diff options
author | Rémi Verschelde <rverschelde@gmail.com> | 2020-03-27 22:14:50 +0100 |
---|---|---|
committer | GitHub <noreply@github.com> | 2020-03-27 22:14:50 +0100 |
commit | fcfffd729789cd80aa77056ca089697b52297d04 (patch) | |
tree | fc1bb58e900436c48c03c52106eb57250442ae35 /servers/rendering/rasterizer_rd/rasterizer_scene_rd.cpp | |
parent | 307b1b3a5835ecdb477859785c673a07e248f904 (diff) | |
parent | a6f3bc7c696af03e3875f78e098d2476e409d15e (diff) |
Merge pull request #37361 from reduz/server-renames
Renaming of servers for coherency.
Diffstat (limited to 'servers/rendering/rasterizer_rd/rasterizer_scene_rd.cpp')
-rw-r--r-- | servers/rendering/rasterizer_rd/rasterizer_scene_rd.cpp | 4039 |
1 files changed, 4039 insertions, 0 deletions
diff --git a/servers/rendering/rasterizer_rd/rasterizer_scene_rd.cpp b/servers/rendering/rasterizer_rd/rasterizer_scene_rd.cpp new file mode 100644 index 0000000000..842f7046c9 --- /dev/null +++ b/servers/rendering/rasterizer_rd/rasterizer_scene_rd.cpp @@ -0,0 +1,4039 @@ +/*************************************************************************/ +/* rasterizer_scene_rd.cpp */ +/*************************************************************************/ +/* This file is part of: */ +/* GODOT ENGINE */ +/* https://godotengine.org */ +/*************************************************************************/ +/* Copyright (c) 2007-2020 Juan Linietsky, Ariel Manzur. */ +/* Copyright (c) 2014-2020 Godot Engine contributors (cf. AUTHORS.md). */ +/* */ +/* Permission is hereby granted, free of charge, to any person obtaining */ +/* a copy of this software and associated documentation files (the */ +/* "Software"), to deal in the Software without restriction, including */ +/* without limitation the rights to use, copy, modify, merge, publish, */ +/* distribute, sublicense, and/or sell copies of the Software, and to */ +/* permit persons to whom the Software is furnished to do so, subject to */ +/* the following conditions: */ +/* */ +/* The above copyright notice and this permission notice shall be */ +/* included in all copies or substantial portions of the Software. */ +/* */ +/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ +/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ +/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ +/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ +/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ +/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ +/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ +/*************************************************************************/ + +#include "rasterizer_scene_rd.h" + +#include "core/os/os.h" +#include "core/project_settings.h" +#include "servers/rendering/rendering_server_raster.h" + +uint64_t RasterizerSceneRD::auto_exposure_counter = 2; + +void RasterizerSceneRD::_clear_reflection_data(ReflectionData &rd) { + + rd.layers.clear(); + rd.radiance_base_cubemap = RID(); + if (rd.downsampled_radiance_cubemap.is_valid()) { + RD::get_singleton()->free(rd.downsampled_radiance_cubemap); + } + rd.downsampled_radiance_cubemap = RID(); + rd.downsampled_layer.mipmaps.clear(); + rd.coefficient_buffer = RID(); +} + +void RasterizerSceneRD::_update_reflection_data(ReflectionData &rd, int p_size, int p_mipmaps, bool p_use_array, RID p_base_cube, int p_base_layer, bool p_low_quality) { + //recreate radiance and all data + + int mipmaps = p_mipmaps; + uint32_t w = p_size, h = p_size; + + if (p_use_array) { + int layers = p_low_quality ? 8 : roughness_layers; + + for (int i = 0; i < layers; i++) { + ReflectionData::Layer layer; + uint32_t mmw = w; + uint32_t mmh = h; + layer.mipmaps.resize(mipmaps); + layer.views.resize(mipmaps); + for (int j = 0; j < mipmaps; j++) { + ReflectionData::Layer::Mipmap &mm = layer.mipmaps.write[j]; + mm.size.width = mmw; + mm.size.height = mmh; + for (int k = 0; k < 6; k++) { + mm.views[k] = RD::get_singleton()->texture_create_shared_from_slice(RD::TextureView(), p_base_cube, p_base_layer + i * 6 + k, j); + Vector<RID> fbtex; + fbtex.push_back(mm.views[k]); + mm.framebuffers[k] = RD::get_singleton()->framebuffer_create(fbtex); + } + + layer.views.write[j] = RD::get_singleton()->texture_create_shared_from_slice(RD::TextureView(), p_base_cube, p_base_layer + i * 6, j, RD::TEXTURE_SLICE_CUBEMAP); + + mmw = MAX(1, mmw >> 1); + mmh = MAX(1, mmh >> 1); + } + + rd.layers.push_back(layer); + } + + } else { + mipmaps = p_low_quality ? 8 : mipmaps; + //regular cubemap, lower quality (aliasing, less memory) + ReflectionData::Layer layer; + uint32_t mmw = w; + uint32_t mmh = h; + layer.mipmaps.resize(mipmaps); + layer.views.resize(mipmaps); + for (int j = 0; j < mipmaps; j++) { + ReflectionData::Layer::Mipmap &mm = layer.mipmaps.write[j]; + mm.size.width = mmw; + mm.size.height = mmh; + for (int k = 0; k < 6; k++) { + mm.views[k] = RD::get_singleton()->texture_create_shared_from_slice(RD::TextureView(), p_base_cube, p_base_layer + k, j); + Vector<RID> fbtex; + fbtex.push_back(mm.views[k]); + mm.framebuffers[k] = RD::get_singleton()->framebuffer_create(fbtex); + } + + layer.views.write[j] = RD::get_singleton()->texture_create_shared_from_slice(RD::TextureView(), p_base_cube, p_base_layer, j, RD::TEXTURE_SLICE_CUBEMAP); + + mmw = MAX(1, mmw >> 1); + mmh = MAX(1, mmh >> 1); + } + + rd.layers.push_back(layer); + } + + rd.radiance_base_cubemap = RD::get_singleton()->texture_create_shared_from_slice(RD::TextureView(), p_base_cube, p_base_layer, 0, RD::TEXTURE_SLICE_CUBEMAP); + + RD::TextureFormat tf; + tf.format = RD::DATA_FORMAT_R16G16B16A16_SFLOAT; + tf.width = 64; // Always 64x64 + tf.height = 64; + tf.type = RD::TEXTURE_TYPE_CUBE; + tf.array_layers = 6; + tf.mipmaps = 7; + tf.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_STORAGE_BIT | RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT; + + rd.downsampled_radiance_cubemap = RD::get_singleton()->texture_create(tf, RD::TextureView()); + { + uint32_t mmw = 64; + uint32_t mmh = 64; + rd.downsampled_layer.mipmaps.resize(7); + for (int j = 0; j < rd.downsampled_layer.mipmaps.size(); j++) { + ReflectionData::DownsampleLayer::Mipmap &mm = rd.downsampled_layer.mipmaps.write[j]; + mm.size.width = mmw; + mm.size.height = mmh; + mm.view = RD::get_singleton()->texture_create_shared_from_slice(RD::TextureView(), rd.downsampled_radiance_cubemap, 0, j, RD::TEXTURE_SLICE_CUBEMAP); + + mmw = MAX(1, mmw >> 1); + mmh = MAX(1, mmh >> 1); + } + } +} + +void RasterizerSceneRD::_create_reflection_fast_filter(ReflectionData &rd, bool p_use_arrays) { + + storage->get_effects()->cubemap_downsample(rd.radiance_base_cubemap, rd.downsampled_layer.mipmaps[0].view, rd.downsampled_layer.mipmaps[0].size); + + for (int i = 1; i < rd.downsampled_layer.mipmaps.size(); i++) { + storage->get_effects()->cubemap_downsample(rd.downsampled_layer.mipmaps[i - 1].view, rd.downsampled_layer.mipmaps[i].view, rd.downsampled_layer.mipmaps[i].size); + } + + Vector<RID> views; + if (p_use_arrays) { + for (int i = 1; i < rd.layers.size(); i++) { + views.push_back(rd.layers[i].views[0]); + } + } else { + for (int i = 1; i < rd.layers[0].views.size(); i++) { + views.push_back(rd.layers[0].views[i]); + } + } + + storage->get_effects()->cubemap_filter(rd.downsampled_radiance_cubemap, views, p_use_arrays); +} + +void RasterizerSceneRD::_create_reflection_importance_sample(ReflectionData &rd, bool p_use_arrays, int p_cube_side, int p_base_layer) { + + if (p_use_arrays) { + + //render directly to the layers + storage->get_effects()->cubemap_roughness(rd.radiance_base_cubemap, rd.layers[p_base_layer].views[0], p_cube_side, sky_ggx_samples_quality, float(p_base_layer) / (rd.layers.size() - 1.0), rd.layers[p_base_layer].mipmaps[0].size.x); + } else { + + storage->get_effects()->cubemap_roughness(rd.layers[0].views[p_base_layer - 1], rd.layers[0].views[p_base_layer], p_cube_side, sky_ggx_samples_quality, float(p_base_layer) / (rd.layers[0].mipmaps.size() - 1.0), rd.layers[0].mipmaps[p_base_layer].size.x); + } +} + +void RasterizerSceneRD::_update_reflection_mipmaps(ReflectionData &rd) { + + if (sky_use_cubemap_array) { + + for (int i = 0; i < rd.layers.size(); i++) { + for (int j = 0; j < rd.layers[i].mipmaps.size() - 1; j++) { + for (int k = 0; k < 6; k++) { + RID view = rd.layers[i].mipmaps[j].views[k]; + RID fb = rd.layers[i].mipmaps[j + 1].framebuffers[k]; + Vector2 size = rd.layers[i].mipmaps[j].size; + size = Vector2(1.0 / size.x, 1.0 / size.y); + storage->get_effects()->make_mipmap(view, fb, size); + } + } + } + } +} + +RID RasterizerSceneRD::sky_create() { + return sky_owner.make_rid(Sky()); +} + +void RasterizerSceneRD::_sky_invalidate(Sky *p_sky) { + if (!p_sky->dirty) { + p_sky->dirty = true; + p_sky->dirty_list = dirty_sky_list; + dirty_sky_list = p_sky; + } +} + +void RasterizerSceneRD::sky_set_radiance_size(RID p_sky, int p_radiance_size) { + Sky *sky = sky_owner.getornull(p_sky); + ERR_FAIL_COND(!sky); + ERR_FAIL_COND(p_radiance_size < 32 || p_radiance_size > 2048); + if (sky->radiance_size == p_radiance_size) { + return; + } + sky->radiance_size = p_radiance_size; + + if (sky->mode == RS::SKY_MODE_REALTIME && sky->radiance_size != 256) { + WARN_PRINT("Realtime Skies can only use a radiance size of 256. Radiance size will be set to 256 internally."); + sky->radiance_size = 256; + } + + _sky_invalidate(sky); + if (sky->radiance.is_valid()) { + RD::get_singleton()->free(sky->radiance); + sky->radiance = RID(); + } + _clear_reflection_data(sky->reflection); +} + +void RasterizerSceneRD::sky_set_mode(RID p_sky, RS::SkyMode p_mode) { + Sky *sky = sky_owner.getornull(p_sky); + ERR_FAIL_COND(!sky); + + if (sky->mode == p_mode) { + return; + } + + sky->mode = p_mode; + + if (sky->mode == RS::SKY_MODE_REALTIME && sky->radiance_size != 256) { + WARN_PRINT("Realtime Skies can only use a radiance size of 256. Radiance size will be set to 256 internally."); + sky_set_radiance_size(p_sky, 256); + } + + _sky_invalidate(sky); + if (sky->radiance.is_valid()) { + RD::get_singleton()->free(sky->radiance); + sky->radiance = RID(); + } + _clear_reflection_data(sky->reflection); +} + +void RasterizerSceneRD::sky_set_material(RID p_sky, RID p_material) { + Sky *sky = sky_owner.getornull(p_sky); + ERR_FAIL_COND(!sky); + sky->material = p_material; +} +void RasterizerSceneRD::_update_dirty_skys() { + + Sky *sky = dirty_sky_list; + + while (sky) { + + bool texture_set_dirty = false; + //update sky configuration if texture is missing + + if (sky->radiance.is_null()) { + int mipmaps = Image::get_image_required_mipmaps(sky->radiance_size, sky->radiance_size, Image::FORMAT_RGBAH) + 1; + + uint32_t w = sky->radiance_size, h = sky->radiance_size; + int layers = roughness_layers; + if (sky->mode == RS::SKY_MODE_REALTIME) { + layers = 8; + if (roughness_layers != 8) { + WARN_PRINT("When using REALTIME skies, roughness_layers should be set to 8 in the project settings for best quality reflections"); + } + } + + if (sky_use_cubemap_array) { + //array (higher quality, 6 times more memory) + RD::TextureFormat tf; + tf.array_layers = layers * 6; + tf.format = RD::DATA_FORMAT_R16G16B16A16_SFLOAT; + tf.type = RD::TEXTURE_TYPE_CUBE_ARRAY; + tf.mipmaps = mipmaps; + tf.width = w; + tf.height = h; + tf.usage_bits = RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT | RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_STORAGE_BIT; + + sky->radiance = RD::get_singleton()->texture_create(tf, RD::TextureView()); + + _update_reflection_data(sky->reflection, sky->radiance_size, mipmaps, true, sky->radiance, 0, sky->mode == RS::SKY_MODE_REALTIME); + + } else { + //regular cubemap, lower quality (aliasing, less memory) + RD::TextureFormat tf; + tf.array_layers = 6; + tf.format = RD::DATA_FORMAT_R16G16B16A16_SFLOAT; + tf.type = RD::TEXTURE_TYPE_CUBE; + tf.mipmaps = MIN(mipmaps, layers); + tf.width = w; + tf.height = h; + tf.usage_bits = RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT | RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_STORAGE_BIT; + + sky->radiance = RD::get_singleton()->texture_create(tf, RD::TextureView()); + + _update_reflection_data(sky->reflection, sky->radiance_size, MIN(mipmaps, layers), false, sky->radiance, 0, sky->mode == RS::SKY_MODE_REALTIME); + } + texture_set_dirty = true; + } + + // Create subpass buffers if they havent been created already + if (sky->half_res_pass.is_null() && !RD::get_singleton()->texture_is_valid(sky->half_res_pass) && sky->screen_size.x >= 4 && sky->screen_size.y >= 4) { + RD::TextureFormat tformat; + tformat.format = RD::DATA_FORMAT_R16G16B16A16_SFLOAT; + tformat.width = sky->screen_size.x / 2; + tformat.height = sky->screen_size.y / 2; + tformat.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT; + tformat.type = RD::TEXTURE_TYPE_2D; + + sky->half_res_pass = RD::get_singleton()->texture_create(tformat, RD::TextureView()); + Vector<RID> texs; + texs.push_back(sky->half_res_pass); + sky->half_res_framebuffer = RD::get_singleton()->framebuffer_create(texs); + texture_set_dirty = true; + } + + if (sky->quarter_res_pass.is_null() && !RD::get_singleton()->texture_is_valid(sky->quarter_res_pass) && sky->screen_size.x >= 4 && sky->screen_size.y >= 4) { + RD::TextureFormat tformat; + tformat.format = RD::DATA_FORMAT_R16G16B16A16_SFLOAT; + tformat.width = sky->screen_size.x / 4; + tformat.height = sky->screen_size.y / 4; + tformat.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT; + tformat.type = RD::TEXTURE_TYPE_2D; + + sky->quarter_res_pass = RD::get_singleton()->texture_create(tformat, RD::TextureView()); + Vector<RID> texs; + texs.push_back(sky->quarter_res_pass); + sky->quarter_res_framebuffer = RD::get_singleton()->framebuffer_create(texs); + texture_set_dirty = true; + } + + if (texture_set_dirty) { + for (int i = 0; i < SKY_TEXTURE_SET_MAX; i++) { + if (sky->texture_uniform_sets[i].is_valid() && RD::get_singleton()->uniform_set_is_valid(sky->texture_uniform_sets[i])) { + RD::get_singleton()->free(sky->texture_uniform_sets[i]); + sky->texture_uniform_sets[i] = RID(); + } + } + } + + sky->reflection.dirty = true; + + Sky *next = sky->dirty_list; + sky->dirty_list = nullptr; + sky->dirty = false; + sky = next; + } + + dirty_sky_list = nullptr; +} + +RID RasterizerSceneRD::sky_get_radiance_texture_rd(RID p_sky) const { + Sky *sky = sky_owner.getornull(p_sky); + ERR_FAIL_COND_V(!sky, RID()); + + return sky->radiance; +} + +RID RasterizerSceneRD::sky_get_radiance_uniform_set_rd(RID p_sky, RID p_shader, int p_set) const { + Sky *sky = sky_owner.getornull(p_sky); + ERR_FAIL_COND_V(!sky, RID()); + + if (sky->uniform_set.is_null() || !RD::get_singleton()->uniform_set_is_valid(sky->uniform_set)) { + + sky->uniform_set = RID(); + if (sky->radiance.is_valid()) { + Vector<RD::Uniform> uniforms; + { + RD::Uniform u; + u.type = RD::UNIFORM_TYPE_TEXTURE; + u.binding = 0; + u.ids.push_back(sky->radiance); + uniforms.push_back(u); + } + + sky->uniform_set = RD::get_singleton()->uniform_set_create(uniforms, p_shader, p_set); + } + } + + return sky->uniform_set; +} + +RID RasterizerSceneRD::_get_sky_textures(Sky *p_sky, SkyTextureSetVersion p_version) { + + if (p_sky->texture_uniform_sets[p_version].is_valid() && RD::get_singleton()->uniform_set_is_valid(p_sky->texture_uniform_sets[p_version])) { + return p_sky->texture_uniform_sets[p_version]; + } + Vector<RD::Uniform> uniforms; + { + RD::Uniform u; + u.type = RD::UNIFORM_TYPE_TEXTURE; + u.binding = 0; + if (p_sky->radiance.is_valid() && p_version <= SKY_TEXTURE_SET_QUARTER_RES) { + u.ids.push_back(p_sky->radiance); + } else { + u.ids.push_back(storage->texture_rd_get_default(RasterizerStorageRD::DEFAULT_RD_TEXTURE_CUBEMAP_BLACK)); + } + uniforms.push_back(u); + } + { + RD::Uniform u; + u.type = RD::UNIFORM_TYPE_TEXTURE; + u.binding = 1; // half res + if (p_sky->half_res_pass.is_valid() && p_version != SKY_TEXTURE_SET_HALF_RES && p_version != SKY_TEXTURE_SET_CUBEMAP_HALF_RES) { + if (p_version >= SKY_TEXTURE_SET_CUBEMAP) { + u.ids.push_back(p_sky->reflection.layers[0].views[1]); + } else { + u.ids.push_back(p_sky->half_res_pass); + } + } else { + if (p_version < SKY_TEXTURE_SET_CUBEMAP) { + u.ids.push_back(storage->texture_rd_get_default(RasterizerStorageRD::DEFAULT_RD_TEXTURE_WHITE)); + } else { + u.ids.push_back(storage->texture_rd_get_default(RasterizerStorageRD::DEFAULT_RD_TEXTURE_CUBEMAP_BLACK)); + } + } + uniforms.push_back(u); + } + { + RD::Uniform u; + u.type = RD::UNIFORM_TYPE_TEXTURE; + u.binding = 2; // quarter res + if (p_sky->quarter_res_pass.is_valid() && p_version != SKY_TEXTURE_SET_QUARTER_RES && p_version != SKY_TEXTURE_SET_CUBEMAP_QUARTER_RES) { + if (p_version >= SKY_TEXTURE_SET_CUBEMAP) { + u.ids.push_back(p_sky->reflection.layers[0].views[2]); + } else { + u.ids.push_back(p_sky->quarter_res_pass); + } + } else { + if (p_version < SKY_TEXTURE_SET_CUBEMAP) { + u.ids.push_back(storage->texture_rd_get_default(RasterizerStorageRD::DEFAULT_RD_TEXTURE_WHITE)); + } else { + u.ids.push_back(storage->texture_rd_get_default(RasterizerStorageRD::DEFAULT_RD_TEXTURE_CUBEMAP_BLACK)); + } + } + uniforms.push_back(u); + } + + p_sky->texture_uniform_sets[p_version] = RD::get_singleton()->uniform_set_create(uniforms, sky_shader.default_shader_rd, SKY_SET_TEXTURES); + return p_sky->texture_uniform_sets[p_version]; +} + +RID RasterizerSceneRD::sky_get_material(RID p_sky) const { + Sky *sky = sky_owner.getornull(p_sky); + ERR_FAIL_COND_V(!sky, RID()); + + return sky->material; +} + +void RasterizerSceneRD::_draw_sky(bool p_can_continue, RID p_fb, RID p_environment, const CameraMatrix &p_projection, const Transform &p_transform) { + + ERR_FAIL_COND(!is_environment(p_environment)); + + Sky *sky = sky_owner.getornull(environment_get_sky(p_environment)); + ERR_FAIL_COND(!sky); + + RID sky_material = sky_get_material(environment_get_sky(p_environment)); + + SkyMaterialData *material = NULL; + + if (sky_material.is_valid()) { + material = (SkyMaterialData *)storage->material_get_data(sky_material, RasterizerStorageRD::SHADER_TYPE_SKY); + if (!material || !material->shader_data->valid) { + material = NULL; + } + } + + if (!material) { + sky_material = sky_shader.default_material; + material = (SkyMaterialData *)storage->material_get_data(sky_material, RasterizerStorageRD::SHADER_TYPE_SKY); + } + + ERR_FAIL_COND(!material); + + SkyShaderData *shader_data = material->shader_data; + + ERR_FAIL_COND(!shader_data); + + Basis sky_transform = environment_get_sky_orientation(p_environment); + sky_transform.invert(); + + float multiplier = environment_get_bg_energy(p_environment); + float custom_fov = environment_get_sky_custom_fov(p_environment); + // Camera + CameraMatrix camera; + + if (custom_fov) { + + float near_plane = p_projection.get_z_near(); + float