summaryrefslogtreecommitdiff
path: root/servers/rendering/rasterizer_rd/rasterizer_scene_rd.cpp
diff options
context:
space:
mode:
authorRĂ©mi Verschelde <rverschelde@gmail.com>2020-07-23 08:25:59 +0200
committerGitHub <noreply@github.com>2020-07-23 08:25:59 +0200
commite38ad5d3de5cc8a24f45247e168edcdf309450b7 (patch)
tree471de744b5fb4ee6f84ea1b2465d9de25c80667c /servers/rendering/rasterizer_rd/rasterizer_scene_rd.cpp
parent0cd98ec7e13038d09a77cf821e930be79026f943 (diff)
parentee7c98da7c7e85077a8546794b2c6e76d8a77109 (diff)
Merge pull request #40616 from reduz/refactor-light-clustering
Refactor light clustering
Diffstat (limited to 'servers/rendering/rasterizer_rd/rasterizer_scene_rd.cpp')
-rw-r--r--servers/rendering/rasterizer_rd/rasterizer_scene_rd.cpp633
1 files changed, 632 insertions, 1 deletions
diff --git a/servers/rendering/rasterizer_rd/rasterizer_scene_rd.cpp b/servers/rendering/rasterizer_rd/rasterizer_scene_rd.cpp
index 3854f4c2a4..bdf9b71c56 100644
--- a/servers/rendering/rasterizer_rd/rasterizer_scene_rd.cpp
+++ b/servers/rendering/rasterizer_rd/rasterizer_scene_rd.cpp
@@ -5619,6 +5619,539 @@ RasterizerSceneRD::RenderBufferData *RasterizerSceneRD::render_buffers_get_data(
return rb->data;
}
+void RasterizerSceneRD::_setup_reflections(RID *p_reflection_probe_cull_result, int p_reflection_probe_cull_count, const Transform &p_camera_inverse_transform, RID p_environment) {
+ for (int i = 0; i < p_reflection_probe_cull_count; i++) {
+ RID rpi = p_reflection_probe_cull_result[i];
+
+ if (i >= (int)cluster.max_reflections) {
+ reflection_probe_instance_set_render_index(rpi, 0); //invalid, but something needs to be set
+ continue;
+ }
+
+ reflection_probe_instance_set_render_index(rpi, i);
+
+ RID base_probe = reflection_probe_instance_get_probe(rpi);
+
+ Cluster::ReflectionData &reflection_ubo = cluster.reflections[i];
+
+ Vector3 extents = storage->reflection_probe_get_extents(base_probe);
+
+ reflection_ubo.box_extents[0] = extents.x;
+ reflection_ubo.box_extents[1] = extents.y;
+ reflection_ubo.box_extents[2] = extents.z;
+ reflection_ubo.index = reflection_probe_instance_get_atlas_index(rpi);
+
+ Vector3 origin_offset = storage->reflection_probe_get_origin_offset(base_probe);
+
+ reflection_ubo.box_offset[0] = origin_offset.x;
+ reflection_ubo.box_offset[1] = origin_offset.y;
+ reflection_ubo.box_offset[2] = origin_offset.z;
+ reflection_ubo.mask = storage->reflection_probe_get_cull_mask(base_probe);
+
+ float intensity = storage->reflection_probe_get_intensity(base_probe);
+ bool interior = storage->reflection_probe_is_interior(base_probe);
+ bool box_projection = storage->reflection_probe_is_box_projection(base_probe);
+
+ reflection_ubo.params[0] = intensity;
+ reflection_ubo.params[1] = 0;
+ reflection_ubo.params[2] = interior ? 1.0 : 0.0;
+ reflection_ubo.params[3] = box_projection ? 1.0 : 0.0;
+
+ Color ambient_linear = storage->reflection_probe_get_ambient_color(base_probe).to_linear();
+ float interior_ambient_energy = storage->reflection_probe_get_ambient_color_energy(base_probe);
+ uint32_t ambient_mode = storage->reflection_probe_get_ambient_mode(base_probe);
+ reflection_ubo.ambient[0] = ambient_linear.r * interior_ambient_energy;
+ reflection_ubo.ambient[1] = ambient_linear.g * interior_ambient_energy;
+ reflection_ubo.ambient[2] = ambient_linear.b * interior_ambient_energy;
+ reflection_ubo.ambient_mode = ambient_mode;
+
+ Transform transform = reflection_probe_instance_get_transform(rpi);
+ Transform proj = (p_camera_inverse_transform * transform).inverse();
+ RasterizerStorageRD::store_transform(proj, reflection_ubo.local_matrix);
+
+ cluster.builder.add_reflection_probe(transform, extents);
+
+ reflection_probe_instance_set_render_pass(rpi, RSG::rasterizer->get_frame_number());
