summaryrefslogtreecommitdiff
path: root/drivers
diff options
context:
space:
mode:
authorreduz <juan@okamstudio.com>2015-10-08 15:00:40 -0300
committerreduz <juan@okamstudio.com>2015-10-08 15:00:40 -0300
commitaad2bbdb6fb7c8217d7e75480b38e45f00cb3abd (patch)
tree64244b44491a06c518571857e37c6bb98e4e6173 /drivers
parent3514a87b371385cdc71a2ed36deb40cd0275fff5 (diff)
newline fixes
Diffstat (limited to 'drivers')
-rw-r--r--drivers/etc1/rg_etc1.cpp4908
-rw-r--r--drivers/etc1/rg_etc1.h152
-rw-r--r--drivers/nedmalloc/malloc.c.h11628
-rw-r--r--drivers/nedmalloc/nedmalloc.cpp2934
-rw-r--r--drivers/nedmalloc/nedmalloc.h604
-rw-r--r--drivers/openssl/register_openssl.cpp38
-rw-r--r--drivers/openssl/register_openssl.h22
-rw-r--r--drivers/rtaudio/RtAudio.cpp20468
-rw-r--r--drivers/speex/config.h104
-rw-r--r--drivers/speex/lsp.h128
-rw-r--r--drivers/speex/speex_bind.cpp128
-rw-r--r--drivers/speex/speex_bind.h96
12 files changed, 20605 insertions, 20605 deletions
diff --git a/drivers/etc1/rg_etc1.cpp b/drivers/etc1/rg_etc1.cpp
index fd109f003c..47dcb57e6b 100644
--- a/drivers/etc1/rg_etc1.cpp
+++ b/drivers/etc1/rg_etc1.cpp
@@ -1,2454 +1,2454 @@
-// File: rg_etc1.cpp - Fast, high quality ETC1 block packer/unpacker - Rich Geldreich <richgel99@gmail.com>
-// Please see ZLIB license at the end of rg_etc1.h.
-//
-// For more information Ericsson Texture Compression (ETC/ETC1), see:
-// http://www.khronos.org/registry/gles/extensions/OES/OES_compressed_ETC1_RGB8_texture.txt
-//
-// v1.03 - 5/12/13 - Initial public release
-#include "rg_etc1.h"
-
-#include <stdlib.h>
-#include <string.h>
-#include <assert.h>
-//#include <stdio.h>
-#include <math.h>
-#include <stdio.h>
-#pragma warning (disable: 4201) // nonstandard extension used : nameless struct/union
-
-#if defined(_DEBUG) || defined(DEBUG)
-#define RG_ETC1_BUILD_DEBUG
-#endif
-
-#define RG_ETC1_ASSERT assert
-
-namespace rg_etc1
-{
-
- inline long labs(long val) {
- return val < 0 ? -val : val;
- }
-
- inline int intabs(int val) {
-
- return val<0?-val:val;
- }
-
- typedef unsigned char uint8;
- typedef unsigned short uint16;
- typedef unsigned int uint;
- typedef unsigned int uint32;
- typedef long long int64;
- typedef unsigned long long uint64;
-
- const uint32 cUINT32_MAX = 0xFFFFFFFFU;
- const uint64 cUINT64_MAX = 0xFFFFFFFFFFFFFFFFULL; //0xFFFFFFFFFFFFFFFFui64;
-
- template<typename T> inline T minimum(T a, T b) { return (a < b) ? a : b; }
- template<typename T> inline T minimum(T a, T b, T c) { return minimum(minimum(a, b), c); }
- template<typename T> inline T maximum(T a, T b) { return (a > b) ? a : b; }
- template<typename T> inline T maximum(T a, T b, T c) { return maximum(maximum(a, b), c); }
- template<typename T> inline T clamp(T value, T low, T high) { return (value < low) ? low : ((value > high) ? high : value); }
- template<typename T> inline T square(T value) { return value * value; }
- template<typename T> inline void zero_object(T& obj) { memset((void*)&obj, 0, sizeof(obj)); }
- template<typename T> inline void zero_this(T* pObj) { memset((void*)pObj, 0, sizeof(*pObj)); }
-
- template<class T, size_t N> T decay_array_to_subtype(T (&a)[N]);
-
-#define RG_ETC1_ARRAY_SIZE(X) (sizeof(X) / sizeof(decay_array_to_subtype(X)))
-
- enum eNoClamp { cNoClamp };
-
- struct color_quad_u8
- {
- static inline int clamp(int v) { if (v & 0xFFFFFF00U) v = (~(static_cast<int>(v) >> 31)) & 0xFF; return v; }
-
- struct component_traits { enum { cSigned = false, cFloat = false, cMin = 0U, cMax = 255U }; };
-
- public:
- typedef unsigned char component_t;
- typedef int parameter_t;
-
- enum { cNumComps = 4 };
-
- union
- {
- struct
- {
- component_t r;
- component_t g;
- component_t b;
- component_t a;
- };
-
- component_t c[cNumComps];
-
- uint32 m_u32;
- };
-
- inline color_quad_u8()
- {
- }
-
- inline color_quad_u8(const color_quad_u8& other) : m_u32(other.m_u32)
- {
- }
-
- explicit inline color_quad_u8(parameter_t y, parameter_t alpha = component_traits::cMax)
- {
- set(y, alpha);
- }
-
- inline color_quad_u8(parameter_t red, parameter_t green, parameter_t blue, parameter_t alpha = component_traits::cMax)
- {
- set(red, green, blue, alpha);
- }
-
- explicit inline color_quad_u8(eNoClamp, parameter_t y, parameter_t alpha = component_traits::cMax)
- {
- set_noclamp_y_alpha(y, alpha);
- }
-
- inline color_quad_u8(eNoClamp, parameter_t red, parameter_t green, parameter_t blue, parameter_t alpha = component_traits::cMax)
- {
- set_noclamp_rgba(red, green, blue, alpha);
- }
-
- inline void clear()
- {
- m_u32 = 0;
- }
-
- inline color_quad_u8& operator= (const color_quad_u8& other)
- {
- m_u32 = other.m_u32;
- return *this;
- }
-
- inline color_quad_u8& set_rgb(const color_quad_u8& other)
- {
- r = other.r;
- g = other.g;
- b = other.b;
- return *this;
- }
-
- inline color_quad_u8& operator= (parameter_t y)
- {
- set(y, component_traits::cMax);
- return *this;
- }
-
- inline color_quad_u8& set(parameter_t y, parameter_t alpha = component_traits::cMax)
- {
- y = clamp(y);
- alpha = clamp(alpha);
- r = static_cast<component_t>(y);
- g = static_cast<component_t>(y);
- b = static_cast<component_t>(y);
- a = static_cast<component_t>(alpha);
- return *this;
- }
-
- inline color_quad_u8& set_noclamp_y_alpha(parameter_t y, parameter_t alpha = component_traits::cMax)
- {
- RG_ETC1_ASSERT( (y >= component_traits::cMin) && (y <= component_traits::cMax) );
- RG_ETC1_ASSERT( (alpha >= component_traits::cMin) && (alpha <= component_traits::cMax) );
-
- r = static_cast<component_t>(y);
- g = static_cast<component_t>(y);
- b = static_cast<component_t>(y);
- a = static_cast<component_t>(alpha);
- return *this;
- }
-
- inline color_quad_u8& set(parameter_t red, parameter_t green, parameter_t blue, parameter_t alpha = component_traits::cMax)
- {
- r = static_cast<component_t>(clamp(red));
- g = static_cast<component_t>(clamp(green));
- b = static_cast<component_t>(clamp(blue));
- a = static_cast<component_t>(clamp(alpha));
- return *this;
- }
-
- inline color_quad_u8& set_noclamp_rgba(parameter_t red, parameter_t green, parameter_t blue, parameter_t alpha)
- {
- RG_ETC1_ASSERT( (red >= component_traits::cMin) && (red <= component_traits::cMax) );
- RG_ETC1_ASSERT( (green >= component_traits::cMin) && (green <= component_traits::cMax) );
- RG_ETC1_ASSERT( (blue >= component_traits::cMin) && (blue <= component_traits::cMax) );
- RG_ETC1_ASSERT( (alpha >= component_traits::cMin) && (alpha <= component_traits::cMax) );
-
- r = static_cast<component_t>(red);
- g = static_cast<component_t>(green);
- b = static_cast<component_t>(blue);
- a = static_cast<component_t>(alpha);
- return *this;
- }
-
- inline color_quad_u8& set_noclamp_rgb(parameter_t red, parameter_t green, parameter_t blue)
- {
- RG_ETC1_ASSERT( (red >= component_traits::cMin) && (red <= component_traits::cMax) );
- RG_ETC1_ASSERT( (green >= component_traits::cMin) && (green <= component_traits::cMax) );
- RG_ETC1_ASSERT( (blue >= component_traits::cMin) && (blue <= component_traits::cMax) );
-
- r = static_cast<component_t>(red);
- g = static_cast<component_t>(green);
- b = static_cast<component_t>(blue);
- return *this;
- }
-
- static inline parameter_t get_min_comp() { return component_traits::cMin; }
- static inline parameter_t get_max_comp() { return component_traits::cMax; }
- static inline bool get_comps_are_signed() { return component_traits::cSigned; }
-
- inline component_t operator[] (uint i) const { RG_ETC1_ASSERT(i < cNumComps); return c[i]; }
- inline component_t& operator[] (uint i) { RG_ETC1_ASSERT(i < cNumComps); return c[i]; }
-
- inline color_quad_u8& set_component(uint i, parameter_t f)
- {
- RG_ETC1_ASSERT(i < cNumComps);
-
- c[i] = static_cast<component_t>(clamp(f));
-
- return *this;
- }
-
- inline color_quad_u8& set_grayscale(parameter_t l)
- {
- component_t x = static_cast<component_t>(clamp(l));
- c[0] = x;
- c[1] = x;
- c[2] = x;
- return *this;
- }
-
- inline color_quad_u8& clamp(const color_quad_u8& l, const color_quad_u8& h)
- {
- for (uint i = 0; i < cNumComps; i++)
- c[i] = static_cast<component_t>(rg_etc1::clamp<parameter_t>(c[i], l[i], h[i]));
- return *this;
- }
-
- inline color_quad_u8& clamp(parameter_t l, parameter_t h)
- {
- for (uint i = 0; i < cNumComps; i++)
- c[i] = static_cast<component_t>(rg_etc1::clamp<parameter_t>(c[i], l, h));
- return *this;
- }
-
- // Returns CCIR 601 luma (consistent with color_utils::RGB_To_Y).
- inline parameter_t get_luma() const
- {
- return static_cast<parameter_t>((19595U * r + 38470U * g + 7471U * b + 32768U) >> 16U);
- }
-
- // Returns REC 709 luma.
- inline parameter_t get_luma_rec709() const
- {
- return static_cast<parameter_t>((13938U * r + 46869U * g + 4729U * b + 32768U) >> 16U);
- }
-
- inline uint squared_distance_rgb(const color_quad_u8& c) const
- {
- return rg_etc1::square(r - c.r) + rg_etc1::square(g - c.g) + rg_etc1::square(b - c.b);
- }
-
- inline uint squared_distance_rgba(const color_quad_u8& c) const
- {
- return rg_etc1::square(r - c.r) + rg_etc1::square(g - c.g) + rg_etc1::square(b - c.b) + rg_etc1::square(a - c.a);
- }
-
- inline bool rgb_equals(const color_quad_u8& rhs) const
- {
- return (r == rhs.r) && (g == rhs.g) && (b == rhs.b);
- }
-
- inline bool operator== (const color_quad_u8& rhs) const
- {
- return m_u32 == rhs.m_u32;
- }
-
- color_quad_u8& operator+= (const color_quad_u8& other)
- {
- for (uint i = 0; i < 4; i++)
- c[i] = static_cast<component_t>(clamp(c[i] + other.c[i]));
- return *this;
- }
-
- color_quad_u8& operator-= (const color_quad_u8& other)
- {
- for (uint i = 0; i < 4; i++)
- c[i] = static_cast<component_t>(clamp(c[i] - other.c[i]));
- return *this;
- }
-
- friend color_quad_u8 operator+ (const color_quad_u8& lhs, const color_quad_u8& rhs)
- {
- color_quad_u8 result(lhs);
- result += rhs;
- return result;
- }
-
- friend color_quad_u8 operator- (const color_quad_u8& lhs, const color_quad_u8& rhs)
- {
- color_quad_u8 result(lhs);
- result -= rhs;
- return result;
- }
- }; // class color_quad_u8
-
- struct vec3F
- {
- float m_s[3];
-
- inline vec3F() { }
- inline vec3F(float s) { m_s[0] = s; m_s[1] = s; m_s[2] = s; }
- inline vec3F(float x, float y, float z) { m_s[0] = x; m_s[1] = y; m_s[2] = z; }
-
- inline float operator[] (uint i) const { RG_ETC1_ASSERT(i < 3); return m_s[i]; }
-
- inline vec3F& operator += (const vec3F& other) { for (uint i = 0; i < 3; i++) m_s[i] += other.m_s[i]; return *this; }
-
- inline vec3F& operator *= (float s) { for (uint i = 0; i < 3; i++) m_s[i] *= s; return *this; }
- };
-
- enum etc_constants
- {
- cETC1BytesPerBlock = 8U,
-
- cETC1SelectorBits = 2U,
- cETC1SelectorValues = 1U << cETC1SelectorBits,
- cETC1SelectorMask = cETC1SelectorValues - 1U,
-
- cETC1BlockShift = 2U,
- cETC1BlockSize = 1U << cETC1BlockShift,
-
- cETC1LSBSelectorIndicesBitOffset = 0,
- cETC1MSBSelectorIndicesBitOffset = 16,
-
- cETC1FlipBitOffset = 32,
- cETC1DiffBitOffset = 33,
-
- cETC1IntenModifierNumBits = 3,
- cETC1IntenModifierValues = 1 << cETC1IntenModifierNumBits,
- cETC1RightIntenModifierTableBitOffset = 34,
- cETC1LeftIntenModifierTableBitOffset = 37,
-
- // Base+Delta encoding (5 bit bases, 3 bit delta)
- cETC1BaseColorCompNumBits = 5,
- cETC1BaseColorCompMax = 1 << cETC1BaseColorCompNumBits,
-
- cETC1DeltaColorCompNumBits = 3,
- cETC1DeltaColorComp = 1 << cETC1DeltaColorCompNumBits,
- cETC1DeltaColorCompMax = 1 << cETC1DeltaColorCompNumBits,
-
- cETC1BaseColor5RBitOffset = 59,
- cETC1BaseColor5GBitOffset = 51,
- cETC1BaseColor5BBitOffset = 43,
-
- cETC1DeltaColor3RBitOffset = 56,
- cETC1DeltaColor3GBitOffset = 48,
- cETC1DeltaColor3BBitOffset = 40,
-
- // Absolute (non-delta) encoding (two 4-bit per component bases)
- cETC1AbsColorCompNumBits = 4,
- cETC1AbsColorCompMax = 1 << cETC1AbsColorCompNumBits,
-
- cETC1AbsColor4R1BitOffset = 60,
- cETC1AbsColor4G1BitOffset = 52,
- cETC1AbsColor4B1BitOffset = 44,
-
- cETC1AbsColor4R2BitOffset = 56,
- cETC1AbsColor4G2BitOffset = 48,
- cETC1AbsColor4B2BitOffset = 40,
-
- cETC1ColorDeltaMin = -4,
- cETC1ColorDeltaMax = 3,
-
- // Delta3:
- // 0 1 2 3 4 5 6 7
- // 000 001 010 011 100 101 110 111
- // 0 1 2 3 -4 -3 -2 -1
- };
-
- static uint8 g_quant5_tab[256+16];
-
-
- static const int g_etc1_inten_tables[cETC1IntenModifierValues][cETC1SelectorValues] =
- {
- { -8, -2, 2, 8 }, { -17, -5, 5, 17 }, { -29, -9, 9, 29 }, { -42, -13, 13, 42 },
- { -60, -18, 18, 60 }, { -80, -24, 24, 80 }, { -106, -33, 33, 106 }, { -183, -47, 47, 183 }
- };
-
- static const uint8 g_etc1_to_selector_index[cETC1SelectorValues] = { 2, 3, 1, 0 };
- static const uint8 g_selector_index_to_etc1[cETC1SelectorValues] = { 3, 2, 0, 1 };
-
- // Given an ETC1 diff/inten_table/selector, and an 8-bit desired color, this table encodes the best packed_color in the low byte, and the abs error in the high byte.
- static uint16 g_etc1_inverse_lookup[2*8*4][256]; // [diff/inten_table/selector][desired_color]
-
- // g_color8_to_etc_block_config[color][table_index] = Supplies for each 8-bit color value a list of packed ETC1 diff/intensity table/selectors/packed_colors that map to that color.
- // To pack: diff | (inten << 1) | (selector << 4) | (packed_c << 8)
- static const uint16 g_color8_to_etc_block_config_0_255[2][33] =
- {
- { 0x0000, 0x0010, 0x0002, 0x0012, 0x0004, 0x0014, 0x0006, 0x0016, 0x0008, 0x0018, 0x000A, 0x001A, 0x000C, 0x001C, 0x000E, 0x001E,
- 0x0001, 0x0011, 0x0003, 0x0013, 0x0005, 0x0015, 0x0007, 0x0017, 0x0009, 0x0019, 0x000B, 0x001B, 0x000D, 0x001D, 0x000F, 0x001F, 0xFFFF },
- { 0x0F20, 0x0F30, 0x0E32, 0x0F22, 0x0E34, 0x0F24, 0x0D36, 0x0F26, 0x0C38, 0x0E28, 0x0B3A, 0x0E2A, 0x093C, 0x0E2C, 0x053E, 0x0D2E,
- 0x1E31, 0x1F21, 0x1D33, 0x1F23, 0x1C35, 0x1E25, 0x1A37, 0x1E27, 0x1839, 0x1D29, 0x163B, 0x1C2B, 0x133D, 0x1B2D, 0x093F, 0x1A2F, 0xFFFF },
- };
-
- // Really only [254][11].
- static const uint16 g_color8_to_etc_block_config_1_to_254[254][12] =
- {
- { 0x021C, 0x0D0D, 0xFFFF }, { 0x0020, 0x0021, 0x0A0B, 0x061F, 0xFFFF }, { 0x0113, 0x0217, 0xFFFF }, { 0x0116, 0x031E,
- 0x0B0E, 0x0405, 0xFFFF }, { 0x0022, 0x0204, 0x050A, 0x0023, 0xFFFF }, { 0x0111, 0x0319, 0x0809, 0x170F, 0xFFFF }, {
- 0x0303, 0x0215, 0x0607, 0xFFFF }, { 0x0030, 0x0114, 0x0408, 0x0031, 0x0201, 0x051D, 0xFFFF }, { 0x0100, 0x0024, 0x0306,
- 0x0025, 0x041B, 0x0E0D, 0xFFFF }, { 0x021A, 0x0121, 0x0B0B, 0x071F, 0xFFFF }, { 0x0213, 0x0317, 0xFFFF }, { 0x0112,
- 0x0505, 0xFFFF }, { 0x0026, 0x070C, 0x0123, 0x0027, 0xFFFF }, { 0x0211, 0x0909, 0xFFFF }, { 0x0110, 0x0315, 0x0707,
- 0x0419, 0x180F, 0xFFFF }, { 0x0218, 0x0131, 0x0301, 0x0403, 0x061D, 0xFFFF }, { 0x0032, 0x0202, 0x0033, 0x0125, 0x051B,
- 0x0F0D, 0xFFFF }, { 0x0028, 0x031C, 0x0221, 0x0029, 0xFFFF }, { 0x0120, 0x0313, 0x0C0B, 0x081F, 0xFFFF }, { 0x0605,
- 0x0417, 0xFFFF }, { 0x0216, 0x041E, 0x0C0E, 0x0223, 0x0127, 0xFFFF }, { 0x0122, 0x0304, 0x060A, 0x0311, 0x0A09, 0xFFFF
- }, { 0x0519, 0x190F, 0xFFFF }, { 0x002A, 0x0231, 0x0503, 0x0415, 0x0807, 0x002B, 0x071D, 0xFFFF }, { 0x0130, 0x0214,
- 0x0508, 0x0401, 0x0133, 0x0225, 0x061B, 0xFFFF }, { 0x0200, 0x0124, 0x0406, 0x0321, 0x0129, 0x100D, 0xFFFF }, { 0x031A,
- 0x0D0B, 0x091F, 0xFFFF }, { 0x0413, 0x0705, 0x0517, 0xFFFF }, { 0x0212, 0x0034, 0x0323, 0x0035, 0x0227, 0xFFFF }, {
- 0x0126, 0x080C, 0x0B09, 0xFFFF }, { 0x0411, 0x0619, 0x1A0F, 0xFFFF }, { 0x0210, 0x0331, 0x0603, 0x0515, 0x0907, 0x012B,
- 0xFFFF }, { 0x0318, 0x002C, 0x0501, 0x0233, 0x0325, 0x071B, 0x002D, 0x081D, 0xFFFF }, { 0x0132, 0x0302, 0x0229, 0x110D,
- 0xFFFF }, { 0x0128, 0x041C, 0x0421, 0x0E0B, 0x0A1F, 0xFFFF }, { 0x0220, 0x0513, 0x0617, 0xFFFF }, { 0x0135, 0x0805,
- 0x0327, 0xFFFF }, { 0x0316, 0x051E, 0x0D0E, 0x0423, 0xFFFF }, { 0x0222, 0x0404, 0x070A, 0x0511, 0x0719, 0x0C09, 0x1B0F,
- 0xFFFF }, { 0x0703, 0x0615, 0x0A07, 0x022B, 0xFFFF }, { 0x012A, 0x0431, 0x0601, 0x0333, 0x012D, 0x091D, 0xFFFF }, {
- 0x0230, 0x0314, 0x0036, 0x0608, 0x0425, 0x0037, 0x0329, 0x081B, 0x120D, 0xFFFF }, { 0x0300, 0x0224, 0x0506, 0x0521,
- 0x0F0B, 0x0B1F, 0xFFFF }, { 0x041A, 0x0613, 0x0717, 0xFFFF }, { 0x0235, 0x0905, 0xFFFF }, { 0x0312, 0x0134, 0x0523,
- 0x0427, 0xFFFF }, { 0x0226, 0x090C, 0x002E, 0x0611, 0x0D09, 0x002F, 0xFFFF }, { 0x0715, 0x0B07, 0x0819, 0x032B, 0x1C0F,
- 0xFFFF }, { 0x0310, 0x0531, 0x0701, 0x0803, 0x022D, 0x0A1D, 0xFFFF }, { 0x0418, 0x012C, 0x0433, 0x0525, 0x0137, 0x091B,
- 0x130D, 0xFFFF }, { 0x0232, 0x0402, 0x0621, 0x0429, 0xFFFF }, { 0x0228, 0x051C, 0x0713, 0x100B, 0x0C1F, 0xFFFF }, {
- 0x0320, 0x0335, 0x0A05, 0x0817, 0xFFFF }, { 0x0623, 0x0527, 0xFFFF }, { 0x0416, 0x061E, 0x0E0E, 0x0711, 0x0E09, 0x012F,
- 0xFFFF }, { 0x0322, 0x0504, 0x080A, 0x0919, 0x1D0F, 0xFFFF }, { 0x0631, 0x0903, 0x0815, 0x0C07, 0x042B, 0x032D, 0x0B1D,
- 0xFFFF }, { 0x022A, 0x0801, 0x0533, 0x0625, 0x0237, 0x0A1B, 0xFFFF }, { 0x0330, 0x0414, 0x0136, 0x0708, 0x0721, 0x0529,
- 0x140D, 0xFFFF }, { 0x0400, 0x0324, 0x0606, 0x0038, 0x0039, 0x110B, 0x0D1F, 0xFFFF }, { 0x051A, 0x0813, 0x0B05, 0x0917,
- 0xFFFF }, { 0x0723, 0x0435, 0x0627, 0xFFFF }, { 0x0412, 0x0234, 0x0F09, 0x022F, 0xFFFF }, { 0x0326, 0x0A0C, 0x012E,
- 0x0811, 0x0A19, 0x1E0F, 0xFFFF }, { 0x0731, 0x0A03, 0x0915, 0x0D07, 0x052B, 0xFFFF }, { 0x0410, 0x0901, 0x0633, 0x0725,
- 0x0337, 0x0B1B, 0x042D, 0x0C1D, 0xFFFF }, { 0x0518, 0x022C, 0x0629, 0x150D, 0xFFFF }, { 0x0332, 0x0502, 0x0821, 0x0139,
- 0x120B, 0x0E1F, 0xFFFF }, { 0x0328, 0x061C, 0x0913, 0x0A17, 0xFFFF }, { 0x0420, 0x0535, 0x0C05, 0x0727, 0xFFFF }, {
- 0x0823, 0x032F, 0xFFFF }, { 0x0516, 0x071E, 0x0F0E, 0x0911, 0x0B19, 0x1009, 0x1F0F, 0xFFFF }, { 0x0422, 0x0604, 0x090A,
- 0x0B03, 0x0A15, 0x0E07, 0x062B, 0xFFFF }, { 0x0831, 0x0A01, 0x0733, 0x052D, 0x0D1D, 0xFFFF }, { 0x032A, 0x0825, 0x0437,
- 0x0729, 0x0C1B, 0x160D, 0xFFFF }, { 0x0430, 0x0514, 0x0236, 0x0808, 0x0921, 0x0239, 0x130B, 0x0F1F, 0xFFFF }, { 0x0500,
- 0x0424, 0x0706, 0x0138, 0x0A13, 0x0B17, 0xFFFF }, { 0x061A, 0x0635, 0x0D05, 0xFFFF }, { 0x0923, 0x0827, 0xFFFF }, {
- 0x0512, 0x0334, 0x003A, 0x0A11, 0x1109, 0x003B, 0x042F, 0xFFFF }, { 0x0426, 0x0B0C, 0x022E, 0x0B15, 0x0F07, 0x0C19,
- 0x072B, 0xFFFF }, { 0x0931, 0x0B01, 0x0C03, 0x062D, 0x0E1D, 0xFFFF }, { 0x0510, 0x0833, 0x0925, 0x0537, 0x0D1B, 0x170D,
- 0xFFFF }, { 0x0618, 0x032C, 0x0A21, 0x0339, 0x0829, 0xFFFF }, { 0x0432, 0x0602, 0x0B13, 0x140B, 0x101F, 0xFFFF }, {
- 0x0428, 0x071C, 0x0735, 0x0E05, 0x0C17, 0xFFFF }, { 0x0520, 0x0A23, 0x0927, 0xFFFF }, { 0x0B11, 0x1209, 0x013B, 0x052F,
- 0xFFFF }, { 0x0616, 0x081E, 0x0D19, 0xFFFF }, { 0x0522, 0x0704, 0x0A0A, 0x0A31, 0x0D03, 0x0C15, 0x1007, 0x082B, 0x072D,
- 0x0F1D, 0xFFFF }, { 0x0C01, 0x0933, 0x0A25, 0x0637, 0x0E1B, 0xFFFF }, { 0x042A, 0x0B21, 0x0929, 0x180D, 0xFFFF }, {
- 0x0530, 0x0614, 0x0336, 0x0908, 0x0439, 0x150B, 0x111F, 0xFFFF }, { 0x0600, 0x0524, 0x0806, 0x0238, 0x0C13, 0x0F05,
- 0x0D17, 0xFFFF }, { 0x071A, 0x0B23, 0x0835, 0x0A27, 0xFFFF }, { 0x1309, 0x023B, 0x062F, 0xFFFF }, { 0x0612, 0x0434,
- 0x013A, 0x0C11, 0x0E19, 0xFFFF }, { 0x0526, 0x0C0C, 0x032E, 0x0B31, 0x0E03, 0x0D15, 0x1107, 0x092B, 0xFFFF }, { 0x0D01,
- 0x0A33, 0x0B25, 0x0737, 0x0F1B, 0x082D, 0x101D, 0xFFFF }, { 0x0610, 0x0A29, 0x190D, 0xFFFF }, { 0x0718, 0x042C, 0x0C21,
- 0x0539, 0x160B, 0x121F, 0xFFFF }, { 0x0532, 0x0702, 0x0D13, 0x0E17, 0xFFFF }, { 0x0528, 0x081C, 0x0935, 0x1005, 0x0B27,
- 0xFFFF }, { 0x0620, 0x0C23, 0x033B, 0x072F, 0xFFFF }, { 0x0D11, 0x0F19, 0x1409, 0xFFFF }, { 0x0716, 0x003C, 0x091E,
- 0x0F03, 0x0E15, 0x1207, 0x0A2B, 0x003D, 0xFFFF }, { 0x0622, 0x0804, 0x0B0A, 0x0C31, 0x0E01, 0x0B33, 0x092D, 0x111D,
- 0xFFFF }, { 0x0C25, 0x0837, 0x0B29, 0x101B, 0x1A0D, 0xFFFF }, { 0x052A, 0x0D21, 0x0639, 0x170B, 0x131F, 0xFFFF }, {
- 0x0630, 0x0714, 0x0436, 0x0A08, 0x0E13, 0x0F17, 0xFFFF }, { 0x0700, 0x0624, 0x0906, 0x0338, 0x0A35, 0x1105, 0xFFFF }, {
- 0x081A, 0x0D23, 0x0C27, 0xFFFF }, { 0x0E11, 0x1509, 0x043B, 0x082F, 0xFFFF }, { 0x0712, 0x0534, 0x023A, 0x0F15, 0x1307,
- 0x1019, 0x0B2B, 0x013D, 0xFFFF }, { 0x0626, 0x0D0C, 0x042E, 0x0D31, 0x0F01, 0x1003, 0x0A2D, 0x121D, 0xFFFF }, { 0x0C33,
- 0x0D25, 0x0937, 0x111B, 0x1B0D, 0xFFFF }, { 0x0710, 0x0E21, 0x0739, 0x0C29, 0xFFFF }, { 0x0818, 0x052C, 0x0F13, 0x180B,
- 0x141F, 0xFFFF }, { 0x0632, 0x0802, 0x0B35, 0x1205, 0x1017, 0xFFFF }, { 0x0628, 0x091C, 0x0E23, 0x0D27, 0xFFFF }, {
- 0x0720, 0x0F11, 0x1609, 0x053B, 0x092F, 0xFFFF }, { 0x1119, 0x023D, 0xFFFF }, { 0x0816, 0x013C, 0x0A1E, 0x0E31, 0x1103,
- 0x1015, 0x1407, 0x0C2B, 0x0B2D, 0x131D, 0xFFFF }, { 0x0722, 0x0904, 0x0C0A, 0x1001, 0x0D33, 0x0E25, 0x0A37, 0x121B,
- 0xFFFF }, { 0x0F21, 0x0D29, 0x1C0D, 0xFFFF }, { 0x062A, 0x0839, 0x190B, 0x151F, 0xFFFF }, { 0x0730, 0x0814, 0x0536,
- 0x0B08, 0x1013, 0x1305, 0x1117, 0xFFFF }, { 0x0800, 0x0724, 0x0A06, 0x0438, 0x0F23, 0x0C35, 0x0E27, 0xFFFF }, { 0x091A,
- 0x1709, 0x063B, 0x0A2F, 0xFFFF }, { 0x1011, 0x1219, 0x033D, 0xFFFF }, { 0x0812, 0x0634, 0x033A, 0x0F31, 0x1203, 0x1115,
- 0x1507, 0x0D2B, 0xFFFF }, { 0x0726, 0x0E0C, 0x052E, 0x1101, 0x0E33, 0x0F25, 0x0B37, 0x131B, 0x0C2D, 0x141D, 0xFFFF }, {
- 0x0E29, 0x1D0D, 0xFFFF }, { 0x0810, 0x1021, 0x0939, 0x1A0B, 0x161F, 0xFFFF }, { 0x0918, 0x062C, 0x1113, 0x1217, 0xFFFF
- }, { 0x0732, 0x0902, 0x0D35, 0x1405, 0x0F27, 0xFFFF }, { 0x0728, 0x0A1C, 0x1023, 0x073B, 0x0B2F, 0xFFFF }, { 0x0820,
- 0x1111, 0x1319, 0x1809, 0xFFFF }, { 0x1303, 0x1215, 0x1607, 0x0E2B, 0x043D, 0xFFFF }, { 0x0916, 0x023C, 0x0B1E, 0x1031,
- 0x1201, 0x0F33, 0x0D2D, 0x151D, 0xFFFF }, { 0x0822, 0x0A04, 0x0D0A, 0x1025, 0x0C37, 0x0F29, 0x141B, 0x1E0D, 0xFFFF }, {
- 0x1121, 0x0A39, 0x1B0B, 0x171F, 0xFFFF }, { 0x072A, 0x1213, 0x1317, 0xFFFF }, { 0x0830, 0x0914, 0x0636, 0x0C08, 0x0E35,
- 0x1505, 0xFFFF }, { 0x0900, 0x0824, 0x0B06, 0x0538, 0x1123, 0x1027, 0xFFFF }, { 0x0A1A, 0x1211, 0x1909, 0x083B, 0x0C2F,
- 0xFFFF }, { 0x1315, 0x1707, 0x1419, 0x0F2B, 0x053D, 0xFFFF }, { 0x0912, 0x0734, 0x043A, 0x1131, 0x1301, 0x1403, 0x0E2D,
- 0x161D, 0xFFFF }, { 0x0826, 0x0F0C, 0x062E, 0x1033, 0x1125, 0x0D37, 0x151B, 0x1F0D, 0xFFFF }, { 0x1221, 0x0B39, 0x1029,
- 0xFFFF }, { 0x0910, 0x1313, 0x1C0B, 0x181F, 0xFFFF }, { 0x0A18, 0x072C, 0x0F35, 0x1605, 0x1417, 0xFFFF }, { 0x0832,
- 0x0A02, 0x1223, 0x1127, 0xFFFF }, { 0x0828, 0x0B1C, 0x1311, 0x1A09, 0x093B, 0x0D2F, 0xFFFF }, { 0x0920, 0x1519, 0x063D,
- 0xFFFF }, { 0x1231, 0x1503, 0x1415, 0x1807, 0x102B, 0x0F2D, 0x171D, 0xFFFF }, { 0x0A16, 0x033C, 0x0C1E, 0x1401, 0x1133,
- 0x1225, 0x0E37, 0x161B, 0xFFFF }, { 0x0922, 0x0B04, 0x0E0A, 0x1321, 0x1129, 0xFFFF }, { 0x0C39, 0x1D0B, 0x191F, 0xFFFF
- }, { 0x082A, 0x1413, 0x1705, 0x1517, 0xFFFF }, { 0x0930, 0x0A14, 0x0736, 0x0D08, 0x1323, 0x1035, 0x1227, 0xFFFF }, {
- 0x0A00, 0x0924, 0x0C06, 0x0638, 0x1B09, 0x0A3B, 0x0E2F, 0xFFFF }, { 0x0B1A, 0x1411, 0x1619, 0x073D, 0xFFFF }, { 0x1331,
- 0x1603, 0x1515, 0x1907, 0x112B, 0xFFFF }, { 0x0A12, 0x0834, 0x053A, 0x1501, 0x1233, 0x1325, 0x0F37, 0x171B, 0x102D,
- 0x181D, 0xFFFF }, { 0x0926, 0x072E, 0x1229, 0xFFFF }, { 0x1421, 0x0D39, 0x1E0B, 0x1A1F, 0xFFFF }, { 0x0A10, 0x1513,
- 0x1617, 0xFFFF }, { 0x0B18, 0x082C, 0x1135, 0x1805, 0x1327, 0xFFFF }, { 0x0932, 0x0B02, 0x1423, 0x0B3B, 0x0F2F, 0xFFFF
- }, { 0x0928, 0x0C1C, 0x1511, 0x1719, 0x1C09, 0xFFFF }, { 0x0A20, 0x1703, 0x1615, 0x1A07, 0x122B, 0x083D, 0xFFFF }, {
- 0x1431, 0x1601, 0x1333, 0x112D, 0x191D, 0xFFFF }, { 0x0B16, 0x043C, 0x0D1E, 0x1425, 0x1037, 0x1329, 0x181B, 0xFFFF }, {
- 0x0A22, 0x0C04, 0x0F0A, 0x1521, 0x0E39, 0x1F0B, 0x1B1F, 0xFFFF }, { 0x1613, 0x1717, 0xFFFF }, { 0x092A, 0x1235, 0x1905,
- 0xFFFF }, { 0x0A30, 0x0B14, 0x0836, 0x0E08, 0x1523, 0x1427, 0xFFFF }, { 0x0B00, 0x0A24, 0x0D06, 0x0738, 0x1611, 0x1D09,
- 0x0C3B, 0x102F, 0xFFFF }, { 0x0C1A, 0x1715, 0x1B07, 0x1819, 0x132B, 0x093D, 0xFFFF }, { 0x1531, 0x1701, 0x1803, 0x122D,
- 0x1A1D, 0xFFFF }, { 0x0B12, 0x0934, 0x063A, 0x1433, 0x1525, 0x1137, 0x191B, 0xFFFF }, { 0x0A26, 0x003E, 0x082E, 0x1621,
- 0x0F39, 0x1429, 0x003F, 0xFFFF }, { 0x1713, 0x1C1F, 0xFFFF }, { 0x0B10, 0x1335, 0x1A05, 0x1817, 0xFFFF }, { 0x0C18,
- 0x092C, 0x1623, 0x1527, 0xFFFF }, { 0x0A32, 0x0C02, 0x1711, 0x1E09, 0x0D3B, 0x112F, 0xFFFF }, { 0x0A28, 0x0D1C, 0x1919,
- 0x0A3D, 0xFFFF }, { 0x0B20, 0x1631, 0x1903, 0x1815, 0x1C07, 0x142B, 0x132D, 0x1B1D, 0xFFFF }, { 0x1801, 0x1533, 0x1625,
- 0x1237, 0x1A1B, 0xFFFF }, { 0x0C16, 0x053C, 0x0E1E, 0x1721, 0x1529, 0x013F, 0xFFFF }, { 0x0B22, 0x0D04, 0x1039, 0x1D1F,
- 0xFFFF }, { 0x1813, 0x1B05, 0x1917, 0xFFFF }, { 0x0A2A, 0x1723, 0x1435, 0x1627, 0xFFFF }, { 0x0B30, 0x0C14, 0x0936,
- 0x0F08, 0x1F09, 0x0E3B, 0x122F, 0xFFFF }, { 0x0C00, 0x0B24, 0x0E06, 0x0838, 0x1811, 0x1A19, 0x0B3D, 0xFFFF }, { 0x0D1A,
