summaryrefslogtreecommitdiff
path: root/drivers
diff options
context:
space:
mode:
authorRémi Verschelde <rverschelde@gmail.com>2018-08-24 14:50:59 +0200
committerRémi Verschelde <rverschelde@gmail.com>2018-08-24 14:50:59 +0200
commite68b96928bbc9814519534acd89003db33279858 (patch)
treef18f8b6dcf853d2f8bf446d13eeefe29d20c446b /drivers
parent1b6d75a5996b5e3c7cfdea81953c5955e1645c1a (diff)
Style: Fix code formatting in GLES2 shaders
Diffstat (limited to 'drivers')
-rw-r--r--drivers/gles2/shaders/blend_shape.glsl39
-rw-r--r--drivers/gles2/shaders/canvas.glsl6
-rw-r--r--drivers/gles2/shaders/canvas_shadow.glsl19
-rw-r--r--drivers/gles2/shaders/copy.glsl21
-rw-r--r--drivers/gles2/shaders/cube_to_dp.glsl60
-rw-r--r--drivers/gles2/shaders/cubemap_filter.glsl40
-rw-r--r--drivers/gles2/shaders/effect_blur.glsl178
-rw-r--r--drivers/gles2/shaders/exposure.glsl60
-rw-r--r--drivers/gles2/shaders/particles.glsl107
-rw-r--r--drivers/gles2/shaders/resolve.glsl16
-rw-r--r--drivers/gles2/shaders/scene.glsl347
-rw-r--r--drivers/gles2/shaders/screen_space_reflection.glsl195
-rw-r--r--drivers/gles2/shaders/ssao.glsl160
-rw-r--r--drivers/gles2/shaders/ssao_blur.glsl51
-rw-r--r--drivers/gles2/shaders/ssao_minify.glsl17
-rw-r--r--drivers/gles2/shaders/stdlib.glsl13
-rw-r--r--drivers/gles2/shaders/subsurf_scattering.glsl164
-rw-r--r--drivers/gles2/shaders/tonemap.glsl164
18 files changed, 726 insertions, 931 deletions
diff --git a/drivers/gles2/shaders/blend_shape.glsl b/drivers/gles2/shaders/blend_shape.glsl
index 4e0d066823..d019062ba0 100644
--- a/drivers/gles2/shaders/blend_shape.glsl
+++ b/drivers/gles2/shaders/blend_shape.glsl
@@ -1,6 +1,5 @@
[vertex]
-
/*
from VisualServer:
@@ -23,56 +22,56 @@ ARRAY_INDEX=8,
/* INPUT ATTRIBS */
-layout(location=0) in highp VFORMAT vertex_attrib;
-layout(location=1) in vec3 normal_attrib;
+layout(location = 0) in highp VFORMAT vertex_attrib;
+layout(location = 1) in vec3 normal_attrib;
#ifdef ENABLE_TANGENT
-layout(location=2) in vec4 tangent_attrib;
+layout(location = 2) in vec4 tangent_attrib;
#endif
#ifdef ENABLE_COLOR
-layout(location=3) in vec4 color_attrib;
+layout(location = 3) in vec4 color_attrib;
#endif
#ifdef ENABLE_UV
-layout(location=4) in vec2 uv_attrib;
+layout(location = 4) in vec2 uv_attrib;
#endif
#ifdef ENABLE_UV2
-layout(location=5) in vec2 uv2_attrib;
+layout(location = 5) in vec2 uv2_attrib;
#endif
#ifdef ENABLE_SKELETON
-layout(location=6) in ivec4 bone_attrib;
-layout(location=7) in vec4 weight_attrib;
+layout(location = 6) in ivec4 bone_attrib;
+layout(location = 7) in vec4 weight_attrib;
#endif
/* BLEND ATTRIBS */
#ifdef ENABLE_BLEND
-layout(location=8) in highp VFORMAT vertex_attrib_blend;
-layout(location=9) in vec3 normal_attrib_blend;
+layout(location = 8) in highp VFORMAT vertex_attrib_blend;
+layout(location = 9) in vec3 normal_attrib_blend;
#ifdef ENABLE_TANGENT
-layout(location=10) in vec4 tangent_attrib_blend;
+layout(location = 10) in vec4 tangent_attrib_blend;
#endif
#ifdef ENABLE_COLOR
-layout(location=11) in vec4 color_attrib_blend;
+layout(location = 11) in vec4 color_attrib_blend;
#endif
#ifdef ENABLE_UV
-layout(location=12) in vec2 uv_attrib_blend;
+layout(location = 12) in vec2 uv_attrib_blend;
#endif
#ifdef ENABLE_UV2
-layout(location=13) in vec2 uv2_attrib_blend;
+layout(location = 13) in vec2 uv2_attrib_blend;
#endif
#ifdef ENABLE_SKELETON
-layout(location=14) in ivec4 bone_attrib_blend;
-layout(location=15) in vec4 weight_attrib_blend;
+layout(location = 14) in ivec4 bone_attrib_blend;
+layout(location = 15) in vec4 weight_attrib_blend;
#endif
#endif
@@ -110,7 +109,6 @@ uniform float blend_amount;
void main() {
-
#ifdef ENABLE_BLEND
vertex_out = vertex_attrib_blend + vertex_attrib * blend_amount;
@@ -140,7 +138,6 @@ void main() {
uv2_out = uv2_attrib_blend + uv2_attrib * blend_amount;
#endif
-
#ifdef ENABLE_SKELETON
bone_out = bone_attrib_blend;
@@ -149,7 +146,6 @@ void main() {
#else //ENABLE_BLEND
-
vertex_out = vertex_attrib * blend_amount;
#ifdef ENABLE_NORMAL
@@ -177,7 +173,6 @@ void main() {
uv2_out = uv2_attrib * blend_amount;
#endif
-
#ifdef ENABLE_SKELETON
bone_out = bone_attrib;
@@ -190,8 +185,6 @@ void main() {
[fragment]
-
void main() {
}
-
diff --git a/drivers/gles2/shaders/canvas.glsl b/drivers/gles2/shaders/canvas.glsl
index e97822f9bf..cee68a58ff 100644
--- a/drivers/gles2/shaders/canvas.glsl
+++ b/drivers/gles2/shaders/canvas.glsl
@@ -75,7 +75,7 @@ void main() {
#endif
{
- vec2 src_vtx=outvec.xy;
+ vec2 src_vtx = outvec.xy;
VERTEX_SHADER_CODE
}
@@ -83,7 +83,6 @@ VERTEX_SHADER_CODE
color_interp = color;
gl_Position = projection_matrix * modelview_matrix * outvec;
-
}
[fragment]
@@ -121,7 +120,6 @@ uniform vec2 screen_pixel_size;
FRAGMENT_SHADER_GLOBALS
-
void main() {
vec4 color = color_interp;
@@ -135,11 +133,9 @@ void main() {
FRAGMENT_SHADER_CODE
-
}
color *= final_modulate;
gl_FragColor = color;
-
}
diff --git a/drivers/gles2/shaders/canvas_shadow.glsl b/drivers/gles2/shaders/canvas_shadow.glsl
index c757990de0..81af486101 100644
--- a/drivers/gles2/shaders/canvas_shadow.glsl
+++ b/drivers/gles2/shaders/canvas_shadow.glsl
@@ -1,20 +1,18 @@
[vertex]
-
-
uniform highp mat4 projection_matrix;
uniform highp mat4 light_matrix;
uniform highp mat4 world_matrix;
uniform highp float distance_norm;
-layout(location=0) in highp vec3 vertex;
+layout(location = 0) in highp vec3 vertex;
out highp vec4 position_interp;
void main() {
- gl_Position = projection_matrix * (light_matrix * (world_matrix * vec4(vertex,1.0)));
- position_interp=gl_Position;
+ gl_Position = projection_matrix * (light_matrix * (world_matrix * vec4(vertex, 1.0)));
+ position_interp = gl_Position;
}
[fragment]
@@ -23,27 +21,26 @@ in highp vec4 position_interp;
#ifdef USE_RGBA_SHADOWS
-layout(location=0) out lowp vec4 distance_buf;
+layout(location = 0) out lowp vec4 distance_buf;
#else
-layout(location=0) out highp float distance_buf;
+layout(location = 0) out highp float distance_buf;
#endif
void main() {
- highp float depth = ((position_interp.z / position_interp.w) + 1.0) * 0.5 + 0.0;//bias;
+ highp float depth = ((position_interp.z / position_interp.w) + 1.0) * 0.5 + 0.0; //bias;
#ifdef USE_RGBA_SHADOWS
highp vec4 comp = fract(depth * vec4(256.0 * 256.0 * 256.0, 256.0 * 256.0, 256.0, 1.0));
comp -= comp.xxyz * vec4(0, 1.0 / 256.0, 1.0 / 256.0, 1.0 / 256.0);
- distance_buf=comp;
+ distance_buf = comp;
#else
- distance_buf=depth;
+ distance_buf = depth;
#endif
}
-
diff --git a/drivers/gles2/shaders/copy.glsl b/drivers/gles2/shaders/copy.glsl
index feaeb2152b..6e9aad2a5d 100644
--- a/drivers/gles2/shaders/copy.glsl
+++ b/drivers/gles2/shaders/copy.glsl
@@ -85,17 +85,15 @@ uniform float custom_alpha;
vec4 texturePanorama(sampler2D pano, vec3 normal) {
vec2 st = vec2(
- atan(normal.x, normal.z),
- acos(normal.y)
- );
+ atan(normal.x, normal.z),
+ acos(normal.y));
- if(st.x < 0.0)
- st.x += M_PI*2.0;
+ if (st.x < 0.0)
+ st.x += M_PI * 2.0;
- st/=vec2(M_PI*2.0,M_PI);
-
- return texture2D(pano,st);
+ st /= vec2(M_PI * 2.0, M_PI);
+ return texture2D(pano, st);
}
#endif
@@ -109,16 +107,15 @@ void main() {
#elif defined(USE_CUBEMAP)
vec4 color = textureCube(source_cube, normalize(cube_interp));
#else
- vec4 color = texture2D( source, uv_interp );
+ vec4 color = texture2D(source, uv_interp);
#endif
-
#ifdef USE_NO_ALPHA
- color.a=1.0;
+ color.a = 1.0;
#endif
#ifdef USE_CUSTOM_ALPHA
- color.a=custom_alpha;
+ color.a = custom_alpha;
#endif
#ifdef USE_MULTIPLIER
diff --git a/drivers/gles2/shaders/cube_to_dp.glsl b/drivers/gles2/shaders/cube_to_dp.glsl
index 0b3f53a870..b44aab8946 100644
--- a/drivers/gles2/shaders/cube_to_dp.glsl
+++ b/drivers/gles2/shaders/cube_to_dp.glsl
@@ -39,55 +39,53 @@ uniform highp float bias;
void main() {
- highp vec3 normal = vec3( uv_interp * 2.0 - 1.0, 0.0 );
-/*
- if(z_flip) {
- normal.z = 0.5 - 0.5*((normal.x * normal.x) + (normal.y * normal.y));
+ highp vec3 normal = vec3(uv_interp * 2.0 - 1.0, 0.0);
+ /*
+ if (z_flip) {
+ normal.z = 0.5 - 0.5 * ((normal.x * normal.x) + (normal.y * normal.y));
} else {
- normal.z = -0.5 + 0.5*((normal.x * normal.x) + (normal.y * normal.y));
+ normal.z = -0.5 + 0.5 * ((normal.x * normal.x) + (normal.y * normal.y));
}
-*/
+ */
- //normal.z = sqrt(1.0-dot(normal.xy,normal.xy));
- //normal.xy*=1.0+normal.z;
+ //normal.z = sqrt(1.0 - dot(normal.xy, normal.xy));
+ //normal.xy *= 1.0 + normal.z;
- normal.z = 0.5 - 0.5*((normal.x * normal.x) + (normal.y * normal.y));
+ normal.z = 0.5 - 0.5 * ((normal.x * normal.x) + (normal.y * normal.y));
normal = normalize(normal);
+ /*
+ normal.z = 0.5;
+ normal = normalize(normal);
+ */
-/*
- normal.z=0.5;
- normal=normalize(normal);
-*/
if (!z_flip) {
- normal.z=-normal.z;
+ normal.z = -normal.z;
}
//normal = normalize(vec3( uv_interp * 2.0 - 1.0, 1.0 ));
- float depth = textureCube(source_cube,normal).r;
+ float depth = textureCube(source_cube, normal).r;
// absolute values for direction cosines, bigger value equals closer to basis axis
vec3 unorm = abs(normal);
- if ( (unorm.x >= unorm.y) && (unorm.x >= unorm.z) ) {
- // x code
- unorm = normal.x > 0.0 ? vec3( 1.0, 0.0, 0.0 ) : vec3( -1.0, 0.0, 0.0 ) ;
- } else if ( (unorm.y > unorm.x) && (unorm.y >= unorm.z) ) {
- // y code
- unorm = normal.y > 0.0 ? vec3( 0.0, 1.0, 0.0 ) : vec3( 0.0, -1.0, 0.0 ) ;
- } else if ( (unorm.z > unorm.x) && (unorm.z > unorm.y) ) {
- // z code
- unorm = normal.z > 0.0 ? vec3( 0.0, 0.0, 1.0 ) : vec3( 0.0, 0.0, -1.0 ) ;
+ if ((unorm.x >= unorm.y) && (unorm.x >= unorm.z)) {
+ // x code
+ unorm = normal.x > 0.0 ? vec3(1.0, 0.0, 0.0) : vec3(-1.0, 0.0, 0.0);
+ } else if ((unorm.y > unorm.x) && (unorm.y >= unorm.z)) {
+ // y code
+ unorm = normal.y > 0.0 ? vec3(0.0, 1.0, 0.0) : vec3(0.0, -1.0, 0.0);
+ } else if ((unorm.z > unorm.x) && (unorm.z > unorm.y)) {
+ // z code
+ unorm = normal.z > 0.0 ? vec3(0.0, 0.0, 1.0) : vec3(0.0, 0.0, -1.0);
} else {
- // oh-no we messed up code
- // has to be
- unorm = vec3( 1.0, 0.0, 0.0 );
+ // oh-no we messed up code
+ // has to be
+ unorm = vec3(1.0, 0.0, 0.0);
}
- float depth_fix = 1.0 / dot(normal,unorm);
-
+ float depth_fix = 1.0 / dot(normal, unorm);
depth = 2.0 * depth - 1.0;
float linear_depth = 2.0 * z_near * z_far / (z_far + z_near - depth * (z_far - z_near));
- gl_FragDepth = (linear_depth*depth_fix+bias) / z_far;
+ gl_FragDepth = (linear_depth * depth_fix + bias) / z_far;
}
-
diff --git a/drivers/gles2/shaders/cubemap_filter.glsl b/drivers/gles2/shaders/cubemap_filter.glsl
index 35f0a16325..6c26c5ce89 100644
--- a/drivers/gles2/shaders/cubemap_filter.glsl
+++ b/drivers/gles2/shaders/cubemap_filter.glsl
@@ -15,8 +15,8 @@ varying highp vec2 uv_interp;
void main() {
- uv_interp=uv;
- gl_Position=vec4(vertex,0,1);
+ uv_interp = uv;
+ gl_Position = vec4(vertex, 0, 1);
}
[fragment]
@@ -65,17 +65,15 @@ uniform sampler2D radical_inverse_vdc_cache; // texunit:1
vec4 texturePanorama(sampler2D pano, vec3 normal) {
vec2 st = vec2(
- atan(normal.x, normal.z),
- acos(normal.y)
- );
+ atan(normal.x, normal.z),
+ acos(normal.y));
- if(st.x < 0.0)
- st.x += M_PI*2.0;
+ if (st.x < 0.0)
+ st.x += M_PI * 2.0;
- st/=vec2(M_PI*2.0,M_PI);
-
- return texture2DLod(pano,st,0.0);
+ st /= vec2(M_PI * 2.0, M_PI);
+ return texture2DLod(pano, st, 0.0);
}
#endif
@@ -84,24 +82,24 @@ vec3 texelCoordToVec(vec2 uv, int faceID) {
mat3 faceUvVectors[6];
// -x
- faceUvVectors[0][0] = vec3(0.0, 0.0, 1.0); // u -> +z
+ faceUvVectors[0][0] = vec3(0.0, 0.0, 1.0); // u -> +z
faceUvVectors[0][1] = vec3(0.0, -1.0, 0.0); // v -> -y
faceUvVectors[0][2] = vec3(-1.0, 0.0, 0.0); // -x face
// +x
faceUvVectors[1][0] = vec3(0.0, 0.0, -1.0); // u -> -z
faceUvVectors[1][1] = vec3(0.0, -1.0, 0.0); // v -> -y
- faceUvVectors[1][2] = vec3(1.0, 0.0, 0.0); // +x face
+ faceUvVectors[1][2] = vec3(1.0, 0.0, 0.0); // +x face
// -y
- faceUvVectors[2][0] = vec3(1.0, 0.0, 0.0); // u -> +x
+ faceUvVectors[2][0] = vec3(1.0, 0.0, 0.0); // u -> +x
faceUvVectors[2][1] = vec3(0.0, 0.0, -1.0); // v -> -z
faceUvVectors[2][2] = vec3(0.0, -1.0, 0.0); // -y face
// +y
- faceUvVectors[3][0] = vec3(1.0, 0.0, 0.0); // u -> +x
- faceUvVectors[3][1] = vec3(0.0, 0.0, 1.0); // v -> +z
- faceUvVectors[3][2] = vec3(0.0, 1.0, 0.0); // +y face
+ faceUvVectors[3][0] = vec3(1.0, 0.0, 0.0); // u -> +x
+ faceUvVectors[3][1] = vec3(0.0, 0.0, 1.0); // v -> +z
+ faceUvVectors[3][2] = vec3(0.0, 1.0, 0.0); // +y face
// -z
faceUvVectors[4][0] = vec3(-1.0, 0.0, 0.0); // u -> -x
@@ -109,9 +107,9 @@ vec3 texelCoordToVec(vec2 uv, int faceID) {
faceUvVectors[4][2] = vec3(0.0, 0.0, -1.0); // -z face
// +z
- faceUvVectors[5][0] = vec3(1.0, 0.0, 0.0); // u -> +x
+ faceUvVectors[5][0] = vec3(1.0, 0.0, 0.0); // u -> +x
faceUvVectors[5][1] = vec3(0.0, -1.0, 0.0); // v -> -y
- faceUvVectors[5][2] = vec3(0.0, 0.0, 1.0); // +z face
+ faceUvVectors[5][2] = vec3(0.0, 0.0, 1.0); // +z face
// out = u * s_faceUv[0] + v * s_faceUv[1] + s_faceUv[2].