+ }
+
+ if (p_reflection_probe_cull_count) {
+ RD::get_singleton()->buffer_update(cluster.reflection_buffer, 0, MIN(cluster.max_reflections, (unsigned int)p_reflection_probe_cull_count) * sizeof(ReflectionData), cluster.reflections, true);
+ }
+}
+
+void RasterizerSceneRD::_setup_lights(RID *p_light_cull_result, int p_light_cull_count, const Transform &p_camera_inverse_transform, RID p_shadow_atlas, bool p_using_shadows, uint32_t &r_directional_light_count) {
+ uint32_t light_count = 0;
+ r_directional_light_count = 0;
+ sky_scene_state.directional_light_count = 0;
+
+ for (int i = 0; i < p_light_cull_count; i++) {
+ RID li = p_light_cull_result[i];
+ RID base = light_instance_get_base_light(li);
+
+ ERR_CONTINUE(base.is_null());
+
+ RS::LightType type = storage->light_get_type(base);
+ switch (type) {
+ case RS::LIGHT_DIRECTIONAL: {
+ if (r_directional_light_count >= cluster.max_directional_lights) {
+ continue;
+ }
+
+ Cluster::DirectionalLightData &light_data = cluster.directional_lights[r_directional_light_count];
+
+ Transform light_transform = light_instance_get_base_transform(li);
+
+ Vector3 direction = p_camera_inverse_transform.basis.xform(light_transform.basis.xform(Vector3(0, 0, 1))).normalized();
+
+ light_data.direction[0] = direction.x;
+ light_data.direction[1] = direction.y;
+ light_data.direction[2] = direction.z;
+
+ float sign = storage->light_is_negative(base) ? -1 : 1;
+
+ light_data.energy = sign * storage->light_get_param(base, RS::LIGHT_PARAM_ENERGY) * Math_PI;
+
+ Color linear_col = storage->light_get_color(base).to_linear();
+ light_data.color[0] = linear_col.r;
+ light_data.color[1] = linear_col.g;
+ light_data.color[2] = linear_col.b;
+
+ light_data.specular = storage->light_get_param(base, RS::LIGHT_PARAM_SPECULAR);
+ light_data.mask = storage->light_get_cull_mask(base);
+
+ float size = storage->light_get_param(base, RS::LIGHT_PARAM_SIZE);
+
+ light_data.size = 1.0 - Math::cos(Math::deg2rad(size)); //angle to cosine offset
+
+ Color shadow_col = storage->light_get_shadow_color(base).to_linear();
+
+ if (get_debug_draw_mode() == RS::VIEWPORT_DEBUG_DRAW_PSSM_SPLITS) {
+ light_data.shadow_color1[0] = 1.0;
+ light_data.shadow_color1[1] = 0.0;
+ light_data.shadow_color1[2] = 0.0;
+ light_data.shadow_color1[3] = 1.0;
+ light_data.shadow_color2[0] = 0.0;
+ light_data.shadow_color2[1] = 1.0;
+ light_data.shadow_color2[2] = 0.0;
+ light_data.shadow_color2[3] = 1.0;
+ light_data.shadow_color3[0] = 0.0;
+ light_data.shadow_color3[1] = 0.0;
+ light_data.shadow_color3[2] = 1.0;
+ light_data.shadow_color3[3] = 1.0;
+ light_data.shadow_color4[0] = 1.0;
+ light_data.shadow_color4[1] = 1.0;
+ light_data.shadow_color4[2] = 0.0;
+ light_data.shadow_color4[3] = 1.0;
+
+ } else {
+ light_data.shadow_color1[0] = shadow_col.r;
+ light_data.shadow_color1[1] = shadow_col.g;
+ light_data.shadow_color1[2] = shadow_col.b;
+ light_data.shadow_color1[3] = 1.0;
+ light_data.shadow_color2[0] = shadow_col.r;
+ light_data.shadow_color2[1] = shadow_col.g;
+ light_data.shadow_color2[2] = shadow_col.b;
+ light_data.shadow_color2[3] = 1.0;
+ light_data.shadow_color3[0] = shadow_col.r;
+ light_data.shadow_color3[1] = shadow_col.g;
+ light_data.shadow_color3[2] = shadow_col.b;
+ light_data.shadow_color3[3] = 1.0;
+ light_data.shadow_color4[0] = shadow_col.r;
+ light_data.shadow_color4[1] = shadow_col.g;
+ light_data.shadow_color4[2] = shadow_col.b;
+ light_data.shadow_color4[3] = 1.0;
+ }
+
+ light_data.shadow_enabled = p_using_shadows && storage->light_has_shadow(base);
+
+ float angular_diameter = storage->light_get_param(base, RS::LIGHT_PARAM_SIZE);
+ if (angular_diameter > 0.0) {
+ // I know tan(0) is 0, but let's not risk it with numerical precision.
