diff options
author | jfons <joan.fonssanchez@gmail.com> | 2022-04-04 16:10:22 +0200 |
---|---|---|
committer | jfons <joan.fonssanchez@gmail.com> | 2022-06-07 13:14:44 +0200 |
commit | ba832d83b2dafcdbb79b93b1e97fd518c12b97bf (patch) | |
tree | a105978a20ea3f2ec4edd53691f7664c0562c1d8 /servers/rendering/renderer_rd/shaders | |
parent | 36bd26dc75465d0b64441113bc4055b2cd06b516 (diff) |
Initial TAA implementation
Initial TAA support based on the implementation in Spartan Engine.
Motion vectors are correctly generated for camera and mesh movement, but there is no support for other things like particles or skeleton deformations.
Diffstat (limited to 'servers/rendering/renderer_rd/shaders')
6 files changed, 509 insertions, 61 deletions
diff --git a/servers/rendering/renderer_rd/shaders/scene_forward_clustered.glsl b/servers/rendering/renderer_rd/shaders/scene_forward_clustered.glsl index 4f49c186a6..9f27cea843 100644 --- a/servers/rendering/renderer_rd/shaders/scene_forward_clustered.glsl +++ b/servers/rendering/renderer_rd/shaders/scene_forward_clustered.glsl @@ -83,6 +83,11 @@ layout(location = 5) out vec3 tangent_interp; layout(location = 6) out vec3 binormal_interp; #endif +#ifdef MOTION_VECTORS +layout(location = 7) out vec4 screen_position; +layout(location = 8) out vec4 prev_screen_position; +#endif + #ifdef MATERIAL_UNIFORMS_USED layout(set = MATERIAL_UNIFORM_SET, binding = 0, std140) uniform MaterialUniforms{ @@ -93,11 +98,11 @@ layout(set = MATERIAL_UNIFORM_SET, binding = 0, std140) uniform MaterialUniforms #ifdef MODE_DUAL_PARABOLOID -layout(location = 8) out float dp_clip; +layout(location = 9) out float dp_clip; #endif -layout(location = 9) out flat uint instance_index_interp; +layout(location = 10) out flat uint instance_index_interp; #ifdef USE_MULTIVIEW #ifdef has_VK_KHR_multiview @@ -115,23 +120,12 @@ invariant gl_Position; #GLOBALS -void main() { +void vertex_shader(in uint instance_index, in bool is_multimesh, in SceneData scene_data, in mat4 model_matrix, out vec4 screen_pos) { vec4 instance_custom = vec4(0.0); #if defined(COLOR_USED) color_interp = color_attrib; #endif - uint instance_index = draw_call.instance_index; - - bool is_multimesh = bool(instances.data[instance_index].flags & INSTANCE_FLAGS_MULTIMESH); - if (!is_multimesh) { - instance_index += gl_InstanceIndex; - } - - instance_index_interp = instance_index; - - mat4 model_matrix = instances.data[instance_index].transform; - mat3 model_normal_matrix; if (bool(instances.data[instance_index].flags & INSTANCE_FLAGS_NON_UNIFORM_SCALE)) { model_normal_matrix = transpose(inverse(mat3(model_matrix))); @@ -321,6 +315,11 @@ void main() { #endif vertex_interp = vertex; + +#ifdef MOTION_VECTORS + screen_pos = projection_matrix * vec4(vertex_interp, 1.0); +#endif + #ifdef NORMAL_USED normal_interp = normal; #endif @@ -375,6 +374,27 @@ void main() { #endif } +void main() { + uint instance_index = draw_call.instance_index; + + bool is_multimesh = bool(instances.data[instance_index].flags & INSTANCE_FLAGS_MULTIMESH); + if (!is_multimesh) { + instance_index += gl_InstanceIndex; + } + + instance_index_interp = instance_index; + + SceneData scene_data = scene_data_block.data; + mat4 model_matrix = instances.data[instance_index].transform; +#if defined(MOTION_VECTORS) + vertex_shader(instance_index, is_multimesh, scene_data_block.prev_data, instances.data[instance_index].prev_transform, prev_screen_position); + vertex_shader(instance_index, is_multimesh, scene_data, model_matrix, screen_position); +#else + vec4 screen_position; + vertex_shader(instance_index, is_multimesh, scene_data, model_matrix, screen_position); +#endif +} + #[fragment] #version 450 @@ -431,13 +451,18 @@ layout(location = 5) in vec3 tangent_interp; layout(location = 6) in vec3 binormal_interp; #endif +#ifdef MOTION_VECTORS +layout(location = 7) in vec4 screen_position; +layout(location = 8) in vec4 prev_screen_position; +#endif + #ifdef MODE_DUAL_PARABOLOID -layout(location = 8) in float dp_clip; +layout(location = 9) in float dp_clip; #endif -layout(location = 9) in flat uint instance_index_interp; +layout(location = 10) in flat uint instance_index_interp; #ifdef USE_MULTIVIEW #ifdef has_VK_KHR_multiview @@ -510,6 +535,10 @@ layout(location = 0) out vec4 frag_color; #endif // RENDER DEPTH +#ifdef MOTION_VECTORS +layout(location = 2) out vec2 motion_vector; +#endif + #include "scene_forward_aa_inc.glsl" #if !defined(MODE_RENDER_DEPTH) && !defined(MODE_UNSHADED) @@ -528,24 +557,24 @@ layout(location = 0) out vec4 frag_color; #ifndef MODE_RENDER_DEPTH vec4 volumetric_fog_process(vec2 screen_uv, float z) { - vec3 fog_pos = vec3(screen_uv, z * scene_data.volumetric_fog_inv_length); + vec3 fog_pos = vec3(screen_uv, z * scene_data_block.data.volumetric_fog_inv_length); if (fog_pos.z < 0.0) { return vec4(0.0); } else if (fog_pos.z < 1.0) { - fog_pos.z = pow(fog_pos.z, scene_data.volumetric_fog_detail_spread); + fog_pos.z = pow(fog_pos.z, scene_data_block.data.volumetric_fog_detail_spread); } return texture(sampler3D(volumetric_fog_texture, material_samplers[SAMPLER_LINEAR_CLAMP]), fog_pos); } vec4 fog_process(vec3 vertex) { - vec3 fog_color = scene_data.fog_light_color; + vec3 fog_color = scene_data_block.data.fog_light_color; - if (scene_data.fog_aerial_perspective > 0.0) { + if (scene_data_block.data.fog_aerial_perspective > 0.0) { vec3 sky_fog_color = vec3(0.0); - vec3 cube_view = scene_data.radiance_inverse_xform * vertex; + vec3 cube_view = scene_data_block.data.radiance_inverse_xform * vertex; // mip_level always reads from the second mipmap and higher so the fog is always slightly blurred - float mip_level = mix(1.0 / MAX_ROUGHNESS_LOD, 1.0, 1.0 - (abs(vertex.z) - scene_data.z_near) / (scene_data.z_far - scene_data.z_near)); + float mip_level = mix(1.0 / MAX_ROUGHNESS_LOD, 1.0, 1.0 - (abs(vertex.z) - scene_data_block.data.z_near) / (scene_data_block.data.z_far - scene_data_block.data.z_near)); #ifdef USE_RADIANCE_CUBEMAP_ARRAY float lod, blend; blend = modf(mip_level * MAX_ROUGHNESS_LOD, lod); @@ -554,29 +583,29 @@ vec4 fog_process(vec3 vertex) { #else sky_fog_color = textureLod(samplerCube(radiance_cubemap, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), cube_view, mip_level * MAX_ROUGHNESS_LOD).rgb; #endif //USE_RADIANCE_CUBEMAP_ARRAY - fog_color = mix(fog_color, sky_fog_color, scene_data.fog_aerial_perspective); + fog_color = mix(fog_color, sky_fog_color, scene_data_block.data.fog_aerial_perspective); } - if (scene_data.fog_sun_scatter > 0.001) { + if (scene_data_block.data.fog_sun_scatter > 0.001) { vec4 sun_scatter = vec4(0.0); float sun_total = 0.0; vec3 view = normalize(vertex); - for (uint i = 0; i < scene_data.directional_light_count; i++) { + for (uint i = 0; i < scene_data_block.data.directional_light_count; i++) { vec3 light_color = directional_lights.data[i].color * directional_lights.data[i].energy; float light_amount = pow(max(dot(view, directional_lights.data[i].direction), 0.0), 8.0); - fog_color += light_color * light_amount * scene_data.fog_sun_scatter; + fog_color += light_color * light_amount * scene_data_block.data.fog_sun_scatter; } } - float fog_amount = 1.0 - exp(min(0.0, -length(vertex) * scene_data.fog_density)); + float fog_amount = 1.0 - exp(min(0.0, -length(vertex) * scene_data_block.data.fog_density)); - if (abs(scene_data.fog_height_density) >= 0.0001) { - float y = (scene_data.inv_view_matrix * vec4(vertex, 1.0)).y; + if (abs(scene_data_block.data.fog_height_density) >= 0.0001) { + float y = (scene_data_block.data.inv_view_matrix * vec4(vertex, 1.0)).y; - float y_dist = y - scene_data.fog_height; + float y_dist = y - scene_data_block.data.fog_height; - float vfog_amount = 1.0 - exp(min(0.0, y_dist * scene_data.fog_height_density)); + float vfog_amount = 1.0 - exp(min(0.0, y_dist * scene_data_block.data.fog_height_density)); fog_amount = max(vfog_amount, fog_amount); } @@ -608,6 +637,8 @@ void main() { discard; #endif + SceneData scene_data = scene_data_block.data; + SceneData prev_scene_data = scene_data_block.prev_data; uint instance_index = instance_index_interp; //lay out everything, whatever is unused is optimized away anyway @@ -2015,4 +2046,13 @@ void main() { #endif //MODE_SEPARATE_SPECULAR #endif //MODE_RENDER_DEPTH +#ifdef MOTION_VECTORS + vec2 position_clip = (screen_position.xy / screen_position.w) - scene_data.taa_jitter; + vec2 prev_position_clip = (prev_screen_position.xy / prev_screen_position.w) - prev_scene_data.taa_jitter; + + vec2 position_uv = position_clip * vec2(0.5, 0.5); + vec2 prev_position_uv = prev_position_clip * vec2(0.5, 0.5); + + motion_vector = position_uv - prev_position_uv; +#endif } diff --git a/servers/rendering/renderer_rd/shaders/scene_forward_clustered_inc.glsl b/servers/rendering/renderer_rd/shaders/scene_forward_clustered_inc.glsl index f2672f10e7..b700e21543 100644 --- a/servers/rendering/renderer_rd/shaders/scene_forward_clustered_inc.glsl +++ b/servers/rendering/renderer_rd/shaders/scene_forward_clustered_inc.glsl @@ -171,7 +171,7 @@ sdfgi; /* Set 1: Render Pass (changes per render pass) */ -layout(set = 1, binding = 0, std140) uniform SceneData { +struct SceneData { mat4 projection_matrix; mat4 inv_projection_matrix; mat4 inv_view_matrix; @@ -249,11 +249,19 @@ layout(set = 1, binding = 0, std140) uniform SceneData { float reflection_multiplier; // one normally, zero when rendering reflections bool pancake_shadows; + vec2 taa_jitter; + uvec2 pad; +}; + +layout(set = 1, binding = 0, std140) uniform SceneDataBlock { + SceneData data; + SceneData prev_data; } -scene_data; +scene_data_block; struct InstanceData { mat4 transform; + mat4 prev_transform; uint flags; uint instance_uniforms_ofs; //base offset in global buffer for instance variables uint gi_offset; //GI information when using lightmapping (VCT or lightmap index) diff --git a/servers/rendering/renderer_rd/shaders/scene_forward_lights_inc.glsl b/servers/rendering/renderer_rd/shaders/scene_forward_lights_inc.glsl index bd1c2b5758..5a308bbd02 100644 --- a/servers/rendering/renderer_rd/shaders/scene_forward_lights_inc.glsl +++ b/servers/rendering/renderer_rd/shaders/scene_forward_lights_inc.glsl @@ -262,7 +262,7 @@ float sample_directional_pcf_shadow(texture2D shadow, vec2 shadow_pixel_size, ve float avg = 0.0; for (uint i = 0; i < sc_directional_soft_shadow_samples; i++) { - avg += textureProj(sampler2DShadow(shadow, shadow_sampler), vec4(pos + shadow_pixel_size * (disk_rotation * scene_data.directional_soft_shadow_kernel[i].xy), depth, 1.0)); + avg += textureProj(sampler2DShadow(shadow, shadow_sampler), vec4(pos + shadow_pixel_size * (disk_rotation * scene_data_block.data.directional_soft_shadow_kernel[i].xy), depth, 1.0)); } return avg * (1.0 / float(sc_directional_soft_shadow_samples)); @@ -288,7 +288,7 @@ float sample_pcf_shadow(texture2D shadow, vec2 shadow_pixel_size, vec3 coord) { float avg = 0.0; for (uint i = 0; i < sc_soft_shadow_samples; i++) { - avg += textureProj(sampler2DShadow(shadow, shadow_sampler), vec4(pos + shadow_pixel_size * (disk_rotation * scene_data.soft_shadow_kernel[i].xy), depth, 1.0)); + avg += textureProj(sampler2DShadow(shadow, shadow_sampler), vec4(pos + shadow_pixel_size * (disk_rotation * scene_data_block.data.soft_shadow_kernel[i].xy), depth, 1.0)); } return avg * (1.0 / float(sc_soft_shadow_samples)); @@ -311,10 +311,10 @@ float sample_omni_pcf_shadow(texture2D shadow, float blur_scale, vec2 coord, vec } float avg = 0.0; - vec2 offset_scale = blur_scale * 2.0 * scene_data.shadow_atlas_pixel_size / uv_rect.zw; + vec2 offset_scale = blur_scale * 2.0 * scene_data_block.data.shadow_atlas_pixel_size / uv_rect.zw; for (uint i = 0; i < sc_soft_shadow_samples; i++) { - vec2 offset = offset_scale * (disk_rotation * scene_data.soft_shadow_kernel[i].xy); + vec2 offset = offset_scale * (disk_rotation * scene_data_block.data.soft_shadow_kernel[i].xy); vec2 sample_coord = coord + offset; float sample_coord_length_sqaured = dot(sample_coord, sample_coord); @@ -351,7 +351,7 @@ float sample_directional_soft_shadow(texture2D shadow, vec3 pssm_coord, vec2 tex } for (uint i = 0; i < sc_directional_penumbra_shadow_samples; i++) { - vec2 suv = pssm_coord.xy + (disk_rotation * scene_data.directional_penumbra_shadow_kernel[i].xy) * tex_scale; + vec2 suv = pssm_coord.xy + (disk_rotation * scene_data_block.data.directional_penumbra_shadow_kernel[i].xy) * tex_scale; float d = textureLod(sampler2D(shadow, material_samplers[SAMPLER_LINEAR_CLAMP]), suv, 0.0).r; if (d < pssm_coord.z) { blocker_average += d; @@ -367,7 +367,7 @@ float sample_directional_soft_shadow(texture2D shadow, vec3 pssm_coord, vec2 tex float s = 0.0; for (uint i = 0; i < sc_directional_penumbra_shadow_samples; i++) { - vec2 suv = pssm_coord.xy + (disk_rotation * scene_data.directional_penumbra_shadow_kernel[i].xy) * tex_scale; + vec2 suv = pssm_coord.xy + (disk_rotation * scene_data_block.data.directional_penumbra_shadow_kernel[i].xy) * tex_scale; s += textureProj(sampler2DShadow(shadow, shadow_sampler), vec4(suv, pssm_coord.z, 1.0)); } @@ -394,7 +394,7 @@ float light_process_omni_shadow(uint idx, vec3 vertex, vec3 normal) { #ifndef SHADOWS_DISABLED if (omni_lights.data[idx].shadow_enabled) { // there is a shadowmap - vec2 texel_size = scene_data.shadow_atlas_pixel_size; + vec2 texel_size = scene_data_block.data.shadow_atlas_pixel_size; vec4 base_uv_rect = omni_lights.data[idx].atlas_rect; base_uv_rect.xy += texel_size; base_uv_rect.zw -= texel_size * 2.0; @@ -438,7 +438,7 @@ float light_process_omni_shadow(uint idx, vec3 vertex, vec3 normal) { bitangent *= omni_lights.data[idx].soft_shadow_size * omni_lights.data[idx].soft_shadow_scale; for (uint i = 0; i < sc_penumbra_shadow_samples; i++) { - vec2 disk = disk_rotation * scene_data.penumbra_shadow_kernel[i].xy; + vec2 disk = disk_rotation * scene_data_block.data.penumbra_shadow_kernel[i].xy; vec3 pos = local_vert + tangent * disk.x + bitangent * disk.y; @@ -474,7 +474,7 @@ float light_process_omni_shadow(uint