diff options
author | Juan Linietsky <reduzio@gmail.com> | 2017-09-07 18:00:47 -0300 |
---|---|---|
committer | Juan Linietsky <reduzio@gmail.com> | 2017-09-07 18:00:47 -0300 |
commit | eedb39091aaa1dc0b8f204844bb1eb270b2349f6 (patch) | |
tree | ed08e5e7baf7d21403da34d531223404688513aa /drivers | |
parent | 1eeda0f32f66b48c8df3b93f333bf702b149ba31 (diff) |
Several fixes to directional shadows, closes #10926
Added option to change directional light range mode, between optimized and stable. For Orthogonal, you might need to use optimized.
Diffstat (limited to 'drivers')
-rw-r--r-- | drivers/gles3/rasterizer_scene_gles3.cpp | 4 | ||||
-rw-r--r-- | drivers/gles3/rasterizer_storage_gles3.cpp | 17 | ||||
-rw-r--r-- | drivers/gles3/rasterizer_storage_gles3.h | 4 | ||||
-rw-r--r-- | drivers/gles3/shaders/scene.glsl | 1815 |
4 files changed, 934 insertions, 906 deletions
diff --git a/drivers/gles3/rasterizer_scene_gles3.cpp b/drivers/gles3/rasterizer_scene_gles3.cpp index b695b7e704..2c936b48c8 100644 --- a/drivers/gles3/rasterizer_scene_gles3.cpp +++ b/drivers/gles3/rasterizer_scene_gles3.cpp @@ -2599,7 +2599,7 @@ void RasterizerSceneGLES3::_setup_directional_light(int p_index, const Transform } } - ubo_data.shadow_split_offsets[j] = 1.0 / li->shadow_transform[j].split; + ubo_data.shadow_split_offsets[j] = li->shadow_transform[j].split; Transform modelview = (p_camera_inverse_transform * li->shadow_transform[j].transform).inverse(); @@ -4331,7 +4331,7 @@ void RasterizerSceneGLES3::render_scene(const Transform &p_cam_transform, const storage->canvas->draw_generic_textured_rect(Rect2(0, 0, storage->frame.current_rt->width / 2, storage->frame.current_rt->height / 2), Rect2(0, 0, 1, 1)); } - if (false && directional_shadow.fbo) { + if (true && directional_shadow.fbo) { //_copy_texture_to_front_buffer(shadow_atlas->depth); storage->canvas->canvas_begin(); diff --git a/drivers/gles3/rasterizer_storage_gles3.cpp b/drivers/gles3/rasterizer_storage_gles3.cpp index a744abdfa8..3cacfac578 100644 --- a/drivers/gles3/rasterizer_storage_gles3.cpp +++ b/drivers/gles3/rasterizer_storage_gles3.cpp @@ -4473,6 +4473,7 @@ RID RasterizerStorageGLES3::light_create(VS::LightType p_type) { light->omni_shadow_mode = VS::LIGHT_OMNI_SHADOW_DUAL_PARABOLOID; light->omni_shadow_detail = VS::LIGHT_OMNI_SHADOW_DETAIL_VERTICAL; light->directional_blend_splits = false; + light->directional_range_mode = VS::LIGHT_DIRECTIONAL_SHADOW_DEPTH_RANGE_STABLE; light->reverse_cull = false; light->version = 0; @@ -4625,6 +4626,22 @@ VS::LightDirectionalShadowMode RasterizerStorageGLES3::light_directional_get_sha return light->directional_shadow_mode; } +void RasterizerStorageGLES3::light_directional_set_shadow_depth_range_mode(RID p_light, VS::LightDirectionalShadowDepthRangeMode p_range_mode) { + + Light *light = light_owner.getornull(p_light); + ERR_FAIL_COND(!light); + + light->directional_range_mode=p_range_mode; +} + +VS::LightDirectionalShadowDepthRangeMode RasterizerStorageGLES3::light_directional_get_shadow_depth_range_mode(RID p_light) const { + + const Light *light = light_owner.getornull(p_light); + ERR_FAIL_COND_V(!light, VS::LIGHT_DIRECTIONAL_SHADOW_DEPTH_RANGE_STABLE); + + return light->directional_range_mode; +} + VS::LightType RasterizerStorageGLES3::light_get_type(RID p_light) const { const Light *light = light_owner.getornull(p_light); diff --git a/drivers/gles3/rasterizer_storage_gles3.h b/drivers/gles3/rasterizer_storage_gles3.h index b26032dbc4..6abc22b643 100644 --- a/drivers/gles3/rasterizer_storage_gles3.h +++ b/drivers/gles3/rasterizer_storage_gles3.h @@ -879,6 +879,7 @@ public: VS::LightOmniShadowMode omni_shadow_mode; VS::LightOmniShadowDetail omni_shadow_detail; VS::LightDirectionalShadowMode directional_shadow_mode; + VS::LightDirectionalShadowDepthRangeMode directional_range_mode; bool directional_blend_splits; uint64_t version; }; @@ -906,6 +907,9 @@ public: virtual VS::LightDirectionalShadowMode light_directional_get_shadow_mode(RID p_light); virtual VS::LightOmniShadowMode light_omni_get_shadow_mode(RID p_light); + virtual void light_directional_set_shadow_depth_range_mode(RID p_light, VS::LightDirectionalShadowDepthRangeMode p_range_mode); + virtual VS::LightDirectionalShadowDepthRangeMode light_directional_get_shadow_depth_range_mode(RID p_light) const; + virtual bool light_has_shadow(RID p_light) const; virtual VS::LightType light_get_type(RID p_light) const; diff --git a/drivers/gles3/shaders/scene.glsl b/drivers/gles3/shaders/scene.glsl index 977cee5fcb..26e05a0be3 100644 --- a/drivers/gles3/shaders/scene.glsl +++ b/drivers/gles3/shaders/scene.glsl @@ -60,43 +60,43 @@ layout(location=12) in highp vec4 instance_custom_data; layout(std140) uniform SceneData { //ubo:0 - highp mat4 projection_matrix; - highp mat4 camera_inverse_matrix; - highp mat4 camera_matrix; - - mediump vec4 ambient_light_color; - mediump vec4 bg_color; - - mediump vec4 fog_color_enabled; - mediump vec4 fog_sun_color_amount; - - mediump float ambient_energy; - mediump float bg_energy; - - mediump float z_offset; - mediump float z_slope_scale; - highp float shadow_dual_paraboloid_render_zfar; - highp float shadow_dual_paraboloid_render_side; - - highp vec2 screen_pixel_size; - highp vec2 shadow_atlas_pixel_size; - highp vec2 directional_shadow_pixel_size; - - highp float time; - highp float z_far; - mediump float reflection_multiplier; - mediump float subsurface_scatter_width; - mediump float ambient_occlusion_affect_light; - - bool fog_depth_enabled; - highp float fog_depth_begin; - highp float fog_depth_curve; - bool fog_transmit_enabled; - highp float fog_transmit_curve; - bool fog_height_enabled; - highp float fog_height_min; - highp float fog_height_max; - highp float fog_height_curve; + highp mat4 projection_matrix; + highp mat4 camera_inverse_matrix; + highp mat4 camera_matrix; + + mediump vec4 ambient_light_color; + mediump vec4 bg_color; + + mediump vec4 fog_color_enabled; + mediump vec4 fog_sun_color_amount; + + mediump float ambient_energy; + mediump float bg_energy; + + mediump float z_offset; + mediump float z_slope_scale; + highp float shadow_dual_paraboloid_render_zfar; + highp float shadow_dual_paraboloid_render_side; + + highp vec2 screen_pixel_size; + highp vec2 shadow_atlas_pixel_size; + highp vec2 directional_shadow_pixel_size; + + highp float time; + highp float z_far; + mediump float reflection_multiplier; + mediump float subsurface_scatter_width; + mediump float ambient_occlusion_affect_light; + + bool fog_depth_enabled; + highp float fog_depth_begin; + highp float fog_depth_curve; + bool fog_transmit_enabled; + highp float fog_transmit_curve; + bool fog_height_enabled; + highp float fog_height_min; + highp float fog_height_max; + highp float fog_height_curve; }; @@ -107,17 +107,17 @@ uniform highp mat4 world_transform; layout(std140) uniform DirectionalLightData { //ubo:3 - highp vec4 light_pos_inv_radius; - mediump vec4 light_direction_attenuation; - mediump vec4 light_color_energy; - mediump vec4 light_params; //cone attenuation, angle, specular, shadow enabled, - mediump vec4 light_clamp; - mediump vec4 shadow_color_contact; - highp mat4 shadow_matrix1; - highp mat4 shadow_matrix2; - highp mat4 shadow_matrix3; - highp mat4 shadow_matrix4; - mediump vec4 shadow_split_offsets; + highp vec4 light_pos_inv_radius; + mediump vec4 light_direction_attenuation; + mediump vec4 light_color_energy; + mediump vec4 light_params; //cone attenuation, angle, specular, shadow enabled, + mediump vec4 light_clamp; + mediump vec4 shadow_color_contact; + highp mat4 shadow_matrix1; + highp mat4 shadow_matrix2; + highp mat4 shadow_matrix3; + highp mat4 shadow_matrix4; + mediump vec4 shadow_split_offsets; }; #endif @@ -127,25 +127,25 @@ layout(std140) uniform DirectionalLightData { //ubo:3 struct LightData { - highp vec4 light_pos_inv_radius; - mediump vec4 light_direction_attenuation; - mediump vec4 light_color_energy; - mediump vec4 light_params; //cone attenuation, angle, specular, shadow enabled, - mediump vec4 light_clamp; - mediump vec4 shadow_color_contact; - highp mat4 shadow_matrix; + highp vec4 light_pos_inv_radius; + mediump vec4 light_direction_attenuation; + mediump vec4 light_color_energy; + mediump vec4 light_params; //cone attenuation, angle, specular, shadow enabled, + mediump vec4 light_clamp; + mediump vec4 shadow_color_contact; + highp mat4 shadow_matrix; }; layout(std140) uniform OmniLightData { //ubo:4 - LightData omni_lights[MAX_LIGHT_DATA_STRUCTS]; + LightData omni_lights[MAX_LIGHT_DATA_STRUCTS]; }; layout(std140) uniform SpotLightData { //ubo:5 - LightData spot_lights[MAX_LIGHT_DATA_STRUCTS]; + LightData spot_lights[MAX_LIGHT_DATA_STRUCTS]; }; #ifdef USE_FORWARD_LIGHTING @@ -164,44 +164,44 @@ out vec4 specular_light_interp; void light_compute(vec3 N, vec3 L,vec3 V, vec3 light_color,float roughness,inout vec3 diffuse, inout vec3 specular) { - float dotNL = max(dot(N,L), 0.0 ); - diffuse += dotNL * light_color; + float dotNL = max(dot(N,L), 0.0 ); + diffuse += dotNL * light_color; - if (roughness > 0.0) { + if (roughness > 0.0) { - vec3 H = normalize(V + L); - float dotNH = max(dot(N,H), 0.0 ); - float intensity = pow( dotNH, (1.0-roughness) * 256.0); - specular += light_color * intensity; + vec3 H = normalize(V + L); + float dotNH = max(dot(N,H), 0.0 ); + float intensity = pow( dotNH, (1.0-roughness) * 256.0); + specular += light_color * intensity; - } + } } void light_process_omni(int idx, vec3 vertex, vec3 eye_vec,vec3 normal, float roughness,inout vec3 diffuse, inout vec3 specular) { - vec3 light_rel_vec = omni_lights[idx].light_pos_inv_radius.xyz-vertex; - float light_length = length( light_rel_vec ); - float normalized_distance = light_length*omni_lights[idx].light_pos_inv_radius.w; - vec3 light_attenuation = vec3(pow( max(1.0 - normalized_distance, 0.0), omni_lights[idx].light_direction_attenuation.w )); + vec3 light_rel_vec = omni_lights[idx].light_pos_inv_radius.xyz-vertex; + float light_length = length( light_rel_vec ); + float normalized_distance = light_length*omni_lights[idx].light_pos_inv_radius.w; + vec3 light_attenuation = vec3(pow( max(1.0 - normalized_distance, 0.0), omni_lights[idx].light_direction_attenuation.w )); - light_compute(normal,normalize(light_rel_vec),eye_vec,omni_lights[idx].light_color_energy.rgb * light_attenuation,roughness,diffuse,specular); + light_compute(normal,normalize(light_rel_vec),eye_vec,omni_lights[idx].light_color_energy.rgb * light_attenuation,roughness,diffuse,specular); } void light_process_spot(int idx, vec3 vertex, vec3 eye_vec, vec3 normal, float roughness, inout vec3 diffuse, inout vec3 specular) { - vec3 light_rel_vec = spot_lights[idx].light_pos_inv_radius.xyz-vertex; - float light_length = length( light_rel_vec ); - float normalized_distance = light_length*spot_lights[idx].light_pos_inv_radius.w; - vec3 light_attenuation = vec3(pow( max(1.0 - normalized_distance, 0.001), spot_lights[idx].light_direction_attenuation.w )); - vec3 spot_dir = spot_lights[idx].light_direction_attenuation.xyz; - float spot_cutoff=spot_lights[idx].light_params.y; - float scos = max(dot(-normalize(light_rel_vec), spot_dir),spot_cutoff); - float spot_rim = (1.0 - scos) / (1.0 - spot_cutoff); - light_attenuation *= 1.0 - pow( max(spot_rim,0.001), spot_lights[idx].light_params.x); + vec3 light_rel_vec = spot_lights[idx].light_pos_inv_radius.xyz-vertex; + float light_length = length( light_rel_vec ); + float