_invMass==0?-bodyIndexB:bodyIndexB;\n" +" c->m_worldPosB[0] = pOnB1;\n" +" c->m_childIndexA = -1;\n" +" c->m_childIndexB = -1;\n" +" GET_NPOINTS(*c) = 1;\n" +" }//if (dstIdx < numPairs)\n" +" }//if (hasCollision)\n" +"}\n" +"__kernel void primitiveContactsKernel( __global int4* pairs, \n" +" __global const BodyData* rigidBodies, \n" +" __global const btCollidableGpu* collidables,\n" +" __global const ConvexPolyhedronCL* convexShapes, \n" +" __global const float4* vertices,\n" +" __global const float4* uniqueEdges,\n" +" __global const btGpuFace* faces,\n" +" __global const int* indices,\n" +" __global struct b3Contact4Data* restrict globalContactsOut,\n" +" counter32_t nGlobalContactsOut,\n" +" int numPairs, int maxContactCapacity)\n" +"{\n" +" int i = get_global_id(0);\n" +" int pairIndex = i;\n" +" \n" +" float4 worldVertsB1[64];\n" +" float4 worldVertsB2[64];\n" +" int capacityWorldVerts = 64; \n" +" float4 localContactsOut[64];\n" +" int localContactCapacity=64;\n" +" \n" +" float minDist = -1e30f;\n" +" float maxDist = 0.02f;\n" +" if (i<numPairs)\n" +" {\n" +" int bodyIndexA = pairs[i].x;\n" +" int bodyIndexB = pairs[i].y;\n" +" \n" +" int collidableIndexA = rigidBodies[bodyIndexA].m_collidableIdx;\n" +" int collidableIndexB = rigidBodies[bodyIndexB].m_collidableIdx;\n" +" \n" +" if (collidables[collidableIndexA].m_shapeType == SHAPE_PLANE &&\n" +" collidables[collidableIndexB].m_shapeType == SHAPE_CONVEX_HULL)\n" +" {\n" +" float4 posB;\n" +" posB = rigidBodies[bodyIndexB].m_pos;\n" +" Quaternion ornB;\n" +" ornB = rigidBodies[bodyIndexB].m_quat;\n" +" int contactIndex = computeContactPlaneConvex(pairIndex, bodyIndexA, bodyIndexB, collidableIndexA, collidableIndexB, \n" +" rigidBodies,collidables,convexShapes,vertices,indices,\n" +" faces, globalContactsOut, nGlobalContactsOut,maxContactCapacity, posB,ornB);\n" +" if (contactIndex>=0)\n" +" pairs[pairIndex].z = contactIndex;\n" +" return;\n" +" }\n" +" if (collidables[collidableIndexA].m_shapeType == SHAPE_CONVEX_HULL &&\n" +" collidables[collidableIndexB].m_shapeType == SHAPE_PLANE)\n" +" {\n" +" float4 posA;\n" +" posA = rigidBodies[bodyIndexA].m_pos;\n" +" Quaternion ornA;\n" +" ornA = rigidBodies[bodyIndexA].m_quat;\n" +" int contactIndex = computeContactPlaneConvex( pairIndex, bodyIndexB,bodyIndexA, collidableIndexB,collidableIndexA, \n" +" rigidBodies,collidables,convexShapes,vertices,indices,\n" +" faces, globalContactsOut, nGlobalContactsOut,maxContactCapacity,posA,ornA);\n" +" if (contactIndex>=0)\n" +" pairs[pairIndex].z = contactIndex;\n" +" return;\n" +" }\n" +" if (collidables[collidableIndexA].m_shapeType == SHAPE_PLANE &&\n" +" collidables[collidableIndexB].m_shapeType == SHAPE_SPHERE)\n" +" {\n" +" computeContactPlaneSphere(pairIndex, bodyIndexA, bodyIndexB, collidableIndexA, collidableIndexB, \n" +" rigidBodies,collidables,faces, globalContactsOut, nGlobalContactsOut,maxContactCapacity);\n" +" return;\n" +" }\n" +" if (collidables[collidableIndexA].m_shapeType == SHAPE_SPHERE &&\n" +" collidables[collidableIndexB].m_shapeType == SHAPE_PLANE)\n" +" {\n" +" computeContactPlaneSphere( pairIndex, bodyIndexB,bodyIndexA, collidableIndexB,collidableIndexA, \n" +" rigidBodies,collidables,\n" +" faces, globalContactsOut, nGlobalContactsOut,maxContactCapacity);\n" +" return;\n" +" }\n" +" \n" +" \n" +" if (collidables[collidableIndexA].m_shapeType == SHAPE_SPHERE &&\n" +" collidables[collidableIndexB].m_shapeType == SHAPE_CONVEX_HULL)\n" +" {\n" +" \n" +" float4 spherePos = rigidBodies[bodyIndexA].m_pos;\n" +" float sphereRadius = collidables[collidableIndexA].m_radius;\n" +" float4 convexPos = rigidBodies[bodyIndexB].m_pos;\n" +" float4 convexOrn = rigidBodies[bodyIndexB].m_quat;\n" +" computeContactSphereConvex(pairIndex, bodyIndexA, bodyIndexB, collidableIndexA, collidableIndexB, \n" +" rigidBodies,collidables,convexShapes,vertices,indices,faces, globalContactsOut, nGlobalContactsOut,maxContactCapacity,\n" +" spherePos,sphereRadius,convexPos,convexOrn);\n" +" return;\n" +" }\n" +" if (collidables[collidableIndexA].m_shapeType == SHAPE_CONVEX_HULL &&\n" +" collidables[collidableIndexB].m_shapeType == SHAPE_SPHERE)\n" +" {\n" +" \n" +" float4 spherePos = rigidBodies[bodyIndexB].m_pos;\n" +" float sphereRadius = collidables[collidableIndexB].m_radius;\n" +" float4 convexPos = rigidBodies[bodyIndexA].m_pos;\n" +" float4 convexOrn = rigidBodies[bodyIndexA].m_quat;\n" +" computeContactSphereConvex(pairIndex, bodyIndexB, bodyIndexA, collidableIndexB, collidableIndexA, \n" +" rigidBodies,collidables,convexShapes,vertices,indices,faces, globalContactsOut, nGlobalContactsOut,maxContactCapacity,\n" +" spherePos,sphereRadius,convexPos,convexOrn);\n" +" return;\n" +" }\n" +" \n" +" \n" +" \n" +" \n" +" \n" +" \n" +" if (collidables[collidableIndexA].m_shapeType == SHAPE_SPHERE &&\n" +" collidables[collidableIndexB].m_shapeType == SHAPE_SPHERE)\n" +" {\n" +" //sphere-sphere\n" +" float radiusA = collidables[collidableIndexA].m_radius;\n" +" float radiusB = collidables[collidableIndexB].m_radius;\n" +" float4 posA = rigidBodies[bodyIndexA].m_pos;\n" +" float4 posB = rigidBodies[bodyIndexB].m_pos;\n" +" float4 diff = posA-posB;\n" +" float len = length(diff);\n" +" \n" +" ///iff distance positive, don't generate a new contact\n" +" if ( len <= (radiusA+radiusB))\n" +" {\n" +" ///distance (negative means penetration)\n" +" float dist = len - (radiusA+radiusB);\n" +" float4 normalOnSurfaceB = make_float4(1.f,0.f,0.f,0.f);\n" +" if (len > 0.00001)\n" +" {\n" +" normalOnSurfaceB = diff / len;\n" +" }\n" +" float4 contactPosB = posB + normalOnSurfaceB*radiusB;\n" +" contactPosB.w = dist;\n" +" \n" +" int dstIdx;\n" +" AppendInc( nGlobalContactsOut, dstIdx );\n" +" \n" +" if (dstIdx < maxContactCapacity)\n" +" {\n" +" __global struct b3Contact4Data* c = &globalContactsOut[dstIdx];\n" +" c->m_worldNormalOnB = normalOnSurfaceB;\n" +" c->m_restituitionCoeffCmp = (0.f*0xffff);c->m_frictionCoeffCmp = (0.7f*0xffff);\n" +" c->m_batchIdx = pairIndex;\n" +" int bodyA = pairs[pairIndex].x;\n" +" int bodyB = pairs[pairIndex].y;\n" +" c->m_bodyAPtrAndSignBit = rigidBodies[bodyA].m_invMass==0?-bodyA:bodyA;\n" +" c->m_bodyBPtrAndSignBit = rigidBodies[bodyB].m_invMass==0?-bodyB:bodyB;\n" +" c->m_worldPosB[0] = contactPosB;\n" +" c->m_childIndexA = -1;\n" +" c->m_childIndexB = -1;\n" +" GET_NPOINTS(*c) = 1;\n" +" }//if (dstIdx < numPairs)\n" +" }//if ( len <= (radiusA+radiusB))\n" +" return;\n" +" }//SHAPE_SPHERE SHAPE_SPHERE\n" +" }// if (i<numPairs)\n" +"}\n" +"// work-in-progress\n" +"__kernel void processCompoundPairsPrimitivesKernel( __global const int4* gpuCompoundPairs,\n" +" __global const BodyData* rigidBodies, \n" +" __global const btCollidableGpu* collidables,\n" +" __global const ConvexPolyhedronCL* convexShapes, \n" +" __global const float4* vertices,\n" +" __global const float4* uniqueEdges,\n" +" __global const btGpuFace* faces,\n" +" __global const int* indices,\n" +" __global btAabbCL* aabbs,\n" +" __global const btGpuChildShape* gpuChildShapes,\n" +" __global struct b3Contact4Data* restrict globalContactsOut,\n" +" counter32_t nGlobalContactsOut,\n" +" int numCompoundPairs, int maxContactCapacity\n" +" )\n" +"{\n" +" int i = get_global_id(0);\n" +" if (i<numCompoundPairs)\n" +" {\n" +" int bodyIndexA = gpuCompoundPairs[i].x;\n" +" int bodyIndexB = gpuCompoundPairs[i].y;\n" +" int childShapeIndexA = gpuCompoundPairs[i].z;\n" +" int childShapeIndexB = gpuCompoundPairs[i].w;\n" +" \n" +" int collidableIndexA = -1;\n" +" int collidableIndexB = -1;\n" +" \n" +" float4 ornA = rigidBodies[bodyIndexA].m_quat;\n" +" float4 posA = rigidBodies[bodyIndexA].m_pos;\n" +" \n" +" float4 ornB = rigidBodies[bodyIndexB].m_quat;\n" +" float4 posB = rigidBodies[bodyIndexB].m_pos;\n" +" \n" +" if (childShapeIndexA >= 0)\n" +" {\n" +" collidableIndexA = gpuChildShapes[childShapeIndexA].m_shapeIndex;\n" +" float4 childPosA = gpuChildShapes[childShapeIndexA].m_childPosition;\n" +" float4 childOrnA = gpuChildShapes[childShapeIndexA].m_childOrientation;\n" +" float4 newPosA = qtRotate(ornA,childPosA)+posA;\n" +" float4 newOrnA = qtMul(ornA,childOrnA);\n" +" posA = newPosA;\n" +" ornA = newOrnA;\n" +" } else\n" +" {\n" +" collidableIndexA = rigidBodies[bodyIndexA].m_collidableIdx;\n" +" }\n" +" \n" +" if (childShapeIndexB>=0)\n" +" {\n" +" collidableIndexB = gpuChildShapes[childShapeIndexB].m_shapeIndex;\n" +" float4 childPosB = gpuChildShapes[childShapeIndexB].m_childPosition;\n" +" float4 childOrnB = gpuChildShapes[childShapeIndexB].m_childOrientation;\n" +" float4 newPosB = transform(&childPosB,&posB,&ornB);\n" +" float4 newOrnB = qtMul(ornB,childOrnB);\n" +" posB = newPosB;\n" +" ornB = newOrnB;\n" +" } else\n" +" {\n" +" collidableIndexB = rigidBodies[bodyIndexB].m_collidableIdx; \n" +" }\n" +" \n" +" int shapeIndexA = collidables[collidableIndexA].m_shapeIndex;\n" +" int shapeIndexB = collidables[collidableIndexB].m_shapeIndex;\n" +" \n" +" int shapeTypeA = collidables[collidableIndexA].m_shapeType;\n" +" int shapeTypeB = collidables[collidableIndexB].m_shapeType;\n" +" int pairIndex = i;\n" +" if ((shapeTypeA == SHAPE_PLANE) && (shapeTypeB==SHAPE_CONVEX_HULL))\n" +" {\n" +" computeContactPlaneConvex( pairIndex, bodyIndexA,bodyIndexB, collidableIndexA,collidableIndexB, \n" +" rigidBodies,collidables,convexShapes,vertices,indices,\n" +" faces, globalContactsOut, nGlobalContactsOut,maxContactCapacity,posB,ornB);\n" +" return;\n" +" }\n" +" if ((shapeTypeA == SHAPE_CONVEX_HULL) && (shapeTypeB==SHAPE_PLANE))\n" +" {\n" +" computeContactPlaneConvex( pairIndex, bodyIndexB,bodyIndexA, collidableIndexB,collidableIndexA, \n" +" rigidBodies,collidables,convexShapes,vertices,indices,\n" +" faces, globalContactsOut, nGlobalContactsOut,maxContactCapacity,posA,ornA);\n" +" return;\n" +" }\n" +" if ((shapeTypeA == SHAPE_CONVEX_HULL) && (shapeTypeB == SHAPE_SPHERE))\n" +" {\n" +" float4 spherePos = rigidBodies[bodyIndexB].m_pos;\n" +" float sphereRadius = collidables[collidableIndexB].m_radius;\n" +" float4 convexPos = posA;\n" +" float4 convexOrn = ornA;\n" +" \n" +" computeContactSphereConvex(pairIndex, bodyIndexB, bodyIndexA , collidableIndexB,collidableIndexA, \n" +" rigidBodies,collidables,convexShapes,vertices,indices,faces, globalContactsOut, nGlobalContactsOut,maxContactCapacity,\n" +" spherePos,sphereRadius,convexPos,convexOrn);\n" +" \n" +" return;\n" +" }\n" +" if ((shapeTypeA == SHAPE_SPHERE) && (shapeTypeB == SHAPE_CONVEX_HULL))\n" +" {\n" +" float4 spherePos = rigidBodies[bodyIndexA].m_pos;\n" +" float sphereRadius = collidables[collidableIndexA].m_radius;\n" +" float4 convexPos = posB;\n" +" float4 convexOrn = ornB;\n" +" \n" +" computeContactSphereConvex(pairIndex, bodyIndexA, bodyIndexB, collidableIndexA, collidableIndexB, \n" +" rigidBodies,collidables,convexShapes,vertices,indices,faces, globalContactsOut, nGlobalContactsOut,maxContactCapacity,\n" +" spherePos,sphereRadius,convexPos,convexOrn);\n" +" \n" +" return;\n" +" }\n" +" }// if (i<numCompoundPairs)\n" +"}\n" +"bool pointInTriangle(const float4* vertices, const float4* normal, float4 *p )\n" +"{\n" +" const float4* p1 = &vertices[0];\n" +" const float4* p2 = &vertices[1];\n" +" const float4* p3 = &vertices[2];\n" +" float4 edge1; edge1 = (*p2 - *p1);\n" +" float4 edge2; edge2 = ( *p3 - *p2 );\n" +" float4 edge3; edge3 = ( *p1 - *p3 );\n" +" \n" +" float4 p1_to_p; p1_to_p = ( *p - *p1 );\n" +" float4 p2_to_p; p2_to_p = ( *p - *p2 );\n" +" float4 p3_to_p; p3_to_p = ( *p - *p3 );\n" +" float4 edge1_normal; edge1_normal = ( cross(edge1,*normal));\n" +" float4 edge2_normal; edge2_normal = ( cross(edge2,*normal));\n" +" float4 edge3_normal; edge3_normal = ( cross(edge3,*normal));\n" +" \n" +" \n" +" float r1, r2, r3;\n" +" r1 = dot(edge1_normal,p1_to_p );\n" +" r2 = dot(edge2_normal,p2_to_p );\n" +" r3 = dot(edge3_normal,p3_to_p );\n" +" \n" +" if ( r1 > 0 && r2 > 0 && r3 > 0 )\n" +" return true;\n" +" if ( r1 <= 0 && r2 <= 0 && r3 <= 0 ) \n" +" return true;\n" +" return false;\n" +"}\n" +"float segmentSqrDistance(float4 from, float4 to,float4 p, float4* nearest) \n" +"{\n" +" float4 diff = p - from;\n" +" float4 v = to - from;\n" +" float t = dot(v,diff);\n" +" \n" +" if (t > 0) \n" +" {\n" +" float dotVV = dot(v,v);\n" +" if (t < dotVV) \n" +" {\n" +" t /= dotVV;\n" +" diff -= t*v;\n" +" } else \n" +" {\n" +" t = 1;\n" +" diff -= v;\n" +" }\n" +" } else\n" +" {\n" +" t = 0;\n" +" }\n" +" *nearest = from + t*v;\n" +" return dot(diff,diff); \n" +"}\n" +"void computeContactSphereTriangle(int pairIndex,\n" +" int bodyIndexA, int bodyIndexB,\n" +" int collidableIndexA, int collidableIndexB, \n" +" __global const BodyData* rigidBodies, \n" +" __global const btCollidableGpu* collidables,\n" +" const float4* triangleVertices,\n" +" __global struct b3Contact4Data* restrict globalContactsOut,\n" +" counter32_t nGlobalContactsOut,\n" +" int maxContactCapacity,\n" +" float4 spherePos2,\n" +" float radius,\n" +" float4 pos,\n" +" float4 quat,\n" +" int faceIndex\n" +" )\n" +"{\n" +" float4 invPos;\n" +" float4 invOrn;\n" +" trInverse(pos,quat, &invPos,&invOrn);\n" +" float4 spherePos = transform(&spherePos2,&invPos,&invOrn);\n" +" int numFaces = 3;\n" +" float4 closestPnt = (float4)(0, 0, 0, 0);\n" +" float4 hitNormalWorld = (float4)(0, 0, 0, 0);\n" +" float minDist = -1000000.f;\n" +" bool bCollide = false;\n" +" \n" +" //////////////////////////////////////\n" +" float4 sphereCenter;\n" +" sphereCenter = spherePos;\n" +" const float4* vertices = triangleVertices;\n" +" float contactBreakingThreshold = 0.f;//todo?\n" +" float radiusWithThreshold = radius + contactBreakingThreshold;\n" +" float4 edge10;\n" +" edge10 = vertices[1]-vertices[0];\n" +" edge10.w = 0.f;//is this needed?\n" +" float4 edge20;\n" +" edge20 = vertices[2]-vertices[0];\n" +" edge20.w = 0.f;//is this needed?\n" +" float4 normal = cross3(edge10,edge20);\n" +" normal = normalize(normal);\n" +" float4 p1ToCenter;\n" +" p1ToCenter = sphereCenter - vertices[0];\n" +" \n" +" float distanceFromPlane = dot(p1ToCenter,normal);\n" +" if (distanceFromPlane < 0.f)\n" +" {\n" +" //triangle facing the other way\n" +" distanceFromPlane *= -1.f;\n" +" normal *= -1.f;\n" +" }\n" +" hitNormalWorld = normal;\n" +" bool isInsideContactPlane = distanceFromPlane < radiusWithThreshold;\n" +" \n" +" // Check for contact / intersection\n" +" bool hasContact = false;\n" +" float4 contactPoint;\n" +" if (isInsideContactPlane) \n" +" {\n" +" \n" +" if (pointInTriangle(vertices,&normal, &sphereCenter)) \n" +" {\n" +" // Inside the contact wedge - touches a point on the shell plane\n" +" hasContact = true;\n" +" contactPoint = sphereCenter - normal*distanceFromPlane;\n" +" \n" +" } else {\n" +" // Could be inside one of the contact capsules\n" +" float contactCapsuleRadiusSqr = radiusWithThreshold*radiusWithThreshold;\n" +" float4 nearestOnEdge;\n" +" int numEdges = 3;\n" +" for (int i = 0; i < numEdges; i++) \n" +" {\n" +" float4 pa =vertices[i];\n" +" float4 pb = vertices[(i+1)%3];\n" +" float distanceSqr = segmentSqrDistance(pa,pb,sphereCenter, &nearestOnEdge);\n" +" if (distanceSqr < contactCapsuleRadiusSqr) \n" +" {\n" +" // Yep, we're inside a capsule\n" +" hasContact = true;\n" +" contactPoint = nearestOnEdge;\n" +" \n" +" }\n" +" \n" +" }\n" +" }\n" +" }\n" +" if (hasContact) \n" +" {\n" +" closestPnt = contactPoint;\n" +" float4 contactToCenter = sphereCenter - contactPoint;\n" +" minDist = length(contactToCenter);\n" +" if (minDist>FLT_EPSILON)\n" +" {\n" +" hitNormalWorld = normalize(contactToCenter);//*(1./minDist);\n" +" bCollide = true;\n" +" }\n" +" \n" +" }\n" +" /////////////////////////////////////\n" +" if (bCollide && minDist > -10000)\n" +" {\n" +" \n" +" float4 normalOnSurfaceB1 = qtRotate(quat,-hitNormalWorld);\n" +" float4 pOnB1 = transform(&closestPnt,&pos,&quat);\n" +" float actualDepth = minDist-radius;\n" +" \n" +" if (actualDepth<=0.f)\n" +" {\n" +" pOnB1.w = actualDepth;\n" +" int dstIdx;\n" +" \n" +" float lenSqr = dot3F4(normalOnSurfaceB1,normalOnSurfaceB1);\n" +" if (lenSqr>FLT_EPSILON)\n" +" {\n" +" AppendInc( nGlobalContactsOut, dstIdx );\n" +" \n" +" if (dstIdx < maxContactCapacity)\n" +" {\n" +" __global struct b3Contact4Data* c = &globalContactsOut[dstIdx];\n" +" c->m_worldNormalOnB = -normalOnSurfaceB1;\n" +" c->m_restituitionCoeffCmp = (0.f*0xffff);c->m_frictionCoeffCmp = (0.7f*0xffff);\n" +" c->m_batchIdx = pairIndex;\n" +" c->m_bodyAPtrAndSignBit = rigidBodies[bodyIndexA].m_invMass==0?-bodyIndexA:bodyIndexA;\n" +" c->m_bodyBPtrAndSignBit = rigidBodies[bodyIndexB].m_invMass==0?-bodyIndexB:bodyIndexB;\n" +" c->m_worldPosB[0] = pOnB1;\n" +" c->m_childIndexA = -1;\n" +" c->m_childIndexB = faceIndex;\n" +" GET_NPOINTS(*c) = 1;\n" +" } \n" +" }\n" +" }\n" +" }//if (hasCollision)\n" +"}\n" +"// work-in-progress\n" +"__kernel void findConcaveSphereContactsKernel( __global int4* concavePairs,\n" +" __global const BodyData* rigidBodies,\n" +" __global const btCollidableGpu* collidables,\n" +" __global const ConvexPolyhedronCL* convexShapes, \n" +" __global const float4* vertices,\n" +" __global const float4* uniqueEdges,\n" +" __global const btGpuFace* faces,\n" +" __global const int* indices,\n" +" __global btAabbCL* aabbs,\n" +" __global struct b3Contact4Data* restrict globalContactsOut,\n" +" counter32_t nGlobalContactsOut,\n" +" int numConcavePairs, int maxContactCapacity\n" +" )\n" +"{\n" +" int i = get_global_id(0);\n" +" if (i>=numConcavePairs)\n" +" return;\n" +" int pairIdx = i;\n" +" int bodyIndexA = concavePairs[i].x;\n" +" int bodyIndexB = concavePairs[i].y;\n" +" int collidableIndexA = rigidBodies[bodyIndexA].m_collidableIdx;\n" +" int collidableIndexB = rigidBodies[bodyIndexB].m_collidableIdx;\n" +" int shapeIndexA = collidables[collidableIndexA].m_shapeIndex;\n" +" int shapeIndexB = collidables[collidableIndexB].m_shapeIndex;\n" +" if (collidables[collidableIndexB].m_shapeType==SHAPE_SPHERE)\n" +" {\n" +" int f = concavePairs[i].z;\n" +" btGpuFace face = faces[convexShapes[shapeIndexA].m_faceOffset+f];\n" +" \n" +" float4 verticesA[3];\n" +" for (int i=0;i<3;i++)\n" +" {\n" +" int index = indices[face.m_indexOffset+i];\n" +" float4 vert = vertices[convexShapes[shapeIndexA].m_vertexOffset+index];\n" +" verticesA[i] = vert;\n" +" }\n" +" float4 spherePos = rigidBodies[bodyIndexB].m_pos;\n" +" float sphereRadius = collidables[collidableIndexB].m_radius;\n" +" float4 convexPos = rigidBodies[bodyIndexA].m_pos;\n" +" float4 convexOrn = rigidBodies[bodyIndexA].m_quat;\n" +" computeContactSphereTriangle(i, bodyIndexB, bodyIndexA, collidableIndexB, collidableIndexA, \n" +" rigidBodies,collidables,\n" +" verticesA,\n" +" globalContactsOut, nGlobalContactsOut,maxContactCapacity,\n" +" spherePos,sphereRadius,convexPos,convexOrn, f);\n" +" return;\n" +" }\n" +"}\n" +; diff --git a/thirdparty/bullet/Bullet3OpenCL/NarrowphaseCollision/kernels/sat.cl b/thirdparty/bullet/Bullet3OpenCL/NarrowphaseCollision/kernels/sat.cl new file mode 100644 index 0000000000..a6565fd6fa --- /dev/null +++ b/thirdparty/bullet/Bullet3OpenCL/NarrowphaseCollision/kernels/sat.cl @@ -0,0 +1,2018 @@ +//keep this enum in sync with the CPU version (in btCollidable.h) +//written by Erwin Coumans + + +#define SHAPE_CONVEX_HULL 3 +#define SHAPE_CONCAVE_TRIMESH 5 +#define TRIANGLE_NUM_CONVEX_FACES 5 +#define SHAPE_COMPOUND_OF_CONVEX_HULLS 6 + +#define B3_MAX_STACK_DEPTH 256 + + +typedef unsigned int u32; + +///keep this in sync with btCollidable.h +typedef struct +{ + union { + int m_numChildShapes; + int m_bvhIndex; + }; + union + { + float m_radius; + int m_compoundBvhIndex; + }; + + int m_shapeType; + int m_shapeIndex; + +} btCollidableGpu; + +#define MAX_NUM_PARTS_IN_BITS 10 + +///b3QuantizedBvhNode is a compressed aabb node, 16 bytes. +///Node can be used for leafnode or internal node. Leafnodes can point to 32-bit triangle index (non-negative range). +typedef struct +{ + //12 bytes + unsigned short int m_quantizedAabbMin[3]; + unsigned short int m_quantizedAabbMax[3]; + //4 bytes + int m_escapeIndexOrTriangleIndex; +} b3QuantizedBvhNode; + +typedef struct +{ + float4 m_aabbMin; + float4 m_aabbMax; + float4 m_quantization; + int m_numNodes; + int m_numSubTrees; + int m_nodeOffset; + int m_subTreeOffset; + +} b3BvhInfo; + + +int getTriangleIndex(const b3QuantizedBvhNode* rootNode) +{ + unsigned int x=0; + unsigned int y = (~(x&0))<<(31-MAX_NUM_PARTS_IN_BITS); + // Get only the lower bits where the triangle index is stored + return (rootNode->m_escapeIndexOrTriangleIndex&~(y)); +} + +int getTriangleIndexGlobal(__global const b3QuantizedBvhNode* rootNode) +{ + unsigned int x=0; + unsigned int y = (~(x&0))<<(31-MAX_NUM_PARTS_IN_BITS); + // Get only the lower bits where the triangle index is stored + return (rootNode->m_escapeIndexOrTriangleIndex&~(y)); +} + +int isLeafNode(const b3QuantizedBvhNode* rootNode) +{ + //skipindex is negative (internal node), triangleindex >=0 (leafnode) + return (rootNode->m_escapeIndexOrTriangleIndex >= 0)? 1 : 0; +} + +int isLeafNodeGlobal(__global const b3QuantizedBvhNode* rootNode) +{ + //skipindex is negative (internal node), triangleindex >=0 (leafnode) + return (rootNode->m_escapeIndexOrTriangleIndex >= 0)? 1 : 0; +} + +int getEscapeIndex(const b3QuantizedBvhNode* rootNode) +{ + return -rootNode->m_escapeIndexOrTriangleIndex; +} + +int getEscapeIndexGlobal(__global const b3QuantizedBvhNode* rootNode) +{ + return -rootNode->m_escapeIndexOrTriangleIndex; +} + + +typedef struct +{ + //12 bytes + unsigned short int m_quantizedAabbMin[3]; + unsigned short int m_quantizedAabbMax[3]; + //4 bytes, points to the root of the subtree + int m_rootNodeIndex; + //4 bytes + int m_subtreeSize; + int m_padding[3]; +} b3BvhSubtreeInfo; + + + + + + + +typedef struct +{ + float4 m_childPosition; + float4 m_childOrientation; + int m_shapeIndex; + int m_unused0; + int m_unused1; + int m_unused2; +} btGpuChildShape; + + +typedef struct +{ + float4 m_pos; + float4 m_quat; + float4 m_linVel; + float4 m_angVel; + + u32 m_collidableIdx; + float m_invMass; + float m_restituitionCoeff; + float m_frictionCoeff; +} BodyData; + + +typedef struct +{ + float4 m_localCenter; + float4 m_extents; + float4 mC; + float4 mE; + + float m_radius; + int m_faceOffset; + int m_numFaces; + int m_numVertices; + + int m_vertexOffset; + int m_uniqueEdgesOffset; + int m_numUniqueEdges; + int m_unused; +} ConvexPolyhedronCL; + +typedef struct +{ + union + { + float4 m_min; + float m_minElems[4]; + int m_minIndices[4]; + }; + union + { + float4 m_max; + float m_maxElems[4]; + int m_maxIndices[4]; + }; +} btAabbCL; + +#include "Bullet3Collision/BroadPhaseCollision/shared/b3Aabb.h" +#include "Bullet3Common/shared/b3Int2.h" + + + +typedef struct +{ + float4 m_plane; + int m_indexOffset; + int m_numIndices; +} btGpuFace; + +#define make_float4 (float4) + + +__inline +float4 cross3(float4 a, float4 b) +{ + return cross(a,b); + + +// float4 a1 = make_float4(a.xyz,0.f); +// float4 b1 = make_float4(b.xyz,0.f); + +// return cross(a1,b1); + +//float4 c = make_float4(a.y*b.z - a.z*b.y,a.z*b.x - a.x*b.z,a.x*b.y - a.y*b.x,0.f); + + // float4 c = make_float4(a.y*b.z - a.z*b.y,1.f,a.x*b.y - a.y*b.x,0.f); + + //return c; +} + +__inline +float dot3F4(float4 a, float4 b) +{ + float4 a1 = make_float4(a.xyz,0.f); + float4 b1 = make_float4(b.xyz,0.f); + return dot(a1, b1); +} + +__inline +float4 fastNormalize4(float4 v) +{ + v = make_float4(v.xyz,0.f); + return fast_normalize(v); +} + + +/////////////////////////////////////// +// Quaternion +/////////////////////////////////////// + +typedef float4 Quaternion; + +__inline +Quaternion qtMul(Quaternion a, Quaternion b); + +__inline +Quaternion qtNormalize(Quaternion in); + +__inline +float4 qtRotate(Quaternion q, float4 vec); + +__inline +Quaternion qtInvert(Quaternion q); + + + + +__inline +Quaternion qtMul(Quaternion a, Quaternion b) +{ + Quaternion ans; + ans = cross3( a, b ); + ans += a.w*b+b.w*a; +// ans.w = a.w*b.w - (a.x*b.x+a.y*b.y+a.z*b.z); + ans.w = a.w*b.w - dot3F4(a, b); + return ans; +} + +__inline +Quaternion qtNormalize(Quaternion in) +{ + return fastNormalize4(in); +// in /= length( in ); +// return in; +} +__inline +float4 qtRotate(Quaternion q, float4 vec) +{ + Quaternion qInv = qtInvert( q ); + float4 vcpy = vec; + vcpy.w = 0.f; + float4 out = qtMul(qtMul(q,vcpy),qInv); + return out; +} + +__inline +Quaternion qtInvert(Quaternion q) +{ + return (Quaternion)(-q.xyz, q.w); +} + +__inline +float4 qtInvRotate(const Quaternion q, float4 vec) +{ + return qtRotate( qtInvert( q ), vec ); +} + +__inline +float4 transform(const float4* p, const float4* translation, const Quaternion* orientation) +{ + return qtRotate( *orientation, *p ) + (*translation); +} + + + +__inline +float4 normalize3(const float4 a) +{ + float4 n = make_float4(a.x, a.y, a.z, 0.f); + return fastNormalize4( n ); +} + +inline void projectLocal(const ConvexPolyhedronCL* hull, const float4 pos, const float4 orn, +const float4* dir, const float4* vertices, float* min, float* max) +{ + min[0] = FLT_MAX; + max[0] = -FLT_MAX; + int numVerts = hull->m_numVertices; + + const float4 localDir = qtInvRotate(orn,*dir); + float offset = dot(pos,*dir); + for(int i=0;i<numVerts;i++) + { + float dp = dot(vertices[hull->m_vertexOffset+i],localDir); + if(dp < min[0]) + min[0] = dp; + if(dp > max[0]) + max[0] = dp; + } + if(min[0]>max[0]) + { + float tmp = min[0]; + min[0] = max[0]; + max[0] = tmp; + } + min[0] += offset; + max[0] += offset; +} + +inline void project(__global const ConvexPolyhedronCL* hull, const float4 pos, const float4 orn, +const float4* dir, __global const float4* vertices, float* min, float* max) +{ + min[0] = FLT_MAX; + max[0] = -FLT_MAX; + int numVerts = hull->m_numVertices; + + const float4 localDir = qtInvRotate(orn,*dir); + float offset = dot(pos,*dir); + for(int i=0;i<numVerts;i++) + { + float dp = dot(vertices[hull->m_vertexOffset+i],localDir); + if(dp < min[0]) + min[0] = dp; + if(dp > max[0]) + max[0] = dp; + } + if(min[0]>max[0]) + { + float tmp = min[0]; + min[0] = max[0]; + max[0] = tmp; + } + min[0] += offset; + max[0] += offset; +} + +inline bool TestSepAxisLocalA(const ConvexPolyhedronCL* hullA, __global const ConvexPolyhedronCL* hullB, + const float4 posA,const float4 ornA, + const float4 posB,const float4 ornB, + float4* sep_axis, const float4* verticesA, __global const float4* verticesB,float* depth) +{ + float Min0,Max0; + float Min1,Max1; + projectLocal(hullA,posA,ornA,sep_axis,verticesA, &Min0, &Max0); + project(hullB,posB,ornB, sep_axis,verticesB, &Min1, &Max1); + + if(Max0<Min1 || Max1<Min0) + return false; + + float d0 = Max0 - Min1; + float d1 = Max1 - Min0; + *depth = d0<d1 ? d0:d1; + return true; +} + + + + +inline bool IsAlmostZero(const float4 v) +{ + if(fabs(v.x)>1e-6f || fabs(v.y)>1e-6f || fabs(v.z)>1e-6f) + return false; + return true; +} + + + +bool findSeparatingAxisLocalA( const ConvexPolyhedronCL* hullA, __global const ConvexPolyhedronCL* hullB, + const float4 posA1, + const float4 ornA, + const float4 posB1, + const float4 ornB, + const float4 DeltaC2, + + const float4* verticesA, + const float4* uniqueEdgesA, + const btGpuFace* facesA, + const int* indicesA, + + __global const float4* verticesB, + __global const float4* uniqueEdgesB, + __global const btGpuFace* facesB, + __global const int* indicesB, + float4* sep, + float* dmin) +{ + + + float4 posA = posA1; + posA.w = 0.f; + float4 posB = posB1; + posB.w = 0.f; + int curPlaneTests=0; + { + int numFacesA = hullA->m_numFaces; + // Test normals from hullA + for(int i=0;i<numFacesA;i++) + { + const float4 normal = facesA[hullA->m_faceOffset+i].m_plane; + float4 faceANormalWS = qtRotate(ornA,normal); + if (dot3F4(DeltaC2,faceANormalWS)<0) + faceANormalWS*=-1.f; + curPlaneTests++; + float d; + if(!TestSepAxisLocalA( hullA, hullB, posA,ornA,posB,ornB,&faceANormalWS, verticesA, verticesB,&d)) + return false; + if(d<*dmin) + { + *dmin = d; + *sep = faceANormalWS; + } + } + } + if((dot3F4(-DeltaC2,*sep))>0.0f) + { + *sep = -(*sep); + } + return true; +} + +bool findSeparatingAxisLocalB( __global const ConvexPolyhedronCL* hullA, const ConvexPolyhedronCL* hullB, + const float4 posA1, + const float4 ornA, + const float4 posB1, + const float4 ornB, + const float4 DeltaC2, + __global const float4* verticesA, + __global const float4* uniqueEdgesA, + __global const btGpuFace* facesA, + __global const int* indicesA, + const float4* verticesB, + const float4* uniqueEdgesB, + const btGpuFace* facesB, + const int* indicesB, + float4* sep, + float* dmin) +{ + + + float4 posA = posA1; + posA.w = 0.f; + float4 posB = posB1; + posB.w = 0.f; + int curPlaneTests=0; + { + int numFacesA = hullA->m_numFaces; + // Test normals from hullA + for(int i=0;i<numFacesA;i++) + { + const float4 normal = facesA[hullA->m_faceOffset+i].m_plane; + float4 faceANormalWS = qtRotate(ornA,normal); + if (dot3F4(DeltaC2,faceANormalWS)<0) + faceANormalWS *= -1.f; + curPlaneTests++; + float d; + if(!TestSepAxisLocalA( hullB, hullA, posB,ornB,posA,ornA, &faceANormalWS, verticesB,verticesA, &d)) + return false; + if(d<*dmin) + { + *dmin = d; + *sep = faceANormalWS; + } + } + } + if((dot3F4(-DeltaC2,*sep))>0.0f) + { + *sep = -(*sep); + } + return true; +} + + + +bool findSeparatingAxisEdgeEdgeLocalA( const ConvexPolyhedronCL* hullA, __global const ConvexPolyhedronCL* hullB, + const float4 posA1, + const float4 ornA, + const float4 posB1, + const float4 ornB, + const float4 DeltaC2, + const float4* verticesA, + const float4* uniqueEdgesA, + const btGpuFace* facesA, + const int* indicesA, + __global const float4* verticesB, + __global const float4* uniqueEdgesB, + __global const btGpuFace* facesB, + __global const int* indicesB, + float4* sep, + float* dmin) +{ + + + float4 posA = posA1; + posA.w = 0.f; + float4 posB = posB1; + posB.w = 0.f; + + int curPlaneTests=0; + + int curEdgeEdge = 0; + // Test edges + for(int e0=0;e0<hullA->m_numUniqueEdges;e0++) + { + const float4 edge0 = uniqueEdgesA[hullA->m_uniqueEdgesOffset+e0]; + float4 edge0World = qtRotate(ornA,edge0); + + for(int e1=0;e1<hullB->m_numUniqueEdges;e1++) + { + const float4 edge1 = uniqueEdgesB[hullB->m_uniqueEdgesOffset+e1]; + float4 edge1World = qtRotate(ornB,edge1); + + + float4 crossje = cross3(edge0World,edge1World); + + curEdgeEdge++; + if(!IsAlmostZero(crossje)) + { + crossje = normalize3(crossje); + if (dot3F4(DeltaC2,crossje)<0) + crossje *= -1.f; + + float dist; + bool result = true; + { + float Min0,Max0; + float Min1,Max1; + projectLocal(hullA,posA,ornA,&crossje,verticesA, &Min0, &Max0); + project(hullB,posB,ornB,&crossje,verticesB, &Min1, &Max1); + + if(Max0<Min1 || Max1<Min0) + result = false; + + float d0 = Max0 - Min1; + float d1 = Max1 - Min0; + dist = d0<d1 ? d0:d1; + result = true; + + } + + + if(dist<*dmin) + { + *dmin = dist; + *sep = crossje; + } + } + } + + } + + + if((dot3F4(-DeltaC2,*sep))>0.0f) + { + *sep = -(*sep); + } + return true; +} + + +inline bool TestSepAxis(__global const ConvexPolyhedronCL* hullA, __global const ConvexPolyhedronCL* hullB, + const float4 posA,const float4 ornA, + const float4 posB,const float4 ornB, + float4* sep_axis, __global const float4* vertices,float* depth) +{ + float Min0,Max0; + float Min1,Max1; + project(hullA,posA,ornA,sep_axis,vertices, &Min0, &Max0); + project(hullB,posB,ornB, sep_axis,vertices, &Min1, &Max1); + + if(Max0<Min1 || Max1<Min0) + return false; + + float d0 = Max0 - Min1; + float d1 = Max1 - Min0; + *depth = d0<d1 ? d0:d1; + return true; +} + + +bool findSeparatingAxis( __global const ConvexPolyhedronCL* hullA, __global const ConvexPolyhedronCL* hullB, + const float4 posA1, + const float4 ornA, + const float4 posB1, + const float4 ornB, + const float4 DeltaC2, + __global const float4* vertices, + __global const float4* uniqueEdges, + __global const btGpuFace* faces, + __global const int* indices, + float4* sep, + float* dmin) +{ + + + float4 posA = posA1; + posA.w = 0.f; + float4 posB = posB1; + posB.w = 0.f; + + int curPlaneTests=0; + + { + int numFacesA = hullA->m_numFaces; + // Test normals from hullA + for(int i=0;i<numFacesA;i++) + { + const float4 normal = faces[hullA->m_faceOffset+i].m_plane; + float4 faceANormalWS = qtRotate(ornA,normal); + + if (dot3F4(DeltaC2,faceANormalWS)<0) + faceANormalWS*=-1.f; + + curPlaneTests++; + + float d; + if(!TestSepAxis( hullA, hullB, posA,ornA,posB,ornB,&faceANormalWS, vertices,&d)) + return false; + + if(d<*dmin) + { + *dmin = d; + *sep = faceANormalWS; + } + } + } + + + if((dot3F4(-DeltaC2,*sep))>0.0f) + { + *sep = -(*sep); + } + + return true; +} + + + + +bool findSeparatingAxisUnitSphere( __global const ConvexPolyhedronCL* hullA, __global const ConvexPolyhedronCL* hullB, + const float4 posA1, + const float4 ornA, + const float4 posB1, + const float4 ornB, + const float4 DeltaC2, + __global const float4* vertices, + __global const float4* unitSphereDirections, + int numUnitSphereDirections, + float4* sep, + float* dmin) +{ + + float4 posA = posA1; + posA.w = 0.f; + float4 posB = posB1; + posB.w = 0.f; + + int curPlaneTests=0; + + int curEdgeEdge = 0; + // Test unit sphere directions + for (int i=0;i<numUnitSphereDirections;i++) + { + + float4 crossje; + crossje = unitSphereDirections[i]; + + if (dot3F4(DeltaC2,crossje)>0) + crossje *= -1.f; + { + float dist; + bool result = true; + float Min0,Max0; + float Min1,Max1; + project(hullA,posA,ornA,&crossje,vertices, &Min0, &Max0); + project(hullB,posB,ornB,&crossje,vertices, &Min1, &Max1); + + if(Max0<Min1 || Max1<Min0) + return false; + + float d0 = Max0 - Min1; + float d1 = Max1 - Min0; + dist = d0<d1 ? d0:d1; + result = true; + + if(dist<*dmin) + { + *dmin = dist; + *sep = crossje; + } + } + } + + + if((dot3F4(-DeltaC2,*sep))>0.0f) + { + *sep = -(*sep); + } + return true; +} + + +bool findSeparatingAxisEdgeEdge( __global const ConvexPolyhedronCL* hullA, __global const ConvexPolyhedronCL* hullB, + const float4 posA1, + const float4 ornA, + const float4 posB1, + const float4 ornB, + const float4 DeltaC2, + __global const float4* vertices, + __global const float4* uniqueEdges, + __global const btGpuFace* faces, + __global const int* indices, + float4* sep, + float* dmin) +{ + + + float4 posA = posA1; + posA.w = 0.f; + float4 posB = posB1; + posB.w = 0.f; + + int curPlaneTests=0; + + int curEdgeEdge = 0; + // Test edges + for(int e0=0;e0<hullA->m_numUniqueEdges;e0++) + { + const float4 edge0 = uniqueEdges[hullA->m_uniqueEdgesOffset+e0]; + float4 edge0World = qtRotate(ornA,edge0); + + for(int e1=0;e1<hullB->m_numUniqueEdges;e1++) + { + const float4 edge1 = uniqueEdges[hullB->m_uniqueEdgesOffset+e1]; + float4 edge1World = qtRotate(ornB,edge1); + + + float4 crossje = cross3(edge0World,edge1World); + + curEdgeEdge++; + if(!IsAlmostZero(crossje)) + { + crossje = normalize3(crossje); + if (dot3F4(DeltaC2,crossje)<0) + crossje*=-1.f; + + float dist; + bool result = true; + { + float Min0,Max0; + float Min1,Max1; + project(hullA,posA,ornA,&crossje,vertices, &Min0, &Max0); + project(hullB,posB,ornB,&crossje,vertices, &Min1, &Max1); + + if(Max0<Min1 || Max1<Min0) + return false; + + float d0 = Max0 - Min1; + float d1 = Max1 - Min0; + dist = d0<d1 ? d0:d1; + result = true; + + } + + + if(dist<*dmin) + { + *dmin = dist; + *sep = crossje; + } + } + } + + } + + + if((dot3F4(-DeltaC2,*sep))>0.0f) + { + *sep = -(*sep); + } + return true; +} + + +// work-in-progress +__kernel void processCompoundPairsKernel( __global const int4* gpuCompoundPairs, + __global const BodyData* rigidBodies, + __global const btCollidableGpu* collidables, + __global const ConvexPolyhedronCL* convexShapes, + __global const float4* vertices, + __global const float4* uniqueEdges, + __global const btGpuFace* faces, + __global const int* indices, + __global btAabbCL* aabbs, + __global const btGpuChildShape* gpuChildShapes, + __global volatile float4* gpuCompoundSepNormalsOut, + __global volatile int* gpuHasCompoundSepNormalsOut, + int numCompoundPairs + ) +{ + + int i = get_global_id(0); + if (i<numCompoundPairs) + { + int bodyIndexA = gpuCompoundPairs[i].x; + int bodyIndexB = gpuCompoundPairs[i].y; + + int childShapeIndexA = gpuCompoundPairs[i].z; + int childShapeIndexB = gpuCompoundPairs[i].w; + + int collidableIndexA = -1; + int collidableIndexB = -1; + + float4 ornA = rigidBodies[bodyIndexA].m_quat; + float4 posA = rigidBodies[bodyIndexA].m_pos; + + float4 ornB = rigidBodies[bodyIndexB].m_quat; + float4 posB = rigidBodies[bodyIndexB].m_pos; + + if (childShapeIndexA >= 0) + { + collidableIndexA = gpuChildShapes[childShapeIndexA].m_shapeIndex; + float4 childPosA = gpuChildShapes[childShapeIndexA].m_childPosition; + float4 childOrnA = gpuChildShapes[childShapeIndexA].m_childOrientation; + float4 newPosA = qtRotate(ornA,childPosA)+posA; + float4 newOrnA = qtMul(ornA,childOrnA); + posA = newPosA; + ornA = newOrnA; + } else + { + collidableIndexA = rigidBodies[bodyIndexA].m_collidableIdx; + } + + if (childShapeIndexB>=0) + { + collidableIndexB = gpuChildShapes[childShapeIndexB].m_shapeIndex; + float4 childPosB = gpuChildShapes[childShapeIndexB].m_childPosition; + float4 childOrnB = gpuChildShapes[childShapeIndexB].m_childOrientation; + float4 newPosB = transform(&childPosB,&posB,&ornB); + float4 newOrnB = qtMul(ornB,childOrnB); + posB = newPosB; + ornB = newOrnB; + } else + { + collidableIndexB = rigidBodies[bodyIndexB].m_collidableIdx; + } + + gpuHasCompoundSepNormalsOut[i] = 0; + + int shapeIndexA = collidables[collidableIndexA].m_shapeIndex; + int shapeIndexB = collidables[collidableIndexB].m_shapeIndex; + + int shapeTypeA = collidables[collidableIndexA].m_shapeType; + int shapeTypeB = collidables[collidableIndexB].m_shapeType; + + + if ((shapeTypeA != SHAPE_CONVEX_HULL) || (shapeTypeB != SHAPE_CONVEX_HULL)) + { + return; + } + + int hasSeparatingAxis = 5; + + int numFacesA = convexShapes[shapeIndexA].m_numFaces; + float dmin = FLT_MAX; + posA.w = 0.f; + posB.w = 0.f; + float4 c0local = convexShapes[shapeIndexA].m_localCenter; + float4 c0 = transform(&c0local, &posA, &ornA); + float4 c1local = convexShapes[shapeIndexB].m_localCenter; + float4 c1 = transform(&c1local,&posB,&ornB); + const float4 DeltaC2 = c0 - c1; + float4 sepNormal = make_float4(1,0,0,0); + bool sepA = findSeparatingAxis( &convexShapes[shapeIndexA], &convexShapes[shapeIndexB],posA,ornA,posB,ornB,DeltaC2,vertices,uniqueEdges,faces,indices,&sepNormal,&dmin); + hasSeparatingAxis = 4; + if (!sepA) + { + hasSeparatingAxis = 0; + } else + { + bool sepB = findSeparatingAxis( &convexShapes[shapeIndexB],&convexShapes[shapeIndexA],posB,ornB,posA,ornA,DeltaC2,vertices,uniqueEdges,faces,indices,&sepNormal,&dmin); + + if (!sepB) + { + hasSeparatingAxis = 0; + } else//(!sepB) + { + bool sepEE = findSeparatingAxisEdgeEdge( &convexShapes[shapeIndexA], &convexShapes[shapeIndexB],posA,ornA,posB,ornB,DeltaC2,vertices,uniqueEdges,faces,indices,&sepNormal,&dmin); + if (sepEE) + { + gpuCompoundSepNormalsOut[i] = sepNormal;//fastNormalize4(sepNormal); + gpuHasCompoundSepNormalsOut[i] = 1; + }//sepEE + }//(!sepB) + }//(!sepA) + + + } + +} + + +inline b3Float4 MyUnQuantize(const unsigned short* vecIn, b3Float4 quantization, b3Float4 bvhAabbMin) +{ + b3Float4 vecOut; + vecOut = b3MakeFloat4( + (float)(vecIn[0]) / (quantization.x), + (float)(vecIn[1]) / (quantization.y), + (float)(vecIn[2]) / (quantization.z), + 0.f); + + vecOut += bvhAabbMin; + return vecOut; +} + +inline b3Float4 MyUnQuantizeGlobal(__global const unsigned short* vecIn, b3Float4 quantization, b3Float4 bvhAabbMin) +{ + b3Float4 vecOut; + vecOut = b3MakeFloat4( + (float)(vecIn[0]) / (quantization.x), + (float)(vecIn[1]) / (quantization.y), + (float)(vecIn[2]) / (quantization.z), + 0.f); + + vecOut += bvhAabbMin; + return vecOut; +} + + +// work-in-progress +__kernel void findCompoundPairsKernel( __global const int4* pairs, + __global const BodyData* rigidBodies, + __global const btCollidableGpu* collidables, + __global const ConvexPolyhedronCL* convexShapes, + __global const float4* vertices, + __global const float4* uniqueEdges, + __global const btGpuFace* faces, + __global const int* indices, + __global b3Aabb_t* aabbLocalSpace, + __global const btGpuChildShape* gpuChildShapes, + __global volatile int4* gpuCompoundPairsOut, + __global volatile int* numCompoundPairsOut, + __global const b3BvhSubtreeInfo* subtrees, + __global const b3QuantizedBvhNode* quantizedNodes, + __global const b3BvhInfo* bvhInfos, + int numPairs, + int maxNumCompoundPairsCapacity + ) +{ + + int i = get_global_id(0); + + if (i<numPairs) + { + int bodyIndexA = pairs[i].x; + int bodyIndexB = pairs[i].y; + + int collidableIndexA = rigidBodies[bodyIndexA].m_collidableIdx; + int collidableIndexB = rigidBodies[bodyIndexB].m_collidableIdx; + + int shapeIndexA = collidables[collidableIndexA].m_shapeIndex; + int shapeIndexB = collidables[collidableIndexB].m_shapeIndex; + + + //once the broadphase avoids static-static pairs, we can remove this test + if ((rigidBodies[bodyIndexA].m_invMass==0) &&(rigidBodies[bodyIndexB].m_invMass==0)) + { + return; + } + + if ((collidables[collidableIndexA].m_shapeType==SHAPE_COMPOUND_OF_CONVEX_HULLS) &&(collidables[collidableIndexB].m_shapeType==SHAPE_COMPOUND_OF_CONVEX_HULLS)) + { + int bvhA = collidables[collidableIndexA].m_compoundBvhIndex; + int bvhB = collidables[collidableIndexB].m_compoundBvhIndex; + int numSubTreesA = bvhInfos[bvhA].m_numSubTrees; + int subTreesOffsetA = bvhInfos[bvhA].m_subTreeOffset; + int subTreesOffsetB = bvhInfos[bvhB].m_subTreeOffset; + + + int numSubTreesB = bvhInfos[bvhB].m_numSubTrees; + + float4 posA = rigidBodies[bodyIndexA].m_pos; + b3Quat ornA = rigidBodies[bodyIndexA].m_quat; + + b3Quat ornB = rigidBodies[bodyIndexB].m_quat; + float4 posB = rigidBodies[bodyIndexB].m_pos; + + + for (int p=0;p<numSubTreesA;p++) + { + b3BvhSubtreeInfo subtreeA = subtrees[subTreesOffsetA+p]; + //bvhInfos[bvhA].m_quantization + b3Float4 treeAminLocal = MyUnQuantize(subtreeA.m_quantizedAabbMin,bvhInfos[bvhA].m_quantization,bvhInfos[bvhA].m_aabbMin); + b3Float4 treeAmaxLocal = MyUnQuantize(subtreeA.m_quantizedAabbMax,bvhInfos[bvhA].m_quantization,bvhInfos[bvhA].m_aabbMin); + + b3Float4 aabbAMinOut,aabbAMaxOut; + float margin=0.f; + b3TransformAabb2(treeAminLocal,treeAmaxLocal, margin,posA,ornA,&aabbAMinOut,&aabbAMaxOut); + + for (int q=0;q<numSubTreesB;q++) + { + b3BvhSubtreeInfo subtreeB = subtrees[subTreesOffsetB+q]; + + b3Float4 treeBminLocal = MyUnQuantize(subtreeB.m_quantizedAabbMin,bvhInfos[bvhB].m_quantization,bvhInfos[bvhB].m_aabbMin); + b3Float4 treeBmaxLocal = MyUnQuantize(subtreeB.m_quantizedAabbMax,bvhInfos[bvhB].m_quantization,bvhInfos[bvhB].m_aabbMin); + + b3Float4 aabbBMinOut,aabbBMaxOut; + float margin=0.f; + b3TransformAabb2(treeBminLocal,treeBmaxLocal, margin,posB,ornB,&aabbBMinOut,&aabbBMaxOut); + + + + bool aabbOverlap = b3TestAabbAgainstAabb(aabbAMinOut,aabbAMaxOut,aabbBMinOut,aabbBMaxOut); + if (aabbOverlap) + { + + int startNodeIndexA = subtreeA.m_rootNodeIndex+bvhInfos[bvhA].m_nodeOffset; + int endNodeIndexA = startNodeIndexA+subtreeA.m_subtreeSize; + + int startNodeIndexB = subtreeB.m_rootNodeIndex+bvhInfos[bvhB].m_nodeOffset; + int endNodeIndexB = startNodeIndexB+subtreeB.m_subtreeSize; + + + b3Int2 nodeStack[B3_MAX_STACK_DEPTH]; + b3Int2 node0; + node0.x = startNodeIndexA; + node0.y = startNodeIndexB; + int maxStackDepth = B3_MAX_STACK_DEPTH; + int depth=0; + nodeStack[depth++]=node0; + + do + { + b3Int2 node = nodeStack[--depth]; + + b3Float4 aMinLocal = MyUnQuantizeGlobal(quantizedNodes[node.x].m_quantizedAabbMin,bvhInfos[bvhA].m_quantization,bvhInfos[bvhA].m_aabbMin); + b3Float4 aMaxLocal = MyUnQuantizeGlobal(quantizedNodes[node.x].m_quantizedAabbMax,bvhInfos[bvhA].m_quantization,bvhInfos[bvhA].m_aabbMin); + + b3Float4 bMinLocal = MyUnQuantizeGlobal(quantizedNodes[node.y].m_quantizedAabbMin,bvhInfos[bvhB].m_quantization,bvhInfos[bvhB].m_aabbMin); + b3Float4 bMaxLocal = MyUnQuantizeGlobal(quantizedNodes[node.y].m_quantizedAabbMax,bvhInfos[bvhB].m_quantization,bvhInfos[bvhB].m_aabbMin); + + float margin=0.f; + b3Float4 aabbAMinOut,aabbAMaxOut; + b3TransformAabb2(aMinLocal,aMaxLocal, margin,posA,ornA,&aabbAMinOut,&aabbAMaxOut); + + b3Float4 aabbBMinOut,aabbBMaxOut; + b3TransformAabb2(bMinLocal,bMaxLocal, margin,posB,ornB,&aabbBMinOut,&aabbBMaxOut); + + + bool nodeOverlap = b3TestAabbAgainstAabb(aabbAMinOut,aabbAMaxOut,aabbBMinOut,aabbBMaxOut); + if (nodeOverlap) + { + bool isLeafA = isLeafNodeGlobal(&quantizedNodes[node.x]); + bool isLeafB = isLeafNodeGlobal(&quantizedNodes[node.y]); + bool isInternalA = !isLeafA; + bool isInternalB = !isLeafB; + + //fail, even though it might hit two leaf nodes + if (depth+4>maxStackDepth && !