summaryrefslogtreecommitdiff
path: root/drivers
diff options
context:
space:
mode:
authorJuan Linietsky <reduzio@gmail.com>2017-09-07 18:00:47 -0300
committerJuan Linietsky <reduzio@gmail.com>2017-09-07 18:00:47 -0300
commiteedb39091aaa1dc0b8f204844bb1eb270b2349f6 (patch)
treeed08e5e7baf7d21403da34d531223404688513aa /drivers
parent1eeda0f32f66b48c8df3b93f333bf702b149ba31 (diff)
Several fixes to directional shadows, closes #10926
Added option to change directional light range mode, between optimized and stable. For Orthogonal, you might need to use optimized.
Diffstat (limited to 'drivers')
-rw-r--r--drivers/gles3/rasterizer_scene_gles3.cpp4
-rw-r--r--drivers/gles3/rasterizer_storage_gles3.cpp17
-rw-r--r--drivers/gles3/rasterizer_storage_gles3.h4
-rw-r--r--drivers/gles3/shaders/scene.glsl1815
4 files changed, 934 insertions, 906 deletions
diff --git a/drivers/gles3/rasterizer_scene_gles3.cpp b/drivers/gles3/rasterizer_scene_gles3.cpp
index b695b7e704..2c936b48c8 100644
--- a/drivers/gles3/rasterizer_scene_gles3.cpp
+++ b/drivers/gles3/rasterizer_scene_gles3.cpp
@@ -2599,7 +2599,7 @@ void RasterizerSceneGLES3::_setup_directional_light(int p_index, const Transform
}
}
- ubo_data.shadow_split_offsets[j] = 1.0 / li->shadow_transform[j].split;
+ ubo_data.shadow_split_offsets[j] = li->shadow_transform[j].split;
Transform modelview = (p_camera_inverse_transform * li->shadow_transform[j].transform).inverse();
@@ -4331,7 +4331,7 @@ void RasterizerSceneGLES3::render_scene(const Transform &p_cam_transform, const
storage->canvas->draw_generic_textured_rect(Rect2(0, 0, storage->frame.current_rt->width / 2, storage->frame.current_rt->height / 2), Rect2(0, 0, 1, 1));
}
- if (false && directional_shadow.fbo) {
+ if (true && directional_shadow.fbo) {
//_copy_texture_to_front_buffer(shadow_atlas->depth);
storage->canvas->canvas_begin();
diff --git a/drivers/gles3/rasterizer_storage_gles3.cpp b/drivers/gles3/rasterizer_storage_gles3.cpp
index a744abdfa8..3cacfac578 100644
--- a/drivers/gles3/rasterizer_storage_gles3.cpp
+++ b/drivers/gles3/rasterizer_storage_gles3.cpp
@@ -4473,6 +4473,7 @@ RID RasterizerStorageGLES3::light_create(VS::LightType p_type) {
light->omni_shadow_mode = VS::LIGHT_OMNI_SHADOW_DUAL_PARABOLOID;
light->omni_shadow_detail = VS::LIGHT_OMNI_SHADOW_DETAIL_VERTICAL;
light->directional_blend_splits = false;
+ light->directional_range_mode = VS::LIGHT_DIRECTIONAL_SHADOW_DEPTH_RANGE_STABLE;
light->reverse_cull = false;
light->version = 0;
@@ -4625,6 +4626,22 @@ VS::LightDirectionalShadowMode RasterizerStorageGLES3::light_directional_get_sha
return light->directional_shadow_mode;
}
+void RasterizerStorageGLES3::light_directional_set_shadow_depth_range_mode(RID p_light, VS::LightDirectionalShadowDepthRangeMode p_range_mode) {
+
+ Light *light = light_owner.getornull(p_light);
+ ERR_FAIL_COND(!light);
+
+ light->directional_range_mode=p_range_mode;
+}
+
+VS::LightDirectionalShadowDepthRangeMode RasterizerStorageGLES3::light_directional_get_shadow_depth_range_mode(RID p_light) const {
+
+ const Light *light = light_owner.getornull(p_light);
+ ERR_FAIL_COND_V(!light, VS::LIGHT_DIRECTIONAL_SHADOW_DEPTH_RANGE_STABLE);
+
+ return light->directional_range_mode;
+}
+
VS::LightType RasterizerStorageGLES3::light_get_type(RID p_light) const {
const Light *light = light_owner.getornull(p_light);
diff --git a/drivers/gles3/rasterizer_storage_gles3.h b/drivers/gles3/rasterizer_storage_gles3.h
index b26032dbc4..6abc22b643 100644
--- a/drivers/gles3/rasterizer_storage_gles3.h
+++ b/drivers/gles3/rasterizer_storage_gles3.h
@@ -879,6 +879,7 @@ public:
VS::LightOmniShadowMode omni_shadow_mode;
VS::LightOmniShadowDetail omni_shadow_detail;
VS::LightDirectionalShadowMode directional_shadow_mode;
+ VS::LightDirectionalShadowDepthRangeMode directional_range_mode;
bool directional_blend_splits;
uint64_t version;
};
@@ -906,6 +907,9 @@ public:
virtual VS::LightDirectionalShadowMode light_directional_get_shadow_mode(RID p_light);
virtual VS::LightOmniShadowMode light_omni_get_shadow_mode(RID p_light);
+ virtual void light_directional_set_shadow_depth_range_mode(RID p_light, VS::LightDirectionalShadowDepthRangeMode p_range_mode);
+ virtual VS::LightDirectionalShadowDepthRangeMode light_directional_get_shadow_depth_range_mode(RID p_light) const;
+
virtual bool light_has_shadow(RID p_light) const;
virtual VS::LightType light_get_type(RID p_light) const;
diff --git a/drivers/gles3/shaders/scene.glsl b/drivers/gles3/shaders/scene.glsl
index 977cee5fcb..26e05a0be3 100644
--- a/drivers/gles3/shaders/scene.glsl
+++ b/drivers/gles3/shaders/scene.glsl
@@ -60,43 +60,43 @@ layout(location=12) in highp vec4 instance_custom_data;
layout(std140) uniform SceneData { //ubo:0
- highp mat4 projection_matrix;
- highp mat4 camera_inverse_matrix;
- highp mat4 camera_matrix;
-
- mediump vec4 ambient_light_color;
- mediump vec4 bg_color;
-
- mediump vec4 fog_color_enabled;
- mediump vec4 fog_sun_color_amount;
-
- mediump float ambient_energy;
- mediump float bg_energy;
-
- mediump float z_offset;
- mediump float z_slope_scale;
- highp float shadow_dual_paraboloid_render_zfar;
- highp float shadow_dual_paraboloid_render_side;
-
- highp vec2 screen_pixel_size;
- highp vec2 shadow_atlas_pixel_size;
- highp vec2 directional_shadow_pixel_size;
-
- highp float time;
- highp float z_far;
- mediump float reflection_multiplier;
- mediump float subsurface_scatter_width;
- mediump float ambient_occlusion_affect_light;
-
- bool fog_depth_enabled;
- highp float fog_depth_begin;
- highp float fog_depth_curve;
- bool fog_transmit_enabled;
- highp float fog_transmit_curve;
- bool fog_height_enabled;
- highp float fog_height_min;
- highp float fog_height_max;
- highp float fog_height_curve;
+ highp mat4 projection_matrix;
+ highp mat4 camera_inverse_matrix;
+ highp mat4 camera_matrix;
+
+ mediump vec4 ambient_light_color;
+ mediump vec4 bg_color;
+
+ mediump vec4 fog_color_enabled;
+ mediump vec4 fog_sun_color_amount;
+
+ mediump float ambient_energy;
+ mediump float bg_energy;
+
+ mediump float z_offset;
+ mediump float z_slope_scale;
+ highp float shadow_dual_paraboloid_render_zfar;
+ highp float shadow_dual_paraboloid_render_side;
+
+ highp vec2 screen_pixel_size;
+ highp vec2 shadow_atlas_pixel_size;
+ highp vec2 directional_shadow_pixel_size;
+
+ highp float time;
+ highp float z_far;
+ mediump float reflection_multiplier;
+ mediump float subsurface_scatter_width;
+ mediump float ambient_occlusion_affect_light;
+
+ bool fog_depth_enabled;
+ highp float fog_depth_begin;
+ highp float fog_depth_curve;
+ bool fog_transmit_enabled;
+ highp float fog_transmit_curve;
+ bool fog_height_enabled;
+ highp float fog_height_min;
+ highp float fog_height_max;
+ highp float fog_height_curve;
};
@@ -107,17 +107,17 @@ uniform highp mat4 world_transform;
layout(std140) uniform DirectionalLightData { //ubo:3
- highp vec4 light_pos_inv_radius;
- mediump vec4 light_direction_attenuation;
- mediump vec4 light_color_energy;
- mediump vec4 light_params; //cone attenuation, angle, specular, shadow enabled,
- mediump vec4 light_clamp;
- mediump vec4 shadow_color_contact;
- highp mat4 shadow_matrix1;
- highp mat4 shadow_matrix2;
- highp mat4 shadow_matrix3;
- highp mat4 shadow_matrix4;
- mediump vec4 shadow_split_offsets;
+ highp vec4 light_pos_inv_radius;
+ mediump vec4 light_direction_attenuation;
+ mediump vec4 light_color_energy;
+ mediump vec4 light_params; //cone attenuation, angle, specular, shadow enabled,
+ mediump vec4 light_clamp;
+ mediump vec4 shadow_color_contact;
+ highp mat4 shadow_matrix1;
+ highp mat4 shadow_matrix2;
+ highp mat4 shadow_matrix3;
+ highp mat4 shadow_matrix4;
+ mediump vec4 shadow_split_offsets;
};
#endif
@@ -127,25 +127,25 @@ layout(std140) uniform DirectionalLightData { //ubo:3
struct LightData {
- highp vec4 light_pos_inv_radius;
- mediump vec4 light_direction_attenuation;
- mediump vec4 light_color_energy;
- mediump vec4 light_params; //cone attenuation, angle, specular, shadow enabled,
- mediump vec4 light_clamp;
- mediump vec4 shadow_color_contact;
- highp mat4 shadow_matrix;
+ highp vec4 light_pos_inv_radius;
+ mediump vec4 light_direction_attenuation;
+ mediump vec4 light_color_energy;
+ mediump vec4 light_params; //cone attenuation, angle, specular, shadow enabled,
+ mediump vec4 light_clamp;
+ mediump vec4 shadow_color_contact;
+ highp mat4 shadow_matrix;
};
layout(std140) uniform OmniLightData { //ubo:4
- LightData omni_lights[MAX_LIGHT_DATA_STRUCTS];
+ LightData omni_lights[MAX_LIGHT_DATA_STRUCTS];
};
layout(std140) uniform SpotLightData { //ubo:5
- LightData spot_lights[MAX_LIGHT_DATA_STRUCTS];
+ LightData spot_lights[MAX_LIGHT_DATA_STRUCTS];
};
#ifdef USE_FORWARD_LIGHTING
@@ -164,44 +164,44 @@ out vec4 specular_light_interp;
void light_compute(vec3 N, vec3 L,vec3 V, vec3 light_color,float roughness,inout vec3 diffuse, inout vec3 specular) {
- float dotNL = max(dot(N,L), 0.0 );
- diffuse += dotNL * light_color;
+ float dotNL = max(dot(N,L), 0.0 );
+ diffuse += dotNL * light_color;
- if (roughness > 0.0) {
+ if (roughness > 0.0) {
- vec3 H = normalize(V + L);
- float dotNH = max(dot(N,H), 0.0 );
- float intensity = pow( dotNH, (1.0-roughness) * 256.0);
- specular += light_color * intensity;
+ vec3 H = normalize(V + L);
+ float dotNH = max(dot(N,H), 0.0 );
+ float intensity = pow( dotNH, (1.0-roughness) * 256.0);
+ specular += light_color * intensity;
- }
+ }
}
void light_process_omni(int idx, vec3 vertex, vec3 eye_vec,vec3 normal, float roughness,inout vec3 diffuse, inout vec3 specular) {
- vec3 light_rel_vec = omni_lights[idx].light_pos_inv_radius.xyz-vertex;
- float light_length = length( light_rel_vec );
- float normalized_distance = light_length*omni_lights[idx].light_pos_inv_radius.w;
- vec3 light_attenuation = vec3(pow( max(1.0 - normalized_distance, 0.0), omni_lights[idx].light_direction_attenuation.w ));
+ vec3 light_rel_vec = omni_lights[idx].light_pos_inv_radius.xyz-vertex;
+ float light_length = length( light_rel_vec );
+ float normalized_distance = light_length*omni_lights[idx].light_pos_inv_radius.w;
+ vec3 light_attenuation = vec3(pow( max(1.0 - normalized_distance, 0.0), omni_lights[idx].light_direction_attenuation.w ));
- light_compute(normal,normalize(light_rel_vec),eye_vec,omni_lights[idx].light_color_energy.rgb * light_attenuation,roughness,diffuse,specular);
+ light_compute(normal,normalize(light_rel_vec),eye_vec,omni_lights[idx].light_color_energy.rgb * light_attenuation,roughness,diffuse,specular);
}
void light_process_spot(int idx, vec3 vertex, vec3 eye_vec, vec3 normal, float roughness, inout vec3 diffuse, inout vec3 specular) {
- vec3 light_rel_vec = spot_lights[idx].light_pos_inv_radius.xyz-vertex;
- float light_length = length( light_rel_vec );
- float normalized_distance = light_length*spot_lights[idx].light_pos_inv_radius.w;
- vec3 light_attenuation = vec3(pow( max(1.0 - normalized_distance, 0.001), spot_lights[idx].light_direction_attenuation.w ));
- vec3 spot_dir = spot_lights[idx].light_direction_attenuation.xyz;
- float spot_cutoff=spot_lights[idx].light_params.y;
- float scos = max(dot(-normalize(light_rel_vec), spot_dir),spot_cutoff);
- float spot_rim = (1.0 - scos) / (1.0 - spot_cutoff);
- light_attenuation *= 1.0 - pow( max(spot_rim,0.001), spot_lights[idx].light_params.x);
+ vec3 light_rel_vec = spot_lights[idx].light_pos_inv_radius.xyz-vertex;
+ float light_length = length( light_rel_vec );
+ float normalized_distance = light_length*spot_lights[idx].light_pos_inv_radius.w;
+ vec3 light_attenuation = vec3(pow( max(1.0 - normalized_distance, 0.001), spot_lights[idx].light_direction_attenuation.w ));
+ vec3 spot_dir = spot_lights[idx].light_direction_attenuation.xyz;
+ float spot_cutoff=spot_lights[idx].light_params.y;
+ float scos = max(dot(-normalize(light_rel_vec), spot_dir),spot_cutoff);
+ float spot_rim = (1.0 - scos) / (1.0 - spot_cutoff);
+ light_attenuation *= 1.0 - pow( max(spot_rim,0.001), spot_lights[idx].light_params.x);
- light_compute(normal,normalize(light_rel_vec),eye_vec,spot_lights[idx].light_color_energy.rgb*light_attenuation,roughness,diffuse,specular);
+ light_compute(normal,normalize(light_rel_vec),eye_vec,spot_lights[idx].light_color_energy.rgb*light_attenuation,roughness,diffuse,specular);
}
@@ -262,118 +262,118 @@ out highp vec4 position_interp;
void main() {
- highp vec4 vertex = vertex_attrib; // vec4(vertex_attrib.xyz * data_attrib.x,1.0);
