summaryrefslogtreecommitdiff
path: root/scene/animation
diff options
context:
space:
mode:
authorRĂ©mi Verschelde <remi@verschelde.fr>2021-06-20 00:35:28 +0200
committerGitHub <noreply@github.com>2021-06-20 00:35:28 +0200
commit9c182b0f45df0f1a134f047899cdd9291c34f58a (patch)
tree6735c004f29713e1dde829ee03f7373c6b1e8db8 /scene/animation
parentbbf6d645fb324ce73cb3a0141dc508a83f66bd00 (diff)
parent900b2e0fdcc12d28a744ae36004b9b2dc7f196d1 (diff)
Merge pull request #41794 from KoBeWi/shiny_new_tweens
Diffstat (limited to 'scene/animation')
-rw-r--r--scene/animation/tween.cpp2113
-rw-r--r--scene/animation/tween.h307
2 files changed, 789 insertions, 1631 deletions
diff --git a/scene/animation/tween.cpp b/scene/animation/tween.cpp
index b4e597f75e..7bf616e602 100644
--- a/scene/animation/tween.cpp
+++ b/scene/animation/tween.cpp
@@ -30,535 +30,407 @@
#include "tween.h"
-void Tween::_add_pending_command(StringName p_key, const Variant &p_arg1, const Variant &p_arg2, const Variant &p_arg3, const Variant &p_arg4, const Variant &p_arg5, const Variant &p_arg6, const Variant &p_arg7, const Variant &p_arg8, const Variant &p_arg9, const Variant &p_arg10) {
- // Add a new pending command and reference it
- pending_commands.push_back(PendingCommand());
- PendingCommand &cmd = pending_commands.back()->get();
-
- // Update the command with the target key
- cmd.key = p_key;
-
- // Determine command argument count
- int &count = cmd.args;
- if (p_arg10.get_type() != Variant::NIL) {
- count = 10;
- } else if (p_arg9.get_type() != Variant::NIL) {
- count = 9;
- } else if (p_arg8.get_type() != Variant::NIL) {
- count = 8;
- } else if (p_arg7.get_type() != Variant::NIL) {
- count = 7;
- } else if (p_arg6.get_type() != Variant::NIL) {
- count = 6;
- } else if (p_arg5.get_type() != Variant::NIL) {
- count = 5;
- } else if (p_arg4.get_type() != Variant::NIL) {
- count = 4;
- } else if (p_arg3.get_type() != Variant::NIL) {
- count = 3;
- } else if (p_arg2.get_type() != Variant::NIL) {
- count = 2;
- } else if (p_arg1.get_type() != Variant::NIL) {
- count = 1;
- } else {
- count = 0;
- }
+#include "scene/main/node.h"
- // Add the specified arguments to the command
- if (count > 0) {
- cmd.arg[0] = p_arg1;
- }
- if (count > 1) {
- cmd.arg[1] = p_arg2;
- }
- if (count > 2) {
- cmd.arg[2] = p_arg3;
- }
- if (count > 3) {
- cmd.arg[3] = p_arg4;
- }
- if (count > 4) {
- cmd.arg[4] = p_arg5;
- }
- if (count > 5) {
- cmd.arg[5] = p_arg6;
- }
- if (count > 6) {
- cmd.arg[6] = p_arg7;
- }
- if (count > 7) {
- cmd.arg[7] = p_arg8;
- }
- if (count > 8) {
- cmd.arg[8] = p_arg9;
+void Tweener::set_tween(Ref<Tween> p_tween) {
+ tween = p_tween;
+}
+
+void Tweener::_bind_methods() {
+ ADD_SIGNAL(MethodInfo("finished"));
+}
+
+void Tween::start_tweeners() {
+ if (tweeners.is_empty()) {
+ dead = true;
+ ERR_FAIL_MSG("Tween without commands, aborting.");
}
- if (count > 9) {
- cmd.arg[9] = p_arg10;
+
+ for (List<Ref<Tweener>>::Element *E = tweeners.write[current_step].front(); E; E = E->next()) {
+ E->get()->start();
}
}
-void Tween::_process_pending_commands() {
- // For each pending command...
- for (List<PendingCommand>::Element *E = pending_commands.front(); E; E = E->next()) {
- // Get the command
- PendingCommand &cmd = E->get();
- Callable::CallError err;
-
- // Grab all of the arguments for the command
- Variant *arg[10] = {
- &cmd.arg[0],
- &cmd.arg[1],
- &cmd.arg[2],
- &cmd.arg[3],
- &cmd.arg[4],
- &cmd.arg[5],
- &cmd.arg[6],
- &cmd.arg[7],
- &cmd.arg[8],
- &cmd.arg[9],
- };
-
- // Execute the command (and retrieve any errors)
- this->call(cmd.key, (const Variant **)arg, cmd.args, err);
- }
+Ref<PropertyTweener> Tween::tween_property(Object *p_target, NodePath p_property, Variant p_to, float p_duration) {
+ ERR_FAIL_NULL_V(p_target, nullptr);
+ ERR_FAIL_COND_V_MSG(invalid, nullptr, "Tween was created outside the scene tree, can't use Tweeners.");
+ ERR_FAIL_COND_V_MSG(started, nullptr, "Can't append to a Tween that has started. Use stop() first.");
- // Clear the pending commands
- pending_commands.clear();
+ Ref<PropertyTweener> tweener = memnew(PropertyTweener(p_target, p_property, p_to, p_duration));
+ append(tweener);
+ return tweener;
}
-bool Tween::_set(const StringName &p_name, const Variant &p_value) {
- // Set the correct attribute based on the given name
- String name = p_name;
- if (name == "playback/speed" || name == "speed") { // Backwards compatibility
- set_speed_scale(p_value);
- return true;
+Ref<IntervalTweener> Tween::tween_interval(float p_time) {
+ ERR_FAIL_COND_V_MSG(invalid, nullptr, "Tween was created outside the scene tree, can't use Tweeners.");
+ ERR_FAIL_COND_V_MSG(started, nullptr, "Can't append to a Tween that has started. Use stop() first.");
- } else if (name == "playback/active") {
- set_active(p_value);
- return true;
+ Ref<IntervalTweener> tweener = memnew(IntervalTweener(p_time));
+ append(tweener);
+ return tweener;
+}
- } else if (name == "playback/repeat") {
- set_repeat(p_value);
- return true;
- }
- return false;
+Ref<CallbackTweener> Tween::tween_callback(Callable p_callback) {
+ ERR_FAIL_COND_V_MSG(invalid, nullptr, "Tween was created outside the scene tree, can't use Tweeners.");
+ ERR_FAIL_COND_V_MSG(started, nullptr, "Can't append to a Tween that has started. Use stop() first.");
+
+ Ref<CallbackTweener> tweener = memnew(CallbackTweener(p_callback));
+ append(tweener);
+ return tweener;
}
-bool Tween::_get(const StringName &p_name, Variant &r_ret) const {
- // Get the correct attribute based on the given name
- String name = p_name;
- if (name == "playback/speed") { // Backwards compatibility
- r_ret = speed_scale;
- return true;
+Ref<MethodTweener> Tween::tween_method(Callable p_callback, float p_from, float p_to, float p_duration) {
+ ERR_FAIL_COND_V_MSG(invalid, nullptr, "Tween was created outside the scene tree, can't use Tweeners.");
+ ERR_FAIL_COND_V_MSG(started, nullptr, "Can't append to a Tween that has started. Use stop() first.");
- } else if (name == "playback/active") {
- r_ret = is_active();
- return true;
+ Ref<MethodTweener> tweener = memnew(MethodTweener(p_callback, p_from, p_to, p_duration));
+ append(tweener);
+ return tweener;
+}
- } else if (name == "playback/repeat") {
- r_ret = is_repeat();
- return true;
+Ref<Tween> Tween::append(Ref<Tweener> p_tweener) {
+ ERR_FAIL_COND_V_MSG(invalid, nullptr, "Tween was created outside the scene tree, can't use Tweeners.");
+ ERR_FAIL_COND_V_MSG(started, nullptr, "Can't append to a Tween that has started. Use stop() first.");
+ p_tweener->set_tween(this);
+
+ if (parallel_enabled) {
+ current_step = MAX(current_step, 0);
+ } else {
+ current_step++;
}
- return false;
-}
-
-void Tween::_get_property_list(List<PropertyInfo> *p_list) const {
- // Add the property info for the Tween object
- p_list->push_back(PropertyInfo(Variant::BOOL, "playback/active", PROPERTY_HINT_NONE, ""));
- p_list->push_back(PropertyInfo(Variant::BOOL, "playback/repeat", PROPERTY_HINT_NONE, ""));
- p_list->push_back(PropertyInfo(Variant::FLOAT, "playback/speed", PROPERTY_HINT_RANGE, "-64,64,0.01"));
-}
-
-void Tween::_notification(int p_what) {
- // What notification did we receive?
- switch (p_what) {
- case NOTIFICATION_ENTER_TREE: {
- // Are we not already active?
- if (!is_active()) {
- // Make sure that a previous process state was not saved
- // Only process if "processing" is set
- set_physics_process_internal(false);
- set_process_internal(false);
- }
- } break;
+ parallel_enabled = default_parallel;
- case NOTIFICATION_READY: {
- // Do nothing
- } break;
+ tweeners.resize(current_step + 1);
+ tweeners.write[current_step].push_back(p_tweener);
- case NOTIFICATION_INTERNAL_PROCESS: {
- // Are we processing during physics time?
- if (tween_process_mode == TWEEN_PROCESS_PHYSICS) {
- // Do nothing since we aren't aligned with physics when we should be
- break;
- }
+ return this;
+}
- // Should we update?
- if (is_active()) {
- // Update the tweens
- _tween_process(get_process_delta_time());
- }
- } break;
+void Tween::stop() {
+ started = false;
+ running = false;
+ dead = false;
+}
- case NOTIFICATION_INTERNAL_PHYSICS_PROCESS: {
- // Are we processing during 'regular' time?
- if (tween_process_mode == TWEEN_PROCESS_IDLE) {
- // Do nothing since we would only process during idle time
- break;
- }
+void Tween::pause() {
+ running = false;
+}
- // Should we update?
- if (is_active()) {
- // Update the tweens
- _tween_process(get_physics_process_delta_time());
- }
- } break;
+void Tween::play() {
+ ERR_FAIL_COND_MSG(invalid, "Tween invalid, can't play.");
+ ERR_FAIL_COND_MSG(dead, "Can't play finished Tween, use stop() first to reset its state.");
+ running = true;
+}
- case NOTIFICATION_EXIT_TREE: {
- // We've left the tree. Stop all tweens
- stop_all();
- } break;
- }
+void Tween::kill() {
+ running = false; // For the sake of is_running().
