summaryrefslogtreecommitdiff
path: root/modules/mono/glue/GodotSharp
diff options
context:
space:
mode:
authorRaul Santos <raulsntos@gmail.com>2022-08-01 04:06:35 +0200
committerRaul Santos <raulsntos@gmail.com>2022-08-22 21:11:24 +0200
commit0b8b733d77ba9acca2f0b864d020732e2a265edc (patch)
tree4b43888786a0d56f85ed5f97b11b7ec7bfd6d62d /modules/mono/glue/GodotSharp
parent8a1e5980116355024cd7a7ce0c15db7d4ecb200a (diff)
C#: Replace `Xform` and `XformInv` with `*` operator
- In cases where both `Xform`/`XformInv` and the `*` operator were implemented the `Xform`/`XformInv` methods were removed in favor of the `*` operator. - In cases where the `Xform`/`XformInv` existed but not the `*` operator, the `Xform`/`XformInv` methods were replaced with the `*` operator. - In cases where no method existed, a new `*` operator has been implemented to support the same operations that are supported in GDScript. - Fixes the `Transform.Xform` and `Transform.XformInv` with `Rect2` implementation to use a zero `Rect2` size to start expanding from (which is how it's implemented in C++).
Diffstat (limited to 'modules/mono/glue/GodotSharp')
-rw-r--r--modules/mono/glue/GodotSharp/GodotSharp/Core/Basis.cs70
-rw-r--r--modules/mono/glue/GodotSharp/GodotSharp/Core/Projection.cs65
-rw-r--r--modules/mono/glue/GodotSharp/GodotSharp/Core/Quaternion.cs80
-rw-r--r--modules/mono/glue/GodotSharp/GodotSharp/Core/Transform2D.cs35
-rw-r--r--modules/mono/glue/GodotSharp/GodotSharp/Core/Transform3D.cs219
-rw-r--r--modules/mono/glue/GodotSharp/GodotSharp/Core/Vector3.cs2
6 files changed, 291 insertions, 180 deletions
diff --git a/modules/mono/glue/GodotSharp/GodotSharp/Core/Basis.cs b/modules/mono/glue/GodotSharp/GodotSharp/Core/Basis.cs
index 646681a9b1..4cb9bf5758 100644
--- a/modules/mono/glue/GodotSharp/GodotSharp/Core/Basis.cs
+++ b/modules/mono/glue/GodotSharp/GodotSharp/Core/Basis.cs
@@ -618,41 +618,6 @@ namespace Godot
return tr;
}
- /// <summary>
- /// Returns a vector transformed (multiplied) by the basis matrix.
- /// </summary>
- /// <seealso cref="XformInv(Vector3)"/>
- /// <param name="v">A vector to transform.</param>
- /// <returns>The transformed vector.</returns>
- public Vector3 Xform(Vector3 v)
- {
- return new Vector3
- (
- Row0.Dot(v),
- Row1.Dot(v),
- Row2.Dot(v)
- );
- }
-
- /// <summary>
- /// Returns a vector transformed (multiplied) by the transposed basis matrix.
- ///
- /// Note: This results in a multiplication by the inverse of the
- /// basis matrix only if it represents a rotation-reflection.
- /// </summary>
- /// <seealso cref="Xform(Vector3)"/>
- /// <param name="v">A vector to inversely transform.</param>
- /// <returns>The inversely transformed vector.</returns>
- public Vector3 XformInv(Vector3 v)
- {
- return new Vector3
- (
- Row0[0] * v.x + Row1[0] * v.y + Row2[0] * v.z,
- Row0[1] * v.x + Row1[1] * v.y + Row2[1] * v.z,
- Row0[2] * v.x + Row1[2] * v.y + Row2[2] * v.z
- );
- }
-
private static readonly Basis[] _orthoBases = {
new Basis(1f, 0f, 0f, 0f, 1f, 0f, 0f, 0f, 1f),
new Basis(0f, -1f, 0f, 1f, 0f, 0f, 0f, 0f, 1f),
@@ -857,6 +822,41 @@ namespace Godot
}
/// <summary>
+ /// Returns a Vector3 transformed (multiplied) by the basis matrix.