+ // technically this will keep expanding until reaching the sun, but all we care
+ // is expand until we reach the radius of the near plane (there can't be more occluders than that)
+ angular_diameter = Math::tan(Math::deg2rad(angular_diameter));
+ } else {
+ angular_diameter = 0.0;
+ }
+
+ if (light_data.shadow_enabled) {
+ RS::LightDirectionalShadowMode smode = storage->light_directional_get_shadow_mode(base);
+
+ int limit = smode == RS::LIGHT_DIRECTIONAL_SHADOW_ORTHOGONAL ? 0 : (smode == RS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_2_SPLITS ? 1 : 3);
+ light_data.blend_splits = storage->light_directional_get_blend_splits(base);
+ for (int j = 0; j < 4; j++) {
+ Rect2 atlas_rect = light_instance_get_directional_shadow_atlas_rect(li, j);
+ CameraMatrix matrix = light_instance_get_shadow_camera(li, j);
+ float split = light_instance_get_directional_shadow_split(li, MIN(limit, j));
+
+ CameraMatrix bias;
+ bias.set_light_bias();
+ CameraMatrix rectm;
+ rectm.set_light_atlas_rect(atlas_rect);
+
+ Transform modelview = (p_camera_inverse_transform * light_instance_get_shadow_transform(li, j)).inverse();
+
+ CameraMatrix shadow_mtx = rectm * bias * matrix * modelview;
+ light_data.shadow_split_offsets[j] = split;
+ float bias_scale = light_instance_get_shadow_bias_scale(li, j);
+ light_data.shadow_bias[j] = storage->light_get_param(base, RS::LIGHT_PARAM_SHADOW_BIAS) * bias_scale;
+ light_data.shadow_normal_bias[j] = storage->light_get_param(base, RS::LIGHT_PARAM_SHADOW_NORMAL_BIAS) * light_instance_get_directional_shadow_texel_size(li, j);
+ light_data.shadow_transmittance_bias[j] = storage->light_get_transmittance_bias(base) * bias_scale;
+ light_data.shadow_transmittance_z_scale[j] = light_instance_get_shadow_range(li, j);
+ light_data.shadow_range_begin[j] = light_instance_get_shadow_range_begin(li, j);
+ RasterizerStorageRD::store_camera(shadow_mtx, light_data.shadow_matrices[j]);
+
+ Vector2 uv_scale = light_instance_get_shadow_uv_scale(li, j);
+ uv_scale *= atlas_rect.size; //adapt to atlas size
+ switch (j) {
+ case 0: {
+ light_data.uv_scale1[0] = uv_scale.x;
+ light_data.uv_scale1[1] = uv_scale.y;
+ } break;
+ case 1: {
+ light_data.uv_scale2[0] = uv_scale.x;
+ light_data.uv_scale2[1] = uv_scale.y;
+ } break;
+ case 2: {
+ light_data.uv_scale3[0] = uv_scale.x;
+ light_data.uv_scale3[1] = uv_scale.y;
+ } break;
+ case 3: {
+ light_data.uv_scale4[0] = uv_scale.x;
+ light_data.uv_scale4[1] = uv_scale.y;
+ } break;
+ }
+ }
+
+ float fade_start = storage->light_get_param(base, RS::LIGHT_PARAM_SHADOW_FADE_START);
+ light_data.fade_from = -light_data.shadow_split_offsets[3] * MIN(fade_start, 0.999); //using 1.0 would break smoothstep
+ light_data.fade_to = -light_data.shadow_split_offsets[3];
+
+ light_data.soft_shadow_scale = storage->light_get_param(base, RS::LIGHT_PARAM_SHADOW_BLUR);
+ light_data.softshadow_angle = angular_diameter;
+
+ if (angular_diameter <= 0.0) {
+ light_data.soft_shadow_scale *= directional_shadow_quality_radius_get(); // Only use quality radius for PCF
+ }
+ }
+
+ // Copy to SkyDirectionalLightData
+ if (r_directional_light_count < sky_scene_state.max_directional_lights) {
+ SkyDirectionalLightData &sky_light_data = sky_scene_state.directional_lights[r_directional_light_count];
+
+ Vector3 world_direction = light_transform.basis.xform(Vector3(0, 0, 1)).normalized();
+
+ sky_light_data.direction[0] = world_direction.x;
+ sky_light_data.direction[1] = world_direction.y;
+ sky_light_data.direction[2] = -world_direction.z;
+
+ sky_light_data.energy = light_data.energy / Math_PI;
+