vec3 result = (faceUvVectors[faceID][0] * uv.x) + (faceUvVectors[faceID][1] * uv.y) + faceUvVectors[faceID][2];
@@ -123,7 +121,7 @@ vec3 ImportanceSampleGGX(vec2 Xi, float Roughness, vec3 N) {
// Compute distribution direction
float Phi = 2.0 * M_PI * Xi.x;
- float CosTheta = sqrt((1.0 - Xi.y) / (1.0 + (a*a - 1.0) * Xi.y));
+ float CosTheta = sqrt((1.0 - Xi.y) / (1.0 + (a * a - 1.0) * Xi.y));
float SinTheta = sqrt(1.0 - CosTheta * CosTheta);
// Convert to spherical direction
@@ -179,14 +177,10 @@ void main() {
#endif
sum.a += NdotL;
-
}
-
}
sum /= sum.a;
gl_FragColor = vec4(sum.rgb, 1.0);
-
}
-
diff --git a/drivers/gles2/shaders/effect_blur.glsl b/drivers/gles2/shaders/effect_blur.glsl
index b5f98a1244..0e2d28af20 100644
--- a/drivers/gles2/shaders/effect_blur.glsl
+++ b/drivers/gles2/shaders/effect_blur.glsl
@@ -1,8 +1,7 @@
[vertex]
-
-layout(location=0) in highp vec4 vertex_attrib;
-layout(location=4) in vec2 uv_in;
+layout(location = 0) in highp vec4 vertex_attrib;
+layout(location = 4) in vec2 uv_in;
out vec2 uv_interp;
@@ -39,7 +38,6 @@ uniform sampler2D source_ssao; //texunit:1
uniform float lod;
uniform vec2 pixel_size;
-
layout(location = 0) out vec4 frag_color;
#ifdef SSAO_MERGE
@@ -48,31 +46,31 @@ uniform vec4 ssao_color;
#endif
-#if defined (GLOW_GAUSSIAN_HORIZONTAL) || defined(GLOW_GAUSSIAN_VERTICAL)
+#if defined(GLOW_GAUSSIAN_HORIZONTAL) || defined(GLOW_GAUSSIAN_VERTICAL)
uniform float glow_strength;
#endif
-#if defined(DOF_FAR_BLUR) || defined (DOF_NEAR_BLUR)
+#if defined(DOF_FAR_BLUR) || defined(DOF_NEAR_BLUR)
#ifdef DOF_QUALITY_LOW
-const int dof_kernel_size=5;
-const int dof_kernel_from=2;
-const float dof_kernel[5] = float[] (0.153388,0.221461,0.250301,0.221461,0.153388);
+const int dof_kernel_size = 5;
+const int dof_kernel_from = 2;
+const float dof_kernel[5] = float[](0.153388, 0.221461, 0.250301, 0.221461, 0.153388);
#endif
#ifdef DOF_QUALITY_MEDIUM
-const int dof_kernel_size=11;
-const int dof_kernel_from=5;
-const float dof_kernel[11] = float[] (0.055037,0.072806,0.090506,0.105726,0.116061,0.119726,0.116061,0.105726,0.090506,0.072806,0.055037);
+const int dof_kernel_size = 11;
+const int dof_kernel_from = 5;
+const float dof_kernel[11] = float[](0.055037, 0.072806, 0.090506, 0.105726, 0.116061, 0.119726, 0.116061, 0.105726, 0.090506, 0.072806, 0.055037);
#endif
#ifdef DOF_QUALITY_HIGH
-const int dof_kernel_size=21;
-const int dof_kernel_from=10;
-const float dof_kernel[21] = float[] (0.028174,0.032676,0.037311,0.041944,0.046421,0.050582,0.054261,0.057307,0.059587,0.060998,0.061476,0.060998,0.059587,0.057307,0.054261,0.050582,0.046421,0.041944,0.037311,0.032676,0.028174);
+const int dof_kernel_size = 21;
+const int dof_kernel_from = 10;
+const float dof_kernel[21] = float[](0.028174, 0.032676, 0.037311, 0.041944, 0.046421, 0.050582, 0.054261, 0.057307, 0.059587, 0.060998, 0.061476, 0.060998, 0.059587, 0.057307, 0.054261, 0.050582, 0.046421, 0.041944, 0.037311, 0.032676, 0.028174);
#endif
uniform sampler2D dof_source_depth; //texunit:1
@@ -88,7 +86,6 @@ uniform sampler2D source_dof_original; //texunit:2
#endif
-
#ifdef GLOW_FIRST_PASS
uniform float exposure;
@@ -112,53 +109,51 @@ uniform float camera_z_near;
void main() {
-
-
#ifdef GAUSSIAN_HORIZONTAL
vec2 pix_size = pixel_size;
- pix_size*=0.5; //reading from larger buffer, so use more samples
- vec4 color =textureLod( source_color, uv_interp+vec2( 0.0, 0.0)*pix_size,lod )*0.214607;
- color+=textureLod( source_color, uv_interp+vec2( 1.0, 0.0)*pix_size,lod )*0.189879;
- color+=textureLod( source_color, uv_interp+vec2( 2.0, 0.0)*pix_size,lod )*0.157305;
- color+=textureLod( source_color, uv_interp+vec2( 3.0, 0.0)*pix_size,lod )*0.071303;
- color+=textureLod( source_color, uv_interp+vec2(-1.0, 0.0)*pix_size,lod )*0.189879;
- color+=textureLod( source_color, uv_interp+vec2(-2.0, 0.0)*pix_size,lod )*0.157305;
- color+=textureLod( source_color, uv_interp+vec2(-3.0, 0.0)*pix_size,lod )*0.071303;
+ pix_size *= 0.5; //reading from larger buffer, so use more samples
+ vec4 color = textureLod(source_color, uv_interp + vec2(0.0, 0.0) * pix_size, lod) * 0.214607;
+ color += textureLod(source_color, uv_interp + vec2(1.0, 0.0) * pix_size, lod) * 0.189879;
+ color += textureLod(source_color, uv_interp + vec2(2.0, 0.0) * pix_size, lod) * 0.157305;
+ color += textureLod(source_color, uv_interp + vec2(3.0, 0.0) * pix_size, lod) * 0.071303;
+ color += textureLod(source_color, uv_interp + vec2(-1.0, 0.0) * pix_size, lod) * 0.189879;
+ color += textureLod(source_color, uv_interp + vec2(-2.0, 0.0) * pix_size, lod) * 0.157305;
+ color += textureLod(source_color, uv_interp + vec2(-3.0, 0.0) * pix_size, lod) * 0.071303;
frag_color = color;
#endif
#ifdef GAUSSIAN_VERTICAL
- vec4 color =textureLod( source_color, uv_interp+vec2( 0.0, 0.0)*pixel_size,lod )*0.38774;
- color+=textureLod( source_color, uv_interp+vec2( 0.0, 1.0)*pixel_size,lod )*0.24477;
- color+=textureLod( source_color, uv_interp+vec2( 0.0, 2.0)*pixel_size,lod )*0.06136;
- color+=textureLod( source_color, uv_interp+vec2( 0.0,-1.0)*pixel_size,lod )*0.24477;
- color+=textureLod( source_color, uv_interp+vec2( 0.0,-2.0)*pixel_size,lod )*0.06136;
+ vec4 color = textureLod(source_color, uv_interp + vec2(0.0, 0.0) * pixel_size, lod) * 0.38774;
+ color += textureLod(source_color, uv_interp + vec2(0.0, 1.0) * pixel_size, lod) * 0.24477;
+ color += textureLod(source_color, uv_interp + vec2(0.0, 2.0) * pixel_size, lod) * 0.06136;
+ color += textureLod(source_color, uv_interp + vec2(0.0, -1.0) * pixel_size, lod) * 0.24477;
+ color += textureLod(source_color, uv_interp + vec2(0.0, -2.0) * pixel_size, lod) * 0.06136;
frag_color = color;
#endif
-//glow uses larger sigma for a more rounded blur effect
+ //glow uses larger sigma for a more rounded blur effect
#ifdef GLOW_GAUSSIAN_HORIZONTAL
vec2 pix_size = pixel_size;
- pix_size*=0.5; //reading from larger buffer, so use more samples
- vec4 color =textureLod( source_color, uv_interp+vec2( 0.0, 0.0)*pix_size,lod )*0.174938;
- color+=textureLod( source_color, uv_interp+vec2( 1.0, 0.0)*pix_size,lod )*0.165569;
- color+=textureLod( source_color, uv_interp+vec2( 2.0, 0.0)*pix_size,lod )*0.140367;
- color+=textureLod( source_color, uv_interp+vec2( 3.0, 0.0)*pix_size,lod )*0.106595;
- color+=textureLod( source_color, uv_interp+vec2(-1.0, 0.0)*pix_size,lod )*0.165569;
- color+=textureLod( source_color, uv_interp+vec2(-2.0, 0.0)*pix_size,lod )*0.140367;
- color+=textureLod( source_color, uv_interp+vec2(-3.0, 0.0)*pix_size,lod )*0.106595;
- color*=glow_strength;
+ pix_size *= 0.5; //reading from larger buffer, so use more samples
+ vec4 color = textureLod(source_color, uv_interp + vec2(0.0, 0.0) * pix_size, lod) * 0.174938;
+ color += textureLod(source_color, uv_interp + vec2(1.0, 0.0) * pix_size, lod) * 0.165569;
+ color += textureLod(source_color, uv_interp + vec2(2.0, 0.0) * pix_size, lod) * 0.140367;
+ color += textureLod(source_color, uv_interp + vec2(3.0, 0.0) * pix_size, lod) * 0.106595;
+ color += textureLod(source_color, uv_interp + vec2(-1.0, 0.0) * pix_size, lod) * 0.165569;
+ color += textureLod(source_color, uv_interp + vec2(-2.0, 0.0) * pix_size, lod) * 0.140367;
+ color += textureLod(source_color, uv_interp + vec2(-3.0, 0.0) * pix_size, lod) * 0.106595;
+ color *= glow_strength;
frag_color = color;
#endif
#ifdef GLOW_GAUSSIAN_VERTICAL
- vec4 color =textureLod( source_color, uv_interp+vec2(0.0, 0.0)*pixel_size,lod )*0.288713;
- color+=textureLod( source_color, uv_interp+vec2(0.0, 1.0)*pixel_size,lod )*0.233062;
- color+=textureLod( source_color, uv_interp+vec2(0.0, 2.0)*pixel_size,lod )*0.122581;
- color+=textureLod( source_color, uv_interp+vec2(0.0,-1.0)*pixel_size,lod )*0.233062;
- color+=textureLod( source_color, uv_interp+vec2(0.0,-2.0)*pixel_size,lod )*0.122581;
- color*=glow_strength;
+ vec4 color = textureLod(source_color, uv_interp + vec2(0.0, 0.0) * pixel_size, lod) * 0.288713;
+ color += textureLod(source_color, uv_interp + vec2(0.0, 1.0) * pixel_size, lod) * 0.233062;
+ color += textureLod(source_color, uv_interp + vec2(0.0, 2.0) * pixel_size, lod) * 0.122581;
+ color += textureLod(source_color, uv_interp + vec2(0.0, -1.0) * pixel_size, lod) * 0.233062;
+ color += textureLod(source_color, uv_interp + vec2(0.0, -2.0) * pixel_size, lod) * 0.122581;
+ color *= glow_strength;
frag_color = color;
#endif
@@ -166,47 +161,45 @@ void main() {
vec4 color_accum = vec4(0.0);
- float depth = textureLod( dof_source_depth, uv_interp, 0.0).r;
+ float depth = textureLod(dof_source_depth, uv_interp, 0.0).r;
depth = depth * 2.0 - 1.0;
#ifdef USE_ORTHOGONAL_PROJECTION
- depth = ((depth + (camera_z_far + camera_z_near)/(camera_z_far - camera_z_near)) * (camera_z_far - camera_z_near))/2.0;
+ depth = ((depth + (camera_z_far + camera_z_near) / (camera_z_far - camera_z_near)) * (camera_z_far - camera_z_near)) / 2.0;
#else
depth = 2.0 * camera_z_near * camera_z_far / (camera_z_far + camera_z_near - depth * (camera_z_far - camera_z_near));
#endif
- float amount = smoothstep(dof_begin,dof_end,depth);
- float k_accum=0.0;
+ float amount = smoothstep(dof_begin, dof_end, depth);
+ float k_accum = 0.0;
- for(int i=0;i<dof_kernel_size;i++) {
+ for (int i = 0; i < dof_kernel_size; i++) {
- int int_ofs = i-dof_kernel_from;
+ int int_ofs = i - dof_kernel_from;
vec2 tap_uv = uv_interp + dof_dir * float(int_ofs) * amount * dof_radius;
float tap_k = dof_kernel[i];
- float tap_depth = texture( dof_source_depth, tap_uv, 0.0).r;
+ float tap_depth = texture(dof_source_depth, tap_uv, 0.0).r;
tap_depth = tap_depth * 2.0 - 1.0;
#ifdef USE_ORTHOGONAL_PROJECTION
- tap_depth = ((tap_depth + (camera_z_far + camera_z_near)/(camera_z_far - camera_z_near)) * (camera_z_far - camera_z_near))/2.0;
+ tap_depth = ((tap_depth + (camera_z_far + camera_z_near) / (camera_z_far - camera_z_near)) * (camera_z_far - camera_z_near)) / 2.0;
#else
tap_depth = 2.0 * camera_z_near * camera_z_far / (camera_z_far + camera_z_near - tap_depth * (camera_z_far - camera_z_near));
#endif
- float tap_amount = mix(smoothstep(dof_begin,dof_end,tap_depth),1.0,int_ofs==0);
- tap_amount*=tap_amount*tap_amount; //prevent undesired glow effect
-
- vec4 tap_color = textureLod( source_color, tap_uv, 0.0) * tap_k;
-
- k_accum+=tap_k*tap_amount;
- color_accum+=tap_color*tap_amount;
+ float tap_amount = mix(smoothstep(dof_begin, dof_end, tap_depth), 1.0, int_ofs == 0);
+ tap_amount *= tap_amount * tap_amount; //prevent undesired glow effect
+ vec4 tap_color = textureLod(source_color, tap_uv, 0.0) * tap_k;
+ k_accum += tap_k * tap_amount;
+ color_accum += tap_color * tap_amount;
}
- if (k_accum>0.0) {
- color_accum/=k_accum;
+ if (k_accum > 0.0) {
+ color_accum /= k_accum;
}
- frag_color = color_accum;///k_accum;
+ frag_color = color_accum; ///k_accum;
#endif
@@ -214,47 +207,45 @@ void main() {
vec4 color_accum = vec4(0.0);
- float max_accum=0;
+ float max_accum = 0;
- for(int i=0;i<dof_kernel_size;i++) {
+ for (int i = 0; i < dof_kernel_size; i++) {
- int int_ofs = i-dof_kernel_from;
+ int int_ofs = i - dof_kernel_from;
vec2 tap_uv = uv_interp + dof_dir * float(int_ofs) * dof_radius;
- float ofs_influence = max(0.0,1.0-float(abs(int_ofs))/float(dof_kernel_from));
+ float ofs_influence = max(0.0, 1.0 - float(abs(int_ofs)) / float(dof_kernel_from));
float tap_k = dof_kernel[i];
- vec4 tap_color = textureLod( source_color, tap_uv, 0.0);
+ vec4 tap_color = textureLod(source_color, tap_uv, 0.0);
- float tap_depth = texture( dof_source_depth, tap_uv, 0.0).r;
+ float tap_depth = texture(dof_source_depth, tap_uv, 0.0).r;
tap_depth = tap_depth * 2.0 - 1.0;
-#ifdef USE_ORTHOGONAL_PROJECTION
- tap_depth = ((tap_depth + (camera_z_far + camera_z_near)/(camera_z_far - camera_z_near)) * (camera_z_far - camera_z_near))/2.0;
+#ifdef USE_ORTHOGONAL_PROJECTION
+ tap_depth = ((tap_depth + (camera_z_far + camera_z_near) / (camera_z_far - camera_z_near)) * (camera_z_far - camera_z_near)) / 2.0;
#else
tap_depth = 2.0 * camera_z_near * camera_z_far / (camera_z_far + camera_z_near - tap_depth * (camera_z_far - camera_z_near));
#endif
- float tap_amount = 1.0-smoothstep(dof_end,dof_begin,tap_depth);
- tap_amount*=tap_amount*tap_amount; //prevent undesired glow effect
+ float tap_amount = 1.0 - smoothstep(dof_end, dof_begin, tap_depth);
+ tap_amount *= tap_amount * tap_amount; //prevent undesired glow effect
#ifdef DOF_NEAR_FIRST_TAP
- tap_color.a= 1.0-smoothstep(dof_end,dof_begin,tap_depth);
+ tap_color.a = 1.0 - smoothstep(dof_end, dof_begin, tap_depth);
#endif
- max_accum=max(max_accum,tap_amount*ofs_influence);
-
- color_accum+=tap_color*tap_k;
+ max_accum = max(max_accum, tap_amount * ofs_influence);
+ color_accum += tap_color * tap_k;