normalized_distance = light_length*spot_lights[idx].light_pos_inv_radius.w; + vec3 light_attenuation = vec3(pow( max(1.0 - normalized_distance, 0.001), spot_lights[idx].light_direction_attenuation.w )); + vec3 spot_dir = spot_lights[idx].light_direction_attenuation.xyz; + float spot_cutoff=spot_lights[idx].light_params.y; + float scos = max(dot(-normalize(light_rel_vec), spot_dir),spot_cutoff); + float spot_rim = (1.0 - scos) / (1.0 - spot_cutoff); + light_attenuation *= 1.0 - pow( max(spot_rim,0.001), spot_lights[idx].light_params.x); - light_compute(normal,normalize(light_rel_vec),eye_vec,spot_lights[idx].light_color_energy.rgb*light_attenuation,roughness,diffuse,specular); + light_compute(normal,normalize(light_rel_vec),eye_vec,spot_lights[idx].light_color_energy.rgb*light_attenuation,roughness,diffuse,specular); } @@ -262,118 +262,118 @@ out highp vec4 position_interp; void main() { - highp vec4 vertex = vertex_attrib; // vec4(vertex_attrib.xyz * data_attrib.x,1.0); + highp vec4 vertex = vertex_attrib; // vec4(vertex_attrib.xyz * data_attrib.x,1.0); - mat4 world_matrix = world_transform; + mat4 world_matrix = world_transform; #ifdef USE_INSTANCING - { - highp mat4 m=mat4(instance_xform0,instance_xform1,instance_xform2,vec4(0.0,0.0,0.0,1.0)); - world_matrix = world_matrix * transpose(m); - } + { + highp mat4 m=mat4(instance_xform0,instance_xform1,instance_xform2,vec4(0.0,0.0,0.0,1.0)); + world_matrix = world_matrix * transpose(m); + } #endif - vec3 normal = normal_attrib * normal_mult; + vec3 normal = normal_attrib * normal_mult; #if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) || defined(LIGHT_USE_ANISOTROPY) - vec3 tangent = tangent_attrib.xyz; - tangent*=normal_mult; - float binormalf = tangent_attrib.a; + vec3 tangent = tangent_attrib.xyz; + tangent*=normal_mult; + float binormalf = tangent_attrib.a; #endif #if defined(ENABLE_COLOR_INTERP) - color_interp = color_attrib; + color_interp = color_attrib; #if defined(USE_INSTANCING) - color_interp *= instance_color; + color_interp *= instance_color; #endif #endif #ifdef USE_SKELETON - { - //skeleton transform - ivec2 tex_ofs = ivec2( bone_indices.x%256, (bone_indices.x/256)*3 ); - highp mat3x4 m = mat3x4( - texelFetch(skeleton_texture,tex_ofs,0), - texelFetch(skeleton_texture,tex_ofs+ivec2(0,1),0), - texelFetch(skeleton_texture,tex_ofs+ivec2(0,2),0) - ) * bone_weights.x; + { + //skeleton transform + ivec2 tex_ofs = ivec2( bone_indices.x%256, (bone_indices.x/256)*3 ); + highp mat3x4 m = mat3x4( + texelFetch(skeleton_texture,tex_ofs,0), + texelFetch(skeleton_texture,tex_ofs+ivec2(0,1),0), + texelFetch(skeleton_texture,tex_ofs+ivec2(0,2),0) + ) * bone_weights.x; - tex_ofs = ivec2( bone_indices.y%256, (bone_indices.y/256)*3 ); + tex_ofs = ivec2( bone_indices.y%256, (bone_indices.y/256)*3 ); - m+= mat3x4( - texelFetch(skeleton_texture,tex_ofs,0), - texelFetch(skeleton_texture,tex_ofs+ivec2(0,1),0), - texelFetch(skeleton_texture,tex_ofs+ivec2(0,2),0) - ) * bone_weights.y; + m+= mat3x4( + texelFetch(skeleton_texture,tex_ofs,0), + texelFetch(skeleton_texture,tex_ofs+ivec2(0,1),0), + texelFetch(skeleton_texture,tex_ofs+ivec2(0,2),0) + ) * bone_weights.y; - tex_ofs = ivec2( bone_indices.z%256, (bone_indices.z/256)*3 ); + tex_ofs = ivec2( bone_indices.z%256, (bone_indices.z/256)*3 ); - m+= mat3x4( - texelFetch(skeleton_texture,tex_ofs,0), - texelFetch(skeleton_texture,tex_ofs+ivec2(0,1),0), - texelFetch(skeleton_texture,tex_ofs+ivec2(0,2),0) - ) * bone_weights.z; + m+= mat3x4( + texelFetch(skeleton_texture,tex_ofs,0), + texelFetch(skeleton_texture,tex_ofs+ivec2(0,1),0), + texelFetch(skeleton_texture,tex_ofs+ivec2(0,2),0) + ) * bone_weights.z; - tex_ofs = ivec2( bone_indices.w%256, (bone_indices.w/256)*3 ); + tex_ofs = ivec2( bone_indices.w%256, (bone_indices.w/256)*3 ); - m+= mat3x4( - texelFetch(skeleton_texture,tex_ofs,0), - texelFetch(skeleton_texture,tex_ofs+ivec2(0,1),0), - texelFetch(skeleton_texture,tex_ofs+ivec2(0,2),0) - ) * bone_weights.w; + m+= mat3x4( + texelFetch(skeleton_texture,tex_ofs,0), + texelFetch(skeleton_texture,tex_ofs+ivec2(0,1),0), + texelFetch(skeleton_texture,tex_ofs+ivec2(0,2),0) + ) * bone_weights.w; - vertex.xyz = vertex * m; + vertex.xyz = vertex * m; - normal = vec4(normal,0.0) * m; + normal = vec4(normal,0.0) * m; #if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) || defined(LIGHT_USE_ANISOTROPY) - tangent.xyz = vec4(tangent.xyz,0.0) * m; + tangent.xyz = vec4(tangent.xyz,0.0) * m; #endif - } + } #endif #if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) || defined(LIGHT_USE_ANISOTROPY) - vec3 binormal = normalize( cross(normal,tangent) * binormalf ); + vec3 binormal = normalize( cross(normal,tangent) * binormalf ); #endif #if defined(ENABLE_UV_INTERP) - uv_interp = uv_attrib; + uv_interp = uv_attrib; #endif #if defined(ENABLE_UV2_INTERP) - uv2_interp = uv2_attrib; + uv2_interp = uv2_attrib; #endif #if defined(USE_INSTANCING) && defined(ENABLE_INSTANCE_CUSTOM) - vec4 instance_custom = instance_custom_data; + vec4 instance_custom = instance_custom_data; #else - vec4 instance_custom = vec4(0.0); + vec4 instance_custom = vec4(0.0); #endif - highp mat4 modelview = camera_inverse_matrix * world_matrix; - highp mat4 local_projection = projection_matrix; + highp mat4 modelview = camera_inverse_matrix * world_matrix; + highp mat4 local_projection = projection_matrix; //using world coordinates #if !defined(SKIP_TRANSFORM_USED) && defined(VERTEX_WORLD_COORDS_USED) - vertex = world_matrix * vertex; - normal = normalize((world_matrix * vec4(normal,0.0)).xyz); + vertex = world_matrix * vertex; + normal = normalize((world_matrix * vec4(normal,0.0)).xyz); #if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) || defined(LIGHT_USE_ANISOTROPY) - tangent = normalize((world_matrix * vec4(tangent,0.0)).xyz); - binormal = normalize((world_matrix * vec4(binormal,0.0)).xyz); + tangent = normalize((world_matrix * vec4(tangent,0.0)).xyz); + binormal = normalize((world_matrix * vec4(binormal,0.0)).xyz); #endif #endif - float roughness=0.0; + float roughness=0.0; //defines that make writing custom shaders easier #define projection_matrix local_projection @@ -389,36 +389,36 @@ VERTEX_SHADER_CODE //using local coordinates (default) #if !defined(SKIP_TRANSFORM_USED) && !defined(VERTEX_WORLD_COORDS_USED) - vertex = modelview * vertex; - normal = normalize((modelview * vec4(normal,0.0)).xyz); + vertex = modelview * vertex; + normal = normalize((modelview * vec4(normal,0.0)).xyz); #if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) || defined(LIGHT_USE_ANISOTROPY) - tangent = normalize((modelview * vec4(tangent,0.0)).xyz); - binormal = normalize((modelview * vec4(binormal,0.0)).xyz); + tangent = normalize((modelview * vec4(tangent,0.0)).xyz); + binormal = normalize((modelview * vec4(binormal,0.0)).xyz); #endif #endif //using world coordinates #if !defined(SKIP_TRANSFORM_USED) && defined(VERTEX_WORLD_COORDS_USED) - vertex = camera_inverse_matrix * vertex; - normal = normalize((camera_inverse_matrix * vec4(normal,0.0)).xyz); + vertex = camera_inverse_matrix * vertex; + normal = normalize((camera_inverse_matrix * vec4(normal,0.0)).xyz); #if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) || defined(LIGHT_USE_ANISOTROPY) - tangent = normalize((camera_inverse_matrix * vec4(tangent,0.0)).xyz); - binormal = normalize((camera_inverse_matrix * vec4(binormal,0.0)).xyz); + tangent = normalize((camera_inverse_matrix * vec4(tangent,0.0)).xyz); + binormal = normalize((camera_inverse_matrix * vec4(binormal,0.0)).xyz); #endif #endif - vertex_interp = vertex.xyz; - normal_interp = normal; + vertex_interp = vertex.xyz; + normal_interp = normal; #if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) || defined(LIGHT_USE_ANISOTROPY) - tangent_interp = tangent; - binormal_interp = binormal; + tangent_interp = tangent; + binormal_interp = binormal; #endif @@ -427,29 +427,29 @@ VERTEX_SHADER_CODE #ifdef RENDER_DEPTH_DUAL_PARABOLOID - vertex_interp.z*= shadow_dual_paraboloid_render_side; - normal_interp.z*= shadow_dual_paraboloid_render_side; + vertex_interp.z*= shadow_dual_paraboloid_render_side; + normal_interp.z*= shadow_dual_paraboloid_render_side; - dp_clip=vertex_interp.z; //this attempts to avoid noise caused by objects sent to the other parabolloid side due to bias + dp_clip=vertex_interp.z; //this attempts to avoid noise caused by objects sent to the other parabolloid side due to bias - //for dual paraboloid shadow mapping, this is the fastest but least correct way, as it curves straight edges + //for dual paraboloid shadow mapping, this is the fastest but least correct way, as it curves straight edges - highp vec3 vtx = vertex_interp+normalize(vertex_interp)*z_offset; - highp float distance = length(vtx); - vtx = normalize(vtx); - vtx.xy/=1.0-vtx.z; - vtx.z=(distance/shadow_dual_paraboloid_render_zfar); - vtx.z=vtx.z * 2.0 - 1.0; + highp vec3 vtx = vertex_interp+normalize(vertex_interp)*z_offset; + highp float distance = length(vtx); + vtx = normalize(vtx); + vtx.xy/=1.0-vtx.z; + vtx.z=(distance/shadow_dual_paraboloid_render_zfar); + vtx.z=vtx.z * 2.0 - 1.0; - vertex.xyz=vtx; - vertex.w=1.0; + vertex.xyz=vtx; + vertex.w=1.0; #else - float z_ofs = z_offset; - z_ofs += (1.0-abs(normal_interp.z))*z_slope_scale; - vertex_interp.z-=z_ofs; + float z_ofs = z_offset; + z_ofs += (1.0-abs(normal_interp.z))*z_slope_scale; + vertex_interp.z-=z_ofs; #endif //RENDER_DEPTH_DUAL_PARABOLOID @@ -457,54 +457,54 @@ VERTEX_SHADER_CODE #if !defined(SKIP_TRANSFORM_USED) && !defined(RENDER_DEPTH_DUAL_PARABOLOID) - gl_Position = projection_matrix * vec4(vertex_interp,1.0); + gl_Position = projection_matrix * vec4(vertex_interp,1.0); #else - gl_Position = vertex; + gl_Position = vertex; #endif - position_interp=gl_Position; + position_interp=gl_Position; #ifdef USE_VERTEX_LIGHTING - diffuse_light_interp=vec4(0.0); - specular_light_interp=vec4(0.0); + diffuse_light_interp=vec4(0.0); + specular_light_interp=vec4(0.0); #ifdef USE_FORWARD_LIGHTING - for(int i=0;i<omni_light_count;i++) { - light_process_omni(omni_light_indices[i],vertex_interp,-normalize( vertex_interp ),normal_interp,roughness,diffuse_light_interp.rgb,specular_light_interp.rgb); - } + for(int i=0;i<omni_light_count;i++) { + light_process_omni(omni_light_indices[i],vertex_interp,-normalize( vertex_interp ),normal_interp,roughness,diffuse_light_interp.rgb,specular_light_interp.rgb); + } - for(int i=0;i<spot_light_count;i++) { - light_process_spot(spot_light_indices[i],vertex_interp,-normalize( vertex_interp ),normal_interp,roughness,diffuse_light_interp.rgb,specular_light_interp.rgb); - } + for(int i=0;i<spot_light_count;i++) { + light_process_spot(spot_light_indices[i],vertex_interp,-normalize( vertex_interp ),normal_interp,roughness,diffuse_light_interp.rgb,specular_light_interp.rgb); + } #endif #ifdef USE_LIGHT_DIRECTIONAL - vec3 directional_diffuse = vec3(0.0); - vec3 directional_specular = vec3(0.0); + vec3 directional_diffuse = vec3(0.0); + vec3 directional_specular = vec3(0.0); light_compute(normal_interp,-light_direction_attenuation.xyz,-normalize( vertex_interp ),light_color_energy.rgb,roughness,directional_diffuse,directional_specular); - float diff_avg = dot(diffuse_light_interp.rgb,vec3(0.33333)); - float diff_dir_avg = dot(directional_diffuse,vec3(0.33333)); - if (diff_avg>0.0) { - diffuse_light_interp.a=diff_dir_avg/(diff_avg+diff_dir_avg); - } else { - diffuse_light_interp.a=1.0; - } + float diff_avg = dot(diffuse_light_interp.rgb,vec3(0.33333)); + float diff_dir_avg = dot(directional_diffuse,vec3(0.33333)); + if (diff_avg>0.0) { + diffuse_light_interp.a=diff_dir_avg/(diff_avg+diff_dir_avg); + } else { + diffuse_light_interp.a=1.0; + } - diffuse_light_interp.rgb+=directional_diffuse; + diffuse_light_interp.rgb+=directional_diffuse; - float spec_avg = dot(specular_light_interp.rgb,vec3(0.33333)); - float spec_dir_avg = dot(directional_specular,vec3(0.33333)); - if (spec_avg>0.0) { - specular_light_interp.a=spec_dir_avg/(spec_avg+spec_dir_avg); - } else { - specular_light_interp.a=1.0; - } + float spec_avg = dot(specular_light_interp.rgb,vec3(0.33333)); + float spec_dir_avg = dot(directional_specular,vec3(0.33333)); + if (spec_avg>0.0) { + specular_light_interp.a=spec_dir_avg/(spec_avg+spec_dir_avg); + } else { + specular_light_interp.a=1.0; + } - specular_light_interp.rgb+=directional_specular; + specular_light_interp.rgb+=directional_specular; #endif //USE_LIGHT_DIRECTIONAL @@ -570,8 +570,8 @@ uniform bool no_ambient_light; layout(std140) uniform Radiance { //ubo:2 - mat4 radiance_inverse_xform; - float radiance_ambient_contribution; + mat4 radiance_inverse_xform; + float radiance_ambient_contribution; }; @@ -583,26 +583,26 @@ uniform sampler2DArray radiance_map; //texunit:-2 vec3 textureDualParaboloid(sampler2DArray p_tex, vec3 p_vec,float p_roughness) { - vec3 norm = normalize(p_vec); - norm.xy/=1.0+abs(norm.z); - norm.xy=norm.xy * vec2(0.5,0.25) + vec2(0.5,0.25); - - // we need to lie the derivatives (normg) and assume that DP side is always the same - // to get proper texure filtering - vec2 normg=norm.xy; - if (norm.z>0.0) { - norm.y=0.5-norm.y+0.5; - } - - // thanks to OpenGL spec using floor(layer + 0.5) for texture arrays, - // it's easy to have precision errors using fract() to interpolate layers - // as such, using fixed point to ensure it works. - - float index = p_roughness * RADIANCE_MAX_LOD; - int indexi = int(index * 256.0); - vec3 base = textureGrad(p_tex, vec3(norm.xy, float(indexi/256)),dFdx(normg),dFdy(normg)).xyz; - vec3 next = textureGrad(p_tex, vec3(norm.xy, float(indexi/256+1)),dFdx(normg),dFdy(normg)).xyz; - return mix(base,next,float(indexi%256)/256.0); + vec3 norm = normalize(p_vec); + norm.xy/=1.0+abs(norm.z); + norm.xy=norm.xy * vec2(0.5,0.25) + vec2(0.5,0.25); + + // we need to lie the derivatives (normg) and assume that DP side is always the same + // to get proper texure filtering + vec2 normg=norm.xy; + if (norm.z>0.0) { + norm.y=0.5-norm.y+0.5; + } + + // thanks to OpenGL spec using floor(layer + 0.5) for texture arrays, + // it's easy to have precision errors using fract() to interpolate layers + // as such, using fixed point to ensure it works. + + float index = p_roughness * RADIANCE_MAX_LOD; + int indexi = int(index * 256.0); + vec3 base = textureGrad(p_tex, vec3(norm.xy, float(indexi/256)),dFdx(normg),dFdy(normg)).xyz; + vec3 next = textureGrad(p_tex, vec3(norm.xy, float(indexi/256+1)),dFdx(normg),dFdy(normg)).xyz; + return mix(base,next,float(indexi%256)/256.0); } #else @@ -611,13 +611,13 @@ uniform sampler2D radiance_map; //texunit:-2 vec3 textureDualParaboloid(sampler2D p_tex, vec3 p_vec,float p_roughness) { - vec3 norm = normalize(p_vec); - norm.xy/=1.0+abs(norm.z); - norm.xy=norm.xy * vec2(0.5,0.25) + vec2(0.5,0.25); - if (norm.z>0.0) { - norm.y=0.5-norm.y+0.5; - } - return textureLod(p_tex, norm.xy, p_roughness * RADIANCE_MAX_LOD).xyz; + vec3 norm = normalize(p_vec); + norm.xy/=1.0+abs(norm.z); + norm.xy=norm.xy * vec2(0.5,0.25) + vec2(0.5,0.25); + if (norm.z>0.0) { + norm.y=0.5-norm.y+0.5; + } + return textureLod(p_tex, norm.xy, p_roughness * RADIANCE_MAX_LOD).xyz; } #endif @@ -642,43 +642,43 @@ FRAGMENT_SHADER_GLOBALS layout(std140) uniform SceneData { - highp mat4 projection_matrix; - highp mat4 camera_inverse_matrix; - highp mat4 camera_matrix; - - mediump vec4 ambient_light_color; - mediump vec4 bg_color; - - mediump vec4 fog_color_enabled; - mediump vec4 fog_sun_color_amount; - - mediump float ambient_energy; - mediump float bg_energy; - - mediump float z_offset; - mediump float z_slope_scale; - highp float shadow_dual_paraboloid_render_zfar; - highp float shadow_dual_paraboloid_render_side; - - highp vec2 screen_pixel_size; - highp vec2 shadow_atlas_pixel_size; - highp vec2 directional_shadow_pixel_size; - - highp float time; - highp float z_far; - mediump float reflection_multiplier; - mediump float subsurface_scatter_width; - mediump float ambient_occlusion_affect_light; - - bool fog_depth_enabled; - highp float fog_depth_begin; - highp float fog_depth_curve; - bool fog_transmit_enabled; - highp float fog_transmit_curve; - bool fog_height_enabled; - highp float fog_height_min; - highp float fog_height_max; - highp float fog_height_curve; + highp mat4 projection_matrix; + highp mat4 camera_inverse_matrix; + highp mat4 camera_matrix; + + mediump vec4 ambient_light_color; + mediump vec4 bg_color; + + mediump vec4 fog_color_enabled; + mediump vec4 fog_sun_color_amount; + + mediump float ambient_energy; + mediump float bg_energy; + + mediump float z_offset; + mediump float z_slope_scale; + highp float shadow_dual_paraboloid_render_zfar; + highp float shadow_dual_paraboloid_render_side; + + highp vec2 screen_pixel_size; + highp vec2 shadow_atlas_pixel_size; + highp vec2 directional_shadow_pixel_size; + + highp float time; + highp float z_far; + mediump float reflection_multiplier; + mediump float subsurface_scatter_width; + mediump float ambient_occlusion_affect_light; + + bool fog_depth_enabled; + highp float fog_depth_begin; + highp float fog_depth_curve; + bool fog_transmit_enabled; + highp float fog_transmit_curve; + bool fog_height_enabled; + highp float fog_height_min; + highp float fog_height_max; + highp float fog_height_curve; }; //directional light data @@ -687,17 +687,17 @@ layout(std140) uniform SceneData { layout(std140) uniform DirectionalLightData { - highp vec4 light_pos_inv_radius; - mediump vec4 light_direction_attenuation; - mediump vec4 light_color_energy; - mediump vec4 light_params; //cone attenuation, angle, specular, shadow enabled, - mediump vec4 light_clamp; - mediump vec4 shadow_color_contact; - highp mat4 shadow_matrix1; - highp mat4 shadow_matrix2; - highp mat4 shadow_matrix3; - highp mat4 shadow_matrix4; - mediump vec4 shadow_split_offsets; + highp vec4 light_pos_inv_radius; + mediump vec4 light_direction_attenuation; + mediump vec4 light_color_energy; + mediump vec4 light_params; //cone attenuation, angle, specular, shadow enabled, + mediump vec4 light_clamp; + mediump vec4 shadow_color_contact; + highp mat4 shadow_matrix1; + highp mat4 shadow_matrix2; + highp mat4 shadow_matrix3; + highp mat4 shadow_matrix4; + mediump vec4 shadow_split_offsets; }; @@ -713,25 +713,25 @@ in vec4 specular_light_interp; struct LightData { - highp vec4 light_pos_inv_radius; - mediump vec4 light_direction_attenuation; - mediump vec4 light_color_energy; - mediump vec4 light_params; //cone attenuation, angle, specular, shadow enabled, - mediump vec4 light_clamp; - mediump vec4 shadow_color_contact; - highp mat4 shadow_matrix; + highp vec4 light_pos_inv_radius; + mediump vec4 light_direction_attenuation; + mediump vec4 light_color_energy; + mediump vec4 light_params; //cone attenuation, angle, specular, shadow enabled, + mediump vec4 light_clamp; + mediump vec4 shadow_color_contact; + highp mat4 shadow_matrix; }; layout(std140) uniform OmniLightData { //ubo:4 - LightData omni_lights[MAX_LIGHT_DATA_STRUCTS]; + LightData omni_lights[MAX_LIGHT_DATA_STRUCTS]; }; layout(std140) uniform SpotLightData { //ubo:5 - LightData spot_lights[MAX_LIGHT_DATA_STRUCTS]; + LightData spot_lights[MAX_LIGHT_DATA_STRUCTS]; }; @@ -740,18 +740,18 @@ uniform highp sampler2DShadow shadow_atlas; //texunit:-5 struct ReflectionData { - mediump vec4 box_extents; - mediump vec4 box_offset; - mediump vec4 params; // intensity, 0, interior , boxproject - mediump vec4 ambient; //ambient color, energy - mediump vec4 atlas_clamp; - highp mat4 local_matrix; //up to here for spot and omni, rest is for directional - //notes: for ambientblend, use distance to edge to blend between already existing global environment + mediump vec4 box_extents; + mediump vec4 box_offset; + mediump vec4 params; // intensity, 0, interior , boxproject + mediump vec4 ambient; //ambient color, energy + mediump vec4 atlas_clamp; + highp mat4 local_matrix; //up to here for spot and omni, rest is for directional + //notes: for ambientblend, use distance to edge to blend between already existing global environment }; layout(std140) uniform ReflectionProbeData { //ubo:6 - ReflectionData reflections[MAX_REFLECTION_DATA_STRUCTS]; + ReflectionData reflections[MAX_REFLECTION_DATA_STRUCTS]; }; uniform mediump sampler2D reflection_atlas; //texunit:-3 @@ -798,66 +798,66 @@ uniform highp sampler2D depth_buffer; //texunit:-8 float contact_shadow_compute(vec3 pos, vec3 dir, float max_distance) { - if (abs(dir.z)>0.99) - return 1.0; + if (abs(dir.z)>0.99) + return 1.0; - vec3 endpoint = pos+dir*max_distance; - vec4 source = position_interp; - vec4 dest = projection_matrix * vec4(endpoint, 1.0); + vec3 endpoint = pos+dir*max_distance; + vec4 source = position_interp; + vec4 dest = projection_matrix * vec4(endpoint, 1.0); - vec2 from_screen = (source.xy / source.w) * 0.5 + 0.5; - vec2 to_screen = (dest.xy / dest.w) * 0.5 + 0.5; + vec2 from_screen = (source.xy / source.w) * 0.5 + 0.5; + vec2 to_screen = (dest.xy / dest.w) * 0.5 + 0.5; - vec2 screen_rel = to_screen - from_screen; + vec2 screen_rel = to_screen - from_screen; - if (length(screen_rel)<0.00001) - return 1.0; //too small, don't do anything + if (length(screen_rel)<0.00001) + return 1.0; //too small, don't do anything - /*float pixel_size; //approximate pixel size + /*float pixel_size; //approximate pixel size - if (screen_rel.x > screen_rel.y) { + if (screen_rel.x > screen_rel.y) { - pixel_size = abs((pos.x-endpoint.x)/(screen_rel.x/screen_pixel_size.x)); - } else { - pixel_size = abs((pos.y-endpoint.y)/(screen_rel.y/screen_pixel_size.y)); + pixel_size = abs((pos.x-endpoint.x)/(screen_rel.x/screen_pixel_size.x)); + } else { + pixel_size = abs((pos.y-endpoint.y)/(screen_rel.y/screen_pixel_size.y)); - }*/ - vec4 bias = projection_matrix * vec4(pos+vec3(0.0,0.0,0.04), 1.0); //todo un-harcode the 0.04 + }*/ + vec4 bias = projection_matrix * vec4(pos+vec3(0.0,0.0,0.04), 1.0); //todo un-harcode the 0.04 - vec2 pixel_incr = normalize(screen_rel)*screen_pixel_size; + vec2 pixel_incr = normalize(screen_rel)*screen_pixel_size; - float steps = length(screen_rel) / length(pixel_incr); - steps = min(2000.0,steps); //put a limit to avoid freezing in some strange situation - //steps=10.0; + float steps = length(screen_rel) / length(pixel_incr); + steps = min(2000.0,steps); //put a limit to avoid freezing in some strange situation + //steps=10.0; - vec4 incr = (dest - source)/steps; - float ratio=0.0; - float ratio_incr = 1.0/steps; + vec4 incr = (dest - source)/steps; + float ratio=0.0; + float ratio_incr = 1.0/steps; - while(steps>0.0) { - source += incr*2.0; - bias+=incr*2.0; + while(steps>0.0) { + source += incr*2.0; + bias+=incr*2.0; - vec3 uv_depth = (source.xyz / source.w) * 0.5 + 0.5; - float depth = texture(depth_buffer,uv_depth.xy).r; + vec3 uv_depth = (source.xyz / source.w) * 0.5 + 0.5; + float depth = texture(depth_buffer,uv_depth.xy).r; - if (depth < uv_depth.z) { - if (depth > (bias.z/bias.w) * 0.5 + 0.5) { - return min(pow(ratio,4.0),1.0); - } else { - return 1.0; - } - } + if (depth < uv_depth.z) { + if (depth > (bias.z/bias.w) * 0.5 + 0.5) { + return min(pow(ratio,4.0),1.0); + } else { + return 1.0; + } + } - ratio+=ratio_incr; - steps-=1.0; - } + ratio+=ratio_incr; + steps-=1.0; + } - return 1.0; + return 1.0; } #endif @@ -898,155 +898,155 @@ LIGHT_SHADER_CODE #else - float dotNL = max(dot(N,L), 0.0 ); + float dotNL = max(dot(N,L), 0.0 ); #if defined(DIFFUSE_OREN_NAYAR) - vec3 light_amount; + vec3 light_amount; #else - float light_amount; + float light_amount; #endif #if defined(DIFFUSE_LAMBERT_WRAP) - //energy conserving lambert wrap shader - light_amount = max(0.0,(dot(N,L) + roughness) / ((1.0 + roughness) * (1.0 + roughness))); + //energy conserving lambert wrap shader + light_amount = max(0.0,(dot(N,L) + roughness) / ((1.0 + roughness) * (1.0 + roughness))); #elif defined(DIFFUSE_OREN_NAYAR) - { - float LdotV = dot(L, V); - float NdotL = dot(L, N); - float NdotV = dot(N, V); + { + float LdotV = dot(L, V); + float NdotL = dot(L, N); + float NdotV = dot(N, V); - float s = LdotV - NdotL * NdotV; - float t = mix(1.0, max(NdotL, NdotV), step(0.0, s)); + float s = LdotV - NdotL * NdotV; + float t = mix(1.0, max(NdotL, NdotV), step(0.0, s)); - float sigma2 = roughness * roughness; - vec3 A = 1.0 + sigma2 * (diffuse_color / (sigma2 + 0.13) + 0.5 / (sigma2 + 0.33)); - float B = 0.45 * sigma2 / (sigma2 + 0.09); + float sigma2 = roughness * roughness; + vec3 A = 1.0 + sigma2 * (diffuse_color / (sigma2 + 0.13) + 0.5 / (sigma2 + 0.33)); + float B = 0.45 * sigma2 / (sigma2 + 0.09); - light_amount = max(0.0, NdotL) * (A + vec3(B) * s / t) / M_PI; - } + light_amount = max(0.0, NdotL) * (A + vec3(B) * s / t) / M_PI; + } #elif defined(DIFFUSE_TOON) - light_amount = smoothstep(-roughness,max(roughness,0.01),dot(N,L)); + light_amount = smoothstep(-roughness,max(roughness,0.01),dot(N,L)); #elif defined(DIFFUSE_BURLEY) - { - float NdotL = dot(L, N); - float NdotV = dot(N, V); - float VdotH = dot(N, normalize(L+V)); - float energyBias = mix(roughness, 0.0, 0.5); - float energyFactor = mix(roughness, 1.0, 1.0 / 1.51); - float fd90 = energyBias + 2.0 * VdotH * VdotH * roughness; - float f0 = 1.0; - float lightScatter = f0 + (fd90 - f0) * pow(1.0 - NdotL, 5.0); - float viewScatter = f0 + (fd90 - f0) * pow(1.0 - NdotV, 5.0); - - light_amount = lightScatter * viewScatter * energyFactor; - } + { + float NdotL = dot(L, N); + float NdotV = dot(N, V); + float VdotH = dot(N, normalize(L+V)); + float energyBias = mix(roughness, 0.0, 0.5); + float energyFactor = mix(roughness, 1.0, 1.0 / 1.51); + float fd90 = energyBias + 2.0 * VdotH * VdotH * roughness; + float f0 = 1.0; + float lightScatter = f0 + (fd90 - f0) * pow(1.0 - NdotL, 5.0); + float viewScatter = f0 + (fd90 - f0) * pow(1.0 - NdotV, 5.0); + + light_amount = lightScatter * viewScatter * energyFactor; + } #else - //lambert - light_amount = dotNL; + //lambert + light_amount = dotNL; #endif #if defined(TRANSMISSION_USED) - diffuse += light_color * diffuse_color * mix(vec3(light_amount),vec3(1.0),transmission); + diffuse += light_color * diffuse_color * mix(vec3(light_amount),vec3(1.0),transmission); #else - diffuse += light_color * diffuse_color * light_amount; + diffuse += light_color * diffuse_color * light_amount; #endif - float dotNV = max(dot(N,V), 0.0 ); + float dotNV = max(dot(N,V), 0.0 ); #if defined(LIGHT_USE_RIM) - float rim_light = pow(1.0-dotNV,(1.0-roughness)*16.0); - diffuse += rim_light * rim * mix(vec3(1.0),diffuse_color,rim_tint) * light_color; + float rim_light = pow(1.0-dotNV,(1.0-roughness)*16.0); + diffuse += rim_light * rim * mix(vec3(1.0),diffuse_color,rim_tint) * light_color; #endif - if (roughness > 0.0) { + if (roughness > 0.0) { - // D + // D #if defined(SPECULAR_BLINN) - vec3 H = normalize(V + L); - float dotNH = max(dot(N,H), 0.0 ); - float intensity = pow( dotNH, (1.0-roughness) * 256.0); - specular += light_color * intensity * specular_blob_intensity; + vec3 H = normalize(V + L); + float dotNH = max(dot(N,H), 0.0 ); + float intensity = pow( dotNH, (1.0-roughness) * 256.0); + specular += light_color * intensity * specular_blob_intensity; #elif defined(SPECULAR_PHONG) - vec3 R = normalize(-reflect(L,N)); - float dotNV = max(0.0,dot(R,V)); - float intensity = pow( dotNV, (1.0-roughness) * 256.0); - specular += light_color * intensity * specular_blob_intensity; + vec3 R = normalize(-reflect(L,N)); + float dotNV = max(0.0,dot(R,V)); + float intensity = pow( dotNV, (1.0-roughness) * 256.0); + specular += light_color * intensity * specular_blob_intensity; #elif defined(SPECULAR_TOON) - vec3 R = normalize(-reflect(L,N)); - float dotNV = dot(R,V); - float mid = 1.0-roughness; - mid*=mid; - float intensity = smoothstep(mid-roughness*0.5,mid+roughness*0.5,dotNV) * mid; - diffuse += light_color * intensity * specular_blob_intensity; //write to diffuse, as in toon shading you generally want no reflection + vec3 R = normalize(-reflect(L,N)); + float dotNV = dot(R,V); + float mid = 1.0-roughness; + mid*=mid; + float intensity = smoothstep(mid-roughness*0.5,mid+roughness*0.5,dotNV) * mid; + diffuse += light_color * intensity * specular_blob_intensity; //write to diffuse, as in toon shading you generally want no reflection #elif defined(SPECULAR_DISABLED) - //none.. + //none.. #else - // shlick+ggx as default - float alpha = roughness * roughness; + // shlick+ggx as default + float alpha = roughness * roughness; - vec3 H = normalize(V + L); + vec3 H = normalize(V + L); - float dotNH = max(dot(N,H), 0.0 ); - float dotLH = max(dot(L,H), 0.0 ); + float dotNH = max(dot(N,H), 0.0 ); + float dotLH = max(dot(L,H), 0.0 ); #if defined(LIGHT_USE_ANISOTROPY) - float aspect = sqrt(1.0-anisotropy*0.9); - float rx = roughness/aspect; - float ry = roughness*aspect; - float ax = rx*rx; - float ay = ry*ry; - float dotXH = dot( T, H ); - float dotYH = dot( B, H ); - float pi = M_PI; - float denom = dotXH*dotXH / (ax*ax) + dotYH*dotYH / (ay*ay) + dotNH*dotNH; - float D = 1.0 / ( pi * ax*ay * denom*denom ); + float aspect = sqrt(1.0-anisotropy*0.9); + float rx = roughness/aspect; + float ry = roughness*aspect; + float ax = rx*rx; + float ay = ry*ry; + float dotXH = dot( T, H ); + float dotYH = dot( B, H ); + float pi = M_PI; + float denom = dotXH*dotXH / (ax*ax) + dotYH*dotYH / (ay*ay) + dotNH*dotNH; + float D = 1.0 / ( pi * ax*ay * denom*denom ); #else - float alphaSqr = alpha * alpha; - float pi = M_PI; - float denom = dotNH * dotNH * (alphaSqr - 1.0) + 1.0; - float D = alphaSqr / (pi * denom * denom); + float alphaSqr = alpha * alpha; + float pi = M_PI; + float denom = dotNH * dotNH * (alphaSqr - 1.0) + 1.0; + float D = alphaSqr / (pi * denom * denom); #endif - // F - float F0 = 1.0; - float dotLH5 = SchlickFresnel( dotLH ); - float F = F0 + (1.0 - F0) * (dotLH5); + // F + float F0 = 1.0; + float dotLH5 = SchlickFresnel( dotLH ); + float F = F0 + (1.0 - F0) * (dotLH5); - // V - float k = alpha / 2.0f; - float vis = G1V(dotNL, k) * G1V(dotNV, k); + // V + float k = alpha / 2.0f; + float vis = G1V(dotNL, k) * G1V(dotNV, k); - float speci = dotNL * D * F * vis; + float speci = dotNL * D * F * vis; - specular += speci * light_color * specular_blob_intensity; + specular += speci * light_color * specular_blob_intensity; #endif #if defined(LIGHT_USE_CLEARCOAT) - float Dr = GTR1(dotNH, mix(.1,.001,clearcoat_gloss)); - float Fr = mix(.04, 1.0, dotLH5); - float Gr = G1V(dotNL, .25) * G1V(dotNV, .25); + float Dr = GTR1(dotNH, mix(.1,.001,clearcoat_gloss)); + float Fr = mix(.04, 1.0, dotLH5); + float Gr = G1V(dotNL, .25) * G1V(dotNV, .25); - specular += .25*clearcoat*Gr*Fr*Dr; + specular += .25*clearcoat*Gr*Fr*Dr; #endif - } + } #endif //defined(USE_LIGHT_SHADER_CODE) @@ -1057,36 +1057,36 @@ float sample_shadow(highp sampler2DShadow shadow, vec2 shadow_pixel_size, vec2 p #ifdef SHADOW_MODE_PCF_13 - float avg=textureProj(shadow,vec4(pos,depth,1.0)); - avg+=textureProj(shadow,vec4(pos+vec2(shadow_pixel_size.x,0.0),depth,1.0)); - avg+=textureProj(shadow,vec4(pos+vec2(-shadow_pixel_size.x,0.0),depth,1.0)); - avg+=textureProj(shadow,vec4(pos+vec2(0.0,shadow_pixel_size.y),depth,1.0)); - avg+=textureProj(shadow,vec4(pos+vec2(0.0,-shadow_pixel_size.y),depth,1.0)); - avg+=textureProj(shadow,vec4(pos+vec2(shadow_pixel_size.x,shadow_pixel_size.y),depth,1.0)); - avg+=textureProj(shadow,vec4(pos+vec2(-shadow_pixel_size.x,shadow_pixel_size.y),depth,1.0)); - avg+=textureProj(shadow,vec4(pos+vec2(shadow_pixel_size.x,-shadow_pixel_size.y),depth,1.0)); - avg+=textureProj(shadow,vec4(pos+vec2(-shadow_pixel_size.x,-shadow_pixel_size.y),depth,1.0)); - avg+=textureProj(shadow,vec4(pos+vec2(shadow_pixel_size.x*2.0,0.0),depth,1.0)); - avg+=textureProj(shadow,vec4(pos+vec2(-shadow_pixel_size.x*2.0,0.0),depth,1.0)); - avg+=textureProj(shadow,vec4(pos+vec2(0.0,shadow_pixel_size.y*2.0),depth,1.0)); - avg+=textureProj(shadow,vec4(pos+vec2(0.0,-shadow_pixel_size.y*2.0),depth,1.0)); - return avg*(1.0/13.0); + float avg=textureProj(shadow,vec4(pos,depth,1.0)); + avg+=textureProj(shadow,vec4(pos+vec2(shadow_pixel_size.x,0.0),depth,1.0)); + avg+=textureProj(shadow,vec4(pos+vec2(-shadow_pixel_size.x,0.0),depth,1.0)); + avg+=textureProj(shadow,vec4(pos+vec2(0.0,shadow_pixel_size.y),depth,1.0)); + avg+=textureProj(shadow,vec4(pos+vec2(0.0,-shadow_pixel_size.y),depth,1.0)); + avg+=textureProj(shadow,vec4(pos+vec2(shadow_pixel_size.x,shadow_pixel_size.y),depth,1.0)); + avg+=textureProj(shadow,vec4(pos+vec2(-shadow_pixel_size.x,shadow_pixel_size.y),depth,1.0)); + avg+=textureProj(shadow,vec4(pos+vec2(shadow_pixel_size.x,-shadow_pixel_size.y),depth,1.0)); + avg+=textureProj(shadow,vec4(pos+vec2(-shadow_pixel_size.x,-shadow_pixel_size.y),depth,1.0)); + avg+=textureProj(shadow,vec4(pos+vec2(shadow_pixel_size.x*2.0,0.0),depth,1.0)); + avg+=textureProj(shadow,vec4(pos+vec2(-shadow_pixel_size.x*2.0,0.0),depth,1.0)); + avg+=textureProj(shadow,vec4(pos+vec2(0.0,shadow_pixel_size.y*2.0),depth,1.0)); + avg+=textureProj(shadow,vec4(pos+vec2(0.0,-shadow_pixel_size.y*2.0),depth,1.0)); + return avg*(1.0/13.0); #endif #ifdef SHADOW_MODE_PCF_5 - float avg=textureProj(shadow,vec4(pos,depth,1.0)); - avg+=textureProj(shadow,vec4(pos+vec2(shadow_pixel_size.x,0.0),depth,1.0)); - avg+=textureProj(shadow,vec4(pos+vec2(-shadow_pixel_size.x,0.0),depth,1.0)); - avg+=textureProj(shadow,vec4(pos+vec2(0.0,shadow_pixel_size.y),depth,1.0)); - avg+=textureProj(shadow,vec4(pos+vec2(0.0,-shadow_pixel_size.y),depth,1.0)); - return avg*(1.0/5.0); + float avg=textureProj(shadow,vec4(pos,depth,1.0)); + avg+=textureProj(shadow,vec4(pos+vec2(shadow_pixel_size.x,0.0),depth,1.0)); + avg+=textureProj(shadow,vec4(pos+vec2(-shadow_pixel_size.x,0.0),depth,1.0)); + avg+=textureProj(shadow,vec4(pos+vec2(0.0,shadow_pixel_size.y),depth,1.0)); + avg+=textureProj(shadow,vec4(pos+vec2(0.0,-shadow_pixel_size.y),depth,1.0)); + return avg*(1.0/5.0); #endif #if !defined(SHADOW_MODE_PCF_5) && !defined(SHADOW_MODE_PCF_13) - return textureProj(shadow,vec4(pos,depth,1.0)); + return textureProj(shadow,vec4(pos,depth,1.0)); #endif } @@ -1104,21 +1104,21 @@ in highp float dp_clip; vec3 light_transmittance(float translucency,vec3 light_vec, vec3 normal, vec3 pos, float distance) { - float scale = 8.25 * (1.0 - translucency) / subsurface_scatter_width; - float d = scale * distance; + float scale = 8.25 * (1.0 - translucency) / subsurface_scatter_width; + float d = scale * distance; /** * Armed with the