+ dead = true;
}
-void Tween::_bind_methods() {
- // Bind getters and setters
- ClassDB::bind_method(D_METHOD("is_active"), &Tween::is_active);
- ClassDB::bind_method(D_METHOD("set_active", "active"), &Tween::set_active);
+bool Tween::is_running() {
+ return running;
+}
- ClassDB::bind_method(D_METHOD("is_repeat"), &Tween::is_repeat);
- ClassDB::bind_method(D_METHOD("set_repeat", "repeat"), &Tween::set_repeat);
+void Tween::set_valid(bool p_valid) {
+ invalid = !p_valid;
+}
- ClassDB::bind_method(D_METHOD("set_speed_scale", "speed"), &Tween::set_speed_scale);
- ClassDB::bind_method(D_METHOD("get_speed_scale"), &Tween::get_speed_scale);
-
- ClassDB::bind_method(D_METHOD("set_tween_process_mode", "mode"), &Tween::set_tween_process_mode);
- ClassDB::bind_method(D_METHOD("get_tween_process_mode"), &Tween::get_tween_process_mode);
-
- // Bind the various Tween control methods
- ClassDB::bind_method(D_METHOD("start"), &Tween::start);
- ClassDB::bind_method(D_METHOD("reset", "object", "key"), &Tween::reset, DEFVAL(""));
- ClassDB::bind_method(D_METHOD("reset_all"), &Tween::reset_all);
- ClassDB::bind_method(D_METHOD("stop", "object", "key"), &Tween::stop, DEFVAL(""));
- ClassDB::bind_method(D_METHOD("stop_all"), &Tween::stop_all);
- ClassDB::bind_method(D_METHOD("resume", "object", "key"), &Tween::resume, DEFVAL(""));
- ClassDB::bind_method(D_METHOD("resume_all"), &Tween::resume_all);
- ClassDB::bind_method(D_METHOD("remove", "object", "key"), &Tween::remove, DEFVAL(""));
- ClassDB::bind_method(D_METHOD("_remove_by_uid", "uid"), &Tween::_remove_by_uid);
- ClassDB::bind_method(D_METHOD("remove_all"), &Tween::remove_all);
- ClassDB::bind_method(D_METHOD("seek", "time"), &Tween::seek);
- ClassDB::bind_method(D_METHOD("tell"), &Tween::tell);
- ClassDB::bind_method(D_METHOD("get_runtime"), &Tween::get_runtime);
-
- // Bind interpolation and follow methods
- ClassDB::bind_method(D_METHOD("interpolate_property", "object", "property", "initial_val", "final_val", "duration", "trans_type", "ease_type", "delay"), &Tween::interpolate_property, DEFVAL(TRANS_LINEAR), DEFVAL(EASE_IN_OUT), DEFVAL(0));
- ClassDB::bind_method(D_METHOD("interpolate_method", "object", "method", "initial_val", "final_val", "duration", "trans_type", "ease_type", "delay"), &Tween::interpolate_method, DEFVAL(TRANS_LINEAR), DEFVAL(EASE_IN_OUT), DEFVAL(0));
- ClassDB::bind_method(D_METHOD("interpolate_callback", "object", "duration", "callback", "arg1", "arg2", "arg3", "arg4", "arg5"), &Tween::interpolate_callback, DEFVAL(Variant()), DEFVAL(Variant()), DEFVAL(Variant()), DEFVAL(Variant()), DEFVAL(Variant()));
- ClassDB::bind_method(D_METHOD("interpolate_deferred_callback", "object", "duration", "callback", "arg1", "arg2", "arg3", "arg4", "arg5"), &Tween::interpolate_deferred_callback, DEFVAL(Variant()), DEFVAL(Variant()), DEFVAL(Variant()), DEFVAL(Variant()), DEFVAL(Variant()));
- ClassDB::bind_method(D_METHOD("follow_property", "object", "property", "initial_val", "target", "target_property", "duration", "trans_type", "ease_type", "delay"), &Tween::follow_property, DEFVAL(TRANS_LINEAR), DEFVAL(EASE_IN_OUT), DEFVAL(0));
- ClassDB::bind_method(D_METHOD("follow_method", "object", "method", "initial_val", "target", "target_method", "duration", "trans_type", "ease_type", "delay"), &Tween::follow_method, DEFVAL(TRANS_LINEAR), DEFVAL(EASE_IN_OUT), DEFVAL(0));
- ClassDB::bind_method(D_METHOD("targeting_property", "object", "property", "initial", "initial_val", "final_val", "duration", "trans_type", "ease_type", "delay"), &Tween::targeting_property, DEFVAL(TRANS_LINEAR), DEFVAL(EASE_IN_OUT), DEFVAL(0));
- ClassDB::bind_method(D_METHOD("targeting_method", "object", "method", "initial", "initial_method", "final_val", "duration", "trans_type", "ease_type", "delay"), &Tween::targeting_method, DEFVAL(TRANS_LINEAR), DEFVAL(EASE_IN_OUT), DEFVAL(0));
-
- // Add the Tween signals
- ADD_SIGNAL(MethodInfo("tween_started", PropertyInfo(Variant::OBJECT, "object"), PropertyInfo(Variant::NODE_PATH, "key")));
- ADD_SIGNAL(MethodInfo("tween_step", PropertyInfo(Variant::OBJECT, "object"), PropertyInfo(Variant::NODE_PATH, "key"), PropertyInfo(Variant::FLOAT, "elapsed"), PropertyInfo(Variant::OBJECT, "value")));
- ADD_SIGNAL(MethodInfo("tween_completed", PropertyInfo(Variant::OBJECT, "object"), PropertyInfo(Variant::NODE_PATH, "key")));
- ADD_SIGNAL(MethodInfo("tween_all_completed"));
-
- // Add the properties and tie them to the getters and setters
- ADD_PROPERTY(PropertyInfo(Variant::BOOL, "repeat"), "set_repeat", "is_repeat");
- ADD_PROPERTY(PropertyInfo(Variant::INT, "playback_process_mode", PROPERTY_HINT_ENUM, "Physics,Idle"), "set_tween_process_mode", "get_tween_process_mode");
- ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "playback_speed", PROPERTY_HINT_RANGE, "-64,64,0.01"), "set_speed_scale", "get_speed_scale");
-
- // Bind Idle vs Physics process
- BIND_ENUM_CONSTANT(TWEEN_PROCESS_PHYSICS);
- BIND_ENUM_CONSTANT(TWEEN_PROCESS_IDLE);
+bool Tween::is_valid() {
+ return invalid;
+}
- // Bind the Transition type constants
- BIND_ENUM_CONSTANT(TRANS_LINEAR);
- BIND_ENUM_CONSTANT(TRANS_SINE);
- BIND_ENUM_CONSTANT(TRANS_QUINT);
- BIND_ENUM_CONSTANT(TRANS_QUART);
- BIND_ENUM_CONSTANT(TRANS_QUAD);
- BIND_ENUM_CONSTANT(TRANS_EXPO);
- BIND_ENUM_CONSTANT(TRANS_ELASTIC);
- BIND_ENUM_CONSTANT(TRANS_CUBIC);
- BIND_ENUM_CONSTANT(TRANS_CIRC);
- BIND_ENUM_CONSTANT(TRANS_BOUNCE);
- BIND_ENUM_CONSTANT(TRANS_BACK);
+Ref<Tween> Tween::bind_node(Node *p_node) {
+ bound_node = p_node->get_instance_id();
+ is_bound = true;
+ return this;
+}
- // Bind the easing constants
- BIND_ENUM_CONSTANT(EASE_IN);
- BIND_ENUM_CONSTANT(EASE_OUT);
- BIND_ENUM_CONSTANT(EASE_IN_OUT);
- BIND_ENUM_CONSTANT(EASE_OUT_IN);
+Ref<Tween> Tween::set_process_mode(TweenProcessMode p_mode) {
+ process_mode = p_mode;
+ return this;
}
-Variant Tween::_get_initial_val(const InterpolateData &p_data) const {
- // What type of data are we interpolating?
- switch (p_data.type) {
- case INTER_PROPERTY:
- case INTER_METHOD:
- case FOLLOW_PROPERTY:
- case FOLLOW_METHOD:
- // Simply use the given initial value
- return p_data.initial_val;
-
- case TARGETING_PROPERTY:
- case TARGETING_METHOD: {
- // Get the object that is being targeted
- Object *object = ObjectDB::get_instance(p_data.target_id);
- ERR_FAIL_COND_V(object == nullptr, p_data.initial_val);
-
- // Are we targeting a property or a method?
- Variant initial_val;
- if (p_data.type == TARGETING_PROPERTY) {
- // Get the property from the target object
- bool valid = false;
- initial_val = object->get_indexed(p_data.target_key, &valid);
- ERR_FAIL_COND_V(!valid, p_data.initial_val);
- } else {
- // Call the method and get the initial value from it
- Callable::CallError error;
- initial_val = object->call(p_data.target_key[0], nullptr, 0, error);
- ERR_FAIL_COND_V(error.error != Callable::CallError::CALL_OK, p_data.initial_val);
- }
- return initial_val;
- }
+Tween::TweenProcessMode Tween::get_process_mode() {
+ return process_mode;
+}
+
+Ref<Tween> Tween::set_pause_mode(TweenPauseMode p_mode) {
+ pause_mode = p_mode;
+ return this;
+}
+
+Tween::TweenPauseMode Tween::get_pause_mode() {
+ return pause_mode;
+}
+
+Ref<Tween> Tween::set_parallel(bool p_parallel) {
+ default_parallel = p_parallel;
+ parallel_enabled = p_parallel;
+ return this;
+}
+
+Ref<Tween> Tween::set_loops(int p_loops) {
+ loops = p_loops;
+ return this;
+}
+
+Ref<Tween> Tween::set_speed_scale(float p_speed) {
+ speed_scale = p_speed;
+ return this;
+}
+
+Ref<Tween> Tween::set_trans(TransitionType p_trans) {
+ default_transition = p_trans;
+ return this;
+}
- case INTER_CALLBACK:
- // Callback does not have a special initial value
- break;
+Tween::TransitionType Tween::get_trans() {
+ return default_transition;
+}
+
+Ref<Tween> Tween::set_ease(EaseType p_ease) {
+ default_ease = p_ease;
+ return this;
+}
+
+Tween::EaseType Tween::get_ease() {
+ return default_ease;
+}
+
+Ref<Tween> Tween::parallel() {
+ parallel_enabled = true;
+ return this;
+}
+
+Ref<Tween> Tween::chain() {
+ parallel_enabled = false;
+ return this;
+}
+
+bool Tween::custom_step(float p_delta) {
+ bool r = running;
+ running = true;
+ bool ret = step(p_delta);
+ running = running && r; // Running might turn false when Tween finished.
+ return ret;
+}
+
+bool Tween::step(float p_delta) {
+ ERR_FAIL_COND_V_MSG(tweeners.is_empty(), false, "Tween started, but has no Tweeners.");
+
+ if (dead) {
+ return false;
}
- // If we've made it here, just return the delta value as the initial value
- return p_data.delta_val;
-}
-
-Variant Tween::_get_final_val(const InterpolateData &p_data) const {
- switch (p_data.type) {
- case FOLLOW_PROPERTY:
- case FOLLOW_METHOD: {
- // Get the object that is being followed
- Object *target = ObjectDB::get_instance(p_data.target_id);
- ERR_FAIL_COND_V(target == nullptr, p_data.initial_val);
-
- // We want to figure out the final value
- Variant final_val;
- if (p_data.type == FOLLOW_PROPERTY) {
- // Read the property as-is
- bool valid = false;
- final_val = target->get_indexed(p_data.target_key, &valid);
- ERR_FAIL_COND_V(!valid, p_data.initial_val);
- } else {
- // We're looking at a method. Call the method on the target object
- Callable::CallError error;
- final_val = target->call(p_data.target_key[0], nullptr, 0, error);
- ERR_FAIL_COND_V(error.error != Callable::CallError::CALL_OK, p_data.initial_val);
- }
- // If we're looking at an INT value, instead convert it to a FLOAT
- // This is better for interpolation
- if (final_val.get_type() == Variant::INT) {
- final_val = final_val.operator real_t();
- }
+ if (!running) {
+ return true;
+ }
- return final_val;
- }
- default: {
- // If we're not following a final value/method, use the final value from the data
- return p_data.final_val;
+ if (is_bound) {
+ Object *bound_instance = ObjectDB::get_instance(bound_node);
+ if (bound_instance) {
+ Node *bound_node = Object::cast_to<Node>(bound_instance);
+ // This can't by anything else than Node, so we can omit checking if casting succeeded.
+ if (!bound_node->is_inside_tree()) {
+ return true;
+ }
+ } else {
+ return false;
}
}
-}
-Variant &Tween::_get_delta_val(InterpolateData &p_data) {
- // What kind of data are we interpolating?
- switch (p_data.type) {
- case INTER_PROPERTY:
- case INTER_METHOD:
- // Simply return the given delta value
- return p_data.delta_val;
-
- case FOLLOW_PROPERTY:
- case FOLLOW_METHOD: {
- // We're following an object, so grab that instance
- Object *target = ObjectDB::get_instance(p_data.target_id);
- ERR_FAIL_COND_V(target == nullptr, p_data.initial_val);
-
- // We want to figure out the final value
- Variant final_val;
- if (p_data.type == FOLLOW_PROPERTY) {
- // Read the property as-is
- bool valid = false;
- final_val = target->get_indexed(p_data.target_key, &valid);
- ERR_FAIL_COND_V(!valid, p_data.initial_val);
- } else {
- // We're looking at a method. Call the method on the target object
- Callable::CallError error;
- final_val = target->call(p_data.target_key[0], nullptr, 0, error);
- ERR_FAIL_COND_V(error.error != Callable::CallError::CALL_OK, p_data.initial_val);
- }
+ if (!started) {
+ current_step = 0;
+ loops_done = 0;
+ start_tweeners();
+ started = true;
+ }
- // If we're looking at an INT value, instead convert it to a FLOAT
- // This is better for interpolation
- if (final_val.get_type() == Variant::INT) {
- final_val = final_val.operator real_t();
- }
+ float rem_delta = p_delta * speed_scale;
+ bool step_active = false;
- // Calculate the delta based on the initial value and the final value
- _calc_delta_val(p_data.initial_val, final_val, p_data.delta_val);
- return p_data.delta_val;
+ while (rem_delta > 0 && running) {
+ float step_delta = rem_delta;
+ step_active = false;
+
+ for (List<Ref<Tweener>>::Element *E = tweeners.write[current_step].front(); E; E = E->next()) {
+ // Modified inside Tweener.step().
+ float temp_delta = rem_delta;
+ // Turns to true if any Tweener returns true (i.e. is still not finished).