+ highp vec4 vertex = vertex_attrib; // vec4(vertex_attrib.xyz * data_attrib.x,1.0);
- mat4 world_matrix = world_transform;
+ mat4 world_matrix = world_transform;
#ifdef USE_INSTANCING
- {
- highp mat4 m=mat4(instance_xform0,instance_xform1,instance_xform2,vec4(0.0,0.0,0.0,1.0));
- world_matrix = world_matrix * transpose(m);
- }
+ {
+ highp mat4 m=mat4(instance_xform0,instance_xform1,instance_xform2,vec4(0.0,0.0,0.0,1.0));
+ world_matrix = world_matrix * transpose(m);
+ }
#endif
- vec3 normal = normal_attrib * normal_mult;
+ vec3 normal = normal_attrib * normal_mult;
#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) || defined(LIGHT_USE_ANISOTROPY)
- vec3 tangent = tangent_attrib.xyz;
- tangent*=normal_mult;
- float binormalf = tangent_attrib.a;
+ vec3 tangent = tangent_attrib.xyz;
+ tangent*=normal_mult;
+ float binormalf = tangent_attrib.a;
#endif
#if defined(ENABLE_COLOR_INTERP)
- color_interp = color_attrib;
+ color_interp = color_attrib;
#if defined(USE_INSTANCING)
- color_interp *= instance_color;
+ color_interp *= instance_color;
#endif
#endif
#ifdef USE_SKELETON
- {
- //skeleton transform
- ivec2 tex_ofs = ivec2( bone_indices.x%256, (bone_indices.x/256)*3 );
- highp mat3x4 m = mat3x4(
- texelFetch(skeleton_texture,tex_ofs,0),
- texelFetch(skeleton_texture,tex_ofs+ivec2(0,1),0),
- texelFetch(skeleton_texture,tex_ofs+ivec2(0,2),0)
- ) * bone_weights.x;
+ {
+ //skeleton transform
+ ivec2 tex_ofs = ivec2( bone_indices.x%256, (bone_indices.x/256)*3 );
+ highp mat3x4 m = mat3x4(
+ texelFetch(skeleton_texture,tex_ofs,0),
+ texelFetch(skeleton_texture,tex_ofs+ivec2(0,1),0),
+ texelFetch(skeleton_texture,tex_ofs+ivec2(0,2),0)
+ ) * bone_weights.x;
- tex_ofs = ivec2( bone_indices.y%256, (bone_indices.y/256)*3 );
+ tex_ofs = ivec2( bone_indices.y%256, (bone_indices.y/256)*3 );
- m+= mat3x4(
- texelFetch(skeleton_texture,tex_ofs,0),
- texelFetch(skeleton_texture,tex_ofs+ivec2(0,1),0),
- texelFetch(skeleton_texture,tex_ofs+ivec2(0,2),0)
- ) * bone_weights.y;
+ m+= mat3x4(
+ texelFetch(skeleton_texture,tex_ofs,0),
+ texelFetch(skeleton_texture,tex_ofs+ivec2(0,1),0),
+ texelFetch(skeleton_texture,tex_ofs+ivec2(0,2),0)
+ ) * bone_weights.y;
- tex_ofs = ivec2( bone_indices.z%256, (bone_indices.z/256)*3 );
+ tex_ofs = ivec2( bone_indices.z%256, (bone_indices.z/256)*3 );
- m+= mat3x4(
- texelFetch(skeleton_texture,tex_ofs,0),
- texelFetch(skeleton_texture,tex_ofs+ivec2(0,1),0),
- texelFetch(skeleton_texture,tex_ofs+ivec2(0,2),0)
- ) * bone_weights.z;
+ m+= mat3x4(
+ texelFetch(skeleton_texture,tex_ofs,0),
+ texelFetch(skeleton_texture,tex_ofs+ivec2(0,1),0),
+ texelFetch(skeleton_texture,tex_ofs+ivec2(0,2),0)
+ ) * bone_weights.z;
- tex_ofs = ivec2( bone_indices.w%256, (bone_indices.w/256)*3 );
+ tex_ofs = ivec2( bone_indices.w%256, (bone_indices.w/256)*3 );
- m+= mat3x4(
- texelFetch(skeleton_texture,tex_ofs,0),
- texelFetch(skeleton_texture,tex_ofs+ivec2(0,1),0),
- texelFetch(skeleton_texture,tex_ofs+ivec2(0,2),0)
- ) * bone_weights.w;
+ m+= mat3x4(
+ texelFetch(skeleton_texture,tex_ofs,0),
+ texelFetch(skeleton_texture,tex_ofs+ivec2(0,1),0),
+ texelFetch(skeleton_texture,tex_ofs+ivec2(0,2),0)
+ ) * bone_weights.w;
- vertex.xyz = vertex * m;
+ vertex.xyz = vertex * m;
- normal = vec4(normal,0.0) * m;
+ normal = vec4(normal,0.0) * m;
#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) || defined(LIGHT_USE_ANISOTROPY)
- tangent.xyz = vec4(tangent.xyz,0.0) * m;
+ tangent.xyz = vec4(tangent.xyz,0.0) * m;
#endif
- }
+ }
#endif
#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) || defined(LIGHT_USE_ANISOTROPY)
- vec3 binormal = normalize( cross(normal,tangent) * binormalf );
+ vec3 binormal = normalize( cross(normal,tangent) * binormalf );
#endif
#if defined(ENABLE_UV_INTERP)
- uv_interp = uv_attrib;
+ uv_interp = uv_attrib;
#endif
#if defined(ENABLE_UV2_INTERP)
- uv2_interp = uv2_attrib;
+ uv2_interp = uv2_attrib;
#endif
#if defined(USE_INSTANCING) && defined(ENABLE_INSTANCE_CUSTOM)
- vec4 instance_custom = instance_custom_data;
+ vec4 instance_custom = instance_custom_data;
#else
- vec4 instance_custom = vec4(0.0);
+ vec4 instance_custom = vec4(0.0);
#endif
- highp mat4 modelview = camera_inverse_matrix * world_matrix;
- highp mat4 local_projection = projection_matrix;
+ highp mat4 modelview = camera_inverse_matrix * world_matrix;
+ highp mat4 local_projection = projection_matrix;
//using world coordinates
#if !defined(SKIP_TRANSFORM_USED) && defined(VERTEX_WORLD_COORDS_USED)
- vertex = world_matrix * vertex;
- normal = normalize((world_matrix * vec4(normal,0.0)).xyz);
+ vertex = world_matrix * vertex;
+ normal = normalize((world_matrix * vec4(normal,0.0)).xyz);
#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) || defined(LIGHT_USE_ANISOTROPY)
- tangent = normalize((world_matrix * vec4(tangent,0.0)).xyz);
- binormal = normalize((world_matrix * vec4(binormal,0.0)).xyz);
+ tangent = normalize((world_matrix * vec4(tangent,0.0)).xyz);
+ binormal = normalize((world_matrix * vec4(binormal,0.0)).xyz);
#endif
#endif
- float roughness=0.0;
+ float roughness=0.0;
//defines that make writing custom shaders easier
#define projection_matrix local_projection
@@ -389,36 +389,36 @@ VERTEX_SHADER_CODE
//using local coordinates (default)
#if !defined(SKIP_TRANSFORM_USED) && !defined(VERTEX_WORLD_COORDS_USED)
- vertex = modelview * vertex;
- normal = normalize((modelview * vec4(normal,0.0)).xyz);
+ vertex = modelview * vertex;
+ normal = normalize((modelview * vec4(normal,0.0)).xyz);
#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) || defined(LIGHT_USE_ANISOTROPY)
- tangent = normalize((modelview * vec4(tangent,0.0)).xyz);
- binormal = normalize((modelview * vec4(binormal,0.0)).xyz);
+ tangent = normalize((modelview * vec4(tangent,0.0)).xyz);
+ binormal = normalize((modelview * vec4(binormal,0.0)).xyz);
#endif
#endif
//using world coordinates
#if !defined(SKIP_TRANSFORM_USED) && defined(VERTEX_WORLD_COORDS_USED)
- vertex = camera_inverse_matrix * vertex;
- normal = normalize((camera_inverse_matrix * vec4(normal,0.0)).xyz);
+ vertex = camera_inverse_matrix * vertex;
+ normal = normalize((camera_inverse_matrix * vec4(normal,0.0)).xyz);
#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) || defined(LIGHT_USE_ANISOTROPY)
- tangent = normalize((camera_inverse_matrix * vec4(tangent,0.0)).xyz);
- binormal = normalize((camera_inverse_matrix * vec4(binormal,0.0)).xyz);
+ tangent = normalize((camera_inverse_matrix * vec4(tangent,0.0)).xyz);
+ binormal = normalize((camera_inverse_matrix * vec4(binormal,0.0)).xyz);
#endif
#endif
- vertex_interp = vertex.xyz;
- normal_interp = normal;
+ vertex_interp = vertex.xyz;
+ normal_interp = normal;
#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) || defined(LIGHT_USE_ANISOTROPY)
- tangent_interp = tangent;
- binormal_interp = binormal;
+ tangent_interp = tangent;
+ binormal_interp = binormal;
#endif
@@ -427,29 +427,29 @@ VERTEX_SHADER_CODE
#ifdef RENDER_DEPTH_DUAL_PARABOLOID
- vertex_interp.z*= shadow_dual_paraboloid_render_side;
- normal_interp.z*= shadow_dual_paraboloid_render_side;
+ vertex_interp.z*= shadow_dual_paraboloid_render_side;
+ normal_interp.z*= shadow_dual_paraboloid_render_side;
- dp_clip=vertex_interp.z; //this attempts to avoid noise caused by objects sent to the other parabolloid side due to bias
+ dp_clip=vertex_interp.z; //this attempts to avoid noise caused by objects sent to the other parabolloid side due to bias
- //for dual paraboloid shadow mapping, this is the fastest but least correct way, as it curves straight edges
+ //for dual paraboloid shadow mapping, this is the fastest but least correct way, as it curves straight edges
- highp vec3 vtx = vertex_interp+normalize(vertex_interp)*z_offset;
- highp float distance = length(vtx);
- vtx = normalize(vtx);
- vtx.xy/=1.0-vtx.z;
- vtx.z=(distance/shadow_dual_paraboloid_render_zfar);
- vtx.z=vtx.z * 2.0 - 1.0;
+ highp vec3 vtx = vertex_interp+normalize(vertex_interp)*z_offset;
+ highp float distance = length(vtx);
+ vtx = normalize(vtx);
+ vtx.xy/=1.0-vtx.z;
+ vtx.z=(distance/shadow_dual_paraboloid_render_zfar);
+ vtx.z=vtx.z * 2.0 - 1.0;
- vertex.xyz=vtx;
- vertex.w=1.0;
+ vertex.xyz=vtx;
+ vertex.w=1.0;
#else
- float z_ofs = z_offset;
- z_ofs += (1.0-abs(normal_interp.z))*z_slope_scale;
- vertex_interp.z-=z_ofs;
+ float z_ofs = z_offset;
+ z_ofs += (1.0-abs(normal_interp.z))*z_slope_scale;
+ vertex_interp.z-=z_ofs;
#endif //RENDER_DEPTH_DUAL_PARABOLOID
@@ -457,54 +457,54 @@ VERTEX_SHADER_CODE
#if !defined(SKIP_TRANSFORM_USED) && !defined(RENDER_DEPTH_DUAL_PARABOLOID)
- gl_Position = projection_matrix * vec4(vertex_interp,1.0);
+ gl_Position = projection_matrix * vec4(vertex_interp,1.0);
#else
- gl_Position = vertex;
+ gl_Position = vertex;
#endif
- position_interp=gl_Position;
+ position_interp=gl_Position;
#ifdef USE_VERTEX_LIGHTING
- diffuse_light_interp=vec4(0.0);
- specular_light_interp=vec4(0.0);
+ diffuse_light_interp=vec4(0.0);
+ specular_light_interp=vec4(0.0);
#ifdef USE_FORWARD_LIGHTING
- for(int i=0;i<omni_light_count;i++) {
- light_process_omni(omni_light_indices[i],vertex_interp,-normalize( vertex_interp ),normal_interp,roughness,diffuse_light_interp.rgb,specular_light_interp.rgb);
- }
+ for(int i=0;i<omni_light_count;i++) {
+ light_process_omni(omni_light_indices[i],vertex_interp,-normalize( vertex_interp ),normal_interp,roughness,diffuse_light_interp.rgb,specular_light_interp.rgb);
+ }
- for(int i=0;i<spot_light_count;i++) {
- light_process_spot(spot_light_indices[i],vertex_interp,-normalize( vertex_interp ),normal_interp,roughness,diffuse_light_interp.rgb,specular_light_interp.rgb);
- }
+ for(int i=0;i<spot_light_count;i++) {
+ light_process_spot(spot_light_indices[i],vertex_interp,-normalize( vertex_interp ),normal_interp,roughness,diffuse_light_interp.rgb,specular_light_interp.rgb);
+ }
#endif
#ifdef USE_LIGHT_DIRECTIONAL
- vec3 directional_diffuse = vec3(0.0);
- vec3 directional_specular = vec3(0.0);
+ vec3 directional_diffuse = vec3(0.0);
+ vec3 directional_specular = vec3(0.0);
light_compute(normal_interp,-light_direction_attenuation.xyz,-normalize( vertex_interp ),light_color_energy.rgb,roughness,directional_diffuse,directional_specular);
- float diff_avg = dot(diffuse_light_interp.rgb,vec3(0.33333));
- float diff_dir_avg = dot(directional_diffuse,vec3(0.33333));
- if (diff_avg>0.0) {
- diffuse_light_interp.a=diff_dir_avg/(diff_avg+diff_dir_avg);
- } else {
- diffuse_light_interp.a=1.0;
- }
+ float diff_avg = dot(diffuse_light_interp.rgb,vec3(0.33333));
+ float diff_dir_avg = dot(directional_diffuse,vec3(0.33333));
+ if (diff_avg>0.0) {
+ diffuse_light_interp.a=diff_dir_avg/(diff_avg+diff_dir_avg);
+ } else {
+ diffuse_light_interp.a=1.0;
+ }
- diffuse_light_interp.rgb+=directional_diffuse;
+ diffuse_light_interp.rgb+=directional_diffuse;
- float spec_avg = dot(specular_light_interp.rgb,vec3(0.33333));
- float spec_dir_avg = dot(directional_specular,vec3(0.33333));
- if (spec_avg>0.0) {
- specular_light_interp.a=spec_dir_avg/(spec_avg+spec_dir_avg);
- } else {
- specular_light_interp.a=1.0;
- }
+ float spec_avg = dot(specular_light_interp.rgb,vec3(0.33333));
+ float spec_dir_avg = dot(directional_specular,vec3(0.33333));
+ if (spec_avg>0.0) {
+ specular_light_interp.a=spec_dir_avg/(spec_avg+spec_dir_avg);
+ } else {
+ specular_light_interp.a=1.0;
+ }
- specular_light_interp.rgb+=directional_specular;
+ specular_light_interp.rgb+=directional_specular;
#endif //USE_LIGHT_DIRECTIONAL
@@ -570,8 +570,8 @@ uniform bool no_ambient_light;
layout(std140) uniform Radiance { //ubo:2
- mat4 radiance_inverse_xform;
- float radiance_ambient_contribution;
+ mat4 radiance_inverse_xform;
+ float radiance_ambient_contribution;
};
@@ -583,26 +583,26 @@ uniform sampler2DArray radiance_map; //texunit:-2
vec3 textureDualParaboloid(sampler2DArray p_tex, vec3 p_vec,float p_roughness) {
- vec3 norm = normalize(p_vec);
- norm.xy/=1.0+abs(norm.z);
- norm.xy=norm.xy * vec2(0.5,0.25) + vec2(0.5,0.25);
-
- // we need to lie the derivatives (normg) and assume that DP side is always the same
- // to get proper texure filtering
- vec2 normg=norm.xy;
- if (norm.z>0.0) {
- norm.y=0.5-norm.y+0.5;
- }
-
- // thanks to OpenGL spec using floor(layer + 0.5) for texture arrays,
- // it's easy to have precision errors using fract() to interpolate layers
- // as such, using fixed point to ensure it works.