- 0x1731, 0x1A03, 0x1915, 0x1D07, 0x152B, 0xFFFF }, { 0x1901, 0x1633, 0x1725, 0x1337, 0x1B1B, 0x142D, 0x1C1D, 0xFFFF }, {
- 0x0C12, 0x0A34, 0x073A, 0x1629, 0x023F, 0xFFFF }, { 0x0B26, 0x013E, 0x092E, 0x1821, 0x1139, 0x1E1F, 0xFFFF }, { 0x1913,
- 0x1A17, 0xFFFF }, { 0x0C10, 0x1535, 0x1C05, 0x1727, 0xFFFF }, { 0x0D18, 0x0A2C, 0x1823, 0x0F3B, 0x132F, 0xFFFF }, {
- 0x0B32, 0x0D02, 0x1911, 0x1B19, 0xFFFF }, { 0x0B28, 0x0E1C, 0x1B03, 0x1A15, 0x1E07, 0x162B, 0x0C3D, 0xFFFF }, { 0x0C20,
- 0x1831, 0x1A01, 0x1733, 0x152D, 0x1D1D, 0xFFFF }, { 0x1825, 0x1437, 0x1729, 0x1C1B, 0x033F, 0xFFFF }, { 0x0D16, 0x063C,
- 0x0F1E, 0x1921, 0x1239, 0x1F1F, 0xFFFF }, { 0x0C22, 0x0E04, 0x1A13, 0x1B17, 0xFFFF }, { 0x1635, 0x1D05, 0xFFFF }, {
- 0x0B2A, 0x1923, 0x1827, 0xFFFF }, { 0x0C30, 0x0D14, 0x0A36, 0x1A11, 0x103B, 0x142F, 0xFFFF }, { 0x0D00, 0x0C24, 0x0F06,
- 0x0938, 0x1B15, 0x1F07, 0x1C19, 0x172B, 0x0D3D, 0xFFFF }, { 0x0E1A, 0x1931, 0x1B01, 0x1C03, 0x162D, 0x1E1D, 0xFFFF }, {
- 0x1833, 0x1925, 0x1537, 0x1D1B, 0xFFFF }, { 0x0D12, 0x0B34, 0x083A, 0x1A21, 0x1339, 0x1829, 0x043F, 0xFFFF }, { 0x0C26,
- 0x023E, 0x0A2E, 0x1B13, 0xFFFF }, { 0x1735, 0x1E05, 0x1C17, 0xFFFF }, { 0x0D10, 0x1A23, 0x1927, 0xFFFF }, { 0x0E18,
- 0x0B2C, 0x1B11, 0x113B, 0x152F, 0xFFFF }, { 0x0C32, 0x0E02, 0x1D19, 0x0E3D, 0xFFFF }, { 0x0C28, 0x0F1C, 0x1A31, 0x1D03,
- 0x1C15, 0x182B, 0x172D, 0x1F1D, 0xFFFF }, { 0x0D20, 0x1C01, 0x1933, 0x1A25, 0x1637, 0x1E1B, 0xFFFF }, { 0x1B21, 0x1929,
- 0x053F, 0xFFFF }, { 0x0E16, 0x073C, 0x1439, 0xFFFF }, { 0x0D22, 0x0F04, 0x1C13, 0x1F05, 0x1D17, 0xFFFF }, { 0x1B23,
- 0x1835, 0x1A27, 0xFFFF }, { 0x0C2A, 0x123B, 0x162F, 0xFFFF }, { 0x0D30, 0x0E14, 0x0B36, 0x1C11, 0x1E19, 0x0F3D, 0xFFFF
- }, { 0x0E00, 0x0D24, 0x0A38, 0x1B31, 0x1E03, 0x1D15, 0x192B, 0xFFFF }, { 0x0F1A, 0x1D01, 0x1A33, 0x1B25, 0x1737, 0x1F1B,
- 0x182D, 0xFFFF }, { 0x1A29, 0x063F, 0xFFFF }, { 0x0E12, 0x0C34, 0x093A, 0x1C21, 0x1539, 0xFFFF }, { 0x0D26, 0x033E,
- 0x0B2E, 0x1D13, 0x1E17, 0xFFFF }, { 0x1935, 0x1B27, 0xFFFF }, { 0x0E10, 0x1C23, 0x133B, 0x172F, 0xFFFF }, { 0x0F18,
- 0x0C2C, 0x1D11, 0x1F19, 0xFFFF }, { 0x0D32, 0x0F02, 0x1F03, 0x1E15, 0x1A2B, 0x103D, 0xFFFF }, { 0x0D28, 0x1C31, 0x1E01,
- 0x1B33, 0x192D, 0xFFFF }, { 0x0E20, 0x1C25, 0x1837, 0x1B29, 0x073F, 0xFFFF }, { 0x1D21, 0x1639, 0xFFFF }, { 0x0F16,
- 0x083C, 0x1E13, 0x1F17, 0xFFFF }, { 0x0E22, 0x1A35, 0xFFFF }, { 0x1D23, 0x1C27, 0xFFFF }, { 0x0D2A, 0x1E11, 0x143B,
- 0x182F, 0xFFFF }, { 0x0E30, 0x0F14, 0x0C36, 0x1F15, 0x1B2B, 0x113D, 0xFFFF }, { 0x0F00, 0x0E24, 0x0B38, 0x1D31, 0x1F01,
- 0x1A2D, 0xFFFF }, { 0x1C33, 0x1D25, 0x1937, 0xFFFF }, { 0x1E21, 0x1739, 0x1C29, 0x083F, 0xFFFF }, { 0x0F12, 0x0D34,
- 0x0A3A, 0x1F13, 0xFFFF }, { 0x0E26, 0x043E, 0x0C2E, 0x1B35, 0xFFFF }, { 0x1E23, 0x1D27, 0xFFFF }, { 0x0F10, 0x1F11,
- 0x153B, 0x192F, 0xFFFF }, { 0x0D2C, 0x123D, 0xFFFF },
- };
-
- struct etc1_block
- {
- // big endian uint64:
- // bit ofs: 56 48 40 32 24 16 8 0
- // byte ofs: b0, b1, b2, b3, b4, b5, b6, b7
- union
- {
- uint64 m_uint64;
- uint8 m_bytes[8];
- };
-
- uint8 m_low_color[2];
- uint8 m_high_color[2];
-
- enum { cNumSelectorBytes = 4 };
- uint8 m_selectors[cNumSelectorBytes];
-
- inline void clear()
- {
- zero_this(this);
- }
-
- inline uint get_byte_bits(uint ofs, uint num) const
- {
- RG_ETC1_ASSERT((ofs + num) <= 64U);
- RG_ETC1_ASSERT(num && (num <= 8U));
- RG_ETC1_ASSERT((ofs >> 3) == ((ofs + num - 1) >> 3));
- const uint byte_ofs = 7 - (ofs >> 3);
- const uint byte_bit_ofs = ofs & 7;
- return (m_bytes[byte_ofs] >> byte_bit_ofs) & ((1 << num) - 1);
- }
-
- inline void set_byte_bits(uint ofs, uint num, uint bits)
- {
- RG_ETC1_ASSERT((ofs + num) <= 64U);
- RG_ETC1_ASSERT(num && (num < 32U));
- RG_ETC1_ASSERT((ofs >> 3) == ((ofs + num - 1) >> 3));
- RG_ETC1_ASSERT(bits < (1U << num));
- const uint byte_ofs = 7 - (ofs >> 3);
- const uint byte_bit_ofs = ofs & 7;
- const uint mask = (1 << num) - 1;
- m_bytes[byte_ofs] &= ~(mask << byte_bit_ofs);
- m_bytes[byte_ofs] |= (bits << byte_bit_ofs);
- }
-
- // false = left/right subblocks
- // true = upper/lower subblocks
- inline bool get_flip_bit() const
- {
- return (m_bytes[3] & 1) != 0;
- }
-
- inline void set_flip_bit(bool flip)
- {
- m_bytes[3] &= ~1;
- m_bytes[3] |= static_cast<uint8>(flip);
- }
-
- inline bool get_diff_bit() const
- {
- return (m_bytes[3] & 2) != 0;
- }
-
- inline void set_diff_bit(bool diff)
- {
- m_bytes[3] &= ~2;
- m_bytes[3] |= (static_cast<uint>(diff) << 1);
- }
-
- // Returns intensity modifier table (0-7) used by subblock subblock_id.
- // subblock_id=0 left/top (CW 1), 1=right/bottom (CW 2)
- inline uint get_inten_table(uint subblock_id) const
- {
- RG_ETC1_ASSERT(subblock_id < 2);
- const uint ofs = subblock_id ? 2 : 5;
- return (m_bytes[3] >> ofs) & 7;
- }
-
- // Sets intensity modifier table (0-7) used by subblock subblock_id (0 or 1)
- inline void set_inten_table(uint subblock_id, uint t)
- {
- RG_ETC1_ASSERT(subblock_id < 2);
- RG_ETC1_ASSERT(t < 8);
- const uint ofs = subblock_id ? 2 : 5;
- m_bytes[3] &= ~(7 << ofs);
- m_bytes[3] |= (t << ofs);
- }
-
- // Returned selector value ranges from 0-3 and is a direct index into g_etc1_inten_tables.
- inline uint get_selector(uint x, uint y) const
- {
- RG_ETC1_ASSERT((x | y) < 4);
-
- const uint bit_index = x * 4 + y;
- const uint byte_bit_ofs = bit_index & 7;
- const uint8 *p = &m_bytes[7 - (bit_index >> 3)];
- const uint lsb = (p[0] >> byte_bit_ofs) & 1;
- const uint msb = (p[-2] >> byte_bit_ofs) & 1;
- const uint val = lsb | (msb << 1);
-
- return g_etc1_to_selector_index[val];
- }
-
- // Selector "val" ranges from 0-3 and is a direct index into g_etc1_inten_tables.
- inline void set_selector(uint x, uint y, uint val)
- {
- RG_ETC1_ASSERT((x | y | val) < 4);
- const uint bit_index = x * 4 + y;
-
- uint8 *p = &m_bytes[7 - (bit_index >> 3)];
-
- const uint byte_bit_ofs = bit_index & 7;
- const uint mask = 1 << byte_bit_ofs;
-
- const uint etc1_val = g_selector_index_to_etc1[val];
-
- const uint lsb = etc1_val & 1;
- const uint msb = etc1_val >> 1;
-
- p[0] &= ~mask;
- p[0] |= (lsb << byte_bit_ofs);
-
- p[-2] &= ~mask;
- p[-2] |= (msb << byte_bit_ofs);
- }
-
- inline void set_base4_color(uint idx, uint16 c)
- {
- if (idx)
- {
- set_byte_bits(cETC1AbsColor4R2BitOffset, 4, (c >> 8) & 15);
- set_byte_bits(cETC1AbsColor4G2BitOffset, 4, (c >> 4) & 15);
- set_byte_bits(cETC1AbsColor4B2BitOffset, 4, c & 15);
- }
- else
- {
- set_byte_bits(cETC1AbsColor4R1BitOffset, 4, (c >> 8) & 15);
- set_byte_bits(cETC1AbsColor4G1BitOffset, 4, (c >> 4) & 15);
- set_byte_bits(cETC1AbsColor4B1BitOffset, 4, c & 15);
- }
- }
-
- inline uint16 get_base4_color(uint idx) const
- {
- uint r, g, b;
- if (idx)
- {
- r = get_byte_bits(cETC1AbsColor4R2BitOffset, 4);
- g = get_byte_bits(cETC1AbsColor4G2BitOffset, 4);
- b = get_byte_bits(cETC1AbsColor4B2BitOffset, 4);
- }
- else
- {
- r = get_byte_bits(cETC1AbsColor4R1BitOffset, 4);
- g = get_byte_bits(cETC1AbsColor4G1BitOffset, 4);
- b = get_byte_bits(cETC1AbsColor4B1BitOffset, 4);
- }
- return static_cast<uint16>(b | (g << 4U) | (r << 8U));
- }
-
- inline void set_base5_color(uint16 c)
- {
- set_byte_bits(cETC1BaseColor5RBitOffset, 5, (c >> 10) & 31);
- set_byte_bits(cETC1BaseColor5GBitOffset, 5, (c >> 5) & 31);
- set_byte_bits(cETC1BaseColor5BBitOffset, 5, c & 31);
- }
-
- inline uint16 get_base5_color() const
- {
- const uint r = get_byte_bits(cETC1BaseColor5RBitOffset, 5);
- const uint g = get_byte_bits(cETC1BaseColor5GBitOffset, 5);
- const uint b = get_byte_bits(cETC1BaseColor5BBitOffset, 5);
- return static_cast<uint16>(b | (g << 5U) | (r << 10U));
- }
-
- void set_delta3_color(uint16 c)
- {
- set_byte_bits(cETC1DeltaColor3RBitOffset, 3, (c >> 6) & 7);
- set_byte_bits(cETC1DeltaColor3GBitOffset, 3, (c >> 3) & 7);
- set_byte_bits(cETC1DeltaColor3BBitOffset, 3, c & 7);
- }
-
- inline uint16 get_delta3_color() const
- {
- const uint r = get_byte_bits(cETC1DeltaColor3RBitOffset, 3);
- const uint g = get_byte_bits(cETC1DeltaColor3GBitOffset, 3);
- const uint b = get_byte_bits(cETC1DeltaColor3BBitOffset, 3);
- return static_cast<uint16>(b | (g << 3U) | (r << 6U));
- }
-
- // Base color 5
- static uint16 pack_color5(const color_quad_u8& color, bool scaled, uint bias = 127U);
- static uint16 pack_color5(uint r, uint g, uint b, bool scaled, uint bias = 127U);
-
- static color_quad_u8 unpack_color5(uint16 packed_color5, bool scaled, uint alpha = 255U);
- static void unpack_color5(uint& r, uint& g, uint& b, uint16 packed_color, bool scaled);
-
- static bool unpack_color5(color_quad_u8& result, uint16 packed_color5, uint16 packed_delta3, bool scaled, uint alpha = 255U);
- static bool unpack_color5(uint& r, uint& g, uint& b, uint16 packed_color5, uint16 packed_delta3, bool scaled, uint alpha = 255U);
-
- // Delta color 3
- // Inputs range from -4 to 3 (cETC1ColorDeltaMin to cETC1ColorDeltaMax)
- static uint16 pack_delta3(int r, int g, int b);
-
- // Results range from -4 to 3 (cETC1ColorDeltaMin to cETC1ColorDeltaMax)
- static void unpack_delta3(int& r, int& g, int& b, uint16 packed_delta3);
-
- // Abs color 4
- static uint16 pack_color4(const color_quad_u8& color, bool scaled, uint bias = 127U);
- static uint16 pack_color4(uint r, uint g, uint b, bool scaled, uint bias = 127U);
-
- static color_quad_u8 unpack_color4(uint16 packed_color4, bool scaled, uint alpha = 255U);
- static void unpack_color4(uint& r, uint& g, uint& b, uint16 packed_color4, bool scaled);
-
- // subblock colors
- static void get_diff_subblock_colors(color_quad_u8* pDst, uint16 packed_color5, uint table_idx);
- static bool get_diff_subblock_colors(color_quad_u8* pDst, uint16 packed_color5, uint16 packed_delta3, uint table_idx);
- static void get_abs_subblock_colors(color_quad_u8* pDst, uint16 packed_color4, uint table_idx);
-
- static inline void unscaled_to_scaled_color(color_quad_u8& dst, const color_quad_u8& src, bool color4)
- {
- if (color4)
- {
- dst.r = src.r | (src.r << 4);
- dst.g = src.g | (src.g << 4);
- dst.b = src.b | (src.b << 4);
- }
- else
- {
- dst.r = (src.r >> 2) | (src.r << 3);
- dst.g = (src.g >> 2) | (src.g << 3);
- dst.b = (src.b >> 2) | (src.b << 3);
- }
- dst.a = src.a;
- }
- };
-
- // Returns pointer to sorted array.
- template<typename T, typename Q>
- T* indirect_radix_sort(uint num_indices, T* pIndices0, T* pIndices1, const Q* pKeys, uint key_ofs, uint key_size, bool init_indices)
- {
- RG_ETC1_ASSERT((key_ofs >= 0) && (key_ofs < sizeof(T)));
- RG_ETC1_ASSERT((key_size >= 1) && (key_size <= 4));
-
- if (init_indices)
- {
- T* p = pIndices0;
- T* q = pIndices0 + (num_indices >> 1) * 2;
- uint i;
- for (i = 0; p != q; p += 2, i += 2)
- {
- p[0] = static_cast<T>(i);
- p[1] = static_cast<T>(i + 1);
- }
-
- if (num_indices & 1)
- *p = static_cast<T>(i);
- }
-
- uint hist[256 * 4];
-
- memset(hist, 0, sizeof(hist[0]) * 256 * key_size);
-
-#define RG_ETC1_GET_KEY(p) (*(const uint*)((const uint8*)(pKeys + *(p)) + key_ofs))
-#define RG_ETC1_GET_KEY_FROM_INDEX(i) (*(const uint*)((const uint8*)(pKeys + (i)) + key_ofs))
-
- if (key_size == 4)
- {
- T* p = pIndices0;
- T* q = pIndices0 + num_indices;
- for ( ; p != q; p++)
- {
- const uint key = RG_ETC1_GET_KEY(p);
-
- hist[ key & 0xFF]++;
- hist[256 + ((key >> 8) & 0xFF)]++;
- hist[512 + ((key >> 16) & 0xFF)]++;
- hist[768 + ((key >> 24) & 0xFF)]++;
- }
- }
- else if (key_size == 3)
- {
- T* p = pIndices0;
- T* q = pIndices0 + num_indices;
- for ( ; p != q; p++)
- {
- const uint key = RG_ETC1_GET_KEY(p);
-
- hist[ key & 0xFF]++;
- hist[256 + ((key >> 8) & 0xFF)]++;
- hist[512 + ((key >> 16) & 0xFF)]++;
- }
- }
- else if (key_size == 2)
- {
- T* p = pIndices0;
- T* q = pIndices0 + (num_indices >> 1) * 2;
-
- for ( ; p != q; p += 2)
- {
- const uint key0 = RG_ETC1_GET_KEY(p);
- const uint key1 = RG_ETC1_GET_KEY(p+1);
-
- hist[ key0 & 0xFF]++;
- hist[256 + ((key0 >> 8) & 0xFF)]++;
-
- hist[ key1 & 0xFF]++;
- hist[256 + ((key1 >> 8) & 0xFF)]++;
- }
-
- if (num_indices & 1)
- {
- const uint key = RG_ETC1_GET_KEY(p);
-
- hist[ key & 0xFF]++;
- hist[256 + ((key >> 8) & 0xFF)]++;
- }
- }
- else
- {
- RG_ETC1_ASSERT(key_size == 1);
- if (key_size != 1)
- return NULL;
-
- T* p = pIndices0;
- T* q = pIndices0 + (num_indices >> 1) * 2;
-
- for ( ; p != q; p += 2)
- {
- const uint key0 = RG_ETC1_GET_KEY(p);
- const uint key1 = RG_ETC1_GET_KEY(p+1);
-
- hist[key0 & 0xFF]++;
- hist[key1 & 0xFF]++;
- }
-
- if (num_indices & 1)
- {
- const uint key = RG_ETC1_GET_KEY(p);
-
- hist[key & 0xFF]++;
- }
- }
-
- T* pCur = pIndices0;
- T* pNew = pIndices1;
-
- for (uint pass = 0; pass < key_size; pass++)
- {
- const uint* pHist = &hist[pass << 8];
-
- uint offsets[256];
-
- uint cur_ofs = 0;
- for (uint i = 0; i < 256; i += 2)
- {
- offsets[i] = cur_ofs;
- cur_ofs += pHist[i];
-
- offsets[i+1] = cur_ofs;
- cur_ofs += pHist[i+1];
- }
-
- const uint pass_shift = pass << 3;
-
- T* p = pCur;
- T* q = pCur + (num_indices >> 1) * 2;
-
- for ( ; p != q; p += 2)
- {
- uint index0 = p[0];
- uint index1 = p[1];
-
- uint c0 = (RG_ETC1_GET_KEY_FROM_INDEX(index0) >> pass_shift) & 0xFF;
- uint c1 = (RG_ETC1_GET_KEY_FROM_INDEX(index1) >> pass_shift) & 0xFF;
-
- if (c0 == c1)
- {
- uint dst_offset0 = offsets[c0];
-
- offsets[c0] = dst_offset0 + 2;
-
- pNew[dst_offset0] = static_cast<T>(index0);
- pNew[dst_offset0 + 1] = static_cast<T>(index1);
- }
- else
- {
- uint dst_offset0 = offsets[c0]++;
- uint dst_offset1 = offsets[c1]++;
-
- pNew[dst_offset0] = static_cast<T>(index0);
- pNew[dst_offset1] = static_cast<T>(index1);
- }
- }
-
- if (num_indices & 1)
- {
- uint index = *p;
- uint c = (RG_ETC1_GET_KEY_FROM_INDEX(index) >> pass_shift) & 0xFF;
-
- uint dst_offset = offsets[c];
- offsets[c] = dst_offset + 1;
-
- pNew[dst_offset] = static_cast<T>(index);
- }
-
- T* t = pCur;
- pCur = pNew;
- pNew = t;
- }
-
- return pCur;
- }
-
-#undef RG_ETC1_GET_KEY
-#undef RG_ETC1_GET_KEY_FROM_INDEX
-
- uint16 etc1_block::pack_color5(const color_quad_u8& color, bool scaled, uint bias)
- {
- return pack_color5(color.r, color.g, color.b, scaled, bias);
- }
-
- uint16 etc1_block::pack_color5(uint r, uint g, uint b, bool scaled, uint bias)
- {
- if (scaled)
- {
- r = (r * 31U + bias) / 255U;
- g = (g * 31U + bias) / 255U;
- b = (b * 31U + bias) / 255U;
- }
-
- r = rg_etc1::minimum(r, 31U);
- g = rg_etc1::minimum(g, 31U);
- b = rg_etc1::minimum(b, 31U);
-
- return static_cast<uint16>(b | (g << 5U) | (r << 10U));
- }
-
- color_quad_u8 etc1_block::unpack_color5(uint16 packed_color5, bool scaled, uint alpha)
- {
- uint b = packed_color5 & 31U;
- uint g = (packed_color5 >> 5U) & 31U;
- uint r = (packed_color5 >> 10U) & 31U;
-
- if (scaled)
- {
- b = (b << 3U) | (b >> 2U);
- g = (g << 3U) | (g >> 2U);
- r = (r << 3U) | (r >> 2U);
- }
-
- return color_quad_u8(cNoClamp, r, g, b, rg_etc1::minimum(alpha, 255U));
- }
-
- void etc1_block::unpack_color5(uint& r, uint& g, uint& b, uint16 packed_color5, bool scaled)
- {
- color_quad_u8 c(unpack_color5(packed_color5, scaled, 0));
- r = c.r;
- g = c.g;
- b = c.b;
- }
-
- bool etc1_block::unpack_color5(color_quad_u8& result, uint16 packed_color5, uint16 packed_delta3, bool scaled, uint alpha)
- {
- int dc_r, dc_g, dc_b;
- unpack_delta3(dc_r, dc_g, dc_b, packed_delta3);
-
- int b = (packed_color5 & 31U) + dc_b;
- int g = ((packed_color5 >> 5U) & 31U) + dc_g;
- int r = ((packed_color5 >> 10U) & 31U) + dc_r;
-
- bool success = true;
- if (static_cast<uint>(r | g | b) > 31U)
- {
- success = false;
- r = rg_etc1::clamp<int>(r, 0, 31);
- g = rg_etc1::clamp<int>(g, 0, 31);
- b = rg_etc1::clamp<int>(b, 0, 31);
- }
-
- if (scaled)
- {
- b = (b << 3U) | (b >> 2U);
- g = (g << 3U) | (g >> 2U);
- r = (r << 3U) | (r >> 2U);
- }
-
- result.set_noclamp_rgba(r, g, b, rg_etc1::minimum(alpha, 255U));
- return success;
- }
-
- bool etc1_block::unpack_color5(uint& r, uint& g, uint& b, uint16 packed_color5, uint16 packed_delta3, bool scaled, uint alpha)
- {
- color_quad_u8 result;
- const bool success = unpack_color5(result, packed_color5, packed_delta3, scaled, alpha);
- r = result.r;
- g = result.g;
- b = result.b;
- return success;
- }
-
- uint16 etc1_block::pack_delta3(int r, int g, int b)
- {
- RG_ETC1_ASSERT((r >= cETC1ColorDeltaMin) && (r <= cETC1ColorDeltaMax));
- RG_ETC1_ASSERT((g >= cETC1ColorDeltaMin) && (g <= cETC1ColorDeltaMax));
- RG_ETC1_ASSERT((b >= cETC1ColorDeltaMin) && (b <= cETC1ColorDeltaMax));
- if (r < 0) r += 8;
- if (g < 0) g += 8;
- if (b < 0) b += 8;
- return static_cast<uint16>(b | (g << 3) | (r << 6));
- }
-
- void etc1_block::unpack_delta3(int& r, int& g, int& b, uint16 packed_delta3)
- {
- r = (packed_delta3 >> 6) & 7;
- g = (packed_delta3 >> 3) & 7;
- b = packed_delta3 & 7;
- if (r >= 4) r -= 8;
- if (g >= 4) g -= 8;
- if (b >= 4) b -= 8;
- }
-
- uint16 etc1_block::pack_color4(const color_quad_u8& color, bool scaled, uint bias)
- {
- return pack_color4(color.r, color.g, color.b, scaled, bias);
- }
-
- uint16 etc1_block::pack_color4(uint r, uint g, uint b, bool scaled, uint bias)
- {
- if (scaled)
- {
- r = (r * 15U + bias) / 255U;
- g = (g * 15U + bias) / 255U;
- b = (b * 15U + bias) / 255U;
- }
-
- r = rg_etc1::minimum(r, 15U);
- g = rg_etc1::minimum(g, 15U);
- b = rg_etc1::minimum(b, 15U);
-
- return static_cast<uint16>(b | (g << 4U) | (r << 8U));
- }
-
- color_quad_u8 etc1_block::unpack_color4(uint16 packed_color4, bool scaled, uint alpha)
- {
- uint b = packed_color4 & 15U;
- uint g = (packed_color4 >> 4U) & 15U;
- uint r = (packed_color4 >> 8U) & 15U;
-
- if (scaled)
- {
- b = (b << 4U) | b;
- g = (g << 4U) | g;
- r = (r << 4U) | r;
- }
-
- return color_quad_u8(cNoClamp, r, g, b, rg_etc1::minimum(alpha, 255U));
- }
-
- void etc1_block::unpack_color4(uint& r, uint& g, uint& b, uint16 packed_color4, bool scaled)
- {
- color_quad_u8 c(unpack_color4(packed_color4, scaled, 0));
- r = c.r;
- g = c.g;
- b = c.b;
- }
-
- void etc1_block::get_diff_subblock_colors(color_quad_u8* pDst, uint16 packed_color5, uint table_idx)
- {
- RG_ETC1_ASSERT(table_idx < cETC1IntenModifierValues);
- const int *pInten_modifer_table = &g_etc1_inten_tables[table_idx][0];
-
- uint r, g, b;
- unpack_color5(r, g, b, packed_color5, true);
-
- const int ir = static_cast<int>(r), ig = static_cast<int>(g), ib = static_cast<int>(b);
-
- const int y0 = pInten_modifer_table[0];
- pDst[0].set(ir + y0, ig + y0, ib + y0);
-
- const int y1 = pInten_modifer_table[1];
- pDst[1].set(ir + y1, ig + y1, ib + y1);
-
- const int y2 = pInten_modifer_table[2];
- pDst[2].set(ir + y2, ig + y2, ib + y2);
-
- const int y3 = pInten_modifer_table[3];
- pDst[3].set(ir + y3, ig + y3, ib + y3);
- }
-
- bool etc1_block::get_diff_subblock_colors(color_quad_u8* pDst, uint16 packed_color5, uint16 packed_delta3, uint table_idx)
- {
- RG_ETC1_ASSERT(table_idx < cETC1IntenModifierValues);
- const int *pInten_modifer_table = &g_etc1_inten_tables[table_idx][0];
-
- uint r, g, b;
- bool success = unpack_color5(r, g, b, packed_color5, packed_delta3, true);
-
- const int ir = static_cast<int>(r), ig = static_cast<int>(g), ib = static_cast<int>(b);
-
- const int y0 = pInten_modifer_table[0];
- pDst[0].set(ir + y0, ig + y0, ib + y0);
-
- const int y1 = pInten_modifer_table[1];
- pDst[1].set(ir + y1, ig + y1, ib + y1);
-
- const int y2 = pInten_modifer_table[2];
- pDst[2].set(ir + y2, ig + y2, ib + y2);
-
- const int y3 = pInten_modifer_table[3];
- pDst[3].set(ir + y3, ig + y3, ib + y3);
-
- return success;
- }
-
- void etc1_block::get_abs_subblock_colors(color_quad_u8* pDst, uint16 packed_color4, uint table_idx)
- {
- RG_ETC1_ASSERT(table_idx < cETC1IntenModifierValues);
- const int *pInten_modifer_table = &g_etc1_inten_tables[table_idx][0];
-
- uint r, g, b;
- unpack_color4(r, g, b, packed_color4, true);
-
- const int ir = static_cast<int>(r), ig = static_cast<int>(g), ib = static_cast<int>(b);
-
- const int y0 = pInten_modifer_table[0];
- pDst[0].set(ir + y0, ig + y0, ib + y0);
-
- const int y1 = pInten_modifer_table[1];
- pDst[1].set(ir + y1, ig + y1, ib + y1);
-
- const int y2 = pInten_modifer_table[2];
- pDst[2].set(ir + y2, ig + y2, ib + y2);
-
- const int y3 = pInten_modifer_table[3];
- pDst[3].set(ir + y3, ig + y3, ib + y3);
- }
-
- bool unpack_etc1_block(const void* pETC1_block, unsigned int* pDst_pixels_rgba, bool preserve_alpha)
- {
- color_quad_u8* pDst = reinterpret_cast<color_quad_u8*>(pDst_pixels_rgba);
- const etc1_block& block = *static_cast<const etc1_block*>(pETC1_block);
-
- const bool diff_flag = block.get_diff_bit();
- const bool flip_flag = block.get_flip_bit();
- const uint table_index0 = block.get_inten_table(0);
- const uint table_index1 = block.get_inten_table(1);
-
- color_quad_u8 subblock_colors0[4];
- color_quad_u8 subblock_colors1[4];
- bool success = true;
-
- if (diff_flag)
- {
- const uint16 base_color5 = block.get_base5_color();
- const uint16 delta_color3 = block.get_delta3_color();
- etc1_block::get_diff_subblock_colors(subblock_colors0, base_color5, table_index0);
-
- if (!etc1_block::get_diff_subblock_colors(subblock_colors1, base_color5, delta_color3, table_index1))
- success = false;
- }
- else
- {
- const uint16 base_color4_0 = block.get_base4_color(0);
- etc1_block::get_abs_subblock_colors(subblock_colors0, base_color4_0, table_index0);
-
- const uint16 base_color4_1 = block.get_base4_color(1);
- etc1_block::get_abs_subblock_colors(subblock_colors1, base_color4_1, table_index1);
- }
-
- if (preserve_alpha)
- {
- if (flip_flag)
- {
- for (uint y = 0; y < 2; y++)
- {
- pDst[0].set_rgb(subblock_colors0[block.get_selector(0, y)]);
- pDst[1].set_rgb(subblock_colors0[block.get_selector(1, y)]);
- pDst[2].set_rgb(subblock_colors0[block.get_selector(2, y)]);
- pDst[3].set_rgb(subblock_colors0[block.get_selector(3, y)]);
- pDst += 4;
- }
-
- for (uint y = 2; y < 4; y++)
- {
- pDst[0].set_rgb(subblock_colors1[block.get_selector(0, y)]);
- pDst[1].set_rgb(subblock_colors1[block.get_selector(1, y)]);
- pDst[2].set_rgb(subblock_colors1[block.get_selector(2, y)]);
- pDst[3].set_rgb(subblock_colors1[block.get_selector(3, y)]);
- pDst += 4;
- }
- }
- else
- {
- for (uint y = 0; y < 4; y++)
- {
- pDst[0].set_rgb(subblock_colors0[block.get_selector(0, y)]);
- pDst[1].set_rgb(subblock_colors0[block.get_selector(1, y)]);
- pDst[2].set_rgb(subblock_colors1[block.get_selector(2, y)]);
- pDst[3].set_rgb(subblock_colors1[block.get_selector(3, y)]);
- pDst += 4;
- }
- }
- }
- else
- {
- if (flip_flag)
- {
- // 0000
- // 0000
- // 1111
- // 1111
- for (uint y = 0; y < 2; y++)
- {
- pDst[0] = subblock_colors0[block.get_selector(0, y)];
- pDst[1] = subblock_colors0[block.get_selector(1, y)];
- pDst[2] = subblock_colors0[block.get_selector(2, y)];
- pDst[3] = subblock_colors0[block.get_selector(3, y)];
- pDst += 4;
- }
-
- for (uint y = 2; y < 4; y++)
- {
- pDst[0] = subblock_colors1[block.get_selector(0, y)];
- pDst[1] = subblock_colors1[block.get_selector(1, y)];
- pDst[2] = subblock_colors1[block.get_selector(2, y)];
- pDst[3] = subblock_colors1[block.get_selector(3, y)];
- pDst += 4;
- }
- }
- else
- {
- // 0011
- // 0011
- // 0011
- // 0011
- for (uint y = 0; y < 4; y++)
- {
- pDst[0] = subblock_colors0[block.get_selector(0, y)];
- pDst[1] = subblock_colors0[block.get_selector(1, y)];
- pDst[2] = subblock_colors1[block.get_selector(2, y)];
- pDst[3] = subblock_colors1[block.get_selector(3, y)];
- pDst += 4;
- }
- }
- }
-
- return success;
- }
-
- struct etc1_solution_coordinates
- {
- inline etc1_solution_coordinates() :
- m_unscaled_color(0, 0, 0, 0),
- m_inten_table(0),
- m_color4(false)
- {
- }
-
- inline etc1_solution_coordinates(uint r, uint g, uint b, uint inten_table, bool color4) :
- m_unscaled_color(r, g, b, 255),
- m_inten_table(inten_table),
- m_color4(color4)
- {
- }
-
- inline etc1_solution_coordinates(const color_quad_u8& c, uint inten_table, bool color4) :
- m_unscaled_color(c),
- m_inten_table(inten_table),
- m_color4(color4)
- {
- }
-
- inline etc1_solution_coordinates(const etc1_solution_coordinates& other)
- {
- *this = other;
- }
-
- inline etc1_solution_coordinates& operator= (const etc1_solution_coordinates& rhs)
- {
- m_unscaled_color = rhs.m_unscaled_color;
- m_inten_table = rhs.m_inten_table;
- m_color4 = rhs.m_color4;
- return *this;
- }
-
- inline void clear()
- {
- m_unscaled_color.clear();
- m_inten_table = 0;
- m_color4 = false;
- }
-
- inline color_quad_u8 get_scaled_color() const
- {
- int br, bg, bb;
- if (m_color4)
- {
- br = m_unscaled_color.r | (m_unscaled_color.r << 4);
- bg = m_unscaled_color.g | (m_unscaled_color.g << 4);
