summaryrefslogtreecommitdiff
path: root/modules/mono/glue
diff options
context:
space:
mode:
authorAaron Franke <arnfranke@yahoo.com>2022-09-24 12:15:02 -0500
committerAaron Franke <arnfranke@yahoo.com>2022-09-25 22:28:52 -0500
commitfe7135344b60508ddb5e1afb61cb2b432832d05a (patch)
treeb479f104804e6d9442a7721c7c2106c30ad92fea /modules/mono/glue
parentef266183598401d89482c5d2035d7e4cd3f64cb9 (diff)
C#: Update Basis Euler angle code to match core
Diffstat (limited to 'modules/mono/glue')
-rw-r--r--modules/mono/glue/GodotSharp/GodotSharp/Core/Basis.cs348
1 files changed, 291 insertions, 57 deletions
diff --git a/modules/mono/glue/GodotSharp/GodotSharp/Core/Basis.cs b/modules/mono/glue/GodotSharp/GodotSharp/Core/Basis.cs
index fbd59d649f..9c3bc51c44 100644
--- a/modules/mono/glue/GodotSharp/GodotSharp/Core/Basis.cs
+++ b/modules/mono/glue/GodotSharp/GodotSharp/Core/Basis.cs
@@ -4,6 +4,21 @@ using System.Runtime.InteropServices;
namespace Godot
{
/// <summary>
+ /// Specifies which order Euler angle rotations should be in.
+ /// When composing, the order is the same as the letters. When decomposing,
+ /// the order is reversed (ex: YXZ decomposes Z first, then X, and Y last).
+ /// </summary>
+ public enum EulerOrder
+ {
+ XYZ,
+ XZY,
+ YXZ,
+ YZX,
+ ZXY,
+ ZYX
+ };
+
+ /// <summary>
/// 3×3 matrix used for 3D rotation and scale.
/// Almost always used as an orthogonal basis for a Transform.
///
@@ -244,50 +259,258 @@ namespace Godot
}
/// <summary>
- /// Returns the basis's rotation in the form of Euler angles
- /// (in the YXZ convention: when *decomposing*, first Z, then X, and Y last).
- /// The returned vector contains the rotation angles in
- /// the format (X angle, Y angle, Z angle).
+ /// Returns the basis's rotation in the form of Euler angles.
+ /// The Euler order depends on the [param order] parameter,
+ /// by default it uses the YXZ convention: when decomposing,
+ /// first Z, then X, and Y last. The returned vector contains
+ /// the rotation angles in the format (X angle, Y angle, Z angle).
///
/// Consider using the <see cref="GetRotationQuaternion"/> method instead, which
/// returns a <see cref="Quaternion"/> quaternion instead of Euler angles.
/// </summary>
+ /// <param name="order">The Euler order to use. By default, use YXZ order (most common).</param>
/// <returns>A <see cref="Vector3"/> representing the basis rotation in Euler angles.</returns>
- public Vector3 GetEuler()
+ public Vector3 GetEuler(EulerOrder order = EulerOrder.YXZ)
{
- Basis m = Orthonormalized();
-
- Vector3 euler;
- euler.z = 0.0f;
-
- real_t mzy = m.Row1[2];
-
- if (mzy < 1.0f)
+ switch (order)
{
- if (mzy > -1.0f)
+ case EulerOrder.XYZ:
{
- euler.x = Mathf.Asin(-mzy);
- euler.y = Mathf.Atan2(m.Row0[2], m.Row2[2]);
- euler.z = Mathf.Atan2(m.Row1[0], m.Row1[1]);
+ // Euler angles in XYZ convention.
+ // See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix
+ //
+ // rot = cy*cz -cy*sz sy
+ // cz*sx*sy+cx*sz cx*cz-sx*sy*sz -cy*sx
+ // -cx*cz*sy+sx*sz cz*sx+cx*sy*sz cx*cy
+ Vector3 euler;
+ real_t sy = Row0[2];
+ if (sy < (1.0f - Mathf.Epsilon))
+ {
+ if (sy > -(1.0f - Mathf.Epsilon))
+ {
+ // is this a pure Y rotation?