+ step_active = E->get()->step(temp_delta) || step_active;
+ step_delta = MIN(temp_delta, rem_delta);
}
- case TARGETING_PROPERTY:
- case TARGETING_METHOD: {
- // Grab the initial value from the data to calculate delta
- Variant initial_val = _get_initial_val(p_data);
+ rem_delta = step_delta;
- // If we're looking at an INT value, instead convert it to a FLOAT
- // This is better for interpolation
- if (initial_val.get_type() == Variant::INT) {
- initial_val = initial_val.operator real_t();
- }
+ if (!step_active) {
+ emit_signal("step_finished", current_step);
+ current_step++;
- // Calculate the delta based on the initial value and the final value
- _calc_delta_val(initial_val, p_data.final_val, p_data.delta_val);
- return p_data.delta_val;
+ if (current_step == tweeners.size()) {
+ loops_done++;
+ if (loops_done == loops) {
+ running = false;
+ dead = true;
+ emit_signal("finished");
+ } else {
+ emit_signal("loop_finished", loops_done);
+ current_step = 0;
+ start_tweeners();
+ }
+ } else {
+ start_tweeners();
+ }
}
+ }
+
+ return true;
+}
- case INTER_CALLBACK:
- // Callbacks have no special delta
- break;
+bool Tween::should_pause() {
+ if (is_bound && pause_mode == TWEEN_PAUSE_BOUND) {
+ Object *bound_instance = ObjectDB::get_instance(bound_node);
+ if (bound_instance) {
+ Node *bound_node = Object::cast_to<Node>(bound_instance);
+ return !bound_node->can_process();
+ }
}
- // If we've made it here, use the initial value as the delta
- return p_data.initial_val;
+
+ return pause_mode != TWEEN_PAUSE_PROCESS;
}
-Variant Tween::_run_equation(InterpolateData &p_data) {
- // Get the initial and delta values from the data
- Variant initial_val = _get_initial_val(p_data);
- Variant &delta_val = _get_delta_val(p_data);
- Variant result;
+Variant Tween::interpolate_variant(Variant p_initial_val, Variant p_delta_val, float p_time, float p_duration, TransitionType p_trans, EaseType p_ease) {
+ ERR_FAIL_INDEX_V(p_trans, TransitionType::TRANS_MAX, Variant());
+ ERR_FAIL_INDEX_V(p_ease, EaseType::EASE_MAX, Variant());
+// Helper macro to run equation on sub-elements of the value (e.g. x and y of Vector2).
#define APPLY_EQUATION(element) \
- r.element = _run_equation(p_data.trans_type, p_data.ease_type, p_data.elapsed - p_data.delay, i.element, d.element, p_data.duration);
+ r.element = run_equation(p_trans, p_ease, p_time, i.element, d.element, p_duration);
- // What type of data are we interpolating?
- switch (initial_val.get_type()) {
- case Variant::BOOL:
- // Run the boolean specific equation (checking if it is at least 0.5)
- result = (_run_equation(p_data.trans_type, p_data.ease_type, p_data.elapsed - p_data.delay, initial_val, delta_val, p_data.duration)) >= 0.5;
- break;
+ switch (p_initial_val.get_type()) {
+ case Variant::BOOL: {
+ return (run_equation(p_trans, p_ease, p_time, p_initial_val, p_delta_val, p_duration)) >= 0.5;
+ }
- case Variant::INT:
- // Run the integer specific equation
- result = (int)_run_equation(p_data.trans_type, p_data.ease_type, p_data.elapsed - p_data.delay, (int)initial_val, (int)delta_val, p_data.duration);
- break;
+ case Variant::INT: {
+ return (int)run_equation(p_trans, p_ease, p_time, (int)p_initial_val, (int)p_delta_val, p_duration);
+ }
- case Variant::FLOAT:
- // Run the FLOAT specific equation
- result = _run_equation(p_data.trans_type, p_data.ease_type, p_data.elapsed - p_data.delay, (real_t)initial_val, (real_t)delta_val, p_data.duration);
- break;
+ case Variant::FLOAT: {
+ return run_equation(p_trans, p_ease, p_time, (real_t)p_initial_val, (real_t)p_delta_val, p_duration);
+ }
case Variant::VECTOR2: {
- // Get vectors for initial and delta values
- Vector2 i = initial_val;
- Vector2 d = delta_val;
+ Vector2 i = p_initial_val;
+ Vector2 d = p_delta_val;
Vector2 r;
- // Execute the equation and mutate the r vector
- // This uses the custom APPLY_EQUATION macro defined above
APPLY_EQUATION(x);
APPLY_EQUATION(y);
- result = r;
- } break;
+ return r;
+ }
+
+ case Variant::VECTOR2I: {
+ Vector2i i = p_initial_val;
+ Vector2i d = p_delta_val;
+ Vector2i r;
+
+ APPLY_EQUATION(x);
+ APPLY_EQUATION(y);
+ return r;
+ }
case Variant::RECT2: {
- // Get the Rect2 for initial and delta value
- Rect2 i = initial_val;
- Rect2 d = delta_val;
+ Rect2 i = p_initial_val;
+ Rect2 d = p_delta_val;
Rect2 r;
- // Execute the equation for the position and size of Rect2
APPLY_EQUATION(position.x);
APPLY_EQUATION(position.y);
APPLY_EQUATION(size.x);
APPLY_EQUATION(size.y);
- result = r;
- } break;
+ return r;
+ }
+
+ case Variant::RECT2I: {
+ Rect2i i = p_initial_val;
+ Rect2i d = p_delta_val;
+ Rect2i r;
+
+ APPLY_EQUATION(position.x);
+ APPLY_EQUATION(position.y);
+ APPLY_EQUATION(size.x);
+ APPLY_EQUATION(size.y);
+ return r;
+ }
case Variant::VECTOR3: {
- // Get vectors for initial and delta values
- Vector3 i = initial_val;
- Vector3 d = delta_val;
+ Vector3 i = p_initial_val;
+ Vector3 d = p_delta_val;
Vector3 r;
- // Execute the equation and mutate the r vector
- // This uses the custom APPLY_EQUATION macro defined above
APPLY_EQUATION(x);
APPLY_EQUATION(y);
APPLY_EQUATION(z);
- result = r;
- } break;
+ return r;
+ }
+
+ case Variant::VECTOR3I: {
+ Vector3i i = p_initial_val;
+ Vector3i d = p_delta_val;
+ Vector3i r;
+
+ APPLY_EQUATION(x);
+ APPLY_EQUATION(y);
+ APPLY_EQUATION(z);
+ return r;
+ }
case Variant::TRANSFORM2D: {
- // Get the transforms for initial and delta values
- Transform2D i = initial_val;
- Transform2D d = delta_val;
+ Transform2D i = p_initial_val;
+ Transform2D d = p_delta_val;
Transform2D r;
- // Execute the equation on the transforms and mutate the r transform
- // This uses the custom APPLY_EQUATION macro defined above
APPLY_EQUATION(elements[0][0]);
APPLY_EQUATION(elements[0][1]);
APPLY_EQUATION(elements[1][0]);
APPLY_EQUATION(elements[1][1]);
APPLY_EQUATION(elements[2][0]);
APPLY_EQUATION(elements[2][1]);
- result = r;
- } break;
+ return r;
+ }
case Variant::QUATERNION: {
- // Get the quaternian for the initial and delta values
- Quaternion i = initial_val;
- Quaternion d = delta_val;
+ Quaternion i = p_initial_val;
+ Quaternion d = p_delta_val;
Quaternion r;
- // Execute the equation on the quaternian values and mutate the r quaternian
- // This uses the custom APPLY_EQUATION macro defined above
APPLY_EQUATION(x);
APPLY_EQUATION(y);
APPLY_EQUATION(z);
APPLY_EQUATION(w);
- result = r;
- } break;
+ return r;
+ }
case Variant::AABB: {
- // Get the AABB's for the initial and delta values
- AABB i = initial_val;
- AABB d = delta_val;
+ AABB i = p_initial_val;
+ AABB d = p_delta_val;
AABB r;
- // Execute the equation for the position and size of the AABB's and mutate the r AABB
- // This uses the custom APPLY_EQUATION macro defined above
APPLY_EQUATION(position.x);
APPLY_EQUATION(position.y);
APPLY_EQUATION(position.z);
APPLY_EQUATION(size.x);
APPLY_EQUATION(size.y);
APPLY_EQUATION(size.z);
- result = r;
- } break;
+ return r;
+ }
case Variant::BASIS: {
- // Get the basis for initial and delta values
- Basis i = initial_val;
- Basis d = delta_val;
+ Basis i = p_initial_val;
+ Basis d = p_delta_val;
Basis r;
- // Execute the equation on all the basis and mutate the r basis
- // This uses the custom APPLY_EQUATION macro defined above
APPLY_EQUATION(elements[0][0]);
APPLY_EQUATION(elements[0][1]);
APPLY_EQUATION(elements[0][2]);
@@ -568,17 +440,14 @@ Variant Tween::_run_equation(InterpolateData &p_data) {
APPLY_EQUATION(elements[2][0]);
APPLY_EQUATION(elements[2][1]);
APPLY_EQUATION(elements[2][2]);
- result = r;
- } break;
+ return r;
+ }
case Variant::TRANSFORM3D: {
- // Get the transforms for the initial and delta values
- Transform3D i = initial_val;
- Transform3D d = delta_val;
+ Transform3D i = p_initial_val;
+ Transform3D d = p_delta_val;
Transform3D r;
- // Execute the equation for each of the transforms and their origin and mutate the r transform
- // This uses the custom APPLY_EQUATION macro defined above
APPLY_EQUATION(basis.elements[0][0]);
APPLY_EQUATION(basis.elements[0][1]);
APPLY_EQUATION(basis.elements[0][2]);
@@ -591,634 +460,67 @@ Variant Tween::_run_equation(InterpolateData &p_data) {
APPLY_EQUATION(origin.x);
APPLY_EQUATION(origin.y);
APPLY_EQUATION(origin.z);
- result = r;
- } break;
+ return r;
+ }
case Variant::COLOR: {
- // Get the Color for initial and delta value
- Color i = initial_val;
- Color d = delta_val;
+ Color i = p_initial_val;
+ Color d = p_delta_val;
Color r;
- // Apply the equation on the Color RGBA, and mutate the r color
- // This uses the custom APPLY_EQUATION macro defined above
APPLY_EQUATION(r);
APPLY_EQUATION(g);
APPLY_EQUATION(b);
APPLY_EQUATION(a);
- result = r;
- } break;
-
- default: {
- // If unknown, just return the initial value
- result = initial_val;
- } break;
- };
-#undef APPLY_EQUATION
- // Return the result that was computed
- return result;
-}
-
-bool Tween::_apply_tween_value(InterpolateData &p_data, Variant &value) {
- // Get the object we want to apply the new value to
- Object *object = ObjectDB::get_instance(p_data.id);
- ERR_FAIL_COND_V(object == nullptr, false);
-
- // What kind of data are we mutating?
- switch (p_data.type) {
- case INTER_PROPERTY:
- case FOLLOW_PROPERTY:
- case TARGETING_PROPERTY: {
- // Simply set the property on the object
- bool valid = false;
- object->set_indexed(p_data.key, value, &valid);
- return valid;
+ return r;
}
- case INTER_METHOD:
- case FOLLOW_METHOD:
- case TARGETING_METHOD: {
- // We want to call the method on the target object
- Callable::CallError error;
-
- // Do we have a non-nil value passed in?
- if (value.get_type() != Variant::NIL) {
- // Pass it as an argument to the function call
- Variant *arg[1] = { &value };
- object->call(p_data.key[0], (const Variant **)arg, 1, error);
- } else {
- // Don't pass any argument
- object->call(p_data.key[0], nullptr, 0, error);
- }
-
- // Did we get an error from the function call?
- return error.error == Callable::CallError::CALL_OK;
+ default: {
+ return p_initial_val;
}
-
- case INTER_CALLBACK:
- // Nothing to apply for a callback
- break;
};
- // No issues found!
- return true;
-}
-
-void Tween::_tween_process(float p_delta) {
- // Process all of the pending commands
- _process_pending_commands();
-
- // If the scale is 0, make no progress on the tweens
- if (speed_scale == 0) {
- return;
- }
-
- // Update the delta and whether we are pending an update
- p_delta *= speed_scale;
- pending_update++;
-
- // Are we repeating the interpolations?
- if (repeat) {
- // For each interpolation...
- bool repeats_finished = true;
- for (List<InterpolateData>::Element *E = interpolates.front(); E; E = E->next()) {
- // Get the data from it
- InterpolateData &data = E->get();
-
- // Is not finished?
- if (!data.finish) {
- // We aren't finished yet, no need to check the rest
- repeats_finished = false;
- break;
- }
- }
-
- // If we are all finished, we can reset all of the tweens
- if (repeats_finished) {
- reset_all();
- }
- }
-
- // Are all of the tweens complete?
- int any_unfinished = 0;
-
- // For each tween we wish to interpolate...
- for (List<InterpolateData>::Element *E = interpolates.front(); E; E = E->next()) {
- // Get the data from it
- InterpolateData &data = E->get();
-
- // Is the data not active or already finished? No need to go any further
- if (!data.active || data.finish) {
- continue;
- }
-
- // Track if we hit one that isn't finished yet
- any_unfinished++;
-
- // Get the target object for this interpolation
- Object *object = ObjectDB::get_instance(data.id);
- if (object == nullptr) {
- continue;
- }
-
- // Are we still delaying this tween?