far_plane = p_projection.get_z_far(); + float aspect = p_projection.get_aspect(); + + camera.set_perspective(custom_fov, aspect, near_plane, far_plane); + + } else { + camera = p_projection; + } + + sky_transform = p_transform.basis * sky_transform; + + if (shader_data->uses_quarter_res) { + RenderPipelineVertexFormatCacheRD *pipeline = &shader_data->pipelines[SKY_VERSION_QUARTER_RES]; + + RID texture_uniform_set = _get_sky_textures(sky, SKY_TEXTURE_SET_QUARTER_RES); + + Vector<Color> clear_colors; + clear_colors.push_back(Color(0.0, 0.0, 0.0)); + + RD::DrawListID draw_list = RD::get_singleton()->draw_list_begin(sky->quarter_res_framebuffer, RD::INITIAL_ACTION_CLEAR, RD::FINAL_ACTION_READ, RD::INITIAL_ACTION_CLEAR, RD::FINAL_ACTION_DISCARD, clear_colors); + storage->get_effects()->render_sky(draw_list, time, sky->quarter_res_framebuffer, sky_scene_state.sampler_uniform_set, sky_scene_state.light_uniform_set, pipeline, material->uniform_set, texture_uniform_set, camera, sky_transform, multiplier, p_transform.origin); + RD::get_singleton()->draw_list_end(); + } + + if (shader_data->uses_half_res) { + RenderPipelineVertexFormatCacheRD *pipeline = &shader_data->pipelines[SKY_VERSION_HALF_RES]; + + RID texture_uniform_set = _get_sky_textures(sky, SKY_TEXTURE_SET_HALF_RES); + + Vector<Color> clear_colors; + clear_colors.push_back(Color(0.0, 0.0, 0.0)); + + RD::DrawListID draw_list = RD::get_singleton()->draw_list_begin(sky->half_res_framebuffer, RD::INITIAL_ACTION_CLEAR, RD::FINAL_ACTION_READ, RD::INITIAL_ACTION_CLEAR, RD::FINAL_ACTION_DISCARD, clear_colors); + storage->get_effects()->render_sky(draw_list, time, sky->half_res_framebuffer, sky_scene_state.sampler_uniform_set, sky_scene_state.light_uniform_set, pipeline, material->uniform_set, texture_uniform_set, camera, sky_transform, multiplier, p_transform.origin); + RD::get_singleton()->draw_list_end(); + } + + RenderPipelineVertexFormatCacheRD *pipeline = &shader_data->pipelines[SKY_VERSION_BACKGROUND]; + + RID texture_uniform_set = _get_sky_textures(sky, SKY_TEXTURE_SET_BACKGROUND); + + RD::DrawListID draw_list = RD::get_singleton()->draw_list_begin(p_fb, RD::INITIAL_ACTION_CONTINUE, p_can_continue ? RD::FINAL_ACTION_CONTINUE : RD::FINAL_ACTION_READ, RD::INITIAL_ACTION_CONTINUE, p_can_continue ? RD::FINAL_ACTION_CONTINUE : RD::FINAL_ACTION_READ); + storage->get_effects()->render_sky(draw_list, time, p_fb, sky_scene_state.sampler_uniform_set, sky_scene_state.light_uniform_set, pipeline, material->uniform_set, texture_uniform_set, camera, sky_transform, multiplier, p_transform.origin); + RD::get_singleton()->draw_list_end(); +} + +void RasterizerSceneRD::_setup_sky(RID p_environment, const Vector3 &p_position, const Size2i p_screen_size) { + + ERR_FAIL_COND(!is_environment(p_environment)); + + Sky *sky = sky_owner.getornull(environment_get_sky(p_environment)); + ERR_FAIL_COND(!sky); + + RID sky_material = sky_get_material(environment_get_sky(p_environment)); + + SkyMaterialData *material = NULL; + + if (sky_material.is_valid()) { + material = (SkyMaterialData *)storage->material_get_data(sky_material, RasterizerStorageRD::SHADER_TYPE_SKY); + if (!material || !material->shader_data->valid) { + material = NULL; + } + } + + if (!material) { + sky_material = sky_shader.default_material; + material = (SkyMaterialData *)storage->material_get_data(sky_material, RasterizerStorageRD::SHADER_TYPE_SKY); + } + + ERR_FAIL_COND(!material); + + SkyShaderData *shader_data = material->shader_data; + + ERR_FAIL_COND(!shader_data); + + // Invalidate supbass buffers if screen size changes + if (sky->screen_size != p_screen_size) { + sky->screen_size = p_screen_size; + sky->screen_size.x = sky->screen_size.x < 4 ? 4 : sky->screen_size.x; + sky->screen_size.y = sky->screen_size.y < 4 ? 4 : sky->screen_size.y; + if (shader_data->uses_half_res) { + if (sky->half_res_pass.is_valid()) { + RD::get_singleton()->free(sky->half_res_pass); + sky->half_res_pass = RID(); + } + _sky_invalidate(sky); + } + if (shader_data->uses_quarter_res) { + if (sky->quarter_res_pass.is_valid()) { + RD::get_singleton()->free(sky->quarter_res_pass); + sky->quarter_res_pass = RID(); + } + _sky_invalidate(sky); + } + } + + // Create new subpass buffers if necessary + if ((shader_data->uses_half_res && sky->half_res_pass.is_null()) || + (shader_data->uses_quarter_res && sky->quarter_res_pass.is_null()) || + sky->radiance.is_null()) { + _sky_invalidate(sky); + _update_dirty_skys(); + } + + if (shader_data->uses_time && time - sky->prev_time > 0.00001) { + + sky->prev_time = time; + sky->reflection.dirty = true; + RenderingServerRaster::redraw_request(); + } + + if (material != sky->prev_material) { + + sky->prev_material = material; + sky->reflection.dirty = true; + } + + if (material->uniform_set_updated) { + + material->uniform_set_updated = false; + sky->reflection.dirty = true; + } + + if (!p_position.is_equal_approx(sky->prev_position) && shader_data->uses_position) { + + sky->prev_position = p_position; + sky->reflection.dirty = true; + } + + if (shader_data->uses_light || sky_scene_state.light_uniform_set.is_null()) { + // Check whether the directional_light_buffer changes + bool light_data_dirty = false; + + if (sky_scene_state.directional_light_count != sky_scene_state.last_frame_directional_light_count) { + light_data_dirty = true; + for (uint32_t i = sky_scene_state.directional_light_count; i < sky_scene_state.max_directional_lights; i++) { + sky_scene_state.directional_lights[i].enabled = false; + } + } + if (!light_data_dirty) { + for (uint32_t i = 0; i < sky_scene_state.directional_light_count; i++) { + if (sky_scene_state.directional_lights[i].direction[0] != sky_scene_state.last_frame_directional_lights[i].direction[0] || + sky_scene_state.directional_lights[i].direction[1] != sky_scene_state.last_frame_directional_lights[i].direction[1] || + sky_scene_state.directional_lights[i].direction[2] != sky_scene_state.last_frame_directional_lights[i].direction[2] || + sky_scene_state.directional_lights[i].energy != sky_scene_state.last_frame_directional_lights[i].energy || + sky_scene_state.directional_lights[i].color[0] != sky_scene_state.last_frame_directional_lights[i].color[0] || + sky_scene_state.directional_lights[i].color[1] != sky_scene_state.last_frame_directional_lights[i].color[1] || + sky_scene_state.directional_lights[i].color[2] != sky_scene_state.last_frame_directional_lights[i].color[2] || + sky_scene_state.directional_lights[i].enabled != sky_scene_state.last_frame_directional_lights[i].enabled) { + light_data_dirty = true; + break; + } + } + } + + if (light_data_dirty || sky_scene_state.light_uniform_set.is_null()) { + + RD::get_singleton()->buffer_update(sky_scene_state.directional_light_buffer, 0, sizeof(SkyDirectionalLightData) * sky_scene_state.max_directional_lights, sky_scene_state.directional_lights, true); + + if (sky_scene_state.light_uniform_set.is_valid() && RD::get_singleton()->uniform_set_is_valid(sky_scene_state.light_uniform_set)) { + RD::get_singleton()->free(sky_scene_state.light_uniform_set); + } + + Vector<RD::Uniform> uniforms; + { + RD::Uniform u; + u.binding = 0; + u.type = RD::UNIFORM_TYPE_UNIFORM_BUFFER; + u.ids.push_back(sky_scene_state.directional_light_buffer); + uniforms.push_back(u); + } + + sky_scene_state.light_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, sky_shader.default_shader_rd, SKY_SET_LIGHTS); + + RasterizerSceneRD::SkyDirectionalLightData *temp = sky_scene_state.last_frame_directional_lights; + sky_scene_state.last_frame_directional_lights = sky_scene_state.directional_lights; + sky_scene_state.directional_lights = temp; + sky_scene_state.last_frame_directional_light_count = sky_scene_state.directional_light_count; + sky->reflection.dirty = true; + } + } +} + +void RasterizerSceneRD::_update_sky(RID p_environment, const CameraMatrix &p_projection, const Transform &p_transform) { + + ERR_FAIL_COND(!is_environment(p_environment)); + + Sky *sky = sky_owner.getornull(environment_get_sky(p_environment)); + ERR_FAIL_COND(!sky); + + RID sky_material = sky_get_material(environment_get_sky(p_environment)); + + SkyMaterialData *material = NULL; + + if (sky_material.is_valid()) { + material = (SkyMaterialData *)storage->material_get_data(sky_material, RasterizerStorageRD::SHADER_TYPE_SKY); + if (!material || !material->shader_data->valid) { + material = NULL; + } + } + + if (!material) { + sky_material = sky_shader.default_material; + material = (SkyMaterialData *)storage->material_get_data(sky_material, RasterizerStorageRD::SHADER_TYPE_SKY); + } + + ERR_FAIL_COND(!material); + + SkyShaderData *shader_data = material->shader_data; + + ERR_FAIL_COND(!shader_data); + + float multiplier = environment_get_bg_energy(p_environment); + + // Update radiance cubemap + if (sky->reflection.dirty) { + + static const Vector3 view_normals[6] = { + Vector3(+1, 0, 0), + Vector3(-1, 0, 0), + Vector3(0, +1, 0), + Vector3(0, -1, 0), + Vector3(0, 0, +1), + Vector3(0, 0, -1) + }; + static const Vector3 view_up[6] = { + Vector3(0, -1, 0), + Vector3(0, -1, 0), + Vector3(0, 0, +1), + Vector3(0, 0, -1), + Vector3(0, -1, 0), + Vector3(0, -1, 0) + }; + + CameraMatrix cm; + cm.set_perspective(90, 1, 0.01, 10.0); + CameraMatrix correction; + correction.set_depth_correction(true); + cm = correction * cm; + + if (shader_data->uses_quarter_res) { + RenderPipelineVertexFormatCacheRD *pipeline = &shader_data->pipelines[SKY_VERSION_CUBEMAP_QUARTER_RES]; + + Vector<Color> clear_colors; + clear_colors.push_back(Color(0.0, 0.0, 0.0)); + RD::DrawListID cubemap_draw_list; + + for (int i = 0; i < 6; i++) { + Transform local_view; + local_view.set_look_at(Vector3(0, 0, 0), view_normals[i], view_up[i]); + RID texture_uniform_set = _get_sky_textures(sky, SKY_TEXTURE_SET_CUBEMAP_QUARTER_RES); + + cubemap_draw_list = RD::get_singleton()->draw_list_begin(sky->reflection.layers[0].mipmaps[2].framebuffers[i], RD::INITIAL_ACTION_KEEP, RD::FINAL_ACTION_READ, RD::INITIAL_ACTION_KEEP, RD::FINAL_ACTION_DISCARD); + storage->get_effects()->render_sky(cubemap_draw_list, time, sky->reflection.layers[0].mipmaps[2].framebuffers[i], sky_scene_state.sampler_uniform_set, sky_scene_state.light_uniform_set, pipeline, material->uniform_set, texture_uniform_set, cm, local_view.basis, multiplier, p_transform.origin); + RD::get_singleton()->draw_list_end(); + } + } + + if (shader_data->uses_half_res) { + RenderPipelineVertexFormatCacheRD *pipeline = &shader_data->pipelines[SKY_VERSION_CUBEMAP_HALF_RES]; + + Vector<Color> clear_colors; + clear_colors.push_back(Color(0.0, 0.0, 0.0)); + RD::DrawListID cubemap_draw_list; + + for (int i = 0; i < 6; i++) { + Transform local_view; + local_view.set_look_at(Vector3(0, 0, 0), view_normals[i], view_up[i]); + RID texture_uniform_set = _get_sky_textures(sky, SKY_TEXTURE_SET_CUBEMAP_HALF_RES); + + cubemap_draw_list = RD::get_singleton()->draw_list_begin(sky->reflection.layers[0].mipmaps[1].framebuffers[i], RD::INITIAL_ACTION_KEEP, RD::FINAL_ACTION_READ, RD::INITIAL_ACTION_KEEP, RD::FINAL_ACTION_DISCARD); + storage->get_effects()->render_sky(cubemap_draw_list, time, sky->reflection.layers[0].mipmaps[1].framebuffers[i], sky_scene_state.sampler_uniform_set, sky_scene_state.light_uniform_set, pipeline, material->uniform_set, texture_uniform_set, cm, local_view.basis, multiplier, p_transform.origin); + RD::get_singleton()->draw_list_end(); + } + } + + RD::DrawListID cubemap_draw_list; + RenderPipelineVertexFormatCacheRD *pipeline = &shader_data->pipelines[SKY_VERSION_CUBEMAP]; + + for (int i = 0; i < 6; i++) { + Transform local_view; + local_view.set_look_at(Vector3(0, 0, 0), view_normals[i], view_up[i]); + RID texture_uniform_set = _get_sky_textures(sky, SKY_TEXTURE_SET_CUBEMAP); + + cubemap_draw_list = RD::get_singleton()->draw_list_begin(sky->reflection.layers[0].mipmaps[0].framebuffers[i], RD::INITIAL_ACTION_KEEP, RD::FINAL_ACTION_READ, RD::INITIAL_ACTION_KEEP, RD::FINAL_ACTION_DISCARD); + storage->get_effects()->render_sky(cubemap_draw_list, time, sky->reflection.layers[0].mipmaps[0].framebuffers[i], sky_scene_state.sampler_uniform_set, sky_scene_state.light_uniform_set, pipeline, material->uniform_set, texture_uniform_set, cm, local_view.basis, multiplier, p_transform.origin); + RD::get_singleton()->draw_list_end(); + } + if (sky_use_cubemap_array) { + if (sky->mode == RS::SKY_MODE_QUALITY) { + for (int i = 1; i < sky->reflection.layers.size(); i++) { + _create_reflection_importance_sample(sky->reflection, sky_use_cubemap_array, 10, i); + } + } else { + _create_reflection_fast_filter(sky->reflection, sky_use_cubemap_array); + } + + _update_reflection_mipmaps(sky->reflection); + } else { + if (sky->mode == RS::SKY_MODE_QUALITY) { + for (int i = 1; i < sky->reflection.layers[0].mipmaps.size(); i++) { + _create_reflection_importance_sample(sky->reflection, sky_use_cubemap_array, 10, i); + } + } else { + _create_reflection_fast_filter(sky->reflection, sky_use_cubemap_array); + } + } + + sky->reflection.dirty = false; + } +} + +/* SKY SHADER */ + +void RasterizerSceneRD::SkyShaderData::set_code(const String &p_code) { + //compile + + code = p_code; + valid = false; + ubo_size = 0; + uniforms.clear(); + + if (code == String()) { + return; //just invalid, but no error + } + + ShaderCompilerRD::GeneratedCode gen_code; + ShaderCompilerRD::IdentifierActions actions; + + uses_time = false; + uses_half_res = false; + uses_quarter_res = false; + uses_position = false; + uses_light = false; + + actions.render_mode_flags["use_half_res_pass"] = &uses_half_res; + actions.render_mode_flags["use_quarter_res_pass"] = &uses_quarter_res; + + actions.usage_flag_pointers["TIME"] = &uses_time; + actions.usage_flag_pointers["POSITION"] = &uses_position; + actions.usage_flag_pointers["LIGHT0_ENABLED"] = &uses_light; + actions.usage_flag_pointers["LIGHT0_ENERGY"] = &uses_light; + actions.usage_flag_pointers["LIGHT0_DIRECTION"] = &uses_light; + actions.usage_flag_pointers["LIGHT0_COLOR"] = &uses_light; + actions.usage_flag_pointers["LIGHT1_ENABLED"] = &uses_light; + actions.usage_flag_pointers["LIGHT1_ENERGY"] = &uses_light; + actions.usage_flag_pointers["LIGHT1_DIRECTION"] = &uses_light; + actions.usage_flag_pointers["LIGHT1_COLOR"] = &uses_light; + actions.usage_flag_pointers["LIGHT2_ENABLED"] = &uses_light; + actions.usage_flag_pointers["LIGHT2_ENERGY"] = &uses_light; + actions.usage_flag_pointers["LIGHT2_DIRECTION"] = &uses_light; + actions.usage_flag_pointers["LIGHT2_COLOR"] = &uses_light; + actions.usage_flag_pointers["LIGHT3_ENABLED"] = &uses_light; + actions.usage_flag_pointers["LIGHT3_ENERGY"] = &uses_light; + actions.usage_flag_pointers["LIGHT3_DIRECTION"] = &uses_light; + actions.usage_flag_pointers["LIGHT3_COLOR"] = &uses_light; + + actions.uniforms = &uniforms; + + RasterizerSceneRD *scene_singleton = (RasterizerSceneRD *)RasterizerSceneRD::singleton; + + Error err = scene_singleton->sky_shader.compiler.compile(RS::SHADER_SKY, code, &actions, path, gen_code); + + ERR_FAIL_COND(err != OK); + + if (version.is_null()) { + version = scene_singleton->sky_shader.shader.version_create(); + } + +#if 0 + print_line("**compiling shader:"); + print_line("**defines:\n"); + for (int i = 0; i < gen_code.defines.size(); i++) { + print_line(gen_code.defines[i]); + } + print_line("\n**uniforms:\n" + gen_code.uniforms); + // print_line("\n**vertex_globals:\n" + gen_code.vertex_global); + // print_line("\n**vertex_code:\n" + gen_code.vertex); + print_line("\n**fragment_globals:\n" + gen_code.fragment_global); + print_line("\n**fragment_code:\n" + gen_code.fragment); + print_line("\n**light_code:\n" + gen_code.light); +#endif + + scene_singleton->sky_shader.shader.version_set_code(version, gen_code.uniforms, gen_code.vertex_global, gen_code.vertex, gen_code.fragment_global, gen_code.light, gen_code.fragment, gen_code.defines); + ERR_FAIL_COND(!scene_singleton->sky_shader.shader.version_is_valid(version)); + + ubo_size = gen_code.uniform_total_size; + ubo_offsets = gen_code.uniform_offsets; + texture_uniforms = gen_code.texture_uniforms; + + //update pipelines + + for (int i = 0; i < SKY_VERSION_MAX; i++) { + + RD::PipelineDepthStencilState depth_stencil_state; + depth_stencil_state.enable_depth_test = true; + depth_stencil_state.depth_compare_operator = RD::COMPARE_OP_LESS_OR_EQUAL; + + RID shader_variant = scene_singleton->sky_shader.shader.version_get_shader(version, i); + pipelines[i].setup(shader_variant, RD::RENDER_PRIMITIVE_TRIANGLES, RD::PipelineRasterizationState(), RD::PipelineMultisampleState(), depth_stencil_state, RD::PipelineColorBlendState::create_disabled(), 0); + } + + valid = true; +} + +void RasterizerSceneRD::SkyShaderData::set_default_texture_param(const StringName &p_name, RID p_texture) { + if (!p_texture.is_valid()) { + default_texture_params.erase(p_name); + } else { + default_texture_params[p_name] = p_texture; + } +} + +void RasterizerSceneRD::SkyShaderData::get_param_list(List<PropertyInfo> *p_param_list) const { + + Map<int, StringName> order; + + for (Map<StringName, ShaderLanguage::ShaderNode::Uniform>::Element *E = uniforms.front(); E; E = E->next()) { + + if (E->get().texture_order >= 0) { + order[E->get().texture_order + 100000] = E->key(); + } else { + order[E->get().order] = E->key(); + } + } + + for (Map<int, StringName>::Element *E = order.front(); E; E = E->next()) { + + PropertyInfo pi = ShaderLanguage::uniform_to_property_info(uniforms[E->get()]); + pi.name = E->get(); + p_param_list->push_back(pi); + } +} + +bool RasterizerSceneRD::SkyShaderData::is_param_texture(const StringName &p_param) const { + if (!uniforms.has(p_param)) { + return false; + } + + return uniforms[p_param].texture_order >= 0; +} + +bool RasterizerSceneRD::SkyShaderData::is_animated() const { + return false; +} + +bool RasterizerSceneRD::SkyShaderData::casts_shadows() const { + return false; +} + +Variant RasterizerSceneRD::SkyShaderData::get_default_parameter(const StringName &p_parameter) const { + if (uniforms.has(p_parameter)) { + ShaderLanguage::ShaderNode::Uniform uniform = uniforms[p_parameter]; + Vector<ShaderLanguage::ConstantNode::Value> default_value = uniform.default_value; + return ShaderLanguage::constant_value_to_variant(default_value, uniform.type, uniform.hint); + } + return Variant(); +} + +RasterizerSceneRD::SkyShaderData::SkyShaderData() { + valid = false; +} + +RasterizerSceneRD::SkyShaderData::~SkyShaderData() { + RasterizerSceneRD *scene_singleton = (RasterizerSceneRD *)RasterizerSceneRD::singleton; + ERR_FAIL_COND(!scene_singleton); + //pipeline variants will clear themselves if shader is gone + if (version.is_valid()) { + scene_singleton->sky_shader.shader.version_free(version); + } +} + +RasterizerStorageRD::ShaderData *RasterizerSceneRD::_create_sky_shader_func() { + SkyShaderData *shader_data = memnew(SkyShaderData); + return shader_data; +} + +void RasterizerSceneRD::SkyMaterialData::update_parameters(const Map<StringName, Variant> &p_parameters, bool p_uniform_dirty, bool p_textures_dirty) { + + RasterizerSceneRD *scene_singleton = (RasterizerSceneRD *)RasterizerSceneRD::singleton; + + uniform_set_updated = true; + + if ((uint32_t)ubo_data.size() != shader_data->ubo_size) { + p_uniform_dirty = true; + if (uniform_buffer.is_valid()) { + RD::get_singleton()->free(uniform_buffer); + uniform_buffer = RID(); + } + + ubo_data.resize(shader_data->ubo_size); + if (ubo_data.size()) { + uniform_buffer = RD::get_singleton()->uniform_buffer_create(ubo_data.size()); + memset(ubo_data.ptrw(), 0, ubo_data.size()); //clear + } + + //clear previous uniform set + if (uniform_set.is_valid() && RD::get_singleton()->uniform_set_is_valid(uniform_set)) { + RD::get_singleton()->free(uniform_set); + uniform_set = RID(); + } + } + + //check whether buffer changed + if (p_uniform_dirty && ubo_data.size()) { + + update_uniform_buffer(shader_data->uniforms, shader_data->ubo_offsets.ptr(), p_parameters, ubo_data.ptrw(), ubo_data.size(), false); + RD::get_singleton()->buffer_update(uniform_buffer, 0, ubo_data.size(), ubo_data.ptrw()); + } + + uint32_t tex_uniform_count = shader_data->texture_uniforms.size(); + + if ((uint32_t)texture_cache.size() != tex_uniform_count) { + texture_cache.resize(tex_uniform_count); + p_textures_dirty = true; + + //clear previous uniform set + if (uniform_set.is_valid() && RD::get_singleton()->uniform_set_is_valid(uniform_set)) { + RD::get_singleton()->free(uniform_set); + uniform_set = RID(); + } + } + + if (p_textures_dirty && tex_uniform_count) { + + update_textures(p_parameters, shader_data->default_texture_params, shader_data->texture_uniforms, texture_cache.ptrw(), true); + } + + if (shader_data->ubo_size == 0 && shader_data->texture_uniforms.size() == 0) { + // This material does not require an uniform set, so don't create it. + return; + } + + if (!p_textures_dirty && uniform_set.is_valid() && RD::get_singleton()->uniform_set_is_valid(uniform_set)) { + //no reason to update uniform set, only UBO (or nothing) was needed to update + return; + } + + Vector<RD::Uniform> uniforms; + + { + + if (shader_data->ubo_size) { + RD::Uniform u; + u.type = RD::UNIFORM_TYPE_UNIFORM_BUFFER; + u.binding = 0; + u.ids.push_back(uniform_buffer); + uniforms.push_back(u); + } + + const RID *textures = texture_cache.ptrw(); + for (uint32_t i = 0; i < tex_uniform_count; i++) { + RD::Uniform u; + u.type = RD::UNIFORM_TYPE_TEXTURE; + u.binding = 1 + i; + u.ids.push_back(textures[i]); + uniforms.push_back(u); + } + } + + uniform_set = RD::get_singleton()->uniform_set_create(uniforms, scene_singleton->sky_shader.shader.version_get_shader(shader_data->version, 0), SKY_SET_MATERIAL); +} + +RasterizerSceneRD::SkyMaterialData::~SkyMaterialData() { + if (uniform_set.is_valid() && RD::get_singleton()->uniform_set_is_valid(uniform_set)) { + RD::get_singleton()->free(uniform_set); + } + + if (uniform_buffer.is_valid()) { + RD::get_singleton()->free(uniform_buffer); + } +} + +RasterizerStorageRD::MaterialData *RasterizerSceneRD::_create_sky_material_func(SkyShaderData *p_shader) { + SkyMaterialData *material_data = memnew(SkyMaterialData); + material_data->shader_data = p_shader; + material_data->last_frame = false; + //update will happen later anyway so do nothing. + return material_data; +} + +RID RasterizerSceneRD::environment_create() { + + return environment_owner.make_rid(Environent()); +} + +void RasterizerSceneRD::environment_set_background(RID p_env, RS::EnvironmentBG p_bg) { + Environent *env = environment_owner.getornull(p_env); + ERR_FAIL_COND(!env); + env->background = p_bg; +} +void RasterizerSceneRD::environment_set_sky(RID p_env, RID p_sky) { + Environent *env = environment_owner.getornull(p_env); + ERR_FAIL_COND(!env); + env->sky = p_sky; +} +void RasterizerSceneRD::environment_set_sky_custom_fov(RID p_env, float p_scale) { + Environent *env = environment_owner.getornull(p_env); + ERR_FAIL_COND(!env); + env->sky_custom_fov = p_scale; +} +void RasterizerSceneRD::environment_set_sky_orientation(RID p_env, const Basis &p_orientation) { + Environent *env = environment_owner.getornull(p_env); + ERR_FAIL_COND(!env); + env->sky_orientation = p_orientation; +} +void RasterizerSceneRD::environment_set_bg_color(RID p_env, const Color &p_color) { + Environent *env = environment_owner.getornull(p_env); + ERR_FAIL_COND(!env); + env->bg_color = p_color; +} +void RasterizerSceneRD::environment_set_bg_energy(RID p_env, float p_energy) { + Environent *env = environment_owner.getornull(p_env); + ERR_FAIL_COND(!env); + env->bg_energy = p_energy; +} +void RasterizerSceneRD::environment_set_canvas_max_layer(RID p_env, int p_max_layer) { + Environent *env = environment_owner.getornull(p_env); + ERR_FAIL_COND(!env); + env->canvas_max_layer = p_max_layer; +} +void RasterizerSceneRD::environment_set_ambient_light(RID p_env, const Color &p_color, RS::EnvironmentAmbientSource p_ambient, float p_energy, float p_sky_contribution, RS::EnvironmentReflectionSource p_reflection_source, const Color &p_ao_color) { + Environent *env = environment_owner.getornull(p_env); + ERR_FAIL_COND(!env); + env->ambient_light = p_color; + env->ambient_source = p_ambient; + env->ambient_light_energy = p_energy; + env->ambient_sky_contribution = p_sky_contribution; + env->reflection_source = p_reflection_source; + env->ao_color = p_ao_color; +} + +RS::EnvironmentBG RasterizerSceneRD::environment_get_background(RID p_env) const { + Environent *env = environment_owner.getornull(p_env); + ERR_FAIL_COND_V(!env, RS::ENV_BG_MAX); + return env->background; +} +RID RasterizerSceneRD::environment_get_sky(RID p_env) const { + Environent *env = environment_owner.getornull(p_env); + ERR_FAIL_COND_V(!env, RID()); + return env->sky; +} +float RasterizerSceneRD::environment_get_sky_custom_fov(RID p_env) const { + Environent *env = environment_owner.getornull(p_env); + ERR_FAIL_COND_V(!env, 0); + return env->sky_custom_fov; +} +Basis RasterizerSceneRD::environment_get_sky_orientation(RID p_env) const { + Environent *env = environment_owner.getornull(p_env); + ERR_FAIL_COND_V(!env, Basis()); + return env->sky_orientation; +} +Color RasterizerSceneRD::environment_get_bg_color(RID p_env) const { + Environent *env = environment_owner.getornull(p_env); + ERR_FAIL_COND_V(!env, Color()); + return env->bg_color; +} +float RasterizerSceneRD::environment_get_bg_energy(RID p_env) const { + Environent *env = environment_owner.getornull(p_env); + ERR_FAIL_COND_V(!env, 0); + return env->bg_energy; +} +int RasterizerSceneRD::environment_get_canvas_max_layer(RID p_env) const { + Environent *env = environment_owner.getornull(p_env); + ERR_FAIL_COND_V(!env, 0); + return env->canvas_max_layer; +} +Color RasterizerSceneRD::environment_get_ambient_light_color(RID p_env) const { + Environent *env = environment_owner.getornull(p_env); + ERR_FAIL_COND_V(!env, Color()); + return env->ambient_light; +} +RS::EnvironmentAmbientSource RasterizerSceneRD::environment_get_ambient_light_ambient_source(RID p_env) const { + Environent *env = environment_owner.getornull(p_env); + ERR_FAIL_COND_V(!env, RS::ENV_AMBIENT_SOURCE_BG); + return env->ambient_source; +} +float RasterizerSceneRD::environment_get_ambient_light_ambient_energy(RID p_env) const { + Environent *env = environment_owner.getornull(p_env); + ERR_FAIL_COND_V(!env, 0); + return env->ambient_light_energy; +} +float RasterizerSceneRD::environment_get_ambient_sky_contribution(RID p_env) const { + Environent *env = environment_owner.getornull(p_env); + ERR_FAIL_COND_V(!env, 0); + return env->ambient_sky_contribution; +} +RS::EnvironmentReflectionSource RasterizerSceneRD::environment_get_reflection_source(RID p_env) const { + Environent *env = environment_owner.getornull(p_env); + ERR_FAIL_COND_V(!env, RS::ENV_REFLECTION_SOURCE_DISABLED); + return env->reflection_source; +} + +Color RasterizerSceneRD::environment_get_ao_color(RID p_env) const { + Environent *env = environment_owner.getornull(p_env); + ERR_FAIL_COND_V(!env, Color()); + return env->ao_color; +} + +void RasterizerSceneRD::environment_set_tonemap(RID p_env, RS::EnvironmentToneMapper p_tone_mapper, float p_exposure, float p_white, bool p_auto_exposure, float p_min_luminance, float p_max_luminance, float p_auto_exp_speed, float p_auto_exp_scale) { + Environent *env = environment_owner.getornull(p_env); + ERR_FAIL_COND(!env); + env->exposure = p_exposure; + env->tone_mapper = p_tone_mapper; + if (!env->auto_exposure && p_auto_exposure) { + env->auto_exposure_version = ++auto_exposure_counter; + } + env->auto_exposure = p_auto_exposure; + env->white = p_white; + env->min_luminance = p_min_luminance; + env->max_luminance = p_max_luminance; + env->auto_exp_speed = p_auto_exp_speed; + env->auto_exp_scale = p_auto_exp_scale; +} + +void RasterizerSceneRD::environment_set_glow(RID p_env, bool p_enable, int p_level_flags, float p_intensity, float p_strength, float p_mix, float p_bloom_threshold, RS::EnvironmentGlowBlendMode p_blend_mode, float p_hdr_bleed_threshold, float p_hdr_bleed_scale, float p_hdr_luminance_cap, bool p_bicubic_upscale) { + + Environent *env = environment_owner.getornull(p_env); + ERR_FAIL_COND(!env); + env->glow_enabled = p_enable; + env->glow_levels = p_level_flags; + env->glow_intensity = p_intensity; + env->glow_strength = p_strength; + env->glow_mix = p_mix; + env->glow_bloom = p_bloom_threshold; + env->glow_blend_mode = p_blend_mode; + env->glow_hdr_bleed_threshold = p_hdr_bleed_threshold; + env->glow_hdr_bleed_scale = p_hdr_bleed_scale; + env->glow_hdr_luminance_cap = p_hdr_luminance_cap; + env->glow_bicubic_upscale = p_bicubic_upscale; +} + +void RasterizerSceneRD::environment_set_ssao(RID p_env, bool p_enable, float p_radius, float p_intensity, float p_bias, float p_light_affect, float p_ao_channel_affect, RS::EnvironmentSSAOBlur p_blur, float p_bilateral_sharpness) { + + Environent *env = environment_owner.getornull(p_env); + ERR_FAIL_COND(!env); + + env->ssao_enabled = p_enable; + env->ssao_radius = p_radius; + env->ssao_intensity = p_intensity; + env->ssao_bias = p_bias; + env->ssao_direct_light_affect = p_light_affect; + env->ssao_ao_channel_affect = p_ao_channel_affect; + env->ssao_blur = p_blur; +} + +void RasterizerSceneRD::environment_set_ssao_quality(RS::EnvironmentSSAOQuality p_quality, bool p_half_size) { + ssao_quality = p_quality; + ssao_half_size = p_half_size; +} + +bool RasterizerSceneRD::environment_is_ssao_enabled(RID p_env) const { + + Environent *env = environment_owner.getornull(p_env); + ERR_FAIL_COND_V(!env, false); + return env->ssao_enabled; +} + +float RasterizerSceneRD::environment_get_ssao_ao_affect(RID p_env) const { + Environent *env = environment_owner.getornull(p_env); + ERR_FAIL_COND_V(!env, false); + return env->ssao_ao_channel_affect; +} +float RasterizerSceneRD::environment_get_ssao_light_affect(RID p_env) const { + Environent *env = environment_owner.getornull(p_env); + ERR_FAIL_COND_V(!env, false); + return env->ssao_direct_light_affect; +} + +bool RasterizerSceneRD::environment_is_ssr_enabled(RID p_env) const { + + Environent *env = environment_owner.getornull(p_env); + ERR_FAIL_COND_V(!env, false); + return false; +} + +bool RasterizerSceneRD::is_environment(RID p_env) const { + return environment_owner.owns(p_env); +} + +//////////////////////////////////////////////////////////// + +RID RasterizerSceneRD::reflection_atlas_create() { + + ReflectionAtlas ra; + ra.count = GLOBAL_GET("rendering/quality/reflection_atlas/reflection_count"); + ra.size = GLOBAL_GET("rendering/quality/reflection_atlas/reflection_size"); + + return reflection_atlas_owner.make_rid(ra); +} + +void RasterizerSceneRD::reflection_atlas_set_size(RID p_ref_atlas, int p_reflection_size, int p_reflection_count) { + + ReflectionAtlas *ra = reflection_atlas_owner.getornull(p_ref_atlas); + ERR_FAIL_COND(!ra); + + if (ra->size == p_reflection_size && ra->count == p_reflection_count) { + return; //no changes + } + + ra->size = p_reflection_size; + ra->count = p_reflection_count; + + if (ra->reflection.is_valid()) { + //clear and invalidate everything + RD::get_singleton()->free(ra->reflection); + ra->reflection = RID(); + RD::get_singleton()->free(ra->depth_buffer); + ra->depth_buffer = RID(); + + for (int i = 0; i < ra->reflections.size(); i++) { + _clear_reflection_data(ra->reflections.write[i].data); + if (ra->reflections[i].owner.is_null()) { + continue; + } + reflection_probe_release_atlas_index(ra->reflections[i].owner); + //rp->atlasindex clear + } + + ra->reflections.clear(); + } +} + +//////////////////////// +RID RasterizerSceneRD::reflection_probe_instance_create(RID p_probe) { + ReflectionProbeInstance rpi; + rpi.probe = p_probe; + return reflection_probe_instance_owner.make_rid(rpi); +} + +void RasterizerSceneRD::reflection_probe_instance_set_transform(RID p_instance, const Transform &p_transform) { + ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance); + ERR_FAIL_COND(!rpi); + + rpi->transform = p_transform; + rpi->dirty = true; +} + +void RasterizerSceneRD::reflection_probe_release_atlas_index(RID p_instance) { + + ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance); + ERR_FAIL_COND(!rpi); + + if (rpi->atlas.is_null()) { + return; //nothing to release + } + ReflectionAtlas *atlas = reflection_atlas_owner.getornull(rpi->atlas); + ERR_FAIL_COND(!atlas); + ERR_FAIL_INDEX(rpi->atlas_index, atlas->reflections.size()); + atlas->reflections.write[rpi->atlas_index].owner = RID(); + rpi->atlas_index = -1; + rpi->atlas = RID(); +} + +bool RasterizerSceneRD::reflection_probe_instance_needs_redraw(RID p_instance) { + + ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance); + ERR_FAIL_COND_V(!rpi, false); + + if (rpi->rendering) { + return false; + } + + if (rpi->dirty) { + return true; + } + + if (storage->reflection_probe_get_update_mode(rpi->probe) == RS::REFLECTION_PROBE_UPDATE_ALWAYS) { + return true; + } + + return rpi->atlas_index == -1; +} + +bool RasterizerSceneRD::reflection_probe_instance_has_reflection(RID p_instance) { + + ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance); + ERR_FAIL_COND_V(!rpi, false); + + return rpi->atlas.is_valid(); +} + +bool RasterizerSceneRD::reflection_probe_instance_begin_render(RID p_instance, RID p_reflection_atlas) { + + ReflectionAtlas *atlas = reflection_atlas_owner.getornull(p_reflection_atlas); + + ERR_FAIL_COND_V(!atlas, false); + + ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance); + ERR_FAIL_COND_V(!rpi, false); + + if (storage->reflection_probe_get_update_mode(rpi->probe) == RS::REFLECTION_PROBE_UPDATE_ALWAYS && atlas->reflection.is_valid() && atlas->size != 256) { + WARN_PRINT("ReflectionProbes set to UPDATE_ALWAYS must have an atlas size of 256. Please update the atlas size in the ProjectSettings."); + reflection_atlas_set_size(p_reflection_atlas, 256, atlas->count); + } + + if (storage->reflection_probe_get_update_mode(rpi->probe) == RS::REFLECTION_PROBE_UPDATE_ALWAYS && atlas->reflection.is_valid() && atlas->reflections[0].data.layers[0].mipmaps.size() != 8) { + // Invalidate reflection atlas, need to regenerate + RD::get_singleton()->free(atlas->reflection); + atlas->reflection = RID(); + + for (int i = 0; i < atlas->reflections.size(); i++) { + if (atlas->reflections[i].owner.is_null()) { + continue; + } + reflection_probe_release_atlas_index(atlas->reflections[i].owner); + } + + atlas->reflections.clear(); + } + + if (atlas->reflection.is_null()) { + int mipmaps = MIN(roughness_layers, Image::get_image_required_mipmaps(atlas->size, atlas->size, Image::FORMAT_RGBAH) + 1); + mipmaps = storage->reflection_probe_get_update_mode(rpi->probe) == RS::REFLECTION_PROBE_UPDATE_ALWAYS ? 8 : mipmaps; // always use 8 mipmaps with real time filtering + { + //reflection atlas was unused, create: + RD::TextureFormat tf; + tf.array_layers = 6 * atlas->count; + tf.format = RD::DATA_FORMAT_R16G16B16A16_SFLOAT; + tf.type = RD::TEXTURE_TYPE_CUBE_ARRAY; + tf.mipmaps = mipmaps; + tf.width = atlas->size; + tf.height = atlas->size; + tf.usage_bits = RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT | RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_STORAGE_BIT; + + atlas->reflection = RD::get_singleton()->texture_create(tf, RD::TextureView()); + } + { + + RD::TextureFormat tf; + tf.format = RD::get_singleton()->texture_is_format_supported_for_usage(RD::DATA_FORMAT_D32_SFLOAT, RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT) ? RD::DATA_FORMAT_D32_SFLOAT : RD::DATA_FORMAT_X8_D24_UNORM_PACK32; + tf.width = atlas->size; + tf.height = atlas->size; + tf.usage_bits = RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT | RD::TEXTURE_USAGE_SAMPLING_BIT; + atlas->depth_buffer = RD::get_singleton()->texture_create(tf, RD::TextureView()); + } + atlas->reflections.resize(atlas->count); + for (int i = 0; i < atlas->count; i++) { + _update_reflection_data(atlas->reflections.write[i].data, atlas->size, mipmaps, false, atlas->reflection, i * 6, storage->reflection_probe_get_update_mode(rpi->probe) == RS::REFLECTION_PROBE_UPDATE_ALWAYS); + for (int j = 0; j < 6; j++) { + Vector<RID> fb; + fb.push_back(atlas->reflections.write[i].data.layers[0].mipmaps[0].views[j]); + fb.push_back(atlas->depth_buffer); + atlas->reflections.write[i].fbs[j] = RD::get_singleton()->framebuffer_create(fb); + } + } + + Vector<RID> fb; + fb.push_back(atlas->depth_buffer); + atlas->depth_fb = RD::get_singleton()->framebuffer_create(fb); + } + + if (rpi->atlas_index == -1) { + for (int i = 0; i < atlas->reflections.size(); i++) { + if (atlas->reflections[i].owner.is_null()) { + rpi->atlas_index = i; + break; + } + } + //find the one used last + if (rpi->atlas_index == -1) { + //everything is in use, find the one least used via LRU + uint64_t pass_min = 0; + + for (int i = 0; i < atlas->reflections.size(); i++) { + ReflectionProbeInstance *rpi2 = reflection_probe_instance_owner.getornull(atlas->reflections[i].owner); + if (rpi2->last_pass < pass_min) { + pass_min = rpi2->last_pass; + rpi->atlas_index = i; + } + } + } + } + + rpi->atlas = p_reflection_atlas; + rpi->rendering = true; + rpi->dirty = false; + rpi->processing_layer = 1; + rpi->processing_side = 0; + + return true; +} + +bool RasterizerSceneRD::reflection_probe_instance_postprocess_step(RID p_instance) { + + ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance); + ERR_FAIL_COND_V(!rpi, false); + ERR_FAIL_COND_V(!rpi->rendering, false); + ERR_FAIL_COND_V(rpi->atlas.is_null(), false); + + ReflectionAtlas *atlas = reflection_atlas_owner.getornull(rpi->atlas); + if (!atlas || rpi->atlas_index == -1) { + //does not belong to an atlas anymore, cancel (was removed from atlas or atlas changed while rendering) + rpi->rendering = false; + return false; + } + + if (storage->reflection_probe_get_update_mode(rpi->probe) == RS::REFLECTION_PROBE_UPDATE_ALWAYS) { + // Using real time reflections, all roughness is done in one step + _create_reflection_fast_filter(atlas->reflections.write[rpi->atlas_index].data, false); + rpi->rendering = false; + rpi->processing_side = 0; + rpi->processing_layer = 1; + return true; + } + + if (rpi->processing_layer > 1) { + _create_reflection_importance_sample(atlas->reflections.write[rpi->atlas_index].data, false, 10, rpi->processing_layer); + rpi->processing_layer++; + if (rpi->processing_layer == atlas->reflections[rpi->atlas_index].data.layers[0].mipmaps.size()) { + rpi->rendering = false; + rpi->processing_side = 0; + rpi->processing_layer = 1; + return true; + } + return false; + + } else { + _create_reflection_importance_sample(atlas->reflections.write[rpi->atlas_index].data, false, rpi->processing_side, rpi->processing_layer); + } + + rpi->processing_side++; + if (rpi->processing_side == 6) { + rpi->processing_side = 0; + rpi->processing_layer++; + } + + return false; +} + +uint32_t RasterizerSceneRD::reflection_probe_instance_get_resolution(RID p_instance) { + ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance); + ERR_FAIL_COND_V(!rpi, 0); + + ReflectionAtlas *atlas = reflection_atlas_owner.getornull(rpi->atlas); + ERR_FAIL_COND_V(!atlas, 0); + return atlas->size; +} + +RID RasterizerSceneRD::reflection_probe_instance_get_framebuffer(RID p_instance, int p_index) { + ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance); + ERR_FAIL_COND_V(!rpi, RID()); + ERR_FAIL_INDEX_V(p_index, 6, RID()); + + ReflectionAtlas *atlas = reflection_atlas_owner.getornull(rpi->atlas); + ERR_FAIL_COND_V(!atlas, RID()); + return atlas->reflections[rpi->atlas_index].fbs[p_index]; +} + +RID RasterizerSceneRD::reflection_probe_instance_get_depth_framebuffer(RID p_instance, int p_index) { + ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance); + ERR_FAIL_COND_V(!rpi, RID()); + ERR_FAIL_INDEX_V(p_index, 6, RID()); + + ReflectionAtlas *atlas = reflection_atlas_owner.getornull(rpi->atlas); + ERR_FAIL_COND_V(!atlas, RID()); + return atlas->depth_fb; +} + +/////////////////////////////////////////////////////////// + +RID RasterizerSceneRD::shadow_atlas_create() { + + return shadow_atlas_owner.make_rid(ShadowAtlas()); +} + +void RasterizerSceneRD::shadow_atlas_set_size(RID p_atlas, int p_size) { + + ShadowAtlas *shadow_atlas = shadow_atlas_owner.getornull(p_atlas); + ERR_FAIL_COND(!shadow_atlas); + ERR_FAIL_COND(p_size < 0); + p_size = next_power_of_2(p_size); + + if (p_size == shadow_atlas->size) + return; + + // erasing atlas + if (shadow_atlas->depth.is_valid()) { + RD::get_singleton()->free(shadow_atlas->depth); + shadow_atlas->depth = RID(); + shadow_atlas->fb = RID(); + } + for (int i = 0; i < 4; i++) { + //clear subdivisions + shadow_atlas->quadrants[i].shadows.resize(0); + shadow_atlas->quadrants[i].shadows.resize(1 << shadow_atlas->quadrants[i].subdivision); + } + + //erase shadow atlas reference from lights + for (Map<RID, uint32_t>::Element *E = shadow_atlas->shadow_owners.front(); E; E = E->next()) { + LightInstance *li = light_instance_owner.getornull(E->key()); + ERR_CONTINUE(!li); + li->shadow_atlases.erase(p_atlas); + } + + //clear owners + shadow_atlas->shadow_owners.clear(); + + shadow_atlas->size = p_size; + + if (shadow_atlas->size) { + + RD::TextureFormat tf; + tf.format = RD::DATA_FORMAT_R32_SFLOAT; + tf.width = shadow_atlas->size; + tf.height = shadow_atlas->size; + tf.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT; + + shadow_atlas->depth = RD::get_singleton()->texture_create(tf, RD::TextureView()); + + Vector<RID> fb; + fb.push_back(shadow_atlas->depth); + shadow_atlas->fb = RD::get_singleton()->framebuffer_create(fb); + } +} + +void RasterizerSceneRD::shadow_atlas_set_quadrant_subdivision(RID p_atlas, int p_quadrant, int p_subdivision) { + + ShadowAtlas *shadow_atlas = shadow_atlas_owner.getornull(p_atlas); + ERR_FAIL_COND(!shadow_atlas); + ERR_FAIL_INDEX(p_quadrant, 4); + ERR_FAIL_INDEX(p_subdivision, 16384); + + uint32_t subdiv = next_power_of_2(p_subdivision); + if (subdiv & 0xaaaaaaaa) { //sqrt(subdiv) must be integer + subdiv <<= 1; + } + + subdiv = int(Math::sqrt((float)subdiv)); + + //obtain the number that will be x*x + + if (shadow_atlas->quadrants[p_quadrant].subdivision == subdiv) + return; + + //erase all data from quadrant + for (int i = 0; i < shadow_atlas->quadrants[p_quadrant].shadows.size(); i++) { + + if (shadow_atlas->quadrants[p_quadrant].shadows[i].owner.is_valid()) { + shadow_atlas->shadow_owners.erase(shadow_atlas->quadrants[p_quadrant].shadows[i].owner); + LightInstance *li = light_instance_owner.getornull(shadow_atlas->quadrants[p_quadrant].shadows[i].owner); + ERR_CONTINUE(!li); + li->shadow_atlases.erase(p_atlas); + } + } + + shadow_atlas->quadrants[p_quadrant].shadows.resize(0); + shadow_atlas->quadrants[p_quadrant].shadows.resize(subdiv * subdiv); + shadow_atlas->quadrants[p_quadrant].subdivision = subdiv; + + //cache the smallest subdiv (for faster allocation in light update) + + shadow_atlas->smallest_subdiv = 1 << 30; + + for (int i = 0; i < 4; i++) { + if (shadow_atlas->quadrants[i].subdivision) { + shadow_atlas->smallest_subdiv = MIN(shadow_atlas->smallest_subdiv, shadow_atlas->quadrants[i].subdivision); + } + } + + if (shadow_atlas->smallest_subdiv == 1 << 30) { + shadow_atlas->smallest_subdiv = 0; + } + + //resort the size orders, simple bublesort for 4 elements.. + + int swaps = 0; + do { + swaps = 0; + + for (int i = 0; i < 3; i++) { + if (shadow_atlas->quadrants[shadow_atlas->size_order[i]].subdivision < shadow_atlas->quadrants[shadow_atlas->size_order[i + 1]].subdivision) { + SWAP(shadow_atlas->size_order[i], shadow_atlas->size_order[i + 1]); + swaps++; + } + } + } while (swaps > 0); +} + +bool RasterizerSceneRD::_shadow_atlas_find_shadow(ShadowAtlas *shadow_atlas, int *p_in_quadrants, int p_quadrant_count, int p_current_subdiv, uint64_t p_tick, int &r_quadrant, int &r_shadow) { + + for (int i = p_quadrant_count - 1; i >= 0; i--) { + + int qidx = p_in_quadrants[i]; + + if (shadow_atlas->quadrants[qidx].subdivision == (uint32_t)p_current_subdiv) { + return false; + } + + //look for an empty space + int sc = shadow_atlas->quadrants[qidx].shadows.size(); + ShadowAtlas::Quadrant::Shadow *sarr = shadow_atlas->quadrants[qidx].shadows.ptrw(); + + int found_free_idx = -1; //found a free one + int found_used_idx = -1; //found existing one, must steal it + uint64_t min_pass = 0; // pass of the existing one, try to use the least recently used one (LRU fashion) + + for (int j = 0; j < sc; j++) { + if (!sarr[j].owner.is_valid()) { + found_free_idx = j; + break; + } + + LightInstance *sli = light_instance_owner.getornull(sarr[j].owner); + ERR_CONTINUE(!sli); + + if (sli->last_scene_pass != scene_pass) { + + //was just allocated, don't kill it so soon, wait a bit.. + if (p_tick - sarr[j].alloc_tick < shadow_atlas_realloc_tolerance_msec) + continue; + + if (found_used_idx == -1 || sli->last_scene_pass < min_pass) { + found_used_idx = j; + min_pass = sli->last_scene_pass; + } + } + } + + if (found_free_idx == -1 && found_used_idx == -1) + continue; //nothing found + + if (found_free_idx == -1 && found_used_idx != -1) { + found_free_idx = found_used_idx; + } + + r_quadrant = qidx; + r_shadow = found_free_idx; + + return true; + } + + return false; +} + +bool RasterizerSceneRD::shadow_atlas_update_light(RID p_atlas, RID p_light_intance, float p_coverage, uint64_t p_light_version) { + + ShadowAtlas *shadow_atlas = shadow_atlas_owner.getornull(p_atlas); + ERR_FAIL_COND_V(!shadow_atlas, false); + + LightInstance *li = light_instance_owner.getornull(p_light_intance); + ERR_FAIL_COND_V(!li, false); + + if (shadow_atlas->size == 0 || shadow_atlas->smallest_subdiv == 0) { + return false; + } + + uint32_t quad_size = shadow_atlas->size >> 1; + int desired_fit = MIN(quad_size / shadow_atlas->smallest_subdiv, next_power_of_2(quad_size * p_coverage)); + + int valid_quadrants[4]; + int valid_quadrant_count = 0; + int best_size = -1; //best size found + int best_subdiv = -1; //subdiv for the best size + + //find the quadrants this fits into, and the best possible size it can fit into + for (int i = 0; i < 4; i++) { + int q = shadow_atlas->size_order[i]; + int sd = shadow_atlas->quadrants[q].subdivision; + if (sd == 0) + continue; //unused + + int max_fit = quad_size / sd; + + if (best_size != -1 && max_fit > best_size) + break; //too large + + valid_quadrants[valid_quadrant_count++] = q; + best_subdiv = sd; + + if (max_fit >= desired_fit) { + best_size = max_fit; + } + } + + ERR_FAIL_COND_V(valid_quadrant_count == 0, false); + + uint64_t tick = OS::get_singleton()->get_ticks_msec(); + + //see if it already exists + + if (shadow_atlas->shadow_owners.has(p_light_intance)) { + //it does! + uint32_t key = shadow_atlas->shadow_owners[p_light_intance]; + uint32_t q = (key >> ShadowAtlas::QUADRANT_SHIFT) & 0x3; + uint32_t s = key & ShadowAtlas::SHADOW_INDEX_MASK; + + bool should_realloc = shadow_atlas->quadrants[q].subdivision != (uint32_t)best_subdiv && (shadow_atlas->quadrants[q].shadows[s].alloc_tick - tick > shadow_atlas_realloc_tolerance_msec); + bool should_redraw = shadow_atlas->quadrants[q].shadows[s].version != p_light_version; + + if (!should_realloc) { + shadow_atlas->quadrants[q].shadows.write[s].version = p_light_version; + //already existing, see if it should redraw or it's just OK + return should_redraw; + } + + int new_quadrant, new_shadow; + + //find a better place + if (_shadow_atlas_find_shadow(shadow_atlas, valid_quadrants, valid_quadrant_count, shadow_atlas->quadrants[q].subdivision, tick, new_quadrant, new_shadow)) { + //found a better place! + ShadowAtlas::Quadrant::Shadow *sh = &shadow_atlas->quadrants[new_quadrant].shadows.write[new_shadow]; + if (sh->owner.is_valid()) { + //is taken, but is invalid, erasing it + shadow_atlas->shadow_owners.erase(sh->owner); + LightInstance *sli = light_instance_owner.getornull(sh->owner); + sli->shadow_atlases.erase(p_atlas); + } + + //erase previous + shadow_atlas->quadrants[q].shadows.write[s].version = 0; + shadow_atlas->quadrants[q].shadows.write[s].owner = RID(); + + sh->owner = p_light_intance; + sh->alloc_tick = tick; + sh->version = p_light_version; + li->shadow_atlases.insert(p_atlas); + + //make new key + key = new_quadrant << ShadowAtlas::QUADRANT_SHIFT; + key |= new_shadow; + //update it in map + shadow_atlas->shadow_owners[p_light_intance] = key; + //make it dirty, as it should redraw anyway + return true; + } + + //no better place for this shadow found, keep current + + //already existing, see if it should redraw or it's just OK + + shadow_atlas->quadrants[q].shadows.write[s].version = p_light_version; + + return should_redraw; + } + + int new_quadrant, new_shadow; + + //find a better place + if (_shadow_atlas_find_shadow(shadow_atlas, valid_quadrants, valid_quadrant_count, -1, tick, new_quadrant, new_shadow)) { + //found a better place! + ShadowAtlas::Quadrant::Shadow *sh = &shadow_atlas->quadrants[new_quadrant].shadows.write[new_shadow]; + if (sh->owner.is_valid()) { + //is taken, but is invalid, erasing it + shadow_atlas->shadow_owners.erase(sh->owner); + LightInstance *sli = light_instance_owner.getornull(sh->owner); + sli->shadow_atlases.erase(p_atlas); + } + + sh->owner = p_light_intance; + sh->alloc_tick = tick; + sh->version = p_light_version; + li->shadow_atlases.insert(p_atlas); + + //make new key + uint32_t key = new_quadrant << ShadowAtlas::QUADRANT_SHIFT; + key |= new_shadow; + //update it in map + shadow_atlas->shadow_owners[p_light_intance] = key; + //make it dirty, as it should redraw anyway + + return true; + } + + //no place to allocate this light, apologies + + return false; +} + +void RasterizerSceneRD::directional_shadow_atlas_set_size(int p_size) { + + p_size = nearest_power_of_2_templated(p_size); + + if (directional_shadow.size == p_size) { + return; + } + + directional_shadow.size = p_size; + + if (directional_shadow.depth.is_valid()) { + RD::get_singleton()->free(directional_shadow.depth); + directional_shadow.depth = RID(); + directional_shadow.fb = RID(); + } + + if (p_size > 0) { + + RD::TextureFormat tf; + tf.format = RD::DATA_FORMAT_R32_SFLOAT; + tf.width = p_size; + tf.height = p_size; + tf.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT; + + directional_shadow.depth = RD::get_singleton()->texture_create(tf, RD::TextureView()); + Vector<RID> fb; + fb.push_back(directional_shadow.depth); + directional_shadow.fb = RD::get_singleton()->framebuffer_create(fb); + } + + _base_uniforms_changed(); +} + +void RasterizerSceneRD::set_directional_shadow_count(int p_count) { + + directional_shadow.light_count = p_count; + directional_shadow.current_light = 0; +} + +static Rect2i _get_directional_shadow_rect(int p_size, int p_shadow_count, int p_shadow_index) { + + int split_h = 1; + int split_v = 1; + + while (split_h * split_v < p_shadow_count) { + if (split_h == split_v) { + split_h <<= 1; + } else { + split_v <<= 1; + } + } + + Rect2i rect(0, 0, p_size, p_size); + rect.size.width /= split_h; + rect.size.height /= split_v; + + rect.position.x = rect.size.width * (p_shadow_index % split_h); + rect.position.y = rect.size.height * (p_shadow_index / split_h); + + return rect; +} + +int RasterizerSceneRD::get_directional_light_shadow_size(RID p_light_intance) { + + ERR_FAIL_COND_V(directional_shadow.light_count == 0, 0); + + Rect2i r = _get_directional_shadow_rect(directional_shadow.size, directional_shadow.light_count, 0); + + LightInstance *light_instance = light_instance_owner.getornull(p_light_intance); + ERR_FAIL_COND_V(!light_instance, 0); + + switch (storage->light_directional_get_shadow_mode(light_instance->light)) { + case RS::LIGHT_DIRECTIONAL_SHADOW_ORTHOGONAL: + break; //none + case RS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_2_SPLITS: r.size.height /= 2; break; + case RS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_4_SPLITS: r.size /= 2; break; + } + + return MAX(r.size.width, r.size.height); +} + +////////////////////////////////////////////////// + +RID RasterizerSceneRD::camera_effects_create() { + + return camera_effects_owner.make_rid(CameraEffects()); +} + +void RasterizerSceneRD::camera_effects_set_dof_blur_quality(RS::DOFBlurQuality p_quality, bool p_use_jitter) { + + dof_blur_quality = p_quality; + dof_blur_use_jitter = p_use_jitter; +} + +void RasterizerSceneRD::camera_effects_set_dof_blur_bokeh_shape(RS::DOFBokehShape p_shape) { + + dof_blur_bokeh_shape = p_shape; +} + +void RasterizerSceneRD::camera_effects_set_dof_blur(RID p_camera_effects, bool p_far_enable, float p_far_distance, float p_far_transition, bool p_near_enable, float p_near_distance, float p_near_transition, float p_amount) { + CameraEffects *camfx = camera_effects_owner.getornull(p_camera_effects); + ERR_FAIL_COND(!camfx); + + camfx->dof_blur_far_enabled = p_far_enable; + camfx->dof_blur_far_distance = p_far_distance; + camfx->dof_blur_far_transition = p_far_transition; + + camfx->dof_blur_near_enabled = p_near_enable; + camfx->dof_blur_near_distance = p_near_distance; + camfx->dof_blur_near_transition = p_near_transition; + + camfx->dof_blur_amount = p_amount; +} + +void RasterizerSceneRD::camera_effects_set_custom_exposure(RID p_camera_effects, bool p_enable, float p_exposure) { + + CameraEffects *camfx = camera_effects_owner.getornull(p_camera_effects); + ERR_FAIL_COND(!camfx); + + camfx->override_exposure_enabled = p_enable; + camfx->override_exposure = p_exposure; +} + +RID RasterizerSceneRD::light_instance_create(RID p_light) { + + RID li = light_instance_owner.make_rid(LightInstance()); + + LightInstance *light_instance = light_instance_owner.getornull(li); + + light_instance->self = li; + light_instance->light = p_light; + light_instance->light_type = storage->light_get_type(p_light); + + return li; +} + +void RasterizerSceneRD::light_instance_set_transform(RID p_light_instance, const Transform &p_transform) { + + LightInstance *light_instance = light_instance_owner.getornull(p_light_instance); + ERR_FAIL_COND(!light_instance); + + light_instance->transform = p_transform; +} + +void RasterizerSceneRD::light_instance_set_shadow_transform(RID p_light_instance, const CameraMatrix &p_projection, const Transform &p_transform, float p_far, float p_split, int p_pass, float p_bias_scale) { + + LightInstance *light_instance = light_instance_owner.getornull(p_light_instance); + ERR_FAIL_COND(!light_instance); + + if (storage->light_get_type(light_instance->light) != RS::LIGHT_DIRECTIONAL) { + p_pass = 0; + } + + ERR_FAIL_INDEX(p_pass, 4); + + light_instance->shadow_transform[p_pass].camera = p_projection; + light_instance->shadow_transform[p_pass].transform = p_transform; + light_instance->shadow_transform[p_pass].farplane = p_far; + light_instance->shadow_transform[p_pass].split = p_split; + light_instance->shadow_transform[p_pass].bias_scale = p_bias_scale; +} + +void RasterizerSceneRD::light_instance_mark_visible(RID p_light_instance) { + + LightInstance *light_instance = light_instance_owner.getornull(p_light_instance); + ERR_FAIL_COND(!light_instance); + + light_instance->last_scene_pass = scene_pass; +} + +RasterizerSceneRD::ShadowCubemap *RasterizerSceneRD::_get_shadow_cubemap(int p_size) { + + if (!shadow_cubemaps.has(p_size)) { + + ShadowCubemap sc; + { + RD::TextureFormat tf; + tf.format = RD::get_singleton()->texture_is_format_supported_for_usage(RD::DATA_FORMAT_D32_SFLOAT, RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT) ? RD::DATA_FORMAT_D32_SFLOAT : RD::DATA_FORMAT_X8_D24_UNORM_PACK32; + tf.width = p_size; + tf.height = p_size; + tf.type = RD::TEXTURE_TYPE_CUBE; + tf.array_layers = 6; + tf.usage_bits = RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT | RD::TEXTURE_USAGE_SAMPLING_BIT; + sc.cubemap = RD::get_singleton()->texture_create(tf, RD::TextureView()); + } + + for (int i = 0; i < 6; i++) { + RID side_texture = RD::get_singleton()->texture_create_shared_from_slice(RD::TextureView(), sc.cubemap, i, 0); + Vector<RID> fbtex; + fbtex.push_back(side_texture); + sc.side_fb[i] = RD::get_singleton()->framebuffer_create(fbtex); + } + + shadow_cubemaps[p_size] = sc; + } + + return &shadow_cubemaps[p_size]; +} + +RasterizerSceneRD::ShadowMap *RasterizerSceneRD::_get_shadow_map(const Size2i &p_size) { + + if (!shadow_maps.has(p_size)) { + + ShadowMap sm; + { + RD::TextureFormat tf; + tf.format = RD::get_singleton()->texture_is_format_supported_for_usage(RD::DATA_FORMAT_D32_SFLOAT, RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT) ? RD::DATA_FORMAT_D32_SFLOAT : RD::DATA_FORMAT_X8_D24_UNORM_PACK32; + tf.width = p_size.width; + tf.height = p_size.height; + tf.usage_bits = RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT | RD::TEXTURE_USAGE_SAMPLING_BIT; + + sm.depth = RD::get_singleton()->texture_create(tf, RD::TextureView()); + } + + Vector<RID> fbtex; + fbtex.push_back(sm.depth); + sm.fb = RD::get_singleton()->framebuffer_create(fbtex); + + shadow_maps[p_size] = sm; + } + + return &shadow_maps[p_size]; +} +///////////////////////////////// + +RID RasterizerSceneRD::gi_probe_instance_create(RID p_base) { + //find a free slot + int index = -1; + for (int i = 0; i < gi_probe_slots.size(); i++) { + if (gi_probe_slots[i] == RID()) { + index = i; + break; + } + } + + ERR_FAIL_COND_V(index == -1, RID()); + + GIProbeInstance gi_probe; + gi_probe.slot = index; + gi_probe.probe = p_base; + RID rid = gi_probe_instance_owner.make_rid(gi_probe); + gi_probe_slots.write[index] = rid; + + return rid; +} + +void RasterizerSceneRD::gi_probe_instance_set_transform_to_data(RID p_probe, const Transform &p_xform) { + + GIProbeInstance *gi_probe = gi_probe_instance_owner.getornull(p_probe); + ERR_FAIL_COND(!gi_probe); + + gi_probe->transform = p_xform; +} + +bool RasterizerSceneRD::gi_probe_needs_update(RID p_probe) const { + GIProbeInstance *gi_probe = gi_probe_instance_owner.getornull(p_probe); + ERR_FAIL_COND_V(!gi_probe, false); + + //return true; + return gi_probe->last_probe_version != storage->gi_probe_get_version(gi_probe->probe); +} + +void RasterizerSceneRD::gi_probe_update(RID p_probe, bool p_update_light_instances, const Vector<RID> &p_light_instances, int p_dynamic_object_count, InstanceBase **p_dynamic_objects) { + + GIProbeInstance *gi_probe = gi_probe_instance_owner.getornull(p_probe); + ERR_FAIL_COND(!gi_probe); + + uint32_t data_version = storage->gi_probe_get_data_version(gi_probe->probe); + + // (RE)CREATE IF NEEDED + + if (gi_probe->last_probe_data_version != data_version) { + //need to re-create everything + if (gi_probe->texture.is_valid()) { + RD::get_singleton()->free(gi_probe->texture); + if (gi_probe_use_anisotropy) { + RD::get_singleton()->free(gi_probe->anisotropy_r16[0]); + RD::get_singleton()->free(gi_probe->anisotropy_r16[1]); + } + RD::get_singleton()->free(gi_probe->write_buffer); + gi_probe->mipmaps.clear(); + } + + for (int i = 0; i < gi_probe->dynamic_maps.size(); i++) { + RD::get_singleton()->free(gi_probe->dynamic_maps[i].texture); + RD::get_singleton()->free(gi_probe->dynamic_maps[i].depth); + } + + gi_probe->dynamic_maps.clear(); + + Vector3i octree_size = storage->gi_probe_get_octree_size(gi_probe->probe); + + if (octree_size != Vector3i()) { + //can create a 3D texture + Vector<int> levels = storage->gi_probe_get_level_counts(gi_probe->probe); + + RD::TextureFormat tf; + tf.format = RD::DATA_FORMAT_R8G8B8A8_UNORM; + tf.width = octree_size.x; + tf.height = octree_size.y; + tf.depth = octree_size.z; + tf.type = RD::TEXTURE_TYPE_3D; + tf.mipmaps = levels.size(); + + tf.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_STORAGE_BIT | RD::TEXTURE_USAGE_CAN_COPY_TO_BIT; + + gi_probe->texture = RD::get_singleton()->texture_create(tf, RD::TextureView()); + + RD::get_singleton()->texture_clear(gi_probe->texture, Color(0, 0, 0, 0), 0, levels.size(), 0, 1, false); + + if (gi_probe_use_anisotropy) { + tf.format = RD::DATA_FORMAT_R16_UINT; + tf.shareable_formats.push_back(RD::DATA_FORMAT_R16_UINT); + tf.shareable_formats.push_back(RD::DATA_FORMAT_R5G6B5_UNORM_PACK16); + + //need to create R16 first, else driver does not like the storage bit for compute.. + gi_probe->anisotropy_r16[0] = RD::get_singleton()->texture_create(tf, RD::TextureView()); + gi_probe->anisotropy_r16[1] = RD::get_singleton()->texture_create(tf, RD::TextureView()); + + RD::TextureView tv; + tv.format_override = RD::DATA_FORMAT_R5G6B5_UNORM_PACK16; + gi_probe->anisotropy[0] = RD::get_singleton()->texture_create_shared(tv, gi_probe->anisotropy_r16[0]); + gi_probe->anisotropy[1] = RD::get_singleton()->texture_create_shared(tv, gi_probe->anisotropy_r16[1]); + + RD::get_singleton()->texture_clear(gi_probe->anisotropy[0], Color(0, 0, 0, 0), 0, levels.size(), 0, 1, false); + RD::get_singleton()->texture_clear(gi_probe->anisotropy[1], Color(0, 0, 0, 0), 0, levels.size(), 0, 1, false); + } + + { + int total_elements = 0; + for (int i = 0; i < levels.size(); i++) { + total_elements += levels[i]; + } + + if (gi_probe_use_anisotropy) { + total_elements *= 6; + } + + gi_probe->write_buffer = RD::get_singleton()->storage_buffer_create(total_elements * 16); + } + + for (int i = 0; i < levels.size(); i++) { + GIProbeInstance::Mipmap mipmap; + mipmap.texture = RD::get_singleton()->texture_create_shared_from_slice(RD::TextureView(), gi_probe->texture, 0, i, RD::TEXTURE_SLICE_3D); + if (gi_probe_use_anisotropy) { + RD::TextureView tv; + tv.format_override = RD::DATA_FORMAT_R16_UINT; + mipmap.anisotropy[0] = RD::get_singleton()->texture_create_shared_from_slice(tv, gi_probe->anisotropy[0], 0, i, RD::TEXTURE_SLICE_3D); + mipmap.anisotropy[1] = RD::get_singleton()->texture_create_shared_from_slice(tv, gi_probe->anisotropy[1], 0, i, RD::TEXTURE_SLICE_3D); + } + + mipmap.level = levels.size() - i - 1; + mipmap.cell_offset = 0; + for (uint32_t j = 0; j < mipmap.level; j++) { + mipmap.cell_offset += levels[j]; + } + mipmap.cell_count = levels[mipmap.level]; + + Vector<RD::Uniform> uniforms; + { + RD::Uniform u; + u.type = RD::UNIFORM_TYPE_STORAGE_BUFFER; + u.binding = 1; + u.ids.push_back(storage->gi_probe_get_octree_buffer(gi_probe->probe)); + uniforms.push_back(u); + } + { + RD::Uniform u; + u.type = RD::UNIFORM_TYPE_STORAGE_BUFFER; + u.binding = 2; + u.ids.push_back(storage->gi_probe_get_data_buffer(gi_probe->probe)); + uniforms.push_back(u); + } + + { + RD::Uniform u; + u.type = RD::UNIFORM_TYPE_STORAGE_BUFFER; + u.binding = 4; + u.ids.push_back(gi_probe->write_buffer); + uniforms.push_back(u); + } + { + RD::Uniform u; + u.type = RD::UNIFORM_TYPE_TEXTURE; + u.binding = 9; + u.ids.push_back(storage->gi_probe_get_sdf_texture(gi_probe->probe)); + uniforms.push_back(u); + } + { + RD::Uniform u; + u.type = RD::UNIFORM_TYPE_SAMPLER; + u.binding = 10; + u.ids.push_back(storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR_WITH_MIPMAPS, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED)); + uniforms.push_back(u); + } + + { + Vector<RD::Uniform> copy_uniforms = uniforms; + if (i == 0) { + { + RD::Uniform u; + u.type = RD::UNIFORM_TYPE_UNIFORM_BUFFER; + u.binding = 3; + u.ids.push_back(gi_probe_lights_uniform); + copy_uniforms.push_back(u); + } + + mipmap.uniform_set = RD::get_singleton()->uniform_set_create(copy_uniforms, giprobe_lighting_shader_version_shaders[GI_PROBE_SHADER_VERSION_COMPUTE_LIGHT], 0); + + copy_uniforms = uniforms; //restore + + { + RD::Uniform u; + u.type = RD::UNIFORM_TYPE_TEXTURE; + u.binding = 5; + u.ids.push_back(gi_probe->texture); + copy_uniforms.push_back(u); + } + + if (gi_probe_use_anisotropy) { + { + RD::Uniform u; + u.type = RD::UNIFORM_TYPE_TEXTURE; + u.binding = 7; + u.ids.push_back(gi_probe->anisotropy[0]); + copy_uniforms.push_back(u); + } + { + RD::Uniform u; + u.type = RD::UNIFORM_TYPE_TEXTURE; + u.binding = 8; + u.ids.push_back(gi_probe->anisotropy[1]); + copy_uniforms.push_back(u); + } + } + + mipmap.second_bounce_uniform_set = RD::get_singleton()->uniform_set_create(copy_uniforms, giprobe_lighting_shader_version_shaders[GI_PROBE_SHADER_VERSION_COMPUTE_SECOND_BOUNCE], 0); + } else { + mipmap.uniform_set = RD::get_singleton()->uniform_set_create(copy_uniforms, giprobe_lighting_shader_version_shaders[GI_PROBE_SHADER_VERSION_COMPUTE_MIPMAP], 0); + } + } + + { + RD::Uniform u; + u.type = RD::UNIFORM_TYPE_IMAGE; + u.binding = 5; + u.ids.push_back(mipmap.texture); + uniforms.push_back(u); + } + + if (gi_probe_use_anisotropy) { + { + RD::Uniform u; + u.type = RD::UNIFORM_TYPE_IMAGE; + u.binding = 6; + u.ids.push_back(mipmap.anisotropy[0]); + uniforms.push_back(u); + } + { + RD::Uniform u; + u.type = RD::UNIFORM_TYPE_IMAGE; + u.binding = 7; + u.ids.push_back(mipmap.anisotropy[1]); + uniforms.push_back(u); + } + } + + mipmap.write_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, giprobe_lighting_shader_version_shaders[GI_PROBE_SHADER_VERSION_WRITE_TEXTURE], 0); + + gi_probe->mipmaps.push_back(mipmap); + } + + { + uint32_t dynamic_map_size = MAX(MAX(octree_size.x, octree_size.y), octree_size.z); + uint32_t oversample = nearest_power_of_2_templated(4); + int mipmap_index = 0; + + while (mipmap_index < gi_probe->mipmaps.size()) { + GIProbeInstance::DynamicMap dmap; + + if (oversample > 0) { + dmap.size = dynamic_map_size * (1 << oversample); + dmap.mipmap = -1; + oversample--; + } else { + dmap.size = dynamic_map_size >> mipmap_index; + dmap.mipmap = mipmap_index; + mipmap_index++; + } + + RD::TextureFormat dtf; + dtf.width = dmap.size; + dtf.height = dmap.size; + dtf.format = RD::DATA_FORMAT_R16G16B16A16_SFLOAT; + dtf.usage_bits = RD::TEXTURE_USAGE_STORAGE_BIT; + + if (gi_probe->dynamic_maps.size() == 0) { + dtf.usage_bits |= RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT; + } + dmap.texture = RD::get_singleton()->texture_create(dtf, RD::TextureView()); + + if (gi_probe->dynamic_maps.size() == 0) { + //render depth for first one + dtf.format = RD::get_singleton()->texture_is_format_supported_for_usage(RD::DATA_FORMAT_D32_SFLOAT, RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT) ? RD::DATA_FORMAT_D32_SFLOAT : RD::DATA_FORMAT_X8_D24_UNORM_PACK32; + dtf.usage_bits = RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT; + dmap.fb_depth = RD::get_singleton()->texture_create(dtf, RD::TextureView()); + } + + //just use depth as-is + dtf.format = RD::DATA_FORMAT_R32_SFLOAT; + dtf.usage_bits = RD::TEXTURE_USAGE_STORAGE_BIT | RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT; + + dmap.depth = RD::get_singleton()->texture_create(dtf, RD::TextureView()); + + if (gi_probe->dynamic_maps.size() == 0) { + + dtf.format = RD::DATA_FORMAT_R8G8B8A8_UNORM; + dtf.usage_bits = RD::TEXTURE_USAGE_STORAGE_BIT | RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT; + dmap.albedo = RD::get_singleton()->texture_create(dtf, RD::TextureView()); + dmap.normal = RD::get_singleton()->texture_create(dtf, RD::TextureView()); + dmap.orm = RD::get_singleton()->texture_create(dtf, RD::TextureView()); + + Vector<RID> fb; + fb.push_back(dmap.albedo); + fb.push_back(dmap.normal); + fb.push_back(dmap.orm); + fb.push_back(dmap.texture); //emission + fb.push_back(dmap.depth); + fb.push_back(dmap.fb_depth); + + dmap.fb = RD::get_singleton()->framebuffer_create(fb); + + { + Vector<RD::Uniform> uniforms; + { + RD::Uniform u; + u.type = RD::UNIFORM_TYPE_UNIFORM_BUFFER; + u.binding = 3; + u.ids.push_back(gi_probe_lights_uniform); + uniforms.push_back(u); + } + + { + RD::Uniform u; + u.type = RD::UNIFORM_TYPE_IMAGE; + u.binding = 5; + u.ids.push_back(dmap.albedo); + uniforms.push_back(u); + } + { + RD::Uniform u; + u.type = RD::UNIFORM_TYPE_IMAGE; + u.binding = 6; + u.ids.push_back(dmap.normal); + uniforms.push_back(u); + } + { + RD::Uniform u; + u.type = RD::UNIFORM_TYPE_IMAGE; + u.binding = 7; + u.ids.push_back(dmap.orm); + uniforms.push_back(u); + } + { + RD::Uniform u; + u.type = RD::UNIFORM_TYPE_TEXTURE; + u.binding = 8; + u.ids.push_back(dmap.fb_depth); + uniforms.push_back(u); + } + { + RD::Uniform u; + u.type = RD::UNIFORM_TYPE_TEXTURE; + u.binding = 9; + u.ids.push_back(storage->gi_probe_get_sdf_texture(gi_probe->probe)); + uniforms.push_back(u); + } + { + RD::Uniform u; + u.type = RD::UNIFORM_TYPE_SAMPLER; + u.binding = 10; + u.ids.push_back(storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR_WITH_MIPMAPS, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED)); + uniforms.push_back(u); + } + { + RD::Uniform u; + u.type = RD::UNIFORM_TYPE_IMAGE; + u.binding = 11; + u.ids.push_back(dmap.texture); + uniforms.push_back(u); + } + { + RD::Uniform u; + u.type = RD::UNIFORM_TYPE_IMAGE; + u.binding = 12; + u.ids.push_back(dmap.depth); + uniforms.push_back(u); + } + + dmap.uniform_set = RD::get_singleton()->uniform_set_create(uniforms, giprobe_lighting_shader_version_shaders[GI_PROBE_SHADER_VERSION_DYNAMIC_OBJECT_LIGHTING], 0); + } + } else { + bool plot = dmap.mipmap >= 0; + bool write = dmap.mipmap < (gi_probe->mipmaps.size() - 1); + + Vector<RD::Uniform> uniforms; + + { + RD::Uniform u; + u.type = RD::UNIFORM_TYPE_IMAGE; + u.binding = 5; + u.ids.push_back(gi_probe->dynamic_maps[gi_probe->dynamic_maps.size() - 1].texture); + uniforms.push_back(u); + } + { + RD::Uniform u; + u.type = RD::UNIFORM_TYPE_IMAGE; + u.binding = 6; + u.ids.push_back(gi_probe->dynamic_maps[gi_probe->dynamic_maps.size() - 1].depth); + uniforms.push_back(u); + } + + if (write) { + + { + RD::Uniform u; + u.type = RD::UNIFORM_TYPE_IMAGE; + u.binding = 7; + u.ids.push_back(dmap.texture); + uniforms.push_back(u); + } + { + RD::Uniform u; + u.type = RD::UNIFORM_TYPE_IMAGE; + u.binding = 8; + u.ids.push_back(dmap.depth); + uniforms.push_back(u); + } + } + + { + RD::Uniform u; + u.type = RD::UNIFORM_TYPE_TEXTURE; + u.binding = 9; + u.ids.push_back(storage->gi_probe_get_sdf_texture(gi_probe->probe)); + uniforms.push_back(u); + } + { + RD::Uniform u; + u.type = RD::UNIFORM_TYPE_SAMPLER; + u.binding = 10; + u.ids.push_back(storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR_WITH_MIPMAPS, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED)); + uniforms.push_back(u); + } + + if (plot) { + + { + RD::Uniform u; + u.type = RD::UNIFORM_TYPE_IMAGE; + u.binding = 11; + u.ids.push_back(gi_probe->mipmaps[dmap.mipmap].texture); + uniforms.push_back(u); + } + if (gi_probe_is_anisotropic()) { + { + RD::Uniform u; + u.type = RD::UNIFORM_TYPE_IMAGE; + u.binding = 12; + u.ids.push_back(gi_probe->mipmaps[dmap.mipmap].anisotropy[0]); + uniforms.push_back(u); + } + { + RD::Uniform u; + u.type = RD::UNIFORM_TYPE_IMAGE; + u.binding = 13; + u.ids.push_back(gi_probe->mipmaps[dmap.mipmap].anisotropy[1]); + uniforms.push_back(u); + } + } + } + + dmap.uniform_set = RD::get_singleton()->uniform_set_create(uniforms, giprobe_lighting_shader_version_shaders[(write && plot) ? GI_PROBE_SHADER_VERSION_DYNAMIC_SHRINK_WRITE_PLOT : write ? GI_PROBE_SHADER_VERSION_DYNAMIC_SHRINK_WRITE : GI_PROBE_SHADER_VERSION_DYNAMIC_SHRINK_PLOT], 0); + } + + gi_probe->dynamic_maps.push_back(dmap); + } + } + } + + gi_probe->last_probe_data_version = data_version; + p_update_light_instances = true; //just in case + + _base_uniforms_changed(); + } + + // UDPDATE TIME + + if (gi_probe->has_dynamic_object_data) { + //if it has dynamic object data, it needs to be cleared + RD::get_singleton()->texture_clear(gi_probe->texture, Color(0, 0, 0, 0), 0, gi_probe->mipmaps.size(), 0, 1, true); + if (gi_probe_is_anisotropic()) { + RD::get_singleton()->texture_clear(gi_probe->anisotropy[0], Color(0, 0, 0, 0), 0, gi_probe->mipmaps.size(), 0, 1, true); + RD::get_singleton()->texture_clear(gi_probe->anisotropy[1], Color(0, 0, 0, 0), 0, gi_probe->mipmaps.size(), 0, 1, true); + } + } + + uint32_t light_count = 0; + + if (p_update_light_instances || p_dynamic_object_count > 0) { + + light_count = MIN(gi_probe_max_lights, (uint32_t)p_light_instances.size()); + + { + Transform to_cell = storage->gi_probe_get_to_cell_xform(gi_probe->probe); + Transform to_probe_xform = (gi_probe->transform * to_cell.affine_inverse()).affine_inverse(); + //update lights + + for (uint32_t i = 0; i < light_count; i++) { + GIProbeLight &l = gi_probe_lights[i]; + RID light_instance = p_light_instances[i]; + RID light = light_instance_get_base_light(light_instance); + + l.type = storage->light_get_type(light); + l.attenuation = storage->light_get_param(light, RS::LIGHT_PARAM_ATTENUATION); + l.energy = storage->light_get_param(light, RS::LIGHT_PARAM_ENERGY) * storage->light_get_param(light, RS::LIGHT_PARAM_INDIRECT_ENERGY); + l.radius = to_cell.basis.xform(Vector3(storage->light_get_param(light, RS::LIGHT_PARAM_RANGE), 0, 0)).length(); + Color color = storage->light_get_color(light).to_linear(); + l.color[0] = color.r; + l.color[1] = color.g; + l.color[2] = color.b; + + l.spot_angle_radians = Math::deg2rad(storage->light_get_param(light, RS::LIGHT_PARAM_SPOT_ANGLE)); + l.spot_attenuation = storage->light_get_param(light, RS::LIGHT_PARAM_SPOT_ATTENUATION); + + Transform xform = light_instance_get_base_transform(light_instance); + + Vector3 pos = to_probe_xform.xform(xform.origin); + Vector3 dir = to_probe_xform.basis.xform(-xform.basis.get_axis(2)).normalized(); + + l.position[0] = pos.x; + l.position[1] = pos.y; + l.position[2] = pos.z; + + l.direction[0] = dir.x; + l.direction[1] = dir.y; + l.direction[2] = dir.z; + + l.has_shadow = storage->light_has_shadow(light); + } + + RD::get_singleton()->buffer_update(gi_probe_lights_uniform, 0, sizeof(GIProbeLight) * light_count, gi_probe_lights, true); + } + } + + if (gi_probe->has_dynamic_object_data || p_update_light_instances || p_dynamic_object_count) { + // PROCESS MIPMAPS + if (gi_probe->mipmaps.size()) { + //can update mipmaps + + Vector3i probe_size = storage->gi_probe_get_octree_size(gi_probe->probe); + + GIProbePushConstant push_constant; + + push_constant.limits[0] = probe_size.x; + push_constant.limits[1] = probe_size.y; + push_constant.limits[2] = probe_size.z; + push_constant.stack_size = gi_probe->mipmaps.size(); + push_constant.emission_scale = 1.0; + push_constant.propagation = storage->gi_probe_get_propagation(gi_probe->probe); + push_constant.dynamic_range = storage->gi_probe_get_dynamic_range(gi_probe->probe); + push_constant.light_count = light_count; + push_constant.aniso_strength = storage->gi_probe_get_anisotropy_strength(gi_probe->probe); + + /* print_line("probe update to version " + itos(gi_probe->last_probe_version)); + print_line("propagation " + rtos(push_constant.propagation)); + print_line("dynrange " + rtos(push_constant.dynamic_range)); + */ + RD::ComputeListID compute_list = RD::get_singleton()->compute_list_begin(); + + int passes; + if (p_update_light_instances) { + passes = storage->gi_probe_is_using_two_bounces(gi_probe->probe) ? 