- bb = m_unscaled_color.b | (m_unscaled_color.b << 4);
- }
- else
- {
- br = (m_unscaled_color.r >> 2) | (m_unscaled_color.r << 3);
- bg = (m_unscaled_color.g >> 2) | (m_unscaled_color.g << 3);
- bb = (m_unscaled_color.b >> 2) | (m_unscaled_color.b << 3);
- }
- return color_quad_u8(br, bg, bb);
- }
-
- inline void get_block_colors(color_quad_u8* pBlock_colors)
- {
- int br, bg, bb;
- if (m_color4)
- {
- br = m_unscaled_color.r | (m_unscaled_color.r << 4);
- bg = m_unscaled_color.g | (m_unscaled_color.g << 4);
- bb = m_unscaled_color.b | (m_unscaled_color.b << 4);
- }
- else
- {
- br = (m_unscaled_color.r >> 2) | (m_unscaled_color.r << 3);
- bg = (m_unscaled_color.g >> 2) | (m_unscaled_color.g << 3);
- bb = (m_unscaled_color.b >> 2) | (m_unscaled_color.b << 3);
- }
- const int* pInten_table = g_etc1_inten_tables[m_inten_table];
- pBlock_colors[0].set(br + pInten_table[0], bg + pInten_table[0], bb + pInten_table[0]);
- pBlock_colors[1].set(br + pInten_table[1], bg + pInten_table[1], bb + pInten_table[1]);
- pBlock_colors[2].set(br + pInten_table[2], bg + pInten_table[2], bb + pInten_table[2]);
- pBlock_colors[3].set(br + pInten_table[3], bg + pInten_table[3], bb + pInten_table[3]);
- }
-
- color_quad_u8 m_unscaled_color;
- uint m_inten_table;
- bool m_color4;
- };
-
- class etc1_optimizer
- {
- etc1_optimizer(const etc1_optimizer&);
- etc1_optimizer& operator= (const etc1_optimizer&);
-
- public:
- etc1_optimizer()
- {
- clear();
- }
-
- void clear()
- {
- m_pParams = NULL;
- m_pResult = NULL;
- m_pSorted_luma = NULL;
- m_pSorted_luma_indices = NULL;
- }
-
- struct params : etc1_pack_params
- {
- params()
- {
- clear();
- }
-
- params(const etc1_pack_params& base_params) :
- etc1_pack_params(base_params)
- {
- clear_optimizer_params();
- }
-
- void clear()
- {
- etc1_pack_params::clear();
- clear_optimizer_params();
- }
-
- void clear_optimizer_params()
- {
- m_num_src_pixels = 0;
- m_pSrc_pixels = 0;
-
- m_use_color4 = false;
- static const int s_default_scan_delta[] = { 0 };
- m_pScan_deltas = s_default_scan_delta;
- m_scan_delta_size = 1;
-
- m_base_color5.clear();
- m_constrain_against_base_color5 = false;
- }
-
- uint m_num_src_pixels;
- const color_quad_u8* m_pSrc_pixels;
-
- bool m_use_color4;
- const int* m_pScan_deltas;
- uint m_scan_delta_size;
-
- color_quad_u8 m_base_color5;
- bool m_constrain_against_base_color5;
- };
-
- struct results
- {
- uint64 m_error;
- color_quad_u8 m_block_color_unscaled;
- uint m_block_inten_table;
- uint m_n;
- uint8* m_pSelectors;
- bool m_block_color4;
-
- inline results& operator= (const results& rhs)
- {
- m_block_color_unscaled = rhs.m_block_color_unscaled;
- m_block_color4 = rhs.m_block_color4;
- m_block_inten_table = rhs.m_block_inten_table;
- m_error = rhs.m_error;
- RG_ETC1_ASSERT(m_n == rhs.m_n);
- memcpy(m_pSelectors, rhs.m_pSelectors, rhs.m_n);
- return *this;
- }
- };
-
- void init(const params& params, results& result);
- bool compute();
-
- private:
- struct potential_solution
- {
- potential_solution() : m_coords(), m_error(cUINT64_MAX), m_valid(false)
- {
- }
-
- etc1_solution_coordinates m_coords;
- uint8 m_selectors[8];
- uint64 m_error;
- bool m_valid;
-
- void clear()
- {
- m_coords.clear();
- m_error = cUINT64_MAX;
- m_valid = false;
- }
- };
-
- const params* m_pParams;
- results* m_pResult;
-
- int m_limit;
-
- vec3F m_avg_color;
- int m_br, m_bg, m_bb;
- uint16 m_luma[8];
- uint32 m_sorted_luma[2][8];
- const uint32* m_pSorted_luma_indices;
- uint32* m_pSorted_luma;
-
- uint8 m_selectors[8];
- uint8 m_best_selectors[8];
-
- potential_solution m_best_solution;
- potential_solution m_trial_solution;
- uint8 m_temp_selectors[8];
-
- bool evaluate_solution(const etc1_solution_coordinates& coords, potential_solution& trial_solution, potential_solution* pBest_solution);
- bool evaluate_solution_fast(const etc1_solution_coordinates& coords, potential_solution& trial_solution, potential_solution* pBest_solution);
- };
-
- bool etc1_optimizer::compute()
- {
- const uint n = m_pParams->m_num_src_pixels;
- const int scan_delta_size = m_pParams->m_scan_delta_size;
-
- // Scan through a subset of the 3D lattice centered around the avg block color trying each 3D (555 or 444) lattice point as a potential block color.
- // Each time a better solution is found try to refine the current solution's block color based of the current selectors and intensity table index.
- for (int zdi = 0; zdi < scan_delta_size; zdi++)
- {
- const int zd = m_pParams->m_pScan_deltas[zdi];
- const int mbb = m_bb + zd;
- if (mbb < 0) continue; else if (mbb > m_limit) break;
-
- for (int ydi = 0; ydi < scan_delta_size; ydi++)
- {
- const int yd = m_pParams->m_pScan_deltas[ydi];
- const int mbg = m_bg + yd;
- if (mbg < 0) continue; else if (mbg > m_limit) break;
-
- for (int xdi = 0; xdi < scan_delta_size; xdi++)
- {
- const int xd = m_pParams->m_pScan_deltas[xdi];
- const int mbr = m_br + xd;
- if (mbr < 0) continue; else if (mbr > m_limit) break;
-
- etc1_solution_coordinates coords(mbr, mbg, mbb, 0, m_pParams->m_use_color4);
- if (m_pParams->m_quality == cHighQuality)
- {
- if (!evaluate_solution(coords, m_trial_solution, &m_best_solution))
- continue;
- }
- else
- {
- if (!evaluate_solution_fast(coords, m_trial_solution, &m_best_solution))
- continue;
- }
-
- // Now we have the input block, the avg. color of the input pixels, a set of trial selector indices, and the block color+intensity index.
- // Now, for each component, attempt to refine the current solution by solving a simple linear equation. For example, for 4 colors:
- // The goal is:
- // pixel0 - (block_color+inten_table[selector0]) + pixel1 - (block_color+inten_table[selector1]) + pixel2 - (block_color+inten_table[selector2]) + pixel3 - (block_color+inten_table[selector3]) = 0
- // Rearranging this:
- // (pixel0 + pixel1 + pixel2 + pixel3) - (block_color+inten_table[selector0]) - (block_color+inten_table[selector1]) - (block_color+inten_table[selector2]) - (block_color+inten_table[selector3]) = 0
- // (pixel0 + pixel1 + pixel2 + pixel3) - block_color - inten_table[selector0] - block_color-inten_table[selector1] - block_color-inten_table[selector2] - block_color-inten_table[selector3] = 0
- // (pixel0 + pixel1 + pixel2 + pixel3) - 4*block_color - inten_table[selector0] - inten_table[selector1] - inten_table[selector2] - inten_table[selector3] = 0
- // (pixel0 + pixel1 + pixel2 + pixel3) - 4*block_color - (inten_table[selector0] + inten_table[selector1] + inten_table[selector2] + inten_table[selector3]) = 0
- // (pixel0 + pixel1 + pixel2 + pixel3)/4 - block_color - (inten_table[selector0] + inten_table[selector1] + inten_table[selector2] + inten_table[selector3])/4 = 0
- // block_color = (pixel0 + pixel1 + pixel2 + pixel3)/4 - (inten_table[selector0] + inten_table[selector1] + inten_table[selector2] + inten_table[selector3])/4
- // So what this means:
- // optimal_block_color = avg_input - avg_inten_delta
- // So the optimal block color can be computed by taking the average block color and subtracting the current average of the intensity delta.
- // Unfortunately, optimal_block_color must then be quantized to 555 or 444 so it's not always possible to improve matters using this formula.
- // Also, the above formula is for unclamped intensity deltas. The actual implementation takes into account clamping.
-
- const uint max_refinement_trials = (m_pParams->m_quality == cLowQuality) ? 2 : (((xd | yd | zd) == 0) ? 4 : 2);
- for (uint refinement_trial = 0; refinement_trial < max_refinement_trials; refinement_trial++)
- {
- const uint8* pSelectors = m_best_solution.m_selectors;
- const int* pInten_table = g_etc1_inten_tables[m_best_solution.m_coords.m_inten_table];
-
- int delta_sum_r = 0, delta_sum_g = 0, delta_sum_b = 0;
- const color_quad_u8 base_color(m_best_solution.m_coords.get_scaled_color());
- for (uint r = 0; r < n; r++)
- {
- const uint s = *pSelectors++;
- const int yd = pInten_table[s];
- // Compute actual delta being applied to each pixel, taking into account clamping.
- delta_sum_r += rg_etc1::clamp<int>(base_color.r + yd, 0, 255) - base_color.r;
- delta_sum_g += rg_etc1::clamp<int>(base_color.g + yd, 0, 255) - base_color.g;
- delta_sum_b += rg_etc1::clamp<int>(base_color.b + yd, 0, 255) - base_color.b;
- }
- if ((!delta_sum_r) && (!delta_sum_g) && (!delta_sum_b))
- break;
- const float avg_delta_r_f = static_cast<float>(delta_sum_r) / n;
- const float avg_delta_g_f = static_cast<float>(delta_sum_g) / n;
- const float avg_delta_b_f = static_cast<float>(delta_sum_b) / n;
- const int br1 = rg_etc1::clamp<int>(static_cast<uint>((m_avg_color[0] - avg_delta_r_f) * m_limit / 255.0f + .5f), 0, m_limit);
- const int bg1 = rg_etc1::clamp<int>(static_cast<uint>((m_avg_color[1] - avg_delta_g_f) * m_limit / 255.0f + .5f), 0, m_limit);
- const int bb1 = rg_etc1::clamp<int>(static_cast<uint>((m_avg_color[2] - avg_delta_b_f) * m_limit / 255.0f + .5f), 0, m_limit);
-
- bool skip = false;
-
- if ((mbr == br1) && (mbg == bg1) && (mbb == bb1))
- skip = true;
- else if ((br1 == m_best_solution.m_coords.m_unscaled_color.r) && (bg1 == m_best_solution.m_coords.m_unscaled_color.g) && (bb1 == m_best_solution.m_coords.m_unscaled_color.b))
- skip = true;
- else if ((m_br == br1) && (m_bg == bg1) && (m_bb == bb1))
- skip = true;
-
- if (skip)
- break;
-
- etc1_solution_coordinates coords1(br1, bg1, bb1, 0, m_pParams->m_use_color4);
- if (m_pParams->m_quality == cHighQuality)
- {
- if (!evaluate_solution(coords1, m_trial_solution, &m_best_solution))
- break;
- }
- else
- {
- if (!evaluate_solution_fast(coords1, m_trial_solution, &m_best_solution))
- break;
- }
-
- } // refinement_trial
-
- } // xdi
- } // ydi
- } // zdi
-
- if (!m_best_solution.m_valid)
- {
- m_pResult->m_error = cUINT32_MAX;
- return false;
- }
-
- const uint8* pSelectors = m_best_solution.m_selectors;
-
-#ifdef RG_ETC1_BUILD_DEBUG
- {
- color_quad_u8 block_colors[4];
- m_best_solution.m_coords.get_block_colors(block_colors);
-
- const color_quad_u8* pSrc_pixels = m_pParams->m_pSrc_pixels;
- uint64 actual_error = 0;
- for (uint i = 0; i < n; i++)
- actual_error += pSrc_pixels[i].squared_distance_rgb(block_colors[pSelectors[i]]);
-
- RG_ETC1_ASSERT(actual_error == m_best_solution.m_error);
- }
-#endif
-
- m_pResult->m_error = m_best_solution.m_error;
-
- m_pResult->m_block_color_unscaled = m_best_solution.m_coords.m_unscaled_color;
- m_pResult->m_block_color4 = m_best_solution.m_coords.m_color4;
-
- m_pResult->m_block_inten_table = m_best_solution.m_coords.m_inten_table;
- memcpy(m_pResult->m_pSelectors, pSelectors, n);
- m_pResult->m_n = n;
-
- return true;
- }
-
- void etc1_optimizer::init(const params& p, results& r)
- {
- // This version is hardcoded for 8 pixel subblocks.
- RG_ETC1_ASSERT(p.m_num_src_pixels == 8);
-
- m_pParams = &p;
- m_pResult = &r;
-
- const uint n = 8;
-
- m_limit = m_pParams->m_use_color4 ? 15 : 31;
-
- vec3F avg_color(0.0f);
-
- for (uint i = 0; i < n; i++)
- {
- const color_quad_u8& c = m_pParams->m_pSrc_pixels[i];
- const vec3F fc(c.r, c.g, c.b);
-
- avg_color += fc;
-
- m_luma[i] = static_cast<uint16>(c.r + c.g + c.b);
- m_sorted_luma[0][i] = i;
- }
- avg_color *= (1.0f / static_cast<float>(n));
- m_avg_color = avg_color;
-
- m_br = rg_etc1::clamp<int>(static_cast<uint>(m_avg_color[0] * m_limit / 255.0f + .5f), 0, m_limit);
- m_bg = rg_etc1::clamp<int>(static_cast<uint>(m_avg_color[1] * m_limit / 255.0f + .5f), 0, m_limit);
- m_bb = rg_etc1::clamp<int>(static_cast<uint>(m_avg_color[2] * m_limit / 255.0f + .5f), 0, m_limit);
-
- if (m_pParams->m_quality <= cMediumQuality)
- {
- m_pSorted_luma_indices = indirect_radix_sort(n, m_sorted_luma[0], m_sorted_luma[1], m_luma, 0, sizeof(m_luma[0]), false);
- m_pSorted_luma = m_sorted_luma[0];
- if (m_pSorted_luma_indices == m_sorted_luma[0])
- m_pSorted_luma = m_sorted_luma[1];
-
- for (uint i = 0; i < n; i++)
- m_pSorted_luma[i] = m_luma[m_pSorted_luma_indices[i]];
- }
-
- m_best_solution.m_coords.clear();
- m_best_solution.m_valid = false;
- m_best_solution.m_error = cUINT64_MAX;
- }
-
- bool etc1_optimizer::evaluate_solution(const etc1_solution_coordinates& coords, potential_solution& trial_solution, potential_solution* pBest_solution)
- {
- trial_solution.m_valid = false;
-
- if (m_pParams->m_constrain_against_base_color5)
- {
- const int dr = coords.m_unscaled_color.r - m_pParams->m_base_color5.r;
- const int dg = coords.m_unscaled_color.g - m_pParams->m_base_color5.g;
- const int db = coords.m_unscaled_color.b - m_pParams->m_base_color5.b;
-
- if ((rg_etc1::minimum(dr, dg, db) < cETC1ColorDeltaMin) || (rg_etc1::maximum(dr, dg, db) > cETC1ColorDeltaMax))
- return false;
- }
-
- const color_quad_u8 base_color(coords.get_scaled_color());
-
- const uint n = 8;
-
- trial_solution.m_error = cUINT64_MAX;
-
- for (uint inten_table = 0; inten_table < cETC1IntenModifierValues; inten_table++)
- {
- const int* pInten_table = g_etc1_inten_tables[inten_table];
-
- color_quad_u8 block_colors[4];
- for (uint s = 0; s < 4; s++)
- {
- const int yd = pInten_table[s];
- block_colors[s].set(base_color.r + yd, base_color.g + yd, base_color.b + yd, 0);
- }
-
- uint64 total_error = 0;
-
- const color_quad_u8* pSrc_pixels = m_pParams->m_pSrc_pixels;
- for (uint c = 0; c < n; c++)
- {
- const color_quad_u8& src_pixel = *pSrc_pixels++;
-
- uint best_selector_index = 0;
- uint best_error = rg_etc1::square(src_pixel.r - block_colors[0].r) + rg_etc1::square(src_pixel.g - block_colors[0].g) + rg_etc1::square(src_pixel.b - block_colors[0].b);
-
- uint trial_error = rg_etc1::square(src_pixel.r - block_colors[1].r) + rg_etc1::square(src_pixel.g - block_colors[1].g) + rg_etc1::square(src_pixel.b - block_colors[1].b);
- if (trial_error < best_error)
- {
- best_error = trial_error;
- best_selector_index = 1;
- }
-
- trial_error = rg_etc1::square(src_pixel.r - block_colors[2].r) + rg_etc1::square(src_pixel.g - block_colors[2].g) + rg_etc1::square(src_pixel.b - block_colors[2].b);
- if (trial_error < best_error)
- {
- best_error = trial_error;
- best_selector_index = 2;
- }
-
- trial_error = rg_etc1::square(src_pixel.r - block_colors[3].r) + rg_etc1::square(src_pixel.g - block_colors[3].g) + rg_etc1::square(src_pixel.b - block_colors[3].b);
- if (trial_error < best_error)
- {
- best_error = trial_error;
- best_selector_index = 3;
- }
-
- m_temp_selectors[c] = static_cast<uint8>(best_selector_index);
-
- total_error += best_error;
- if (total_error >= trial_solution.m_error)
- break;
- }
-
- if (total_error < trial_solution.m_error)
- {
- trial_solution.m_error = total_error;
- trial_solution.m_coords.m_inten_table = inten_table;
- memcpy(trial_solution.m_selectors, m_temp_selectors, 8);
- trial_solution.m_valid = true;
- }
- }
- trial_solution.m_coords.m_unscaled_color = coords.m_unscaled_color;
- trial_solution.m_coords.m_color4 = m_pParams->m_use_color4;
-
- bool success = false;
- if (pBest_solution)
- {
- if (trial_solution.m_error < pBest_solution->m_error)
- {
- *pBest_solution = trial_solution;
- success = true;
- }
- }
-
- return success;
- }
-
- bool etc1_optimizer::evaluate_solution_fast(const etc1_solution_coordinates& coords, potential_solution& trial_solution, potential_solution* pBest_solution)
- {
- if (m_pParams->m_constrain_against_base_color5)
- {
- const int dr = coords.m_unscaled_color.r - m_pParams->m_base_color5.r;
- const int dg = coords.m_unscaled_color.g - m_pParams->m_base_color5.g;
- const int db = coords.m_unscaled_color.b - m_pParams->m_base_color5.b;
-
- if ((rg_etc1::minimum(dr, dg, db) < cETC1ColorDeltaMin) || (rg_etc1::maximum(dr, dg, db) > cETC1ColorDeltaMax))
- {
- trial_solution.m_valid = false;
- return false;
- }
- }
-
- const color_quad_u8 base_color(coords.get_scaled_color());
-
- const uint n = 8;
-
- trial_solution.m_error = cUINT64_MAX;
-
- for (int inten_table = cETC1IntenModifierValues - 1; inten_table >= 0; --inten_table)
- {
- const int* pInten_table = g_etc1_inten_tables[inten_table];
-
- uint block_inten[4];
- color_quad_u8 block_colors[4];
- for (uint s = 0; s < 4; s++)
- {
- const int yd = pInten_table[s];
- color_quad_u8 block_color(base_color.r + yd, base_color.g + yd, base_color.b + yd, 0);
- block_colors[s] = block_color;
- block_inten[s] = block_color.r + block_color.g + block_color.b;
- }
-
- // evaluate_solution_fast() enforces/assumesd a total ordering of the input colors along the intensity (1,1,1) axis to more quickly classify the inputs to selectors.
- // The inputs colors have been presorted along the projection onto this axis, and ETC1 block colors are always ordered along the intensity axis, so this classification is fast.
- // 0 1 2 3
- // 01 12 23
- const uint block_inten_midpoints[3] = { block_inten[0] + block_inten[1], block_inten[1] + block_inten[2], block_inten[2] + block_inten[3] };
-
- uint64 total_error = 0;
- const color_quad_u8* pSrc_pixels = m_pParams->m_pSrc_pixels;
- if ((m_pSorted_luma[n - 1] * 2) < block_inten_midpoints[0])
- {
- if (block_inten[0] > m_pSorted_luma[n - 1])
- {
- const uint min_error = intabs(block_inten[0] - m_pSorted_luma[n - 1]);
- if (min_error >= trial_solution.m_error)
- continue;
- }
-
- memset(&m_temp_selectors[0], 0, n);
-
- for (uint c = 0; c < n; c++)
- total_error += block_colors[0].squared_distance_rgb(pSrc_pixels[c]);
- }
- else if ((m_pSorted_luma[0] * 2) >= block_inten_midpoints[2])
- {
- if (m_pSorted_luma[0] > block_inten[3])
- {
- const uint min_error = intabs(m_pSorted_luma[0] - block_inten[3]);
- if (min_error >= trial_solution.m_error)
- continue;
- }
-
- memset(&m_temp_selectors[0], 3, n);
-
- for (uint c = 0; c < n; c++)
- total_error += block_colors[3].squared_distance_rgb(pSrc_pixels[c]);
- }
- else
- {
- uint cur_selector = 0, c;
- for (c = 0; c < n; c++)
- {
- const uint y = m_pSorted_luma[c];
- while ((y * 2) >= block_inten_midpoints[cur_selector])
- if (++cur_selector > 2)
- goto done;
- const uint sorted_pixel_index = m_pSorted_luma_indices[c];
- m_temp_selectors[sorted_pixel_index] = static_cast<uint8>(cur_selector);
- total_error += block_colors[cur_selector].squared_distance_rgb(pSrc_pixels[sorted_pixel_index]);
- }
-done:
- while (c < n)
- {
- const uint sorted_pixel_index = m_pSorted_luma_indices[c];
- m_temp_selectors[sorted_pixel_index] = 3;
- total_error += block_colors[3].squared_distance_rgb(pSrc_pixels[sorted_pixel_index]);
- ++c;
- }
- }
-
- if (total_error < trial_solution.m_error)
- {
- trial_solution.m_error = total_error;
- trial_solution.m_coords.m_inten_table = inten_table;
- memcpy(trial_solution.m_selectors, m_temp_selectors, n);
- trial_solution.m_valid = true;
- if (!total_error)
- break;
- }
- }
- trial_solution.m_coords.m_unscaled_color = coords.m_unscaled_color;
- trial_solution.m_coords.m_color4 = m_pParams->m_use_color4;
-
- bool success = false;
- if (pBest_solution)
- {
- if (trial_solution.m_error < pBest_solution->m_error)
- {
- *pBest_solution = trial_solution;
- success = true;
- }
- }
-
- return success;
- }
-
- static uint etc1_decode_value(uint diff, uint inten, uint selector, uint packed_c)
- {
- const uint limit = diff ? 32 : 16; limit;
- RG_ETC1_ASSERT((diff < 2) && (inten < 8) && (selector < 4) && (packed_c < limit));
- int c;
- if (diff)
- c = (packed_c >> 2) | (packed_c << 3);
- else
- c = packed_c | (packed_c << 4);
- c += g_etc1_inten_tables[inten][selector];
- c = rg_etc1::clamp<int>(c, 0, 255);
- return c;
- }
-
- static inline int mul_8bit(int a, int b) { int t = a*b + 128; return (t + (t >> 8)) >> 8; }
-
- void pack_etc1_block_init()
- {
- for (uint diff = 0; diff < 2; diff++)
- {
- const uint limit = diff ? 32 : 16;
-
- for (uint inten = 0; inten < 8; inten++)
- {
- for (uint selector = 0; selector < 4; selector++)
- {
- const uint inverse_table_index = diff + (inten << 1) + (selector << 4);
- for (uint color = 0; color < 256; color++)
- {
- uint best_error = cUINT32_MAX, best_packed_c = 0;
- for (uint packed_c = 0; packed_c < limit; packed_c++)
- {
- int v = etc1_decode_value(diff, inten, selector, packed_c);
- uint err = labs(v - static_cast<int>(color));
- //printf("err: %d - %u = %u\n",v,color,err);
- if (err < best_error)
- {
- best_error = err;
- best_packed_c = packed_c;
- if (!best_error)
- break;
- }
- }
- RG_ETC1_ASSERT(best_error <= 255);
- g_etc1_inverse_lookup[inverse_table_index][color] = static_cast<uint16>(best_packed_c | (best_error << 8));
- }
- }
- }
- }
-
- uint expand5[32];
- for(int i = 0; i < 32; i++)
- expand5[i] = (i << 3) | (i >> 2);
-
- for(int i = 0; i < 256 + 16; i++)
- {
- int v = clamp<int>(i - 8, 0, 255);
- g_quant5_tab[i] = static_cast<uint8>(expand5[mul_8bit(v,31)]);
- }
- }
-
- // Packs solid color blocks efficiently using a set of small precomputed tables.
- // For random 888 inputs, MSE results are better than Erricson's ETC1 packer in "slow" mode ~9.5% of the time, is slightly worse only ~.01% of the time, and is equal the rest of the time.
- static uint64 pack_etc1_block_solid_color(etc1_block& block, const uint8* pColor, etc1_pack_params& pack_params)
- {
- pack_params;
- RG_ETC1_ASSERT(g_etc1_inverse_lookup[0][255]);
-
- static uint s_next_comp[4] = { 1, 2, 0, 1 };
-
- uint best_error = cUINT32_MAX, best_i = 0;
- int best_x = 0, best_packed_c1 = 0, best_packed_c2 = 0;
-
- // For each possible 8-bit value, there is a precomputed list of diff/inten/selector configurations that allow that 8-bit value to be encoded with no error.
- for (uint i = 0; i < 3; i++)
- {
- const uint c1 = pColor[s_next_comp[i]], c2 = pColor[s_next_comp[i + 1]];
-
- const int delta_range = 1;
- for (int delta = -delta_range; delta <= delta_range; delta++)
- {
- const int c_plus_delta = rg_etc1::clamp<int>(pColor[i] + delta, 0, 255);
-
- const uint16* pTable;
- if (!c_plus_delta)
- pTable = g_color8_to_etc_block_config_0_255[0];
- else if (c_plus_delta == 255)
- pTable = g_color8_to_etc_block_config_0_255[1];
- else
- pTable = g_color8_to_etc_block_config_1_to_254[c_plus_delta - 1];
-
- do
- {
- const uint x = *pTable++;
-
-#ifdef RG_ETC1_BUILD_DEBUG
- const uint diff = x & 1;
- const uint inten = (x >> 1) & 7;
- const uint selector = (x >> 4) & 3;
- const uint p0 = (x >> 8) & 255;
- RG_ETC1_ASSERT(etc1_decode_value(diff, inten, selector, p0) == (uint)c_plus_delta);
-#endif
-
- const uint16* pInverse_table = g_etc1_inverse_lookup[x & 0xFF];
- uint16 p1 = pInverse_table[c1];
- uint16 p2 = pInverse_table[c2];
- const uint trial_error = rg_etc1::square(c_plus_delta - pColor[i]) + rg_etc1::square(p1 >> 8) + rg_etc1::square(p2 >> 8);
- if (trial_error < best_error)
- {
- best_error = trial_error;
- best_x = x;
- best_packed_c1 = p1 & 0xFF;
- best_packed_c2 = p2 & 0xFF;
- best_i = i;
- if (!best_error)
- goto found_perfect_match;
- }
- } while (*pTable != 0xFFFF);
- }
- }
-found_perfect_match:
-
- const uint diff = best_x & 1;
- const uint inten = (best_x >> 1) & 7;
-
- block.m_bytes[3] = static_cast<uint8>(((inten | (inten << 3)) << 2) | (diff << 1));
-
- const uint etc1_selector = g_selector_index_to_etc1[(best_x >> 4) & 3];
- *reinterpret_cast<uint16*>(&block.m_bytes[4]) = (etc1_selector & 2) ? 0xFFFF : 0;
- *reinterpret_cast<uint16*>(&block.m_bytes[6]) = (etc1_selector & 1) ? 0xFFFF : 0;
-
- const uint best_packed_c0 = (best_x >> 8) & 255;
- if (diff)
- {
- block.m_bytes[best_i] = static_cast<uint8>(best_packed_c0 << 3);
- block.m_bytes[s_next_comp[best_i]] = static_cast<uint8>(best_packed_c1 << 3);
- block.m_bytes[s_next_comp[best_i+1]] = static_cast<uint8>(best_packed_c2 << 3);
- }
- else
- {
- block.m_bytes[best_i] = static_cast<uint8>(best_packed_c0 | (best_packed_c0 << 4));
- block.m_bytes[s_next_comp[best_i]] = static_cast<uint8>(best_packed_c1 | (best_packed_c1 << 4));
- block.m_bytes[s_next_comp[best_i+1]] = static_cast<uint8>(best_packed_c2 | (best_packed_c2 << 4));
- }
-
- return best_error;
- }
-
- static uint pack_etc1_block_solid_color_constrained(
- etc1_optimizer::results& results,
- uint num_colors, const uint8* pColor,
- etc1_pack_params& pack_params,
- bool use_diff,
- const color_quad_u8* pBase_color5_unscaled)
- {
- RG_ETC1_ASSERT(g_etc1_inverse_lookup[0][255]);
-
- pack_params;
- static uint s_next_comp[4] = { 1, 2, 0, 1 };
-
- uint best_error = cUINT32_MAX, best_i = 0;
- int best_x = 0, best_packed_c1 = 0, best_packed_c2 = 0;
-
- // For each possible 8-bit value, there is a precomputed list of diff/inten/selector configurations that allow that 8-bit value to be encoded with no error.