- bool prev_delaying = data.elapsed <= data.delay;
- data.elapsed += p_delta;
- if (data.elapsed < data.delay) {
- continue;
- } else if (prev_delaying) {
- // We can apply the tween's value to the data and emit that the tween has started
- _apply_tween_value(data, data.initial_val);
- emit_signal("tween_started", object, NodePath(Vector<StringName>(), data.key, false));
- }
-
- // Are we at the end of the tween?
- if (data.elapsed > (data.delay + data.duration)) {
- // Set the elapsed time to the end and mark this one as finished
- data.elapsed = data.delay + data.duration;
- data.finish = true;
- }
-
- // Are we interpolating a callback?
- if (data.type == INTER_CALLBACK) {
- // Is the tween completed?
- if (data.finish) {
- // Are we calling this callback deferred or immediately?
- if (data.call_deferred) {
- // Run the deferred function callback, applying the correct number of arguments
- switch (data.args) {
- case 0:
- object->call_deferred(data.key[0]);
- break;
- case 1:
- object->call_deferred(data.key[0], data.arg[0]);
- break;
- case 2:
- object->call_deferred(data.key[0], data.arg[0], data.arg[1]);
- break;
- case 3:
- object->call_deferred(data.key[0], data.arg[0], data.arg[1], data.arg[2]);
- break;
- case 4:
- object->call_deferred(data.key[0], data.arg[0], data.arg[1], data.arg[2], data.arg[3]);
- break;
- case 5:
- object->call_deferred(data.key[0], data.arg[0], data.arg[1], data.arg[2], data.arg[3], data.arg[4]);
- break;
- }
- } else {
- // Call the function directly with the arguments
- Callable::CallError error;
- Variant *arg[5] = {
- &data.arg[0],
- &data.arg[1],
- &data.arg[2],
- &data.arg[3],
- &data.arg[4],
- };
- object->call(data.key[0], (const Variant **)arg, data.args, error);
- }
- }
- } else {
- // We can apply the value directly
- Variant result = _run_equation(data);
- _apply_tween_value(data, result);
-
- // Emit that the tween has taken a step
- emit_signal("tween_step", object, NodePath(Vector<StringName>(), data.key, false), data.elapsed, result);
- }
-
- // Is the tween now finished?
- if (data.finish) {
- // Set it to the final value directly
- Variant final_val = _get_final_val(data);
- _apply_tween_value(data, final_val);
-
- // Mark the tween as completed and emit the signal
- data.elapsed = 0;
- emit_signal("tween_completed", object, NodePath(Vector<StringName>(), data.key, false));
-
- // If we are not repeating the tween, remove it
- if (!repeat) {
- call_deferred("_remove_by_uid", data.uid);
- any_unfinished--;
- }
- }
- }
- // One less update left to go
- pending_update--;
-
- // If all tweens are completed, we no longer need to be active
- if (any_unfinished == 0) {
- set_active(false);
- emit_signal("tween_all_completed");
- }
-}
-
-void Tween::set_tween_process_mode(TweenProcessMode p_mode) {
- tween_process_mode = p_mode;
-}
-
-Tween::TweenProcessMode Tween::get_tween_process_mode() const {
- return tween_process_mode;
-}
-
-bool Tween::is_active() const {
- return is_processing_internal() || is_physics_processing_internal();
-}
-
-void Tween::set_active(bool p_active) {
- // Do nothing if it's the same active mode that we currently are
- if (is_active() == p_active) {
- return;
- }
-
- // Depending on physics or idle, set processing
- switch (tween_process_mode) {
- case TWEEN_PROCESS_IDLE:
- set_process_internal(p_active);
- break;
- case TWEEN_PROCESS_PHYSICS:
- set_physics_process_internal(p_active);
- break;
- }
-}
-
-bool Tween::is_repeat() const {
- return repeat;
-}
-
-void Tween::set_repeat(bool p_repeat) {
- repeat = p_repeat;
-}
-
-void Tween::set_speed_scale(float p_speed) {
- speed_scale = p_speed;
-}
-
-float Tween::get_speed_scale() const {
- return speed_scale;
-}
-
-void Tween::start() {
- ERR_FAIL_COND_MSG(!is_inside_tree(), "Tween was not added to the SceneTree!");
-
- // Are there any pending updates?
- if (pending_update != 0) {
- // Start the tweens after deferring
- call_deferred("start");
- return;
- }
-
- pending_update++;
- for (List<InterpolateData>::Element *E = interpolates.front(); E; E = E->next()) {
- InterpolateData &data = E->get();
- data.active = true;
- }
- pending_update--;
-
- // We want to be activated
- set_active(true);
-
- // Don't resume from current position if stop_all() function has been used
- if (was_stopped) {
- seek(0);
- }
- was_stopped = false;
-}
-
-void Tween::reset(Object *p_object, StringName p_key) {
- // Find all interpolations that use the same object and target string
- pending_update++;
- for (List<InterpolateData>::Element *E = interpolates.front(); E; E = E->next()) {
- // Get the target object
- InterpolateData &data = E->get();
- Object *object = ObjectDB::get_instance(data.id);
- if (object == nullptr) {
- continue;
- }
-
- // Do we have the correct object and key?
- if (object == p_object && (data.concatenated_key == p_key || p_key == "")) {
- // Reset the tween to the initial state
- data.elapsed = 0;
- data.finish = false;
-
- // Also apply the initial state if there isn't a delay
- if (data.delay == 0) {
- _apply_tween_value(data, data.initial_val);
- }
- }
- }
- pending_update--;
-}
-
-void Tween::reset_all() {
- // Go through all interpolations
- pending_update++;
- for (List<InterpolateData>::Element *E = interpolates.front(); E; E = E->next()) {
- // Get the target data and set it back to the initial state
- InterpolateData &data = E->get();
- data.elapsed = 0;
- data.finish = false;
-
- // If there isn't a delay, apply the value to the object
- if (data.delay == 0) {
- _apply_tween_value(data, data.initial_val);
- }
- }
- pending_update--;
-}
-
-void Tween::stop(Object *p_object, StringName p_key) {
- // Find the tween that has the given target object and string key
- pending_update++;
- for (List<InterpolateData>::Element *E = interpolates.front(); E; E = E->next()) {
- // Get the object the tween is targeting
- InterpolateData &data = E->get();
- Object *object = ObjectDB::get_instance(data.id);
- if (object == nullptr) {
- continue;
- }
-
- // Is this the correct object and does it have the given key?
- if (object == p_object && (data.concatenated_key == p_key || p_key == "")) {
- // Disable the tween
- data.active = false;
- }
- }
- pending_update--;
-}
-
-void Tween::stop_all() {
- // We no longer need to be active since all tweens have been stopped
- set_active(false);
- was_stopped = true;
- // For each interpolation...
- pending_update++;
- for (List<InterpolateData>::Element *E = interpolates.front(); E; E = E->next()) {
- // Simply set it inactive
- InterpolateData &data = E->get();
- data.active = false;
- }
- pending_update--;
-}
-
-void Tween::resume(Object *p_object, StringName p_key) {
- // We need to be activated
- // TODO: What if no tween is found??
- set_active(true);
-
- // Find the tween that uses the given target object and string key
- pending_update++;
- for (List<InterpolateData>::Element *E = interpolates.front(); E; E = E->next()) {
- // Grab the object
- InterpolateData &data = E->get();
- Object *object = ObjectDB::get_instance(data.id);
- if (object == nullptr) {
- continue;
- }
-
- // If the object and string key match, activate it
- if (object == p_object && (data.concatenated_key == p_key || p_key == "")) {
- data.active = true;
- }
- }
- pending_update--;
-}
-
-void Tween::resume_all() {
- // Set ourselves active so we can process tweens
- // TODO: What if there are no tweens? We get set to active for no reason!
- set_active(true);
-
- // For each interpolation...
- pending_update++;
- for (List<InterpolateData>::Element *E = interpolates.front(); E; E = E->next()) {
- // Simply grab it and set it to active
- InterpolateData &data = E->get();
- data.active = true;
- }
- pending_update--;
-}
-
-void Tween::remove(Object *p_object, StringName p_key) {
- // If we are still updating, call this function again later
- if (pending_update != 0) {
- call_deferred("remove", p_object, p_key);
- return;
- }
-
- // For each interpolation...
- List<List<InterpolateData>::Element *> for_removal;
- for (List<InterpolateData>::Element *E = interpolates.front(); E; E = E->next()) {
- // Get the target object
- InterpolateData &data = E->get();
- Object *object = ObjectDB::get_instance(data.id);
- if (object == nullptr) {
- continue;
- }
-
- // If the target object and string key match, queue it for removal
- if (object == p_object && (data.concatenated_key == p_key || p_key == "")) {
- for_removal.push_back(E);
- }
- }
-
- // For each interpolation we wish to remove...
- for (List<List<InterpolateData>::Element *>::Element *E = for_removal.front(); E; E = E->next()) {
- // Erase it
- interpolates.erase(E->get());
- }
-}
-
-void Tween::_remove_by_uid(int uid) {
- // If we are still updating, call this function again later
- if (pending_update != 0) {
- call_deferred("_remove_by_uid", uid);
- return;
- }
-
- // Find the interpolation that matches the given UID
- for (List<InterpolateData>::Element *E = interpolates.front(); E; E = E->next()) {
- if (uid == E->get().uid) {
- // It matches, erase it and stop looking
- E->erase();
- break;
- }
- }
-}
-
-void Tween::_push_interpolate_data(InterpolateData &p_data) {
- pending_update++;
-
- // Add the new interpolation
- p_data.uid = ++uid;
- interpolates.push_back(p_data);
-
- pending_update--;
+#undef APPLY_EQUATION
}
-void Tween::remove_all() {
- // If we are still updating, call this function again later
- if (pending_update != 0) {
- call_deferred("remove_all");
- return;
- }
- // We no longer need to be active
- set_active(false);
-
- // Clear out all interpolations and reset the uid
- interpolates.clear();
- uid = 0;
-}
-
-void Tween::seek(real_t p_time) {
- // Go through each interpolation...
- pending_update++;
- for (List<InterpolateData>::Element *E = interpolates.front(); E; E = E->next()) {
- // Get the target data
- InterpolateData &data = E->get();
-
- // Update the elapsed data to be set to the target time
- data.elapsed = p_time;
-
- // Are we at the end?
- if (data.elapsed < data.delay) {
- // There is still time left to go
- data.finish = false;
- continue;
- } else if (data.elapsed >= (data.delay + data.duration)) {
- // We are past the end of it, set the elapsed time to the end and mark as finished
- data.elapsed = (data.delay + data.duration);
- data.finish = true;
- } else {
- // We are not finished with this interpolation yet
- data.finish = false;
+Variant Tween::calculate_delta_value(Variant p_intial_val, Variant p_final_val) {
+ switch (p_intial_val.get_type()) {
+ case Variant::BOOL: {
+ return (int)p_final_val - (int)p_intial_val;
}
- // If we are a callback, do nothing special
- if (data.type == INTER_CALLBACK) {
- continue;
+ case Variant::RECT2: {
+ Rect2 i = p_intial_val;
+ Rect2 f = p_final_val;
+ return Rect2(f.position - i.position, f.size - i.size);
}
- // Run the equation on the data and apply the value
- Variant result = _run_equation(data);
- _apply_tween_value(data, result);
- }
- pending_update--;
-}
-
-real_t Tween::tell() const {
- // We want to grab the position of the furthest along tween
- pending_update++;
- real_t pos = 0.0;
-
- // For each interpolation...
- for (const List<InterpolateData>::Element *E = interpolates.front(); E; E = E->next()) {
- // Get the data and figure out if its position is further along than the previous ones
- const InterpolateData &data = E->get();
- if (data.elapsed > pos) {
- // Save it if so
- pos = data.elapsed;
+ case Variant::RECT2I: {
+ Rect2i i = p_intial_val;
+ Rect2i f = p_final_val;
+ return Rect2i(f.position - i.position, f.size - i.size);
}
- }
- pending_update--;
- return pos;
-}
-
-real_t Tween::get_runtime() const {
- // If the tween isn't moving, it'll last forever
- if (speed_scale == 0) {
- return INFINITY;
- }
-
- pending_update++;
-
- // For each interpolation...
- real_t runtime = 0.0;
- for (const List<InterpolateData>::Element *E = interpolates.front(); E; E = E->next()) {
- // Get the tween data and see if it's runtime is greater than the previous tweens
- const InterpolateData &data = E->get();
- real_t t = data.delay + data.duration;
- if (t > runtime) {
- // This is the longest running tween
- runtime = t;
- }
- }
- pending_update--;
-
- // Adjust the runtime for the current speed scale
- return runtime / speed_scale;
-}
-
-bool Tween::_calc_delta_val(const Variant &p_initial_val, const Variant &p_final_val, Variant &p_delta_val) {
- // Get the initial, final, and delta values
- const Variant &initial_val = p_initial_val;
- const Variant &final_val = p_final_val;
- Variant &delta_val = p_delta_val;
-
- // What kind of data are we interpolating?
