summaryrefslogtreecommitdiff
path: root/servers/rendering/renderer_rd/shaders
diff options
context:
space:
mode:
authorHugo Locurcio <hugo.locurcio@hugo.pro>2021-07-09 10:28:33 +0200
committerHugo Locurcio <hugo.locurcio@hugo.pro>2022-08-30 20:03:38 +0200
commit09bedcead445d1f628d628efe6703570b84fe1d1 (patch)
treeece80d85c97375654d66065d90c3cf31a5533b2e /servers/rendering/renderer_rd/shaders
parente27b61d291ae65cd1171bd32c9b00912dc17c428 (diff)
Add a per-light volumetric fog energy property
Per-light energy gives more control to the user on the final result of volumetric fog. Specific lights can be fully excluded from volumetric fog by setting their volumetric fog energy to 0, which improves performance slightly. This can also be used to prevent short-lived dynamic effects from poorly interacting with volumetric fog, as it's updated over several frames by default unless temporal reprojection is disabled. Volumetric fog shadows now obey Light3D's Shadow Opacity property as well. The shadow fog fade property was removed as it had little visible impact on the final scene's rendering.
Diffstat (limited to 'servers/rendering/renderer_rd/shaders')
-rw-r--r--servers/rendering/renderer_rd/shaders/environment/volumetric_fog_process.glsl89
-rw-r--r--servers/rendering/renderer_rd/shaders/light_data_inc.glsl4
2 files changed, 49 insertions, 44 deletions
diff --git a/servers/rendering/renderer_rd/shaders/environment/volumetric_fog_process.glsl b/servers/rendering/renderer_rd/shaders/environment/volumetric_fog_process.glsl
index 6f79b9e771..07d5223472 100644
--- a/servers/rendering/renderer_rd/shaders/environment/volumetric_fog_process.glsl
+++ b/servers/rendering/renderer_rd/shaders/environment/volumetric_fog_process.glsl
@@ -270,6 +270,9 @@ const vec3 halton_map[TEMPORAL_FRAMES] = vec3[](
vec3(0.9375, 0.25925926, 0.12),
vec3(0.03125, 0.59259259, 0.32));
+// Higher values will make light in volumetric fog fade out sooner when it's occluded by shadow.
+const float INV_FOG_FADE = 10.0;
+
void main() {
vec3 fog_cell_size = 1.0 / vec3(params.fog_volume_size);
@@ -375,46 +378,48 @@ void main() {
if (total_density > 0.001) {
for (uint i = 0; i < params.directional_light_count; i++) {
- vec3 shadow_attenuation = vec3(1.0);
-
- if (directional_lights.data[i].shadow_opacity > 0.001) {
- float depth_z = -view_pos.z;
-
- vec4 pssm_coord;
- vec3 light_dir = directional_lights.data[i].direction;
- vec4 v = vec4(view_pos, 1.0);
- float z_range;
-
- if (depth_z < directional_lights.data[i].shadow_split_offsets.x) {
- pssm_coord = (directional_lights.data[i].shadow_matrix1 * v);
- pssm_coord /= pssm_coord.w;
- z_range = directional_lights.data[i].shadow_z_range.x;
-
- } else if (depth_z < directional_lights.data[i].shadow_split_offsets.y) {
- pssm_coord = (directional_lights.data[i].shadow_matrix2 * v);
- pssm_coord /= pssm_coord.w;
- z_range = directional_lights.data[i].shadow_z_range.y;
-
- } else if (depth_z < directional_lights.data[i].shadow_split_offsets.z) {
- pssm_coord = (directional_lights.data[i].shadow_matrix3 * v);
- pssm_coord /= pssm_coord.w;
- z_range = directional_lights.data[i].shadow_z_range.z;
-
- } else {
- pssm_coord = (directional_lights.data[i].shadow_matrix4 * v);
- pssm_coord /= pssm_coord.w;
- z_range = directional_lights.data[i].shadow_z_range.w;
- }
+ if (directional_lights.data[i].volumetric_fog_energy > 0.001) {
+ vec3 shadow_attenuation = vec3(1.0);
+
+ if (directional_lights.data[i].shadow_opacity > 0.001) {
+ float depth_z = -view_pos.z;
+
+ vec4 pssm_coord;
+ vec3 light_dir = directional_lights.data[i].direction;
+ vec4 v = vec4(view_pos, 1.0);
+ float z_range;
+
+ if (depth_z < directional_lights.data[i].shadow_split_offsets.x) {
+ pssm_coord = (directional_lights.data[i].shadow_matrix1 * v);
+ pssm_coord /= pssm_coord.w;
+ z_range = directional_lights.data[i].shadow_z_range.x;
+
+ } else if (depth_z < directional_lights.data[i].shadow_split_offsets.y) {
+ pssm_coord = (directional_lights.data[i].shadow_matrix2 * v);
+ pssm_coord /= pssm_coord.w;
+ z_range = directional_lights.data[i].shadow_z_range.y;
+
+ } else if (depth_z < directional_lights.data[i].shadow_split_offsets.z) {
+ pssm_coord = (directional_lights.data[i].shadow_matrix3 * v);
+ pssm_coord /= pssm_coord.w;
+ z_range = directional_lights.data[i].shadow_z_range.z;
+
+ } else {
+ pssm_coord = (directional_lights.data[i].shadow_matrix4 * v);
+ pssm_coord /= pssm_coord.w;
+ z_range = directional_lights.data[i].shadow_z_range.w;
+ }
- float depth = texture(sampler2D(directional_shadow_atlas, linear_sampler), pssm_coord.xy).r;
- float shadow = exp(min(0.0, (depth - pssm_coord.z)) * z_range * directional_lights.data[i].shadow_volumetric_fog_fade);
+ float depth = texture(sampler2D(directional_shadow_atlas, linear_sampler), pssm_coord.xy).r;