+ /// </summary>
+ /// <param name="basis">The basis matrix transformation to apply.</param>
+ /// <param name="vector">A Vector3 to transform.</param>
+ /// <returns>The transformed Vector3.</returns>
+ public static Vector3 operator *(Basis basis, Vector3 vector)
+ {
+ return new Vector3
+ (
+ basis.Row0.Dot(vector),
+ basis.Row1.Dot(vector),
+ basis.Row2.Dot(vector)
+ );
+ }
+
+ /// <summary>
+ /// Returns a Vector3 transformed (multiplied) by the transposed basis matrix.
+ ///
+ /// Note: This results in a multiplication by the inverse of the
+ /// basis matrix only if it represents a rotation-reflection.
+ /// </summary>
+ /// <param name="vector">A Vector3 to inversely transform.</param>
+ /// <param name="basis">The basis matrix transformation to apply.</param>
+ /// <returns>The inversely transformed vector.</returns>
+ public static Vector3 operator *(Vector3 vector, Basis basis)
+ {
+ return new Vector3
+ (
+ basis.Row0[0] * vector.x + basis.Row1[0] * vector.y + basis.Row2[0] * vector.z,
+ basis.Row0[1] * vector.x + basis.Row1[1] * vector.y + basis.Row2[1] * vector.z,
+ basis.Row0[2] * vector.x + basis.Row1[2] * vector.y + basis.Row2[2] * vector.z
+ );
+ }
+
+ /// <summary>
/// Returns <see langword="true"/> if the basis matrices are exactly
/// equal. Note: Due to floating-point precision errors, consider using
/// <see cref="IsEqualApprox"/> instead, which is more reliable.
diff --git a/modules/mono/glue/GodotSharp/GodotSharp/Core/Projection.cs b/modules/mono/glue/GodotSharp/GodotSharp/Core/Projection.cs
index df16fe5718..3dcf433c4a 100644
--- a/modules/mono/glue/GodotSharp/GodotSharp/Core/Projection.cs
+++ b/modules/mono/glue/GodotSharp/GodotSharp/Core/Projection.cs
@@ -355,7 +355,7 @@ namespace Godot
public int GetPixelsPerMeter(int forPixelWidth)
{
- Vector3 result = Xform(new Vector3(1, 0, -1));
+ Vector3 result = this * new Vector3(1, 0, -1);
return (int)((result.x * (real_t)0.5 + (real_t)0.5) * forPixelWidth);
}
@@ -588,22 +588,54 @@ namespace Godot
}
/// <summary>
- /// Returns a vector transformed (multiplied) by this projection.
+ /// Returns a Vector4 transformed (multiplied) by the projection.
/// </summary>
/// <param name="proj">The projection to apply.</param>
- /// <param name="v">A vector to transform.</param>
- /// <returns>The transformed vector.</returns>
- public static Vector4 operator *(Projection proj, Vector4 v)
+ /// <param name="vector">A Vector4 to transform.</param>
+ /// <returns>The transformed Vector4.</returns>
+ public static Vector4 operator *(Projection proj, Vector4 vector)
{
return new Vector4(
- proj.x.x * v.x + proj.y.x * v.y + proj.z.x * v.z + proj.w.x * v.w,
- proj.x.y * v.x + proj.y.y * v.y + proj.z.y * v.z + proj.w.y * v.w,
- proj.x.z * v.x + proj.y.z * v.y + proj.z.z * v.z + proj.w.z * v.w,
- proj.x.w * v.x + proj.y.w * v.y + proj.z.w * v.z + proj.w.w * v.w
+ proj.x.x * vector.x + proj.y.x * vector.y + proj.z.x * vector.z + proj.w.x * vector.w,
+ proj.x.y * vector.x + proj.y.y * vector.y + proj.z.y * vector.z + proj.w.y * vector.w,
+ proj.x.z * vector.x + proj.y.z * vector.y + proj.z.z * vector.z + proj.w.z * vector.w,
+ proj.x.w * vector.x + proj.y.w * vector.y + proj.z.w * vector.z + proj.w.w * vector.w
);
}
/// <summary>
+ /// Returns a Vector4 transformed (multiplied) by the inverse projection.