-
- float index = p_roughness * RADIANCE_MAX_LOD;
- int indexi = int(index * 256.0);
- vec3 base = textureGrad(p_tex, vec3(norm.xy, float(indexi/256)),dFdx(normg),dFdy(normg)).xyz;
- vec3 next = textureGrad(p_tex, vec3(norm.xy, float(indexi/256+1)),dFdx(normg),dFdy(normg)).xyz;
- return mix(base,next,float(indexi%256)/256.0);
+ vec3 norm = normalize(p_vec);
+ norm.xy/=1.0+abs(norm.z);
+ norm.xy=norm.xy * vec2(0.5,0.25) + vec2(0.5,0.25);
+
+ // we need to lie the derivatives (normg) and assume that DP side is always the same
+ // to get proper texure filtering
+ vec2 normg=norm.xy;
+ if (norm.z>0.0) {
+ norm.y=0.5-norm.y+0.5;
+ }
+
+ // thanks to OpenGL spec using floor(layer + 0.5) for texture arrays,
+ // it's easy to have precision errors using fract() to interpolate layers
+ // as such, using fixed point to ensure it works.
+
+ float index = p_roughness * RADIANCE_MAX_LOD;
+ int indexi = int(index * 256.0);
+ vec3 base = textureGrad(p_tex, vec3(norm.xy, float(indexi/256)),dFdx(normg),dFdy(normg)).xyz;
+ vec3 next = textureGrad(p_tex, vec3(norm.xy, float(indexi/256+1)),dFdx(normg),dFdy(normg)).xyz;
+ return mix(base,next,float(indexi%256)/256.0);
}
#else
@@ -611,13 +611,13 @@ uniform sampler2D radiance_map; //texunit:-2
vec3 textureDualParaboloid(sampler2D p_tex, vec3 p_vec,float p_roughness) {
- vec3 norm = normalize(p_vec);
- norm.xy/=1.0+abs(norm.z);
- norm.xy=norm.xy * vec2(0.5,0.25) + vec2(0.5,0.25);
- if (norm.z>0.0) {
- norm.y=0.5-norm.y+0.5;
- }
- return textureLod(p_tex, norm.xy, p_roughness * RADIANCE_MAX_LOD).xyz;
+ vec3 norm = normalize(p_vec);
+ norm.xy/=1.0+abs(norm.z);
+ norm.xy=norm.xy * vec2(0.5,0.25) + vec2(0.5,0.25);
+ if (norm.z>0.0) {
+ norm.y=0.5-norm.y+0.5;
+ }
+ return textureLod(p_tex, norm.xy, p_roughness * RADIANCE_MAX_LOD).xyz;
}
#endif
@@ -642,43 +642,43 @@ FRAGMENT_SHADER_GLOBALS
layout(std140) uniform SceneData {
- highp mat4 projection_matrix;
- highp mat4 camera_inverse_matrix;
- highp mat4 camera_matrix;
-
- mediump vec4 ambient_light_color;
- mediump vec4 bg_color;
-
- mediump vec4 fog_color_enabled;
- mediump vec4 fog_sun_color_amount;
-
- mediump float ambient_energy;
- mediump float bg_energy;
-
- mediump float z_offset;
- mediump float z_slope_scale;
- highp float shadow_dual_paraboloid_render_zfar;
- highp float shadow_dual_paraboloid_render_side;
-
- highp vec2 screen_pixel_size;
- highp vec2 shadow_atlas_pixel_size;
- highp vec2 directional_shadow_pixel_size;
-
- highp float time;
- highp float z_far;
- mediump float reflection_multiplier;
- mediump float subsurface_scatter_width;
- mediump float ambient_occlusion_affect_light;
-
- bool fog_depth_enabled;
- highp float fog_depth_begin;
- highp float fog_depth_curve;
- bool fog_transmit_enabled;
- highp float fog_transmit_curve;
- bool fog_height_enabled;
- highp float fog_height_min;
- highp float fog_height_max;
- highp float fog_height_curve;
+ highp mat4 projection_matrix;
+ highp mat4 camera_inverse_matrix;
+ highp mat4 camera_matrix;
+
+ mediump vec4 ambient_light_color;
+ mediump vec4 bg_color;
+
+ mediump vec4 fog_color_enabled;
+ mediump vec4 fog_sun_color_amount;
+
+ mediump float ambient_energy;
+ mediump float bg_energy;
+
+ mediump float z_offset;
+ mediump float z_slope_scale;
+ highp float shadow_dual_paraboloid_render_zfar;
+ highp float shadow_dual_paraboloid_render_side;
+
+ highp vec2 screen_pixel_size;
+ highp vec2 shadow_atlas_pixel_size;
+ highp vec2 directional_shadow_pixel_size;
+
+ highp float time;
+ highp float z_far;
+ mediump float reflection_multiplier;
+ mediump float subsurface_scatter_width;
+ mediump float ambient_occlusion_affect_light;
+
+ bool fog_depth_enabled;
+ highp float fog_depth_begin;
+ highp float fog_depth_curve;
+ bool fog_transmit_enabled;
+ highp float fog_transmit_curve;
+ bool fog_height_enabled;
+ highp float fog_height_min;
+ highp float fog_height_max;
+ highp float fog_height_curve;
};
//directional light data
@@ -687,17 +687,17 @@ layout(std140) uniform SceneData {
layout(std140) uniform DirectionalLightData {
- highp vec4 light_pos_inv_radius;
- mediump vec4 light_direction_attenuation;
- mediump vec4 light_color_energy;
- mediump vec4 light_params; //cone attenuation, angle, specular, shadow enabled,
- mediump vec4 light_clamp;
- mediump vec4 shadow_color_contact;
- highp mat4 shadow_matrix1;
- highp mat4 shadow_matrix2;
- highp mat4 shadow_matrix3;
- highp mat4 shadow_matrix4;
- mediump vec4 shadow_split_offsets;
+ highp vec4 light_pos_inv_radius;
+ mediump vec4 light_direction_attenuation;
+ mediump vec4 light_color_energy;
+ mediump vec4 light_params; //cone attenuation, angle, specular, shadow enabled,
+ mediump vec4 light_clamp;
+ mediump vec4 shadow_color_contact;
+ highp mat4 shadow_matrix1;
+ highp mat4 shadow_matrix2;
+ highp mat4 shadow_matrix3;
+ highp mat4 shadow_matrix4;
+ mediump vec4 shadow_split_offsets;
};
@@ -713,25 +713,25 @@ in vec4 specular_light_interp;
struct LightData {
- highp vec4 light_pos_inv_radius;
- mediump vec4 light_direction_attenuation;
- mediump vec4 light_color_energy;
- mediump vec4 light_params; //cone attenuation, angle, specular, shadow enabled,
- mediump vec4 light_clamp;
- mediump vec4 shadow_color_contact;
- highp mat4 shadow_matrix;
+ highp vec4 light_pos_inv_radius;
+ mediump vec4 light_direction_attenuation;
+ mediump vec4 light_color_energy;
+ mediump vec4 light_params; //cone attenuation, angle, specular, shadow enabled,
+ mediump vec4 light_clamp;
+ mediump vec4 shadow_color_contact;
+ highp mat4 shadow_matrix;
};
layout(std140) uniform OmniLightData { //ubo:4
- LightData omni_lights[MAX_LIGHT_DATA_STRUCTS];
+ LightData omni_lights[MAX_LIGHT_DATA_STRUCTS];
};
layout(std140) uniform SpotLightData { //ubo:5
- LightData spot_lights[MAX_LIGHT_DATA_STRUCTS];
+ LightData spot_lights[MAX_LIGHT_DATA_STRUCTS];
};
@@ -740,18 +740,18 @@ uniform highp sampler2DShadow shadow_atlas; //texunit:-5
struct ReflectionData {
- mediump vec4 box_extents;
- mediump vec4 box_offset;
- mediump vec4 params; // intensity, 0, interior , boxproject
- mediump vec4 ambient; //ambient color, energy
- mediump vec4 atlas_clamp;
- highp mat4 local_matrix; //up to here for spot and omni, rest is for directional
- //notes: for ambientblend, use distance to edge to blend between already existing global environment
+ mediump vec4 box_extents;
+ mediump vec4 box_offset;
+ mediump vec4 params; // intensity, 0, interior , boxproject
+ mediump vec4 ambient; //ambient color, energy
+ mediump vec4 atlas_clamp;
+ highp mat4 local_matrix; //up to here for spot and omni, rest is for directional
+ //notes: for ambientblend, use distance to edge to blend between already existing global environment
};
layout(std140) uniform ReflectionProbeData { //ubo:6
- ReflectionData reflections[MAX_REFLECTION_DATA_STRUCTS];
+ ReflectionData reflections[MAX_REFLECTION_DATA_STRUCTS];
};
uniform mediump sampler2D reflection_atlas; //texunit:-3
@@ -798,66 +798,66 @@ uniform highp sampler2D depth_buffer; //texunit:-8
float contact_shadow_compute(vec3 pos, vec3 dir, float max_distance) {
- if (abs(dir.z)>0.99)
- return 1.0;
+ if (abs(dir.z)>0.99)
+ return 1.0;
- vec3 endpoint = pos+dir*max_distance;
- vec4 source = position_interp;
- vec4 dest = projection_matrix * vec4(endpoint, 1.0);
+ vec3 endpoint = pos+dir*max_distance;
+ vec4 source = position_interp;
+ vec4 dest = projection_matrix * vec4(endpoint, 1.0);
- vec2 from_screen = (source.xy / source.w) * 0.5 + 0.5;
- vec2 to_screen = (dest.xy / dest.w) * 0.5 + 0.5;
+ vec2 from_screen = (source.xy / source.w) * 0.5 + 0.5;
+ vec2 to_screen = (dest.xy / dest.w) * 0.5 + 0.5;
- vec2 screen_rel = to_screen - from_screen;
+ vec2 screen_rel = to_screen - from_screen;
- if (length(screen_rel)<0.00001)
- return 1.0; //too small, don't do anything
+ if (length(screen_rel)<0.00001)
+ return 1.0; //too small, don't do anything
- /*float pixel_size; //approximate pixel size
+ /*float pixel_size; //approximate pixel size
- if (screen_rel.x > screen_rel.y) {
+ if (screen_rel.x > screen_rel.y) {
- pixel_size = abs((pos.x-endpoint.x)/(screen_rel.x/screen_pixel_size.x));
- } else {
- pixel_size = abs((pos.y-endpoint.y)/(screen_rel.y/screen_pixel_size.y));
+ pixel_size = abs((pos.x-endpoint.x)/(screen_rel.x/screen_pixel_size.x));
+ } else {
+ pixel_size = abs((pos.y-endpoint.y)/(screen_rel.y/screen_pixel_size.y));
- }*/
- vec4 bias = projection_matrix * vec4(pos+vec3(0.0,0.0,0.04), 1.0); //todo un-harcode the 0.04
+ }*/
+ vec4 bias = projection_matrix * vec4(pos+vec3(0.0,0.0,0.04), 1.0); //todo un-harcode the 0.04
- vec2 pixel_incr = normalize(screen_rel)*screen_pixel_size;
+ vec2 pixel_incr = normalize(screen_rel)*screen_pixel_size;
- float steps = length(screen_rel) / length(pixel_incr);
- steps = min(2000.0,steps); //put a limit to avoid freezing in some strange situation
- //steps=10.0;
+ float steps = length(screen_rel) / length(pixel_incr);
+ steps = min(2000.0,steps); //put a limit to avoid freezing in some strange situation
+ //steps=10.0;
- vec4 incr = (dest - source)/steps;
- float ratio=0.0;
- float ratio_incr = 1.0/steps;
+ vec4 incr = (dest - source)/steps;
+ float ratio=0.0;
+ float ratio_incr = 1.0/steps;
- while(steps>0.0) {
- source += incr*2.0;
- bias+=incr*2.0;
+ while(steps>0.0) {
+ source += incr*2.0;
+ bias+=incr*2.0;
- vec3 uv_depth = (source.xyz / source.w) * 0.5 + 0.5;
- float depth = texture(depth_buffer,uv_depth.xy).r;
+ vec3 uv_depth = (source.xyz / source.w) * 0.5 + 0.5;
+ float depth = texture(depth_buffer,uv_depth.xy).r;
- if (depth < uv_depth.z) {
- if (depth > (bias.z/bias.w) * 0.5 + 0.5) {
- return min(pow(ratio,4.0),1.0);
- } else {
- return 1.0;
- }
- }
+ if (depth < uv_depth.z) {
+ if (depth > (bias.z/bias.w) * 0.5 + 0.5) {
+ return min(pow(ratio,4.0),1.0);
+ } else {
+ return 1.0;
+ }
+ }
- ratio+=ratio_incr;
- steps-=1.0;
- }
+ ratio+=ratio_incr;
+ steps-=1.0;
+ }
- return 1.0;
+ return 1.0;
}
#endif
@@ -898,155 +898,155 @@ LIGHT_SHADER_CODE
#else
- float dotNL = max(dot(N,L), 0.0 );
+ float dotNL = max(dot(N,L), 0.0 );
#if defined(DIFFUSE_OREN_NAYAR)
- vec3 light_amount;
+ vec3 light_amount;
#else
- float light_amount;
+ float light_amount;
#endif
#if defined(DIFFUSE_LAMBERT_WRAP)
- //energy conserving lambert wrap shader
- light_amount = max(0.0,(dot(N,L) + roughness) / ((1.0 + roughness) * (1.0 + roughness)));
+ //energy conserving lambert wrap shader
+ light_amount = max(0.0,(dot(N,L) + roughness) / ((1.0 + roughness) * (1.0 + roughness)));
#elif defined(DIFFUSE_OREN_NAYAR)
- {
- float LdotV = dot(L, V);
- float NdotL = dot(L, N);