+ float shadow = exp(min(0.0, (depth - pssm_coord.z)) * z_range * INV_FOG_FADE);
- shadow = mix(shadow, 1.0, smoothstep(directional_lights.data[i].fade_from, directional_lights.data[i].fade_to, view_pos.z)); //done with negative values for performance
+ shadow = mix(shadow, 1.0, smoothstep(directional_lights.data[i].fade_from, directional_lights.data[i].fade_to, view_pos.z)); //done with negative values for performance
- shadow_attenuation = mix(vec3(0.0), vec3(1.0), shadow);
- }
+ shadow_attenuation = mix(vec3(1.0 - directional_lights.data[i].shadow_opacity), vec3(1.0), shadow);
+ }
- total_light += shadow_attenuation * directional_lights.data[i].color * directional_lights.data[i].energy * henyey_greenstein(dot(normalize(view_pos), normalize(directional_lights.data[i].direction)), params.phase_g);
+ total_light += shadow_attenuation * directional_lights.data[i].color * directional_lights.data[i].energy * henyey_greenstein(dot(normalize(view_pos), normalize(directional_lights.data[i].direction)), params.phase_g) * directional_lights.data[i].volumetric_fog_energy;
+ }
}
// Compute light from sky
@@ -481,7 +486,7 @@ void main() {
float d = distance(omni_lights.data[light_index].position, view_pos);
float shadow_attenuation = 1.0;
- if (d * omni_lights.data[light_index].inv_radius < 1.0) {
+ if (omni_lights.data[light_index].volumetric_fog_energy > 0.001 && d * omni_lights.data[light_index].inv_radius < 1.0) {
float attenuation = get_omni_attenuation(d, omni_lights.data[light_index].inv_radius, omni_lights.data[light_index].attenuation);
vec3 light = omni_lights.data[light_index].color;
@@ -509,9 +514,9 @@ void main() {
float depth = texture(sampler2D(shadow_atlas, linear_sampler), pos.xy).r;
- shadow_attenuation = exp(min(0.0, (depth - pos.z)) / omni_lights.data[light_index].inv_radius * omni_lights.data[light_index].shadow_volumetric_fog_fade);
+ shadow_attenuation = mix(1.0 - omni_lights.data[light_index].shadow_opacity, 1.0, exp(min(0.0, (depth - pos.z)) / omni_lights.data[light_index].inv_radius * INV_FOG_FADE));
}
- total_light += light * attenuation * shadow_attenuation * henyey_greenstein(dot(normalize(light_pos - view_pos), normalize(view_pos)), params.phase_g);
+ total_light += light * attenuation * shadow_attenuation * henyey_greenstein(dot(normalize(light_pos - view_pos), normalize(view_pos)), params.phase_g) * omni_lights.data[light_index].volumetric_fog_energy;
}
}
}
@@ -562,7 +567,7 @@ void main() {
float d = length(light_rel_vec);
float shadow_attenuation = 1.0;
- if (d * spot_lights.data[light_index].inv_radius < 1.0) {
+ if (spot_lights.data[light_index].volumetric_fog_energy > 0.001 && d * spot_lights.data[light_index].inv_radius < 1.0) {
float attenuation = get_omni_attenuation(d, spot_lights.data[light_index].inv_radius, spot_lights.data[light_index].attenuation);
vec3 spot_dir = spot_lights.data[light_index].direction;
@@ -595,9 +600,9 @@ void main() {
float depth = texture(sampler2D(shadow_atlas, linear_sampler), pos.xy).r;
- shadow_attenuation = exp(min(0.0, (depth - pos.z)) / spot_lights.data[light_index].inv_radius * spot_lights.data[light_index].shadow_volumetric_fog_fade);
+ shadow_attenuation = mix(1.0 - spot_lights.data[light_index].shadow_opacity, 1.0, exp(min(0.0, (depth - pos.z)) / spot_lights.data[light_index].inv_radius * INV_FOG_FADE));
}
- total_light += light * attenuation * shadow_attenuation * henyey_greenstein(dot(normalize(light_rel_vec), normalize(view_pos)), params.phase_g);
+ total_light += light * attenuation * shadow_attenuation * henyey_greenstein(dot(normalize(light_rel_vec), normalize(view_pos)), params.phase_g) * spot_lights.data[light_index].volumetric_fog_energy;
}
}
}
diff --git a/servers/rendering/renderer_rd/shaders/light_data_inc.glsl b/servers/rendering/renderer_rd/shaders/light_data_inc.glsl
index 799f7087b6..a7fca25a6b 100644
--- a/servers/rendering/renderer_rd/shaders/light_data_inc.glsl
+++ b/servers/rendering/renderer_rd/shaders/light_data_inc.glsl
@@ -25,7 +25,7 @@ struct LightData { //this structure needs to be as packed as possible
highp float soft_shadow_size; // for spot, it's the size in uv coordinates of the light, for omni it's the span angle
highp float soft_shadow_scale; // scales the shadow kernel for blurrier shadows
uint mask;
- mediump float shadow_volumetric_fog_fade;
+ mediump float volumetric_fog_energy;
uint bake_mode;
highp vec4 projector_rect; //projector rect in srgb decal atlas
};
@@ -65,7 +65,7 @@ struct DirectionalLightData {
highp float fade_to;
uvec2 pad;
uint bake_mode;
- mediump float shadow_volumetric_fog_fade;
+ mediump float volumetric_fog_energy;
highp vec4 shadow_bias;
highp vec4 shadow_normal_bias;
highp vec4 shadow_transmittance_bias;