+ /// </summary>
+ /// <param name="proj">The projection to apply.</param>
+ /// <param name="vector">A Vector4 to transform.</param>
+ /// <returns>The inversely transformed Vector4.</returns>
+ public static Vector4 operator *(Vector4 vector, Projection proj)
+ {
+ return new Vector4(
+ proj.x.x * vector.x + proj.x.y * vector.y + proj.x.z * vector.z + proj.x.w * vector.w,
+ proj.y.x * vector.x + proj.y.y * vector.y + proj.y.z * vector.z + proj.y.w * vector.w,
+ proj.z.x * vector.x + proj.z.y * vector.y + proj.z.z * vector.z + proj.z.w * vector.w,
+ proj.w.x * vector.x + proj.w.y * vector.y + proj.w.z * vector.z + proj.w.w * vector.w
+ );
+ }
+
+ /// <summary>
+ /// Returns a Vector3 transformed (multiplied) by the projection.
+ /// </summary>
+ /// <param name="proj">The projection to apply.</param>
+ /// <param name="vector">A Vector3 to transform.</param>
+ /// <returns>The transformed Vector3.</returns>
+ public static Vector3 operator *(Projection proj, Vector3 vector)
+ {
+ Vector3 ret = new Vector3(
+ proj.x.x * vector.x + proj.y.x * vector.y + proj.z.x * vector.z + proj.w.x,
+ proj.x.y * vector.x + proj.y.y * vector.y + proj.z.y * vector.z + proj.w.y,
+ proj.x.z * vector.x + proj.y.z * vector.y + proj.z.z * vector.z + proj.w.z
+ );
+ return ret / (proj.x.w * vector.x + proj.y.w * vector.y + proj.z.w * vector.z + proj.w.w);
+ }
+
+ /// <summary>
/// Returns <see langword="true"/> if the projections are exactly equal.
/// </summary>
/// <param name="left">The left projection.</param>
@@ -714,21 +746,6 @@ namespace Godot
}
}
- /// <summary>
- /// Returns a vector transformed (multiplied) by this projection.
- /// </summary>
- /// <param name="v">A vector to transform.</param>
- /// <returns>The transformed vector.</returns>
- private Vector3 Xform(Vector3 v)
- {
- Vector3 ret = new Vector3(
- x.x * v.x + y.x * v.y + z.x * v.z + w.x,
- x.y * v.x + y.y * v.y + z.y * v.z + w.y,
- x.z * v.x + y.z * v.y + z.z * v.z + w.z
- );
- return ret / (x.w * v.x + y.w * v.y + z.w * v.z + w.w);
- }
-
// Constants
private static readonly Projection _zero = new Projection(
new Vector4(0, 0, 0, 0),
diff --git a/modules/mono/glue/GodotSharp/GodotSharp/Core/Quaternion.cs b/modules/mono/glue/GodotSharp/GodotSharp/Core/Quaternion.cs
index 90e4e3b41e..4260ff22e7 100644
--- a/modules/mono/glue/GodotSharp/GodotSharp/Core/Quaternion.cs
+++ b/modules/mono/glue/GodotSharp/GodotSharp/Core/Quaternion.cs
@@ -313,24 +313,6 @@ namespace Godot
);
}
- /// <summary>
- /// Returns a vector transformed (multiplied) by this quaternion.