thickness, we can now calculate the color by means of the * precalculated transmittance profile. * (It can be precomputed into a texture, for maximum performance): */ - float dd = -d * d; - vec3 profile = vec3(0.233, 0.455, 0.649) * exp(dd / 0.0064) + - vec3(0.1, 0.336, 0.344) * exp(dd / 0.0484) + - vec3(0.118, 0.198, 0.0) * exp(dd / 0.187) + - vec3(0.113, 0.007, 0.007) * exp(dd / 0.567) + - vec3(0.358, 0.004, 0.0) * exp(dd / 1.99) + - vec3(0.078, 0.0, 0.0) * exp(dd / 7.41); + float dd = -d * d; + vec3 profile = vec3(0.233, 0.455, 0.649) * exp(dd / 0.0064) + + vec3(0.1, 0.336, 0.344) * exp(dd / 0.0484) + + vec3(0.118, 0.198, 0.0) * exp(dd / 0.187) + + vec3(0.113, 0.007, 0.007) * exp(dd / 0.567) + + vec3(0.358, 0.004, 0.0) * exp(dd / 1.99) + + vec3(0.078, 0.0, 0.0) * exp(dd / 7.41); /** * Using the profile, we finally approximate the transmitted lighting from @@ -1130,201 +1130,201 @@ vec3 light_transmittance(float translucency,vec3 light_vec, vec3 normal, vec3 po void light_process_omni(int idx, vec3 vertex, vec3 eye_vec,vec3 normal,vec3 binormal, vec3 tangent, vec3 albedo, vec3 transmission, float roughness, float rim, float rim_tint, float clearcoat, float clearcoat_gloss,float anisotropy,float p_blob_intensity,inout vec3 diffuse_light, inout vec3 specular_light) { - vec3 light_rel_vec = omni_lights[idx].light_pos_inv_radius.xyz-vertex; - float light_length = length( light_rel_vec ); - float normalized_distance = light_length*omni_lights[idx].light_pos_inv_radius.w; - vec3 light_attenuation = vec3(pow( max(1.0 - normalized_distance, 0.0), omni_lights[idx].light_direction_attenuation.w )); + vec3 light_rel_vec = omni_lights[idx].light_pos_inv_radius.xyz-vertex; + float light_length = length( light_rel_vec ); + float normalized_distance = light_length*omni_lights[idx].light_pos_inv_radius.w; + vec3 light_attenuation = vec3(pow( max(1.0 - normalized_distance, 0.0), omni_lights[idx].light_direction_attenuation.w )); - if (omni_lights[idx].light_params.w>0.5) { - //there is a shadowmap + if (omni_lights[idx].light_params.w>0.5) { + //there is a shadowmap - highp vec3 splane=(omni_lights[idx].shadow_matrix * vec4(vertex,1.0)).xyz; - float shadow_len=length(splane); - splane=normalize(splane); - vec4 clamp_rect=omni_lights[idx].light_clamp; + highp vec3 splane=(omni_lights[idx].shadow_matrix * vec4(vertex,1.0)).xyz; + float shadow_len=length(splane); + splane=normalize(splane); + vec4 clamp_rect=omni_lights[idx].light_clamp; - if (splane.z>=0.0) { + if (splane.z>=0.0) { - splane.z+=1.0; + splane.z+=1.0; - clamp_rect.y+=clamp_rect.w; + clamp_rect.y+=clamp_rect.w; - } else { + } else { - splane.z=1.0 - splane.z; + splane.z=1.0 - splane.z; - /* - if (clamp_rect.z<clamp_rect.w) { - clamp_rect.x+=clamp_rect.z; - } else { - clamp_rect.y+=clamp_rect.w; - } - */ + /* + if (clamp_rect.z<clamp_rect.w) { + clamp_rect.x+=clamp_rect.z; + } else { + clamp_rect.y+=clamp_rect.w; + } + */ - } + } - splane.xy/=splane.z; - splane.xy=splane.xy * 0.5 + 0.5; - splane.z = shadow_len * omni_lights[idx].light_pos_inv_radius.w; + splane.xy/=splane.z; + splane.xy=splane.xy * 0.5 + 0.5; + splane.z = shadow_len * omni_lights[idx].light_pos_inv_radius.w; - splane.xy = clamp_rect.xy+splane.xy*clamp_rect.zw; - float shadow = sample_shadow(shadow_atlas,shadow_atlas_pixel_size,splane.xy,splane.z,clamp_rect); + splane.xy = clamp_rect.xy+splane.xy*clamp_rect.zw; + float shadow = sample_shadow(shadow_atlas,shadow_atlas_pixel_size,splane.xy,splane.z,clamp_rect); #ifdef USE_CONTACT_SHADOWS - if (shadow>0.01 && omni_lights[idx].shadow_color_contact.a>0.0) { + if (shadow>0.01 && omni_lights[idx].shadow_color_contact.a>0.0) { - float contact_shadow = contact_shadow_compute(vertex,normalize(light_rel_vec),min(light_length,omni_lights[idx].shadow_color_contact.a)); - shadow=min(shadow,contact_shadow); + float contact_shadow = contact_shadow_compute(vertex,normalize(light_rel_vec),min(light_length,omni_lights[idx].shadow_color_contact.a)); + shadow=min(shadow,contact_shadow); - } + } #endif - light_attenuation*=mix(omni_lights[idx].shadow_color_contact.rgb,vec3(1.0),shadow); - } + light_attenuation*=mix(omni_lights[idx].shadow_color_contact.rgb,vec3(1.0),shadow); + } - light_compute(normal,normalize(light_rel_vec),eye_vec,binormal,tangent,omni_lights[idx].light_color_energy.rgb*light_attenuation,albedo,transmission,omni_lights[idx].light_params.z*p_blob_intensity,roughness,rim,rim_tint,clearcoat,clearcoat_gloss,anisotropy,diffuse_light,specular_light); + light_compute(normal,normalize(light_rel_vec),eye_vec,binormal,tangent,omni_lights[idx].light_color_energy.rgb*light_attenuation,albedo,transmission,omni_lights[idx].light_params.z*p_blob_intensity,roughness,rim,rim_tint,clearcoat,clearcoat_gloss,anisotropy,diffuse_light,specular_light); } void light_process_spot(int idx, vec3 vertex, vec3 eye_vec, vec3 normal, vec3 binormal, vec3 tangent,vec3 albedo, vec3 transmission,float roughness, float rim,float rim_tint, float clearcoat, float clearcoat_gloss,float anisotropy,float p_blob_intensity, inout vec3 diffuse_light, inout vec3 specular_light) { - vec3 light_rel_vec = spot_lights[idx].light_pos_inv_radius.xyz-vertex; - float light_length = length( light_rel_vec ); - float normalized_distance = light_length*spot_lights[idx].light_pos_inv_radius.w; - vec3 light_attenuation = vec3(pow( max(1.0 - normalized_distance, 0.001), spot_lights[idx].light_direction_attenuation.w )); - vec3 spot_dir = spot_lights[idx].light_direction_attenuation.xyz; - float spot_cutoff=spot_lights[idx].light_params.y; - float scos = max(dot(-normalize(light_rel_vec), spot_dir),spot_cutoff); - float spot_rim = (1.0 - scos) / (1.0 - spot_cutoff); - light_attenuation *= 1.0 - pow( max(spot_rim,0.001), spot_lights[idx].light_params.x); + vec3 light_rel_vec = spot_lights[idx].light_pos_inv_radius.xyz-vertex; + float light_length = length( light_rel_vec ); + float normalized_distance = light_length*spot_lights[idx].light_pos_inv_radius.w; + vec3 light_attenuation = vec3(pow( max(1.0 - normalized_distance, 0.001), spot_lights[idx].light_direction_attenuation.w )); + vec3 spot_dir = spot_lights[idx].light_direction_attenuation.xyz; + float spot_cutoff=spot_lights[idx].light_params.y; + float scos = max(dot(-normalize(light_rel_vec), spot_dir),spot_cutoff); + float spot_rim = (1.0 - scos) / (1.0 - spot_cutoff); + light_attenuation *= 1.0 - pow( max(spot_rim,0.001), spot_lights[idx].light_params.x); - if (spot_lights[idx].light_params.w>0.5) { - //there is a shadowmap - highp vec4 splane=(spot_lights[idx].shadow_matrix * vec4(vertex,1.0)); - splane.xyz/=splane.w; + if (spot_lights[idx].light_params.w>0.5) { + //there is a shadowmap + highp vec4 splane=(spot_lights[idx].shadow_matrix * vec4(vertex,1.0)); + splane.xyz/=splane.w; - float shadow = sample_shadow(shadow_atlas,shadow_atlas_pixel_size,splane.xy,splane.z,spot_lights[idx].light_clamp); + float shadow = sample_shadow(shadow_atlas,shadow_atlas_pixel_size,splane.xy,splane.z,spot_lights[idx].light_clamp); #ifdef USE_CONTACT_SHADOWS - if (shadow>0.01 && spot_lights[idx].shadow_color_contact.a>0.0) { + if (shadow>0.01 && spot_lights[idx].shadow_color_contact.a>0.0) { - float contact_shadow = contact_shadow_compute(vertex,normalize(light_rel_vec),min(light_length,spot_lights[idx].shadow_color_contact.a)); - shadow=min(shadow,contact_shadow); + float contact_shadow = contact_shadow_compute(vertex,normalize(light_rel_vec),min(light_length,spot_lights[idx].shadow_color_contact.a)); + shadow=min(shadow,contact_shadow); - } + } #endif - light_attenuation*=mix(spot_lights[idx].shadow_color_contact.rgb,vec3(1.0),shadow); - } + light_attenuation*=mix(spot_lights[idx].shadow_color_contact.rgb,vec3(1.0),shadow); + } - light_compute(normal,normalize(light_rel_vec),eye_vec,binormal,tangent,spot_lights[idx].light_color_energy.rgb*light_attenuation,albedo,transmission,spot_lights[idx].light_params.z*p_blob_intensity,roughness,rim,rim_tint,clearcoat,clearcoat_gloss,anisotropy,diffuse_light,specular_light); + light_compute(normal,normalize(light_rel_vec),eye_vec,binormal,tangent,spot_lights[idx].light_color_energy.rgb*light_attenuation,albedo,transmission,spot_lights[idx].light_params.z*p_blob_intensity,roughness,rim,rim_tint,clearcoat,clearcoat_gloss,anisotropy,diffuse_light,specular_light); } void reflection_process(int idx, vec3 vertex, vec3 normal,vec3 binormal, vec3 tangent,float roughness,float anisotropy,vec3 ambient,vec3 skybox, inout highp vec4 reflection_accum,inout highp vec4 ambient_accum) { - vec3 ref_vec = normalize(reflect(vertex,normal)); - vec3 local_pos = (reflections[idx].local_matrix * vec4(vertex,1.0)).xyz; - vec3 box_extents = reflections[idx].box_extents.xyz; + vec3 ref_vec = normalize(reflect(vertex,normal)); + vec3 local_pos = (reflections[idx].local_matrix * vec4(vertex,1.0)).xyz; + vec3 box_extents = reflections[idx].box_extents.xyz; - if (any(greaterThan(abs(local_pos),box_extents))) { //out of the reflection box - return; - } + if (any(greaterThan(abs(local_pos),box_extents))) { //out of the reflection box + return; + } - vec3 inner_pos = abs(local_pos / box_extents); - float blend = max(inner_pos.x,max(inner_pos.y,inner_pos.z)); - //make blend more rounded - blend=mix(length(inner_pos),blend,blend); - blend*=blend; - blend=1.001-blend; + vec3 inner_pos = abs(local_pos / box_extents); + float blend = max(inner_pos.x,max(inner_pos.y,inner_pos.z)); + //make blend more rounded + blend=mix(length(inner_pos),blend,blend); + blend*=blend; + blend=1.001-blend; - if (reflections[idx].params.x>0.0){// compute reflection + if (reflections[idx].params.x>0.0){// compute reflection - vec3 local_ref_vec = (reflections[idx].local_matrix * vec4(ref_vec,0.0)).xyz; + vec3 local_ref_vec = (reflections[idx].local_matrix * vec4(ref_vec,0.0)).xyz; - if (reflections[idx].params.w > 0.5) { //box project + if (reflections[idx].params.w > 0.5) { //box project - vec3 nrdir = normalize(local_ref_vec); - vec3 rbmax = (box_extents - local_pos)/nrdir; - vec3 rbmin = (-box_extents - local_pos)/nrdir; + vec3 nrdir = normalize(local_ref_vec); + vec3 rbmax = (box_extents - local_pos)/nrdir; + vec3 rbmin = (-box_extents - local_pos)/nrdir; - vec3 rbminmax = mix(rbmin,rbmax,greaterThan(nrdir,vec3(0.0,0.0,0.0))); + vec3 rbminmax = mix(rbmin,rbmax,greaterThan(nrdir,vec3(0.0,0.0,0.0))); - float fa = min(min(rbminmax.x, rbminmax.y), rbminmax.z); - vec3 posonbox = local_pos + nrdir * fa; - local_ref_vec = posonbox - reflections[idx].box_offset.xyz; - } + float fa = min(min(rbminmax.x, rbminmax.y), rbminmax.z); + vec3 posonbox = local_pos + nrdir * fa; + local_ref_vec = posonbox - reflections[idx].box_offset.xyz; + } - vec4 clamp_rect=reflections[idx].atlas_clamp; - vec3 norm = normalize(local_ref_vec); - norm.xy/=1.0+abs(norm.z); - norm.xy=norm.xy * vec2(0.5,0.25) + vec2(0.5,0.25); - if (norm.z>0.0) { - norm.y=0.5-norm.y+0.5; - } + vec4 clamp_rect=reflections[idx].atlas_clamp; + vec3 norm = normalize(local_ref_vec); + norm.xy/=1.0+abs(norm.z); + norm.xy=norm.xy * vec2(0.5,0.25) + vec2(0.5,0.25); + if (norm.z>0.0) { + norm.y=0.5-norm.y+0.5; + } - vec2 atlas_uv = norm.xy * clamp_rect.zw + clamp_rect.xy; - atlas_uv = clamp(atlas_uv,clamp_rect.xy,clamp_rect.xy+clamp_rect.zw); + vec2 atlas_uv = norm.xy * clamp_rect.zw + clamp_rect.xy; + atlas_uv = clamp(atlas_uv,clamp_rect.xy,clamp_rect.xy+clamp_rect.zw); - highp vec4 reflection; - reflection.rgb = textureLod(reflection_atlas,atlas_uv,roughness*5.0).rgb; + highp