summaryrefslogtreecommitdiff
path: root/servers/physics_3d/space_3d_sw.cpp
diff options
context:
space:
mode:
authorPouleyKetchoupp <pouleyketchoup@gmail.com>2021-07-01 15:14:30 -0700
committerPouleyKetchoupp <pouleyketchoup@gmail.com>2021-07-01 15:15:42 -0700
commitcf1ddfdb90c33564e6c7b240dc75ab4c04aa99b7 (patch)
tree7483102495c57cbadb0cae981ce91c601c75eed6 /servers/physics_3d/space_3d_sw.cpp
parenteefe276a82c5ed080c10ac7c991e0348642621b2 (diff)
Make move_and_slide collision detection more accurate
More accurate unsafe motion calculation * Safe and unsafe motion are calculated by dichotomy with a limited number of steps. It's good for performance, but on long motions that either collide near the beginning or near the end, the result can be very imprecise. * Now a factor 0.25 or 0.75 is used to converge faster when this case happens, which allows longer motions to get more accurate collision detection. * Makes snap collision more precise, and helps with cases where diagonal collision on the border of a platform can lead to the character being stuck. Additional improvements to move_and_slide: * Handle slide canceling in move_and_collide with 0 velocity instead of not applying it. * Better handling of snap with custom logic to cancel sliding. * Remove small jittering when using stop on slope, by canceling the motion completely when the resulting motion is less than margin instead of always projecting to the up direction (in both body motion and snap). Co-authored-by: fabriceci <fabricecipolla@gmail.com>
Diffstat (limited to 'servers/physics_3d/space_3d_sw.cpp')
-rw-r--r--servers/physics_3d/space_3d_sw.cpp77
1 files changed, 52 insertions, 25 deletions
diff --git a/servers/physics_3d/space_3d_sw.cpp b/servers/physics_3d/space_3d_sw.cpp
index eff480396d..cdae744ead 100644
--- a/servers/physics_3d/space_3d_sw.cpp
+++ b/servers/physics_3d/space_3d_sw.cpp
@@ -255,6 +255,8 @@ bool PhysicsDirectSpaceState3DSW::cast_motion(const RID &p_shape, const Transfor
bool best_first = true;
+ Vector3 motion_normal = p_motion.normalized();
+
Vector3 closest_A, closest_B;
for (int i = 0; i < amount; i++) {
@@ -270,7 +272,7 @@ bool PhysicsDirectSpaceState3DSW::cast_motion(const RID &p_shape, const Transfor
int shape_idx = space->intersection_query_subindex_results[i];
Vector3 point_A, point_B;
- Vector3 sep_axis = p_motion.normalized();
+ Vector3 sep_axis = motion_normal;
Transform3D col_obj_xform = col_obj->get_transform() * col_obj->get_shape_transform(shape_idx);
//test initial overlap, does it collide if going all the way?
@@ -279,35 +281,47 @@ bool PhysicsDirectSpaceState3DSW::cast_motion(const RID &p_shape, const Transfor
}
//test initial overlap, ignore objects it's inside of.
- sep_axis = p_motion.normalized();
+ sep_axis = motion_normal;
if (!CollisionSolver3DSW::solve_distance(shape, p_xform, col_obj->get_shape(shape_idx), col_obj_xform, point_A, point_B, aabb, &sep_axis)) {
continue;
}
//just do kinematic solving
- real_t low = 0;
- real_t hi = 1;
- Vector3 mnormal = p_motion.normalized();
-
+ real_t low = 0.0;
+ real_t hi = 1.0;
+ real_t fraction_coeff = 0.5;
for (int j = 0; j < 8; j++) { //steps should be customizable..
+ real_t fraction = low + (hi - low) * fraction_coeff;
- real_t ofs = (low + hi) * 0.5;
-
- Vector3 sep = mnormal; //important optimization for this to work fast enough
-
- mshape.motion = xform_inv.basis.xform(p_motion * ofs);
+ mshape.motion = xform_inv.basis.xform(p_motion * fraction);
Vector3 lA, lB;
-
+ Vector3 sep = motion_normal; //important optimization for this to work fast enough
bool collided = !CollisionSolver3DSW::solve_distance(&mshape, p_xform, col_obj->get_shape(shape_idx), col_obj_xform, lA, lB, aabb, &sep);
if (collided) {
- hi = ofs;
+ hi = fraction;
+ if ((j == 0) || (low > 0.0)) { // Did it not collide before?
+ // When alternating or first iteration, use dichotomy.
+ fraction_coeff = 0.5;
+ } else {
+ // When colliding again, converge faster towards low fraction
+ // for more accurate results with long motions that collide near the start.
+ fraction_coeff = 0.25;
+ }
} else {
point_A = lA;
point_B = lB;
- low = ofs;
+ low = fraction;
+ if ((j == 0) || (hi < 1.0)) { // Did it collide before?
+ // When alternating or first iteration, use dichotomy.
+ fraction_coeff = 0.5;
+ } else {
+ // When not colliding again, converge faster towards high fraction
+ // for more accurate results with long motions that collide near the end.
+ fraction_coeff = 0.75;
+ }
}
}
@@ -902,27 +916,40 @@ bool Space3DSW::test_body_motion(Body3DSW *p_body, const Transform3D &p_from, co
}
//just do kinematic solving
- real_t low = 0;
- real_t hi = 1;
-
+ real_t low = 0.0;
+ real_t hi = 1.0;
+ real_t fraction_coeff = 0.5;
for (int k = 0; k < 8; k++) { //steps should be customizable..
+ real_t fraction = low + (hi - low) * fraction_coeff;
- real_t ofs = (low + hi) * 0.5;
-
- Vector3 sep = motion_normal; //important optimization for this to work fast enough
-
- mshape.motion = body_shape_xform_inv.basis.xform(p_motion * ofs);
+ mshape.motion = body_shape_xform_inv.basis.xform(p_motion * fraction);
Vector3 lA, lB;
-
+ Vector3 sep = motion_normal; //important optimization for this to work fast enough
bool collided = !CollisionSolver3DSW::solve_distance(&mshape, body_shape_xform, col_obj->get_shape(shape_idx), col_obj_xform, lA, lB, motion_aabb, &sep);
if (collided) {
- hi = ofs;
+ hi = fraction;
+ if ((k == 0) || (low > 0.0)) { // Did it not collide before?
+ // When alternating or first iteration, use dichotomy.
+ fraction_coeff = 0.5;
+ } else {
+ // When colliding again, converge faster towards low fraction
+ // for more accurate results with long motions that collide near the start.
+ fraction_coeff = 0.25;
+ }
} else {
point_A = lA;
point_B = lB;
- low = ofs;
+ low = fraction;
+ if ((k == 0) || (hi < 1.0)) { // Did it collide before?
+ // When alternating or first iteration, use dichotomy.
+ fraction_coeff = 0.5;
+ } else {
+ // When not colliding again, converge faster towards high fraction
+ // for more accurate results with long motions that collide near the end.
+ fraction_coeff = 0.75;
+ }
}
}