(isLeafA && isLeafB)) + { + //printf("Error: traversal exceeded maxStackDepth"); + continue; + } + + if(isInternalA) + { + int nodeAleftChild = node.x+1; + bool isNodeALeftChildLeaf = isLeafNodeGlobal(&quantizedNodes[node.x+1]); + int nodeArightChild = isNodeALeftChildLeaf? node.x+2 : node.x+1 + getEscapeIndexGlobal(&quantizedNodes[node.x+1]); + + if(isInternalB) + { + int nodeBleftChild = node.y+1; + bool isNodeBLeftChildLeaf = isLeafNodeGlobal(&quantizedNodes[node.y+1]); + int nodeBrightChild = isNodeBLeftChildLeaf? node.y+2 : node.y+1 + getEscapeIndexGlobal(&quantizedNodes[node.y+1]); + + nodeStack[depth++] = b3MakeInt2(nodeAleftChild, nodeBleftChild); + nodeStack[depth++] = b3MakeInt2(nodeArightChild, nodeBleftChild); + nodeStack[depth++] = b3MakeInt2(nodeAleftChild, nodeBrightChild); + nodeStack[depth++] = b3MakeInt2(nodeArightChild, nodeBrightChild); + } + else + { + nodeStack[depth++] = b3MakeInt2(nodeAleftChild,node.y); + nodeStack[depth++] = b3MakeInt2(nodeArightChild,node.y); + } + } + else + { + if(isInternalB) + { + int nodeBleftChild = node.y+1; + bool isNodeBLeftChildLeaf = isLeafNodeGlobal(&quantizedNodes[node.y+1]); + int nodeBrightChild = isNodeBLeftChildLeaf? node.y+2 : node.y+1 + getEscapeIndexGlobal(&quantizedNodes[node.y+1]); + nodeStack[depth++] = b3MakeInt2(node.x,nodeBleftChild); + nodeStack[depth++] = b3MakeInt2(node.x,nodeBrightChild); + } + else + { + int compoundPairIdx = atomic_inc(numCompoundPairsOut); + if (compoundPairIdx<maxNumCompoundPairsCapacity) + { + int childShapeIndexA = getTriangleIndexGlobal(&quantizedNodes[node.x]); + int childShapeIndexB = getTriangleIndexGlobal(&quantizedNodes[node.y]); + gpuCompoundPairsOut[compoundPairIdx] = (int4)(bodyIndexA,bodyIndexB,childShapeIndexA,childShapeIndexB); + } + } + } + } + } while (depth); + } + } + } + + return; + } + + + + + + if ((collidables[collidableIndexA].m_shapeType==SHAPE_COMPOUND_OF_CONVEX_HULLS) ||(collidables[collidableIndexB].m_shapeType==SHAPE_COMPOUND_OF_CONVEX_HULLS)) + { + + if (collidables[collidableIndexA].m_shapeType==SHAPE_COMPOUND_OF_CONVEX_HULLS) + { + + int numChildrenA = collidables[collidableIndexA].m_numChildShapes; + for (int c=0;c<numChildrenA;c++) + { + int childShapeIndexA = collidables[collidableIndexA].m_shapeIndex+c; + int childColIndexA = gpuChildShapes[childShapeIndexA].m_shapeIndex; + + float4 posA = rigidBodies[bodyIndexA].m_pos; + float4 ornA = rigidBodies[bodyIndexA].m_quat; + float4 childPosA = gpuChildShapes[childShapeIndexA].m_childPosition; + float4 childOrnA = gpuChildShapes[childShapeIndexA].m_childOrientation; + float4 newPosA = qtRotate(ornA,childPosA)+posA; + float4 newOrnA = qtMul(ornA,childOrnA); + + int shapeIndexA = collidables[childColIndexA].m_shapeIndex; + b3Aabb_t aabbAlocal = aabbLocalSpace[shapeIndexA]; + float margin = 0.f; + + b3Float4 aabbAMinWS; + b3Float4 aabbAMaxWS; + + b3TransformAabb2(aabbAlocal.m_minVec,aabbAlocal.m_maxVec,margin, + newPosA, + newOrnA, + &aabbAMinWS,&aabbAMaxWS); + + + if (collidables[collidableIndexB].m_shapeType==SHAPE_COMPOUND_OF_CONVEX_HULLS) + { + int numChildrenB = collidables[collidableIndexB].m_numChildShapes; + for (int b=0;b<numChildrenB;b++) + { + int childShapeIndexB = collidables[collidableIndexB].m_shapeIndex+b; + int childColIndexB = gpuChildShapes[childShapeIndexB].m_shapeIndex; + float4 ornB = rigidBodies[bodyIndexB].m_quat; + float4 posB = rigidBodies[bodyIndexB].m_pos; + float4 childPosB = gpuChildShapes[childShapeIndexB].m_childPosition; + float4 childOrnB = gpuChildShapes[childShapeIndexB].m_childOrientation; + float4 newPosB = transform(&childPosB,&posB,&ornB); + float4 newOrnB = qtMul(ornB,childOrnB); + + int shapeIndexB = collidables[childColIndexB].m_shapeIndex; + b3Aabb_t aabbBlocal = aabbLocalSpace[shapeIndexB]; + + b3Float4 aabbBMinWS; + b3Float4 aabbBMaxWS; + + b3TransformAabb2(aabbBlocal.m_minVec,aabbBlocal.m_maxVec,margin, + newPosB, + newOrnB, + &aabbBMinWS,&aabbBMaxWS); + + + + bool aabbOverlap = b3TestAabbAgainstAabb(aabbAMinWS,aabbAMaxWS,aabbBMinWS,aabbBMaxWS); + if (aabbOverlap) + { + int numFacesA = convexShapes[shapeIndexA].m_numFaces; + float dmin = FLT_MAX; + float4 posA = newPosA; + posA.w = 0.f; + float4 posB = newPosB; + posB.w = 0.f; + float4 c0local = convexShapes[shapeIndexA].m_localCenter; + float4 ornA = newOrnA; + float4 c0 = transform(&c0local, &posA, &ornA); + float4 c1local = convexShapes[shapeIndexB].m_localCenter; + float4 ornB =newOrnB; + float4 c1 = transform(&c1local,&posB,&ornB); + const float4 DeltaC2 = c0 - c1; + + {// + int compoundPairIdx = atomic_inc(numCompoundPairsOut); + if (compoundPairIdx<maxNumCompoundPairsCapacity) + { + gpuCompoundPairsOut[compoundPairIdx] = (int4)(bodyIndexA,bodyIndexB,childShapeIndexA,childShapeIndexB); + } + }// + }//fi(1) + } //for (int b=0 + }//if (collidables[collidableIndexB]. + else//if (collidables[collidableIndexB].m_shapeType==SHAPE_COMPOUND_OF_CONVEX_HULLS) + { + if (1) + { + int numFacesA = convexShapes[shapeIndexA].m_numFaces; + float dmin = FLT_MAX; + float4 posA = newPosA; + posA.w = 0.f; + float4 posB = rigidBodies[bodyIndexB].m_pos; + posB.w = 0.f; + float4 c0local = convexShapes[shapeIndexA].m_localCenter; + float4 ornA = newOrnA; + float4 c0 = transform(&c0local, &posA, &ornA); + float4 c1local = convexShapes[shapeIndexB].m_localCenter; + float4 ornB = rigidBodies[bodyIndexB].m_quat; + float4 c1 = transform(&c1local,&posB,&ornB); + const float4 DeltaC2 = c0 - c1; + + { + int compoundPairIdx = atomic_inc(numCompoundPairsOut); + if (compoundPairIdx<maxNumCompoundPairsCapacity) + { + gpuCompoundPairsOut[compoundPairIdx] = (int4)(bodyIndexA,bodyIndexB,childShapeIndexA,-1); + }//if (compoundPairIdx<maxNumCompoundPairsCapacity) + }// + }//fi (1) + }//if (collidables[collidableIndexB].m_shapeType==SHAPE_COMPOUND_OF_CONVEX_HULLS) + }//for (int b=0;b<numChildrenB;b++) + return; + }//if (collidables[collidableIndexB].m_shapeType==SHAPE_COMPOUND_OF_CONVEX_HULLS) + if ((collidables[collidableIndexA].m_shapeType!=SHAPE_CONCAVE_TRIMESH) + && (collidables[collidableIndexB].m_shapeType==SHAPE_COMPOUND_OF_CONVEX_HULLS)) + { + int numChildrenB = collidables[collidableIndexB].m_numChildShapes; + for (int b=0;b<numChildrenB;b++) + { + int childShapeIndexB = collidables[collidableIndexB].m_shapeIndex+b; + int childColIndexB = gpuChildShapes[childShapeIndexB].m_shapeIndex; + float4 ornB = rigidBodies[bodyIndexB].m_quat; + float4 posB = rigidBodies[bodyIndexB].m_pos; + float4 childPosB = gpuChildShapes[childShapeIndexB].m_childPosition; + float4 childOrnB = gpuChildShapes[childShapeIndexB].m_childOrientation; + float4 newPosB = qtRotate(ornB,childPosB)+posB; + float4 newOrnB = qtMul(ornB,childOrnB); + + int shapeIndexB = collidables[childColIndexB].m_shapeIndex; + + + ////////////////////////////////////// + + if (1) + { + int numFacesA = convexShapes[shapeIndexA].m_numFaces; + float dmin = FLT_MAX; + float4 posA = rigidBodies[bodyIndexA].m_pos; + posA.w = 0.f; + float4 posB = newPosB; + posB.w = 0.f; + float4 c0local = convexShapes[shapeIndexA].m_localCenter; + float4 ornA = rigidBodies[bodyIndexA].m_quat; + float4 c0 = transform(&c0local, &posA, &ornA); + float4 c1local = convexShapes[shapeIndexB].m_localCenter; + float4 ornB =newOrnB; + float4 c1 = transform(&c1local,&posB,&ornB); + const float4 DeltaC2 = c0 - c1; + {// + int compoundPairIdx = atomic_inc(numCompoundPairsOut); + if (compoundPairIdx<maxNumCompoundPairsCapacity) + { + gpuCompoundPairsOut[compoundPairIdx] = (int4)(bodyIndexA,bodyIndexB,-1,childShapeIndexB); + }//fi (compoundPairIdx<maxNumCompoundPairsCapacity) + }// + }//fi (1) + }//for (int b=0;b<numChildrenB;b++) + return; + }//if (collidables[collidableIndexB].m_shapeType==SHAPE_COMPOUND_OF_CONVEX_HULLS) + return; + }//fi ((collidables[collidableIndexA].m_shapeType==SHAPE_COMPOUND_OF_CONVEX_HULLS) ||(collidables[collidableIndexB].m_shapeType==SHAPE_COMPOUND_OF_CONVEX_HULLS)) + }//i<numPairs +} + +// work-in-progress +__kernel void findSeparatingAxisKernel( __global const int4* pairs, + __global const BodyData* rigidBodies, + __global const btCollidableGpu* collidables, + __global const ConvexPolyhedronCL* convexShapes, + __global const float4* vertices, + __global const float4* uniqueEdges, + __global const btGpuFace* faces, + __global const int* indices, + __global btAabbCL* aabbs, + __global volatile float4* separatingNormals, + __global volatile int* hasSeparatingAxis, + int numPairs + ) +{ + + int i = get_global_id(0); + + if (i<numPairs) + { + + + int bodyIndexA = pairs[i].x; + int bodyIndexB = pairs[i].y; + + int collidableIndexA = rigidBodies[bodyIndexA].m_collidableIdx; + int collidableIndexB = rigidBodies[bodyIndexB].m_collidableIdx; + + int shapeIndexA = collidables[collidableIndexA].m_shapeIndex; + int shapeIndexB = collidables[collidableIndexB].m_shapeIndex; + + + //once the broadphase avoids static-static pairs, we can remove this test + if ((rigidBodies[bodyIndexA].m_invMass==0) &&(rigidBodies[bodyIndexB].m_invMass==0)) + { + hasSeparatingAxis[i] = 0; + return; + } + + + if ((collidables[collidableIndexA].m_shapeType!=SHAPE_CONVEX_HULL) ||(collidables[collidableIndexB].m_shapeType!=SHAPE_CONVEX_HULL)) + { + hasSeparatingAxis[i] = 0; + return; + } + + if ((collidables[collidableIndexA].m_shapeType==SHAPE_CONCAVE_TRIMESH)) + { + hasSeparatingAxis[i] = 0; + return; + } + + int numFacesA = convexShapes[shapeIndexA].m_numFaces; + + float dmin = FLT_MAX; + + float4 posA = rigidBodies[bodyIndexA].m_pos; + posA.w = 0.f; + float4 posB = rigidBodies[bodyIndexB].m_pos; + posB.w = 0.f; + float4 c0local = convexShapes[shapeIndexA].m_localCenter; + float4 ornA = rigidBodies[bodyIndexA].m_quat; + float4 c0 = transform(&c0local, &posA, &ornA); + float4 c1local = convexShapes[shapeIndexB].m_localCenter; + float4 ornB =rigidBodies[bodyIndexB].m_quat; + float4 c1 = transform(&c1local,&posB,&ornB); + const float4 DeltaC2 = c0 - c1; + float4 sepNormal; + + bool sepA = findSeparatingAxis( &convexShapes[shapeIndexA], &convexShapes[shapeIndexB],posA,ornA, + posB,ornB, + DeltaC2, + vertices,uniqueEdges,faces, + indices,&sepNormal,&dmin); + hasSeparatingAxis[i] = 4; + if (!sepA) + { + hasSeparatingAxis[i] = 0; + } else + { + bool sepB = findSeparatingAxis( &convexShapes[shapeIndexB],&convexShapes[shapeIndexA],posB,ornB, + posA,ornA, + DeltaC2, + vertices,uniqueEdges,faces, + indices,&sepNormal,&dmin); + + if (!sepB) + { + hasSeparatingAxis[i] = 0; + } else + { + bool sepEE = findSeparatingAxisEdgeEdge( &convexShapes[shapeIndexA], &convexShapes[shapeIndexB],posA,ornA, + posB,ornB, + DeltaC2, + vertices,uniqueEdges,faces, + indices,&sepNormal,&dmin); + if (!sepEE) + { + hasSeparatingAxis[i] = 0; + } else + { + hasSeparatingAxis[i] = 1; + separatingNormals[i] = sepNormal; + } + } + } + + } + +} + + +__kernel void findSeparatingAxisVertexFaceKernel( __global const int4* pairs, + __global const BodyData* rigidBodies, + __global const btCollidableGpu* collidables, + __global const ConvexPolyhedronCL* convexShapes, + __global const float4* vertices, + __global const float4* uniqueEdges, + __global const btGpuFace* faces, + __global const int* indices, + __global btAabbCL* aabbs, + __global volatile float4* separatingNormals, + __global volatile int* hasSeparatingAxis, + __global float* dmins, + int numPairs + ) +{ + + int i = get_global_id(0); + + if (i<numPairs) + { + + + int bodyIndexA = pairs[i].x; + int bodyIndexB = pairs[i].y; + + int collidableIndexA = rigidBodies[bodyIndexA].m_collidableIdx; + int collidableIndexB = rigidBodies[bodyIndexB].m_collidableIdx; + + int shapeIndexA = collidables[collidableIndexA].m_shapeIndex; + int shapeIndexB = collidables[collidableIndexB].m_shapeIndex; + + hasSeparatingAxis[i] = 0; + + //once the broadphase avoids static-static pairs, we can remove this test + if ((rigidBodies[bodyIndexA].m_invMass==0) &&(rigidBodies[bodyIndexB].m_invMass==0)) + { + return; + } + + + if ((collidables[collidableIndexA].m_shapeType!=SHAPE_CONVEX_HULL) ||(collidables[collidableIndexB].m_shapeType!=SHAPE_CONVEX_HULL)) + { + return; + } + + + int numFacesA = convexShapes[shapeIndexA].m_numFaces; + + float dmin = FLT_MAX; + + dmins[i] = dmin; + + float4 posA = rigidBodies[bodyIndexA].m_pos; + posA.w = 0.f; + float4 posB = rigidBodies[bodyIndexB].m_pos; + posB.w = 0.f; + float4 c0local = convexShapes[shapeIndexA].m_localCenter; + float4 ornA = rigidBodies[bodyIndexA].m_quat; + float4 c0 = transform(&c0local, &posA, &ornA); + float4 c1local = convexShapes[shapeIndexB].m_localCenter; + float4 ornB =rigidBodies[bodyIndexB].m_quat; + float4 c1 = transform(&c1local,&posB,&ornB); + const float4 DeltaC2 = c0 - c1; + float4 sepNormal; + + bool sepA = findSeparatingAxis( &convexShapes[shapeIndexA], &convexShapes[shapeIndexB],posA,ornA, + posB,ornB, + DeltaC2, + vertices,uniqueEdges,faces, + indices,&sepNormal,&dmin); + hasSeparatingAxis[i] = 4; + if (!sepA) + { + hasSeparatingAxis[i] = 0; + } else + { + bool sepB = findSeparatingAxis( &convexShapes[shapeIndexB],&convexShapes[shapeIndexA],posB,ornB, + posA,ornA, + DeltaC2, + vertices,uniqueEdges,faces, + indices,&sepNormal,&dmin); + + if (sepB) + { + dmins[i] = dmin; + hasSeparatingAxis[i] = 1; + separatingNormals[i] = sepNormal; + } + } + + } + +} + + +__kernel void findSeparatingAxisEdgeEdgeKernel( __global const int4* pairs, + __global const BodyData* rigidBodies, + __global const btCollidableGpu* collidables, + __global const ConvexPolyhedronCL* convexShapes, + __global const float4* vertices, + __global const float4* uniqueEdges, + __global const btGpuFace* faces, + __global const int* indices, + __global btAabbCL* aabbs, + __global float4* separatingNormals, + __global int* hasSeparatingAxis, + __global float* dmins, + __global const float4* unitSphereDirections, + int numUnitSphereDirections, + int numPairs + ) +{ + + int i = get_global_id(0); + + if (i<numPairs) + { + + if (hasSeparatingAxis[i]) + { + + int bodyIndexA = pairs[i].x; + int bodyIndexB = pairs[i].y; + + int collidableIndexA = rigidBodies[bodyIndexA].m_collidableIdx; + int collidableIndexB = rigidBodies[bodyIndexB].m_collidableIdx; + + int shapeIndexA = collidables[collidableIndexA].m_shapeIndex; + int shapeIndexB = collidables[collidableIndexB].m_shapeIndex; + + + int numFacesA = convexShapes[shapeIndexA].m_numFaces; + + float dmin = dmins[i]; + + float4 posA = rigidBodies[bodyIndexA].m_pos; + posA.w = 0.f; + float4 posB = rigidBodies[bodyIndexB].m_pos; + posB.w = 0.f; + float4 c0local = convexShapes[shapeIndexA].m_localCenter; + float4 ornA = rigidBodies[bodyIndexA].m_quat; + float4 c0 = transform(&c0local, &posA, &ornA); + float4 c1local = convexShapes[shapeIndexB].m_localCenter; + float4 ornB =rigidBodies[bodyIndexB].m_quat; + float4 c1 = transform(&c1local,&posB,&ornB); + const float4 DeltaC2 = c0 - c1; + float4 sepNormal = separatingNormals[i]; + + + + bool sepEE = false; + int numEdgeEdgeDirections = convexShapes[shapeIndexA].m_numUniqueEdges*convexShapes[shapeIndexB].m_numUniqueEdges; + if (numEdgeEdgeDirections<=numUnitSphereDirections) + { + sepEE = findSeparatingAxisEdgeEdge( &convexShapes[shapeIndexA], &convexShapes[shapeIndexB],posA,ornA, + posB,ornB, + DeltaC2, + vertices,uniqueEdges,faces, + indices,&sepNormal,&dmin); + + if (!sepEE) + { + hasSeparatingAxis[i] = 0; + } else + { + hasSeparatingAxis[i] = 1; + separatingNormals[i] = sepNormal; + } + } + /* + ///else case is a separate kernel, to make Mac OSX OpenCL compiler happy + else + { + sepEE = findSeparatingAxisUnitSphere(&convexShapes[shapeIndexA], &convexShapes[shapeIndexB],posA,ornA, + posB,ornB, + DeltaC2, + vertices,unitSphereDirections,numUnitSphereDirections, + &sepNormal,&dmin); + if (!sepEE) + { + hasSeparatingAxis[i] = 0; + } else + { + hasSeparatingAxis[i] = 1; + separatingNormals[i] = sepNormal; + } + } + */ + } //if (hasSeparatingAxis[i]) + }//(i<numPairs) +} + + + + + +inline int findClippingFaces(const float4 separatingNormal, + const ConvexPolyhedronCL* hullA, + __global const ConvexPolyhedronCL* hullB, + const float4 posA, const Quaternion ornA,const float4 posB, const Quaternion ornB, + __global float4* worldVertsA1, + __global float4* worldNormalsA1, + __global float4* worldVertsB1, + int capacityWorldVerts, + const float minDist, float maxDist, + const float4* verticesA, + const btGpuFace* facesA, + const int* indicesA, + __global const float4* verticesB, + __global const btGpuFace* facesB, + __global const int* indicesB, + __global int4* clippingFaces, int pairIndex) +{ + int numContactsOut = 0; + int numWorldVertsB1= 0; + + + int closestFaceB=0; + float dmax = -FLT_MAX; + + { + for(int face=0;face<hullB->m_numFaces;face++) + { + const float4 Normal = make_float4(facesB[hullB->m_faceOffset+face].m_plane.x, + facesB[hullB->m_faceOffset+face].m_plane.y, facesB[hullB->m_faceOffset+face].m_plane.z,0.f); + const float4 WorldNormal = qtRotate(ornB, Normal); + float d = dot3F4(WorldNormal,separatingNormal); + if (d > dmax) + { + dmax = d; + closestFaceB = face; + } + } + } + + { + const btGpuFace polyB = facesB[hullB->m_faceOffset+closestFaceB]; + int numVertices = polyB.m_numIndices; + if (numVertices>capacityWorldVerts) + numVertices = capacityWorldVerts; + + for(int e0=0;e0<numVertices;e0++) + { + if (e0<capacityWorldVerts) + { + const float4 b = verticesB[hullB->m_vertexOffset+indicesB[polyB.m_indexOffset+e0]]; + worldVertsB1[pairIndex*capacityWorldVerts+numWorldVertsB1++] = transform(&b,&posB,&ornB); + } + } + } + + int closestFaceA=0; + { + float dmin = FLT_MAX; + for(int face=0;face<hullA->m_numFaces;face++) + { + const float4 Normal = make_float4( + facesA[hullA->m_faceOffset+face].m_plane.x, + facesA[hullA->m_faceOffset+face].m_plane.y, + facesA[hullA->m_faceOffset+face].m_plane.z, + 0.f); + const float4 faceANormalWS = qtRotate(ornA,Normal); + + float d = dot3F4(faceANormalWS,separatingNormal); + if (d < dmin) + { + dmin = d; + closestFaceA = face; + worldNormalsA1[pairIndex] = faceANormalWS; + } + } + } + + int numVerticesA = facesA[hullA->m_faceOffset+closestFaceA].m_numIndices; + if (numVerticesA>capacityWorldVerts) + numVerticesA = capacityWorldVerts; + + for(int e0=0;e0<numVerticesA;e0++) + { + if (e0<capacityWorldVerts) + { + const float4 a = verticesA[hullA->m_vertexOffset+indicesA[facesA[hullA->m_faceOffset+closestFaceA].m_indexOffset+e0]]; + worldVertsA1[pairIndex*capacityWorldVerts+e0] = transform(&a, &posA,&ornA); + } + } + + clippingFaces[pairIndex].x = closestFaceA; + clippingFaces[pairIndex].y = closestFaceB; + clippingFaces[pairIndex].z = numVerticesA; + clippingFaces[pairIndex].w = numWorldVertsB1; + + + return numContactsOut; +} + + + + +// work-in-progress +__kernel void findConcaveSeparatingAxisKernel( __global int4* concavePairs, + __global const BodyData* rigidBodies, + __global const btCollidableGpu* collidables, + __global const ConvexPolyhedronCL* convexShapes, + __global const float4* vertices, + __global const float4* uniqueEdges, + __global const btGpuFace* faces, + __global const int* indices, + __global const btGpuChildShape* gpuChildShapes, + __global btAabbCL* aabbs, + __global float4* concaveSeparatingNormalsOut, + __global int* concaveHasSeparatingNormals, + __global int4* clippingFacesOut, + __global float4* worldVertsA1GPU, + __global float4* worldNormalsAGPU, + __global float4* worldVertsB1GPU, + int vertexFaceCapacity, + int numConcavePairs + ) +{ + + int i = get_global_id(0); + if (i>=numConcavePairs) + return; + + concaveHasSeparatingNormals[i] = 0; + + int pairIdx = i; + + int bodyIndexA = concavePairs[i].x; + int bodyIndexB = concavePairs[i].y; + + int collidableIndexA = rigidBodies[bodyIndexA].m_collidableIdx; + int collidableIndexB = rigidBodies[bodyIndexB].m_collidableIdx; + + int shapeIndexA = collidables[collidableIndexA].m_shapeIndex; + int shapeIndexB = collidables[collidableIndexB].m_shapeIndex; + + if (collidables[collidableIndexB].m_shapeType!=SHAPE_CONVEX_HULL&& + collidables[collidableIndexB].m_shapeType!=SHAPE_COMPOUND_OF_CONVEX_HULLS) + { + concavePairs[pairIdx].w = -1; + return; + } + + + + int numFacesA = convexShapes[shapeIndexA].m_numFaces; + int numActualConcaveConvexTests = 0; + + int f = concavePairs[i].z; + + bool overlap = false; + + ConvexPolyhedronCL convexPolyhedronA; + + //add 3 vertices of the triangle + convexPolyhedronA.m_numVertices = 3; + convexPolyhedronA.m_vertexOffset = 0; + float4 localCenter = make_float4(0.f,0.f,0.f,0.f); + + btGpuFace face = faces[convexShapes[shapeIndexA].m_faceOffset+f]; + float4 triMinAabb, triMaxAabb; + btAabbCL triAabb; + triAabb.m_min = make_float4(1e30f,1e30f,1e30f,0.f); + triAabb.m_max = make_float4(-1e30f,-1e30f,-1e30f,0.f); + + float4 verticesA[3]; + for (int i=0;i<3;i++) + { + int index = indices[face.m_indexOffset+i]; + float4 vert = vertices[convexShapes[shapeIndexA].m_vertexOffset+index]; + verticesA[i] = vert; + localCenter += vert; + + triAabb.m_min = min(triAabb.m_min,vert); + triAabb.m_max = max(triAabb.m_max,vert); + + } + + overlap = true; + overlap = (triAabb.m_min.x > aabbs[bodyIndexB].m_max.x || triAabb.m_max.x < aabbs[bodyIndexB].m_min.x) ? false : overlap; + overlap = (triAabb.m_min.z > aabbs[bodyIndexB].m_max.z || triAabb.m_max.z < aabbs[bodyIndexB].m_min.z) ? false : overlap; + overlap = (triAabb.m_min.y > aabbs[bodyIndexB].m_max.y || triAabb.m_max.y < aabbs[bodyIndexB].m_min.y) ? false : overlap; + + if (overlap) + { + float dmin = FLT_MAX; + int hasSeparatingAxis=5; + float4 sepAxis=make_float4(1,2,3,4); + + int localCC=0; + numActualConcaveConvexTests++; + + //a triangle has 3 unique edges + convexPolyhedronA.m_numUniqueEdges = 3; + convexPolyhedronA.m_uniqueEdgesOffset = 0; + float4 uniqueEdgesA[3]; + + uniqueEdgesA[0] = (verticesA[1]-verticesA[0]); + uniqueEdgesA[1] = (verticesA[2]-verticesA[1]); + uniqueEdgesA[2] = (verticesA[0]-verticesA[2]); + + + convexPolyhedronA.m_faceOffset = 0; + + float4 normal = make_float4(face.m_plane.x,face.m_plane.y,face.m_plane.z,0.f); + + btGpuFace facesA[TRIANGLE_NUM_CONVEX_FACES]; + int indicesA[3+3+2+2+2]; + int curUsedIndices=0; + int fidx=0; + + //front size of triangle + { + facesA[fidx].m_indexOffset=curUsedIndices; + indicesA[0] = 0; + indicesA[1] = 1; + indicesA[2] = 2; + curUsedIndices+=3; + float c = face.m_plane.w; + facesA[fidx].m_plane.x = normal.x; + facesA[fidx].m_plane.y = normal.y; + facesA[fidx].m_plane.z = normal.z; + facesA[fidx].m_plane.w = c; + facesA[fidx].m_numIndices=3; + } + fidx++; + //back size of triangle + { + facesA[fidx].m_indexOffset=curUsedIndices; + indicesA[3]=2; + indicesA[4]=1; + indicesA[5]=0; + curUsedIndices+=3; + float c = dot(normal,verticesA[0]); + float c1 = -face.m_plane.w; + facesA[fidx].m_plane.x = -normal.x; + facesA[fidx].m_plane.y = -normal.y; + facesA[fidx].m_plane.z = -normal.z; + facesA[fidx].m_plane.w = c; + facesA[fidx].m_numIndices=3; + } + fidx++; + + bool addEdgePlanes = true; + if (addEdgePlanes) + { + int numVertices=3; + int prevVertex = numVertices-1; + for (int i=0;i<numVertices;i++) + { + float4 v0 = verticesA[i]; + float4 v1 = verticesA[prevVertex]; + + float4 edgeNormal = normalize(cross(normal,v1-v0)); + float c = -dot(edgeNormal,v0); + + facesA[fidx].m_numIndices = 2; + facesA[fidx].m_indexOffset=curUsedIndices; + indicesA[curUsedIndices++]=i; + indicesA[curUsedIndices++]=prevVertex; + + facesA[fidx].m_plane.x = edgeNormal.x; + facesA[fidx].m_plane.y = edgeNormal.y; + facesA[fidx].m_plane.z = edgeNormal.z; + facesA[fidx].m_plane.w = c; + fidx++; + prevVertex = i; + } + } + convexPolyhedronA.m_numFaces = TRIANGLE_NUM_CONVEX_FACES; + convexPolyhedronA.m_localCenter = localCenter*(1.f/3.f); + + + float4 posA = rigidBodies[bodyIndexA].m_pos; + posA.w = 0.f; + float4 posB = rigidBodies[bodyIndexB].m_pos; + posB.w = 0.f; + + float4 ornA = rigidBodies[bodyIndexA].m_quat; + float4 ornB =rigidBodies[bodyIndexB].m_quat; + + + + + /////////////////// + ///compound shape support + + if (collidables[collidableIndexB].m_shapeType==SHAPE_COMPOUND_OF_CONVEX_HULLS) + { + int compoundChild = concavePairs[pairIdx].w; + int childShapeIndexB = compoundChild;//collidables[collidableIndexB].m_shapeIndex+compoundChild; + int childColIndexB = gpuChildShapes[childShapeIndexB].m_shapeIndex; + float4 childPosB = gpuChildShapes[childShapeIndexB].m_childPosition; + float4 childOrnB = gpuChildShapes[childShapeIndexB].m_childOrientation; + float4 newPosB = transform(&childPosB,&posB,&ornB); + float4 newOrnB = qtMul(ornB,childOrnB); + posB = newPosB; + ornB = newOrnB; + shapeIndexB = collidables[childColIndexB].m_shapeIndex; + } + ////////////////// + + float4 c0local = convexPolyhedronA.m_localCenter; + float4 c0 = transform(&c0local, &posA, &ornA); + float4 c1local = convexShapes[shapeIndexB].m_localCenter; + float4 c1 = transform(&c1local,&posB,&ornB); + const float4 DeltaC2 = c0 - c1; + + + bool sepA = findSeparatingAxisLocalA( &convexPolyhedronA, &convexShapes[shapeIndexB], + posA,ornA, + posB,ornB, + DeltaC2, + verticesA,uniqueEdgesA,facesA,indicesA, + vertices,uniqueEdges,faces,indices, + &sepAxis,&dmin); + hasSeparatingAxis = 4; + if (!sepA) + { + hasSeparatingAxis = 0; + } else + { + bool sepB = findSeparatingAxisLocalB( &convexShapes[shapeIndexB],&convexPolyhedronA, + posB,ornB, + posA,ornA, + DeltaC2, + vertices,uniqueEdges,faces,indices, + verticesA,uniqueEdgesA,facesA,indicesA, + &sepAxis,&dmin); + + if (!sepB) + { + hasSeparatingAxis = 0; + } else + { + bool sepEE = findSeparatingAxisEdgeEdgeLocalA( &convexPolyhedronA, &convexShapes[shapeIndexB], + posA,ornA, + posB,ornB, + DeltaC2, + verticesA,uniqueEdgesA,facesA,indicesA, + vertices,uniqueEdges,faces,indices, + &sepAxis,&dmin); + + if (!sepEE) + { + hasSeparatingAxis = 0; + } else + { + hasSeparatingAxis = 1; + } + } + } + + if (hasSeparatingAxis) + { + sepAxis.w = dmin; + concaveSeparatingNormalsOut[pairIdx]=sepAxis; + concaveHasSeparatingNormals[i]=1; + + + float minDist = -1e30f; + float maxDist = 0.02f; + + + + findClippingFaces(sepAxis, + &convexPolyhedronA, + &convexShapes[shapeIndexB], + posA,ornA, + posB,ornB, + worldVertsA1GPU, + worldNormalsAGPU, + worldVertsB1GPU, + vertexFaceCapacity, + minDist, maxDist, + verticesA, + facesA, + indicesA, + vertices, + faces, + indices, + clippingFacesOut, pairIdx); + + + } else + { + //mark this pair as in-active + concavePairs[pairIdx].w = -1; + } + } + else + { + //mark this pair as in-active + concavePairs[pairIdx].w = -1; + } + + concavePairs[pairIdx].z = -1;//now z is used for existing/persistent contacts +} + + + diff --git a/thirdparty/bullet/Bullet3OpenCL/NarrowphaseCollision/kernels/satClipHullContacts.cl b/thirdparty/bullet/Bullet3OpenCL/NarrowphaseCollision/kernels/satClipHullContacts.cl new file mode 100644 index 0000000000..f433971741 --- /dev/null +++ b/thirdparty/bullet/Bullet3OpenCL/NarrowphaseCollision/kernels/satClipHullContacts.cl @@ -0,0 +1,1888 @@ + +#define TRIANGLE_NUM_CONVEX_FACES 5 + + + +#pragma OPENCL EXTENSION cl_amd_printf : enable +#pragma OPENCL EXTENSION cl_khr_local_int32_base_atomics : enable +#pragma OPENCL EXTENSION cl_khr_global_int32_base_atomics : enable +#pragma OPENCL EXTENSION cl_khr_local_int32_extended_atomics : enable +#pragma OPENCL EXTENSION cl_khr_global_int32_extended_atomics : enable + +#ifdef cl_ext_atomic_counters_32 +#pragma OPENCL EXTENSION cl_ext_atomic_counters_32 : enable +#else +#define counter32_t volatile __global int* +#endif + +#define GET_GROUP_IDX get_group_id(0) +#define GET_LOCAL_IDX get_local_id(0) +#define GET_GLOBAL_IDX get_global_id(0) +#define GET_GROUP_SIZE get_local_size(0) +#define GET_NUM_GROUPS get_num_groups(0) +#define GROUP_LDS_BARRIER barrier(CLK_LOCAL_MEM_FENCE) +#define GROUP_MEM_FENCE mem_fence(CLK_LOCAL_MEM_FENCE) +#define AtomInc(x) atom_inc(&(x)) +#define AtomInc1(x, out) out = atom_inc(&(x)) +#define AppendInc(x, out) out = atomic_inc(x) +#define AtomAdd(x, value) atom_add(&(x), value) +#define AtomCmpxhg(x, cmp, value) atom_cmpxchg( &(x), cmp, value ) +#define AtomXhg(x, value) atom_xchg ( &(x), value ) + +#define max2 max +#define min2 min + +typedef unsigned int u32; + + + +#include "Bullet3Collision/NarrowPhaseCollision/shared/b3Contact4Data.h" +#include "Bullet3Collision/NarrowPhaseCollision/shared/b3ConvexPolyhedronData.h" +#include "Bullet3Collision/NarrowPhaseCollision/shared/b3Collidable.h" +#include "Bullet3Collision/NarrowPhaseCollision/shared/b3RigidBodyData.h" + + + +#define GET_NPOINTS(x) (x).m_worldNormalOnB.w + + + +#define SELECT_UINT4( b, a, condition ) select( b,a,condition ) + +#define make_float4 (float4) +#define make_float2 (float2) +#define make_uint4 (uint4) +#define make_int4 (int4) +#define make_uint2 (uint2) +#define make_int2 (int2) + + +__inline +float fastDiv(float numerator, float denominator) +{ + return native_divide(numerator, denominator); +// return numerator/denominator; +} + +__inline +float4 fastDiv4(float4 numerator, float4 denominator) +{ + return native_divide(numerator, denominator); +} + + +__inline +float4 cross3(float4 a, float4 b) +{ + return cross(a,b); +} + +//#define dot3F4 dot + +__inline +float dot3F4(float4 a, float4 b) +{ + float4 a1 = make_float4(a.xyz,0.f); + float4 b1 = make_float4(b.xyz,0.f); + return dot(a1, b1); +} + +__inline +float4 fastNormalize4(float4 v) +{ + return fast_normalize(v); +} + + +/////////////////////////////////////// +// Quaternion +/////////////////////////////////////// + +typedef float4 Quaternion; + +__inline +Quaternion qtMul(Quaternion a, Quaternion b); + +__inline +Quaternion qtNormalize(Quaternion in); + +__inline +float4 qtRotate(Quaternion q, float4 vec); + +__inline +Quaternion qtInvert(Quaternion q); + + + + +__inline +Quaternion qtMul(Quaternion a, Quaternion b) +{ + Quaternion ans; + ans = cross3( a, b ); + ans += a.w*b+b.w*a; +// ans.w = a.w*b.w - (a.x*b.x+a.y*b.y+a.z*b.z); + ans.w = a.w*b.w - dot3F4(a, b); + return ans; +} + +__inline +Quaternion qtNormalize(Quaternion in) +{ + return fastNormalize4(in); +// in /= length( in ); +// return in; +} +__inline +float4 qtRotate(Quaternion q, float4 vec) +{ + Quaternion qInv = qtInvert( q ); + float4 vcpy = vec; + vcpy.w = 0.f; + float4 out = qtMul(qtMul(q,vcpy),qInv); + return out; +} + +__inline +Quaternion qtInvert(Quaternion q) +{ + return (Quaternion)(-q.xyz, q.w); +} + +__inline +float4 qtInvRotate(const Quaternion q, float4 vec) +{ + return qtRotate( qtInvert( q ), vec ); +} + +__inline +float4 transform(const float4* p, const float4* translation, const Quaternion* orientation) +{ + return qtRotate( *orientation, *p ) + (*translation); +} + + + +__inline +float4 normalize3(const float4 a) +{ + float4 n = make_float4(a.x, a.y, a.z, 0.f); + return fastNormalize4( n ); +} + + +__inline float4 lerp3(const float4 a,const float4 b, float t) +{ + return make_float4( a.x + (b.x - a.x) * t, + a.y + (b.y - a.y) * t, + a.z + (b.z - a.z) * t, + 0.f); +} + + + +// Clips a face to the back of a plane, return the number of vertices out, stored in ppVtxOut +int clipFaceGlobal(__global const float4* pVtxIn, int numVertsIn, float4 planeNormalWS,float planeEqWS, __global float4* ppVtxOut) +{ + + int ve; + float ds, de; + int numVertsOut = 0; + //double-check next test + if (numVertsIn < 2) + return 0; + + float4 firstVertex=pVtxIn[numVertsIn-1]; + float4 endVertex = pVtxIn[0]; + + ds = dot3F4(planeNormalWS,firstVertex)+planeEqWS; + + for (ve = 0; ve < numVertsIn; ve++) + { + endVertex=pVtxIn[ve]; + de = dot3F4(planeNormalWS,endVertex)+planeEqWS; + if (ds<0) + { + if (de<0) + { + // Start < 0, end < 0, so output endVertex + ppVtxOut[numVertsOut++] = endVertex; + } + else + { + // Start < 0, end >= 0, so output intersection + ppVtxOut[numVertsOut++] = lerp3(firstVertex, endVertex,(ds * 1.f/(ds - de)) ); + } + } + else + { + if (de<0) + { + // Start >= 0, end < 0 so output intersection and end + ppVtxOut[numVertsOut++] = lerp3(firstVertex, endVertex,(ds * 1.f/(ds - de)) ); + ppVtxOut[numVertsOut++] = endVertex; + } + } + firstVertex = endVertex; + ds = de; + } + return numVertsOut; +} + + + +// Clips a face to the back of a plane, return the number of vertices out, stored in ppVtxOut +int clipFace(const float4* pVtxIn, int numVertsIn, float4 planeNormalWS,float planeEqWS, float4* ppVtxOut) +{ + + int ve; + float ds, de; + int numVertsOut = 0; +//double-check next test + if (numVertsIn < 2) + return 0; + + float4 firstVertex=pVtxIn[numVertsIn-1]; + float4 endVertex = pVtxIn[0]; + + ds = dot3F4(planeNormalWS,firstVertex)+planeEqWS; + + for (ve = 0; ve < numVertsIn; ve++) + { + endVertex=pVtxIn[ve]; + + de = dot3F4(planeNormalWS,endVertex)+planeEqWS; + + if (ds<0) + { + if (de<0) + { + // Start < 0, end < 0, so output endVertex + ppVtxOut[numVertsOut++] = endVertex; + } + else + { + // Start < 0, end >= 0, so output intersection + ppVtxOut[numVertsOut++] = lerp3(firstVertex, endVertex,(ds * 1.f/(ds - de)) ); + } + } + else + { + if (de<0) + { + // Start >= 0, end < 0 so output intersection and end + ppVtxOut[numVertsOut++] = lerp3(firstVertex, endVertex,(ds * 1.f/(ds - de)) ); + ppVtxOut[numVertsOut++] = endVertex; + } + } + firstVertex = endVertex; + ds = de; + } + return numVertsOut; +} + + +int clipFaceAgainstHull(const float4 separatingNormal, __global const b3ConvexPolyhedronData_t* hullA, + const float4 posA, const Quaternion ornA, float4* worldVertsB1, int numWorldVertsB1, + float4* worldVertsB2, int capacityWorldVertsB2, + const float minDist, float maxDist, + __global const float4* vertices, + __global const b3GpuFace_t* faces, + __global const int* indices, + float4* contactsOut, + int contactCapacity) +{ + int numContactsOut = 0; + + float4* pVtxIn = worldVertsB1; + float4* pVtxOut = worldVertsB2; + + int numVertsIn = numWorldVertsB1; + int numVertsOut = 0; + + int closestFaceA=-1; + { + float dmin = FLT_MAX; + for(int face=0;face<hullA->m_numFaces;face++) + { + const float4 Normal = make_float4( + faces[hullA->m_faceOffset+face].m_plane.x, + faces[hullA->m_faceOffset+face].m_plane.y, + faces[hullA->m_faceOffset+face].m_plane.z,0.f); + const float4 faceANormalWS = qtRotate(ornA,Normal); + + float d = dot3F4(faceANormalWS,separatingNormal); + if (d < dmin) + { + dmin = d; + closestFaceA = face; + } + } + } + if (closestFaceA<0) + return numContactsOut; + + b3GpuFace_t polyA = faces[hullA->m_faceOffset+closestFaceA]; + + // clip polygon to back of planes of all faces of hull A that are adjacent to witness face + int numVerticesA = polyA.m_numIndices; + for(int e0=0;e0<numVerticesA;e0++) + { + const float4 a = vertices[hullA->m_vertexOffset+indices[polyA.m_indexOffset+e0]]; + const float4 b = vertices[hullA->m_vertexOffset+indices[polyA.m_indexOffset+((e0+1)%numVerticesA)]]; + const float4 edge0 = a - b; + const float4 WorldEdge0 = qtRotate(ornA,edge0); + float4 planeNormalA = make_float4(polyA.m_plane.x,polyA.m_plane.y,polyA.m_plane.z,0.f); + float4 worldPlaneAnormal1 = qtRotate(ornA,planeNormalA); + + float4 planeNormalWS1 = -cross3(WorldEdge0,worldPlaneAnormal1); + float4 worldA1 = transform(&a,&posA,&ornA); + float planeEqWS1 = -dot3F4(worldA1,planeNormalWS1); + + float4 planeNormalWS = planeNormalWS1; + float planeEqWS=planeEqWS1; + + //clip face + //clipFace(*pVtxIn, *pVtxOut,planeNormalWS,planeEqWS); + numVertsOut = clipFace(pVtxIn, numVertsIn, planeNormalWS,planeEqWS, pVtxOut); + + //btSwap(pVtxIn,pVtxOut); + float4* tmp = pVtxOut; + pVtxOut = pVtxIn; + pVtxIn = tmp; + numVertsIn = numVertsOut; + numVertsOut = 0; + } + + + // only keep points that are behind the witness face + { + float4 localPlaneNormal = make_float4(polyA.m_plane.x,polyA.m_plane.y,polyA.m_plane.z,0.f); + float localPlaneEq = polyA.m_plane.w; + float4 planeNormalWS = qtRotate(ornA,localPlaneNormal); + float planeEqWS=localPlaneEq-dot3F4(planeNormalWS,posA); + for (int i=0;i<numVertsIn;i++) + { + float depth = dot3F4(planeNormalWS,pVtxIn[i])+planeEqWS; + if (depth <=minDist) + { + depth = minDist; + } + + if (depth <=maxDist) + { + float4 pointInWorld = pVtxIn[i]; + //resultOut.addContactPoint(separatingNormal,point,depth); + contactsOut[numContactsOut++] = make_float4(pointInWorld.x,pointInWorld.y,pointInWorld.z,depth); + } + } + } + + return numContactsOut; +} + + + +int clipFaceAgainstHullLocalA(const float4 separatingNormal, const b3ConvexPolyhedronData_t* hullA, + const float4 posA, const Quaternion ornA, float4* worldVertsB1, int numWorldVertsB1, + float4* worldVertsB2, int capacityWorldVertsB2, + const float minDist, float maxDist, + const float4* verticesA, + const b3GpuFace_t* facesA, + const int* indicesA, + __global const float4* verticesB, + __global const b3GpuFace_t* facesB, + __global const int* indicesB, + float4* contactsOut, + int contactCapacity) +{ + int numContactsOut = 0; + + float4* pVtxIn = worldVertsB1; + float4* pVtxOut = worldVertsB2; + + int numVertsIn = numWorldVertsB1; + int numVertsOut = 0; + + int closestFaceA=-1; + { + float dmin = FLT_MAX; + for(int face=0;face<hullA->m_numFaces;face++) + { + const float4 Normal = make_float4( + facesA[hullA->m_faceOffset+face].m_plane.x, + facesA[hullA->m_faceOffset+face].m_plane.y, + facesA[hullA->m_faceOffset+face].m_plane.z,0.f); + const float4 faceANormalWS = qtRotate(ornA,Normal); + + float d = dot3F4(faceANormalWS,separatingNormal); + if (d < dmin) + { + dmin = d; + closestFaceA = face; + } + } + } + if (closestFaceA<0) + return numContactsOut; + + b3GpuFace_t polyA = facesA[hullA->m_faceOffset+closestFaceA]; + + // clip polygon to back of planes of all faces of hull A that are adjacent to witness face + int numVerticesA = polyA.m_numIndices; + for(int e0=0;e0<numVerticesA;e0++) + { + const float4 a = verticesA[hullA->m_vertexOffset+indicesA[polyA.m_indexOffset+e0]]; + const float4 b = verticesA[hullA->m_vertexOffset+indicesA[polyA.m_indexOffset+((e0+1)%numVerticesA)]]; + const float4 edge0 = a - b; + const float4 WorldEdge0 = qtRotate(ornA,edge0); + float4 planeNormalA = make_float4(polyA.m_plane.x,polyA.m_plane.y,polyA.m_plane.z,0.f); + float4 worldPlaneAnormal1 = qtRotate(ornA,planeNormalA); + + float4 planeNormalWS1 = -cross3(WorldEdge0,worldPlaneAnormal1); + float4 worldA1 = transform(&a,&posA,&ornA); + float planeEqWS1 = -dot3F4(worldA1,planeNormalWS1); + + float4 planeNormalWS = planeNormalWS1; + float planeEqWS=planeEqWS1; + + //clip face + //clipFace(*pVtxIn, *pVtxOut,planeNormalWS,planeEqWS); + numVertsOut = clipFace(pVtxIn, numVertsIn, planeNormalWS,planeEqWS, pVtxOut); + + //btSwap(pVtxIn,pVtxOut); + float4* tmp = pVtxOut; + pVtxOut = pVtxIn; + pVtxIn = tmp; + numVertsIn = numVertsOut; + numVertsOut = 0; + } + + + // only keep points that are behind the witness face + { + float4 localPlaneNormal = make_float4(polyA.m_plane.x,polyA.m_plane.y,polyA.m_plane.z,0.f); + float localPlaneEq = polyA.m_plane.w; + float4 planeNormalWS = qtRotate(ornA,localPlaneNormal); + float planeEqWS=localPlaneEq-dot3F4(planeNormalWS,posA); + for (int i=0;i<numVertsIn;i++) + { + float depth = dot3F4(planeNormalWS,pVtxIn[i])+planeEqWS; + if (depth <=minDist) + { + depth = minDist; + } + + if (depth <=maxDist) + { + float4 pointInWorld = pVtxIn[i]; + //resultOut.addContactPoint(separatingNormal,point,depth); + contactsOut[numContactsOut++] = make_float4(pointInWorld.x,pointInWorld.y,pointInWorld.z,depth); + } + } + } + + return numContactsOut; +} + +int clipHullAgainstHull(const float4 separatingNormal, + __global const b3ConvexPolyhedronData_t* hullA, __global const b3ConvexPolyhedronData_t* hullB, + const float4 posA, const Quaternion ornA,const float4 posB, const Quaternion ornB, + float4* worldVertsB1, float4* worldVertsB2, int capacityWorldVerts, + const float minDist, float maxDist, + __global const float4* vertices, + __global const b3GpuFace_t* faces, + __global const int* indices, + float4* localContactsOut, + int localContactCapacity) +{ + int numContactsOut = 0; + int numWorldVertsB1= 0; + + + int closestFaceB=-1; + float dmax = -FLT_MAX; + + { + for(int face=0;face<hullB->m_numFaces;face++) + { + const float4 Normal = make_float4(faces[hullB->m_faceOffset+face].m_plane.x, + faces[hullB->m_faceOffset+face].m_plane.y, faces[hullB->m_faceOffset+face].m_plane.z,0.f); + const float4 WorldNormal = qtRotate(ornB, Normal); + float d = dot3F4(WorldNormal,separatingNormal); + if (d > dmax) + { + dmax = d; + closestFaceB = face; + } + } + } + + { + const b3GpuFace_t polyB = faces[hullB->m_faceOffset+closestFaceB]; + const int numVertices = polyB.m_numIndices; + for(int e0=0;e0<numVertices;e0++) + { + const float4 b = vertices[hullB->m_vertexOffset+indices[polyB.m_indexOffset+e0]]; + worldVertsB1[numWorldVertsB1++] = transform(&b,&posB,&ornB); + } + } + + if (closestFaceB>=0) + { + numContactsOut = clipFaceAgainstHull(separatingNormal, hullA, + posA,ornA, + worldVertsB1,numWorldVertsB1,worldVertsB2,capacityWorldVerts, minDist, maxDist,vertices, + faces, + indices,localContactsOut,localContactCapacity); + } + + return numContactsOut; +} + + +int clipHullAgainstHullLocalA(const float4 separatingNormal, + const b3ConvexPolyhedronData_t* hullA, __global const b3ConvexPolyhedronData_t* hullB, + const float4 posA, const Quaternion ornA,const float4 posB, const Quaternion ornB, + float4* worldVertsB1, float4* worldVertsB2, int capacityWorldVerts, + const float minDist, float maxDist, + const float4* verticesA, + const b3GpuFace_t* facesA, + const int* indicesA, + __global const float4* verticesB, + __global const b3GpuFace_t* facesB, + __global const int* indicesB, + float4* localContactsOut, + int localContactCapacity) +{ + int numContactsOut = 0; + int numWorldVertsB1= 0; + + + int closestFaceB=-1; + float dmax = -FLT_MAX; + + { + for(int face=0;face<hullB->m_numFaces;face++) + { + const float4 Normal = make_float4(facesB[hullB->m_faceOffset+face].m_plane.x, + facesB[hullB->m_faceOffset+face].m_plane.y, facesB[hullB->m_faceOffset+face].m_plane.z,0.f); + const float4 WorldNormal = qtRotate(ornB, Normal); + float d = dot3F4(WorldNormal,separatingNormal); + if (d > dmax) + { + dmax = d; + closestFaceB = face; + } + } + } + + { + const b3GpuFace_t polyB = facesB[hullB->m_faceOffset+closestFaceB]; + const int numVertices = polyB.m_numIndices; + for(int e0=0;e0<numVertices;e0++) + { + const float4 b = verticesB[hullB->m_vertexOffset+indicesB[polyB.m_indexOffset+e0]]; + worldVertsB1[numWorldVertsB1++] = transform(&b,&posB,&ornB); + } + } + + if (closestFaceB>=0) + { + numContactsOut = clipFaceAgainstHullLocalA(separatingNormal, hullA, + posA,ornA, + worldVertsB1,numWorldVertsB1,worldVertsB2,capacityWorldVerts, minDist, maxDist, + verticesA,facesA,indicesA, + verticesB,facesB,indicesB, + localContactsOut,localContactCapacity); + } + + return numContactsOut; +} + +#define PARALLEL_SUM(v, n) for(int j=1; j<n; j++) v[0] += v[j]; +#define PARALLEL_DO(execution, n) for(int ie=0; ie<n; ie++){execution;} +#define REDUCE_MAX(v, n) {int i=0;\ +for(int offset=0; offset<n; offset++) v[i] = (v[i].y > v[i+offset].y)? v[i]: v[i+offset]; } +#define REDUCE_MIN(v, n) {int i=0;\ +for(int offset=0; offset<n; offset++) v[i] = (v[i].y < v[i+offset].y)? v[i]: v[i+offset]; } + +int extractManifoldSequentialGlobal(__global const float4* p, int nPoints, float4 nearNormal, int4* contactIdx) +{ + if( nPoints == 0 ) + return 0; + + if (nPoints <=4) + return nPoints; + + + if (nPoints >64) + nPoints = 64; + + float4 center = make_float4(0.f); + { + + for (int i=0;i<nPoints;i++) + center += p[i]; + center /= (float)nPoints; + } + + + + // sample 4 directions + + float4 aVector = p[0] - center; + float4 u = cross3( nearNormal, aVector ); + float4 v = cross3( nearNormal, u ); + u = normalize3( u ); + v = normalize3( v ); + + + //keep point with deepest penetration + float minW= FLT_MAX; + + int minIndex=-1; + + float4 maxDots; + maxDots.x = FLT_MIN; + maxDots.y = FLT_MIN; + maxDots.z = FLT_MIN; + maxDots.w = FLT_MIN; + + // idx, distance + for(int ie = 0; ie<nPoints; ie++ ) + { + if (p[ie].w<minW) + { + minW = p[ie].w; + minIndex=ie; + } + float f; + float4 r = p[ie]-center; + f = dot3F4( u, r ); + if (f<maxDots.x) + { + maxDots.x = f; + contactIdx[0].x = ie; + } + + f = dot3F4( -u, r ); + if (f<maxDots.y) + { + maxDots.y = f; + contactIdx[0].y = ie; + } + + + f = dot3F4( v, r ); + if (f<maxDots.z) + { + maxDots.z = f; + contactIdx[0].z = ie; + } + + f = dot3F4( -v, r ); + if (f<maxDots.w) + { + maxDots.w = f; + contactIdx[0].w = ie; + } + + } + + if (contactIdx[0].x != minIndex && contactIdx[0].y != minIndex && contactIdx[0].z != minIndex && contactIdx[0].w != minIndex) + { + //replace the first contact with minimum (todo: replace contact with least penetration) + contactIdx[0].x = minIndex; + } + + return 4; + +} + + +int extractManifoldSequentialGlobalFake(__global const float4* p, int nPoints, float4 nearNormal, int* contactIdx) +{ + contactIdx[0] = 0; + contactIdx[1] = 1; + contactIdx[2] = 2; + contactIdx[3] = 3; + + if( nPoints == 0 ) return 0; + + nPoints = min2( nPoints, 4 ); + return nPoints; + +} + + + +int extractManifoldSequential(const float4* p, int nPoints, float4 nearNormal, int* contactIdx) +{ + if( nPoints == 0 ) return 0; + + nPoints = min2( nPoints, 64 ); + + float4 center = make_float4(0.f); + { + float4 v[64]; + for (int i=0;i<nPoints;i++) + v[i] = p[i]; + //memcpy( v, p, nPoints*sizeof(float4) ); + PARALLEL_SUM( v, nPoints ); + center = v[0]/(float)nPoints; + } + + + + { // sample 4 directions + if( nPoints < 4 ) + { + for(int i=0; i<nPoints; i++) + contactIdx[i] = i; + return nPoints; + } + + float4 aVector = p[0] - center; + float4 u = cross3( nearNormal, aVector ); + float4 v = cross3( nearNormal, u ); + u = normalize3( u ); + v = normalize3( v ); + + int idx[4]; + + float2 max00 = make_float2(0,FLT_MAX); + { + // idx, distance + { + { + int4 a[64]; + for(int ie = 0; ie<nPoints; ie++ ) + { + + + float f; + float4 r = p[ie]-center; + f = dot3F4( u, r ); + a[ie].x = ((*(u32*)&f) & 0xffffff00) | (0xff & ie); + + f = dot3F4( -u, r ); + a[ie].y = ((*(u32*)&f) & 0xffffff00) | (0xff & ie); + + f = dot3F4( v, r ); + a[ie].z = ((*(u32*)&f) & 0xffffff00) | (0xff & ie); + + f = dot3F4( -v, r ); + a[ie].w = ((*(u32*)&f) & 0xffffff00) | (0xff & ie); + } + + for(int ie=0; ie<nPoints; ie++) + { + a[0].x = (a[0].x > a[ie].x )? a[0].x: a[ie].x; + a[0].y = (a[0].y > a[ie].y )? a[0].y: a[ie].y; + a[0].z = (a[0].z > a[ie].z )? a[0].z: a[ie].z; + a[0].w = (a[0].w > a[ie].w )? a[0].w: a[ie].w; + } + + idx[0] = (int)a[0].x & 0xff; + idx[1] = (int)a[0].y & 0xff; + idx[2] = (int)a[0].z & 0xff; + idx[3] = (int)a[0].w & 0xff; + } + } + + { + float2 h[64]; + PARALLEL_DO( h[ie] = make_float2((float)ie, p[ie].w), nPoints ); + REDUCE_MIN( h, nPoints ); + max00 = h[0]; + } + } + + contactIdx[0] = idx[0]; + contactIdx[1] = idx[1]; + contactIdx[2] = idx[2]; + contactIdx[3] = idx[3]; + + + return 4; + } +} + + + +__kernel void extractManifoldAndAddContactKernel(__global const int4* pairs, + __global const b3RigidBodyData_t* rigidBodies, + __global const float4* closestPointsWorld, + __global const float4* separatingNormalsWorld, + __global const int* contactCounts, + __global const int* contactOffsets, + __global struct b3Contact4Data* restrict contactsOut, + counter32_t nContactsOut, + int contactCapacity, + int numPairs, + int pairIndex + ) +{ + int idx = get_global_id(0); + + if (idx<numPairs) + { + float4 normal = separatingNormalsWorld[idx]; + int nPoints = contactCounts[idx]; + __global const float4* pointsIn = &closestPointsWorld[contactOffsets[idx]]; + float4 localPoints[64]; + for (int i=0;i<nPoints;i++) + { + localPoints[i] = pointsIn[i]; + } + + int contactIdx[4];// = {-1,-1,-1,-1}; + contactIdx[0] = -1; + contactIdx[1] = -1; + contactIdx[2] = -1; + contactIdx[3] = -1; + + int nContacts = extractManifoldSequential(localPoints, nPoints, normal, contactIdx); + + int dstIdx; + AppendInc( nContactsOut, dstIdx ); + if (dstIdx<contactCapacity) + { + __global struct b3Contact4Data* c = contactsOut + dstIdx; + c->m_worldNormalOnB = -normal; + c->m_restituitionCoeffCmp = (0.f*0xffff);c->m_frictionCoeffCmp = (0.7f*0xffff); + c->m_batchIdx = idx; + int bodyA = pairs[pairIndex].x; + int bodyB = pairs[pairIndex].y; + c->m_bodyAPtrAndSignBit = rigidBodies[bodyA].m_invMass==0 ? -bodyA:bodyA; + c->m_bodyBPtrAndSignBit = rigidBodies[bodyB].m_invMass==0 ? -bodyB:bodyB; + c->m_childIndexA = -1; + c->m_childIndexB = -1; + for (int i=0;i<nContacts;i++) + { + c->m_worldPosB[i] = localPoints[contactIdx[i]]; + } + GET_NPOINTS(*c) = nContacts; + } + } +} + + +void trInverse(float4 translationIn, Quaternion orientationIn, + float4* translationOut, Quaternion* orientationOut) +{ + *orientationOut = qtInvert(orientationIn); + *translationOut = qtRotate(*orientationOut, -translationIn); +} + +void trMul(float4 translationA, Quaternion orientationA, + float4 translationB, Quaternion orientationB, + float4* translationOut, Quaternion* orientationOut) +{ + *orientationOut = qtMul(orientationA,orientationB); + *translationOut = transform(&translationB,&translationA,&orientationA); +} + + + + +__kernel void clipHullHullKernel( __global int4* pairs, + __global const b3RigidBodyData_t* rigidBodies, + __global const b3Collidable_t* collidables, + __global const b3ConvexPolyhedronData_t* convexShapes, + __global const float4* vertices, + __global const float4* uniqueEdges, + __global const b3GpuFace_t* faces, + __global const int* indices, + __global const float4* separatingNormals, + __global const int* hasSeparatingAxis, + __global struct b3Contact4Data* restrict globalContactsOut, + counter32_t nGlobalContactsOut, + int numPairs, + int contactCapacity) +{ + + int i = get_global_id(0); + int pairIndex = i; + + float4 worldVertsB1[64]; + float4 worldVertsB2[64]; + int capacityWorldVerts = 64; + + float4 localContactsOut[64]; + int localContactCapacity=64; + + float minDist = -1e30f; + float maxDist = 0.02f; + + if (i<numPairs) + { + + int bodyIndexA = pairs[i].x; + int bodyIndexB = pairs[i].y; + + int collidableIndexA = rigidBodies[bodyIndexA].m_collidableIdx; + int collidableIndexB = rigidBodies[bodyIndexB].m_collidableIdx; + + if (hasSeparatingAxis[i]) + { + + + int shapeIndexA = collidables[collidableIndexA].m_shapeIndex; + int shapeIndexB = collidables[collidableIndexB].m_shapeIndex; + + + + + int numLocalContactsOut = clipHullAgainstHull(separatingNormals[i], + &convexShapes[shapeIndexA], &convexShapes[shapeIndexB], + rigidBodies[bodyIndexA].m_pos,rigidBodies[bodyIndexA].m_quat, + rigidBodies[bodyIndexB].m_pos,rigidBodies[bodyIndexB].m_quat, + worldVertsB1,worldVertsB2,capacityWorldVerts, + minDist, maxDist, + vertices,faces,indices, + localContactsOut,localContactCapacity); + + if (numLocalContactsOut>0) + { + float4 normal = -separatingNormals[i]; + int nPoints = numLocalContactsOut; + float4* pointsIn = localContactsOut; + int contactIdx[4];// = {-1,-1,-1,-1}; + + contactIdx[0] = -1; + contactIdx[1] = -1; + contactIdx[2] = -1; + contactIdx[3] = -1; + + int nReducedContacts = extractManifoldSequential(pointsIn, nPoints, normal, contactIdx); + + + int mprContactIndex = pairs[pairIndex].z; + + int dstIdx = mprContactIndex; + if (dstIdx<0) + { + AppendInc( nGlobalContactsOut, dstIdx ); + } + + if (dstIdx<contactCapacity) + { + pairs[pairIndex].z = dstIdx; + + __global struct b3Contact4Data* c = globalContactsOut+ dstIdx; + c->m_worldNormalOnB = -normal; + c->m_restituitionCoeffCmp = (0.f*0xffff);c->m_frictionCoeffCmp = (0.7f*0xffff); + c->m_batchIdx = pairIndex; + int bodyA = pairs[pairIndex].x; + int bodyB = pairs[pairIndex].y; + c->m_bodyAPtrAndSignBit = rigidBodies[bodyA].m_invMass==0?-bodyA:bodyA; + c->m_bodyBPtrAndSignBit = rigidBodies[bodyB].m_invMass==0?-bodyB:bodyB; + c->m_childIndexA = -1; + c->m_childIndexB = -1; + + for (int i=0;i<nReducedContacts;i++) + { + //this condition means: overwrite contact point, unless at index i==0 we have a valid 'mpr' contact + if (i>0||(mprContactIndex<0)) + { + c->m_worldPosB[i] = pointsIn[contactIdx[i]]; + } + } + GET_NPOINTS(*c) = nReducedContacts; + } + + }// if (numContactsOut>0) + }// if (hasSeparatingAxis[i]) + }// if (i<numPairs) + +} + + +__kernel void clipCompoundsHullHullKernel( __global const int4* gpuCompoundPairs, + __global const b3RigidBodyData_t* rigidBodies, + __global const b3Collidable_t* collidables, + __global const b3ConvexPolyhedronData_t* convexShapes, + __global const float4* vertices, + __global const float4* uniqueEdges, + __global const b3GpuFace_t* faces, + __global const int* indices, + __global const b3GpuChildShape_t* gpuChildShapes, + __global const float4* gpuCompoundSepNormalsOut, + __global const int* gpuHasCompoundSepNormalsOut, + __global struct b3Contact4Data* restrict globalContactsOut, + counter32_t nGlobalContactsOut, + int numCompoundPairs, int maxContactCapacity) +{ + + int i = get_global_id(0); + int pairIndex = i; + + float4 worldVertsB1[64]; + float4 worldVertsB2[64]; + int capacityWorldVerts = 64; + + float4 localContactsOut[64]; + int localContactCapacity=64; + + float minDist = -1e30f; + float maxDist = 0.02f; + + if (i<numCompoundPairs) + { + + if (gpuHasCompoundSepNormalsOut[i]) + { + + int bodyIndexA = gpuCompoundPairs[i].x; + int bodyIndexB = gpuCompoundPairs[i].y; + + int childShapeIndexA = gpuCompoundPairs[i].z; + int childShapeIndexB = gpuCompoundPairs[i].w; + + int collidableIndexA = -1; + int collidableIndexB = -1; + + float4 ornA = rigidBodies[bodyIndexA].m_quat; + float4 posA = rigidBodies[bodyIndexA].m_pos; + + float4 ornB = rigidBodies[bodyIndexB].m_quat; + float4 posB = rigidBodies[bodyIndexB].m_pos; + + if (childShapeIndexA >= 0) + { + collidableIndexA = gpuChildShapes[childShapeIndexA].m_shapeIndex; + float4 childPosA = gpuChildShapes[childShapeIndexA].m_childPosition; + float4 childOrnA = gpuChildShapes[childShapeIndexA].m_childOrientation; + float4 newPosA = qtRotate(ornA,childPosA)+posA; + float4 newOrnA = qtMul(ornA,childOrnA); + posA = newPosA; + ornA = newOrnA; + } else + { + collidableIndexA = rigidBodies[bodyIndexA].m_collidableIdx; + } + + if (childShapeIndexB>=0) + { + collidableIndexB = gpuChildShapes[childShapeIndexB].m_shapeIndex; + float4 childPosB = gpuChildShapes[childShapeIndexB].m_childPosition; + float4 childOrnB = gpuChildShapes[childShapeIndexB].m_childOrientation; + float4 newPosB = transform(&childPosB,&posB,&ornB); + float4 newOrnB = qtMul(ornB,childOrnB); + posB = newPosB; + ornB = newOrnB; + } else + { + collidableIndexB = rigidBodies[bodyIndexB].m_collidableIdx; + } + + int shapeIndexA = collidables[collidableIndexA].m_shapeIndex; + int shapeIndexB = collidables[collidableIndexB].m_shapeIndex; + + int numLocalContactsOut = clipHullAgainstHull(gpuCompoundSepNormalsOut[i], + &convexShapes[shapeIndexA], &convexShapes[shapeIndexB], + posA,ornA, + posB,ornB, + worldVertsB1,worldVertsB2,capacityWorldVerts, + minDist, maxDist, + vertices,faces,indices, + localContactsOut,localContactCapacity); + + if (numLocalContactsOut>0) + { + float4 normal = -gpuCompoundSepNormalsOut[i]; + int nPoints = numLocalContactsOut; + float4* pointsIn = localContactsOut; + int contactIdx[4];// = {-1,-1,-1,-1}; + + contactIdx[0] = -1; + contactIdx[1] = -1; + contactIdx[2] = -1; + contactIdx[3] = -1; + + int nReducedContacts = extractManifoldSequential(pointsIn, nPoints, normal, contactIdx); + + int dstIdx; + AppendInc( nGlobalContactsOut, dstIdx ); + if ((dstIdx+nReducedContacts) < maxContactCapacity) + { + __global struct b3Contact4Data* c = globalContactsOut+ dstIdx; + c->m_worldNormalOnB = -normal; + c->m_restituitionCoeffCmp = (0.f*0xffff);c->m_frictionCoeffCmp = (0.7f*0xffff); + c->m_batchIdx = pairIndex; + int bodyA = gpuCompoundPairs[pairIndex].x; + int bodyB = gpuCompoundPairs[pairIndex].y; + c->m_bodyAPtrAndSignBit = rigidBodies[bodyA].m_invMass==0?-bodyA:bodyA; + c->m_bodyBPtrAndSignBit = rigidBodies[bodyB].m_invMass==0?-bodyB:bodyB; + c->m_childIndexA = childShapeIndexA; + c->m_childIndexB = childShapeIndexB; + for (int i=0;i<nReducedContacts;i++) + { + c->m_worldPosB[i] = pointsIn[contactIdx[i]]; + } + GET_NPOINTS(*c) = nReducedContacts; + } + + }// if (numContactsOut>0) + }// if (gpuHasCompoundSepNormalsOut[i]) + }// if (i<numCompoundPairs) + +} + + + +__kernel void sphereSphereCollisionKernel( __global const int4* pairs, + __global const b3RigidBodyData_t* rigidBodies, + __global const b3Collidable_t* collidables, + __global const float4* separatingNormals, + __global const int* hasSeparatingAxis, + __global struct b3Contact4Data* restrict globalContactsOut, + counter32_t nGlobalContactsOut, + int contactCapacity, + int numPairs) +{ + + int i = get_global_id(0); + int pairIndex = i; + + if (i<numPairs) + { + int bodyIndexA = pairs[i].x; + int bodyIndexB = pairs[i].y; + + int collidableIndexA = rigidBodies[bodyIndexA].m_collidableIdx; + int collidableIndexB = rigidBodies[bodyIndexB].m_collidableIdx; + + if (collidables[collidableIndexA].m_shapeType == SHAPE_SPHERE && + collidables[collidableIndexB].m_shapeType == SHAPE_SPHERE) + { + //sphere-sphere + float radiusA = collidables[collidableIndexA].m_radius; + float radiusB = collidables[collidableIndexB].m_radius; + float4 posA = rigidBodies[bodyIndexA].m_pos; + float4 posB = rigidBodies[bodyIndexB].m_pos; + + float4 diff = posA-posB; + float len = length(diff); + + ///iff distance positive, don't generate a new contact + if ( len <= (radiusA+radiusB)) + { + ///distance (negative means penetration) + float dist = len - (radiusA+radiusB); + float4 normalOnSurfaceB = make_float4(1.f,0.f,0.f,0.f); + if (len > 0.00001) + { + normalOnSurfaceB = diff / len; + } + float4 contactPosB = posB + normalOnSurfaceB*radiusB; + contactPosB.w = dist; + + int dstIdx; + AppendInc( nGlobalContactsOut, dstIdx ); + if (dstIdx < contactCapacity) + { + __global struct b3Contact4Data* c = &globalContactsOut[dstIdx]; + c->m_worldNormalOnB = -normalOnSurfaceB; + c->m_restituitionCoeffCmp = (0.f*0xffff);c->m_frictionCoeffCmp = (0.7f*0xffff); + c->m_batchIdx = pairIndex; + int bodyA = pairs[pairIndex].x; + int bodyB = pairs[pairIndex].y; + c->m_bodyAPtrAndSignBit = rigidBodies[bodyA].m_invMass==0?-bodyA:bodyA; + c->m_bodyBPtrAndSignBit = rigidBodies[bodyB].m_invMass==0?-bodyB:bodyB; + c->m_worldPosB[0] = contactPosB; + c->m_childIndexA = -1; + c->m_childIndexB = -1; + + GET_NPOINTS(*c) = 1; + }//if (dstIdx < numPairs) + }//if ( len <= (radiusA+radiusB)) + }//SHAPE_SPHERE SHAPE_SPHERE + }//if (i<numPairs) +} + +__kernel void clipHullHullConcaveConvexKernel( __global int4* concavePairsIn, + __global const b3RigidBodyData_t* rigidBodies, + __global const b3Collidable_t* collidables, + __global const b3ConvexPolyhedronData_t* convexShapes, + __global const float4* vertices, + __global const float4* uniqueEdges, + __global const b3GpuFace_t* faces, + __global const int* indices, + __global const b3GpuChildShape_t* gpuChildShapes, + __global const float4* separatingNormals, + __global struct b3Contact4Data* restrict globalContactsOut, + counter32_t nGlobalContactsOut, + int contactCapacity, + int numConcavePairs) +{ + + int i = get_global_id(0); + int pairIndex = i; + + float4 worldVertsB1[64]; + float4 worldVertsB2[64]; + int capacityWorldVerts = 64; + + float4 localContactsOut[64]; + int localContactCapacity=64; + + float minDist = -1e30f; + float maxDist = 0.02f; + + if (i<numConcavePairs) + { + //negative value means that the pair is invalid + if (concavePairsIn[i].w<0) + return; + + int bodyIndexA = concavePairsIn[i].x; + int bodyIndexB = concavePairsIn[i].y; + int f = concavePairsIn[i].z; + int childShapeIndexA = f; + + int collidableIndexA = rigidBodies[bodyIndexA].m_collidableIdx; + int collidableIndexB = rigidBodies[bodyIndexB].m_collidableIdx; + + int shapeIndexA = collidables[collidableIndexA].m_shapeIndex; + int shapeIndexB = collidables[collidableIndexB].m_shapeIndex; + + /////////////////////////////////////////////////////////////// + + + bool overlap = false; + + b3ConvexPolyhedronData_t convexPolyhedronA; + + //add 3 vertices of the triangle + convexPolyhedronA.m_numVertices = 3; + convexPolyhedronA.m_vertexOffset = 0; + float4 localCenter = make_float4(0.f,0.f,0.f,0.f); + + b3GpuFace_t face = faces[convexShapes[shapeIndexA].m_faceOffset+f]; + + float4 verticesA[3]; + for (int i=0;i<3;i++) + { + int index = indices[face.m_indexOffset+i]; + float4 vert = vertices[convexShapes[shapeIndexA].m_vertexOffset+index]; + verticesA[i] = vert; + localCenter += vert; + } + + float dmin = FLT_MAX; + + int localCC=0; + + //a triangle has 3 unique edges + convexPolyhedronA.m_numUniqueEdges = 3; + convexPolyhedronA.m_uniqueEdgesOffset = 0; + float4 uniqueEdgesA[3]; + + uniqueEdgesA[0] = (verticesA[1]-verticesA[0]); + uniqueEdgesA[1] = (verticesA[2]-verticesA[1]); + uniqueEdgesA[2] = (verticesA[0]-verticesA[2]); + + + convexPolyhedronA.m_faceOffset = 0; + + float4 normal = make_float4(face.m_plane.x,face.m_plane.y,face.m_plane.z,0.f); + + b3GpuFace_t facesA[TRIANGLE_NUM_CONVEX_FACES]; + int indicesA[3+3+2+2+2]; + int curUsedIndices=0; + int fidx=0; + + //front size of triangle + { + facesA[fidx].m_indexOffset=curUsedIndices; + indicesA[0] = 0; + indicesA[1] = 1; + indicesA[2] = 2; + curUsedIndices+=3; + float c = face.m_plane.w; + facesA[fidx].m_plane.x = normal.x; + facesA[fidx].m_plane.y = normal.y; + facesA[fidx].m_plane.z = normal.z; + facesA[fidx].m_plane.w = c; + facesA[fidx].m_numIndices=3; + } + fidx++; + //back size of triangle + { + facesA[fidx].m_indexOffset=curUsedIndices; + indicesA[3]=2; + indicesA[4]=1; + indicesA[5]=0; + curUsedIndices+=3; + float c = dot3F4(normal,verticesA[0]); + float c1 = -face.m_plane.w; + facesA[fidx].m_plane.x = -normal.x; + facesA[fidx].m_plane.y = -normal.y; + facesA[fidx].m_plane.z = -normal.z; + facesA[fidx].m_plane.w = c; + facesA[fidx].m_numIndices=3; + } + fidx++; + + bool addEdgePlanes = true; + if (addEdgePlanes) + { + int numVertices=3; + int prevVertex = numVertices-1; + for (int i=0;i<numVertices;i++) + { + float4 v0 = verticesA[i]; + float4 v1 = verticesA[prevVertex]; + + float4 edgeNormal = normalize(cross(normal,v1-v0)); + float c = -dot3F4(edgeNormal,v0); + + facesA[fidx].m_numIndices = 2; + facesA[fidx].m_indexOffset=curUsedIndices; + indicesA[curUsedIndices++]=i; + indicesA[curUsedIndices++]=prevVertex; + + facesA[fidx].m_plane.x = edgeNormal.x; + facesA[fidx].m_plane.y = edgeNormal.y; + facesA[fidx].m_plane.z = edgeNormal.z; + facesA[fidx].m_plane.w = c; + fidx++; + prevVertex = i; + } + } + convexPolyhedronA.m_numFaces = TRIANGLE_NUM_CONVEX_FACES; + convexPolyhedronA.m_localCenter = localCenter*(1.f/3.f); + + + float4 posA = rigidBodies[bodyIndexA].m_pos; + posA.w = 0.f; + float4 posB = rigidBodies[bodyIndexB].m_pos; + posB.w = 0.f; + float4 ornA = rigidBodies[bodyIndexA].m_quat; + float4 ornB =rigidBodies[bodyIndexB].m_quat; + + + float4 sepAxis = separatingNormals[i]; + + int shapeTypeB = collidables[collidableIndexB].m_shapeType; + int childShapeIndexB =-1; + if (shapeTypeB==SHAPE_COMPOUND_OF_CONVEX_HULLS) + { + /////////////////// + ///compound shape support + + childShapeIndexB = concavePairsIn[pairIndex].w; + int childColIndexB = gpuChildShapes[childShapeIndexB].m_shapeIndex; + shapeIndexB = collidables[childColIndexB].m_shapeIndex; + float4 childPosB = gpuChildShapes[childShapeIndexB].m_childPosition; + float4 childOrnB = gpuChildShapes[childShapeIndexB].m_childOrientation; + float4 newPosB = transform(&childPosB,&posB,&ornB); + float4 newOrnB = qtMul(ornB,childOrnB); + posB = newPosB; + ornB = newOrnB; + + } + + //////////////////////////////////////// + + + + int numLocalContactsOut = clipHullAgainstHullLocalA(sepAxis, + &convexPolyhedronA, &convexShapes[shapeIndexB], + posA,ornA, + posB,ornB, + worldVertsB1,worldVertsB2,capacityWorldVerts, + minDist, maxDist, + &verticesA,&facesA,&indicesA, + vertices,faces,indices, + localContactsOut,localContactCapacity); + + if (numLocalContactsOut>0) + { + float4 normal = -separatingNormals[i]; + int nPoints = numLocalContactsOut; + float4* pointsIn = localContactsOut; + int contactIdx[4];// = {-1,-1,-1,-1}; + + contactIdx[0] = -1; + contactIdx[1] = -1; + contactIdx[2] = -1; + contactIdx[3] = -1; + + int nReducedContacts = extractManifoldSequential(pointsIn, nPoints, normal, contactIdx); + + int dstIdx; + AppendInc( nGlobalContactsOut, dstIdx ); + if (dstIdx<contactCapacity) + { + __global struct b3Contact4Data* c = globalContactsOut+ dstIdx; + c->m_worldNormalOnB = -normal; + c->m_restituitionCoeffCmp = (0.f*0xffff);c->m_frictionCoeffCmp = (0.7f*0xffff); + c->m_batchIdx = pairIndex; + int bodyA = concavePairsIn[pairIndex].x; + int bodyB = concavePairsIn[pairIndex].y; + c->m_bodyAPtrAndSignBit = rigidBodies[bodyA].m_invMass==0?-bodyA:bodyA; + c->m_bodyBPtrAndSignBit = rigidBodies[bodyB].m_invMass==0?-bodyB:bodyB; + c->m_childIndexA = childShapeIndexA; + c->m_childIndexB = childShapeIndexB; + for (int i=0;i<nReducedContacts;i++) + { + c->m_worldPosB[i] = pointsIn[contactIdx[i]]; + } + GET_NPOINTS(*c) = nReducedContacts; + } + + }// if (numContactsOut>0) + }// if (i<numPairs) +} + + + + + + +int findClippingFaces(const float4 separatingNormal, + __global const b3ConvexPolyhedronData_t* hullA, __global const b3ConvexPolyhedronData_t* hullB, + const float4 posA, const Quaternion ornA,const float4 posB, const Quaternion ornB, + __global float4* worldVertsA1, + __global float4* worldNormalsA1, + __global float4* worldVertsB1, + int capacityWorldVerts, + const float minDist, float maxDist, + __global const float4* vertices, + __global const b3GpuFace_t* faces, + __global const int* indices, + __global int4* clippingFaces, int pairIndex) +{ + int numContactsOut = 0; + int numWorldVertsB1= 0; + + + int closestFaceB=-1; + float dmax = -FLT_MAX; + + { + for(int face=0;face<hullB->m_numFaces;face++) + { + const float4 Normal = make_float4(faces[hullB->m_faceOffset+face].m_plane.x, + faces[hullB->m_faceOffset+face].m_plane.y, faces[hullB->m_faceOffset+face].m_plane.z,0.f); + const float4 WorldNormal = qtRotate(ornB, Normal); + float d = dot3F4(WorldNormal,separatingNormal); + if (d > dmax) + { + dmax = d; + closestFaceB = face; + } + } + } + + { + const b3GpuFace_t polyB = faces[hullB->m_faceOffset+closestFaceB]; + const int numVertices = polyB.m_numIndices; + for(int e0=0;e0<numVertices;e0++) + { + const float4 b = vertices[hullB->m_vertexOffset+indices[polyB.m_indexOffset+e0]]; + worldVertsB1[pairIndex*capacityWorldVerts+numWorldVertsB1++] = transform(&b,&posB,&ornB); + } + } + + int closestFaceA=-1; + { + float dmin = FLT_MAX; + for(int face=0;face<hullA->m_numFaces;face++) + { + const float4 Normal = make_float4( + faces[hullA->m_faceOffset+face].m_plane.x, + faces[hullA->m_faceOffset+face].m_plane.y, + faces[hullA->m_faceOffset+face].m_plane.z, + 0.f); + const float4 faceANormalWS = qtRotate(ornA,Normal); + + float d = dot3F4(faceANormalWS,separatingNormal); + if (d < dmin) + { + dmin = d; + closestFaceA = face; + worldNormalsA1[pairIndex] = faceANormalWS; + } + } + } + + int numVerticesA = faces[hullA->m_faceOffset+closestFaceA].m_numIndices; + for(int e0=0;e0<numVerticesA;e0++) + { + const float4 a = vertices[hullA->m_vertexOffset+indices[faces[hullA->m_faceOffset+closestFaceA].m_indexOffset+e0]]; + worldVertsA1[pairIndex*capacityWorldVerts+e0] = transform(&a, &posA,&ornA); + } + + clippingFaces[pairIndex].x = closestFaceA; + clippingFaces[pairIndex].y = closestFaceB; + clippingFaces[pairIndex].z = numVerticesA; + clippingFaces[pairIndex].w = numWorldVertsB1; + + + return numContactsOut; +} + + + +int clipFaces(__global float4* worldVertsA1, + __global float4* worldNormalsA1, + __global float4* worldVertsB1, + __global float4* worldVertsB2, + int capacityWorldVertsB2, + const float minDist, float maxDist, + __global int4* clippingFaces, + int pairIndex) +{ + int numContactsOut = 0; + + int closestFaceA = clippingFaces[pairIndex].x; + int closestFaceB = clippingFaces[pairIndex].y; + int numVertsInA = clippingFaces[pairIndex].z; + int numVertsInB = clippingFaces[pairIndex].w; + + int numVertsOut = 0; + + if (closestFaceA<0) + return numContactsOut; + + __global float4* pVtxIn = &worldVertsB1[pairIndex*capacityWorldVertsB2]; + __global float4* pVtxOut = &worldVertsB2[pairIndex*capacityWorldVertsB2]; + + + + // clip polygon to back of planes of all faces of hull A that are adjacent to witness face + + for(int e0=0;e0<numVertsInA;e0++) + { + const float4 aw = worldVertsA1[pairIndex*capacityWorldVertsB2+e0]; + const float4 bw = worldVertsA1[pairIndex*capacityWorldVertsB2+((e0+1)%numVertsInA)]; + const float4 WorldEdge0 = aw - bw; + float4 worldPlaneAnormal1 = worldNormalsA1[pairIndex]; + float4 planeNormalWS1 = -cross3(WorldEdge0,worldPlaneAnormal1); + float4 worldA1 = aw; + float planeEqWS1 = -dot3F4(worldA1,planeNormalWS1); + float4 planeNormalWS = planeNormalWS1; + float planeEqWS=planeEqWS1; + numVertsOut = clipFaceGlobal(pVtxIn, numVertsInB, planeNormalWS,planeEqWS, pVtxOut); + __global float4* tmp = pVtxOut; + pVtxOut = pVtxIn; + pVtxIn = tmp; + numVertsInB = numVertsOut; + numVertsOut = 0; + } + + //float4 planeNormalWS = worldNormalsA1[pairIndex]; + //float planeEqWS=-dot3F4(planeNormalWS,worldVertsA1[pairIndex*capacityWorldVertsB2]); + + + + /*for (int i=0;i<numVertsInB;i++) + { + pVtxOut[i] = pVtxIn[i]; + }*/ + + + + + //numVertsInB=0; + + float4 planeNormalWS = worldNormalsA1[pairIndex]; + float planeEqWS=-dot3F4(planeNormalWS,worldVertsA1[pairIndex*capacityWorldVertsB2]); + + for (int i=0;i<numVertsInB;i++) + { + float depth = dot3F4(planeNormalWS,pVtxIn[i])+planeEqWS; + if (depth <=minDist) + { + depth = minDist; + } + + if (depth <=maxDist) + { + float4 pointInWorld = pVtxIn[i]; + pVtxOut[numContactsOut++] = make_float4(pointInWorld.x,pointInWorld.y,pointInWorld.z,depth); + } + } + + clippingFaces[pairIndex].w =numContactsOut; + + + return numContactsOut; + +} + + + + +__kernel void findClippingFacesKernel( __global const int4* pairs, + __global const b3RigidBodyData_t* rigidBodies, + __global const b3Collidable_t* collidables, + __global const b3ConvexPolyhedronData_t* convexShapes, + __global const float4* vertices, + __global const float4* uniqueEdges, + __global const b3GpuFace_t* faces, + __global const int* indices, + __global const float4* separatingNormals, + __global const int* hasSeparatingAxis, + __global int4* clippingFacesOut, + __global float4* worldVertsA1, + __global float4* worldNormalsA1, + __global float4* worldVertsB1, + int capacityWorldVerts, + int numPairs + ) +{ + + int i = get_global_id(0); + int pairIndex = i; + + + float minDist = -1e30f; + float maxDist = 0.02f; + + if (i<numPairs) + { + + if (hasSeparatingAxis[i]) + { + + int bodyIndexA = pairs[i].x; + int bodyIndexB = pairs[i].y; + + int collidableIndexA = rigidBodies[bodyIndexA].m_collidableIdx; + int collidableIndexB = rigidBodies[bodyIndexB].m_collidableIdx; + + int shapeIndexA = collidables[collidableIndexA].m_shapeIndex; + int shapeIndexB = collidables[collidableIndexB].m_shapeIndex; + + + + int numLocalContactsOut = findClippingFaces(separatingNormals[i], + &convexShapes[shapeIndexA], &convexShapes[shapeIndexB], + rigidBodies[bodyIndexA].m_pos,rigidBodies[bodyIndexA].m_quat, + rigidBodies[bodyIndexB].m_pos,rigidBodies[bodyIndexB].m_quat, + worldVertsA1, + worldNormalsA1, + worldVertsB1,capacityWorldVerts, + minDist, maxDist, + vertices,faces,indices, + clippingFacesOut,i); + + + }// if (hasSeparatingAxis[i]) + }// if (i<numPairs) + +} + + + + +__kernel void clipFacesAndFindContactsKernel( __global const float4* separatingNormals, + __global const int* hasSeparatingAxis, + __global int4* clippingFacesOut, + __global float4* worldVertsA1, + __global float4* worldNormalsA1, + __global float4* worldVertsB1, + __global float4* worldVertsB2, + int vertexFaceCapacity, + int numPairs, + int debugMode + ) +{ + int i = get_global_id(0); + int pairIndex = i; + + + float minDist = -1e30f; + float maxDist = 0.02f; + + if (i<numPairs) + { + + if (hasSeparatingAxis[i]) + { + +// int bodyIndexA = pairs[i].x; + // int bodyIndexB = pairs[i].y; + + int numLocalContactsOut = 0; + + int capacityWorldVertsB2 = vertexFaceCapacity; + + __global float4* pVtxIn = &worldVertsB1[pairIndex*capacityWorldVertsB2]; + __global float4* pVtxOut = &worldVertsB2[pairIndex*capacityWorldVertsB2]; + + + { + __global int4* clippingFaces = clippingFacesOut; + + + int closestFaceA = clippingFaces[pairIndex].x; + int closestFaceB = clippingFaces[pairIndex].y; + int numVertsInA = clippingFaces[pairIndex].z; + int numVertsInB = clippingFaces[pairIndex].w; + + int numVertsOut = 0; + + if (closestFaceA>=0) + { + + + + // clip polygon to back of planes of all faces of hull A that are adjacent to witness face + + for(int e0=0;e0<numVertsInA;e0++) + { + const float4 aw = worldVertsA1[pairIndex*capacityWorldVertsB2+e0]; + const float4 bw = worldVertsA1[pairIndex*capacityWorldVertsB2+((e0+1)%numVertsInA)]; + const float4 WorldEdge0 = aw - bw; + float4 worldPlaneAnormal1 = worldNormalsA1[pairIndex]; + float4 planeNormalWS1 = -cross3(WorldEdge0,worldPlaneAnormal1); + float4 worldA1 = aw; + float planeEqWS1 = -dot3F4(worldA1,planeNormalWS1); + float4 planeNormalWS = planeNormalWS1; + float planeEqWS=planeEqWS1; + numVertsOut = clipFaceGlobal(pVtxIn, numVertsInB, planeNormalWS,planeEqWS, pVtxOut); + __global float4* tmp = pVtxOut; + pVtxOut = pVtxIn; + pVtxIn = tmp; + numVertsInB = numVertsOut; + numVertsOut = 0; + } + + float4 planeNormalWS = worldNormalsA1[pairIndex]; + float planeEqWS=-dot3F4(planeNormalWS,worldVertsA1[pairIndex*capacityWorldVertsB2]); + + for (int i=0;i<numVertsInB;i++) + { + float depth = dot3F4(planeNormalWS,pVtxIn[i])+planeEqWS; + if (depth <=minDist) + { + depth = minDist; + } + + if (depth <=maxDist) + { + float4 pointInWorld = pVtxIn[i]; + pVtxOut[numLocalContactsOut++] = make_float4(pointInWorld.x,pointInWorld.y,pointInWorld.z,depth); + } + } + + } + clippingFaces[pairIndex].w =numLocalContactsOut; + + + } + + for (int i=0;i<numLocalContactsOut;i++) + pVtxIn[i] = pVtxOut[i]; + + }// if (hasSeparatingAxis[i]) + }// if (i<numPairs) + +} + + + + + +__kernel void newContactReductionKernel( __global int4* pairs, + __global const b3RigidBodyData_t* rigidBodies, + __global const float4* separatingNormals, + __global const int* hasSeparatingAxis, + __global struct b3Contact4Data* globalContactsOut, + __global int4* clippingFaces, + __global float4* worldVertsB2, + volatile __global int* nGlobalContactsOut, + int vertexFaceCapacity, + int contactCapacity, + int numPairs + ) +{ + int i = get_global_id(0); + int pairIndex = i; + + int4 contactIdx; + contactIdx=make_int4(0,1,2,3); + + if (i<numPairs) + { + + if (hasSeparatingAxis[i]) + { + + + + + int nPoints = clippingFaces[pairIndex].w; + + if (nPoints>0) + { + + __global float4* pointsIn = &worldVertsB2[pairIndex*vertexFaceCapacity]; + float4 normal = -separatingNormals[i]; + + int nReducedContacts = extractManifoldSequentialGlobal(pointsIn, nPoints, normal, &contactIdx); + + int mprContactIndex = pairs[pairIndex].z; + + int dstIdx = mprContactIndex; + + if (dstIdx<0) + { + AppendInc( nGlobalContactsOut, dstIdx ); + } +//#if 0 + + if (dstIdx < contactCapacity) + { + + __global struct b3Contact4Data* c = &globalContactsOut[dstIdx]; + c->m_worldNormalOnB = -normal; + c->m_restituitionCoeffCmp = (0.f*0xffff);c->m_frictionCoeffCmp = (0.7f*0xffff); + c->m_batchIdx = pairIndex; + int bodyA = pairs[pairIndex].x; + int bodyB = pairs[pairIndex].y; + + pairs[pairIndex].w = dstIdx; + + c->m_bodyAPtrAndSignBit = rigidBodies[bodyA].m_invMass==0?-bodyA:bodyA; + c->m_bodyBPtrAndSignBit = rigidBodies[bodyB].m_invMass==0?