+ sky_light_data.color[0] = light_data.color[0];
+ sky_light_data.color[1] = light_data.color[1];
+ sky_light_data.color[2] = light_data.color[2];
+
+ sky_light_data.enabled = true;
+ sky_light_data.size = angular_diameter;
+ sky_scene_state.directional_light_count++;
+ }
+
+ r_directional_light_count++;
+ } break;
+ case RS::LIGHT_SPOT:
+ case RS::LIGHT_OMNI: {
+ if (light_count >= cluster.max_lights) {
+ continue;
+ }
+
+ Transform light_transform = light_instance_get_base_transform(li);
+
+ Cluster::LightData &light_data = cluster.lights[light_count];
+
+ float sign = storage->light_is_negative(base) ? -1 : 1;
+ Color linear_col = storage->light_get_color(base).to_linear();
+
+ light_data.attenuation_energy[0] = Math::make_half_float(storage->light_get_param(base, RS::LIGHT_PARAM_ATTENUATION));
+ light_data.attenuation_energy[1] = Math::make_half_float(sign * storage->light_get_param(base, RS::LIGHT_PARAM_ENERGY) * Math_PI);
+
+ light_data.color_specular[0] = MIN(uint32_t(linear_col.r * 255), 255);
+ light_data.color_specular[1] = MIN(uint32_t(linear_col.g * 255), 255);
+ light_data.color_specular[2] = MIN(uint32_t(linear_col.b * 255), 255);
+ light_data.color_specular[3] = MIN(uint32_t(storage->light_get_param(base, RS::LIGHT_PARAM_SPECULAR) * 255), 255);
+
+ float radius = MAX(0.001, storage->light_get_param(base, RS::LIGHT_PARAM_RANGE));
+ light_data.inv_radius = 1.0 / radius;
+
+ Vector3 pos = p_camera_inverse_transform.xform(light_transform.origin);
+
+ light_data.position[0] = pos.x;
+ light_data.position[1] = pos.y;
+ light_data.position[2] = pos.z;
+
+ Vector3 direction = p_camera_inverse_transform.basis.xform(light_transform.basis.xform(Vector3(0, 0, -1))).normalized();
+
+ light_data.direction[0] = direction.x;
+ light_data.direction[1] = direction.y;
+ light_data.direction[2] = direction.z;
+
+ float size = storage->light_get_param(base, RS::LIGHT_PARAM_SIZE);
+
+ light_data.size = size;
+
+ light_data.cone_attenuation_angle[0] = Math::make_half_float(storage->light_get_param(base, RS::LIGHT_PARAM_SPOT_ATTENUATION));
+ float spot_angle = storage->light_get_param(base, RS::LIGHT_PARAM_SPOT_ANGLE);
+ light_data.cone_attenuation_angle[1] = Math::make_half_float(Math::cos(Math::deg2rad(spot_angle)));
+
+ light_data.mask = storage->light_get_cull_mask(base);
+
+ light_data.atlas_rect[0] = 0;
+ light_data.atlas_rect[1] = 0;
+ light_data.atlas_rect[2] = 0;
+ light_data.atlas_rect[3] = 0;
+
+ RID projector = storage->light_get_projector(base);
+
+ if (projector.is_valid()) {
+ Rect2 rect = storage->decal_atlas_get_texture_rect(projector);
+
+ if (type == RS::LIGHT_SPOT) {
+ light_data.projector_rect[0] = rect.position.x;
+ light_data.projector_rect[1] = rect.position.y + rect.size.height; //flip because shadow is flipped
+ light_data.projector_rect[2] = rect.size.width;
+ light_data.projector_rect[3] = -rect.size.height;
+ } else {
+ light_data.projector_rect[0] = rect.position.x;
+ light_data.projector_rect[1] = rect.position.y;
+ light_data.projector_rect[2] = rect.size.width;
+ light_data.projector_rect[3] = rect.size.height * 0.5; //used by dp, so needs to be half
+ }
+ } else {
+ light_data.projector_rect[0] = 0;
+ light_data.projector_rect[1] = 0;
+ light_data.projector_rect[2] = 0;
+ light_data.projector_rect[3] = 0;
+ }
+
+ if (p_using_shadows && p_shadow_atlas.is_valid() && shadow_atlas_owns_light_instance(p_shadow_atlas, li)) {
+ // fill in the shadow information
+
+ Color shadow_color = storage->light_get_shadow_color(base);
+
+ light_data.shadow_color_enabled[0] = MIN(uint32_t(shadow_color.r * 255), 255);