- float NdotV = dot(N, V);
+ {
+ float LdotV = dot(L, V);
+ float NdotL = dot(L, N);
+ float NdotV = dot(N, V);
- float s = LdotV - NdotL * NdotV;
- float t = mix(1.0, max(NdotL, NdotV), step(0.0, s));
+ float s = LdotV - NdotL * NdotV;
+ float t = mix(1.0, max(NdotL, NdotV), step(0.0, s));
- float sigma2 = roughness * roughness;
- vec3 A = 1.0 + sigma2 * (diffuse_color / (sigma2 + 0.13) + 0.5 / (sigma2 + 0.33));
- float B = 0.45 * sigma2 / (sigma2 + 0.09);
+ float sigma2 = roughness * roughness;
+ vec3 A = 1.0 + sigma2 * (diffuse_color / (sigma2 + 0.13) + 0.5 / (sigma2 + 0.33));
+ float B = 0.45 * sigma2 / (sigma2 + 0.09);
- light_amount = max(0.0, NdotL) * (A + vec3(B) * s / t) / M_PI;
- }
+ light_amount = max(0.0, NdotL) * (A + vec3(B) * s / t) / M_PI;
+ }
#elif defined(DIFFUSE_TOON)
- light_amount = smoothstep(-roughness,max(roughness,0.01),dot(N,L));
+ light_amount = smoothstep(-roughness,max(roughness,0.01),dot(N,L));
#elif defined(DIFFUSE_BURLEY)
- {
- float NdotL = dot(L, N);
- float NdotV = dot(N, V);
- float VdotH = dot(N, normalize(L+V));
- float energyBias = mix(roughness, 0.0, 0.5);
- float energyFactor = mix(roughness, 1.0, 1.0 / 1.51);
- float fd90 = energyBias + 2.0 * VdotH * VdotH * roughness;
- float f0 = 1.0;
- float lightScatter = f0 + (fd90 - f0) * pow(1.0 - NdotL, 5.0);
- float viewScatter = f0 + (fd90 - f0) * pow(1.0 - NdotV, 5.0);
-
- light_amount = lightScatter * viewScatter * energyFactor;
- }
+ {
+ float NdotL = dot(L, N);
+ float NdotV = dot(N, V);
+ float VdotH = dot(N, normalize(L+V));
+ float energyBias = mix(roughness, 0.0, 0.5);
+ float energyFactor = mix(roughness, 1.0, 1.0 / 1.51);
+ float fd90 = energyBias + 2.0 * VdotH * VdotH * roughness;
+ float f0 = 1.0;
+ float lightScatter = f0 + (fd90 - f0) * pow(1.0 - NdotL, 5.0);
+ float viewScatter = f0 + (fd90 - f0) * pow(1.0 - NdotV, 5.0);
+
+ light_amount = lightScatter * viewScatter * energyFactor;
+ }
#else
- //lambert
- light_amount = dotNL;
+ //lambert
+ light_amount = dotNL;
#endif
#if defined(TRANSMISSION_USED)
- diffuse += light_color * diffuse_color * mix(vec3(light_amount),vec3(1.0),transmission);
+ diffuse += light_color * diffuse_color * mix(vec3(light_amount),vec3(1.0),transmission);
#else
- diffuse += light_color * diffuse_color * light_amount;
+ diffuse += light_color * diffuse_color * light_amount;
#endif
- float dotNV = max(dot(N,V), 0.0 );
+ float dotNV = max(dot(N,V), 0.0 );
#if defined(LIGHT_USE_RIM)
- float rim_light = pow(1.0-dotNV,(1.0-roughness)*16.0);
- diffuse += rim_light * rim * mix(vec3(1.0),diffuse_color,rim_tint) * light_color;
+ float rim_light = pow(1.0-dotNV,(1.0-roughness)*16.0);
+ diffuse += rim_light * rim * mix(vec3(1.0),diffuse_color,rim_tint) * light_color;
#endif
- if (roughness > 0.0) {
+ if (roughness > 0.0) {
- // D
+ // D
#if defined(SPECULAR_BLINN)
- vec3 H = normalize(V + L);
- float dotNH = max(dot(N,H), 0.0 );
- float intensity = pow( dotNH, (1.0-roughness) * 256.0);
- specular += light_color * intensity * specular_blob_intensity;
+ vec3 H = normalize(V + L);
+ float dotNH = max(dot(N,H), 0.0 );
+ float intensity = pow( dotNH, (1.0-roughness) * 256.0);
+ specular += light_color * intensity * specular_blob_intensity;
#elif defined(SPECULAR_PHONG)
- vec3 R = normalize(-reflect(L,N));
- float dotNV = max(0.0,dot(R,V));
- float intensity = pow( dotNV, (1.0-roughness) * 256.0);
- specular += light_color * intensity * specular_blob_intensity;
+ vec3 R = normalize(-reflect(L,N));
+ float dotNV = max(0.0,dot(R,V));
+ float intensity = pow( dotNV, (1.0-roughness) * 256.0);
+ specular += light_color * intensity * specular_blob_intensity;
#elif defined(SPECULAR_TOON)
- vec3 R = normalize(-reflect(L,N));
- float dotNV = dot(R,V);
- float mid = 1.0-roughness;
- mid*=mid;
- float intensity = smoothstep(mid-roughness*0.5,mid+roughness*0.5,dotNV) * mid;
- diffuse += light_color * intensity * specular_blob_intensity; //write to diffuse, as in toon shading you generally want no reflection
+ vec3 R = normalize(-reflect(L,N));
+ float dotNV = dot(R,V);
+ float mid = 1.0-roughness;
+ mid*=mid;
+ float intensity = smoothstep(mid-roughness*0.5,mid+roughness*0.5,dotNV) * mid;
+ diffuse += light_color * intensity * specular_blob_intensity; //write to diffuse, as in toon shading you generally want no reflection
#elif defined(SPECULAR_DISABLED)
- //none..
+ //none..
#else
- // shlick+ggx as default
- float alpha = roughness * roughness;
+ // shlick+ggx as default
+ float alpha = roughness * roughness;
- vec3 H = normalize(V + L);
+ vec3 H = normalize(V + L);
- float dotNH = max(dot(N,H), 0.0 );
- float dotLH = max(dot(L,H), 0.0 );
+ float dotNH = max(dot(N,H), 0.0 );
+ float dotLH = max(dot(L,H), 0.0 );
#if defined(LIGHT_USE_ANISOTROPY)
- float aspect = sqrt(1.0-anisotropy*0.9);
- float rx = roughness/aspect;
- float ry = roughness*aspect;
- float ax = rx*rx;
- float ay = ry*ry;
- float dotXH = dot( T, H );
- float dotYH = dot( B, H );
- float pi = M_PI;
- float denom = dotXH*dotXH / (ax*ax) + dotYH*dotYH / (ay*ay) + dotNH*dotNH;
- float D = 1.0 / ( pi * ax*ay * denom*denom );
+ float aspect = sqrt(1.0-anisotropy*0.9);
+ float rx = roughness/aspect;
+ float ry = roughness*aspect;
+ float ax = rx*rx;
+ float ay = ry*ry;
+ float dotXH = dot( T, H );
+ float dotYH = dot( B, H );
+ float pi = M_PI;
+ float denom = dotXH*dotXH / (ax*ax) + dotYH*dotYH / (ay*ay) + dotNH*dotNH;
+ float D = 1.0 / ( pi * ax*ay * denom*denom );
#else
- float alphaSqr = alpha * alpha;
- float pi = M_PI;
- float denom = dotNH * dotNH * (alphaSqr - 1.0) + 1.0;
- float D = alphaSqr / (pi * denom * denom);
+ float alphaSqr = alpha * alpha;
+ float pi = M_PI;
+ float denom = dotNH * dotNH * (alphaSqr - 1.0) + 1.0;
+ float D = alphaSqr / (pi * denom * denom);
#endif
- // F
- float F0 = 1.0;
- float dotLH5 = SchlickFresnel( dotLH );
- float F = F0 + (1.0 - F0) * (dotLH5);
+ // F
+ float F0 = 1.0;
+ float dotLH5 = SchlickFresnel( dotLH );
+ float F = F0 + (1.0 - F0) * (dotLH5);
- // V
- float k = alpha / 2.0f;
- float vis = G1V(dotNL, k) * G1V(dotNV, k);
+ // V
+ float k = alpha / 2.0f;
+ float vis = G1V(dotNL, k) * G1V(dotNV, k);
- float speci = dotNL * D * F * vis;
+ float speci = dotNL * D * F * vis;
- specular += speci * light_color * specular_blob_intensity;
+ specular += speci * light_color * specular_blob_intensity;
#endif
#if defined(LIGHT_USE_CLEARCOAT)
- float Dr = GTR1(dotNH, mix(.1,.001,clearcoat_gloss));
- float Fr = mix(.04, 1.0, dotLH5);
- float Gr = G1V(dotNL, .25) * G1V(dotNV, .25);
+ float Dr = GTR1(dotNH, mix(.1,.001,clearcoat_gloss));
+ float Fr = mix(.04, 1.0, dotLH5);
+ float Gr = G1V(dotNL, .25) * G1V(dotNV, .25);
- specular += .25*clearcoat*Gr*Fr*Dr;
+ specular += .25*clearcoat*Gr*Fr*Dr;
#endif
- }
+ }
#endif //defined(USE_LIGHT_SHADER_CODE)
@@ -1057,36 +1057,36 @@ float sample_shadow(highp sampler2DShadow shadow, vec2 shadow_pixel_size, vec2 p
#ifdef SHADOW_MODE_PCF_13
- float avg=textureProj(shadow,vec4(pos,depth,1.0));
- avg+=textureProj(shadow,vec4(pos+vec2(shadow_pixel_size.x,0.0),depth,1.0));
- avg+=textureProj(shadow,vec4(pos+vec2(-shadow_pixel_size.x,0.0),depth,1.0));
- avg+=textureProj(shadow,vec4(pos+vec2(0.0,shadow_pixel_size.y),depth,1.0));
- avg+=textureProj(shadow,vec4(pos+vec2(0.0,-shadow_pixel_size.y),depth,1.0));
- avg+=textureProj(shadow,vec4(pos+vec2(shadow_pixel_size.x,shadow_pixel_size.y),depth,1.0));
- avg+=textureProj(shadow,vec4(pos+vec2(-shadow_pixel_size.x,shadow_pixel_size.y),depth,1.0));
- avg+=textureProj(shadow,vec4(pos+vec2(shadow_pixel_size.x,-shadow_pixel_size.y),depth,1.0));
- avg+=textureProj(shadow,vec4(pos+vec2(-shadow_pixel_size.x,-shadow_pixel_size.y),depth,1.0));
- avg+=textureProj(shadow,vec4(pos+vec2(shadow_pixel_size.x*2.0,0.0),depth,1.0));
- avg+=textureProj(shadow,vec4(pos+vec2(-shadow_pixel_size.x*2.0,0.0),depth,1.0));
- avg+=textureProj(shadow,vec4(pos+vec2(0.0,shadow_pixel_size.y*2.0),depth,1.0));
- avg+=textureProj(shadow,vec4(pos+vec2(0.0,-shadow_pixel_size.y*2.0),depth,1.0));
- return avg*(1.0/13.0);
+ float avg=textureProj(shadow,vec4(pos,depth,1.0));
+ avg+=textureProj(shadow,vec4(pos+vec2(shadow_pixel_size.x,0.0),depth,1.0));
+ avg+=textureProj(shadow,vec4(pos+vec2(-shadow_pixel_size.x,0.0),depth,1.0));
+ avg+=textureProj(shadow,vec4(pos+vec2(0.0,shadow_pixel_size.y),depth,1.0));
+ avg+=textureProj(shadow,vec4(pos+vec2(0.0,-shadow_pixel_size.y),depth,1.0));
+ avg+=textureProj(shadow,vec4(pos+vec2(shadow_pixel_size.x,shadow_pixel_size.y),depth,1.0));
+ avg+=textureProj(shadow,vec4(pos+vec2(-shadow_pixel_size.x,shadow_pixel_size.y),depth,1.0));
+ avg+=textureProj(shadow,vec4(pos+vec2(shadow_pixel_size.x,-shadow_pixel_size.y),depth,1.0));
+ avg+=textureProj(shadow,vec4(pos+vec2(-shadow_pixel_size.x,-shadow_pixel_size.y),depth,1.0));
+ avg+=textureProj(shadow,vec4(pos+vec2(shadow_pixel_size.x*2.0,0.0),depth,1.0));
+ avg+=textureProj(shadow,vec4(pos+vec2(-shadow_pixel_size.x*2.0,0.0),depth,1.0));
+ avg+=textureProj(shadow,vec4(pos+vec2(0.0,shadow_pixel_size.y*2.0),depth,1.0));
+ avg+=textureProj(shadow,vec4(pos+vec2(0.0,-shadow_pixel_size.y*2.0),depth,1.0));
+ return avg*(1.0/13.0);
#endif
#ifdef SHADOW_MODE_PCF_5
- float avg=textureProj(shadow,vec4(pos,depth,1.0));
- avg+=textureProj(shadow,vec4(pos+vec2(shadow_pixel_size.x,0.0),depth,1.0));
- avg+=textureProj(shadow,vec4(pos+vec2(-shadow_pixel_size.x,0.0),depth,1.0));
- avg+=textureProj(shadow,vec4(pos+vec2(0.0,shadow_pixel_size.y),depth,1.0));
- avg+=textureProj(shadow,vec4(pos+vec2(0.0,-shadow_pixel_size.y),depth,1.0));
- return avg*(1.0/5.0);
+ float avg=textureProj(shadow,vec4(pos,depth,1.0));
+ avg+=textureProj(shadow,vec4(pos+vec2(shadow_pixel_size.x,0.0),depth,1.0));
+ avg+=textureProj(shadow,vec4(pos+vec2(-shadow_pixel_size.x,0.0),depth,1.0));
+ avg+=textureProj(shadow,vec4(pos+vec2(0.0,shadow_pixel_size.y),depth,1.0));
+ avg+=textureProj(shadow,vec4(pos+vec2(0.0,-shadow_pixel_size.y),depth,1.0));
+ return avg*(1.0/5.0);
#endif
#if !defined(SHADOW_MODE_PCF_5) && !defined(SHADOW_MODE_PCF_13)
- return textureProj(shadow,vec4(pos,depth,1.0));
+ return textureProj(shadow,vec4(pos,depth,1.0));
#endif
}
@@ -1104,21 +1104,21 @@ in highp float dp_clip;
vec3 light_transmittance(float translucency,vec3 light_vec, vec3 normal, vec3 pos, float distance) {
- float scale = 8.25 * (1.0 - translucency) / subsurface_scatter_width;
- float d = scale * distance;
+ float scale = 8.25 * (1.0 - translucency) / subsurface_scatter_width;
+ float d = scale * distance;
/**
* Armed with the thickness, we can now calculate the color by means of the
* precalculated transmittance profile.