idx, vec3 vertex, vec3 normal) { shadow = 0.0; for (uint i = 0; i < sc_penumbra_shadow_samples; i++) { - vec2 disk = disk_rotation * scene_data.penumbra_shadow_kernel[i].xy; + vec2 disk = disk_rotation * scene_data_block.data.penumbra_shadow_kernel[i].xy; vec3 pos = local_vert + tangent * disk.x + bitangent * disk.y; pos = normalize(pos); @@ -579,7 +579,7 @@ void light_process_omni(uint idx, vec3 vertex, vec3 eye_vec, vec3 normal, vec3 v splane.xy = splane.xy * 0.5 + 0.5; splane.z = shadow_len * omni_lights.data[idx].inv_radius; splane.xy = clamp_rect.xy + splane.xy * clamp_rect.zw; - // splane.xy = clamp(splane.xy,clamp_rect.xy + scene_data.shadow_atlas_pixel_size,clamp_rect.xy + clamp_rect.zw - scene_data.shadow_atlas_pixel_size ); + // splane.xy = clamp(splane.xy,clamp_rect.xy + scene_data_block.data.shadow_atlas_pixel_size,clamp_rect.xy + clamp_rect.zw - scene_data_block.data.shadow_atlas_pixel_size ); splane.w = 1.0; //needed? i think it should be 1 already float shadow_z = textureLod(sampler2D(shadow_atlas, material_samplers[SAMPLER_LINEAR_CLAMP]), splane.xy, 0.0).r; @@ -709,7 +709,7 @@ float light_process_spot_shadow(uint idx, vec3 vertex, vec3 normal) { float uv_size = spot_lights.data[idx].soft_shadow_size * z_norm * spot_lights.data[idx].soft_shadow_scale; vec2 clamp_max = spot_lights.data[idx].atlas_rect.xy + spot_lights.data[idx].atlas_rect.zw; for (uint i = 0; i < sc_penumbra_shadow_samples; i++) { - vec2 suv = shadow_uv + (disk_rotation * scene_data.penumbra_shadow_kernel[i].xy) * uv_size; + vec2 suv = shadow_uv + (disk_rotation * scene_data_block.data.penumbra_shadow_kernel[i].xy) * uv_size; suv = clamp(suv, spot_lights.data[idx].atlas_rect.xy, clamp_max); float d = textureLod(sampler2D(shadow_atlas, material_samplers[SAMPLER_LINEAR_CLAMP]), suv, 0.0).r; if (d < splane.z) { @@ -726,7 +726,7 @@ float light_process_spot_shadow(uint idx, vec3 vertex, vec3 normal) { shadow = 0.0; for (uint i = 0; i < sc_penumbra_shadow_samples; i++) { - vec2 suv = shadow_uv + (disk_rotation * scene_data.penumbra_shadow_kernel[i].xy) * uv_size; + vec2 suv = shadow_uv + (disk_rotation * scene_data_block.data.penumbra_shadow_kernel[i].xy) * uv_size; suv = clamp(suv, spot_lights.data[idx].atlas_rect.xy, clamp_max); shadow += textureProj(sampler2DShadow(shadow_atlas, shadow_sampler), vec4(suv, splane.z, 1.0)); } @@ -740,7 +740,7 @@ float light_process_spot_shadow(uint idx, vec3 vertex, vec3 normal) { } else { //hard shadow vec3 shadow_uv = vec3(splane.xy * spot_lights.data[idx].atlas_rect.zw + spot_lights.data[idx].atlas_rect.xy, splane.z); - shadow = sample_pcf_shadow(shadow_atlas, spot_lights.data[idx].soft_shadow_scale * scene_data.shadow_atlas_pixel_size, shadow_uv); + shadow = sample_pcf_shadow(shadow_atlas, spot_lights.data[idx].soft_shadow_scale * scene_data_block.data.shadow_atlas_pixel_size, shadow_uv); } return shadow; diff --git a/servers/rendering/renderer_rd/shaders/scene_forward_mobile.glsl b/servers/rendering/renderer_rd/shaders/scene_forward_mobile.glsl index fd0fefc5fd..e15ebbfc91 100644 --- a/servers/rendering/renderer_rd/shaders/scene_forward_mobile.glsl +++ b/servers/rendering/renderer_rd/shaders/scene_forward_mobile.glsl @@ -115,6 +115,8 @@ invariant gl_Position; #GLOBALS void main() { + SceneData scene_data = scene_data_block.data; + vec4 instance_custom = vec4(0.0); #if defined(COLOR_USED) color_interp = color_attrib; @@ -527,13 +529,13 @@ layout(location = 0) out mediump vec4 frag_color; */ vec4 fog_process(vec3 vertex) { - vec3 fog_color = scene_data.fog_light_color; + vec3 fog_color = scene_data_block.data.fog_light_color; - if (scene_data.fog_aerial_perspective > 0.0) { + if (scene_data_block.data.fog_aerial_perspective > 0.0) { vec3 sky_fog_color = vec3(0.0); - vec3 cube_view = scene_data.radiance_inverse_xform * vertex; + vec3 cube_view = scene_data_block.data.radiance_inverse_xform * vertex; // mip_level always reads from the second mipmap and higher so the fog is always slightly blurred - float mip_level = mix(1.0 / MAX_ROUGHNESS_LOD, 1.0, 1.0 - (abs(vertex.z) - scene_data.z_near) / (scene_data.z_far - scene_data.z_near)); + float mip_level = mix(1.0 / MAX_ROUGHNESS_LOD, 1.0, 1.0 - (abs(vertex.z) - scene_data_block.data.z_near) / (scene_data_block.data.z_far - scene_data_block.data.z_near)); #ifdef USE_RADIANCE_CUBEMAP_ARRAY float lod, blend; blend = modf(mip_level * MAX_ROUGHNESS_LOD, lod); @@ -542,29 +544,29 @@ vec4 fog_process(vec3 vertex) { #else sky_fog_color = textureLod(samplerCube(radiance_cubemap, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), cube_view, mip_level * MAX_ROUGHNESS_LOD).rgb; #endif //USE_RADIANCE_CUBEMAP_ARRAY - fog_color = mix(fog_color, sky_fog_color, scene_data.fog_aerial_perspective); + fog_color = mix(fog_color, sky_fog_color, scene_data_block.data.fog_aerial_perspective); } - if (scene_data.fog_sun_scatter > 0.001) { + if (scene_data_block.data.fog_sun_scatter > 0.001) { vec4 sun_scatter = vec4(0.0); float sun_total = 0.0; vec3 view = normalize(vertex); - for (uint i = 0; i < scene_data.directional_light_count; i++) { + for (uint i = 0; i < scene_data_block.data.directional_light_count; i++) { vec3 light_color = directional_lights.data[i].color * directional_lights.data[i].energy; float light_amount = pow(max(dot(view, directional_lights.data[i].direction), 0.0), 8.0); - fog_color += light_color * light_amount * scene_data.fog_sun_scatter; + fog_color += light_color * light_amount * scene_data_block.data.fog_sun_scatter; } } - float fog_amount = 1.0 - exp(min(0.0, -length(vertex) * scene_data.fog_density)); + float fog_amount = 1.0 - exp(min(0.0, -length(vertex) * scene_data_block.data.fog_density)); - if (abs(scene_data.fog_height_density) >= 0.0001) { - float y = (scene_data.inv_view_matrix * vec4(vertex, 1.0)).y; + if (abs(scene_data_block.data.fog_height_density) >= 0.0001) { + float y = (scene_data_block.data.inv_view_matrix * vec4(vertex, 1.0)).y; - float y_dist = y - scene_data.fog_height; + float y_dist = y - scene_data_block.data.fog_height; - float vfog_amount = 1.0 - exp(min(0.0, y_dist * scene_data.fog_height_density)); + float vfog_amount = 1.0 - exp(min(0.0, y_dist * scene_data_block.data.fog_height_density)); fog_amount = max(vfog_amount, fog_amount); } @@ -580,6 +582,7 @@ void main() { if (dp_clip > 0.0) discard; #endif + SceneData scene_data = scene_data_block.data; //lay out everything, whatever is unused is optimized away anyway vec3 vertex = vertex_interp; diff --git a/servers/rendering/renderer_rd/shaders/scene_forward_mobile_inc.glsl b/servers/rendering/renderer_rd/shaders/scene_forward_mobile_inc.glsl index 91ef19ab67..dd14a15837 100644 --- a/servers/rendering/renderer_rd/shaders/scene_forward_mobile_inc.glsl +++ b/servers/rendering/renderer_rd/shaders/scene_forward_mobile_inc.glsl @@ -125,7 +125,7 @@ global_variables; /* Set 1: Render Pass (changes per render pass) */ -layout(set = 1, binding = 0, std140) uniform SceneData { +struct SceneData { highp mat4 projection_matrix; highp mat4 inv_projection_matrix; highp mat4 inv_view_matrix; @@ -189,8 +189,12 @@ layout(set = 1, binding = 0, std140) uniform SceneData { uint pad1; uint pad2; uint pad3; +}; + +layout(set = 1, binding = 0, std140) uniform SceneDataBlock { + SceneData data; } -scene_data; +scene_data_block; #ifdef USE_RADIANCE_CUBEMAP_ARRAY diff --git a/servers/rendering/renderer_rd/shaders/taa_resolve.glsl b/servers/rendering/renderer_rd/shaders/taa_resolve.glsl new file mode 100644 index 0000000000..a1a77b95aa --- /dev/null +++ b/servers/rendering/renderer_rd/shaders/taa_resolve.glsl @@ -0,0 +1,393 @@ +/////////////////////////////////////////////////////////////////////////////////// +// Copyright(c) 2016-2022 Panos Karabelas +// +// Permission is hereby granted, free of charge, to any person obtaining a copy +// of this software and associated documentation files (the "Software"), to deal +// in the Software without restriction, including without limitation the rights +// to use, copy, modify, merge, publish, distribute, sublicense, and / or sell +// copies of the Software, and to permit persons to whom the Software is furnished +// to do so, subject to the following conditions : +// +// The above copyright notice and this permission notice shall be included in +// all copies or substantial portions of the Software. +// +// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS +// FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.IN NO EVENT SHALL THE AUTHORS OR +// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER +// IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN +// CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. +/////////////////////////////////////////////////////////////////////////////////// +// File changes (yyyy-mm-dd) +// 2022-05-06: Panos Karabelas: first commit +// 2020-12-05: Joan Fons: convert to Vulkan and Godot +/////////////////////////////////////////////////////////////////////////////////// + +#[compute] + +#version 450 + +#VERSION_DEFINES + +// Based on Spartan Engine's TAA implementation https://github.com/PanosK92/SpartanEngine/blob/master/Data/shaders/temporal_antialiasing.hlsl + +#define USE_SUBGROUPS + +#define GROUP_SIZE 8 +#define FLT_MIN 0.00000001 +#define FLT_MAX 32767.0 +#define RPC_9 0.11111111111 +#define RPC_16 