diff options
author | Juan Linietsky <reduzio@gmail.com> | 2017-08-02 15:34:55 -0300 |
---|---|---|
committer | Juan Linietsky <reduzio@gmail.com> | 2017-08-02 15:43:49 -0300 |
commit | 5c361485db9cb2c6d9f9fb8906ee283ee220aa00 (patch) | |
tree | e9e90e9108605b134b5de46a1c6cf03069e91958 /editor/import | |
parent | b7d98d4d058388d7eb861abe4aed93c5a9480cf0 (diff) |
-Added GLTF scene support (still missing animations and .glb extension)
-Fixed bugs regarding tangent generation in SurfaceTool
Diffstat (limited to 'editor/import')
-rw-r--r-- | editor/import/editor_scene_importer_gltf.cpp | 1581 | ||||
-rw-r--r-- | editor/import/editor_scene_importer_gltf.h | 258 |
2 files changed, 1839 insertions, 0 deletions
diff --git a/editor/import/editor_scene_importer_gltf.cpp b/editor/import/editor_scene_importer_gltf.cpp new file mode 100644 index 0000000000..35b31b56b4 --- /dev/null +++ b/editor/import/editor_scene_importer_gltf.cpp @@ -0,0 +1,1581 @@ +#include "editor_scene_importer_gltf.h" +#include "io/json.h" +#include "os/file_access.h" +#include "os/os.h" +#include "scene/3d/camera.h" +#include "scene/3d/mesh_instance.h" +#include "scene/resources/surface_tool.h" +#include "thirdparty/misc/base64.h" + +uint32_t EditorSceneImporterGLTF::get_import_flags() const { + + return IMPORT_SCENE | IMPORT_ANIMATION; +} +void EditorSceneImporterGLTF::get_extensions(List<String> *r_extensions) const { + + r_extensions->push_back("gltf"); + r_extensions->push_back("gfb"); +} + +Error EditorSceneImporterGLTF::_parse_json(const String &p_path, GLTFState &state) { + + Error err; + FileAccessRef f = FileAccess::open(p_path, FileAccess::READ, &err); + if (!f) { + return err; + } + + Vector<uint8_t> array; + array.resize(f->get_len()); + f->get_buffer(array.ptr(), array.size()); + String text; + text.parse_utf8((const char *)array.ptr(), array.size()); + + String err_txt; + int err_line; + Variant v; + err = JSON::parse(text, v, err_txt, err_line); + if (err != OK) { + _err_print_error("", p_path.utf8().get_data(), err_line, err_txt.utf8().get_data(), ERR_HANDLER_SCRIPT); + return err; + } + state.json = v; + + return OK; +} + +static Vector3 _arr_to_vec3(const Array &p_array) { + ERR_FAIL_COND_V(p_array.size() != 3, Vector3()); + return Vector3(p_array[0], p_array[1], p_array[2]); +} + +static Quat _arr_to_quat(const Array &p_array) { + ERR_FAIL_COND_V(p_array.size() != 4, Quat()); + return Quat(p_array[0], p_array[1], p_array[2], p_array[3]); +} + +static Transform _arr_to_xform(const Array &p_array) { + ERR_FAIL_COND_V(p_array.size() != 16, Transform()); + + Transform xform; + xform.basis.set_axis(Vector3::AXIS_X, Vector3(p_array[0], p_array[1], p_array[2])); + xform.basis.set_axis(Vector3::AXIS_Y, Vector3(p_array[4], p_array[5], p_array[6])); + xform.basis.set_axis(Vector3::AXIS_Z, Vector3(p_array[8], p_array[9], p_array[10])); + xform.set_origin(Vector3(p_array[12], p_array[13], p_array[14])); + + return xform; +} + +String EditorSceneImporterGLTF::_gen_unique_name(GLTFState &state, const String &p_name) { + + int index = 1; + + String name; + while (true) { + + name = p_name; + if (index > 1) { + name += " " + itos(index); + } + if (!state.unique_names.has(name)) { + break; + } + index++; + } + + state.unique_names.insert(name); + + return name; +} + +Error EditorSceneImporterGLTF::_parse_scenes(GLTFState &state) { + + ERR_FAIL_COND_V(!state.json.has("scenes"), ERR_FILE_CORRUPT); + Array scenes = state.json["scenes"]; + for (int i = 0; i < 1; i++) { //only first scene is imported + Dictionary s = scenes[i]; + ERR_FAIL_COND_V(!s.has("nodes"), ERR_UNAVAILABLE); + Array nodes = s["nodes"]; + for (int j = 0; j < nodes.size(); j++) { + state.root_nodes.push_back(nodes[j]); + } + + if (s.has("name")) { + state.scene_name = s["name"]; + } + } + + return OK; +} + +Error EditorSceneImporterGLTF::_parse_nodes(GLTFState &state) { + + ERR_FAIL_COND_V(!state.json.has("nodes"), ERR_FILE_CORRUPT); + Array nodes = state.json["nodes"]; + for (int i = 0; i < nodes.size(); i++) { + + GLTFNode *node = memnew(GLTFNode); + Dictionary n = nodes[i]; + + print_line("node " + itos(i) + ": " + String(Variant(n))); + if (n.has("name")) { + node->name = n["name"]; + } + if (n.has("camera")) { + node->camera = n["camera"]; + } + if (n.has("mesh")) { + node->mesh = n["mesh"]; + } + if (n.has("skin")) { + node->skin = n["skin"]; + if (!state.skin_users.has(node->skin)) { + state.skin_users[node->skin] = Vector<int>(); + } + + state.skin_users[node->skin].push_back(i); + } + if (n.has("matrix")) { + node->xform = _arr_to_xform(n["matrix"]); + + } else { + + if (n.has("translation")) { + node->translation = _arr_to_vec3(n["translation"]); + } + if (n.has("rotation")) { + node->rotation = _arr_to_quat(n["rotation"]); + } + if (n.has("scale")) { + node->scale = _arr_to_vec3(n["scale"]); + } + + node->xform.basis = Basis(node->rotation); + node->xform.basis.scale(node->scale); + node->xform.origin = node->translation; + } + + if (n.has("children")) { + Array children = n["children"]; + for (int i = 0; i < children.size(); i++) { + node->children.push_back(children[i]); + } + } + + state.nodes.push_back(node); + } + + //build the hierarchy + + for (int i = 0; i < state.nodes.size(); i++) { + + for (int j = 0; j < state.nodes[i]->children.size(); j++) { + int child = state.nodes[i]->children[j]; + ERR_FAIL_INDEX_V(child, state.nodes.size(), ERR_FILE_CORRUPT); + ERR_CONTINUE(state.nodes[child]->parent != -1); //node already has a parent, wtf. + + state.nodes[child]->parent = i; + } + } + + return OK; +} + +static Vector<uint8_t> _parse_base64_uri(const String &uri) { + + int start = uri.find(","); + ERR_FAIL_COND_V(start == -1, Vector<uint8_t>()); + + CharString substr = uri.right(start + 1).ascii(); + + int strlen = substr.length(); + + Vector<uint8_t> buf; + buf.resize(strlen / 4 * 3 + 1 + 1); + + int len = base64_decode((char *)buf.ptr(), (char *)substr.get_data(), strlen); + + buf.resize(len); + + return buf; +} + +Error EditorSceneImporterGLTF::_parse_buffers(GLTFState &state, const String &p_base_path) { + + if (!state.json.has("buffers")) + return OK; + + Array buffers = state.json["buffers"]; + for (int i = 0; i < buffers.size(); i++) { + + if (i == 0 && state.gfb_data.size()) { + state.buffers.push_back(state.gfb_data); + + } else { + Dictionary buffer = buffers[i]; + if (buffer.has("uri")) { + + Vector<uint8_t> buffer_data; + String uri = buffer["uri"]; + + if (uri.findn("data:application/octet-stream;base64") == 0) { + //embedded data + buffer_data = _parse_base64_uri(uri); + } else { + + uri = p_base_path.plus_file(uri).replace("\\", "/"); //fix for windows + buffer_data = FileAccess::get_file_as_array(uri); + ERR_FAIL_COND_V(buffer.size() == 0, ERR_PARSE_ERROR); + } + + ERR_FAIL_COND_V(!buffer.has("byteLength"), ERR_PARSE_ERROR); + int byteLength = buffer["byteLength"]; + ERR_FAIL_COND_V(byteLength < buffer_data.size(), ERR_PARSE_ERROR); + state.buffers.push_back(buffer_data); + } + } + } + + print_line("total buffers: " + itos(state.buffers.size())); + + return OK; +} + +Error EditorSceneImporterGLTF::_parse_buffer_views(GLTFState &state) { + + ERR_FAIL_COND_V(!state.json.has("bufferViews"), ERR_FILE_CORRUPT); + Array buffers = state.json["bufferViews"]; + for (int i = 0; i < buffers.size(); i++) { + + Dictionary d = buffers[i]; + + GLTFBufferView buffer_view; + + ERR_FAIL_COND_V(!d.has("buffer"), ERR_PARSE_ERROR); + buffer_view.buffer = d["buffer"]; + ERR_FAIL_COND_V(!d.has("byteLength"), ERR_PARSE_ERROR); + buffer_view.byte_length = d["byteLength"]; + + if (d.has("byteOffset")) { + buffer_view.byte_offset = d["byteOffset"]; + } + + if (d.has("byteStride")) { + buffer_view.byte_stride = d["byteStride"]; + } + + if (d.has("target")) { + int target = d["target"]; + buffer_view.indices = target == ELEMENT_ARRAY_BUFFER; + } + + state.buffer_views.push_back(buffer_view); + } + + print_line("total buffer views: " + itos(state.buffer_views.size())); + + return OK; +} + +EditorSceneImporterGLTF::GLTFType EditorSceneImporterGLTF::_get_type_from_str(const String &p_string) { + + if (p_string == "SCALAR") + return TYPE_SCALAR; + + if (p_string == "VEC2") + return TYPE_VEC2; + if (p_string == "VEC3") + return TYPE_VEC3; + if (p_string == "VEC4") + return TYPE_VEC4; + + if (p_string == "MAT2") + return TYPE_MAT2; + if (p_string == "MAT3") + return TYPE_MAT3; + if (p_string == "MAT4") + return TYPE_MAT4; + + ERR_FAIL_V(TYPE_SCALAR); +} + +Error EditorSceneImporterGLTF::_parse_accessors(GLTFState &state) { + + ERR_FAIL_COND_V(!state.json.has("accessors"), ERR_FILE_CORRUPT); + Array accessors = state.json["accessors"]; + for (int i = 0; i < accessors.size(); i++) { + + Dictionary d = accessors[i]; + + GLTFAccessor accessor; + + ERR_FAIL_COND_V(!d.has("componentType"), ERR_PARSE_ERROR); + accessor.component_type = d["componentType"]; + ERR_FAIL_COND_V(!d.has("count"), ERR_PARSE_ERROR); + accessor.count = d["count"]; + ERR_FAIL_COND_V(!d.has("type"), ERR_PARSE_ERROR); + accessor.type = _get_type_from_str(d["type"]); + + if (d.has("bufferView")) { + accessor.buffer_view = d["bufferView"]; //optional because it may be sparse... + } + + if (d.has("byteOffset")) { + accessor.byte_offset = d["byteOffset"]; + } + + if (d.has("max")) { + accessor.max = d["max"]; + } + + if (d.has("min")) { + accessor.min = d["min"]; + } + + if (d.has("sparse")) { + //eeh.. + + Dictionary s = d["sparse"]; + + ERR_FAIL_COND_V(!d.has("count"), ERR_PARSE_ERROR); + accessor.sparse_count = d["count"]; + ERR_FAIL_COND_V(!d.has("indices"), ERR_PARSE_ERROR); + Dictionary si = d["indices"]; + + ERR_FAIL_COND_V(!si.has("bufferView"), ERR_PARSE_ERROR); + accessor.sparse_indices_buffer_view = si["bufferView"]; + ERR_FAIL_COND_V(!si.has("componentType"), ERR_PARSE_ERROR); + accessor.sparse_indices_component_type = si["componentType"]; + + if (si.has("byteOffset")) { + accessor.sparse_indices_byte_offset = si["byteOffset"]; + } + + ERR_FAIL_COND_V(!d.has("values"), ERR_PARSE_ERROR); + Dictionary sv = d["values"]; + + ERR_FAIL_COND_V(!sv.has("bufferView"), ERR_PARSE_ERROR); + accessor.sparse_values_buffer_view = sv["bufferView"]; + if (sv.has("byteOffset")) { + accessor.sparse_values_byte_offset = sv["byteOffset"]; + } + } + + state.accessors.push_back(accessor); + } + + print_line("total accessors: " + itos(state.accessors.size())); + + return OK; +} + +String EditorSceneImporterGLTF::_get_component_type_name(uint32_t p_component) { + + switch (p_component) { + case COMPONENT_TYPE_BYTE: return "Byte"; + case COMPONENT_TYPE_UNSIGNED_BYTE: return "UByte"; + case COMPONENT_TYPE_SHORT: return "Short"; + case COMPONENT_TYPE_UNSIGNED_SHORT: return "UShort"; + case COMPONENT_TYPE_INT: return "Int"; + case COMPONENT_TYPE_FLOAT: return "Float"; + } + + return "<Error>"; +} + +String EditorSceneImporterGLTF::_get_type_name(GLTFType p_component) { + + static const char *names[] = { + "float", + "vec2", + "vec3", + "vec4", + "mat2", + "mat3", + "mat4" + }; + + return names[p_component]; +} + +Error EditorSceneImporterGLTF::_decode_buffer_view(GLTFState &state, int p_buffer_view, double *dst, int skip_every, int skip_bytes, int element_size, int count, GLTFType type, int component_count, int component_type, int component_size, bool normalized, int byte_offset, bool for_vertex) { + + const GLTFBufferView &bv = state.buffer_views[p_buffer_view]; + + int stride = bv.byte_stride ? bv.byte_stride : element_size; + if (for_vertex && stride % 4) { + stride += 4 - (stride % 4); //according to spec must be multiple of 4 + } + + ERR_FAIL_INDEX_V(bv.buffer, state.buffers.size(), ERR_PARSE_ERROR); + + uint32_t offset = bv.byte_offset + byte_offset; + Vector<uint8_t> buffer = state.buffers[bv.buffer]; //copy on write, so no performance hit + + //use to debug + print_line("type " + _get_type_name(type) + " component type: " + _get_component_type_name(component_type) + " stride: " + itos(stride) + " amount " + itos(count)); + print_line("accessor offset" + itos(byte_offset) + " view offset: " + itos(bv.byte_offset) + " total buffer len: " + itos(buffer.size()) + " view len " + itos(bv.byte_length)); + + int buffer_end = (stride * (count - 1)) + element_size; + ERR_FAIL_COND_V(buffer_end > bv.byte_length, ERR_PARSE_ERROR); + + ERR_FAIL_COND_V((offset + buffer_end) > buffer.size(), ERR_PARSE_ERROR); + + //fill everything as doubles + + for (int i = 0; i < count; i++) { + + const uint8_t *src = &buffer[offset + i * stride]; + + for (int j = 0; j < component_count; j++) { + + if (skip_every && j > 0 && (j % skip_every) == 0) { + src += skip_bytes; + } + + double d = 0; + + switch (component_type) { + case COMPONENT_TYPE_BYTE: { + int8_t b = int8_t(*src); + if (normalized) { + d = (double(b) / 128.0); + } else { + d = double(b); + } + } break; + case COMPONENT_TYPE_UNSIGNED_BYTE: { + uint8_t b = *src; + if (normalized) { + d = (double(b) / 255.0); + } else { + d = double(b); + } + } break; + case COMPONENT_TYPE_SHORT: { + int16_t s = *(int16_t *)src; + if (normalized) { + d = (double(s) / 32768.0); + } else { + d = double(s); + } + } break; + case COMPONENT_TYPE_UNSIGNED_SHORT: { + uint16_t s = *(uint16_t *)src; + if (normalized) { + d = (double(s) / 65535.0); + } else { + d = double(s); + } + + } break; + case COMPONENT_TYPE_INT: { + d = *(int *)src; + } break; + case COMPONENT_TYPE_FLOAT: { + d = *(float *)src; + } break; + } + + *dst++ = d; + src += component_size; + } + } + + return OK; +} + +int EditorSceneImporterGLTF::_get_component_type_size(int component_type) { + + switch (component_type) { + case COMPONENT_TYPE_BYTE: return 1; break; + case COMPONENT_TYPE_UNSIGNED_BYTE: return 1; break; + case COMPONENT_TYPE_SHORT: return 2; break; + case COMPONENT_TYPE_UNSIGNED_SHORT: return 2; break; + case COMPONENT_TYPE_INT: return 4; break; + case COMPONENT_TYPE_FLOAT: return 4; break; + default: { ERR_FAIL_V(0); } + } + return 0; +} + +Vector<double> EditorSceneImporterGLTF::_decode_accessor(GLTFState &state, int p_accessor, bool p_for_vertex) { + + //spec, for reference: + //https://github.com/KhronosGroup/glTF/tree/master/specification/2.0#data-alignment + + ERR_FAIL_INDEX_V(p_accessor, state.accessors.size(), Vector<double>()); + + const GLTFAccessor &a = state.accessors[p_accessor]; + + int component_count_for_type[7] = { + 1, 2, 3, 4, 4, 9, 16 + }; + + int component_count = component_count_for_type[a.type]; + int component_size = _get_component_type_size(a.component_type); + ERR_FAIL_COND_V(component_size == 0, Vector<double>()); + int element_size = component_count * component_size; + + int skip_every = 0; + int skip_bytes = 0; + //special case of alignments, as described in spec + switch (a.component_type) { + case COMPONENT_TYPE_BYTE: + case COMPONENT_TYPE_UNSIGNED_BYTE: { + + if (a.type == TYPE_MAT2) { + skip_every = 2; + skip_bytes = 2; + element_size = 8; //override for this case + } + if (a.type == TYPE_MAT3) { + skip_every = 3; + skip_bytes = 1; + element_size = 12; //override for this case + } + + } break; + case COMPONENT_TYPE_SHORT: + case COMPONENT_TYPE_UNSIGNED_SHORT: { + if (a.type == TYPE_MAT3) { + skip_every = 6; + skip_bytes = 4; + element_size = 16; //override for this case + } + } break; + default: {} + } + + Vector<double> dst_buffer; + dst_buffer.resize(component_count * a.count); + double *dst = dst_buffer.ptr(); + + if (a.buffer_view >= 0) { + + ERR_FAIL_INDEX_V(a.buffer_view, state.buffer_views.size(), Vector<double>()); + + Error err = _decode_buffer_view(state, a.buffer_view, dst, skip_every, skip_bytes, element_size, a.count, a.type, component_count, a.component_type, component_size, a.normalized, a.byte_offset, p_for_vertex); + if (err != OK) + return Vector<double>(); + + } else { + //fill with zeros, as bufferview is not defined. + for (int i = 0; i < (a.count * component_count); i++) { + dst_buffer[i] = 0; + } + } + + if (a.sparse_count > 0) { + // I could not find any file using this, so this code is so far untested + Vector<double> indices; + indices.resize(a.sparse_count); + int indices_component_size = _get_component_type_size(a.sparse_indices_component_type); + + Error err = _decode_buffer_view(state, a.sparse_indices_buffer_view, indices.ptr(), 0, 0, indices_component_size, a.sparse_count, TYPE_SCALAR, 1, a.sparse_indices_component_type, indices_component_size, false, a.sparse_indices_byte_offset, false); + if (err != OK) + return Vector<double>(); + + Vector<double> data; + data.resize(component_count * a.sparse_count); + err = _decode_buffer_view(state, a.sparse_values_buffer_view, data.ptr(), skip_every, skip_bytes, element_size, a.sparse_count, a.type, component_count, a.component_type, component_size, a.normalized, a.sparse_values_byte_offset, p_for_vertex); + if (err != OK) + return Vector<double>(); + + for (int i = 0; i < indices.size(); i++) { + int write_offset = int(indices[i]) * component_count; + + for (int j = 0; j < component_count; j++) { + dst[write_offset + j] = data[i * component_count + j]; + } + } + } + + return dst_buffer; +} + +PoolVector<int> EditorSceneImporterGLTF::_decode_accessor_as_ints(GLTFState &state, int p_accessor, bool p_for_vertex) { + + Vector<double> attribs = _decode_accessor(state, p_accessor, p_for_vertex); + PoolVector<int> ret; + if (attribs.size() == 0) + return ret; + const double *attribs_ptr = attribs.ptr(); + int ret_size = attribs.size(); + ret.resize(ret_size); + { + PoolVector<int>::Write w = ret.write(); + for (int i = 0; i < ret_size; i++) { + w[i] = int(attribs_ptr[i]); + } + } + return ret; +} + +PoolVector<float> EditorSceneImporterGLTF::_decode_accessor_as_floats(GLTFState &state, int p_accessor, bool p_for_vertex) { + + Vector<double> attribs = _decode_accessor(state, p_accessor, p_for_vertex); + PoolVector<float> ret; + if (attribs.size() == 0) + return ret; + const double *attribs_ptr = attribs.ptr(); + int ret_size = attribs.size(); + ret.resize(ret_size); + { + PoolVector<float>::Write w = ret.write(); + for (int i = 0; i < ret_size; i++) { + w[i] = float(attribs_ptr[i]); + } + } + return ret; +} + +PoolVector<Vector2> EditorSceneImporterGLTF::_decode_accessor_as_vec2(GLTFState &state, int p_accessor, bool p_for_vertex) { + + Vector<double> attribs = _decode_accessor(state, p_accessor, p_for_vertex); + PoolVector<Vector2> ret; + if (attribs.size() == 0) + return ret; + ERR_FAIL_COND_V(attribs.size() % 2 != 0, ret); + const double *attribs_ptr = attribs.ptr(); + int ret_size = attribs.size() / 2; + ret.resize(ret_size); + { + PoolVector<Vector2>::Write w = ret.write(); + for (int i = 0; i < ret_size; i++) { + w[i] = Vector2(attribs_ptr[i * 2 + 0], attribs_ptr[i * 2 + 1]); + } + } + return ret; +} + +PoolVector<Vector3> EditorSceneImporterGLTF::_decode_accessor_as_vec3(GLTFState &state, int p_accessor, bool p_for_vertex) { + + Vector<double> attribs = _decode_accessor(state, p_accessor, p_for_vertex); + PoolVector<Vector3> ret; + if (attribs.size() == 0) + return ret; + ERR_FAIL_COND_V(attribs.size() % 3 != 0, ret); + const