* (It can be precomputed into a texture, for maximum performance):
*/
- float dd = -d * d;
- vec3 profile = vec3(0.233, 0.455, 0.649) * exp(dd / 0.0064) +
- vec3(0.1, 0.336, 0.344) * exp(dd / 0.0484) +
- vec3(0.118, 0.198, 0.0) * exp(dd / 0.187) +
- vec3(0.113, 0.007, 0.007) * exp(dd / 0.567) +
- vec3(0.358, 0.004, 0.0) * exp(dd / 1.99) +
- vec3(0.078, 0.0, 0.0) * exp(dd / 7.41);
+ float dd = -d * d;
+ vec3 profile = vec3(0.233, 0.455, 0.649) * exp(dd / 0.0064) +
+ vec3(0.1, 0.336, 0.344) * exp(dd / 0.0484) +
+ vec3(0.118, 0.198, 0.0) * exp(dd / 0.187) +
+ vec3(0.113, 0.007, 0.007) * exp(dd / 0.567) +
+ vec3(0.358, 0.004, 0.0) * exp(dd / 1.99) +
+ vec3(0.078, 0.0, 0.0) * exp(dd / 7.41);
/**
* Using the profile, we finally approximate the transmitted lighting from
@@ -1130,201 +1130,201 @@ vec3 light_transmittance(float translucency,vec3 light_vec, vec3 normal, vec3 po
void light_process_omni(int idx, vec3 vertex, vec3 eye_vec,vec3 normal,vec3 binormal, vec3 tangent, vec3 albedo, vec3 transmission, float roughness, float rim, float rim_tint, float clearcoat, float clearcoat_gloss,float anisotropy,float p_blob_intensity,inout vec3 diffuse_light, inout vec3 specular_light) {
- vec3 light_rel_vec = omni_lights[idx].light_pos_inv_radius.xyz-vertex;
- float light_length = length( light_rel_vec );
- float normalized_distance = light_length*omni_lights[idx].light_pos_inv_radius.w;
- vec3 light_attenuation = vec3(pow( max(1.0 - normalized_distance, 0.0), omni_lights[idx].light_direction_attenuation.w ));
+ vec3 light_rel_vec = omni_lights[idx].light_pos_inv_radius.xyz-vertex;
+ float light_length = length( light_rel_vec );
+ float normalized_distance = light_length*omni_lights[idx].light_pos_inv_radius.w;
+ vec3 light_attenuation = vec3(pow( max(1.0 - normalized_distance, 0.0), omni_lights[idx].light_direction_attenuation.w ));
- if (omni_lights[idx].light_params.w>0.5) {
- //there is a shadowmap
+ if (omni_lights[idx].light_params.w>0.5) {
+ //there is a shadowmap
- highp vec3 splane=(omni_lights[idx].shadow_matrix * vec4(vertex,1.0)).xyz;
- float shadow_len=length(splane);
- splane=normalize(splane);
- vec4 clamp_rect=omni_lights[idx].light_clamp;
+ highp vec3 splane=(omni_lights[idx].shadow_matrix * vec4(vertex,1.0)).xyz;
+ float shadow_len=length(splane);
+ splane=normalize(splane);
+ vec4 clamp_rect=omni_lights[idx].light_clamp;
- if (splane.z>=0.0) {
+ if (splane.z>=0.0) {
- splane.z+=1.0;
+ splane.z+=1.0;
- clamp_rect.y+=clamp_rect.w;
+ clamp_rect.y+=clamp_rect.w;
- } else {
+ } else {
- splane.z=1.0 - splane.z;
+ splane.z=1.0 - splane.z;
- /*
- if (clamp_rect.z<clamp_rect.w) {
- clamp_rect.x+=clamp_rect.z;
- } else {
- clamp_rect.y+=clamp_rect.w;
- }
- */
+ /*
+ if (clamp_rect.z<clamp_rect.w) {
+ clamp_rect.x+=clamp_rect.z;
+ } else {
+ clamp_rect.y+=clamp_rect.w;
+ }
+ */
- }
+ }
- splane.xy/=splane.z;
- splane.xy=splane.xy * 0.5 + 0.5;
- splane.z = shadow_len * omni_lights[idx].light_pos_inv_radius.w;
+ splane.xy/=splane.z;
+ splane.xy=splane.xy * 0.5 + 0.5;
+ splane.z = shadow_len * omni_lights[idx].light_pos_inv_radius.w;
- splane.xy = clamp_rect.xy+splane.xy*clamp_rect.zw;
- float shadow = sample_shadow(shadow_atlas,shadow_atlas_pixel_size,splane.xy,splane.z,clamp_rect);
+ splane.xy = clamp_rect.xy+splane.xy*clamp_rect.zw;
+ float shadow = sample_shadow(shadow_atlas,shadow_atlas_pixel_size,splane.xy,splane.z,clamp_rect);
#ifdef USE_CONTACT_SHADOWS
- if (shadow>0.01 && omni_lights[idx].shadow_color_contact.a>0.0) {
+ if (shadow>0.01 && omni_lights[idx].shadow_color_contact.a>0.0) {
- float contact_shadow = contact_shadow_compute(vertex,normalize(light_rel_vec),min(light_length,omni_lights[idx].shadow_color_contact.a));
- shadow=min(shadow,contact_shadow);
+ float contact_shadow = contact_shadow_compute(vertex,normalize(light_rel_vec),min(light_length,omni_lights[idx].shadow_color_contact.a));
+ shadow=min(shadow,contact_shadow);
- }
+ }
#endif
- light_attenuation*=mix(omni_lights[idx].shadow_color_contact.rgb,vec3(1.0),shadow);
- }
+ light_attenuation*=mix(omni_lights[idx].shadow_color_contact.rgb,vec3(1.0),shadow);
+ }
- light_compute(normal,normalize(light_rel_vec),eye_vec,binormal,tangent,omni_lights[idx].light_color_energy.rgb*light_attenuation,albedo,transmission,omni_lights[idx].light_params.z*p_blob_intensity,roughness,rim,rim_tint,clearcoat,clearcoat_gloss,anisotropy,diffuse_light,specular_light);
+ light_compute(normal,normalize(light_rel_vec),eye_vec,binormal,tangent,omni_lights[idx].light_color_energy.rgb*light_attenuation,albedo,transmission,omni_lights[idx].light_params.z*p_blob_intensity,roughness,rim,rim_tint,clearcoat,clearcoat_gloss,anisotropy,diffuse_light,specular_light);
}
void light_process_spot(int idx, vec3 vertex, vec3 eye_vec, vec3 normal, vec3 binormal, vec3 tangent,vec3 albedo, vec3 transmission,float roughness, float rim,float rim_tint, float clearcoat, float clearcoat_gloss,float anisotropy,float p_blob_intensity, inout vec3 diffuse_light, inout vec3 specular_light) {
- vec3 light_rel_vec = spot_lights[idx].light_pos_inv_radius.xyz-vertex;
- float light_length = length( light_rel_vec );
- float normalized_distance = light_length*spot_lights[idx].light_pos_inv_radius.w;
- vec3 light_attenuation = vec3(pow( max(1.0 - normalized_distance, 0.001), spot_lights[idx].light_direction_attenuation.w ));
- vec3 spot_dir = spot_lights[idx].light_direction_attenuation.xyz;
- float spot_cutoff=spot_lights[idx].light_params.y;
- float scos = max(dot(-normalize(light_rel_vec), spot_dir),spot_cutoff);
- float spot_rim = (1.0 - scos) / (1.0 - spot_cutoff);
- light_attenuation *= 1.0 - pow( max(spot_rim,0.001), spot_lights[idx].light_params.x);
+ vec3 light_rel_vec = spot_lights[idx].light_pos_inv_radius.xyz-vertex;
+ float light_length = length( light_rel_vec );
+ float normalized_distance = light_length*spot_lights[idx].light_pos_inv_radius.w;
+ vec3 light_attenuation = vec3(pow( max(1.0 - normalized_distance, 0.001), spot_lights[idx].light_direction_attenuation.w ));
+ vec3 spot_dir = spot_lights[idx].light_direction_attenuation.xyz;
+ float spot_cutoff=spot_lights[idx].light_params.y;
+ float scos = max(dot(-normalize(light_rel_vec), spot_dir),spot_cutoff);
+ float spot_rim = (1.0 - scos) / (1.0 - spot_cutoff);
+ light_attenuation *= 1.0 - pow( max(spot_rim,0.001), spot_lights[idx].light_params.x);
- if (spot_lights[idx].light_params.w>0.5) {
- //there is a shadowmap
- highp vec4 splane=(spot_lights[idx].shadow_matrix * vec4(vertex,1.0));
- splane.xyz/=splane.w;
+ if (spot_lights[idx].light_params.w>0.5) {
+ //there is a shadowmap
+ highp vec4 splane=(spot_lights[idx].shadow_matrix * vec4(vertex,1.0));
+ splane.xyz/=splane.w;
- float shadow = sample_shadow(shadow_atlas,shadow_atlas_pixel_size,splane.xy,splane.z,spot_lights[idx].light_clamp);
+ float shadow = sample_shadow(shadow_atlas,shadow_atlas_pixel_size,splane.xy,splane.z,spot_lights[idx].light_clamp);
#ifdef USE_CONTACT_SHADOWS
- if (shadow>0.01 && spot_lights[idx].shadow_color_contact.a>0.0) {
+ if (shadow>0.01 && spot_lights[idx].shadow_color_contact.a>0.0) {
- float contact_shadow = contact_shadow_compute(vertex,normalize(light_rel_vec),min(light_length,spot_lights[idx].shadow_color_contact.a));
- shadow=min(shadow,contact_shadow);
+ float contact_shadow = contact_shadow_compute(vertex,normalize(light_rel_vec),min(light_length,spot_lights[idx].shadow_color_contact.a));
+ shadow=min(shadow,contact_shadow);
- }
+ }
#endif
- light_attenuation*=mix(spot_lights[idx].shadow_color_contact.rgb,vec3(1.0),shadow);
- }
+ light_attenuation*=mix(spot_lights[idx].shadow_color_contact.rgb,vec3(1.0),shadow);
+ }
- light_compute(normal,normalize(light_rel_vec),eye_vec,binormal,tangent,spot_lights[idx].light_color_energy.rgb*light_attenuation,albedo,transmission,spot_lights[idx].light_params.z*p_blob_intensity,roughness,rim,rim_tint,clearcoat,clearcoat_gloss,anisotropy,diffuse_light,specular_light);
+ light_compute(normal,normalize(light_rel_vec),eye_vec,binormal,tangent,spot_lights[idx].light_color_energy.rgb*light_attenuation,albedo,transmission,spot_lights[idx].light_params.z*p_blob_intensity,roughness,rim,rim_tint,clearcoat,clearcoat_gloss,anisotropy,diffuse_light,specular_light);
}
void reflection_process(int idx, vec3 vertex, vec3 normal,vec3 binormal, vec3 tangent,float roughness,float anisotropy,vec3 ambient,vec3 skybox, inout highp vec4 reflection_accum,inout highp vec4 ambient_accum) {
- vec3 ref_vec = normalize(reflect(vertex,normal));
- vec3 local_pos = (reflections[idx].local_matrix * vec4(vertex,1.0)).xyz;
- vec3 box_extents = reflections[idx].box_extents.xyz;
+ vec3 ref_vec = normalize(reflect(vertex,normal));
+ vec3 local_pos = (reflections[idx].local_matrix * vec4(vertex,1.0)).xyz;
+ vec3 box_extents = reflections[idx].box_extents.xyz;
- if (any(greaterThan(abs(local_pos),box_extents))) { //out of the reflection box
- return;
- }
+ if (any(greaterThan(abs(local_pos),box_extents))) { //out of the reflection box
+ return;
+ }
- vec3 inner_pos = abs(local_pos / box_extents);
- float blend = max(inner_pos.x,max(inner_pos.y,inner_pos.z));
- //make blend more rounded
- blend=mix(length(inner_pos),blend,blend);
- blend*=blend;
- blend=1.001-blend;
+ vec3 inner_pos = abs(local_pos / box_extents);
+ float blend = max(inner_pos.x,max(inner_pos.y,inner_pos.z));
+ //make blend more rounded
+ blend=mix(length(inner_pos),blend,blend);
+ blend*=blend;
+ blend=1.001-blend;
- if (reflections[idx].params.x>0.0){// compute reflection
+ if (reflections[idx].params.x>0.0){// compute reflection
- vec3 local_ref_vec = (reflections[idx].local_matrix * vec4(ref_vec,0.0)).xyz;
+ vec3 local_ref_vec = (reflections[idx].local_matrix * vec4(ref_vec,0.0)).xyz;
- if (reflections[idx].params.w > 0.5) { //box project
+ if (reflections[idx].params.w > 0.5) { //box project
- vec3 nrdir = normalize(local_ref_vec);
- vec3 rbmax = (box_extents - local_pos)/nrdir;
- vec3 rbmin = (-box_extents - local_pos)/nrdir;
+ vec3 nrdir = normalize(local_ref_vec);
+ vec3 rbmax = (box_extents - local_pos)/nrdir;
+ vec3 rbmin = (-box_extents - local_pos)/nrdir;
- vec3 rbminmax = mix(rbmin,rbmax,greaterThan(nrdir,vec3(0.0,0.0,0.0)));
+ vec3 rbminmax = mix(rbmin,rbmax,greaterThan(nrdir,vec3(0.0,0.0,0.0)));
- float fa = min(min(rbminmax.x, rbminmax.y), rbminmax.z);
- vec3 posonbox = local_pos + nrdir * fa;
- local_ref_vec = posonbox - reflections[idx].box_offset.xyz;
- }
+ float fa = min(min(rbminmax.x, rbminmax.y), rbminmax.z);
+ vec3 posonbox = local_pos + nrdir * fa;
+ local_ref_vec = posonbox - reflections[idx].box_offset.xyz;
+ }
- vec4 clamp_rect=reflections[idx].atlas_clamp;
- vec3 norm = normalize(local_ref_vec);
- norm.xy/=1.0+abs(norm.z);
- norm.xy=norm.xy * vec2(0.5,0.25) + vec2(0.5,0.25);
- if (norm.z>0.0) {
- norm.y=0.5-norm.y+0.5;
- }
+ vec4 clamp_rect=reflections[idx].atlas_clamp;
+ vec3 norm = normalize(local_ref_vec);
+ norm.xy/=1.0+abs(norm.z);
+ norm.xy=norm.xy * vec2(0.5,0.25) + vec2(0.5,0.25);
+ if (norm.z>0.0) {
+ norm.y=0.5-norm.y+0.5;
+ }
- vec2 atlas_uv = norm.xy * clamp_rect.zw + clamp_rect.xy;
- atlas_uv = clamp(atlas_uv,clamp_rect.xy,clamp_rect.xy+clamp_rect.zw);
+ vec2 atlas_uv = norm.xy * clamp_rect.zw + clamp_rect.xy;
+ atlas_uv = clamp(atlas_uv,clamp_rect.xy,clamp_rect.xy+clamp_rect.zw);
- highp vec4 reflection;
- reflection.rgb = textureLod(reflection_atlas,atlas_uv,roughness*5.0).rgb;
+ highp vec4 reflection;
+ reflection.rgb = textureLod(reflection_atlas,atlas_uv,roughness*5.0).rgb;
- if (reflections[idx].params.z < 0.5) {
- reflection.rgb = mix(skybox,reflection.rgb,blend);
- }
- reflection.rgb*=reflections[idx].params.x;
- reflection.a = blend;
- reflection.rgb*=reflection.a;
+ if (reflections[idx].params.z < 0.5) {
+ reflection.rgb = mix(skybox,reflection.rgb,blend);
+ }
+ reflection.rgb*=reflections[idx].params.x;
+ reflection.a = blend;
+ reflection.rgb*=reflection.a;
- reflection_accum+=reflection;
- }
+ reflection_accum+=reflection;
+ }
- if (reflections[idx].ambient.a>0.0) { //compute ambient using skybox
+ if (reflections[idx].ambient.a>0.0) { //compute ambient using skybox
- vec3 local_amb_vec = (reflections[idx].local_matrix * vec4(normal,0.0)).xyz;
+ vec3 local_amb_vec = (reflections[idx].local_matrix * vec4(normal,0.0)).xyz;
- vec3 splane=normalize(local_amb_vec);
- vec4 clamp_rect=reflections[idx].atlas_clamp;
+ vec3 splane=normalize(local_amb_vec);
+ vec4 clamp_rect=reflections[idx].atlas_clamp;
- splane.z*=-1.0;
- if (splane.z>=0.0) {
- splane.z+=1.0;
- clamp_rect.y+=clamp_rect.w;
- } else {
- splane.z=1.0 - splane.z;
- splane.y=-splane.y;
- }
+ splane.z*=-1.0;
+ if (splane.z>=0.0) {
+ splane.z+=1.0;
+ clamp_rect.y+=clamp_rect.w;
+ } else {
+ splane.z=1.0 - splane.z;
+ splane.y=-splane.y;
+ }
- splane.xy/=splane.z;
- splane.xy=splane.xy * 0.5 + 0.5;
+ splane.xy/=splane.z;
+ splane.xy=splane.xy * 0.5 + 0.5;
- splane.xy = splane.xy * clamp_rect.zw + clamp_rect.xy;
- splane.xy = clamp(splane.xy,clamp_rect.xy,clamp_rect.xy+clamp_rect.zw);
+ splane.xy = splane.xy * clamp_rect.zw + clamp_rect.xy;