+ light_data.shadow_color_enabled[1] = MIN(uint32_t(shadow_color.g * 255), 255);
+ light_data.shadow_color_enabled[2] = MIN(uint32_t(shadow_color.b * 255), 255);
+ light_data.shadow_color_enabled[3] = 255;
+
+ if (type == RS::LIGHT_SPOT) {
+ light_data.shadow_bias = (storage->light_get_param(base, RS::LIGHT_PARAM_SHADOW_BIAS) * radius / 10.0);
+ float shadow_texel_size = Math::tan(Math::deg2rad(spot_angle)) * radius * 2.0;
+ shadow_texel_size *= light_instance_get_shadow_texel_size(li, p_shadow_atlas);
+
+ light_data.shadow_normal_bias = storage->light_get_param(base, RS::LIGHT_PARAM_SHADOW_NORMAL_BIAS) * shadow_texel_size;
+
+ } else { //omni
+ light_data.shadow_bias = storage->light_get_param(base, RS::LIGHT_PARAM_SHADOW_BIAS) * radius / 10.0;
+ float shadow_texel_size = light_instance_get_shadow_texel_size(li, p_shadow_atlas);
+ light_data.shadow_normal_bias = storage->light_get_param(base, RS::LIGHT_PARAM_SHADOW_NORMAL_BIAS) * shadow_texel_size * 2.0; // applied in -1 .. 1 space
+ }
+
+ light_data.transmittance_bias = storage->light_get_transmittance_bias(base);
+
+ Rect2 rect = light_instance_get_shadow_atlas_rect(li, p_shadow_atlas);
+
+ light_data.atlas_rect[0] = rect.position.x;
+ light_data.atlas_rect[1] = rect.position.y;
+ light_data.atlas_rect[2] = rect.size.width;
+ light_data.atlas_rect[3] = rect.size.height;
+
+ light_data.soft_shadow_scale = storage->light_get_param(base, RS::LIGHT_PARAM_SHADOW_BLUR);
+
+ if (type == RS::LIGHT_OMNI) {
+ light_data.atlas_rect[3] *= 0.5; //one paraboloid on top of another
+ Transform proj = (p_camera_inverse_transform * light_transform).inverse();
+
+ RasterizerStorageRD::store_transform(proj, light_data.shadow_matrix);
+
+ if (size > 0.0) {
+ light_data.soft_shadow_size = size;
+ } else {
+ light_data.soft_shadow_size = 0.0;
+ light_data.soft_shadow_scale *= shadows_quality_radius_get(); // Only use quality radius for PCF
+ }
+
+ } else if (type == RS::LIGHT_SPOT) {
+ Transform modelview = (p_camera_inverse_transform * light_transform).inverse();
+ CameraMatrix bias;
+ bias.set_light_bias();
+
+ CameraMatrix shadow_mtx = bias * light_instance_get_shadow_camera(li, 0) * modelview;
+ RasterizerStorageRD::store_camera(shadow_mtx, light_data.shadow_matrix);
+
+ if (size > 0.0) {
+ CameraMatrix cm = light_instance_get_shadow_camera(li, 0);
+ float half_np = cm.get_z_near() * Math::tan(Math::deg2rad(spot_angle));
+ light_data.soft_shadow_size = (size * 0.5 / radius) / (half_np / cm.get_z_near()) * rect.size.width;
+ } else {
+ light_data.soft_shadow_size = 0.0;
+ light_data.soft_shadow_scale *= shadows_quality_radius_get(); // Only use quality radius for PCF
+ }
+ }
+ } else {
+ light_data.shadow_color_enabled[3] = 0;
+ }
+
+ light_instance_set_index(li, light_count);
+
+ cluster.builder.add_light(type == RS::LIGHT_SPOT ? LightClusterBuilder::LIGHT_TYPE_SPOT : LightClusterBuilder::LIGHT_TYPE_OMNI, light_transform, radius, spot_angle);
+
+ light_count++;
+ } break;
+ }
+
+ light_instance_set_render_pass(li, RSG::rasterizer->get_frame_number());
+
+ //update UBO for forward rendering, blit to texture for clustered
+ }
+
+ if (light_count) {
+ RD::get_singleton()->buffer_update(cluster.light_buffer, 0, sizeof(Cluster::LightData) * light_count, cluster.lights, true);
+ }
+
+ if (r_directional_light_count) {
+ RD::get_singleton()->buffer_update(cluster.directional_light_buffer, 0, sizeof(Cluster::DirectionalLightData) * r_directional_light_count, cluster.directional_lights, true);
+ }
+}
+
+void RasterizerSceneRD::_setup_decals(const RID *p_decal_instances, int p_decal_count, const Transform &p_camera_inverse_xform) {