double *attribs_ptr = attribs.ptr(); + int ret_size = attribs.size() / 3; + ret.resize(ret_size); + { + PoolVector<Vector3>::Write w = ret.write(); + for (int i = 0; i < ret_size; i++) { + w[i] = Vector3(attribs_ptr[i * 3 + 0], attribs_ptr[i * 3 + 1], attribs_ptr[i * 3 + 2]); + } + } + return ret; +} +PoolVector<Color> EditorSceneImporterGLTF::_decode_accessor_as_color(GLTFState &state, int p_accessor, bool p_for_vertex) { + + Vector<double> attribs = _decode_accessor(state, p_accessor, p_for_vertex); + PoolVector<Color> ret; + if (attribs.size() == 0) + return ret; + ERR_FAIL_COND_V(attribs.size() % 4 != 0, ret); + const double *attribs_ptr = attribs.ptr(); + int ret_size = attribs.size() / 4; + ret.resize(ret_size); + { + PoolVector<Color>::Write w = ret.write(); + for (int i = 0; i < ret_size; i++) { + w[i] = Color(attribs_ptr[i * 4 + 0], attribs_ptr[i * 4 + 1], attribs_ptr[i * 4 + 2], attribs_ptr[i * 4 + 3]); + } + } + return ret; +} +Vector<Transform2D> EditorSceneImporterGLTF::_decode_accessor_as_xform2d(GLTFState &state, int p_accessor, bool p_for_vertex) { + + Vector<double> attribs = _decode_accessor(state, p_accessor, p_for_vertex); + Vector<Transform2D> ret; + if (attribs.size() == 0) + return ret; + ERR_FAIL_COND_V(attribs.size() % 4 != 0, ret); + ret.resize(attribs.size() / 4); + for (int i = 0; i < ret.size(); i++) { + ret[i][0] = Vector2(attribs[i * 4 + 0], attribs[i * 4 + 1]); + ret[i][1] = Vector2(attribs[i * 4 + 2], attribs[i * 4 + 3]); + } + return ret; +} + +Vector<Basis> EditorSceneImporterGLTF::_decode_accessor_as_basis(GLTFState &state, int p_accessor, bool p_for_vertex) { + + Vector<double> attribs = _decode_accessor(state, p_accessor, p_for_vertex); + Vector<Basis> ret; + if (attribs.size() == 0) + return ret; + ERR_FAIL_COND_V(attribs.size() % 9 != 0, ret); + ret.resize(attribs.size() / 9); + for (int i = 0; i < ret.size(); i++) { + ret[i].set_axis(0, Vector3(attribs[i * 9 + 0], attribs[i * 9 + 1], attribs[i * 9 + 2])); + ret[i].set_axis(1, Vector3(attribs[i * 9 + 3], attribs[i * 9 + 4], attribs[i * 9 + 5])); + ret[i].set_axis(2, Vector3(attribs[i * 9 + 6], attribs[i * 9 + 7], attribs[i * 9 + 8])); + } + return ret; +} +Vector<Transform> EditorSceneImporterGLTF::_decode_accessor_as_xform(GLTFState &state, int p_accessor, bool p_for_vertex) { + + Vector<double> attribs = _decode_accessor(state, p_accessor, p_for_vertex); + Vector<Transform> ret; + if (attribs.size() == 0) + return ret; + ERR_FAIL_COND_V(attribs.size() % 16 != 0, ret); + ret.resize(attribs.size() / 16); + for (int i = 0; i < ret.size(); i++) { + ret[i].basis.set_axis(0, Vector3(attribs[i * 16 + 0], attribs[i * 16 + 1], attribs[i * 16 + 2])); + ret[i].basis.set_axis(1, Vector3(attribs[i * 16 + 4], attribs[i * 16 + 5], attribs[i * 16 + 6])); + ret[i].basis.set_axis(2, Vector3(attribs[i * 16 + 8], attribs[i * 16 + 9], attribs[i * 16 + 10])); + ret[i].set_origin(Vector3(attribs[i * 16 + 12], attribs[i * 16 + 13], attribs[i * 16 + 14])); + } + return ret; +} + +Error EditorSceneImporterGLTF::_parse_meshes(GLTFState &state) { + + if (!state.json.has("meshes")) + return OK; + + Array meshes = state.json["meshes"]; + for (int i = 0; i < meshes.size(); i++) { + + Dictionary d = meshes[i]; + + GLTFMesh mesh; + mesh.mesh.instance(); + + ERR_FAIL_COND_V(!d.has("primitives"), ERR_PARSE_ERROR); + + Array primitives = d["primitives"]; + + for (int j = 0; j < primitives.size(); j++) { + + Dictionary p = primitives[j]; + + Array array; + array.resize(Mesh::ARRAY_MAX); + + ERR_FAIL_COND_V(!p.has("attributes"), ERR_PARSE_ERROR); + + Dictionary a = p["attributes"]; + + Mesh::PrimitiveType primitive = Mesh::PRIMITIVE_TRIANGLES; + if (p.has("mode")) { + int mode = p["mode"]; + ERR_FAIL_INDEX_V(mode, 7, ERR_FILE_CORRUPT); + static const Mesh::PrimitiveType primitives[7] = { + Mesh::PRIMITIVE_POINTS, + Mesh::PRIMITIVE_LINES, + Mesh::PRIMITIVE_LINE_LOOP, + Mesh::PRIMITIVE_LINE_STRIP, + Mesh::PRIMITIVE_TRIANGLES, + Mesh::PRIMITIVE_TRIANGLE_STRIP, + Mesh::PRIMITIVE_TRIANGLE_FAN, + }; + + primitive = primitives[mode]; + } + + if (a.has("POSITION")) { + array[Mesh::ARRAY_VERTEX] = _decode_accessor_as_vec3(state, a["POSITION"], true); + } + if (a.has("NORMAL")) { + array[Mesh::ARRAY_NORMAL] = _decode_accessor_as_vec3(state, a["NORMAL"], true); + } + if (a.has("TANGENT")) { + array[Mesh::ARRAY_TANGENT] = _decode_accessor_as_floats(state, a["TANGENT"], true); + } + if (a.has("TEXCOORD_0")) { + array[Mesh::ARRAY_TEX_UV] = _decode_accessor_as_vec2(state, a["TEXCOORD_0"], true); + } + if (a.has("TEXCOORD_1")) { + array[Mesh::ARRAY_TEX_UV2] = _decode_accessor_as_vec2(state, a["TEXCOORD_1"], true); + } + if (a.has("COLOR_0")) { + array[Mesh::ARRAY_COLOR] = _decode_accessor_as_color(state, a["COLOR_0"], true); + } + if (a.has("JOINTS_0")) { + array[Mesh::ARRAY_BONES] = _decode_accessor_as_ints(state, a["JOINTS_0"], true); + } + if (a.has("WEIGHTS_0")) { + PoolVector<float> weights = _decode_accessor_as_floats(state, a["WEIGHTS_0"], true); + { //gltf does not seem to normalize the weights for some reason.. + int wc = weights.size(); + PoolVector<float>::Write w = weights.write(); + for (int i = 0; i < wc; i += 4) { + float total = 0.0; + total += w[i + 0]; + total += w[i + 1]; + total += w[i + 2]; + total += w[i + 3]; + if (total > 0.0) { + w[i + 0] /= total; + w[i + 1] /= total; + w[i + 2] /= total; + w[i + 3] /= total; + } + } + } + array[Mesh::ARRAY_WEIGHTS] = weights; + } + + if (p.has("indices")) { + + PoolVector<int> indices = _decode_accessor_as_ints(state, p["indices"], false); + + if (primitive == Mesh::PRIMITIVE_TRIANGLES) { + //swap around indices, convert ccw to cw for front face + + int is = indices.size(); + PoolVector<int>::Write w = indices.write(); + for (int i = 0; i < is; i += 3) { + SWAP(w[i + 1], w[i + 2]); + } + } + array[Mesh::ARRAY_INDEX] = indices; + } else if (primitive == Mesh::PRIMITIVE_TRIANGLES) { + //generate indices because they need to be swapped for CW/CCW + PoolVector<Vector3> vertices = array[Mesh::ARRAY_VERTEX]; + ERR_FAIL_COND_V(vertices.size() == 0, ERR_PARSE_ERROR); + PoolVector<int> indices; + int vs = vertices.size(); + indices.resize(vs); + { + PoolVector<int>::Write w = indices.write(); + for (int i = 0; i < vs; i += 3) { + w[i] = i; + w[i + 1] = i + 2; + w[i + 2] = i + 1; + } + } + array[Mesh::ARRAY_INDEX] = indices; + } + + bool