+ if (Row1[0] == 0 && Row0[1] == 0 && Row1[2] == 0 && Row2[1] == 0 && Row1[1] == 1)
+ {
+ // return the simplest form (human friendlier in editor and scripts)
+ euler.x = 0;
+ euler.y = Mathf.Atan2(Row0[2], Row0[0]);
+ euler.z = 0;
+ }
+ else
+ {
+ euler.x = Mathf.Atan2(-Row1[2], Row2[2]);
+ euler.y = Mathf.Asin(sy);
+ euler.z = Mathf.Atan2(-Row0[1], Row0[0]);
+ }
+ }
+ else
+ {
+ euler.x = Mathf.Atan2(Row2[1], Row1[1]);
+ euler.y = -Mathf.Tau / 4.0f;
+ euler.z = 0.0f;
+ }
+ }
+ else
+ {
+ euler.x = Mathf.Atan2(Row2[1], Row1[1]);
+ euler.y = Mathf.Tau / 4.0f;
+ euler.z = 0.0f;
+ }
+ return euler;
}
- else
+ case EulerOrder.XZY:
{
- euler.x = Mathf.Pi * 0.5f;
- euler.y = -Mathf.Atan2(-m.Row0[1], m.Row0[0]);
+ // Euler angles in XZY convention.
+ // See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix
+ //
+ // rot = cz*cy -sz cz*sy
+ // sx*sy+cx*cy*sz cx*cz cx*sz*sy-cy*sx
+ // cy*sx*sz cz*sx cx*cy+sx*sz*sy
+ Vector3 euler;
+ real_t sz = Row0[1];
+ if (sz < (1.0f - Mathf.Epsilon))
+ {
+ if (sz > -(1.0f - Mathf.Epsilon))
+ {
+ euler.x = Mathf.Atan2(Row2[1], Row1[1]);
+ euler.y = Mathf.Atan2(Row0[2], Row0[0]);
+ euler.z = Mathf.Asin(-sz);
+ }
+ else
+ {
+ // It's -1
+ euler.x = -Mathf.Atan2(Row1[2], Row2[2]);
+ euler.y = 0.0f;
+ euler.z = Mathf.Tau / 4.0f;
+ }
+ }
+ else
+ {
+ // It's 1
+ euler.x = -Mathf.Atan2(Row1[2], Row2[2]);
+ euler.y = 0.0f;
+ euler.z = -Mathf.Tau / 4.0f;
+ }
+ return euler;
}
- }
- else
- {
- euler.x = -Mathf.Pi * 0.5f;
- euler.y = -Mathf.Atan2(-m.Row0[1], m.Row0[0]);
- }
+ case EulerOrder.YXZ:
+ {
+ // Euler angles in YXZ convention.
+ // See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix
+ //
+ // rot = cy*cz+sy*sx*sz cz*sy*sx-cy*sz cx*sy
+ // cx*sz cx*cz -sx
+ // cy*sx*sz-cz*sy cy*cz*sx+sy*sz cy*cx
+ Vector3 euler;
+ real_t m12 = Row1[2];
+ if (m12 < (1 - Mathf.Epsilon))
+ {
+ if (m12 > -(1 - Mathf.Epsilon))
+ {
+ // is this a pure X rotation?
+ if (Row1[0] == 0 && Row0[1] == 0 && Row0[2] == 0 && Row2[0] == 0 && Row0[0] == 1)
+ {
+ // return the simplest form (human friendlier in editor and scripts)
+ euler.x = Mathf.Atan2(-m12, Row1[1]);
+ euler.y = 0;
+ euler.z = 0;
+ }
+ else
+ {
+ euler.x = Mathf.Asin(-m12);
+ euler.y = Mathf.Atan2(Row0[2], Row2[2]);
+ euler.z = Mathf.Atan2(Row1[0], Row1[1]);
+ }
+ }
+ else
+ { // m12 == -1
+ euler.x = Mathf.Tau / 4.0f;
+ euler.y = Mathf.Atan2(Row0[1], Row0[0]);
+ euler.z = 0;
+ }
+ }
+ else
+ { // m12 == 1
+ euler.x = -Mathf.Tau / 4.0f;
+ euler.y = -Mathf.Atan2(Row0[1], Row0[0]);
+ euler.z = 0;
+ }
- return euler;
+ return euler;
+ }
+ case EulerOrder.YZX:
+ {
+ // Euler angles in YZX convention.