}
- color_accum.a=max(color_accum.a,sqrt(max_accum));
-
+ color_accum.a = max(color_accum.a, sqrt(max_accum));
#ifdef DOF_NEAR_BLUR_MERGE
- vec4 original = textureLod( source_dof_original, uv_interp, 0.0);
- color_accum = mix(original,color_accum,color_accum.a);
+ vec4 original = textureLod(source_dof_original, uv_interp, 0.0);
+ color_accum = mix(original, color_accum, color_accum.a);
#endif
@@ -265,37 +256,32 @@ void main() {
#endif
-
-
#ifdef GLOW_FIRST_PASS
#ifdef GLOW_USE_AUTO_EXPOSURE
- frag_color/=texelFetch(source_auto_exposure,ivec2(0,0),0).r/auto_exposure_grey;
+ frag_color /= texelFetch(source_auto_exposure, ivec2(0, 0), 0).r / auto_exposure_grey;
#endif
- frag_color*=exposure;
+ frag_color *= exposure;
- float luminance = max(frag_color.r,max(frag_color.g,frag_color.b));
- float feedback = max( smoothstep(glow_hdr_threshold,glow_hdr_threshold+glow_hdr_scale,luminance), glow_bloom );
+ float luminance = max(frag_color.r, max(frag_color.g, frag_color.b));
+ float feedback = max(smoothstep(glow_hdr_threshold, glow_hdr_threshold + glow_hdr_scale, luminance), glow_bloom);
frag_color *= feedback;
#endif
-
#ifdef SIMPLE_COPY
- vec4 color =textureLod( source_color, uv_interp,0.0);
+ vec4 color = textureLod(source_color, uv_interp, 0.0);
frag_color = color;
#endif
#ifdef SSAO_MERGE
- vec4 color =textureLod( source_color, uv_interp,0.0);
- float ssao =textureLod( source_ssao, uv_interp,0.0).r;
+ vec4 color = textureLod(source_color, uv_interp, 0.0);
+ float ssao = textureLod(source_ssao, uv_interp, 0.0).r;
- frag_color = vec4( mix(color.rgb,color.rgb*mix(ssao_color.rgb,vec3(1.0),ssao),color.a), 1.0 );
+ frag_color = vec4(mix(color.rgb, color.rgb * mix(ssao_color.rgb, vec3(1.0), ssao), color.a), 1.0);
#endif
-
-
}
diff --git a/drivers/gles2/shaders/exposure.glsl b/drivers/gles2/shaders/exposure.glsl
index 001b90a0f1..18fff1ae36 100644
--- a/drivers/gles2/shaders/exposure.glsl
+++ b/drivers/gles2/shaders/exposure.glsl
@@ -1,18 +1,14 @@
[vertex]
-
-layout(location=0) in highp vec4 vertex_attrib;
-
+layout(location = 0) in highp vec4 vertex_attrib;
void main() {
gl_Position = vertex_attrib;
-
}
[fragment]
-
uniform highp sampler2D source_exposure; //texunit:0
#ifdef EXPOSURE_BEGIN
@@ -33,66 +29,56 @@ uniform highp float max_luminance;
layout(location = 0) out highp float exposure;
-
-
void main() {
-
-
#ifdef EXPOSURE_BEGIN
-
- ivec2 src_pos = ivec2(gl_FragCoord.xy)*source_render_size/target_size;
+ ivec2 src_pos = ivec2(gl_FragCoord.xy) * source_render_size / target_size;
#if 1
//more precise and expensive, but less jittery
- ivec2 next_pos = ivec2(gl_FragCoord.xy+ivec2(1))*source_render_size/target_size;
- next_pos = max(next_pos,src_pos+ivec2(1)); //so it at least reads one pixel
- highp vec3 source_color=vec3(0.0);
- for(int i=src_pos.x;i<next_pos.x;i++) {
- for(int j=src_pos.y;j<next_pos.y;j++) {
- source_color += texelFetch(source_exposure,ivec2(i,j),0).rgb;
+ ivec2 next_pos = ivec2(gl_FragCoord.xy + ivec2(1)) * source_render_size / target_size;
+ next_pos = max(next_pos, src_pos + ivec2(1)); //so it at least reads one pixel
+ highp vec3 source_color = vec3(0.0);
+ for (int i = src_pos.x; i < next_pos.x; i++) {
+ for (int j = src_pos.y; j < next_pos.y; j++) {
+ source_color += texelFetch(source_exposure, ivec2(i, j), 0).rgb;
}
}
- source_color/=float( (next_pos.x-src_pos.x)*(next_pos.y-src_pos.y) );
+ source_color /= float((next_pos.x - src_pos.x) * (next_pos.y - src_pos.y));
#else
- highp vec3 source_color = texelFetch(source_exposure,src_pos,0).rgb;
+ highp vec3 source_color = texelFetch(source_exposure, src_pos, 0).rgb;
#endif
- exposure = max(source_color.r,max(source_color.g,source_color.b));
+ exposure = max(source_color.r, max(source_color.g, source_color.b));
#else
ivec2 coord = ivec2(gl_FragCoord.xy);
- exposure = texelFetch(source_exposure,coord*3+ivec2(0,0),0).r;
- exposure += texelFetch(source_exposure,coord*3+ivec2(1,0),0).r;
- exposure += texelFetch(source_exposure,coord*3+ivec2(2,0),0).r;
- exposure += texelFetch(source_exposure,coord*3+ivec2(0,1),0).r;
- exposure += texelFetch(source_exposure,coord*3+ivec2(1,1),0).r;
- exposure += texelFetch(source_exposure,coord*3+ivec2(2,1),0).r;
- exposure += texelFetch(source_exposure,coord*3+ivec2(0,2),0).r;
- exposure += texelFetch(source_exposure,coord*3+ivec2(1,2),0).r;
- exposure += texelFetch(source_exposure,coord*3+ivec2(2,2),0).r;
- exposure *= (1.0/9.0);
+ exposure = texelFetch(source_exposure, coord * 3 + ivec2(0, 0), 0).r;
+ exposure += texelFetch(source_exposure, coord * 3 + ivec2(1, 0), 0).r;
+ exposure += texelFetch(source_exposure, coord * 3 + ivec2(2, 0), 0).r;
+ exposure += texelFetch(source_exposure, coord * 3 + ivec2(0, 1), 0).r;
+ exposure += texelFetch(source_exposure, coord * 3 + ivec2(1, 1), 0).r;
+ exposure += texelFetch(source_exposure, coord * 3 + ivec2(2, 1), 0).r;
+ exposure += texelFetch(source_exposure, coord * 3 + ivec2(0, 2), 0).r;
+ exposure += texelFetch(source_exposure, coord * 3 + ivec2(1, 2), 0).r;
+ exposure += texelFetch(source_exposure, coord * 3 + ivec2(2, 2), 0).r;
+ exposure *= (1.0 / 9.0);
#ifdef EXPOSURE_END
#ifdef EXPOSURE_FORCE_SET
//will stay as is
#else
- highp float prev_lum = texelFetch(prev_exposure,ivec2(0,0),0).r; //1 pixel previous exposure
- exposure = clamp( prev_lum + (exposure-prev_lum)*exposure_adjust,min_luminance,max_luminance);
+ highp float prev_lum = texelFetch(prev_exposure, ivec2(0, 0), 0).r; //1 pixel previous exposure
+ exposure = clamp(prev_lum + (exposure - prev_lum) * exposure_adjust, min_luminance, max_luminance);
#endif //EXPOSURE_FORCE_SET
-
#endif //EXPOSURE_END
#endif //EXPOSURE_BEGIN
-
-
}
-
-
diff --git a/drivers/gles2/shaders/particles.glsl b/drivers/gles2/shaders/particles.glsl
index a62c124dfe..5af4b65b28 100644
--- a/drivers/gles2/shaders/particles.glsl
+++ b/drivers/gles2/shaders/particles.glsl
@@ -1,14 +1,11 @@
[vertex]
-
-
-layout(location=0) in highp vec4 color;
-layout(location=1) in highp vec4 velocity_active;
-layout(location=2) in highp vec4 custom;
-layout(location=3) in highp vec4 xform_1;
-layout(location=4) in highp vec4 xform_2;
-layout(location=5) in highp vec4 xform_3;
-
+layout(location = 0) in highp vec4 color;
+layout(location = 1) in highp vec4 velocity_active;
+layout(location = 2) in highp vec4 custom;
+layout(location = 3) in highp vec4 xform_1;
+layout(location = 4) in highp vec4 xform_2;
+layout(location = 5) in highp vec4 xform_3;
struct Attractor {
@@ -39,7 +36,6 @@ uniform float lifetime;
uniform mat4 emission_transform;
uniform uint random_seed;
-
out highp vec4 out_color; //tfb:
out highp vec4 out_velocity_active; //tfb:
out highp vec4 out_custom; //tfb:
@@ -47,7 +43,6 @@ out highp vec4 out_xform_1; //tfb:
out highp vec4 out_xform_2; //tfb:
out highp vec4 out_xform_3; //tfb:
-
#if defined(USE_MATERIAL)
layout(std140) uniform UniformData { //ubo:0
@@ -58,7 +53,6 @@ MATERIAL_UNIFORMS
#endif
-
VERTEX_SHADER_GLOBALS
uint hash(uint x) {
@@ -69,13 +63,12 @@ uint hash(uint x) {
return x;
}
-
void main() {
#ifdef PARTICLES_COPY
- out_color=color;
- out_velocity_active=velocity_active;
+ out_color = color;
+ out_velocity_active = velocity_active;
out_custom = custom;
out_xform_1 = xform_1;
out_xform_2 = xform_2;
@@ -83,34 +76,34 @@ void main() {
#else
- bool apply_forces=true;
- bool apply_velocity=true;
- float local_delta=delta;
+ bool apply_forces = true;
+ bool apply_velocity = true;
+ float local_delta = delta;
float mass = 1.0;
- float restart_phase = float(gl_VertexID)/float(total_particles);
+ float restart_phase = float(gl_VertexID) / float(total_particles);
- if (randomness>0.0) {
+ if (randomness > 0.0) {
uint seed = cycle;
if (restart_phase >= system_phase) {
- seed-=uint(1);
+ seed -= uint(1);
}
- seed*=uint(total_particles);
- seed+=uint(gl_VertexID);
+ seed *= uint(total_particles);
+ seed += uint(gl_VertexID);
float random = float(hash(seed) % uint(65536)) / 65536.0;
- restart_phase+=randomness * random * 1.0 / float(total_particles);
+ restart_phase += randomness * random * 1.0 / float(total_particles);
}
- restart_phase*= (1.0-explosiveness);
- bool restart=false;
+ restart_phase *= (1.0 - explosiveness);
+ bool restart = false;
bool shader_active = velocity_active.a > 0.5;
if (system_phase > prev_system_phase) {
// restart_phase >= prev_system_phase is used so particles emit in the first frame they are processed
- if (restart_phase >= prev_system_phase && restart_phase < system_phase ) {
- restart=true;
+ if (restart_phase >= prev_system_phase && restart_phase < system_phase) {
+ restart = true;
#ifdef USE_FRACTIONAL_DELTA
local_delta = (system_phase - restart_phase) * lifetime;
#endif
@@ -118,12 +111,12 @@ void main() {
} else {
if (restart_phase >= prev_system_phase) {
- restart=true;
+ restart = true;
#ifdef USE_FRACTIONAL_DELTA
local_delta = (1.0 - restart_phase + system_phase) * lifetime;
#endif
- } else if (restart_phase < system_phase ) {
- restart=true;
+ } else if (restart_phase < system_phase) {
+ restart = true;
#ifdef USE_FRACTIONAL_DELTA
local_delta = (system_phase - restart_phase) * lifetime;
#endif
@@ -133,14 +126,14 @@ void main() {
uint current_cycle = cycle;
if (system_phase < restart_phase) {
- current_cycle-=uint(1);
+ current_cycle -= uint(1);
}
uint particle_number = current_cycle * uint(total_particles) + uint(gl_VertexID);
int index = int(gl_VertexID);
if (restart) {
- shader_active=emitting;
+ shader_active = emitting;
}
mat4 xform;
@@ -150,30 +143,31 @@ void main() {
#else
if (clear || restart) {
#endif
- out_color=vec4(1.0);
- out_velocity_active=vec4(0.0);
- out_custom=vec4(0.0);
+ out_color = vec4(1.0);
+ out_velocity_active = vec4(0.0);
+ out_custom = vec4(0.0);
if (!restart)
- shader_active=false;
+ shader_active = false;
xform = mat4(
- vec4(1.0,0.0,0.0,0.0),
- vec4(0.0,1.0,0.0,0.0),
- vec4(0.0,0.0,1.0,0.0),
- vec4(0.0,0.0,0.0,1.0)
- );
+ vec4(1.0, 0.0, 0.0, 0.0),
+ vec4(0.0, 1.0, 0.0, 0.0),
+ vec4(0.0, 0.0, 1.0, 0.0),
+ vec4(0.0, 0.0, 0.0, 1.0));
} else {
- out_color=color;
- out_velocity_active=velocity_active;
- out_custom=custom;
- xform = transpose(mat4(xform_1,xform_2,xform_3,vec4(vec3(0.0),1.0)));
+ out_color = color;
+ out_velocity_active = velocity_active;
+ out_custom = custom;
+ xform = transpose(mat4(xform_1, xform_2, xform_3, vec4(vec3(0.0), 1.0)));
}
if (shader_active) {
//execute shader
{
+
VERTEX_SHADER_CODE
+
}
#if !defined(DISABLE_FORCE)
@@ -181,26 +175,25 @@ VERTEX_SHADER_CODE
if (false) {
vec3 force = vec3(0.0);
- for(int i=0;i<attractor_count;i++) {
+ for (int i = 0; i < attractor_count; i++) {
vec3 rel_vec = xform[3].xyz - attractors[i].pos;
float dist = length(rel_vec);
if (attractors[i].radius < dist)
continue;
- if (attractors[i].eat_radius>0.0 && attractors[i].eat_radius > dist) {
- out_velocity_active.a=0.0;
+ if (attractors[i].eat_radius > 0.0 && attractors[i].eat_radius > dist) {
+ out_velocity_active.a = 0.0;
}
rel_vec = normalize(rel_vec);
- float attenuation = pow(dist / attractors[i].radius,attractors[i].attenuation);
+ float attenuation = pow(dist / attractors[i].radius, attractors[i].attenuation);
- if (attractors[i].dir==vec3(0.0)) {
+ if (attractors[i].dir == vec3(0.0)) {
//towards center
- force+=attractors[i].strength * rel_vec * attenuation * mass;
+ force += attractors[i].strength * rel_vec * attenuation * mass;
} else {
- force+=attractors[i].strength * attractors[i].dir * attenuation *mass;
-
+ force += attractors[i].strength * attractors[i].dir * attenuation * mass;
}
}
@@ -216,26 +209,24 @@ VERTEX_SHADER_CODE
}
#endif
} else {
- xform=mat4(0.0);
+ xform = mat4(0.0);
}
xform = transpose(xform);
- out_velocity_active.a = mix(0.0,1.0,shader_active);
+ out_velocity_active.a = mix(0.0, 1.0, shader_active);
out_xform_1 = xform[0];
out_xform_2 = xform[1];
out_xform_3 = xform[2];
#endif //PARTICLES_COPY
-
}
[fragment]
//any code here is never executed, stuff is filled just so it works
-
#if defined(USE_MATERIAL)
layout(std140) uniform UniformData {
diff --git a/drivers/gles2/shaders/resolve.glsl b/drivers/gles2/shaders/resolve.glsl
index 0b50a9c57b..05bb922eec 100644
--- a/drivers/gles2/shaders/resolve.glsl
+++ b/drivers/gles2/shaders/resolve.glsl
@@ -1,12 +1,10 @@
[vertex]
-
-layout(location=0) in highp vec4 vertex_attrib;
-layout(location=4) in vec2 uv_in;
+layout(location = 0) in highp vec4 vertex_attrib;
+layout(location = 4) in vec2 uv_in;
out vec2 uv_interp;
-
void main() {
uv_interp = uv_in;
@@ -31,14 +29,12 @@ layout(location = 0) out vec4 frag_color;
void main() {
- vec4 specular = texture( source_specular, uv_interp );
+ vec4 specular = texture(source_specular, uv_interp);
#ifdef USE_SSR
-
- vec4 ssr = textureLod(source_ssr,uv_interp,0.0);