-bodyB:bodyB; + c->m_childIndexA =-1; + c->m_childIndexB =-1; + + switch (nReducedContacts) + { + case 4: + c->m_worldPosB[3] = pointsIn[contactIdx.w]; + case 3: + c->m_worldPosB[2] = pointsIn[contactIdx.z]; + case 2: + c->m_worldPosB[1] = pointsIn[contactIdx.y]; + case 1: + if (mprContactIndex<0)//test + c->m_worldPosB[0] = pointsIn[contactIdx.x]; + default: + { + } + }; + + GET_NPOINTS(*c) = nReducedContacts; + + } + + +//#endif + + }// if (numContactsOut>0) + }// if (hasSeparatingAxis[i]) + }// if (i<numPairs) + + + +} diff --git a/thirdparty/bullet/Bullet3OpenCL/NarrowphaseCollision/kernels/satClipHullContacts.h b/thirdparty/bullet/Bullet3OpenCL/NarrowphaseCollision/kernels/satClipHullContacts.h new file mode 100644 index 0000000000..f0ecfc7851 --- /dev/null +++ b/thirdparty/bullet/Bullet3OpenCL/NarrowphaseCollision/kernels/satClipHullContacts.h @@ -0,0 +1,2099 @@ +//this file is autogenerated using stringify.bat (premake --stringify) in the build folder of this project +static const char* satClipKernelsCL= \ +"#define TRIANGLE_NUM_CONVEX_FACES 5\n" +"#pragma OPENCL EXTENSION cl_amd_printf : enable\n" +"#pragma OPENCL EXTENSION cl_khr_local_int32_base_atomics : enable\n" +"#pragma OPENCL EXTENSION cl_khr_global_int32_base_atomics : enable\n" +"#pragma OPENCL EXTENSION cl_khr_local_int32_extended_atomics : enable\n" +"#pragma OPENCL EXTENSION cl_khr_global_int32_extended_atomics : enable\n" +"#ifdef cl_ext_atomic_counters_32\n" +"#pragma OPENCL EXTENSION cl_ext_atomic_counters_32 : enable\n" +"#else\n" +"#define counter32_t volatile __global int*\n" +"#endif\n" +"#define GET_GROUP_IDX get_group_id(0)\n" +"#define GET_LOCAL_IDX get_local_id(0)\n" +"#define GET_GLOBAL_IDX get_global_id(0)\n" +"#define GET_GROUP_SIZE get_local_size(0)\n" +"#define GET_NUM_GROUPS get_num_groups(0)\n" +"#define GROUP_LDS_BARRIER barrier(CLK_LOCAL_MEM_FENCE)\n" +"#define GROUP_MEM_FENCE mem_fence(CLK_LOCAL_MEM_FENCE)\n" +"#define AtomInc(x) atom_inc(&(x))\n" +"#define AtomInc1(x, out) out = atom_inc(&(x))\n" +"#define AppendInc(x, out) out = atomic_inc(x)\n" +"#define AtomAdd(x, value) atom_add(&(x), value)\n" +"#define AtomCmpxhg(x, cmp, value) atom_cmpxchg( &(x), cmp, value )\n" +"#define AtomXhg(x, value) atom_xchg ( &(x), value )\n" +"#define max2 max\n" +"#define min2 min\n" +"typedef unsigned int u32;\n" +"#ifndef B3_CONTACT4DATA_H\n" +"#define B3_CONTACT4DATA_H\n" +"#ifndef B3_FLOAT4_H\n" +"#define B3_FLOAT4_H\n" +"#ifndef B3_PLATFORM_DEFINITIONS_H\n" +"#define B3_PLATFORM_DEFINITIONS_H\n" +"struct MyTest\n" +"{\n" +" int bla;\n" +"};\n" +"#ifdef __cplusplus\n" +"#else\n" +"//keep B3_LARGE_FLOAT*B3_LARGE_FLOAT < FLT_MAX\n" +"#define B3_LARGE_FLOAT 1e18f\n" +"#define B3_INFINITY 1e18f\n" +"#define b3Assert(a)\n" +"#define b3ConstArray(a) __global const a*\n" +"#define b3AtomicInc atomic_inc\n" +"#define b3AtomicAdd atomic_add\n" +"#define b3Fabs fabs\n" +"#define b3Sqrt native_sqrt\n" +"#define b3Sin native_sin\n" +"#define b3Cos native_cos\n" +"#define B3_STATIC\n" +"#endif\n" +"#endif\n" +"#ifdef __cplusplus\n" +"#else\n" +" typedef float4 b3Float4;\n" +" #define b3Float4ConstArg const b3Float4\n" +" #define b3MakeFloat4 (float4)\n" +" float b3Dot3F4(b3Float4ConstArg v0,b3Float4ConstArg v1)\n" +" {\n" +" float4 a1 = b3MakeFloat4(v0.xyz,0.f);\n" +" float4 b1 = b3MakeFloat4(v1.xyz,0.f);\n" +" return dot(a1, b1);\n" +" }\n" +" b3Float4 b3Cross3(b3Float4ConstArg v0,b3Float4ConstArg v1)\n" +" {\n" +" float4 a1 = b3MakeFloat4(v0.xyz,0.f);\n" +" float4 b1 = b3MakeFloat4(v1.xyz,0.f);\n" +" return cross(a1, b1);\n" +" }\n" +" #define b3MinFloat4 min\n" +" #define b3MaxFloat4 max\n" +" #define b3Normalized(a) normalize(a)\n" +"#endif \n" +" \n" +"inline bool b3IsAlmostZero(b3Float4ConstArg v)\n" +"{\n" +" if(b3Fabs(v.x)>1e-6 || b3Fabs(v.y)>1e-6 || b3Fabs(v.z)>1e-6) \n" +" return false;\n" +" return true;\n" +"}\n" +"inline int b3MaxDot( b3Float4ConstArg vec, __global const b3Float4* vecArray, int vecLen, float* dotOut )\n" +"{\n" +" float maxDot = -B3_INFINITY;\n" +" int i = 0;\n" +" int ptIndex = -1;\n" +" for( i = 0; i < vecLen; i++ )\n" +" {\n" +" float dot = b3Dot3F4(vecArray[i],vec);\n" +" \n" +" if( dot > maxDot )\n" +" {\n" +" maxDot = dot;\n" +" ptIndex = i;\n" +" }\n" +" }\n" +" b3Assert(ptIndex>=0);\n" +" if (ptIndex<0)\n" +" {\n" +" ptIndex = 0;\n" +" }\n" +" *dotOut = maxDot;\n" +" return ptIndex;\n" +"}\n" +"#endif //B3_FLOAT4_H\n" +"typedef struct b3Contact4Data b3Contact4Data_t;\n" +"struct b3Contact4Data\n" +"{\n" +" b3Float4 m_worldPosB[4];\n" +"// b3Float4 m_localPosA[4];\n" +"// b3Float4 m_localPosB[4];\n" +" b3Float4 m_worldNormalOnB; // w: m_nPoints\n" +" unsigned short m_restituitionCoeffCmp;\n" +" unsigned short m_frictionCoeffCmp;\n" +" int m_batchIdx;\n" +" int m_bodyAPtrAndSignBit;//x:m_bodyAPtr, y:m_bodyBPtr\n" +" int m_bodyBPtrAndSignBit;\n" +" int m_childIndexA;\n" +" int m_childIndexB;\n" +" int m_unused1;\n" +" int m_unused2;\n" +"};\n" +"inline int b3Contact4Data_getNumPoints(const struct b3Contact4Data* contact)\n" +"{\n" +" return (int)contact->m_worldNormalOnB.w;\n" +"};\n" +"inline void b3Contact4Data_setNumPoints(struct b3Contact4Data* contact, int numPoints)\n" +"{\n" +" contact->m_worldNormalOnB.w = (float)numPoints;\n" +"};\n" +"#endif //B3_CONTACT4DATA_H\n" +"#ifndef B3_CONVEX_POLYHEDRON_DATA_H\n" +"#define B3_CONVEX_POLYHEDRON_DATA_H\n" +"#ifndef B3_FLOAT4_H\n" +"#ifdef __cplusplus\n" +"#else\n" +"#endif \n" +"#endif //B3_FLOAT4_H\n" +"#ifndef B3_QUAT_H\n" +"#define B3_QUAT_H\n" +"#ifndef B3_PLATFORM_DEFINITIONS_H\n" +"#ifdef __cplusplus\n" +"#else\n" +"#endif\n" +"#endif\n" +"#ifndef B3_FLOAT4_H\n" +"#ifdef __cplusplus\n" +"#else\n" +"#endif \n" +"#endif //B3_FLOAT4_H\n" +"#ifdef __cplusplus\n" +"#else\n" +" typedef float4 b3Quat;\n" +" #define b3QuatConstArg const b3Quat\n" +" \n" +" \n" +"inline float4 b3FastNormalize4(float4 v)\n" +"{\n" +" v = (float4)(v.xyz,0.f);\n" +" return fast_normalize(v);\n" +"}\n" +" \n" +"inline b3Quat b3QuatMul(b3Quat a, b3Quat b);\n" +"inline b3Quat b3QuatNormalized(b3QuatConstArg in);\n" +"inline b3Quat b3QuatRotate(b3QuatConstArg q, b3QuatConstArg vec);\n" +"inline b3Quat b3QuatInvert(b3QuatConstArg q);\n" +"inline b3Quat b3QuatInverse(b3QuatConstArg q);\n" +"inline b3Quat b3QuatMul(b3QuatConstArg a, b3QuatConstArg b)\n" +"{\n" +" b3Quat ans;\n" +" ans = b3Cross3( a, b );\n" +" ans += a.w*b+b.w*a;\n" +"// ans.w = a.w*b.w - (a.x*b.x+a.y*b.y+a.z*b.z);\n" +" ans.w = a.w*b.w - b3Dot3F4(a, b);\n" +" return ans;\n" +"}\n" +"inline b3Quat b3QuatNormalized(b3QuatConstArg in)\n" +"{\n" +" b3Quat q;\n" +" q=in;\n" +" //return b3FastNormalize4(in);\n" +" float len = native_sqrt(dot(q, q));\n" +" if(len > 0.f)\n" +" {\n" +" q *= 1.f / len;\n" +" }\n" +" else\n" +" {\n" +" q.x = q.y = q.z = 0.f;\n" +" q.w = 1.f;\n" +" }\n" +" return q;\n" +"}\n" +"inline float4 b3QuatRotate(b3QuatConstArg q, b3QuatConstArg vec)\n" +"{\n" +" b3Quat qInv = b3QuatInvert( q );\n" +" float4 vcpy = vec;\n" +" vcpy.w = 0.f;\n" +" float4 out = b3QuatMul(b3QuatMul(q,vcpy),qInv);\n" +" return out;\n" +"}\n" +"inline b3Quat b3QuatInverse(b3QuatConstArg q)\n" +"{\n" +" return (b3Quat)(-q.xyz, q.w);\n" +"}\n" +"inline b3Quat b3QuatInvert(b3QuatConstArg q)\n" +"{\n" +" return (b3Quat)(-q.xyz, q.w);\n" +"}\n" +"inline float4 b3QuatInvRotate(b3QuatConstArg q, b3QuatConstArg vec)\n" +"{\n" +" return b3QuatRotate( b3QuatInvert( q ), vec );\n" +"}\n" +"inline b3Float4 b3TransformPoint(b3Float4ConstArg point, b3Float4ConstArg translation, b3QuatConstArg orientation)\n" +"{\n" +" return b3QuatRotate( orientation, point ) + (translation);\n" +"}\n" +" \n" +"#endif \n" +"#endif //B3_QUAT_H\n" +"typedef struct b3GpuFace b3GpuFace_t;\n" +"struct b3GpuFace\n" +"{\n" +" b3Float4 m_plane;\n" +" int m_indexOffset;\n" +" int m_numIndices;\n" +" int m_unusedPadding1;\n" +" int m_unusedPadding2;\n" +"};\n" +"typedef struct b3ConvexPolyhedronData b3ConvexPolyhedronData_t;\n" +"struct b3ConvexPolyhedronData\n" +"{\n" +" b3Float4 m_localCenter;\n" +" b3Float4 m_extents;\n" +" b3Float4 mC;\n" +" b3Float4 mE;\n" +" float m_radius;\n" +" int m_faceOffset;\n" +" int m_numFaces;\n" +" int m_numVertices;\n" +" int m_vertexOffset;\n" +" int m_uniqueEdgesOffset;\n" +" int m_numUniqueEdges;\n" +" int m_unused;\n" +"};\n" +"#endif //B3_CONVEX_POLYHEDRON_DATA_H\n" +"#ifndef B3_COLLIDABLE_H\n" +"#define B3_COLLIDABLE_H\n" +"#ifndef B3_FLOAT4_H\n" +"#ifdef __cplusplus\n" +"#else\n" +"#endif \n" +"#endif //B3_FLOAT4_H\n" +"#ifndef B3_QUAT_H\n" +"#ifdef __cplusplus\n" +"#else\n" +"#endif \n" +"#endif //B3_QUAT_H\n" +"enum b3ShapeTypes\n" +"{\n" +" SHAPE_HEIGHT_FIELD=1,\n" +" SHAPE_CONVEX_HULL=3,\n" +" SHAPE_PLANE=4,\n" +" SHAPE_CONCAVE_TRIMESH=5,\n" +" SHAPE_COMPOUND_OF_CONVEX_HULLS=6,\n" +" SHAPE_SPHERE=7,\n" +" MAX_NUM_SHAPE_TYPES,\n" +"};\n" +"typedef struct b3Collidable b3Collidable_t;\n" +"struct b3Collidable\n" +"{\n" +" union {\n" +" int m_numChildShapes;\n" +" int m_bvhIndex;\n" +" };\n" +" union\n" +" {\n" +" float m_radius;\n" +" int m_compoundBvhIndex;\n" +" };\n" +" int m_shapeType;\n" +" int m_shapeIndex;\n" +"};\n" +"typedef struct b3GpuChildShape b3GpuChildShape_t;\n" +"struct b3GpuChildShape\n" +"{\n" +" b3Float4 m_childPosition;\n" +" b3Quat m_childOrientation;\n" +" int m_shapeIndex;\n" +" int m_unused0;\n" +" int m_unused1;\n" +" int m_unused2;\n" +"};\n" +"struct b3CompoundOverlappingPair\n" +"{\n" +" int m_bodyIndexA;\n" +" int m_bodyIndexB;\n" +"// int m_pairType;\n" +" int m_childShapeIndexA;\n" +" int m_childShapeIndexB;\n" +"};\n" +"#endif //B3_COLLIDABLE_H\n" +"#ifndef B3_RIGIDBODY_DATA_H\n" +"#define B3_RIGIDBODY_DATA_H\n" +"#ifndef B3_FLOAT4_H\n" +"#ifdef __cplusplus\n" +"#else\n" +"#endif \n" +"#endif //B3_FLOAT4_H\n" +"#ifndef B3_QUAT_H\n" +"#ifdef __cplusplus\n" +"#else\n" +"#endif \n" +"#endif //B3_QUAT_H\n" +"#ifndef B3_MAT3x3_H\n" +"#define B3_MAT3x3_H\n" +"#ifndef B3_QUAT_H\n" +"#ifdef __cplusplus\n" +"#else\n" +"#endif \n" +"#endif //B3_QUAT_H\n" +"#ifdef __cplusplus\n" +"#else\n" +"typedef struct\n" +"{\n" +" b3Float4 m_row[3];\n" +"}b3Mat3x3;\n" +"#define b3Mat3x3ConstArg const b3Mat3x3\n" +"#define b3GetRow(m,row) (m.m_row[row])\n" +"inline b3Mat3x3 b3QuatGetRotationMatrix(b3Quat quat)\n" +"{\n" +" b3Float4 quat2 = (b3Float4)(quat.x*quat.x, quat.y*quat.y, quat.z*quat.z, 0.f);\n" +" b3Mat3x3 out;\n" +" out.m_row[0].x=1-2*quat2.y-2*quat2.z;\n" +" out.m_row[0].y=2*quat.x*quat.y-2*quat.w*quat.z;\n" +" out.m_row[0].z=2*quat.x*quat.z+2*quat.w*quat.y;\n" +" out.m_row[0].w = 0.f;\n" +" out.m_row[1].x=2*quat.x*quat.y+2*quat.w*quat.z;\n" +" out.m_row[1].y=1-2*quat2.x-2*quat2.z;\n" +" out.m_row[1].z=2*quat.y*quat.z-2*quat.w*quat.x;\n" +" out.m_row[1].w = 0.f;\n" +" out.m_row[2].x=2*quat.x*quat.z-2*quat.w*quat.y;\n" +" out.m_row[2].y=2*quat.y*quat.z+2*quat.w*quat.x;\n" +" out.m_row[2].z=1-2*quat2.x-2*quat2.y;\n" +" out.m_row[2].w = 0.f;\n" +" return out;\n" +"}\n" +"inline b3Mat3x3 b3AbsoluteMat3x3(b3Mat3x3ConstArg matIn)\n" +"{\n" +" b3Mat3x3 out;\n" +" out.m_row[0] = fabs(matIn.m_row[0]);\n" +" out.m_row[1] = fabs(matIn.m_row[1]);\n" +" out.m_row[2] = fabs(matIn.m_row[2]);\n" +" return out;\n" +"}\n" +"__inline\n" +"b3Mat3x3 mtZero();\n" +"__inline\n" +"b3Mat3x3 mtIdentity();\n" +"__inline\n" +"b3Mat3x3 mtTranspose(b3Mat3x3 m);\n" +"__inline\n" +"b3Mat3x3 mtMul(b3Mat3x3 a, b3Mat3x3 b);\n" +"__inline\n" +"b3Float4 mtMul1(b3Mat3x3 a, b3Float4 b);\n" +"__inline\n" +"b3Float4 mtMul3(b3Float4 a, b3Mat3x3 b);\n" +"__inline\n" +"b3Mat3x3 mtZero()\n" +"{\n" +" b3Mat3x3 m;\n" +" m.m_row[0] = (b3Float4)(0.f);\n" +" m.m_row[1] = (b3Float4)(0.f);\n" +" m.m_row[2] = (b3Float4)(0.f);\n" +" return m;\n" +"}\n" +"__inline\n" +"b3Mat3x3 mtIdentity()\n" +"{\n" +" b3Mat3x3 m;\n" +" m.m_row[0] = (b3Float4)(1,0,0,0);\n" +" m.m_row[1] = (b3Float4)(0,1,0,0);\n" +" m.m_row[2] = (b3Float4)(0,0,1,0);\n" +" return m;\n" +"}\n" +"__inline\n" +"b3Mat3x3 mtTranspose(b3Mat3x3 m)\n" +"{\n" +" b3Mat3x3 out;\n" +" out.m_row[0] = (b3Float4)(m.m_row[0].x, m.m_row[1].x, m.m_row[2].x, 0.f);\n" +" out.m_row[1] = (b3Float4)(m.m_row[0].y, m.m_row[1].y, m.m_row[2].y, 0.f);\n" +" out.m_row[2] = (b3Float4)(m.m_row[0].z, m.m_row[1].z, m.m_row[2].z, 0.f);\n" +" return out;\n" +"}\n" +"__inline\n" +"b3Mat3x3 mtMul(b3Mat3x3 a, b3Mat3x3 b)\n" +"{\n" +" b3Mat3x3 transB;\n" +" transB = mtTranspose( b );\n" +" b3Mat3x3 ans;\n" +" // why this doesn't run when 0ing in the for{}\n" +" a.m_row[0].w = 0.f;\n" +" a.m_row[1].w = 0.f;\n" +" a.m_row[2].w = 0.f;\n" +" for(int i=0; i<3; i++)\n" +" {\n" +"// a.m_row[i].w = 0.f;\n" +" ans.m_row[i].x = b3Dot3F4(a.m_row[i],transB.m_row[0]);\n" +" ans.m_row[i].y = b3Dot3F4(a.m_row[i],transB.m_row[1]);\n" +" ans.m_row[i].z = b3Dot3F4(a.m_row[i],transB.m_row[2]);\n" +" ans.m_row[i].w = 0.f;\n" +" }\n" +" return ans;\n" +"}\n" +"__inline\n" +"b3Float4 mtMul1(b3Mat3x3 a, b3Float4 b)\n" +"{\n" +" b3Float4 ans;\n" +" ans.x = b3Dot3F4( a.m_row[0], b );\n" +" ans.y = b3Dot3F4( a.m_row[1], b );\n" +" ans.z = b3Dot3F4( a.m_row[2], b );\n" +" ans.w = 0.f;\n" +" return ans;\n" +"}\n" +"__inline\n" +"b3Float4 mtMul3(b3Float4 a, b3Mat3x3 b)\n" +"{\n" +" b3Float4 colx = b3MakeFloat4(b.m_row[0].x, b.m_row[1].x, b.m_row[2].x, 0);\n" +" b3Float4 coly = b3MakeFloat4(b.m_row[0].y, b.m_row[1].y, b.m_row[2].y, 0);\n" +" b3Float4 colz = b3MakeFloat4(b.m_row[0].z, b.m_row[1].z, b.m_row[2].z, 0);\n" +" b3Float4 ans;\n" +" ans.x = b3Dot3F4( a, colx );\n" +" ans.y = b3Dot3F4( a, coly );\n" +" ans.z = b3Dot3F4( a, colz );\n" +" return ans;\n" +"}\n" +"#endif\n" +"#endif //B3_MAT3x3_H\n" +"typedef struct b3RigidBodyData b3RigidBodyData_t;\n" +"struct b3RigidBodyData\n" +"{\n" +" b3Float4 m_pos;\n" +" b3Quat m_quat;\n" +" b3Float4 m_linVel;\n" +" b3Float4 m_angVel;\n" +" int m_collidableIdx;\n" +" float m_invMass;\n" +" float m_restituitionCoeff;\n" +" float m_frictionCoeff;\n" +"};\n" +"typedef struct b3InertiaData b3InertiaData_t;\n" +"struct b3InertiaData\n" +"{\n" +" b3Mat3x3 m_invInertiaWorld;\n" +" b3Mat3x3 m_initInvInertia;\n" +"};\n" +"#endif //B3_RIGIDBODY_DATA_H\n" +" \n" +"#define GET_NPOINTS(x) (x).m_worldNormalOnB.w\n" +"#define SELECT_UINT4( b, a, condition ) select( b,a,condition )\n" +"#define make_float4 (float4)\n" +"#define make_float2 (float2)\n" +"#define make_uint4 (uint4)\n" +"#define make_int4 (int4)\n" +"#define make_uint2 (uint2)\n" +"#define make_int2 (int2)\n" +"__inline\n" +"float fastDiv(float numerator, float denominator)\n" +"{\n" +" return native_divide(numerator, denominator); \n" +"// return numerator/denominator; \n" +"}\n" +"__inline\n" +"float4 fastDiv4(float4 numerator, float4 denominator)\n" +"{\n" +" return native_divide(numerator, denominator); \n" +"}\n" +"__inline\n" +"float4 cross3(float4 a, float4 b)\n" +"{\n" +" return cross(a,b);\n" +"}\n" +"//#define dot3F4 dot\n" +"__inline\n" +"float dot3F4(float4 a, float4 b)\n" +"{\n" +" float4 a1 = make_float4(a.xyz,0.f);\n" +" float4 b1 = make_float4(b.xyz,0.f);\n" +" return dot(a1, b1);\n" +"}\n" +"__inline\n" +"float4 fastNormalize4(float4 v)\n" +"{\n" +" return fast_normalize(v);\n" +"}\n" +"///////////////////////////////////////\n" +"// Quaternion\n" +"///////////////////////////////////////\n" +"typedef float4 Quaternion;\n" +"__inline\n" +"Quaternion qtMul(Quaternion a, Quaternion b);\n" +"__inline\n" +"Quaternion qtNormalize(Quaternion in);\n" +"__inline\n" +"float4 qtRotate(Quaternion q, float4 vec);\n" +"__inline\n" +"Quaternion qtInvert(Quaternion q);\n" +"__inline\n" +"Quaternion qtMul(Quaternion a, Quaternion b)\n" +"{\n" +" Quaternion ans;\n" +" ans = cross3( a, b );\n" +" ans += a.w*b+b.w*a;\n" +"// ans.w = a.w*b.w - (a.x*b.x+a.y*b.y+a.z*b.z);\n" +" ans.w = a.w*b.w - dot3F4(a, b);\n" +" return ans;\n" +"}\n" +"__inline\n" +"Quaternion qtNormalize(Quaternion in)\n" +"{\n" +" return fastNormalize4(in);\n" +"// in /= length( in );\n" +"// return in;\n" +"}\n" +"__inline\n" +"float4 qtRotate(Quaternion q, float4 vec)\n" +"{\n" +" Quaternion qInv = qtInvert( q );\n" +" float4 vcpy = vec;\n" +" vcpy.w = 0.f;\n" +" float4 out = qtMul(qtMul(q,vcpy),qInv);\n" +" return out;\n" +"}\n" +"__inline\n" +"Quaternion qtInvert(Quaternion q)\n" +"{\n" +" return (Quaternion)(-q.xyz, q.w);\n" +"}\n" +"__inline\n" +"float4 qtInvRotate(const Quaternion q, float4 vec)\n" +"{\n" +" return qtRotate( qtInvert( q ), vec );\n" +"}\n" +"__inline\n" +"float4 transform(const float4* p, const float4* translation, const Quaternion* orientation)\n" +"{\n" +" return qtRotate( *orientation, *p ) + (*translation);\n" +"}\n" +"__inline\n" +"float4 normalize3(const float4 a)\n" +"{\n" +" float4 n = make_float4(a.x, a.y, a.z, 0.f);\n" +" return fastNormalize4( n );\n" +"}\n" +"__inline float4 lerp3(const float4 a,const float4 b, float t)\n" +"{\n" +" return make_float4( a.x + (b.x - a.x) * t,\n" +" a.y + (b.y - a.y) * t,\n" +" a.z + (b.z - a.z) * t,\n" +" 0.f);\n" +"}\n" +"// Clips a face to the back of a plane, return the number of vertices out, stored in ppVtxOut\n" +"int clipFaceGlobal(__global const float4* pVtxIn, int numVertsIn, float4 planeNormalWS,float planeEqWS, __global float4* ppVtxOut)\n" +"{\n" +" \n" +" int ve;\n" +" float ds, de;\n" +" int numVertsOut = 0;\n" +" //double-check next test\n" +" if (numVertsIn < 2)\n" +" return 0;\n" +" \n" +" float4 firstVertex=pVtxIn[numVertsIn-1];\n" +" float4 endVertex = pVtxIn[0];\n" +" \n" +" ds = dot3F4(planeNormalWS,firstVertex)+planeEqWS;\n" +" \n" +" for (ve = 0; ve < numVertsIn; ve++)\n" +" {\n" +" endVertex=pVtxIn[ve];\n" +" de = dot3F4(planeNormalWS,endVertex)+planeEqWS;\n" +" if (ds<0)\n" +" {\n" +" if (de<0)\n" +" {\n" +" // Start < 0, end < 0, so output endVertex\n" +" ppVtxOut[numVertsOut++] = endVertex;\n" +" }\n" +" else\n" +" {\n" +" // Start < 0, end >= 0, so output intersection\n" +" ppVtxOut[numVertsOut++] = lerp3(firstVertex, endVertex,(ds * 1.f/(ds - de)) );\n" +" }\n" +" }\n" +" else\n" +" {\n" +" if (de<0)\n" +" {\n" +" // Start >= 0, end < 0 so output intersection and end\n" +" ppVtxOut[numVertsOut++] = lerp3(firstVertex, endVertex,(ds * 1.f/(ds - de)) );\n" +" ppVtxOut[numVertsOut++] = endVertex;\n" +" }\n" +" }\n" +" firstVertex = endVertex;\n" +" ds = de;\n" +" }\n" +" return numVertsOut;\n" +"}\n" +"// Clips a face to the back of a plane, return the number of vertices out, stored in ppVtxOut\n" +"int clipFace(const float4* pVtxIn, int numVertsIn, float4 planeNormalWS,float planeEqWS, float4* ppVtxOut)\n" +"{\n" +" \n" +" int ve;\n" +" float ds, de;\n" +" int numVertsOut = 0;\n" +"//double-check next test\n" +" if (numVertsIn < 2)\n" +" return 0;\n" +" float4 firstVertex=pVtxIn[numVertsIn-1];\n" +" float4 endVertex = pVtxIn[0];\n" +" \n" +" ds = dot3F4(planeNormalWS,firstVertex)+planeEqWS;\n" +" for (ve = 0; ve < numVertsIn; ve++)\n" +" {\n" +" endVertex=pVtxIn[ve];\n" +" de = dot3F4(planeNormalWS,endVertex)+planeEqWS;\n" +" if (ds<0)\n" +" {\n" +" if (de<0)\n" +" {\n" +" // Start < 0, end < 0, so output endVertex\n" +" ppVtxOut[numVertsOut++] = endVertex;\n" +" }\n" +" else\n" +" {\n" +" // Start < 0, end >= 0, so output intersection\n" +" ppVtxOut[numVertsOut++] = lerp3(firstVertex, endVertex,(ds * 1.f/(ds - de)) );\n" +" }\n" +" }\n" +" else\n" +" {\n" +" if (de<0)\n" +" {\n" +" // Start >= 0, end < 0 so output intersection and end\n" +" ppVtxOut[numVertsOut++] = lerp3(firstVertex, endVertex,(ds * 1.f/(ds - de)) );\n" +" ppVtxOut[numVertsOut++] = endVertex;\n" +" }\n" +" }\n" +" firstVertex = endVertex;\n" +" ds = de;\n" +" }\n" +" return numVertsOut;\n" +"}\n" +"int clipFaceAgainstHull(const float4 separatingNormal, __global const b3ConvexPolyhedronData_t* hullA, \n" +" const float4 posA, const Quaternion ornA, float4* worldVertsB1, int numWorldVertsB1,\n" +" float4* worldVertsB2, int capacityWorldVertsB2,\n" +" const float minDist, float maxDist,\n" +" __global const float4* vertices,\n" +" __global const b3GpuFace_t* faces,\n" +" __global const int* indices,\n" +" float4* contactsOut,\n" +" int contactCapacity)\n" +"{\n" +" int numContactsOut = 0;\n" +" float4* pVtxIn = worldVertsB1;\n" +" float4* pVtxOut = worldVertsB2;\n" +" \n" +" int numVertsIn = numWorldVertsB1;\n" +" int numVertsOut = 0;\n" +" int closestFaceA=-1;\n" +" {\n" +" float dmin = FLT_MAX;\n" +" for(int face=0;face<hullA->m_numFaces;face++)\n" +" {\n" +" const float4 Normal = make_float4(\n" +" faces[hullA->m_faceOffset+face].m_plane.x, \n" +" faces[hullA->m_faceOffset+face].m_plane.y, \n" +" faces[hullA->m_faceOffset+face].m_plane.z,0.f);\n" +" const float4 faceANormalWS = qtRotate(ornA,Normal);\n" +" \n" +" float d = dot3F4(faceANormalWS,separatingNormal);\n" +" if (d < dmin)\n" +" {\n" +" dmin = d;\n" +" closestFaceA = face;\n" +" }\n" +" }\n" +" }\n" +" if (closestFaceA<0)\n" +" return numContactsOut;\n" +" b3GpuFace_t polyA = faces[hullA->m_faceOffset+closestFaceA];\n" +" // clip polygon to back of planes of all faces of hull A that are adjacent to witness face\n" +" int numVerticesA = polyA.m_numIndices;\n" +" for(int e0=0;e0<numVerticesA;e0++)\n" +" {\n" +" const float4 a = vertices[hullA->m_vertexOffset+indices[polyA.m_indexOffset+e0]];\n" +" const float4 b = vertices[hullA->m_vertexOffset+indices[polyA.m_indexOffset+((e0+1)%numVerticesA)]];\n" +" const float4 edge0 = a - b;\n" +" const float4 WorldEdge0 = qtRotate(ornA,edge0);\n" +" float4 planeNormalA = make_float4(polyA.m_plane.x,polyA.m_plane.y,polyA.m_plane.z,0.f);\n" +" float4 worldPlaneAnormal1 = qtRotate(ornA,planeNormalA);\n" +" float4 planeNormalWS1 = -cross3(WorldEdge0,worldPlaneAnormal1);\n" +" float4 worldA1 = transform(&a,&posA,&ornA);\n" +" float planeEqWS1 = -dot3F4(worldA1,planeNormalWS1);\n" +" \n" +" float4 planeNormalWS = planeNormalWS1;\n" +" float planeEqWS=planeEqWS1;\n" +" \n" +" //clip face\n" +" //clipFace(*pVtxIn, *pVtxOut,planeNormalWS,planeEqWS);\n" +" numVertsOut = clipFace(pVtxIn, numVertsIn, planeNormalWS,planeEqWS, pVtxOut);\n" +" //btSwap(pVtxIn,pVtxOut);\n" +" float4* tmp = pVtxOut;\n" +" pVtxOut = pVtxIn;\n" +" pVtxIn = tmp;\n" +" numVertsIn = numVertsOut;\n" +" numVertsOut = 0;\n" +" }\n" +" \n" +" // only keep points that are behind the witness face\n" +" {\n" +" float4 localPlaneNormal = make_float4(polyA.m_plane.x,polyA.m_plane.y,polyA.m_plane.z,0.f);\n" +" float localPlaneEq = polyA.m_plane.w;\n" +" float4 planeNormalWS = qtRotate(ornA,localPlaneNormal);\n" +" float planeEqWS=localPlaneEq-dot3F4(planeNormalWS,posA);\n" +" for (int i=0;i<numVertsIn;i++)\n" +" {\n" +" float depth = dot3F4(planeNormalWS,pVtxIn[i])+planeEqWS;\n" +" if (depth <=minDist)\n" +" {\n" +" depth = minDist;\n" +" }\n" +" if (depth <=maxDist)\n" +" {\n" +" float4 pointInWorld = pVtxIn[i];\n" +" //resultOut.addContactPoint(separatingNormal,point,depth);\n" +" contactsOut[numContactsOut++] = make_float4(pointInWorld.x,pointInWorld.y,pointInWorld.z,depth);\n" +" }\n" +" }\n" +" }\n" +" return numContactsOut;\n" +"}\n" +"int clipFaceAgainstHullLocalA(const float4 separatingNormal, const b3ConvexPolyhedronData_t* hullA, \n" +" const float4 posA, const Quaternion ornA, float4* worldVertsB1, int numWorldVertsB1,\n" +" float4* worldVertsB2, int capacityWorldVertsB2,\n" +" const float minDist, float maxDist,\n" +" const float4* verticesA,\n" +" const b3GpuFace_t* facesA,\n" +" const int* indicesA,\n" +" __global const float4* verticesB,\n" +" __global const b3GpuFace_t* facesB,\n" +" __global const int* indicesB,\n" +" float4* contactsOut,\n" +" int contactCapacity)\n" +"{\n" +" int numContactsOut = 0;\n" +" float4* pVtxIn = worldVertsB1;\n" +" float4* pVtxOut = worldVertsB2;\n" +" \n" +" int numVertsIn = numWorldVertsB1;\n" +" int numVertsOut = 0;\n" +" int closestFaceA=-1;\n" +" {\n" +" float dmin = FLT_MAX;\n" +" for(int face=0;face<hullA->m_numFaces;face++)\n" +" {\n" +" const float4 Normal = make_float4(\n" +" facesA[hullA->m_faceOffset+face].m_plane.x, \n" +" facesA[hullA->m_faceOffset+face].m_plane.y, \n" +" facesA[hullA->m_faceOffset+face].m_plane.z,0.f);\n" +" const float4 faceANormalWS = qtRotate(ornA,Normal);\n" +" \n" +" float d = dot3F4(faceANormalWS,separatingNormal);\n" +" if (d < dmin)\n" +" {\n" +" dmin = d;\n" +" closestFaceA = face;\n" +" }\n" +" }\n" +" }\n" +" if (closestFaceA<0)\n" +" return numContactsOut;\n" +" b3GpuFace_t polyA = facesA[hullA->m_faceOffset+closestFaceA];\n" +" // clip polygon to back of planes of all faces of hull A that are adjacent to witness face\n" +" int numVerticesA = polyA.m_numIndices;\n" +" for(int e0=0;e0<numVerticesA;e0++)\n" +" {\n" +" const float4 a = verticesA[hullA->m_vertexOffset+indicesA[polyA.m_indexOffset+e0]];\n" +" const float4 b = verticesA[hullA->m_vertexOffset+indicesA[polyA.m_indexOffset+((e0+1)%numVerticesA)]];\n" +" const float4 edge0 = a - b;\n" +" const float4 WorldEdge0 = qtRotate(ornA,edge0);\n" +" float4 planeNormalA = make_float4(polyA.m_plane.x,polyA.m_plane.y,polyA.m_plane.z,0.f);\n" +" float4 worldPlaneAnormal1 = qtRotate(ornA,planeNormalA);\n" +" float4 planeNormalWS1 = -cross3(WorldEdge0,worldPlaneAnormal1);\n" +" float4 worldA1 = transform(&a,&posA,&ornA);\n" +" float planeEqWS1 = -dot3F4(worldA1,planeNormalWS1);\n" +" \n" +" float4 planeNormalWS = planeNormalWS1;\n" +" float planeEqWS=planeEqWS1;\n" +" \n" +" //clip face\n" +" //clipFace(*pVtxIn, *pVtxOut,planeNormalWS,planeEqWS);\n" +" numVertsOut = clipFace(pVtxIn, numVertsIn, planeNormalWS,planeEqWS, pVtxOut);\n" +" //btSwap(pVtxIn,pVtxOut);\n" +" float4* tmp = pVtxOut;\n" +" pVtxOut = pVtxIn;\n" +" pVtxIn = tmp;\n" +" numVertsIn = numVertsOut;\n" +" numVertsOut = 0;\n" +" }\n" +" \n" +" // only keep points that are behind the witness face\n" +" {\n" +" float4 localPlaneNormal = make_float4(polyA.m_plane.x,polyA.m_plane.y,polyA.m_plane.z,0.f);\n" +" float localPlaneEq = polyA.m_plane.w;\n" +" float4 planeNormalWS = qtRotate(ornA,localPlaneNormal);\n" +" float planeEqWS=localPlaneEq-dot3F4(planeNormalWS,posA);\n" +" for (int i=0;i<numVertsIn;i++)\n" +" {\n" +" float depth = dot3F4(planeNormalWS,pVtxIn[i])+planeEqWS;\n" +" if (depth <=minDist)\n" +" {\n" +" depth = minDist;\n" +" }\n" +" if (depth <=maxDist)\n" +" {\n" +" float4 pointInWorld = pVtxIn[i];\n" +" //resultOut.addContactPoint(separatingNormal,point,depth);\n" +" contactsOut[numContactsOut++] = make_float4(pointInWorld.x,pointInWorld.y,pointInWorld.z,depth);\n" +" }\n" +" }\n" +" }\n" +" return numContactsOut;\n" +"}\n" +"int clipHullAgainstHull(const float4 separatingNormal,\n" +" __global const b3ConvexPolyhedronData_t* hullA, __global const b3ConvexPolyhedronData_t* hullB, \n" +" const float4 posA, const Quaternion ornA,const float4 posB, const Quaternion ornB, \n" +" float4* worldVertsB1, float4* worldVertsB2, int capacityWorldVerts,\n" +" const float minDist, float maxDist,\n" +" __global const float4* vertices,\n" +" __global const b3GpuFace_t* faces,\n" +" __global const int* indices,\n" +" float4* localContactsOut,\n" +" int localContactCapacity)\n" +"{\n" +" int numContactsOut = 0;\n" +" int numWorldVertsB1= 0;\n" +" int closestFaceB=-1;\n" +" float dmax = -FLT_MAX;\n" +" {\n" +" for(int face=0;face<hullB->m_numFaces;face++)\n" +" {\n" +" const float4 Normal = make_float4(faces[hullB->m_faceOffset+face].m_plane.x, \n" +" faces[hullB->m_faceOffset+face].m_plane.y, faces[hullB->m_faceOffset+face].m_plane.z,0.f);\n" +" const float4 WorldNormal = qtRotate(ornB, Normal);\n" +" float d = dot3F4(WorldNormal,separatingNormal);\n" +" if (d > dmax)\n" +" {\n" +" dmax = d;\n" +" closestFaceB = face;\n" +" }\n" +" }\n" +" }\n" +" {\n" +" const b3GpuFace_t polyB = faces[hullB->m_faceOffset+closestFaceB];\n" +" const int numVertices = polyB.m_numIndices;\n" +" for(int e0=0;e0<numVertices;e0++)\n" +" {\n" +" const float4 b = vertices[hullB->m_vertexOffset+indices[polyB.m_indexOffset+e0]];\n" +" worldVertsB1[numWorldVertsB1++] = transform(&b,&posB,&ornB);\n" +" }\n" +" }\n" +" if (closestFaceB>=0)\n" +" {\n" +" numContactsOut = clipFaceAgainstHull(separatingNormal, hullA, \n" +" posA,ornA,\n" +" worldVertsB1,numWorldVertsB1,worldVertsB2,capacityWorldVerts, minDist, maxDist,vertices,\n" +" faces,\n" +" indices,localContactsOut,localContactCapacity);\n" +" }\n" +" return numContactsOut;\n" +"}\n" +"int clipHullAgainstHullLocalA(const float4 separatingNormal,\n" +" const b3ConvexPolyhedronData_t* hullA, __global const b3ConvexPolyhedronData_t* hullB, \n" +" const float4 posA, const Quaternion ornA,const float4 posB, const Quaternion ornB, \n" +" float4* worldVertsB1, float4* worldVertsB2, int capacityWorldVerts,\n" +" const float minDist, float maxDist,\n" +" const float4* verticesA,\n" +" const b3GpuFace_t* facesA,\n" +" const int* indicesA,\n" +" __global const float4* verticesB,\n" +" __global const b3GpuFace_t* facesB,\n" +" __global const int* indicesB,\n" +" float4* localContactsOut,\n" +" int localContactCapacity)\n" +"{\n" +" int numContactsOut = 0;\n" +" int numWorldVertsB1= 0;\n" +" int closestFaceB=-1;\n" +" float dmax = -FLT_MAX;\n" +" {\n" +" for(int face=0;face<hullB->m_numFaces;face++)\n" +" {\n" +" const float4 Normal = make_float4(facesB[hullB->m_faceOffset+face].m_plane.x, \n" +" facesB[hullB->m_faceOffset+face].m_plane.y, facesB[hullB->m_faceOffset+face].m_plane.z,0.f);\n" +" const float4 WorldNormal = qtRotate(ornB, Normal);\n" +" float d = dot3F4(WorldNormal,separatingNormal);\n" +" if (d > dmax)\n" +" {\n" +" dmax = d;\n" +" closestFaceB = face;\n" +" }\n" +" }\n" +" }\n" +" {\n" +" const b3GpuFace_t polyB = facesB[hullB->m_faceOffset+closestFaceB];\n" +" const int numVertices = polyB.m_numIndices;\n" +" for(int e0=0;e0<numVertices;e0++)\n" +" {\n" +" const float4 b = verticesB[hullB->m_vertexOffset+indicesB[polyB.m_indexOffset+e0]];\n" +" worldVertsB1[numWorldVertsB1++] = transform(&b,&posB,&ornB);\n" +" }\n" +" }\n" +" if (closestFaceB>=0)\n" +" {\n" +" numContactsOut = clipFaceAgainstHullLocalA(separatingNormal, hullA, \n" +" posA,ornA,\n" +" worldVertsB1,numWorldVertsB1,worldVertsB2,capacityWorldVerts, minDist, maxDist,\n" +" verticesA,facesA,indicesA,\n" +" verticesB,facesB,indicesB,\n" +" localContactsOut,localContactCapacity);\n" +" }\n" +" return numContactsOut;\n" +"}\n" +"#define PARALLEL_SUM(v, n) for(int j=1; j<n; j++) v[0] += v[j];\n" +"#define PARALLEL_DO(execution, n) for(int ie=0; ie<n; ie++){execution;}\n" +"#define REDUCE_MAX(v, n) {int i=0; for(int offset=0; offset<n; offset++) v[i] = (v[i].y > v[i+offset].y)? v[i]: v[i+offset]; }\n" +"#define REDUCE_MIN(v, n) {int i=0; for(int offset=0; offset<n; offset++) v[i] = (v[i].y < v[i+offset].y)? v[i]: v[i+offset]; }\n" +"int extractManifoldSequentialGlobal(__global const float4* p, int nPoints, float4 nearNormal, int4* contactIdx)\n" +"{\n" +" if( nPoints == 0 )\n" +" return 0;\n" +" \n" +" if (nPoints <=4)\n" +" return nPoints;\n" +" \n" +" \n" +" if (nPoints >64)\n" +" nPoints = 64;\n" +" \n" +" float4 center = make_float4(0.f);\n" +" {\n" +" \n" +" for (int i=0;i<nPoints;i++)\n" +" center += p[i];\n" +" center /= (float)nPoints;\n" +" }\n" +" \n" +" \n" +" \n" +" // sample 4 directions\n" +" \n" +" float4 aVector = p[0] - center;\n" +" float4 u = cross3( nearNormal, aVector );\n" +" float4 v = cross3( nearNormal, u );\n" +" u = normalize3( u );\n" +" v = normalize3( v );\n" +" \n" +" \n" +" //keep point with deepest penetration\n" +" float minW= FLT_MAX;\n" +" \n" +" int minIndex=-1;\n" +" \n" +" float4 maxDots;\n" +" maxDots.x = FLT_MIN;\n" +" maxDots.y = FLT_MIN;\n" +" maxDots.z = FLT_MIN;\n" +" maxDots.w = FLT_MIN;\n" +" \n" +" // idx, distance\n" +" for(int ie = 0; ie<nPoints; ie++ )\n" +" {\n" +" if (p[ie].w<minW)\n" +" {\n" +" minW = p[ie].w;\n" +" minIndex=ie;\n" +" }\n" +" float f;\n" +" float4 r = p[ie]-center;\n" +" f = dot3F4( u, r );\n" +" if (f<maxDots.x)\n" +" {\n" +" maxDots.x = f;\n" +" contactIdx[0].x = ie;\n" +" }\n" +" \n" +" f = dot3F4( -u, r );\n" +" if (f<maxDots.y)\n" +" {\n" +" maxDots.y = f;\n" +" contactIdx[0].y = ie;\n" +" }\n" +" \n" +" \n" +" f = dot3F4( v, r );\n" +" if (f<maxDots.z)\n" +" {\n" +" maxDots.z = f;\n" +" contactIdx[0].z = ie;\n" +" }\n" +" \n" +" f = dot3F4( -v, r );\n" +" if (f<maxDots.w)\n" +" {\n" +" maxDots.w = f;\n" +" contactIdx[0].w = ie;\n" +" }\n" +" \n" +" }\n" +" \n" +" if (contactIdx[0].x != minIndex && contactIdx[0].y != minIndex && contactIdx[0].z != minIndex && contactIdx[0].w != minIndex)\n" +" {\n" +" //replace the first contact with minimum (todo: replace contact with least penetration)\n" +" contactIdx[0].x = minIndex;\n" +" }\n" +" \n" +" return 4;\n" +" \n" +"}\n" +"int extractManifoldSequentialGlobalFake(__global const float4* p, int nPoints, float4 nearNormal, int* contactIdx)\n" +"{\n" +" contactIdx[0] = 0;\n" +" contactIdx[1] = 1;\n" +" contactIdx[2] = 2;\n" +" contactIdx[3] = 3;\n" +" \n" +" if( nPoints == 0 ) return 0;\n" +" \n" +" nPoints = min2( nPoints, 4 );\n" +" return nPoints;\n" +" \n" +"}\n" +"int extractManifoldSequential(const float4* p, int nPoints, float4 nearNormal, int* contactIdx)\n" +"{\n" +" if( nPoints == 0 ) return 0;\n" +" nPoints = min2( nPoints, 64 );\n" +" float4 center = make_float4(0.f);\n" +" {\n" +" float4 v[64];\n" +" for (int i=0;i<nPoints;i++)\n" +" v[i] = p[i];\n" +" //memcpy( v, p, nPoints*sizeof(float4) );\n" +" PARALLEL_SUM( v, nPoints );\n" +" center = v[0]/(float)nPoints;\n" +" }\n" +" \n" +" { // sample 4 directions\n" +" if( nPoints < 4 )\n" +" {\n" +" for(int i=0; i<nPoints; i++) \n" +" contactIdx[i] = i;\n" +" return nPoints;\n" +" }\n" +" float4 aVector = p[0] - center;\n" +" float4 u = cross3( nearNormal, aVector );\n" +" float4 v = cross3( nearNormal, u );\n" +" u = normalize3( u );\n" +" v = normalize3( v );\n" +" int idx[4];\n" +" float2 max00 = make_float2(0,FLT_MAX);\n" +" {\n" +" // idx, distance\n" +" {\n" +" {\n" +" int4 a[64];\n" +" for(int ie = 0; ie<nPoints; ie++ )\n" +" {\n" +" \n" +" \n" +" float f;\n" +" float4 r = p[ie]-center;\n" +" f = dot3F4( u, r );\n" +" a[ie].x = ((*(u32*)&f) & 0xffffff00) | (0xff & ie);\n" +" f = dot3F4( -u, r );\n" +" a[ie].y = ((*(u32*)&f) & 0xffffff00) | (0xff & ie);\n" +" f = dot3F4( v, r );\n" +" a[ie].z = ((*(u32*)&f) & 0xffffff00) | (0xff & ie);\n" +" f = dot3F4( -v, r );\n" +" a[ie].w = ((*(u32*)&f) & 0xffffff00) | (0xff & ie);\n" +" }\n" +" for(int ie=0; ie<nPoints; ie++)\n" +" {\n" +" a[0].x = (a[0].x > a[ie].x )? a[0].x: a[ie].x;\n" +" a[0].y = (a[0].y > a[ie].y )? a[0].y: a[ie].y;\n" +" a[0].z = (a[0].z > a[ie].z )? a[0].z: a[ie].z;\n" +" a[0].w = (a[0].w > a[ie].w )? a[0].w: a[ie].w;\n" +" }\n" +" idx[0] = (int)a[0].x & 0xff;\n" +" idx[1] = (int)a[0].y & 0xff;\n" +" idx[2] = (int)a[0].z & 0xff;\n" +" idx[3] = (int)a[0].w & 0xff;\n" +" }\n" +" }\n" +" {\n" +" float2 h[64];\n" +" PARALLEL_DO( h[ie] = make_float2((float)ie, p[ie].w), nPoints );\n" +" REDUCE_MIN( h, nPoints );\n" +" max00 = h[0];\n" +" }\n" +" }\n" +" contactIdx[0] = idx[0];\n" +" contactIdx[1] = idx[1];\n" +" contactIdx[2] = idx[2];\n" +" contactIdx[3] = idx[3];\n" +" return 4;\n" +" }\n" +"}\n" +"__kernel void extractManifoldAndAddContactKernel(__global const int4* pairs, \n" +" __global const b3RigidBodyData_t* rigidBodies, \n" +" __global const float4* closestPointsWorld,\n" +" __global const float4* separatingNormalsWorld,\n" +" __global const int* contactCounts,\n" +" __global const int* contactOffsets,\n" +" __global struct b3Contact4Data* restrict contactsOut,\n" +" counter32_t nContactsOut,\n" +" int contactCapacity,\n" +" int numPairs,\n" +" int pairIndex\n" +" )\n" +"{\n" +" int idx = get_global_id(0);\n" +" \n" +" if (idx<numPairs)\n" +" {\n" +" float4 normal = separatingNormalsWorld[idx];\n" +" int nPoints = contactCounts[idx];\n" +" __global const float4* pointsIn = &closestPointsWorld[contactOffsets[idx]];\n" +" float4 localPoints[64];\n" +" for (int i=0;i<nPoints;i++)\n" +" {\n" +" localPoints[i] = pointsIn[i];\n" +" }\n" +" int contactIdx[4];// = {-1,-1,-1,-1};\n" +" contactIdx[0] = -1;\n" +" contactIdx[1] = -1;\n" +" contactIdx[2] = -1;\n" +" contactIdx[3] = -1;\n" +" int nContacts = extractManifoldSequential(localPoints, nPoints, normal, contactIdx);\n" +" int dstIdx;\n" +" AppendInc( nContactsOut, dstIdx );\n" +" if (dstIdx<contactCapacity)\n" +" {\n" +" __global struct b3Contact4Data* c = contactsOut + dstIdx;\n" +" c->m_worldNormalOnB = -normal;\n" +" c->m_restituitionCoeffCmp = (0.f*0xffff);c->m_frictionCoeffCmp = (0.7f*0xffff);\n" +" c->m_batchIdx = idx;\n" +" int bodyA = pairs[pairIndex].x;\n" +" int bodyB = pairs[pairIndex].y;\n" +" c->m_bodyAPtrAndSignBit = rigidBodies[bodyA].m_invMass==0 ? -bodyA:bodyA;\n" +" c->m_bodyBPtrAndSignBit = rigidBodies[bodyB].m_invMass==0 ? -bodyB:bodyB;\n" +" c->m_childIndexA = -1;\n" +" c->m_childIndexB = -1;\n" +" for (int i=0;i<nContacts;i++)\n" +" {\n" +" c->m_worldPosB[i] = localPoints[contactIdx[i]];\n" +" }\n" +" GET_NPOINTS(*c) = nContacts;\n" +" }\n" +" }\n" +"}\n" +"void trInverse(float4 translationIn, Quaternion orientationIn,\n" +" float4* translationOut, Quaternion* orientationOut)\n" +"{\n" +" *orientationOut = qtInvert(orientationIn);\n" +" *translationOut = qtRotate(*orientationOut, -translationIn);\n" +"}\n" +"void trMul(float4 translationA, Quaternion orientationA,\n" +" float4 translationB, Quaternion orientationB,\n" +" float4* translationOut, Quaternion* orientationOut)\n" +"{\n" +" *orientationOut = qtMul(orientationA,orientationB);\n" +" *translationOut = transform(&translationB,&translationA,&orientationA);\n" +"}\n" +"__kernel void clipHullHullKernel( __global int4* pairs, \n" +" __global const b3RigidBodyData_t* rigidBodies, \n" +" __global const b3Collidable_t* collidables,\n" +" __global const b3ConvexPolyhedronData_t* convexShapes, \n" +" __global const float4* vertices,\n" +" __global const float4* uniqueEdges,\n" +" __global const b3GpuFace_t* faces,\n" +" __global const int* indices,\n" +" __global const float4* separatingNormals,\n" +" __global const int* hasSeparatingAxis,\n" +" __global struct b3Contact4Data* restrict globalContactsOut,\n" +" counter32_t nGlobalContactsOut,\n" +" int numPairs,\n" +" int contactCapacity)\n" +"{\n" +" int i = get_global_id(0);\n" +" int pairIndex = i;\n" +" \n" +" float4 worldVertsB1[64];\n" +" float4 worldVertsB2[64];\n" +" int capacityWorldVerts = 64; \n" +" float4 localContactsOut[64];\n" +" int localContactCapacity=64;\n" +" \n" +" float minDist = -1e30f;\n" +" float maxDist = 0.02f;\n" +" if (i<numPairs)\n" +" {\n" +" int bodyIndexA = pairs[i].x;\n" +" int bodyIndexB = pairs[i].y;\n" +" \n" +" int collidableIndexA = rigidBodies[bodyIndexA].m_collidableIdx;\n" +" int collidableIndexB = rigidBodies[bodyIndexB].m_collidableIdx;\n" +" if (hasSeparatingAxis[i])\n" +" {\n" +" \n" +" int shapeIndexA = collidables[collidableIndexA].m_shapeIndex;\n" +" int shapeIndexB = collidables[collidableIndexB].m_shapeIndex;\n" +" \n" +" \n" +" int numLocalContactsOut = clipHullAgainstHull(separatingNormals[i],\n" +" &convexShapes[shapeIndexA], &convexShapes[shapeIndexB],\n" +" rigidBodies[bodyIndexA].m_pos,rigidBodies[bodyIndexA].m_quat,\n" +" rigidBodies[bodyIndexB].m_pos,rigidBodies[bodyIndexB].m_quat,\n" +" worldVertsB1,worldVertsB2,capacityWorldVerts,\n" +" minDist, maxDist,\n" +" vertices,faces,indices,\n" +" localContactsOut,localContactCapacity);\n" +" \n" +" if (numLocalContactsOut>0)\n" +" {\n" +" float4 normal = -separatingNormals[i];\n" +" int nPoints = numLocalContactsOut;\n" +" float4* pointsIn = localContactsOut;\n" +" int contactIdx[4];// = {-1,-1,-1,-1};\n" +" contactIdx[0] = -1;\n" +" contactIdx[1] = -1;\n" +" contactIdx[2] = -1;\n" +" contactIdx[3] = -1;\n" +" \n" +" int nReducedContacts = extractManifoldSequential(pointsIn, nPoints, normal, contactIdx);\n" +" \n" +" \n" +" int mprContactIndex = pairs[pairIndex].z;\n" +" int dstIdx = mprContactIndex;\n" +" if (dstIdx<0)\n" +" {\n" +" AppendInc( nGlobalContactsOut, dstIdx );\n" +" }\n" +" if (dstIdx<contactCapacity)\n" +" {\n" +" pairs[pairIndex].z = dstIdx;\n" +" __global struct b3Contact4Data* c = globalContactsOut+ dstIdx;\n" +" c->m_worldNormalOnB = -normal;\n" +" c->m_restituitionCoeffCmp = (0.f*0xffff);c->m_frictionCoeffCmp = (0.7f*0xffff);\n" +" c->m_batchIdx = pairIndex;\n" +" int bodyA = pairs[pairIndex].x;\n" +" int bodyB = pairs[pairIndex].y;\n" +" c->m_bodyAPtrAndSignBit = rigidBodies[bodyA].m_invMass==0?-bodyA:bodyA;\n" +" c->m_bodyBPtrAndSignBit = rigidBodies[bodyB].m_invMass==0?-bodyB:bodyB;\n" +" c->m_childIndexA = -1;\n" +" c->m_childIndexB = -1;\n" +" for (int i=0;i<nReducedContacts;i++)\n" +" {\n" +" //this condition means: overwrite contact point, unless at index i==0 we have a valid 'mpr' contact\n" +" if (i>0||(mprContactIndex<0))\n" +" {\n" +" c->m_worldPosB[i] = pointsIn[contactIdx[i]];\n" +" }\n" +" }\n" +" GET_NPOINTS(*c) = nReducedContacts;\n" +" }\n" +" \n" +" }// if (numContactsOut>0)\n" +" }// if (hasSeparatingAxis[i])\n" +" }// if (i<numPairs)\n" +"}\n" +"__kernel void clipCompoundsHullHullKernel( __global const int4* gpuCompoundPairs, \n" +" __global const b3RigidBodyData_t* rigidBodies, \n" +" __global const b3Collidable_t* collidables,\n" +" __global const b3ConvexPolyhedronData_t* convexShapes, \n" +" __global const float4* vertices,\n" +" __global const float4* uniqueEdges,\n" +" __global const b3GpuFace_t* faces,\n" +" __global const int* indices,\n" +" __global const b3GpuChildShape_t* gpuChildShapes,\n" +" __global const float4* gpuCompoundSepNormalsOut,\n" +" __global const int* gpuHasCompoundSepNormalsOut,\n" +" __global struct b3Contact4Data* restrict globalContactsOut,\n" +" counter32_t nGlobalContactsOut,\n" +" int numCompoundPairs, int maxContactCapacity)\n" +"{\n" +" int i = get_global_id(0);\n" +" int pairIndex = i;\n" +" \n" +" float4 worldVertsB1[64];\n" +" float4 worldVertsB2[64];\n" +" int capacityWorldVerts = 64; \n" +" float4 localContactsOut[64];\n" +" int localContactCapacity=64;\n" +" \n" +" float minDist = -1e30f;\n" +" float maxDist = 0.02f;\n" +" if (i<numCompoundPairs)\n" +" {\n" +" if (gpuHasCompoundSepNormalsOut[i])\n" +" {\n" +" int bodyIndexA = gpuCompoundPairs[i].x;\n" +" int bodyIndexB = gpuCompoundPairs[i].y;\n" +" \n" +" int childShapeIndexA = gpuCompoundPairs[i].z;\n" +" int childShapeIndexB = gpuCompoundPairs[i].w;\n" +" \n" +" int collidableIndexA = -1;\n" +" int collidableIndexB = -1;\n" +" \n" +" float4 ornA = rigidBodies[bodyIndexA].m_quat;\n" +" float4 posA = rigidBodies[bodyIndexA].m_pos;\n" +" \n" +" float4 ornB = rigidBodies[bodyIndexB].m_quat;\n" +" float4 posB = rigidBodies[bodyIndexB].m_pos;\n" +" \n" +" if (childShapeIndexA >= 0)\n" +" {\n" +" collidableIndexA = gpuChildShapes[childShapeIndexA].m_shapeIndex;\n" +" float4 childPosA = gpuChildShapes[childShapeIndexA].m_childPosition;\n" +" float4 childOrnA = gpuChildShapes[childShapeIndexA].m_childOrientation;\n" +" float4 newPosA = qtRotate(ornA,childPosA)+posA;\n" +" float4 newOrnA = qtMul(ornA,childOrnA);\n" +" posA = newPosA;\n" +" ornA = newOrnA;\n" +" } else\n" +" {\n" +" collidableIndexA = rigidBodies[bodyIndexA].m_collidableIdx;\n" +" }\n" +" \n" +" if (childShapeIndexB>=0)\n" +" {\n" +" collidableIndexB = gpuChildShapes[childShapeIndexB].m_shapeIndex;\n" +" float4 childPosB = gpuChildShapes[childShapeIndexB].m_childPosition;\n" +" float4 childOrnB = gpuChildShapes[childShapeIndexB].m_childOrientation;\n" +" float4 newPosB = transform(&childPosB,&posB,&ornB);\n" +" float4 newOrnB = qtMul(ornB,childOrnB);\n" +" posB = newPosB;\n" +" ornB = newOrnB;\n" +" } else\n" +" {\n" +" collidableIndexB = rigidBodies[bodyIndexB].m_collidableIdx; \n" +" }\n" +" \n" +" int shapeIndexA = collidables[collidableIndexA].m_shapeIndex;\n" +" int shapeIndexB = collidables[collidableIndexB].m_shapeIndex;\n" +" \n" +" int numLocalContactsOut = clipHullAgainstHull(gpuCompoundSepNormalsOut[i],\n" +" &convexShapes[shapeIndexA], &convexShapes[shapeIndexB],\n" +" posA,ornA,\n" +" posB,ornB,\n" +" worldVertsB1,worldVertsB2,capacityWorldVerts,\n" +" minDist, maxDist,\n" +" vertices,faces,indices,\n" +" localContactsOut,localContactCapacity);\n" +" \n" +" if (numLocalContactsOut>0)\n" +" {\n" +" float4 normal = -gpuCompoundSepNormalsOut[i];\n" +" int nPoints = numLocalContactsOut;\n" +" float4* pointsIn = localContactsOut;\n" +" int contactIdx[4];// = {-1,-1,-1,-1};\n" +" contactIdx[0] = -1;\n" +" contactIdx[1] = -1;\n" +" contactIdx[2] = -1;\n" +" contactIdx[3] = -1;\n" +" \n" +" int nReducedContacts = extractManifoldSequential(pointsIn, nPoints, normal, contactIdx);\n" +" \n" +" int dstIdx;\n" +" AppendInc( nGlobalContactsOut, dstIdx );\n" +" if ((dstIdx+nReducedContacts) < maxContactCapacity)\n" +" {\n" +" __global struct b3Contact4Data* c = globalContactsOut+ dstIdx;\n" +" c->m_worldNormalOnB = -normal;\n" +" c->m_restituitionCoeffCmp = (0.f*0xffff);c->m_frictionCoeffCmp = (0.7f*0xffff);\n" +" c->m_batchIdx = pairIndex;\n" +" int bodyA = gpuCompoundPairs[pairIndex].x;\n" +" int bodyB = gpuCompoundPairs[pairIndex].y;\n" +" c->m_bodyAPtrAndSignBit = rigidBodies[bodyA].m_invMass==0?-bodyA:bodyA;\n" +" c->m_bodyBPtrAndSignBit = rigidBodies[bodyB].m_invMass==0?