- /// </summary>
- /// <param name="v">A vector to transform.</param>
- /// <returns>The transformed vector.</returns>
- public Vector3 Xform(Vector3 v)
- {
-#if DEBUG
- if (!IsNormalized())
- {
- throw new InvalidOperationException("Quaternion is not normalized");
- }
-#endif
- var u = new Vector3(x, y, z);
- Vector3 uv = u.Cross(v);
- return v + (((uv * w) + u.Cross(uv)) * 2);
- }
-
// Constants
private static readonly Quaternion _identity = new Quaternion(0, 0, 0, 1);
@@ -461,6 +443,36 @@ namespace Godot
}
/// <summary>
+ /// Returns a Vector3 rotated (multiplied) by the quaternion.
+ /// </summary>
+ /// <param name="quaternion">The quaternion to rotate by.</param>
+ /// <param name="vector">A Vector3 to transform.</param>
+ /// <returns>The rotated Vector3.</returns>
+ public static Vector3 operator *(Quaternion quaternion, Vector3 vector)
+ {
+#if DEBUG
+ if (!quaternion.IsNormalized())
+ {
+ throw new InvalidOperationException("Quaternion is not normalized");
+ }
+#endif
+ var u = new Vector3(quaternion.x, quaternion.y, quaternion.z);
+ Vector3 uv = u.Cross(vector);
+ return vector + (((uv * quaternion.w) + u.Cross(uv)) * 2);
+ }
+
+ /// <summary>
+ /// Returns a Vector3 rotated (multiplied) by the inverse quaternion.
+ /// </summary>
+ /// <param name="vector">A Vector3 to inversely rotate.</param>
+ /// <param name="quaternion">The quaternion to rotate by.</param>
+ /// <returns>The inversely rotated Vector3.</returns>
+ public static Vector3 operator *(Vector3 vector, Quaternion quaternion)
+ {
+ return quaternion.Inverse() * vector;
+ }
+
+ /// <summary>
/// Adds each component of the left <see cref="Quaternion"/>
/// to the right <see cref="Quaternion"/>. This operation is not
/// meaningful on its own, but it can be used as a part of a
@@ -503,38 +515,6 @@ namespace Godot
}
/// <summary>
- /// Rotates (multiplies) the <see cref="Vector3"/>
- /// by the given <see cref="Quaternion"/>.
- /// </summary>
- /// <param name="quat">The quaternion to rotate by.</param>
- /// <param name="vec">The vector to rotate.</param>
- /// <returns>The rotated vector.</returns>
- public static Vector3 operator *(Quaternion quat, Vector3 vec)
- {
-#if DEBUG
- if (!quat.IsNormalized())
- {
- throw new InvalidOperationException("Quaternion is not normalized.");
- }
-#endif
- var u = new Vector3(quat.x, quat.y, quat.z);
- Vector3 uv = u.Cross(vec);
- return vec + (((uv * quat.w) + u.Cross(uv)) * 2);
- }
-
- /// <summary>
- /// Inversely rotates (multiplies) the <see cref="Vector3"/>
- /// by the given <see cref="Quaternion"/>.
- /// </summary>
- /// <param name="vec">The vector to rotate.</param>
- /// <param name="quat">The quaternion to rotate by.</param>
- /// <returns>The inversely rotated vector.</returns>
- public static Vector3 operator *(Vector3 vec, Quaternion quat)
- {
- return quat.Inverse() * vec;
- }
-
- /// <summary>
/// Multiplies each component of the <see cref="Quaternion"/>
/// by the given <see cref="real_t"/>. This operation is not
/// meaningful on its own, but it can be used as a part of a
diff --git a/modules/mono/glue/GodotSharp/GodotSharp/Core/Transform2D.cs b/modules/mono/glue/GodotSharp/GodotSharp/Core/Transform2D.cs
index ab2c0cd785..70cf8bbe22 100644
--- a/modules/mono/glue/GodotSharp/GodotSharp/Core/Transform2D.cs
+++ b/modules/mono/glue/GodotSharp/GodotSharp/Core/Transform2D.cs
@@ -384,31 +384,6 @@ namespace Godot
return copy;
}
- /// <summary>
- /// Returns a vector transformed (multiplied) by this transformation matrix.