generated_tangents = false; + Variant erased_indices; + + if (primitive == Mesh::PRIMITIVE_TRIANGLES && !a.has("TANGENT") && a.has("TEXCOORD_0") && a.has("NORMAL")) { + //must generate mikktspace tangents.. ergh.. + Ref<SurfaceTool> st; + st.instance(); + st->create_from_triangle_arrays(array); + if (p.has("targets")) { + //morph targets should not be reindexed, as array size might differ + //removing indices is the best bet here + st->deindex(); + erased_indices = a[Mesh::ARRAY_INDEX]; + a[Mesh::ARRAY_INDEX] = Variant(); + } + st->generate_tangents(); + array = st->commit_to_arrays(); + generated_tangents = true; + } + + Array morphs; + //blend shapes + if (p.has("targets")) { + print_line("has targets!"); + Array targets = p["targets"]; + + if (j == 0) { + for (int k = 0; k < targets.size(); k++) { + mesh.mesh->add_blend_shape(String("morph_") + itos(k)); + } + } + + for (int k = 0; k < targets.size(); k++) { + + Dictionary t = targets[k]; + + Array array_copy; + array_copy.resize(Mesh::ARRAY_MAX); + + for (int l = 0; l < Mesh::ARRAY_MAX; l++) { + array_copy[l] = array[l]; + } + + array_copy[Mesh::ARRAY_INDEX] = Variant(); + + if (t.has("POSITION")) { + array_copy[Mesh::ARRAY_VERTEX] = _decode_accessor_as_vec3(state, t["POSITION"], true); + } + if (t.has("NORMAL")) { + array_copy[Mesh::ARRAY_NORMAL] = _decode_accessor_as_vec3(state, t["NORMAL"], true); + } + if (t.has("TANGENT")) { + PoolVector<Vector3> tangents_v3 = _decode_accessor_as_vec3(state, t["TANGENT"], true); + PoolVector<float> tangents_v4; + PoolVector<float> src_tangents = array[Mesh::ARRAY_TANGENT]; + ERR_FAIL_COND_V(src_tangents.size() == 0, ERR_PARSE_ERROR); + + { + + int size4 = src_tangents.size(); + tangents_v4.resize(size4); + PoolVector<float>::Write w4 = tangents_v4.write(); + + PoolVector<Vector3>::Read r3 = tangents_v3.read(); + PoolVector<float>::Read r4 = src_tangents.read(); + + for (int l = 0; l < size4 / 4; l++) { + + w4[l * 4 + 0] = r3[l].x; + w4[l * 4 + 1] = r3[l].y; + w4[l * 4 + 2] = r3[l].z; + w4[l * 4 + 3] = r4[l * 4 + 3]; //copy flip value + } + } + + array_copy[Mesh::ARRAY_TANGENT] = tangents_v4; + } + + if (generated_tangents) { + Ref<SurfaceTool> st; + st.instance(); + array_copy[Mesh::ARRAY_INDEX] = erased_indices; //needed for tangent generation, erased by deindex + st->create_from_triangle_arrays(array_copy); + st->deindex(); + st->generate_tangents(); + array_copy = st->commit_to_arrays(); + } + + morphs.push_back(array_copy); + } + } + + //just add it + mesh.mesh->add_surface_from_arrays(primitive, array, morphs); + + if (p.has("material")) { + int material = p["material"]; + ERR_FAIL_INDEX_V(material, state.materials.size(), ERR_FILE_CORRUPT); + Ref<Material> mat = state.materials[material]; + + mesh.mesh->surface_set_material(mesh.mesh->get_surface_count() - 1, mat); + } + } + + if (d.has("weights")) { + Array weights = d["weights"]; + ERR_FAIL_COND_V(mesh.mesh->get_blend_shape_count() != weights.size(), ERR_PARSE_ERROR); + mesh.blend_weights.resize(weights.size()); + for (int j = 0; j < weights.size(); j++) { + mesh.blend_weights[j] = weights[j]; + } + } + + state.meshes.push_back(mesh); + } + + print_line("total meshes: " + itos(state.meshes.size())); + + return OK; +} + +Error EditorSceneImporterGLTF::_parse_images(GLTFState &state, const String &p_base_path) { + + if (!state.json.has("images")) + return OK; + + Array images = state.json["images"]; + for (int i = 0; i < images.size(); i++) { + + Dictionary d = images[i]; + + String mimetype; + if (d.has("mimeType")) { + mimetype = d["mimeType"]; + } + + Vector<uint8_t> data; + const uint8_t *data_ptr = NULL; + int data_size = 0; + + if (d.has("uri")) { + String uri = d["uri"]; + + if (uri.findn("data:application/octet-stream;base64") == 0) { + //embedded data + data = _parse_base64_uri(uri); + data_ptr = data.ptr(); + data_size = data.size(); + } else { + + uri = p_base_path.plus_file(uri).replace("\\", "/"); //fix for windows + Ref<Texture> texture = ResourceLoader::load(uri); + state.images.push_back(texture); + continue; + } + } + + if (d.has("bufferView")) { + int bvi = d["bufferView"]; + + ERR_FAIL_INDEX_V(bvi, state.buffer_views.size(), ERR_PARAMETER_RANGE_ERROR); + + GLTFBufferView &bv = state.buffer_views[bvi]; + + int bi = bv.buffer; + ERR_FAIL_INDEX_V(bi, state.buffers.size(), ERR_PARAMETER_RANGE_ERROR); + + ERR_FAIL_COND_V(bv.byte_offset + bv.byte_length > state.buffers[bi].size(), ERR_FILE_CORRUPT); + + data_ptr = &state.buffers[bi][bv.byte_offset]; + data_size = bv.byte_length; + } + + ERR_FAIL_COND_V(mimetype == "", ERR_FILE_CORRUPT); + + if (mimetype.findn("png") != -1) { + //is a png + Ref<Image> img = Image::_png_mem_loader_func(data_ptr, data_size); + + ERR_FAIL_COND_V(img.is_null(), ERR_FILE_CORRUPT); + + Ref<ImageTexture> t; + t.instance(); + t->create_from_image(img); + + state.images.push_back(t); + continue; + } + + if (mimetype.findn("jpg") != -1) { + //is a jpg + Ref<Image> img = Image::_jpg_mem_loader_func(data_ptr, data_size); + + ERR_FAIL_COND_V(img.is_null(), ERR_FILE_CORRUPT); + + Ref<ImageTexture> t; + t.instance(); + t->create_from_image(img); + + state.images.push_back(t); + + continue; + } + + ERR_FAIL_V(ERR_FILE_CORRUPT); + } + + print_line("total images: " + itos(state.images.size())); + + return OK; +} + +Error EditorSceneImporterGLTF::_parse_textures(GLTFState &state) { + + if (!state.json.has("textures")) + return OK; + + Array textures = state.json["textures"]; + for (int i = 0; i < textures.size(); i++) { + + Dictionary d = textures[i]; + + ERR_FAIL_COND_V(!d.has("source"), ERR_PARSE_ERROR); + + GLTFTexture t; + t.src_image = d["source"]; + state.textures.push_back(t); + } + + return OK; +} + +Ref<Texture> EditorSceneImporterGLTF::_get_texture(GLTFState &state, int p_texture) { + ERR_FAIL_INDEX_V(p_texture, state.textures.size(), Ref<Texture>()); + int image = state.textures[p_texture].src_image; + + ERR_FAIL_INDEX_V(image, state.images.size(), Ref<Texture>()); + + return state.images[image]; +} + +Error EditorSceneImporterGLTF::_parse_materials(GLTFState &state) { + + if (!state.json.has("materials")) + return OK; + + Array materials = state.json["materials"]; + for (int i = 0; i < materials.size(); i++) { + + Dictionary d = materials[i]; + + Ref<SpatialMaterial> material; + material.instance(); + if (d.has("name")) { + material->set_name(d["name"]); + } + + if (d.has("pbrMetallicRoughness")) { + + Dictionary mr = d["pbrMetallicRoughness"]; + if (mr.has("baseColorFactor")) { + Array arr = mr["baseColorFactor"]; + ERR_FAIL_COND_V(arr.size() != 4, ERR_PARSE_ERROR); + Color c = Color(arr[0], arr[1], arr[2], arr[3]).to_srgb(); + + material->set_albedo(c); + } + + if (mr.has("baseColorTexture")) { + Dictionary bct = mr["baseColorTexture"]; + if (bct.has("index")) { + material->set_texture(SpatialMaterial::TEXTURE_ALBEDO, _get_texture(state, bct["index"])); + } + if (!mr.has("baseColorFactor")) { + material->set_albedo(Color(1, 1, 1)); + } + } + + if (mr.has("metallicFactor")) { + + material->set_metallic(mr["metallicFactor"]); + } + if (mr.has("roughnessFactor")) { + + material->set_roughness(mr["roughnessFactor"]); + } + + if (mr.has("metallicRoughnessTexture")) { + Dictionary bct = mr["metallicRoughnessTexture"]; + if (bct.has("index")) { + Ref<Texture> t = _get_texture(state, bct["index"]); + material->set_texture(SpatialMaterial::TEXTURE_METALLIC, t); + material->set_metallic_texture_channel(SpatialMaterial::TEXTURE_CHANNEL_RED); + material->set_texture(SpatialMaterial::TEXTURE_ROUGHNESS, t); + material->set_roughness_texture_channel(SpatialMaterial::TEXTURE_CHANNEL_GREEN); + if (!mr.has("metallicFactor")) { + material->set_metallic(1); + } + if (!mr.has("roughnessFactor")) { + material->set_roughness(1); + } + } + } + } + + if (d.has("normalTexture")) { + Dictionary bct = d["normalTexture"]; + if (bct.has("index")) { + material->set_texture(SpatialMaterial::TEXTURE_NORMAL, _get_texture(state, bct["index"])); + material->set_feature(SpatialMaterial::FEATURE_NORMAL_MAPPING, true); + } + if (bct.has("scale")) { + material->set_normal_scale(bct["scale"]); + } + } + if (d.has("occlusionTexture")) { + Dictionary bct = d["occlusionTexture"]; + if (bct.has("index")) { + material->set_texture(SpatialMaterial::TEXTURE_AMBIENT_OCCLUSION, _get_texture(state, bct["index"])); + material->set_feature(SpatialMaterial::FEATURE_AMBIENT_OCCLUSION, true); + } + } + + if (d.has("emissiveFactor")) { + Array arr = d["emissiveFactor"]; + ERR_FAIL_COND_V(arr.size() != 3, ERR_PARSE_ERROR); + Color c = Color(arr[0], arr[1], arr[2]).to_srgb(); + material->set_feature(SpatialMaterial::FEATURE_EMISSION, true); + + material->set_emission(c); + } + + if (d.has("emissiveTexture")) { + Dictionary bct = d["emissiveTexture"]; + if (bct.has("index")) { + material->set_texture(SpatialMaterial::TEXTURE_EMISSION, _get_texture(state, bct["index"])); + material->set_feature(SpatialMaterial::FEATURE_EMISSION, true); + material->set_emission(Color(0, 0, 0)); + } + } + + if (d.has("doubleSided")) { + bool ds = d["doubleSided"]; + if (ds) { + material->set_cull_mode(SpatialMaterial::CULL_DISABLED); + } + } + + if (d.has("alphaMode")) { + String am = d["alphaMode"]; + if (am != "OPAQUE") { + material->set_feature(SpatialMaterial::FEATURE_TRANSPARENT, true); + } + } + + state.materials.push_back(material); + } + + print_line("total materials: " + itos(state.materials.size())); + + return OK; +} + +Error EditorSceneImporterGLTF::_parse_skins(GLTFState &state) { + + if (!state.json.has("skins")) + return OK; + + Array skins = state.json["skins"]; + for (int i = 0; i < skins.size(); i++) { + + Dictionary d = skins[i]; + + GLTFSkin skin; + + ERR_FAIL_COND_V(!d.has("joints"), ERR_PARSE_ERROR); + + Array joints = d["joints"]; + Vector<Transform> bind_matrices; + + if (d.has("inverseBindMatrices")) { + bind_matrices = _decode_accessor_as_xform(state, d["inverseBindMatrices"], false); + ERR_FAIL_COND_V(bind_matrices.size() != joints.size(), ERR_PARSE_ERROR); + } + + for (int j = 0; j < joints.size(); j++) { + int index = joints[j]; + ERR_FAIL_INDEX_V(index, state.nodes.size(), ERR_PARSE_ERROR); + state.nodes[index]->joint_skin = state.skins.size(); + state.nodes[index]->joint_bone = j; + GLTFSkin::Bone bone; + bone.node = index; + if (bind_matrices.size()) { + bone.inverse_bind = bind_matrices[j]; + } + + skin.bones.push_back(bone); + } + + print_line("skin has skeleton? " + itos(d.has("skeleton"))); + if (d.has("skeleton")) { + int skeleton = d["skeleton"]; + ERR_FAIL_INDEX_V(skeleton, state.nodes.size(), ERR_PARSE_ERROR); + state.nodes[skeleton]->skeleton_skin = state.skins.size(); + print_line("setting skeleton skin to" + itos(skeleton)); + skin.skeleton = skeleton; + } + + if (d.has("name")) { + skin.name = d["name"]; + } + + //locate the right place to put a Skeleton node + + if (state.skin_users.has(i)) { + Vector<int> users = state.skin_users[i]; + int skin_node = -1; + for (int j = 0; j < users.size(); j++) { + int user = state.nodes[users[j]]->parent; //always go from parent + if (j == 0) { + skin_node = user; + } else if (skin_node != -1) { + bool found = false; + while (skin_node >= 0) { + + int cuser = user; + while (cuser != -1) { + if (cuser == skin_node) { + found = true; + break; + } + cuser = state.nodes[skin_node]->parent; + } + if (found) + break; + skin_node = state.nodes[skin_node]->parent; + } + + if (!found) { + skin_node = -1; //just leave where it is + } + + //find a common parent + } + } + + if (skin_node != -1) { + for (int j = 0; j < users.size(); j++) { + state.nodes[users[j]]->child_of_skeleton = i; + } + + state.nodes[skin_node]->skeleton_children.push_back(i); + } + state.skins.push_back(skin); + } + } + print_line("total skins: " + itos(state.skins.size())); + + //now + + return OK; +} + +Error EditorSceneImporterGLTF::_parse_cameras(GLTFState &state) { + + if (!state.json.has("cameras")) + return OK; + + Array cameras = state.json["cameras"]; + + for (int i = 0; i < cameras.size(); i++) { + + Dictionary d = cameras[i]; + + GLTFCamera camera; + ERR_FAIL_COND_V(!d.has("type"), ERR_PARSE_ERROR); + String type = d["type"]; + if (type == "orthographic") { + + camera.perspective = false; + if (d.has("orthographic")) { + Dictionary og = d["orthographic"]; + camera.fov_size = og["ymag"]; + camera.zfar = og["zfar"]; + camera.znear = og["znear"]; + } else { + camera.fov_size = 10; + } + + } else if (type == "perspective") { + + camera.perspective = true; + if (d.has("perspective")) { + Dictionary ppt = d["perspective"]; + camera.fov_size = ppt["yfov"]; + camera.zfar = ppt["zfar"]; + camera.znear = ppt["znear"]; + } else { + camera.fov_size = 10; + } + } else { + ERR_EXPLAIN("Camera should be in 'orthographic' or 'perspective'"); + ERR_FAIL_V(ERR_PARSE_ERROR); + } + + state.cameras.push_back(camera); + } +} + +void EditorSceneImporterGLTF::_assign_scene_names(GLTFState &state) { + + for (int i = 0; i < state.nodes.size(); i++) { + GLTFNode *n = state.nodes[i]; + if (n->name == "") { + if (n->mesh >= 0) { + n->name = "Mesh"; + } else if (n->joint_skin >= 0) { + n->name = "Bone"; + } else { + n->name = "Node"; + } + } + + n->name = _gen_unique_name(state, n->name); + } +} + +void EditorSceneImporterGLTF::_generate_node(GLTFState &state, int p_node, Node *p_parent, Node *p_owner, Vector<Skeleton *> &skeletons) { + ERR_FAIL_INDEX(p_node, state.nodes.size()); + + GLTFNode *n = state.nodes[p_node]; + Spatial *node; + + if (n->mesh >= 0) { + ERR_FAIL_INDEX(n->mesh, state.meshes.size()); + MeshInstance *mi = memnew(MeshInstance); + const GLTFMesh &mesh = state.meshes[n->mesh]; + mi->set_mesh(mesh.mesh); + for (int i = 0; i < mesh.blend_weights.size(); i++) { + mi->set("blend_shapes/" + mesh.mesh->get_blend_shape_name(i), mesh.blend_weights[i]); + } + + node = mi; + } else if (n->camera >= 0) { + ERR_FAIL_INDEX(n->camera, state.cameras.size()); + Camera *camera = memnew(Camera); + + const GLTFCamera &c = state.cameras[n->camera]; + if (c.perspective) { + camera->set_perspective(c.fov_size, c.znear, c.znear); + } else { + camera->set_orthogonal(c.fov_size, c.znear, c.znear); + } + + node = camera; + } else { + node = memnew(Spatial); + } + + node->set_name(n->name); + + if (n->child_of_skeleton >= 0) { + //move skeleton around and place it on node, as the node _is_ a skeleton. + Skeleton *s = skeletons[n->child_of_skeleton]; + p_parent = s; + } + + p_parent->add_child(node); + node->set_owner(p_owner); + node->set_transform(n->xform); + + for (int i = 0; i < n->skeleton_children.size(); i++) { + + Skeleton *s = skeletons[n->skeleton_children[i]]; + s->get_parent()->remove_child(s); + node->add_child(s); + s->set_owner(p_owner); + } + + for (int i = 0; i < n->children.size(); i++) { + if (state.nodes[n->children[i]]->joint_skin >= 0) { + _generate_bone(state, n->children[i], skeletons, -1); + } else { + _generate_node(state, n->children[i], node, p_owner, skeletons); + } + } +} + +void EditorSceneImporterGLTF::_generate_bone(GLTFState &state, int p_node, Vector<Skeleton *> &skeletons, int p_parent_bone) { + ERR_FAIL_INDEX(p_node, state.nodes.size()); + + GLTFNode *n = state.nodes[p_node]; + + ERR_FAIL_COND(n->joint_skin < 0); + + int bone_index = skeletons[n->joint_skin]->get_bone_count(); + skeletons[n->joint_skin]->add_bone(n->name); + if (p_parent_bone >= 0) { + skeletons[n->joint_skin]->set_bone_parent(bone_index, p_parent_bone); + } + skeletons[n->joint_skin]->set_bone_rest(bone_index, state.skins[n->joint_skin].bones[n->joint_bone].inverse_bind.affine_inverse()); + + for (int i = 0; i < n->children.size(); i++) { + ERR_CONTINUE(state.nodes[n->children[i]]->joint_skin < 0); + _generate_bone(state, n->children[i], skeletons, bone_index); + } +} + +Spatial *EditorSceneImporterGLTF::_generate_scene(GLTFState &state) { + + Spatial *root = memnew(Spatial); + root->set_name(state.scene_name); + //generate skeletons + Vector<Skeleton *> skeletons; + for (int i = 0; i < state.skins.size(); i++) { + Skeleton *s = memnew(Skeleton); + String name = state.skins[i].name; + if (name == "") { + name = _gen_unique_name(state, "Skeleton"); + } + s->set_name(name); + root->add_child(s); + s->set_owner(root); + skeletons.push_back(s); + } + for (int i = 0; i < state.root_nodes.size(); i++) { + if (state.nodes[state.root_nodes[i]]->joint_skin >= 0) { + _generate_bone(state, state.root_nodes[i], skeletons, -1); + } else { + _generate_node(state, state.root_nodes[i], root, root, skeletons); + } + } + + for (int i = 0; i < skeletons.size(); i++) { + skeletons[i]->localize_rests(); + } + + return root; +} + +Node *EditorSceneImporterGLTF::import_scene(const String &p_path, uint32_t p_flags, int p_bake_fps, List<String> *r_missing_deps, Error *r_err) { + + GLTFState state; + Error err = _parse_json(p_path, state); + if (err) + return NULL; + + ERR_FAIL_COND_V(!state.json.has("asset"), NULL); + + Dictionary asset = state.json["asset"]; + + ERR_FAIL_COND_V(!asset.has("version"), NULL); + + String version = asset["version"]; + + state.major_version = version.get_slice(".", 0).to_int(); + state.minor_version = version.get_slice(".", 1).to_int(); + + /* STEP 0 PARSE SCENE */ + err = _parse_scenes(state); + if (err != OK) + return NULL; + + /* STEP 1 PARSE NODES */ + err = _parse_nodes(state); + if (err != OK) + return NULL; + + /* STEP 2 PARSE BUFFERS */ + err = _parse_buffers(state, p_path.get_base_dir()); + if (err != OK) + return NULL; + + /* STEP 3 PARSE BUFFER VIEWS */ + err = _parse_buffer_views(state); + if (err != OK) + return NULL; + + /* STEP 4 PARSE ACCESSORS */ + err = _parse_accessors(state); + if (err != OK) + return NULL; + + /* STEP 5 PARSE IMAGES */ + err = _parse_images(state, p_path.get_base_dir()); + if (err != OK) + return NULL; + + /* STEP 6 PARSE TEXTURES */ + err = _parse_textures(state); + if (err != OK) + return NULL; + + /* STEP 7 PARSE TEXTURES */ + err = _parse_materials(state); + if (err != OK) + return NULL; + + /* STEP 8 PARSE MESHES (we have enough info now) */ + err = _parse_meshes(state); + if (err != OK) + return NULL; + + /* STEP 9 PARSE SKINS */ + err = _parse_skins(state); + if (err != OK) + return NULL; + + /* STEP 10 PARSE CAMERAS */ + err = _parse_cameras(state); + if (err != OK) + return NULL; + + _assign_scene_names(state); + + Spatial *scene = _generate_scene(state); + + return scene; +} + +Ref<Animation> EditorSceneImporterGLTF::import_animation(const String &p_path, uint32_t p_flags) { + + return Ref<Animation>(); +} + +EditorSceneImporterGLTF::EditorSceneImporterGLTF() { +} diff --git a/editor/import/editor_scene_importer_gltf.h b/editor/import/editor_scene_importer_gltf.h new file mode 100644 index 0000000000..ab6dc6939a --- /dev/null +++ b/editor/import/editor_scene_importer_gltf.h @@ -0,0 +1,258 @@ +#ifndef EDITOR_SCENE_IMPORTER_GLTF_H +#define EDITOR_SCENE_IMPORTER_GLTF_H + +#include "editor/import/resource_importer_scene.h" +#include "scene/3d/skeleton.h" +#include "scene/3d/spatial.h" + +class