+ Transform uv_xform;
+ uv_xform.basis.scale(Vector3(2.0, 1.0, 2.0));
+ uv_xform.origin = Vector3(-1.0, 0.0, -1.0);
+
+ p_decal_count = MIN((uint32_t)p_decal_count, cluster.max_decals);
+ int idx = 0;
+ for (int i = 0; i < p_decal_count; i++) {
+ RID di = p_decal_instances[i];
+ RID decal = decal_instance_get_base(di);
+
+ Transform xform = decal_instance_get_transform(di);
+
+ float fade = 1.0;
+
+ if (storage->decal_is_distance_fade_enabled(decal)) {
+ real_t distance = -p_camera_inverse_xform.xform(xform.origin).z;
+ float fade_begin = storage->decal_get_distance_fade_begin(decal);
+ float fade_length = storage->decal_get_distance_fade_length(decal);
+
+ if (distance > fade_begin) {
+ if (distance > fade_begin + fade_length) {
+ continue; // do not use this decal, its invisible
+ }
+
+ fade = 1.0 - (distance - fade_begin) / fade_length;
+ }
+ }
+
+ Cluster::DecalData &dd = cluster.decals[idx];
+
+ Vector3 decal_extents = storage->decal_get_extents(decal);
+
+ Transform scale_xform;
+ scale_xform.basis.scale(Vector3(decal_extents.x, decal_extents.y, decal_extents.z));
+ Transform to_decal_xform = (p_camera_inverse_xform * decal_instance_get_transform(di) * scale_xform * uv_xform).affine_inverse();
+ RasterizerStorageRD::store_transform(to_decal_xform, dd.xform);
+
+ Vector3 normal = xform.basis.get_axis(Vector3::AXIS_Y).normalized();
+ normal = p_camera_inverse_xform.basis.xform(normal); //camera is normalized, so fine
+
+ dd.normal[0] = normal.x;
+ dd.normal[1] = normal.y;
+ dd.normal[2] = normal.z;
+ dd.normal_fade = storage->decal_get_normal_fade(decal);
+
+ RID albedo_tex = storage->decal_get_texture(decal, RS::DECAL_TEXTURE_ALBEDO);
+ RID emission_tex = storage->decal_get_texture(decal, RS::DECAL_TEXTURE_EMISSION);
+ if (albedo_tex.is_valid()) {
+ Rect2 rect = storage->decal_atlas_get_texture_rect(albedo_tex);
+ dd.albedo_rect[0] = rect.position.x;
+ dd.albedo_rect[1] = rect.position.y;
+ dd.albedo_rect[2] = rect.size.x;
+ dd.albedo_rect[3] = rect.size.y;
+ } else {
+ if (!emission_tex.is_valid()) {
+ continue; //no albedo, no emission, no decal.
+ }
+ dd.albedo_rect[0] = 0;
+ dd.albedo_rect[1] = 0;
+ dd.albedo_rect[2] = 0;
+ dd.albedo_rect[3] = 0;
+ }
+
+ RID normal_tex = storage->decal_get_texture(decal, RS::DECAL_TEXTURE_NORMAL);
+
+ if (normal_tex.is_valid()) {
+ Rect2 rect = storage->decal_atlas_get_texture_rect(normal_tex);
+ dd.normal_rect[0] = rect.position.x;
+ dd.normal_rect[1] = rect.position.y;
+ dd.normal_rect[2] = rect.size.x;
+ dd.normal_rect[3] = rect.size.y;
+
+ Basis normal_xform = p_camera_inverse_xform.basis * xform.basis.orthonormalized();
+ RasterizerStorageRD::store_basis_3x4(normal_xform, dd.normal_xform);
+ } else {
+ dd.normal_rect[0] = 0;
+ dd.normal_rect[1] = 0;
+ dd.normal_rect[2] = 0;
+ dd.normal_rect[3] = 0;
+ }
+
+ RID orm_tex = storage->decal_get_texture(decal, RS::DECAL_TEXTURE_ORM);
+ if (orm_tex.is_valid()) {
+ Rect2 rect = storage->decal_atlas_get_texture_rect(orm_tex);
+ dd.orm_rect[0] = rect.position.x;
+ dd.orm_rect[1] = rect.position.y;
+ dd.orm_rect[2] = rect.size.x;
+ dd.orm_rect[3] = rect.size.y;
+ } else {
+ dd.orm_rect[0] = 0;
+ dd.orm_rect[1] = 0;
+ dd.orm_rect[2] = 0;
+ dd.orm_rect[3] = 0;
+ }
+
+ if (emission_tex.is_valid()) {
+ Rect2 rect = storage->decal_atlas_get_texture_rect(emission_tex);
+ dd.emission_rect[0] = rect.position.x;
+ dd.emission_rect[1] = rect.position.y;
+ dd.emission_rect[2] = rect.size.x;
+ dd.emission_rect[3] = rect.size.y;
+ } else {
+ dd.emission_rect[0] = 0;
+ dd.emission_rect[1] = 0;
+ dd.emission_rect[2] = 0;