- for (uint i = 0; i < 3; i++)
- {
- const uint c1 = pColor[s_next_comp[i]], c2 = pColor[s_next_comp[i + 1]];
-
- const int delta_range = 1;
- for (int delta = -delta_range; delta <= delta_range; delta++)
- {
- const int c_plus_delta = rg_etc1::clamp<int>(pColor[i] + delta, 0, 255);
-
- const uint16* pTable;
- if (!c_plus_delta)
- pTable = g_color8_to_etc_block_config_0_255[0];
- else if (c_plus_delta == 255)
- pTable = g_color8_to_etc_block_config_0_255[1];
- else
- pTable = g_color8_to_etc_block_config_1_to_254[c_plus_delta - 1];
-
- do
- {
- const uint x = *pTable++;
- const uint diff = x & 1;
- if (static_cast<uint>(use_diff) != diff)
- {
- if (*pTable == 0xFFFF)
- break;
- continue;
- }
-
- if ((diff) && (pBase_color5_unscaled))
- {
- const int p0 = (x >> 8) & 255;
- int delta = p0 - static_cast<int>(pBase_color5_unscaled->c[i]);
- if ((delta < cETC1ColorDeltaMin) || (delta > cETC1ColorDeltaMax))
- {
- if (*pTable == 0xFFFF)
- break;
- continue;
- }
- }
-
-#ifdef RG_ETC1_BUILD_DEBUG
- {
- const uint inten = (x >> 1) & 7;
- const uint selector = (x >> 4) & 3;
- const uint p0 = (x >> 8) & 255;
- RG_ETC1_ASSERT(etc1_decode_value(diff, inten, selector, p0) == (uint)c_plus_delta);
- }
-#endif
-
- const uint16* pInverse_table = g_etc1_inverse_lookup[x & 0xFF];
- uint16 p1 = pInverse_table[c1];
- uint16 p2 = pInverse_table[c2];
-
- if ((diff) && (pBase_color5_unscaled))
- {
- int delta1 = (p1 & 0xFF) - static_cast<int>(pBase_color5_unscaled->c[s_next_comp[i]]);
- int delta2 = (p2 & 0xFF) - static_cast<int>(pBase_color5_unscaled->c[s_next_comp[i + 1]]);
- if ((delta1 < cETC1ColorDeltaMin) || (delta1 > cETC1ColorDeltaMax) || (delta2 < cETC1ColorDeltaMin) || (delta2 > cETC1ColorDeltaMax))
- {
- if (*pTable == 0xFFFF)
- break;
- continue;
- }
- }
-
- const uint trial_error = rg_etc1::square(c_plus_delta - pColor[i]) + rg_etc1::square(p1 >> 8) + rg_etc1::square(p2 >> 8);
- if (trial_error < best_error)
- {
- best_error = trial_error;
- best_x = x;
- best_packed_c1 = p1 & 0xFF;
- best_packed_c2 = p2 & 0xFF;
- best_i = i;
- if (!best_error)
- goto found_perfect_match;
- }
- } while (*pTable != 0xFFFF);
- }
- }
-found_perfect_match:
-
- if (best_error == cUINT32_MAX)
- return best_error;
-
- best_error *= num_colors;
-
- results.m_n = num_colors;
- results.m_block_color4 = !(best_x & 1);
- results.m_block_inten_table = (best_x >> 1) & 7;
- memset(results.m_pSelectors, (best_x >> 4) & 3, num_colors);
-
- const uint best_packed_c0 = (best_x >> 8) & 255;
- results.m_block_color_unscaled[best_i] = static_cast<uint8>(best_packed_c0);
- results.m_block_color_unscaled[s_next_comp[best_i]] = static_cast<uint8>(best_packed_c1);
- results.m_block_color_unscaled[s_next_comp[best_i + 1]] = static_cast<uint8>(best_packed_c2);
- results.m_error = best_error;
-
- return best_error;
- }
-
- // Function originally from RYG's public domain real-time DXT1 compressor, modified for 555.
- static void dither_block_555(color_quad_u8* dest, const color_quad_u8* block)
- {
- int err[8],*ep1 = err,*ep2 = err+4;
- uint8 *quant = g_quant5_tab+8;
-
- memset(dest, 0xFF, sizeof(color_quad_u8)*16);
-
- // process channels seperately
- for(int ch=0;ch<3;ch++)
- {
- uint8* bp = (uint8*)block;
- uint8* dp = (uint8*)dest;
-
- bp += ch; dp += ch;
-
- memset(err,0, sizeof(err));
- for(int y = 0; y < 4; y++)
- {
- // pixel 0
- dp[ 0] = quant[bp[ 0] + ((3*ep2[1] + 5*ep2[0]) >> 4)];
- ep1[0] = bp[ 0] - dp[ 0];
-
- // pixel 1
- dp[ 4] = quant[bp[ 4] + ((7*ep1[0] + 3*ep2[2] + 5*ep2[1] + ep2[0]) >> 4)];
- ep1[1] = bp[ 4] - dp[ 4];
-
- // pixel 2
- dp[ 8] = quant[bp[ 8] + ((7*ep1[1] + 3*ep2[3] + 5*ep2[2] + ep2[1]) >> 4)];
- ep1[2] = bp[ 8] - dp[ 8];
-
- // pixel 3
- dp[12] = quant[bp[12] + ((7*ep1[2] + 5*ep2[3] + ep2[2]) >> 4)];
- ep1[3] = bp[12] - dp[12];
-
- // advance to next line
- int* tmp = ep1; ep1 = ep2; ep2 = tmp;
- bp += 16;
- dp += 16;
- }
- }
- }
-
- unsigned int pack_etc1_block(void* pETC1_block, const unsigned int* pSrc_pixels_rgba, etc1_pack_params& pack_params)
- {
- const color_quad_u8* pSrc_pixels = reinterpret_cast<const color_quad_u8*>(pSrc_pixels_rgba);
- etc1_block& dst_block = *static_cast<etc1_block*>(pETC1_block);
-
-#ifdef RG_ETC1_BUILD_DEBUG
- // Ensure all alpha values are 0xFF.
- for (uint i = 0; i < 16; i++)
- {
- RG_ETC1_ASSERT(pSrc_pixels[i].a == 255);
- }
-#endif
-
- color_quad_u8 src_pixel0(pSrc_pixels[0]);
-
- // Check for solid block.
- const uint32 first_pixel_u32 = pSrc_pixels->m_u32;
- int r;
- for (r = 15; r >= 1; --r)
- if (pSrc_pixels[r].m_u32 != first_pixel_u32)
- break;
- if (!r)
- return static_cast<unsigned int>(16 * pack_etc1_block_solid_color(dst_block, &pSrc_pixels[0].r, pack_params));
-
- color_quad_u8 dithered_pixels[16];
- if (pack_params.m_dithering)
- {
- dither_block_555(dithered_pixels, pSrc_pixels);
- pSrc_pixels = dithered_pixels;
- }
-
- etc1_optimizer optimizer;
-
- uint64 best_error = cUINT64_MAX;
- uint best_flip = false, best_use_color4 = false;
-
- uint8 best_selectors[2][8];
- etc1_optimizer::results best_results[2];
- for (uint i = 0; i < 2; i++)
- {
- best_results[i].m_n = 8;
- best_results[i].m_pSelectors = best_selectors[i];
- }
-
- uint8 selectors[3][8];
- etc1_optimizer::results results[3];
-
- for (uint i = 0; i < 3; i++)
- {
- results[i].m_n = 8;
- results[i].m_pSelectors = selectors[i];
- }
-
- color_quad_u8 subblock_pixels[8];
-
- etc1_optimizer::params params(pack_params);
- params.m_num_src_pixels = 8;
- params.m_pSrc_pixels = subblock_pixels;
-
- for (uint flip = 0; flip < 2; flip++)
- {
- for (uint use_color4 = 0; use_color4 < 2; use_color4++)
- {
- uint64 trial_error = 0;
-
- uint subblock;
- for (subblock = 0; subblock < 2; subblock++)
- {
- if (flip)
- memcpy(subblock_pixels, pSrc_pixels + subblock * 8, sizeof(color_quad_u8) * 8);
- else
- {
- const color_quad_u8* pSrc_col = pSrc_pixels + subblock * 2;
- subblock_pixels[0] = pSrc_col[0]; subblock_pixels[1] = pSrc_col[4]; subblock_pixels[2] = pSrc_col[8]; subblock_pixels[3] = pSrc_col[12];
- subblock_pixels[4] = pSrc_col[1]; subblock_pixels[5] = pSrc_col[5]; subblock_pixels[6] = pSrc_col[9]; subblock_pixels[7] = pSrc_col[13];
- }
-
- results[2].m_error = cUINT64_MAX;
- if ((params.m_quality >= cMediumQuality) && ((subblock) || (use_color4)))
- {
- const uint32 subblock_pixel0_u32 = subblock_pixels[0].m_u32;
- for (r = 7; r >= 1; --r)
- if (subblock_pixels[r].m_u32 != subblock_pixel0_u32)
- break;
- if (!r)
- {
- pack_etc1_block_solid_color_constrained(results[2], 8, &subblock_pixels[0].r, pack_params, !use_color4, (subblock && !use_color4) ? &results[0].m_block_color_unscaled : NULL);
- }
- }
-
- params.m_use_color4 = (use_color4 != 0);
- params.m_constrain_against_base_color5 = false;
-
- if ((!use_color4) && (subblock))
- {
- params.m_constrain_against_base_color5 = true;
- params.m_base_color5 = results[0].m_block_color_unscaled;
- }
-
- if (params.m_quality == cHighQuality)
- {
- static const int s_scan_delta_0_to_4[] = { -4, -3, -2, -1, 0, 1, 2, 3, 4 };
- params.m_scan_delta_size = RG_ETC1_ARRAY_SIZE(s_scan_delta_0_to_4);
- params.m_pScan_deltas = s_scan_delta_0_to_4;
- }
- else if (params.m_quality == cMediumQuality)
- {
- static const int s_scan_delta_0_to_1[] = { -1, 0, 1 };
- params.m_scan_delta_size = RG_ETC1_ARRAY_SIZE(s_scan_delta_0_to_1);
- params.m_pScan_deltas = s_scan_delta_0_to_1;
- }
- else
- {
- static const int s_scan_delta_0[] = { 0 };
- params.m_scan_delta_size = RG_ETC1_ARRAY_SIZE(s_scan_delta_0);
- params.m_pScan_deltas = s_scan_delta_0;
- }
-
- optimizer.init(params, results[subblock]);
- if (!optimizer.compute())
- break;
-
- if (params.m_quality >= cMediumQuality)
- {
- // TODO: Fix fairly arbitrary/unrefined thresholds that control how far away to scan for potentially better solutions.
- const uint refinement_error_thresh0 = 3000;
- const uint refinement_error_thresh1 = 6000;
- if (results[subblock].m_error > refinement_error_thresh0)
- {
- if (params.m_quality == cMediumQuality)
- {
- static const int s_scan_delta_2_to_3[] = { -3, -2, 2, 3 };
- params.m_scan_delta_size = RG_ETC1_ARRAY_SIZE(s_scan_delta_2_to_3);
- params.m_pScan_deltas = s_scan_delta_2_to_3;
- }
- else
- {
- static const int s_scan_delta_5_to_5[] = { -5, 5 };
- static const int s_scan_delta_5_to_8[] = { -8, -7, -6, -5, 5, 6, 7, 8 };
- if (results[subblock].m_error > refinement_error_thresh1)
- {
- params.m_scan_delta_size = RG_ETC1_ARRAY_SIZE(s_scan_delta_5_to_8);
- params.m_pScan_deltas = s_scan_delta_5_to_8;
- }
- else
- {
- params.m_scan_delta_size = RG_ETC1_ARRAY_SIZE(s_scan_delta_5_to_5);
- params.m_pScan_deltas = s_scan_delta_5_to_5;
- }
- }
-
- if (!optimizer.compute())
- break;
- }
-
- if (results[2].m_error < results[subblock].m_error)
- results[subblock] = results[2];
- }
-
- trial_error += results[subblock].m_error;
- if (trial_error >= best_error)
- break;
- }
-
- if (subblock < 2)
- continue;
-
- best_error = trial_error;
- best_results[0] = results[0];
- best_results[1] = results[1];
- best_flip = flip;
- best_use_color4 = use_color4;
-
- } // use_color4
-
- } // flip
-
- int dr = best_results[1].m_block_color_unscaled.r - best_results[0].m_block_color_unscaled.r;
- int dg = best_results[1].m_block_color_unscaled.g - best_results[0].m_block_color_unscaled.g;
- int db = best_results[1].m_block_color_unscaled.b - best_results[0].m_block_color_unscaled.b;
- RG_ETC1_ASSERT(best_use_color4 || ((rg_etc1::minimum(dr, dg, db) >= cETC1ColorDeltaMin) && (rg_etc1::maximum(dr, dg, db) <= cETC1ColorDeltaMax)));
-
- if (best_use_color4)
- {
- dst_block.m_bytes[0] = static_cast<uint8>(best_results[1].m_block_color_unscaled.r | (best_results[0].m_block_color_unscaled.r << 4));
- dst_block.m_bytes[1] = static_cast<uint8>(best_results[1].m_block_color_unscaled.g | (best_results[0].m_block_color_unscaled.g << 4));
- dst_block.m_bytes[2] = static_cast<uint8>(best_results[1].m_block_color_unscaled.b | (best_results[0].m_block_color_unscaled.b << 4));
- }
- else
- {
- if (dr < 0) dr += 8; dst_block.m_bytes[0] = static_cast<uint8>((best_results[0].m_block_color_unscaled.r << 3) | dr);
- if (dg < 0) dg += 8; dst_block.m_bytes[1] = static_cast<uint8>((best_results[0].m_block_color_unscaled.g << 3) | dg);
- if (db < 0) db += 8; dst_block.m_bytes[2] = static_cast<uint8>((best_results[0].m_block_color_unscaled.b << 3) | db);
- }
-
- dst_block.m_bytes[3] = static_cast<uint8>( (best_results[1].m_block_inten_table << 2) | (best_results[0].m_block_inten_table << 5) | ((~best_use_color4 & 1) << 1) | best_flip );
-
- uint selector0 = 0, selector1 = 0;
- if (best_flip)
- {
- // flipped:
- // { 0, 0 }, { 1, 0 }, { 2, 0 }, { 3, 0 },
- // { 0, 1 }, { 1, 1 }, { 2, 1 }, { 3, 1 }
- //
- // { 0, 2 }, { 1, 2 }, { 2, 2 }, { 3, 2 },
- // { 0, 3 }, { 1, 3 }, { 2, 3 }, { 3, 3 }
- const uint8* pSelectors0 = best_results[0].m_pSelectors;
- const uint8* pSelectors1 = best_results[1].m_pSelectors;
- for (int x = 3; x >= 0; --x)
- {
- uint b;
- b = g_selector_index_to_etc1[pSelectors1[4 + x]];
- selector0 = (selector0 << 1) | (b & 1); selector1 = (selector1 << 1) | (b >> 1);
-
- b = g_selector_index_to_etc1[pSelectors1[x]];
- selector0 = (selector0 << 1) | (b & 1); selector1 = (selector1 << 1) | (b >> 1);
-
- b = g_selector_index_to_etc1[pSelectors0[4 + x]];
- selector0 = (selector0 << 1) | (b & 1); selector1 = (selector1 << 1) | (b >> 1);
-
- b = g_selector_index_to_etc1[pSelectors0[x]];
- selector0 = (selector0 << 1) | (b & 1); selector1 = (selector1 << 1) | (b >> 1);
- }
- }
- else
- {
- // non-flipped:
- // { 0, 0 }, { 0, 1 }, { 0, 2 }, { 0, 3 },
- // { 1, 0 }, { 1, 1 }, { 1, 2 }, { 1, 3 }
- //
- // { 2, 0 }, { 2, 1 }, { 2, 2 }, { 2, 3 },
- // { 3, 0 }, { 3, 1 }, { 3, 2 }, { 3, 3 }
- for (int subblock = 1; subblock >= 0; --subblock)
- {
- const uint8* pSelectors = best_results[subblock].m_pSelectors + 4;
- for (uint i = 0; i < 2; i++)
- {
- uint b;
- b = g_selector_index_to_etc1[pSelectors[3]];
- selector0 = (selector0 << 1) | (b & 1); selector1 = (selector1 << 1) | (b >> 1);
-
- b = g_selector_index_to_etc1[pSelectors[2]];
- selector0 = (selector0 << 1) | (b & 1); selector1 = (selector1 << 1) | (b >> 1);
-
- b = g_selector_index_to_etc1[pSelectors[1]];
- selector0 = (selector0 << 1) | (b & 1); selector1 = (selector1 << 1) | (b >> 1);
-
- b = g_selector_index_to_etc1[pSelectors[0]];
- selector0 = (selector0 << 1) | (b & 1);selector1 = (selector1 << 1) | (b >> 1);
-
- pSelectors -= 4;
- }
- }
- }
-
- dst_block.m_bytes[4] = static_cast<uint8>(selector1 >> 8); dst_block.m_bytes[5] = static_cast<uint8>(selector1 & 0xFF);
- dst_block.m_bytes[6] = static_cast<uint8>(selector0 >> 8); dst_block.m_bytes[7] = static_cast<uint8>(selector0 & 0xFF);
-
- return static_cast<unsigned int>(best_error);
- }
-
-} // namespace rg_etc1
+// File: rg_etc1.cpp - Fast, high quality ETC1 block packer/unpacker - Rich Geldreich <richgel99@gmail.com>
+// Please see ZLIB license at the end of rg_etc1.h.
+//
+// For more information Ericsson Texture Compression (ETC/ETC1), see:
+// http://www.khronos.org/registry/gles/extensions/OES/OES_compressed_ETC1_RGB8_texture.txt
+//
+// v1.03 - 5/12/13 - Initial public release
+#include "rg_etc1.h"
+
+#include <stdlib.h>
+#include <string.h>
+#include <assert.h>
+//#include <stdio.h>
+#include <math.h>
+#include <stdio.h>
+#pragma warning (disable: 4201) // nonstandard extension used : nameless struct/union
+
+#if defined(_DEBUG) || defined(DEBUG)
+#define RG_ETC1_BUILD_DEBUG
+#endif
+
+#define RG_ETC1_ASSERT assert
+
+namespace rg_etc1
+{
+
+ inline long labs(long val) {
+ return val < 0 ? -val : val;
+ }
+
+ inline int intabs(int val) {
+
+ return val<0?-val:val;
+ }
+
+ typedef unsigned char uint8;
+ typedef unsigned short uint16;
+ typedef unsigned int uint;
+ typedef unsigned int uint32;
+ typedef long long int64;
+ typedef unsigned long long uint64;
+
+ const uint32 cUINT32_MAX = 0xFFFFFFFFU;
+ const uint64 cUINT64_MAX = 0xFFFFFFFFFFFFFFFFULL; //0xFFFFFFFFFFFFFFFFui64;
+
+ template<typename T> inline T minimum(T a, T b) { return (a < b) ? a : b; }
+ template<typename T> inline T minimum(T a, T b, T c) { return minimum(minimum(a, b), c); }
+ template<typename T> inline T maximum(T a, T b) { return (a > b) ? a : b; }
+ template<typename T> inline T maximum(T a, T b, T c) { return maximum(maximum(a, b), c); }
+ template<typename T> inline T clamp(T value, T low, T high) { return (value < low) ? low : ((value > high) ? high : value); }
+ template<typename T> inline T square(T value) { return value * value; }
+ template<typename T> inline void zero_object(T& obj) { memset((void*)&obj, 0, sizeof(obj)); }
+ template<typename T> inline void zero_this(T* pObj) { memset((void*)pObj, 0, sizeof(*pObj)); }
+
+ template<class T, size_t N> T decay_array_to_subtype(T (&a)[N]);
+
+#define RG_ETC1_ARRAY_SIZE(X) (sizeof(X) / sizeof(decay_array_to_subtype(X)))
+
+ enum eNoClamp { cNoClamp };
+
+ struct color_quad_u8
+ {
+ static inline int clamp(int v) { if (v & 0xFFFFFF00U) v = (~(static_cast<int>(v) >> 31)) & 0xFF; return v; }
+
+ struct component_traits { enum { cSigned = false, cFloat = false, cMin = 0U, cMax = 255U }; };
+
+ public:
+ typedef unsigned char component_t;
+ typedef int parameter_t;
+
+ enum { cNumComps = 4 };
+
+ union
+ {
+ struct
+ {
+ component_t r;
+ component_t g;
+ component_t b;
+ component_t a;
+ };
+
+ component_t c[cNumComps];
+
+ uint32 m_u32;
+ };
+
+ inline color_quad_u8()
+ {
+ }
+
+ inline color_quad_u8(const color_quad_u8& other) : m_u32(other.m_u32)
+ {
+ }
+
+ explicit inline color_quad_u8(parameter_t y, parameter_t alpha = component_traits::cMax)
+ {
+ set(y, alpha);
+ }
+
+ inline color_quad_u8(parameter_t red, parameter_t green, parameter_t blue, parameter_t alpha = component_traits::cMax)
+ {
+ set(red, green, blue, alpha);
+ }
+
+ explicit inline color_quad_u8(eNoClamp, parameter_t y, parameter_t alpha = component_traits::cMax)
+ {
+ set_noclamp_y_alpha(y, alpha);
+ }
+
+ inline color_quad_u8(eNoClamp, parameter_t red, parameter_t green, parameter_t blue, parameter_t alpha = component_traits::cMax)
+ {
+ set_noclamp_rgba(red, green, blue, alpha);
+ }
+
+ inline void clear()
+ {
+ m_u32 = 0;
+ }
+
+ inline color_quad_u8& operator= (const color_quad_u8& other)
+ {
+ m_u32 = other.m_u32;
+ return *this;
+ }
+
+ inline color_quad_u8& set_rgb(const color_quad_u8& other)
+ {
+ r = other.r;
+ g = other.g;
+ b = other.b;
+ return *this;
+ }
+
+ inline color_quad_u8& operator= (parameter_t y)
+ {
+ set(y, component_traits::cMax);
+ return *this;
+ }
+
+ inline color_quad_u8& set(parameter_t y, parameter_t alpha = component_traits::cMax)
+ {
+ y = clamp(y);
+ alpha = clamp(alpha);
+ r = static_cast<component_t>(y);
+ g = static_cast<component_t>(y);
+ b = static_cast<component_t>(y);
+ a = static_cast<component_t>(alpha);
+ return *this;
+ }
+
+ inline color_quad_u8& set_noclamp_y_alpha(parameter_t y, parameter_t alpha = component_traits::cMax)
+ {
+ RG_ETC1_ASSERT( (y >= component_traits::cMin) && (y <= component_traits::cMax) );
+ RG_ETC1_ASSERT( (alpha >= component_traits::cMin) && (alpha <= component_traits::cMax) );
+
+ r = static_cast<component_t>(y);
+ g = static_cast<component_t>(y);
+ b = static_cast<component_t>(y);
+ a = static_cast<component_t>(alpha);
+ return *this;
+ }
+
+ inline color_quad_u8& set(parameter_t red, parameter_t green, parameter_t blue, parameter_t alpha = component_traits::cMax)
+ {
+ r = static_cast<component_t>(clamp(red));
+ g = static_cast<component_t>(clamp(green));
+ b = static_cast<component_t>(clamp(blue));
+ a = static_cast<component_t>(clamp(alpha));
+ return *this;
+ }
+
+ inline color_quad_u8& set_noclamp_rgba(parameter_t red, parameter_t green, parameter_t blue, parameter_t alpha)
+ {
+ RG_ETC1_ASSERT( (red >= component_traits::cMin) && (red <= component_traits::cMax) );
+ RG_ETC1_ASSERT( (green >= component_traits::cMin) && (green <= component_traits::cMax) );
+ RG_ETC1_ASSERT( (blue >= component_traits::cMin) && (blue <= component_traits::cMax) );
+ RG_ETC1_ASSERT( (alpha >= component_traits::cMin) && (alpha <= component_traits::cMax) );
+
+ r = static_cast<component_t>(red);
+ g = static_cast<component_t>(green);
+ b = static_cast<component_t>(blue);
+ a = static_cast<component_t>(alpha);
+ return *this;
+ }
+
+ inline color_quad_u8& set_noclamp_rgb(parameter_t red, parameter_t green, parameter_t blue)
+ {
+ RG_ETC1_ASSERT( (red >= component_traits::cMin) && (red <= component_traits::cMax) );
+ RG_ETC1_ASSERT( (green >= component_traits::cMin) && (green <= component_traits::cMax) );
+ RG_ETC1_ASSERT( (blue >= component_traits::cMin) && (blue <= component_traits::cMax) );
+
+ r = static_cast<component_t>(red);
+ g = static_cast<component_t>(green);
+ b = static_cast<component_t>(blue);
+ return *this;
+ }
+
+ static inline parameter_t get_min_comp() { return component_traits::cMin; }
+ static inline parameter_t get_max_comp() { return component_traits::cMax; }
+ static inline bool get_comps_are_signed() { return component_traits::cSigned; }
+
+ inline component_t operator[] (uint i) const { RG_ETC1_ASSERT(i < cNumComps); return c[i]; }
+ inline component_t& operator[] (uint i) { RG_ETC1_ASSERT(i < cNumComps); return c[i]; }
+
+ inline color_quad_u8& set_component(uint i, parameter_t f)
+ {
+ RG_ETC1_ASSERT(i < cNumComps);
+
+ c[i] = static_cast<component_t>(clamp(f));
+
+ return *this;
+ }
+
+ inline color_quad_u8& set_grayscale(parameter_t l)
+ {
+ component_t x = static_cast<component_t>(clamp(l));
+ c[0] = x;
+ c[1] = x;
+ c[2] = x;
+ return *this;
+ }
+
+ inline color_quad_u8& clamp(const color_quad_u8& l, const color_quad_u8& h)
+ {
+ for (uint i = 0; i < cNumComps; i++)
+ c[i] = static_cast<component_t>(rg_etc1::clamp<parameter_t>(c[i], l[i], h[i]));
+ return *this;
+ }
+
+ inline color_quad_u8& clamp(parameter_t l, parameter_t h)
+ {
+ for (uint i = 0; i < cNumComps; i++)
+ c[i] = static_cast<component_t>(rg_etc1::clamp<parameter_t>(c[i], l, h));
+ return *this;
+ }
+
+ // Returns CCIR 601 luma (consistent with color_utils::RGB_To_Y).
+ inline parameter_t get_luma() const
+ {
+ return static_cast<parameter_t>((19595U * r + 38470U * g + 7471U * b + 32768U) >> 16U);
+ }
+
+ // Returns REC 709 luma.
+ inline parameter_t get_luma_rec709() const
+ {
+ return static_cast<parameter_t>((13938U * r + 46869U * g + 4729U * b + 32768U) >> 16U);
+ }
+
+ inline uint squared_distance_rgb(const color_quad_u8& c) const
+ {
+ return rg_etc1::square(r - c.r) + rg_etc1::square(g - c.g) + rg_etc1::square(b - c.b);
+ }
+
+ inline uint squared_distance_rgba(const color_quad_u8& c) const
+ {
+ return rg_etc1::square(r - c.r) + rg_etc1::square(g - c.g) + rg_etc1::square(b - c.b) + rg_etc1::square(a - c.a);
+ }
+
+ inline bool rgb_equals(const color_quad_u8& rhs) const
+ {
+ return (r == rhs.r) && (g == rhs.g) && (b == rhs.b);
+ }
+
+ inline bool operator== (const color_quad_u8& rhs) const
+ {
+ return m_u32 == rhs.m_u32;
+ }
+
+ color_quad_u8& operator+= (const color_quad_u8& other)
+ {
+ for (uint i = 0; i < 4; i++)
+ c[i] = static_cast<component_t>(clamp(c[i] + other.c[i]));
+ return *this;
+ }
+
+ color_quad_u8& operator-= (const color_quad_u8& other)
+ {
+ for (uint i = 0; i < 4; i++)
+ c[i] = static_cast<component_t>(clamp(c[i] - other.c[i]));
+ return *this;
+ }
+
+ friend color_quad_u8 operator+ (const color_quad_u8& lhs, const color_quad_u8& rhs)
+ {
+ color_quad_u8 result(lhs);
+ result += rhs;
+ return result;
+ }
+
+ friend color_quad_u8 operator- (const color_quad_u8& lhs, const color_quad_u8& rhs)
+ {
+ color_quad_u8 result(lhs);
+ result -= rhs;
+ return result;
+ }
+ }; // class color_quad_u8
+
+ struct vec3F
+ {
+ float m_s[3];
+
+ inline vec3F() { }
+ inline vec3F(float s) { m_s[0] = s; m_s[1] = s; m_s[2] = s; }
+ inline vec3F(float x, float y, float z) { m_s[0] = x; m_s[1] = y; m_s[2] = z; }
+
+ inline float operator[] (uint i) const { RG_ETC1_ASSERT(i < 3); return m_s[i]; }
+
+ inline vec3F& operator += (const vec3F& other) { for (uint i = 0; i < 3; i++) m_s[i] += other.m_s[i]; return *this; }
+
+ inline vec3F& operator *= (float s) { for (uint i = 0; i < 3; i++) m_s[i] *= s; return *this; }
+ };
+
+ enum etc_constants
+ {
+ cETC1BytesPerBlock = 8U,
+
+ cETC1SelectorBits = 2U,
+ cETC1SelectorValues = 1U << cETC1SelectorBits,
+ cETC1SelectorMask = cETC1SelectorValues - 1U,
+
+ cETC1BlockShift = 2U,
+ cETC1BlockSize = 1U << cETC1BlockShift,
+
+ cETC1LSBSelectorIndicesBitOffset = 0,
+ cETC1MSBSelectorIndicesBitOffset = 16,
+
+ cETC1FlipBitOffset = 32,
+ cETC1DiffBitOffset = 33,
+
+ cETC1IntenModifierNumBits = 3,
+ cETC1IntenModifierValues = 1 << cETC1IntenModifierNumBits,
+ cETC1RightIntenModifierTableBitOffset = 34,
+ cETC1LeftIntenModifierTableBitOffset = 37,
+
+ // Base+Delta encoding (5 bit bases, 3 bit delta)
+ cETC1BaseColorCompNumBits = 5,
+ cETC1BaseColorCompMax = 1 << cETC1BaseColorCompNumBits,
+
+ cETC1DeltaColorCompNumBits = 3,
+ cETC1DeltaColorComp = 1 << cETC1DeltaColorCompNumBits,
+ cETC1DeltaColorCompMax = 1 << cETC1DeltaColorCompNumBits,
+
+ cETC1BaseColor5RBitOffset = 59,
+ cETC1BaseColor5GBitOffset = 51,
+ cETC1BaseColor5BBitOffset = 43,
+
+ cETC1DeltaColor3RBitOffset = 56,
+ cETC1DeltaColor3GBitOffset = 48,
+ cETC1DeltaColor3BBitOffset = 40,
+
+ // Absolute (non-delta) encoding (two 4-bit per component bases)
+ cETC1AbsColorCompNumBits = 4,
+ cETC1AbsColorCompMax = 1 << cETC1AbsColorCompNumBits,
+
+ cETC1AbsColor4R1BitOffset = 60,
+ cETC1AbsColor4G1BitOffset = 52,
+ cETC1AbsColor4B1BitOffset = 44,
+
+ cETC1AbsColor4R2BitOffset = 56,
+ cETC1AbsColor4G2BitOffset = 48,
+ cETC1AbsColor4B2BitOffset = 40,
+
+ cETC1ColorDeltaMin = -4,
+ cETC1ColorDeltaMax = 3,
+
+ // Delta3:
+ // 0 1 2 3 4 5 6 7
+ // 000 001 010 011 100 101 110 111
+ // 0 1 2 3 -4 -3 -2 -1
+ };
+
+ static uint8 g_quant5_tab[256+16];
+
+
+ static const int g_etc1_inten_tables[cETC1IntenModifierValues][cETC1SelectorValues] =
+ {
+ { -8, -2, 2, 8 }, { -17, -5, 5, 17 }, { -29, -9, 9, 29 }, { -42, -13, 13, 42 },
+ { -60, -18, 18, 60 }, { -80, -24, 24, 80 }, { -106, -33, 33, 106 }, { -183, -47, 47, 183 }
+ };
+
+ static const uint8 g_etc1_to_selector_index[cETC1SelectorValues] = { 2, 3, 1, 0 };
+ static const uint8 g_selector_index_to_etc1[cETC1SelectorValues] = { 3, 2, 0, 1 };
+
+ // Given an ETC1 diff/inten_table/selector, and an 8-bit desired color, this table encodes the best packed_color in the low byte, and the abs error in the high byte.