+ // See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix
+ //
+ // rot = cy*cz sy*sx-cy*cx*sz cx*sy+cy*sz*sx
+ // sz cz*cx -cz*sx
+ // -cz*sy cy*sx+cx*sy*sz cy*cx-sy*sz*sx
+ Vector3 euler;
+ real_t sz = Row1[0];
+ if (sz < (1.0f - Mathf.Epsilon))
+ {
+ if (sz > -(1.0f - Mathf.Epsilon))
+ {
+ euler.x = Mathf.Atan2(-Row1[2], Row1[1]);
+ euler.y = Mathf.Atan2(-Row2[0], Row0[0]);
+ euler.z = Mathf.Asin(sz);
+ }
+ else
+ {
+ // It's -1
+ euler.x = Mathf.Atan2(Row2[1], Row2[2]);
+ euler.y = 0.0f;
+ euler.z = -Mathf.Tau / 4.0f;
+ }
+ }
+ else
+ {
+ // It's 1
+ euler.x = Mathf.Atan2(Row2[1], Row2[2]);
+ euler.y = 0.0f;
+ euler.z = Mathf.Tau / 4.0f;
+ }
+ return euler;
+ }
+ case EulerOrder.ZXY:
+ {
+ // Euler angles in ZXY convention.
+ // See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix
+ //
+ // rot = cz*cy-sz*sx*sy -cx*sz cz*sy+cy*sz*sx
+ // cy*sz+cz*sx*sy cz*cx sz*sy-cz*cy*sx
+ // -cx*sy sx cx*cy
+ Vector3 euler;
+ real_t sx = Row2[1];
+ if (sx < (1.0f - Mathf.Epsilon))
+ {
+ if (sx > -(1.0f - Mathf.Epsilon))
+ {
+ euler.x = Mathf.Asin(sx);
+ euler.y = Mathf.Atan2(-Row2[0], Row2[2]);
+ euler.z = Mathf.Atan2(-Row0[1], Row1[1]);
+ }
+ else
+ {
+ // It's -1
+ euler.x = -Mathf.Tau / 4.0f;
+ euler.y = Mathf.Atan2(Row0[2], Row0[0]);
+ euler.z = 0;
+ }
+ }
+ else
+ {
+ // It's 1
+ euler.x = Mathf.Tau / 4.0f;
+ euler.y = Mathf.Atan2(Row0[2], Row0[0]);
+ euler.z = 0;
+ }
+ return euler;
+ }
+ case EulerOrder.ZYX:
+ {
+ // Euler angles in ZYX convention.
+ // See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix
+ //
+ // rot = cz*cy cz*sy*sx-cx*sz sz*sx+cz*cx*cy
+ // cy*sz cz*cx+sz*sy*sx cx*sz*sy-cz*sx
+ // -sy cy*sx cy*cx
+ Vector3 euler;
+ real_t sy = Row2[0];
+ if (sy < (1.0f - Mathf.Epsilon))
+ {
+ if (sy > -(1.0f - Mathf.Epsilon))
+ {
+ euler.x = Mathf.Atan2(Row2[1], Row2[2]);
+ euler.y = Mathf.Asin(-sy);
+ euler.z = Mathf.Atan2(Row1[0], Row0[0]);
+ }
+ else
+ {
+ // It's -1
+ euler.x = 0;
+ euler.y = Mathf.Tau / 4.0f;
+ euler.z = -Mathf.Atan2(Row0[1], Row1[1]);
+ }
+ }
+ else
+ {
+ // It's 1
+ euler.x = 0;
+ euler.y = -Mathf.Tau / 4.0f;
+ euler.z = -Mathf.Atan2(Row0[1], Row1[1]);
+ }
+ return euler;
+ }
+ default:
+ throw new ArgumentOutOfRangeException(nameof(order));
+ }
}
/// <summary>
/// Returns the basis's rotation in the form of a quaternion.