+ dd.emission_rect[3] = 0;
+ }
+
+ Color modulate = storage->decal_get_modulate(decal);
+ dd.modulate[0] = modulate.r;
+ dd.modulate[1] = modulate.g;
+ dd.modulate[2] = modulate.b;
+ dd.modulate[3] = modulate.a * fade;
+ dd.emission_energy = storage->decal_get_emission_energy(decal) * fade;
+ dd.albedo_mix = storage->decal_get_albedo_mix(decal);
+ dd.mask = storage->decal_get_cull_mask(decal);
+ dd.upper_fade = storage->decal_get_upper_fade(decal);
+ dd.lower_fade = storage->decal_get_lower_fade(decal);
+
+ cluster.builder.add_decal(xform, decal_extents);
+
+ idx++;
+ }
+
+ if (idx > 0) {
+ RD::get_singleton()->buffer_update(cluster.decal_buffer, 0, sizeof(Cluster::DecalData) * idx, cluster.decals, true);
+ }
+}
+
void RasterizerSceneRD::render_scene(RID p_render_buffers, const Transform &p_cam_transform, const CameraMatrix &p_cam_projection, bool p_cam_ortogonal, InstanceBase **p_cull_result, int p_cull_count, RID *p_light_cull_result, int p_light_cull_count, RID *p_reflection_probe_cull_result, int p_reflection_probe_cull_count, RID *p_gi_probe_cull_result, int p_gi_probe_cull_count, RID *p_decal_cull_result, int p_decal_cull_count, InstanceBase **p_lightmap_cull_result, int p_lightmap_cull_count, RID p_environment, RID p_camera_effects, RID p_shadow_atlas, RID p_reflection_atlas, RID p_reflection_probe, int p_reflection_probe_pass) {
Color clear_color;
if (p_render_buffers.is_valid()) {
@@ -5637,7 +6170,31 @@ void RasterizerSceneRD::render_scene(RID p_render_buffers, const Transform &p_ca
}
}
- _render_scene(p_render_buffers, p_cam_transform, p_cam_projection, p_cam_ortogonal, p_cull_result, p_cull_count, p_light_cull_result, p_light_cull_count, p_reflection_probe_cull_result, p_reflection_probe_cull_count, p_gi_probe_cull_result, p_gi_probe_cull_count, p_decal_cull_result, p_decal_cull_count, p_lightmap_cull_result, p_lightmap_cull_count, p_environment, p_camera_effects, p_shadow_atlas, p_reflection_atlas, p_reflection_probe, p_reflection_probe_pass, clear_color);
+ if (get_debug_draw_mode() == RS::VIEWPORT_DEBUG_DRAW_UNSHADED) {
+ p_light_cull_count = 0;
+ p_reflection_probe_cull_count = 0;
+ p_gi_probe_cull_count = 0;
+ }
+
+ cluster.builder.begin(p_cam_transform.affine_inverse(), p_cam_projection); //prepare cluster
+
+ bool using_shadows = true;
+
+ if (p_reflection_probe.is_valid()) {
+ if (!storage->reflection_probe_renders_shadows(reflection_probe_instance_get_probe(p_reflection_probe))) {
+ using_shadows = false;
+ }
+ } else {
+ //do not render reflections when rendering a reflection probe
+ _setup_reflections(p_reflection_probe_cull_result, p_reflection_probe_cull_count, p_cam_transform.affine_inverse(), p_environment);
+ }
+
+ uint32_t directional_light_count = 0;
+ _setup_lights(p_light_cull_result, p_light_cull_count, p_cam_transform.affine_inverse(), p_shadow_atlas, using_shadows, directional_light_count);
+ _setup_decals(p_decal_cull_result, p_decal_cull_count, p_cam_transform.affine_inverse());
+ cluster.builder.bake_cluster(); //bake to cluster
+
+ _render_scene(p_render_buffers, p_cam_transform, p_cam_projection, p_cam_ortogonal, p_cull_result, p_cull_count, directional_light_count, p_gi_probe_cull_result, p_gi_probe_cull_count, p_lightmap_cull_result, p_lightmap_cull_count, p_environment, p_camera_effects, p_shadow_atlas, p_reflection_atlas, p_reflection_probe, p_reflection_probe_pass, clear_color);
if (p_render_buffers.is_valid()) {
RENDER_TIMESTAMP("Tonemap");
@@ -6496,6 +7053,30 @@ void RasterizerSceneRD::sdfgi_set_debug_probe_select(const Vector3 &p_position,
RasterizerSceneRD *RasterizerSceneRD::singleton = nullptr;