+ static uint16 g_etc1_inverse_lookup[2*8*4][256]; // [diff/inten_table/selector][desired_color]
+
+ // g_color8_to_etc_block_config[color][table_index] = Supplies for each 8-bit color value a list of packed ETC1 diff/intensity table/selectors/packed_colors that map to that color.
+ // To pack: diff | (inten << 1) | (selector << 4) | (packed_c << 8)
+ static const uint16 g_color8_to_etc_block_config_0_255[2][33] =
+ {
+ { 0x0000, 0x0010, 0x0002, 0x0012, 0x0004, 0x0014, 0x0006, 0x0016, 0x0008, 0x0018, 0x000A, 0x001A, 0x000C, 0x001C, 0x000E, 0x001E,
+ 0x0001, 0x0011, 0x0003, 0x0013, 0x0005, 0x0015, 0x0007, 0x0017, 0x0009, 0x0019, 0x000B, 0x001B, 0x000D, 0x001D, 0x000F, 0x001F, 0xFFFF },
+ { 0x0F20, 0x0F30, 0x0E32, 0x0F22, 0x0E34, 0x0F24, 0x0D36, 0x0F26, 0x0C38, 0x0E28, 0x0B3A, 0x0E2A, 0x093C, 0x0E2C, 0x053E, 0x0D2E,
+ 0x1E31, 0x1F21, 0x1D33, 0x1F23, 0x1C35, 0x1E25, 0x1A37, 0x1E27, 0x1839, 0x1D29, 0x163B, 0x1C2B, 0x133D, 0x1B2D, 0x093F, 0x1A2F, 0xFFFF },
+ };
+
+ // Really only [254][11].
+ static const uint16 g_color8_to_etc_block_config_1_to_254[254][12] =
+ {
+ { 0x021C, 0x0D0D, 0xFFFF }, { 0x0020, 0x0021, 0x0A0B, 0x061F, 0xFFFF }, { 0x0113, 0x0217, 0xFFFF }, { 0x0116, 0x031E,
+ 0x0B0E, 0x0405, 0xFFFF }, { 0x0022, 0x0204, 0x050A, 0x0023, 0xFFFF }, { 0x0111, 0x0319, 0x0809, 0x170F, 0xFFFF }, {
+ 0x0303, 0x0215, 0x0607, 0xFFFF }, { 0x0030, 0x0114, 0x0408, 0x0031, 0x0201, 0x051D, 0xFFFF }, { 0x0100, 0x0024, 0x0306,
+ 0x0025, 0x041B, 0x0E0D, 0xFFFF }, { 0x021A, 0x0121, 0x0B0B, 0x071F, 0xFFFF }, { 0x0213, 0x0317, 0xFFFF }, { 0x0112,
+ 0x0505, 0xFFFF }, { 0x0026, 0x070C, 0x0123, 0x0027, 0xFFFF }, { 0x0211, 0x0909, 0xFFFF }, { 0x0110, 0x0315, 0x0707,
+ 0x0419, 0x180F, 0xFFFF }, { 0x0218, 0x0131, 0x0301, 0x0403, 0x061D, 0xFFFF }, { 0x0032, 0x0202, 0x0033, 0x0125, 0x051B,
+ 0x0F0D, 0xFFFF }, { 0x0028, 0x031C, 0x0221, 0x0029, 0xFFFF }, { 0x0120, 0x0313, 0x0C0B, 0x081F, 0xFFFF }, { 0x0605,
+ 0x0417, 0xFFFF }, { 0x0216, 0x041E, 0x0C0E, 0x0223, 0x0127, 0xFFFF }, { 0x0122, 0x0304, 0x060A, 0x0311, 0x0A09, 0xFFFF
+ }, { 0x0519, 0x190F, 0xFFFF }, { 0x002A, 0x0231, 0x0503, 0x0415, 0x0807, 0x002B, 0x071D, 0xFFFF }, { 0x0130, 0x0214,
+ 0x0508, 0x0401, 0x0133, 0x0225, 0x061B, 0xFFFF }, { 0x0200, 0x0124, 0x0406, 0x0321, 0x0129, 0x100D, 0xFFFF }, { 0x031A,
+ 0x0D0B, 0x091F, 0xFFFF }, { 0x0413, 0x0705, 0x0517, 0xFFFF }, { 0x0212, 0x0034, 0x0323, 0x0035, 0x0227, 0xFFFF }, {
+ 0x0126, 0x080C, 0x0B09, 0xFFFF }, { 0x0411, 0x0619, 0x1A0F, 0xFFFF }, { 0x0210, 0x0331, 0x0603, 0x0515, 0x0907, 0x012B,
+ 0xFFFF }, { 0x0318, 0x002C, 0x0501, 0x0233, 0x0325, 0x071B, 0x002D, 0x081D, 0xFFFF }, { 0x0132, 0x0302, 0x0229, 0x110D,
+ 0xFFFF }, { 0x0128, 0x041C, 0x0421, 0x0E0B, 0x0A1F, 0xFFFF }, { 0x0220, 0x0513, 0x0617, 0xFFFF }, { 0x0135, 0x0805,
+ 0x0327, 0xFFFF }, { 0x0316, 0x051E, 0x0D0E, 0x0423, 0xFFFF }, { 0x0222, 0x0404, 0x070A, 0x0511, 0x0719, 0x0C09, 0x1B0F,
+ 0xFFFF }, { 0x0703, 0x0615, 0x0A07, 0x022B, 0xFFFF }, { 0x012A, 0x0431, 0x0601, 0x0333, 0x012D, 0x091D, 0xFFFF }, {
+ 0x0230, 0x0314, 0x0036, 0x0608, 0x0425, 0x0037, 0x0329, 0x081B, 0x120D, 0xFFFF }, { 0x0300, 0x0224, 0x0506, 0x0521,
+ 0x0F0B, 0x0B1F, 0xFFFF }, { 0x041A, 0x0613, 0x0717, 0xFFFF }, { 0x0235, 0x0905, 0xFFFF }, { 0x0312, 0x0134, 0x0523,
+ 0x0427, 0xFFFF }, { 0x0226, 0x090C, 0x002E, 0x0611, 0x0D09, 0x002F, 0xFFFF }, { 0x0715, 0x0B07, 0x0819, 0x032B, 0x1C0F,
+ 0xFFFF }, { 0x0310, 0x0531, 0x0701, 0x0803, 0x022D, 0x0A1D, 0xFFFF }, { 0x0418, 0x012C, 0x0433, 0x0525, 0x0137, 0x091B,
+ 0x130D, 0xFFFF }, { 0x0232, 0x0402, 0x0621, 0x0429, 0xFFFF }, { 0x0228, 0x051C, 0x0713, 0x100B, 0x0C1F, 0xFFFF }, {
+ 0x0320, 0x0335, 0x0A05, 0x0817, 0xFFFF }, { 0x0623, 0x0527, 0xFFFF }, { 0x0416, 0x061E, 0x0E0E, 0x0711, 0x0E09, 0x012F,
+ 0xFFFF }, { 0x0322, 0x0504, 0x080A, 0x0919, 0x1D0F, 0xFFFF }, { 0x0631, 0x0903, 0x0815, 0x0C07, 0x042B, 0x032D, 0x0B1D,
+ 0xFFFF }, { 0x022A, 0x0801, 0x0533, 0x0625, 0x0237, 0x0A1B, 0xFFFF }, { 0x0330, 0x0414, 0x0136, 0x0708, 0x0721, 0x0529,
+ 0x140D, 0xFFFF }, { 0x0400, 0x0324, 0x0606, 0x0038, 0x0039, 0x110B, 0x0D1F, 0xFFFF }, { 0x051A, 0x0813, 0x0B05, 0x0917,
+ 0xFFFF }, { 0x0723, 0x0435, 0x0627, 0xFFFF }, { 0x0412, 0x0234, 0x0F09, 0x022F, 0xFFFF }, { 0x0326, 0x0A0C, 0x012E,
+ 0x0811, 0x0A19, 0x1E0F, 0xFFFF }, { 0x0731, 0x0A03, 0x0915, 0x0D07, 0x052B, 0xFFFF }, { 0x0410, 0x0901, 0x0633, 0x0725,
+ 0x0337, 0x0B1B, 0x042D, 0x0C1D, 0xFFFF }, { 0x0518, 0x022C, 0x0629, 0x150D, 0xFFFF }, { 0x0332, 0x0502, 0x0821, 0x0139,
+ 0x120B, 0x0E1F, 0xFFFF }, { 0x0328, 0x061C, 0x0913, 0x0A17, 0xFFFF }, { 0x0420, 0x0535, 0x0C05, 0x0727, 0xFFFF }, {
+ 0x0823, 0x032F, 0xFFFF }, { 0x0516, 0x071E, 0x0F0E, 0x0911, 0x0B19, 0x1009, 0x1F0F, 0xFFFF }, { 0x0422, 0x0604, 0x090A,
+ 0x0B03, 0x0A15, 0x0E07, 0x062B, 0xFFFF }, { 0x0831, 0x0A01, 0x0733, 0x052D, 0x0D1D, 0xFFFF }, { 0x032A, 0x0825, 0x0437,
+ 0x0729, 0x0C1B, 0x160D, 0xFFFF }, { 0x0430, 0x0514, 0x0236, 0x0808, 0x0921, 0x0239, 0x130B, 0x0F1F, 0xFFFF }, { 0x0500,
+ 0x0424, 0x0706, 0x0138, 0x0A13, 0x0B17, 0xFFFF }, { 0x061A, 0x0635, 0x0D05, 0xFFFF }, { 0x0923, 0x0827, 0xFFFF }, {
+ 0x0512, 0x0334, 0x003A, 0x0A11, 0x1109, 0x003B, 0x042F, 0xFFFF }, { 0x0426, 0x0B0C, 0x022E, 0x0B15, 0x0F07, 0x0C19,
+ 0x072B, 0xFFFF }, { 0x0931, 0x0B01, 0x0C03, 0x062D, 0x0E1D, 0xFFFF }, { 0x0510, 0x0833, 0x0925, 0x0537, 0x0D1B, 0x170D,
+ 0xFFFF }, { 0x0618, 0x032C, 0x0A21, 0x0339, 0x0829, 0xFFFF }, { 0x0432, 0x0602, 0x0B13, 0x140B, 0x101F, 0xFFFF }, {
+ 0x0428, 0x071C, 0x0735, 0x0E05, 0x0C17, 0xFFFF }, { 0x0520, 0x0A23, 0x0927, 0xFFFF }, { 0x0B11, 0x1209, 0x013B, 0x052F,
+ 0xFFFF }, { 0x0616, 0x081E, 0x0D19, 0xFFFF }, { 0x0522, 0x0704, 0x0A0A, 0x0A31, 0x0D03, 0x0C15, 0x1007, 0x082B, 0x072D,
+ 0x0F1D, 0xFFFF }, { 0x0C01, 0x0933, 0x0A25, 0x0637, 0x0E1B, 0xFFFF }, { 0x042A, 0x0B21, 0x0929, 0x180D, 0xFFFF }, {
+ 0x0530, 0x0614, 0x0336, 0x0908, 0x0439, 0x150B, 0x111F, 0xFFFF }, { 0x0600, 0x0524, 0x0806, 0x0238, 0x0C13, 0x0F05,
+ 0x0D17, 0xFFFF }, { 0x071A, 0x0B23, 0x0835, 0x0A27, 0xFFFF }, { 0x1309, 0x023B, 0x062F, 0xFFFF }, { 0x0612, 0x0434,
+ 0x013A, 0x0C11, 0x0E19, 0xFFFF }, { 0x0526, 0x0C0C, 0x032E, 0x0B31, 0x0E03, 0x0D15, 0x1107, 0x092B, 0xFFFF }, { 0x0D01,
+ 0x0A33, 0x0B25, 0x0737, 0x0F1B, 0x082D, 0x101D, 0xFFFF }, { 0x0610, 0x0A29, 0x190D, 0xFFFF }, { 0x0718, 0x042C, 0x0C21,
+ 0x0539, 0x160B, 0x121F, 0xFFFF }, { 0x0532, 0x0702, 0x0D13, 0x0E17, 0xFFFF }, { 0x0528, 0x081C, 0x0935, 0x1005, 0x0B27,
+ 0xFFFF }, { 0x0620, 0x0C23, 0x033B, 0x072F, 0xFFFF }, { 0x0D11, 0x0F19, 0x1409, 0xFFFF }, { 0x0716, 0x003C, 0x091E,
+ 0x0F03, 0x0E15, 0x1207, 0x0A2B, 0x003D, 0xFFFF }, { 0x0622, 0x0804, 0x0B0A, 0x0C31, 0x0E01, 0x0B33, 0x092D, 0x111D,
+ 0xFFFF }, { 0x0C25, 0x0837, 0x0B29, 0x101B, 0x1A0D, 0xFFFF }, { 0x052A, 0x0D21, 0x0639, 0x170B, 0x131F, 0xFFFF }, {
+ 0x0630, 0x0714, 0x0436, 0x0A08, 0x0E13, 0x0F17, 0xFFFF }, { 0x0700, 0x0624, 0x0906, 0x0338, 0x0A35, 0x1105, 0xFFFF }, {
+ 0x081A, 0x0D23, 0x0C27, 0xFFFF }, { 0x0E11, 0x1509, 0x043B, 0x082F, 0xFFFF }, { 0x0712, 0x0534, 0x023A, 0x0F15, 0x1307,
+ 0x1019, 0x0B2B, 0x013D, 0xFFFF }, { 0x0626, 0x0D0C, 0x042E, 0x0D31, 0x0F01, 0x1003, 0x0A2D, 0x121D, 0xFFFF }, { 0x0C33,
+ 0x0D25, 0x0937, 0x111B, 0x1B0D, 0xFFFF }, { 0x0710, 0x0E21, 0x0739, 0x0C29, 0xFFFF }, { 0x0818, 0x052C, 0x0F13, 0x180B,
+ 0x141F, 0xFFFF }, { 0x0632, 0x0802, 0x0B35, 0x1205, 0x1017, 0xFFFF }, { 0x0628, 0x091C, 0x0E23, 0x0D27, 0xFFFF }, {
+ 0x0720, 0x0F11, 0x1609, 0x053B, 0x092F, 0xFFFF }, { 0x1119, 0x023D, 0xFFFF }, { 0x0816, 0x013C, 0x0A1E, 0x0E31, 0x1103,
+ 0x1015, 0x1407, 0x0C2B, 0x0B2D, 0x131D, 0xFFFF }, { 0x0722, 0x0904, 0x0C0A, 0x1001, 0x0D33, 0x0E25, 0x0A37, 0x121B,
+ 0xFFFF }, { 0x0F21, 0x0D29, 0x1C0D, 0xFFFF }, { 0x062A, 0x0839, 0x190B, 0x151F, 0xFFFF }, { 0x0730, 0x0814, 0x0536,
+ 0x0B08, 0x1013, 0x1305, 0x1117, 0xFFFF }, { 0x0800, 0x0724, 0x0A06, 0x0438, 0x0F23, 0x0C35, 0x0E27, 0xFFFF }, { 0x091A,
+ 0x1709, 0x063B, 0x0A2F, 0xFFFF }, { 0x1011, 0x1219, 0x033D, 0xFFFF }, { 0x0812, 0x0634, 0x033A, 0x0F31, 0x1203, 0x1115,
+ 0x1507, 0x0D2B, 0xFFFF }, { 0x0726, 0x0E0C, 0x052E, 0x1101, 0x0E33, 0x0F25, 0x0B37, 0x131B, 0x0C2D, 0x141D, 0xFFFF }, {
+ 0x0E29, 0x1D0D, 0xFFFF }, { 0x0810, 0x1021, 0x0939, 0x1A0B, 0x161F, 0xFFFF }, { 0x0918, 0x062C, 0x1113, 0x1217, 0xFFFF
+ }, { 0x0732, 0x0902, 0x0D35, 0x1405, 0x0F27, 0xFFFF }, { 0x0728, 0x0A1C, 0x1023, 0x073B, 0x0B2F, 0xFFFF }, { 0x0820,
+ 0x1111, 0x1319, 0x1809, 0xFFFF }, { 0x1303, 0x1215, 0x1607, 0x0E2B, 0x043D, 0xFFFF }, { 0x0916, 0x023C, 0x0B1E, 0x1031,
+ 0x1201, 0x0F33, 0x0D2D, 0x151D, 0xFFFF }, { 0x0822, 0x0A04, 0x0D0A, 0x1025, 0x0C37, 0x0F29, 0x141B, 0x1E0D, 0xFFFF }, {
+ 0x1121, 0x0A39, 0x1B0B, 0x171F, 0xFFFF }, { 0x072A, 0x1213, 0x1317, 0xFFFF }, { 0x0830, 0x0914, 0x0636, 0x0C08, 0x0E35,
+ 0x1505, 0xFFFF }, { 0x0900, 0x0824, 0x0B06, 0x0538, 0x1123, 0x1027, 0xFFFF }, { 0x0A1A, 0x1211, 0x1909, 0x083B, 0x0C2F,
+ 0xFFFF }, { 0x1315, 0x1707, 0x1419, 0x0F2B, 0x053D, 0xFFFF }, { 0x0912, 0x0734, 0x043A, 0x1131, 0x1301, 0x1403, 0x0E2D,
+ 0x161D, 0xFFFF }, { 0x0826, 0x0F0C, 0x062E, 0x1033, 0x1125, 0x0D37, 0x151B, 0x1F0D, 0xFFFF }, { 0x1221, 0x0B39, 0x1029,
+ 0xFFFF }, { 0x0910, 0x1313, 0x1C0B, 0x181F, 0xFFFF }, { 0x0A18, 0x072C, 0x0F35, 0x1605, 0x1417, 0xFFFF }, { 0x0832,
+ 0x0A02, 0x1223, 0x1127, 0xFFFF }, { 0x0828, 0x0B1C, 0x1311, 0x1A09, 0x093B, 0x0D2F, 0xFFFF }, { 0x0920, 0x1519, 0x063D,
+ 0xFFFF }, { 0x1231, 0x1503, 0x1415, 0x1807, 0x102B, 0x0F2D, 0x171D, 0xFFFF }, { 0x0A16, 0x033C, 0x0C1E, 0x1401, 0x1133,
+ 0x1225, 0x0E37, 0x161B, 0xFFFF }, { 0x0922, 0x0B04, 0x0E0A, 0x1321, 0x1129, 0xFFFF }, { 0x0C39, 0x1D0B, 0x191F, 0xFFFF
+ }, { 0x082A, 0x1413, 0x1705, 0x1517, 0xFFFF }, { 0x0930, 0x0A14, 0x0736, 0x0D08, 0x1323, 0x1035, 0x1227, 0xFFFF }, {
+ 0x0A00, 0x0924, 0x0C06, 0x0638, 0x1B09, 0x0A3B, 0x0E2F, 0xFFFF }, { 0x0B1A, 0x1411, 0x1619, 0x073D, 0xFFFF }, { 0x1331,
+ 0x1603, 0x1515, 0x1907, 0x112B, 0xFFFF }, { 0x0A12, 0x0834, 0x053A, 0x1501, 0x1233, 0x1325, 0x0F37, 0x171B, 0x102D,
+ 0x181D, 0xFFFF }, { 0x0926, 0x072E, 0x1229, 0xFFFF }, { 0x1421, 0x0D39, 0x1E0B, 0x1A1F, 0xFFFF }, { 0x0A10, 0x1513,
+ 0x1617, 0xFFFF }, { 0x0B18, 0x082C, 0x1135, 0x1805, 0x1327, 0xFFFF }, { 0x0932, 0x0B02, 0x1423, 0x0B3B, 0x0F2F, 0xFFFF
+ }, { 0x0928, 0x0C1C, 0x1511, 0x1719, 0x1C09, 0xFFFF }, { 0x0A20, 0x1703, 0x1615, 0x1A07, 0x122B, 0x083D, 0xFFFF }, {
+ 0x1431, 0x1601, 0x1333, 0x112D, 0x191D, 0xFFFF }, { 0x0B16, 0x043C, 0x0D1E, 0x1425, 0x1037, 0x1329, 0x181B, 0xFFFF }, {
+ 0x0A22, 0x0C04, 0x0F0A, 0x1521, 0x0E39, 0x1F0B, 0x1B1F, 0xFFFF }, { 0x1613, 0x1717, 0xFFFF }, { 0x092A, 0x1235, 0x1905,
+ 0xFFFF }, { 0x0A30, 0x0B14, 0x0836, 0x0E08, 0x1523, 0x1427, 0xFFFF }, { 0x0B00, 0x0A24, 0x0D06, 0x0738, 0x1611, 0x1D09,
+ 0x0C3B, 0x102F, 0xFFFF }, { 0x0C1A, 0x1715, 0x1B07, 0x1819, 0x132B, 0x093D, 0xFFFF }, { 0x1531, 0x1701, 0x1803, 0x122D,
+ 0x1A1D, 0xFFFF }, { 0x0B12, 0x0934, 0x063A, 0x1433, 0x1525, 0x1137, 0x191B, 0xFFFF }, { 0x0A26, 0x003E, 0x082E, 0x1621,
+ 0x0F39, 0x1429, 0x003F, 0xFFFF }, { 0x1713, 0x1C1F, 0xFFFF }, { 0x0B10, 0x1335, 0x1A05, 0x1817, 0xFFFF }, { 0x0C18,
+ 0x092C, 0x1623, 0x1527, 0xFFFF }, { 0x0A32, 0x0C02, 0x1711, 0x1E09, 0x0D3B, 0x112F, 0xFFFF }, { 0x0A28, 0x0D1C, 0x1919,
+ 0x0A3D, 0xFFFF }, { 0x0B20, 0x1631, 0x1903, 0x1815, 0x1C07, 0x142B, 0x132D, 0x1B1D, 0xFFFF }, { 0x1801, 0x1533, 0x1625,
+ 0x1237, 0x1A1B, 0xFFFF }, { 0x0C16, 0x053C, 0x0E1E, 0x1721, 0x1529, 0x013F, 0xFFFF }, { 0x0B22, 0x0D04, 0x1039, 0x1D1F,
+ 0xFFFF }, { 0x1813, 0x1B05, 0x1917, 0xFFFF }, { 0x0A2A, 0x1723, 0x1435, 0x1627, 0xFFFF }, { 0x0B30, 0x0C14, 0x0936,
+ 0x0F08, 0x1F09, 0x0E3B, 0x122F, 0xFFFF }, { 0x0C00, 0x0B24, 0x0E06, 0x0838, 0x1811, 0x1A19, 0x0B3D, 0xFFFF }, { 0x0D1A,
+ 0x1731, 0x1A03, 0x1915, 0x1D07, 0x152B, 0xFFFF }, { 0x1901, 0x1633, 0x1725, 0x1337, 0x1B1B, 0x142D, 0x1C1D, 0xFFFF }, {
+ 0x0C12, 0x0A34, 0x073A, 0x1629, 0x023F, 0xFFFF }, { 0x0B26, 0x013E, 0x092E, 0x1821, 0x1139, 0x1E1F, 0xFFFF }, { 0x1913,
+ 0x1A17, 0xFFFF }, { 0x0C10, 0x1535, 0x1C05, 0x1727, 0xFFFF }, { 0x0D18, 0x0A2C, 0x1823, 0x0F3B, 0x132F, 0xFFFF }, {
+ 0x0B32, 0x0D02, 0x1911, 0x1B19, 0xFFFF }, { 0x0B28, 0x0E1C, 0x1B03, 0x1A15, 0x1E07, 0x162B, 0x0C3D, 0xFFFF }, { 0x0C20,
+ 0x1831, 0x1A01, 0x1733, 0x152D, 0x1D1D, 0xFFFF }, { 0x1825, 0x1437, 0x1729, 0x1C1B, 0x033F, 0xFFFF }, { 0x0D16, 0x063C,
+ 0x0F1E, 0x1921, 0x1239, 0x1F1F, 0xFFFF }, { 0x0C22, 0x0E04, 0x1A13, 0x1B17, 0xFFFF }, { 0x1635, 0x1D05, 0xFFFF }, {
+ 0x0B2A, 0x1923, 0x1827, 0xFFFF }, { 0x0C30, 0x0D14, 0x0A36, 0x1A11, 0x103B, 0x142F, 0xFFFF }, { 0x0D00, 0x0C24, 0x0F06,
+ 0x0938, 0x1B15, 0x1F07, 0x1C19, 0x172B, 0x0D3D, 0xFFFF }, { 0x0E1A, 0x1931, 0x1B01, 0x1C03, 0x162D, 0x1E1D, 0xFFFF }, {
+ 0x1833, 0x1925, 0x1537, 0x1D1B, 0xFFFF }, { 0x0D12, 0x0B34, 0x083A, 0x1A21, 0x1339, 0x1829, 0x043F, 0xFFFF }, { 0x0C26,
+ 0x023E, 0x0A2E, 0x1B13, 0xFFFF }, { 0x1735, 0x1E05, 0x1C17, 0xFFFF }, { 0x0D10, 0x1A23, 0x1927, 0xFFFF }, { 0x0E18,
+ 0x0B2C, 0x1B11, 0x113B, 0x152F, 0xFFFF }, { 0x0C32, 0x0E02, 0x1D19, 0x0E3D, 0xFFFF }, { 0x0C28, 0x0F1C, 0x1A31, 0x1D03,
+ 0x1C15, 0x182B, 0x172D, 0x1F1D, 0xFFFF }, { 0x0D20, 0x1C01, 0x1933, 0x1A25, 0x1637, 0x1E1B, 0xFFFF }, { 0x1B21, 0x1929,
+ 0x053F, 0xFFFF }, { 0x0E16, 0x073C, 0x1439, 0xFFFF }, { 0x0D22, 0x0F04, 0x1C13, 0x1F05, 0x1D17, 0xFFFF }, { 0x1B23,
+ 0x1835, 0x1A27, 0xFFFF }, { 0x0C2A, 0x123B, 0x162F, 0xFFFF }, { 0x0D30, 0x0E14, 0x0B36, 0x1C11, 0x1E19, 0x0F3D, 0xFFFF
+ }, { 0x0E00, 0x0D24, 0x0A38, 0x1B31, 0x1E03, 0x1D15, 0x192B, 0xFFFF }, { 0x0F1A, 0x1D01, 0x1A33, 0x1B25, 0x1737, 0x1F1B,
+ 0x182D, 0xFFFF }, { 0x1A29, 0x063F, 0xFFFF }, { 0x0E12, 0x0C34, 0x093A, 0x1C21, 0x1539, 0xFFFF }, { 0x0D26, 0x033E,
+ 0x0B2E, 0x1D13, 0x1E17, 0xFFFF }, { 0x1935, 0x1B27, 0xFFFF }, { 0x0E10, 0x1C23, 0x133B, 0x172F, 0xFFFF }, { 0x0F18,
+ 0x0C2C, 0x1D11, 0x1F19, 0xFFFF }, { 0x0D32, 0x0F02, 0x1F03, 0x1E15, 0x1A2B, 0x103D, 0xFFFF }, { 0x0D28, 0x1C31, 0x1E01,
+ 0x1B33, 0x192D, 0xFFFF }, { 0x0E20, 0x1C25, 0x1837, 0x1B29, 0x073F, 0xFFFF }, { 0x1D21, 0x1639, 0xFFFF }, { 0x0F16,
+ 0x083C, 0x1E13, 0x1F17, 0xFFFF }, { 0x0E22, 0x1A35, 0xFFFF }, { 0x1D23, 0x1C27, 0xFFFF }, { 0x0D2A, 0x1E11, 0x143B,
+ 0x182F, 0xFFFF }, { 0x0E30, 0x0F14, 0x0C36, 0x1F15, 0x1B2B, 0x113D, 0xFFFF }, { 0x0F00, 0x0E24, 0x0B38, 0x1D31, 0x1F01,
+ 0x1A2D, 0xFFFF }, { 0x1C33, 0x1D25, 0x1937, 0xFFFF }, { 0x1E21, 0x1739, 0x1C29, 0x083F, 0xFFFF }, { 0x0F12, 0x0D34,
+ 0x0A3A, 0x1F13, 0xFFFF }, { 0x0E26, 0x043E, 0x0C2E, 0x1B35, 0xFFFF }, { 0x1E23, 0x1D27, 0xFFFF }, { 0x0F10, 0x1F11,
+ 0x153B, 0x192F, 0xFFFF }, { 0x0D2C, 0x123D, 0xFFFF },
+ };
+
+ struct etc1_block
+ {
+ // big endian uint64:
+ // bit ofs: 56 48 40 32 24 16 8 0
+ // byte ofs: b0, b1, b2, b3, b4, b5, b6, b7
+ union
+ {
+ uint64 m_uint64;
+ uint8 m_bytes[8];
+ };
+
+ uint8 m_low_color[2];
+ uint8 m_high_color[2];
+
+ enum { cNumSelectorBytes = 4 };
+ uint8 m_selectors[cNumSelectorBytes];
+
+ inline void clear()
+ {
+ zero_this(this);
+ }
+
+ inline uint get_byte_bits(uint ofs, uint num) const
+ {
+ RG_ETC1_ASSERT((ofs + num) <= 64U);
+ RG_ETC1_ASSERT(num && (num <= 8U));
+ RG_ETC1_ASSERT((ofs >> 3) == ((ofs + num - 1) >> 3));
+ const uint byte_ofs = 7 - (ofs >> 3);
+ const uint byte_bit_ofs = ofs & 7;
+ return (m_bytes[byte_ofs] >> byte_bit_ofs) & ((1 << num) - 1);
+ }
+
+ inline void set_byte_bits(uint ofs, uint num, uint bits)
+ {
+ RG_ETC1_ASSERT((ofs + num) <= 64U);
+ RG_ETC1_ASSERT(num && (num < 32U));
+ RG_ETC1_ASSERT((ofs >> 3) == ((ofs + num - 1) >> 3));
+ RG_ETC1_ASSERT(bits < (1U << num));
+ const uint byte_ofs = 7 - (ofs >> 3);
+ const uint byte_bit_ofs = ofs & 7;
+ const uint mask = (1 << num) - 1;
+ m_bytes[byte_ofs] &= ~(mask << byte_bit_ofs);
+ m_bytes[byte_ofs] |= (bits << byte_bit_ofs);
+ }
+
+ // false = left/right subblocks
+ // true = upper/lower subblocks
+ inline bool get_flip_bit() const
+ {
+ return (m_bytes[3] & 1) != 0;
+ }
+
+ inline void set_flip_bit(bool flip)
+ {
+ m_bytes[3] &= ~1;
+ m_bytes[3] |= static_cast<uint8>(flip);
+ }
+
+ inline bool get_diff_bit() const
+ {
+ return (m_bytes[3] & 2) != 0;
+ }
+
+ inline void set_diff_bit(bool diff)
+ {
+ m_bytes[3] &= ~2;
+ m_bytes[3] |= (static_cast<uint>(diff) << 1);
+ }
+
+ // Returns intensity modifier table (0-7) used by subblock subblock_id.
+ // subblock_id=0 left/top (CW 1), 1=right/bottom (CW 2)
+ inline uint get_inten_table(uint subblock_id) const
+ {
+ RG_ETC1_ASSERT(subblock_id < 2);
+ const uint ofs = subblock_id ? 2 : 5;
+ return (m_bytes[3] >> ofs) & 7;
+ }
+
+ // Sets intensity modifier table (0-7) used by subblock subblock_id (0 or 1)
+ inline void set_inten_table(uint subblock_id, uint t)
+ {
+ RG_ETC1_ASSERT(subblock_id < 2);
+ RG_ETC1_ASSERT(t < 8);
+ const uint ofs = subblock_id ? 2 : 5;
+ m_bytes[3] &= ~(7 << ofs);
+ m_bytes[3] |= (t << ofs);
+ }
+
+ // Returned selector value ranges from 0-3 and is a direct index into g_etc1_inten_tables.
+ inline uint get_selector(uint x, uint y) const
+ {
+ RG_ETC1_ASSERT((x | y) < 4);
+
+ const uint bit_index = x * 4 + y;
+ const uint byte_bit_ofs = bit_index & 7;
+ const uint8 *p = &m_bytes[7 - (bit_index >> 3)];
+ const uint lsb = (p[0] >> byte_bit_ofs) & 1;
+ const uint msb = (p[-2] >> byte_bit_ofs) & 1;
+ const uint val = lsb | (msb << 1);
+
+ return g_etc1_to_selector_index[val];
+ }
+
+ // Selector "val" ranges from 0-3 and is a direct index into g_etc1_inten_tables.