-bodyB:bodyB;\n" +" c->m_childIndexA = childShapeIndexA;\n" +" c->m_childIndexB = childShapeIndexB;\n" +" for (int i=0;i<nReducedContacts;i++)\n" +" {\n" +" c->m_worldPosB[i] = pointsIn[contactIdx[i]];\n" +" }\n" +" GET_NPOINTS(*c) = nReducedContacts;\n" +" }\n" +" \n" +" }// if (numContactsOut>0)\n" +" }// if (gpuHasCompoundSepNormalsOut[i])\n" +" }// if (i<numCompoundPairs)\n" +"}\n" +"__kernel void sphereSphereCollisionKernel( __global const int4* pairs, \n" +" __global const b3RigidBodyData_t* rigidBodies, \n" +" __global const b3Collidable_t* collidables,\n" +" __global const float4* separatingNormals,\n" +" __global const int* hasSeparatingAxis,\n" +" __global struct b3Contact4Data* restrict globalContactsOut,\n" +" counter32_t nGlobalContactsOut,\n" +" int contactCapacity,\n" +" int numPairs)\n" +"{\n" +" int i = get_global_id(0);\n" +" int pairIndex = i;\n" +" \n" +" if (i<numPairs)\n" +" {\n" +" int bodyIndexA = pairs[i].x;\n" +" int bodyIndexB = pairs[i].y;\n" +" \n" +" int collidableIndexA = rigidBodies[bodyIndexA].m_collidableIdx;\n" +" int collidableIndexB = rigidBodies[bodyIndexB].m_collidableIdx;\n" +" if (collidables[collidableIndexA].m_shapeType == SHAPE_SPHERE &&\n" +" collidables[collidableIndexB].m_shapeType == SHAPE_SPHERE)\n" +" {\n" +" //sphere-sphere\n" +" float radiusA = collidables[collidableIndexA].m_radius;\n" +" float radiusB = collidables[collidableIndexB].m_radius;\n" +" float4 posA = rigidBodies[bodyIndexA].m_pos;\n" +" float4 posB = rigidBodies[bodyIndexB].m_pos;\n" +" float4 diff = posA-posB;\n" +" float len = length(diff);\n" +" \n" +" ///iff distance positive, don't generate a new contact\n" +" if ( len <= (radiusA+radiusB))\n" +" {\n" +" ///distance (negative means penetration)\n" +" float dist = len - (radiusA+radiusB);\n" +" float4 normalOnSurfaceB = make_float4(1.f,0.f,0.f,0.f);\n" +" if (len > 0.00001)\n" +" {\n" +" normalOnSurfaceB = diff / len;\n" +" }\n" +" float4 contactPosB = posB + normalOnSurfaceB*radiusB;\n" +" contactPosB.w = dist;\n" +" \n" +" int dstIdx;\n" +" AppendInc( nGlobalContactsOut, dstIdx );\n" +" if (dstIdx < contactCapacity)\n" +" {\n" +" __global struct b3Contact4Data* c = &globalContactsOut[dstIdx];\n" +" c->m_worldNormalOnB = -normalOnSurfaceB;\n" +" c->m_restituitionCoeffCmp = (0.f*0xffff);c->m_frictionCoeffCmp = (0.7f*0xffff);\n" +" c->m_batchIdx = pairIndex;\n" +" int bodyA = pairs[pairIndex].x;\n" +" int bodyB = pairs[pairIndex].y;\n" +" c->m_bodyAPtrAndSignBit = rigidBodies[bodyA].m_invMass==0?-bodyA:bodyA;\n" +" c->m_bodyBPtrAndSignBit = rigidBodies[bodyB].m_invMass==0?-bodyB:bodyB;\n" +" c->m_worldPosB[0] = contactPosB;\n" +" c->m_childIndexA = -1;\n" +" c->m_childIndexB = -1;\n" +" GET_NPOINTS(*c) = 1;\n" +" }//if (dstIdx < numPairs)\n" +" }//if ( len <= (radiusA+radiusB))\n" +" }//SHAPE_SPHERE SHAPE_SPHERE\n" +" }//if (i<numPairs)\n" +"} \n" +"__kernel void clipHullHullConcaveConvexKernel( __global int4* concavePairsIn,\n" +" __global const b3RigidBodyData_t* rigidBodies, \n" +" __global const b3Collidable_t* collidables,\n" +" __global const b3ConvexPolyhedronData_t* convexShapes, \n" +" __global const float4* vertices,\n" +" __global const float4* uniqueEdges,\n" +" __global const b3GpuFace_t* faces,\n" +" __global const int* indices,\n" +" __global const b3GpuChildShape_t* gpuChildShapes,\n" +" __global const float4* separatingNormals,\n" +" __global struct b3Contact4Data* restrict globalContactsOut,\n" +" counter32_t nGlobalContactsOut,\n" +" int contactCapacity,\n" +" int numConcavePairs)\n" +"{\n" +" int i = get_global_id(0);\n" +" int pairIndex = i;\n" +" \n" +" float4 worldVertsB1[64];\n" +" float4 worldVertsB2[64];\n" +" int capacityWorldVerts = 64; \n" +" float4 localContactsOut[64];\n" +" int localContactCapacity=64;\n" +" \n" +" float minDist = -1e30f;\n" +" float maxDist = 0.02f;\n" +" if (i<numConcavePairs)\n" +" {\n" +" //negative value means that the pair is invalid\n" +" if (concavePairsIn[i].w<0)\n" +" return;\n" +" int bodyIndexA = concavePairsIn[i].x;\n" +" int bodyIndexB = concavePairsIn[i].y;\n" +" int f = concavePairsIn[i].z;\n" +" int childShapeIndexA = f;\n" +" \n" +" int collidableIndexA = rigidBodies[bodyIndexA].m_collidableIdx;\n" +" int collidableIndexB = rigidBodies[bodyIndexB].m_collidableIdx;\n" +" \n" +" int shapeIndexA = collidables[collidableIndexA].m_shapeIndex;\n" +" int shapeIndexB = collidables[collidableIndexB].m_shapeIndex;\n" +" \n" +" ///////////////////////////////////////////////////////////////\n" +" \n" +" \n" +" bool overlap = false;\n" +" \n" +" b3ConvexPolyhedronData_t convexPolyhedronA;\n" +" //add 3 vertices of the triangle\n" +" convexPolyhedronA.m_numVertices = 3;\n" +" convexPolyhedronA.m_vertexOffset = 0;\n" +" float4 localCenter = make_float4(0.f,0.f,0.f,0.f);\n" +" b3GpuFace_t face = faces[convexShapes[shapeIndexA].m_faceOffset+f];\n" +" \n" +" float4 verticesA[3];\n" +" for (int i=0;i<3;i++)\n" +" {\n" +" int index = indices[face.m_indexOffset+i];\n" +" float4 vert = vertices[convexShapes[shapeIndexA].m_vertexOffset+index];\n" +" verticesA[i] = vert;\n" +" localCenter += vert;\n" +" }\n" +" float dmin = FLT_MAX;\n" +" int localCC=0;\n" +" //a triangle has 3 unique edges\n" +" convexPolyhedronA.m_numUniqueEdges = 3;\n" +" convexPolyhedronA.m_uniqueEdgesOffset = 0;\n" +" float4 uniqueEdgesA[3];\n" +" \n" +" uniqueEdgesA[0] = (verticesA[1]-verticesA[0]);\n" +" uniqueEdgesA[1] = (verticesA[2]-verticesA[1]);\n" +" uniqueEdgesA[2] = (verticesA[0]-verticesA[2]);\n" +" convexPolyhedronA.m_faceOffset = 0;\n" +" \n" +" float4 normal = make_float4(face.m_plane.x,face.m_plane.y,face.m_plane.z,0.f);\n" +" \n" +" b3GpuFace_t facesA[TRIANGLE_NUM_CONVEX_FACES];\n" +" int indicesA[3+3+2+2+2];\n" +" int curUsedIndices=0;\n" +" int fidx=0;\n" +" //front size of triangle\n" +" {\n" +" facesA[fidx].m_indexOffset=curUsedIndices;\n" +" indicesA[0] = 0;\n" +" indicesA[1] = 1;\n" +" indicesA[2] = 2;\n" +" curUsedIndices+=3;\n" +" float c = face.m_plane.w;\n" +" facesA[fidx].m_plane.x = normal.x;\n" +" facesA[fidx].m_plane.y = normal.y;\n" +" facesA[fidx].m_plane.z = normal.z;\n" +" facesA[fidx].m_plane.w = c;\n" +" facesA[fidx].m_numIndices=3;\n" +" }\n" +" fidx++;\n" +" //back size of triangle\n" +" {\n" +" facesA[fidx].m_indexOffset=curUsedIndices;\n" +" indicesA[3]=2;\n" +" indicesA[4]=1;\n" +" indicesA[5]=0;\n" +" curUsedIndices+=3;\n" +" float c = dot3F4(normal,verticesA[0]);\n" +" float c1 = -face.m_plane.w;\n" +" facesA[fidx].m_plane.x = -normal.x;\n" +" facesA[fidx].m_plane.y = -normal.y;\n" +" facesA[fidx].m_plane.z = -normal.z;\n" +" facesA[fidx].m_plane.w = c;\n" +" facesA[fidx].m_numIndices=3;\n" +" }\n" +" fidx++;\n" +" bool addEdgePlanes = true;\n" +" if (addEdgePlanes)\n" +" {\n" +" int numVertices=3;\n" +" int prevVertex = numVertices-1;\n" +" for (int i=0;i<numVertices;i++)\n" +" {\n" +" float4 v0 = verticesA[i];\n" +" float4 v1 = verticesA[prevVertex];\n" +" \n" +" float4 edgeNormal = normalize(cross(normal,v1-v0));\n" +" float c = -dot3F4(edgeNormal,v0);\n" +" facesA[fidx].m_numIndices = 2;\n" +" facesA[fidx].m_indexOffset=curUsedIndices;\n" +" indicesA[curUsedIndices++]=i;\n" +" indicesA[curUsedIndices++]=prevVertex;\n" +" \n" +" facesA[fidx].m_plane.x = edgeNormal.x;\n" +" facesA[fidx].m_plane.y = edgeNormal.y;\n" +" facesA[fidx].m_plane.z = edgeNormal.z;\n" +" facesA[fidx].m_plane.w = c;\n" +" fidx++;\n" +" prevVertex = i;\n" +" }\n" +" }\n" +" convexPolyhedronA.m_numFaces = TRIANGLE_NUM_CONVEX_FACES;\n" +" convexPolyhedronA.m_localCenter = localCenter*(1.f/3.f);\n" +" float4 posA = rigidBodies[bodyIndexA].m_pos;\n" +" posA.w = 0.f;\n" +" float4 posB = rigidBodies[bodyIndexB].m_pos;\n" +" posB.w = 0.f;\n" +" float4 ornA = rigidBodies[bodyIndexA].m_quat;\n" +" float4 ornB =rigidBodies[bodyIndexB].m_quat;\n" +" float4 sepAxis = separatingNormals[i];\n" +" \n" +" int shapeTypeB = collidables[collidableIndexB].m_shapeType;\n" +" int childShapeIndexB =-1;\n" +" if (shapeTypeB==SHAPE_COMPOUND_OF_CONVEX_HULLS)\n" +" {\n" +" ///////////////////\n" +" ///compound shape support\n" +" \n" +" childShapeIndexB = concavePairsIn[pairIndex].w;\n" +" int childColIndexB = gpuChildShapes[childShapeIndexB].m_shapeIndex;\n" +" shapeIndexB = collidables[childColIndexB].m_shapeIndex;\n" +" float4 childPosB = gpuChildShapes[childShapeIndexB].m_childPosition;\n" +" float4 childOrnB = gpuChildShapes[childShapeIndexB].m_childOrientation;\n" +" float4 newPosB = transform(&childPosB,&posB,&ornB);\n" +" float4 newOrnB = qtMul(ornB,childOrnB);\n" +" posB = newPosB;\n" +" ornB = newOrnB;\n" +" \n" +" }\n" +" \n" +" ////////////////////////////////////////\n" +" \n" +" \n" +" \n" +" int numLocalContactsOut = clipHullAgainstHullLocalA(sepAxis,\n" +" &convexPolyhedronA, &convexShapes[shapeIndexB],\n" +" posA,ornA,\n" +" posB,ornB,\n" +" worldVertsB1,worldVertsB2,capacityWorldVerts,\n" +" minDist, maxDist,\n" +" &verticesA,&facesA,&indicesA,\n" +" vertices,faces,indices,\n" +" localContactsOut,localContactCapacity);\n" +" \n" +" if (numLocalContactsOut>0)\n" +" {\n" +" float4 normal = -separatingNormals[i];\n" +" int nPoints = numLocalContactsOut;\n" +" float4* pointsIn = localContactsOut;\n" +" int contactIdx[4];// = {-1,-1,-1,-1};\n" +" contactIdx[0] = -1;\n" +" contactIdx[1] = -1;\n" +" contactIdx[2] = -1;\n" +" contactIdx[3] = -1;\n" +" \n" +" int nReducedContacts = extractManifoldSequential(pointsIn, nPoints, normal, contactIdx);\n" +" \n" +" int dstIdx;\n" +" AppendInc( nGlobalContactsOut, dstIdx );\n" +" if (dstIdx<contactCapacity)\n" +" {\n" +" __global struct b3Contact4Data* c = globalContactsOut+ dstIdx;\n" +" c->m_worldNormalOnB = -normal;\n" +" c->m_restituitionCoeffCmp = (0.f*0xffff);c->m_frictionCoeffCmp = (0.7f*0xffff);\n" +" c->m_batchIdx = pairIndex;\n" +" int bodyA = concavePairsIn[pairIndex].x;\n" +" int bodyB = concavePairsIn[pairIndex].y;\n" +" c->m_bodyAPtrAndSignBit = rigidBodies[bodyA].m_invMass==0?-bodyA:bodyA;\n" +" c->m_bodyBPtrAndSignBit = rigidBodies[bodyB].m_invMass==0?-bodyB:bodyB;\n" +" c->m_childIndexA = childShapeIndexA;\n" +" c->m_childIndexB = childShapeIndexB;\n" +" for (int i=0;i<nReducedContacts;i++)\n" +" {\n" +" c->m_worldPosB[i] = pointsIn[contactIdx[i]];\n" +" }\n" +" GET_NPOINTS(*c) = nReducedContacts;\n" +" }\n" +" \n" +" }// if (numContactsOut>0)\n" +" }// if (i<numPairs)\n" +"}\n" +"int findClippingFaces(const float4 separatingNormal,\n" +" __global const b3ConvexPolyhedronData_t* hullA, __global const b3ConvexPolyhedronData_t* hullB,\n" +" const float4 posA, const Quaternion ornA,const float4 posB, const Quaternion ornB,\n" +" __global float4* worldVertsA1,\n" +" __global float4* worldNormalsA1,\n" +" __global float4* worldVertsB1,\n" +" int capacityWorldVerts,\n" +" const float minDist, float maxDist,\n" +" __global const float4* vertices,\n" +" __global const b3GpuFace_t* faces,\n" +" __global const int* indices,\n" +" __global int4* clippingFaces, int pairIndex)\n" +"{\n" +" int numContactsOut = 0;\n" +" int numWorldVertsB1= 0;\n" +" \n" +" \n" +" int closestFaceB=-1;\n" +" float dmax = -FLT_MAX;\n" +" \n" +" {\n" +" for(int face=0;face<hullB->m_numFaces;face++)\n" +" {\n" +" const float4 Normal = make_float4(faces[hullB->m_faceOffset+face].m_plane.x,\n" +" faces[hullB->m_faceOffset+face].m_plane.y, faces[hullB->m_faceOffset+face].m_plane.z,0.f);\n" +" const float4 WorldNormal = qtRotate(ornB, Normal);\n" +" float d = dot3F4(WorldNormal,separatingNormal);\n" +" if (d > dmax)\n" +" {\n" +" dmax = d;\n" +" closestFaceB = face;\n" +" }\n" +" }\n" +" }\n" +" \n" +" {\n" +" const b3GpuFace_t polyB = faces[hullB->m_faceOffset+closestFaceB];\n" +" const int numVertices = polyB.m_numIndices;\n" +" for(int e0=0;e0<numVertices;e0++)\n" +" {\n" +" const float4 b = vertices[hullB->m_vertexOffset+indices[polyB.m_indexOffset+e0]];\n" +" worldVertsB1[pairIndex*capacityWorldVerts+numWorldVertsB1++] = transform(&b,&posB,&ornB);\n" +" }\n" +" }\n" +" \n" +" int closestFaceA=-1;\n" +" {\n" +" float dmin = FLT_MAX;\n" +" for(int face=0;face<hullA->m_numFaces;face++)\n" +" {\n" +" const float4 Normal = make_float4(\n" +" faces[hullA->m_faceOffset+face].m_plane.x,\n" +" faces[hullA->m_faceOffset+face].m_plane.y,\n" +" faces[hullA->m_faceOffset+face].m_plane.z,\n" +" 0.f);\n" +" const float4 faceANormalWS = qtRotate(ornA,Normal);\n" +" \n" +" float d = dot3F4(faceANormalWS,separatingNormal);\n" +" if (d < dmin)\n" +" {\n" +" dmin = d;\n" +" closestFaceA = face;\n" +" worldNormalsA1[pairIndex] = faceANormalWS;\n" +" }\n" +" }\n" +" }\n" +" \n" +" int numVerticesA = faces[hullA->m_faceOffset+closestFaceA].m_numIndices;\n" +" for(int e0=0;e0<numVerticesA;e0++)\n" +" {\n" +" const float4 a = vertices[hullA->m_vertexOffset+indices[faces[hullA->m_faceOffset+closestFaceA].m_indexOffset+e0]];\n" +" worldVertsA1[pairIndex*capacityWorldVerts+e0] = transform(&a, &posA,&ornA);\n" +" }\n" +" \n" +" clippingFaces[pairIndex].x = closestFaceA;\n" +" clippingFaces[pairIndex].y = closestFaceB;\n" +" clippingFaces[pairIndex].z = numVerticesA;\n" +" clippingFaces[pairIndex].w = numWorldVertsB1;\n" +" \n" +" \n" +" return numContactsOut;\n" +"}\n" +"int clipFaces(__global float4* worldVertsA1,\n" +" __global float4* worldNormalsA1,\n" +" __global float4* worldVertsB1,\n" +" __global float4* worldVertsB2, \n" +" int capacityWorldVertsB2,\n" +" const float minDist, float maxDist,\n" +" __global int4* clippingFaces,\n" +" int pairIndex)\n" +"{\n" +" int numContactsOut = 0;\n" +" \n" +" int closestFaceA = clippingFaces[pairIndex].x;\n" +" int closestFaceB = clippingFaces[pairIndex].y;\n" +" int numVertsInA = clippingFaces[pairIndex].z;\n" +" int numVertsInB = clippingFaces[pairIndex].w;\n" +" \n" +" int numVertsOut = 0;\n" +" \n" +" if (closestFaceA<0)\n" +" return numContactsOut;\n" +" \n" +" __global float4* pVtxIn = &worldVertsB1[pairIndex*capacityWorldVertsB2];\n" +" __global float4* pVtxOut = &worldVertsB2[pairIndex*capacityWorldVertsB2];\n" +" \n" +" \n" +" \n" +" // clip polygon to back of planes of all faces of hull A that are adjacent to witness face\n" +" \n" +" for(int e0=0;e0<numVertsInA;e0++)\n" +" {\n" +" const float4 aw = worldVertsA1[pairIndex*capacityWorldVertsB2+e0];\n" +" const float4 bw = worldVertsA1[pairIndex*capacityWorldVertsB2+((e0+1)%numVertsInA)];\n" +" const float4 WorldEdge0 = aw - bw;\n" +" float4 worldPlaneAnormal1 = worldNormalsA1[pairIndex];\n" +" float4 planeNormalWS1 = -cross3(WorldEdge0,worldPlaneAnormal1);\n" +" float4 worldA1 = aw;\n" +" float planeEqWS1 = -dot3F4(worldA1,planeNormalWS1);\n" +" float4 planeNormalWS = planeNormalWS1;\n" +" float planeEqWS=planeEqWS1;\n" +" numVertsOut = clipFaceGlobal(pVtxIn, numVertsInB, planeNormalWS,planeEqWS, pVtxOut);\n" +" __global float4* tmp = pVtxOut;\n" +" pVtxOut = pVtxIn;\n" +" pVtxIn = tmp;\n" +" numVertsInB = numVertsOut;\n" +" numVertsOut = 0;\n" +" }\n" +" \n" +" //float4 planeNormalWS = worldNormalsA1[pairIndex];\n" +" //float planeEqWS=-dot3F4(planeNormalWS,worldVertsA1[pairIndex*capacityWorldVertsB2]);\n" +" \n" +" /*for (int i=0;i<numVertsInB;i++)\n" +" {\n" +" pVtxOut[i] = pVtxIn[i];\n" +" }*/\n" +" \n" +" \n" +" \n" +" \n" +" //numVertsInB=0;\n" +" \n" +" float4 planeNormalWS = worldNormalsA1[pairIndex];\n" +" float planeEqWS=-dot3F4(planeNormalWS,worldVertsA1[pairIndex*capacityWorldVertsB2]);\n" +" for (int i=0;i<numVertsInB;i++)\n" +" {\n" +" float depth = dot3F4(planeNormalWS,pVtxIn[i])+planeEqWS;\n" +" if (depth <=minDist)\n" +" {\n" +" depth = minDist;\n" +" }\n" +" \n" +" if (depth <=maxDist)\n" +" {\n" +" float4 pointInWorld = pVtxIn[i];\n" +" pVtxOut[numContactsOut++] = make_float4(pointInWorld.x,pointInWorld.y,pointInWorld.z,depth);\n" +" }\n" +" }\n" +" \n" +" clippingFaces[pairIndex].w =numContactsOut;\n" +" \n" +" \n" +" return numContactsOut;\n" +"}\n" +"__kernel void findClippingFacesKernel( __global const int4* pairs,\n" +" __global const b3RigidBodyData_t* rigidBodies,\n" +" __global const b3Collidable_t* collidables,\n" +" __global const b3ConvexPolyhedronData_t* convexShapes,\n" +" __global const float4* vertices,\n" +" __global const float4* uniqueEdges,\n" +" __global const b3GpuFace_t* faces,\n" +" __global const int* indices,\n" +" __global const float4* separatingNormals,\n" +" __global const int* hasSeparatingAxis,\n" +" __global int4* clippingFacesOut,\n" +" __global float4* worldVertsA1,\n" +" __global float4* worldNormalsA1,\n" +" __global float4* worldVertsB1,\n" +" int capacityWorldVerts,\n" +" int numPairs\n" +" )\n" +"{\n" +" \n" +" int i = get_global_id(0);\n" +" int pairIndex = i;\n" +" \n" +" \n" +" float minDist = -1e30f;\n" +" float maxDist = 0.02f;\n" +" \n" +" if (i<numPairs)\n" +" {\n" +" \n" +" if (hasSeparatingAxis[i])\n" +" {\n" +" \n" +" int bodyIndexA = pairs[i].x;\n" +" int bodyIndexB = pairs[i].y;\n" +" \n" +" int collidableIndexA = rigidBodies[bodyIndexA].m_collidableIdx;\n" +" int collidableIndexB = rigidBodies[bodyIndexB].m_collidableIdx;\n" +" \n" +" int shapeIndexA = collidables[collidableIndexA].m_shapeIndex;\n" +" int shapeIndexB = collidables[collidableIndexB].m_shapeIndex;\n" +" \n" +" \n" +" \n" +" int numLocalContactsOut = findClippingFaces(separatingNormals[i],\n" +" &convexShapes[shapeIndexA], &convexShapes[shapeIndexB],\n" +" rigidBodies[bodyIndexA].m_pos,rigidBodies[bodyIndexA].m_quat,\n" +" rigidBodies[bodyIndexB].m_pos,rigidBodies[bodyIndexB].m_quat,\n" +" worldVertsA1,\n" +" worldNormalsA1,\n" +" worldVertsB1,capacityWorldVerts,\n" +" minDist, maxDist,\n" +" vertices,faces,indices,\n" +" clippingFacesOut,i);\n" +" \n" +" \n" +" }// if (hasSeparatingAxis[i])\n" +" }// if (i<numPairs)\n" +" \n" +"}\n" +"__kernel void clipFacesAndFindContactsKernel( __global const float4* separatingNormals,\n" +" __global const int* hasSeparatingAxis,\n" +" __global int4* clippingFacesOut,\n" +" __global float4* worldVertsA1,\n" +" __global float4* worldNormalsA1,\n" +" __global float4* worldVertsB1,\n" +" __global float4* worldVertsB2,\n" +" int vertexFaceCapacity,\n" +" int numPairs,\n" +" int debugMode\n" +" )\n" +"{\n" +" int i = get_global_id(0);\n" +" int pairIndex = i;\n" +" \n" +" \n" +" float minDist = -1e30f;\n" +" float maxDist = 0.02f;\n" +" \n" +" if (i<numPairs)\n" +" {\n" +" \n" +" if (hasSeparatingAxis[i])\n" +" {\n" +" \n" +"// int bodyIndexA = pairs[i].x;\n" +" // int bodyIndexB = pairs[i].y;\n" +" \n" +" int numLocalContactsOut = 0;\n" +" int capacityWorldVertsB2 = vertexFaceCapacity;\n" +" \n" +" __global float4* pVtxIn = &worldVertsB1[pairIndex*capacityWorldVertsB2];\n" +" __global float4* pVtxOut = &worldVertsB2[pairIndex*capacityWorldVertsB2];\n" +" \n" +" {\n" +" __global int4* clippingFaces = clippingFacesOut;\n" +" \n" +" \n" +" int closestFaceA = clippingFaces[pairIndex].x;\n" +" int closestFaceB = clippingFaces[pairIndex].y;\n" +" int numVertsInA = clippingFaces[pairIndex].z;\n" +" int numVertsInB = clippingFaces[pairIndex].w;\n" +" \n" +" int numVertsOut = 0;\n" +" \n" +" if (closestFaceA>=0)\n" +" {\n" +" \n" +" \n" +" \n" +" // clip polygon to back of planes of all faces of hull A that are adjacent to witness face\n" +" \n" +" for(int e0=0;e0<numVertsInA;e0++)\n" +" {\n" +" const float4 aw = worldVertsA1[pairIndex*capacityWorldVertsB2+e0];\n" +" const float4 bw = worldVertsA1[pairIndex*capacityWorldVertsB2+((e0+1)%numVertsInA)];\n" +" const float4 WorldEdge0 = aw - bw;\n" +" float4 worldPlaneAnormal1 = worldNormalsA1[pairIndex];\n" +" float4 planeNormalWS1 = -cross3(WorldEdge0,worldPlaneAnormal1);\n" +" float4 worldA1 = aw;\n" +" float planeEqWS1 = -dot3F4(worldA1,planeNormalWS1);\n" +" float4 planeNormalWS = planeNormalWS1;\n" +" float planeEqWS=planeEqWS1;\n" +" numVertsOut = clipFaceGlobal(pVtxIn, numVertsInB, planeNormalWS,planeEqWS, pVtxOut);\n" +" __global float4* tmp = pVtxOut;\n" +" pVtxOut = pVtxIn;\n" +" pVtxIn = tmp;\n" +" numVertsInB = numVertsOut;\n" +" numVertsOut = 0;\n" +" }\n" +" \n" +" float4 planeNormalWS = worldNormalsA1[pairIndex];\n" +" float planeEqWS=-dot3F4(planeNormalWS,worldVertsA1[pairIndex*capacityWorldVertsB2]);\n" +" \n" +" for (int i=0;i<numVertsInB;i++)\n" +" {\n" +" float depth = dot3F4(planeNormalWS,pVtxIn[i])+planeEqWS;\n" +" if (depth <=minDist)\n" +" {\n" +" depth = minDist;\n" +" }\n" +" \n" +" if (depth <=maxDist)\n" +" {\n" +" float4 pointInWorld = pVtxIn[i];\n" +" pVtxOut[numLocalContactsOut++] = make_float4(pointInWorld.x,pointInWorld.y,pointInWorld.z,depth);\n" +" }\n" +" }\n" +" \n" +" }\n" +" clippingFaces[pairIndex].w =numLocalContactsOut;\n" +" \n" +" }\n" +" \n" +" for (int i=0;i<numLocalContactsOut;i++)\n" +" pVtxIn[i] = pVtxOut[i];\n" +" \n" +" }// if (hasSeparatingAxis[i])\n" +" }// if (i<numPairs)\n" +" \n" +"}\n" +"__kernel void newContactReductionKernel( __global int4* pairs,\n" +" __global const b3RigidBodyData_t* rigidBodies,\n" +" __global const float4* separatingNormals,\n" +" __global const int* hasSeparatingAxis,\n" +" __global struct b3Contact4Data* globalContactsOut,\n" +" __global int4* clippingFaces,\n" +" __global float4* worldVertsB2,\n" +" volatile __global int* nGlobalContactsOut,\n" +" int vertexFaceCapacity,\n" +" int contactCapacity,\n" +" int numPairs\n" +" )\n" +"{\n" +" int i = get_global_id(0);\n" +" int pairIndex = i;\n" +" \n" +" int4 contactIdx;\n" +" contactIdx=make_int4(0,1,2,3);\n" +" \n" +" if (i<numPairs)\n" +" {\n" +" \n" +" if (hasSeparatingAxis[i])\n" +" {\n" +" \n" +" \n" +" \n" +" \n" +" int nPoints = clippingFaces[pairIndex].w;\n" +" \n" +" if (nPoints>0)\n" +" {\n" +" __global float4* pointsIn = &worldVertsB2[pairIndex*vertexFaceCapacity];\n" +" float4 normal = -separatingNormals[i];\n" +" \n" +" int nReducedContacts = extractManifoldSequentialGlobal(pointsIn, nPoints, normal, &contactIdx);\n" +" \n" +" int mprContactIndex = pairs[pairIndex].z;\n" +" int dstIdx = mprContactIndex;\n" +" if (dstIdx<0)\n" +" {\n" +" AppendInc( nGlobalContactsOut, dstIdx );\n" +" }\n" +"//#if 0\n" +" \n" +" if (dstIdx < contactCapacity)\n" +" {\n" +" __global struct b3Contact4Data* c = &globalContactsOut[dstIdx];\n" +" c->m_worldNormalOnB = -normal;\n" +" c->m_restituitionCoeffCmp = (0.f*0xffff);c->m_frictionCoeffCmp = (0.7f*0xffff);\n" +" c->m_batchIdx = pairIndex;\n" +" int bodyA = pairs[pairIndex].x;\n" +" int bodyB = pairs[pairIndex].y;\n" +" pairs[pairIndex].w = dstIdx;\n" +" c->m_bodyAPtrAndSignBit = rigidBodies[bodyA].m_invMass==0?-bodyA:bodyA;\n" +" c->m_bodyBPtrAndSignBit = rigidBodies[bodyB].m_invMass==0?-bodyB:bodyB;\n" +" c->m_childIndexA =-1;\n" +" c->m_childIndexB =-1;\n" +" switch (nReducedContacts)\n" +" {\n" +" case 4:\n" +" c->m_worldPosB[3] = pointsIn[contactIdx.w];\n" +" case 3:\n" +" c->m_worldPosB[2] = pointsIn[contactIdx.z];\n" +" case 2:\n" +" c->m_worldPosB[1] = pointsIn[contactIdx.y];\n" +" case 1:\n" +" if (mprContactIndex<0)//test\n" +" c->m_worldPosB[0] = pointsIn[contactIdx.x];\n" +" default:\n" +" {\n" +" }\n" +" };\n" +" \n" +" GET_NPOINTS(*c) = nReducedContacts;\n" +" \n" +" }\n" +" \n" +" \n" +"//#endif\n" +" \n" +" }// if (numContactsOut>0)\n" +" }// if (hasSeparatingAxis[i])\n" +" }// if (i<numPairs)\n" +" \n" +" \n" +"}\n" +; diff --git a/thirdparty/bullet/Bullet3OpenCL/NarrowphaseCollision/kernels/satConcave.cl b/thirdparty/bullet/Bullet3OpenCL/NarrowphaseCollision/kernels/satConcave.cl new file mode 100644 index 0000000000..31ca43b8cd --- /dev/null +++ b/thirdparty/bullet/Bullet3OpenCL/NarrowphaseCollision/kernels/satConcave.cl @@ -0,0 +1,1220 @@ + +//keep this enum in sync with the CPU version (in btCollidable.h) +//written by Erwin Coumans + + +#define SHAPE_CONVEX_HULL 3 +#define SHAPE_CONCAVE_TRIMESH 5 +#define TRIANGLE_NUM_CONVEX_FACES 5 +#define SHAPE_COMPOUND_OF_CONVEX_HULLS 6 + +#define B3_MAX_STACK_DEPTH 256 + + +typedef unsigned int u32; + +///keep this in sync with btCollidable.h +typedef struct +{ + union { + int m_numChildShapes; + int m_bvhIndex; + }; + union + { + float m_radius; + int m_compoundBvhIndex; + }; + + int m_shapeType; + int m_shapeIndex; + +} btCollidableGpu; + +#define MAX_NUM_PARTS_IN_BITS 10 + +///b3QuantizedBvhNode is a compressed aabb node, 16 bytes. +///Node can be used for leafnode or internal node. Leafnodes can point to 32-bit triangle index (non-negative range). +typedef struct +{ + //12 bytes + unsigned short int m_quantizedAabbMin[3]; + unsigned short int m_quantizedAabbMax[3]; + //4 bytes + int m_escapeIndexOrTriangleIndex; +} b3QuantizedBvhNode; + +typedef struct +{ + float4 m_aabbMin; + float4 m_aabbMax; + float4 m_quantization; + int m_numNodes; + int m_numSubTrees; + int m_nodeOffset; + int m_subTreeOffset; + +} b3BvhInfo; + + +int getTriangleIndex(const b3QuantizedBvhNode* rootNode) +{ + unsigned int x=0; + unsigned int y = (~(x&0))<<(31-MAX_NUM_PARTS_IN_BITS); + // Get only the lower bits where the triangle index is stored + return (rootNode->m_escapeIndexOrTriangleIndex&~(y)); +} + +int getTriangleIndexGlobal(__global const b3QuantizedBvhNode* rootNode) +{ + unsigned int x=0; + unsigned int y = (~(x&0))<<(31-MAX_NUM_PARTS_IN_BITS); + // Get only the lower bits where the triangle index is stored + return (rootNode->m_escapeIndexOrTriangleIndex&~(y)); +} + +int isLeafNode(const b3QuantizedBvhNode* rootNode) +{ + //skipindex is negative (internal node), triangleindex >=0 (leafnode) + return (rootNode->m_escapeIndexOrTriangleIndex >= 0)? 1 : 0; +} + +int isLeafNodeGlobal(__global const b3QuantizedBvhNode* rootNode) +{ + //skipindex is negative (internal node), triangleindex >=0 (leafnode) + return (rootNode->m_escapeIndexOrTriangleIndex >= 0)? 1 : 0; +} + +int getEscapeIndex(const b3QuantizedBvhNode* rootNode) +{ + return -rootNode->m_escapeIndexOrTriangleIndex; +} + +int getEscapeIndexGlobal(__global const b3QuantizedBvhNode* rootNode) +{ + return -rootNode->m_escapeIndexOrTriangleIndex; +} + + +typedef struct +{ + //12 bytes + unsigned short int m_quantizedAabbMin[3]; + unsigned short int m_quantizedAabbMax[3]; + //4 bytes, points to the root of the subtree + int m_rootNodeIndex; + //4 bytes + int m_subtreeSize; + int m_padding[3]; +} b3BvhSubtreeInfo; + + + + + + + +typedef struct +{ + float4 m_childPosition; + float4 m_childOrientation; + int m_shapeIndex; + int m_unused0; + int m_unused1; + int m_unused2; +} btGpuChildShape; + + +typedef struct +{ + float4 m_pos; + float4 m_quat; + float4 m_linVel; + float4 m_angVel; + + u32 m_collidableIdx; + float m_invMass; + float m_restituitionCoeff; + float m_frictionCoeff; +} BodyData; + + +typedef struct +{ + float4 m_localCenter; + float4 m_extents; + float4 mC; + float4 mE; + + float m_radius; + int m_faceOffset; + int m_numFaces; + int m_numVertices; + + int m_vertexOffset; + int m_uniqueEdgesOffset; + int m_numUniqueEdges; + int m_unused; +} ConvexPolyhedronCL; + +typedef struct +{ + union + { + float4 m_min; + float m_minElems[4]; + int m_minIndices[4]; + }; + union + { + float4 m_max; + float m_maxElems[4]; + int m_maxIndices[4]; + }; +} btAabbCL; + +#include "Bullet3Collision/BroadPhaseCollision/shared/b3Aabb.h" +#include "Bullet3Common/shared/b3Int2.h" + + + +typedef struct +{ + float4 m_plane; + int m_indexOffset; + int m_numIndices; +} btGpuFace; + +#define make_float4 (float4) + + +__inline +float4 cross3(float4 a, float4 b) +{ + return cross(a,b); + + +// float4 a1 = make_float4(a.xyz,0.f); +// float4 b1 = make_float4(b.xyz,0.f); + +// return cross(a1,b1); + +//float4 c = make_float4(a.y*b.z - a.z*b.y,a.z*b.x - a.x*b.z,a.x*b.y - a.y*b.x,0.f); + + // float4 c = make_float4(a.y*b.z - a.z*b.y,1.f,a.x*b.y - a.y*b.x,0.f); + + //return c; +} + +__inline +float dot3F4(float4 a, float4 b) +{ + float4 a1 = make_float4(a.xyz,0.f); + float4 b1 = make_float4(b.xyz,0.f); + return dot(a1, b1); +} + +__inline +float4 fastNormalize4(float4 v) +{ + v = make_float4(v.xyz,0.f); + return fast_normalize(v); +} + + +/////////////////////////////////////// +// Quaternion +/////////////////////////////////////// + +typedef float4 Quaternion; + +__inline +Quaternion qtMul(Quaternion a, Quaternion b); + +__inline +Quaternion qtNormalize(Quaternion in); + +__inline +float4 qtRotate(Quaternion q, float4 vec); + +__inline +Quaternion qtInvert(Quaternion q); + + + + +__inline +Quaternion qtMul(Quaternion a, Quaternion b) +{ + Quaternion ans; + ans = cross3( a, b ); + ans += a.w*b+b.w*a; +// ans.w = a.w*b.w - (a.x*b.x+a.y*b.y+a.z*b.z); + ans.w = a.w*b.w - dot3F4(a, b); + return ans; +} + +__inline +Quaternion qtNormalize(Quaternion in) +{ + return fastNormalize4(in); +// in /= length( in ); +// return in; +} +__inline +float4 qtRotate(Quaternion q, float4 vec) +{ + Quaternion qInv = qtInvert( q ); + float4 vcpy = vec; + vcpy.w = 0.f; + float4 out = qtMul(qtMul(q,vcpy),qInv); + return out; +} + +__inline +Quaternion qtInvert(Quaternion q) +{ + return (Quaternion)(-q.xyz, q.w); +} + +__inline +float4 qtInvRotate(const Quaternion q, float4 vec) +{ + return qtRotate( qtInvert( q ), vec ); +} + +__inline +float4 transform(const float4* p, const float4* translation, const Quaternion* orientation) +{ + return qtRotate( *orientation, *p ) + (*translation); +} + + + +__inline +float4 normalize3(const float4 a) +{ + float4 n = make_float4(a.x, a.y, a.z, 0.f); + return fastNormalize4( n ); +} + +inline void projectLocal(const ConvexPolyhedronCL* hull, const float4 pos, const float4 orn, +const float4* dir, const float4* vertices, float* min, float* max) +{ + min[0] = FLT_MAX; + max[0] = -FLT_MAX; + int numVerts = hull->m_numVertices; + + const float4 localDir = qtInvRotate(orn,*dir); + float offset = dot(pos,*dir); + for(int i=0;i<numVerts;i++) + { + float dp = dot(vertices[hull->m_vertexOffset+i],localDir); + if(dp < min[0]) + min[0] = dp; + if(dp > max[0]) + max[0] = dp; + } + if(min[0]>max[0]) + { + float tmp = min[0]; + min[0] = max[0]; + max[0] = tmp; + } + min[0] += offset; + max[0] += offset; +} + +inline void project(__global const ConvexPolyhedronCL* hull, const float4 pos, const float4 orn, +const float4* dir, __global const float4* vertices, float* min, float* max) +{ + min[0] = FLT_MAX; + max[0] = -FLT_MAX; + int numVerts = hull->m_numVertices; + + const float4 localDir = qtInvRotate(orn,*dir); + float offset = dot(pos,*dir); + for(int i=0;i<numVerts;i++) + { + float dp = dot(vertices[hull->m_vertexOffset+i],localDir); + if(dp < min[0]) + min[0] = dp; + if(dp > max[0]) + max[0] = dp; + } + if(min[0]>max[0]) + { + float tmp = min[0]; + min[0] = max[0]; + max[0] = tmp; + } + min[0] += offset; + max[0] += offset; +} + +inline bool TestSepAxisLocalA(const ConvexPolyhedronCL* hullA, __global const ConvexPolyhedronCL* hullB, + const float4 posA,const float4 ornA, + const float4 posB,const float4 ornB, + float4* sep_axis, const float4* verticesA, __global const float4* verticesB,float* depth) +{ + float Min0,Max0; + float Min1,Max1; + projectLocal(hullA,posA,ornA,sep_axis,verticesA, &Min0, &Max0); + project(hullB,posB,ornB, sep_axis,verticesB, &Min1, &Max1); + + if(Max0<Min1 || Max1<Min0) + return false; + + float d0 = Max0 - Min1; + float d1 = Max1 - Min0; + *depth = d0<d1 ? d0:d1; + return true; +} + + + + +inline bool IsAlmostZero(const float4 v) +{ + if(fabs(v.x)>1e-6f || fabs(v.y)>1e-6f || fabs(v.z)>1e-6f) + return false; + return true; +} + + + +bool findSeparatingAxisLocalA( const ConvexPolyhedronCL* hullA, __global const ConvexPolyhedronCL* hullB, + const float4 posA1, + const float4 ornA, + const float4 posB1, + const float4 ornB, + const float4 DeltaC2, + + const float4* verticesA, + const float4* uniqueEdgesA, + const btGpuFace* facesA, + const int* indicesA, + + __global const float4* verticesB, + __global const float4* uniqueEdgesB, + __global const btGpuFace* facesB, + __global const int* indicesB, + float4* sep, + float* dmin) +{ + + + float4 posA = posA1; + posA.w = 0.f; + float4 posB = posB1; + posB.w = 0.f; + int curPlaneTests=0; + { + int numFacesA = hullA->m_numFaces; + // Test normals from hullA + for(int i=0;i<numFacesA;i++) + { + const float4 normal = facesA[hullA->m_faceOffset+i].m_plane; + float4 faceANormalWS = qtRotate(ornA,normal); + if (dot3F4(DeltaC2,faceANormalWS)<0) + faceANormalWS*=-1.f; + curPlaneTests++; + float d; + if(!TestSepAxisLocalA( hullA, hullB, posA,ornA,posB,ornB,&faceANormalWS, verticesA, verticesB,&d)) + return false; + if(d<*dmin) + { + *dmin = d; + *sep = faceANormalWS; + } + } + } + if((dot3F4(-DeltaC2,*sep))>0.0f) + { + *sep = -(*sep); + } + return true; +} + +bool findSeparatingAxisLocalB( __global const ConvexPolyhedronCL* hullA, const ConvexPolyhedronCL* hullB, + const float4 posA1, + const float4 ornA, + const float4 posB1, + const float4 ornB, + const float4 DeltaC2, + __global const float4* verticesA, + __global const float4* uniqueEdgesA, + __global const btGpuFace* facesA, + __global const int* indicesA, + const float4* verticesB, + const float4* uniqueEdgesB, + const btGpuFace* facesB, + const int* indicesB, + float4* sep, + float* dmin) +{ + + + float4 posA = posA1; + posA.w = 0.f; + float4 posB = posB1; + posB.w = 0.f; + int curPlaneTests=0; + { + int numFacesA = hullA->m_numFaces; + // Test normals from hullA + for(int i=0;i<numFacesA;i++) + { + const float4 normal = facesA[hullA->m_faceOffset+i].m_plane; + float4 faceANormalWS = qtRotate(ornA,normal); + if (dot3F4(DeltaC2,faceANormalWS)<0) + faceANormalWS *= -1.f; + curPlaneTests++; + float d; + if(!TestSepAxisLocalA( hullB, hullA, posB,ornB,posA,ornA, &faceANormalWS, verticesB,verticesA, &d)) + return false; + if(d<*dmin) + { + *dmin = d; + *sep = faceANormalWS; + } + } + } + if((dot3F4(-DeltaC2,*sep))>0.0f) + { + *sep = -(*sep); + } + return true; +} + + + +bool findSeparatingAxisEdgeEdgeLocalA( const ConvexPolyhedronCL* hullA, __global const ConvexPolyhedronCL* hullB, + const float4 posA1, + const float4 ornA, + const float4 posB1, + const float4 ornB, + const float4 DeltaC2, + const float4* verticesA, + const float4* uniqueEdgesA, + const btGpuFace* facesA, + const int* indicesA, + __global const float4* verticesB, + __global const float4* uniqueEdgesB, + __global const btGpuFace* facesB, + __global const int* indicesB, + float4* sep, + float* dmin) +{ + + + float4 posA = posA1; + posA.w = 0.f; + float4 posB = posB1; + posB.w = 0.f; + + int curPlaneTests=0; + + int curEdgeEdge = 0; + // Test edges + for(int e0=0;e0<hullA->m_numUniqueEdges;e0++) + { + const float4 edge0 = uniqueEdgesA[hullA->m_uniqueEdgesOffset+e0]; + float4 edge0World = qtRotate(ornA,edge0); + + for(int e1=0;e1<hullB->m_numUniqueEdges;e1++) + { + const float4 edge1 = uniqueEdgesB[hullB->m_uniqueEdgesOffset+e1]; + float4 edge1World = qtRotate(ornB,edge1); + + + float4 crossje = cross3(edge0World,edge1World); + + curEdgeEdge++; + if(!IsAlmostZero(crossje)) + { + crossje = normalize3(crossje); + if (dot3F4(DeltaC2,crossje)<0) + crossje *= -1.f; + + float dist; + bool result = true; + { + float Min0,Max0; + float Min1,Max1; + projectLocal(hullA,posA,ornA,&crossje,verticesA, &Min0, &Max0); + project(hullB,posB,ornB,&crossje,verticesB, &Min1, &Max1); + + if(Max0<Min1 || Max1<Min0) + result = false; + + float d0 = Max0 - Min1; + float d1 = Max1 - Min0; + dist = d0<d1 ? d0:d1; + result = true; + + } + + + if(dist<*dmin) + { + *dmin = dist; + *sep = crossje; + } + } + } + + } + + + if((dot3F4(-DeltaC2,*sep))>0.0f) + { + *sep = -(*sep); + } + return true; +} + + + +inline int findClippingFaces(const float4 separatingNormal, + const ConvexPolyhedronCL* hullA, + __global const ConvexPolyhedronCL* hullB, + const float4 posA, const Quaternion ornA,const float4 posB, const Quaternion ornB, + __global float4* worldVertsA1, + __global float4* worldNormalsA1, + __global float4* worldVertsB1, + int capacityWorldVerts, + const float minDist, float maxDist, + const float4* verticesA, + const btGpuFace* facesA, + const int* indicesA, + __global const float4* verticesB, + __global const btGpuFace* facesB, + __global const int* indicesB, + __global int4* clippingFaces, int pairIndex) +{ + int numContactsOut = 0; + int numWorldVertsB1= 0; + + + int closestFaceB=0; + float dmax = -FLT_MAX; + + { + for(int face=0;face<hullB->m_numFaces;face++) + { + const float4 Normal = make_float4(facesB[hullB->m_faceOffset+face].m_plane.x, + facesB[hullB->m_faceOffset+face].m_plane.y, facesB[hullB->m_faceOffset+face].m_plane.z,0.f); + const float4 WorldNormal = qtRotate(ornB, Normal); + float d = dot3F4(WorldNormal,separatingNormal); + if (d > dmax) + { + dmax = d; + closestFaceB = face; + } + } + } + + { + const btGpuFace polyB = facesB[hullB->m_faceOffset+closestFaceB]; + int numVertices = polyB.m_numIndices; + if (numVertices>capacityWorldVerts) + numVertices = capacityWorldVerts; + if (numVertices<0) + numVertices = 0; + + for(int e0=0;e0<numVertices;e0++) + { + if (e0<capacityWorldVerts) + { + const float4 b = verticesB[hullB->m_vertexOffset+indicesB[polyB.m_indexOffset+e0]]; + worldVertsB1[pairIndex*capacityWorldVerts+numWorldVertsB1++] = transform(&b,&posB,&ornB); + } + } + } + + int closestFaceA=0; + { + float dmin = FLT_MAX; + for(int face=0;face<hullA->m_numFaces;face++) + { + const float4 Normal = make_float4( + facesA[hullA->m_faceOffset+face].m_plane.x, + facesA[hullA->m_faceOffset+face].m_plane.y, + facesA[hullA->m_faceOffset+face].m_plane.z, + 0.f); + const float4 faceANormalWS = qtRotate(ornA,Normal); + + float d = dot3F4(faceANormalWS,separatingNormal); + if (d < dmin) + { + dmin = d; + closestFaceA = face; + worldNormalsA1[pairIndex] = faceANormalWS; + } + } + } + + int numVerticesA = facesA[hullA->m_faceOffset+closestFaceA].m_numIndices; + if (numVerticesA>capacityWorldVerts) + numVerticesA = capacityWorldVerts; + if (numVerticesA<0) + numVerticesA=0; + + for(int e0=0;e0<numVerticesA;e0++) + { + if (e0<capacityWorldVerts) + { + const float4 a = verticesA[hullA->m_vertexOffset+indicesA[facesA[hullA->m_faceOffset+closestFaceA].m_indexOffset+e0]]; + worldVertsA1[pairIndex*capacityWorldVerts+e0] = transform(&a, &posA,&ornA); + } + } + + clippingFaces[pairIndex].x = closestFaceA; + clippingFaces[pairIndex].y = closestFaceB; + clippingFaces[pairIndex].z = numVerticesA; + clippingFaces[pairIndex].w = numWorldVertsB1; + + + return numContactsOut; +} + + + + +// work-in-progress +__kernel void findConcaveSeparatingAxisVertexFaceKernel( __global int4* concavePairs, + __global const BodyData* rigidBodies, + __global const btCollidableGpu* collidables, + __global const ConvexPolyhedronCL* convexShapes, + __global const float4* vertices, + __global const float4* uniqueEdges, + __global const btGpuFace* faces, + __global const int* indices, + __global const btGpuChildShape* gpuChildShapes, + __global btAabbCL* aabbs, + __global float4* concaveSeparatingNormalsOut, + __global int* concaveHasSeparatingNormals, + __global int4* clippingFacesOut, + __global float4* worldVertsA1GPU, + __global float4* worldNormalsAGPU, + __global float4* worldVertsB1GPU, + __global float* dmins, + int vertexFaceCapacity, + int numConcavePairs + ) +{ + + int i = get_global_id(0); + if (i>=numConcavePairs) + return; + + concaveHasSeparatingNormals[i] = 0; + + int pairIdx = i; + + int bodyIndexA = concavePairs[i].x; + int bodyIndexB = concavePairs[i].y; + + int collidableIndexA = rigidBodies[bodyIndexA].m_collidableIdx; + int collidableIndexB = rigidBodies[bodyIndexB].m_collidableIdx; + + int shapeIndexA = collidables[collidableIndexA].m_shapeIndex; + int shapeIndexB = collidables[collidableIndexB].m_shapeIndex; + + if (collidables[collidableIndexB].m_shapeType!=SHAPE_CONVEX_HULL&& + collidables[collidableIndexB].m_shapeType!