EditorSceneImporterGLTF : public EditorSceneImporter { + + GDCLASS(EditorSceneImporterGLTF, EditorSceneImporter); + + enum { + ARRAY_BUFFER = 34962, + ELEMENT_ARRAY_BUFFER = 34963, + + TYPE_BYTE = 5120, + TYPE_UNSIGNED_BYTE = 5121, + TYPE_SHORT = 5122, + TYPE_UNSIGNED_SHORT = 5123, + TYPE_UNSIGNED_INT = 5125, + TYPE_FLOAT = 5126, + + COMPONENT_TYPE_BYTE = 5120, + COMPONENT_TYPE_UNSIGNED_BYTE = 5121, + COMPONENT_TYPE_SHORT = 5122, + COMPONENT_TYPE_UNSIGNED_SHORT = 5123, + COMPONENT_TYPE_INT = 5125, + COMPONENT_TYPE_FLOAT = 5126, + + }; + + String _get_component_type_name(uint32_t p_component); + int _get_component_type_size(int component_type); + + enum GLTFType { + TYPE_SCALAR, + TYPE_VEC2, + TYPE_VEC3, + TYPE_VEC4, + TYPE_MAT2, + TYPE_MAT3, + TYPE_MAT4, + }; + + String _get_type_name(GLTFType p_component); + + struct GLTFNode { + //matrices need to be transformed to this + int parent; + + Transform xform; + String name; + + int mesh; + int camera; + int skin; + int skeleton_skin; + int child_of_skeleton; // put as children of skeleton + Vector<int> skeleton_children; //skeleton put as children of this + + int joint_skin; + int joint_bone; + + //keep them for animation + Vector3 translation; + Quat rotation; + Vector3 scale; + + Vector<int> children; + + GLTFNode() { + joint_skin = -1; + joint_bone = -1; + child_of_skeleton = -1; + skeleton_skin = -1; + mesh = -1; + camera = -1; + parent = -1; + scale = Vector3(1, 1, 1); + } + }; + + struct GLTFBufferView { + + int buffer; + int byte_offset; + int byte_length; + int byte_stride; + bool indices; + //matrices need to be transformed to this + + GLTFBufferView() { + buffer = 0; + byte_offset = 0; + byte_length = 0; + byte_stride = 0; + indices = false; + } + }; + + struct GLTFAccessor { + + int buffer_view; + int byte_offset; + int component_type; + bool normalized; + int count; + GLTFType type; + float min; + float max; + int sparse_count; + int sparse_indices_buffer_view; + int sparse_indices_byte_offset; + int sparse_indices_component_type; + int sparse_values_buffer_view; + int sparse_values_byte_offset; + + //matrices need to be transformed to this + + GLTFAccessor() { + buffer_view = 0; + byte_offset = 0; + component_type = 0; + normalized = false; + count = 0; + min = 0; + max = 0; + sparse_count = 0; + sparse_indices_byte_offset = 0; + sparse_values_byte_offset = 0; + } + }; + struct GLTFTexture { + int src_image; + }; + + struct GLTFSkin { + + String name; + struct Bone { + Transform inverse_bind; + int node; + }; + + int skeleton; + Vector<Bone> bones; + + //matrices need to be transformed to this + + GLTFSkin() { + skeleton = -1; + } + }; + + struct GLTFMesh { + Ref<ArrayMesh> mesh; + Vector<float> blend_weights; + }; + + struct GLTFCamera { + + bool perspective; + float fov_size; + float zfar; + float znear; + + GLTFCamera() { + perspective = true; + fov_size = 65; + zfar = 500; + znear = 0.1; + } + }; + + struct GLTFState { + + Dictionary json; + int major_version; + int minor_version; + Vector<uint8_t> gfb_data; + + Vector<GLTFNode *> nodes; + Vector<Vector<uint8_t> > buffers; + Vector<GLTFBufferView> buffer_views; + Vector<GLTFAccessor> accessors; + + Vector<GLTFMesh> meshes; //meshes are loaded directly, no reason not to. + Vector<Ref<Material> > materials; + + String scene_name; + Vector<int> root_nodes; + + Vector<GLTFTexture> textures; + Vector<Ref<Texture> > images; + + Vector<GLTFSkin> skins; + Vector<GLTFCamera> cameras; + + Set<String> unique_names; + + Map<int, Vector<int> > skin_users; //cache skin users + + ~GLTFState() { + for (int i = 0; i < nodes.size(); i++) { + memdelete(nodes[i]); + } + } + }; + + String _gen_unique_name(GLTFState &state, const String &p_name); + + Ref<Texture> _get_texture(GLTFState &state, int p_texture); + + Error _parse_json(const String &p_path, GLTFState &state); + + Error _parse_scenes(GLTFState &state); + Error _parse_nodes(GLTFState &state); + Error _parse_buffers(GLTFState &state, const String &p_base_path); + Error _parse_buffer_views(GLTFState &state); + GLTFType _get_type_from_str(const String &p_string); + Error _parse_accessors(GLTFState &state); + Error _decode_buffer_view(GLTFState &state, int p_buffer_view, double *dst, int skip_every, int skip_bytes, int element_size, int count, GLTFType type, int component_count, int component_type, int component_size, bool normalized, int byte_offset, bool for_vertex); + Vector<double> _decode_accessor(GLTFState &state, int p_accessor, bool p_for_vertex); + PoolVector<float> _decode_accessor_as_floats(GLTFState &state, int p_accessor, bool p_for_vertex); + PoolVector<int> _decode_accessor_as_ints(GLTFState &state, int p_accessor, bool p_for_vertex); + PoolVector<Vector2> _decode_accessor_as_vec2(GLTFState &state, int p_accessor, bool p_for_vertex); + PoolVector<Vector3> _decode_accessor_as_vec3(GLTFState &state, int p_accessor, bool p_for_vertex); + PoolVector<Color> _decode_accessor_as_color(GLTFState &state, int p_accessor, bool p_for_vertex); + Vector<Transform2D> _decode_accessor_as_xform2d(GLTFState &state, int p_accessor, bool p_for_vertex); + Vector<Basis> _decode_accessor_as_basis(GLTFState &state, int p_accessor, bool p_for_vertex); + Vector<Transform> _decode_accessor_as_xform(GLTFState &state, int p_accessor, bool p_for_vertex); + + void _generate_bone(GLTFState &state, int p_node, Vector<Skeleton *> &skeletons, int p_parent_bone); + void _generate_node(GLTFState &state, int p_node, Node *p_parent, Node *p_owner, Vector<Skeleton *> &skeletons); + Spatial *_generate_scene(GLTFState &state); + + Error _parse_meshes(GLTFState &state); + Error _parse_images(GLTFState &state, const String &p_base_path); + Error _parse_textures(GLTFState &state); + + Error _parse_materials(GLTFState &state); + + Error _parse_skins(GLTFState &state); + + Error _parse_cameras(GLTFState &state); + + void _assign_scene_names(GLTFState &state); + +public: + virtual uint32_t get_import_flags() const; + virtual void get_extensions(List<String> *r_extensions) const; + virtual Node *import_scene(const String &p_path, uint32_t p_flags, int p_bake_fps, List<String> *r_missing_deps = NULL, Error *r_err = NULL); + virtual Ref<Animation> import_animation(const String &p_path, uint32_t p_flags); + + EditorSceneImporterGLTF(); +}; + +#endif // EDITOR_SCENE_IMPORTER_GLTF_H |