vec4 reflection; + reflection.rgb = textureLod(reflection_atlas,atlas_uv,roughness*5.0).rgb; - if (reflections[idx].params.z < 0.5) { - reflection.rgb = mix(skybox,reflection.rgb,blend); - } - reflection.rgb*=reflections[idx].params.x; - reflection.a = blend; - reflection.rgb*=reflection.a; + if (reflections[idx].params.z < 0.5) { + reflection.rgb = mix(skybox,reflection.rgb,blend); + } + reflection.rgb*=reflections[idx].params.x; + reflection.a = blend; + reflection.rgb*=reflection.a; - reflection_accum+=reflection; - } + reflection_accum+=reflection; + } - if (reflections[idx].ambient.a>0.0) { //compute ambient using skybox + if (reflections[idx].ambient.a>0.0) { //compute ambient using skybox - vec3 local_amb_vec = (reflections[idx].local_matrix * vec4(normal,0.0)).xyz; + vec3 local_amb_vec = (reflections[idx].local_matrix * vec4(normal,0.0)).xyz; - vec3 splane=normalize(local_amb_vec); - vec4 clamp_rect=reflections[idx].atlas_clamp; + vec3 splane=normalize(local_amb_vec); + vec4 clamp_rect=reflections[idx].atlas_clamp; - splane.z*=-1.0; - if (splane.z>=0.0) { - splane.z+=1.0; - clamp_rect.y+=clamp_rect.w; - } else { - splane.z=1.0 - splane.z; - splane.y=-splane.y; - } + splane.z*=-1.0; + if (splane.z>=0.0) { + splane.z+=1.0; + clamp_rect.y+=clamp_rect.w; + } else { + splane.z=1.0 - splane.z; + splane.y=-splane.y; + } - splane.xy/=splane.z; - splane.xy=splane.xy * 0.5 + 0.5; + splane.xy/=splane.z; + splane.xy=splane.xy * 0.5 + 0.5; - splane.xy = splane.xy * clamp_rect.zw + clamp_rect.xy; - splane.xy = clamp(splane.xy,clamp_rect.xy,clamp_rect.xy+clamp_rect.zw); + splane.xy = splane.xy * clamp_rect.zw + clamp_rect.xy; + splane.xy = clamp(splane.xy,clamp_rect.xy,clamp_rect.xy+clamp_rect.zw); - highp vec4 ambient_out; - ambient_out.a=blend; - ambient_out.rgb = textureLod(reflection_atlas,splane.xy,5.0).rgb; - ambient_out.rgb=mix(reflections[idx].ambient.rgb,ambient_out.rgb,reflections[idx].ambient.a); - if (reflections[idx].params.z < 0.5) { - ambient_out.rgb = mix(ambient,ambient_out.rgb,blend); - } + highp vec4 ambient_out; + ambient_out.a=blend; + ambient_out.rgb = textureLod(reflection_atlas,splane.xy,5.0).rgb; + ambient_out.rgb=mix(reflections[idx].ambient.rgb,ambient_out.rgb,reflections[idx].ambient.a); + if (reflections[idx].params.z < 0.5) { + ambient_out.rgb = mix(ambient,ambient_out.rgb,blend); + } - ambient_out.rgb *= ambient_out.a; - ambient_accum+=ambient_out; - } else { + ambient_out.rgb *= ambient_out.a; + ambient_accum+=ambient_out; + } else { - highp vec4 ambient_out; - ambient_out.a=blend; - ambient_out.rgb=reflections[idx].ambient.rgb; - if (reflections[idx].params.z < 0.5) { - ambient_out.rgb = mix(ambient,ambient_out.rgb,blend); - } - ambient_out.rgb *= ambient_out.a; - ambient_accum+=ambient_out; + highp vec4 ambient_out; + ambient_out.a=blend; + ambient_out.rgb=reflections[idx].ambient.rgb; + if (reflections[idx].params.z < 0.5) { + ambient_out.rgb = mix(ambient,ambient_out.rgb,blend); + } + ambient_out.rgb *= ambient_out.a; + ambient_accum+=ambient_out; - } + } } #ifdef USE_GI_PROBES @@ -1350,149 +1350,149 @@ uniform bool gi_probe_blend_ambient2; vec3 voxel_cone_trace(sampler3D probe, vec3 cell_size, vec3 pos, vec3 ambient, bool blend_ambient, vec3 direction, float tan_half_angle, float max_distance, float p_bias) { - float dist = p_bias;//1.0; //dot(direction,mix(vec3(-1.0),vec3(1.0),greaterThan(direction,vec3(0.0))))*2.0; - float alpha=0.0; - vec3 color = vec3(0.0); + float dist = p_bias;//1.0; //dot(direction,mix(vec3(-1.0),vec3(1.0),greaterThan(direction,vec3(0.0))))*2.0; + float alpha=0.0; + vec3 color = vec3(0.0); - while(dist < max_distance && alpha < 0.95) { - float diameter = max(1.0, 2.0 * tan_half_angle * dist); - vec4 scolor = textureLod(probe, (pos + dist * direction) * cell_size, log2(diameter) ); - float a = (1.0 - alpha); - color += scolor.rgb * a; - alpha += a * scolor.a; - dist += diameter * 0.5; - } + while(dist < max_distance && alpha < 0.95) { + float diameter = max(1.0, 2.0 * tan_half_angle * dist); + vec4 scolor = textureLod(probe, (pos + dist * direction) * cell_size, log2(diameter) ); + float a = (1.0 - alpha); + color += scolor.rgb * a; + alpha += a * scolor.a; + dist += diameter * 0.5; + } - if (blend_ambient) { - color.rgb = mix(ambient,color.rgb,min(1.0,alpha/0.95)); - } + if (blend_ambient) { + color.rgb = mix(ambient,color.rgb,min(1.0,alpha/0.95)); + } - return color; + return color; } void gi_probe_compute(sampler3D probe, mat4 probe_xform, vec3 bounds,vec3 cell_size,vec3 pos, vec3 ambient, vec3 environment, bool blend_ambient,float multiplier, mat3 normal_mtx,vec3 ref_vec, float roughness,float p_bias,float p_normal_bias, inout vec4 out_spec, inout vec4 out_diff) { - vec3 probe_pos = (probe_xform * vec4(pos,1.0)).xyz; - vec3 ref_pos = (probe_xform * vec4(pos+ref_vec,1.0)).xyz; - ref_vec = normalize(ref_pos - probe_pos); + vec3 probe_pos = (probe_xform * vec4(pos,1.0)).xyz; + vec3 ref_pos = (probe_xform * vec4(pos+ref_vec,1.0)).xyz; + ref_vec = normalize(ref_pos - probe_pos); - probe_pos+=(probe_xform * vec4(normal_mtx[2],0.0)).xyz*p_normal_bias; + probe_pos+=(probe_xform * vec4(normal_mtx[2],0.0)).xyz*p_normal_bias; /* out_diff.rgb = voxel_cone_trace(probe,cell_size,probe_pos,normalize((probe_xform * vec4(ref_vec,0.0)).xyz),0.0 ,100.0); - out_diff.a = 1.0; - return;*/ - //out_diff = vec4(textureLod(probe,probe_pos*cell_size,3.0).rgb,1.0); - //return; + out_diff.a = 1.0; + return;*/ + //out_diff = vec4(textureLod(probe,probe_pos*cell_size,3.0).rgb,1.0); + //return; - //this causes corrupted pixels, i have no idea why.. - if (any(bvec2(any(lessThan(probe_pos,vec3(0.0))),any(greaterThan(probe_pos,bounds))))) { - return; - } + //this causes corrupted pixels, i have no idea why.. + if (any(bvec2(any(lessThan(probe_pos,vec3(0.0))),any(greaterThan(probe_pos,bounds))))) { + return; + } - //vec3 blendv = probe_pos/bounds * 2.0 - 1.0; - //float blend = 1.001-max(blendv.x,max(blendv.y,blendv.z)); - float blend=1.0; + //vec3 blendv = probe_pos/bounds * 2.0 - 1.0; + //float blend = 1.001-max(blendv.x,max(blendv.y,blendv.z)); + float blend=1.0; - float max_distance = length(bounds); + float max_distance = length(bounds); - //radiance + //radiance #ifdef VCT_QUALITY_HIGH #define MAX_CONE_DIRS 6 - vec3 cone_dirs[MAX_CONE_DIRS] = vec3[] ( - vec3(0, 0, 1), - vec3(0.866025, 0, 0.5), - vec3(0.267617, 0.823639, 0.5), - vec3(-0.700629, 0.509037, 0.5), - vec3(-0.700629, -0.509037, 0.5), - vec3(0.267617, -0.823639, 0.5) - ); - - float cone_weights[MAX_CONE_DIRS] = float[](0.25, 0.15, 0.15, 0.15, 0.15, 0.15); - float cone_angle_tan = 0.577; - float min_ref_tan = 0.0; + vec3 cone_dirs[MAX_CONE_DIRS] = vec3[] ( + vec3(0, 0, 1), + vec3(0.866025, 0, 0.5), + vec3(0.267617, 0.823639, 0.5), + vec3(-0.700629, 0.509037, 0.5), + vec3(-0.700629, -0.509037, 0.5), + vec3(0.267617, -0.823639, 0.5) + ); + + float cone_weights[MAX_CONE_DIRS] = float[](0.25, 0.15, 0.15, 0.15, 0.15, 0.15); + float cone_angle_tan = 0.577; + float min_ref_tan = 0.0; #else #define MAX_CONE_DIRS 4 - vec3 cone_dirs[MAX_CONE_DIRS] = vec3[] ( - vec3(0.707107, 0, 0.707107), - vec3(0, 0.707107, 0.707107), - vec3(-0.707107, 0, 0.707107), - vec3(0, -0.707107, 0.707107) - ); + vec3 cone_dirs[MAX_CONE_DIRS] = vec3[] ( + vec3(0.707107, 0, 0.707107), + vec3(0, 0.707107, 0.707107), + vec3(-0.707107, 0, 0.707107), + vec3(0, -0.707107, 0.707107) + ); - float cone_weights[MAX_CONE_DIRS] = float[](0.25, 0.25, 0.25, 0.25); - float cone_angle_tan = 0.98269; - max_distance*=0.5; - float min_ref_tan = 0.2; + float cone_weights[MAX_CONE_DIRS] = float[](0.25, 0.25, 0.25, 0.25); + float cone_angle_tan = 0.98269; + max_distance*=0.5; + float min_ref_tan = 0.2; #endif - vec3 light=vec3(0.0); - for(int i=0;i<MAX_CONE_DIRS;i++) { + vec3 light=vec3(0.0); + for(int i=0;i<MAX_CONE_DIRS;i++) { - vec3 dir = normalize( (probe_xform * vec4(pos + normal_mtx * cone_dirs[i],1.0)).xyz - probe_pos); - light+=cone_weights[i] * voxel_cone_trace(probe,cell_size,probe_pos,ambient,blend_ambient,dir,cone_angle_tan,max_distance,p_bias); + vec3 dir = normalize( (probe_xform * vec4(pos + normal_mtx * cone_dirs[i],1.0)).xyz - probe_pos); + light+=cone_weights[i] * voxel_cone_trace(probe,cell_size,probe_pos,ambient,blend_ambient,dir,cone_angle_tan,max_distance,p_bias); - } + } - light*=multiplier; + light*=multiplier; - out_diff += vec4(light*blend,blend); + out_diff += vec4(light*blend,blend); - //irradiance + //irradiance - vec3 irr_light = voxel_cone_trace(probe,cell_size,probe_pos,environment,blend_ambient,ref_vec,max(min_ref_tan,tan(roughness * 0.5 * M_PI)) ,max_distance,p_bias); + vec3 irr_light = voxel_cone_trace(probe,cell_size,probe_pos,environment,blend_ambient,ref_vec,max(min_ref_tan,tan(roughness * 0.5 * M_PI)) ,max_distance,p_bias); - irr_light *= multiplier; - //irr_light=vec3(0.0); + irr_light *= multiplier; + //irr_light=vec3(0.0); - out_spec += vec4(irr_light*blend,blend); + out_spec += vec4(irr_light*blend,blend); } void gi_probes_compute(vec3 pos, vec3 normal, float roughness, inout vec3 out_specular, inout vec3 out_ambient) { - roughness = roughness * roughness; + roughness = roughness * roughness; - vec3 ref_vec = normalize(reflect(normalize(pos),normal)); + vec3 ref_vec = normalize(reflect(normalize(pos),normal)); - //find arbitrary tangent and bitangent, then build a matrix - vec3 v0 = abs(normal.z) < 0.999 ? vec3(0, 0, 1) : vec3(0, 1, 0); - vec3 tangent = normalize(cross(v0, normal)); - vec3 bitangent = normalize(cross(tangent, normal)); - mat3 normal_mat = mat3(tangent,bitangent,normal); + //find arbitrary tangent and bitangent, then build a matrix + vec3 v0 = abs(normal.z) < 0.999 ? vec3(0, 0, 1) : vec3(0, 1, 0); + vec3 tangent = normalize(cross(v0, normal)); + vec3 bitangent = normalize(cross(tangent, normal)); + mat3 normal_mat = mat3(tangent,bitangent,normal); - vec4 diff_accum = vec4(0.0); - vec4 spec_accum = vec4(0.0); + vec4 diff_accum = vec4(0.0); + vec4 spec_accum = vec4(0.0); - vec3 ambient = out_ambient; - out_ambient = vec3(0.0); + vec3 ambient = out_ambient; + out_ambient = vec3(0.0); - vec3 environment = out_specular; + vec3 environment = out_specular; - out_specular = vec3(0.0); + out_specular = vec3(0.0); - gi_probe_compute(gi_probe1,gi_probe_xform1,gi_probe_bounds1,gi_probe_cell_size1,pos,ambient,environment,gi_probe_blend_ambient1,gi_probe_multiplier1,normal_mat,ref_vec,roughness,gi_probe_bias1,gi_probe_normal_bias1,spec_accum,diff_accum); + gi_probe_compute(gi_probe1,gi_probe_xform1,gi_probe_bounds1,gi_probe_cell_size1,pos,ambient,environment,gi_probe_blend_ambient1,gi_probe_multiplier1,normal_mat,ref_vec,roughness,gi_probe_bias1,gi_probe_normal_bias1,spec_accum,diff_accum); - if (gi_probe2_enabled) { + if (gi_probe2_enabled) { - gi_probe_compute(gi_probe2,gi_probe_xform2,gi_probe_bounds2,gi_probe_cell_size2,pos,ambient,environment,gi_probe_blend_ambient2,gi_probe_multiplier2,normal_mat,ref_vec,roughness,gi_probe_bias2,gi_probe_normal_bias2,spec_accum,diff_accum); - } + gi_probe_compute(gi_probe2,gi_probe_xform2,gi_probe_bounds2,gi_probe_cell_size2,pos,ambient,environment,gi_probe_blend_ambient2,gi_probe_multiplier2,normal_mat,ref_vec,roughness,gi_probe_bias2,gi_probe_normal_bias2,spec_accum,diff_accum); + } - if (diff_accum.a>0.0) { - diff_accum.rgb/=diff_accum.a; - } + if (diff_accum.a>0.0) { + diff_accum.rgb/=diff_accum.a; + } - if (spec_accum.a>0.0) { - spec_accum.rgb/=spec_accum.a; - } + if (spec_accum.a>0.0) { + spec_accum.rgb/=spec_accum.a; + } - out_specular+=spec_accum.rgb; - out_ambient+=diff_accum.rgb; + out_specular+=spec_accum.rgb; + out_ambient+=diff_accum.rgb; } @@ -1504,76 +1504,76 @@ void main() { #ifdef RENDER_DEPTH_DUAL_PARABOLOID - if (dp_clip>0.0) - discard; -#endif - - //lay out everything, whathever is unused is optimized away anyway - highp vec3 vertex = vertex_interp; - vec3 albedo = vec3(0.8,0.8,0.8); - vec3 transmission = vec3(0.0); - float metallic = 0.0; - float specular = 0.5; - vec3 emission = vec3(0.0,0.0,0.0); - float roughness = 1.0; - float rim = 0.0; - float rim_tint = 0.0; - float clearcoat=0.0; - float clearcoat_gloss=0.0; - float anisotropy = 1.0; - vec2 anisotropy_flow = vec2(1.0,0.0); + if (dp_clip>0.0) + discard; +#endif + + //lay out everything, whathever is unused is optimized away anyway + highp vec3 vertex = vertex_interp; + vec3 albedo = vec3(0.8,0.8,0.8); + vec3 transmission = vec3(0.0); + float metallic = 0.0; + float specular = 0.5; + vec3 emission = vec3(0.0,0.0,0.0); + float roughness = 1.0; + float rim = 0.0; + float rim_tint = 0.0; + float clearcoat=0.0; + float clearcoat_gloss=0.0; + float anisotropy = 1.0; + vec2 anisotropy_flow = vec2(1.0,0.0); #if defined(ENABLE_AO) - float ao=1.0; + float ao=1.0; #endif - float alpha = 1.0; + float alpha = 1.0; #ifdef METERIAL_DOUBLESIDED - float side=float(gl_FrontFacing)*2.0-1.0; + float side=float(gl_FrontFacing)*2.0-1.0; #else - float side=1.0; + float side=1.0; #endif #if defined(ALPHA_SCISSOR_USED) - float alpha_scissor = 0.5; + float alpha_scissor = 0.5; #endif #if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) || defined(LIGHT_USE_ANISOTROPY) - vec3 binormal = normalize(binormal_interp)*side; - vec3 tangent = normalize(tangent_interp)*side; + vec3 binormal = normalize(binormal_interp)*side; + vec3 tangent = normalize(tangent_interp)*side; #else - vec3 binormal = vec3(0.0); - vec3 tangent = vec3(0.0); + vec3 binormal = vec3(0.0); + vec3 tangent = vec3(0.0); #endif - vec3 normal = normalize(normal_interp)*side; + vec3 normal = normalize(normal_interp)*side; #if defined(ENABLE_UV_INTERP) - vec2 uv = uv_interp; + vec2 uv = uv_interp; #endif #if defined(ENABLE_UV2_INTERP) - vec2 uv2 = uv2_interp; + vec2 uv2 = uv2_interp; #endif #if defined(ENABLE_COLOR_INTERP) - vec4 color = color_interp; + vec4 color = color_interp; #endif #if defined(ENABLE_NORMALMAP) - vec3 normalmap = vec3(0.0); + vec3 normalmap = vec3(0.0); #endif - float normaldepth=1.0; + float normaldepth=1.0; #if defined(SCREEN_UV_USED) - vec2 screen_uv = gl_FragCoord.xy*screen_pixel_size; + vec2 screen_uv = gl_FragCoord.xy*screen_pixel_size; #endif #if defined (ENABLE_SSS) - float sss_strength=0.0; + float sss_strength=0.0; #endif { @@ -1585,190 +1585,196 @@ FRAGMENT_SHADER_CODE #if defined(ALPHA_SCISSOR_USED) - if (alpha<alpha_scissor) { - discard; - } + if (alpha<alpha_scissor) { + discard; + } #endif #ifdef USE_OPAQUE_PREPASS - if (alpha<0.99) { - discard; - } + if (alpha<0.99) { + discard; + } #endif #if defined(ENABLE_NORMALMAP) - normalmap.xy=normalmap.xy*2.0-1.0; - normalmap.z=sqrt(1.0-dot(normalmap.xy,normalmap.xy)); //always ignore Z, as it can be RG packed, Z may be pos/neg, etc. + normalmap.xy=normalmap.xy*2.0-1.0; + normalmap.z=sqrt(1.0-dot(normalmap.xy,normalmap.xy)); //always ignore Z, as it can be RG packed, Z may be pos/neg, etc. - normal = normalize( mix(normal_interp,tangent * normalmap.x + binormal * normalmap.y + normal * normalmap.z,normaldepth) ) * side; + normal = normalize( mix(normal_interp,tangent * normalmap.x + binormal * normalmap.y + normal * normalmap.z,normaldepth) ) * side; #endif #if defined(LIGHT_USE_ANISOTROPY) - if (anisotropy>0.01) { - //rotation matrix - mat3 rot = mat3( tangent, binormal, normal ); - //make local to space - tangent = normalize(rot * vec3(anisotropy_flow.x,anisotropy_flow.y,0.0)); - binormal = normalize(rot * vec3(-anisotropy_flow.y,anisotropy_flow.x,0.0)); - } + if (anisotropy>0.01) { + //rotation matrix + mat3 rot = mat3( tangent, binormal, normal ); + //make local to space + tangent = normalize(rot * vec3(anisotropy_flow.x,anisotropy_flow.y,0.0)); + binormal = normalize(rot * vec3(-anisotropy_flow.y,anisotropy_flow.x,0.0)); + } #endif #ifdef ENABLE_CLIP_ALPHA - if (albedo.a<0.99) { - //used for doublepass and shadowmapping - discard; - } + if (albedo.a<0.99) { + //used for doublepass and shadowmapping + discard; + } #endif /////////////////////// LIGHTING ////////////////////////////// - //apply energy conservation + //apply energy conservation #ifdef USE_VERTEX_LIGHTING - vec3 specular_light = specular_light_interp.rgb; - vec3 diffuse_light = diffuse_light_interp.rgb; + vec3 specular_light = specular_light_interp.rgb; + vec3 diffuse_light = diffuse_light_interp.rgb; #else - vec3 specular_light = vec3(0.0,0.0,0.0); - vec3 diffuse_light = vec3(0.0,0.0,0.0); + vec3 specular_light = vec3(0.0,0.0,0.0); + vec3 diffuse_light = vec3(0.0,0.0,0.0); #endif - vec3 ambient_light; - vec3 env_reflection_light = vec3(0.0,0.0,0.0); + vec3 ambient_light; + vec3 env_reflection_light = vec3(0.0,0.0,0.0); - vec3 eye_vec = -normalize( vertex_interp ); + vec3 eye_vec = -normalize( vertex_interp ); #ifdef USE_RADIANCE_MAP - if (no_ambient_light) { - ambient_light=vec3(0.0,0.0,0.0); - } else { - { + if (no_ambient_light) { + ambient_light=vec3(0.0,0.0,0.0); + } else { + { - { //read radiance from dual paraboloid + { //read radiance from dual paraboloid - vec3 ref_vec = reflect(-eye_vec,normal); //2.0 * ndotv * normal - view; // reflect(v, n); - ref_vec=normalize((radiance_inverse_xform * vec4(ref_vec,0.0)).xyz); - vec3 radiance = textureDualParaboloid(radiance_map,ref_vec,roughness) * bg_energy; - env_reflection_light = radiance; + vec3 ref_vec = reflect(-eye_vec,normal); //2.0 * ndotv * normal - view; // reflect(v, n); + ref_vec=normalize((radiance_inverse_xform * vec4(ref_vec,0.0)).xyz); + vec3 radiance = textureDualParaboloid(radiance_map,ref_vec,roughness) * bg_energy; + env_reflection_light = radiance; - } - //no longer a cubemap - //vec3 radiance = textureLod(radiance_cube, r, lod).xyz * ( brdf.x + brdf.y); + } + //no longer a cubemap + //vec3 radiance = textureLod(radiance_cube, r, lod).xyz * ( brdf.x + brdf.y); - } + } - { + { - vec3 ambient_dir=normalize((radiance_inverse_xform * vec4(normal,0.0)).xyz); - vec3 env_ambient=textureDualParaboloid(radiance_map,ambient_dir,1.0) * bg_energy; + vec3 ambient_dir=normalize((radiance_inverse_xform * vec4(normal,0.0)).xyz); + vec3 env_ambient=textureDualParaboloid(radiance_map,ambient_dir,1.0) * bg_energy; - ambient_light=mix(ambient_light_color.rgb,env_ambient,radiance_ambient_contribution); - //ambient_light=vec3(0.0,0.0,0.0); - } - } + ambient_light=mix(ambient_light_color.rgb,env_ambient,radiance_ambient_contribution); + //ambient_light=vec3(0.0,0.0,0.0); + } + } #else - if (no_ambient_light){ - ambient_light=vec3(0.0,0.0,0.0); - } else { - ambient_light=ambient_light_color.rgb; - } + if (no_ambient_light){ + ambient_light=vec3(0.0,0.0,0.0); + } else { + ambient_light=ambient_light_color.rgb; + } #endif - ambient_light*=ambient_energy; + ambient_light*=ambient_energy; - float specular_blob_intensity=1.0; + float specular_blob_intensity=1.0; #if defined(SPECULAR_TOON) - specular_blob_intensity*=specular * 2.0; + specular_blob_intensity*=specular * 2.0; #endif #if defined(USE_LIGHT_DIRECTIONAL) - vec3 light_attenuation=vec3(1.0); + vec3 light_attenuation=vec3(1.0); + float depth_z = -vertex.z; #ifdef LIGHT_DIRECTIONAL_SHADOW - if (gl_FragCoord.w > shadow_split_offsets.w) { +#ifdef LIGHT_USE_PSSM4 + if (depth_z < shadow_split_offsets.w) { +#elif defined(LIGHT_USE_PSSM2) + if (depth_z < shadow_split_offsets.y) { +#else + if (depth_z < shadow_split_offsets.x) { +#endif //LIGHT_USE_PSSM4 - vec3 pssm_coord; - float pssm_fade=0.0; + vec3 pssm_coord; + float pssm_fade=0.0; #ifdef LIGHT_USE_PSSM_BLEND - float pssm_blend; - vec3 pssm_coord2; - bool use_blend=true; - vec3 light_pssm_split_inv = 1.0/shadow_split_offsets.xyz; - float w_inv = 1.0/gl_FragCoord.w; + float pssm_blend; + vec3 pssm_coord2; + bool use_blend=true; #endif #ifdef LIGHT_USE_PSSM4 - if (gl_FragCoord.w > shadow_split_offsets.y) { + if (depth_z < shadow_split_offsets.y) { - if (gl_FragCoord.w > shadow_split_offsets.x) { + if (depth_z < shadow_split_offsets.x) { - highp vec4 splane=(shadow_matrix1 * vec4(vertex,1.0)); - pssm_coord=splane.xyz/splane.w; + highp vec4 splane=(shadow_matrix1 * vec4(vertex,1.0)); + pssm_coord=splane.xyz/splane.w; #if defined(LIGHT_USE_PSSM_BLEND) - splane=(shadow_matrix2 * vec4(vertex,1.0)); - pssm_coord2=splane.xyz/splane.w; - pssm_blend=smoothstep(0.0,light_pssm_split_inv.x,w_inv); + splane=(shadow_matrix2 * vec4(vertex,1.0)); + pssm_coord2=splane.xyz/splane.w; + pssm_blend=smoothstep(0.0,shadow_split_offsets.x,depth_z); #endif - } else { + } else { - highp vec4 splane=(shadow_matrix2 * vec4(vertex,1.0)); - pssm_coord=splane.xyz/splane.w; + highp vec4 splane=(shadow_matrix2 * vec4(vertex,1.0)); + pssm_coord=splane.xyz/splane.w; #if defined(LIGHT_USE_PSSM_BLEND) - splane=(shadow_matrix3 * vec4(vertex,1.0)); - pssm_coord2=splane.xyz/splane.w; - pssm_blend=smoothstep(light_pssm_split_inv.x,light_pssm_split_inv.y,w_inv); + splane=(shadow_matrix3 * vec4(vertex,1.0)); + pssm_coord2=splane.xyz/splane.w; + pssm_blend=smoothstep(shadow_split_offsets.x,shadow_split_offsets.y,depth_z); #endif - } - } else { + } + } else { - if (gl_FragCoord.w > shadow_split_offsets.z) { + if (depth_z < shadow_split_offsets.z) { - highp vec4 splane=(shadow_matrix3 * vec4(vertex,1.0)); - pssm_coord=splane.xyz/splane.w; + highp vec4 splane=(shadow_matrix3 * vec4(vertex,1.0)); + pssm_coord=splane.xyz/splane.w; #if defined(LIGHT_USE_PSSM_BLEND) - splane=(shadow_matrix4 * vec4(vertex,1.0)); - pssm_coord2=splane.xyz/splane.w; - pssm_blend=smoothstep(light_pssm_split_inv.y,light_pssm_split_inv.z,w_inv); + splane=(shadow_matrix4 * vec4(vertex,1.0)); + pssm_coord2=splane.xyz/splane.w; + pssm_blend=smoothstep(shadow_split_offsets.y,shadow_split_offsets.z,depth_z); #endif - } else { - highp vec4 splane=(shadow_matrix4 * vec4(vertex,1.0)); - pssm_coord=splane.xyz/splane.w; - pssm_fade = smoothstep(shadow_split_offsets.z,shadow_split_offsets.w,gl_FragCoord.w); + } else { + + highp vec4 splane=(shadow_matrix4 * vec4(vertex,1.0)); + pssm_coord=splane.xyz/splane.w; + pssm_fade = smoothstep(shadow_split_offsets.z,shadow_split_offsets.w,depth_z); #if defined(LIGHT_USE_PSSM_BLEND) - use_blend=false; + use_blend=false; #endif - } - } + } + } @@ -1776,115 +1782,116 @@ FRAGMENT_SHADER_CODE #ifdef LIGHT_USE_PSSM2 - if (gl_FragCoord.w > shadow_split_offsets.x) { + if (depth_z < shadow_split_offsets.x) { - highp vec4 splane=(shadow_matrix1 * vec4(vertex,1.0)); - pssm_coord=splane.xyz/splane.w; + highp vec4 splane=(shadow_matrix1 * vec4(vertex,1.0)); + pssm_coord=splane.xyz/splane.w; #if defined(LIGHT_USE_PSSM_BLEND) - splane=(shadow_matrix2 * vec4(vertex,1.0)); - pssm_coord2=splane.xyz/splane.w; - pssm_blend=smoothstep(0.0,light_pssm_split_inv.x,w_inv); + splane=(shadow_matrix2 * vec4(vertex,1.0)); + pssm_coord2=splane.xyz/splane.w; + pssm_blend=smoothstep(0.0,shadow_split_offsets.x,depth_z); #endif - } else { - highp vec4 splane=(shadow_matrix2 * vec4(vertex,1.0)); - pssm_coord=splane.xyz/splane.w; - pssm_fade = smoothstep(shadow_split_offsets.x,shadow_split_offsets.y,gl_FragCoord.w); + } else { + highp vec4 splane=(shadow_matrix2 * vec4(vertex,1.0)); + pssm_coord=splane.xyz/splane.w; + pssm_fade = smoothstep(shadow_split_offsets.x,shadow_split_offsets.y,depth_z); #if defined(LIGHT_USE_PSSM_BLEND) - use_blend=false; + use_blend=false; #endif - } + } #endif //LIGHT_USE_PSSM2 #if !defined(LIGHT_USE_PSSM4) && !defined(LIGHT_USE_PSSM2) - { //regular orthogonal - highp vec4 splane=(shadow_matrix1 * vec4(vertex,1.0)); - pssm_coord=splane.xyz/splane.w; - } + { //regular orthogonal + highp vec4 splane=(shadow_matrix1 * vec4(vertex,1.0)); + pssm_coord=splane.xyz/splane.w; + } #endif - //one one sample + //one one sample - float shadow = sample_shadow(directional_shadow,directional_shadow_pixel_size,pssm_coord.xy,pssm_coord.z,light_clamp); + float shadow = sample_shadow(directional_shadow,directional_shadow_pixel_size,pssm_coord.xy,pssm_coord.z,light_clamp); #if defined(LIGHT_USE_PSSM_BLEND) - if (use_blend) { - shadow=mix(shadow, sample_shadow(directional_shadow,directional_shadow_pixel_size,pssm_coord2.xy,pssm_coord2.z,light_clamp),pssm_blend); - } + if (use_blend) { + shadow=mix(shadow, sample_shadow(directional_shadow,directional_shadow_pixel_size,pssm_coord2.xy,pssm_coord2.z,light_clamp),pssm_blend); + } #endif #ifdef USE_CONTACT_SHADOWS - if (shadow>0.01 && shadow_color_contact.a>0.0) { + if (shadow>0.01 && shadow_color_contact.a>0.0) { - float contact_shadow = contact_shadow_compute(vertex,-light_direction_attenuation.xyz,shadow_color_contact.a); - shadow=min(shadow,contact_shadow); + float contact_shadow = contact_shadow_compute(vertex,-light_direction_attenuation.xyz,shadow_color_contact.a); + shadow=min(shadow,contact_shadow); - } + } #endif - light_attenuation=mix(mix(shadow_color_contact.rgb,vec3(1.0),shadow),vec3(1.0),pssm_fade); + light_attenuation=mix(mix(shadow_color_contact.rgb,vec3(1.0),shadow),vec3(1.0),pssm_fade); + + } - } #endif //LIGHT_DIRECTIONAL_SHADOW #ifdef USE_VERTEX_LIGHTING - diffuse_light*=mix(vec3(1.0),light_attenuation,diffuse_light_interp.a); - specular_light*=mix(vec3(1.0),light_attenuation,specular_light_interp.a); + diffuse_light*=mix(vec3(1.0),light_attenuation,diffuse_light_interp.a); + specular_light*=mix(vec3(1.0),light_attenuation,specular_light_interp.a); #else - light_compute(normal,-light_direction_attenuation.xyz,eye_vec,binormal,tangent,light_color_energy.rgb*light_attenuation,albedo,transmission,light_params.z*specular_blob_intensity,roughness,rim,rim_tint,clearcoat,clearcoat_gloss,anisotropy,diffuse_light,specular_light); + light_compute(normal,-light_direction_attenuation.xyz,eye_vec,binormal,tangent,light_color_energy.rgb*light_attenuation,albedo,transmission,light_params.z*specular_blob_intensity,roughness,rim,rim_tint,clearcoat,clearcoat_gloss,anisotropy,diffuse_light,specular_light); #endif #endif //#USE_LIGHT_DIRECTIONAL #ifdef USE_GI_PROBES - gi_probes_compute(vertex,normal,roughness,env_reflection_light,ambient_light); + gi_probes_compute(vertex,normal,roughness,env_reflection_light,ambient_light); #endif #ifdef USE_FORWARD_LIGHTING - highp vec4 reflection_accum = vec4(0.0,0.0,0.0,0.0); - highp vec4 ambient_accum = vec4(0.0,0.0,0.0,0.0); - for(int i=0;i<reflection_count;i++) { - reflection_process(reflection_indices[i],vertex,normal,binormal,tangent,roughness,anisotropy,ambient_light,env_reflection_light,reflection_accum,ambient_accum); - } + highp vec4 reflection_accum = vec4(0.0,0.0,0.0,0.0); + highp vec4 ambient_accum = vec4(0.0,0.0,0.0,0.0); + for(int i=0;i<reflection_count;i++) { + reflection_process(reflection_indices[i],vertex,normal,binormal,tangent,roughness,anisotropy,ambient_light,env_reflection_light,reflection_accum,ambient_accum); + } - if (reflection_accum.a>0.0) { - specular_light+=reflection_accum.rgb/reflection_accum.a; - } else { - specular_light+=env_reflection_light; - } + if (reflection_accum.a>0.0) { + specular_light+=reflection_accum.rgb/reflection_accum.a; + } else { + specular_light+=env_reflection_light; + } - if (ambient_accum.a>0.0) { - ambient_light+=ambient_accum.rgb/ambient_accum.a; - } + if (ambient_accum.a>0.0) { + ambient_light+=ambient_accum.rgb/ambient_accum.a; + } #ifdef USE_VERTEX_LIGHTING - diffuse_light*=albedo; + diffuse_light*=albedo; #else - for(int i=0;i<omni_light_count;i++) { - light_process_omni(omni_light_indices[i],vertex,eye_vec,normal,binormal,tangent,albedo,transmission,roughness,rim,rim_tint,clearcoat,clearcoat_gloss,anisotropy,specular_blob_intensity,diffuse_light,specular_light); - } + for(int i=0;i<omni_light_count;i++) { + light_process_omni(omni_light_indices[i],vertex,eye_vec,normal,binormal,tangent,albedo,transmission,roughness,rim,rim_tint,clearcoat,clearcoat_gloss,anisotropy,specular_blob_intensity,diffuse_light,specular_light); + } - for(int i=0;i<spot_light_count;i++) { - light_process_spot(spot_light_indices[i],vertex,eye_vec,normal,binormal,tangent,albedo,transmission,roughness,rim,rim_tint,clearcoat,clearcoat_gloss,anisotropy,specular_blob_intensity,diffuse_light,specular_light); - } + for(int i=0;i<spot_light_count;i++) { + light_process_spot(spot_light_indices[i],vertex,eye_vec,normal,binormal,tangent,albedo,transmission,roughness,rim,rim_tint,clearcoat,clearcoat_gloss,anisotropy,specular_blob_intensity,diffuse_light,specular_light); + } #endif //USE_VERTEX_LIGHTING @@ -1897,114 +1904,114 @@ FRAGMENT_SHADER_CODE //nothing happens, so a tree-ssa optimizer will result in no fragment shader :) #else - specular_light*=reflection_multiplier; - ambient_light*=albedo; //ambient must be multiplied by albedo at the end + specular_light*=reflection_multiplier; + ambient_light*=albedo; //ambient must be multiplied by albedo at the end #if defined(ENABLE_AO) - ambient_light*=ao; + ambient_light*=ao; #endif - //energu conservation - diffuse_light=mix(diffuse_light,vec3(0.0),metallic); - ambient_light=mix(ambient_light,vec3(0.0),metallic); + //energu conservation + diffuse_light=mix(diffuse_light,vec3(0.0),metallic); + ambient_light=mix(ambient_light,vec3(0.0),metallic); - { + { #if defined(DIFFUSE_TOON) - //simplify for toon, as - specular_light *= specular * metallic * albedo * 2.0; + //simplify for toon, as + specular_light *= specular * metallic * albedo * 2.0; #else - //brdf approximation (Lazarov 2013) - float ndotv = clamp(dot(normal,eye_vec),0.0,1.0); - vec3 dielectric = vec3(0.034) * specular * 2.0; - //energy conservation - vec3 f0 = mix(dielectric, albedo, metallic); - const vec4 c0 = vec4(-1.0, -0.0275, -0.572, 0.022); - const vec4 c1 = vec4( 1.0, 0.0425, 1.04, -0.04); - vec4 r = roughness * c0 + c1; - float a004 = min( r.x * r.x, exp2( -9.28 * ndotv ) ) * r.x + r.y; - vec2 brdf = vec2( -1.04, 1.04 ) * a004 + r.zw; + //brdf approximation (Lazarov 2013) + float ndotv = clamp(dot(normal,eye_vec),0.0,1.0); + vec3 dielectric = vec3(0.034) * specular * 2.0; + //energy conservation + vec3 f0 = mix(dielectric, albedo, metallic); + const vec4 c0 = vec4(-1.0, -0.0275, -0.572, 0.022); + const vec4 c1 = vec4( 1.0, 0.0425, 1.04, -0.04); + vec4 r = roughness * c0 + c1; + float a004 = min( r.x * r.x, exp2( -9.28 * ndotv ) ) * r.x + r.y; + vec2 brdf = vec2( -1.04, 1.04 ) * a004 + r.zw; - specular_light *= min(1.0,50.0 * f0.g) * brdf.y + brdf.x * f0; + specular_light *= min(1.0,50.0 * f0.g) * brdf.y + brdf.x * f0; #endif - } + } - if (fog_color_enabled.a > 0.5) { + if (fog_color_enabled.a > 0.5) { - float fog_amount=0.0; + float fog_amount=0.0; #ifdef USE_LIGHT_DIRECTIONAL - vec3 fog_color = mix( fog_color_enabled.rgb, fog_sun_color_amount.rgb,fog_sun_color_amount.a * pow(max( dot(normalize(vertex),-light_direction_attenuation.xyz), 0.0),8.0) ); + vec3 fog_color = mix( fog_color_enabled.rgb, fog_sun_color_amount.rgb,fog_sun_color_amount.a * pow(max( dot(normalize(vertex),-light_direction_attenuation.xyz), 0.0),8.0) ); #else - vec3 fog_color = fog_color_enabled.rgb; + vec3 fog_color = fog_color_enabled.rgb; #endif - //apply fog + //apply fog - if (fog_depth_enabled) { + if (fog_depth_enabled) { - float fog_z = smoothstep(fog_depth_begin,z_far,length(vertex)); + float fog_z = smoothstep(fog_depth_begin,z_far,length(vertex)); - fog_amount = pow(fog_z,fog_depth_curve); - if (fog_transmit_enabled) { - vec3 total_light = emission + ambient_light + specular_light + diffuse_light; - float transmit = pow(fog_z,fog_transmit_curve); - fog_color = mix(max(total_light,fog_color),fog_color,transmit); - } - } + fog_amount = pow(fog_z,fog_depth_curve); + if (fog_transmit_enabled) { + vec3 total_light = emission + ambient_light + specular_light + diffuse_light; + float transmit = pow(fog_z,fog_transmit_curve); + fog_color = mix(max(total_light,fog_color),fog_color,transmit); + } + } - if (fog_height_enabled) { - float y = (camera_matrix * vec4(vertex,1.0)).y; - fog_amount = max(fog_amount,pow(1.0-smoothstep(fog_height_min,fog_height_max,y),fog_height_curve)); - } + if (fog_height_enabled) { + float y = (camera_matrix * vec4(vertex,1.0)).y; + fog_amount = max(fog_amount,pow(1.0-smoothstep(fog_height_min,fog_height_max,y),fog_height_curve)); + } - float rev_amount = 1.0 - fog_amount; + float rev_amount = 1.0 - fog_amount; - emission = emission * rev_amount + fog_color * fog_amount; - ambient_light*=rev_amount; - specular_light*rev_amount; - diffuse_light*=rev_amount; + emission = emission * rev_amount + fog_color * fog_amount; + ambient_light*=rev_amount; + specular_light*rev_amount; + diffuse_light*=rev_amount; - } + } #ifdef USE_MULTIPLE_RENDER_TARGETS #ifdef SHADELESS - diffuse_buffer=vec4(albedo.rgb,0.0); - specular_buffer=vec4(0.0); + diffuse_buffer=vec4(albedo.rgb,0.0); + specular_buffer=vec4(0.0); #else #if defined(ENABLE_AO) - float ambient_scale=0.0; // AO is supplied by material + float ambient_scale=0.0; // AO is supplied by material #else - //approximate ambient scale for SSAO, since we will lack full ambient - float max_emission=max(emission.r,max(emission.g,emission.b)); - float max_ambient=max(ambient_light.r,max(ambient_light.g,ambient_light.b)); - float max_diffuse=max(diffuse_light.r,max(diffuse_light.g,diffuse_light.b)); - float total_ambient = max_ambient+max_diffuse+max_emission; - float ambient_scale = (total_ambient>0.0) ? (max_ambient+ambient_occlusion_affect_light*max_diffuse)/total_ambient : 0.0; + //approximate ambient scale for SSAO, since we will lack full ambient + float max_emission=max(emission.r,max(emission.g,emission.b)); + float max_ambient=max(ambient_light.r,max(ambient_light.g,ambient_light.b)); + float max_diffuse=max(diffuse_light.r,max(diffuse_light.g,diffuse_light.b)); + float total_ambient = max_ambient+max_diffuse+max_emission; + float ambient_scale = (total_ambient>0.0) ? (max_ambient+ambient_occlusion_affect_light*max_diffuse)/total_ambient : 0.0; #endif //ENABLE_AO - diffuse_buffer=vec4(emission+diffuse_light+ambient_light,ambient_scale); - specular_buffer=vec4(specular_light,metallic); + diffuse_buffer=vec4(emission+diffuse_light+ambient_light,ambient_scale); + specular_buffer=vec4(specular_light,metallic); #endif //SHADELESS - normal_mr_buffer=vec4(normalize(normal)*0.5+0.5,roughness); + normal_mr_buffer=vec4(normalize(normal)*0.5+0.5,roughness); #if defined (ENABLE_SSS) - sss_buffer = sss_strength; + sss_buffer = sss_strength; #endif @@ -2012,9 +2019,9 @@ FRAGMENT_SHADER_CODE #ifdef SHADELESS - frag_color=vec4(albedo,alpha); + frag_color=vec4(albedo,alpha); #else - frag_color=vec4(emission+ambient_light+diffuse_light+specular_light,alpha); + frag_color=vec4(emission+ambient_light+diffuse_light+specular_light,alpha); #endif //SHADELESS |