- specular.rgb = mix(specular.rgb,ssr.rgb*specular.a,ssr.a);
+ vec4 ssr = textureLod(source_ssr, uv_interp, 0.0);
+ specular.rgb = mix(specular.rgb, ssr.rgb * specular.a, ssr.a);
#endif
- frag_color = vec4(specular.rgb,1.0);
+ frag_color = vec4(specular.rgb, 1.0);
}
-
diff --git a/drivers/gles2/shaders/scene.glsl b/drivers/gles2/shaders/scene.glsl
index 2c9d4f01a3..8bcb3b5f1d 100644
--- a/drivers/gles2/shaders/scene.glsl
+++ b/drivers/gles2/shaders/scene.glsl
@@ -10,8 +10,6 @@ precision mediump int;
#include "stdlib.glsl"
-
-
//
// attributes
//
@@ -66,8 +64,6 @@ attribute highp vec4 instance_custom_data; // attrib:8
#endif
-
-
//
// uniforms
//
@@ -88,7 +84,6 @@ uniform float light_bias;
uniform float light_normal_bias;
#endif
-
//
// varyings
//
@@ -113,7 +108,6 @@ varying vec2 uv_interp;
varying vec2 uv2_interp;
#endif
-
VERTEX_SHADER_GLOBALS
void main() {
@@ -124,10 +118,11 @@ void main() {
#ifdef USE_INSTANCING
{
- highp mat4 m = mat4(instance_xform_row_0,
- instance_xform_row_1,
- instance_xform_row_2,
- vec4(0.0, 0.0, 0.0, 1.0));
+ highp mat4 m = mat4(
+ instance_xform_row_0,
+ instance_xform_row_1,
+ instance_xform_row_2,
+ vec4(0.0, 0.0, 0.0, 1.0));
world_matrix = world_matrix * transpose(m);
}
#endif
@@ -161,7 +156,7 @@ void main() {
normal = normalize((world_matrix * vec4(normal, 0.0)).xyz);
#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP)
- tangent = normalize((world_matrix * vec4(tangent, 0.0)),xyz);
+ tangent = normalize((world_matrix * vec4(tangent, 0.0)), xyz);
binormal = normalize((world_matrix * vec4(binormal, 0.0)).xyz);
#endif
#endif
@@ -185,11 +180,12 @@ void main() {
for (int i = 0; i < 4; i++) {
ivec2 tex_ofs = ivec2(int(bone_ids[i]) * 3, 0);
- highp mat4 b = mat4(texel2DFetch(bone_transforms, skeleton_texture_size, tex_ofs + ivec2(0, 0)),
- texel2DFetch(bone_transforms, skeleton_texture_size, tex_ofs + ivec2(1, 0)),
- texel2DFetch(bone_transforms, skeleton_texture_size, tex_ofs + ivec2(2, 0)),
- vec4(0.0, 0.0, 0.0, 1.0));
-
+ highp mat4 b = mat4(
+ texel2DFetch(bone_transforms, skeleton_texture_size, tex_ofs + ivec2(0, 0)),
+ texel2DFetch(bone_transforms, skeleton_texture_size, tex_ofs + ivec2(1, 0)),
+ texel2DFetch(bone_transforms, skeleton_texture_size, tex_ofs + ivec2(2, 0)),
+ vec4(0.0, 0.0, 0.0, 1.0));
+
bone_transform += transpose(b) * bone_weights[i];
}
}
@@ -199,7 +195,6 @@ void main() {
world_matrix = bone_transform * world_matrix;
#endif
-
#ifdef USE_INSTANCING
vec4 instance_custom = instance_custom_data;
#else
@@ -207,7 +202,6 @@ void main() {
#endif
-
mat4 modelview = camera_matrix * world_matrix;
#define world_transform world_matrix
@@ -258,7 +252,6 @@ VERTEX_SHADER_CODE
#endif
gl_Position = projection_matrix * vec4(vertex_interp, 1.0);
-
}
[fragment]
@@ -294,7 +287,6 @@ uniform mat4 world_transform;
uniform highp float time;
-
#ifdef SCREEN_UV_USED
uniform vec2 screen_pixel_size;
#endif
@@ -348,7 +340,6 @@ uniform float light_spot_attenuation;
uniform float light_spot_range;
uniform float light_spot_angle;
-
// shadows
uniform highp sampler2D light_shadow_atlas; //texunit:-4
uniform float light_has_shadow;
@@ -367,7 +358,6 @@ uniform mat4 light_shadow_matrix3;
uniform mat4 light_shadow_matrix4;
#endif
-
//
// varyings
//
@@ -402,27 +392,27 @@ vec3 metallic_to_specular_color(float metallic, float specular, vec3 albedo) {
FRAGMENT_SHADER_GLOBALS
-
#ifdef LIGHT_PASS
-void light_compute(vec3 N,
- vec3 L,
- vec3 V,
- vec3 B,
- vec3 T,
- vec3 light_color,
- vec3 attenuation,
- vec3 diffuse_color,
- vec3 transmission,
- float specular_blob_intensity,
- float roughness,
- float metallic,
- float rim,
- float rim_tint,
- float clearcoat,
- float clearcoat_gloss,
- float anisotropy,
- inout vec3 diffuse_light,
- inout vec3 specular_light) {
+void light_compute(
+ vec3 N,
+ vec3 L,
+ vec3 V,
+ vec3 B,
+ vec3 T,
+ vec3 light_color,
+ vec3 attenuation,
+ vec3 diffuse_color,
+ vec3 transmission,
+ float specular_blob_intensity,
+ float roughness,
+ float metallic,
+ float rim,
+ float rim_tint,
+ float clearcoat,
+ float clearcoat_gloss,
+ float anisotropy,
+ inout vec3 diffuse_light,
+ inout vec3 specular_light) {
float NdotL = dot(N, L);
float cNdotL = max(NdotL, 0.0);
@@ -435,7 +425,7 @@ void light_compute(vec3 N,
// TODO hardcode Oren Nayar for now
float diffuse_brdf_NL;
- diffuse_brdf_NL = max(0.0,(NdotL + roughness) / ((1.0 + roughness) * (1.0 + roughness)));
+ diffuse_brdf_NL = max(0.0, (NdotL + roughness) / ((1.0 + roughness) * (1.0 + roughness)));
// diffuse_brdf_NL = cNdotL * (1.0 / M_PI);
diffuse_light += light_color * diffuse_color * diffuse_brdf_NL * attenuation;
@@ -444,25 +434,21 @@ void light_compute(vec3 N,
{
// calculate specular reflection
- vec3 R = normalize(-reflect(L,N));
+ vec3 R = normalize(-reflect(L, N));
float cRdotV = max(dot(R, V), 0.0);
float blob_intensity = pow(cRdotV, (1.0 - roughness) * 256.0);
specular_light += light_color * attenuation * blob_intensity * specular_blob_intensity;
-
}
}
-
-
-
// shadows
-float sample_shadow(highp sampler2D shadow,
- vec2 shadow_pixel_size,
- vec2 pos,
- float depth,
- vec4 clamp_rect)
-{
+float sample_shadow(
+ highp sampler2D shadow,
+ vec2 shadow_pixel_size,
+ vec2 pos,
+ float depth,
+ vec4 clamp_rect) {
// vec4 depth_value = texture2D(shadow, pos);
// return depth_value.z;
@@ -470,11 +456,9 @@ float sample_shadow(highp sampler2D shadow,
// return (depth_value.x + depth_value.y + depth_value.z + depth_value.w) / 4.0;
}
-
#endif
-void main()
-{
+void main() {
highp vec3 vertex = vertex_interp;
vec3 albedo = vec3(1.0);
@@ -498,7 +482,6 @@ void main()
float ao_light_affect = 0.0;
#endif
-
#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP)
vec3 binormal = normalize(binormal_interp) * side;
vec3 tangent = normalize(tangent_interp) * side;
@@ -513,7 +496,6 @@ void main()
#endif
float normaldepth = 1.0;
-
#ifdef ALPHA_SCISSOR_USED
float alpha_scissor = 0.5;
#endif
@@ -526,7 +508,6 @@ void main()
FRAGMENT_SHADER_CODE
-
}
#if defined(ENABLE_NORMALMAP)
@@ -572,7 +553,7 @@ FRAGMENT_SHADER_CODE
vec3 attenuation = vec3(omni_attenuation);
if (light_has_shadow > 0.5) {
- highp vec3 splane = (light_shadow_matrix * vec4(vertex, 1.0)).xyz;
+ highp vec3 splane = (light_shadow_matrix * vec4(vertex, 1.0)).xyz;
float shadow_len = length(splane);
splane = normalize(splane);
@@ -601,25 +582,26 @@ FRAGMENT_SHADER_CODE
}
}
- light_compute(normal,
- normalize(light_vec),
- eye_position,
- binormal,
- tangent,
- light_color.xyz * light_energy,
- attenuation,
- albedo,
- transmission,
- specular * light_specular,
- roughness,
- metallic,
- rim,
- rim_tint,
- clearcoat,
- clearcoat_gloss,
- anisotropy,
- diffuse_light,
- specular_light);
+ light_compute(
+ normal,
+ normalize(light_vec),
+ eye_position,
+ binormal,
+ tangent,
+ light_color.xyz * light_energy,
+ attenuation,
+ albedo,
+ transmission,
+ specular * light_specular,
+ roughness,
+ metallic,
+ rim,
+ rim_tint,
+ clearcoat,
+ clearcoat_gloss,
+ anisotropy,
+ diffuse_light,
+ specular_light);
} else if (light_type == LIGHT_TYPE_DIRECTIONAL) {
@@ -638,133 +620,130 @@ FRAGMENT_SHADER_CODE
if (depth_z < light_split_offsets.x) {
#endif
- vec3 pssm_coord;
- float pssm_fade = 0.0;
+ vec3 pssm_coord;
+ float pssm_fade = 0.0;
#ifdef LIGHT_USE_PSSM_BLEND
- float pssm_blend;
- vec3 pssm_coord2;
- bool use_blend = true;
+ float pssm_blend;
+ vec3 pssm_coord2;
+ bool use_blend = true;
#endif
#ifdef LIGHT_USE_PSSM4
- if (depth_z < light_split_offsets.y) {
- if (depth_z < light_split_offsets.x) {
- highp vec4 splane = (light_shadow_matrix1 * vec4(vertex, 1.0));
- pssm_coord = splane.xyz / splane.w;
+ if (depth_z < light_split_offsets.y) {
+ if (depth_z < light_split_offsets.x) {
+ highp vec4 splane = (light_shadow_matrix1 * vec4(vertex, 1.0));
+ pssm_coord = splane.xyz / splane.w;
#ifdef LIGHT_USE_PSSM_BLEND
- splane = (light_shadow_matrix2 * vec4(vertex, 1.0));
- pssm_coord2 = splane.xyz / splane.w;
+ splane = (light_shadow_matrix2 * vec4(vertex, 1.0));
+ pssm_coord2 = splane.xyz / splane.w;
- pssm_blend = smoothstep(0.0, light_split_offsets.x, depth_z);
+ pssm_blend = smoothstep(0.0, light_split_offsets.x, depth_z);
#endif
- } else {
- highp vec4 splane = (light_shadow_matrix2 * vec4(vertex, 1.0));
- pssm_coord = splane.xyz / splane.w;
+ } else {
+ highp vec4 splane = (light_shadow_matrix2 * vec4(vertex, 1.0));
+ pssm_coord = splane.xyz / splane.w;
#ifdef LIGHT_USE_PSSM_BLEND
- splane = (light_shadow_matrix3 * vec4(vertex, 1.0));
- pssm_coord2 = splane.xyz / splane.w;
+ splane = (light_shadow_matrix3 * vec4(vertex, 1.0));
+ pssm_coord2 = splane.xyz / splane.w;
- pssm_blend = smoothstep(light_split_offsets.x, light_split_offsets.y, depth_z);
+ pssm_blend = smoothstep(light_split_offsets.x, light_split_offsets.y, depth_z);
#endif
- }
- } else {
- if (depth_z < light_split_offsets.z) {
+ }
+ } else {
+ if (depth_z < light_split_offsets.z) {
- highp vec4 splane = (light_shadow_matrix3 * vec4(vertex, 1.0));
- pssm_coord = splane.xyz / splane.w;
+ highp vec4 splane = (light_shadow_matrix3 * vec4(vertex, 1.0));
+ pssm_coord = splane.xyz / splane.w;
#if defined(LIGHT_USE_PSSM_BLEND)
- splane = (light_shadow_matrix4 * vec4(vertex, 1.0));
- pssm_coord2 = splane.xyz / splane.w;
- pssm_blend = smoothstep(light_split_offsets.y, light_split_offsets.z, depth_z);
+ splane = (light_shadow_matrix4 * vec4(vertex, 1.0));
+ pssm_coord2 = splane.xyz / splane.w;
+ pssm_blend = smoothstep(light_split_offsets.y, light_split_offsets.z, depth_z);
#endif
- } else {
+ } else {
- highp vec4 splane = (light_shadow_matrix4 * vec4(vertex, 1.0));
- pssm_coord = splane.xyz / splane.w;
- pssm_fade = smoothstep(light_split_offsets.z, light_split_offsets.w, depth_z);
+ highp vec4 splane = (light_shadow_matrix4 * vec4(vertex, 1.0));
+ pssm_coord = splane.xyz / splane.w;
+ pssm_fade = smoothstep(light_split_offsets.z, light_split_offsets.w, depth_z);
#if defined(LIGHT_USE_PSSM_BLEND)
- use_blend = false;
+ use_blend = false;
#endif
+ }
}
- }
#endif // LIGHT_USE_PSSM4
#ifdef LIGHT_USE_PSSM2
- if (depth_z < light_split_offsets.x) {
+ if (depth_z < light_split_offsets.x) {
- highp vec4 splane = (light_shadow_matrix1 * vec4(vertex, 1.0));
- pssm_coord = splane.xyz / splane.w;
+ highp vec4 splane = (light_shadow_matrix1 * vec4(vertex, 1.0));
+ pssm_coord = splane.xyz / splane.w;
#ifdef LIGHT_USE_PSSM_BLEND
- splane = (light_shadow_matrix2 * vec4(vertex, 1.0));
- pssm_coord2 = splane.xyz / splane.w;
- pssm_blend = smoothstep(0.0, light_split_offsets.x, depth_z);
+ splane = (light_shadow_matrix2 * vec4(vertex, 1.0));
+ pssm_coord2 = splane.xyz / splane.w;
+ pssm_blend = smoothstep(0.0, light_split_offsets.x, depth_z);
#endif
- } else {
- highp vec4 splane = (light_shadow_matrix2 * vec4(vertex, 1.0));
- pssm_coord = splane.xyz / splane.w;
- pssm_fade = smoothstep(light_split_offsets.x, light_split_offsets.y, depth_z);
+ } else {
+ highp vec4 splane = (light_shadow_matrix2 * vec4(vertex, 1.0));
+ pssm_coord = splane.xyz / splane.w;
+ pssm_fade = smoothstep(light_split_offsets.x, light_split_offsets.y, depth_z);
#ifdef LIGHT_USE_PSSM_BLEND
- use_blend = false;
+ use_blend = false;
#endif
- }
+ }
#endif // LIGHT_USE_PSSM2
#if !defined(LIGHT_USE_PSSM4) && !defined(LIGHT_USE_PSSM2)
- {
- highp vec4 splane = (light_shadow_matrix1 * vec4(vertex, 1.0));
- pssm_coord = splane.xyz / splane.w;
- }
+ {
+ highp vec4 splane = (light_shadow_matrix1 * vec4(vertex, 1.0));
+ pssm_coord = splane.xyz / splane.w;
+ }
#endif
- float shadow = sample_shadow(light_shadow_atlas, vec2(0.0), pssm_coord.xy, pssm_coord.z, light_clamp);
+ float shadow = sample_shadow(light_shadow_atlas, vec2(0.0), pssm_coord.xy, pssm_coord.z, light_clamp);
#ifdef LIGHT_USE_PSSM_BLEND
- if (use_blend) {
- shadow = mix(shadow, sample_shadow(light_shadow_atlas, vec2(0.0), pssm_coord2.xy, pssm_coord2.z, light_clamp), pssm_blend);
- }
+ if (use_blend) {
+ shadow = mix(shadow, sample_shadow(light_shadow_atlas, vec2(0.0), pssm_coord2.xy, pssm_coord2.z, light_clamp), pssm_blend);
+ }
#endif
- attenuation *= shadow;
-
-
- }
-
+ attenuation *= shadow;
+ }
}
light_compute(normal,
- normalize(light_vec),
- eye_position,
- binormal,
- tangent,
- light_color.xyz * light_energy,
- attenuation,
- albedo,
- transmission,
- specular * light_specular,
- roughness,
- metallic,
- rim,
- rim_tint,
- clearcoat,
- clearcoat_gloss,
- anisotropy,
- diffuse_light,
- specular_light);
+ normalize(light_vec),
+ eye_position,
+ binormal,
+ tangent,
+ light_color.xyz * light_energy,
+ attenuation,
+ albedo,
+ transmission,
+ specular * light_specular,
+ roughness,
+ metallic,
+ rim,
+ rim_tint,
+ clearcoat,
+ clearcoat_gloss,
+ anisotropy,
+ diffuse_light,