- switch (initial_val.get_type()) {
- case Variant::BOOL:
- // We'll treat booleans just like integers
- case Variant::INT:
- // Compute the integer delta
- delta_val = (int)final_val - (int)initial_val;
- break;
-
- case Variant::FLOAT:
- // Convert to FLOAT and find the delta
- delta_val = (real_t)final_val - (real_t)initial_val;
- break;
-
- case Variant::VECTOR2:
- // Convert to Vectors and find the delta
- delta_val = final_val.operator Vector2() - initial_val.operator Vector2();
- break;
-
- case Variant::RECT2: {
- // Build a new Rect2 and use the new position and sizes to make a delta
- Rect2 i = initial_val;
- Rect2 f = final_val;
- delta_val = Rect2(f.position - i.position, f.size - i.size);
- } break;
-
- case Variant::VECTOR3:
- // Convert to Vectors and find the delta
- delta_val = final_val.operator Vector3() - initial_val.operator Vector3();
- break;
case Variant::TRANSFORM2D: {
- // Build a new transform which is the difference between the initial and final values
- Transform2D i = initial_val;
- Transform2D f = final_val;
- Transform2D d = Transform2D();
- d[0][0] = f.elements[0][0] - i.elements[0][0];
- d[0][1] = f.elements[0][1] - i.elements[0][1];
- d[1][0] = f.elements[1][0] - i.elements[1][0];
- d[1][1] = f.elements[1][1] - i.elements[1][1];
- d[2][0] = f.elements[2][0] - i.elements[2][0];
- d[2][1] = f.elements[2][1] - i.elements[2][1];
- delta_val = d;
- } break;
-
- case Variant::QUATERNION:
- // Convert to quaternianls and find the delta
- delta_val = final_val.operator Quaternion() - initial_val.operator Quaternion();
- break;
+ Transform2D i = p_intial_val;
+ Transform2D f = p_final_val;
+ return Transform2D(f.elements[0][0] - i.elements[0][0],
+ f.elements[0][1] - i.elements[0][1],
+ f.elements[1][0] - i.elements[1][0],
+ f.elements[1][1] - i.elements[1][1],
+ f.elements[2][0] - i.elements[2][0],
+ f.elements[2][1] - i.elements[2][1]);
+ }
case Variant::AABB: {
- // Build a new AABB and use the new position and sizes to make a delta
- AABB i = initial_val;
- AABB f = final_val;
- delta_val = AABB(f.position - i.position, f.size - i.size);
- } break;
+ AABB i = p_intial_val;
+ AABB f = p_final_val;
+ return AABB(f.position - i.position, f.size - i.size);
+ }
case Variant::BASIS: {
- // Build a new basis which is the delta between the initial and final values
- Basis i = initial_val;
- Basis f = final_val;
- delta_val = Basis(f.elements[0][0] - i.elements[0][0],
+ Basis i = p_intial_val;
+ Basis f = p_final_val;
+ return Basis(f.elements[0][0] - i.elements[0][0],
f.elements[0][1] - i.elements[0][1],
f.elements[0][2] - i.elements[0][2],
f.elements[1][0] - i.elements[1][0],
@@ -1227,14 +529,12 @@ bool Tween::_calc_delta_val(const Variant &p_initial_val, const Variant &p_final
f.elements[2][0] - i.elements[2][0],
f.elements[2][1] - i.elements[2][1],
f.elements[2][2] - i.elements[2][2]);
- } break;
+ }
case Variant::TRANSFORM3D: {
- // Build a new transform which is the difference between the initial and final values
- Transform3D i = initial_val;
- Transform3D f = final_val;
- Transform3D d;
- d.set(f.basis.elements[0][0] - i.basis.elements[0][0],
+ Transform3D i = p_intial_val;
+ Transform3D f = p_final_val;
+ return Transform3D(f.basis.elements[0][0] - i.basis.elements[0][0],
f.basis.elements[0][1] - i.basis.elements[0][1],
f.basis.elements[0][2] - i.basis.elements[0][2],
f.basis.elements[1][0] - i.basis.elements[1][0],
@@ -1246,569 +546,342 @@ bool Tween::_calc_delta_val(const Variant &p_initial_val, const Variant &p_final
f.origin.x - i.origin.x,
f.origin.y - i.origin.y,
f.origin.z - i.origin.z);
-
- delta_val = d;
- } break;
-
- case Variant::COLOR: {
- // Make a new color which is the difference between each the color's RGBA attributes
- Color i = initial_val;
- Color f = final_val;
- delta_val = Color(f.r - i.r, f.g - i.g, f.b - i.b, f.a - i.a);
- } break;
+ }
default: {
- static Variant::Type supported_types[] = {
- Variant::BOOL,
- Variant::INT,
- Variant::FLOAT,
- Variant::VECTOR2,
- Variant::RECT2,
- Variant::VECTOR3,
- Variant::TRANSFORM2D,
- Variant::QUATERNION,
- Variant::AABB,
- Variant::BASIS,
- Variant::TRANSFORM3D,
- Variant::COLOR,
- };
-
- int length = *(&supported_types + 1) - supported_types;
- String error_msg = "Invalid parameter type. Supported types are: ";
- for (int i = 0; i < length; i++) {
- if (i != 0) {
- error_msg += ", ";
- }
- error_msg += Variant::get_type_name(supported_types[i]);
- }
- error_msg += ".";
- ERR_PRINT(error_msg);
- return false;
+ return Variant::evaluate(Variant::OP_SUBTRACT, p_final_val, p_intial_val);
}
};
- return true;
}
-void Tween::_build_interpolation(InterpolateType p_interpolation_type, Object *p_object, NodePath *p_property, StringName *p_method, Variant p_initial_val, Variant p_final_val, real_t p_duration, TransitionType p_trans_type, EaseType p_ease_type, real_t p_delay) {
- // TODO: Add initialization+implementation for remaining interpolation types
- // TODO: Fix this method's organization to take advantage of the type
-
- // Make a new interpolation data
- InterpolateData data;
- data.active = true;
- data.type = p_interpolation_type;
- data.finish = false;
- data.elapsed = 0;
+void Tween::_bind_methods() {
+ ClassDB::bind_method(D_METHOD("tween_property", "object", "property", "final_val", "duration"), &Tween::tween_property);
+ ClassDB::bind_method(D_METHOD("tween_interval", "time"), &Tween::tween_interval);
+ ClassDB::bind_method(D_METHOD("tween_callback", "callback"), &Tween::tween_callback);
+ ClassDB::bind_method(D_METHOD("tween_method", "method", "from", "to", "duration"), &Tween::tween_method);
+
+ ClassDB::bind_method(D_METHOD("custom_step", "delta"), &Tween::custom_step);
+ ClassDB::bind_method(D_METHOD("stop"), &Tween::stop);
+ ClassDB::bind_method(D_METHOD("pause"), &Tween::pause);
+ ClassDB::bind_method(D_METHOD("play"), &Tween::play);
+ ClassDB::bind_method(D_METHOD("kill"), &Tween::kill);
+
+ ClassDB::bind_method(D_METHOD("is_running"), &Tween::is_running);
+ ClassDB::bind_method(D_METHOD("is_valid"), &Tween::is_valid);
+ ClassDB::bind_method(D_METHOD("bind_node", "node"), &Tween::bind_node);
+ ClassDB::bind_method(D_METHOD("set_process_mode", "mode"), &Tween::set_process_mode);
+ ClassDB::bind_method(D_METHOD("set_pause_mode", "mode"), &Tween::set_pause_mode);
+
+ ClassDB::bind_method(D_METHOD("set_parallel", "parallel"), &Tween::set_parallel, DEFVAL(true));
+ ClassDB::bind_method(D_METHOD("set_loops", "loops"), &Tween::set_loops, DEFVAL(0));
+ ClassDB::bind_method(D_METHOD("set_speed_scale", "speed"), &Tween::set_speed_scale);
+ ClassDB::bind_method(D_METHOD("set_trans", "trans"), &Tween::set_trans);
+ ClassDB::bind_method(D_METHOD("set_ease", "ease"), &Tween::set_ease);
- // Validate and apply interpolation data
+ ClassDB::bind_method(D_METHOD("parallel"), &Tween::parallel);
+ ClassDB::bind_method(D_METHOD("chain"), &Tween::chain);
- // Give it the object
- ERR_FAIL_COND_MSG(p_object == nullptr, "Invalid object provided to Tween.");
- data.id = p_object->get_instance_id();
+ ClassDB::bind_method(D_METHOD("interpolate_value", "trans_type", "ease_type", "elapsed_time", "initial_value", "delta_value", "duration"), &Tween::interpolate_variant);
- // Validate the initial and final values
- ERR_FAIL_COND_MSG(p_initial_val.get_type() != p_final_val.get_type(), "Initial value type '" + Variant::get_type_name(p_initial_val.get_type()) + "' does not match final value type '" + Variant::get_type_name(p_final_val.get_type()) + "'.");
- data.initial_val = p_initial_val;
- data.final_val = p_final_val;
+ ADD_SIGNAL(MethodInfo("step_finished", PropertyInfo(Variant::INT, "idx")));
+ ADD_SIGNAL(MethodInfo("loop_finished", PropertyInfo(Variant::INT, "loop_count")));
+ ADD_SIGNAL(MethodInfo("finished"));
- // Check the Duration
- ERR_FAIL_COND_MSG(p_duration < 0, "Only non-negative duration values allowed in Tweens.");
- data.duration = p_duration;
+ BIND_ENUM_CONSTANT(TWEEN_PROCESS_PHYSICS);
+ BIND_ENUM_CONSTANT(TWEEN_PROCESS_IDLE);
- // Tween Delay
- ERR_FAIL_COND_MSG(p_delay < 0, "Only non-negative delay values allowed in Tweens.");
- data.delay = p_delay;
+ BIND_ENUM_CONSTANT(TWEEN_PAUSE_BOUND);
+ BIND_ENUM_CONSTANT(TWEEN_PAUSE_STOP);
+ BIND_ENUM_CONSTANT(TWEEN_PAUSE_PROCESS);
- // Transition type
- ERR_FAIL_COND_MSG(p_trans_type < 0 || p_trans_type >= TRANS_COUNT, "Invalid transition type provided to Tween.");
- data.trans_type = p_trans_type;
+ BIND_ENUM_CONSTANT(TRANS_LINEAR);
+ BIND_ENUM_CONSTANT(TRANS_SINE);
+ BIND_ENUM_CONSTANT(TRANS_QUINT);
+ BIND_ENUM_CONSTANT(TRANS_QUART);
+ BIND_ENUM_CONSTANT(TRANS_QUAD);
+ BIND_ENUM_CONSTANT(TRANS_EXPO);
+ BIND_ENUM_CONSTANT(TRANS_ELASTIC);
+ BIND_ENUM_CONSTANT(TRANS_CUBIC);
+ BIND_ENUM_CONSTANT(TRANS_CIRC);
+ BIND_ENUM_CONSTANT(TRANS_BOUNCE);
+ BIND_ENUM_CONSTANT(TRANS_BACK);
- // Easing type
- ERR_FAIL_COND_MSG(p_ease_type < 0 || p_ease_type >= EASE_COUNT, "Invalid easing type provided to Tween.");
- data.ease_type = p_ease_type;
+ BIND_ENUM_CONSTANT(EASE_IN);
+ BIND_ENUM_CONSTANT(EASE_OUT);
+ BIND_ENUM_CONSTANT(EASE_IN_OUT);
+ BIND_ENUM_CONSTANT(EASE_OUT_IN);
+}
- // Is the property defined?
- if (p_property) {
- // Check that the object actually contains the given property
- bool prop_valid = false;
- p_object->get_indexed(p_property->get_subnames(), &prop_valid);
- ERR_FAIL_COND_MSG(!prop_valid, "Tween target object has no property named: " + p_property->get_concatenated_subnames() + ".");
+Ref<PropertyTweener> PropertyTweener::from(Variant p_value) {
+ initial_val = p_value;
+ do_continue = false;
+ return this;
+}
- data.key = p_property->get_subnames();
- data.concatenated_key = p_property->get_concatenated_subnames();
- }
+Ref<PropertyTweener> PropertyTweener::from_current() {
+ do_continue = false;
+ return this;
+}
- // Is the method defined?
- if (p_method) {
- // Does the object even have the requested method?
- ERR_FAIL_COND_MSG(!p_object->has_method(*p_method), "Tween target object has no method named: " + *p_method + ".");
+Ref<PropertyTweener> PropertyTweener::as_relative() {
+ relative = true;
+ return this;
+}
- data.key.push_back(*p_method);
- data.concatenated_key = *p_method;
- }
+Ref<PropertyTweener> PropertyTweener::set_trans(Tween::TransitionType p_trans) {
+ trans_type = p_trans;
+ return this;
+}
- // Is there not a valid delta?