+ splane.xy = clamp(splane.xy,clamp_rect.xy,clamp_rect.xy+clamp_rect.zw);
- highp vec4 ambient_out;
- ambient_out.a=blend;
- ambient_out.rgb = textureLod(reflection_atlas,splane.xy,5.0).rgb;
- ambient_out.rgb=mix(reflections[idx].ambient.rgb,ambient_out.rgb,reflections[idx].ambient.a);
- if (reflections[idx].params.z < 0.5) {
- ambient_out.rgb = mix(ambient,ambient_out.rgb,blend);
- }
+ highp vec4 ambient_out;
+ ambient_out.a=blend;
+ ambient_out.rgb = textureLod(reflection_atlas,splane.xy,5.0).rgb;
+ ambient_out.rgb=mix(reflections[idx].ambient.rgb,ambient_out.rgb,reflections[idx].ambient.a);
+ if (reflections[idx].params.z < 0.5) {
+ ambient_out.rgb = mix(ambient,ambient_out.rgb,blend);
+ }
- ambient_out.rgb *= ambient_out.a;
- ambient_accum+=ambient_out;
- } else {
+ ambient_out.rgb *= ambient_out.a;
+ ambient_accum+=ambient_out;
+ } else {
- highp vec4 ambient_out;
- ambient_out.a=blend;
- ambient_out.rgb=reflections[idx].ambient.rgb;
- if (reflections[idx].params.z < 0.5) {
- ambient_out.rgb = mix(ambient,ambient_out.rgb,blend);
- }
- ambient_out.rgb *= ambient_out.a;
- ambient_accum+=ambient_out;
+ highp vec4 ambient_out;
+ ambient_out.a=blend;
+ ambient_out.rgb=reflections[idx].ambient.rgb;
+ if (reflections[idx].params.z < 0.5) {
+ ambient_out.rgb = mix(ambient,ambient_out.rgb,blend);
+ }
+ ambient_out.rgb *= ambient_out.a;
+ ambient_accum+=ambient_out;
- }
+ }
}
#ifdef USE_GI_PROBES
@@ -1350,149 +1350,149 @@ uniform bool gi_probe_blend_ambient2;
vec3 voxel_cone_trace(sampler3D probe, vec3 cell_size, vec3 pos, vec3 ambient, bool blend_ambient, vec3 direction, float tan_half_angle, float max_distance, float p_bias) {
- float dist = p_bias;//1.0; //dot(direction,mix(vec3(-1.0),vec3(1.0),greaterThan(direction,vec3(0.0))))*2.0;
- float alpha=0.0;
- vec3 color = vec3(0.0);
+ float dist = p_bias;//1.0; //dot(direction,mix(vec3(-1.0),vec3(1.0),greaterThan(direction,vec3(0.0))))*2.0;
+ float alpha=0.0;
+ vec3 color = vec3(0.0);
- while(dist < max_distance && alpha < 0.95) {
- float diameter = max(1.0, 2.0 * tan_half_angle * dist);
- vec4 scolor = textureLod(probe, (pos + dist * direction) * cell_size, log2(diameter) );
- float a = (1.0 - alpha);
- color += scolor.rgb * a;
- alpha += a * scolor.a;
- dist += diameter * 0.5;
- }
+ while(dist < max_distance && alpha < 0.95) {
+ float diameter = max(1.0, 2.0 * tan_half_angle * dist);
+ vec4 scolor = textureLod(probe, (pos + dist * direction) * cell_size, log2(diameter) );
+ float a = (1.0 - alpha);
+ color += scolor.rgb * a;
+ alpha += a * scolor.a;
+ dist += diameter * 0.5;
+ }
- if (blend_ambient) {
- color.rgb = mix(ambient,color.rgb,min(1.0,alpha/0.95));
- }
+ if (blend_ambient) {
+ color.rgb = mix(ambient,color.rgb,min(1.0,alpha/0.95));
+ }
- return color;
+ return color;
}
void gi_probe_compute(sampler3D probe, mat4 probe_xform, vec3 bounds,vec3 cell_size,vec3 pos, vec3 ambient, vec3 environment, bool blend_ambient,float multiplier, mat3 normal_mtx,vec3 ref_vec, float roughness,float p_bias,float p_normal_bias, inout vec4 out_spec, inout vec4 out_diff) {
- vec3 probe_pos = (probe_xform * vec4(pos,1.0)).xyz;
- vec3 ref_pos = (probe_xform * vec4(pos+ref_vec,1.0)).xyz;
- ref_vec = normalize(ref_pos - probe_pos);
+ vec3 probe_pos = (probe_xform * vec4(pos,1.0)).xyz;
+ vec3 ref_pos = (probe_xform * vec4(pos+ref_vec,1.0)).xyz;
+ ref_vec = normalize(ref_pos - probe_pos);
- probe_pos+=(probe_xform * vec4(normal_mtx[2],0.0)).xyz*p_normal_bias;
+ probe_pos+=(probe_xform * vec4(normal_mtx[2],0.0)).xyz*p_normal_bias;
/* out_diff.rgb = voxel_cone_trace(probe,cell_size,probe_pos,normalize((probe_xform * vec4(ref_vec,0.0)).xyz),0.0 ,100.0);
- out_diff.a = 1.0;
- return;*/
- //out_diff = vec4(textureLod(probe,probe_pos*cell_size,3.0).rgb,1.0);
- //return;
+ out_diff.a = 1.0;
+ return;*/
+ //out_diff = vec4(textureLod(probe,probe_pos*cell_size,3.0).rgb,1.0);
+ //return;
- //this causes corrupted pixels, i have no idea why..
- if (any(bvec2(any(lessThan(probe_pos,vec3(0.0))),any(greaterThan(probe_pos,bounds))))) {
- return;
- }
+ //this causes corrupted pixels, i have no idea why..
+ if (any(bvec2(any(lessThan(probe_pos,vec3(0.0))),any(greaterThan(probe_pos,bounds))))) {
+ return;
+ }
- //vec3 blendv = probe_pos/bounds * 2.0 - 1.0;
- //float blend = 1.001-max(blendv.x,max(blendv.y,blendv.z));
- float blend=1.0;
+ //vec3 blendv = probe_pos/bounds * 2.0 - 1.0;
+ //float blend = 1.001-max(blendv.x,max(blendv.y,blendv.z));
+ float blend=1.0;
- float max_distance = length(bounds);
+ float max_distance = length(bounds);
- //radiance
+ //radiance
#ifdef VCT_QUALITY_HIGH
#define MAX_CONE_DIRS 6
- vec3 cone_dirs[MAX_CONE_DIRS] = vec3[] (
- vec3(0, 0, 1),
- vec3(0.866025, 0, 0.5),
- vec3(0.267617, 0.823639, 0.5),
- vec3(-0.700629, 0.509037, 0.5),
- vec3(-0.700629, -0.509037, 0.5),
- vec3(0.267617, -0.823639, 0.5)
- );
-
- float cone_weights[MAX_CONE_DIRS] = float[](0.25, 0.15, 0.15, 0.15, 0.15, 0.15);
- float cone_angle_tan = 0.577;
- float min_ref_tan = 0.0;
+ vec3 cone_dirs[MAX_CONE_DIRS] = vec3[] (
+ vec3(0, 0, 1),
+ vec3(0.866025, 0, 0.5),
+ vec3(0.267617, 0.823639, 0.5),
+ vec3(-0.700629, 0.509037, 0.5),
+ vec3(-0.700629, -0.509037, 0.5),
+ vec3(0.267617, -0.823639, 0.5)
+ );
+
+ float cone_weights[MAX_CONE_DIRS] = float[](0.25, 0.15, 0.15, 0.15, 0.15, 0.15);
+ float cone_angle_tan = 0.577;
+ float min_ref_tan = 0.0;
#else
#define MAX_CONE_DIRS 4
- vec3 cone_dirs[MAX_CONE_DIRS] = vec3[] (
- vec3(0.707107, 0, 0.707107),
- vec3(0, 0.707107, 0.707107),
- vec3(-0.707107, 0, 0.707107),
- vec3(0, -0.707107, 0.707107)
- );
+ vec3 cone_dirs[MAX_CONE_DIRS] = vec3[] (
+ vec3(0.707107, 0, 0.707107),
+ vec3(0, 0.707107, 0.707107),
+ vec3(-0.707107, 0, 0.707107),
+ vec3(0, -0.707107, 0.707107)
+ );
- float cone_weights[MAX_CONE_DIRS] = float[](0.25, 0.25, 0.25, 0.25);
- float cone_angle_tan = 0.98269;
- max_distance*=0.5;
- float min_ref_tan = 0.2;
+ float cone_weights[MAX_CONE_DIRS] = float[](0.25, 0.25, 0.25, 0.25);
+ float cone_angle_tan = 0.98269;
+ max_distance*=0.5;
+ float min_ref_tan = 0.2;
#endif
- vec3 light=vec3(0.0);
- for(int i=0;i<MAX_CONE_DIRS;i++) {
+ vec3 light=vec3(0.0);
+ for(int i=0;i<MAX_CONE_DIRS;i++) {
- vec3 dir = normalize( (probe_xform * vec4(pos + normal_mtx * cone_dirs[i],1.0)).xyz - probe_pos);
- light+=cone_weights[i] * voxel_cone_trace(probe,cell_size,probe_pos,ambient,blend_ambient,dir,cone_angle_tan,max_distance,p_bias);
+ vec3 dir = normalize( (probe_xform * vec4(pos + normal_mtx * cone_dirs[i],1.0)).xyz - probe_pos);
+ light+=cone_weights[i] * voxel_cone_trace(probe,cell_size,probe_pos,ambient,blend_ambient,dir,cone_angle_tan,max_distance,p_bias);
- }
+ }
- light*=multiplier;
+ light*=multiplier;
- out_diff += vec4(light*blend,blend);
+ out_diff += vec4(light*blend,blend);
- //irradiance
+ //irradiance
- vec3 irr_light = voxel_cone_trace(probe,cell_size,probe_pos,environment,blend_ambient,ref_vec,max(min_ref_tan,tan(roughness * 0.5 * M_PI)) ,max_distance,p_bias);
+ vec3 irr_light = voxel_cone_trace(probe,cell_size,probe_pos,environment,blend_ambient,ref_vec,max(min_ref_tan,tan(roughness * 0.5 * M_PI)) ,max_distance,p_bias);
- irr_light *= multiplier;
- //irr_light=vec3(0.0);
+ irr_light *= multiplier;
+ //irr_light=vec3(0.0);
- out_spec += vec4(irr_light*blend,blend);
+ out_spec += vec4(irr_light*blend,blend);
}
void gi_probes_compute(vec3 pos, vec3 normal, float roughness, inout vec3 out_specular, inout vec3 out_ambient) {
- roughness = roughness * roughness;
+ roughness = roughness * roughness;
- vec3 ref_vec = normalize(reflect(normalize(pos),normal));
+ vec3 ref_vec = normalize(reflect(normalize(pos),normal));
- //find arbitrary tangent and bitangent, then build a matrix
- vec3 v0 = abs(normal.z) < 0.999 ? vec3(0, 0, 1) : vec3(0, 1, 0);
- vec3 tangent = normalize(cross(v0, normal));
- vec3 bitangent = normalize(cross(tangent, normal));
- mat3 normal_mat = mat3(tangent,bitangent,normal);
+ //find arbitrary tangent and bitangent, then build a matrix
+ vec3 v0 = abs(normal.z) < 0.999 ? vec3(0, 0, 1) : vec3(0, 1, 0);
+ vec3 tangent = normalize(cross(v0, normal));
+ vec3 bitangent = normalize(cross(tangent, normal));
+ mat3 normal_mat = mat3(tangent,bitangent,normal);
- vec4 diff_accum = vec4(0.0);
- vec4 spec_accum = vec4(0.0);
+ vec4 diff_accum = vec4(0.0);
+ vec4 spec_accum = vec4(0.0);
- vec3 ambient = out_ambient;
- out_ambient = vec3(0.0);
+ vec3 ambient = out_ambient;
+ out_ambient = vec3(0.0);
- vec3 environment = out_specular;
+ vec3 environment = out_specular;
- out_specular = vec3(0.0);
+ out_specular = vec3(0.0);
- gi_probe_compute(gi_probe1,gi_probe_xform1,gi_probe_bounds1,gi_probe_cell_size1,pos,ambient,environment,gi_probe_blend_ambient1,gi_probe_multiplier1,normal_mat,ref_vec,roughness,gi_probe_bias1,gi_probe_normal_bias1,spec_accum,diff_accum);
+ gi_probe_compute(gi_probe1,gi_probe_xform1,gi_probe_bounds1,gi_probe_cell_size1,pos,ambient,environment,gi_probe_blend_ambient1,gi_probe_multiplier1,normal_mat,ref_vec,roughness,gi_probe_bias1,gi_probe_normal_bias1,spec_accum,diff_accum);
- if (gi_probe2_enabled) {
+ if (gi_probe2_enabled) {
- gi_probe_compute(gi_probe2,gi_probe_xform2,gi_probe_bounds2,gi_probe_cell_size2,pos,ambient,environment,gi_probe_blend_ambient2,gi_probe_multiplier2,normal_mat,ref_vec,roughness,gi_probe_bias2,gi_probe_normal_bias2,spec_accum,diff_accum);
- }
+ gi_probe_compute(gi_probe2,gi_probe_xform2,gi_probe_bounds2,gi_probe_cell_size2,pos,ambient,environment,gi_probe_blend_ambient2,gi_probe_multiplier2,normal_mat,ref_vec,roughness,gi_probe_bias2,gi_probe_normal_bias2,spec_accum,diff_accum);
+ }
- if (diff_accum.a>0.0) {
- diff_accum.rgb/=diff_accum.a;
- }
+ if (diff_accum.a>0.0) {
+ diff_accum.rgb/=diff_accum.a;
+ }
- if (spec_accum.a>0.0) {
- spec_accum.rgb/=spec_accum.a;
- }
+ if (spec_accum.a>0.0) {
+ spec_accum.rgb/=spec_accum.a;
+ }
- out_specular+=spec_accum.rgb;
- out_ambient+=diff_accum.rgb;
+ out_specular+=spec_accum.rgb;
+ out_ambient+=diff_accum.rgb;
}
@@ -1504,76 +1504,76 @@ void main() {
#ifdef RENDER_DEPTH_DUAL_PARABOLOID
- if (dp_clip>0.0)
- discard;
-#endif
-
- //lay out everything, whathever is unused is optimized away anyway
- highp vec3 vertex = vertex_interp;
- vec3 albedo = vec3(0.8,0.8,0.8);
- vec3 transmission = vec3(0.0);
- float metallic = 0.0;
- float specular = 0.5;
- vec3 emission = vec3(0.0,0.0,0.0);
- float roughness = 1.0;
- float rim = 0.0;
- float rim_tint = 0.0;
- float clearcoat=0.0;
- float clearcoat_gloss=0.0;
- float anisotropy = 1.0;
- vec2 anisotropy_flow = vec2(1.0,0.0);
+ if (dp_clip>0.0)
+ discard;
+#endif
+
+ //lay out everything, whathever is unused is optimized away anyway
+ highp vec3 vertex = vertex_interp;
+ vec3 albedo = vec3(0.8,0.8,0.8);
+ vec3 transmission = vec3(0.0);
+ float metallic = 0.0;
+ float specular = 0.5;
+ vec3 emission = vec3(0.0,0.0,0.0);
+ float roughness = 1.0;
+ float rim = 0.0;
+ float rim_tint = 0.0;
+ float clearcoat=0.0;
+ float clearcoat_gloss=0.0;
+ float anisotropy = 1.0;
+ vec2 anisotropy_flow = vec2(1.0,0.0);
#if defined(ENABLE_AO)
- float ao=1.0;
+ float ao=1.0;
#endif
- float alpha = 1.0;
+ float alpha = 1.0;
#ifdef METERIAL_DOUBLESIDED
- float side=float(gl_FrontFacing)*2.0-1.0;
+ float side=float(gl_FrontFacing)*2.0-1.0;
#else
- float side=1.0;
+ float side=1.0;
#endif
#if defined(ALPHA_SCISSOR_USED)
- float alpha_scissor = 0.5;
+ float alpha_scissor = 0.5;
#endif
#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) || defined(LIGHT_USE_ANISOTROPY)
- vec3 binormal = normalize(binormal_interp)*side;
- vec3 tangent = normalize(tangent_interp)*side;
+ vec3 binormal = normalize(binormal_interp)*side;
+ vec3 tangent = normalize(tangent_interp)*side;
#else
- vec3 binormal = vec3(0.0);
- vec3 tangent = vec3(0.0);
+ vec3 binormal = vec3(0.0);
+ vec3 tangent = vec3(0.0);
#endif
- vec3 normal = normalize(normal_interp)*side;
+ vec3 normal = normalize(normal_interp)*side;
#if defined(ENABLE_UV_INTERP)
- vec2 uv = uv_interp;
+ vec2 uv = uv_interp;
#endif
#if defined(ENABLE_UV2_INTERP)
- vec2 uv2 = uv2_interp;
+ vec2 uv2 = uv2_interp;
#endif
#if defined(ENABLE_COLOR_INTERP)
- vec4 color = color_interp;
+ vec4 color = color_interp;
#endif
#if defined(ENABLE_NORMALMAP)
- vec3 normalmap = vec3(0.0);
+ vec3 normalmap = vec3(0.0);
#endif
- float normaldepth=1.0;
+ float normaldepth=1.0;
#if defined(SCREEN_UV_USED)
- vec2 screen_uv = gl_FragCoord.xy*screen_pixel_size;
+ vec2 screen_uv = gl_FragCoord.xy*screen_pixel_size;
#endif
#if defined (ENABLE_SSS)
- float sss_strength=0.0;
+ float sss_strength=0.0;
#endif
{
@@ -1585,190 +1585,196 @@ FRAGMENT_SHADER_CODE
#if defined(ALPHA_SCISSOR_USED)
- if (alpha<alpha_scissor) {
- discard;
- }
+ if (alpha<alpha_scissor) {
+ discard;
+ }
#endif
#ifdef USE_OPAQUE_PREPASS
- if (alpha<0.99) {
- discard;
- }
+ if (alpha<0.99) {
+ discard;
+ }
#endif
#if defined(ENABLE_NORMALMAP)
- normalmap.xy=normalmap.xy*2.0-1.0;
- normalmap.z=sqrt(1.0-dot(normalmap.xy,normalmap.xy)); //always ignore Z, as it can be RG packed, Z may be pos/neg, etc.