- /// </summary>
- /// <seealso cref="XformInv(Vector2)"/>
- /// <param name="v">A vector to transform.</param>
- /// <returns>The transformed vector.</returns>
- [Obsolete("Xform is deprecated. Use the multiplication operator (Transform2D * Vector2) instead.")]
- public Vector2 Xform(Vector2 v)
- {
- return new Vector2(Tdotx(v), Tdoty(v)) + origin;
- }
-
- /// <summary>
- /// Returns a vector transformed (multiplied) by the inverse transformation matrix.
- /// </summary>
- /// <seealso cref="Xform(Vector2)"/>
- /// <param name="v">A vector to inversely transform.</param>
- /// <returns>The inversely transformed vector.</returns>
- [Obsolete("XformInv is deprecated. Use the multiplication operator (Vector2 * Transform2D) instead.")]
- public Vector2 XformInv(Vector2 v)
- {
- Vector2 vInv = v - origin;
- return new Vector2(x.Dot(vInv), y.Dot(vInv));
- }
-
// Constants
private static readonly Transform2D _identity = new Transform2D(1, 0, 0, 1, 0, 0);
private static readonly Transform2D _flipX = new Transform2D(-1, 0, 0, 1, 0, 0);
@@ -502,7 +477,7 @@ namespace Godot
}
/// <summary>
- /// Returns a Vector2 transformed (multiplied) by transformation matrix.
+ /// Returns a Vector2 transformed (multiplied) by the transformation matrix.
/// </summary>
/// <param name="transform">The transformation to apply.</param>
/// <param name="vector">A Vector2 to transform.</param>
@@ -525,7 +500,7 @@ namespace Godot
}
/// <summary>
- /// Returns a Rect2 transformed (multiplied) by transformation matrix.
+ /// Returns a Rect2 transformed (multiplied) by the transformation matrix.
/// </summary>
/// <param name="transform">The transformation to apply.</param>
/// <param name="rect">A Rect2 to transform.</param>
@@ -536,7 +511,7 @@ namespace Godot
Vector2 toX = transform.x * rect.Size.x;
Vector2 toY = transform.y * rect.Size.y;
- return new Rect2(pos, rect.Size).Expand(pos + toX).Expand(pos + toY).Expand(pos + toX + toY);
+ return new Rect2(pos, new Vector2()).Expand(pos + toX).Expand(pos + toY).Expand(pos + toX + toY);
}
/// <summary>
@@ -552,11 +527,11 @@ namespace Godot
Vector2 to2 = new Vector2(rect.Position.x + rect.Size.x, rect.Position.y + rect.Size.y) * transform;
Vector2 to3 = new Vector2(rect.Position.x + rect.Size.x, rect.Position.y) * transform;
- return new Rect2(pos, rect.Size).Expand(to1).Expand(to2).Expand(to3);
+ return new Rect2(pos, new Vector2()).Expand(to1).Expand(to2).Expand(to3);
}
/// <summary>
- /// Returns a copy of the given Vector2[] transformed (multiplied) by transformation matrix.
+ /// Returns a copy of the given Vector2[] transformed (multiplied) by the transformation matrix.