- if (!_calc_delta_val(data.initial_val, data.final_val, data.delta_val)) {
- return;
- }
+Ref<PropertyTweener> PropertyTweener::set_ease(Tween::EaseType p_ease) {
+ ease_type = p_ease;
+ return this;
+}
- // Add this interpolation to the total
- _push_interpolate_data(data);
+Ref<PropertyTweener> PropertyTweener::set_delay(float p_delay) {
+ delay = p_delay;
+ return this;
}
-void Tween::interpolate_property(Object *p_object, NodePath p_property, Variant p_initial_val, Variant p_final_val, real_t p_duration, TransitionType p_trans_type, EaseType p_ease_type, real_t p_delay) {
- // If we are busy updating, call this function again later
- if (pending_update != 0) {
- _add_pending_command("interpolate_property", p_object, p_property, p_initial_val, p_final_val, p_duration, p_trans_type, p_ease_type, p_delay);
+void PropertyTweener::start() {
+ elapsed_time = 0;
+ finished = false;
+
+ Object *target_instance = ObjectDB::get_instance(target);
+ if (!target_instance) {
+ WARN_PRINT("Target object freed before starting, aborting Tweener.");
return;
}
- // Check that the target object is valid
- ERR_FAIL_COND_MSG(p_object == nullptr, vformat("The Tween \"%s\"'s target node is `null`. Is the node reference correct?", get_name()));
-
- // Get the property from the node path
- p_property = p_property.get_as_property_path();
-
- // If no initial value given, grab the initial value from the object
- // TODO: Is this documented? This is very useful and removes a lot of clutter from tweens!
- if (p_initial_val.get_type() == Variant::NIL) {
- p_initial_val = p_object->get_indexed(p_property.get_subnames());
+ if (do_continue) {
+ initial_val = target_instance->get_indexed(property);
}
- // Convert any integers into REALs as they are better for interpolation
- if (p_initial_val.get_type() == Variant::INT) {
- p_initial_val = p_initial_val.operator real_t();
- }
- if (p_final_val.get_type() == Variant::INT) {
- p_final_val = p_final_val.operator real_t();
+ if (relative) {
+ final_val = Variant::evaluate(Variant::Operator::OP_ADD, initial_val, base_final_val);
}
- // Build the interpolation data
- _build_interpolation(INTER_PROPERTY, p_object, &p_property, nullptr, p_initial_val, p_final_val, p_duration, p_trans_type, p_ease_type, p_delay);
+ delta_val = tween->calculate_delta_value(initial_val, final_val);
}
-void Tween::interpolate_method(Object *p_object, StringName p_method, Variant p_initial_val, Variant p_final_val, real_t p_duration, TransitionType p_trans_type, EaseType p_ease_type, real_t p_delay) {
- // If we are busy updating, call this function again later
- if (pending_update != 0) {
- _add_pending_command("interpolate_method", p_object, p_method, p_initial_val, p_final_val, p_duration, p_trans_type, p_ease_type, p_delay);
- return;
+bool PropertyTweener::step(float &r_delta) {
+ if (finished) {
+ // This is needed in case there's a parallel Tweener with longer duration.
+ return false;
}
- // Check that the target object is valid
- ERR_FAIL_COND_MSG(p_object == nullptr, vformat("The Tween \"%s\"'s target node is `null`. Is the node reference correct?", get_name()));
-
- // Convert any integers into REALs as they are better for interpolation
- if (p_initial_val.get_type() == Variant::INT) {
- p_initial_val = p_initial_val.operator real_t();
- }
- if (p_final_val.get_type() == Variant::INT) {
- p_final_val = p_final_val.operator real_t();
+ Object *target_instance = ObjectDB::get_instance(target);
+ if (!target_instance) {
+ return false;
}
+ elapsed_time += r_delta;
- // Build the interpolation data
- _build_interpolation(INTER_METHOD, p_object, nullptr, &p_method, p_initial_val, p_final_val, p_duration, p_trans_type, p_ease_type, p_delay);
-}
-
-void Tween::interpolate_callback(Object *p_object, real_t p_duration, String p_callback, VARIANT_ARG_DECLARE) {
- // If we are already updating, call this function again later
- if (pending_update != 0) {
- _add_pending_command("interpolate_callback", p_object, p_duration, p_callback, p_arg1, p_arg2, p_arg3, p_arg4, p_arg5);
- return;
+ if (elapsed_time < delay) {
+ r_delta = 0;
+ return true;
}
- // Check that the target object is valid
- ERR_FAIL_COND(p_object == nullptr);
-
- // Duration cannot be negative
- ERR_FAIL_COND(p_duration < 0);
-
- // Check whether the object even has the callback
- ERR_FAIL_COND_MSG(!p_object->has_method(p_callback), "Object has no callback named: " + p_callback + ".");
-
- // Build a new InterpolationData
- InterpolateData data;
- data.active = true;
- data.type = INTER_CALLBACK;
- data.finish = false;
- data.call_deferred = false;
- data.elapsed = 0;
-
- // Give the data it's configuration
- data.id = p_object->get_instance_id();
- data.key.push_back(p_callback);
- data.concatenated_key = p_callback;
- data.duration = p_duration;
- data.delay = 0;
-
- // Add arguments to the interpolation
- int args = 0;
- if (p_arg5.get_type() != Variant::NIL) {
- args = 5;
- } else if (p_arg4.get_type() != Variant::NIL) {
- args = 4;
- } else if (p_arg3.get_type() != Variant::NIL) {
- args = 3;
- } else if (p_arg2.get_type() != Variant::NIL) {
- args = 2;
- } else if (p_arg1.get_type() != Variant::NIL) {
- args = 1;
+ float time = MIN(elapsed_time - delay, duration);
+ target_instance->set_indexed(property, tween->interpolate_variant(initial_val, delta_val, time, duration, trans_type, ease_type));
+
+ if (time < duration) {
+ r_delta = 0;
+ return true;
} else {
- args = 0;
+ finished = true;
+ r_delta = elapsed_time - delay - duration;
+ emit_signal("finished");
+ return false;
}
-
- data.args = args;
- data.arg[0] = p_arg1;
- data.arg[1] = p_arg2;
- data.arg[2] = p_arg3;
- data.arg[3] = p_arg4;
- data.arg[4] = p_arg5;
-
- // Add the new interpolation
- _push_interpolate_data(data);
}
-void Tween::interpolate_deferred_callback(Object *p_object, real_t p_duration, String p_callback, VARIANT_ARG_DECLARE) {
- // If we are already updating, call this function again later
- if (pending_update != 0) {
- _add_pending_command("interpolate_deferred_callback", p_object, p_duration, p_callback, p_arg1, p_arg2, p_arg3, p_arg4, p_arg5);
- return;
+void PropertyTweener::set_tween(Ref<Tween> p_tween) {
+ tween = p_tween;
+ if (trans_type == Tween::TRANS_MAX) {
+ trans_type = tween->get_trans();
}
-
- // Check that the target object is valid
- ERR_FAIL_COND(p_object == nullptr);
-
- // No negative durations allowed
- ERR_FAIL_COND(p_duration < 0);
-
- // Confirm the callback exists on the object
- ERR_FAIL_COND_MSG(!p_object->has_method(p_callback), "Object has no callback named: " + p_callback + ".");
-
- // Create a new InterpolateData for the callback
- InterpolateData data;
- data.active = true;
- data.type = INTER_CALLBACK;
- data.finish = false;
- data.call_deferred = true;
- data.elapsed = 0;
-
- // Give the data it's configuration
- data.id = p_object->get_instance_id();
- data.key.push_back(p_callback);
- data.concatenated_key = p_callback;
- data.duration = p_duration;
- data.delay = 0;
-
- // Collect arguments for the callback
- int args = 0;
- if (p_arg5.get_type() != Variant::NIL) {
- args = 5;
- } else if (p_arg4.get_type() != Variant::NIL) {
- args = 4;
- } else if (p_arg3.get_type() != Variant::NIL) {
- args = 3;
- } else if (p_arg2.get_type() != Variant::NIL) {
- args = 2;
- } else if (p_arg1.get_type() != Variant::NIL) {
- args = 1;
- } else {
- args = 0;
+ if (ease_type == Tween::EASE_MAX) {
+ ease_type = tween->get_ease();
}
+}
- data.args = args;
- data.arg[0] = p_arg1;
- data.arg[1] = p_arg2;
- data.arg[2] = p_arg3;
- data.arg[3] = p_arg4;
- data.arg[4] = p_arg5;
+void PropertyTweener::_bind_methods() {
+ ClassDB::bind_method(D_METHOD("from", "value"), &PropertyTweener::from);
+ ClassDB::bind_method(D_METHOD("from_current"), &PropertyTweener::from_current);
+ ClassDB::bind_method(D_METHOD("as_relative"), &PropertyTweener::as_relative);
+ ClassDB::bind_method(D_METHOD("set_trans", "trans"), &PropertyTweener::set_trans);
+ ClassDB::bind_method(D_METHOD("set_ease", "ease"), &PropertyTweener::set_ease);
+ ClassDB::bind_method(D_METHOD("set_delay", "delay"), &PropertyTweener::set_delay);
+}
- // Add the new interpolation
- _push_interpolate_data(data);
+PropertyTweener::PropertyTweener(Object *p_target, NodePath p_property, Variant p_to, float p_duration) {
+ target = p_target->get_instance_id();
+ property = p_property.get_as_property_path().get_subnames();
+ initial_val = p_target->get_indexed(property);
+ base_final_val = p_to;
+ final_val = base_final_val;
+ duration = p_duration;
}
-void Tween::follow_property(Object *p_object, NodePath p_property, Variant p_initial_val, Object *p_target, NodePath p_target_property, real_t p_duration, TransitionType p_trans_type, EaseType p_ease_type, real_t p_delay) {
- // If we are already updating, call this function again later
- if (pending_update != 0) {
- _add_pending_command("follow_property", p_object, p_property, p_initial_val, p_target, p_target_property, p_duration, p_trans_type, p_ease_type, p_delay);
- return;
- }
+PropertyTweener::PropertyTweener() {
+ ERR_FAIL_MSG("Can't create empty PropertyTweener. Use get_tree().tween_property() or tween_property() instead.");
+}
- // Get the two properties from their paths
- p_property = p_property.get_as_property_path();
- p_target_property = p_target_property.get_as_property_path();
+void IntervalTweener::start() {
+ elapsed_time = 0;
+ finished = false;
+}
- // If no initial value is given, grab it from the source object
- // TODO: Is this documented? It's really helpful for decluttering tweens
- if (p_initial_val.get_type() == Variant::NIL) {
- p_initial_val = p_object->get_indexed(p_property.get_subnames());
+bool IntervalTweener::step(float &r_delta) {
+ if (finished) {
+ return false;
}
- // Convert initial INT values to FLOAT as they are better for interpolation
- if (p_initial_val.get_type() == Variant::INT) {
- p_initial_val = p_initial_val.operator real_t();
+ elapsed_time += r_delta;
+
+ if (elapsed_time < duration) {
+ r_delta = 0;
+ return true;
+ } else {
+ finished = true;
+ r_delta = elapsed_time - duration;
+ emit_signal("finished");
+ return false;
}
+}
- // Confirm the source and target objects are valid
- ERR_FAIL_COND(p_object == nullptr);
- ERR_FAIL_COND(p_target == nullptr);
+IntervalTweener::IntervalTweener(float p_time) {
+ duration = p_time;
+}
- // No negative durations
- ERR_FAIL_COND(p_duration < 0);
+IntervalTweener::IntervalTweener() {
+ ERR_FAIL_MSG("Can't create empty IntervalTweener. Use get_tree().tween_interval() instead.");
+}
- // Ensure transition and easing types are valid
- ERR_FAIL_COND(p_trans_type < 0 || p_trans_type >= TRANS_COUNT);
- ERR_FAIL_COND(p_ease_type < 0 || p_ease_type >= EASE_COUNT);
+Ref<CallbackTweener> CallbackTweener::set_delay(float p_delay) {
+ delay = p_delay;
+ return this;
+}
- // No negative delays
- ERR_FAIL_COND(p_delay < 0);
+void CallbackTweener::start() {
+ elapsed_time = 0;
+ finished = false;
+}
- // Confirm the source and target objects have the desired properties
- bool prop_valid = false;
- p_object->get_indexed(p_property.get_subnames(), &prop_valid);
- ERR_FAIL_COND(!prop_valid);
+bool CallbackTweener::step(float &r_delta) {
+ if (finished) {
+ return false;
+ }
- bool target_prop_valid = false;
- Variant target_val = p_target->get_indexed(p_target_property.get_subnames(), &target_prop_valid);
- ERR_FAIL_COND(!target_prop_valid);
+ elapsed_time += r_delta;
+ if (elapsed_time >= delay) {
+ Variant result;
+ Callable::CallError ce;
+ callback.call(nullptr, 0, result, ce);