2 : 1; + } else { + passes = 1; //only re-blitting is necessary + } + int wg_size = 64; + int wg_limit_x = RD::get_singleton()->limit_get(RD::LIMIT_MAX_COMPUTE_WORKGROUP_COUNT_X); + + for (int pass = 0; pass < passes; pass++) { + + if (p_update_light_instances) { + + for (int i = 0; i < gi_probe->mipmaps.size(); i++) { + if (i == 0) { + RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, giprobe_lighting_shader_version_pipelines[pass == 0 ? GI_PROBE_SHADER_VERSION_COMPUTE_LIGHT : GI_PROBE_SHADER_VERSION_COMPUTE_SECOND_BOUNCE]); + } else if (i == 1) { + RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, giprobe_lighting_shader_version_pipelines[GI_PROBE_SHADER_VERSION_COMPUTE_MIPMAP]); + } + + if (pass == 1 || i > 0) { + RD::get_singleton()->compute_list_add_barrier(compute_list); //wait til previous step is done + } + if (pass == 0 || i > 0) { + RD::get_singleton()->compute_list_bind_uniform_set(compute_list, gi_probe->mipmaps[i].uniform_set, 0); + } else { + RD::get_singleton()->compute_list_bind_uniform_set(compute_list, gi_probe->mipmaps[i].second_bounce_uniform_set, 0); + } + + push_constant.cell_offset = gi_probe->mipmaps[i].cell_offset; + push_constant.cell_count = gi_probe->mipmaps[i].cell_count; + + int wg_todo = (gi_probe->mipmaps[i].cell_count - 1) / wg_size + 1; + while (wg_todo) { + int wg_count = MIN(wg_todo, wg_limit_x); + RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(GIProbePushConstant)); + RD::get_singleton()->compute_list_dispatch(compute_list, wg_count, 1, 1); + wg_todo -= wg_count; + push_constant.cell_offset += wg_count * wg_size; + } + } + + RD::get_singleton()->compute_list_add_barrier(compute_list); //wait til previous step is done + } + + RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, giprobe_lighting_shader_version_pipelines[GI_PROBE_SHADER_VERSION_WRITE_TEXTURE]); + + for (int i = 0; i < gi_probe->mipmaps.size(); i++) { + + RD::get_singleton()->compute_list_bind_uniform_set(compute_list, gi_probe->mipmaps[i].write_uniform_set, 0); + + push_constant.cell_offset = gi_probe->mipmaps[i].cell_offset; + push_constant.cell_count = gi_probe->mipmaps[i].cell_count; + + int wg_todo = (gi_probe->mipmaps[i].cell_count - 1) / wg_size + 1; + while (wg_todo) { + int wg_count = MIN(wg_todo, wg_limit_x); + RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(GIProbePushConstant)); + RD::get_singleton()->compute_list_dispatch(compute_list, wg_count, 1, 1); + wg_todo -= wg_count; + push_constant.cell_offset += wg_count * wg_size; + } + } + } + + RD::get_singleton()->compute_list_end(); + } + } + + gi_probe->has_dynamic_object_data = false; //clear until dynamic object data is used again + + if (p_dynamic_object_count && gi_probe->dynamic_maps.size()) { + + Vector3i octree_size = storage->gi_probe_get_octree_size(gi_probe->probe); + int multiplier = gi_probe->dynamic_maps[0].size / MAX(MAX(octree_size.x, octree_size.y), octree_size.z); + + Transform oversample_scale; + oversample_scale.basis.scale(Vector3(multiplier, multiplier, multiplier)); + + Transform to_cell = oversample_scale * storage->gi_probe_get_to_cell_xform(gi_probe->probe); + Transform to_world_xform = gi_probe->transform * to_cell.affine_inverse(); + Transform to_probe_xform = to_world_xform.affine_inverse(); + + AABB probe_aabb(Vector3(), octree_size); + + //this could probably be better parallelized in compute.. + for (int i = 0; i < p_dynamic_object_count; i++) { + + InstanceBase *instance = p_dynamic_objects[i]; + //not used, so clear + instance->depth_layer = 0; + instance->depth = 0; + + //transform aabb to giprobe + AABB aabb = (to_probe_xform * instance->transform).xform(instance->aabb); + + //this needs to wrap to grid resolution to avoid jitter + //also extend margin a bit just in case + Vector3i begin = aabb.position - Vector3i(1, 1, 1); + Vector3i end = aabb.position + aabb.size + Vector3i(1, 1, 1); + + for (int j = 0; j < 3; j++) { + if ((end[j] - begin[j]) & 1) { + end[j]++; //for half extents split, it needs to be even + } + begin[j] = MAX(begin[j], 0); + end[j] = MIN(end[j], octree_size[j] * multiplier); + } + + //aabb = aabb.intersection(probe_aabb); //intersect + aabb.position = begin; + aabb.size = end - begin; + + //print_line("aabb: " + aabb); + + for (int j = 0; j < 6; j++) { + + //if (j != 0 && j != 3) { + // continue; + //} + static const Vector3 render_z[6] = { + Vector3(1, 0, 0), + Vector3(0, 1, 0), + Vector3(0, 0, 1), + Vector3(-1, 0, 0), + Vector3(0, -1, 0), + Vector3(0, 0, -1), + }; + static const Vector3 render_up[6] = { + Vector3(0, 1, 0), + Vector3(0, 0, 1), + Vector3(0, 1, 0), + Vector3(0, 1, 0), + Vector3(0, 0, 1), + Vector3(0, 1, 0), + }; + + Vector3 render_dir = render_z[j]; + Vector3 up_dir = render_up[j]; + + Vector3 center = aabb.position + aabb.size * 0.5; + Transform xform; + xform.set_look_at(center - aabb.size * 0.5 * render_dir, center, up_dir); + + Vector3 x_dir = xform.basis.get_axis(0).abs(); + int x_axis = int(Vector3(0, 1, 2).dot(x_dir)); + Vector3 y_dir = xform.basis.get_axis(1).abs(); + int y_axis = int(Vector3(0, 1, 2).dot(y_dir)); + Vector3 z_dir = -xform.basis.get_axis(2); + int z_axis = int(Vector3(0, 1, 2).dot(z_dir.abs())); + + Rect2i rect(aabb.position[x_axis], aabb.position[y_axis], aabb.size[x_axis], aabb.size[y_axis]); + bool x_flip = bool(Vector3(1, 1, 1).dot(xform.basis.get_axis(0)) < 0); + bool y_flip = bool(Vector3(1, 1, 1).dot(xform.basis.get_axis(1)) < 0); + bool z_flip = bool(Vector3(1, 1, 1).dot(xform.basis.get_axis(2)) > 0); + + CameraMatrix cm; + cm.set_orthogonal(-rect.size.width / 2, rect.size.width / 2, -rect.size.height / 2, rect.size.height / 2, 0.0001, aabb.size[z_axis]); + + _render_material(to_world_xform * xform, cm, true, &instance, 1, gi_probe->dynamic_maps[0].fb, Rect2i(Vector2i(), rect.size)); + + GIProbeDynamicPushConstant push_constant; + zeromem(&push_constant, sizeof(GIProbeDynamicPushConstant)); + push_constant.limits[0] = octree_size.x; + push_constant.limits[1] = octree_size.y; + push_constant.limits[2] = octree_size.z; + push_constant.light_count = p_light_instances.size(); + push_constant.x_dir[0] = x_dir[0]; + push_constant.x_dir[1] = x_dir[1]; + push_constant.x_dir[2] = x_dir[2]; + push_constant.y_dir[0] = y_dir[0]; + push_constant.y_dir[1] = y_dir[1]; + push_constant.y_dir[2] = y_dir[2]; + push_constant.z_dir[0] = z_dir[0]; + push_constant.z_dir[1] = z_dir[1]; + push_constant.z_dir[2] = z_dir[2]; + push_constant.z_base = xform.origin[z_axis]; + push_constant.z_sign = (z_flip ? -1.0 : 1.0); + push_constant.pos_multiplier = float(1.0) / multiplier; + push_constant.dynamic_range = storage->gi_probe_get_dynamic_range(gi_probe->probe); + push_constant.flip_x = x_flip; + push_constant.flip_y = y_flip; + push_constant.rect_pos[0] = rect.position[0]; + push_constant.rect_pos[1] = rect.position[1]; + push_constant.rect_size[0] = rect.size[0]; + push_constant.rect_size[1] = rect.size[1]; + push_constant.prev_rect_ofs[0] = 0; + push_constant.prev_rect_ofs[1] = 0; + push_constant.prev_rect_size[0] = 0; + push_constant.prev_rect_size[1] = 0; + push_constant.on_mipmap = false; + push_constant.propagation = storage->gi_probe_get_propagation(gi_probe->probe); + push_constant.pad[0] = 0; + push_constant.pad[1] = 0; + push_constant.pad[2] = 0; + + //process lighting + RD::ComputeListID compute_list = RD::get_singleton()->compute_list_begin(); + RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, giprobe_lighting_shader_version_pipelines[GI_PROBE_SHADER_VERSION_DYNAMIC_OBJECT_LIGHTING]); + RD::get_singleton()->compute_list_bind_uniform_set(compute_list, gi_probe->dynamic_maps[0].uniform_set, 0); + RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(GIProbeDynamicPushConstant)); + RD::get_singleton()->compute_list_dispatch(compute_list, (rect.size.x - 1) / 8 + 1, (rect.size.y - 1) / 8 + 1, 1); + //print_line("rect: " + itos(i) + ": " + rect); + + for (int k = 1; k < gi_probe->dynamic_maps.size(); k++) { + + // enlarge the rect if needed so all pixels fit when downscaled, + // this ensures downsampling is smooth and optimal because no pixels are left behind + + //x + if (rect.position.x & 1) { + rect.size.x++; + push_constant.prev_rect_ofs[0] = 1; //this is used to ensure reading is also optimal + } else { + push_constant.prev_rect_ofs[0] = 0; + } + if (rect.size.x & 1) { + rect.size.x++; + } + + rect.position.x >>= 1; + rect.size.x = MAX(1, rect.size.x >> 1); + + //y + if (rect.position.y & 1) { + rect.size.y++; + push_constant.prev_rect_ofs[1] = 1; + } else { + push_constant.prev_rect_ofs[1] = 0; + } + if (rect.size.y & 1) { + rect.size.y++; + } + + rect.position.y >>= 1; + rect.size.y = MAX(1, rect.size.y >> 1); + + //shrink limits to ensure plot does not go outside map + if (gi_probe->dynamic_maps[k].mipmap > 0) { + for (int l = 0; l < 3; l++) { + push_constant.limits[l] = MAX(1, push_constant.limits[l] >> 1); + } + } + + //print_line("rect: " + itos(i) + ": " + rect); + push_constant.rect_pos[0] = rect.position[0]; + push_constant.rect_pos[1] = rect.position[1]; + push_constant.prev_rect_size[0] = push_constant.rect_size[0]; + push_constant.prev_rect_size[1] = push_constant.rect_size[1]; + push_constant.rect_size[0] = rect.size[0]; + push_constant.rect_size[1] = rect.size[1]; + push_constant.on_mipmap = gi_probe->dynamic_maps[k].mipmap > 0; + + RD::get_singleton()->compute_list_add_barrier(compute_list); + + if (gi_probe->dynamic_maps[k].mipmap < 0) { + RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, giprobe_lighting_shader_version_pipelines[GI_PROBE_SHADER_VERSION_DYNAMIC_SHRINK_WRITE]); + } else if (k < gi_probe->dynamic_maps.size() - 1) { + RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, giprobe_lighting_shader_version_pipelines[GI_PROBE_SHADER_VERSION_DYNAMIC_SHRINK_WRITE_PLOT]); + } else { + RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, giprobe_lighting_shader_version_pipelines[GI_PROBE_SHADER_VERSION_DYNAMIC_SHRINK_PLOT]); + } + RD::get_singleton()->compute_list_bind_uniform_set(compute_list, gi_probe->dynamic_maps[k].uniform_set, 0); + RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(GIProbeDynamicPushConstant)); + RD::get_singleton()->compute_list_dispatch(compute_list, (rect.size.x - 1) / 8 + 1, (rect.size.y - 1) / 8 + 1, 1); + } + + RD::get_singleton()->compute_list_end(); + } + } + + gi_probe->has_dynamic_object_data = true; //clear until dynamic object data is used again + } + + gi_probe->last_probe_version = storage->gi_probe_get_version(gi_probe->probe); +} + +void RasterizerSceneRD::_debug_giprobe(RID p_gi_probe, RD::DrawListID p_draw_list, RID p_framebuffer, const CameraMatrix &p_camera_with_transform, bool p_lighting, bool p_emission, float p_alpha) { + GIProbeInstance *gi_probe = gi_probe_instance_owner.getornull(p_gi_probe); + ERR_FAIL_COND(!gi_probe); + + if (gi_probe->mipmaps.size() == 0) { + return; + } + + CameraMatrix transform = (p_camera_with_transform * CameraMatrix(gi_probe->transform)) * CameraMatrix(storage->gi_probe_get_to_cell_xform(gi_probe->probe).affine_inverse()); + + int level = 0; + Vector3i octree_size = storage->gi_probe_get_octree_size(gi_probe->probe); + + GIProbeDebugPushConstant push_constant; + push_constant.alpha = p_alpha; + push_constant.dynamic_range = storage->gi_probe_get_dynamic_range(gi_probe->probe); + push_constant.cell_offset = gi_probe->mipmaps[level].cell_offset; + push_constant.level = level; + + push_constant.bounds[0] = octree_size.x >> level; + push_constant.bounds[1] = octree_size.y >> level; + push_constant.bounds[2] = octree_size.z >> level; + push_constant.pad = 0; + + for (int i = 0; i < 4; i++) { + for (int j = 0; j < 4; j++) { + + push_constant.projection[i * 4 + j] = transform.matrix[i][j]; + } + } + + if (giprobe_debug_uniform_set.is_valid()) { + RD::get_singleton()->free(giprobe_debug_uniform_set); + } + Vector<RD::Uniform> uniforms; + { + RD::Uniform u; + u.type = RD::UNIFORM_TYPE_STORAGE_BUFFER; + u.binding = 1; + u.ids.push_back(storage->gi_probe_get_data_buffer(gi_probe->probe)); + uniforms.push_back(u); + } + { + RD::Uniform u; + u.type = RD::UNIFORM_TYPE_TEXTURE; + u.binding = 2; + u.ids.push_back(gi_probe->texture); + uniforms.push_back(u); + } + { + RD::Uniform u; + u.type = RD::UNIFORM_TYPE_SAMPLER; + u.binding = 3; + u.ids.push_back(storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_NEAREST, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED)); + uniforms.push_back(u); + } + + if (gi_probe_use_anisotropy) { + { + RD::Uniform u; + u.type = RD::UNIFORM_TYPE_TEXTURE; + u.binding = 4; + u.ids.push_back(gi_probe->anisotropy[0]); + uniforms.push_back(u); + } + { + RD::Uniform u; + u.type = RD::UNIFORM_TYPE_TEXTURE; + u.binding = 5; + u.ids.push_back(gi_probe->anisotropy[1]); + uniforms.push_back(u); + } + } + + int cell_count; + if (!p_emission && p_lighting && gi_probe->has_dynamic_object_data) { + cell_count = push_constant.bounds[0] * push_constant.bounds[1] * push_constant.bounds[2]; + } else { + cell_count = gi_probe->mipmaps[level].cell_count; + } + + giprobe_debug_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, giprobe_debug_shader_version_shaders[0], 0); + RD::get_singleton()->draw_list_bind_render_pipeline(p_draw_list, giprobe_debug_shader_version_pipelines[p_emission ? GI_PROBE_DEBUG_EMISSION : p_lighting ? (gi_probe->has_dynamic_object_data ? GI_PROBE_DEBUG_LIGHT_FULL : GI_PROBE_DEBUG_LIGHT) : GI_PROBE_DEBUG_COLOR].get_render_pipeline(RD::INVALID_ID, RD::get_singleton()->framebuffer_get_format(p_framebuffer))); + RD::get_singleton()->draw_list_bind_uniform_set(p_draw_list, giprobe_debug_uniform_set, 0); + RD::get_singleton()->draw_list_set_push_constant(p_draw_list, &push_constant, sizeof(GIProbeDebugPushConstant)); + RD::get_singleton()->draw_list_draw(p_draw_list, false, cell_count, 36); +} + +const Vector<RID> &RasterizerSceneRD::gi_probe_get_slots() const { + + return gi_probe_slots; +} + +RasterizerSceneRD::GIProbeQuality RasterizerSceneRD::gi_probe_get_quality() const { + return gi_probe_quality; +} + +//////////////////////////////// +RID RasterizerSceneRD::render_buffers_create() { + RenderBuffers rb; + rb.data = _create_render_buffer_data(); + return render_buffers_owner.make_rid(rb); +} + +void RasterizerSceneRD::_allocate_blur_textures(RenderBuffers *rb) { + ERR_FAIL_COND(!rb->blur[0].texture.is_null()); + + uint32_t mipmaps_required = Image::get_image_required_mipmaps(rb->width, rb->height, Image::FORMAT_RGBAH); + + RD::TextureFormat tf; + tf.format = RD::DATA_FORMAT_R16G16B16A16_SFLOAT; + tf.width = rb->width; + tf.height = rb->height; + tf.type = RD::TEXTURE_TYPE_2D; + tf.usage_bits = RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT | RD::TEXTURE_USAGE_STORAGE_BIT | RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_CAN_COPY_TO_BIT; + tf.mipmaps = mipmaps_required; + + rb->blur[0].texture = RD::get_singleton()->texture_create(tf, RD::TextureView()); + //the second one is smaller (only used for separatable part of blur) + tf.width >>= 1; + tf.height >>= 1; + tf.mipmaps--; + rb->blur[1].texture = RD::get_singleton()->texture_create(tf, RD::TextureView()); + + int base_width = rb->width; + int base_height = rb->height; + + for (uint32_t i = 0; i < mipmaps_required; i++) { + + RenderBuffers::Blur::Mipmap mm; + mm.texture = RD::get_singleton()->texture_create_shared_from_slice(RD::TextureView(), rb->blur[0].texture, 0, i); + { + Vector<RID> fbs; + fbs.push_back(mm.texture); + mm.framebuffer = RD::get_singleton()->framebuffer_create(fbs); + } + + mm.width = base_width; + mm.height = base_height; + + rb->blur[0].mipmaps.push_back(mm); + + if (i > 0) { + + mm.texture = RD::get_singleton()->texture_create_shared_from_slice(RD::TextureView(), rb->blur[1].texture, 0, i - 1); + { + Vector<RID> fbs; + fbs.push_back(mm.texture); + mm.framebuffer = RD::get_singleton()->framebuffer_create(fbs); + } + + rb->blur[1].mipmaps.push_back(mm); + } + + base_width = MAX(1, base_width >> 1); + base_height = MAX(1, base_height >> 1); + } +} + +void RasterizerSceneRD::_allocate_luminance_textures(RenderBuffers *rb) { + ERR_FAIL_COND(!rb->luminance.current.is_null()); + + int w = rb->width; + int h = rb->height; + + while (true) { + w = MAX(w / 8, 1); + h = MAX(h / 8, 1); + + RD::TextureFormat tf; + tf.format = RD::DATA_FORMAT_R32_SFLOAT; + tf.width = w; + tf.height = h; + tf.usage_bits = RD::TEXTURE_USAGE_STORAGE_BIT; + + bool final = w == 1 && h == 1; + + if (final) { + tf.usage_bits |= RD::TEXTURE_USAGE_SAMPLING_BIT; + } + + RID texture = RD::get_singleton()->texture_create(tf, RD::TextureView()); + + rb->luminance.reduce.push_back(texture); + + if (final) { + rb->luminance.current = RD::get_singleton()->texture_create(tf, RD::TextureView()); + break; + } + } +} + +void RasterizerSceneRD::_free_render_buffer_data(RenderBuffers *rb) { + + if (rb->texture.is_valid()) { + RD::get_singleton()->free(rb->texture); + rb->texture = RID(); + } + + if (rb->depth_texture.is_valid()) { + RD::get_singleton()->free(rb->depth_texture); + rb->depth_texture = RID(); + } + + for (int i = 0; i < 2; i++) { + if (rb->blur[i].texture.is_valid()) { + RD::get_singleton()->free(rb->blur[i].texture); + rb->blur[i].texture = RID(); + rb->blur[i].mipmaps.clear(); + } + } + + for (int i = 0; i < rb->luminance.reduce.size(); i++) { + RD::get_singleton()->free(rb->luminance.reduce[i]); + } + + for (int i = 0; i < rb->luminance.reduce.size(); i++) { + RD::get_singleton()->free(rb->luminance.reduce[i]); + } + rb->luminance.reduce.clear(); + + if (rb->luminance.current.is_valid()) { + RD::get_singleton()->free(rb->luminance.current); + rb->luminance.current = RID(); + } + + if (rb->ssao.ao[0].is_valid()) { + RD::get_singleton()->free(rb->ssao.depth); + RD::get_singleton()->free(rb->ssao.ao[0]); + if (rb->ssao.ao[1].is_valid()) { + RD::get_singleton()->free(rb->ssao.ao[1]); + } + if (rb->ssao.ao_full.is_valid()) { + RD::get_singleton()->free(rb->ssao.ao_full); + } + + rb->ssao.depth = RID(); + rb->ssao.ao[0] = RID(); + rb->ssao.ao[1] = RID(); + rb->ssao.ao_full = RID(); + rb->ssao.depth_slices.clear(); + } +} + +void RasterizerSceneRD::_process_ssao(RID p_render_buffers, RID p_environment, RID p_normal_buffer, const CameraMatrix &p_projection) { + + RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers); + ERR_FAIL_COND(!rb); + + Environent *env = environment_owner.getornull(p_environment); + ERR_FAIL_COND(!env); + + if (rb->ssao.ao[0].is_valid() && rb->ssao.ao_full.is_valid() != ssao_half_size) { + RD::get_singleton()->free(rb->ssao.depth); + RD::get_singleton()->free(rb->ssao.ao[0]); + if (rb->ssao.ao[1].is_valid()) { + RD::get_singleton()->free(rb->ssao.ao[1]); + } + if (rb->ssao.ao_full.is_valid()) { + RD::get_singleton()->free(rb->ssao.ao_full); + } + + rb->ssao.depth = RID(); + rb->ssao.ao[0] = RID(); + rb->ssao.ao[1] = RID(); + rb->ssao.ao_full = RID(); + rb->ssao.depth_slices.clear(); + } + + if (!rb->ssao.ao[0].is_valid()) { + //allocate depth slices + + { + RD::TextureFormat tf; + tf.format = RD::DATA_FORMAT_R32_SFLOAT; + tf.width = rb->width / 2; + tf.height = rb->height / 2; + tf.mipmaps = Image::get_image_required_mipmaps(tf.width, tf.height, Image::FORMAT_RF) + 1; + tf.