/// </summary>
/// <param name="transform">The transformation to apply.</param>
/// <param name="array">A Vector2[] to transform.</param>
diff --git a/modules/mono/glue/GodotSharp/GodotSharp/Core/Transform3D.cs b/modules/mono/glue/GodotSharp/GodotSharp/Core/Transform3D.cs
index 810f55e150..5481225e3f 100644
--- a/modules/mono/glue/GodotSharp/GodotSharp/Core/Transform3D.cs
+++ b/modules/mono/glue/GodotSharp/GodotSharp/Core/Transform3D.cs
@@ -108,7 +108,7 @@ namespace Godot
public Transform3D AffineInverse()
{
Basis basisInv = basis.Inverse();
- return new Transform3D(basisInv, basisInv.Xform(-origin));
+ return new Transform3D(basisInv, basisInv * -origin);
}
/// <summary>
@@ -147,7 +147,7 @@ namespace Godot
public Transform3D Inverse()
{
Basis basisTr = basis.Transposed();
- return new Transform3D(basisTr, basisTr.Xform(-origin));
+ return new Transform3D(basisTr, basisTr * -origin);
}
/// <summary>
@@ -286,43 +286,6 @@ namespace Godot
));
}
- /// <summary>
- /// Returns a vector transformed (multiplied) by this transformation matrix.
- /// </summary>
- /// <seealso cref="XformInv(Vector3)"/>
- /// <param name="v">A vector to transform.</param>
- /// <returns>The transformed vector.</returns>
- public Vector3 Xform(Vector3 v)
- {
- return new Vector3
- (
- basis.Row0.Dot(v) + origin.x,
- basis.Row1.Dot(v) + origin.y,
- basis.Row2.Dot(v) + origin.z
- );
- }
-
- /// <summary>
- /// Returns a vector transformed (multiplied) by the transposed transformation matrix.
- ///
- /// Note: This results in a multiplication by the inverse of the
- /// transformation matrix only if it represents a rotation-reflection.
- /// </summary>
- /// <seealso cref="Xform(Vector3)"/>
- /// <param name="v">A vector to inversely transform.</param>
- /// <returns>The inversely transformed vector.</returns>
- public Vector3 XformInv(Vector3 v)
- {
- Vector3 vInv = v - origin;
-
- return new Vector3
- (
- (basis.Row0[0] * vInv.x) + (basis.Row1[0] * vInv.y) + (basis.Row2[0] * vInv.z),
- (basis.Row0[1] * vInv.x) + (basis.Row1[1] * vInv.y) + (basis.Row2[1] * vInv.z),
- (basis.Row0[2] * vInv.x) + (basis.Row1[2] * vInv.y) + (basis.Row2[2] * vInv.z)
- );
- }
-
// Constants
private static readonly Transform3D _identity = new Transform3D(Basis.Identity, Vector3.Zero);
private static readonly Transform3D _flipX = new Transform3D(new Basis(-1, 0, 0, 0, 1, 0, 0, 0, 1), Vector3.Zero);
@@ -399,12 +362,188 @@ namespace Godot
/// <returns>The composed transform.</returns>
public static Transform3D operator *(Transform3D left, Transform3D right)
{
- left.origin = left.Xform(right.origin);
+ left.origin = left * right.origin;
left.basis *= right.basis;
return left;
}
/// <summary>
+ /// Returns a Vector3 transformed (multiplied) by the transformation matrix.
+ /// </summary>
+ /// <param name="transform">The transformation to apply.</param>
+ /// <param name="vector">A Vector3 to transform.</param>
+ /// <returns>The transformed Vector3.</returns>
+ public static Vector3 operator *(Transform3D transform, Vector3 vector)
+ {
+ return new Vector3
+ (
+ transform.basis.Row0.Dot(vector) + transform.origin.x,
+ transform.basis.Row1.Dot(vector) + transform.origin.y,
+ transform.basis.Row2.Dot(vector) + transform.origin.z
+ );
+ }
+
+ /// <summary>
+ /// Returns a Vector3 transformed (multiplied) by the transposed transformation matrix.
+ ///
+ /// Note: This results in a multiplication by the inverse of the
+ /// transformation matrix only if it represents a rotation-reflection.