=SHAPE_COMPOUND_OF_CONVEX_HULLS) + { + concavePairs[pairIdx].w = -1; + return; + } + + + + int numFacesA = convexShapes[shapeIndexA].m_numFaces; + int numActualConcaveConvexTests = 0; + + int f = concavePairs[i].z; + + bool overlap = false; + + ConvexPolyhedronCL convexPolyhedronA; + + //add 3 vertices of the triangle + convexPolyhedronA.m_numVertices = 3; + convexPolyhedronA.m_vertexOffset = 0; + float4 localCenter = make_float4(0.f,0.f,0.f,0.f); + + btGpuFace face = faces[convexShapes[shapeIndexA].m_faceOffset+f]; + float4 triMinAabb, triMaxAabb; + btAabbCL triAabb; + triAabb.m_min = make_float4(1e30f,1e30f,1e30f,0.f); + triAabb.m_max = make_float4(-1e30f,-1e30f,-1e30f,0.f); + + float4 verticesA[3]; + for (int i=0;i<3;i++) + { + int index = indices[face.m_indexOffset+i]; + float4 vert = vertices[convexShapes[shapeIndexA].m_vertexOffset+index]; + verticesA[i] = vert; + localCenter += vert; + + triAabb.m_min = min(triAabb.m_min,vert); + triAabb.m_max = max(triAabb.m_max,vert); + + } + + overlap = true; + overlap = (triAabb.m_min.x > aabbs[bodyIndexB].m_max.x || triAabb.m_max.x < aabbs[bodyIndexB].m_min.x) ? false : overlap; + overlap = (triAabb.m_min.z > aabbs[bodyIndexB].m_max.z || triAabb.m_max.z < aabbs[bodyIndexB].m_min.z) ? false : overlap; + overlap = (triAabb.m_min.y > aabbs[bodyIndexB].m_max.y || triAabb.m_max.y < aabbs[bodyIndexB].m_min.y) ? false : overlap; + + if (overlap) + { + float dmin = FLT_MAX; + int hasSeparatingAxis=5; + float4 sepAxis=make_float4(1,2,3,4); + + int localCC=0; + numActualConcaveConvexTests++; + + //a triangle has 3 unique edges + convexPolyhedronA.m_numUniqueEdges = 3; + convexPolyhedronA.m_uniqueEdgesOffset = 0; + float4 uniqueEdgesA[3]; + + uniqueEdgesA[0] = (verticesA[1]-verticesA[0]); + uniqueEdgesA[1] = (verticesA[2]-verticesA[1]); + uniqueEdgesA[2] = (verticesA[0]-verticesA[2]); + + + convexPolyhedronA.m_faceOffset = 0; + + float4 normal = make_float4(face.m_plane.x,face.m_plane.y,face.m_plane.z,0.f); + + btGpuFace facesA[TRIANGLE_NUM_CONVEX_FACES]; + int indicesA[3+3+2+2+2]; + int curUsedIndices=0; + int fidx=0; + + //front size of triangle + { + facesA[fidx].m_indexOffset=curUsedIndices; + indicesA[0] = 0; + indicesA[1] = 1; + indicesA[2] = 2; + curUsedIndices+=3; + float c = face.m_plane.w; + facesA[fidx].m_plane.x = normal.x; + facesA[fidx].m_plane.y = normal.y; + facesA[fidx].m_plane.z = normal.z; + facesA[fidx].m_plane.w = c; + facesA[fidx].m_numIndices=3; + } + fidx++; + //back size of triangle + { + facesA[fidx].m_indexOffset=curUsedIndices; + indicesA[3]=2; + indicesA[4]=1; + indicesA[5]=0; + curUsedIndices+=3; + float c = dot(normal,verticesA[0]); + float c1 = -face.m_plane.w; + facesA[fidx].m_plane.x = -normal.x; + facesA[fidx].m_plane.y = -normal.y; + facesA[fidx].m_plane.z = -normal.z; + facesA[fidx].m_plane.w = c; + facesA[fidx].m_numIndices=3; + } + fidx++; + + bool addEdgePlanes = true; + if (addEdgePlanes) + { + int numVertices=3; + int prevVertex = numVertices-1; + for (int i=0;i<numVertices;i++) + { + float4 v0 = verticesA[i]; + float4 v1 = verticesA[prevVertex]; + + float4 edgeNormal = normalize(cross(normal,v1-v0)); + float c = -dot(edgeNormal,v0); + + facesA[fidx].m_numIndices = 2; + facesA[fidx].m_indexOffset=curUsedIndices; + indicesA[curUsedIndices++]=i; + indicesA[curUsedIndices++]=prevVertex; + + facesA[fidx].m_plane.x = edgeNormal.x; + facesA[fidx].m_plane.y = edgeNormal.y; + facesA[fidx].m_plane.z = edgeNormal.z; + facesA[fidx].m_plane.w = c; + fidx++; + prevVertex = i; + } + } + convexPolyhedronA.m_numFaces = TRIANGLE_NUM_CONVEX_FACES; + convexPolyhedronA.m_localCenter = localCenter*(1.f/3.f); + + + float4 posA = rigidBodies[bodyIndexA].m_pos; + posA.w = 0.f; + float4 posB = rigidBodies[bodyIndexB].m_pos; + posB.w = 0.f; + + float4 ornA = rigidBodies[bodyIndexA].m_quat; + float4 ornB =rigidBodies[bodyIndexB].m_quat; + + + + + /////////////////// + ///compound shape support + + if (collidables[collidableIndexB].m_shapeType==SHAPE_COMPOUND_OF_CONVEX_HULLS) + { + int compoundChild = concavePairs[pairIdx].w; + int childShapeIndexB = compoundChild;//collidables[collidableIndexB].m_shapeIndex+compoundChild; + int childColIndexB = gpuChildShapes[childShapeIndexB].m_shapeIndex; + float4 childPosB = gpuChildShapes[childShapeIndexB].m_childPosition; + float4 childOrnB = gpuChildShapes[childShapeIndexB].m_childOrientation; + float4 newPosB = transform(&childPosB,&posB,&ornB); + float4 newOrnB = qtMul(ornB,childOrnB); + posB = newPosB; + ornB = newOrnB; + shapeIndexB = collidables[childColIndexB].m_shapeIndex; + } + ////////////////// + + float4 c0local = convexPolyhedronA.m_localCenter; + float4 c0 = transform(&c0local, &posA, &ornA); + float4 c1local = convexShapes[shapeIndexB].m_localCenter; + float4 c1 = transform(&c1local,&posB,&ornB); + const float4 DeltaC2 = c0 - c1; + + + bool sepA = findSeparatingAxisLocalA( &convexPolyhedronA, &convexShapes[shapeIndexB], + posA,ornA, + posB,ornB, + DeltaC2, + verticesA,uniqueEdgesA,facesA,indicesA, + vertices,uniqueEdges,faces,indices, + &sepAxis,&dmin); + hasSeparatingAxis = 4; + if (!sepA) + { + hasSeparatingAxis = 0; + } else + { + bool sepB = findSeparatingAxisLocalB( &convexShapes[shapeIndexB],&convexPolyhedronA, + posB,ornB, + posA,ornA, + DeltaC2, + vertices,uniqueEdges,faces,indices, + verticesA,uniqueEdgesA,facesA,indicesA, + &sepAxis,&dmin); + + if (!sepB) + { + hasSeparatingAxis = 0; + } else + { + hasSeparatingAxis = 1; + } + } + + if (hasSeparatingAxis) + { + dmins[i] = dmin; + concaveSeparatingNormalsOut[pairIdx]=sepAxis; + concaveHasSeparatingNormals[i]=1; + + } else + { + //mark this pair as in-active + concavePairs[pairIdx].w = -1; + } + } + else + { + //mark this pair as in-active + concavePairs[pairIdx].w = -1; + } +} + + + + +// work-in-progress +__kernel void findConcaveSeparatingAxisEdgeEdgeKernel( __global int4* concavePairs, + __global const BodyData* rigidBodies, + __global const btCollidableGpu* collidables, + __global const ConvexPolyhedronCL* convexShapes, + __global const float4* vertices, + __global const float4* uniqueEdges, + __global const btGpuFace* faces, + __global const int* indices, + __global const btGpuChildShape* gpuChildShapes, + __global btAabbCL* aabbs, + __global float4* concaveSeparatingNormalsOut, + __global int* concaveHasSeparatingNormals, + __global int4* clippingFacesOut, + __global float4* worldVertsA1GPU, + __global float4* worldNormalsAGPU, + __global float4* worldVertsB1GPU, + __global float* dmins, + int vertexFaceCapacity, + int numConcavePairs + ) +{ + + int i = get_global_id(0); + if (i>=numConcavePairs) + return; + + if (!concaveHasSeparatingNormals[i]) + return; + + int pairIdx = i; + + int bodyIndexA = concavePairs[i].x; + int bodyIndexB = concavePairs[i].y; + + int collidableIndexA = rigidBodies[bodyIndexA].m_collidableIdx; + int collidableIndexB = rigidBodies[bodyIndexB].m_collidableIdx; + + int shapeIndexA = collidables[collidableIndexA].m_shapeIndex; + int shapeIndexB = collidables[collidableIndexB].m_shapeIndex; + + + int numFacesA = convexShapes[shapeIndexA].m_numFaces; + int numActualConcaveConvexTests = 0; + + int f = concavePairs[i].z; + + bool overlap = false; + + ConvexPolyhedronCL convexPolyhedronA; + + //add 3 vertices of the triangle + convexPolyhedronA.m_numVertices = 3; + convexPolyhedronA.m_vertexOffset = 0; + float4 localCenter = make_float4(0.f,0.f,0.f,0.f); + + btGpuFace face = faces[convexShapes[shapeIndexA].m_faceOffset+f]; + float4 triMinAabb, triMaxAabb; + btAabbCL triAabb; + triAabb.m_min = make_float4(1e30f,1e30f,1e30f,0.f); + triAabb.m_max = make_float4(-1e30f,-1e30f,-1e30f,0.f); + + float4 verticesA[3]; + for (int i=0;i<3;i++) + { + int index = indices[face.m_indexOffset+i]; + float4 vert = vertices[convexShapes[shapeIndexA].m_vertexOffset+index]; + verticesA[i] = vert; + localCenter += vert; + + triAabb.m_min = min(triAabb.m_min,vert); + triAabb.m_max = max(triAabb.m_max,vert); + + } + + overlap = true; + overlap = (triAabb.m_min.x > aabbs[bodyIndexB].m_max.x || triAabb.m_max.x < aabbs[bodyIndexB].m_min.x) ? false : overlap; + overlap = (triAabb.m_min.z > aabbs[bodyIndexB].m_max.z || triAabb.m_max.z < aabbs[bodyIndexB].m_min.z) ? false : overlap; + overlap = (triAabb.m_min.y > aabbs[bodyIndexB].m_max.y || triAabb.m_max.y < aabbs[bodyIndexB].m_min.y) ? false : overlap; + + if (overlap) + { + float dmin = dmins[i]; + int hasSeparatingAxis=5; + float4 sepAxis=make_float4(1,2,3,4); + sepAxis = concaveSeparatingNormalsOut[pairIdx]; + + int localCC=0; + numActualConcaveConvexTests++; + + //a triangle has 3 unique edges + convexPolyhedronA.m_numUniqueEdges = 3; + convexPolyhedronA.m_uniqueEdgesOffset = 0; + float4 uniqueEdgesA[3]; + + uniqueEdgesA[0] = (verticesA[1]-verticesA[0]); + uniqueEdgesA[1] = (verticesA[2]-verticesA[1]); + uniqueEdgesA[2] = (verticesA[0]-verticesA[2]); + + + convexPolyhedronA.m_faceOffset = 0; + + float4 normal = make_float4(face.m_plane.x,face.m_plane.y,face.m_plane.z,0.f); + + btGpuFace facesA[TRIANGLE_NUM_CONVEX_FACES]; + int indicesA[3+3+2+2+2]; + int curUsedIndices=0; + int fidx=0; + + //front size of triangle + { + facesA[fidx].m_indexOffset=curUsedIndices; + indicesA[0] = 0; + indicesA[1] = 1; + indicesA[2] = 2; + curUsedIndices+=3; + float c = face.m_plane.w; + facesA[fidx].m_plane.x = normal.x; + facesA[fidx].m_plane.y = normal.y; + facesA[fidx].m_plane.z = normal.z; + facesA[fidx].m_plane.w = c; + facesA[fidx].m_numIndices=3; + } + fidx++; + //back size of triangle + { + facesA[fidx].m_indexOffset=curUsedIndices; + indicesA[3]=2; + indicesA[4]=1; + indicesA[5]=0; + curUsedIndices+=3; + float c = dot(normal,verticesA[0]); + float c1 = -face.m_plane.w; + facesA[fidx].m_plane.x = -normal.x; + facesA[fidx].m_plane.y = -normal.y; + facesA[fidx].m_plane.z = -normal.z; + facesA[fidx].m_plane.w = c; + facesA[fidx].m_numIndices=3; + } + fidx++; + + bool addEdgePlanes = true; + if (addEdgePlanes) + { + int numVertices=3; + int prevVertex = numVertices-1; + for (int i=0;i<numVertices;i++) + { + float4 v0 = verticesA[i]; + float4 v1 = verticesA[prevVertex]; + + float4 edgeNormal = normalize(cross(normal,v1-v0)); + float c = -dot(edgeNormal,v0); + + facesA[fidx].m_numIndices = 2; + facesA[fidx].m_indexOffset=curUsedIndices; + indicesA[curUsedIndices++]=i; + indicesA[curUsedIndices++]=prevVertex; + + facesA[fidx].m_plane.x = edgeNormal.x; + facesA[fidx].m_plane.y = edgeNormal.y; + facesA[fidx].m_plane.z = edgeNormal.z; + facesA[fidx].m_plane.w = c; + fidx++; + prevVertex = i; + } + } + convexPolyhedronA.m_numFaces = TRIANGLE_NUM_CONVEX_FACES; + convexPolyhedronA.m_localCenter = localCenter*(1.f/3.f); + + + float4 posA = rigidBodies[bodyIndexA].m_pos; + posA.w = 0.f; + float4 posB = rigidBodies[bodyIndexB].m_pos; + posB.w = 0.f; + + float4 ornA = rigidBodies[bodyIndexA].m_quat; + float4 ornB =rigidBodies[bodyIndexB].m_quat; + + + + + /////////////////// + ///compound shape support + + if (collidables[collidableIndexB].m_shapeType==SHAPE_COMPOUND_OF_CONVEX_HULLS) + { + int compoundChild = concavePairs[pairIdx].w; + int childShapeIndexB = compoundChild;//collidables[collidableIndexB].m_shapeIndex+compoundChild; + int childColIndexB = gpuChildShapes[childShapeIndexB].m_shapeIndex; + float4 childPosB = gpuChildShapes[childShapeIndexB].m_childPosition; + float4 childOrnB = gpuChildShapes[childShapeIndexB].m_childOrientation; + float4 newPosB = transform(&childPosB,&posB,&ornB); + float4 newOrnB = qtMul(ornB,childOrnB); + posB = newPosB; + ornB = newOrnB; + shapeIndexB = collidables[childColIndexB].m_shapeIndex; + } + ////////////////// + + float4 c0local = convexPolyhedronA.m_localCenter; + float4 c0 = transform(&c0local, &posA, &ornA); + float4 c1local = convexShapes[shapeIndexB].m_localCenter; + float4 c1 = transform(&c1local,&posB,&ornB); + const float4 DeltaC2 = c0 - c1; + + + { + bool sepEE = findSeparatingAxisEdgeEdgeLocalA( &convexPolyhedronA, &convexShapes[shapeIndexB], + posA,ornA, + posB,ornB, + DeltaC2, + verticesA,uniqueEdgesA,facesA,indicesA, + vertices,uniqueEdges,faces,indices, + &sepAxis,&dmin); + + if (!sepEE) + { + hasSeparatingAxis = 0; + } else + { + hasSeparatingAxis = 1; + } + } + + + if (hasSeparatingAxis) + { + sepAxis.w = dmin; + dmins[i] = dmin; + concaveSeparatingNormalsOut[pairIdx]=sepAxis; + concaveHasSeparatingNormals[i]=1; + + float minDist = -1e30f; + float maxDist = 0.02f; + + + findClippingFaces(sepAxis, + &convexPolyhedronA, + &convexShapes[shapeIndexB], + posA,ornA, + posB,ornB, + worldVertsA1GPU, + worldNormalsAGPU, + worldVertsB1GPU, + vertexFaceCapacity, + minDist, maxDist, + verticesA, + facesA, + indicesA, + vertices, + faces, + indices, + clippingFacesOut, pairIdx); + + + } else + { + //mark this pair as in-active + concavePairs[pairIdx].w = -1; + } + } + else + { + //mark this pair as in-active + concavePairs[pairIdx].w = -1; + } + + concavePairs[i].z = -1;//for the next stage, z is used to determine existing contact points +} + diff --git a/thirdparty/bullet/Bullet3OpenCL/NarrowphaseCollision/kernels/satConcaveKernels.h b/thirdparty/bullet/Bullet3OpenCL/NarrowphaseCollision/kernels/satConcaveKernels.h new file mode 100644 index 0000000000..611569cacf --- /dev/null +++ b/thirdparty/bullet/Bullet3OpenCL/NarrowphaseCollision/kernels/satConcaveKernels.h @@ -0,0 +1,1457 @@ +//this file is autogenerated using stringify.bat (premake --stringify) in the build folder of this project +static const char* satConcaveKernelsCL= \ +"//keep this enum in sync with the CPU version (in btCollidable.h)\n" +"//written by Erwin Coumans\n" +"#define SHAPE_CONVEX_HULL 3\n" +"#define SHAPE_CONCAVE_TRIMESH 5\n" +"#define TRIANGLE_NUM_CONVEX_FACES 5\n" +"#define SHAPE_COMPOUND_OF_CONVEX_HULLS 6\n" +"#define B3_MAX_STACK_DEPTH 256\n" +"typedef unsigned int u32;\n" +"///keep this in sync with btCollidable.h\n" +"typedef struct\n" +"{\n" +" union {\n" +" int m_numChildShapes;\n" +" int m_bvhIndex;\n" +" };\n" +" union\n" +" {\n" +" float m_radius;\n" +" int m_compoundBvhIndex;\n" +" };\n" +" \n" +" int m_shapeType;\n" +" int m_shapeIndex;\n" +" \n" +"} btCollidableGpu;\n" +"#define MAX_NUM_PARTS_IN_BITS 10\n" +"///b3QuantizedBvhNode is a compressed aabb node, 16 bytes.\n" +"///Node can be used for leafnode or internal node. Leafnodes can point to 32-bit triangle index (non-negative range).\n" +"typedef struct\n" +"{\n" +" //12 bytes\n" +" unsigned short int m_quantizedAabbMin[3];\n" +" unsigned short int m_quantizedAabbMax[3];\n" +" //4 bytes\n" +" int m_escapeIndexOrTriangleIndex;\n" +"} b3QuantizedBvhNode;\n" +"typedef struct\n" +"{\n" +" float4 m_aabbMin;\n" +" float4 m_aabbMax;\n" +" float4 m_quantization;\n" +" int m_numNodes;\n" +" int m_numSubTrees;\n" +" int m_nodeOffset;\n" +" int m_subTreeOffset;\n" +"} b3BvhInfo;\n" +"int getTriangleIndex(const b3QuantizedBvhNode* rootNode)\n" +"{\n" +" unsigned int x=0;\n" +" unsigned int y = (~(x&0))<<(31-MAX_NUM_PARTS_IN_BITS);\n" +" // Get only the lower bits where the triangle index is stored\n" +" return (rootNode->m_escapeIndexOrTriangleIndex&~(y));\n" +"}\n" +"int getTriangleIndexGlobal(__global const b3QuantizedBvhNode* rootNode)\n" +"{\n" +" unsigned int x=0;\n" +" unsigned int y = (~(x&0))<<(31-MAX_NUM_PARTS_IN_BITS);\n" +" // Get only the lower bits where the triangle index is stored\n" +" return (rootNode->m_escapeIndexOrTriangleIndex&~(y));\n" +"}\n" +"int isLeafNode(const b3QuantizedBvhNode* rootNode)\n" +"{\n" +" //skipindex is negative (internal node), triangleindex >=0 (leafnode)\n" +" return (rootNode->m_escapeIndexOrTriangleIndex >= 0)? 1 : 0;\n" +"}\n" +"int isLeafNodeGlobal(__global const b3QuantizedBvhNode* rootNode)\n" +"{\n" +" //skipindex is negative (internal node), triangleindex >=0 (leafnode)\n" +" return (rootNode->m_escapeIndexOrTriangleIndex >= 0)? 1 : 0;\n" +"}\n" +" \n" +"int getEscapeIndex(const b3QuantizedBvhNode* rootNode)\n" +"{\n" +" return -rootNode->m_escapeIndexOrTriangleIndex;\n" +"}\n" +"int getEscapeIndexGlobal(__global const b3QuantizedBvhNode* rootNode)\n" +"{\n" +" return -rootNode->m_escapeIndexOrTriangleIndex;\n" +"}\n" +"typedef struct\n" +"{\n" +" //12 bytes\n" +" unsigned short int m_quantizedAabbMin[3];\n" +" unsigned short int m_quantizedAabbMax[3];\n" +" //4 bytes, points to the root of the subtree\n" +" int m_rootNodeIndex;\n" +" //4 bytes\n" +" int m_subtreeSize;\n" +" int m_padding[3];\n" +"} b3BvhSubtreeInfo;\n" +"typedef struct\n" +"{\n" +" float4 m_childPosition;\n" +" float4 m_childOrientation;\n" +" int m_shapeIndex;\n" +" int m_unused0;\n" +" int m_unused1;\n" +" int m_unused2;\n" +"} btGpuChildShape;\n" +"typedef struct\n" +"{\n" +" float4 m_pos;\n" +" float4 m_quat;\n" +" float4 m_linVel;\n" +" float4 m_angVel;\n" +" u32 m_collidableIdx;\n" +" float m_invMass;\n" +" float m_restituitionCoeff;\n" +" float m_frictionCoeff;\n" +"} BodyData;\n" +"typedef struct \n" +"{\n" +" float4 m_localCenter;\n" +" float4 m_extents;\n" +" float4 mC;\n" +" float4 mE;\n" +" \n" +" float m_radius;\n" +" int m_faceOffset;\n" +" int m_numFaces;\n" +" int m_numVertices;\n" +" int m_vertexOffset;\n" +" int m_uniqueEdgesOffset;\n" +" int m_numUniqueEdges;\n" +" int m_unused;\n" +"} ConvexPolyhedronCL;\n" +"typedef struct \n" +"{\n" +" union\n" +" {\n" +" float4 m_min;\n" +" float m_minElems[4];\n" +" int m_minIndices[4];\n" +" };\n" +" union\n" +" {\n" +" float4 m_max;\n" +" float m_maxElems[4];\n" +" int m_maxIndices[4];\n" +" };\n" +"} btAabbCL;\n" +"#ifndef B3_AABB_H\n" +"#define B3_AABB_H\n" +"#ifndef B3_FLOAT4_H\n" +"#define B3_FLOAT4_H\n" +"#ifndef B3_PLATFORM_DEFINITIONS_H\n" +"#define B3_PLATFORM_DEFINITIONS_H\n" +"struct MyTest\n" +"{\n" +" int bla;\n" +"};\n" +"#ifdef __cplusplus\n" +"#else\n" +"//keep B3_LARGE_FLOAT*B3_LARGE_FLOAT < FLT_MAX\n" +"#define B3_LARGE_FLOAT 1e18f\n" +"#define B3_INFINITY 1e18f\n" +"#define b3Assert(a)\n" +"#define b3ConstArray(a) __global const a*\n" +"#define b3AtomicInc atomic_inc\n" +"#define b3AtomicAdd atomic_add\n" +"#define b3Fabs fabs\n" +"#define b3Sqrt native_sqrt\n" +"#define b3Sin native_sin\n" +"#define b3Cos native_cos\n" +"#define B3_STATIC\n" +"#endif\n" +"#endif\n" +"#ifdef __cplusplus\n" +"#else\n" +" typedef float4 b3Float4;\n" +" #define b3Float4ConstArg const b3Float4\n" +" #define b3MakeFloat4 (float4)\n" +" float b3Dot3F4(b3Float4ConstArg v0,b3Float4ConstArg v1)\n" +" {\n" +" float4 a1 = b3MakeFloat4(v0.xyz,0.f);\n" +" float4 b1 = b3MakeFloat4(v1.xyz,0.f);\n" +" return dot(a1, b1);\n" +" }\n" +" b3Float4 b3Cross3(b3Float4ConstArg v0,b3Float4ConstArg v1)\n" +" {\n" +" float4 a1 = b3MakeFloat4(v0.xyz,0.f);\n" +" float4 b1 = b3MakeFloat4(v1.xyz,0.f);\n" +" return cross(a1, b1);\n" +" }\n" +" #define b3MinFloat4 min\n" +" #define b3MaxFloat4 max\n" +" #define b3Normalized(a) normalize(a)\n" +"#endif \n" +" \n" +"inline bool b3IsAlmostZero(b3Float4ConstArg v)\n" +"{\n" +" if(b3Fabs(v.x)>1e-6 || b3Fabs(v.y)>1e-6 || b3Fabs(v.z)>1e-6) \n" +" return false;\n" +" return true;\n" +"}\n" +"inline int b3MaxDot( b3Float4ConstArg vec, __global const b3Float4* vecArray, int vecLen, float* dotOut )\n" +"{\n" +" float maxDot = -B3_INFINITY;\n" +" int i = 0;\n" +" int ptIndex = -1;\n" +" for( i = 0; i < vecLen; i++ )\n" +" {\n" +" float dot = b3Dot3F4(vecArray[i],vec);\n" +" \n" +" if( dot > maxDot )\n" +" {\n" +" maxDot = dot;\n" +" ptIndex = i;\n" +" }\n" +" }\n" +" b3Assert(ptIndex>=0);\n" +" if (ptIndex<0)\n" +" {\n" +" ptIndex = 0;\n" +" }\n" +" *dotOut = maxDot;\n" +" return ptIndex;\n" +"}\n" +"#endif //B3_FLOAT4_H\n" +"#ifndef B3_MAT3x3_H\n" +"#define B3_MAT3x3_H\n" +"#ifndef B3_QUAT_H\n" +"#define B3_QUAT_H\n" +"#ifndef B3_PLATFORM_DEFINITIONS_H\n" +"#ifdef __cplusplus\n" +"#else\n" +"#endif\n" +"#endif\n" +"#ifndef B3_FLOAT4_H\n" +"#ifdef __cplusplus\n" +"#else\n" +"#endif \n" +"#endif //B3_FLOAT4_H\n" +"#ifdef __cplusplus\n" +"#else\n" +" typedef float4 b3Quat;\n" +" #define b3QuatConstArg const b3Quat\n" +" \n" +" \n" +"inline float4 b3FastNormalize4(float4 v)\n" +"{\n" +" v = (float4)(v.xyz,0.f);\n" +" return fast_normalize(v);\n" +"}\n" +" \n" +"inline b3Quat b3QuatMul(b3Quat a, b3Quat b);\n" +"inline b3Quat b3QuatNormalized(b3QuatConstArg in);\n" +"inline b3Quat b3QuatRotate(b3QuatConstArg q, b3QuatConstArg vec);\n" +"inline b3Quat b3QuatInvert(b3QuatConstArg q);\n" +"inline b3Quat b3QuatInverse(b3QuatConstArg q);\n" +"inline b3Quat b3QuatMul(b3QuatConstArg a, b3QuatConstArg b)\n" +"{\n" +" b3Quat ans;\n" +" ans = b3Cross3( a, b );\n" +" ans += a.w*b+b.w*a;\n" +"// ans.w = a.w*b.w - (a.x*b.x+a.y*b.y+a.z*b.z);\n" +" ans.w = a.w*b.w - b3Dot3F4(a, b);\n" +" return ans;\n" +"}\n" +"inline b3Quat b3QuatNormalized(b3QuatConstArg in)\n" +"{\n" +" b3Quat q;\n" +" q=in;\n" +" //return b3FastNormalize4(in);\n" +" float len = native_sqrt(dot(q, q));\n" +" if(len > 0.f)\n" +" {\n" +" q *= 1.f / len;\n" +" }\n" +" else\n" +" {\n" +" q.x = q.y = q.z = 0.f;\n" +" q.w = 1.f;\n" +" }\n" +" return q;\n" +"}\n" +"inline float4 b3QuatRotate(b3QuatConstArg q, b3QuatConstArg vec)\n" +"{\n" +" b3Quat qInv = b3QuatInvert( q );\n" +" float4 vcpy = vec;\n" +" vcpy.w = 0.f;\n" +" float4 out = b3QuatMul(b3QuatMul(q,vcpy),qInv);\n" +" return out;\n" +"}\n" +"inline b3Quat b3QuatInverse(b3QuatConstArg q)\n" +"{\n" +" return (b3Quat)(-q.xyz, q.w);\n" +"}\n" +"inline b3Quat b3QuatInvert(b3QuatConstArg q)\n" +"{\n" +" return (b3Quat)(-q.xyz, q.w);\n" +"}\n" +"inline float4 b3QuatInvRotate(b3QuatConstArg q, b3QuatConstArg vec)\n" +"{\n" +" return b3QuatRotate( b3QuatInvert( q ), vec );\n" +"}\n" +"inline b3Float4 b3TransformPoint(b3Float4ConstArg point, b3Float4ConstArg translation, b3QuatConstArg orientation)\n" +"{\n" +" return b3QuatRotate( orientation, point ) + (translation);\n" +"}\n" +" \n" +"#endif \n" +"#endif //B3_QUAT_H\n" +"#ifdef __cplusplus\n" +"#else\n" +"typedef struct\n" +"{\n" +" b3Float4 m_row[3];\n" +"}b3Mat3x3;\n" +"#define b3Mat3x3ConstArg const b3Mat3x3\n" +"#define b3GetRow(m,row) (m.m_row[row])\n" +"inline b3Mat3x3 b3QuatGetRotationMatrix(b3Quat quat)\n" +"{\n" +" b3Float4 quat2 = (b3Float4)(quat.x*quat.x, quat.y*quat.y, quat.z*quat.z, 0.f);\n" +" b3Mat3x3 out;\n" +" out.m_row[0].x=1-2*quat2.y-2*quat2.z;\n" +" out.m_row[0].y=2*quat.x*quat.y-2*quat.w*quat.z;\n" +" out.m_row[0].z=2*quat.x*quat.z+2*quat.w*quat.y;\n" +" out.m_row[0].w = 0.f;\n" +" out.m_row[1].x=2*quat.x*quat.y+2*quat.w*quat.z;\n" +" out.m_row[1].y=1-2*quat2.x-2*quat2.z;\n" +" out.m_row[1].z=2*quat.y*quat.z-2*quat.w*quat.x;\n" +" out.m_row[1].w = 0.f;\n" +" out.m_row[2].x=2*quat.x*quat.z-2*quat.w*quat.y;\n" +" out.m_row[2].y=2*quat.y*quat.z+2*quat.w*quat.x;\n" +" out.m_row[2].z=1-2*quat2.x-2*quat2.y;\n" +" out.m_row[2].w = 0.f;\n" +" return out;\n" +"}\n" +"inline b3Mat3x3 b3AbsoluteMat3x3(b3Mat3x3ConstArg matIn)\n" +"{\n" +" b3Mat3x3 out;\n" +" out.m_row[0] = fabs(matIn.m_row[0]);\n" +" out.m_row[1] = fabs(matIn.m_row[1]);\n" +" out.m_row[2] = fabs(matIn.m_row[2]);\n" +" return out;\n" +"}\n" +"__inline\n" +"b3Mat3x3 mtZero();\n" +"__inline\n" +"b3Mat3x3 mtIdentity();\n" +"__inline\n" +"b3Mat3x3 mtTranspose(b3Mat3x3 m);\n" +"__inline\n" +"b3Mat3x3 mtMul(b3Mat3x3 a, b3Mat3x3 b);\n" +"__inline\n" +"b3Float4 mtMul1(b3Mat3x3 a, b3Float4 b);\n" +"__inline\n" +"b3Float4 mtMul3(b3Float4 a, b3Mat3x3 b);\n" +"__inline\n" +"b3Mat3x3 mtZero()\n" +"{\n" +" b3Mat3x3 m;\n" +" m.m_row[0] = (b3Float4)(0.f);\n" +" m.m_row[1] = (b3Float4)(0.f);\n" +" m.m_row[2] = (b3Float4)(0.f);\n" +" return m;\n" +"}\n" +"__inline\n" +"b3Mat3x3 mtIdentity()\n" +"{\n" +" b3Mat3x3 m;\n" +" m.m_row[0] = (b3Float4)(1,0,0,0);\n" +" m.m_row[1] = (b3Float4)(0,1,0,0);\n" +" m.m_row[2] = (b3Float4)(0,0,1,0);\n" +" return m;\n" +"}\n" +"__inline\n" +"b3Mat3x3 mtTranspose(b3Mat3x3 m)\n" +"{\n" +" b3Mat3x3 out;\n" +" out.m_row[0] = (b3Float4)(m.m_row[0].x, m.m_row[1].x, m.m_row[2].x, 0.f);\n" +" out.m_row[1] = (b3Float4)(m.m_row[0].y, m.m_row[1].y, m.m_row[2].y, 0.f);\n" +" out.m_row[2] = (b3Float4)(m.m_row[0].z, m.m_row[1].z, m.m_row[2].z, 0.f);\n" +" return out;\n" +"}\n" +"__inline\n" +"b3Mat3x3 mtMul(b3Mat3x3 a, b3Mat3x3 b)\n" +"{\n" +" b3Mat3x3 transB;\n" +" transB = mtTranspose( b );\n" +" b3Mat3x3 ans;\n" +" // why this doesn't run when 0ing in the for{}\n" +" a.m_row[0].w = 0.f;\n" +" a.m_row[1].w = 0.f;\n" +" a.m_row[2].w = 0.f;\n" +" for(int i=0; i<3; i++)\n" +" {\n" +"// a.m_row[i].w = 0.f;\n" +" ans.m_row[i].x = b3Dot3F4(a.m_row[i],transB.m_row[0]);\n" +" ans.m_row[i].y = b3Dot3F4(a.m_row[i],transB.m_row[1]);\n" +" ans.m_row[i].z = b3Dot3F4(a.m_row[i],transB.m_row[2]);\n" +" ans.m_row[i].w = 0.f;\n" +" }\n" +" return ans;\n" +"}\n" +"__inline\n" +"b3Float4 mtMul1(b3Mat3x3 a, b3Float4 b)\n" +"{\n" +" b3Float4 ans;\n" +" ans.x = b3Dot3F4( a.m_row[0], b );\n" +" ans.y = b3Dot3F4( a.m_row[1], b );\n" +" ans.z = b3Dot3F4( a.m_row[2], b );\n" +" ans.w = 0.f;\n" +" return ans;\n" +"}\n" +"__inline\n" +"b3Float4 mtMul3(b3Float4 a, b3Mat3x3 b)\n" +"{\n" +" b3Float4 colx = b3MakeFloat4(b.m_row[0].x, b.m_row[1].x, b.m_row[2].x, 0);\n" +" b3Float4 coly = b3MakeFloat4(b.m_row[0].y, b.m_row[1].y, b.m_row[2].y, 0);\n" +" b3Float4 colz = b3MakeFloat4(b.m_row[0].z, b.m_row[1].z, b.m_row[2].z, 0);\n" +" b3Float4 ans;\n" +" ans.x = b3Dot3F4( a, colx );\n" +" ans.y = b3Dot3F4( a, coly );\n" +" ans.z = b3Dot3F4( a, colz );\n" +" return ans;\n" +"}\n" +"#endif\n" +"#endif //B3_MAT3x3_H\n" +"typedef struct b3Aabb b3Aabb_t;\n" +"struct b3Aabb\n" +"{\n" +" union\n" +" {\n" +" float m_min[4];\n" +" b3Float4 m_minVec;\n" +" int m_minIndices[4];\n" +" };\n" +" union\n" +" {\n" +" float m_max[4];\n" +" b3Float4 m_maxVec;\n" +" int m_signedMaxIndices[4];\n" +" };\n" +"};\n" +"inline void b3TransformAabb2(b3Float4ConstArg localAabbMin,b3Float4ConstArg localAabbMax, float margin,\n" +" b3Float4ConstArg pos,\n" +" b3QuatConstArg orn,\n" +" b3Float4* aabbMinOut,b3Float4* aabbMaxOut)\n" +"{\n" +" b3Float4 localHalfExtents = 0.5f*(localAabbMax-localAabbMin);\n" +" localHalfExtents+=b3MakeFloat4(margin,margin,margin,0.f);\n" +" b3Float4 localCenter = 0.5f*(localAabbMax+localAabbMin);\n" +" b3Mat3x3 m;\n" +" m = b3QuatGetRotationMatrix(orn);\n" +" b3Mat3x3 abs_b = b3AbsoluteMat3x3(m);\n" +" b3Float4 center = b3TransformPoint(localCenter,pos,orn);\n" +" \n" +" b3Float4 extent = b3MakeFloat4(b3Dot3F4(localHalfExtents,b3GetRow(abs_b,0)),\n" +" b3Dot3F4(localHalfExtents,b3GetRow(abs_b,1)),\n" +" b3Dot3F4(localHalfExtents,b3GetRow(abs_b,2)),\n" +" 0.f);\n" +" *aabbMinOut = center-extent;\n" +" *aabbMaxOut = center+extent;\n" +"}\n" +"/// conservative test for overlap between two aabbs\n" +"inline bool b3TestAabbAgainstAabb(b3Float4ConstArg aabbMin1,b3Float4ConstArg aabbMax1,\n" +" b3Float4ConstArg aabbMin2, b3Float4ConstArg aabbMax2)\n" +"{\n" +" bool overlap = true;\n" +" overlap = (aabbMin1.x > aabbMax2.x || aabbMax1.x < aabbMin2.x) ? false : overlap;\n" +" overlap = (aabbMin1.z > aabbMax2.z || aabbMax1.z < aabbMin2.z) ? false : overlap;\n" +" overlap = (aabbMin1.y > aabbMax2.y || aabbMax1.y < aabbMin2.y) ? false : overlap;\n" +" return overlap;\n" +"}\n" +"#endif //B3_AABB_H\n" +"/*\n" +"Bullet Continuous Collision Detection and Physics Library\n" +"Copyright (c) 2003-2013 Erwin Coumans http://bulletphysics.org\n" +"This software is provided 'as-is', without any express or implied warranty.\n" +"In no event will the authors be held liable for any damages arising from the use of this software.\n" +"Permission is granted to anyone to use this software for any purpose,\n" +"including commercial applications, and to alter it and redistribute it freely,\n" +"subject to the following restrictions:\n" +"1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.\n" +"2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.\n" +"3. This notice may not be removed or altered from any source distribution.\n" +"*/\n" +"#ifndef B3_INT2_H\n" +"#define B3_INT2_H\n" +"#ifdef __cplusplus\n" +"#else\n" +"#define b3UnsignedInt2 uint2\n" +"#define b3Int2 int2\n" +"#define b3MakeInt2 (int2)\n" +"#endif //__cplusplus\n" +"#endif\n" +"typedef struct\n" +"{\n" +" float4 m_plane;\n" +" int m_indexOffset;\n" +" int m_numIndices;\n" +"} btGpuFace;\n" +"#define make_float4 (float4)\n" +"__inline\n" +"float4 cross3(float4 a, float4 b)\n" +"{\n" +" return cross(a,b);\n" +" \n" +"// float4 a1 = make_float4(a.xyz,0.f);\n" +"// float4 b1 = make_float4(b.xyz,0.f);\n" +"// return cross(a1,b1);\n" +"//float4 c = make_float4(a.y*b.z - a.z*b.y,a.z*b.x - a.x*b.z,a.x*b.y - a.y*b.x,0.f);\n" +" \n" +" // float4 c = make_float4(a.y*b.z - a.z*b.y,1.f,a.x*b.y - a.y*b.x,0.f);\n" +" \n" +" //return c;\n" +"}\n" +"__inline\n" +"float dot3F4(float4 a, float4 b)\n" +"{\n" +" float4 a1 = make_float4(a.xyz,0.f);\n" +" float4 b1 = make_float4(b.xyz,0.f);\n" +" return dot(a1, b1);\n" +"}\n" +"__inline\n" +"float4 fastNormalize4(float4 v)\n" +"{\n" +" v = make_float4(v.xyz,0.f);\n" +" return fast_normalize(v);\n" +"}\n" +"///////////////////////////////////////\n" +"// Quaternion\n" +"///////////////////////////////////////\n" +"typedef float4 Quaternion;\n" +"__inline\n" +"Quaternion qtMul(Quaternion a, Quaternion b);\n" +"__inline\n" +"Quaternion qtNormalize(Quaternion in);\n" +"__inline\n" +"float4 qtRotate(Quaternion q, float4 vec);\n" +"__inline\n" +"Quaternion qtInvert(Quaternion q);\n" +"__inline\n" +"Quaternion qtMul(Quaternion a, Quaternion b)\n" +"{\n" +" Quaternion ans;\n" +" ans = cross3( a, b );\n" +" ans += a.w*b+b.w*a;\n" +"// ans.w = a.w*b.w - (a.x*b.x+a.y*b.y+a.z*b.z);\n" +" ans.w = a.w*b.w - dot3F4(a, b);\n" +" return ans;\n" +"}\n" +"__inline\n" +"Quaternion qtNormalize(Quaternion in)\n" +"{\n" +" return fastNormalize4(in);\n" +"// in /= length( in );\n" +"// return in;\n" +"}\n" +"__inline\n" +"float4 qtRotate(Quaternion q, float4 vec)\n" +"{\n" +" Quaternion qInv = qtInvert( q );\n" +" float4 vcpy = vec;\n" +" vcpy.w = 0.f;\n" +" float4 out = qtMul(qtMul(q,vcpy),qInv);\n" +" return out;\n" +"}\n" +"__inline\n" +"Quaternion qtInvert(Quaternion q)\n" +"{\n" +" return (Quaternion)(-q.xyz, q.w);\n" +"}\n" +"__inline\n" +"float4 qtInvRotate(const Quaternion q, float4 vec)\n" +"{\n" +" return qtRotate( qtInvert( q ), vec );\n" +"}\n" +"__inline\n" +"float4 transform(const float4* p, const float4* translation, const Quaternion* orientation)\n" +"{\n" +" return qtRotate( *orientation, *p ) + (*translation);\n" +"}\n" +"__inline\n" +"float4 normalize3(const float4 a)\n" +"{\n" +" float4 n = make_float4(a.x, a.y, a.z, 0.f);\n" +" return fastNormalize4( n );\n" +"}\n" +"inline void projectLocal(const ConvexPolyhedronCL* hull, const float4 pos, const float4 orn, \n" +"const float4* dir, const float4* vertices, float* min, float* max)\n" +"{\n" +" min[0] = FLT_MAX;\n" +" max[0] = -FLT_MAX;\n" +" int numVerts = hull->m_numVertices;\n" +" const float4 localDir = qtInvRotate(orn,*dir);\n" +" float offset = dot(pos,*dir);\n" +" for(int i=0;i<numVerts;i++)\n" +" {\n" +" float dp = dot(vertices[hull->m_vertexOffset+i],localDir);\n" +" if(dp < min[0]) \n" +" min[0] = dp;\n" +" if(dp > max[0]) \n" +" max[0] = dp;\n" +" }\n" +" if(min[0]>max[0])\n" +" {\n" +" float tmp = min[0];\n" +" min[0] = max[0];\n" +" max[0] = tmp;\n" +" }\n" +" min[0] += offset;\n" +" max[0] += offset;\n" +"}\n" +"inline void project(__global const ConvexPolyhedronCL* hull, const float4 pos, const float4 orn, \n" +"const float4* dir, __global const float4* vertices, float* min, float* max)\n" +"{\n" +" min[0] = FLT_MAX;\n" +" max[0] = -FLT_MAX;\n" +" int numVerts = hull->m_numVertices;\n" +" const float4 localDir = qtInvRotate(orn,*dir);\n" +" float offset = dot(pos,*dir);\n" +" for(int i=0;i<numVerts;i++)\n" +" {\n" +" float dp = dot(vertices[hull->m_vertexOffset+i],localDir);\n" +" if(dp < min[0]) \n" +" min[0] = dp;\n" +" if(dp > max[0]) \n" +" max[0] = dp;\n" +" }\n" +" if(min[0]>max[0])\n" +" {\n" +" float tmp = min[0];\n" +" min[0] = max[0];\n" +" max[0] = tmp;\n" +" }\n" +" min[0] += offset;\n" +" max[0] += offset;\n" +"}\n" +"inline bool TestSepAxisLocalA(const ConvexPolyhedronCL* hullA, __global const ConvexPolyhedronCL* hullB, \n" +" const float4 posA,const float4 ornA,\n" +" const float4 posB,const float4 ornB,\n" +" float4* sep_axis, const float4* verticesA, __global const float4* verticesB,float* depth)\n" +"{\n" +" float Min0,Max0;\n" +" float Min1,Max1;\n" +" projectLocal(hullA,posA,ornA,sep_axis,verticesA, &Min0, &Max0);\n" +" project(hullB,posB,ornB, sep_axis,verticesB, &Min1, &Max1);\n" +" if(Max0<Min1 || Max1<Min0)\n" +" return false;\n" +" float d0 = Max0 - Min1;\n" +" float d1 = Max1 - Min0;\n" +" *depth = d0<d1 ? d0:d1;\n" +" return true;\n" +"}\n" +"inline bool IsAlmostZero(const float4 v)\n" +"{\n" +" if(fabs(v.x)>1e-6f || fabs(v.y)>1e-6f || fabs(v.z)>1e-6f)\n" +" return false;\n" +" return true;\n" +"}\n" +"bool findSeparatingAxisLocalA( const ConvexPolyhedronCL* hullA, __global const ConvexPolyhedronCL* hullB, \n" +" const float4 posA1,\n" +" const float4 ornA,\n" +" const float4 posB1,\n" +" const float4 ornB,\n" +" const float4 DeltaC2,\n" +" \n" +" const float4* verticesA, \n" +" const float4* uniqueEdgesA, \n" +" const btGpuFace* facesA,\n" +" const int* indicesA,\n" +" __global const float4* verticesB, \n" +" __global const float4* uniqueEdgesB, \n" +" __global const btGpuFace* facesB,\n" +" __global const int* indicesB,\n" +" float4* sep,\n" +" float* dmin)\n" +"{\n" +" \n" +" float4 posA = posA1;\n" +" posA.w = 0.f;\n" +" float4 posB = posB1;\n" +" posB.w = 0.f;\n" +" int curPlaneTests=0;\n" +" {\n" +" int numFacesA = hullA->m_numFaces;\n" +" // Test normals from hullA\n" +" for(int i=0;i<numFacesA;i++)\n" +" {\n" +" const float4 normal = facesA[hullA->m_faceOffset+i].m_plane;\n" +" float4 faceANormalWS = qtRotate(ornA,normal);\n" +" if (dot3F4(DeltaC2,faceANormalWS)<0)\n" +" faceANormalWS*=-1.f;\n" +" curPlaneTests++;\n" +" float d;\n" +" if(!TestSepAxisLocalA( hullA, hullB, posA,ornA,posB,ornB,&faceANormalWS, verticesA, verticesB,&d))\n" +" return false;\n" +" if(d<*dmin)\n" +" {\n" +" *dmin = d;\n" +" *sep = faceANormalWS;\n" +" }\n" +" }\n" +" }\n" +" if((dot3F4(-DeltaC2,*sep))>0.0f)\n" +" {\n" +" *sep = -(*sep);\n" +" }\n" +" return true;\n" +"}\n" +"bool findSeparatingAxisLocalB( __global const ConvexPolyhedronCL* hullA, const ConvexPolyhedronCL* hullB, \n" +" const float4 posA1,\n" +" const float4 ornA,\n" +" const float4 posB1,\n" +" const float4 ornB,\n" +" const float4 DeltaC2,\n" +" __global const float4* verticesA, \n" +" __global const float4* uniqueEdgesA, \n" +" __global const btGpuFace* facesA,\n" +" __global const int* indicesA,\n" +" const float4* verticesB,\n" +" const float4* uniqueEdgesB, \n" +" const btGpuFace* facesB,\n" +" const int* indicesB,\n" +" float4* sep,\n" +" float* dmin)\n" +"{\n" +" float4 posA = posA1;\n" +" posA.w = 0.f;\n" +" float4 posB = posB1;\n" +" posB.w = 0.f;\n" +" int curPlaneTests=0;\n" +" {\n" +" int numFacesA = hullA->m_numFaces;\n" +" // Test normals from hullA\n" +" for(int i=0;i<numFacesA;i++)\n" +" {\n" +" const float4 normal = facesA[hullA->m_faceOffset+i].m_plane;\n" +" float4 faceANormalWS = qtRotate(ornA,normal);\n" +" if (dot3F4(DeltaC2,faceANormalWS)<0)\n" +" faceANormalWS *= -1.f;\n" +" curPlaneTests++;\n" +" float d;\n" +" if(!TestSepAxisLocalA( hullB, hullA, posB,ornB,posA,ornA, &faceANormalWS, verticesB,verticesA, &d))\n" +" return false;\n" +" if(d<*dmin)\n" +" {\n" +" *dmin = d;\n" +" *sep = faceANormalWS;\n" +" }\n" +" }\n" +" }\n" +" if((dot3F4(-DeltaC2,*sep))>0.0f)\n" +" {\n" +" *sep = -(*sep);\n" +" }\n" +" return true;\n" +"}\n" +"bool findSeparatingAxisEdgeEdgeLocalA( const ConvexPolyhedronCL* hullA, __global const ConvexPolyhedronCL* hullB, \n" +" const float4 posA1,\n" +" const float4 ornA,\n" +" const float4 posB1,\n" +" const float4 ornB,\n" +" const float4 DeltaC2,\n" +" const float4* verticesA, \n" +" const float4* uniqueEdgesA, \n" +" const btGpuFace* facesA,\n" +" const int* indicesA,\n" +" __global const float4* verticesB, \n" +" __global const float4* uniqueEdgesB, \n" +" __global const btGpuFace* facesB,\n" +" __global const int* indicesB,\n" +" float4* sep,\n" +" float* dmin)\n" +"{\n" +" float4 posA = posA1;\n" +" posA.w = 0.f;\n" +" float4 posB = posB1;\n" +" posB.w = 0.f;\n" +" int curPlaneTests=0;\n" +" int curEdgeEdge = 0;\n" +" // Test edges\n" +" for(int e0=0;e0<hullA->m_numUniqueEdges;e0++)\n" +" {\n" +" const float4 edge0 = uniqueEdgesA[hullA->m_uniqueEdgesOffset+e0];\n" +" float4 edge0World = qtRotate(ornA,edge0);\n" +" for(int e1=0;e1<hullB->m_numUniqueEdges;e1++)\n" +" {\n" +" const float4 edge1 = uniqueEdgesB[hullB->m_uniqueEdgesOffset+e1];\n" +" float4 edge1World = qtRotate(ornB,edge1);\n" +" float4 crossje = cross3(edge0World,edge1World);\n" +" curEdgeEdge++;\n" +" if(!IsAlmostZero(crossje))\n" +" {\n" +" crossje = normalize3(crossje);\n" +" if (dot3F4(DeltaC2,crossje)<0)\n" +" crossje *= -1.f;\n" +" float dist;\n" +" bool result = true;\n" +" {\n" +" float Min0,Max0;\n" +" float Min1,Max1;\n" +" projectLocal(hullA,posA,ornA,&crossje,verticesA, &Min0, &Max0);\n" +" project(hullB,posB,ornB,&crossje,verticesB, &Min1, &Max1);\n" +" \n" +" if(Max0<Min1 || Max1<Min0)\n" +" result = false;\n" +" \n" +" float d0 = Max0 - Min1;\n" +" float d1 = Max1 - Min0;\n" +" dist = d0<d1 ? d0:d1;\n" +" result = true;\n" +" }\n" +" \n" +" if(dist<*dmin)\n" +" {\n" +" *dmin = dist;\n" +" *sep = crossje;\n" +" }\n" +" }\n" +" }\n" +" }\n" +" \n" +" if((dot3F4(-DeltaC2,*sep))>0.0f)\n" +" {\n" +" *sep = -(*sep);\n" +" }\n" +" return true;\n" +"}\n" +"inline int findClippingFaces(const float4 separatingNormal,\n" +" const ConvexPolyhedronCL* hullA, \n" +" __global const ConvexPolyhedronCL* hullB,\n" +" const float4 posA, const Quaternion ornA,const float4 posB, const Quaternion ornB,\n" +" __global float4* worldVertsA1,\n" +" __global float4* worldNormalsA1,\n" +" __global float4* worldVertsB1,\n" +" int capacityWorldVerts,\n" +" const float minDist, float maxDist,\n" +" const float4* verticesA,\n" +" const btGpuFace* facesA,\n" +" const int* indicesA,\n" +" __global const float4* verticesB,\n" +" __global const btGpuFace* facesB,\n" +" __global const int* indicesB,\n" +" __global int4* clippingFaces, int pairIndex)\n" +"{\n" +" int numContactsOut = 0;\n" +" int numWorldVertsB1= 0;\n" +" \n" +" \n" +" int closestFaceB=0;\n" +" float dmax = -FLT_MAX;\n" +" \n" +" {\n" +" for(int face=0;face<hullB->m_numFaces;face++)\n" +" {\n" +" const float4 Normal = make_float4(facesB[hullB->m_faceOffset+face].m_plane.x,\n" +" facesB[hullB->m_faceOffset+face].m_plane.y, facesB[hullB->m_faceOffset+face].m_plane.z,0.f);\n" +" const float4 WorldNormal = qtRotate(ornB, Normal);\n" +" float d = dot3F4(WorldNormal,separatingNormal);\n" +" if (d > dmax)\n" +" {\n" +" dmax = d;\n" +" closestFaceB = face;\n" +" }\n" +" }\n" +" }\n" +" \n" +" {\n" +" const btGpuFace polyB = facesB[hullB->m_faceOffset+closestFaceB];\n" +" int numVertices = polyB.m_numIndices;\n" +" if (numVertices>capacityWorldVerts)\n" +" numVertices = capacityWorldVerts;\n" +" if (numVertices<0)\n" +" numVertices = 0;\n" +" \n" +" for(int e0=0;e0<numVertices;e0++)\n" +" {\n" +" if (e0<capacityWorldVerts)\n" +" {\n" +" const float4 b = verticesB[hullB->m_vertexOffset+indicesB[polyB.m_indexOffset+e0]];\n" +" worldVertsB1[pairIndex*capacityWorldVerts+numWorldVertsB1++] = transform(&b,&posB,&ornB);\n" +" }\n" +" }\n" +" }\n" +" \n" +" int closestFaceA=0;\n" +" {\n" +" float dmin = FLT_MAX;\n" +" for(int face=0;face<hullA->m_numFaces;face++)\n" +" {\n" +" const float4 Normal = make_float4(\n" +" facesA[hullA->m_faceOffset+face].m_plane.x,\n" +" facesA[hullA->m_faceOffset+face].m_plane.y,\n" +" facesA[hullA->m_faceOffset+face].m_plane.z,\n" +" 0.f);\n" +" const float4 faceANormalWS = qtRotate(ornA,Normal);\n" +" \n" +" float d = dot3F4(faceANormalWS,separatingNormal);\n" +" if (d < dmin)\n" +" {\n" +" dmin = d;\n" +" closestFaceA = face;\n" +" worldNormalsA1[pairIndex] = faceANormalWS;\n" +" }\n" +" }\n" +" }\n" +" \n" +" int numVerticesA = facesA[hullA->m_faceOffset+closestFaceA].m_numIndices;\n" +" if (numVerticesA>capacityWorldVerts)\n" +" numVerticesA = capacityWorldVerts;\n" +" if (numVerticesA<0)\n" +" numVerticesA=0;\n" +" \n" +" for(int e0=0;e0<numVerticesA;e0++)\n" +" {\n" +" if (e0<capacityWorldVerts)\n" +" {\n" +" const float4 a = verticesA[hullA->m_vertexOffset+indicesA[facesA[hullA->m_faceOffset+closestFaceA].m_indexOffset+e0]];\n" +" worldVertsA1[pairIndex*capacityWorldVerts+e0] = transform(&a, &posA,&ornA);\n" +" }\n" +" }\n" +" \n" +" clippingFaces[pairIndex].x = closestFaceA;\n" +" clippingFaces[pairIndex].y = closestFaceB;\n" +" clippingFaces[pairIndex].z = numVerticesA;\n" +" clippingFaces[pairIndex].w = numWorldVertsB1;\n" +" \n" +" \n" +" return numContactsOut;\n" +"}\n" +"// work-in-progress\n" +"__kernel void findConcaveSeparatingAxisVertexFaceKernel( __global int4* concavePairs,\n" +" __global const BodyData* rigidBodies,\n" +" __global const btCollidableGpu* collidables,\n" +" __global const ConvexPolyhedronCL* convexShapes,\n" +" __global const float4* vertices,\n" +" __global const float4* uniqueEdges,\n" +" __global const btGpuFace* faces,\n" +" __global const int* indices,\n" +" __global const btGpuChildShape* gpuChildShapes,\n" +" __global btAabbCL* aabbs,\n" +" __global float4* concaveSeparatingNormalsOut,\n" +" __global int* concaveHasSeparatingNormals,\n" +" __global int4* clippingFacesOut,\n" +" __global float4* worldVertsA1GPU,\n" +" __global float4* worldNormalsAGPU,\n" +" __global float4* worldVertsB1GPU,\n" +" __global float* dmins,\n" +" int vertexFaceCapacity,\n" +" int numConcavePairs\n" +" )\n" +"{\n" +" \n" +" int i = get_global_id(0);\n" +" if (i>=numConcavePairs)\n" +" return;\n" +" \n" +" concaveHasSeparatingNormals[i] = 0;\n" +" \n" +" int pairIdx = i;\n" +" \n" +" int bodyIndexA = concavePairs[i].x;\n" +" int bodyIndexB = concavePairs[i].y;\n" +" \n" +" int collidableIndexA = rigidBodies[bodyIndexA].m_collidableIdx;\n" +" int collidableIndexB = rigidBodies[bodyIndexB].m_collidableIdx;\n" +" \n" +" int shapeIndexA = collidables[collidableIndexA].m_shapeIndex;\n" +" int shapeIndexB = collidables[collidableIndexB].m_shapeIndex;\n" +" \n" +" if (collidables[collidableIndexB].m_shapeType!=SHAPE_CONVEX_HULL&&\n" +" collidables[collidableIndexB].m_shapeType!