+ if (ce.error != Callable::CallError::CALL_OK) {
+ ERR_FAIL_V_MSG(false, "Error calling method from CallbackTweener: " + Variant::get_call_error_text(this, callback.get_method(), nullptr, 0, ce));
+ }
- // Convert target INT to FLOAT since it is better for interpolation
- if (target_val.get_type() == Variant::INT) {
- target_val = target_val.operator real_t();
+ finished = true;
+ r_delta = elapsed_time - delay;
+ emit_signal("finished");
+ return false;
}
- // Verify that the target value and initial value are the same type
- ERR_FAIL_COND(target_val.get_type() != p_initial_val.get_type());
-
- // Create a new InterpolateData
- InterpolateData data;
- data.active = true;
- data.type = FOLLOW_PROPERTY;
- data.finish = false;
- data.elapsed = 0;
-
- // Give the InterpolateData it's configuration
- data.id = p_object->get_instance_id();
- data.key = p_property.get_subnames();
- data.concatenated_key = p_property.get_concatenated_subnames();
- data.initial_val = p_initial_val;
- data.target_id = p_target->get_instance_id();
- data.target_key = p_target_property.get_subnames();
- data.duration = p_duration;
- data.trans_type = p_trans_type;
- data.ease_type = p_ease_type;
- data.delay = p_delay;
-
- // Add the interpolation
- _push_interpolate_data(data);
-}
-
-void Tween::follow_method(Object *p_object, StringName p_method, Variant p_initial_val, Object *p_target, StringName p_target_method, real_t p_duration, TransitionType p_trans_type, EaseType p_ease_type, real_t p_delay) {
- // If we are currently updating, call this function again later
- if (pending_update != 0) {
- _add_pending_command("follow_method", p_object, p_method, p_initial_val, p_target, p_target_method, p_duration, p_trans_type, p_ease_type, p_delay);
- return;
- }
- // Convert initial INT values to FLOAT as they are better for interpolation
- if (p_initial_val.get_type() == Variant::INT) {
- p_initial_val = p_initial_val.operator real_t();
- }
+ r_delta = 0;
+ return true;
+}
- // Verify the source and target objects are valid
- ERR_FAIL_COND(p_object == nullptr);
- ERR_FAIL_COND(p_target == nullptr);
+void CallbackTweener::_bind_methods() {
+ ClassDB::bind_method(D_METHOD("set_delay", "delay"), &CallbackTweener::set_delay);
+}
- // No negative durations
- ERR_FAIL_COND(p_duration < 0);
+CallbackTweener::CallbackTweener(Callable p_callback) {
+ callback = p_callback;
+}
- // Ensure that the transition and ease types are valid
- ERR_FAIL_COND(p_trans_type < 0 || p_trans_type >= TRANS_COUNT);
- ERR_FAIL_COND(p_ease_type < 0 || p_ease_type >= EASE_COUNT);
+CallbackTweener::CallbackTweener() {
+ ERR_FAIL_MSG("Can't create empty CallbackTweener. Use get_tree().tween_callback() instead.");
+}
- // No negative delays
- ERR_FAIL_COND(p_delay < 0);
+Ref<MethodTweener> MethodTweener::set_delay(float p_delay) {
+ delay = p_delay;
+ return this;
+}
- // Confirm both objects have the target methods
- ERR_FAIL_COND_MSG(!p_object->has_method(p_method), "Object has no method named: " + p_method + ".");
- ERR_FAIL_COND_MSG(!p_target->has_method(p_target_method), "Target has no method named: " + p_target_method + ".");
+Ref<MethodTweener> MethodTweener::set_trans(Tween::TransitionType p_trans) {
+ trans_type = p_trans;
+ return this;
+}
- // Call the method to get the target value
- Callable::CallError error;
- Variant target_val = p_target->call(p_target_method, nullptr, 0, error);
- ERR_FAIL_COND(error.error != Callable::CallError::CALL_OK);
+Ref<MethodTweener> MethodTweener::set_ease(Tween::EaseType p_ease) {
+ ease_type = p_ease;
+ return this;
+}
- // Convert target INT values to FLOAT as they are better for interpolation
- if (target_val.get_type() == Variant::INT) {
- target_val = target_val.operator real_t();
- }
- ERR_FAIL_COND(target_val.get_type() != p_initial_val.get_type());
-
- // Make the new InterpolateData for the method follow
- InterpolateData data;
- data.active = true;
- data.type = FOLLOW_METHOD;
- data.finish = false;
- data.elapsed = 0;
-
- // Give the data it's configuration
- data.id = p_object->get_instance_id();
- data.key.push_back(p_method);
- data.concatenated_key = p_method;
- data.initial_val = p_initial_val;
- data.target_id = p_target->get_instance_id();
- data.target_key.push_back(p_target_method);
- data.duration = p_duration;
- data.trans_type = p_trans_type;
- data.ease_type = p_ease_type;
- data.delay = p_delay;
-
- // Add the new interpolation
- _push_interpolate_data(data);
-}
-
-void Tween::targeting_property(Object *p_object, NodePath p_property, Object *p_initial, NodePath p_initial_property, Variant p_final_val, real_t p_duration, TransitionType p_trans_type, EaseType p_ease_type, real_t p_delay) {
- // If we are currently updating, call this function again later
- if (pending_update != 0) {
- _add_pending_command("targeting_property", p_object, p_property, p_initial, p_initial_property, p_final_val, p_duration, p_trans_type, p_ease_type, p_delay);
- return;
- }
- // Grab the target property and the target property
- p_property = p_property.get_as_property_path();
- p_initial_property = p_initial_property.get_as_property_path();
+void MethodTweener::start() {
+ elapsed_time = 0;
+ finished = false;
+}
- // Convert the initial INT values to FLOAT as they are better for Interpolation
- if (p_final_val.get_type() == Variant::INT) {
- p_final_val = p_final_val.operator real_t();
+bool MethodTweener::step(float &r_delta) {
+ if (finished) {
+ return false;
}
- // Verify both objects are valid
- ERR_FAIL_COND(p_object == nullptr);
- ERR_FAIL_COND(p_initial == nullptr);
-
- // No negative durations
- ERR_FAIL_COND(p_duration < 0);
-
- // Ensure transition and easing types are valid
- ERR_FAIL_COND(p_trans_type < 0 || p_trans_type >= TRANS_COUNT);
- ERR_FAIL_COND(p_ease_type < 0 || p_ease_type >= EASE_COUNT);
-
- // No negative delays
- ERR_FAIL_COND(p_delay < 0);
-
- // Ensure the initial and target properties exist on their objects
- bool prop_valid = false;
- p_object->get_indexed(p_property.get_subnames(), &prop_valid);
- ERR_FAIL_COND(!prop_valid);
+ elapsed_time += r_delta;
- bool initial_prop_valid = false;
- Variant initial_val = p_initial->get_indexed(p_initial_property.get_subnames(), &initial_prop_valid);
- ERR_FAIL_COND(!initial_prop_valid);
-
- // Convert the initial INT value to FLOAT as it is better for interpolation
- if (initial_val.get_type() == Variant::INT) {
- initial_val = initial_val.operator real_t();
- }
- ERR_FAIL_COND(initial_val.get_type() != p_final_val.get_type());
-
- // Build the InterpolateData object
- InterpolateData data;
- data.active = true;
- data.type = TARGETING_PROPERTY;
- data.finish = false;
- data.elapsed = 0;
-
- // Give the data it's configuration
- data.id = p_object->get_instance_id();
- data.key = p_property.get_subnames();
- data.concatenated_key = p_property.get_concatenated_subnames();
- data.target_id = p_initial->get_instance_id();
- data.target_key = p_initial_property.get_subnames();
- data.initial_val = initial_val;
- data.final_val = p_final_val;
- data.duration = p_duration;
- data.trans_type = p_trans_type;
- data.ease_type = p_ease_type;
- data.delay = p_delay;
-
- // Ensure there is a valid delta
- if (!_calc_delta_val(data.initial_val, data.final_val, data.delta_val)) {
- return;
+ if (elapsed_time < delay) {
+ r_delta = 0;
+ return true;
}
- // Add the interpolation
- _push_interpolate_data(data);
-}
+ float time = MIN(elapsed_time - delay, duration);
+ Variant current_val = tween->interpolate_variant(initial_val, delta_val, time, duration, trans_type, ease_type);
+ const Variant **argptr = (const Variant **)alloca(sizeof(Variant *));
+ argptr[0] = &current_val;
-void Tween::targeting_method(Object *p_object, StringName p_method, Object *p_initial, StringName p_initial_method, Variant p_final_val, real_t p_duration, TransitionType p_trans_type, EaseType p_ease_type, real_t p_delay) {
- // If we are currently updating, call this function again later
- if (pending_update != 0) {
- _add_pending_command("targeting_method", p_object, p_method, p_initial, p_initial_method, p_final_val, p_duration, p_trans_type, p_ease_type, p_delay);
- return;
+ Variant result;
+ Callable::CallError ce;
+ callback.call(argptr, 1, result, ce);
+ if (ce.error != Callable::CallError::CALL_OK) {
+ ERR_FAIL_V_MSG(false, "Error calling method from MethodTweener: " + Variant::get_call_error_text(this, callback.get_method(), argptr, 1, ce));
}
- // Convert final INT values to FLOAT as they are better for interpolation
- if (p_final_val.get_type() == Variant::INT) {
- p_final_val = p_final_val.operator real_t();
+ if (time < duration) {
+ r_delta = 0;
+ return true;
+ } else {
+ finished = true;
+ r_delta = elapsed_time - delay - duration;
+ emit_signal("finished");
+ return false;
}
+}
- // Make sure the given objects are valid
- ERR_FAIL_COND(p_object == nullptr);
- ERR_FAIL_COND(p_initial == nullptr);
-
- // No negative durations
- ERR_FAIL_COND(p_duration < 0);
-
- // Ensure transition and easing types are valid
- ERR_FAIL_COND(p_trans_type < 0 || p_trans_type >= TRANS_COUNT);
- ERR_FAIL_COND(p_ease_type < 0 || p_ease_type >= EASE_COUNT);
-
- // No negative delays
- ERR_FAIL_COND(p_delay < 0);
-
- // Make sure both objects have the given method
- ERR_FAIL_COND_MSG(!p_object->has_method(p_method), "Object has no method named: " + p_method + ".");
- ERR_FAIL_COND_MSG(!p_initial->has_method(p_initial_method), "Initial Object has no method named: " + p_initial_method + ".");
-
- // Call the method to get the initial value
- Callable::CallError error;
- Variant initial_val = p_initial->call(p_initial_method, nullptr, 0, error);
- ERR_FAIL_COND(error.error != Callable::CallError::CALL_OK);
-
- // Convert initial INT values to FLOAT as they aer better for interpolation
- if (initial_val.get_type() == Variant::INT) {
- initial_val = initial_val.operator real_t();
+void MethodTweener::set_tween(Ref<Tween> p_tween) {
+ tween = p_tween;
+ if (trans_type == Tween::TRANS_MAX) {
+ trans_type = tween->get_trans();
}
- ERR_FAIL_COND(initial_val.get_type() != p_final_val.get_type());
-
- // Build the new InterpolateData object
- InterpolateData data;
- data.active = true;
- data.type = TARGETING_METHOD;
- data.finish = false;
- data.elapsed = 0;
-
- // Configure the data
- data.id = p_object->get_instance_id();
- data.key.push_back(p_method);
- data.concatenated_key = p_method;
- data.target_id = p_initial->get_instance_id();
- data.target_key.push_back(p_initial_method);
- data.initial_val = initial_val;
- data.final_val = p_final_val;
- data.duration = p_duration;
- data.trans_type = p_trans_type;
- data.ease_type = p_ease_type;
- data.delay = p_delay;
-
- // Ensure there is a valid delta
- if (!_calc_delta_val(data.initial_val, data.final_val, data.delta_val)) {
- return;
+ if (ease_type == Tween::EASE_MAX) {
+ ease_type = tween->get_ease();
}
+}
- // Add the interpolation
- _push_interpolate_data(data);
+void MethodTweener::_bind_methods() {
+ ClassDB::bind_method(D_METHOD("set_delay", "delay"), &MethodTweener::set_delay);
+ ClassDB::bind_method(D_METHOD("set_trans", "trans"), &MethodTweener::set_trans);
+ ClassDB::bind_method(D_METHOD("set_ease", "ease"), &MethodTweener::set_ease);
}
-Tween::Tween() {
+MethodTweener::MethodTweener(Callable p_callback, float p_from, float p_to, float p_duration) {
+ callback = p_callback;
+ initial_val = p_from;
+ delta_val = tween->calculate_delta_value(p_from, p_to);
+ duration = p_duration;
}
-Tween::~Tween() {
+MethodTweener::MethodTweener() {