- /// See <see cref="GetEuler()"/> if you need Euler angles, but keep in
+ /// See <see cref="GetEuler"/> if you need Euler angles, but keep in
/// mind that quaternions should generally be preferred to Euler angles.
/// </summary>
/// <returns>A <see cref="Quaternion"/> representing the basis's rotation.</returns>
@@ -712,35 +935,6 @@ namespace Godot
}
/// <summary>
- /// Constructs a pure rotation basis matrix from the given Euler angles
- /// (in the YXZ convention: when *composing*, first Y, then X, and Z last),
- /// given in the vector format as (X angle, Y angle, Z angle).
- ///
- /// Consider using the <see cref="Basis(Quaternion)"/> constructor instead, which
- /// uses a <see cref="Quaternion"/> quaternion instead of Euler angles.
- /// </summary>
- /// <param name="eulerYXZ">The Euler angles to create the basis from.</param>
- public Basis(Vector3 eulerYXZ)
- {
- real_t c;
- real_t s;
-
- c = Mathf.Cos(eulerYXZ.x);
- s = Mathf.Sin(eulerYXZ.x);
- var xmat = new Basis(1, 0, 0, 0, c, -s, 0, s, c);
-
- c = Mathf.Cos(eulerYXZ.y);
- s = Mathf.Sin(eulerYXZ.y);
- var ymat = new Basis(c, 0, s, 0, 1, 0, -s, 0, c);
-
- c = Mathf.Cos(eulerYXZ.z);
- s = Mathf.Sin(eulerYXZ.z);
- var zmat = new Basis(c, -s, 0, s, c, 0, 0, 0, 1);
-
- this = ymat * xmat * zmat;
- }
-
- /// <summary>
/// Constructs a pure rotation basis matrix, rotated around the given <paramref name="axis"/>
/// by <paramref name="angle"/> (in radians). The axis must be a normalized vector.
/// </summary>
@@ -800,6 +994,46 @@ namespace Godot
}
/// <summary>
+ /// Constructs a Basis matrix from Euler angles in the specified rotation order. By default, use YXZ order (most common).
+ /// </summary>
+ /// <param name="euler">The Euler angles to use.</param>
+ /// <param name="order">The order to compose the Euler angles.</param>
+ public static Basis FromEuler(Vector3 euler, EulerOrder order = EulerOrder.YXZ)
+ {
+ real_t c, s;
+
+ c = Mathf.Cos(euler.x);
+ s = Mathf.Sin(euler.x);
+ Basis xmat = new Basis(new Vector3(1, 0, 0), new Vector3(0, c, s), new Vector3(0, -s, c));
+
+ c = Mathf.Cos(euler.y);
+ s = Mathf.Sin(euler.y);
+ Basis ymat = new Basis(new Vector3(c, 0, -s), new Vector3(0, 1, 0), new Vector3(s, 0, c));
+
+ c = Mathf.Cos(euler.z);
+ s = Mathf.Sin(euler.z);
+ Basis zmat = new Basis(new Vector3(c, s, 0), new Vector3(-s, c, 0), new Vector3(0, 0, 1));
+
+ switch (order)
+ {
+ case EulerOrder.XYZ:
+ return xmat * ymat * zmat;
+ case EulerOrder.XZY:
+ return xmat * zmat * ymat;
+ case EulerOrder.YXZ:
+ return ymat * xmat * zmat;
+ case EulerOrder.YZX:
+ return ymat * zmat * xmat;
+ case EulerOrder.ZXY:
+ return zmat * xmat * ymat;
+ case EulerOrder.ZYX:
+ return zmat * ymat * xmat;
+ default:
+ throw new ArgumentOutOfRangeException(nameof(order));
+ }
+ }
+
+ /// <summary>
/// Constructs a pure scale basis matrix with no rotation or shearing.
/// The scale values are set as the main diagonal of the matrix,
/// and all of the other parts of the matrix are zero.