+ inline void set_selector(uint x, uint y, uint val)
+ {
+ RG_ETC1_ASSERT((x | y | val) < 4);
+ const uint bit_index = x * 4 + y;
+
+ uint8 *p = &m_bytes[7 - (bit_index >> 3)];
+
+ const uint byte_bit_ofs = bit_index & 7;
+ const uint mask = 1 << byte_bit_ofs;
+
+ const uint etc1_val = g_selector_index_to_etc1[val];
+
+ const uint lsb = etc1_val & 1;
+ const uint msb = etc1_val >> 1;
+
+ p[0] &= ~mask;
+ p[0] |= (lsb << byte_bit_ofs);
+
+ p[-2] &= ~mask;
+ p[-2] |= (msb << byte_bit_ofs);
+ }
+
+ inline void set_base4_color(uint idx, uint16 c)
+ {
+ if (idx)
+ {
+ set_byte_bits(cETC1AbsColor4R2BitOffset, 4, (c >> 8) & 15);
+ set_byte_bits(cETC1AbsColor4G2BitOffset, 4, (c >> 4) & 15);
+ set_byte_bits(cETC1AbsColor4B2BitOffset, 4, c & 15);
+ }
+ else
+ {
+ set_byte_bits(cETC1AbsColor4R1BitOffset, 4, (c >> 8) & 15);
+ set_byte_bits(cETC1AbsColor4G1BitOffset, 4, (c >> 4) & 15);
+ set_byte_bits(cETC1AbsColor4B1BitOffset, 4, c & 15);
+ }
+ }
+
+ inline uint16 get_base4_color(uint idx) const
+ {
+ uint r, g, b;
+ if (idx)
+ {
+ r = get_byte_bits(cETC1AbsColor4R2BitOffset, 4);
+ g = get_byte_bits(cETC1AbsColor4G2BitOffset, 4);
+ b = get_byte_bits(cETC1AbsColor4B2BitOffset, 4);
+ }
+ else
+ {
+ r = get_byte_bits(cETC1AbsColor4R1BitOffset, 4);
+ g = get_byte_bits(cETC1AbsColor4G1BitOffset, 4);
+ b = get_byte_bits(cETC1AbsColor4B1BitOffset, 4);
+ }
+ return static_cast<uint16>(b | (g << 4U) | (r << 8U));
+ }
+
+ inline void set_base5_color(uint16 c)
+ {
+ set_byte_bits(cETC1BaseColor5RBitOffset, 5, (c >> 10) & 31);
+ set_byte_bits(cETC1BaseColor5GBitOffset, 5, (c >> 5) & 31);
+ set_byte_bits(cETC1BaseColor5BBitOffset, 5, c & 31);
+ }
+
+ inline uint16 get_base5_color() const
+ {
+ const uint r = get_byte_bits(cETC1BaseColor5RBitOffset, 5);
+ const uint g = get_byte_bits(cETC1BaseColor5GBitOffset, 5);
+ const uint b = get_byte_bits(cETC1BaseColor5BBitOffset, 5);
+ return static_cast<uint16>(b | (g << 5U) | (r << 10U));
+ }
+
+ void set_delta3_color(uint16 c)
+ {
+ set_byte_bits(cETC1DeltaColor3RBitOffset, 3, (c >> 6) & 7);
+ set_byte_bits(cETC1DeltaColor3GBitOffset, 3, (c >> 3) & 7);
+ set_byte_bits(cETC1DeltaColor3BBitOffset, 3, c & 7);
+ }
+
+ inline uint16 get_delta3_color() const
+ {
+ const uint r = get_byte_bits(cETC1DeltaColor3RBitOffset, 3);
+ const uint g = get_byte_bits(cETC1DeltaColor3GBitOffset, 3);
+ const uint b = get_byte_bits(cETC1DeltaColor3BBitOffset, 3);
+ return static_cast<uint16>(b | (g << 3U) | (r << 6U));
+ }
+
+ // Base color 5
+ static uint16 pack_color5(const color_quad_u8& color, bool scaled, uint bias = 127U);
+ static uint16 pack_color5(uint r, uint g, uint b, bool scaled, uint bias = 127U);
+
+ static color_quad_u8 unpack_color5(uint16 packed_color5, bool scaled, uint alpha = 255U);
+ static void unpack_color5(uint& r, uint& g, uint& b, uint16 packed_color, bool scaled);
+
+ static bool unpack_color5(color_quad_u8& result, uint16 packed_color5, uint16 packed_delta3, bool scaled, uint alpha = 255U);
+ static bool unpack_color5(uint& r, uint& g, uint& b, uint16 packed_color5, uint16 packed_delta3, bool scaled, uint alpha = 255U);
+
+ // Delta color 3
+ // Inputs range from -4 to 3 (cETC1ColorDeltaMin to cETC1ColorDeltaMax)
+ static uint16 pack_delta3(int r, int g, int b);
+
+ // Results range from -4 to 3 (cETC1ColorDeltaMin to cETC1ColorDeltaMax)
+ static void unpack_delta3(int& r, int& g, int& b, uint16 packed_delta3);
+
+ // Abs color 4
+ static uint16 pack_color4(const color_quad_u8& color, bool scaled, uint bias = 127U);
+ static uint16 pack_color4(uint r, uint g, uint b, bool scaled, uint bias = 127U);
+
+ static color_quad_u8 unpack_color4(uint16 packed_color4, bool scaled, uint alpha = 255U);
+ static void unpack_color4(uint& r, uint& g, uint& b, uint16 packed_color4, bool scaled);
+
+ // subblock colors
+ static void get_diff_subblock_colors(color_quad_u8* pDst, uint16 packed_color5, uint table_idx);
+ static bool get_diff_subblock_colors(color_quad_u8* pDst, uint16 packed_color5, uint16 packed_delta3, uint table_idx);
+ static void get_abs_subblock_colors(color_quad_u8* pDst, uint16 packed_color4, uint table_idx);
+
+ static inline void unscaled_to_scaled_color(color_quad_u8& dst, const color_quad_u8& src, bool color4)
+ {
+ if (color4)
+ {
+ dst.r = src.r | (src.r << 4);
+ dst.g = src.g | (src.g << 4);
+ dst.b = src.b | (src.b << 4);
+ }
+ else
+ {
+ dst.r = (src.r >> 2) | (src.r << 3);
+ dst.g = (src.g >> 2) | (src.g << 3);
+ dst.b = (src.b >> 2) | (src.b << 3);
+ }
+ dst.a = src.a;
+ }
+ };
+
+ // Returns pointer to sorted array.
+ template<typename T, typename Q>
+ T* indirect_radix_sort(uint num_indices, T* pIndices0, T* pIndices1, const Q* pKeys, uint key_ofs, uint key_size, bool init_indices)
+ {
+ RG_ETC1_ASSERT((key_ofs >= 0) && (key_ofs < sizeof(T)));
+ RG_ETC1_ASSERT((key_size >= 1) && (key_size <= 4));
+
+ if (init_indices)
+ {
+ T* p = pIndices0;
+ T* q = pIndices0 + (num_indices >> 1) * 2;
+ uint i;
+ for (i = 0; p != q; p += 2, i += 2)
+ {
+ p[0] = static_cast<T>(i);
+ p[1] = static_cast<T>(i + 1);
+ }
+
+ if (num_indices & 1)
+ *p = static_cast<T>(i);
+ }
+
+ uint hist[256 * 4];
+
+ memset(hist, 0, sizeof(hist[0]) * 256 * key_size);
+
+#define RG_ETC1_GET_KEY(p) (*(const uint*)((const uint8*)(pKeys + *(p)) + key_ofs))
+#define RG_ETC1_GET_KEY_FROM_INDEX(i) (*(const uint*)((const uint8*)(pKeys + (i)) + key_ofs))
+
+ if (key_size == 4)
+ {
+ T* p = pIndices0;
+ T* q = pIndices0 + num_indices;
+ for ( ; p != q; p++)
+ {
+ const uint key = RG_ETC1_GET_KEY(p);
+
+ hist[ key & 0xFF]++;
+ hist[256 + ((key >> 8) & 0xFF)]++;
+ hist[512 + ((key >> 16) & 0xFF)]++;
+ hist[768 + ((key >> 24) & 0xFF)]++;
+ }
+ }
+ else if (key_size == 3)
+ {
+ T* p = pIndices0;
+ T* q = pIndices0 + num_indices;
+ for ( ; p != q; p++)
+ {
+ const uint key = RG_ETC1_GET_KEY(p);
+
+ hist[ key & 0xFF]++;
+ hist[256 + ((key >> 8) & 0xFF)]++;
+ hist[512 + ((key >> 16) & 0xFF)]++;
+ }
+ }
+ else if (key_size == 2)
+ {
+ T* p = pIndices0;
+ T* q = pIndices0 + (num_indices >> 1) * 2;
+
+ for ( ; p != q; p += 2)
+ {
+ const uint key0 = RG_ETC1_GET_KEY(p);
+ const uint key1 = RG_ETC1_GET_KEY(p+1);
+
+ hist[ key0 & 0xFF]++;
+ hist[256 + ((key0 >> 8) & 0xFF)]++;
+
+ hist[ key1 & 0xFF]++;
+ hist[256 + ((key1 >> 8) & 0xFF)]++;
+ }
+
+ if (num_indices & 1)
+ {
+ const uint key = RG_ETC1_GET_KEY(p);
+
+ hist[ key & 0xFF]++;
+ hist[256 + ((key >> 8) & 0xFF)]++;
+ }
+ }
+ else
+ {
+ RG_ETC1_ASSERT(key_size == 1);
+ if (key_size != 1)
+ return NULL;
+
+ T* p = pIndices0;
+ T* q = pIndices0 + (num_indices >> 1) * 2;
+
+ for ( ; p != q; p += 2)
+ {
+ const uint key0 = RG_ETC1_GET_KEY(p);
+ const uint key1 = RG_ETC1_GET_KEY(p+1);
+
+ hist[key0 & 0xFF]++;
+ hist[key1 & 0xFF]++;
+ }
+
+ if (num_indices & 1)
+ {
+ const uint key = RG_ETC1_GET_KEY(p);
+
+ hist[key & 0xFF]++;
+ }
+ }
+
+ T* pCur = pIndices0;
+ T* pNew = pIndices1;
+
+ for (uint pass = 0; pass < key_size; pass++)
+ {
+ const uint* pHist = &hist[pass << 8];
+
+ uint offsets[256];
+
+ uint cur_ofs = 0;
+ for (uint i = 0; i < 256; i += 2)
+ {
+ offsets[i] = cur_ofs;
+ cur_ofs += pHist[i];
+
+ offsets[i+1] = cur_ofs;
+ cur_ofs += pHist[i+1];
+ }
+
+ const uint pass_shift = pass << 3;
+
+ T* p = pCur;
+ T* q = pCur + (num_indices >> 1) * 2;
+
+ for ( ; p != q; p += 2)
+ {
+ uint index0 = p[0];
+ uint index1 = p[1];
+
+ uint c0 = (RG_ETC1_GET_KEY_FROM_INDEX(index0) >> pass_shift) & 0xFF;
+ uint c1 = (RG_ETC1_GET_KEY_FROM_INDEX(index1) >> pass_shift) & 0xFF;
+
+ if (c0 == c1)
+ {
+ uint dst_offset0 = offsets[c0];
+
+ offsets[c0] = dst_offset0 + 2;
+
+ pNew[dst_offset0] = static_cast<T>(index0);
+ pNew[dst_offset0 + 1] = static_cast<T>(index1);
+ }
+ else
+ {
+ uint dst_offset0 = offsets[c0]++;
+ uint dst_offset1 = offsets[c1]++;
+
+ pNew[dst_offset0] = static_cast<T>(index0);
+ pNew[dst_offset1] = static_cast<T>(index1);
+ }
+ }
+
+ if (num_indices & 1)
+ {
+ uint index = *p;
+ uint c = (RG_ETC1_GET_KEY_FROM_INDEX(index) >> pass_shift) & 0xFF;
+
+ uint dst_offset = offsets[c];
+ offsets[c] = dst_offset + 1;
+
+ pNew[dst_offset] = static_cast<T>(index);
+ }
+
+ T* t = pCur;
+ pCur = pNew;
+ pNew = t;
+ }
+
+ return pCur;
+ }
+
+#undef RG_ETC1_GET_KEY
+#undef RG_ETC1_GET_KEY_FROM_INDEX
+
+ uint16 etc1_block::pack_color5(const color_quad_u8& color, bool scaled, uint bias)
+ {
+ return pack_color5(color.r, color.g, color.b, scaled, bias);
+ }
+
+ uint16 etc1_block::pack_color5(uint r, uint g, uint b, bool scaled, uint bias)
+ {
+ if (scaled)
+ {
+ r = (r * 31U + bias) / 255U;
+ g = (g * 31U + bias) / 255U;
+ b = (b * 31U + bias) / 255U;
+ }
+
+ r = rg_etc1::minimum(r, 31U);
+ g = rg_etc1::minimum(g, 31U);
+ b = rg_etc1::minimum(b, 31U);
+
+ return static_cast<uint16>(b | (g << 5U) | (r << 10U));
+ }
+
+ color_quad_u8 etc1_block::unpack_color5(uint16 packed_color5, bool scaled, uint alpha)
+ {
+ uint b = packed_color5 & 31U;
+ uint g = (packed_color5 >> 5U) & 31U;
+ uint r = (packed_color5 >> 10U) & 31U;
+
+ if (scaled)
+ {
+ b = (b << 3U) | (b >> 2U);
+ g = (g << 3U) | (g >> 2U);
+ r = (r << 3U) | (r >> 2U);
+ }
+
+ return color_quad_u8(cNoClamp, r, g, b, rg_etc1::minimum(alpha, 255U));
+ }
+
+ void etc1_block::unpack_color5(uint& r, uint& g, uint& b, uint16 packed_color5, bool scaled)
+ {
+ color_quad_u8 c(unpack_color5(packed_color5, scaled, 0));
+ r = c.r;
+ g = c.g;
+ b = c.b;
+ }
+
+ bool etc1_block::unpack_color5(color_quad_u8& result, uint16 packed_color5, uint16 packed_delta3, bool scaled, uint alpha)
+ {
+ int dc_r, dc_g, dc_b;
+ unpack_delta3(dc_r, dc_g, dc_b, packed_delta3);
+
+ int b = (packed_color5 & 31U) + dc_b;
+ int g = ((packed_color5 >> 5U) & 31U) + dc_g;
+ int r = ((packed_color5 >> 10U) & 31U) + dc_r;
+
+ bool success = true;
+ if (static_cast<uint>(r | g | b) > 31U)
+ {
+ success = false;
+ r = rg_etc1::clamp<int>(r, 0, 31);
+ g = rg_etc1::clamp<int>(g, 0, 31);
+ b = rg_etc1::clamp<int>(b, 0, 31);
+ }
+
+ if (scaled)
+ {
+ b = (b << 3U) | (b >> 2U);
+ g = (g << 3U) | (g >> 2U);
+ r = (r << 3U) | (r >> 2U);
+ }
+
+ result.set_noclamp_rgba(r, g, b, rg_etc1::minimum(alpha, 255U));
+ return success;
+ }
+
+ bool etc1_block::unpack_color5(uint& r, uint& g, uint& b, uint16 packed_color5, uint16 packed_delta3, bool scaled, uint alpha)
+ {
+ color_quad_u8 result;
+ const bool success = unpack_color5(result, packed_color5, packed_delta3, scaled, alpha);
+ r = result.r;
+ g = result.g;
+ b = result.b;
+ return success;
+ }
+
+ uint16 etc1_block::pack_delta3(int r, int g, int b)
+ {
+ RG_ETC1_ASSERT((r >= cETC1ColorDeltaMin) && (r <= cETC1ColorDeltaMax));
+ RG_ETC1_ASSERT((g >= cETC1ColorDeltaMin) && (g <= cETC1ColorDeltaMax));
+ RG_ETC1_ASSERT((b >= cETC1ColorDeltaMin) && (b <= cETC1ColorDeltaMax));
+ if (r < 0) r += 8;
+ if (g < 0) g += 8;
+ if (b < 0) b += 8;
+ return static_cast<uint16>(b | (g << 3) | (r << 6));
+ }
+
+ void etc1_block::unpack_delta3(int& r, int& g, int& b, uint16 packed_delta3)
+ {
+ r = (packed_delta3 >> 6) & 7;
+ g = (packed_delta3 >> 3) & 7;
+ b = packed_delta3 & 7;
+ if (r >= 4) r -= 8;
+ if (g >= 4) g -= 8;
+ if (b >= 4) b -= 8;
+ }
+
+ uint16 etc1_block::pack_color4(const color_quad_u8& color, bool scaled, uint bias)
+ {
+ return pack_color4(color.r, color.g, color.b, scaled, bias);
+ }
+
+ uint16 etc1_block::pack_color4(uint r, uint g, uint b, bool scaled, uint bias)
+ {
+ if (scaled)
+ {
+ r = (r * 15U + bias) / 255U;
+ g = (g * 15U + bias) / 255U;
+ b = (b * 15U + bias) / 255U;
+ }
+
+ r = rg_etc1::minimum(r, 15U);
+ g = rg_etc1::minimum(g, 15U);
+ b = rg_etc1::minimum(b, 15U);
+
+ return static_cast<uint16>(b | (g << 4U) | (r << 8U));
+ }
+
+ color_quad_u8 etc1_block::unpack_color4(uint16 packed_color4, bool scaled, uint alpha)
+ {
+ uint b = packed_color4 & 15U;
+ uint g = (packed_color4 >> 4U) & 15U;
+ uint r = (packed_color4 >> 8U) & 15U;
+
+ if (scaled)
+ {
+ b = (b << 4U) | b;
+ g = (g << 4U) | g;
+ r = (r << 4U) | r;
+ }
+
+ return color_quad_u8(cNoClamp, r, g, b, rg_etc1::minimum(alpha, 255U));
+ }
+
+ void etc1_block::unpack_color4(uint& r, uint& g, uint& b, uint16 packed_color4, bool scaled)
+ {
+ color_quad_u8 c(unpack_color4(packed_color4, scaled, 0));
+ r = c.r;
+ g = c.g;
+ b = c.b;
+ }
+
+ void etc1_block::get_diff_subblock_colors(color_quad_u8* pDst, uint16 packed_color5, uint table_idx)
+ {
+ RG_ETC1_ASSERT(table_idx < cETC1IntenModifierValues);
+ const int *pInten_modifer_table = &g_etc1_inten_tables[table_idx][0];
+
+ uint r, g, b;
+ unpack_color5(r, g, b, packed_color5, true);
+
+ const int ir = static_cast<int>(r), ig = static_cast<int>(g), ib = static_cast<int>(b);
+
+ const int y0 = pInten_modifer_table[0];
+ pDst[0].set(ir + y0, ig + y0, ib + y0);
+
+ const int y1 = pInten_modifer_table[1];
+ pDst[1].set(ir + y1, ig + y1, ib + y1);
+
+ const int y2 = pInten_modifer_table[2];
+ pDst[2].set(ir + y2, ig + y2, ib + y2);
+
+ const int y3 = pInten_modifer_table[3];
+ pDst[3].set(ir + y3, ig + y3, ib + y3);
+ }
+
+ bool etc1_block::get_diff_subblock_colors(color_quad_u8* pDst, uint16 packed_color5, uint16 packed_delta3, uint table_idx)
+ {
+ RG_ETC1_ASSERT(table_idx < cETC1IntenModifierValues);
+ const int *pInten_modifer_table = &g_etc1_inten_tables[table_idx][0];
+
+ uint r, g, b;
+ bool success = unpack_color5(r, g, b, packed_color5, packed_delta3, true);
+
+ const int ir = static_cast<int>(r), ig = static_cast<int>(g), ib = static_cast<int>(b);
+
+ const int y0 = pInten_modifer_table[0];
+ pDst[0].set(ir + y0, ig + y0, ib + y0);
+
+ const int y1 = pInten_modifer_table[1];
+ pDst[1].set(ir + y1, ig + y1, ib + y1);
+
+ const int y2 = pInten_modifer_table[2];
+ pDst[2].set(ir + y2, ig + y2, ib + y2);
+
+ const int y3 = pInten_modifer_table[3];
+ pDst[3].set(ir + y3, ig + y3, ib + y3);
+
+ return success;
+ }
+
+ void etc1_block::get_abs_subblock_colors(color_quad_u8* pDst, uint16 packed_color4, uint table_idx)
+ {
+ RG_ETC1_ASSERT(table_idx < cETC1IntenModifierValues);
+ const int *pInten_modifer_table = &g_etc1_inten_tables[table_idx][0];
+
+ uint r, g, b;
+ unpack_color4(r, g, b, packed_color4, true);
+
+ const int ir = static_cast<int>(r), ig = static_cast<int>(g), ib = static_cast<int>(b);
+
+ const int y0 = pInten_modifer_table[0];
+ pDst[0].set(ir + y0, ig + y0, ib + y0);
+
+ const int y1 = pInten_modifer_table[1];
+ pDst[1].set(ir + y1, ig + y1, ib + y1);
+
+ const int y2 = pInten_modifer_table[2];
+ pDst[2].set(ir + y2, ig + y2, ib + y2);
+
+ const int y3 = pInten_modifer_table[3];
+ pDst[3].set(ir + y3, ig + y3, ib + y3);
+ }
+
+ bool unpack_etc1_block(const void* pETC1_block, unsigned int* pDst_pixels_rgba, bool preserve_alpha)
+ {
+ color_quad_u8* pDst = reinterpret_cast<color_quad_u8*>(pDst_pixels_rgba);
+ const etc1_block& block = *static_cast<const etc1_block*>(pETC1_block);
+
+ const bool diff_flag = block.get_diff_bit();
+ const bool flip_flag = block.get_flip_bit();
+ const uint table_index0 = block.get_inten_table(0);
+ const uint table_index1 = block.get_inten_table(1);
+
+ color_quad_u8 subblock_colors0[4];
+ color_quad_u8 subblock_colors1[4];
+ bool success = true;
+
+ if (diff_flag)
+ {
+ const uint16 base_color5 = block.get_base5_color();
+ const uint16 delta_color3 = block.get_delta3_color();
+ etc1_block::get_diff_subblock_colors(subblock_colors0, base_color5, table_index0);
+
+ if (!etc1_block::get_diff_subblock_colors(subblock_colors1, base_color5, delta_color3, table_index1))
+ success = false;
+ }
+ else
+ {
+ const uint16 base_color4_0 = block.get_base4_color(0);
+ etc1_block::get_abs_subblock_colors(subblock_colors0, base_color4_0, table_index0);
+
+ const uint16 base_color4_1 = block.get_base4_color(1);
+ etc1_block::get_abs_subblock_colors(subblock_colors1, base_color4_1, table_index1);
+ }
+
+ if (preserve_alpha)
+ {
+ if (flip_flag)
+ {
+ for (uint y = 0; y < 2; y++)
+ {
+ pDst[0].set_rgb(subblock_colors0[block.get_selector(0, y)]);
+ pDst[1].set_rgb(subblock_colors0[block.get_selector(1, y)]);
+ pDst[2].set_rgb(subblock_colors0[block.get_selector(2, y)]);
+ pDst[3].set_rgb(subblock_colors0[block.get_selector(3, y)]);
+ pDst += 4;
+ }
+
+ for (uint y = 2; y < 4; y++)
+ {
+ pDst[0].set_rgb(subblock_colors1[block.get_selector(0, y)]);
+ pDst[1].set_rgb(subblock_colors1[block.get_selector(1, y)]);
+ pDst[2].set_rgb(subblock_colors1[block.get_selector(2, y)]);
+ pDst[3].set_rgb(subblock_colors1[block.get_selector(3, y)]);
+ pDst += 4;
+ }
+ }
+ else
+ {
+ for (uint y = 0; y < 4; y++)
+ {
+ pDst[0].set_rgb(subblock_colors0[block.get_selector(0, y)]);
+ pDst[1].set_rgb(subblock_colors0[block.get_selector(1, y)]);
+ pDst[2].set_rgb(subblock_colors1[block.get_selector(2, y)]);
+ pDst[3].set_rgb(subblock_colors1[block.get_selector(3, y)]);
+ pDst += 4;
+ }
+ }
+ }
+ else
+ {
+ if (flip_flag)
+ {
+ // 0000
+ // 0000
+ // 1111
+ // 1111
+ for (uint y = 0; y < 2; y++)
+ {
+ pDst[0] = subblock_colors0[block.get_selector(0, y)];
+ pDst[1] = subblock_colors0[block.get_selector(1, y)];
+ pDst[2] = subblock_colors0[block.get_selector(2, y)];
+ pDst[3] = subblock_colors0[block.get_selector(3, y)];
+ pDst += 4;
+ }
+
+ for (uint y = 2; y < 4; y++)
+ {
+ pDst[0] = subblock_colors1[block.get_selector(0, y)];
+ pDst[1] = subblock_colors1[block.get_selector(1, y)];
+ pDst[2] = subblock_colors1[block.get_selector(2, y)];
+ pDst[3] = subblock_colors1[block.get_selector(3, y)];
+ pDst += 4;
+ }
+ }
+ else
+ {
+ // 0011
+ // 0011
+ // 0011
+ // 0011
+ for (uint y = 0; y < 4; y++)
+ {
+ pDst[0] = subblock_colors0[block.get_selector(0, y)];
+ pDst[1] = subblock_colors0[block.get_selector(1, y)];
+ pDst[2] = subblock_colors1[block.get_selector(2, y)];
+ pDst[3] = subblock_colors1[block.get_selector(3, y)];
+ pDst += 4;
+ }
+ }
+ }
+
+ return success;
+ }
+
+ struct etc1_solution_coordinates
+ {
+ inline etc1_solution_coordinates() :
+ m_unscaled_color(0, 0, 0, 0),
+ m_inten_table(0),
+ m_color4(false)
+ {
+ }
+
+ inline etc1_solution_coordinates(uint r, uint g, uint b, uint inten_table, bool color4) :
+ m_unscaled_color(r, g, b, 255),
+ m_inten_table(inten_table),
+ m_color4(color4)
+ {
+ }
+
+ inline etc1_solution_coordinates(const color_quad_u8& c, uint inten_table, bool color4) :
+ m_unscaled_color(c),
+ m_inten_table(inten_table),
+ m_color4(color4)
+ {
+ }
+
+ inline etc1_solution_coordinates(const etc1_solution_coordinates& other)
+ {
+ *this = other;
+ }
+
+ inline etc1_solution_coordinates& operator= (const etc1_solution_coordinates& rhs)
+ {
+ m_unscaled_color = rhs.m_unscaled_color;
+ m_inten_table = rhs.m_inten_table;
+ m_color4 = rhs.m_color4;
+ return *this;
+ }
+
+ inline void clear()
+ {
+ m_unscaled_color.clear();
+ m_inten_table = 0;
+ m_color4 = false;
+ }
+
+ inline color_quad_u8 get_scaled_color() const
+ {
+ int br, bg, bb;
+ if (m_color4)
+ {
+ br = m_unscaled_color.r | (m_unscaled_color.r << 4);
+ bg = m_unscaled_color.g | (m_unscaled_color.g << 4);
+ bb = m_unscaled_color.b | (m_unscaled_color.b << 4);
+ }
+ else
+ {
+ br = (m_unscaled_color.r >> 2) | (m_unscaled_color.r << 3);
+ bg = (m_unscaled_color.g >> 2) | (m_unscaled_color.g << 3);
+ bb = (m_unscaled_color.b >> 2) | (m_unscaled_color.b << 3);
+ }
+ return color_quad_u8(br, bg, bb);
+ }
+
+ inline void get_block_colors(color_quad_u8* pBlock_colors)
+ {
+ int br, bg, bb;
+ if (m_color4)
+ {
+ br = m_unscaled_color.r | (m_unscaled_color.r << 4);
+ bg = m_unscaled_color.g | (m_unscaled_color.g << 4);
+ bb = m_unscaled_color.b | (m_unscaled_color.b << 4);
+ }
+ else
+ {
+ br = (m_unscaled_color.r >> 2) | (m_unscaled_color.r << 3);
+ bg = (m_unscaled_color.g >> 2) | (m_unscaled_color.g << 3);
+ bb = (m_unscaled_color.b >> 2) | (m_unscaled_color.b << 3);
+ }
+ const int* pInten_table = g_etc1_inten_tables[m_inten_table];
+ pBlock_colors[0].set(br + pInten_table[0], bg + pInten_table[0], bb + pInten_table[0]);
+ pBlock_colors[1].set(br + pInten_table[1], bg + pInten_table[1], bb + pInten_table[1]);
+ pBlock_colors[2].set(br + pInten_table[2], bg + pInten_table[2], bb + pInten_table[2]);
+ pBlock_colors[3].set(br + pInten_table[3], bg + pInten_table[3], bb + pInten_table[3]);
+ }
+
+ color_quad_u8 m_unscaled_color;
+ uint m_inten_table;
+ bool m_color4;
+ };
+
+ class etc1_optimizer
+ {
+ etc1_optimizer(const etc1_optimizer&);
+ etc1_optimizer& operator= (const etc1_optimizer&);
+
+ public:
+ etc1_optimizer()
+ {
+ clear();
+ }
+
+ void clear()
+ {
+ m_pParams = NULL;
+ m_pResult = NULL;
+ m_pSorted_luma = NULL;
+ m_pSorted_luma_indices = NULL;
+ }
+
+ struct params : etc1_pack_params
+ {
+ params()
+ {
+ clear();
+ }
+
+ params(const etc1_pack_params& base_params) :
+ etc1_pack_params(base_params)
+ {
+ clear_optimizer_params();
+ }
+
+ void clear()
+ {
+ etc1_pack_params::clear();
+ clear_optimizer_params();
+ }
+
+ void clear_optimizer_params()
+ {
+ m_num_src_pixels = 0;
+ m_pSrc_pixels = 0;
+
+ m_use_color4 = false;
+ static const int s_default_scan_delta[] = { 0 };
+ m_pScan_deltas = s_default_scan_delta;
+ m_scan_delta_size = 1;
+
+ m_base_color5.clear();
+ m_constrain_against_base_color5 = false;
+ }
+
+ uint m_num_src_pixels;
+ const color_quad_u8* m_pSrc_pixels;
+
+ bool m_use_color4;
+ const int* m_pScan_deltas;
+ uint m_scan_delta_size;
+
+ color_quad_u8 m_base_color5;
+ bool m_constrain_against_base_color5;
+ };
+
+ struct results
+ {
+ uint64 m_error;
+ color_quad_u8 m_block_color_unscaled;
+ uint m_block_inten_table;
+ uint m_n;
+ uint8* m_pSelectors;
+ bool m_block_color4;
+
+ inline results& operator= (const results& rhs)
+ {
+ m_block_color_unscaled = rhs.m_block_color_unscaled;
+ m_block_color4 = rhs.m_block_color4;
+ m_block_inten_table = rhs.m_block_inten_table;
+ m_error = rhs.m_error;
+ RG_ETC1_ASSERT(m_n == rhs.m_n);
+ memcpy(m_pSelectors, rhs.m_pSelectors, rhs.m_n);
+ return *this;
+ }
+ };
+
+ void init(const params& params, results& result);
+ bool compute();
+
+ private:
+ struct potential_solution
+ {
+ potential_solution() : m_coords(), m_error(cUINT64_MAX), m_valid(false)
+ {
+ }
+
+ etc1_solution_coordinates m_coords;
+ uint8 m_selectors[8];
+ uint64 m_error;
+ bool m_valid;
+
+ void clear()
+ {
+ m_coords.clear();
+ m_error = cUINT64_MAX;
+ m_valid = false;
+ }
+ };
+
+ const params* m_pParams;
+ results* m_pResult;
+
+ int m_limit;
+
+ vec3F m_avg_color;
+ int m_br, m_bg, m_bb;
+ uint16 m_luma[8];
+ uint32 m_sorted_luma[2][8];
+ const uint32* m_pSorted_luma_indices;
+ uint32* m_pSorted_luma;
+
+ uint8 m_selectors[8];
+ uint8 m_best_selectors[8];
+
+ potential_solution m_best_solution;
+ potential_solution m_trial_solution;
+ uint8 m_temp_selectors[8];
+
+ bool evaluate_solution(const etc1_solution_coordinates& coords, potential_solution& trial_solution, potential_solution* pBest_solution);
+ bool evaluate_solution_fast(const etc1_solution_coordinates& coords, potential_solution& trial_solution, potential_solution* pBest_solution);
+ };
+
+ bool etc1_optimizer::compute()
+ {
+ const uint n = m_pParams->m_num_src_pixels;
+ const int scan_delta_size = m_pParams->m_scan_delta_size;
+
+ // Scan through a subset of the 3D lattice centered around the avg block color trying each 3D (555 or 444) lattice point as a potential block color.
+ // Each time a better solution is found try to refine the current solution's block color based of the current selectors and intensity table index.
+ for (int zdi = 0; zdi < scan_delta_size; zdi++)
+ {
+ const int zd = m_pParams->m_pScan_deltas[zdi];
+ const int mbb = m_bb + zd;
+ if (mbb < 0) continue; else if (mbb > m_limit) break;
+
+ for (int ydi = 0; ydi < scan_delta_size; ydi++)
+ {
+ const int yd = m_pParams->m_pScan_deltas[ydi];
+ const int mbg = m_bg + yd;
+ if (mbg < 0) continue; else if (mbg > m_limit) break;
+
+ for (int xdi = 0; xdi < scan_delta_size; xdi++)
+ {
+ const int xd = m_pParams->m_pScan_deltas[xdi];
+ const int mbr = m_br + xd;
+ if (mbr < 0) continue; else if (mbr > m_limit) break;
+
+ etc1_solution_coordinates coords(mbr, mbg, mbb, 0, m_pParams->m_use_color4);
+ if (m_pParams->m_quality == cHighQuality)
+ {
+ if (!evaluate_solution(coords, m_trial_solution, &m_best_solution))
+ continue;
+ }
+ else
+ {
+ if (!evaluate_solution_fast(coords, m_trial_solution, &m_best_solution))
+ continue;
+ }
+
+ // Now we have the input block, the avg. color of the input pixels, a set of trial selector indices, and the block color+intensity index.
+ // Now, for each component, attempt to refine the current solution by solving a simple linear equation. For example, for 4 colors:
+ // The goal is:
+ // pixel0 - (block_color+inten_table[selector0]) + pixel1 - (block_color+inten_table[selector1]) + pixel2 - (block_color+inten_table[selector2]) + pixel3 - (block_color+inten_table[selector3]) = 0
+ // Rearranging this:
+ // (pixel0 + pixel1 + pixel2 + pixel3) - (block_color+inten_table[selector0]) - (block_color+inten_table[selector1]) - (block_color+inten_table[selector2]) - (block_color+inten_table[selector3]) = 0
+ // (pixel0 + pixel1 + pixel2 + pixel3) - block_color - inten_table[selector0] - block_color-inten_table[selector1] - block_color-inten_table[selector2] - block_color-inten_table[selector3] = 0
+ // (pixel0 + pixel1 + pixel2 + pixel3) - 4*block_color - inten_table[selector0] - inten_table[selector1] - inten_table[selector2] - inten_table[selector3] = 0
+ // (pixel0 + pixel1 + pixel2 + pixel3) - 4*block_color - (inten_table[selector0] + inten_table[selector1] + inten_table[selector2] + inten_table[selector3]) = 0
+ // (pixel0 + pixel1 + pixel2 + pixel3)/4 - block_color - (inten_table[selector0] + inten_table[selector1] + inten_table[selector2] + inten_table[selector3])/4 = 0
+ // block_color = (pixel0 + pixel1 + pixel2 + pixel3)/4 - (inten_table[selector0] + inten_table[selector1] + inten_table[selector2] + inten_table[selector3])/4
+ // So what this means:
+ // optimal_block_color = avg_input - avg_inten_delta
+ // So the optimal block color can be computed by taking the average block color and subtracting the current average of the intensity delta.
+ // Unfortunately, optimal_block_color must then be quantized to 555 or 444 so it's not always possible to improve matters using this formula.