+ specular_light);
} else if (light_type == LIGHT_TYPE_SPOT) {
vec3 light_att = vec3(1.0);
if (light_has_shadow > 0.5) {
- highp vec4 splane = (light_shadow_matrix * vec4(vertex, 1.0));
+ highp vec4 splane = (light_shadow_matrix * vec4(vertex, 1.0));
splane.xyz /= splane.w;
float shadow = sample_shadow(light_shadow_atlas, vec2(0.0), splane.xy, splane.z, light_clamp);
@@ -773,8 +752,6 @@ FRAGMENT_SHADER_CODE
} else {
light_att = vec3(0.0);
}
-
-
}
vec3 light_rel_vec = light_position - vertex;
@@ -793,25 +770,26 @@ FRAGMENT_SHADER_CODE
light_att *= vec3(spot_attenuation);
- light_compute(normal,
- normalize(light_rel_vec),
- eye_position,
- binormal,
- tangent,
- light_color.xyz * light_energy,
- light_att,
- albedo,
- transmission,
- specular * light_specular,
- roughness,
- metallic,
- rim,
- rim_tint,
- clearcoat,
- clearcoat_gloss,
- anisotropy,
- diffuse_light,
- specular_light);
+ light_compute(
+ normal,
+ normalize(light_rel_vec),
+ eye_position,
+ binormal,
+ tangent,
+ light_color.xyz * light_energy,
+ light_att,
+ albedo,
+ transmission,
+ specular * light_specular,
+ roughness,
+ metallic,
+ rim,
+ rim_tint,
+ clearcoat,
+ clearcoat_gloss,
+ anisotropy,
+ diffuse_light,
+ specular_light);
}
gl_FragColor = vec4(ambient_light + diffuse_light + specular_light, alpha);
@@ -823,7 +801,6 @@ FRAGMENT_SHADER_CODE
#ifdef USE_RADIANCE_MAP
-
vec3 ref_vec = reflect(-eye_position, N);
ref_vec = normalize((radiance_inverse_xform * vec4(ref_vec, 0.0)).xyz);
@@ -836,7 +813,6 @@ FRAGMENT_SHADER_CODE
vec3 env_ambient = textureCubeLod(radiance_map, ambient_dir, RADIANCE_MAX_LOD).xyz * bg_energy;
ambient_light = mix(ambient_color.rgb, env_ambient, ambient_sky_contribution);
-
}
ambient_light *= ambient_energy;
@@ -860,28 +836,23 @@ FRAGMENT_SHADER_CODE
// TODO shadeless
{
const vec4 c0 = vec4(-1.0, -0.0275, -0.572, 0.022);
- const vec4 c1 = vec4( 1.0, 0.0425, 1.04, -0.04);
+ const vec4 c1 = vec4(1.0, 0.0425, 1.04, -0.04);
vec4 r = roughness * c0 + c1;
- float ndotv = clamp(dot(normal,eye_position),0.0,1.0);
- float a004 = min( r.x * r.x, exp2( -9.28 * ndotv ) ) * r.x + r.y;
- vec2 AB = vec2( -1.04, 1.04 ) * a004 + r.zw;
+ float ndotv = clamp(dot(normal, eye_position), 0.0, 1.0);
+ float a004 = min(r.x * r.x, exp2(-9.28 * ndotv)) * r.x + r.y;
+ vec2 AB = vec2(-1.04, 1.04) * a004 + r.zw;
vec3 specular_color = metallic_to_specular_color(metallic, specular, albedo);
specular_light *= AB.x * specular_color + AB.y;
}
-
gl_FragColor = vec4(ambient_light + diffuse_light + specular_light, alpha);
// gl_FragColor = vec4(normal, 1.0);
-
#else
gl_FragColor = vec4(albedo, alpha);
#endif
#endif // RENDER_DEPTH
-
#endif // lighting
-
-
}
diff --git a/drivers/gles2/shaders/screen_space_reflection.glsl b/drivers/gles2/shaders/screen_space_reflection.glsl
index b2e6f7a736..77af874ee4 100644
--- a/drivers/gles2/shaders/screen_space_reflection.glsl
+++ b/drivers/gles2/shaders/screen_space_reflection.glsl
@@ -1,8 +1,7 @@
[vertex]
-
-layout(location=0) in highp vec4 vertex_attrib;
-layout(location=4) in vec2 uv_in;
+layout(location = 0) in highp vec4 vertex_attrib;
+layout(location = 4) in vec2 uv_in;
out vec2 uv_interp;
out vec2 pos_interp;
@@ -11,12 +10,11 @@ void main() {
uv_interp = uv_in;
gl_Position = vertex_attrib;
- pos_interp.xy=gl_Position.xy;
+ pos_interp.xy = gl_Position.xy;
}
[fragment]
-
in vec2 uv_interp;
in vec2 pos_interp;
@@ -40,81 +38,70 @@ uniform float depth_tolerance;
uniform float distance_fade;
uniform float curve_fade_in;
-
layout(location = 0) out vec4 frag_color;
-
-vec2 view_to_screen(vec3 view_pos,out float w) {
- vec4 projected = projection * vec4(view_pos, 1.0);
- projected.xyz /= projected.w;
- projected.xy = projected.xy * 0.5 + 0.5;
- w=projected.w;
- return projected.xy;
+vec2 view_to_screen(vec3 view_pos, out float w) {
+ vec4 projected = projection * vec4(view_pos, 1.0);
+ projected.xyz /= projected.w;
+ projected.xy = projected.xy * 0.5 + 0.5;
+ w = projected.w;
+ return projected.xy;
}
-
-
#define M_PI 3.14159265359
void main() {
-
- ////
-
- vec4 diffuse = texture( source_diffuse, uv_interp );
- vec4 normal_roughness = texture( source_normal_roughness, uv_interp);
+ vec4 diffuse = texture(source_diffuse, uv_interp);
+ vec4 normal_roughness = texture(source_normal_roughness, uv_interp);
vec3 normal;
- normal = normal_roughness.xyz*2.0-1.0;
+ normal = normal_roughness.xyz * 2.0 - 1.0;
float roughness = normal_roughness.w;
- float depth_tex = texture(source_depth,uv_interp).r;
+ float depth_tex = texture(source_depth, uv_interp).r;
- vec4 world_pos = inverse_projection * vec4( uv_interp*2.0-1.0, depth_tex*2.0-1.0, 1.0 );
- vec3 vertex = world_pos.xyz/world_pos.w;
+ vec4 world_pos = inverse_projection * vec4(uv_interp * 2.0 - 1.0, depth_tex * 2.0 - 1.0, 1.0);
+ vec3 vertex = world_pos.xyz / world_pos.w;
vec3 view_dir = normalize(vertex);
vec3 ray_dir = normalize(reflect(view_dir, normal));
- if (dot(ray_dir,normal)<0.001) {
- frag_color=vec4(0.0);
+ if (dot(ray_dir, normal) < 0.001) {
+ frag_color = vec4(0.0);
return;
}
//ray_dir = normalize(view_dir - normal * dot(normal,view_dir) * 2.0);
//ray_dir = normalize(vec3(1,1,-1));
-
////////////////
-
//make ray length and clip it against the near plane (don't want to trace beyond visible)
float ray_len = (vertex.z + ray_dir.z * camera_z_far) > -camera_z_near ? (-camera_z_near - vertex.z) / ray_dir.z : camera_z_far;
- vec3 ray_end = vertex + ray_dir*ray_len;
+ vec3 ray_end = vertex + ray_dir * ray_len;
float w_begin;
- vec2 vp_line_begin = view_to_screen(vertex,w_begin);
+ vec2 vp_line_begin = view_to_screen(vertex, w_begin);
float w_end;
- vec2 vp_line_end = view_to_screen( ray_end, w_end);
- vec2 vp_line_dir = vp_line_end-vp_line_begin;
+ vec2 vp_line_end = view_to_screen(ray_end, w_end);
+ vec2 vp_line_dir = vp_line_end - vp_line_begin;
//we need to interpolate w along the ray, to generate perspective correct reflections
- w_begin = 1.0/w_begin;
- w_end = 1.0/w_end;
+ w_begin = 1.0 / w_begin;
+ w_end = 1.0 / w_end;
+ float z_begin = vertex.z * w_begin;
+ float z_end = ray_end.z * w_end;
- float z_begin = vertex.z*w_begin;
- float z_end = ray_end.z*w_end;
-
- vec2 line_begin = vp_line_begin/pixel_size;
- vec2 line_dir = vp_line_dir/pixel_size;
+ vec2 line_begin = vp_line_begin / pixel_size;
+ vec2 line_dir = vp_line_dir / pixel_size;
float z_dir = z_end - z_begin;
float w_dir = w_end - w_begin;
-
// clip the line to the viewport edges
float scale_max_x = min(1.0, 0.99 * (1.0 - vp_line_begin.x) / max(1e-5, vp_line_dir.x));
@@ -124,121 +111,109 @@ void main() {
float line_clip = min(scale_max_x, scale_max_y) * min(scale_min_x, scale_min_y);
line_dir *= line_clip;
z_dir *= line_clip;
- w_dir *=line_clip;
+ w_dir *= line_clip;
//clip z and w advance to line advance
vec2 line_advance = normalize(line_dir); //down to pixel
- float step_size = length(line_advance)/length(line_dir);
- float z_advance = z_dir*step_size; // adapt z advance to line advance
- float w_advance = w_dir*step_size; // adapt w advance to line advance
+ float step_size = length(line_advance) / length(line_dir);
+ float z_advance = z_dir * step_size; // adapt z advance to line advance
+ float w_advance = w_dir * step_size; // adapt w advance to line advance
//make line advance faster if direction is closer to pixel edges (this avoids sampling the same pixel twice)
- float advance_angle_adj = 1.0/max(abs(line_advance.x),abs(line_advance.y));
- line_advance*=advance_angle_adj; // adapt z advance to line advance
- z_advance*=advance_angle_adj;
- w_advance*=advance_angle_adj;
+ float advance_angle_adj = 1.0 / max(abs(line_advance.x), abs(line_advance.y));
+ line_advance *= advance_angle_adj; // adapt z advance to line advance
+ z_advance *= advance_angle_adj;
+ w_advance *= advance_angle_adj;
vec2 pos = line_begin;
float z = z_begin;
float w = w_begin;
- float z_from=z/w;
- float z_to=z_from;
+ float z_from = z / w;
+ float z_to = z_from;
float depth;
- vec2 prev_pos=pos;
+ vec2 prev_pos = pos;
- bool found=false;
+ bool found = false;
- float steps_taken=0.0;
+ float steps_taken = 0.0;
- for(int i=0;i<num_steps;i++) {
+ for (int i = 0; i < num_steps; i++) {
- pos+=line_advance;
- z+=z_advance;
- w+=w_advance;
+ pos += line_advance;
+ z += z_advance;
+ w += w_advance;
//convert to linear depth
- depth = texture(source_depth, pos*pixel_size).r * 2.0 - 1.0;
+ depth = texture(source_depth, pos * pixel_size).r * 2.0 - 1.0;
#ifdef USE_ORTHOGONAL_PROJECTION
- depth = ((depth + (camera_z_far + camera_z_near)/(camera_z_far - camera_z_near)) * (camera_z_far - camera_z_near))/2.0;
+ depth = ((depth + (camera_z_far + camera_z_near) / (camera_z_far - camera_z_near)) * (camera_z_far - camera_z_near)) / 2.0;
#else
depth = 2.0 * camera_z_near * camera_z_far / (camera_z_far + camera_z_near - depth * (camera_z_far - camera_z_near));
#endif
- depth=-depth;
+ depth = -depth;
z_from = z_to;
- z_to = z/w;
+ z_to = z / w;
- if (depth>z_to) {
+ if (depth > z_to) {
//if depth was surpassed
- if (depth<=max(z_to,z_from)+depth_tolerance) {
+ if (depth <= max(z_to, z_from) + depth_tolerance) {
//check the depth tolerance
- found=true;
+ found = true;
}
break;
}
- steps_taken+=1.0;
- prev_pos=pos;
+ steps_taken += 1.0;
+ prev_pos = pos;
}
-
-
-
if (found) {
- float margin_blend=1.0;
-
+ float margin_blend = 1.0;
- vec2 margin = vec2((viewport_size.x+viewport_size.y)*0.5*0.05); //make a uniform margin
- if (any(bvec4(lessThan(pos,-margin),greaterThan(pos,viewport_size+margin)))) {
+ vec2 margin = vec2((viewport_size.x + viewport_size.y) * 0.5 * 0.05); //make a uniform margin
+ if (any(bvec4(lessThan(pos, -margin), greaterThan(pos, viewport_size + margin)))) {
//clip outside screen + margin
- frag_color=vec4(0.0);
+ frag_color = vec4(0.0);
return;
}
{
//blend fading out towards external margin
- vec2 margin_grad = mix(pos-viewport_size,-pos,lessThan(pos,vec2(0.0)));
- margin_blend = 1.0-smoothstep(0.0,margin.x,max(margin_grad.x,margin_grad.y));
+ vec2 margin_grad = mix(pos - viewport_size, -pos, lessThan(pos, vec2(0.0)));
+ margin_blend = 1.0 - smoothstep(0.0, margin.x, max(margin_grad.x, margin_grad.y));
//margin_blend=1.0;
-
}
vec2 final_pos;
float grad;
- grad=steps_taken/float(num_steps);
- float initial_fade = curve_fade_in==0.0 ? 1.0 : pow(clamp(grad,0.0,1.0),curve_fade_in);
- float fade = pow(clamp(1.0-grad,0.0,1.0),distance_fade)*initial_fade;
- final_pos=pos;
-
-
-
-
-
-
+ grad = steps_taken / float(num_steps);
+ float initial_fade = curve_fade_in == 0.0 ? 1.0 : pow(clamp(grad, 0.0, 1.0), curve_fade_in);
+ float fade = pow(clamp(1.0 - grad, 0.0, 1.0), distance_fade) * initial_fade;
+ final_pos = pos;
#ifdef REFLECT_ROUGHNESS
-
vec4 final_color;
//if roughness is enabled, do screen space cone tracing
if (roughness > 0.001) {
///////////////////////////////////////////////////////////////////////////////////////
//use a blurred version (in consecutive mipmaps) of the screen to simulate roughness
- float gloss = 1.0-roughness;
+ float gloss = 1.0 - roughness;
float cone_angle = roughness * M_PI * 0.5;
vec2 cone_dir = final_pos - line_begin;
float cone_len = length(cone_dir);
cone_dir = normalize(cone_dir); //will be used normalized from now on
float max_mipmap = filter_mipmap_levels - 1.0;
- float gloss_mult=gloss;
+ float gloss_mult = gloss;
- float rem_alpha=1.0;
+ float rem_alpha = 1.0;
final_color = vec4(0.0);
- for(int i=0;i<7;i++) {
+ for (int i = 0; i < 7; i++) {
float op_len = 2.0 * tan(cone_angle) * cone_len; //opposite side of iso triangle
float radius;
@@ -258,30 +233,30 @@ void main() {
}
//find the place where screen must be sampled
- vec2 sample_pos = ( line_begin + cone_dir * (cone_len - radius) ) * pixel_size;
+ vec2 sample_pos = (line_begin + cone_dir * (cone_len - radius)) * pixel_size;
//radius is in pixels, so it's natural that log2(radius) maps to the right mipmap for the amount of pixels
- float mipmap = clamp( log2( radius ), 0.0, max_mipmap );
+ float mipmap = clamp(log2(radius), 0.0, max_mipmap);
//mipmap = max(mipmap-1.0,0.0);
//do sampling
vec4 sample_color;
{
- sample_color = textureLod(source_diffuse,sample_pos,mipmap);
+ sample_color = textureLod(source_diffuse, sample_pos, mipmap);
}
//multiply by gloss
- sample_color.rgb*=gloss_mult;
- sample_color.a=gloss_mult;
+ sample_color.rgb *= gloss_mult;
+ sample_color.a = gloss_mult;
rem_alpha -= sample_color.a;
- if(rem_alpha < 0.0) {
+ if (rem_alpha < 0.0) {
sample_color.rgb *= (1.0 - abs(rem_alpha));
}
- final_color+=sample_color;
+ final_color += sample_color;
- if (final_color.a>=0.95) {
+ if (final_color.a >= 0.95) {
// This code of accumulating gloss and aborting on near one
// makes sense when you think of cone tracing.