+ /// </summary>
+ /// <param name="vector">A Vector3 to inversely transform.</param>
+ /// <param name="transform">The transformation to apply.</param>
+ /// <returns>The inversely transformed Vector3.</returns>
+ public static Vector3 operator *(Vector3 vector, Transform3D transform)
+ {
+ Vector3 vInv = vector - transform.origin;
+
+ return new Vector3
+ (
+ (transform.basis.Row0[0] * vInv.x) + (transform.basis.Row1[0] * vInv.y) + (transform.basis.Row2[0] * vInv.z),
+ (transform.basis.Row0[1] * vInv.x) + (transform.basis.Row1[1] * vInv.y) + (transform.basis.Row2[1] * vInv.z),
+ (transform.basis.Row0[2] * vInv.x) + (transform.basis.Row1[2] * vInv.y) + (transform.basis.Row2[2] * vInv.z)
+ );
+ }
+
+ /// <summary>
+ /// Returns an AABB transformed (multiplied) by the transformation matrix.
+ /// </summary>
+ /// <param name="transform">The transformation to apply.</param>
+ /// <param name="aabb">An AABB to transform.</param>
+ /// <returns>The transformed AABB.</returns>
+ public static AABB operator *(Transform3D transform, AABB aabb)
+ {
+ Vector3 min = aabb.Position;
+ Vector3 max = aabb.Position + aabb.Size;
+
+ Vector3 tmin = transform.origin;
+ Vector3 tmax = transform.origin;
+ for (int i = 0; i < 3; i++)
+ {
+ for (int j = 0; j < 3; j++)
+ {
+ real_t e = transform.basis[i][j] * min[j];
+ real_t f = transform.basis[i][j] * max[j];
+ if (e < f)
+ {
+ tmin[i] += e;
+ tmax[i] += f;
+ }
+ else
+ {
+ tmin[i] += f;
+ tmax[i] += e;
+ }
+ }
+ }
+
+ return new AABB(tmin, tmax - tmin);
+ }
+
+ /// <summary>
+ /// Returns an AABB transformed (multiplied) by the inverse transformation matrix.
+ /// </summary>
+ /// <param name="aabb">An AABB to inversely transform.</param>
+ /// <param name="transform">The transformation to apply.</param>
+ /// <returns>The inversely transformed AABB.</returns>
+ public static AABB operator *(AABB aabb, Transform3D transform)
+ {
+ Vector3 pos = new Vector3(aabb.Position.x + aabb.Size.x, aabb.Position.y + aabb.Size.y, aabb.Position.z + aabb.Size.z) * transform;
+ Vector3 to1 = new Vector3(aabb.Position.x + aabb.Size.x, aabb.Position.y + aabb.Size.y, aabb.Position.z) * transform;
+ Vector3 to2 = new Vector3(aabb.Position.x + aabb.Size.x, aabb.Position.y, aabb.Position.z + aabb.Size.z) * transform;
+ Vector3 to3 = new Vector3(aabb.Position.x + aabb.Size.x, aabb.Position.y, aabb.Position.z) * transform;
+ Vector3 to4 = new Vector3(aabb.Position.x, aabb.Position.y + aabb.Size.y, aabb.Position.z + aabb.Size.z) * transform;
+ Vector3 to5 = new Vector3(aabb.Position.x, aabb.Position.y + aabb.Size.y, aabb.Position.z) * transform;
+ Vector3 to6 = new Vector3(aabb.Position.x, aabb.Position.y, aabb.Position.z + aabb.Size.z) * transform;
+ Vector3 to7 = new Vector3(aabb.Position.x, aabb.Position.y, aabb.Position.z) * transform;
+
+ return new AABB(pos, new Vector3()).Expand(to1).Expand(to2).Expand(to3).Expand(to4).Expand(to5).Expand(to6).Expand(to7);
+ }
+
+ /// <summary>
+ /// Returns a Plane transformed (multiplied) by the transformation matrix.
+ /// </summary>
+ /// <param name="transform">The transformation to apply.</param>
+ /// <param name="plane">A Plane to transform.</param>
+ /// <returns>The transformed Plane.</returns>
+ public static Plane operator *(Transform3D transform, Plane plane)
+ {
+ Basis bInvTrans = transform.basis.Inverse().Transposed();
+
+ // Transform a single point on the plane.