+RID RasterizerSceneRD::get_cluster_builder_texture() {
+ return cluster.builder.get_cluster_texture();
+}
+
+RID RasterizerSceneRD::get_cluster_builder_indices_buffer() {
+ return cluster.builder.get_cluster_indices_buffer();
+}
+
+RID RasterizerSceneRD::get_reflection_probe_buffer() {
+ return cluster.reflection_buffer;
+}
+RID RasterizerSceneRD::get_positional_light_buffer() {
+ return cluster.light_buffer;
+}
+RID RasterizerSceneRD::get_directional_light_buffer() {
+ return cluster.directional_light_buffer;
+}
+RID RasterizerSceneRD::get_decal_buffer() {
+ return cluster.decal_buffer;
+}
+int RasterizerSceneRD::get_max_directional_lights() const {
+ return cluster.max_directional_lights;
+}
+
RasterizerSceneRD::RasterizerSceneRD(RasterizerStorageRD *p_storage) {
storage = p_storage;
singleton = this;
@@ -6802,6 +7383,45 @@ RasterizerSceneRD::RasterizerSceneRD(RasterizerStorageRD *p_storage) {
}
}
+ //cluster setup
+ uint32_t uniform_max_size = RD::get_singleton()->limit_get(RD::LIMIT_MAX_UNIFORM_BUFFER_SIZE);
+
+ { //reflections
+ uint32_t reflection_buffer_size;
+ if (uniform_max_size < 65536) {
+ //Yes, you guessed right, ARM again
+ reflection_buffer_size = uniform_max_size;
+ } else {
+ reflection_buffer_size = 65536;
+ }
+
+ cluster.max_reflections = reflection_buffer_size / sizeof(Cluster::ReflectionData);
+ cluster.reflections = memnew_arr(Cluster::ReflectionData, cluster.max_reflections);
+ cluster.reflection_buffer = RD::get_singleton()->storage_buffer_create(reflection_buffer_size);
+ }
+
+ { //lights
+ cluster.max_lights = MIN(1024 * 1024, uniform_max_size) / sizeof(Cluster::LightData); //1mb of lights
+ uint32_t light_buffer_size = cluster.max_lights * sizeof(Cluster::LightData);
+ cluster.lights = memnew_arr(Cluster::LightData, cluster.max_lights);
+ cluster.light_buffer = RD::get_singleton()->storage_buffer_create(light_buffer_size);
+ //defines += "\n#define MAX_LIGHT_DATA_STRUCTS " + itos(cluster.max_lights) + "\n";
+
+ cluster.max_directional_lights = 8;
+ uint32_t directional_light_buffer_size = cluster.max_directional_lights * sizeof(Cluster::DirectionalLightData);
+ cluster.directional_lights = memnew_arr(Cluster::DirectionalLightData, cluster.max_directional_lights);
+ cluster.directional_light_buffer = RD::get_singleton()->uniform_buffer_create(directional_light_buffer_size);
+ }
+
+ { //decals
+ cluster.max_decals = MIN(1024 * 1024, uniform_max_size) / sizeof(Cluster::DecalData); //1mb of decals
+ uint32_t decal_buffer_size = cluster.max_decals * sizeof(Cluster::DecalData);
+ cluster.decals = memnew_arr(Cluster::DecalData, cluster.max_decals);
+ cluster.decal_buffer = RD::get_singleton()->storage_buffer_create(decal_buffer_size);
+ }
+
+ cluster.builder.setup(16, 8, 24);
+
default_giprobe_buffer = RD::get_singleton()->uniform_buffer_create(sizeof(GI::GIProbeData) * RenderBuffers::MAX_GIPROBES);
camera_effects_set_dof_blur_bokeh_shape(RS::DOFBokehShape(int(GLOBAL_GET("rendering/quality/depth_of_field/depth_of_field_bokeh_shape"))));
@@ -6863,4 +7483,15 @@ RasterizerSceneRD::~RasterizerSceneRD() {
memdelete_arr(directional_soft_shadow_kernel);
memdelete_arr(penumbra_shadow_kernel);
memdelete_arr(soft_shadow_kernel);
+
+ {
+ RD::get_singleton()->free(cluster.directional_light_buffer);
+ RD::get_singleton()->free(cluster.light_buffer);
+ RD::get_singleton()->free(cluster.reflection_buffer);
+ RD::get_singleton()->free(cluster.decal_buffer);
+ memdelete_arr(cluster.directional_lights);
+ memdelete_arr(cluster.lights);
+ memdelete_arr(cluster.reflections);
+ memdelete_arr(cluster.decals);
+ }
}