// Think of it as if roughness was 0, then we could abort on the first
@@ -290,29 +265,21 @@ void main() {
break;
}
- cone_len-=radius*2.0; //go to next (smaller) circle.
-
- gloss_mult*=gloss;
-
+ cone_len -= radius * 2.0; //go to next (smaller) circle.
+ gloss_mult *= gloss;
}
} else {
- final_color = textureLod(source_diffuse,final_pos*pixel_size,0.0);
+ final_color = textureLod(source_diffuse, final_pos * pixel_size, 0.0);
}
- frag_color = vec4(final_color.rgb,fade*margin_blend);
+ frag_color = vec4(final_color.rgb, fade * margin_blend);
#else
- frag_color = vec4(textureLod(source_diffuse,final_pos*pixel_size,0.0).rgb,fade*margin_blend);
+ frag_color = vec4(textureLod(source_diffuse, final_pos * pixel_size, 0.0).rgb, fade * margin_blend);
#endif
-
-
} else {
- frag_color = vec4(0.0,0.0,0.0,0.0);
+ frag_color = vec4(0.0, 0.0, 0.0, 0.0);
}
-
-
-
}
-
diff --git a/drivers/gles2/shaders/ssao.glsl b/drivers/gles2/shaders/ssao.glsl
index 219f0957e0..8dbe8c6ba9 100644
--- a/drivers/gles2/shaders/ssao.glsl
+++ b/drivers/gles2/shaders/ssao.glsl
@@ -1,12 +1,11 @@
[vertex]
-
-layout(location=0) in highp vec4 vertex_attrib;
+layout(location = 0) in highp vec4 vertex_attrib;
void main() {
gl_Position = vertex_attrib;
- gl_Position.z=1.0;
+ gl_Position.z = 1.0;
}
[fragment]
@@ -43,19 +42,20 @@ void main() {
// This is the number of turns around the circle that the spiral pattern makes. This should be prime to prevent
// taps from lining up. This particular choice was tuned for NUM_SAMPLES == 9
-const int ROTATIONS[] = int[]( 1, 1, 2, 3, 2, 5, 2, 3, 2,
-3, 3, 5, 5, 3, 4, 7, 5, 5, 7,
-9, 8, 5, 5, 7, 7, 7, 8, 5, 8,
-11, 12, 7, 10, 13, 8, 11, 8, 7, 14,
-11, 11, 13, 12, 13, 19, 17, 13, 11, 18,
-19, 11, 11, 14, 17, 21, 15, 16, 17, 18,
-13, 17, 11, 17, 19, 18, 25, 18, 19, 19,
-29, 21, 19, 27, 31, 29, 21, 18, 17, 29,
-31, 31, 23, 18, 25, 26, 25, 23, 19, 34,
-19, 27, 21, 25, 39, 29, 17, 21, 27 );
+const int ROTATIONS[] = int[](
+ 1, 1, 2, 3, 2, 5, 2, 3, 2,
+ 3, 3, 5, 5, 3, 4, 7, 5, 5, 7,
+ 9, 8, 5, 5, 7, 7, 7, 8, 5, 8,
+ 11, 12, 7, 10, 13, 8, 11, 8, 7, 14,
+ 11, 11, 13, 12, 13, 19, 17, 13, 11, 18,
+ 19, 11, 11, 14, 17, 21, 15, 16, 17, 18,
+ 13, 17, 11, 17, 19, 18, 25, 18, 19, 19,
+ 29, 21, 19, 27, 31, 29, 21, 18, 17, 29,
+ 31, 31, 23, 18, 25, 26, 25, 23, 19, 34,
+ 19, 27, 21, 25, 39, 29, 17, 21, 27);
//#define NUM_SPIRAL_TURNS (7)
-const int NUM_SPIRAL_TURNS = ROTATIONS[NUM_SAMPLES-1];
+const int NUM_SPIRAL_TURNS = ROTATIONS[NUM_SAMPLES - 1];
uniform sampler2D source_depth; //texunit:0
uniform highp usampler2D source_depth_mipmaps; //texunit:1
@@ -90,44 +90,41 @@ vec3 reconstructCSPosition(vec2 S, float z) {
}
vec3 getPosition(ivec2 ssP) {
- vec3 P;
- P.z = texelFetch(source_depth, ssP, 0).r;
+ vec3 P;
+ P.z = texelFetch(source_depth, ssP, 0).r;
- P.z = P.z * 2.0 - 1.0;
+ P.z = P.z * 2.0 - 1.0;
#ifdef USE_ORTHOGONAL_PROJECTION
- P.z = ((P.z + (camera_z_far + camera_z_near)/(camera_z_far - camera_z_near)) * (camera_z_far - camera_z_near))/2.0;
+ P.z = ((P.z + (camera_z_far + camera_z_near) / (camera_z_far - camera_z_near)) * (camera_z_far - camera_z_near)) / 2.0;
#else
- P.z = 2.0 * camera_z_near * camera_z_far / (camera_z_far + camera_z_near - P.z * (camera_z_far - camera_z_near));
+ P.z = 2.0 * camera_z_near * camera_z_far / (camera_z_far + camera_z_near - P.z * (camera_z_far - camera_z_near));
#endif
- P.z = -P.z;
+ P.z = -P.z;
- // Offset to pixel center
- P = reconstructCSPosition(vec2(ssP) + vec2(0.5), P.z);
- return P;
+ // Offset to pixel center
+ P = reconstructCSPosition(vec2(ssP) + vec2(0.5), P.z);
+ return P;
}
/** Reconstructs screen-space unit normal from screen-space position */
vec3 reconstructCSFaceNormal(vec3 C) {
- return normalize(cross(dFdy(C), dFdx(C)));
+ return normalize(cross(dFdy(C), dFdx(C)));
}
-
-
/** Returns a unit vector and a screen-space radius for the tap on a unit disk (the caller should scale by the actual disk radius) */
-vec2 tapLocation(int sampleNumber, float spinAngle, out float ssR){
- // Radius relative to ssR
- float alpha = (float(sampleNumber) + 0.5) * (1.0 / float(NUM_SAMPLES));
- float angle = alpha * (float(NUM_SPIRAL_TURNS) * 6.28) + spinAngle;
+vec2 tapLocation(int sampleNumber, float spinAngle, out float ssR) {
+ // Radius relative to ssR
+ float alpha = (float(sampleNumber) + 0.5) * (1.0 / float(NUM_SAMPLES));
+ float angle = alpha * (float(NUM_SPIRAL_TURNS) * 6.28) + spinAngle;
- ssR = alpha;
- return vec2(cos(angle), sin(angle));
+ ssR = alpha;
+ return vec2(cos(angle), sin(angle));
}
-
/** Read the camera-space position of the point at screen-space pixel ssP + unitOffset * ssR. Assumes length(unitOffset) == 1 */
vec3 getOffsetPosition(ivec2 ssC, vec2 unitOffset, float ssR) {
- // Derivation:
- // mipLevel = floor(log(ssR / MAX_OFFSET));
+ // Derivation:
+ // mipLevel = floor(log(ssR / MAX_OFFSET));
int mipLevel = clamp(int(floor(log2(ssR))) - LOG_MAX_OFFSET, 0, MAX_MIP_LEVEL);
ivec2 ssP = ivec2(ssR * unitOffset) + ssC;
@@ -138,13 +135,12 @@ vec3 getOffsetPosition(ivec2 ssC, vec2 unitOffset, float ssR) {
// Manually clamp to the texture size because texelFetch bypasses the texture unit
ivec2 mipP = clamp(ssP >> mipLevel, ivec2(0), (screen_size >> mipLevel) - ivec2(1));
-
if (mipLevel < 1) {
//read from depth buffer
P.z = texelFetch(source_depth, mipP, 0).r;
P.z = P.z * 2.0 - 1.0;
#ifdef USE_ORTHOGONAL_PROJECTION
- P.z = ((P.z + (camera_z_far + camera_z_near)/(camera_z_far - camera_z_near)) * (camera_z_far - camera_z_near))/2.0;
+ P.z = ((P.z + (camera_z_far + camera_z_near) / (camera_z_far - camera_z_near)) * (camera_z_far - camera_z_near)) / 2.0;
#else
P.z = 2.0 * camera_z_near * camera_z_far / (camera_z_far + camera_z_near - P.z * (camera_z_far - camera_z_near));
@@ -153,78 +149,74 @@ vec3 getOffsetPosition(ivec2 ssC, vec2 unitOffset, float ssR) {
} else {
//read from mipmaps
- uint d = texelFetch(source_depth_mipmaps, mipP, mipLevel-1).r;
- P.z = -(float(d)/65535.0)*camera_z_far;
+ uint d = texelFetch(source_depth_mipmaps, mipP, mipLevel - 1).r;
+ P.z = -(float(d) / 65535.0) * camera_z_far;
}
-
// Offset to pixel center
P = reconstructCSPosition(vec2(ssP) + vec2(0.5), P.z);
return P;
}
-
-
/** Compute the occlusion due to sample with index \a i about the pixel at \a ssC that corresponds
- to camera-space point \a C with unit normal \a n_C, using maximum screen-space sampling radius \a ssDiskRadius
+ to camera-space point \a C with unit normal \a n_C, using maximum screen-space sampling radius \a ssDiskRadius
- Note that units of H() in the HPG12 paper are meters, not
- unitless. The whole falloff/sampling function is therefore
- unitless. In this implementation, we factor out (9 / radius).
+ Note that units of H() in the HPG12 paper are meters, not
+ unitless. The whole falloff/sampling function is therefore
+ unitless. In this implementation, we factor out (9 / radius).
- Four versions of the falloff function are implemented below
+ Four versions of the falloff function are implemented below
*/
-float sampleAO(in ivec2 ssC, in vec3 C, in vec3 n_C, in float ssDiskRadius,in float p_radius, in int tapIndex, in float randomPatternRotationAngle) {
- // Offset on the unit disk, spun for this pixel
- float ssR;
- vec2 unitOffset = tapLocation(tapIndex, randomPatternRotationAngle, ssR);
- ssR *= ssDiskRadius;
+float sampleAO(in ivec2 ssC, in vec3 C, in vec3 n_C, in float ssDiskRadius, in float p_radius, in int tapIndex, in float randomPatternRotationAngle) {
+ // Offset on the unit disk, spun for this pixel
+ float ssR;
+ vec2 unitOffset = tapLocation(tapIndex, randomPatternRotationAngle, ssR);
+ ssR *= ssDiskRadius;
- // The occluding point in camera space
- vec3 Q = getOffsetPosition(ssC, unitOffset, ssR);
+ // The occluding point in camera space
+ vec3 Q = getOffsetPosition(ssC, unitOffset, ssR);
- vec3 v = Q - C;
+ vec3 v = Q - C;
- float vv = dot(v, v);
- float vn = dot(v, n_C);
+ float vv = dot(v, v);
+ float vn = dot(v, n_C);
- const float epsilon = 0.01;
- float radius2 = p_radius*p_radius;
+ const float epsilon = 0.01;
+ float radius2 = p_radius * p_radius;
- // A: From the HPG12 paper
- // Note large epsilon to avoid overdarkening within cracks
- //return float(vv < radius2) * max((vn - bias) / (epsilon + vv), 0.0) * radius2 * 0.6;
+ // A: From the HPG12 paper
+ // Note large epsilon to avoid overdarkening within cracks
+ //return float(vv < radius2) * max((vn - bias) / (epsilon + vv), 0.0) * radius2 * 0.6;
- // B: Smoother transition to zero (lowers contrast, smoothing out corners). [Recommended]
- float f=max(radius2 - vv, 0.0);
- return f * f * f * max((vn - bias) / (epsilon + vv), 0.0);
+ // B: Smoother transition to zero (lowers contrast, smoothing out corners). [Recommended]
+ float f = max(radius2 - vv, 0.0);
+ return f * f * f * max((vn - bias) / (epsilon + vv), 0.0);
- // C: Medium contrast (which looks better at high radii), no division. Note that the
- // contribution still falls off with radius^2, but we've adjusted the rate in a way that is
- // more computationally efficient and happens to be aesthetically pleasing.
- // return 4.0 * max(1.0 - vv * invRadius2, 0.0) * max(vn - bias, 0.0);
+ // C: Medium contrast (which looks better at high radii), no division. Note that the
+ // contribution still falls off with radius^2, but we've adjusted the rate in a way that is
+ // more computationally efficient and happens to be aesthetically pleasing.
+ // return 4.0 * max(1.0 - vv * invRadius2, 0.0) * max(vn - bias, 0.0);
- // D: Low contrast, no division operation
- // return 2.0 * float(vv < radius * radius) * max(vn - bias, 0.0);
+ // D: Low contrast, no division operation
+ // return 2.0 * float(vv < radius * radius) * max(vn - bias, 0.0);
}
-
-
void main() {
-
// Pixel being shaded
ivec2 ssC = ivec2(gl_FragCoord.xy);
// World space point being shaded
vec3 C = getPosition(ssC);
-/* if (C.z <= -camera_z_far*0.999) {
- // We're on the skybox
- visibility=1.0;
- return;
- }*/
+ /*
+ if (C.z <= -camera_z_far*0.999) {
+ // We're on the skybox
+ visibility=1.0;
+ return;
+ }
+ */
//visibility=-C.z/camera_z_far;
//return;
@@ -251,7 +243,7 @@ void main() {
#endif
float sum = 0.0;
for (int i = 0; i < NUM_SAMPLES; ++i) {
- sum += sampleAO(ssC, C, n_C, ssDiskRadius, radius,i, randomPatternRotationAngle);
+ sum += sampleAO(ssC, C, n_C, ssDiskRadius, radius, i, randomPatternRotationAngle);
}
float A = max(0.0, 1.0 - sum * intensity_div_r6 * (5.0 / float(NUM_SAMPLES)));
@@ -271,10 +263,10 @@ void main() {
sum = 0.0;
for (int i = 0; i < NUM_SAMPLES; ++i) {
- sum += sampleAO(ssC, C, n_C, ssDiskRadius,radius2, i, randomPatternRotationAngle);
+ sum += sampleAO(ssC, C, n_C, ssDiskRadius, radius2, i, randomPatternRotationAngle);
}
- A= min(A,max(0.0, 1.0 - sum * intensity_div_r62 * (5.0 / float(NUM_SAMPLES))));
+ A = min(A, max(0.0, 1.0 - sum * intensity_div_r62 * (5.0 / float(NUM_SAMPLES))));
#endif
// Bilateral box-filter over a quad for free, respecting depth edges
// (the difference that this makes is subtle)
@@ -286,8 +278,4 @@ void main() {
}
visibility = A;
-
}
-
-
-
diff --git a/drivers/gles2/shaders/ssao_blur.glsl b/drivers/gles2/shaders/ssao_blur.glsl
index 472dc21acf..82b735a2b4 100644
--- a/drivers/gles2/shaders/ssao_blur.glsl
+++ b/drivers/gles2/shaders/ssao_blur.glsl
@@ -1,26 +1,21 @@
[vertex]
-
-layout(location=0) in highp vec4 vertex_attrib;
-
+layout(location = 0) in highp vec4 vertex_attrib;
void main() {
gl_Position = vertex_attrib;
- gl_Position.z=1.0;
+ gl_Position.z = 1.0;
}
[fragment]
-
uniform sampler2D source_ssao; //texunit:0
uniform sampler2D source_depth; //texunit:1
uniform sampler2D source_normal; //texunit:3
-
layout(location = 0) out float visibility;
-
//////////////////////////////////////////////////////////////////////////////////////////////
// Tunable Parameters:
@@ -28,32 +23,30 @@ layout(location = 0) out float visibility;
uniform float edge_sharpness;
/** Step in 2-pixel intervals since we already blurred against neighbors in the
- first AO pass. This constant can be increased while R decreases to improve
- performance at the expense of some dithering artifacts.