=SHAPE_COMPOUND_OF_CONVEX_HULLS)\n" +" {\n" +" concavePairs[pairIdx].w = -1;\n" +" return;\n" +" }\n" +" \n" +" \n" +" \n" +" int numFacesA = convexShapes[shapeIndexA].m_numFaces;\n" +" int numActualConcaveConvexTests = 0;\n" +" \n" +" int f = concavePairs[i].z;\n" +" \n" +" bool overlap = false;\n" +" \n" +" ConvexPolyhedronCL convexPolyhedronA;\n" +" \n" +" //add 3 vertices of the triangle\n" +" convexPolyhedronA.m_numVertices = 3;\n" +" convexPolyhedronA.m_vertexOffset = 0;\n" +" float4 localCenter = make_float4(0.f,0.f,0.f,0.f);\n" +" \n" +" btGpuFace face = faces[convexShapes[shapeIndexA].m_faceOffset+f];\n" +" float4 triMinAabb, triMaxAabb;\n" +" btAabbCL triAabb;\n" +" triAabb.m_min = make_float4(1e30f,1e30f,1e30f,0.f);\n" +" triAabb.m_max = make_float4(-1e30f,-1e30f,-1e30f,0.f);\n" +" \n" +" float4 verticesA[3];\n" +" for (int i=0;i<3;i++)\n" +" {\n" +" int index = indices[face.m_indexOffset+i];\n" +" float4 vert = vertices[convexShapes[shapeIndexA].m_vertexOffset+index];\n" +" verticesA[i] = vert;\n" +" localCenter += vert;\n" +" \n" +" triAabb.m_min = min(triAabb.m_min,vert);\n" +" triAabb.m_max = max(triAabb.m_max,vert);\n" +" \n" +" }\n" +" \n" +" overlap = true;\n" +" overlap = (triAabb.m_min.x > aabbs[bodyIndexB].m_max.x || triAabb.m_max.x < aabbs[bodyIndexB].m_min.x) ? false : overlap;\n" +" overlap = (triAabb.m_min.z > aabbs[bodyIndexB].m_max.z || triAabb.m_max.z < aabbs[bodyIndexB].m_min.z) ? false : overlap;\n" +" overlap = (triAabb.m_min.y > aabbs[bodyIndexB].m_max.y || triAabb.m_max.y < aabbs[bodyIndexB].m_min.y) ? false : overlap;\n" +" \n" +" if (overlap)\n" +" {\n" +" float dmin = FLT_MAX;\n" +" int hasSeparatingAxis=5;\n" +" float4 sepAxis=make_float4(1,2,3,4);\n" +" \n" +" int localCC=0;\n" +" numActualConcaveConvexTests++;\n" +" \n" +" //a triangle has 3 unique edges\n" +" convexPolyhedronA.m_numUniqueEdges = 3;\n" +" convexPolyhedronA.m_uniqueEdgesOffset = 0;\n" +" float4 uniqueEdgesA[3];\n" +" \n" +" uniqueEdgesA[0] = (verticesA[1]-verticesA[0]);\n" +" uniqueEdgesA[1] = (verticesA[2]-verticesA[1]);\n" +" uniqueEdgesA[2] = (verticesA[0]-verticesA[2]);\n" +" \n" +" \n" +" convexPolyhedronA.m_faceOffset = 0;\n" +" \n" +" float4 normal = make_float4(face.m_plane.x,face.m_plane.y,face.m_plane.z,0.f);\n" +" \n" +" btGpuFace facesA[TRIANGLE_NUM_CONVEX_FACES];\n" +" int indicesA[3+3+2+2+2];\n" +" int curUsedIndices=0;\n" +" int fidx=0;\n" +" \n" +" //front size of triangle\n" +" {\n" +" facesA[fidx].m_indexOffset=curUsedIndices;\n" +" indicesA[0] = 0;\n" +" indicesA[1] = 1;\n" +" indicesA[2] = 2;\n" +" curUsedIndices+=3;\n" +" float c = face.m_plane.w;\n" +" facesA[fidx].m_plane.x = normal.x;\n" +" facesA[fidx].m_plane.y = normal.y;\n" +" facesA[fidx].m_plane.z = normal.z;\n" +" facesA[fidx].m_plane.w = c;\n" +" facesA[fidx].m_numIndices=3;\n" +" }\n" +" fidx++;\n" +" //back size of triangle\n" +" {\n" +" facesA[fidx].m_indexOffset=curUsedIndices;\n" +" indicesA[3]=2;\n" +" indicesA[4]=1;\n" +" indicesA[5]=0;\n" +" curUsedIndices+=3;\n" +" float c = dot(normal,verticesA[0]);\n" +" float c1 = -face.m_plane.w;\n" +" facesA[fidx].m_plane.x = -normal.x;\n" +" facesA[fidx].m_plane.y = -normal.y;\n" +" facesA[fidx].m_plane.z = -normal.z;\n" +" facesA[fidx].m_plane.w = c;\n" +" facesA[fidx].m_numIndices=3;\n" +" }\n" +" fidx++;\n" +" \n" +" bool addEdgePlanes = true;\n" +" if (addEdgePlanes)\n" +" {\n" +" int numVertices=3;\n" +" int prevVertex = numVertices-1;\n" +" for (int i=0;i<numVertices;i++)\n" +" {\n" +" float4 v0 = verticesA[i];\n" +" float4 v1 = verticesA[prevVertex];\n" +" \n" +" float4 edgeNormal = normalize(cross(normal,v1-v0));\n" +" float c = -dot(edgeNormal,v0);\n" +" \n" +" facesA[fidx].m_numIndices = 2;\n" +" facesA[fidx].m_indexOffset=curUsedIndices;\n" +" indicesA[curUsedIndices++]=i;\n" +" indicesA[curUsedIndices++]=prevVertex;\n" +" \n" +" facesA[fidx].m_plane.x = edgeNormal.x;\n" +" facesA[fidx].m_plane.y = edgeNormal.y;\n" +" facesA[fidx].m_plane.z = edgeNormal.z;\n" +" facesA[fidx].m_plane.w = c;\n" +" fidx++;\n" +" prevVertex = i;\n" +" }\n" +" }\n" +" convexPolyhedronA.m_numFaces = TRIANGLE_NUM_CONVEX_FACES;\n" +" convexPolyhedronA.m_localCenter = localCenter*(1.f/3.f);\n" +" \n" +" \n" +" float4 posA = rigidBodies[bodyIndexA].m_pos;\n" +" posA.w = 0.f;\n" +" float4 posB = rigidBodies[bodyIndexB].m_pos;\n" +" posB.w = 0.f;\n" +" \n" +" float4 ornA = rigidBodies[bodyIndexA].m_quat;\n" +" float4 ornB =rigidBodies[bodyIndexB].m_quat;\n" +" \n" +" \n" +" \n" +" \n" +" ///////////////////\n" +" ///compound shape support\n" +" \n" +" if (collidables[collidableIndexB].m_shapeType==SHAPE_COMPOUND_OF_CONVEX_HULLS)\n" +" {\n" +" int compoundChild = concavePairs[pairIdx].w;\n" +" int childShapeIndexB = compoundChild;//collidables[collidableIndexB].m_shapeIndex+compoundChild;\n" +" int childColIndexB = gpuChildShapes[childShapeIndexB].m_shapeIndex;\n" +" float4 childPosB = gpuChildShapes[childShapeIndexB].m_childPosition;\n" +" float4 childOrnB = gpuChildShapes[childShapeIndexB].m_childOrientation;\n" +" float4 newPosB = transform(&childPosB,&posB,&ornB);\n" +" float4 newOrnB = qtMul(ornB,childOrnB);\n" +" posB = newPosB;\n" +" ornB = newOrnB;\n" +" shapeIndexB = collidables[childColIndexB].m_shapeIndex;\n" +" }\n" +" //////////////////\n" +" \n" +" float4 c0local = convexPolyhedronA.m_localCenter;\n" +" float4 c0 = transform(&c0local, &posA, &ornA);\n" +" float4 c1local = convexShapes[shapeIndexB].m_localCenter;\n" +" float4 c1 = transform(&c1local,&posB,&ornB);\n" +" const float4 DeltaC2 = c0 - c1;\n" +" \n" +" \n" +" bool sepA = findSeparatingAxisLocalA( &convexPolyhedronA, &convexShapes[shapeIndexB],\n" +" posA,ornA,\n" +" posB,ornB,\n" +" DeltaC2,\n" +" verticesA,uniqueEdgesA,facesA,indicesA,\n" +" vertices,uniqueEdges,faces,indices,\n" +" &sepAxis,&dmin);\n" +" hasSeparatingAxis = 4;\n" +" if (!sepA)\n" +" {\n" +" hasSeparatingAxis = 0;\n" +" } else\n" +" {\n" +" bool sepB = findSeparatingAxisLocalB( &convexShapes[shapeIndexB],&convexPolyhedronA,\n" +" posB,ornB,\n" +" posA,ornA,\n" +" DeltaC2,\n" +" vertices,uniqueEdges,faces,indices,\n" +" verticesA,uniqueEdgesA,facesA,indicesA,\n" +" &sepAxis,&dmin);\n" +" \n" +" if (!sepB)\n" +" {\n" +" hasSeparatingAxis = 0;\n" +" } else\n" +" {\n" +" hasSeparatingAxis = 1;\n" +" }\n" +" } \n" +" \n" +" if (hasSeparatingAxis)\n" +" {\n" +" dmins[i] = dmin;\n" +" concaveSeparatingNormalsOut[pairIdx]=sepAxis;\n" +" concaveHasSeparatingNormals[i]=1;\n" +" \n" +" } else\n" +" { \n" +" //mark this pair as in-active\n" +" concavePairs[pairIdx].w = -1;\n" +" }\n" +" }\n" +" else\n" +" { \n" +" //mark this pair as in-active\n" +" concavePairs[pairIdx].w = -1;\n" +" }\n" +"}\n" +"// work-in-progress\n" +"__kernel void findConcaveSeparatingAxisEdgeEdgeKernel( __global int4* concavePairs,\n" +" __global const BodyData* rigidBodies,\n" +" __global const btCollidableGpu* collidables,\n" +" __global const ConvexPolyhedronCL* convexShapes,\n" +" __global const float4* vertices,\n" +" __global const float4* uniqueEdges,\n" +" __global const btGpuFace* faces,\n" +" __global const int* indices,\n" +" __global const btGpuChildShape* gpuChildShapes,\n" +" __global btAabbCL* aabbs,\n" +" __global float4* concaveSeparatingNormalsOut,\n" +" __global int* concaveHasSeparatingNormals,\n" +" __global int4* clippingFacesOut,\n" +" __global float4* worldVertsA1GPU,\n" +" __global float4* worldNormalsAGPU,\n" +" __global float4* worldVertsB1GPU,\n" +" __global float* dmins,\n" +" int vertexFaceCapacity,\n" +" int numConcavePairs\n" +" )\n" +"{\n" +" \n" +" int i = get_global_id(0);\n" +" if (i>=numConcavePairs)\n" +" return;\n" +" \n" +" if (!concaveHasSeparatingNormals[i])\n" +" return;\n" +" \n" +" int pairIdx = i;\n" +" \n" +" int bodyIndexA = concavePairs[i].x;\n" +" int bodyIndexB = concavePairs[i].y;\n" +" \n" +" int collidableIndexA = rigidBodies[bodyIndexA].m_collidableIdx;\n" +" int collidableIndexB = rigidBodies[bodyIndexB].m_collidableIdx;\n" +" \n" +" int shapeIndexA = collidables[collidableIndexA].m_shapeIndex;\n" +" int shapeIndexB = collidables[collidableIndexB].m_shapeIndex;\n" +" \n" +" \n" +" int numFacesA = convexShapes[shapeIndexA].m_numFaces;\n" +" int numActualConcaveConvexTests = 0;\n" +" \n" +" int f = concavePairs[i].z;\n" +" \n" +" bool overlap = false;\n" +" \n" +" ConvexPolyhedronCL convexPolyhedronA;\n" +" \n" +" //add 3 vertices of the triangle\n" +" convexPolyhedronA.m_numVertices = 3;\n" +" convexPolyhedronA.m_vertexOffset = 0;\n" +" float4 localCenter = make_float4(0.f,0.f,0.f,0.f);\n" +" \n" +" btGpuFace face = faces[convexShapes[shapeIndexA].m_faceOffset+f];\n" +" float4 triMinAabb, triMaxAabb;\n" +" btAabbCL triAabb;\n" +" triAabb.m_min = make_float4(1e30f,1e30f,1e30f,0.f);\n" +" triAabb.m_max = make_float4(-1e30f,-1e30f,-1e30f,0.f);\n" +" \n" +" float4 verticesA[3];\n" +" for (int i=0;i<3;i++)\n" +" {\n" +" int index = indices[face.m_indexOffset+i];\n" +" float4 vert = vertices[convexShapes[shapeIndexA].m_vertexOffset+index];\n" +" verticesA[i] = vert;\n" +" localCenter += vert;\n" +" \n" +" triAabb.m_min = min(triAabb.m_min,vert);\n" +" triAabb.m_max = max(triAabb.m_max,vert);\n" +" \n" +" }\n" +" \n" +" overlap = true;\n" +" overlap = (triAabb.m_min.x > aabbs[bodyIndexB].m_max.x || triAabb.m_max.x < aabbs[bodyIndexB].m_min.x) ? false : overlap;\n" +" overlap = (triAabb.m_min.z > aabbs[bodyIndexB].m_max.z || triAabb.m_max.z < aabbs[bodyIndexB].m_min.z) ? false : overlap;\n" +" overlap = (triAabb.m_min.y > aabbs[bodyIndexB].m_max.y || triAabb.m_max.y < aabbs[bodyIndexB].m_min.y) ? false : overlap;\n" +" \n" +" if (overlap)\n" +" {\n" +" float dmin = dmins[i];\n" +" int hasSeparatingAxis=5;\n" +" float4 sepAxis=make_float4(1,2,3,4);\n" +" sepAxis = concaveSeparatingNormalsOut[pairIdx];\n" +" \n" +" int localCC=0;\n" +" numActualConcaveConvexTests++;\n" +" \n" +" //a triangle has 3 unique edges\n" +" convexPolyhedronA.m_numUniqueEdges = 3;\n" +" convexPolyhedronA.m_uniqueEdgesOffset = 0;\n" +" float4 uniqueEdgesA[3];\n" +" \n" +" uniqueEdgesA[0] = (verticesA[1]-verticesA[0]);\n" +" uniqueEdgesA[1] = (verticesA[2]-verticesA[1]);\n" +" uniqueEdgesA[2] = (verticesA[0]-verticesA[2]);\n" +" \n" +" \n" +" convexPolyhedronA.m_faceOffset = 0;\n" +" \n" +" float4 normal = make_float4(face.m_plane.x,face.m_plane.y,face.m_plane.z,0.f);\n" +" \n" +" btGpuFace facesA[TRIANGLE_NUM_CONVEX_FACES];\n" +" int indicesA[3+3+2+2+2];\n" +" int curUsedIndices=0;\n" +" int fidx=0;\n" +" \n" +" //front size of triangle\n" +" {\n" +" facesA[fidx].m_indexOffset=curUsedIndices;\n" +" indicesA[0] = 0;\n" +" indicesA[1] = 1;\n" +" indicesA[2] = 2;\n" +" curUsedIndices+=3;\n" +" float c = face.m_plane.w;\n" +" facesA[fidx].m_plane.x = normal.x;\n" +" facesA[fidx].m_plane.y = normal.y;\n" +" facesA[fidx].m_plane.z = normal.z;\n" +" facesA[fidx].m_plane.w = c;\n" +" facesA[fidx].m_numIndices=3;\n" +" }\n" +" fidx++;\n" +" //back size of triangle\n" +" {\n" +" facesA[fidx].m_indexOffset=curUsedIndices;\n" +" indicesA[3]=2;\n" +" indicesA[4]=1;\n" +" indicesA[5]=0;\n" +" curUsedIndices+=3;\n" +" float c = dot(normal,verticesA[0]);\n" +" float c1 = -face.m_plane.w;\n" +" facesA[fidx].m_plane.x = -normal.x;\n" +" facesA[fidx].m_plane.y = -normal.y;\n" +" facesA[fidx].m_plane.z = -normal.z;\n" +" facesA[fidx].m_plane.w = c;\n" +" facesA[fidx].m_numIndices=3;\n" +" }\n" +" fidx++;\n" +" \n" +" bool addEdgePlanes = true;\n" +" if (addEdgePlanes)\n" +" {\n" +" int numVertices=3;\n" +" int prevVertex = numVertices-1;\n" +" for (int i=0;i<numVertices;i++)\n" +" {\n" +" float4 v0 = verticesA[i];\n" +" float4 v1 = verticesA[prevVertex];\n" +" \n" +" float4 edgeNormal = normalize(cross(normal,v1-v0));\n" +" float c = -dot(edgeNormal,v0);\n" +" \n" +" facesA[fidx].m_numIndices = 2;\n" +" facesA[fidx].m_indexOffset=curUsedIndices;\n" +" indicesA[curUsedIndices++]=i;\n" +" indicesA[curUsedIndices++]=prevVertex;\n" +" \n" +" facesA[fidx].m_plane.x = edgeNormal.x;\n" +" facesA[fidx].m_plane.y = edgeNormal.y;\n" +" facesA[fidx].m_plane.z = edgeNormal.z;\n" +" facesA[fidx].m_plane.w = c;\n" +" fidx++;\n" +" prevVertex = i;\n" +" }\n" +" }\n" +" convexPolyhedronA.m_numFaces = TRIANGLE_NUM_CONVEX_FACES;\n" +" convexPolyhedronA.m_localCenter = localCenter*(1.f/3.f);\n" +" \n" +" \n" +" float4 posA = rigidBodies[bodyIndexA].m_pos;\n" +" posA.w = 0.f;\n" +" float4 posB = rigidBodies[bodyIndexB].m_pos;\n" +" posB.w = 0.f;\n" +" \n" +" float4 ornA = rigidBodies[bodyIndexA].m_quat;\n" +" float4 ornB =rigidBodies[bodyIndexB].m_quat;\n" +" \n" +" \n" +" \n" +" \n" +" ///////////////////\n" +" ///compound shape support\n" +" \n" +" if (collidables[collidableIndexB].m_shapeType==SHAPE_COMPOUND_OF_CONVEX_HULLS)\n" +" {\n" +" int compoundChild = concavePairs[pairIdx].w;\n" +" int childShapeIndexB = compoundChild;//collidables[collidableIndexB].m_shapeIndex+compoundChild;\n" +" int childColIndexB = gpuChildShapes[childShapeIndexB].m_shapeIndex;\n" +" float4 childPosB = gpuChildShapes[childShapeIndexB].m_childPosition;\n" +" float4 childOrnB = gpuChildShapes[childShapeIndexB].m_childOrientation;\n" +" float4 newPosB = transform(&childPosB,&posB,&ornB);\n" +" float4 newOrnB = qtMul(ornB,childOrnB);\n" +" posB = newPosB;\n" +" ornB = newOrnB;\n" +" shapeIndexB = collidables[childColIndexB].m_shapeIndex;\n" +" }\n" +" //////////////////\n" +" \n" +" float4 c0local = convexPolyhedronA.m_localCenter;\n" +" float4 c0 = transform(&c0local, &posA, &ornA);\n" +" float4 c1local = convexShapes[shapeIndexB].m_localCenter;\n" +" float4 c1 = transform(&c1local,&posB,&ornB);\n" +" const float4 DeltaC2 = c0 - c1;\n" +" \n" +" \n" +" {\n" +" bool sepEE = findSeparatingAxisEdgeEdgeLocalA( &convexPolyhedronA, &convexShapes[shapeIndexB],\n" +" posA,ornA,\n" +" posB,ornB,\n" +" DeltaC2,\n" +" verticesA,uniqueEdgesA,facesA,indicesA,\n" +" vertices,uniqueEdges,faces,indices,\n" +" &sepAxis,&dmin);\n" +" \n" +" if (!sepEE)\n" +" {\n" +" hasSeparatingAxis = 0;\n" +" } else\n" +" {\n" +" hasSeparatingAxis = 1;\n" +" }\n" +" }\n" +" \n" +" \n" +" if (hasSeparatingAxis)\n" +" {\n" +" sepAxis.w = dmin;\n" +" dmins[i] = dmin;\n" +" concaveSeparatingNormalsOut[pairIdx]=sepAxis;\n" +" concaveHasSeparatingNormals[i]=1;\n" +" \n" +" float minDist = -1e30f;\n" +" float maxDist = 0.02f;\n" +" \n" +" findClippingFaces(sepAxis,\n" +" &convexPolyhedronA,\n" +" &convexShapes[shapeIndexB],\n" +" posA,ornA,\n" +" posB,ornB,\n" +" worldVertsA1GPU,\n" +" worldNormalsAGPU,\n" +" worldVertsB1GPU,\n" +" vertexFaceCapacity,\n" +" minDist, maxDist,\n" +" verticesA,\n" +" facesA,\n" +" indicesA,\n" +" vertices,\n" +" faces,\n" +" indices,\n" +" clippingFacesOut, pairIdx);\n" +" \n" +" \n" +" } else\n" +" { \n" +" //mark this pair as in-active\n" +" concavePairs[pairIdx].w = -1;\n" +" }\n" +" }\n" +" else\n" +" { \n" +" //mark this pair as in-active\n" +" concavePairs[pairIdx].w = -1;\n" +" }\n" +" \n" +" concavePairs[i].z = -1;//for the next stage, z is used to determine existing contact points\n" +"}\n" +; diff --git a/thirdparty/bullet/Bullet3OpenCL/NarrowphaseCollision/kernels/satKernels.h b/thirdparty/bullet/Bullet3OpenCL/NarrowphaseCollision/kernels/satKernels.h new file mode 100644 index 0000000000..6f8b0a90db --- /dev/null +++ b/thirdparty/bullet/Bullet3OpenCL/NarrowphaseCollision/kernels/satKernels.h @@ -0,0 +1,2104 @@ +//this file is autogenerated using stringify.bat (premake --stringify) in the build folder of this project +static const char* satKernelsCL= \ +"//keep this enum in sync with the CPU version (in btCollidable.h)\n" +"//written by Erwin Coumans\n" +"#define SHAPE_CONVEX_HULL 3\n" +"#define SHAPE_CONCAVE_TRIMESH 5\n" +"#define TRIANGLE_NUM_CONVEX_FACES 5\n" +"#define SHAPE_COMPOUND_OF_CONVEX_HULLS 6\n" +"#define B3_MAX_STACK_DEPTH 256\n" +"typedef unsigned int u32;\n" +"///keep this in sync with btCollidable.h\n" +"typedef struct\n" +"{\n" +" union {\n" +" int m_numChildShapes;\n" +" int m_bvhIndex;\n" +" };\n" +" union\n" +" {\n" +" float m_radius;\n" +" int m_compoundBvhIndex;\n" +" };\n" +" \n" +" int m_shapeType;\n" +" int m_shapeIndex;\n" +" \n" +"} btCollidableGpu;\n" +"#define MAX_NUM_PARTS_IN_BITS 10\n" +"///b3QuantizedBvhNode is a compressed aabb node, 16 bytes.\n" +"///Node can be used for leafnode or internal node. Leafnodes can point to 32-bit triangle index (non-negative range).\n" +"typedef struct\n" +"{\n" +" //12 bytes\n" +" unsigned short int m_quantizedAabbMin[3];\n" +" unsigned short int m_quantizedAabbMax[3];\n" +" //4 bytes\n" +" int m_escapeIndexOrTriangleIndex;\n" +"} b3QuantizedBvhNode;\n" +"typedef struct\n" +"{\n" +" float4 m_aabbMin;\n" +" float4 m_aabbMax;\n" +" float4 m_quantization;\n" +" int m_numNodes;\n" +" int m_numSubTrees;\n" +" int m_nodeOffset;\n" +" int m_subTreeOffset;\n" +"} b3BvhInfo;\n" +"int getTriangleIndex(const b3QuantizedBvhNode* rootNode)\n" +"{\n" +" unsigned int x=0;\n" +" unsigned int y = (~(x&0))<<(31-MAX_NUM_PARTS_IN_BITS);\n" +" // Get only the lower bits where the triangle index is stored\n" +" return (rootNode->m_escapeIndexOrTriangleIndex&~(y));\n" +"}\n" +"int getTriangleIndexGlobal(__global const b3QuantizedBvhNode* rootNode)\n" +"{\n" +" unsigned int x=0;\n" +" unsigned int y = (~(x&0))<<(31-MAX_NUM_PARTS_IN_BITS);\n" +" // Get only the lower bits where the triangle index is stored\n" +" return (rootNode->m_escapeIndexOrTriangleIndex&~(y));\n" +"}\n" +"int isLeafNode(const b3QuantizedBvhNode* rootNode)\n" +"{\n" +" //skipindex is negative (internal node), triangleindex >=0 (leafnode)\n" +" return (rootNode->m_escapeIndexOrTriangleIndex >= 0)? 1 : 0;\n" +"}\n" +"int isLeafNodeGlobal(__global const b3QuantizedBvhNode* rootNode)\n" +"{\n" +" //skipindex is negative (internal node), triangleindex >=0 (leafnode)\n" +" return (rootNode->m_escapeIndexOrTriangleIndex >= 0)? 1 : 0;\n" +"}\n" +" \n" +"int getEscapeIndex(const b3QuantizedBvhNode* rootNode)\n" +"{\n" +" return -rootNode->m_escapeIndexOrTriangleIndex;\n" +"}\n" +"int getEscapeIndexGlobal(__global const b3QuantizedBvhNode* rootNode)\n" +"{\n" +" return -rootNode->m_escapeIndexOrTriangleIndex;\n" +"}\n" +"typedef struct\n" +"{\n" +" //12 bytes\n" +" unsigned short int m_quantizedAabbMin[3];\n" +" unsigned short int m_quantizedAabbMax[3];\n" +" //4 bytes, points to the root of the subtree\n" +" int m_rootNodeIndex;\n" +" //4 bytes\n" +" int m_subtreeSize;\n" +" int m_padding[3];\n" +"} b3BvhSubtreeInfo;\n" +"typedef struct\n" +"{\n" +" float4 m_childPosition;\n" +" float4 m_childOrientation;\n" +" int m_shapeIndex;\n" +" int m_unused0;\n" +" int m_unused1;\n" +" int m_unused2;\n" +"} btGpuChildShape;\n" +"typedef struct\n" +"{\n" +" float4 m_pos;\n" +" float4 m_quat;\n" +" float4 m_linVel;\n" +" float4 m_angVel;\n" +" u32 m_collidableIdx;\n" +" float m_invMass;\n" +" float m_restituitionCoeff;\n" +" float m_frictionCoeff;\n" +"} BodyData;\n" +"typedef struct \n" +"{\n" +" float4 m_localCenter;\n" +" float4 m_extents;\n" +" float4 mC;\n" +" float4 mE;\n" +" \n" +" float m_radius;\n" +" int m_faceOffset;\n" +" int m_numFaces;\n" +" int m_numVertices;\n" +" int m_vertexOffset;\n" +" int m_uniqueEdgesOffset;\n" +" int m_numUniqueEdges;\n" +" int m_unused;\n" +"} ConvexPolyhedronCL;\n" +"typedef struct \n" +"{\n" +" union\n" +" {\n" +" float4 m_min;\n" +" float m_minElems[4];\n" +" int m_minIndices[4];\n" +" };\n" +" union\n" +" {\n" +" float4 m_max;\n" +" float m_maxElems[4];\n" +" int m_maxIndices[4];\n" +" };\n" +"} btAabbCL;\n" +"#ifndef B3_AABB_H\n" +"#define B3_AABB_H\n" +"#ifndef B3_FLOAT4_H\n" +"#define B3_FLOAT4_H\n" +"#ifndef B3_PLATFORM_DEFINITIONS_H\n" +"#define B3_PLATFORM_DEFINITIONS_H\n" +"struct MyTest\n" +"{\n" +" int bla;\n" +"};\n" +"#ifdef __cplusplus\n" +"#else\n" +"//keep B3_LARGE_FLOAT*B3_LARGE_FLOAT < FLT_MAX\n" +"#define B3_LARGE_FLOAT 1e18f\n" +"#define B3_INFINITY 1e18f\n" +"#define b3Assert(a)\n" +"#define b3ConstArray(a) __global const a*\n" +"#define b3AtomicInc atomic_inc\n" +"#define b3AtomicAdd atomic_add\n" +"#define b3Fabs fabs\n" +"#define b3Sqrt native_sqrt\n" +"#define b3Sin native_sin\n" +"#define b3Cos native_cos\n" +"#define B3_STATIC\n" +"#endif\n" +"#endif\n" +"#ifdef __cplusplus\n" +"#else\n" +" typedef float4 b3Float4;\n" +" #define b3Float4ConstArg const b3Float4\n" +" #define b3MakeFloat4 (float4)\n" +" float b3Dot3F4(b3Float4ConstArg v0,b3Float4ConstArg v1)\n" +" {\n" +" float4 a1 = b3MakeFloat4(v0.xyz,0.f);\n" +" float4 b1 = b3MakeFloat4(v1.xyz,0.f);\n" +" return dot(a1, b1);\n" +" }\n" +" b3Float4 b3Cross3(b3Float4ConstArg v0,b3Float4ConstArg v1)\n" +" {\n" +" float4 a1 = b3MakeFloat4(v0.xyz,0.f);\n" +" float4 b1 = b3MakeFloat4(v1.xyz,0.f);\n" +" return cross(a1, b1);\n" +" }\n" +" #define b3MinFloat4 min\n" +" #define b3MaxFloat4 max\n" +" #define b3Normalized(a) normalize(a)\n" +"#endif \n" +" \n" +"inline bool b3IsAlmostZero(b3Float4ConstArg v)\n" +"{\n" +" if(b3Fabs(v.x)>1e-6 || b3Fabs(v.y)>1e-6 || b3Fabs(v.z)>1e-6) \n" +" return false;\n" +" return true;\n" +"}\n" +"inline int b3MaxDot( b3Float4ConstArg vec, __global const b3Float4* vecArray, int vecLen, float* dotOut )\n" +"{\n" +" float maxDot = -B3_INFINITY;\n" +" int i = 0;\n" +" int ptIndex = -1;\n" +" for( i = 0; i < vecLen; i++ )\n" +" {\n" +" float dot = b3Dot3F4(vecArray[i],vec);\n" +" \n" +" if( dot > maxDot )\n" +" {\n" +" maxDot = dot;\n" +" ptIndex = i;\n" +" }\n" +" }\n" +" b3Assert(ptIndex>=0);\n" +" if (ptIndex<0)\n" +" {\n" +" ptIndex = 0;\n" +" }\n" +" *dotOut = maxDot;\n" +" return ptIndex;\n" +"}\n" +"#endif //B3_FLOAT4_H\n" +"#ifndef B3_MAT3x3_H\n" +"#define B3_MAT3x3_H\n" +"#ifndef B3_QUAT_H\n" +"#define B3_QUAT_H\n" +"#ifndef B3_PLATFORM_DEFINITIONS_H\n" +"#ifdef __cplusplus\n" +"#else\n" +"#endif\n" +"#endif\n" +"#ifndef B3_FLOAT4_H\n" +"#ifdef __cplusplus\n" +"#else\n" +"#endif \n" +"#endif //B3_FLOAT4_H\n" +"#ifdef __cplusplus\n" +"#else\n" +" typedef float4 b3Quat;\n" +" #define b3QuatConstArg const b3Quat\n" +" \n" +" \n" +"inline float4 b3FastNormalize4(float4 v)\n" +"{\n" +" v = (float4)(v.xyz,0.f);\n" +" return fast_normalize(v);\n" +"}\n" +" \n" +"inline b3Quat b3QuatMul(b3Quat a, b3Quat b);\n" +"inline b3Quat b3QuatNormalized(b3QuatConstArg in);\n" +"inline b3Quat b3QuatRotate(b3QuatConstArg q, b3QuatConstArg vec);\n" +"inline b3Quat b3QuatInvert(b3QuatConstArg q);\n" +"inline b3Quat b3QuatInverse(b3QuatConstArg q);\n" +"inline b3Quat b3QuatMul(b3QuatConstArg a, b3QuatConstArg b)\n" +"{\n" +" b3Quat ans;\n" +" ans = b3Cross3( a, b );\n" +" ans += a.w*b+b.w*a;\n" +"// ans.w = a.w*b.w - (a.x*b.x+a.y*b.y+a.z*b.z);\n" +" ans.w = a.w*b.w - b3Dot3F4(a, b);\n" +" return ans;\n" +"}\n" +"inline b3Quat b3QuatNormalized(b3QuatConstArg in)\n" +"{\n" +" b3Quat q;\n" +" q=in;\n" +" //return b3FastNormalize4(in);\n" +" float len = native_sqrt(dot(q, q));\n" +" if(len > 0.f)\n" +" {\n" +" q *= 1.f / len;\n" +" }\n" +" else\n" +" {\n" +" q.x = q.y = q.z = 0.f;\n" +" q.w = 1.f;\n" +" }\n" +" return q;\n" +"}\n" +"inline float4 b3QuatRotate(b3QuatConstArg q, b3QuatConstArg vec)\n" +"{\n" +" b3Quat qInv = b3QuatInvert( q );\n" +" float4 vcpy = vec;\n" +" vcpy.w = 0.f;\n" +" float4 out = b3QuatMul(b3QuatMul(q,vcpy),qInv);\n" +" return out;\n" +"}\n" +"inline b3Quat b3QuatInverse(b3QuatConstArg q)\n" +"{\n" +" return (b3Quat)(-q.xyz, q.w);\n" +"}\n" +"inline b3Quat b3QuatInvert(b3QuatConstArg q)\n" +"{\n" +" return (b3Quat)(-q.xyz, q.w);\n" +"}\n" +"inline float4 b3QuatInvRotate(b3QuatConstArg q, b3QuatConstArg vec)\n" +"{\n" +" return b3QuatRotate( b3QuatInvert( q ), vec );\n" +"}\n" +"inline b3Float4 b3TransformPoint(b3Float4ConstArg point, b3Float4ConstArg translation, b3QuatConstArg orientation)\n" +"{\n" +" return b3QuatRotate( orientation, point ) + (translation);\n" +"}\n" +" \n" +"#endif \n" +"#endif //B3_QUAT_H\n" +"#ifdef __cplusplus\n" +"#else\n" +"typedef struct\n" +"{\n" +" b3Float4 m_row[3];\n" +"}b3Mat3x3;\n" +"#define b3Mat3x3ConstArg const b3Mat3x3\n" +"#define b3GetRow(m,row) (m.m_row[row])\n" +"inline b3Mat3x3 b3QuatGetRotationMatrix(b3Quat quat)\n" +"{\n" +" b3Float4 quat2 = (b3Float4)(quat.x*quat.x, quat.y*quat.y, quat.z*quat.z, 0.f);\n" +" b3Mat3x3 out;\n" +" out.m_row[0].x=1-2*quat2.y-2*quat2.z;\n" +" out.m_row[0].y=2*quat.x*quat.y-2*quat.w*quat.z;\n" +" out.m_row[0].z=2*quat.x*quat.z+2*quat.w*quat.y;\n" +" out.m_row[0].w = 0.f;\n" +" out.m_row[1].x=2*quat.x*quat.y+2*quat.w*quat.z;\n" +" out.m_row[1].y=1-2*quat2.x-2*quat2.z;\n" +" out.m_row[1].z=2*quat.y*quat.z-2*quat.w*quat.x;\n" +" out.m_row[1].w = 0.f;\n" +" out.m_row[2].x=2*quat.x*quat.z-2*quat.w*quat.y;\n" +" out.m_row[2].y=2*quat.y*quat.z+2*quat.w*quat.x;\n" +" out.m_row[2].z=1-2*quat2.x-2*quat2.y;\n" +" out.m_row[2].w = 0.f;\n" +" return out;\n" +"}\n" +"inline b3Mat3x3 b3AbsoluteMat3x3(b3Mat3x3ConstArg matIn)\n" +"{\n" +" b3Mat3x3 out;\n" +" out.m_row[0] = fabs(matIn.m_row[0]);\n" +" out.m_row[1] = fabs(matIn.m_row[1]);\n" +" out.m_row[2] = fabs(matIn.m_row[2]);\n" +" return out;\n" +"}\n" +"__inline\n" +"b3Mat3x3 mtZero();\n" +"__inline\n" +"b3Mat3x3 mtIdentity();\n" +"__inline\n" +"b3Mat3x3 mtTranspose(b3Mat3x3 m);\n" +"__inline\n" +"b3Mat3x3 mtMul(b3Mat3x3 a, b3Mat3x3 b);\n" +"__inline\n" +"b3Float4 mtMul1(b3Mat3x3 a, b3Float4 b);\n" +"__inline\n" +"b3Float4 mtMul3(b3Float4 a, b3Mat3x3 b);\n" +"__inline\n" +"b3Mat3x3 mtZero()\n" +"{\n" +" b3Mat3x3 m;\n" +" m.m_row[0] = (b3Float4)(0.f);\n" +" m.m_row[1] = (b3Float4)(0.f);\n" +" m.m_row[2] = (b3Float4)(0.f);\n" +" return m;\n" +"}\n" +"__inline\n" +"b3Mat3x3 mtIdentity()\n" +"{\n" +" b3Mat3x3 m;\n" +" m.m_row[0] = (b3Float4)(1,0,0,0);\n" +" m.m_row[1] = (b3Float4)(0,1,0,0);\n" +" m.m_row[2] = (b3Float4)(0,0,1,0);\n" +" return m;\n" +"}\n" +"__inline\n" +"b3Mat3x3 mtTranspose(b3Mat3x3 m)\n" +"{\n" +" b3Mat3x3 out;\n" +" out.m_row[0] = (b3Float4)(m.m_row[0].x, m.m_row[1].x, m.m_row[2].x, 0.f);\n" +" out.m_row[1] = (b3Float4)(m.m_row[0].y, m.m_row[1].y, m.m_row[2].y, 0.f);\n" +" out.m_row[2] = (b3Float4)(m.m_row[0].z, m.m_row[1].z, m.m_row[2].z, 0.f);\n" +" return out;\n" +"}\n" +"__inline\n" +"b3Mat3x3 mtMul(b3Mat3x3 a, b3Mat3x3 b)\n" +"{\n" +" b3Mat3x3 transB;\n" +" transB = mtTranspose( b );\n" +" b3Mat3x3 ans;\n" +" // why this doesn't run when 0ing in the for{}\n" +" a.m_row[0].w = 0.f;\n" +" a.m_row[1].w = 0.f;\n" +" a.m_row[2].w = 0.f;\n" +" for(int i=0; i<3; i++)\n" +" {\n" +"// a.m_row[i].w = 0.f;\n" +" ans.m_row[i].x = b3Dot3F4(a.m_row[i],transB.m_row[0]);\n" +" ans.m_row[i].y = b3Dot3F4(a.m_row[i],transB.m_row[1]);\n" +" ans.m_row[i].z = b3Dot3F4(a.m_row[i],transB.m_row[2]);\n" +" ans.m_row[i].w = 0.f;\n" +" }\n" +" return ans;\n" +"}\n" +"__inline\n" +"b3Float4 mtMul1(b3Mat3x3 a, b3Float4 b)\n" +"{\n" +" b3Float4 ans;\n" +" ans.x = b3Dot3F4( a.m_row[0], b );\n" +" ans.y = b3Dot3F4( a.m_row[1], b );\n" +" ans.z = b3Dot3F4( a.m_row[2], b );\n" +" ans.w = 0.f;\n" +" return ans;\n" +"}\n" +"__inline\n" +"b3Float4 mtMul3(b3Float4 a, b3Mat3x3 b)\n" +"{\n" +" b3Float4 colx = b3MakeFloat4(b.m_row[0].x, b.m_row[1].x, b.m_row[2].x, 0);\n" +" b3Float4 coly = b3MakeFloat4(b.m_row[0].y, b.m_row[1].y, b.m_row[2].y, 0);\n" +" b3Float4 colz = b3MakeFloat4(b.m_row[0].z, b.m_row[1].z, b.m_row[2].z, 0);\n" +" b3Float4 ans;\n" +" ans.x = b3Dot3F4( a, colx );\n" +" ans.y = b3Dot3F4( a, coly );\n" +" ans.z = b3Dot3F4( a, colz );\n" +" return ans;\n" +"}\n" +"#endif\n" +"#endif //B3_MAT3x3_H\n" +"typedef struct b3Aabb b3Aabb_t;\n" +"struct b3Aabb\n" +"{\n" +" union\n" +" {\n" +" float m_min[4];\n" +" b3Float4 m_minVec;\n" +" int m_minIndices[4];\n" +" };\n" +" union\n" +" {\n" +" float m_max[4];\n" +" b3Float4 m_maxVec;\n" +" int m_signedMaxIndices[4];\n" +" };\n" +"};\n" +"inline void b3TransformAabb2(b3Float4ConstArg localAabbMin,b3Float4ConstArg localAabbMax, float margin,\n" +" b3Float4ConstArg pos,\n" +" b3QuatConstArg orn,\n" +" b3Float4* aabbMinOut,b3Float4* aabbMaxOut)\n" +"{\n" +" b3Float4 localHalfExtents = 0.5f*(localAabbMax-localAabbMin);\n" +" localHalfExtents+=b3MakeFloat4(margin,margin,margin,0.f);\n" +" b3Float4 localCenter = 0.5f*(localAabbMax+localAabbMin);\n" +" b3Mat3x3 m;\n" +" m = b3QuatGetRotationMatrix(orn);\n" +" b3Mat3x3 abs_b = b3AbsoluteMat3x3(m);\n" +" b3Float4 center = b3TransformPoint(localCenter,pos,orn);\n" +" \n" +" b3Float4 extent = b3MakeFloat4(b3Dot3F4(localHalfExtents,b3GetRow(abs_b,0)),\n" +" b3Dot3F4(localHalfExtents,b3GetRow(abs_b,1)),\n" +" b3Dot3F4(localHalfExtents,b3GetRow(abs_b,2)),\n" +" 0.f);\n" +" *aabbMinOut = center-extent;\n" +" *aabbMaxOut = center+extent;\n" +"}\n" +"/// conservative test for overlap between two aabbs\n" +"inline bool b3TestAabbAgainstAabb(b3Float4ConstArg aabbMin1,b3Float4ConstArg aabbMax1,\n" +" b3Float4ConstArg aabbMin2, b3Float4ConstArg aabbMax2)\n" +"{\n" +" bool overlap = true;\n" +" overlap = (aabbMin1.x > aabbMax2.x || aabbMax1.x < aabbMin2.x) ? false : overlap;\n" +" overlap = (aabbMin1.z > aabbMax2.z || aabbMax1.z < aabbMin2.z) ? false : overlap;\n" +" overlap = (aabbMin1.y > aabbMax2.y || aabbMax1.y < aabbMin2.y) ? false : overlap;\n" +" return overlap;\n" +"}\n" +"#endif //B3_AABB_H\n" +"/*\n" +"Bullet Continuous Collision Detection and Physics Library\n" +"Copyright (c) 2003-2013 Erwin Coumans http://bulletphysics.org\n" +"This software is provided 'as-is', without any express or implied warranty.\n" +"In no event will the authors be held liable for any damages arising from the use of this software.\n" +"Permission is granted to anyone to use this software for any purpose,\n" +"including commercial applications, and to alter it and redistribute it freely,\n" +"subject to the following restrictions:\n" +"1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.\n" +"2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.\n" +"3. This notice may not be removed or altered from any source distribution.\n" +"*/\n" +"#ifndef B3_INT2_H\n" +"#define B3_INT2_H\n" +"#ifdef __cplusplus\n" +"#else\n" +"#define b3UnsignedInt2 uint2\n" +"#define b3Int2 int2\n" +"#define b3MakeInt2 (int2)\n" +"#endif //__cplusplus\n" +"#endif\n" +"typedef struct\n" +"{\n" +" float4 m_plane;\n" +" int m_indexOffset;\n" +" int m_numIndices;\n" +"} btGpuFace;\n" +"#define make_float4 (float4)\n" +"__inline\n" +"float4 cross3(float4 a, float4 b)\n" +"{\n" +" return cross(a,b);\n" +" \n" +"// float4 a1 = make_float4(a.xyz,0.f);\n" +"// float4 b1 = make_float4(b.xyz,0.f);\n" +"// return cross(a1,b1);\n" +"//float4 c = make_float4(a.y*b.z - a.z*b.y,a.z*b.x - a.x*b.z,a.x*b.y - a.y*b.x,0.f);\n" +" \n" +" // float4 c = make_float4(a.y*b.z - a.z*b.y,1.f,a.x*b.y - a.y*b.x,0.f);\n" +" \n" +" //return c;\n" +"}\n" +"__inline\n" +"float dot3F4(float4 a, float4 b)\n" +"{\n" +" float4 a1 = make_float4(a.xyz,0.f);\n" +" float4 b1 = make_float4(b.xyz,0.f);\n" +" return dot(a1, b1);\n" +"}\n" +"__inline\n" +"float4 fastNormalize4(float4 v)\n" +"{\n" +" v = make_float4(v.xyz,0.f);\n" +" return fast_normalize(v);\n" +"}\n" +"///////////////////////////////////////\n" +"// Quaternion\n" +"///////////////////////////////////////\n" +"typedef float4 Quaternion;\n" +"__inline\n" +"Quaternion qtMul(Quaternion a, Quaternion b);\n" +"__inline\n" +"Quaternion qtNormalize(Quaternion in);\n" +"__inline\n" +"float4 qtRotate(Quaternion q, float4 vec);\n" +"__inline\n" +"Quaternion qtInvert(Quaternion q);\n" +"__inline\n" +"Quaternion qtMul(Quaternion a, Quaternion b)\n" +"{\n" +" Quaternion ans;\n" +" ans = cross3( a, b );\n" +" ans += a.w*b+b.w*a;\n" +"// ans.w = a.w*b.w - (a.x*b.x+a.y*b.y+a.z*b.z);\n" +" ans.w = a.w*b.w - dot3F4(a, b);\n" +" return ans;\n" +"}\n" +"__inline\n" +"Quaternion qtNormalize(Quaternion in)\n" +"{\n" +" return fastNormalize4(in);\n" +"// in /= length( in );\n" +"// return in;\n" +"}\n" +"__inline\n" +"float4 qtRotate(Quaternion q, float4 vec)\n" +"{\n" +" Quaternion qInv = qtInvert( q );\n" +" float4 vcpy = vec;\n" +" vcpy.w = 0.f;\n" +" float4 out = qtMul(qtMul(q,vcpy),qInv);\n" +" return out;\n" +"}\n" +"__inline\n" +"Quaternion qtInvert(Quaternion q)\n" +"{\n" +" return (Quaternion)(-q.xyz, q.w);\n" +"}\n" +"__inline\n" +"float4 qtInvRotate(const Quaternion q, float4 vec)\n" +"{\n" +" return qtRotate( qtInvert( q ), vec );\n" +"}\n" +"__inline\n" +"float4 transform(const float4* p, const float4* translation, const Quaternion* orientation)\n" +"{\n" +" return qtRotate( *orientation, *p ) + (*translation);\n" +"}\n" +"__inline\n" +"float4 normalize3(const float4 a)\n" +"{\n" +" float4 n = make_float4(a.x, a.y, a.z, 0.f);\n" +" return fastNormalize4( n );\n" +"}\n" +"inline void projectLocal(const ConvexPolyhedronCL* hull, const float4 pos, const float4 orn, \n" +"const float4* dir, const float4* vertices, float* min, float* max)\n" +"{\n" +" min[0] = FLT_MAX;\n" +" max[0] = -FLT_MAX;\n" +" int numVerts = hull->m_numVertices;\n" +" const float4 localDir = qtInvRotate(orn,*dir);\n" +" float offset = dot(pos,*dir);\n" +" for(int i=0;i<numVerts;i++)\n" +" {\n" +" float dp = dot(vertices[hull->m_vertexOffset+i],localDir);\n" +" if(dp < min[0]) \n" +" min[0] = dp;\n" +" if(dp > max[0]) \n" +" max[0] = dp;\n" +" }\n" +" if(min[0]>max[0])\n" +" {\n" +" float tmp = min[0];\n" +" min[0] = max[0];\n" +" max[0] = tmp;\n" +" }\n" +" min[0] += offset;\n" +" max[0] += offset;\n" +"}\n" +"inline void project(__global const ConvexPolyhedronCL* hull, const float4 pos, const float4 orn, \n" +"const float4* dir, __global const float4* vertices, float* min, float* max)\n" +"{\n" +" min[0] = FLT_MAX;\n" +" max[0] = -FLT_MAX;\n" +" int numVerts = hull->m_numVertices;\n" +" const float4 localDir = qtInvRotate(orn,*dir);\n" +" float offset = dot(pos,*dir);\n" +" for(int i=0;i<numVerts;i++)\n" +" {\n" +" float dp = dot(vertices[hull->m_vertexOffset+i],localDir);\n" +" if(dp < min[0]) \n" +" min[0] = dp;\n" +" if(dp > max[0]) \n" +" max[0] = dp;\n" +" }\n" +" if(min[0]>max[0])\n" +" {\n" +" float tmp = min[0];\n" +" min[0] = max[0];\n" +" max[0] = tmp;\n" +" }\n" +" min[0] += offset;\n" +" max[0] += offset;\n" +"}\n" +"inline bool TestSepAxisLocalA(const ConvexPolyhedronCL* hullA, __global const ConvexPolyhedronCL* hullB, \n" +" const float4 posA,const float4 ornA,\n" +" const float4 posB,const float4 ornB,\n" +" float4* sep_axis, const float4* verticesA, __global const float4* verticesB,float* depth)\n" +"{\n" +" float Min0,Max0;\n" +" float Min1,Max1;\n" +" projectLocal(hullA,posA,ornA,sep_axis,verticesA, &Min0, &Max0);\n" +" project(hullB,posB,ornB, sep_axis,verticesB, &Min1, &Max1);\n" +" if(Max0<Min1 || Max1<Min0)\n" +" return false;\n" +" float d0 = Max0 - Min1;\n" +" float d1 = Max1 - Min0;\n" +" *depth = d0<d1 ? d0:d1;\n" +" return true;\n" +"}\n" +"inline bool IsAlmostZero(const float4 v)\n" +"{\n" +" if(fabs(v.x)>1e-6f || fabs(v.y)>1e-6f || fabs(v.z)>1e-6f)\n" +" return false;\n" +" return true;\n" +"}\n" +"bool findSeparatingAxisLocalA( const ConvexPolyhedronCL* hullA, __global const ConvexPolyhedronCL* hullB, \n" +" const float4 posA1,\n" +" const float4 ornA,\n" +" const float4 posB1,\n" +" const float4 ornB,\n" +" const float4 DeltaC2,\n" +" \n" +" const float4* verticesA, \n" +" const float4* uniqueEdgesA, \n" +" const btGpuFace* facesA,\n" +" const int* indicesA,\n" +" __global const float4* verticesB, \n" +" __global const float4* uniqueEdgesB, \n" +" __global const btGpuFace* facesB,\n" +" __global const int* indicesB,\n" +" float4* sep,\n" +" float* dmin)\n" +"{\n" +" \n" +" float4 posA = posA1;\n" +" posA.w = 0.f;\n" +" float4 posB = posB1;\n" +" posB.w = 0.f;\n" +" int curPlaneTests=0;\n" +" {\n" +" int numFacesA = hullA->m_numFaces;\n" +" // Test normals from hullA\n" +" for(int i=0;i<numFacesA;i++)\n" +" {\n" +" const float4 normal = facesA[hullA->m_faceOffset+i].m_plane;\n" +" float4 faceANormalWS = qtRotate(ornA,normal);\n" +" if (dot3F4(DeltaC2,faceANormalWS)<0)\n" +" faceANormalWS*=-1.f;\n" +" curPlaneTests++;\n" +" float d;\n" +" if(!TestSepAxisLocalA( hullA, hullB, posA,ornA,posB,ornB,&faceANormalWS, verticesA, verticesB,&d))\n" +" return false;\n" +" if(d<*dmin)\n" +" {\n" +" *dmin = d;\n" +" *sep = faceANormalWS;\n" +" }\n" +" }\n" +" }\n" +" if((dot3F4(-DeltaC2,*sep))>0.0f)\n" +" {\n" +" *sep = -(*sep);\n" +" }\n" +" return true;\n" +"}\n" +"bool findSeparatingAxisLocalB( __global const ConvexPolyhedronCL* hullA, const ConvexPolyhedronCL* hullB, \n" +" const float4 posA1,\n" +" const float4 ornA,\n" +" const float4 posB1,\n" +" const float4 ornB,\n" +" const float4 DeltaC2,\n" +" __global const float4* verticesA, \n" +" __global const float4* uniqueEdgesA, \n" +" __global const btGpuFace* facesA,\n" +" __global const int* indicesA,\n" +" const float4* verticesB,\n" +" const float4* uniqueEdgesB, \n" +" const btGpuFace* facesB,\n" +" const int* indicesB,\n" +" float4* sep,\n" +" float* dmin)\n" +"{\n" +" float4 posA = posA1;\n" +" posA.w = 0.f;\n" +" float4 posB = posB1;\n" +" posB.w = 0.f;\n" +" int curPlaneTests=0;\n" +" {\n" +" int numFacesA = hullA->m_numFaces;\n" +" // Test normals from hullA\n" +" for(int i=0;i<numFacesA;i++)\n" +" {\n" +" const float4 normal = facesA[hullA->m_faceOffset+i].m_plane;\n" +" float4 faceANormalWS = qtRotate(ornA,normal);\n" +" if (dot3F4(DeltaC2,faceANormalWS)<0)\n" +" faceANormalWS *= -1.f;\n" +" curPlaneTests++;\n" +" float d;\n" +" if(!TestSepAxisLocalA( hullB, hullA, posB,ornB,posA,ornA, &faceANormalWS, verticesB,verticesA, &d))\n" +" return false;\n" +" if(d<*dmin)\n" +" {\n" +" *dmin = d;\n" +" *sep = faceANormalWS;\n" +" }\n" +" }\n" +" }\n" +" if((dot3F4(-DeltaC2,*sep))>0.0f)\n" +" {\n" +" *sep = -(*sep);\n" +" }\n" +" return true;\n" +"}\n" +"bool findSeparatingAxisEdgeEdgeLocalA( const ConvexPolyhedronCL* hullA, __global const ConvexPolyhedronCL* hullB, \n" +" const float4 posA1,\n" +" const float4 ornA,\n" +" const float4 posB1,\n" +" const float4 ornB,\n" +" const float4 DeltaC2,\n" +" const float4* verticesA, \n" +" const float4* uniqueEdgesA, \n" +" const btGpuFace* facesA,\n" +" const int* indicesA,\n" +" __global const float4* verticesB, \n" +" __global const float4* uniqueEdgesB, \n" +" __global const btGpuFace* facesB,\n" +" __global const int* indicesB,\n" +" float4* sep,\n" +" float* dmin)\n" +"{\n" +" float4 posA = posA1;\n" +" posA.w = 0.f;\n" +" float4 posB = posB1;\n" +" posB.w = 0.f;\n" +" int curPlaneTests=0;\n" +" int curEdgeEdge = 0;\n" +" // Test edges\n" +" for(int e0=0;e0<hullA->m_numUniqueEdges;e0++)\n" +" {\n" +" const float4 edge0 = uniqueEdgesA[hullA->m_uniqueEdgesOffset+e0];\n" +" float4 edge0World = qtRotate(ornA,edge0);\n" +" for(int e1=0;e1<hullB->m_numUniqueEdges;e1++)\n" +" {\n" +" const float4 edge1 = uniqueEdgesB[hullB->m_uniqueEdgesOffset+e1];\n" +" float4 edge1World = qtRotate(ornB,edge1);\n" +" float4 crossje = cross3(edge0World,edge1World);\n" +" curEdgeEdge++;\n" +" if(!IsAlmostZero(crossje))\n" +" {\n" +" crossje = normalize3(crossje);\n" +" if (dot3F4(DeltaC2,crossje)<0)\n" +" crossje *= -1.f;\n" +" float dist;\n" +" bool result = true;\n" +" {\n" +" float Min0,Max0;\n" +" float Min1,Max1;\n" +" projectLocal(hullA,posA,ornA,&crossje,verticesA, &Min0, &Max0);\n" +" project(hullB,posB,ornB,&crossje,verticesB, &Min1, &Max1);\n" +" \n" +" if(Max0<Min1 || Max1<Min0)\n" +" result = false;\n" +" \n" +" float d0 = Max0 - Min1;\n" +" float d1 = Max1 - Min0;\n" +" dist = d0<d1 ? d0:d1;\n" +" result = true;\n" +" }\n" +" \n" +" if(dist<*dmin)\n" +" {\n" +" *dmin = dist;\n" +" *sep = crossje;\n" +" }\n" +" }\n" +" }\n" +" }\n" +" \n" +" if((dot3F4(-DeltaC2,*sep))>0.0f)\n" +" {\n" +" *sep = -(*sep);\n" +" }\n" +" return true;\n" +"}\n" +"inline bool TestSepAxis(__global const ConvexPolyhedronCL* hullA, __global const ConvexPolyhedronCL* hullB, \n" +" const float4 posA,const float4 ornA,\n" +" const float4 posB,const float4 ornB,\n" +" float4* sep_axis, __global const float4* vertices,float* depth)\n" +"{\n" +" float Min0,Max0;\n" +" float Min1,Max1;\n" +" project(hullA,posA,ornA,sep_axis,vertices, &Min0, &Max0);\n" +" project(hullB,posB,ornB, sep_axis,vertices, &Min1, &Max1);\n" +" if(Max0<Min1 || Max1<Min0)\n" +" return false;\n" +" float d0 = Max0 - Min1;\n" +" float d1 = Max1 - Min0;\n" +" *depth = d0<d1 ? d0:d1;\n" +" return true;\n" +"}\n" +"bool findSeparatingAxis( __global const ConvexPolyhedronCL* hullA, __global const ConvexPolyhedronCL* hullB, \n" +" const float4 posA1,\n" +" const float4 ornA,\n" +" const float4 posB1,\n" +" const float4 ornB,\n" +" const float4 DeltaC2,\n" +" __global const float4* vertices, \n" +" __global const float4* uniqueEdges, \n" +" __global const btGpuFace* faces,\n" +" __global const int* indices,\n" +" float4* sep,\n" +" float* dmin)\n" +"{\n" +" \n" +" float4 posA = posA1;\n" +" posA.w = 0.f;\n" +" float4 posB = posB1;\n" +" posB.w = 0.f;\n" +" \n" +" int curPlaneTests=0;\n" +" {\n" +" int numFacesA = hullA->m_numFaces;\n" +" // Test normals from hullA\n" +" for(int i=0;i<numFacesA;i++)\n" +" {\n" +" const float4 normal = faces[hullA->m_faceOffset+i].m_plane;\n" +" float4 faceANormalWS = qtRotate(ornA,normal);\n" +" \n" +" if (dot3F4(DeltaC2,faceANormalWS)<0)\n" +" faceANormalWS*=-1.f;\n" +" \n" +" curPlaneTests++;\n" +" \n" +" float d;\n" +" if(!TestSepAxis( hullA, hullB, posA,ornA,posB,ornB,&faceANormalWS, vertices,&d))\n" +" return false;\n" +" \n" +" if(d<*dmin)\n" +" {\n" +" *dmin = d;\n" +" *sep = faceANormalWS;\n" +" }\n" +" }\n" +" }\n" +" if((dot3F4(-DeltaC2,*sep))>0.0f)\n" +" {\n" +" *sep = -(*sep);\n" +" }\n" +" \n" +" return true;\n" +"}\n" +"bool findSeparatingAxisUnitSphere( __global const ConvexPolyhedronCL* hullA, __global const ConvexPolyhedronCL* hullB, \n" +" const float4 posA1,\n" +" const float4 ornA,\n" +" const float4 posB1,\n" +" const float4 ornB,\n" +" const float4 DeltaC2,\n" +" __global const float4* vertices,\n" +" __global const float4* unitSphereDirections,\n" +" int numUnitSphereDirections,\n" +" float4* sep,\n" +" float* dmin)\n" +"{\n" +" \n" +" float4 posA = posA1;\n" +" posA.w = 0.f;\n" +" float4 posB = posB1;\n" +" posB.w = 0.f;\n" +" int curPlaneTests=0;\n" +" int curEdgeEdge = 0;\n" +" // Test unit sphere directions\n" +" for (int i=0;i<numUnitSphereDirections;i++)\n" +" {\n" +" float4 crossje;\n" +" crossje = unitSphereDirections[i]; \n" +" if (dot3F4(DeltaC2,crossje)>0)\n" +" crossje *= -1.f;\n" +" {\n" +" float dist;\n" +" bool result = true;\n" +" float Min0,Max0;\n" +" float Min1,Max1;\n" +" project(hullA,posA,ornA,&crossje,vertices, &Min0, &Max0);\n" +" project(hullB,posB,ornB,&crossje,vertices, &Min1, &Max1);\n" +" \n" +" if(Max0<Min1 || Max1<Min0)\n" +" return false;\n" +" \n" +" float d0 = Max0 - Min1;\n" +" float d1 = Max1 - Min0;\n" +" dist = d0<d1 ? d0:d1;\n" +" result = true;\n" +" \n" +" if(dist<*dmin)\n" +" {\n" +" *dmin = dist;\n" +" *sep = crossje;\n" +" }\n" +" }\n" +" }\n" +" \n" +" if((dot3F4(-DeltaC2,*sep))>0.0f)\n" +" {\n" +" *sep = -(*sep);\n" +" }\n" +" return true;\n" +"}\n" +"bool findSeparatingAxisEdgeEdge( __global const ConvexPolyhedronCL* hullA, __global const ConvexPolyhedronCL* hullB, \n" +" const float4 posA1,\n" +" const float4 ornA,\n" +" const float4 posB1,\n" +" const float4 ornB,\n" +" const float4 DeltaC2,\n" +" __global const float4* vertices, \n" +" __global const float4* uniqueEdges, \n" +" __global const btGpuFace* faces,\n" +" __global const