+ normalmap.xy=normalmap.xy*2.0-1.0;
+ normalmap.z=sqrt(1.0-dot(normalmap.xy,normalmap.xy)); //always ignore Z, as it can be RG packed, Z may be pos/neg, etc.
- normal = normalize( mix(normal_interp,tangent * normalmap.x + binormal * normalmap.y + normal * normalmap.z,normaldepth) ) * side;
+ normal = normalize( mix(normal_interp,tangent * normalmap.x + binormal * normalmap.y + normal * normalmap.z,normaldepth) ) * side;
#endif
#if defined(LIGHT_USE_ANISOTROPY)
- if (anisotropy>0.01) {
- //rotation matrix
- mat3 rot = mat3( tangent, binormal, normal );
- //make local to space
- tangent = normalize(rot * vec3(anisotropy_flow.x,anisotropy_flow.y,0.0));
- binormal = normalize(rot * vec3(-anisotropy_flow.y,anisotropy_flow.x,0.0));
- }
+ if (anisotropy>0.01) {
+ //rotation matrix
+ mat3 rot = mat3( tangent, binormal, normal );
+ //make local to space
+ tangent = normalize(rot * vec3(anisotropy_flow.x,anisotropy_flow.y,0.0));
+ binormal = normalize(rot * vec3(-anisotropy_flow.y,anisotropy_flow.x,0.0));
+ }
#endif
#ifdef ENABLE_CLIP_ALPHA
- if (albedo.a<0.99) {
- //used for doublepass and shadowmapping
- discard;
- }
+ if (albedo.a<0.99) {
+ //used for doublepass and shadowmapping
+ discard;
+ }
#endif
/////////////////////// LIGHTING //////////////////////////////
- //apply energy conservation
+ //apply energy conservation
#ifdef USE_VERTEX_LIGHTING
- vec3 specular_light = specular_light_interp.rgb;
- vec3 diffuse_light = diffuse_light_interp.rgb;
+ vec3 specular_light = specular_light_interp.rgb;
+ vec3 diffuse_light = diffuse_light_interp.rgb;
#else
- vec3 specular_light = vec3(0.0,0.0,0.0);
- vec3 diffuse_light = vec3(0.0,0.0,0.0);
+ vec3 specular_light = vec3(0.0,0.0,0.0);
+ vec3 diffuse_light = vec3(0.0,0.0,0.0);
#endif
- vec3 ambient_light;
- vec3 env_reflection_light = vec3(0.0,0.0,0.0);
+ vec3 ambient_light;
+ vec3 env_reflection_light = vec3(0.0,0.0,0.0);
- vec3 eye_vec = -normalize( vertex_interp );
+ vec3 eye_vec = -normalize( vertex_interp );
#ifdef USE_RADIANCE_MAP
- if (no_ambient_light) {
- ambient_light=vec3(0.0,0.0,0.0);
- } else {
- {
+ if (no_ambient_light) {
+ ambient_light=vec3(0.0,0.0,0.0);
+ } else {
+ {
- { //read radiance from dual paraboloid
+ { //read radiance from dual paraboloid
- vec3 ref_vec = reflect(-eye_vec,normal); //2.0 * ndotv * normal - view; // reflect(v, n);
- ref_vec=normalize((radiance_inverse_xform * vec4(ref_vec,0.0)).xyz);
- vec3 radiance = textureDualParaboloid(radiance_map,ref_vec,roughness) * bg_energy;
- env_reflection_light = radiance;
+ vec3 ref_vec = reflect(-eye_vec,normal); //2.0 * ndotv * normal - view; // reflect(v, n);
+ ref_vec=normalize((radiance_inverse_xform * vec4(ref_vec,0.0)).xyz);
+ vec3 radiance = textureDualParaboloid(radiance_map,ref_vec,roughness) * bg_energy;
+ env_reflection_light = radiance;
- }
- //no longer a cubemap
- //vec3 radiance = textureLod(radiance_cube, r, lod).xyz * ( brdf.x + brdf.y);
+ }
+ //no longer a cubemap
+ //vec3 radiance = textureLod(radiance_cube, r, lod).xyz * ( brdf.x + brdf.y);
- }
+ }
- {
+ {
- vec3 ambient_dir=normalize((radiance_inverse_xform * vec4(normal,0.0)).xyz);
- vec3 env_ambient=textureDualParaboloid(radiance_map,ambient_dir,1.0) * bg_energy;
+ vec3 ambient_dir=normalize((radiance_inverse_xform * vec4(normal,0.0)).xyz);
+ vec3 env_ambient=textureDualParaboloid(radiance_map,ambient_dir,1.0) * bg_energy;
- ambient_light=mix(ambient_light_color.rgb,env_ambient,radiance_ambient_contribution);
- //ambient_light=vec3(0.0,0.0,0.0);
- }
- }
+ ambient_light=mix(ambient_light_color.rgb,env_ambient,radiance_ambient_contribution);
+ //ambient_light=vec3(0.0,0.0,0.0);
+ }
+ }
#else
- if (no_ambient_light){
- ambient_light=vec3(0.0,0.0,0.0);
- } else {
- ambient_light=ambient_light_color.rgb;
- }
+ if (no_ambient_light){
+ ambient_light=vec3(0.0,0.0,0.0);
+ } else {
+ ambient_light=ambient_light_color.rgb;
+ }
#endif
- ambient_light*=ambient_energy;
+ ambient_light*=ambient_energy;
- float specular_blob_intensity=1.0;
+ float specular_blob_intensity=1.0;
#if defined(SPECULAR_TOON)
- specular_blob_intensity*=specular * 2.0;
+ specular_blob_intensity*=specular * 2.0;
#endif
#if defined(USE_LIGHT_DIRECTIONAL)
- vec3 light_attenuation=vec3(1.0);
+ vec3 light_attenuation=vec3(1.0);
+ float depth_z = -vertex.z;
#ifdef LIGHT_DIRECTIONAL_SHADOW
- if (gl_FragCoord.w > shadow_split_offsets.w) {
+#ifdef LIGHT_USE_PSSM4
+ if (depth_z < shadow_split_offsets.w) {
+#elif defined(LIGHT_USE_PSSM2)
+ if (depth_z < shadow_split_offsets.y) {
+#else
+ if (depth_z < shadow_split_offsets.x) {
+#endif //LIGHT_USE_PSSM4
- vec3 pssm_coord;
- float pssm_fade=0.0;
+ vec3 pssm_coord;
+ float pssm_fade=0.0;
#ifdef LIGHT_USE_PSSM_BLEND
- float pssm_blend;
- vec3 pssm_coord2;
- bool use_blend=true;
- vec3 light_pssm_split_inv = 1.0/shadow_split_offsets.xyz;
- float w_inv = 1.0/gl_FragCoord.w;
+ float pssm_blend;
+ vec3 pssm_coord2;
+ bool use_blend=true;
#endif
#ifdef LIGHT_USE_PSSM4
- if (gl_FragCoord.w > shadow_split_offsets.y) {
+ if (depth_z < shadow_split_offsets.y) {
- if (gl_FragCoord.w > shadow_split_offsets.x) {
+ if (depth_z < shadow_split_offsets.x) {
- highp vec4 splane=(shadow_matrix1 * vec4(vertex,1.0));
- pssm_coord=splane.xyz/splane.w;
+ highp vec4 splane=(shadow_matrix1 * vec4(vertex,1.0));
+ pssm_coord=splane.xyz/splane.w;
#if defined(LIGHT_USE_PSSM_BLEND)
- splane=(shadow_matrix2 * vec4(vertex,1.0));
- pssm_coord2=splane.xyz/splane.w;
- pssm_blend=smoothstep(0.0,light_pssm_split_inv.x,w_inv);
+ splane=(shadow_matrix2 * vec4(vertex,1.0));
+ pssm_coord2=splane.xyz/splane.w;
+ pssm_blend=smoothstep(0.0,shadow_split_offsets.x,depth_z);
#endif
- } else {
+ } else {
- highp vec4 splane=(shadow_matrix2 * vec4(vertex,1.0));
- pssm_coord=splane.xyz/splane.w;
+ highp vec4 splane=(shadow_matrix2 * vec4(vertex,1.0));
+ pssm_coord=splane.xyz/splane.w;
#if defined(LIGHT_USE_PSSM_BLEND)
- splane=(shadow_matrix3 * vec4(vertex,1.0));
- pssm_coord2=splane.xyz/splane.w;
- pssm_blend=smoothstep(light_pssm_split_inv.x,light_pssm_split_inv.y,w_inv);
+ splane=(shadow_matrix3 * vec4(vertex,1.0));
+ pssm_coord2=splane.xyz/splane.w;
+ pssm_blend=smoothstep(shadow_split_offsets.x,shadow_split_offsets.y,depth_z);
#endif
- }
- } else {
+ }
+ } else {
- if (gl_FragCoord.w > shadow_split_offsets.z) {
+ if (depth_z < shadow_split_offsets.z) {
- highp vec4 splane=(shadow_matrix3 * vec4(vertex,1.0));
- pssm_coord=splane.xyz/splane.w;
+ highp vec4 splane=(shadow_matrix3 * vec4(vertex,1.0));
+ pssm_coord=splane.xyz/splane.w;
#if defined(LIGHT_USE_PSSM_BLEND)
- splane=(shadow_matrix4 * vec4(vertex,1.0));
- pssm_coord2=splane.xyz/splane.w;
- pssm_blend=smoothstep(light_pssm_split_inv.y,light_pssm_split_inv.z,w_inv);
+ splane=(shadow_matrix4 * vec4(vertex,1.0));
+ pssm_coord2=splane.xyz/splane.w;
+ pssm_blend=smoothstep(shadow_split_offsets.y,shadow_split_offsets.z,depth_z);
#endif
- } else {
- highp vec4 splane=(shadow_matrix4 * vec4(vertex,1.0));
- pssm_coord=splane.xyz/splane.w;
- pssm_fade = smoothstep(shadow_split_offsets.z,shadow_split_offsets.w,gl_FragCoord.w);
+ } else {
+
+ highp vec4 splane=(shadow_matrix4 * vec4(vertex,1.0));
+ pssm_coord=splane.xyz/splane.w;
+ pssm_fade = smoothstep(shadow_split_offsets.z,shadow_split_offsets.w,depth_z);
#if defined(LIGHT_USE_PSSM_BLEND)
- use_blend=false;
+ use_blend=false;
#endif
- }
- }
+ }
+ }
@@ -1776,115 +1782,116 @@ FRAGMENT_SHADER_CODE
#ifdef LIGHT_USE_PSSM2
- if (gl_FragCoord.w > shadow_split_offsets.x) {
+ if (depth_z < shadow_split_offsets.x) {
- highp vec4 splane=(shadow_matrix1 * vec4(vertex,1.0));
- pssm_coord=splane.xyz/splane.w;
+ highp vec4 splane=(shadow_matrix1 * vec4(vertex,1.0));
+ pssm_coord=splane.xyz/splane.w;
#if defined(LIGHT_USE_PSSM_BLEND)
- splane=(shadow_matrix2 * vec4(vertex,1.0));
- pssm_coord2=splane.xyz/splane.w;
- pssm_blend=smoothstep(0.0,light_pssm_split_inv.x,w_inv);
+ splane=(shadow_matrix2 * vec4(vertex,1.0));
+ pssm_coord2=splane.xyz/splane.w;
+ pssm_blend=smoothstep(0.0,shadow_split_offsets.x,depth_z);
#endif
- } else {
- highp vec4 splane=(shadow_matrix2 * vec4(vertex,1.0));
- pssm_coord=splane.xyz/splane.w;
- pssm_fade = smoothstep(shadow_split_offsets.x,shadow_split_offsets.y,gl_FragCoord.w);
+ } else {
+ highp vec4 splane=(shadow_matrix2 * vec4(vertex,1.0));
+ pssm_coord=splane.xyz/splane.w;
+ pssm_fade = smoothstep(shadow_split_offsets.x,shadow_split_offsets.y,depth_z);
#if defined(LIGHT_USE_PSSM_BLEND)
- use_blend=false;
+ use_blend=false;
#endif
- }
+ }
#endif //LIGHT_USE_PSSM2
#if !defined(LIGHT_USE_PSSM4) && !defined(LIGHT_USE_PSSM2)
- { //regular orthogonal
- highp vec4 splane=(shadow_matrix1 * vec4(vertex,1.0));
- pssm_coord=splane.xyz/splane.w;
- }
+ { //regular orthogonal
+ highp vec4 splane=(shadow_matrix1 * vec4(vertex,1.0));
+ pssm_coord=splane.xyz/splane.w;
+ }
#endif
- //one one sample
+ //one one sample
- float shadow = sample_shadow(directional_shadow,directional_shadow_pixel_size,pssm_coord.xy,pssm_coord.z,light_clamp);
+ float shadow = sample_shadow(directional_shadow,directional_shadow_pixel_size,pssm_coord.xy,pssm_coord.z,light_clamp);
#if defined(LIGHT_USE_PSSM_BLEND)
- if (use_blend) {
- shadow=mix(shadow, sample_shadow(directional_shadow,directional_shadow_pixel_size,pssm_coord2.xy,pssm_coord2.z,light_clamp),pssm_blend);
- }
+ if (use_blend) {
+ shadow=mix(shadow, sample_shadow(directional_shadow,directional_shadow_pixel_size,pssm_coord2.xy,pssm_coord2.z,light_clamp),pssm_blend);
+ }
#endif
#ifdef USE_CONTACT_SHADOWS
- if (shadow>0.01 && shadow_color_contact.a>0.0) {
+ if (shadow>0.01 && shadow_color_contact.a>0.0) {
- float contact_shadow = contact_shadow_compute(vertex,-light_direction_attenuation.xyz,shadow_color_contact.a);
- shadow=min(shadow,contact_shadow);
+ float contact_shadow = contact_shadow_compute(vertex,-light_direction_attenuation.xyz,shadow_color_contact.a);
+ shadow=min(shadow,contact_shadow);