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_STORAGE_BIT; + rb->ssao.depth = RD::get_singleton()->texture_create(tf, RD::TextureView()); + for (uint32_t i = 0; i < tf.mipmaps; i++) { + RID slice = RD::get_singleton()->texture_create_shared_from_slice(RD::TextureView(), rb->ssao.depth, 0, i); + rb->ssao.depth_slices.push_back(slice); + } + } + + { + RD::TextureFormat tf; + tf.format = RD::DATA_FORMAT_R8_UNORM; + tf.width = ssao_half_size ? rb->width / 2 : rb->width; + tf.height = ssao_half_size ? rb->height / 2 : rb->height; + tf.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_STORAGE_BIT; + rb->ssao.ao[0] = RD::get_singleton()->texture_create(tf, RD::TextureView()); + rb->ssao.ao[1] = RD::get_singleton()->texture_create(tf, RD::TextureView()); + } + + if (ssao_half_size) { + //upsample texture + RD::TextureFormat tf; + tf.format = RD::DATA_FORMAT_R8_UNORM; + tf.width = rb->width; + tf.height = rb->height; + tf.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_STORAGE_BIT; + rb->ssao.ao_full = RD::get_singleton()->texture_create(tf, RD::TextureView()); + } + + _render_buffers_uniform_set_changed(p_render_buffers); + } + + storage->get_effects()->generate_ssao(rb->depth_texture, p_normal_buffer, Size2i(rb->width, rb->height), rb->ssao.depth, rb->ssao.depth_slices, rb->ssao.ao[0], rb->ssao.ao_full.is_valid(), rb->ssao.ao[1], rb->ssao.ao_full, env->ssao_intensity, env->ssao_radius, env->ssao_bias, p_projection, ssao_quality, env->ssao_blur, env->ssao_blur_edge_sharpness); +} + +void RasterizerSceneRD::_render_buffers_post_process_and_tonemap(RID p_render_buffers, RID p_environment, RID p_camera_effects, const CameraMatrix &p_projection) { + + RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers); + ERR_FAIL_COND(!rb); + + Environent *env = environment_owner.getornull(p_environment); + //glow (if enabled) + CameraEffects *camfx = camera_effects_owner.getornull(p_camera_effects); + + bool can_use_effects = rb->width >= 8 && rb->height >= 8; + + if (can_use_effects && camfx && (camfx->dof_blur_near_enabled || camfx->dof_blur_far_enabled) && camfx->dof_blur_amount > 0.0) { + + if (rb->blur[0].texture.is_null()) { + _allocate_blur_textures(rb); + _render_buffers_uniform_set_changed(p_render_buffers); + } + + float bokeh_size = camfx->dof_blur_amount * 64.0; + storage->get_effects()->bokeh_dof(rb->texture, rb->depth_texture, Size2i(rb->width, rb->height), rb->blur[0].mipmaps[0].texture, rb->blur[1].mipmaps[0].texture, rb->blur[0].mipmaps[1].texture, camfx->dof_blur_far_enabled, camfx->dof_blur_far_distance, camfx->dof_blur_far_transition, camfx->dof_blur_near_enabled, camfx->dof_blur_near_distance, camfx->dof_blur_near_transition, bokeh_size, dof_blur_bokeh_shape, dof_blur_quality, dof_blur_use_jitter, p_projection.get_z_near(), p_projection.get_z_far(), p_projection.is_orthogonal()); + } + + if (can_use_effects && env && env->auto_exposure) { + + if (rb->luminance.current.is_null()) { + _allocate_luminance_textures(rb); + _render_buffers_uniform_set_changed(p_render_buffers); + } + + bool set_immediate = env->auto_exposure_version != rb->auto_exposure_version; + rb->auto_exposure_version = env->auto_exposure_version; + + double step = env->auto_exp_speed * time_step; + storage->get_effects()->luminance_reduction(rb->texture, Size2i(rb->width, rb->height), rb->luminance.reduce, rb->luminance.current, env->min_luminance, env->max_luminance, step, set_immediate); + + //swap final reduce with prev luminance + SWAP(rb->luminance.current, rb->luminance.reduce.write[rb->luminance.reduce.size() - 1]); + RenderingServerRaster::redraw_request(); //redraw all the time if auto exposure rendering is on + } + + int max_glow_level = -1; + int glow_mask = 0; + + if (can_use_effects && env && env->glow_enabled) { + + /* see that blur textures are allocated */ + + if (rb->blur[0].texture.is_null()) { + _allocate_blur_textures(rb); + _render_buffers_uniform_set_changed(p_render_buffers); + } + + for (int i = 0; i < RS::MAX_GLOW_LEVELS; i++) { + if (env->glow_levels & (1 << i)) { + + if (i >= rb->blur[1].mipmaps.size()) { + max_glow_level = rb->blur[1].mipmaps.size() - 1; + glow_mask |= 1 << max_glow_level; + + } else { + max_glow_level = i; + glow_mask |= (1 << i); + } + } + } + + for (int i = 0; i < (max_glow_level + 1); i++) { + + int vp_w = rb->blur[1].mipmaps[i].width; + int vp_h = rb->blur[1].mipmaps[i].height; + + if (i == 0) { + RID luminance_texture; + if (env->auto_exposure && rb->luminance.current.is_valid()) { + luminance_texture = rb->luminance.current; + } + storage->get_effects()->gaussian_glow(rb->texture, rb->blur[0].mipmaps[i + 1].framebuffer, rb->blur[0].mipmaps[i + 1].texture, rb->blur[1].mipmaps[i].framebuffer, Vector2(1.0 / vp_w, 1.0 / vp_h), env->glow_strength, true, env->glow_hdr_luminance_cap, env->exposure, env->glow_bloom, env->glow_hdr_bleed_threshold, env->glow_hdr_bleed_scale, luminance_texture, env->auto_exp_scale); + } else { + storage->get_effects()->gaussian_glow(rb->blur[1].mipmaps[i - 1].texture, rb->blur[0].mipmaps[i + 1].framebuffer, rb->blur[0].mipmaps[i + 1].texture, rb->blur[1].mipmaps[i].framebuffer, Vector2(1.0 / vp_w, 1.0 / vp_h), env->glow_strength); + } + } + } + + { + //tonemap + RasterizerEffectsRD::TonemapSettings tonemap; + + tonemap.color_correction_texture = storage->texture_rd_get_default(RasterizerStorageRD::DEFAULT_RD_TEXTURE_3D_WHITE); + + if (can_use_effects && env && env->auto_exposure && rb->luminance.current.is_valid()) { + tonemap.use_auto_exposure = true; + tonemap.exposure_texture = rb->luminance.current; + tonemap.auto_exposure_grey = env->auto_exp_scale; + } else { + + tonemap.exposure_texture = storage->texture_rd_get_default(RasterizerStorageRD::DEFAULT_RD_TEXTURE_WHITE); + } + + if (can_use_effects && env && env->glow_enabled) { + tonemap.use_glow = true; + tonemap.glow_mode = RasterizerEffectsRD::TonemapSettings::GlowMode(env->glow_blend_mode); + tonemap.glow_intensity = env->glow_blend_mode == RS::ENV_GLOW_BLEND_MODE_MIX ? env->glow_mix : env->glow_intensity; + tonemap.glow_level_flags = glow_mask; + tonemap.glow_texture_size.x = rb->blur[1].mipmaps[0].width; + tonemap.glow_texture_size.y = rb->blur[1].mipmaps[0].height; + tonemap.glow_use_bicubic_upscale = env->glow_bicubic_upscale; + tonemap.glow_texture = rb->blur[1].texture; + } else { + tonemap.glow_texture = storage->texture_rd_get_default(RasterizerStorageRD::DEFAULT_RD_TEXTURE_BLACK); + } + + if (env) { + tonemap.tonemap_mode = env->tone_mapper; + tonemap.white = env->white; + tonemap.exposure = env->exposure; + } + + storage->get_effects()->tonemapper(rb->texture, storage->render_target_get_rd_framebuffer(rb->render_target), tonemap); + } + + storage->render_target_disable_clear_request(rb->render_target); +} + +void RasterizerSceneRD::_render_buffers_debug_draw(RID p_render_buffers, RID p_shadow_atlas) { + RasterizerEffectsRD *effects = storage->get_effects(); + + RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers); + ERR_FAIL_COND(!rb); + + if (debug_draw == RS::VIEWPORT_DEBUG_DRAW_SHADOW_ATLAS) { + if (p_shadow_atlas.is_valid()) { + RID shadow_atlas_texture = shadow_atlas_get_texture(p_shadow_atlas); + Size2 rtsize = storage->render_target_get_size(rb->render_target); + + effects->copy_to_rect(shadow_atlas_texture, storage->render_target_get_rd_framebuffer(rb->render_target), Rect2(Vector2(), rtsize / 2), false, true); + } + } + + if (debug_draw == RS::VIEWPORT_DEBUG_DRAW_DIRECTIONAL_SHADOW_ATLAS) { + if (directional_shadow_get_texture().is_valid()) { + RID shadow_atlas_texture = directional_shadow_get_texture(); + Size2 rtsize = storage->render_target_get_size(rb->render_target); + + effects->copy_to_rect(shadow_atlas_texture, storage->render_target_get_rd_framebuffer(rb->render_target), Rect2(Vector2(), rtsize / 2), false, true); + } + } + + if (debug_draw == RS::VIEWPORT_DEBUG_DRAW_SCENE_LUMINANCE) { + if (rb->luminance.current.is_valid()) { + Size2 rtsize = storage->render_target_get_size(rb->render_target); + + effects->copy_to_rect(rb->luminance.current, storage->render_target_get_rd_framebuffer(rb->render_target), Rect2(Vector2(), rtsize / 8), false, true); + } + } + + if (debug_draw == RS::VIEWPORT_DEBUG_DRAW_SSAO && rb->ssao.ao[0].is_valid()) { + Size2 rtsize = storage->render_target_get_size(rb->render_target); + RID ao_buf = rb->ssao.ao_full.is_valid() ? rb->ssao.ao_full : rb->ssao.ao[0]; + effects->copy_to_rect(ao_buf, storage->render_target_get_rd_framebuffer(rb->render_target), Rect2(Vector2(), rtsize), false, true); + } + + if (debug_draw == RS::VIEWPORT_DEBUG_DRAW_ROUGHNESS_LIMITER && _render_buffers_get_roughness_texture(p_render_buffers).is_valid()) { + Size2 rtsize = storage->render_target_get_size(rb->render_target); + effects->copy_to_rect(_render_buffers_get_roughness_texture(p_render_buffers), storage->render_target_get_rd_framebuffer(rb->render_target), Rect2(Vector2(), rtsize), false, true); + } + + if (debug_draw == RS::VIEWPORT_DEBUG_DRAW_NORMAL_BUFFER && _render_buffers_get_normal_texture(p_render_buffers).is_valid()) { + Size2 rtsize = storage->render_target_get_size(rb->render_target); + effects->copy_to_rect(_render_buffers_get_normal_texture(p_render_buffers), storage->render_target_get_rd_framebuffer(rb->render_target), Rect2(Vector2(), rtsize)); + } +} + +RID RasterizerSceneRD::render_buffers_get_back_buffer_texture(RID p_render_buffers) { + + RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers); + ERR_FAIL_COND_V(!rb, RID()); + if (!rb->blur[0].texture.is_valid()) { + return RID(); //not valid at the moment + } + return rb->blur[0].texture; +} + +RID RasterizerSceneRD::render_buffers_get_ao_texture(RID p_render_buffers) { + RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers); + ERR_FAIL_COND_V(!rb, RID()); + + return rb->ssao.ao_full.is_valid() ? rb->ssao.ao_full : rb->ssao.ao[0]; +} + +void RasterizerSceneRD::render_buffers_configure(RID p_render_buffers, RID p_render_target, int p_width, int p_height, RS::ViewportMSAA p_msaa) { + + RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers); + rb->width = p_width; + rb->height = p_height; + rb->render_target = p_render_target; + rb->msaa = p_msaa; + _free_render_buffer_data(rb); + + { + RD::TextureFormat tf; + tf.format = RD::DATA_FORMAT_R16G16B16A16_SFLOAT; + tf.width = rb->width; + tf.height = rb->height; + tf.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_STORAGE_BIT | RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT; + + rb->texture = RD::get_singleton()->texture_create(tf, RD::TextureView()); + } + + { + RD::TextureFormat tf; + tf.format = RD::get_singleton()->texture_is_format_supported_for_usage(RD::DATA_FORMAT_D24_UNORM_S8_UINT, RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT) ? RD::DATA_FORMAT_D24_UNORM_S8_UINT : RD::DATA_FORMAT_D32_SFLOAT_S8_UINT; + tf.width = p_width; + tf.height = p_height; + tf.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT; + + rb->depth_texture = RD::get_singleton()->texture_create(tf, RD::TextureView()); + } + + rb->data->configure(rb->texture, rb->depth_texture, p_width, p_height, p_msaa); + _render_buffers_uniform_set_changed(p_render_buffers); +} + +int RasterizerSceneRD::get_roughness_layers() const { + return roughness_layers; +} + +bool RasterizerSceneRD::is_using_radiance_cubemap_array() const { + return sky_use_cubemap_array; +} + +RasterizerSceneRD::RenderBufferData *RasterizerSceneRD::render_buffers_get_data(RID p_render_buffers) { + RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers); + ERR_FAIL_COND_V(!rb, NULL); + return rb->data; +} + +void RasterizerSceneRD::render_scene(RID p_render_buffers, const Transform &p_cam_transform, const CameraMatrix &p_cam_projection, bool p_cam_ortogonal, InstanceBase **p_cull_result, int p_cull_count, RID *p_light_cull_result, int p_light_cull_count, RID *p_reflection_probe_cull_result, int p_reflection_probe_cull_count, RID *p_gi_probe_cull_result, int p_gi_probe_cull_count, RID p_environment, RID p_camera_effects, RID p_shadow_atlas, RID p_reflection_atlas, RID p_reflection_probe, int p_reflection_probe_pass) { + + Color clear_color; + if (p_render_buffers.is_valid()) { + RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers); + ERR_FAIL_COND(!rb); + clear_color = storage->render_target_get_clear_request_color(rb->render_target); + } else { + clear_color = storage->get_default_clear_color(); + } + + _render_scene(p_render_buffers, p_cam_transform, p_cam_projection, p_cam_ortogonal, p_cull_result, p_cull_count, p_light_cull_result, p_light_cull_count, p_reflection_probe_cull_result, p_reflection_probe_cull_count, p_gi_probe_cull_result, p_gi_probe_cull_count, p_environment, p_camera_effects, p_shadow_atlas, p_reflection_atlas, p_reflection_probe, p_reflection_probe_pass, clear_color); + + if (p_render_buffers.is_valid()) { + RENDER_TIMESTAMP("Tonemap"); + + _render_buffers_post_process_and_tonemap(p_render_buffers, p_environment, p_camera_effects, p_cam_projection); + _render_buffers_debug_draw(p_render_buffers, p_shadow_atlas); + } +} + +void RasterizerSceneRD::render_shadow(RID p_light, RID p_shadow_atlas, int p_pass, InstanceBase **p_cull_result, int p_cull_count) { + + LightInstance *light_instance = light_instance_owner.getornull(p_light); + ERR_FAIL_COND(!light_instance); + + Rect2i atlas_rect; + RID atlas_fb; + + bool using_dual_paraboloid = false; + bool using_dual_paraboloid_flip = false; + float zfar = 0; + RID render_fb; + RID render_texture; + float bias = 0; + float normal_bias = 0; + + bool render_cubemap = false; + bool finalize_cubemap = false; + + CameraMatrix light_projection; + Transform light_transform; + + if (storage->light_get_type(light_instance->light) == RS::LIGHT_DIRECTIONAL) { + //set pssm stuff + if (light_instance->last_scene_shadow_pass != scene_pass) { + light_instance->directional_rect = _get_directional_shadow_rect(directional_shadow.size, directional_shadow.light_count, directional_shadow.current_light); + directional_shadow.current_light++; + light_instance->last_scene_shadow_pass = scene_pass; + } + + light_projection = light_instance->shadow_transform[p_pass].camera; + light_transform = light_instance->shadow_transform[p_pass].transform; + + atlas_rect.position.x = light_instance->directional_rect.position.x; + atlas_rect.position.y = light_instance->directional_rect.position.y; + atlas_rect.size.width = light_instance->directional_rect.size.x; + atlas_rect.size.height = light_instance->directional_rect.size.y; + + if (storage->light_directional_get_shadow_mode(light_instance->light) == RS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_4_SPLITS) { + + atlas_rect.size.width /= 2; + atlas_rect.size.height /= 2; + + if (p_pass == 1) { + atlas_rect.position.x += atlas_rect.size.width; + } else if (p_pass == 2) { + atlas_rect.position.y += atlas_rect.size.height; + } else if (p_pass == 3) { + atlas_rect.position.x += atlas_rect.size.width; + atlas_rect.position.y += atlas_rect.size.height; + } + + } else if (storage->light_directional_get_shadow_mode(light_instance->light) == RS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_2_SPLITS) { + + atlas_rect.size.height /= 2; + + if (p_pass == 0) { + + } else { + atlas_rect.position.y += atlas_rect.size.height; + } + } + + light_instance->shadow_transform[p_pass].atlas_rect = atlas_rect; + + light_instance->shadow_transform[p_pass].atlas_rect.position /= directional_shadow.size; + light_instance->shadow_transform[p_pass].atlas_rect.size /= directional_shadow.size; + + float bias_mult = Math::lerp(1.0f, light_instance->shadow_transform[p_pass].bias_scale, storage->light_get_param(light_instance->light, RS::LIGHT_PARAM_SHADOW_BIAS_SPLIT_SCALE)); + zfar = storage->light_get_param(light_instance->light, RS::LIGHT_PARAM_RANGE); + bias = storage->light_get_param(light_instance->light, RS::LIGHT_PARAM_SHADOW_BIAS) * bias_mult; + normal_bias = storage->light_get_param(light_instance->light, RS::LIGHT_PARAM_SHADOW_NORMAL_BIAS) * bias_mult; + + ShadowMap *shadow_map = _get_shadow_map(atlas_rect.size); + render_fb = shadow_map->fb; + render_texture = shadow_map->depth; + atlas_fb = directional_shadow.fb; + + } else { + //set from shadow atlas + + ShadowAtlas *shadow_atlas = shadow_atlas_owner.getornull(p_shadow_atlas); + ERR_FAIL_COND(!shadow_atlas); + ERR_FAIL_COND(!shadow_atlas->shadow_owners.has(p_light)); + + uint32_t key = shadow_atlas->shadow_owners[p_light]; + + uint32_t quadrant = (key >> ShadowAtlas::QUADRANT_SHIFT) & 0x3; + uint32_t shadow = key & ShadowAtlas::SHADOW_INDEX_MASK; + + ERR_FAIL_INDEX((int)shadow, shadow_atlas->quadrants[quadrant].shadows.size()); + + uint32_t quadrant_size = shadow_atlas->size >> 1; + + atlas_rect.position.x = (quadrant & 1) * quadrant_size; + atlas_rect.position.y = (quadrant >> 1) * quadrant_size; + + uint32_t shadow_size = (quadrant_size / shadow_atlas->quadrants[quadrant].subdivision); + atlas_rect.position.x += (shadow % shadow_atlas->quadrants[quadrant].subdivision) * shadow_size; + atlas_rect.position.y += (shadow / shadow_atlas->quadrants[quadrant].subdivision) * shadow_size; + + atlas_rect.size.width = shadow_size; + atlas_rect.size.height = shadow_size; + atlas_fb = shadow_atlas->fb; + + zfar = storage->light_get_param(light_instance->light, RS::LIGHT_PARAM_RANGE); + bias = storage->light_get_param(light_instance->light, RS::LIGHT_PARAM_SHADOW_BIAS); + normal_bias = storage->light_get_param(light_instance->light, RS::LIGHT_PARAM_SHADOW_NORMAL_BIAS); + + if (storage->light_get_type(light_instance->light) == RS::LIGHT_OMNI) { + + if (storage->light_omni_get_shadow_mode(light_instance->light) == RS::LIGHT_OMNI_SHADOW_CUBE) { + + ShadowCubemap *cubemap = _get_shadow_cubemap(shadow_size / 2); + + render_fb = cubemap->side_fb[p_pass]; + render_texture = cubemap->cubemap; + + light_projection = light_instance->shadow_transform[0].camera; + light_transform = light_instance->shadow_transform[0].transform; + render_cubemap = true; + finalize_cubemap = p_pass == 5; + + } else { + + light_projection = light_instance->shadow_transform[0].camera; + light_transform = light_instance->shadow_transform[0].transform; + + atlas_rect.size.height /= 2; + atlas_rect.position.y += p_pass * atlas_rect.size.height; + + using_dual_paraboloid = true; + using_dual_paraboloid_flip = p_pass == 1; + + ShadowMap *shadow_map = _get_shadow_map(atlas_rect.size); + render_fb = shadow_map->fb; + render_texture = shadow_map->depth; + } + + } else if (storage->light_get_type(light_instance->light) == RS::LIGHT_SPOT) { + + light_projection = light_instance->shadow_transform[0].camera; + light_transform = light_instance->shadow_transform[0].transform; + + ShadowMap *shadow_map = _get_shadow_map(atlas_rect.size); + render_fb = shadow_map->fb; + render_texture = shadow_map->depth; + } + } + + if (render_cubemap) { + //rendering to cubemap + _render_shadow(render_fb, p_cull_result, p_cull_count, light_projection, light_transform, zfar, 0, 0, false, false); + if (finalize_cubemap) { + //reblit + atlas_rect.size.height /= 2; + storage->get_effects()->copy_cubemap_to_dp(render_texture, atlas_fb, atlas_rect, light_projection.get_z_near(), light_projection.get_z_far(), bias, false); + atlas_rect.position.y += atlas_rect.size.height; + storage->get_effects()->copy_cubemap_to_dp(render_texture, atlas_fb, atlas_rect, light_projection.get_z_near(), light_projection.get_z_far(), bias, true); + } + } else { + //render shadow + + _render_shadow(render_fb, p_cull_result, p_cull_count, light_projection, light_transform, zfar, bias, normal_bias, using_dual_paraboloid, using_dual_paraboloid_flip); + + //copy to atlas + storage->get_effects()->copy_to_rect(render_texture, atlas_fb, atlas_rect, true); + + //does not work from depth to color + //RD::get_singleton()->texture_copy(render_texture, atlas_texture, Vector3(0, 0, 0), Vector3(atlas_rect.position.x, atlas_rect.position.y, 0), Vector3(atlas_rect.size.x, atlas_rect.size.y, 1), 0, 0, 0, 0, true); + } +} + +void RasterizerSceneRD::render_material(const Transform &p_cam_transform, const CameraMatrix &p_cam_projection, bool p_cam_ortogonal, InstanceBase **p_cull_result, int p_cull_count, RID p_framebuffer, const Rect2i &p_region) { + + _render_material(p_cam_transform, p_cam_projection, p_cam_ortogonal, p_cull_result, p_cull_count, p_framebuffer, p_region); +} + +bool RasterizerSceneRD::free(RID p_rid) { + + if (render_buffers_owner.owns(p_rid)) { + RenderBuffers *rb = render_buffers_owner.getornull(p_rid); + _free_render_buffer_data(rb); + memdelete(rb->data); + render_buffers_owner.free(p_rid); + } else if (environment_owner.owns(p_rid)) { + //not much to delete, just free it + environment_owner.free(p_rid); + } else if (camera_effects_owner.owns(p_rid)) { + //not much to delete, just free it + camera_effects_owner.free(p_rid); + } else if (reflection_atlas_owner.owns(p_rid)) { + reflection_atlas_set_size(p_rid, 0, 0); + reflection_atlas_owner.free(p_rid); + } else if (reflection_probe_instance_owner.owns(p_rid)) { + //not much to delete, just free it + //ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_rid); + reflection_probe_release_atlas_index(p_rid); + reflection_probe_instance_owner.free(p_rid); + } else if (gi_probe_instance_owner.owns(p_rid)) { + GIProbeInstance *gi_probe = gi_probe_instance_owner.getornull(p_rid); + if (gi_probe->texture.is_valid()) { + RD::get_singleton()->free(gi_probe->texture); + RD::get_singleton()->free(gi_probe->write_buffer); + } + if (gi_probe->anisotropy[0].is_valid()) { + RD::get_singleton()->free(gi_probe->anisotropy[0]); + RD::get_singleton()->free(gi_probe->anisotropy[1]); + } + + for (int i = 0; i < gi_probe->dynamic_maps.size(); i++) { + RD::get_singleton()->free(gi_probe->dynamic_maps[i].texture); + RD::get_singleton()->free(gi_probe->dynamic_maps[i].depth); + } + + gi_probe_slots.write[gi_probe->slot] = RID(); + + gi_probe_instance_owner.free(p_rid); + } else if (sky_owner.owns(p_rid)) { + _update_dirty_skys(); + Sky *sky = sky_owner.getornull(p_rid); + + if (sky->radiance.is_valid()) { + RD::get_singleton()->free(sky->radiance); + sky->radiance = RID(); + } + _clear_reflection_data(sky->reflection); + + if (sky->uniform_buffer.is_valid()) { + RD::get_singleton()->free(sky->uniform_buffer); + sky->uniform_buffer = RID(); + } + + if (sky->half_res_pass.is_valid()) { + RD::get_singleton()->free(sky->half_res_pass); + sky->half_res_pass = RID(); + } + + if (sky->quarter_res_pass.is_valid()) { + RD::get_singleton()->free(sky->quarter_res_pass); + sky->quarter_res_pass = RID(); + } + + if (sky->material.is_valid()) { + storage->free(sky->material); + } + + sky_owner.free(p_rid); + } else if (light_instance_owner.owns(p_rid)) { + + LightInstance *light_instance = light_instance_owner.getornull(p_rid); + + //remove from shadow atlases.. + for (Set<RID>::Element *E = light_instance->shadow_atlases.front(); E; E = E->next()) { + ShadowAtlas *shadow_atlas = shadow_atlas_owner.getornull(E->get()); + ERR_CONTINUE(!shadow_atlas->shadow_owners.has(p_rid)); + uint32_t key = shadow_atlas->shadow_owners[p_rid]; + uint32_t q = (key >> ShadowAtlas::QUADRANT_SHIFT) & 0x3; + uint32_t s = key & ShadowAtlas::SHADOW_INDEX_MASK; + + shadow_atlas->quadrants[q].shadows.write[s].owner = RID(); + shadow_atlas->shadow_owners.erase(p_rid); + } + + light_instance_owner.free(p_rid); + + } else if (shadow_atlas_owner.owns(p_rid)) { + + shadow_atlas_set_size(p_rid, 0); + shadow_atlas_owner.free(p_rid); + + } else { + return false; + } + + return true; +} + +void RasterizerSceneRD::set_debug_draw_mode(RS::ViewportDebugDraw p_debug_draw) { + debug_draw = p_debug_draw; +} + +void RasterizerSceneRD::update() { + _update_dirty_skys(); +} + +void RasterizerSceneRD::set_time(double p_time, double p_step) { + time = p_time; + time_step = p_step; +} + +void RasterizerSceneRD::screen_space_roughness_limiter_set_active(bool p_enable, float p_curve) { + screen_space_roughness_limiter = p_enable; + screen_space_roughness_limiter_curve = p_curve; +} + +bool RasterizerSceneRD::screen_space_roughness_limiter_is_active() const { + return screen_space_roughness_limiter; +} + +float RasterizerSceneRD::screen_space_roughness_limiter_get_curve() const { + return screen_space_roughness_limiter_curve; +} + +RasterizerSceneRD *RasterizerSceneRD::singleton = NULL; + +RasterizerSceneRD::RasterizerSceneRD(RasterizerStorageRD *p_storage) { + storage = p_storage; + singleton = this; + + roughness_layers = GLOBAL_GET("rendering/quality/reflections/roughness_layers"); + sky_ggx_samples_quality = GLOBAL_GET("rendering/quality/reflections/ggx_samples"); + sky_use_cubemap_array = GLOBAL_GET("rendering/quality/reflections/texture_array_reflections"); + // sky_use_cubemap_array = false; + + uint32_t textures_per_stage = RD::get_singleton()->limit_get(RD::LIMIT_MAX_TEXTURES_PER_SHADER_STAGE); + + { + + //kinda complicated to compute the amount of slots, we try to use as many as we can + + gi_probe_max_lights = 32; + + gi_probe_lights = memnew_arr(GIProbeLight, gi_probe_max_lights); + gi_probe_lights_uniform = RD::get_singleton()->uniform_buffer_create(gi_probe_max_lights * sizeof(GIProbeLight)); + + gi_probe_use_anisotropy = GLOBAL_GET("rendering/quality/gi_probes/anisotropic"); + gi_probe_quality = GIProbeQuality(CLAMP(int(GLOBAL_GET("rendering/quality/gi_probes/quality")), 0, 2)); + + if (textures_per_stage <= 16) { + gi_probe_slots.resize(2); //thats all you can get + gi_probe_use_anisotropy = false; + } else if (textures_per_stage <= 31) { + gi_probe_slots.resize(4); //thats all you can get, iOS + gi_probe_use_anisotropy = false; + } else if (textures_per_stage <= 128) { + gi_probe_slots.resize(32); //old intel + gi_probe_use_anisotropy = false; + } else if (textures_per_stage <= 256) { + gi_probe_slots.resize(64); //old intel too + gi_probe_use_anisotropy = false; + } else { + if (gi_probe_use_anisotropy) { + gi_probe_slots.resize(1024 / 3); //needs 3 textures + } else { + gi_probe_slots.resize(1024); //modern intel, nvidia, 8192 or greater + } + } + + String defines = "\n#define MAX_LIGHTS " + itos(gi_probe_max_lights) + "\n"; + if (gi_probe_use_anisotropy) { + defines += "\n#define MODE_ANISOTROPIC\n"; + } + + Vector<String> versions; + versions.push_back("\n#define MODE_COMPUTE_LIGHT\n"); + versions.push_back("\n#define MODE_SECOND_BOUNCE\n"); + versions.push_back("\n#define MODE_UPDATE_MIPMAPS\n"); + versions.push_back("\n#define MODE_WRITE_TEXTURE\n"); + versions.push_back("\n#define MODE_DYNAMIC\n#define MODE_DYNAMIC_LIGHTING\n"); + versions.push_back("\n#define MODE_DYNAMIC\n#define MODE_DYNAMIC_SHRINK\n#define MODE_DYNAMIC_SHRINK_WRITE\n"); + versions.push_back("\n#define MODE_DYNAMIC\n#define MODE_DYNAMIC_SHRINK\n#define MODE_DYNAMIC_SHRINK_PLOT\n"); + versions.push_back("\n#define MODE_DYNAMIC\n#define MODE_DYNAMIC_SHRINK\n#define MODE_DYNAMIC_SHRINK_PLOT\n#define MODE_DYNAMIC_SHRINK_WRITE\n"); + + giprobe_shader.initialize(versions, defines); + giprobe_lighting_shader_version = giprobe_shader.version_create(); + for (int i = 0; i < GI_PROBE_SHADER_VERSION_MAX; i++) { + giprobe_lighting_shader_version_shaders[i] = giprobe_shader.version_get_shader(giprobe_lighting_shader_version, i); + giprobe_lighting_shader_version_pipelines[i] = RD::get_singleton()->compute_pipeline_create(giprobe_lighting_shader_version_shaders[i]); + } + } + + { + + String defines; + if (gi_probe_use_anisotropy) { + defines += "\n#define USE_ANISOTROPY\n"; + } + Vector<String> versions; + versions.push_back("\n#define MODE_DEBUG_COLOR\n"); + versions.push_back("\n#define MODE_DEBUG_LIGHT\n"); + versions.push_back("\n#define MODE_DEBUG_EMISSION\n"); + versions.push_back("\n#define MODE_DEBUG_LIGHT\n#define MODE_DEBUG_LIGHT_FULL\n"); + + giprobe_debug_shader.initialize(versions, defines); + giprobe_debug_shader_version = giprobe_debug_shader.version_create(); + for (int i = 0; i < GI_PROBE_DEBUG_MAX; i++) { + giprobe_debug_shader_version_shaders[i] = giprobe_debug_shader.version_get_shader(giprobe_debug_shader_version, i); + + RD::PipelineRasterizationState rs; + rs.cull_mode = RD::POLYGON_CULL_FRONT; + RD::PipelineDepthStencilState ds; + ds.enable_depth_test = true; + ds.enable_depth_write = true; + ds.depth_compare_operator = RD::COMPARE_OP_LESS_OR_EQUAL; + + giprobe_debug_shader_version_pipelines[i].setup(giprobe_debug_shader_version_shaders[i], RD::RENDER_PRIMITIVE_TRIANGLES, rs, RD::PipelineMultisampleState(), ds, RD::PipelineColorBlendState::create_disabled(), 0); + } + } + + /* SKY SHADER */ + + { + // Start with the directional lights for the sky + sky_scene_state.max_directional_lights = 4; + uint32_t directional_light_buffer_size = sky_scene_state.max_directional_lights * sizeof(SkyDirectionalLightData); + sky_scene_state.directional_lights = memnew_arr(SkyDirectionalLightData, sky_scene_state.max_directional_lights); + sky_scene_state.last_frame_directional_lights = memnew_arr(SkyDirectionalLightData, sky_scene_state.max_directional_lights); + sky_scene_state.last_frame_directional_light_count = sky_scene_state.max_directional_lights + 1; + sky_scene_state.directional_light_buffer = RD::get_singleton()->uniform_buffer_create(directional_light_buffer_size); + + String defines = "\n#define MAX_DIRECTIONAL_LIGHT_DATA_STRUCTS " + itos(sky_scene_state.max_directional_lights) + "\n"; + + // Initialize sky + Vector<String> sky_modes; + sky_modes.push_back(""); // Full size + sky_modes.push_back("\n#define USE_HALF_RES_PASS\n"); // Half Res + sky_modes.push_back("\n#define USE_QUARTER_RES_PASS\n"); // Quarter res + sky_modes.push_back("\n#define USE_CUBEMAP_PASS\n"); // Cubemap + sky_modes.push_back("\n#define USE_CUBEMAP_PASS\n#define USE_HALF_RES_PASS\n"); // Half Res Cubemap + sky_modes.push_back("\n#define USE_CUBEMAP_PASS\n#define USE_QUARTER_RES_PASS\n"); // Quarter res Cubemap + sky_shader.shader.initialize(sky_modes, defines); + } + + // register our shader funds + storage->shader_set_data_request_function(RasterizerStorageRD::SHADER_TYPE_SKY, _create_sky_shader_funcs); + storage->material_set_data_request_function(RasterizerStorageRD::SHADER_TYPE_SKY, _create_sky_material_funcs); + + { + ShaderCompilerRD::DefaultIdentifierActions actions; + + actions.renames["COLOR"] = "color"; + actions.renames["ALPHA"] = "alpha"; + actions.renames["EYEDIR"] = "cube_normal"; + actions.renames["POSITION"] = "params.position_multiplier.xyz"; + actions.renames["SKY_COORDS"] = "panorama_coords"; + actions.renames["SCREEN_UV"] = "uv"; + actions.renames["TIME"] = "params.time"; + actions.renames["HALF_RES_COLOR"] = "half_res_color"; + actions.renames["QUARTER_RES_COLOR"] = "quarter_res_color"; + actions.renames["RADIANCE"] = "radiance"; + actions.renames["LIGHT0_ENABLED"] = "directional_lights.data[0].enabled"; + actions.renames["LIGHT0_DIRECTION"] = "directional_lights.data[0].direction"; + actions.renames["LIGHT0_ENERGY"] = "directional_lights.data[0].energy"; + actions.renames["LIGHT0_COLOR"] = "directional_lights.data[0].color"; + actions.renames["LIGHT1_ENABLED"] = "directional_lights.data[1].enabled"; + actions.renames["LIGHT1_DIRECTION"] = "directional_lights.data[1].direction"; + actions.renames["LIGHT1_ENERGY"] = "directional_lights.data[1].energy"; + actions.renames["LIGHT1_COLOR"] = "directional_lights.data[1].color"; + actions.renames["LIGHT2_ENABLED"] = "directional_lights.data[2].enabled"; + actions.renames["LIGHT2_DIRECTION"] = "directional_lights.data[2].direction"; + actions.renames["LIGHT2_ENERGY"] = "directional_lights.data[2].energy"; + actions.renames["LIGHT2_COLOR"] = "directional_lights.data[2].color"; + actions.renames["LIGHT3_ENABLED"] = "directional_lights.data[3].enabled"; + actions.renames["LIGHT3_DIRECTION"] = "directional_lights.data[3].direction"; + actions.renames["LIGHT3_ENERGY"] = "directional_lights.data[3].energy"; + actions.renames["LIGHT3_COLOR"] = "directional_lights.data[3].color"; + actions.renames["AT_CUBEMAP_PASS"] = "AT_CUBEMAP_PASS"; + actions.renames["AT_HALF_RES_PASS"] = "AT_HALF_RES_PASS"; + actions.renames["AT_QUARTER_RES_PASS"] = "AT_QUARTER_RES_PASS"; + actions.custom_samplers["RADIANCE"] = "material_samplers[3]"; + actions.usage_defines["HALF_RES_COLOR"] = "\n#define USES_HALF_RES_COLOR\n"; + actions.usage_defines["QUARTER_RES_COLOR"] = "\n#define USES_QUARTER_RES_COLOR\n"; + + actions.sampler_array_name = "material_samplers"; + actions.base_texture_binding_index = 1; + actions.texture_layout_set = 1; + actions.base_uniform_string = "material."; + actions.base_varying_index = 10; + + actions.default_filter = ShaderLanguage::FILTER_LINEAR_MIPMAP; + actions.default_repeat = ShaderLanguage::REPEAT_ENABLE; + + sky_shader.compiler.initialize(actions); + } + + { + // default material and shader for sky shader + sky_shader.default_shader = storage->shader_create(); + storage->shader_set_code(sky_shader.default_shader, "shader_type sky; void fragment() { COLOR = mix(vec3(0.3), vec3(0.2, 0.4, 0.9), smoothstep(0.0, 0.05, EYEDIR.y)); } \n"); + sky_shader.default_material = storage->material_create(); + storage->material_set_shader(sky_shader.default_material, sky_shader.default_shader); + + SkyMaterialData *md = (SkyMaterialData *)storage->material_get_data(sky_shader.default_material, RasterizerStorageRD::SHADER_TYPE_SKY); + sky_shader.default_shader_rd = sky_shader.shader.version_get_shader(md->shader_data->version, SKY_VERSION_BACKGROUND); + + Vector<RD::Uniform> uniforms; + + { + RD::Uniform u; + u.type = RD::UNIFORM_TYPE_SAMPLER; + u.binding = 0; + u.ids.resize(12); + RID *ids_ptr = u.ids.ptrw(); + ids_ptr[0] = storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_NEAREST, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED); + ids_ptr[1] = storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED); + ids_ptr[2] = storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_NEAREST_WITH_MIPMAPS, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED); + ids_ptr[3] = storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR_WITH_MIPMAPS, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED); + ids_ptr[4] = storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_NEAREST_WITH_MIPMAPS_ANISOTROPIC, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED); + ids_ptr[5] = storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR_WITH_MIPMAPS_ANISOTROPIC, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED); + ids_ptr[6] = storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_NEAREST, RS::CANVAS_ITEM_TEXTURE_REPEAT_ENABLED); + ids_ptr[7] = storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR, RS::CANVAS_ITEM_TEXTURE_REPEAT_ENABLED); + ids_ptr[8] = storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_NEAREST_WITH_MIPMAPS, RS::CANVAS_ITEM_TEXTURE_REPEAT_ENABLED); + ids_ptr[9] = storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR_WITH_MIPMAPS, RS::CANVAS_ITEM_TEXTURE_REPEAT_ENABLED); + ids_ptr[10] = storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_NEAREST_WITH_MIPMAPS_ANISOTROPIC, RS::CANVAS_ITEM_TEXTURE_REPEAT_ENABLED); + ids_ptr[11] = storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR_WITH_MIPMAPS_ANISOTROPIC, RS::CANVAS_ITEM_TEXTURE_REPEAT_ENABLED); + uniforms.push_back(u); + } + + sky_scene_state.sampler_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, sky_shader.default_shader_rd, SKY_SET_SAMPLERS); + } + + camera_effects_set_dof_blur_bokeh_shape(RS::DOFBokehShape(int(GLOBAL_GET("rendering/quality/filters/depth_of_field_bokeh_shape")))); + camera_effects_set_dof_blur_quality(RS::DOFBlurQuality(int(GLOBAL_GET("rendering/quality/filters/depth_of_field_bokeh_quality"))), GLOBAL_GET("rendering/quality/filters/depth_of_field_use_jitter")); + environment_set_ssao_quality(RS::EnvironmentSSAOQuality(int(GLOBAL_GET("rendering/quality/ssao/quality"))), GLOBAL_GET("rendering/quality/ssao/half_size")); + screen_space_roughness_limiter = GLOBAL_GET("rendering/quality/filters/screen_space_roughness_limiter"); + screen_space_roughness_limiter_curve = GLOBAL_GET("rendering/quality/filters/screen_space_roughness_limiter_curve"); +} + +RasterizerSceneRD::~RasterizerSceneRD() { + for (Map<Vector2i, ShadowMap>::Element *E = shadow_maps.front(); E; E = E->next()) { + RD::get_singleton()->free(E->get().depth); + } + for (Map<int, ShadowCubemap>::Element *E = shadow_cubemaps.front(); E; E = E->next()) { + RD::get_singleton()->free(E->get().cubemap); + } + + if (sky_scene_state.sampler_uniform_set.is_valid() && RD::get_singleton()->uniform_set_is_valid(sky_scene_state.sampler_uniform_set)) { + RD::get_singleton()->free(sky_scene_state.sampler_uniform_set); + } + if (sky_scene_state.light_uniform_set.is_valid() && RD::get_singleton()->uniform_set_is_valid(sky_scene_state.light_uniform_set)) { + RD::get_singleton()->free(sky_scene_state.light_uniform_set); + } + + RD::get_singleton()->free(gi_probe_lights_uniform); + giprobe_debug_shader.version_free(giprobe_debug_shader_version); + giprobe_shader.version_free(giprobe_lighting_shader_version); + memdelete_arr(gi_probe_lights); + SkyMaterialData *md = (SkyMaterialData *)storage->material_get_data(sky_shader.default_material, RasterizerStorageRD::SHADER_TYPE_SKY); + sky_shader.shader.version_free(md->shader_data->version); + RD::get_singleton()->free(sky_scene_state.directional_light_buffer); + memdelete_arr(sky_scene_state.directional_lights); + memdelete_arr(sky_scene_state.last_frame_directional_lights); + storage->free(sky_shader.default_shader); + storage->free(sky_shader.default_material); +} |