+ first AO pass. This constant can be increased while R decreases to improve
+ performance at the expense of some dithering artifacts.
- Morgan found that a scale of 3 left a 1-pixel checkerboard grid that was
- unobjectionable after shading was applied but eliminated most temporal incoherence
- from using small numbers of sample taps.
- */
+ Morgan found that a scale of 3 left a 1-pixel checkerboard grid that was
+ unobjectionable after shading was applied but eliminated most temporal incoherence
+ from using small numbers of sample taps.
+ */
uniform int filter_scale;
/** Filter radius in pixels. This will be multiplied by SCALE. */
-#define R (4)
-
+#define R (4)
//////////////////////////////////////////////////////////////////////////////////////////////
-
// Gaussian coefficients
const float gaussian[R + 1] =
-// float[](0.356642, 0.239400, 0.072410, 0.009869);
-// float[](0.398943, 0.241971, 0.053991, 0.004432, 0.000134); // stddev = 1.0
- float[](0.153170, 0.144893, 0.122649, 0.092902, 0.062970); // stddev = 2.0
-// float[](0.111220, 0.107798, 0.098151, 0.083953, 0.067458, 0.050920, 0.036108); // stddev = 3.0
+ //float[](0.356642, 0.239400, 0.072410, 0.009869);
+ //float[](0.398943, 0.241971, 0.053991, 0.004432, 0.000134); // stddev = 1.0
+ float[](0.153170, 0.144893, 0.122649, 0.092902, 0.062970); // stddev = 2.0
+ //float[](0.111220, 0.107798, 0.098151, 0.083953, 0.067458, 0.050920, 0.036108); // stddev = 3.0
/** (1, 0) or (0, 1)*/
-uniform ivec2 axis;
+uniform ivec2 axis;
uniform float camera_z_far;
uniform float camera_z_near;
@@ -72,11 +65,11 @@ void main() {
float depth_divide = 1.0 / camera_z_far;
-// depth*=depth_divide;
+ //depth *= depth_divide;
/*
- if (depth > camera_z_far*0.999) {
- discard;//skybox
+ if (depth > camera_z_far * 0.999) {
+ discard; //skybox
}
*/
@@ -96,23 +89,21 @@ void main() {
if (r != 0) {
ivec2 ppos = ssC + axis * (r * filter_scale);
- float value = texelFetch(source_ssao, clamp(ppos,ivec2(0),clamp_limit), 0).r;
- ivec2 rpos = clamp(ppos,ivec2(0),clamp_limit);
+ float value = texelFetch(source_ssao, clamp(ppos, ivec2(0), clamp_limit), 0).r;
+ ivec2 rpos = clamp(ppos, ivec2(0), clamp_limit);
float temp_depth = texelFetch(source_depth, rpos, 0).r;
//vec3 temp_normal = texelFetch(source_normal, rpos, 0).rgb * 2.0 - 1.0;
temp_depth = temp_depth * 2.0 - 1.0;
temp_depth = 2.0 * camera_z_near * camera_z_far / (camera_z_far + camera_z_near - temp_depth * (camera_z_far - camera_z_near));
-// temp_depth *= depth_divide;
+ // temp_depth *= depth_divide;
// spatial domain: offset gaussian tap
float weight = 0.3 + gaussian[abs(r)];
//weight *= max(0.0,dot(temp_normal,normal));
// range domain (the "bilateral" weight). As depth difference increases, decrease weight.
- weight *= max(0.0, 1.0
- - edge_sharpness * abs(temp_depth - depth)
- );
+ weight *= max(0.0, 1.0 - edge_sharpness * abs(temp_depth - depth));
sum += value * weight;
totalWeight += weight;
diff --git a/drivers/gles2/shaders/ssao_minify.glsl b/drivers/gles2/shaders/ssao_minify.glsl
index 647c762438..777a0069fc 100644
--- a/drivers/gles2/shaders/ssao_minify.glsl
+++ b/drivers/gles2/shaders/ssao_minify.glsl
@@ -1,7 +1,6 @@
[vertex]
-
-layout(location=0) in highp vec4 vertex_attrib;
+layout(location = 0) in highp vec4 vertex_attrib;
void main() {
@@ -10,7 +9,6 @@ void main() {
[fragment]
-
#ifdef MINIFY_START
#define SDEPTH_TYPE highp sampler2D
@@ -32,28 +30,23 @@ layout(location = 0) out mediump uint depth;
void main() {
-
ivec2 ssP = ivec2(gl_FragCoord.xy);
- // Rotated grid subsampling to avoid XY directional bias or Z precision bias while downsampling.
- // On DX9, the bit-and can be implemented with floating-point modulo
+ // Rotated grid subsampling to avoid XY directional bias or Z precision bias while downsampling.
+ // On DX9, the bit-and can be implemented with floating-point modulo
#ifdef MINIFY_START
float fdepth = texelFetch(source_depth, clamp(ssP * 2 + ivec2(ssP.y & 1, ssP.x & 1), ivec2(0), from_size - ivec2(1)), source_mipmap).r;
fdepth = fdepth * 2.0 - 1.0;
#ifdef USE_ORTHOGONAL_PROJECTION
- fdepth = ((fdepth + (camera_z_far + camera_z_near)/(camera_z_far - camera_z_near)) * (camera_z_far - camera_z_near))/2.0;
+ fdepth = ((fdepth + (camera_z_far + camera_z_near) / (camera_z_far - camera_z_near)) * (camera_z_far - camera_z_near)) / 2.0;
#else
fdepth = 2.0 * camera_z_near * camera_z_far / (camera_z_far + camera_z_near - fdepth * (camera_z_far - camera_z_near));
#endif
fdepth /= camera_z_far;
- depth = uint(clamp(fdepth*65535.0,0.0,65535.0));
+ depth = uint(clamp(fdepth * 65535.0, 0.0, 65535.0));
#else
depth = texelFetch(source_depth, clamp(ssP * 2 + ivec2(ssP.y & 1, ssP.x & 1), ivec2(0), from_size - ivec2(1)), source_mipmap).r;
#endif
-
-
}
-
-
diff --git a/drivers/gles2/shaders/stdlib.glsl b/drivers/gles2/shaders/stdlib.glsl
index 8b30e097e6..6bc81a22d8 100644
--- a/drivers/gles2/shaders/stdlib.glsl
+++ b/drivers/gles2/shaders/stdlib.glsl
@@ -1,6 +1,5 @@
-vec2 select2(vec2 a, vec2 b, bvec2 c)
-{
+vec2 select2(vec2 a, vec2 b, bvec2 c) {
vec2 ret;
ret.x = c.x ? b.x : a.x;
@@ -9,8 +8,7 @@ vec2 select2(vec2 a, vec2 b, bvec2 c)
return ret;
}
-vec3 select3(vec3 a, vec3 b, bvec3 c)
-{
+vec3 select3(vec3 a, vec3 b, bvec3 c) {
vec3 ret;
ret.x = c.x ? b.x : a.x;
@@ -20,8 +18,7 @@ vec3 select3(vec3 a, vec3 b, bvec3 c)
return ret;
}
-vec4 select4(vec4 a, vec4 b, bvec4 c)
-{
+vec4 select4(vec4 a, vec4 b, bvec4 c) {
vec4 ret;
ret.x = c.x ? b.x : a.x;
@@ -32,9 +29,7 @@ vec4 select4(vec4 a, vec4 b, bvec4 c)
return ret;
}
-
-highp vec4 texel2DFetch(highp sampler2D tex, ivec2 size, ivec2 coord)
-{
+highp vec4 texel2DFetch(highp sampler2D tex, ivec2 size, ivec2 coord) {
float x_coord = float(2 * coord.x + 1) / float(size.x * 2);
float y_coord = float(2 * coord.y + 1) / float(size.y * 2);
diff --git a/drivers/gles2/shaders/subsurf_scattering.glsl b/drivers/gles2/shaders/subsurf_scattering.glsl
index fc66d66198..fb7908f06a 100644
--- a/drivers/gles2/shaders/subsurf_scattering.glsl
+++ b/drivers/gles2/shaders/subsurf_scattering.glsl
@@ -1,12 +1,10 @@
[vertex]
-
-layout(location=0) in highp vec4 vertex_attrib;
-layout(location=4) in vec2 uv_in;
+layout(location = 0) in highp vec4 vertex_attrib;
+layout(location = 4) in vec2 uv_in;
out vec2 uv_interp;
-
void main() {
uv_interp = uv_in;
@@ -19,87 +17,73 @@ void main() {
#define QUALIFIER const
#ifdef USE_25_SAMPLES
-
-const int kernel_size=25;
-QUALIFIER vec2 kernel[25] = vec2[] (
- vec2(0.530605, 0.0),
- vec2(0.000973794, -3.0),
- vec2(0.00333804, -2.52083),
- vec2(0.00500364, -2.08333),
- vec2(0.00700976, -1.6875),
- vec2(0.0094389, -1.33333),
- vec2(0.0128496, -1.02083),
- vec2(0.017924, -0.75),
- vec2(0.0263642, -0.520833),
- vec2(0.0410172, -0.333333),
- vec2(0.0493588, -0.1875),
- vec2(0.0402784, -0.0833333),
- vec2(0.0211412, -0.0208333),
- vec2(0.0211412, 0.0208333),
- vec2(0.0402784, 0.0833333),
- vec2(0.0493588, 0.1875),
- vec2(0.0410172, 0.333333),
- vec2(0.0263642, 0.520833),
- vec2(0.017924, 0.75),
- vec2(0.0128496, 1.02083),
- vec2(0.0094389, 1.33333),
- vec2(0.00700976, 1.6875),
- vec2(0.00500364, 2.08333),
- vec2(0.00333804, 2.52083),
- vec2(0.000973794, 3.0)
-);
-
+const int kernel_size = 25;
+QUALIFIER vec2 kernel[25] = vec2[](
+ vec2(0.530605, 0.0),
+ vec2(0.000973794, -3.0),
+ vec2(0.00333804, -2.52083),
+ vec2(0.00500364, -2.08333),
+ vec2(0.00700976, -1.6875),
+ vec2(0.0094389, -1.33333),
+ vec2(0.0128496, -1.02083),
+ vec2(0.017924, -0.75),
+ vec2(0.0263642, -0.520833),
+ vec2(0.0410172, -0.333333),
+ vec2(0.0493588, -0.1875),
+ vec2(0.0402784, -0.0833333),
+ vec2(0.0211412, -0.0208333),
+ vec2(0.0211412, 0.0208333),
+ vec2(0.0402784, 0.0833333),
+ vec2(0.0493588, 0.1875),
+ vec2(0.0410172, 0.333333),
+ vec2(0.0263642, 0.520833),
+ vec2(0.017924, 0.75),
+ vec2(0.0128496, 1.02083),
+ vec2(0.0094389, 1.33333),
+ vec2(0.00700976, 1.6875),
+ vec2(0.00500364, 2.08333),
+ vec2(0.00333804, 2.52083),
+ vec2(0.000973794, 3.0));
#endif //USE_25_SAMPLES
#ifdef USE_17_SAMPLES
-
-const int kernel_size=17;
-
+const int kernel_size = 17;
QUALIFIER vec2 kernel[17] = vec2[](
- vec2(0.536343, 0.0),
- vec2(0.00317394, -2.0),
- vec2(0.0100386, -1.53125),
- vec2(0.0144609, -1.125),
- vec2(0.0216301, -0.78125),
- vec2(0.0347317, -0.5),
- vec2(0.0571056, -0.28125),
- vec2(0.0582416, -0.125),
- vec2(0.0324462, -0.03125),
- vec2(0.0324462, 0.03125),
- vec2(0.0582416, 0.125),
- vec2(0.0571056, 0.28125),
- vec2(0.0347317, 0.5),
- vec2(0.0216301, 0.78125),
- vec2(0.0144609, 1.125),
- vec2(0.0100386, 1.53125),
- vec2(0.00317394,2.0)
-);
-
+ vec2(0.536343, 0.0),
+ vec2(0.00317394, -2.0),
+ vec2(0.0100386, -1.53125),
+ vec2(0.0144609, -1.125),
+ vec2(0.0216301, -0.78125),
+ vec2(0.0347317, -0.5),
+ vec2(0.0571056, -0.28125),
+ vec2(0.0582416, -0.125),
+ vec2(0.0324462, -0.03125),
+ vec2(0.0324462, 0.03125),
+ vec2(0.0582416, 0.125),
+ vec2(0.0571056, 0.28125),
+ vec2(0.0347317, 0.5),
+ vec2(0.0216301, 0.78125),
+ vec2(0.0144609, 1.125),
+ vec2(0.0100386, 1.53125),
+ vec2(0.00317394, 2.0));
#endif //USE_17_SAMPLES
-
#ifdef USE_11_SAMPLES
-
-const int kernel_size=11;
-
+const int kernel_size = 11;
QUALIFIER vec2 kernel[11] = vec2[](
- vec2(0.560479, 0.0),
- vec2(0.00471691, -2.0),
- vec2(0.0192831, -1.28),
- vec2(0.03639, -0.72),
- vec2(0.0821904, -0.32),
- vec2(0.0771802, -0.08),
- vec2(0.0771802, 0.08),
- vec2(0.0821904, 0.32),
- vec2(0.03639, 0.72),
- vec2(0.0192831, 1.28),
- vec2(0.00471691,2.0)
-);
-
+ vec2(0.560479, 0.0),
+ vec2(0.00471691, -2.0),
+ vec2(0.0192831, -1.28),
+ vec2(0.03639, -0.72),
+ vec2(0.0821904, -0.32),
+ vec2(0.0771802, -0.08),
+ vec2(0.0771802, 0.08),
+ vec2(0.0821904, 0.32),
+ vec2(0.03639, 0.72),
+ vec2(0.0192831, 1.28),
+ vec2(0.00471691, 2.0));
#endif //USE_11_SAMPLES
-
-
uniform float max_radius;
uniform float camera_z_far;
uniform float camera_z_near;
@@ -115,28 +99,24 @@ layout(location = 0) out vec4 frag_color;
void main() {
- float strength = texture(source_sss,uv_interp).r;
- strength*=strength; //stored as sqrt
+ float strength = texture(source_sss, uv_interp).r;
+ strength *= strength; //stored as sqrt
// Fetch color of current pixel:
vec4 base_color = texture(source_diffuse, uv_interp);
-
- if (strength>0.0) {
-
+ if (strength > 0.0) {
// Fetch linear depth of current pixel:
float depth = texture(source_depth, uv_interp).r * 2.0 - 1.0;
#ifdef USE_ORTHOGONAL_PROJECTION
- depth = ((depth + (camera_z_far + camera_z_near)/(camera_z_far - camera_z_near)) * (camera_z_far - camera_z_near))/2.0;
+ depth = ((depth + (camera_z_far + camera_z_near) / (camera_z_far - camera_z_near)) * (camera_z_far - camera_z_near)) / 2.0;
float scale = unit_size; //remember depth is negative by default in OpenGL
#else
depth = 2.0 * camera_z_near * camera_z_far / (camera_z_far + camera_z_near - depth * (camera_z_far - camera_z_near));
float scale = unit_size / depth; //remember depth is negative by default in OpenGL
#endif
-
-
// Calculate the final step to fetch the surrounding pixels:
vec2 step = max_radius * scale * dir;
step *= strength; // Modulate it using the alpha channel.