0.0625 + +#ifdef USE_SUBGROUPS +layout(local_size_x = GROUP_SIZE, local_size_y = GROUP_SIZE, local_size_z = 1) in; +#endif + +layout(rgba16f, set = 0, binding = 0) uniform restrict readonly image2D color_buffer; +layout(set = 0, binding = 1) uniform sampler2D depth_buffer; +layout(rg16f, set = 0, binding = 2) uniform restrict readonly image2D velocity_buffer; +layout(rg16f, set = 0, binding = 3) uniform restrict readonly image2D last_velocity_buffer; +layout(set = 0, binding = 4) uniform sampler2D history_buffer; +layout(rgba16f, set = 0, binding = 5) uniform restrict writeonly image2D output_buffer; + +layout(push_constant, std430) uniform Params { + vec2 resolution; + float disocclusion_threshold; // 0.1 / max(params.resolution.x, params.resolution.y + float disocclusion_scale; +} +params; + +const ivec2 kOffsets3x3[9] = { + ivec2(-1, -1), + ivec2(0, -1), + ivec2(1, -1), + ivec2(-1, 0), + ivec2(0, 0), + ivec2(1, 0), + ivec2(-1, 1), + ivec2(0, 1), + ivec2(1, 1), +}; + +/*------------------------------------------------------------------------------ + THREAD GROUP SHARED MEMORY (LDS) +------------------------------------------------------------------------------*/ + +const int kBorderSize = 1; +const int kGroupSize = GROUP_SIZE; +const int kTileDimension = kGroupSize + kBorderSize * 2; +const int kTileDimension2 = kTileDimension * kTileDimension; + +vec3 reinhard(vec3 hdr) { + return hdr / (hdr + 1.0); +} +vec3 reinhard_inverse(vec3 sdr) { + return sdr / (1.0 - sdr); +} + +float get_depth(ivec2 thread_id) { + return texelFetch(depth_buffer, thread_id, 0).r; +} + +#ifdef USE_SUBGROUPS +shared vec3 tile_color[kTileDimension][kTileDimension]; +shared float tile_depth[kTileDimension][kTileDimension]; + +vec3 load_color(uvec2 group_thread_id) { + group_thread_id += kBorderSize; + return tile_color[group_thread_id.x][group_thread_id.y]; +} + +void store_color(uvec2 group_thread_id, vec3 color) { + tile_color[group_thread_id.x][group_thread_id.y] = color; +} + +float load_depth(uvec2 group_thread_id) { + group_thread_id += kBorderSize; + return tile_depth[group_thread_id.x][group_thread_id.y]; +} + +void store_depth(uvec2 group_thread_id, float depth) { + tile_depth[group_thread_id.x][group_thread_id.y] = depth; +} + +void store_color_depth(uvec2 group_thread_id, ivec2 thread_id) { + // out of bounds clamp + thread_id = clamp(thread_id, ivec2(0, 0), ivec2(params.resolution) - ivec2(1, 1)); + + store_color(group_thread_id, imageLoad(color_buffer, thread_id).rgb); + store_depth(group_thread_id, get_depth(thread_id)); +} + +void populate_group_shared_memory(uvec2 group_id, uint group_index) { + // Populate group shared memory + ivec2 group_top_left = ivec2(group_id) * kGroupSize - kBorderSize; + if (group_index < (kTileDimension2 >> 2)) { + ivec2 group_thread_id_1 = ivec2(group_index % kTileDimension, group_index / kTileDimension); + ivec2 group_thread_id_2 = ivec2((group_index + (kTileDimension2 >> 2)) % kTileDimension, (group_index + (kTileDimension2 >> 2)) / kTileDimension); + ivec2 group_thread_id_3 = ivec2((group_index + (kTileDimension2 >> 1)) % kTileDimension, (group_index + (kTileDimension2 >> 1)) / kTileDimension); + ivec2 group_thread_id_4 = ivec2((group_index + kTileDimension2 * 3 / 4) % kTileDimension, (group_index + kTileDimension2 * 3 / 4) / kTileDimension); + + store_color_depth(group_thread_id_1, group_top_left + group_thread_id_1); + store_color_depth(group_thread_id_2, group_top_left + group_thread_id_2); + store_color_depth(group_thread_id_3, group_top_left + group_thread_id_3); + store_color_depth(group_thread_id_4, group_top_left + group_thread_id_4); + } + + // Wait for group threads to load store data. + groupMemoryBarrier(); + barrier(); +} +#else +vec3 load_color(uvec2 screen_pos) { + return imageLoad(color_buffer, ivec2(screen_pos)).rgb; +} + +float load_depth(uvec2 screen_pos) { + return get_depth(ivec2(screen_pos)); +} +#endif + +/*------------------------------------------------------------------------------ + VELOCITY +------------------------------------------------------------------------------*/ + +void depth_test_min(uvec2 pos, inout float min_depth, inout uvec2 min_pos) { + float depth = load_depth(pos); + + if (depth < min_depth) { + min_depth = depth; + min_pos = pos; + } +} + +// Returns velocity with closest depth (3x3 neighborhood) +void get_closest_pixel_velocity_3x3(in uvec2 group_pos, uvec2 group_top_left, out vec2 velocity) { + float min_depth = 1.0; + uvec2 min_pos = group_pos; + + depth_test_min(group_pos + kOffsets3x3[0], min_depth, min_pos); + depth_test_min(group_pos + kOffsets3x3[1], min_depth, min_pos); + depth_test_min(group_pos + kOffsets3x3[2], min_depth, min_pos); + depth_test_min(group_pos + kOffsets3x3[3], min_depth, min_pos); + depth_test_min(group_pos + kOffsets3x3[4], min_depth, min_pos); + depth_test_min(group_pos + kOffsets3x3[5], min_depth, min_pos); + depth_test_min(group_pos + kOffsets3x3[6], min_depth, min_pos); + depth_test_min(group_pos + kOffsets3x3[7], min_depth, min_pos); + depth_test_min(group_pos + kOffsets3x3[8], min_depth, min_pos); + + // Velocity out + velocity = imageLoad(velocity_buffer, ivec2(group_top_left + min_pos)).xy; +} + +/*------------------------------------------------------------------------------ + HISTORY SAMPLING +------------------------------------------------------------------------------*/ + +vec3 sample_catmull_rom_9(sampler2D stex, vec2 uv, vec2 resolution) { + // Source: https://gist.github.com/TheRealMJP/c83b8c0f46b63f3a88a5986f4fa982b1 + // License: https://gist.github.com/TheRealMJP/bc503b0b87b643d3505d41eab8b332ae + + // We're going to sample a a 4x4 grid of texels surrounding the target UV coordinate. We'll do this by rounding + // down the sample location to get the exact center of our "starting" texel. The starting texel will be at + // location [1, 1] in the grid, where [0, 0] is the top left corner. + vec2 sample_pos = uv * resolution; + vec2 texPos1 = floor(sample_pos - 0.5f) + 0.5f; + + // Compute the fractional offset from our starting texel to our original sample location, which we'll + // feed into the Catmull-Rom spline function to get our filter weights. + vec2 f = sample_pos - texPos1; + + // Compute the Catmull-Rom weights using the fractional offset that we calculated earlier. + // These equations are pre-expanded based on our knowledge of where the texels will be located, + // which lets us avoid having to evaluate a piece-wise function. + vec2 w0 = f * (-0.5f + f * (1.0f - 0.5f * f)); + vec2 w1 = 1.0f + f * f * (-2.5f + 1.5f * f); + vec2 w2 = f * (0.5f + f * (2.0f - 1.5f * f)); + vec2 w3 = f * f * (-0.5f + 0.5f * f); + + // Work out weighting factors and sampling offsets that will let us use bilinear filtering to + // simultaneously evaluate the middle 2 samples from the 4x4 grid. + vec2 w12 = w1 + w2; + vec2 offset12 = w2 / (w1 + w2); + + // Compute the final UV coordinates we'll use for sampling the texture + vec2 texPos0 = texPos1 - 1.0f; + vec2 texPos3 = texPos1 + 2.0f; + vec2 texPos12 = texPos1 + offset12; + + texPos0 /= resolution; + texPos3 /= resolution; + texPos12 /= resolution; + + vec3 result = vec3(0.0f, 0.0f, 0.0f); + + result += textureLod(stex, vec2(texPos0.x, texPos0.y), 0.0).xyz * w0.x * w0.y; + result += textureLod(stex, vec2(texPos12.x, texPos0.y), 0.0).xyz * w12.x * w0.y; + result += textureLod(stex, vec2(texPos3.x, texPos0.y), 0.0).xyz * w3.x * w0.y; + + result += textureLod(stex, vec2(texPos0.x, texPos12.y), 0.0).xyz * w0.x * w12.y; + result += textureLod(stex, vec2(texPos12.x, texPos12.y), 0.0).xyz * w12.x * w12.y; + result += textureLod(stex, vec2(texPos3.x, texPos12.y), 0.0).xyz * w3.x * w12.y; + + result += textureLod(stex, vec2(texPos0.x, texPos3.y), 0.0).xyz * w0.x * w3.y; + result += textureLod(stex, vec2(texPos12.x, texPos3.y), 0.0).xyz * w12.x * w3.y; + result += textureLod(stex, vec2(texPos3.x, texPos3.y), 0.0).xyz * w3.x * w3.y; + + return max(result, 0.0f); +} + +/*------------------------------------------------------------------------------ + HISTORY CLIPPING +------------------------------------------------------------------------------*/ + +// Based on "Temporal Reprojection Anti-Aliasing" - https://github.com/playdeadgames/temporal +vec3 clip_aabb(vec3 aabb_min, vec3 aabb_max, vec3 p, vec3 q) { + vec3 r = q - p; + vec3 rmax = (aabb_max - p.xyz); + vec3 rmin = (aabb_min - p.xyz); + + if (r.x > rmax.x + FLT_MIN) + r *= (rmax.x / r.x); + if (r.y > rmax.y + FLT_MIN) + r *= (rmax.y / r.y); + if (r.z > rmax.z + FLT_MIN) + r *= (rmax.z / r.z); + + if (r.x < rmin.x - FLT_MIN) + r *= (rmin.x / r.x); + if (r.y < rmin.y - FLT_MIN) + r *= (rmin.y / r.y); + if (r.z < rmin.z - FLT_MIN) + r *= (rmin.z / r.z); + + return p + r; +} + +// Clip history to the neighbourhood of the current sample +vec3 clip_history_3x3(uvec2 group_pos, vec3 color_history, vec2 velocity_closest) { + // Sample a 3x3 neighbourhood + vec3 s1 = load_color(group_pos + kOffsets3x3[0]); + vec3 s2 = load_color(group_pos + kOffsets3x3[1]); + vec3 s3 = load_color(group_pos + kOffsets3x3[2]); + vec3 s4 = load_color(group_pos + kOffsets3x3[3]); + vec3 s5 = load_color(group_pos + kOffsets3x3[4]); + vec3 s6 = load_color(group_pos + kOffsets3x3[5]); + vec3 s7 = load_color(group_pos + kOffsets3x3[6]); + vec3 s8 = load_color(group_pos + kOffsets3x3[7]); + vec3 s9 = load_color(group_pos + kOffsets3x3[8]); + + // Compute min and max (with an adaptive box size, which greatly reduces ghosting) + vec3 color_avg = (s1 + s2 + s3 + s4 + s5 + s6 + s7 + s8 + s9) * RPC_9; + vec3 color_avg2 = ((s1 * s1) + (s2 * s2) + (s3 * s3) + (s4 * s4) + (s5 * s5) + (s6 * s6) + (s7 * s7) + (s8 * s8) + (s9 * s9)) * RPC_9; + float box_size = mix(0.0f, 2.5f, smoothstep(0.02f, 0.0f, length(velocity_closest))); + vec3 dev = sqrt(abs(color_avg2 - (color_avg * color_avg))) * box_size; + vec3 color_min = color_avg - dev; + vec3 color_max = color_avg + dev; + + // Variance clipping + vec3 color = clip_aabb(color_min, color_max, clamp(color_avg, color_min, color_max), color_history); + + // Clamp to prevent NaNs + color = clamp(color, FLT_MIN, FLT_MAX); + + return color; +} + +/*------------------------------------------------------------------------------ + TAA +------------------------------------------------------------------------------*/ + +const vec3 lumCoeff = vec3(0.299f, 0.587f, 0.114f); + +float luminance(vec3 color) { + return max(dot(color, lumCoeff), 0.0001f); +} + +float get_factor_disocclusion(vec2 uv_reprojected, vec2 velocity) { + vec2 velocity_previous = imageLoad(last_velocity_buffer, ivec2(uv_reprojected * params.resolution)).xy; + vec2 velocity_texels = velocity * params.resolution; + vec2 prev_velocity_texels = velocity_previous * params.resolution; + float disocclusion = length(prev_velocity_texels - velocity_texels) - params.disocclusion_threshold; + return clamp(disocclusion * params.disocclusion_scale, 0.0, 1.0); +} + +vec3 temporal_antialiasing(uvec2 pos_group_top_left, uvec2 pos_group, uvec2 pos_screen, vec2 uv, sampler2D tex_history) { + // Get the velocity of the current pixel + vec2 velocity = imageLoad(velocity_buffer, ivec2(pos_screen)).xy; + + // Get reprojected uv + vec2 uv_reprojected = uv - velocity; + + // Get input color + vec3 color_input = load_color(pos_group); + + // Get history color (catmull-rom reduces a lot of the blurring that you get under motion) + vec3 color_history = sample_catmull_rom_9(tex_history, uv_reprojected, params.resolution).rgb; + + // Clip history to the neighbourhood of the current sample (fixes a lot of the ghosting). + vec2 velocity_closest = vec2(0.0); // This is best done by using the velocity with the closest depth. + get_closest_pixel_velocity_3x3(pos_group, pos_group_top_left, velocity_closest); + color_history = clip_history_3x3(pos_group, color_history, velocity_closest); + + // Compute blend factor + float blend_factor = RPC_16; // We want to be able to accumulate as many jitter samples as we generated, that is, 16. + { + // If re-projected UV is out of screen, converge to current color immediatel + float factor_screen = any(lessThan(uv_reprojected, vec2(0.0))) || any(greaterThan(uv_reprojected, vec2(1.0))) ? 1.0 : 0.0; + + // Increase blend factor when there is disocclusion (fixes a lot of the remaining ghosting). + float factor_disocclusion = get_factor_disocclusion(uv_reprojected, velocity); + + // Add to the blend factor + blend_factor = clamp(blend_factor + factor_screen + factor_disocclusion, 0.0, 1.0); + } + + // Resolve + vec3 color_resolved = vec3(0.0); + { + // Tonemap + color_history = reinhard(color_history); + color_input = reinhard(color_input); + + // Reduce flickering + float lum_color = luminance(color_input); + float lum_history = luminance(color_history); + float diff = abs(lum_color - lum_history) / max(lum_color, max(lum_history, 1.001)); + diff = 1.0 - diff; + diff = diff * diff; + blend_factor = mix(0.0, blend_factor, diff); + + // Lerp/blend + color_resolved = mix(color_history, color_input, blend_factor); + + // Inverse tonemap + color_resolved = reinhard_inverse(color_resolved); + } + + return color_resolved; +} + +void main() { +#ifdef USE_SUBGROUPS + populate_group_shared_memory(gl_WorkGroupID.xy, gl_LocalInvocationIndex); +#endif + + // Out of bounds check + if (any(greaterThanEqual(vec2(gl_GlobalInvocationID.xy), params.resolution))) { + return; + } + +#ifdef USE_SUBGROUPS + const uvec2 pos_group = gl_LocalInvocationID.xy; + const uvec2 pos_group_top_left = gl_WorkGroupID.xy * kGroupSize - kBorderSize; +#else + const uvec2 pos_group = gl_GlobalInvocationID.xy; + const uvec2 pos_group_top_left = uvec2(0, 0); +#endif + const uvec2 pos_screen = gl_GlobalInvocationID.xy; + const vec2 uv = (gl_GlobalInvocationID.xy + 0.5f) / params.resolution; + + vec3 result = temporal_antialiasing(pos_group_top_left, pos_group, pos_screen, uv, history_buffer); + imageStore(output_buffer, ivec2(gl_GlobalInvocationID.xy), vec4(result, 1.0)); +} |