+ // Also, the above formula is for unclamped intensity deltas. The actual implementation takes into account clamping.
+
+ const uint max_refinement_trials = (m_pParams->m_quality == cLowQuality) ? 2 : (((xd | yd | zd) == 0) ? 4 : 2);
+ for (uint refinement_trial = 0; refinement_trial < max_refinement_trials; refinement_trial++)
+ {
+ const uint8* pSelectors = m_best_solution.m_selectors;
+ const int* pInten_table = g_etc1_inten_tables[m_best_solution.m_coords.m_inten_table];
+
+ int delta_sum_r = 0, delta_sum_g = 0, delta_sum_b = 0;
+ const color_quad_u8 base_color(m_best_solution.m_coords.get_scaled_color());
+ for (uint r = 0; r < n; r++)
+ {
+ const uint s = *pSelectors++;
+ const int yd = pInten_table[s];
+ // Compute actual delta being applied to each pixel, taking into account clamping.
+ delta_sum_r += rg_etc1::clamp<int>(base_color.r + yd, 0, 255) - base_color.r;
+ delta_sum_g += rg_etc1::clamp<int>(base_color.g + yd, 0, 255) - base_color.g;
+ delta_sum_b += rg_etc1::clamp<int>(base_color.b + yd, 0, 255) - base_color.b;
+ }
+ if ((!delta_sum_r) && (!delta_sum_g) && (!delta_sum_b))
+ break;
+ const float avg_delta_r_f = static_cast<float>(delta_sum_r) / n;
+ const float avg_delta_g_f = static_cast<float>(delta_sum_g) / n;
+ const float avg_delta_b_f = static_cast<float>(delta_sum_b) / n;
+ const int br1 = rg_etc1::clamp<int>(static_cast<uint>((m_avg_color[0] - avg_delta_r_f) * m_limit / 255.0f + .5f), 0, m_limit);
+ const int bg1 = rg_etc1::clamp<int>(static_cast<uint>((m_avg_color[1] - avg_delta_g_f) * m_limit / 255.0f + .5f), 0, m_limit);
+ const int bb1 = rg_etc1::clamp<int>(static_cast<uint>((m_avg_color[2] - avg_delta_b_f) * m_limit / 255.0f + .5f), 0, m_limit);
+
+ bool skip = false;
+
+ if ((mbr == br1) && (mbg == bg1) && (mbb == bb1))
+ skip = true;
+ else if ((br1 == m_best_solution.m_coords.m_unscaled_color.r) && (bg1 == m_best_solution.m_coords.m_unscaled_color.g) && (bb1 == m_best_solution.m_coords.m_unscaled_color.b))
+ skip = true;
+ else if ((m_br == br1) && (m_bg == bg1) && (m_bb == bb1))
+ skip = true;
+
+ if (skip)
+ break;
+
+ etc1_solution_coordinates coords1(br1, bg1, bb1, 0, m_pParams->m_use_color4);
+ if (m_pParams->m_quality == cHighQuality)
+ {
+ if (!evaluate_solution(coords1, m_trial_solution, &m_best_solution))
+ break;
+ }
+ else
+ {
+ if (!evaluate_solution_fast(coords1, m_trial_solution, &m_best_solution))
+ break;
+ }
+
+ } // refinement_trial
+
+ } // xdi
+ } // ydi
+ } // zdi
+
+ if (!m_best_solution.m_valid)
+ {
+ m_pResult->m_error = cUINT32_MAX;
+ return false;
+ }
+
+ const uint8* pSelectors = m_best_solution.m_selectors;
+
+#ifdef RG_ETC1_BUILD_DEBUG
+ {
+ color_quad_u8 block_colors[4];
+ m_best_solution.m_coords.get_block_colors(block_colors);
+
+ const color_quad_u8* pSrc_pixels = m_pParams->m_pSrc_pixels;
+ uint64 actual_error = 0;
+ for (uint i = 0; i < n; i++)
+ actual_error += pSrc_pixels[i].squared_distance_rgb(block_colors[pSelectors[i]]);
+
+ RG_ETC1_ASSERT(actual_error == m_best_solution.m_error);
+ }
+#endif
+
+ m_pResult->m_error = m_best_solution.m_error;
+
+ m_pResult->m_block_color_unscaled = m_best_solution.m_coords.m_unscaled_color;
+ m_pResult->m_block_color4 = m_best_solution.m_coords.m_color4;
+
+ m_pResult->m_block_inten_table = m_best_solution.m_coords.m_inten_table;
+ memcpy(m_pResult->m_pSelectors, pSelectors, n);
+ m_pResult->m_n = n;
+
+ return true;
+ }
+
+ void etc1_optimizer::init(const params& p, results& r)
+ {
+ // This version is hardcoded for 8 pixel subblocks.
+ RG_ETC1_ASSERT(p.m_num_src_pixels == 8);
+
+ m_pParams = &p;
+ m_pResult = &r;
+
+ const uint n = 8;
+
+ m_limit = m_pParams->m_use_color4 ? 15 : 31;
+
+ vec3F avg_color(0.0f);
+
+ for (uint i = 0; i < n; i++)
+ {
+ const color_quad_u8& c = m_pParams->m_pSrc_pixels[i];
+ const vec3F fc(c.r, c.g, c.b);
+
+ avg_color += fc;
+
+ m_luma[i] = static_cast<uint16>(c.r + c.g + c.b);
+ m_sorted_luma[0][i] = i;
+ }
+ avg_color *= (1.0f / static_cast<float>(n));
+ m_avg_color = avg_color;
+
+ m_br = rg_etc1::clamp<int>(static_cast<uint>(m_avg_color[0] * m_limit / 255.0f + .5f), 0, m_limit);
+ m_bg = rg_etc1::clamp<int>(static_cast<uint>(m_avg_color[1] * m_limit / 255.0f + .5f), 0, m_limit);
+ m_bb = rg_etc1::clamp<int>(static_cast<uint>(m_avg_color[2] * m_limit / 255.0f + .5f), 0, m_limit);
+
+ if (m_pParams->m_quality <= cMediumQuality)
+ {
+ m_pSorted_luma_indices = indirect_radix_sort(n, m_sorted_luma[0], m_sorted_luma[1], m_luma, 0, sizeof(m_luma[0]), false);
+ m_pSorted_luma = m_sorted_luma[0];
+ if (m_pSorted_luma_indices == m_sorted_luma[0])
+ m_pSorted_luma = m_sorted_luma[1];
+
+ for (uint i = 0; i < n; i++)
+ m_pSorted_luma[i] = m_luma[m_pSorted_luma_indices[i]];
+ }
+
+ m_best_solution.m_coords.clear();
+ m_best_solution.m_valid = false;
+ m_best_solution.m_error = cUINT64_MAX;
+ }
+
+ bool etc1_optimizer::evaluate_solution(const etc1_solution_coordinates& coords, potential_solution& trial_solution, potential_solution* pBest_solution)
+ {
+ trial_solution.m_valid = false;
+
+ if (m_pParams->m_constrain_against_base_color5)
+ {
+ const int dr = coords.m_unscaled_color.r - m_pParams->m_base_color5.r;
+ const int dg = coords.m_unscaled_color.g - m_pParams->m_base_color5.g;
+ const int db = coords.m_unscaled_color.b - m_pParams->m_base_color5.b;
+
+ if ((rg_etc1::minimum(dr, dg, db) < cETC1ColorDeltaMin) || (rg_etc1::maximum(dr, dg, db) > cETC1ColorDeltaMax))
+ return false;
+ }
+
+ const color_quad_u8 base_color(coords.get_scaled_color());
+
+ const uint n = 8;
+
+ trial_solution.m_error = cUINT64_MAX;
+
+ for (uint inten_table = 0; inten_table < cETC1IntenModifierValues; inten_table++)
+ {
+ const int* pInten_table = g_etc1_inten_tables[inten_table];
+
+ color_quad_u8 block_colors[4];
+ for (uint s = 0; s < 4; s++)
+ {
+ const int yd = pInten_table[s];
+ block_colors[s].set(base_color.r + yd, base_color.g + yd, base_color.b + yd, 0);
+ }
+
+ uint64 total_error = 0;
+
+ const color_quad_u8* pSrc_pixels = m_pParams->m_pSrc_pixels;
+ for (uint c = 0; c < n; c++)
+ {
+ const color_quad_u8& src_pixel = *pSrc_pixels++;
+
+ uint best_selector_index = 0;
+ uint best_error = rg_etc1::square(src_pixel.r - block_colors[0].r) + rg_etc1::square(src_pixel.g - block_colors[0].g) + rg_etc1::square(src_pixel.b - block_colors[0].b);
+
+ uint trial_error = rg_etc1::square(src_pixel.r - block_colors[1].r) + rg_etc1::square(src_pixel.g - block_colors[1].g) + rg_etc1::square(src_pixel.b - block_colors[1].b);
+ if (trial_error < best_error)
+ {
+ best_error = trial_error;
+ best_selector_index = 1;
+ }
+
+ trial_error = rg_etc1::square(src_pixel.r - block_colors[2].r) + rg_etc1::square(src_pixel.g - block_colors[2].g) + rg_etc1::square(src_pixel.b - block_colors[2].b);
+ if (trial_error < best_error)
+ {
+ best_error = trial_error;
+ best_selector_index = 2;
+ }
+
+ trial_error = rg_etc1::square(src_pixel.r - block_colors[3].r) + rg_etc1::square(src_pixel.g - block_colors[3].g) + rg_etc1::square(src_pixel.b - block_colors[3].b);
+ if (trial_error < best_error)
+ {
+ best_error = trial_error;
+ best_selector_index = 3;
+ }
+
+ m_temp_selectors[c] = static_cast<uint8>(best_selector_index);
+
+ total_error += best_error;
+ if (total_error >= trial_solution.m_error)
+ break;
+ }
+
+ if (total_error < trial_solution.m_error)
+ {
+ trial_solution.m_error = total_error;
+ trial_solution.m_coords.m_inten_table = inten_table;
+ memcpy(trial_solution.m_selectors, m_temp_selectors, 8);
+ trial_solution.m_valid = true;
+ }
+ }
+ trial_solution.m_coords.m_unscaled_color = coords.m_unscaled_color;
+ trial_solution.m_coords.m_color4 = m_pParams->m_use_color4;
+
+ bool success = false;
+ if (pBest_solution)
+ {
+ if (trial_solution.m_error < pBest_solution->m_error)
+ {
+ *pBest_solution = trial_solution;
+ success = true;
+ }
+ }
+
+ return success;
+ }
+
+ bool etc1_optimizer::evaluate_solution_fast(const etc1_solution_coordinates& coords, potential_solution& trial_solution, potential_solution* pBest_solution)
+ {
+ if (m_pParams->m_constrain_against_base_color5)
+ {
+ const int dr = coords.m_unscaled_color.r - m_pParams->m_base_color5.r;
+ const int dg = coords.m_unscaled_color.g - m_pParams->m_base_color5.g;
+ const int db = coords.m_unscaled_color.b - m_pParams->m_base_color5.b;
+
+ if ((rg_etc1::minimum(dr, dg, db) < cETC1ColorDeltaMin) || (rg_etc1::maximum(dr, dg, db) > cETC1ColorDeltaMax))
+ {
+ trial_solution.m_valid = false;
+ return false;
+ }
+ }
+
+ const color_quad_u8 base_color(coords.get_scaled_color());
+
+ const uint n = 8;
+
+ trial_solution.m_error = cUINT64_MAX;
+
+ for (int inten_table = cETC1IntenModifierValues - 1; inten_table >= 0; --inten_table)
+ {
+ const int* pInten_table = g_etc1_inten_tables[inten_table];
+
+ uint block_inten[4];
+ color_quad_u8 block_colors[4];
+ for (uint s = 0; s < 4; s++)
+ {
+ const int yd = pInten_table[s];
+ color_quad_u8 block_color(base_color.r + yd, base_color.g + yd, base_color.b + yd, 0);
+ block_colors[s] = block_color;
+ block_inten[s] = block_color.r + block_color.g + block_color.b;
+ }
+
+ // evaluate_solution_fast() enforces/assumesd a total ordering of the input colors along the intensity (1,1,1) axis to more quickly classify the inputs to selectors.
+ // The inputs colors have been presorted along the projection onto this axis, and ETC1 block colors are always ordered along the intensity axis, so this classification is fast.
+ // 0 1 2 3
+ // 01 12 23
+ const uint block_inten_midpoints[3] = { block_inten[0] + block_inten[1], block_inten[1] + block_inten[2], block_inten[2] + block_inten[3] };
+
+ uint64 total_error = 0;
+ const color_quad_u8* pSrc_pixels = m_pParams->m_pSrc_pixels;
+ if ((m_pSorted_luma[n - 1] * 2) < block_inten_midpoints[0])
+ {
+ if (block_inten[0] > m_pSorted_luma[n - 1])
+ {
+ const uint min_error = intabs(block_inten[0] - m_pSorted_luma[n - 1]);
+ if (min_error >= trial_solution.m_error)
+ continue;
+ }
+
+ memset(&m_temp_selectors[0], 0, n);
+
+ for (uint c = 0; c < n; c++)
+ total_error += block_colors[0].squared_distance_rgb(pSrc_pixels[c]);
+ }
+ else if ((m_pSorted_luma[0] * 2) >= block_inten_midpoints[2])
+ {
+ if (m_pSorted_luma[0] > block_inten[3])
+ {
+ const uint min_error = intabs(m_pSorted_luma[0] - block_inten[3]);
+ if (min_error >= trial_solution.m_error)
+ continue;
+ }
+
+ memset(&m_temp_selectors[0], 3, n);
+
+ for (uint c = 0; c < n; c++)
+ total_error += block_colors[3].squared_distance_rgb(pSrc_pixels[c]);
+ }
+ else
+ {
+ uint cur_selector = 0, c;
+ for (c = 0; c < n; c++)
+ {
+ const uint y = m_pSorted_luma[c];
+ while ((y * 2) >= block_inten_midpoints[cur_selector])
+ if (++cur_selector > 2)
+ goto done;
+ const uint sorted_pixel_index = m_pSorted_luma_indices[c];
+ m_temp_selectors[sorted_pixel_index] = static_cast<uint8>(cur_selector);
+ total_error += block_colors[cur_selector].squared_distance_rgb(pSrc_pixels[sorted_pixel_index]);
+ }
+done:
+ while (c < n)
+ {
+ const uint sorted_pixel_index = m_pSorted_luma_indices[c];
+ m_temp_selectors[sorted_pixel_index] = 3;
+ total_error += block_colors[3].squared_distance_rgb(pSrc_pixels[sorted_pixel_index]);
+ ++c;
+ }
+ }
+
+ if (total_error < trial_solution.m_error)
+ {
+ trial_solution.m_error = total_error;
+ trial_solution.m_coords.m_inten_table = inten_table;
+ memcpy(trial_solution.m_selectors, m_temp_selectors, n);
+ trial_solution.m_valid = true;
+ if (!total_error)
+ break;
+ }
+ }
+ trial_solution.m_coords.m_unscaled_color = coords.m_unscaled_color;
+ trial_solution.m_coords.m_color4 = m_pParams->m_use_color4;
+
+ bool success = false;
+ if (pBest_solution)
+ {
+ if (trial_solution.m_error < pBest_solution->m_error)
+ {
+ *pBest_solution = trial_solution;
+ success = true;
+ }
+ }
+
+ return success;
+ }
+
+ static uint etc1_decode_value(uint diff, uint inten, uint selector, uint packed_c)
+ {
+ const uint limit = diff ? 32 : 16; limit;
+ RG_ETC1_ASSERT((diff < 2) && (inten < 8) && (selector < 4) && (packed_c < limit));
+ int c;
+ if (diff)
+ c = (packed_c >> 2) | (packed_c << 3);
+ else
+ c = packed_c | (packed_c << 4);
+ c += g_etc1_inten_tables[inten][selector];
+ c = rg_etc1::clamp<int>(c, 0, 255);
+ return c;
+ }
+
+ static inline int mul_8bit(int a, int b) { int t = a*b + 128; return (t + (t >> 8)) >> 8; }
+
+ void pack_etc1_block_init()
+ {
+ for (uint diff = 0; diff < 2; diff++)
+ {
+ const uint limit = diff ? 32 : 16;
+
+ for (uint inten = 0; inten < 8; inten++)
+ {
+ for (uint selector = 0; selector < 4; selector++)
+ {
+ const uint inverse_table_index = diff + (inten << 1) + (selector << 4);
+ for (uint color = 0; color < 256; color++)
+ {
+ uint best_error = cUINT32_MAX, best_packed_c = 0;
+ for (uint packed_c = 0; packed_c < limit; packed_c++)
+ {
+ int v = etc1_decode_value(diff, inten, selector, packed_c);
+ uint err = labs(v - static_cast<int>(color));
+ //printf("err: %d - %u = %u\n",v,color,err);
+ if (err < best_error)
+ {
+ best_error = err;
+ best_packed_c = packed_c;
+ if (!best_error)
+ break;
+ }
+ }
+ RG_ETC1_ASSERT(best_error <= 255);
+ g_etc1_inverse_lookup[inverse_table_index][color] = static_cast<uint16>(best_packed_c | (best_error << 8));
+ }
+ }
+ }
+ }
+
+ uint expand5[32];
+ for(int i = 0; i < 32; i++)
+ expand5[i] = (i << 3) | (i >> 2);
+
+ for(int i = 0; i < 256 + 16; i++)
+ {
+ int v = clamp<int>(i - 8, 0, 255);
+ g_quant5_tab[i] = static_cast<uint8>(expand5[mul_8bit(v,31)]);
+ }
+ }
+
+ // Packs solid color blocks efficiently using a set of small precomputed tables.
+ // For random 888 inputs, MSE results are better than Erricson's ETC1 packer in "slow" mode ~9.5% of the time, is slightly worse only ~.01% of the time, and is equal the rest of the time.
+ static uint64 pack_etc1_block_solid_color(etc1_block& block, const uint8* pColor, etc1_pack_params& pack_params)
+ {
+ pack_params;
+ RG_ETC1_ASSERT(g_etc1_inverse_lookup[0][255]);
+
+ static uint s_next_comp[4] = { 1, 2, 0, 1 };
+
+ uint best_error = cUINT32_MAX, best_i = 0;
+ int best_x = 0, best_packed_c1 = 0, best_packed_c2 = 0;
+
+ // For each possible 8-bit value, there is a precomputed list of diff/inten/selector configurations that allow that 8-bit value to be encoded with no error.
+ for (uint i = 0; i < 3; i++)
+ {
+ const uint c1 = pColor[s_next_comp[i]], c2 = pColor[s_next_comp[i + 1]];
+
+ const int delta_range = 1;
+ for (int delta = -delta_range; delta <= delta_range; delta++)
+ {
+ const int c_plus_delta = rg_etc1::clamp<int>(pColor[i] + delta, 0, 255);
+
+ const uint16* pTable;
+ if (!c_plus_delta)
+ pTable = g_color8_to_etc_block_config_0_255[0];
+ else if (c_plus_delta == 255)
+ pTable = g_color8_to_etc_block_config_0_255[1];
+ else
+ pTable = g_color8_to_etc_block_config_1_to_254[c_plus_delta - 1];
+
+ do
+ {
+ const uint x = *pTable++;
+
+#ifdef RG_ETC1_BUILD_DEBUG
+ const uint diff = x & 1;
+ const uint inten = (x >> 1) & 7;
+ const uint selector = (x >> 4) & 3;
+ const uint p0 = (x >> 8) & 255;
+ RG_ETC1_ASSERT(etc1_decode_value(diff, inten, selector, p0) == (uint)c_plus_delta);
+#endif
+
+ const uint16* pInverse_table = g_etc1_inverse_lookup[x & 0xFF];
+ uint16 p1 = pInverse_table[c1];
+ uint16 p2 = pInverse_table[c2];
+ const uint trial_error = rg_etc1::square(c_plus_delta - pColor[i]) + rg_etc1::square(p1 >> 8) + rg_etc1::square(p2 >> 8);
+ if (trial_error < best_error)
+ {
+ best_error = trial_error;
+ best_x = x;
+ best_packed_c1 = p1 & 0xFF;
+ best_packed_c2 = p2 & 0xFF;
+ best_i = i;
+ if (!best_error)
+ goto found_perfect_match;
+ }
+ } while (*pTable != 0xFFFF);
+ }
+ }
+found_perfect_match:
+
+ const uint diff = best_x & 1;
+ const uint inten = (best_x >> 1) & 7;
+
+ block.m_bytes[3] = static_cast<uint8>(((inten | (inten << 3)) << 2) | (diff << 1));
+
+ const uint etc1_selector = g_selector_index_to_etc1[(best_x >> 4) & 3];
+ *reinterpret_cast<uint16*>(&block.m_bytes[4]) = (etc1_selector & 2) ? 0xFFFF : 0;
+ *reinterpret_cast<uint16*>(&block.m_bytes[6]) = (etc1_selector & 1) ? 0xFFFF : 0;
+
+ const uint best_packed_c0 = (best_x >> 8) & 255;
+ if (diff)
+ {
+ block.m_bytes[best_i] = static_cast<uint8>(best_packed_c0 << 3);
+ block.m_bytes[s_next_comp[best_i]] = static_cast<uint8>(best_packed_c1 << 3);
+ block.m_bytes[s_next_comp[best_i+1]] = static_cast<uint8>(best_packed_c2 << 3);
+ }
+ else
+ {
+ block.m_bytes[best_i] = static_cast<uint8>(best_packed_c0 | (best_packed_c0 << 4));
+ block.m_bytes[s_next_comp[best_i]] = static_cast<uint8>(best_packed_c1 | (best_packed_c1 << 4));
+ block.m_bytes[s_next_comp[best_i+1]] = static_cast<uint8>(best_packed_c2 | (best_packed_c2 << 4));
+ }
+
+ return best_error;
+ }
+
+ static uint pack_etc1_block_solid_color_constrained(
+ etc1_optimizer::results& results,
+ uint num_colors, const uint8* pColor,
+ etc1_pack_params& pack_params,
+ bool use_diff,
+ const color_quad_u8* pBase_color5_unscaled)
+ {
+ RG_ETC1_ASSERT(g_etc1_inverse_lookup[0][255]);
+
+ pack_params;
+ static uint s_next_comp[4] = { 1, 2, 0, 1 };
+
+ uint best_error = cUINT32_MAX, best_i = 0;
+ int best_x = 0, best_packed_c1 = 0, best_packed_c2 = 0;
+
+ // For each possible 8-bit value, there is a precomputed list of diff/inten/selector configurations that allow that 8-bit value to be encoded with no error.
+ for (uint i = 0; i < 3; i++)
+ {
+ const uint c1 = pColor[s_next_comp[i]], c2 = pColor[s_next_comp[i + 1]];
+
+ const int delta_range = 1;
+ for (int delta = -delta_range; delta <= delta_range; delta++)
+ {
+ const int c_plus_delta = rg_etc1::clamp<int>(pColor[i] + delta, 0, 255);
+
+ const uint16* pTable;
+ if (!c_plus_delta)
+ pTable = g_color8_to_etc_block_config_0_255[0];
+ else if (c_plus_delta == 255)
+ pTable = g_color8_to_etc_block_config_0_255[1];
+ else
+ pTable = g_color8_to_etc_block_config_1_to_254[c_plus_delta - 1];
+
+ do
+ {
+ const uint x = *pTable++;
+ const uint diff = x & 1;
+ if (static_cast<uint>(use_diff) != diff)
+ {
+ if (*pTable == 0xFFFF)
+ break;
+ continue;
+ }
+
+ if ((diff) && (pBase_color5_unscaled))
+ {
+ const int p0 = (x >> 8) & 255;
+ int delta = p0 - static_cast<int>(pBase_color5_unscaled->c[i]);
+ if ((delta < cETC1ColorDeltaMin) || (delta > cETC1ColorDeltaMax))
+ {
+ if (*pTable == 0xFFFF)
+ break;
+ continue;
+ }
+ }
+
+#ifdef RG_ETC1_BUILD_DEBUG
+ {
+ const uint inten = (x >> 1) & 7;
+ const uint selector = (x >> 4) & 3;
+ const uint p0 = (x >> 8) & 255;
+ RG_ETC1_ASSERT(etc1_decode_value(diff, inten, selector, p0) == (uint)c_plus_delta);
+ }
+#endif
+
+ const uint16* pInverse_table = g_etc1_inverse_lookup[x & 0xFF];
+ uint16 p1 = pInverse_table[c1];
+ uint16 p2 = pInverse_table[c2];
+
+ if ((diff) && (pBase_color5_unscaled))
+ {
+ int delta1 = (p1 & 0xFF) - static_cast<int>(pBase_color5_unscaled->c[s_next_comp[i]]);
+ int delta2 = (p2 & 0xFF) - static_cast<int>(pBase_color5_unscaled->c[s_next_comp[i + 1]]);
+ if ((delta1 < cETC1ColorDeltaMin) || (delta1 > cETC1ColorDeltaMax) || (delta2 < cETC1ColorDeltaMin) || (delta2 > cETC1ColorDeltaMax))
+ {
+ if (*pTable == 0xFFFF)
+ break;
+ continue;
+ }
+ }
+
+ const uint trial_error = rg_etc1::square(c_plus_delta - pColor[i]) + rg_etc1::square(p1 >> 8) + rg_etc1::square(p2 >> 8);
+ if (trial_error < best_error)
+ {
+ best_error = trial_error;
+ best_x = x;
+ best_packed_c1 = p1 & 0xFF;
+ best_packed_c2 = p2 & 0xFF;
+ best_i = i;
+ if (!best_error)
+ goto found_perfect_match;
+ }
+ } while (*pTable != 0xFFFF);
+ }
+ }
+found_perfect_match:
+
+ if (best_error == cUINT32_MAX)
+ return best_error;
+
+ best_error *= num_colors;
+
+ results.m_n = num_colors;
+ results.m_block_color4 = !(best_x & 1);
+ results.m_block_inten_table = (best_x >> 1) & 7;
+ memset(results.m_pSelectors, (best_x >> 4) & 3, num_colors);
+
+ const uint best_packed_c0 = (best_x >> 8) & 255;
+ results.m_block_color_unscaled[best_i] = static_cast<uint8>(best_packed_c0);
+ results.m_block_color_unscaled[s_next_comp[best_i]] = static_cast<uint8>(best_packed_c1);
+ results.m_block_color_unscaled[s_next_comp[best_i + 1]] = static_cast<uint8>(best_packed_c2);
+ results.m_error = best_error;
+
+ return best_error;
+ }
+
+ // Function originally from RYG's public domain real-time DXT1 compressor, modified for 555.
+ static void dither_block_555(color_quad_u8* dest, const color_quad_u8* block)
+ {
+ int err[8],*ep1 = err,*ep2 = err+4;
+ uint8 *quant = g_quant5_tab+8;
+
+ memset(dest, 0xFF, sizeof(color_quad_u8)*16);
+
+ // process channels seperately
+ for(int ch=0;ch<3;ch++)
+ {
+ uint8* bp = (uint8*)block;
+ uint8* dp = (uint8*)dest;
+
+ bp += ch; dp += ch;
+
+ memset(err,0, sizeof(err));
+ for(int y = 0; y < 4; y++)
+ {
+ // pixel 0
+ dp[ 0] = quant[bp[ 0] + ((3*ep2[1] + 5*ep2[0]) >> 4)];
+ ep1[0] = bp[ 0] - dp[ 0];
+
+ // pixel 1
+ dp[ 4] = quant[bp[ 4] + ((7*ep1[0] + 3*ep2[2] + 5*ep2[1] + ep2[0]) >> 4)];
+ ep1[1] = bp[ 4] - dp[ 4];
+
+ // pixel 2
+ dp[ 8] = quant[bp[ 8] + ((7*ep1[1] + 3*ep2[3] + 5*ep2[2] + ep2[1]) >> 4)];
+ ep1[2] = bp[ 8] - dp[ 8];
+
+ // pixel 3
+ dp[12] = quant[bp[12] + ((7*ep1[2] + 5*ep2[3] + ep2[2]) >> 4)];
+ ep1[3] = bp[12] - dp[12];
+
+ // advance to next line
+ int* tmp = ep1; ep1 = ep2; ep2 = tmp;
+ bp += 16;
+ dp += 16;
+ }
+ }
+ }
+
+ unsigned int pack_etc1_block(void* pETC1_block, const unsigned int* pSrc_pixels_rgba, etc1_pack_params& pack_params)
+ {
+ const color_quad_u8* pSrc_pixels = reinterpret_cast<const color_quad_u8*>(pSrc_pixels_rgba);
+ etc1_block& dst_block = *static_cast<etc1_block*>(pETC1_block);
+
+#ifdef RG_ETC1_BUILD_DEBUG
+ // Ensure all alpha values are 0xFF.
+ for (uint i = 0; i < 16; i++)
+ {
+ RG_ETC1_ASSERT(pSrc_pixels[i].a == 255);
+ }
+#endif
+
+ color_quad_u8 src_pixel0(pSrc_pixels[0]);
+
+ // Check for solid block.
+ const uint32 first_pixel_u32 = pSrc_pixels->m_u32;
+ int r;
+ for (r = 15; r >= 1; --r)
+ if (pSrc_pixels[r].m_u32 != first_pixel_u32)
+ break;
+ if (!r)
+ return static_cast<unsigned int>(16 * pack_etc1_block_solid_color(dst_block, &pSrc_pixels[0].r, pack_params));
+
+ color_quad_u8 dithered_pixels[16];
+ if (pack_params.m_dithering)
+ {
+ dither_block_555(dithered_pixels, pSrc_pixels);
+ pSrc_pixels = dithered_pixels;
+ }
+
+ etc1_optimizer optimizer;
+
+ uint64 best_error = cUINT64_MAX;
+ uint best_flip = false, best_use_color4 = false;
+
+ uint8 best_selectors[2][8];
+ etc1_optimizer::results best_results[2];
+ for (uint i = 0; i < 2; i++)
+ {
+ best_results[i].m_n = 8;
+ best_results[i].m_pSelectors = best_selectors[i];
+ }
+
+ uint8 selectors[3][8];
+ etc1_optimizer::results results[3];
+
+ for (uint i = 0; i < 3; i++)
+ {
+ results[i].m_n = 8;
+ results[i].m_pSelectors = selectors[i];
+ }
+
+ color_quad_u8 subblock_pixels[8];
+
+ etc1_optimizer::params params(pack_params);
+ params.m_num_src_pixels = 8;
+ params.m_pSrc_pixels = subblock_pixels;
+
+ for (uint flip = 0; flip < 2; flip++)
+ {
+ for (uint use_color4 = 0; use_color4 < 2; use_color4++)
+ {
+ uint64 trial_error = 0;
+
+ uint subblock;
+ for (subblock = 0; subblock < 2; subblock++)
+ {
+ if (flip)
+ memcpy(subblock_pixels, pSrc_pixels + subblock * 8, sizeof(color_quad_u8) * 8);
+ else
+ {
+ const color_quad_u8* pSrc_col = pSrc_pixels + subblock * 2;
+ subblock_pixels[0] = pSrc_col[0]; subblock_pixels[1] = pSrc_col[4]; subblock_pixels[2] = pSrc_col[8]; subblock_pixels[3] = pSrc_col[12];
+ subblock_pixels[4] = pSrc_col[1]; subblock_pixels[5] = pSrc_col[5]; subblock_pixels[6] = pSrc_col[9]; subblock_pixels[7] = pSrc_col[13];
+ }
+
+ results[2].m_error = cUINT64_MAX;
+ if ((params.m_quality >= cMediumQuality) && ((subblock) || (use_color4)))
+ {
+ const uint32 subblock_pixel0_u32 = subblock_pixels[0].m_u32;
+ for (r = 7; r >= 1; --r)
+ if (subblock_pixels[r].m_u32 != subblock_pixel0_u32)
+ break;
+ if (!r)
+ {
+ pack_etc1_block_solid_color_constrained(results[2], 8, &subblock_pixels[0].r, pack_params, !use_color4, (subblock && !use_color4) ? &results[0].m_block_color_unscaled : NULL);
+ }
+ }
+
+ params.m_use_color4 = (use_color4 != 0);
+ params.m_constrain_against_base_color5 = false;
+
+ if ((!use_color4) && (subblock))
+ {
+ params.m_constrain_against_base_color5 = true;
+ params.m_base_color5 = results[0].m_block_color_unscaled;
+ }
+
+ if (params.m_quality == cHighQuality)
+ {
+ static const int s_scan_delta_0_to_4[] = { -4, -3, -2, -1, 0, 1, 2, 3, 4 };
+ params.m_scan_delta_size = RG_ETC1_ARRAY_SIZE(s_scan_delta_0_to_4);
+ params.m_pScan_deltas = s_scan_delta_0_to_4;
+ }
+ else if (params.m_quality == cMediumQuality)
+ {
+ static const int s_scan_delta_0_to_1[] = { -1, 0, 1 };
+ params.m_scan_delta_size = RG_ETC1_ARRAY_SIZE(s_scan_delta_0_to_1);
+ params.m_pScan_deltas = s_scan_delta_0_to_1;
+ }
+ else
+ {
+ static const int s_scan_delta_0[] = { 0 };
+ params.m_scan_delta_size = RG_ETC1_ARRAY_SIZE(s_scan_delta_0);
+ params.m_pScan_deltas = s_scan_delta_0;
+ }
+
+ optimizer.init(params, results[subblock]);
+ if (!optimizer.compute())
+ break;
+
+ if (params.m_quality >= cMediumQuality)
+ {
+ // TODO: Fix fairly arbitrary/unrefined thresholds that control how far away to scan for potentially better solutions.