@@ -157,35 +137,33 @@ void main() {
#ifdef ENABLE_FOLLOW_SURFACE
// If the difference in depth is huge, we lerp color back to "colorM":
- float depth_cmp = texture(source_depth, offset).r *2.0 - 1.0;
+ float depth_cmp = texture(source_depth, offset).r * 2.0 - 1.0;
#ifdef USE_ORTHOGONAL_PROJECTION
- depth_cmp = ((depth_cmp + (camera_z_far + camera_z_near)/(camera_z_far - camera_z_near)) * (camera_z_far - camera_z_near))/2.0;
+ depth_cmp = ((depth_cmp + (camera_z_far + camera_z_near) / (camera_z_far - camera_z_near)) * (camera_z_far - camera_z_near)) / 2.0;
#else
depth_cmp = 2.0 * camera_z_near * camera_z_far / (camera_z_far + camera_z_near - depth_cmp * (camera_z_far - camera_z_near));
#endif
- float s = clamp(300.0f * scale *
- max_radius * abs(depth - depth_cmp),0.0,1.0);
+ float s = clamp(300.0f * scale * max_radius * abs(depth - depth_cmp), 0.0, 1.0);
color = mix(color, base_color.rgb, s);
#endif
// Accumulate:
- color*=kernel[i].x;
+ color *= kernel[i].x;
#ifdef ENABLE_STRENGTH_WEIGHTING
float color_s = texture(source_sss, offset).r;
- color_weight+=color_s * kernel[i].x;
- color*=color_s;
+ color_weight += color_s * kernel[i].x;
+ color *= color_s;
#endif
color_accum += color;
-
}
#ifdef ENABLE_STRENGTH_WEIGHTING
- color_accum/=color_weight;
+ color_accum /= color_weight;
#endif
- frag_color = vec4(color_accum,base_color.a); //keep alpha (used for SSAO)
+ frag_color = vec4(color_accum, base_color.a); //keep alpha (used for SSAO)
} else {
frag_color = base_color;
}
diff --git a/drivers/gles2/shaders/tonemap.glsl b/drivers/gles2/shaders/tonemap.glsl
index 2f671158b2..f3f6a85565 100644
--- a/drivers/gles2/shaders/tonemap.glsl
+++ b/drivers/gles2/shaders/tonemap.glsl
@@ -1,8 +1,7 @@
[vertex]
-
-layout(location=0) in highp vec4 vertex_attrib;
-layout(location=4) in vec2 uv_in;
+layout(location = 0) in highp vec4 vertex_attrib;
+layout(location = 4) in vec2 uv_in;
out vec2 uv_interp;
@@ -11,9 +10,8 @@ void main() {
gl_Position = vertex_attrib;
uv_interp = uv_in;
#ifdef V_FLIP
- uv_interp.y = 1.0-uv_interp.y;
+ uv_interp.y = 1.0 - uv_interp.y;
#endif
-
}
[fragment]
@@ -22,7 +20,6 @@ void main() {
precision mediump float;
#endif
-
in vec2 uv_interp;
uniform highp sampler2D source; //texunit:0
@@ -56,64 +53,54 @@ uniform sampler2D color_correction; //texunit:3
#endif
-
layout(location = 0) out vec4 frag_color;
#ifdef USE_GLOW_FILTER_BICUBIC
// w0, w1, w2, and w3 are the four cubic B-spline basis functions
-float w0(float a)
-{
- return (1.0/6.0)*(a*(a*(-a + 3.0) - 3.0) + 1.0);
+float w0(float a) {
+ return (1.0 / 6.0) * (a * (a * (-a + 3.0) - 3.0) + 1.0);
}
-float w1(float a)
-{
- return (1.0/6.0)*(a*a*(3.0*a - 6.0) + 4.0);
+float w1(float a) {
+ return (1.0 / 6.0) * (a * a * (3.0 * a - 6.0) + 4.0);
}
-float w2(float a)
-{
- return (1.0/6.0)*(a*(a*(-3.0*a + 3.0) + 3.0) + 1.0);
+float w2(float a) {
+ return (1.0 / 6.0) * (a * (a * (-3.0 * a + 3.0) + 3.0) + 1.0);
}
-float w3(float a)
-{
- return (1.0/6.0)*(a*a*a);
+float w3(float a) {
+ return (1.0 / 6.0) * (a * a * a);
}
// g0 and g1 are the two amplitude functions
-float g0(float a)
-{
- return w0(a) + w1(a);
+float g0(float a) {
+ return w0(a) + w1(a);
}
-float g1(float a)
-{
- return w2(a) + w3(a);
+float g1(float a) {
+ return w2(a) + w3(a);
}
// h0 and h1 are the two offset functions
-float h0(float a)
-{
- return -1.0 + w1(a) / (w0(a) + w1(a));
+float h0(float a) {
+ return -1.0 + w1(a) / (w0(a) + w1(a));
}
-float h1(float a)
-{
- return 1.0 + w3(a) / (w2(a) + w3(a));
+float h1(float a) {
+ return 1.0 + w3(a) / (w2(a) + w3(a));
}
uniform ivec2 glow_texture_size;
-vec4 texture2D_bicubic(sampler2D tex, vec2 uv,int p_lod)
-{
- float lod=float(p_lod);
+vec4 texture2D_bicubic(sampler2D tex, vec2 uv, int p_lod) {
+ float lod = float(p_lod);
vec2 tex_size = vec2(glow_texture_size >> p_lod);
- vec2 pixel_size =1.0/tex_size;
- uv = uv*tex_size + 0.5;
- vec2 iuv = floor( uv );
- vec2 fuv = fract( uv );
+ vec2 pixel_size = 1.0 / tex_size;
+ uv = uv * tex_size + 0.5;
+ vec2 iuv = floor(uv);
+ vec2 fuv = fract(uv);
float g0x = g0(fuv.x);
float g1x = g1(fuv.x);
@@ -127,24 +114,19 @@ vec4 texture2D_bicubic(sampler2D tex, vec2 uv,int p_lod)
vec2 p2 = (vec2(iuv.x + h0x, iuv.y + h1y) - 0.5) * pixel_size;
vec2 p3 = (vec2(iuv.x + h1x, iuv.y + h1y) - 0.5) * pixel_size;
- return g0(fuv.y) * (g0x * textureLod(tex, p0,lod) +
- g1x * textureLod(tex, p1,lod)) +
- g1(fuv.y) * (g0x * textureLod(tex, p2,lod) +
- g1x * textureLod(tex, p3,lod));
+ return (g0(fuv.y) * (g0x * textureLod(tex, p0, lod) + g1x * textureLod(tex, p1, lod))) +
+ (g1(fuv.y) * (g0x * textureLod(tex, p2, lod) + g1x * textureLod(tex, p3, lod)));
}
-
-
-#define GLOW_TEXTURE_SAMPLE(m_tex,m_uv,m_lod) texture2D_bicubic(m_tex,m_uv,m_lod)
+#define GLOW_TEXTURE_SAMPLE(m_tex, m_uv, m_lod) texture2D_bicubic(m_tex, m_uv, m_lod)
#else
-#define GLOW_TEXTURE_SAMPLE(m_tex,m_uv,m_lod) textureLod(m_tex,m_uv,float(m_lod))
+#define GLOW_TEXTURE_SAMPLE(m_tex, m_uv, m_lod) textureLod(m_tex, m_uv, float(m_lod))
#endif
-
-vec3 tonemap_filmic(vec3 color,float white) {
+vec3 tonemap_filmic(vec3 color, float white) {
float A = 0.15;
float B = 0.50;
@@ -154,11 +136,10 @@ vec3 tonemap_filmic(vec3 color,float white) {
float F = 0.30;
float W = 11.2;
- vec3 coltn = ((color*(A*color+C*B)+D*E)/(color*(A*color+B)+D*F))-E/F;
- float whitetn = ((white*(A*white+C*B)+D*E)/(white*(A*white+B)+D*F))-E/F;
-
- return coltn/whitetn;
+ vec3 coltn = ((color * (A * color + C * B) + D * E) / (color * (A * color + B) + D * F)) - E / F;
+ float whitetn = ((white * (A * white + C * B) + D * E) / (white * (A * white + B) + D * F)) - E / F;
+ return coltn / whitetn;
}
vec3 tonemap_aces(vec3 color) {
@@ -167,12 +148,12 @@ vec3 tonemap_aces(vec3 color) {
float c = 2.43f;
float d = 0.59f;
float e = 0.14f;
- return color = clamp((color*(a*color+b))/(color*(c*color+d)+e),vec3(0.0),vec3(1.0));
+ return color = clamp((color * (a * color + b)) / (color * (c * color + d) + e), vec3(0.0), vec3(1.0));
}
-vec3 tonemap_reindhart(vec3 color,float white) {
+vec3 tonemap_reindhart(vec3 color, float white) {
- return ( color * ( 1.0 + ( color / ( white) ) ) ) / ( 1.0 + color );
+ return (color * (1.0 + (color / (white)))) / (1.0 + color);
}
void main() {
@@ -181,10 +162,10 @@ void main() {
#ifdef USE_AUTO_EXPOSURE
- color/=texelFetch(source_auto_exposure,ivec2(0,0),0).r/auto_exposure_grey;
+ color /= texelFetch(source_auto_exposure, ivec2(0, 0), 0).r / auto_exposure_grey;
#endif
- color*=exposure;
+ color *= exposure;
#if defined(USE_GLOW_LEVEL1) || defined(USE_GLOW_LEVEL2) || defined(USE_GLOW_LEVEL3) || defined(USE_GLOW_LEVEL4) || defined(USE_GLOW_LEVEL5) || defined(USE_GLOW_LEVEL6) || defined(USE_GLOW_LEVEL7)
#define USING_GLOW
@@ -195,56 +176,54 @@ void main() {
#ifdef USE_GLOW_LEVEL1
- glow+=GLOW_TEXTURE_SAMPLE(source_glow,uv_interp,1).rgb;
+ glow += GLOW_TEXTURE_SAMPLE(source_glow, uv_interp, 1).rgb;
#endif
#ifdef USE_GLOW_LEVEL2
- glow+=GLOW_TEXTURE_SAMPLE(source_glow,uv_interp,2).rgb;
+ glow += GLOW_TEXTURE_SAMPLE(source_glow, uv_interp, 2).rgb;
#endif
#ifdef USE_GLOW_LEVEL3
- glow+=GLOW_TEXTURE_SAMPLE(source_glow,uv_interp,3).rgb;
+ glow += GLOW_TEXTURE_SAMPLE(source_glow, uv_interp, 3).rgb;
#endif
#ifdef USE_GLOW_LEVEL4
- glow+=GLOW_TEXTURE_SAMPLE(source_glow,uv_interp,4).rgb;
+ glow += GLOW_TEXTURE_SAMPLE(source_glow, uv_interp, 4).rgb;
#endif
#ifdef USE_GLOW_LEVEL5
- glow+=GLOW_TEXTURE_SAMPLE(source_glow,uv_interp,5).rgb;
+ glow += GLOW_TEXTURE_SAMPLE(source_glow, uv_interp, 5).rgb;
#endif
#ifdef USE_GLOW_LEVEL6
- glow+=GLOW_TEXTURE_SAMPLE(source_glow,uv_interp,6).rgb;
+ glow += GLOW_TEXTURE_SAMPLE(source_glow, uv_interp, 6).rgb;
#endif
#ifdef USE_GLOW_LEVEL7
- glow+=GLOW_TEXTURE_SAMPLE(source_glow,uv_interp,7).rgb;
+ glow += GLOW_TEXTURE_SAMPLE(source_glow, uv_interp, 7).rgb;
#endif
-
glow *= glow_intensity;
#endif
-
#ifdef USE_REINDHART_TONEMAPPER
- color.rgb = tonemap_reindhart(color.rgb,white);
+ color.rgb = tonemap_reindhart(color.rgb, white);
-# if defined(USING_GLOW)
- glow = tonemap_reindhart(glow,white);
-# endif
+#if defined(USING_GLOW)
+ glow = tonemap_reindhart(glow, white);
+#endif
#endif
#ifdef USE_FILMIC_TONEMAPPER
- color.rgb = tonemap_filmic(color.rgb,white);
+ color.rgb = tonemap_filmic(color.rgb, white);
-# if defined(USING_GLOW)
- glow = tonemap_filmic(glow,white);
-# endif
+#if defined(USING_GLOW)
+ glow = tonemap_filmic(glow, white);
+#endif
#endif
@@ -252,26 +231,26 @@ void main() {
color.rgb = tonemap_aces(color.rgb);
-# if defined(USING_GLOW)
+#if defined(USING_GLOW)
glow = tonemap_aces(glow);
-# endif
+#endif
#endif
//regular Linear -> SRGB conversion
vec3 a = vec3(0.055);
- color.rgb = mix( (vec3(1.0)+a)*pow(color.rgb,vec3(1.0/2.4))-a , 12.92*color.rgb , lessThan(color.rgb,vec3(0.0031308)));
+ color.rgb = mix((vec3(1.0) + a) * pow(color.rgb, vec3(1.0 / 2.4)) - a, 12.92 * color.rgb, lessThan(color.rgb, vec3(0.0031308)));
#if defined(USING_GLOW)
- glow = mix( (vec3(1.0)+a)*pow(glow,vec3(1.0/2.4))-a , 12.92*glow , lessThan(glow,vec3(0.0031308)));
+ glow = mix((vec3(1.0) + a) * pow(glow, vec3(1.0 / 2.4)) - a, 12.92 * glow, lessThan(glow, vec3(0.0031308)));
#endif
-//glow needs to be added in SRGB space (together with image space effects)
+ //glow needs to be added in SRGB space (together with image space effects)
- color.rgb = clamp(color.rgb,0.0,1.0);
+ color.rgb = clamp(color.rgb, 0.0, 1.0);
#if defined(USING_GLOW)
- glow = clamp(glow,0.0,1.0);
+ glow = clamp(glow, 0.0, 1.0);
#endif
#ifdef USE_GLOW_REPLACE
@@ -291,33 +270,32 @@ void main() {
{
glow = (glow * 0.5) + 0.5;
- color.r = (glow.r <= 0.5) ? (color.r - (1.0 - 2.0 * glow.r) * color.r * (1.0 - color.r)) : (((glow.r > 0.5) && (color.r <= 0.25)) ? (color.r + (2.0 * glow.r - 1.0) * (4.0 * color.r * (4.0 * color.r + 1.0) * (color.r - 1.0) + 7.0 * color.r)) : (color.r + (2.0 * glow.r - 1.0) * (sqrt(color.r) - color.r)));
- color.g = (glow.g <= 0.5) ? (color.g - (1.0 - 2.0 * glow.g) * color.g * (1.0 - color.g)) : (((glow.g > 0.5) && (color.g <= 0.25)) ? (color.g + (2.0 * glow.g - 1.0) * (4.0 * color.g * (4.0 * color.g + 1.0) * (color.g - 1.0) + 7.0 * color.g)) : (color.g + (2.0 * glow.g - 1.0) * (sqrt(color.g) - color.g)));
- color.b = (glow.b <= 0.5) ? (color.b - (1.0 - 2.0 * glow.b) * color.b * (1.0 - color.b)) : (((glow.b > 0.5) && (color.b <= 0.25)) ? (color.b + (2.0 * glow.b - 1.0) * (4.0 * color.b * (4.0 * color.b + 1.0) * (color.b - 1.0) + 7.0 * color.b)) : (color.b + (2.0 * glow.b - 1.0) * (sqrt(color.b) - color.b)));
+ color.r = (glow.r <= 0.5) ? (color.r - (1.0 - 2.0 * glow.r) * color.r * (1.0 - color.r)) : (((glow.r > 0.5) && (color.r <= 0.25)) ? (color.r + (2.0 * glow.r - 1.0) * (4.0 * color.r * (4.0 * color.r + 1.0) * (color.r - 1.0) + 7.0 * color.r)) : (color.r + (2.0 * glow.r - 1.0) * (sqrt(color.r) - color.r)));
+ color.g = (glow.g <= 0.5) ? (color.g - (1.0 - 2.0 * glow.g) * color.g * (1.0 - color.g)) : (((glow.g > 0.5) && (color.g <= 0.25)) ? (color.g + (2.0 * glow.g - 1.0) * (4.0 * color.g * (4.0 * color.g + 1.0) * (color.g - 1.0) + 7.0 * color.g)) : (color.g + (2.0 * glow.g - 1.0) * (sqrt(color.g) - color.g)));
+ color.b = (glow.b <= 0.5) ? (color.b - (1.0 - 2.0 * glow.b) * color.b * (1.0 - color.b)) : (((glow.b > 0.5) && (color.b <= 0.25)) ? (color.b + (2.0 * glow.b - 1.0) * (4.0 * color.b * (4.0 * color.b + 1.0) * (color.b - 1.0) + 7.0 * color.b)) : (color.b + (2.0 * glow.b - 1.0) * (sqrt(color.b) - color.b)));
}
#endif
#if defined(USING_GLOW) && !defined(USE_GLOW_SCREEN) && !defined(USE_GLOW_SOFTLIGHT) && !defined(USE_GLOW_REPLACE)
//additive
- color.rgb+=glow;
+ color.rgb += glow;
#endif
#ifdef USE_BCS
- color.rgb = mix(vec3(0.0),color.rgb,bcs.x);
- color.rgb = mix(vec3(0.5),color.rgb,bcs.y);
- color.rgb = mix(vec3(dot(vec3(1.0),color.rgb)*0.33333),color.rgb,bcs.z);
+ color.rgb = mix(vec3(0.0), color.rgb, bcs.x);
+ color.rgb = mix(vec3(0.5), color.rgb, bcs.y);
+ color.rgb = mix(vec3(dot(vec3(1.0), color.rgb) * 0.33333), color.rgb, bcs.z);
#endif
#ifdef USE_COLOR_CORRECTION
- color.r = texture(color_correction,vec2(color.r,0.0)).r;
- color.g = texture(color_correction,vec2(color.g,0.0)).g;
- color.b = texture(color_correction,vec2(color.b,0.0)).b;
+ color.r = texture(color_correction, vec2(color.r, 0.0)).r;
+ color.g = texture(color_correction, vec2(color.g, 0.0)).g;
+ color.b = texture(color_correction, vec2(color.b, 0.0)).b;
#endif
-
- frag_color=vec4(color.rgb,1.0);
+ frag_color = vec4(color.rgb, 1.0);
}