+ ERR_FAIL_MSG("Can't create empty MethodTweener. Use get_tree().tween_method() instead.");
}
diff --git a/scene/animation/tween.h b/scene/animation/tween.h
index 142c0c65e0..947cdb7c2d 100644
--- a/scene/animation/tween.h
+++ b/scene/animation/tween.h
@@ -31,10 +31,33 @@
#ifndef TWEEN_H
#define TWEEN_H
-#include "scene/main/node.h"
+#include "core/object/ref_counted.h"
-class Tween : public Node {
- GDCLASS(Tween, Node);
+class Tween;
+class Node;
+
+class Tweener : public RefCounted {
+ GDCLASS(Tweener, RefCounted);
+
+public:
+ virtual void set_tween(Ref<Tween> p_tween);
+ virtual void start() = 0;
+ virtual bool step(float &r_delta) = 0;
+
+protected:
+ static void _bind_methods();
+ Ref<Tween> tween;
+ float elapsed_time = 0;
+ bool finished = false;
+};
+
+class PropertyTweener;
+class IntervalTweener;
+class CallbackTweener;
+class MethodTweener;
+
+class Tween : public RefCounted {
+ GDCLASS(Tween, RefCounted);
public:
enum TweenProcessMode {
@@ -42,6 +65,12 @@ public:
TWEEN_PROCESS_IDLE,
};
+ enum TweenPauseMode {
+ TWEEN_PAUSE_BOUND,
+ TWEEN_PAUSE_STOP,
+ TWEEN_PAUSE_PROCESS,
+ };
+
enum TransitionType {
TRANS_LINEAR,
TRANS_SINE,
@@ -54,8 +83,7 @@ public:
TRANS_CIRC,
TRANS_BOUNCE,
TRANS_BACK,
-
- TRANS_COUNT,
+ TRANS_MAX
};
enum EaseType {
@@ -63,130 +91,187 @@ public:
EASE_OUT,
EASE_IN_OUT,
EASE_OUT_IN,
-
- EASE_COUNT,
+ EASE_MAX
};
private:
- enum InterpolateType {
- INTER_PROPERTY,
- INTER_METHOD,
- FOLLOW_PROPERTY,
- FOLLOW_METHOD,
- TARGETING_PROPERTY,
- TARGETING_METHOD,
- INTER_CALLBACK,
- };
+ TweenProcessMode process_mode = TweenProcessMode::TWEEN_PROCESS_IDLE;
+ TweenPauseMode pause_mode = TweenPauseMode::TWEEN_PAUSE_STOP;
+ TransitionType default_transition = TransitionType::TRANS_LINEAR;
+ EaseType default_ease = EaseType::EASE_IN_OUT;
+ ObjectID bound_node;
- struct InterpolateData {
- bool active = false;
- InterpolateType type = INTER_CALLBACK;
- bool finish = false;
- bool call_deferred = false;
- real_t elapsed = 0.0;
- ObjectID id;
- Vector<StringName> key;
- StringName concatenated_key;
- Variant initial_val;
- Variant delta_val;
- Variant final_val;
- ObjectID target_id;
- Vector<StringName> target_key;
- real_t duration = 0.0;
- TransitionType trans_type = TransitionType::TRANS_BACK;
- EaseType ease_type = EaseType::EASE_COUNT;
- real_t delay = 0.0;
- int args = 0;
- Variant arg[5];
- int uid = 0;
- };
+ Vector<List<Ref<Tweener>>> tweeners;
+ int current_step = -1;
+ int loops = 1;
+ int loops_done = 0;
+ float speed_scale = 1;
- String autoplay;
- TweenProcessMode tween_process_mode = TWEEN_PROCESS_IDLE;
- bool repeat = false;
- float speed_scale = 1.0;
- mutable int pending_update = 0;
- int uid = 0;
- bool was_stopped = false;
+ bool is_bound = false;
+ bool started = false;
+ bool running = true;
+ bool dead = false;
+ bool invalid = true;
+ bool default_parallel = false;
+ bool parallel_enabled = false;
- List<InterpolateData> interpolates;
+ typedef real_t (*interpolater)(real_t t, real_t b, real_t c, real_t d);
+ static interpolater interpolaters[TRANS_MAX][EASE_MAX];
- struct PendingCommand {
- StringName key;
- int args = 0;
- Variant arg[10];
- };
- List<PendingCommand> pending_commands;
+ void start_tweeners();
- void _add_pending_command(StringName p_key, const Variant &p_arg1 = Variant(), const Variant &p_arg2 = Variant(), const Variant &p_arg3 = Variant(), const Variant &p_arg4 = Variant(), const Variant &p_arg5 = Variant(), const Variant &p_arg6 = Variant(), const Variant &p_arg7 = Variant(), const Variant &p_arg8 = Variant(), const Variant &p_arg9 = Variant(), const Variant &p_arg10 = Variant());
- void _process_pending_commands();
+protected:
+ static void _bind_methods();
- typedef real_t (*interpolater)(real_t t, real_t b, real_t c, real_t d);
- static interpolater interpolaters[TRANS_COUNT][EASE_COUNT];
+public:
+ Ref<PropertyTweener> tween_property(Object *p_target, NodePath p_property, Variant p_to, float p_duration);
+ Ref<IntervalTweener> tween_interval(float p_time);
+ Ref<CallbackTweener> tween_callback(Callable p_callback);
+ Ref<MethodTweener> tween_method(Callable p_callback, float p_from, float p_to, float p_duration);
+ Ref<Tween> append(Ref<Tweener> p_tweener);
- real_t _run_equation(TransitionType p_trans_type, EaseType p_ease_type, real_t t, real_t b, real_t c, real_t d);
- Variant &_get_delta_val(InterpolateData &p_data);
- Variant _get_initial_val(const InterpolateData &p_data) const;
- Variant _get_final_val(const InterpolateData &p_data) const;
- Variant _run_equation(InterpolateData &p_data);
- bool _calc_delta_val(const Variant &p_initial_val, const Variant &p_final_val, Variant &p_delta_val);
- bool _apply_tween_value(InterpolateData &p_data, Variant &value);
+ bool custom_step(float p_delta);
+ void stop();
+ void pause();
+ void play();
+ void kill();
- void _tween_process(float p_delta);
- void _remove_by_uid(int uid);
- void _push_interpolate_data(InterpolateData &p_data);
- void _build_interpolation(InterpolateType p_interpolation_type, Object *p_object, NodePath *p_property, StringName *p_method, Variant p_initial_val, Variant p_final_val, real_t p_duration, TransitionType p_trans_type, EaseType p_ease_type, real_t p_delay);
+ bool is_running();
+ void set_valid(bool p_valid);
+ bool is_valid();
-protected:
- bool _set(const StringName &p_name, const Variant &p_value);
- bool _get(const StringName &p_name, Variant &r_ret) const;
- void _get_property_list(List<PropertyInfo> *p_list) const;
- void _notification(int p_what);
+ Ref<Tween> bind_node(Node *p_node);
+ Ref<Tween> set_process_mode(TweenProcessMode p_mode);
+ TweenProcessMode get_process_mode();
+ Ref<Tween> set_pause_mode(TweenPauseMode p_mode);
+ TweenPauseMode get_pause_mode();
- static void _bind_methods();
+ Ref<Tween> set_parallel(bool p_parallel);
+ Ref<Tween> set_loops(int p_loops);
+ Ref<Tween> set_speed_scale(float p_speed);
+ Ref<Tween> set_trans(TransitionType p_trans);
+ TransitionType get_trans();
+ Ref<Tween> set_ease(EaseType p_ease);
+ EaseType get_ease();
-public:
- bool is_active() const;
- void set_active(bool p_active);
-
- bool is_repeat() const;
- void set_repeat(bool p_repeat);
-
- void set_tween_process_mode(TweenProcessMode p_mode);
- TweenProcessMode get_tween_process_mode() const;
-
- void set_speed_scale(float p_speed);
- float get_speed_scale() const;
-
- void start();
- void reset(Object *p_object, StringName p_key);
- void reset_all();
- void stop(Object *p_object, StringName p_key);
- void stop_all();
- void resume(Object *p_object, StringName p_key);
- void resume_all();
- void remove(Object *p_object, StringName p_key);
- void remove_all();
-
- void seek(real_t p_time);
- real_t tell() const;
- real_t get_runtime() const;
-
- void interpolate_property(Object *p_object, NodePath p_property, Variant p_initial_val, Variant p_final_val, real_t p_duration, TransitionType p_trans_type = TRANS_LINEAR, EaseType p_ease_type = EASE_IN_OUT, real_t p_delay = 0);
- void interpolate_method(Object *p_object, StringName p_method, Variant p_initial_val, Variant p_final_val, real_t p_duration, TransitionType p_trans_type = TRANS_LINEAR, EaseType p_ease_type = EASE_IN_OUT, real_t p_delay = 0);
- void interpolate_callback(Object *p_object, real_t p_duration, String p_callback, VARIANT_ARG_DECLARE);
- void interpolate_deferred_callback(Object *p_object, real_t p_duration, String p_callback, VARIANT_ARG_DECLARE);
- void follow_property(Object *p_object, NodePath p_property, Variant p_initial_val, Object *p_target, NodePath p_target_property, real_t p_duration, TransitionType p_trans_type = TRANS_LINEAR, EaseType p_ease_type = EASE_IN_OUT, real_t p_delay = 0);
- void follow_method(Object *p_object, StringName p_method, Variant p_initial_val, Object *p_target, StringName p_target_method, real_t p_duration, TransitionType p_trans_type = TRANS_LINEAR, EaseType p_ease_type = EASE_IN_OUT, real_t p_delay = 0);
- void targeting_property(Object *p_object, NodePath p_property, Object *p_initial, NodePath p_initial_property, Variant p_final_val, real_t p_duration, TransitionType p_trans_type = TRANS_LINEAR, EaseType p_ease_type = EASE_IN_OUT, real_t p_delay = 0);
- void targeting_method(Object *p_object, StringName p_method, Object *p_initial, StringName p_initial_method, Variant p_final_val, real_t p_duration, TransitionType p_trans_type = TRANS_LINEAR, EaseType p_ease_type = EASE_IN_OUT, real_t p_delay = 0);
-
- Tween();
- ~Tween();
+ Ref<Tween> parallel();
+ Ref<Tween> chain();
+
+ real_t run_equation(TransitionType p_trans_type, EaseType p_ease_type, real_t t, real_t b, real_t c, real_t d);
+ Variant interpolate_variant(Variant p_initial_val, Variant p_delta_val, float p_time, float p_duration, Tween::TransitionType p_trans, Tween::EaseType p_ease);
+ Variant calculate_delta_value(Variant p_intial_val, Variant p_final_val);
+
+ bool step(float p_delta);
+ bool should_pause();
+
+ Tween() {}
};
+VARIANT_ENUM_CAST(Tween::TweenPauseMode);
VARIANT_ENUM_CAST(Tween::TweenProcessMode);
VARIANT_ENUM_CAST(Tween::TransitionType);
VARIANT_ENUM_CAST(Tween::EaseType);
+class PropertyTweener : public Tweener {
+ GDCLASS(PropertyTweener, Tweener);
+
+public:
+ Ref<PropertyTweener> from(Variant p_value);
+ Ref<PropertyTweener> from_current();
+ Ref<PropertyTweener> as_relative();
+ Ref<PropertyTweener> set_trans(Tween::TransitionType p_trans);
+ Ref<PropertyTweener> set_ease(Tween::EaseType p_ease);
+ Ref<PropertyTweener> set_delay(float p_delay);
+
+ void set_tween(Ref<Tween> p_tween) override;
+ void start() override;
+ bool step(float &r_delta) override;
+
+ PropertyTweener(Object *p_target, NodePath p_property, Variant p_to, float p_duration);
+ PropertyTweener();
+
+protected:
+ static void _bind_methods();
+
+private:
+ ObjectID target;
+ Vector<StringName> property;
+ Variant initial_val;
+ Variant base_final_val;
+ Variant final_val;
+ Variant delta_val;
+
+ float duration = 0;
+ Tween::TransitionType trans_type = Tween::TRANS_MAX; // This is set inside set_tween();
+ Tween::EaseType ease_type = Tween::EASE_MAX;
+
+ float delay = 0;
+ bool do_continue = true;
+ bool relative = false;
+};
+
+class IntervalTweener : public Tweener {
+ GDCLASS(IntervalTweener, Tweener);
+
+public:
+ void start() override;
+ bool step(float &r_delta) override;
+
+ IntervalTweener(float p_time);
+ IntervalTweener();
+
+private:
+ float duration = 0;
+};
+
+class CallbackTweener : public Tweener {
+ GDCLASS(CallbackTweener, Tweener);
+
+public:
+ Ref<CallbackTweener> set_delay(float p_delay);
+
+ void start() override;
+ bool step(float &r_delta) override;
+
+ CallbackTweener(Callable p_callback);
+ CallbackTweener();
+
+protected:
+ static void _bind_methods();
+
+private:
+ Callable callback;
+ float delay = 0;
+};
+
+class MethodTweener : public Tweener {
+ GDCLASS(MethodTweener, Tweener);
+
+public:
+ Ref<MethodTweener> set_trans(Tween::TransitionType p_trans);
+ Ref<MethodTweener> set_ease(Tween::EaseType p_ease);
+ Ref<MethodTweener> set_delay(float p_delay);
+
+ void set_tween(Ref<Tween> p_tween) override;
+ void start() override;
+ bool step(float &r_delta) override;
+
+ MethodTweener(Callable p_callback, float p_from, float p_to, float p_duration);
+ MethodTweener();
+
+protected:
+ static void _bind_methods();
+
+private:
+ float duration = 0;
+ float delay = 0;
+ Tween::TransitionType trans_type = Tween::TRANS_MAX;
+ Tween::EaseType ease_type = Tween::EASE_MAX;
+
+ Ref<Tween> tween;
+ Variant initial_val;
+ Variant delta_val;
+ Callable callback;
+};
+
#endif