+ Vector3 point = transform * (plane.Normal * plane.D);
+
+ // Use inverse transpose for correct normals with non-uniform scaling.
+ Vector3 normal = (bInvTrans * plane.Normal).Normalized();
+
+ real_t d = normal.Dot(point);
+ return new Plane(normal, d);
+ }
+
+ /// <summary>
+ /// Returns a Plane transformed (multiplied) by the inverse transformation matrix.
+ /// </summary>
+ /// <param name="plane">A Plane to inversely transform.</param>
+ /// <param name="transform">The transformation to apply.</param>
+ /// <returns>The inversely transformed Plane.</returns>
+ public static Plane operator *(Plane plane, Transform3D transform)
+ {
+ Transform3D tInv = transform.AffineInverse();
+ Basis bTrans = transform.basis.Transposed();
+
+ // Transform a single point on the plane.
+ Vector3 point = tInv * (plane.Normal * plane.D);
+
+ // Note that instead of precalculating the transpose, an alternative
+ // would be to use the transpose for the basis transform.
+ // However that would be less SIMD friendly (requiring a swizzle).
+ // So the cost is one extra precalced value in the calling code.
+ // This is probably worth it, as this could be used in bottleneck areas. And
+ // where it is not a bottleneck, the non-fast method is fine.
+
+ // Use transpose for correct normals with non-uniform scaling.
+ Vector3 normal = (bTrans * plane.Normal).Normalized();
+
+ real_t d = normal.Dot(point);
+ return new Plane(normal, d);
+ }
+
+ /// <summary>
+ /// Returns a copy of the given Vector3[] transformed (multiplied) by the transformation matrix.
+ /// </summary>
+ /// <param name="transform">The transformation to apply.</param>
+ /// <param name="array">A Vector3[] to transform.</param>
+ /// <returns>The transformed copy of the Vector3[].</returns>
+ public static Vector3[] operator *(Transform3D transform, Vector3[] array)
+ {
+ Vector3[] newArray = new Vector3[array.Length];
+
+ for (int i = 0; i < array.Length; i++)
+ {
+ newArray[i] = transform * array[i];
+ }
+
+ return newArray;
+ }
+
+ /// <summary>
+ /// Returns a copy of the given Vector3[] transformed (multiplied) by the inverse transformation matrix.
+ /// </summary>
+ /// <param name="array">A Vector3[] to inversely transform.</param>
+ /// <param name="transform">The transformation to apply.</param>
+ /// <returns>The inversely transformed copy of the Vector3[].</returns>
+ public static Vector3[] operator *(Vector3[] array, Transform3D transform)
+ {
+ Vector3[] newArray = new Vector3[array.Length];
+
+ for (int i = 0; i < array.Length; i++)
+ {
+ newArray[i] = array[i] * transform;
+ }
+
+ return newArray;
+ }
+
+ /// <summary>
/// Returns <see langword="true"/> if the transforms are exactly equal.
/// Note: Due to floating-point precision errors, consider using
/// <see cref="IsEqualApprox"/> instead, which is more reliable.
diff --git a/modules/mono/glue/GodotSharp/GodotSharp/Core/Vector3.cs b/modules/mono/glue/GodotSharp/GodotSharp/Core/Vector3.cs
index e796d2f20f..2643f352d7 100644
--- a/modules/mono/glue/GodotSharp/GodotSharp/Core/Vector3.cs
+++ b/modules/mono/glue/GodotSharp/GodotSharp/Core/Vector3.cs
@@ -518,7 +518,7 @@ namespace Godot
throw new ArgumentException("Argument is not normalized", nameof(axis));
}
#endif
- return new Basis(axis, angle).Xform(this);
+ return new Basis(axis, angle) * this;
}
/// <summary>