- }
+ }
#endif
- light_attenuation=mix(mix(shadow_color_contact.rgb,vec3(1.0),shadow),vec3(1.0),pssm_fade);
+ light_attenuation=mix(mix(shadow_color_contact.rgb,vec3(1.0),shadow),vec3(1.0),pssm_fade);
+
+ }
- }
#endif //LIGHT_DIRECTIONAL_SHADOW
#ifdef USE_VERTEX_LIGHTING
- diffuse_light*=mix(vec3(1.0),light_attenuation,diffuse_light_interp.a);
- specular_light*=mix(vec3(1.0),light_attenuation,specular_light_interp.a);
+ diffuse_light*=mix(vec3(1.0),light_attenuation,diffuse_light_interp.a);
+ specular_light*=mix(vec3(1.0),light_attenuation,specular_light_interp.a);
#else
- light_compute(normal,-light_direction_attenuation.xyz,eye_vec,binormal,tangent,light_color_energy.rgb*light_attenuation,albedo,transmission,light_params.z*specular_blob_intensity,roughness,rim,rim_tint,clearcoat,clearcoat_gloss,anisotropy,diffuse_light,specular_light);
+ light_compute(normal,-light_direction_attenuation.xyz,eye_vec,binormal,tangent,light_color_energy.rgb*light_attenuation,albedo,transmission,light_params.z*specular_blob_intensity,roughness,rim,rim_tint,clearcoat,clearcoat_gloss,anisotropy,diffuse_light,specular_light);
#endif
#endif //#USE_LIGHT_DIRECTIONAL
#ifdef USE_GI_PROBES
- gi_probes_compute(vertex,normal,roughness,env_reflection_light,ambient_light);
+ gi_probes_compute(vertex,normal,roughness,env_reflection_light,ambient_light);
#endif
#ifdef USE_FORWARD_LIGHTING
- highp vec4 reflection_accum = vec4(0.0,0.0,0.0,0.0);
- highp vec4 ambient_accum = vec4(0.0,0.0,0.0,0.0);
- for(int i=0;i<reflection_count;i++) {
- reflection_process(reflection_indices[i],vertex,normal,binormal,tangent,roughness,anisotropy,ambient_light,env_reflection_light,reflection_accum,ambient_accum);
- }
+ highp vec4 reflection_accum = vec4(0.0,0.0,0.0,0.0);
+ highp vec4 ambient_accum = vec4(0.0,0.0,0.0,0.0);
+ for(int i=0;i<reflection_count;i++) {
+ reflection_process(reflection_indices[i],vertex,normal,binormal,tangent,roughness,anisotropy,ambient_light,env_reflection_light,reflection_accum,ambient_accum);
+ }
- if (reflection_accum.a>0.0) {
- specular_light+=reflection_accum.rgb/reflection_accum.a;
- } else {
- specular_light+=env_reflection_light;
- }
+ if (reflection_accum.a>0.0) {
+ specular_light+=reflection_accum.rgb/reflection_accum.a;
+ } else {
+ specular_light+=env_reflection_light;
+ }
- if (ambient_accum.a>0.0) {
- ambient_light+=ambient_accum.rgb/ambient_accum.a;
- }
+ if (ambient_accum.a>0.0) {
+ ambient_light+=ambient_accum.rgb/ambient_accum.a;
+ }
#ifdef USE_VERTEX_LIGHTING
- diffuse_light*=albedo;
+ diffuse_light*=albedo;
#else
- for(int i=0;i<omni_light_count;i++) {
- light_process_omni(omni_light_indices[i],vertex,eye_vec,normal,binormal,tangent,albedo,transmission,roughness,rim,rim_tint,clearcoat,clearcoat_gloss,anisotropy,specular_blob_intensity,diffuse_light,specular_light);
- }
+ for(int i=0;i<omni_light_count;i++) {
+ light_process_omni(omni_light_indices[i],vertex,eye_vec,normal,binormal,tangent,albedo,transmission,roughness,rim,rim_tint,clearcoat,clearcoat_gloss,anisotropy,specular_blob_intensity,diffuse_light,specular_light);
+ }
- for(int i=0;i<spot_light_count;i++) {
- light_process_spot(spot_light_indices[i],vertex,eye_vec,normal,binormal,tangent,albedo,transmission,roughness,rim,rim_tint,clearcoat,clearcoat_gloss,anisotropy,specular_blob_intensity,diffuse_light,specular_light);
- }
+ for(int i=0;i<spot_light_count;i++) {
+ light_process_spot(spot_light_indices[i],vertex,eye_vec,normal,binormal,tangent,albedo,transmission,roughness,rim,rim_tint,clearcoat,clearcoat_gloss,anisotropy,specular_blob_intensity,diffuse_light,specular_light);
+ }
#endif //USE_VERTEX_LIGHTING
@@ -1897,114 +1904,114 @@ FRAGMENT_SHADER_CODE
//nothing happens, so a tree-ssa optimizer will result in no fragment shader :)
#else
- specular_light*=reflection_multiplier;
- ambient_light*=albedo; //ambient must be multiplied by albedo at the end
+ specular_light*=reflection_multiplier;
+ ambient_light*=albedo; //ambient must be multiplied by albedo at the end
#if defined(ENABLE_AO)
- ambient_light*=ao;
+ ambient_light*=ao;
#endif
- //energu conservation
- diffuse_light=mix(diffuse_light,vec3(0.0),metallic);
- ambient_light=mix(ambient_light,vec3(0.0),metallic);
+ //energu conservation
+ diffuse_light=mix(diffuse_light,vec3(0.0),metallic);
+ ambient_light=mix(ambient_light,vec3(0.0),metallic);
- {
+ {
#if defined(DIFFUSE_TOON)
- //simplify for toon, as
- specular_light *= specular * metallic * albedo * 2.0;
+ //simplify for toon, as
+ specular_light *= specular * metallic * albedo * 2.0;
#else
- //brdf approximation (Lazarov 2013)
- float ndotv = clamp(dot(normal,eye_vec),0.0,1.0);
- vec3 dielectric = vec3(0.034) * specular * 2.0;
- //energy conservation
- vec3 f0 = mix(dielectric, albedo, metallic);
- const vec4 c0 = vec4(-1.0, -0.0275, -0.572, 0.022);
- const vec4 c1 = vec4( 1.0, 0.0425, 1.04, -0.04);
- vec4 r = roughness * c0 + c1;
- float a004 = min( r.x * r.x, exp2( -9.28 * ndotv ) ) * r.x + r.y;
- vec2 brdf = vec2( -1.04, 1.04 ) * a004 + r.zw;
+ //brdf approximation (Lazarov 2013)
+ float ndotv = clamp(dot(normal,eye_vec),0.0,1.0);
+ vec3 dielectric = vec3(0.034) * specular * 2.0;
+ //energy conservation
+ vec3 f0 = mix(dielectric, albedo, metallic);
+ const vec4 c0 = vec4(-1.0, -0.0275, -0.572, 0.022);
+ const vec4 c1 = vec4( 1.0, 0.0425, 1.04, -0.04);
+ vec4 r = roughness * c0 + c1;
+ float a004 = min( r.x * r.x, exp2( -9.28 * ndotv ) ) * r.x + r.y;
+ vec2 brdf = vec2( -1.04, 1.04 ) * a004 + r.zw;
- specular_light *= min(1.0,50.0 * f0.g) * brdf.y + brdf.x * f0;
+ specular_light *= min(1.0,50.0 * f0.g) * brdf.y + brdf.x * f0;
#endif
- }
+ }
- if (fog_color_enabled.a > 0.5) {
+ if (fog_color_enabled.a > 0.5) {
- float fog_amount=0.0;
+ float fog_amount=0.0;
#ifdef USE_LIGHT_DIRECTIONAL
- vec3 fog_color = mix( fog_color_enabled.rgb, fog_sun_color_amount.rgb,fog_sun_color_amount.a * pow(max( dot(normalize(vertex),-light_direction_attenuation.xyz), 0.0),8.0) );
+ vec3 fog_color = mix( fog_color_enabled.rgb, fog_sun_color_amount.rgb,fog_sun_color_amount.a * pow(max( dot(normalize(vertex),-light_direction_attenuation.xyz), 0.0),8.0) );
#else
- vec3 fog_color = fog_color_enabled.rgb;
+ vec3 fog_color = fog_color_enabled.rgb;
#endif
- //apply fog
+ //apply fog
- if (fog_depth_enabled) {
+ if (fog_depth_enabled) {
- float fog_z = smoothstep(fog_depth_begin,z_far,length(vertex));
+ float fog_z = smoothstep(fog_depth_begin,z_far,length(vertex));
- fog_amount = pow(fog_z,fog_depth_curve);
- if (fog_transmit_enabled) {
- vec3 total_light = emission + ambient_light + specular_light + diffuse_light;
- float transmit = pow(fog_z,fog_transmit_curve);
- fog_color = mix(max(total_light,fog_color),fog_color,transmit);
- }
- }
+ fog_amount = pow(fog_z,fog_depth_curve);
+ if (fog_transmit_enabled) {
+ vec3 total_light = emission + ambient_light + specular_light + diffuse_light;
+ float transmit = pow(fog_z,fog_transmit_curve);
+ fog_color = mix(max(total_light,fog_color),fog_color,transmit);
+ }
+ }
- if (fog_height_enabled) {
- float y = (camera_matrix * vec4(vertex,1.0)).y;
- fog_amount = max(fog_amount,pow(1.0-smoothstep(fog_height_min,fog_height_max,y),fog_height_curve));
- }
+ if (fog_height_enabled) {
+ float y = (camera_matrix * vec4(vertex,1.0)).y;
+ fog_amount = max(fog_amount,pow(1.0-smoothstep(fog_height_min,fog_height_max,y),fog_height_curve));
+ }
- float rev_amount = 1.0 - fog_amount;
+ float rev_amount = 1.0 - fog_amount;
- emission = emission * rev_amount + fog_color * fog_amount;
- ambient_light*=rev_amount;
- specular_light*rev_amount;
- diffuse_light*=rev_amount;
+ emission = emission * rev_amount + fog_color * fog_amount;
+ ambient_light*=rev_amount;
+ specular_light*rev_amount;
+ diffuse_light*=rev_amount;
- }
+ }
#ifdef USE_MULTIPLE_RENDER_TARGETS
#ifdef SHADELESS
- diffuse_buffer=vec4(albedo.rgb,0.0);
- specular_buffer=vec4(0.0);
+ diffuse_buffer=vec4(albedo.rgb,0.0);
+ specular_buffer=vec4(0.0);
#else
#if defined(ENABLE_AO)
- float ambient_scale=0.0; // AO is supplied by material
+ float ambient_scale=0.0; // AO is supplied by material
#else
- //approximate ambient scale for SSAO, since we will lack full ambient
- float max_emission=max(emission.r,max(emission.g,emission.b));
- float max_ambient=max(ambient_light.r,max(ambient_light.g,ambient_light.b));
- float max_diffuse=max(diffuse_light.r,max(diffuse_light.g,diffuse_light.b));
- float total_ambient = max_ambient+max_diffuse+max_emission;
- float ambient_scale = (total_ambient>0.0) ? (max_ambient+ambient_occlusion_affect_light*max_diffuse)/total_ambient : 0.0;
+ //approximate ambient scale for SSAO, since we will lack full ambient
+ float max_emission=max(emission.r,max(emission.g,emission.b));
+ float max_ambient=max(ambient_light.r,max(ambient_light.g,ambient_light.b));
+ float max_diffuse=max(diffuse_light.r,max(diffuse_light.g,diffuse_light.b));
+ float total_ambient = max_ambient+max_diffuse+max_emission;
+ float ambient_scale = (total_ambient>0.0) ? (max_ambient+ambient_occlusion_affect_light*max_diffuse)/total_ambient : 0.0;
#endif //ENABLE_AO
- diffuse_buffer=vec4(emission+diffuse_light+ambient_light,ambient_scale);
- specular_buffer=vec4(specular_light,metallic);
+ diffuse_buffer=vec4(emission+diffuse_light+ambient_light,ambient_scale);
+ specular_buffer=vec4(specular_light,metallic);
#endif //SHADELESS
- normal_mr_buffer=vec4(normalize(normal)*0.5+0.5,roughness);
+ normal_mr_buffer=vec4(normalize(normal)*0.5+0.5,roughness);
#if defined (ENABLE_SSS)
- sss_buffer = sss_strength;
+ sss_buffer = sss_strength;
#endif
@@ -2012,9 +2019,9 @@ FRAGMENT_SHADER_CODE
#ifdef SHADELESS
- frag_color=vec4(albedo,alpha);
+ frag_color=vec4(albedo,alpha);
#else
- frag_color=vec4(emission+ambient_light+diffuse_light+specular_light,alpha);
+ frag_color=vec4(emission+ambient_light+diffuse_light+specular_light,alpha);
#endif //SHADELESS