int* indices,\n" +" float4* sep,\n" +" float* dmin)\n" +"{\n" +" \n" +" float4 posA = posA1;\n" +" posA.w = 0.f;\n" +" float4 posB = posB1;\n" +" posB.w = 0.f;\n" +" int curPlaneTests=0;\n" +" int curEdgeEdge = 0;\n" +" // Test edges\n" +" for(int e0=0;e0<hullA->m_numUniqueEdges;e0++)\n" +" {\n" +" const float4 edge0 = uniqueEdges[hullA->m_uniqueEdgesOffset+e0];\n" +" float4 edge0World = qtRotate(ornA,edge0);\n" +" for(int e1=0;e1<hullB->m_numUniqueEdges;e1++)\n" +" {\n" +" const float4 edge1 = uniqueEdges[hullB->m_uniqueEdgesOffset+e1];\n" +" float4 edge1World = qtRotate(ornB,edge1);\n" +" float4 crossje = cross3(edge0World,edge1World);\n" +" curEdgeEdge++;\n" +" if(!IsAlmostZero(crossje))\n" +" {\n" +" crossje = normalize3(crossje);\n" +" if (dot3F4(DeltaC2,crossje)<0)\n" +" crossje*=-1.f;\n" +" \n" +" float dist;\n" +" bool result = true;\n" +" {\n" +" float Min0,Max0;\n" +" float Min1,Max1;\n" +" project(hullA,posA,ornA,&crossje,vertices, &Min0, &Max0);\n" +" project(hullB,posB,ornB,&crossje,vertices, &Min1, &Max1);\n" +" \n" +" if(Max0<Min1 || Max1<Min0)\n" +" return false;\n" +" \n" +" float d0 = Max0 - Min1;\n" +" float d1 = Max1 - Min0;\n" +" dist = d0<d1 ? d0:d1;\n" +" result = true;\n" +" }\n" +" \n" +" if(dist<*dmin)\n" +" {\n" +" *dmin = dist;\n" +" *sep = crossje;\n" +" }\n" +" }\n" +" }\n" +" }\n" +" \n" +" if((dot3F4(-DeltaC2,*sep))>0.0f)\n" +" {\n" +" *sep = -(*sep);\n" +" }\n" +" return true;\n" +"}\n" +"// work-in-progress\n" +"__kernel void processCompoundPairsKernel( __global const int4* gpuCompoundPairs,\n" +" __global const BodyData* rigidBodies, \n" +" __global const btCollidableGpu* collidables,\n" +" __global const ConvexPolyhedronCL* convexShapes, \n" +" __global const float4* vertices,\n" +" __global const float4* uniqueEdges,\n" +" __global const btGpuFace* faces,\n" +" __global const int* indices,\n" +" __global btAabbCL* aabbs,\n" +" __global const btGpuChildShape* gpuChildShapes,\n" +" __global volatile float4* gpuCompoundSepNormalsOut,\n" +" __global volatile int* gpuHasCompoundSepNormalsOut,\n" +" int numCompoundPairs\n" +" )\n" +"{\n" +" int i = get_global_id(0);\n" +" if (i<numCompoundPairs)\n" +" {\n" +" int bodyIndexA = gpuCompoundPairs[i].x;\n" +" int bodyIndexB = gpuCompoundPairs[i].y;\n" +" int childShapeIndexA = gpuCompoundPairs[i].z;\n" +" int childShapeIndexB = gpuCompoundPairs[i].w;\n" +" \n" +" int collidableIndexA = -1;\n" +" int collidableIndexB = -1;\n" +" \n" +" float4 ornA = rigidBodies[bodyIndexA].m_quat;\n" +" float4 posA = rigidBodies[bodyIndexA].m_pos;\n" +" \n" +" float4 ornB = rigidBodies[bodyIndexB].m_quat;\n" +" float4 posB = rigidBodies[bodyIndexB].m_pos;\n" +" \n" +" if (childShapeIndexA >= 0)\n" +" {\n" +" collidableIndexA = gpuChildShapes[childShapeIndexA].m_shapeIndex;\n" +" float4 childPosA = gpuChildShapes[childShapeIndexA].m_childPosition;\n" +" float4 childOrnA = gpuChildShapes[childShapeIndexA].m_childOrientation;\n" +" float4 newPosA = qtRotate(ornA,childPosA)+posA;\n" +" float4 newOrnA = qtMul(ornA,childOrnA);\n" +" posA = newPosA;\n" +" ornA = newOrnA;\n" +" } else\n" +" {\n" +" collidableIndexA = rigidBodies[bodyIndexA].m_collidableIdx;\n" +" }\n" +" \n" +" if (childShapeIndexB>=0)\n" +" {\n" +" collidableIndexB = gpuChildShapes[childShapeIndexB].m_shapeIndex;\n" +" float4 childPosB = gpuChildShapes[childShapeIndexB].m_childPosition;\n" +" float4 childOrnB = gpuChildShapes[childShapeIndexB].m_childOrientation;\n" +" float4 newPosB = transform(&childPosB,&posB,&ornB);\n" +" float4 newOrnB = qtMul(ornB,childOrnB);\n" +" posB = newPosB;\n" +" ornB = newOrnB;\n" +" } else\n" +" {\n" +" collidableIndexB = rigidBodies[bodyIndexB].m_collidableIdx; \n" +" }\n" +" \n" +" gpuHasCompoundSepNormalsOut[i] = 0;\n" +" \n" +" int shapeIndexA = collidables[collidableIndexA].m_shapeIndex;\n" +" int shapeIndexB = collidables[collidableIndexB].m_shapeIndex;\n" +" \n" +" int shapeTypeA = collidables[collidableIndexA].m_shapeType;\n" +" int shapeTypeB = collidables[collidableIndexB].m_shapeType;\n" +" \n" +" if ((shapeTypeA != SHAPE_CONVEX_HULL) || (shapeTypeB != SHAPE_CONVEX_HULL))\n" +" {\n" +" return;\n" +" }\n" +" int hasSeparatingAxis = 5;\n" +" \n" +" int numFacesA = convexShapes[shapeIndexA].m_numFaces;\n" +" float dmin = FLT_MAX;\n" +" posA.w = 0.f;\n" +" posB.w = 0.f;\n" +" float4 c0local = convexShapes[shapeIndexA].m_localCenter;\n" +" float4 c0 = transform(&c0local, &posA, &ornA);\n" +" float4 c1local = convexShapes[shapeIndexB].m_localCenter;\n" +" float4 c1 = transform(&c1local,&posB,&ornB);\n" +" const float4 DeltaC2 = c0 - c1;\n" +" float4 sepNormal = make_float4(1,0,0,0);\n" +" bool sepA = findSeparatingAxis( &convexShapes[shapeIndexA], &convexShapes[shapeIndexB],posA,ornA,posB,ornB,DeltaC2,vertices,uniqueEdges,faces,indices,&sepNormal,&dmin);\n" +" hasSeparatingAxis = 4;\n" +" if (!sepA)\n" +" {\n" +" hasSeparatingAxis = 0;\n" +" } else\n" +" {\n" +" bool sepB = findSeparatingAxis( &convexShapes[shapeIndexB],&convexShapes[shapeIndexA],posB,ornB,posA,ornA,DeltaC2,vertices,uniqueEdges,faces,indices,&sepNormal,&dmin);\n" +" if (!sepB)\n" +" {\n" +" hasSeparatingAxis = 0;\n" +" } else//(!sepB)\n" +" {\n" +" bool sepEE = findSeparatingAxisEdgeEdge( &convexShapes[shapeIndexA], &convexShapes[shapeIndexB],posA,ornA,posB,ornB,DeltaC2,vertices,uniqueEdges,faces,indices,&sepNormal,&dmin);\n" +" if (sepEE)\n" +" {\n" +" gpuCompoundSepNormalsOut[i] = sepNormal;//fastNormalize4(sepNormal);\n" +" gpuHasCompoundSepNormalsOut[i] = 1;\n" +" }//sepEE\n" +" }//(!sepB)\n" +" }//(!sepA)\n" +" \n" +" \n" +" }\n" +" \n" +"}\n" +"inline b3Float4 MyUnQuantize(const unsigned short* vecIn, b3Float4 quantization, b3Float4 bvhAabbMin)\n" +"{\n" +" b3Float4 vecOut;\n" +" vecOut = b3MakeFloat4(\n" +" (float)(vecIn[0]) / (quantization.x),\n" +" (float)(vecIn[1]) / (quantization.y),\n" +" (float)(vecIn[2]) / (quantization.z),\n" +" 0.f);\n" +" vecOut += bvhAabbMin;\n" +" return vecOut;\n" +"}\n" +"inline b3Float4 MyUnQuantizeGlobal(__global const unsigned short* vecIn, b3Float4 quantization, b3Float4 bvhAabbMin)\n" +"{\n" +" b3Float4 vecOut;\n" +" vecOut = b3MakeFloat4(\n" +" (float)(vecIn[0]) / (quantization.x),\n" +" (float)(vecIn[1]) / (quantization.y),\n" +" (float)(vecIn[2]) / (quantization.z),\n" +" 0.f);\n" +" vecOut += bvhAabbMin;\n" +" return vecOut;\n" +"}\n" +"// work-in-progress\n" +"__kernel void findCompoundPairsKernel( __global const int4* pairs, \n" +" __global const BodyData* rigidBodies, \n" +" __global const btCollidableGpu* collidables,\n" +" __global const ConvexPolyhedronCL* convexShapes, \n" +" __global const float4* vertices,\n" +" __global const float4* uniqueEdges,\n" +" __global const btGpuFace* faces,\n" +" __global const int* indices,\n" +" __global b3Aabb_t* aabbLocalSpace,\n" +" __global const btGpuChildShape* gpuChildShapes,\n" +" __global volatile int4* gpuCompoundPairsOut,\n" +" __global volatile int* numCompoundPairsOut,\n" +" __global const b3BvhSubtreeInfo* subtrees,\n" +" __global const b3QuantizedBvhNode* quantizedNodes,\n" +" __global const b3BvhInfo* bvhInfos,\n" +" int numPairs,\n" +" int maxNumCompoundPairsCapacity\n" +" )\n" +"{\n" +" int i = get_global_id(0);\n" +" if (i<numPairs)\n" +" {\n" +" int bodyIndexA = pairs[i].x;\n" +" int bodyIndexB = pairs[i].y;\n" +" int collidableIndexA = rigidBodies[bodyIndexA].m_collidableIdx;\n" +" int collidableIndexB = rigidBodies[bodyIndexB].m_collidableIdx;\n" +" int shapeIndexA = collidables[collidableIndexA].m_shapeIndex;\n" +" int shapeIndexB = collidables[collidableIndexB].m_shapeIndex;\n" +" //once the broadphase avoids static-static pairs, we can remove this test\n" +" if ((rigidBodies[bodyIndexA].m_invMass==0) &&(rigidBodies[bodyIndexB].m_invMass==0))\n" +" {\n" +" return;\n" +" }\n" +" if ((collidables[collidableIndexA].m_shapeType==SHAPE_COMPOUND_OF_CONVEX_HULLS) &&(collidables[collidableIndexB].m_shapeType==SHAPE_COMPOUND_OF_CONVEX_HULLS))\n" +" {\n" +" int bvhA = collidables[collidableIndexA].m_compoundBvhIndex;\n" +" int bvhB = collidables[collidableIndexB].m_compoundBvhIndex;\n" +" int numSubTreesA = bvhInfos[bvhA].m_numSubTrees;\n" +" int subTreesOffsetA = bvhInfos[bvhA].m_subTreeOffset;\n" +" int subTreesOffsetB = bvhInfos[bvhB].m_subTreeOffset;\n" +" int numSubTreesB = bvhInfos[bvhB].m_numSubTrees;\n" +" \n" +" float4 posA = rigidBodies[bodyIndexA].m_pos;\n" +" b3Quat ornA = rigidBodies[bodyIndexA].m_quat;\n" +" b3Quat ornB = rigidBodies[bodyIndexB].m_quat;\n" +" float4 posB = rigidBodies[bodyIndexB].m_pos;\n" +" \n" +" for (int p=0;p<numSubTreesA;p++)\n" +" {\n" +" b3BvhSubtreeInfo subtreeA = subtrees[subTreesOffsetA+p];\n" +" //bvhInfos[bvhA].m_quantization\n" +" b3Float4 treeAminLocal = MyUnQuantize(subtreeA.m_quantizedAabbMin,bvhInfos[bvhA].m_quantization,bvhInfos[bvhA].m_aabbMin);\n" +" b3Float4 treeAmaxLocal = MyUnQuantize(subtreeA.m_quantizedAabbMax,bvhInfos[bvhA].m_quantization,bvhInfos[bvhA].m_aabbMin);\n" +" b3Float4 aabbAMinOut,aabbAMaxOut;\n" +" float margin=0.f;\n" +" b3TransformAabb2(treeAminLocal,treeAmaxLocal, margin,posA,ornA,&aabbAMinOut,&aabbAMaxOut);\n" +" \n" +" for (int q=0;q<numSubTreesB;q++)\n" +" {\n" +" b3BvhSubtreeInfo subtreeB = subtrees[subTreesOffsetB+q];\n" +" b3Float4 treeBminLocal = MyUnQuantize(subtreeB.m_quantizedAabbMin,bvhInfos[bvhB].m_quantization,bvhInfos[bvhB].m_aabbMin);\n" +" b3Float4 treeBmaxLocal = MyUnQuantize(subtreeB.m_quantizedAabbMax,bvhInfos[bvhB].m_quantization,bvhInfos[bvhB].m_aabbMin);\n" +" b3Float4 aabbBMinOut,aabbBMaxOut;\n" +" float margin=0.f;\n" +" b3TransformAabb2(treeBminLocal,treeBmaxLocal, margin,posB,ornB,&aabbBMinOut,&aabbBMaxOut);\n" +" \n" +" \n" +" bool aabbOverlap = b3TestAabbAgainstAabb(aabbAMinOut,aabbAMaxOut,aabbBMinOut,aabbBMaxOut);\n" +" if (aabbOverlap)\n" +" {\n" +" \n" +" int startNodeIndexA = subtreeA.m_rootNodeIndex+bvhInfos[bvhA].m_nodeOffset;\n" +" int endNodeIndexA = startNodeIndexA+subtreeA.m_subtreeSize;\n" +" int startNodeIndexB = subtreeB.m_rootNodeIndex+bvhInfos[bvhB].m_nodeOffset;\n" +" int endNodeIndexB = startNodeIndexB+subtreeB.m_subtreeSize;\n" +" b3Int2 nodeStack[B3_MAX_STACK_DEPTH];\n" +" b3Int2 node0;\n" +" node0.x = startNodeIndexA;\n" +" node0.y = startNodeIndexB;\n" +" int maxStackDepth = B3_MAX_STACK_DEPTH;\n" +" int depth=0;\n" +" nodeStack[depth++]=node0;\n" +" do\n" +" {\n" +" b3Int2 node = nodeStack[--depth];\n" +" b3Float4 aMinLocal = MyUnQuantizeGlobal(quantizedNodes[node.x].m_quantizedAabbMin,bvhInfos[bvhA].m_quantization,bvhInfos[bvhA].m_aabbMin);\n" +" b3Float4 aMaxLocal = MyUnQuantizeGlobal(quantizedNodes[node.x].m_quantizedAabbMax,bvhInfos[bvhA].m_quantization,bvhInfos[bvhA].m_aabbMin);\n" +" b3Float4 bMinLocal = MyUnQuantizeGlobal(quantizedNodes[node.y].m_quantizedAabbMin,bvhInfos[bvhB].m_quantization,bvhInfos[bvhB].m_aabbMin);\n" +" b3Float4 bMaxLocal = MyUnQuantizeGlobal(quantizedNodes[node.y].m_quantizedAabbMax,bvhInfos[bvhB].m_quantization,bvhInfos[bvhB].m_aabbMin);\n" +" float margin=0.f;\n" +" b3Float4 aabbAMinOut,aabbAMaxOut;\n" +" b3TransformAabb2(aMinLocal,aMaxLocal, margin,posA,ornA,&aabbAMinOut,&aabbAMaxOut);\n" +" b3Float4 aabbBMinOut,aabbBMaxOut;\n" +" b3TransformAabb2(bMinLocal,bMaxLocal, margin,posB,ornB,&aabbBMinOut,&aabbBMaxOut);\n" +" \n" +" bool nodeOverlap = b3TestAabbAgainstAabb(aabbAMinOut,aabbAMaxOut,aabbBMinOut,aabbBMaxOut);\n" +" if (nodeOverlap)\n" +" {\n" +" bool isLeafA = isLeafNodeGlobal(&quantizedNodes[node.x]);\n" +" bool isLeafB = isLeafNodeGlobal(&quantizedNodes[node.y]);\n" +" bool isInternalA = !isLeafA;\n" +" bool isInternalB = !isLeafB;\n" +" //fail, even though it might hit two leaf nodes\n" +" if (depth+4>maxStackDepth && !(isLeafA && isLeafB))\n" +" {\n" +" //printf(\"Error: traversal exceeded maxStackDepth\");\n" +" continue;\n" +" }\n" +" if(isInternalA)\n" +" {\n" +" int nodeAleftChild = node.x+1;\n" +" bool isNodeALeftChildLeaf = isLeafNodeGlobal(&quantizedNodes[node.x+1]);\n" +" int nodeArightChild = isNodeALeftChildLeaf? node.x+2 : node.x+1 + getEscapeIndexGlobal(&quantizedNodes[node.x+1]);\n" +" if(isInternalB)\n" +" { \n" +" int nodeBleftChild = node.y+1;\n" +" bool isNodeBLeftChildLeaf = isLeafNodeGlobal(&quantizedNodes[node.y+1]);\n" +" int nodeBrightChild = isNodeBLeftChildLeaf? node.y+2 : node.y+1 + getEscapeIndexGlobal(&quantizedNodes[node.y+1]);\n" +" nodeStack[depth++] = b3MakeInt2(nodeAleftChild, nodeBleftChild);\n" +" nodeStack[depth++] = b3MakeInt2(nodeArightChild, nodeBleftChild);\n" +" nodeStack[depth++] = b3MakeInt2(nodeAleftChild, nodeBrightChild);\n" +" nodeStack[depth++] = b3MakeInt2(nodeArightChild, nodeBrightChild);\n" +" }\n" +" else\n" +" {\n" +" nodeStack[depth++] = b3MakeInt2(nodeAleftChild,node.y);\n" +" nodeStack[depth++] = b3MakeInt2(nodeArightChild,node.y);\n" +" }\n" +" }\n" +" else\n" +" {\n" +" if(isInternalB)\n" +" {\n" +" int nodeBleftChild = node.y+1;\n" +" bool isNodeBLeftChildLeaf = isLeafNodeGlobal(&quantizedNodes[node.y+1]);\n" +" int nodeBrightChild = isNodeBLeftChildLeaf? node.y+2 : node.y+1 + getEscapeIndexGlobal(&quantizedNodes[node.y+1]);\n" +" nodeStack[depth++] = b3MakeInt2(node.x,nodeBleftChild);\n" +" nodeStack[depth++] = b3MakeInt2(node.x,nodeBrightChild);\n" +" }\n" +" else\n" +" {\n" +" int compoundPairIdx = atomic_inc(numCompoundPairsOut);\n" +" if (compoundPairIdx<maxNumCompoundPairsCapacity)\n" +" {\n" +" int childShapeIndexA = getTriangleIndexGlobal(&quantizedNodes[node.x]);\n" +" int childShapeIndexB = getTriangleIndexGlobal(&quantizedNodes[node.y]);\n" +" gpuCompoundPairsOut[compoundPairIdx] = (int4)(bodyIndexA,bodyIndexB,childShapeIndexA,childShapeIndexB);\n" +" }\n" +" }\n" +" }\n" +" }\n" +" } while (depth);\n" +" }\n" +" }\n" +" }\n" +" \n" +" return;\n" +" }\n" +" if ((collidables[collidableIndexA].m_shapeType==SHAPE_COMPOUND_OF_CONVEX_HULLS) ||(collidables[collidableIndexB].m_shapeType==SHAPE_COMPOUND_OF_CONVEX_HULLS))\n" +" {\n" +" if (collidables[collidableIndexA].m_shapeType==SHAPE_COMPOUND_OF_CONVEX_HULLS) \n" +" {\n" +" int numChildrenA = collidables[collidableIndexA].m_numChildShapes;\n" +" for (int c=0;c<numChildrenA;c++)\n" +" {\n" +" int childShapeIndexA = collidables[collidableIndexA].m_shapeIndex+c;\n" +" int childColIndexA = gpuChildShapes[childShapeIndexA].m_shapeIndex;\n" +" float4 posA = rigidBodies[bodyIndexA].m_pos;\n" +" float4 ornA = rigidBodies[bodyIndexA].m_quat;\n" +" float4 childPosA = gpuChildShapes[childShapeIndexA].m_childPosition;\n" +" float4 childOrnA = gpuChildShapes[childShapeIndexA].m_childOrientation;\n" +" float4 newPosA = qtRotate(ornA,childPosA)+posA;\n" +" float4 newOrnA = qtMul(ornA,childOrnA);\n" +" int shapeIndexA = collidables[childColIndexA].m_shapeIndex;\n" +" b3Aabb_t aabbAlocal = aabbLocalSpace[shapeIndexA];\n" +" float margin = 0.f;\n" +" \n" +" b3Float4 aabbAMinWS;\n" +" b3Float4 aabbAMaxWS;\n" +" \n" +" b3TransformAabb2(aabbAlocal.m_minVec,aabbAlocal.m_maxVec,margin,\n" +" newPosA,\n" +" newOrnA,\n" +" &aabbAMinWS,&aabbAMaxWS);\n" +" \n" +" \n" +" if (collidables[collidableIndexB].m_shapeType==SHAPE_COMPOUND_OF_CONVEX_HULLS)\n" +" {\n" +" int numChildrenB = collidables[collidableIndexB].m_numChildShapes;\n" +" for (int b=0;b<numChildrenB;b++)\n" +" {\n" +" int childShapeIndexB = collidables[collidableIndexB].m_shapeIndex+b;\n" +" int childColIndexB = gpuChildShapes[childShapeIndexB].m_shapeIndex;\n" +" float4 ornB = rigidBodies[bodyIndexB].m_quat;\n" +" float4 posB = rigidBodies[bodyIndexB].m_pos;\n" +" float4 childPosB = gpuChildShapes[childShapeIndexB].m_childPosition;\n" +" float4 childOrnB = gpuChildShapes[childShapeIndexB].m_childOrientation;\n" +" float4 newPosB = transform(&childPosB,&posB,&ornB);\n" +" float4 newOrnB = qtMul(ornB,childOrnB);\n" +" int shapeIndexB = collidables[childColIndexB].m_shapeIndex;\n" +" b3Aabb_t aabbBlocal = aabbLocalSpace[shapeIndexB];\n" +" \n" +" b3Float4 aabbBMinWS;\n" +" b3Float4 aabbBMaxWS;\n" +" \n" +" b3TransformAabb2(aabbBlocal.m_minVec,aabbBlocal.m_maxVec,margin,\n" +" newPosB,\n" +" newOrnB,\n" +" &aabbBMinWS,&aabbBMaxWS);\n" +" \n" +" \n" +" \n" +" bool aabbOverlap = b3TestAabbAgainstAabb(aabbAMinWS,aabbAMaxWS,aabbBMinWS,aabbBMaxWS);\n" +" if (aabbOverlap)\n" +" {\n" +" int numFacesA = convexShapes[shapeIndexA].m_numFaces;\n" +" float dmin = FLT_MAX;\n" +" float4 posA = newPosA;\n" +" posA.w = 0.f;\n" +" float4 posB = newPosB;\n" +" posB.w = 0.f;\n" +" float4 c0local = convexShapes[shapeIndexA].m_localCenter;\n" +" float4 ornA = newOrnA;\n" +" float4 c0 = transform(&c0local, &posA, &ornA);\n" +" float4 c1local = convexShapes[shapeIndexB].m_localCenter;\n" +" float4 ornB =newOrnB;\n" +" float4 c1 = transform(&c1local,&posB,&ornB);\n" +" const float4 DeltaC2 = c0 - c1;\n" +" {//\n" +" int compoundPairIdx = atomic_inc(numCompoundPairsOut);\n" +" if (compoundPairIdx<maxNumCompoundPairsCapacity)\n" +" {\n" +" gpuCompoundPairsOut[compoundPairIdx] = (int4)(bodyIndexA,bodyIndexB,childShapeIndexA,childShapeIndexB);\n" +" }\n" +" }//\n" +" }//fi(1)\n" +" } //for (int b=0\n" +" }//if (collidables[collidableIndexB].\n" +" else//if (collidables[collidableIndexB].m_shapeType==SHAPE_COMPOUND_OF_CONVEX_HULLS)\n" +" {\n" +" if (1)\n" +" {\n" +" int numFacesA = convexShapes[shapeIndexA].m_numFaces;\n" +" float dmin = FLT_MAX;\n" +" float4 posA = newPosA;\n" +" posA.w = 0.f;\n" +" float4 posB = rigidBodies[bodyIndexB].m_pos;\n" +" posB.w = 0.f;\n" +" float4 c0local = convexShapes[shapeIndexA].m_localCenter;\n" +" float4 ornA = newOrnA;\n" +" float4 c0 = transform(&c0local, &posA, &ornA);\n" +" float4 c1local = convexShapes[shapeIndexB].m_localCenter;\n" +" float4 ornB = rigidBodies[bodyIndexB].m_quat;\n" +" float4 c1 = transform(&c1local,&posB,&ornB);\n" +" const float4 DeltaC2 = c0 - c1;\n" +" {\n" +" int compoundPairIdx = atomic_inc(numCompoundPairsOut);\n" +" if (compoundPairIdx<maxNumCompoundPairsCapacity)\n" +" {\n" +" gpuCompoundPairsOut[compoundPairIdx] = (int4)(bodyIndexA,bodyIndexB,childShapeIndexA,-1);\n" +" }//if (compoundPairIdx<maxNumCompoundPairsCapacity)\n" +" }//\n" +" }//fi (1)\n" +" }//if (collidables[collidableIndexB].m_shapeType==SHAPE_COMPOUND_OF_CONVEX_HULLS)\n" +" }//for (int b=0;b<numChildrenB;b++) \n" +" return;\n" +" }//if (collidables[collidableIndexB].m_shapeType==SHAPE_COMPOUND_OF_CONVEX_HULLS)\n" +" if ((collidables[collidableIndexA].m_shapeType!=SHAPE_CONCAVE_TRIMESH) \n" +" && (collidables[collidableIndexB].m_shapeType==SHAPE_COMPOUND_OF_CONVEX_HULLS))\n" +" {\n" +" int numChildrenB = collidables[collidableIndexB].m_numChildShapes;\n" +" for (int b=0;b<numChildrenB;b++)\n" +" {\n" +" int childShapeIndexB = collidables[collidableIndexB].m_shapeIndex+b;\n" +" int childColIndexB = gpuChildShapes[childShapeIndexB].m_shapeIndex;\n" +" float4 ornB = rigidBodies[bodyIndexB].m_quat;\n" +" float4 posB = rigidBodies[bodyIndexB].m_pos;\n" +" float4 childPosB = gpuChildShapes[childShapeIndexB].m_childPosition;\n" +" float4 childOrnB = gpuChildShapes[childShapeIndexB].m_childOrientation;\n" +" float4 newPosB = qtRotate(ornB,childPosB)+posB;\n" +" float4 newOrnB = qtMul(ornB,childOrnB);\n" +" int shapeIndexB = collidables[childColIndexB].m_shapeIndex;\n" +" //////////////////////////////////////\n" +" if (1)\n" +" {\n" +" int numFacesA = convexShapes[shapeIndexA].m_numFaces;\n" +" float dmin = FLT_MAX;\n" +" float4 posA = rigidBodies[bodyIndexA].m_pos;\n" +" posA.w = 0.f;\n" +" float4 posB = newPosB;\n" +" posB.w = 0.f;\n" +" float4 c0local = convexShapes[shapeIndexA].m_localCenter;\n" +" float4 ornA = rigidBodies[bodyIndexA].m_quat;\n" +" float4 c0 = transform(&c0local, &posA, &ornA);\n" +" float4 c1local = convexShapes[shapeIndexB].m_localCenter;\n" +" float4 ornB =newOrnB;\n" +" float4 c1 = transform(&c1local,&posB,&ornB);\n" +" const float4 DeltaC2 = c0 - c1;\n" +" {//\n" +" int compoundPairIdx = atomic_inc(numCompoundPairsOut);\n" +" if (compoundPairIdx<maxNumCompoundPairsCapacity)\n" +" {\n" +" gpuCompoundPairsOut[compoundPairIdx] = (int4)(bodyIndexA,bodyIndexB,-1,childShapeIndexB);\n" +" }//fi (compoundPairIdx<maxNumCompoundPairsCapacity)\n" +" }//\n" +" }//fi (1) \n" +" }//for (int b=0;b<numChildrenB;b++)\n" +" return;\n" +" }//if (collidables[collidableIndexB].m_shapeType==SHAPE_COMPOUND_OF_CONVEX_HULLS)\n" +" return;\n" +" }//fi ((collidables[collidableIndexA].m_shapeType==SHAPE_COMPOUND_OF_CONVEX_HULLS) ||(collidables[collidableIndexB].m_shapeType==SHAPE_COMPOUND_OF_CONVEX_HULLS))\n" +" }//i<numPairs\n" +"}\n" +"// work-in-progress\n" +"__kernel void findSeparatingAxisKernel( __global const int4* pairs, \n" +" __global const BodyData* rigidBodies, \n" +" __global const btCollidableGpu* collidables,\n" +" __global const ConvexPolyhedronCL* convexShapes, \n" +" __global const float4* vertices,\n" +" __global const float4* uniqueEdges,\n" +" __global const btGpuFace* faces,\n" +" __global const int* indices,\n" +" __global btAabbCL* aabbs,\n" +" __global volatile float4* separatingNormals,\n" +" __global volatile int* hasSeparatingAxis,\n" +" int numPairs\n" +" )\n" +"{\n" +" int i = get_global_id(0);\n" +" \n" +" if (i<numPairs)\n" +" {\n" +" \n" +" int bodyIndexA = pairs[i].x;\n" +" int bodyIndexB = pairs[i].y;\n" +" int collidableIndexA = rigidBodies[bodyIndexA].m_collidableIdx;\n" +" int collidableIndexB = rigidBodies[bodyIndexB].m_collidableIdx;\n" +" \n" +" int shapeIndexA = collidables[collidableIndexA].m_shapeIndex;\n" +" int shapeIndexB = collidables[collidableIndexB].m_shapeIndex;\n" +" \n" +" \n" +" //once the broadphase avoids static-static pairs, we can remove this test\n" +" if ((rigidBodies[bodyIndexA].m_invMass==0) &&(rigidBodies[bodyIndexB].m_invMass==0))\n" +" {\n" +" hasSeparatingAxis[i] = 0;\n" +" return;\n" +" }\n" +" \n" +" if ((collidables[collidableIndexA].m_shapeType!=SHAPE_CONVEX_HULL) ||(collidables[collidableIndexB].m_shapeType!=SHAPE_CONVEX_HULL))\n" +" {\n" +" hasSeparatingAxis[i] = 0;\n" +" return;\n" +" }\n" +" \n" +" if ((collidables[collidableIndexA].m_shapeType==SHAPE_CONCAVE_TRIMESH))\n" +" {\n" +" hasSeparatingAxis[i] = 0;\n" +" return;\n" +" }\n" +" int numFacesA = convexShapes[shapeIndexA].m_numFaces;\n" +" float dmin = FLT_MAX;\n" +" float4 posA = rigidBodies[bodyIndexA].m_pos;\n" +" posA.w = 0.f;\n" +" float4 posB = rigidBodies[bodyIndexB].m_pos;\n" +" posB.w = 0.f;\n" +" float4 c0local = convexShapes[shapeIndexA].m_localCenter;\n" +" float4 ornA = rigidBodies[bodyIndexA].m_quat;\n" +" float4 c0 = transform(&c0local, &posA, &ornA);\n" +" float4 c1local = convexShapes[shapeIndexB].m_localCenter;\n" +" float4 ornB =rigidBodies[bodyIndexB].m_quat;\n" +" float4 c1 = transform(&c1local,&posB,&ornB);\n" +" const float4 DeltaC2 = c0 - c1;\n" +" float4 sepNormal;\n" +" \n" +" bool sepA = findSeparatingAxis( &convexShapes[shapeIndexA], &convexShapes[shapeIndexB],posA,ornA,\n" +" posB,ornB,\n" +" DeltaC2,\n" +" vertices,uniqueEdges,faces,\n" +" indices,&sepNormal,&dmin);\n" +" hasSeparatingAxis[i] = 4;\n" +" if (!sepA)\n" +" {\n" +" hasSeparatingAxis[i] = 0;\n" +" } else\n" +" {\n" +" bool sepB = findSeparatingAxis( &convexShapes[shapeIndexB],&convexShapes[shapeIndexA],posB,ornB,\n" +" posA,ornA,\n" +" DeltaC2,\n" +" vertices,uniqueEdges,faces,\n" +" indices,&sepNormal,&dmin);\n" +" if (!sepB)\n" +" {\n" +" hasSeparatingAxis[i] = 0;\n" +" } else\n" +" {\n" +" bool sepEE = findSeparatingAxisEdgeEdge( &convexShapes[shapeIndexA], &convexShapes[shapeIndexB],posA,ornA,\n" +" posB,ornB,\n" +" DeltaC2,\n" +" vertices,uniqueEdges,faces,\n" +" indices,&sepNormal,&dmin);\n" +" if (!sepEE)\n" +" {\n" +" hasSeparatingAxis[i] = 0;\n" +" } else\n" +" {\n" +" hasSeparatingAxis[i] = 1;\n" +" separatingNormals[i] = sepNormal;\n" +" }\n" +" }\n" +" }\n" +" \n" +" }\n" +"}\n" +"__kernel void findSeparatingAxisVertexFaceKernel( __global const int4* pairs, \n" +" __global const BodyData* rigidBodies, \n" +" __global const btCollidableGpu* collidables,\n" +" __global const ConvexPolyhedronCL* convexShapes, \n" +" __global const float4* vertices,\n" +" __global const float4* uniqueEdges,\n" +" __global const btGpuFace* faces,\n" +" __global const int* indices,\n" +" __global btAabbCL* aabbs,\n" +" __global volatile float4* separatingNormals,\n" +" __global volatile int* hasSeparatingAxis,\n" +" __global float* dmins,\n" +" int numPairs\n" +" )\n" +"{\n" +" int i = get_global_id(0);\n" +" \n" +" if (i<numPairs)\n" +" {\n" +" \n" +" int bodyIndexA = pairs[i].x;\n" +" int bodyIndexB = pairs[i].y;\n" +" int collidableIndexA = rigidBodies[bodyIndexA].m_collidableIdx;\n" +" int collidableIndexB = rigidBodies[bodyIndexB].m_collidableIdx;\n" +" \n" +" int shapeIndexA = collidables[collidableIndexA].m_shapeIndex;\n" +" int shapeIndexB = collidables[collidableIndexB].m_shapeIndex;\n" +" \n" +" hasSeparatingAxis[i] = 0; \n" +" \n" +" //once the broadphase avoids static-static pairs, we can remove this test\n" +" if ((rigidBodies[bodyIndexA].m_invMass==0) &&(rigidBodies[bodyIndexB].m_invMass==0))\n" +" {\n" +" return;\n" +" }\n" +" \n" +" if ((collidables[collidableIndexA].m_shapeType!=SHAPE_CONVEX_HULL) ||(collidables[collidableIndexB].m_shapeType!=SHAPE_CONVEX_HULL))\n" +" {\n" +" return;\n" +" }\n" +" \n" +" int numFacesA = convexShapes[shapeIndexA].m_numFaces;\n" +" float dmin = FLT_MAX;\n" +" dmins[i] = dmin;\n" +" \n" +" float4 posA = rigidBodies[bodyIndexA].m_pos;\n" +" posA.w = 0.f;\n" +" float4 posB = rigidBodies[bodyIndexB].m_pos;\n" +" posB.w = 0.f;\n" +" float4 c0local = convexShapes[shapeIndexA].m_localCenter;\n" +" float4 ornA = rigidBodies[bodyIndexA].m_quat;\n" +" float4 c0 = transform(&c0local, &posA, &ornA);\n" +" float4 c1local = convexShapes[shapeIndexB].m_localCenter;\n" +" float4 ornB =rigidBodies[bodyIndexB].m_quat;\n" +" float4 c1 = transform(&c1local,&posB,&ornB);\n" +" const float4 DeltaC2 = c0 - c1;\n" +" float4 sepNormal;\n" +" \n" +" bool sepA = findSeparatingAxis( &convexShapes[shapeIndexA], &convexShapes[shapeIndexB],posA,ornA,\n" +" posB,ornB,\n" +" DeltaC2,\n" +" vertices,uniqueEdges,faces,\n" +" indices,&sepNormal,&dmin);\n" +" hasSeparatingAxis[i] = 4;\n" +" if (!sepA)\n" +" {\n" +" hasSeparatingAxis[i] = 0;\n" +" } else\n" +" {\n" +" bool sepB = findSeparatingAxis( &convexShapes[shapeIndexB],&convexShapes[shapeIndexA],posB,ornB,\n" +" posA,ornA,\n" +" DeltaC2,\n" +" vertices,uniqueEdges,faces,\n" +" indices,&sepNormal,&dmin);\n" +" if (sepB)\n" +" {\n" +" dmins[i] = dmin;\n" +" hasSeparatingAxis[i] = 1;\n" +" separatingNormals[i] = sepNormal;\n" +" }\n" +" }\n" +" \n" +" }\n" +"}\n" +"__kernel void findSeparatingAxisEdgeEdgeKernel( __global const int4* pairs, \n" +" __global const BodyData* rigidBodies, \n" +" __global const btCollidableGpu* collidables,\n" +" __global const ConvexPolyhedronCL* convexShapes, \n" +" __global const float4* vertices,\n" +" __global const float4* uniqueEdges,\n" +" __global const btGpuFace* faces,\n" +" __global const int* indices,\n" +" __global btAabbCL* aabbs,\n" +" __global float4* separatingNormals,\n" +" __global int* hasSeparatingAxis,\n" +" __global float* dmins,\n" +" __global const float4* unitSphereDirections,\n" +" int numUnitSphereDirections,\n" +" int numPairs\n" +" )\n" +"{\n" +" int i = get_global_id(0);\n" +" \n" +" if (i<numPairs)\n" +" {\n" +" if (hasSeparatingAxis[i])\n" +" {\n" +" \n" +" int bodyIndexA = pairs[i].x;\n" +" int bodyIndexB = pairs[i].y;\n" +" \n" +" int collidableIndexA = rigidBodies[bodyIndexA].m_collidableIdx;\n" +" int collidableIndexB = rigidBodies[bodyIndexB].m_collidableIdx;\n" +" \n" +" int shapeIndexA = collidables[collidableIndexA].m_shapeIndex;\n" +" int shapeIndexB = collidables[collidableIndexB].m_shapeIndex;\n" +" \n" +" \n" +" int numFacesA = convexShapes[shapeIndexA].m_numFaces;\n" +" \n" +" float dmin = dmins[i];\n" +" \n" +" float4 posA = rigidBodies[bodyIndexA].m_pos;\n" +" posA.w = 0.f;\n" +" float4 posB = rigidBodies[bodyIndexB].m_pos;\n" +" posB.w = 0.f;\n" +" float4 c0local = convexShapes[shapeIndexA].m_localCenter;\n" +" float4 ornA = rigidBodies[bodyIndexA].m_quat;\n" +" float4 c0 = transform(&c0local, &posA, &ornA);\n" +" float4 c1local = convexShapes[shapeIndexB].m_localCenter;\n" +" float4 ornB =rigidBodies[bodyIndexB].m_quat;\n" +" float4 c1 = transform(&c1local,&posB,&ornB);\n" +" const float4 DeltaC2 = c0 - c1;\n" +" float4 sepNormal = separatingNormals[i];\n" +" \n" +" \n" +" \n" +" bool sepEE = false;\n" +" int numEdgeEdgeDirections = convexShapes[shapeIndexA].m_numUniqueEdges*convexShapes[shapeIndexB].m_numUniqueEdges;\n" +" if (numEdgeEdgeDirections<=numUnitSphereDirections)\n" +" {\n" +" sepEE = findSeparatingAxisEdgeEdge( &convexShapes[shapeIndexA], &convexShapes[shapeIndexB],posA,ornA,\n" +" posB,ornB,\n" +" DeltaC2,\n" +" vertices,uniqueEdges,faces,\n" +" indices,&sepNormal,&dmin);\n" +" \n" +" if (!sepEE)\n" +" {\n" +" hasSeparatingAxis[i] = 0;\n" +" } else\n" +" {\n" +" hasSeparatingAxis[i] = 1;\n" +" separatingNormals[i] = sepNormal;\n" +" }\n" +" }\n" +" /*\n" +" ///else case is a separate kernel, to make Mac OSX OpenCL compiler happy\n" +" else\n" +" {\n" +" sepEE = findSeparatingAxisUnitSphere(&convexShapes[shapeIndexA], &convexShapes[shapeIndexB],posA,ornA,\n" +" posB,ornB,\n" +" DeltaC2,\n" +" vertices,unitSphereDirections,numUnitSphereDirections,\n" +" &sepNormal,&dmin);\n" +" if (!sepEE)\n" +" {\n" +" hasSeparatingAxis[i] = 0;\n" +" } else\n" +" {\n" +" hasSeparatingAxis[i] = 1;\n" +" separatingNormals[i] = sepNormal;\n" +" }\n" +" }\n" +" */\n" +" } //if (hasSeparatingAxis[i])\n" +" }//(i<numPairs)\n" +"}\n" +"inline int findClippingFaces(const float4 separatingNormal,\n" +" const ConvexPolyhedronCL* hullA, \n" +" __global const ConvexPolyhedronCL* hullB,\n" +" const float4 posA, const Quaternion ornA,const float4 posB, const Quaternion ornB,\n" +" __global float4* worldVertsA1,\n" +" __global float4* worldNormalsA1,\n" +" __global float4* worldVertsB1,\n" +" int capacityWorldVerts,\n" +" const float minDist, float maxDist,\n" +" const float4* verticesA,\n" +" const btGpuFace* facesA,\n" +" const int* indicesA,\n" +" __global const float4* verticesB,\n" +" __global const btGpuFace* facesB,\n" +" __global const int* indicesB,\n" +" __global int4* clippingFaces, int pairIndex)\n" +"{\n" +" int numContactsOut = 0;\n" +" int numWorldVertsB1= 0;\n" +" \n" +" \n" +" int closestFaceB=0;\n" +" float dmax = -FLT_MAX;\n" +" \n" +" {\n" +" for(int face=0;face<hullB->m_numFaces;face++)\n" +" {\n" +" const float4 Normal = make_float4(facesB[hullB->m_faceOffset+face].m_plane.x,\n" +" facesB[hullB->m_faceOffset+face].m_plane.y, facesB[hullB->m_faceOffset+face].m_plane.z,0.f);\n" +" const float4 WorldNormal = qtRotate(ornB, Normal);\n" +" float d = dot3F4(WorldNormal,separatingNormal);\n" +" if (d > dmax)\n" +" {\n" +" dmax = d;\n" +" closestFaceB = face;\n" +" }\n" +" }\n" +" }\n" +" \n" +" {\n" +" const btGpuFace polyB = facesB[hullB->m_faceOffset+closestFaceB];\n" +" int numVertices = polyB.m_numIndices;\n" +" if (numVertices>capacityWorldVerts)\n" +" numVertices = capacityWorldVerts;\n" +" \n" +" for(int e0=0;e0<numVertices;e0++)\n" +" {\n" +" if (e0<capacityWorldVerts)\n" +" {\n" +" const float4 b = verticesB[hullB->m_vertexOffset+indicesB[polyB.m_indexOffset+e0]];\n" +" worldVertsB1[pairIndex*capacityWorldVerts+numWorldVertsB1++] = transform(&b,&posB,&ornB);\n" +" }\n" +" }\n" +" }\n" +" \n" +" int closestFaceA=0;\n" +" {\n" +" float dmin = FLT_MAX;\n" +" for(int face=0;face<hullA->m_numFaces;face++)\n" +" {\n" +" const float4 Normal = make_float4(\n" +" facesA[hullA->m_faceOffset+face].m_plane.x,\n" +" facesA[hullA->m_faceOffset+face].m_plane.y,\n" +" facesA[hullA->m_faceOffset+face].m_plane.z,\n" +" 0.f);\n" +" const float4 faceANormalWS = qtRotate(ornA,Normal);\n" +" \n" +" float d = dot3F4(faceANormalWS,separatingNormal);\n" +" if (d < dmin)\n" +" {\n" +" dmin = d;\n" +" closestFaceA = face;\n" +" worldNormalsA1[pairIndex] = faceANormalWS;\n" +" }\n" +" }\n" +" }\n" +" \n" +" int numVerticesA = facesA[hullA->m_faceOffset+closestFaceA].m_numIndices;\n" +" if (numVerticesA>capacityWorldVerts)\n" +" numVerticesA = capacityWorldVerts;\n" +" \n" +" for(int e0=0;e0<numVerticesA;e0++)\n" +" {\n" +" if (e0<capacityWorldVerts)\n" +" {\n" +" const float4 a = verticesA[hullA->m_vertexOffset+indicesA[facesA[hullA->m_faceOffset+closestFaceA].m_indexOffset+e0]];\n" +" worldVertsA1[pairIndex*capacityWorldVerts+e0] = transform(&a, &posA,&ornA);\n" +" }\n" +" }\n" +" \n" +" clippingFaces[pairIndex].x = closestFaceA;\n" +" clippingFaces[pairIndex].y = closestFaceB;\n" +" clippingFaces[pairIndex].z = numVerticesA;\n" +" clippingFaces[pairIndex].w = numWorldVertsB1;\n" +" \n" +" \n" +" return numContactsOut;\n" +"}\n" +"// work-in-progress\n" +"__kernel void findConcaveSeparatingAxisKernel( __global int4* concavePairs,\n" +" __global const BodyData* rigidBodies,\n" +" __global const btCollidableGpu* collidables,\n" +" __global const ConvexPolyhedronCL* convexShapes, \n" +" __global const float4* vertices,\n" +" __global const float4* uniqueEdges,\n" +" __global const btGpuFace* faces,\n" +" __global const int* indices,\n" +" __global const btGpuChildShape* gpuChildShapes,\n" +" __global btAabbCL* aabbs,\n" +" __global float4* concaveSeparatingNormalsOut,\n" +" __global int* concaveHasSeparatingNormals,\n" +" __global int4* clippingFacesOut,\n" +" __global float4* worldVertsA1GPU,\n" +" __global float4* worldNormalsAGPU,\n" +" __global float4* worldVertsB1GPU,\n" +" int vertexFaceCapacity,\n" +" int numConcavePairs\n" +" )\n" +"{\n" +" int i = get_global_id(0);\n" +" if (i>=numConcavePairs)\n" +" return;\n" +" concaveHasSeparatingNormals[i] = 0;\n" +" int pairIdx = i;\n" +" int bodyIndexA = concavePairs[i].x;\n" +" int bodyIndexB = concavePairs[i].y;\n" +" int collidableIndexA = rigidBodies[bodyIndexA].m_collidableIdx;\n" +" int collidableIndexB = rigidBodies[bodyIndexB].m_collidableIdx;\n" +" int shapeIndexA = collidables[collidableIndexA].m_shapeIndex;\n" +" int shapeIndexB = collidables[collidableIndexB].m_shapeIndex;\n" +" if (collidables[collidableIndexB].m_shapeType!=SHAPE_CONVEX_HULL&&\n" +" collidables[collidableIndexB].m_shapeType!=SHAPE_COMPOUND_OF_CONVEX_HULLS)\n" +" {\n" +" concavePairs[pairIdx].w = -1;\n" +" return;\n" +" }\n" +" int numFacesA = convexShapes[shapeIndexA].m_numFaces;\n" +" int numActualConcaveConvexTests = 0;\n" +" \n" +" int f = concavePairs[i].z;\n" +" \n" +" bool overlap = false;\n" +" \n" +" ConvexPolyhedronCL convexPolyhedronA;\n" +" //add 3 vertices of the triangle\n" +" convexPolyhedronA.m_numVertices = 3;\n" +" convexPolyhedronA.m_vertexOffset = 0;\n" +" float4 localCenter = make_float4(0.f,0.f,0.f,0.f);\n" +" btGpuFace face = faces[convexShapes[shapeIndexA].m_faceOffset+f];\n" +" float4 triMinAabb, triMaxAabb;\n" +" btAabbCL triAabb;\n" +" triAabb.m_min = make_float4(1e30f,1e30f,1e30f,0.f);\n" +" triAabb.m_max = make_float4(-1e30f,-1e30f,-1e30f,0.f);\n" +" \n" +" float4 verticesA[3];\n" +" for (int i=0;i<3;i++)\n" +" {\n" +" int index = indices[face.m_indexOffset+i];\n" +" float4 vert = vertices[convexShapes[shapeIndexA].m_vertexOffset+index];\n" +" verticesA[i] = vert;\n" +" localCenter += vert;\n" +" \n" +" triAabb.m_min = min(triAabb.m_min,vert); \n" +" triAabb.m_max = max(triAabb.m_max,vert); \n" +" }\n" +" overlap = true;\n" +" overlap = (triAabb.m_min.x > aabbs[bodyIndexB].m_max.x || triAabb.m_max.x < aabbs[bodyIndexB].m_min.x) ? false : overlap;\n" +" overlap = (triAabb.m_min.z > aabbs[bodyIndexB].m_max.z || triAabb.m_max.z < aabbs[bodyIndexB].m_min.z) ? false : overlap;\n" +" overlap = (triAabb.m_min.y > aabbs[bodyIndexB].m_max.y || triAabb.m_max.y < aabbs[bodyIndexB].m_min.y) ? false : overlap;\n" +" \n" +" if (overlap)\n" +" {\n" +" float dmin = FLT_MAX;\n" +" int hasSeparatingAxis=5;\n" +" float4 sepAxis=make_float4(1,2,3,4);\n" +" int localCC=0;\n" +" numActualConcaveConvexTests++;\n" +" //a triangle has 3 unique edges\n" +" convexPolyhedronA.m_numUniqueEdges = 3;\n" +" convexPolyhedronA.m_uniqueEdgesOffset = 0;\n" +" float4 uniqueEdgesA[3];\n" +" \n" +" uniqueEdgesA[0] = (verticesA[1]-verticesA[0]);\n" +" uniqueEdgesA[1] = (verticesA[2]-verticesA[1]);\n" +" uniqueEdgesA[2] = (verticesA[0]-verticesA[2]);\n" +" convexPolyhedronA.m_faceOffset = 0;\n" +" \n" +" float4 normal = make_float4(face.m_plane.x,face.m_plane.y,face.m_plane.z,0.f);\n" +" \n" +" btGpuFace facesA[TRIANGLE_NUM_CONVEX_FACES];\n" +" int indicesA[3+3+2+2+2];\n" +" int curUsedIndices=0;\n" +" int fidx=0;\n" +" //front size of triangle\n" +" {\n" +" facesA[fidx].m_indexOffset=curUsedIndices;\n" +" indicesA[0] = 0;\n" +" indicesA[1] = 1;\n" +" indicesA[2] = 2;\n" +" curUsedIndices+=3;\n" +" float c = face.m_plane.w;\n" +" facesA[fidx].m_plane.x = normal.x;\n" +" facesA[fidx].m_plane.y = normal.y;\n" +" facesA[fidx].m_plane.z = normal.z;\n" +" facesA[fidx].m_plane.w = c;\n" +" facesA[fidx].m_numIndices=3;\n" +" }\n" +" fidx++;\n" +" //back size of triangle\n" +" {\n" +" facesA[fidx].m_indexOffset=curUsedIndices;\n" +" indicesA[3]=2;\n" +" indicesA[4]=1;\n" +" indicesA[5]=0;\n" +" curUsedIndices+=3;\n" +" float c = dot(normal,verticesA[0]);\n" +" float c1 = -face.m_plane.w;\n" +" facesA[fidx].m_plane.x = -normal.x;\n" +" facesA[fidx].m_plane.y = -normal.y;\n" +" facesA[fidx].m_plane.z = -normal.z;\n" +" facesA[fidx].m_plane.w = c;\n" +" facesA[fidx].m_numIndices=3;\n" +" }\n" +" fidx++;\n" +" bool addEdgePlanes = true;\n" +" if (addEdgePlanes)\n" +" {\n" +" int numVertices=3;\n" +" int prevVertex = numVertices-1;\n" +" for (int i=0;i<numVertices;i++)\n" +" {\n" +" float4 v0 = verticesA[i];\n" +" float4 v1 = verticesA[prevVertex];\n" +" \n" +" float4 edgeNormal = normalize(cross(normal,v1-v0));\n" +" float c = -dot(edgeNormal,v0);\n" +" facesA[fidx].m_numIndices = 2;\n" +" facesA[fidx].m_indexOffset=curUsedIndices;\n" +" indicesA[curUsedIndices++]=i;\n" +" indicesA[curUsedIndices++]=prevVertex;\n" +" \n" +" facesA[fidx].m_plane.x = edgeNormal.x;\n" +" facesA[fidx].m_plane.y = edgeNormal.y;\n" +" facesA[fidx].m_plane.z = edgeNormal.z;\n" +" facesA[fidx].m_plane.w = c;\n" +" fidx++;\n" +" prevVertex = i;\n" +" }\n" +" }\n" +" convexPolyhedronA.m_numFaces = TRIANGLE_NUM_CONVEX_FACES;\n" +" convexPolyhedronA.m_localCenter = localCenter*(1.f/3.f);\n" +" float4 posA = rigidBodies[bodyIndexA].m_pos;\n" +" posA.w = 0.f;\n" +" float4 posB = rigidBodies[bodyIndexB].m_pos;\n" +" posB.w = 0.f;\n" +" float4 ornA = rigidBodies[bodyIndexA].m_quat;\n" +" float4 ornB =rigidBodies[bodyIndexB].m_quat;\n" +" \n" +" ///////////////////\n" +" ///compound shape support\n" +" if (collidables[collidableIndexB].m_shapeType==SHAPE_COMPOUND_OF_CONVEX_HULLS)\n" +" {\n" +" int compoundChild = concavePairs[pairIdx].w;\n" +" int childShapeIndexB = compoundChild;//collidables[collidableIndexB].m_shapeIndex+compoundChild;\n" +" int childColIndexB = gpuChildShapes[childShapeIndexB].m_shapeIndex;\n" +" float4 childPosB = gpuChildShapes[childShapeIndexB].m_childPosition;\n" +" float4 childOrnB = gpuChildShapes[childShapeIndexB].m_childOrientation;\n" +" float4 newPosB = transform(&childPosB,&posB,&ornB);\n" +" float4 newOrnB = qtMul(ornB,childOrnB);\n" +" posB = newPosB;\n" +" ornB = newOrnB;\n" +" shapeIndexB = collidables[childColIndexB].m_shapeIndex;\n" +" }\n" +" //////////////////\n" +" float4 c0local = convexPolyhedronA.m_localCenter;\n" +" float4 c0 = transform(&c0local, &posA, &ornA);\n" +" float4 c1local = convexShapes[shapeIndexB].m_localCenter;\n" +" float4 c1 = transform(&c1local,&posB,&ornB);\n" +" const float4 DeltaC2 = c0 - c1;\n" +" bool sepA = findSeparatingAxisLocalA( &convexPolyhedronA, &convexShapes[shapeIndexB],\n" +" posA,ornA,\n" +" posB,ornB,\n" +" DeltaC2,\n" +" verticesA,uniqueEdgesA,facesA,indicesA,\n" +" vertices,uniqueEdges,faces,indices,\n" +" &sepAxis,&dmin);\n" +" hasSeparatingAxis = 4;\n" +" if (!sepA)\n" +" {\n" +" hasSeparatingAxis = 0;\n" +" } else\n" +" {\n" +" bool sepB = findSeparatingAxisLocalB( &convexShapes[shapeIndexB],&convexPolyhedronA,\n" +" posB,ornB,\n" +" posA,ornA,\n" +" DeltaC2,\n" +" vertices,uniqueEdges,faces,indices,\n" +" verticesA,uniqueEdgesA,facesA,indicesA,\n" +" &sepAxis,&dmin);\n" +" if (!sepB)\n" +" {\n" +" hasSeparatingAxis = 0;\n" +" } else\n" +" {\n" +" bool sepEE = findSeparatingAxisEdgeEdgeLocalA( &convexPolyhedronA, &convexShapes[shapeIndexB],\n" +" posA,ornA,\n" +" posB,ornB,\n" +" DeltaC2,\n" +" verticesA,uniqueEdgesA,facesA,indicesA,\n" +" vertices,uniqueEdges,faces,indices,\n" +" &sepAxis,&dmin);\n" +" \n" +" if (!sepEE)\n" +" {\n" +" hasSeparatingAxis = 0;\n" +" } else\n" +" {\n" +" hasSeparatingAxis = 1;\n" +" }\n" +" }\n" +" } \n" +" \n" +" if (hasSeparatingAxis)\n" +" {\n" +" sepAxis.w = dmin;\n" +" concaveSeparatingNormalsOut[pairIdx]=sepAxis;\n" +" concaveHasSeparatingNormals[i]=1;\n" +" float minDist = -1e30f;\n" +" float maxDist = 0.02f;\n" +" \n" +" findClippingFaces(sepAxis,\n" +" &convexPolyhedronA,\n" +" &convexShapes[shapeIndexB],\n" +" posA,ornA,\n" +" posB,ornB,\n" +" worldVertsA1GPU,\n" +" worldNormalsAGPU,\n" +" worldVertsB1GPU,\n" +" vertexFaceCapacity,\n" +" minDist, maxDist,\n" +" verticesA,\n" +" facesA,\n" +" indicesA,\n" +" vertices,\n" +" faces,\n" +" indices,\n" +" clippingFacesOut, pairIdx);\n" +" } else\n" +" { \n" +" //mark this pair as in-active\n" +" concavePairs[pairIdx].w = -1;\n" +" }\n" +" }\n" +" else\n" +" { \n" +" //mark this pair as in-active\n" +" concavePairs[pairIdx].w = -1;\n" +" }\n" +" \n" +" concavePairs[pairIdx].z = -1;//now z is used for existing/persistent contacts\n" +"}\n" +; |