+ const uint refinement_error_thresh0 = 3000;
+ const uint refinement_error_thresh1 = 6000;
+ if (results[subblock].m_error > refinement_error_thresh0)
+ {
+ if (params.m_quality == cMediumQuality)
+ {
+ static const int s_scan_delta_2_to_3[] = { -3, -2, 2, 3 };
+ params.m_scan_delta_size = RG_ETC1_ARRAY_SIZE(s_scan_delta_2_to_3);
+ params.m_pScan_deltas = s_scan_delta_2_to_3;
+ }
+ else
+ {
+ static const int s_scan_delta_5_to_5[] = { -5, 5 };
+ static const int s_scan_delta_5_to_8[] = { -8, -7, -6, -5, 5, 6, 7, 8 };
+ if (results[subblock].m_error > refinement_error_thresh1)
+ {
+ params.m_scan_delta_size = RG_ETC1_ARRAY_SIZE(s_scan_delta_5_to_8);
+ params.m_pScan_deltas = s_scan_delta_5_to_8;
+ }
+ else
+ {
+ params.m_scan_delta_size = RG_ETC1_ARRAY_SIZE(s_scan_delta_5_to_5);
+ params.m_pScan_deltas = s_scan_delta_5_to_5;
+ }
+ }
+
+ if (!optimizer.compute())
+ break;
+ }
+
+ if (results[2].m_error < results[subblock].m_error)
+ results[subblock] = results[2];
+ }
+
+ trial_error += results[subblock].m_error;
+ if (trial_error >= best_error)
+ break;
+ }
+
+ if (subblock < 2)
+ continue;
+
+ best_error = trial_error;
+ best_results[0] = results[0];
+ best_results[1] = results[1];
+ best_flip = flip;
+ best_use_color4 = use_color4;
+
+ } // use_color4
+
+ } // flip
+
+ int dr = best_results[1].m_block_color_unscaled.r - best_results[0].m_block_color_unscaled.r;
+ int dg = best_results[1].m_block_color_unscaled.g - best_results[0].m_block_color_unscaled.g;
+ int db = best_results[1].m_block_color_unscaled.b - best_results[0].m_block_color_unscaled.b;
+ RG_ETC1_ASSERT(best_use_color4 || ((rg_etc1::minimum(dr, dg, db) >= cETC1ColorDeltaMin) && (rg_etc1::maximum(dr, dg, db) <= cETC1ColorDeltaMax)));
+
+ if (best_use_color4)
+ {
+ dst_block.m_bytes[0] = static_cast<uint8>(best_results[1].m_block_color_unscaled.r | (best_results[0].m_block_color_unscaled.r << 4));
+ dst_block.m_bytes[1] = static_cast<uint8>(best_results[1].m_block_color_unscaled.g | (best_results[0].m_block_color_unscaled.g << 4));
+ dst_block.m_bytes[2] = static_cast<uint8>(best_results[1].m_block_color_unscaled.b | (best_results[0].m_block_color_unscaled.b << 4));
+ }
+ else
+ {
+ if (dr < 0) dr += 8; dst_block.m_bytes[0] = static_cast<uint8>((best_results[0].m_block_color_unscaled.r << 3) | dr);
+ if (dg < 0) dg += 8; dst_block.m_bytes[1] = static_cast<uint8>((best_results[0].m_block_color_unscaled.g << 3) | dg);
+ if (db < 0) db += 8; dst_block.m_bytes[2] = static_cast<uint8>((best_results[0].m_block_color_unscaled.b << 3) | db);
+ }
+
+ dst_block.m_bytes[3] = static_cast<uint8>( (best_results[1].m_block_inten_table << 2) | (best_results[0].m_block_inten_table << 5) | ((~best_use_color4 & 1) << 1) | best_flip );
+
+ uint selector0 = 0, selector1 = 0;
+ if (best_flip)
+ {
+ // flipped:
+ // { 0, 0 }, { 1, 0 }, { 2, 0 }, { 3, 0 },
+ // { 0, 1 }, { 1, 1 }, { 2, 1 }, { 3, 1 }
+ //
+ // { 0, 2 }, { 1, 2 }, { 2, 2 }, { 3, 2 },
+ // { 0, 3 }, { 1, 3 }, { 2, 3 }, { 3, 3 }
+ const uint8* pSelectors0 = best_results[0].m_pSelectors;
+ const uint8* pSelectors1 = best_results[1].m_pSelectors;
+ for (int x = 3; x >= 0; --x)
+ {
+ uint b;
+ b = g_selector_index_to_etc1[pSelectors1[4 + x]];
+ selector0 = (selector0 << 1) | (b & 1); selector1 = (selector1 << 1) | (b >> 1);
+
+ b = g_selector_index_to_etc1[pSelectors1[x]];
+ selector0 = (selector0 << 1) | (b & 1); selector1 = (selector1 << 1) | (b >> 1);
+
+ b = g_selector_index_to_etc1[pSelectors0[4 + x]];
+ selector0 = (selector0 << 1) | (b & 1); selector1 = (selector1 << 1) | (b >> 1);
+
+ b = g_selector_index_to_etc1[pSelectors0[x]];
+ selector0 = (selector0 << 1) | (b & 1); selector1 = (selector1 << 1) | (b >> 1);
+ }
+ }
+ else
+ {
+ // non-flipped:
+ // { 0, 0 }, { 0, 1 }, { 0, 2 }, { 0, 3 },
+ // { 1, 0 }, { 1, 1 }, { 1, 2 }, { 1, 3 }
+ //
+ // { 2, 0 }, { 2, 1 }, { 2, 2 }, { 2, 3 },
+ // { 3, 0 }, { 3, 1 }, { 3, 2 }, { 3, 3 }
+ for (int subblock = 1; subblock >= 0; --subblock)
+ {
+ const uint8* pSelectors = best_results[subblock].m_pSelectors + 4;
+ for (uint i = 0; i < 2; i++)
+ {
+ uint b;
+ b = g_selector_index_to_etc1[pSelectors[3]];
+ selector0 = (selector0 << 1) | (b & 1); selector1 = (selector1 << 1) | (b >> 1);
+
+ b = g_selector_index_to_etc1[pSelectors[2]];
+ selector0 = (selector0 << 1) | (b & 1); selector1 = (selector1 << 1) | (b >> 1);
+
+ b = g_selector_index_to_etc1[pSelectors[1]];
+ selector0 = (selector0 << 1) | (b & 1); selector1 = (selector1 << 1) | (b >> 1);
+
+ b = g_selector_index_to_etc1[pSelectors[0]];
+ selector0 = (selector0 << 1) | (b & 1);selector1 = (selector1 << 1) | (b >> 1);
+
+ pSelectors -= 4;
+ }
+ }
+ }
+
+ dst_block.m_bytes[4] = static_cast<uint8>(selector1 >> 8); dst_block.m_bytes[5] = static_cast<uint8>(selector1 & 0xFF);
+ dst_block.m_bytes[6] = static_cast<uint8>(selector0 >> 8); dst_block.m_bytes[7] = static_cast<uint8>(selector0 & 0xFF);
+
+ return static_cast<unsigned int>(best_error);
+ }
+
+} // namespace rg_etc1
diff --git a/drivers/etc1/rg_etc1.h b/drivers/etc1/rg_etc1.h
index 9a701506fd..9ce89a6cc6 100644
--- a/drivers/etc1/rg_etc1.h
+++ b/drivers/etc1/rg_etc1.h
@@ -1,76 +1,76 @@
-// File: rg_etc1.h - Fast, high quality ETC1 block packer/unpacker - Rich Geldreich <richgel99@gmail.com>
-// Please see ZLIB license at the end of this file.
-#pragma once
-
-namespace rg_etc1
-{
- // Unpacks an 8-byte ETC1 compressed block to a block of 4x4 32bpp RGBA pixels.
- // Returns false if the block is invalid. Invalid blocks will still be unpacked with clamping.
- // This function is thread safe, and does not dynamically allocate any memory.
- // If preserve_alpha is true, the alpha channel of the destination pixels will not be overwritten. Otherwise, alpha will be set to 255.
- bool unpack_etc1_block(const void *pETC1_block, unsigned int* pDst_pixels_rgba, bool preserve_alpha = false);
-
- // Quality setting = the higher the quality, the slower.
- // To pack large textures, it is highly recommended to call pack_etc1_block() in parallel, on different blocks, from multiple threads (particularly when using cHighQuality).
- enum etc1_quality
- {
- cLowQuality,
- cMediumQuality,
- cHighQuality,
- };
-
- struct etc1_pack_params
- {
- etc1_quality m_quality;
- bool m_dithering;
-
- inline etc1_pack_params()
- {
- clear();
- }
-
- void clear()
- {
- m_quality = cHighQuality;
- m_dithering = false;
- }
- };
-
- // Important: pack_etc1_block_init() must be called before calling pack_etc1_block().
- void pack_etc1_block_init();
-
- // Packs a 4x4 block of 32bpp RGBA pixels to an 8-byte ETC1 block.
- // 32-bit RGBA pixels must always be arranged as (R,G,B,A) (R first, A last) in memory, independent of platform endianness. A should always be 255.
- // Returns squared error of result.
- // This function is thread safe, and does not dynamically allocate any memory.
- // pack_etc1_block() does not currently support "perceptual" colorspace metrics - it primarily optimizes for RGB RMSE.
- unsigned int pack_etc1_block(void* pETC1_block, const unsigned int* pSrc_pixels_rgba, etc1_pack_params& pack_params);
-
-} // namespace rg_etc1
-
-//------------------------------------------------------------------------------
-//
-// rg_etc1 uses the ZLIB license:
-// http://opensource.org/licenses/Zlib
-//
-// Copyright (c) 2012 Rich Geldreich
-//
-// This software is provided 'as-is', without any express or implied
-// warranty. In no event will the authors be held liable for any damages
-// arising from the use of this software.
-//
-// Permission is granted to anyone to use this software for any purpose,
-// including commercial applications, and to alter it and redistribute it
-// freely, subject to the following restrictions:
-//
-// 1. The origin of this software must not be misrepresented; you must not
-// claim that you wrote the original software. If you use this software
-// in a product, an acknowledgment in the product documentation would be
-// appreciated but is not required.
-//
-// 2. Altered source versions must be plainly marked as such, and must not be
-// misrepresented as being the original software.
-//
-// 3. This notice may not be removed or altered from any source distribution.
-//
-//------------------------------------------------------------------------------
+// File: rg_etc1.h - Fast, high quality ETC1 block packer/unpacker - Rich Geldreich <richgel99@gmail.com>
+// Please see ZLIB license at the end of this file.
+#pragma once
+
+namespace rg_etc1
+{
+ // Unpacks an 8-byte ETC1 compressed block to a block of 4x4 32bpp RGBA pixels.
+ // Returns false if the block is invalid. Invalid blocks will still be unpacked with clamping.
+ // This function is thread safe, and does not dynamically allocate any memory.
+ // If preserve_alpha is true, the alpha channel of the destination pixels will not be overwritten. Otherwise, alpha will be set to 255.
+ bool unpack_etc1_block(const void *pETC1_block, unsigned int* pDst_pixels_rgba, bool preserve_alpha = false);
+
+ // Quality setting = the higher the quality, the slower.
+ // To pack large textures, it is highly recommended to call pack_etc1_block() in parallel, on different blocks, from multiple threads (particularly when using cHighQuality).
+ enum etc1_quality
+ {
+ cLowQuality,
+ cMediumQuality,
+ cHighQuality,
+ };
+
+ struct etc1_pack_params
+ {
+ etc1_quality m_quality;
+ bool m_dithering;
+
+ inline etc1_pack_params()
+ {
+ clear();
+ }
+
+ void clear()
+ {
+ m_quality = cHighQuality;
+ m_dithering = false;
+ }
+ };
+
+ // Important: pack_etc1_block_init() must be called before calling pack_etc1_block().
+ void pack_etc1_block_init();
+
+ // Packs a 4x4 block of 32bpp RGBA pixels to an 8-byte ETC1 block.
+ // 32-bit RGBA pixels must always be arranged as (R,G,B,A) (R first, A last) in memory, independent of platform endianness. A should always be 255.
+ // Returns squared error of result.
+ // This function is thread safe, and does not dynamically allocate any memory.
+ // pack_etc1_block() does not currently support "perceptual" colorspace metrics - it primarily optimizes for RGB RMSE.
+ unsigned int pack_etc1_block(void* pETC1_block, const unsigned int* pSrc_pixels_rgba, etc1_pack_params& pack_params);
+
+} // namespace rg_etc1
+
+//------------------------------------------------------------------------------
+//
+// rg_etc1 uses the ZLIB license:
+// http://opensource.org/licenses/Zlib
+//
+// Copyright (c) 2012 Rich Geldreich
+//
+// This software is provided 'as-is', without any express or implied
+// warranty. In no event will the authors be held liable for any damages
+// arising from the use of this software.
+//
+// Permission is granted to anyone to use this software for any purpose,
+// including commercial applications, and to alter it and redistribute it
+// freely, subject to the following restrictions:
+//
+// 1. The origin of this software must not be misrepresented; you must not
+// claim that you wrote the original software. If you use this software
+// in a product, an acknowledgment in the product documentation would be
+// appreciated but is not required.
+//
+// 2. Altered source versions must be plainly marked as such, and must not be
+// misrepresented as being the original software.
+//
+// 3. This notice may not be removed or altered from any source distribution.
+//
+//------------------------------------------------------------------------------
diff --git a/drivers/nedmalloc/malloc.c.h b/drivers/nedmalloc/malloc.c.h
index b9e65637d5..4fec5cc9d4 100644
--- a/drivers/nedmalloc/malloc.c.h
+++ b/drivers/nedmalloc/malloc.c.h
@@ -1,5814 +1,5814 @@
-#ifdef NEDMALLOC_ENABLED
-/*
- This is a version (aka dlmalloc) of malloc/free/realloc written by
- Doug Lea and released to the public domain, as explained at
- http://creativecommons.org/licenses/publicdomain. Send questions,
- comments, complaints, performance data, etc to dl@cs.oswego.edu
-
-* Version 2.8.4 Wed May 27 09:56:23 2009 Doug Lea (dl at gee)
-
- Note: There may be an updated version of this malloc obtainable at
- ftp://gee.cs.oswego.edu/pub/misc/malloc.c
- Check before installing!
-
-* Quickstart
-
- This library is all in one file to simplify the most common usage:
- ftp it, compile it (-O3), and link it into another program. All of
- the compile-time options default to reasonable values for use on
- most platforms. You might later want to step through various
- compile-time and dynamic tuning options.
-
- For convenience, an include file for code using this malloc is at:
- ftp://gee.cs.oswego.edu/pub/misc/malloc-2.8.4.h
- You don't really need this .h file unless you call functions not
- defined in your system include files. The .h file contains only the
- excerpts from this file needed for using this malloc on ANSI C/C++
- systems, so long as you haven't changed compile-time options about
- naming and tuning parameters. If you do, then you can create your
- own malloc.h that does include all settings by cutting at the point
- indicated below. Note that you may already by default be using a C
- library containing a malloc that is based on some version of this
- malloc (for example in linux). You might still want to use the one
- in this file to customize settings or to avoid overheads associated
- with library versions.
-
-* Vital statistics:
-
- Supported pointer/size_t representation: 4 or 8 bytes
- size_t MUST be an unsigned type of the same width as
- pointers. (If you are using an ancient system that declares
- size_t as a signed type, or need it to be a different width
- than pointers, you can use a previous release of this malloc
- (e.g. 2.7.2) supporting these.)
-
- Alignment: 8 bytes (default)
- This suffices for nearly all current machines and C compilers.
- However, you can define MALLOC_ALIGNMENT to be wider than this
- if necessary (up to 128bytes), at the expense of using more space.
-
- Minimum overhead per allocated chunk: 4 or 8 bytes (if 4byte sizes)
- 8 or 16 bytes (if 8byte sizes)
- Each malloced chunk has a hidden word of overhead holding size
- and status information, and additional cross-check word
- if FOOTERS is defined.
-
- Minimum allocated size: 4-byte ptrs: 16 bytes (including overhead)
- 8-byte ptrs: 32 bytes (including overhead)
-
- Even a request for zero bytes (i.e., malloc(0)) returns a
- pointer to something of the minimum allocatable size.
- The maximum overhead wastage (i.e., number of extra bytes
- allocated than were requested in malloc) is less than or equal
- to the minimum size, except for requests >= mmap_threshold that
- are serviced via mmap(), where the worst case wastage is about
- 32 bytes plus the remainder from a system page (the minimal
- mmap unit); typically 4096 or 8192 bytes.
-
- Security: static-safe; optionally more or less
- The "security" of malloc refers to the ability of malicious
- code to accentuate the effects of errors (for example, freeing
- space that is not currently malloc'ed or overwriting past the
- ends of chunks) in code that calls malloc. This malloc
- guarantees not to modify any memory locations below the base of
- heap, i.e., static variables, even in the presence of usage
- errors. The routines additionally detect most improper frees
- and reallocs. All this holds as long as the static bookkeeping
- for malloc itself is not corrupted by some other means. This
- is only one aspect of security -- these checks do not, and
- cannot, detect all possible programming errors.
-
- If FOOTERS is defined nonzero, then each allocated chunk
- carries an additional check word to verify that it was malloced
- from its space. These check words are the same within each
- execution of a program using malloc, but differ across
- executions, so externally crafted fake chunks cannot be
- freed. This improves security by rejecting frees/reallocs that
- could corrupt heap memory, in addition to the checks preventing
- writes to statics that are always on. This may further improve
- security at the expense of time and space overhead. (Note that
- FOOTERS may also be worth using with MSPACES.)
-
- By default detected errors cause the program to abort (calling
- "abort()"). You can override this to instead proceed past
- errors by defining PROCEED_ON_ERROR. In this case, a bad free
- has no effect, and a malloc that encounters a bad address
- caused by user overwrites will ignore the bad address by
- dropping pointers and indices to all known memory. This may
- be appropriate for programs that should continue if at all
- possible in the face of programming errors, although they may
- run out of memory because dropped memory is never reclaimed.
-
- If you don't like either of these options, you can define
- CORRUPTION_ERROR_ACTION and USAGE_ERROR_ACTION to do anything
- else. And if if you are sure that your program using malloc has
- no errors or vulnerabilities, you can define INSECURE to 1,
- which might (or might not) provide a small performance improvement.
-
- Thread-safety: NOT thread-safe unless USE_LOCKS defined
- When USE_LOCKS is defined, each public call to malloc, free,
- etc is surrounded with either a pthread mutex or a win32
- spinlock (depending on WIN32). This is not especially fast, and
- can be a major bottleneck. It is designed only to provide
- minimal protection in concurrent environments, and to provide a
- basis for extensions. If you are using malloc in a concurrent
- program, consider instead using nedmalloc
- (http://www.nedprod.com/programs/portable/nedmalloc/) or
- ptmalloc (See http://www.malloc.de), which are derived
- from versions of this malloc.
-
- System requirements: Any combination of MORECORE and/or MMAP/MUNMAP
- This malloc can use unix sbrk or any emulation (invoked using
- the CALL_MORECORE macro) and/or mmap/munmap or any emulation
- (invoked using CALL_MMAP/CALL_MUNMAP) to get and release system
- memory. On most unix systems, it tends to work best if both
- MORECORE and MMAP are enabled. On Win32, it uses emulations
- based on VirtualAlloc. It also uses common C library functions
- like memset.
-
- Compliance: I believe it is compliant with the Single Unix Specification
- (See http://www.unix.org). Also SVID/XPG, ANSI C, and probably
- others as well.
-
-* Overview of algorithms
-
- This is not the fastest, most space-conserving, most portable, or
- most tunable malloc ever written. However it is among the fastest
- while also being among the most space-conserving, portable and
- tunable. Consistent balance across these factors results in a good
- general-purpose allocator for malloc-intensive programs.
-
- In most ways, this malloc is a best-fit allocator. Generally, it
- chooses the best-fitting existing chunk for a request, with ties
- broken in approximately least-recently-used order. (This strategy
- normally maintains low fragmentation.) However, for requests less
- than 256bytes, it deviates from best-fit when there is not an
- exactly fitting available chunk by preferring to use space adjacent
- to that used for the previous small request, as well as by breaking
- ties in approximately most-recently-used order. (These enhance
- locality of series of small allocations.) And for very large requests
- (>= 256Kb by default), it relies on system memory mapping
- facilities, if supported. (This helps avoid carrying around and
- possibly fragmenting memory used only for large chunks.)
-
- All operations (except malloc_stats and mallinfo) have execution
- times that are bounded by a constant factor of the number of bits in
- a size_t, not counting any clearing in calloc or copying in realloc,
- or actions surrounding MORECORE and MMAP that have times
- proportional to the number of non-contiguous regions returned by
- system allocation routines, which is often just 1. In real-time
- applications, you can optionally suppress segment traversals using
- NO_SEGMENT_TRAVERSAL, which assures bounded execution even when
- system allocators return non-contiguous spaces, at the typical
- expense of carrying around more memory and increased fragmentation.
-
- The implementation is not very modular and seriously overuses
- macros. Perhaps someday all C compilers will do as good a job
- inlining modular code as can now be done by brute-force expansion,
- but now, enough of them seem not to.
-
- Some compilers issue a lot of warnings about code that is
- dead/unreachable only on some platforms, and also about intentional
- uses of negation on unsigned types. All known cases of each can be
- ignored.
-
- For a longer but out of date high-level description, see
- http://gee.cs.oswego.edu/dl/html/malloc.html
-
-* MSPACES
- If MSPACES is defined, then in addition to malloc, free, etc.,
- this file also defines mspace_malloc, mspace_free, etc. These
- are versions of malloc routines that take an "mspace" argument
- obtained using create_mspace, to control all internal bookkeeping.
- If ONLY_MSPACES is defined, only these versions are compiled.
- So if you would like to use this allocator for only some allocations,
- and your system malloc for others, you can compile with
- ONLY_MSPACES and then do something like...
- static mspace mymspace = create_mspace(0,0); // for example
- #define mymalloc(bytes) mspace_malloc(mymspace, bytes)
-
- (Note: If you only need one instance of an mspace, you can instead
- use "USE_DL_PREFIX" to relabel the global malloc.)
-
- You can similarly create thread-local allocators by storing
- mspaces as thread-locals. For example:
- static __thread mspace tlms = 0;
- void* tlmalloc(size_t bytes) {
- if (tlms == 0) tlms = create_mspace(0, 0);
- return mspace_malloc(tlms, bytes);
- }
- void tlfree(void* mem) { mspace_free(tlms, mem); }
-
- Unless FOOTERS is defined, each mspace is completely independent.
- You cannot allocate from one and free to another (although
- conformance is only weakly checked, so usage errors are not always
- caught). If FOOTERS is defined, then each chunk carries around a tag
- indicating its originating mspace, and frees are directed to their
- originating spaces.
-
- ------------------------- Compile-time options ---------------------------
-
-Be careful in setting #define values for numerical constants of type
-size_t. On some systems, literal values are not automatically extended
-to size_t precision unless they are explicitly casted. You can also
-use the symbolic values MAX_SIZE_T, SIZE_T_ONE, etc below.
-
-WIN32 default: defined if _WIN32 defined
- Defining WIN32 sets up defaults for MS environment and compilers.
- Otherwise defaults are for unix. Beware that there seem to be some
- cases where this malloc might not be a pure drop-in replacement for
- Win32 malloc: Random-looking failures from Win32 GDI API's (eg;
- SetDIBits()) may be due to bugs in some video driver implementations
- when pixel buffers are malloc()ed, and the region spans more than
- one VirtualAlloc()ed region. Because dlmalloc uses a small (64Kb)
- default granularity, pixel buffers may straddle virtual allocation
- regions more often than when using the Microsoft allocator. You can
- avoid this by using VirtualAlloc() and VirtualFree() for all pixel
- buffers rather than using malloc(). If this is not possible,
- recompile this malloc with a larger DEFAULT_GRANULARITY.
-
-MALLOC_ALIGNMENT default: (size_t)8
- Controls the minimum alignment for malloc'ed chunks. It must be a
- power of two and at least 8, even on machines for which smaller
- alignments would suffice. It may be defined as larger than this
- though. Note however that code and data structures are optimized for
- the case of 8-byte alignment.
-
-MSPACES default: 0 (false)
- If true, compile in support for independent allocation spaces.
- This is only supported if HAVE_MMAP is true.
-
-ONLY_MSPACES default: 0 (false)
- If true, only compile in mspace versions, not regular versions.
-
-USE_LOCKS default: 0 (false)
- Causes each call to each public routine to be surrounded with
- pthread or WIN32 mutex lock/unlock. (If set true, this can be
- overridden on a per-mspace basis for mspace versions.) If set to a
- non-zero value other than 1, locks are used, but their
- implementation is left out, so lock functions must be supplied manually,
- as described below.
-
-USE_SPIN_LOCKS default: 1 iff USE_LOCKS and on x86 using gcc or MSC
- If true, uses custom spin locks for locking. This is currently
- supported only for x86 platforms using gcc or recent MS compilers.
- Otherwise, posix locks or win32 critical sections are used.
-
-FOOTERS default: 0
- If true, provide extra checking and dispatching by placing
- information in the footers of allocated chunks. This adds
- space and time overhead.
-
-INSECURE default: 0
- If true, omit checks for usage errors and heap space overwrites.
-
-USE_DL_PREFIX default: NOT defined
- Causes compiler to prefix all public routines with the string 'dl'.
- This can be useful when you only want to use this malloc in one part
- of a program, using your regular system malloc elsewhere.
-
-ABORT default: defined as abort()
- Defines how to abort on failed checks. On most systems, a failed
- check cannot die with an "assert" or even print an informative
- message, because the underlying print routines in turn call malloc,
- which will fail again. Generally, the best policy is to simply call
- abort(). It's not very useful to do more than this because many
- errors due to overwriting will show up as address faults (null, odd
- addresses etc) rather than malloc-triggered checks, so will also
- abort. Also, most compilers know that abort() does not return, so
- can better optimize code conditionally calling it.
-
-PROCEED_ON_ERROR default: defined as 0 (false)
- Controls whether detected bad addresses cause them to bypassed
- rather than aborting. If set, detected bad arguments to free and
- realloc are ignored. And all bookkeeping information is zeroed out
- upon a detected overwrite of freed heap space, thus losing the
- ability to ever return it from malloc again, but enabling the
- application to proceed. If PROCEED_ON_ERROR is defined, the
- static variable malloc_corruption_error_count is compiled in
- and can be examined to see if errors have occurred. This option
- generates slower code than the default abort policy.
-
-DEBUG default: NOT defined
- The DEBUG setting is mainly intended for people trying to modify
- this code or diagnose problems when porting to new platforms.
- However, it may also be able to better isolate user errors than just
- using runtime checks. The assertions in the check routines spell
- out in more detail the assumptions and invariants underlying the
- algorithms. The checking is fairly extensive, and will slow down
- execution noticeably. Calling malloc_stats or mallinfo with DEBUG
- set will attempt to check every non-mmapped allocated and free chunk
- in the course of computing the summaries.
-
-ABORT_ON_ASSERT_FAILURE default: defined as 1 (true)
- Debugging assertion failures can be nearly impossible if your
- version of the assert macro causes malloc to be called, which will
- lead to a cascade of further failures, blowing the runtime stack.
- ABORT_ON_ASSERT_FAILURE cause assertions failures to call abort(),
- which will usually make debugging easier.
-
-MALLOC_FAILURE_ACTION default: sets errno to ENOMEM, or no-op on win32
- The action to take before "return 0" when malloc fails to be able to
- return memory because there is none available.
-
-HAVE_MORECORE default: 1 (true) unless win32 or ONLY_MSPACES
- True if this system supports sbrk or an emulation of it.
-
-MORECORE default: sbrk
- The name of the sbrk-style system routine to call to obtain more
- memory. See below for guidance on writing custom MORECORE
- functions. The type of the argument to sbrk/MORECORE varies across
- systems. It cannot be size_t, because it supports negative
- arguments, so it is normally the signed type of the same width as
- size_t (sometimes declared as "intptr_t"). It doesn't much matter
- though. Internally, we only call it with arguments less than half
- the max value of a size_t, which should work across all reasonable
- possibilities, although sometimes generating compiler warnings.
-
-MORECORE_CONTIGUOUS default: 1 (true) if HAVE_MORECORE
- If true, take advantage of fact that consecutive calls to MORECORE
- with positive arguments always return contiguous increasing
- addresses. This is true of unix sbrk. It does not hurt too much to
- set it true anyway, since malloc copes with non-contiguities.
- Setting it false when definitely non-contiguous saves time
- and possibly wasted space it would take to discover this though.
-
-MORECORE_CANNOT_TRIM default: NOT defined
- True if MORECORE cannot release space back to the system when given
- negative arguments. This is generally necessary only if you are
- using a hand-crafted MORECORE function that cannot handle negative
- arguments.
-
-NO_SEGMENT_TRAVERSAL default: 0
- If non-zero, suppresses traversals of memory segments
- returned by either MORECORE or CALL_MMAP. This disables
- merging of segments that are contiguous, and selectively
- releasing them to the OS if unused, but bounds execution times.
-
-HAVE_MMAP default: 1 (true)
- True if this system supports mmap or an emulation of it. If so, and
- HAVE_MORECORE is not true, MMAP is used for all system
- allocation. If set and HAVE_MORECORE is true as well, MMAP is
- primarily used to directly allocate very large blocks. It is also
- used as a backup strategy in cases where MORECORE fails to provide
- space from system. Note: A single call to MUNMAP is assumed to be
- able to unmap memory that may have be allocated using multiple calls
- to MMAP, so long as they are adjacent.
-
-HAVE_MREMAP default: 1 on linux, else 0
- If true realloc() uses mremap() to re-allocate large blocks and
- extend or shrink allocation spaces.
-
-MMAP_CLEARS default: 1 except on WINCE.
- True if mmap clears memory so calloc doesn't need to. This is true
- for standard unix mmap using /dev/zero and on WIN32 except for WINCE.
-
-USE_BUILTIN_FFS default: 0 (i.e., not used)
- Causes malloc to use the builtin ffs() function to compute indices.
- Some compilers may recognize and intrinsify ffs to be faster than the
- supplied C version. Also, the case of x86 using gcc is special-cased
- to an asm instruction, so is already as fast as it can be, and so
- this setting has no effect. Similarly for Win32 under recent MS compilers.
- (On most x86s, the asm version is only slightly faster than the C version.)
-
-malloc_getpagesize default: derive from system includes, or 4096.
- The system page size. To the extent possible, this malloc manages
- memory from the system in page-size units. This may be (and
- usually is) a function rather than a constant. This is ignored
- if WIN32, where page size is determined using getSystemInfo during
- initialization. This may be several megabytes if ENABLE_LARGE_PAGES
- is enabled.
-
-ENABLE_LARGE_PAGES default: NOT defined
- Causes the system page size to be the value of GetLargePageMinimum()
- if that function is available (Windows Server 2003/Vista or later).
- This allows the use of large page entries in the MMU which can
- significantly improve performance in large working set applications
- as TLB cache load is reduced by a factor of three. Note that enabling
- this option is equal to locking the process' memory in current
- implementations of Windows and requires the SE_LOCK_MEMORY_PRIVILEGE
- to be held by the process in order to succeed.
-
-USE_DEV_RANDOM default: 0 (i.e., not used)
- Causes malloc to use /dev/random to initialize secure magic seed for
- stamping footers. Otherwise, the current time is used.
-
-NO_MALLINFO default: 0
- If defined, don't compile "mallinfo". This can be a simple way
- of dealing with mismatches between system declarations and
- those in this file.
-
-MALLINFO_FIELD_TYPE default: size_t
- The type of the fields in the mallinfo struct. This was originally
- defined as "int" in SVID etc, but is more usefully defined as
- size_t. The value is used only if HAVE_USR_INCLUDE_MALLOC_H is not set
-
-REALLOC_ZERO_BYTES_FREES default: not defined
- This should be set if a call to realloc with zero bytes should
- be the same as a call to free. Some people think it should. Otherwise,
- since this malloc returns a unique pointer for malloc(0), so does
- realloc(p, 0).
-
-LACKS_UNISTD_H, LACKS_FCNTL_H, LACKS_SYS_PARAM_H, LACKS_SYS_MMAN_H
-LACKS_STRINGS_H, LACKS_STRING_H, LACKS_SYS_TYPES_H, LACKS_ERRNO_H
-LACKS_STDLIB_H default: NOT defined unless on WIN32
- Define these if your system does not have these header files.
- You might need to manually insert some of the declarations they provide.
-
-DEFAULT_GRANULARITY default: page size if MORECORE_CONTIGUOUS,
- system_info.dwAllocationGranularity in WIN32,
- GetLargePageMinimum() if ENABLE_LARGE_PAGES,
- otherwise 64K.
- Also settable using mallopt(M_GRANULARITY, x)
- The unit for allocating and deallocating memory from the system. On
- most systems with contiguous MORECORE, there is no reason to
- make this more than a page. However, systems with MMAP tend to
- either require or encourage larger granularities. You can increase
- this value to prevent system allocation functions to be called so
- often, especially if they are slow. The value must be at least one
- page and must be a power of two. Setting to 0 causes initialization
- to either page size or win32 region size. (Note: In previous
- versions of malloc, the equivalent of this option was called
- "TOP_PAD")
-
-DEFAULT_GRANULARITY_ALIGNED default: undefined (which means page size)
- Whether to enforce alignment when allocating and deallocating memory
- from the system i.e. the base address of all allocations will be
- aligned to DEFAULT_GRANULARITY if it is set. Note that enabling this carries
- some overhead as multiple calls must now be made when probing for a valid
- aligned value, however it does greatly ease the checking for whether
- a given memory pointer was allocated by this allocator rather than
- some other.
-
-DEFAULT_TRIM_THRESHOLD default: 2MB
- Also settable using mallopt(M_TRIM_THRESHOLD, x)
- The maximum amount of unused top-most memory to keep before
- releasing via malloc_trim in free(). Automatic trimming is mainly
- useful in long-lived programs using contiguous MORECORE. Because
- trimming via sbrk can be slow on some systems, and can sometimes be
- wasteful (in cases where programs immediately afterward allocate
- more large chunks) the value should be high enough so that your
- overall system performance would improve by releasing this much
- memory. As a rough guide, you might set to a value close to the
- average size of a process (program) running on your system.
- Releasing this much memory would allow such a process to run in
- memory. Generally, it is worth tuning trim thresholds when a
- program undergoes phases where several large chunks are allocated
- and released in ways that can reuse each other's storage, perhaps
- mixed with phases where there are no such chunks at all. The trim
- value must be greater than page size to have any useful effect. To
- disable trimming completely, you can set to MAX_SIZE_T. Note that the trick
- some people use of mallocing a huge space and then freeing it at
- program startup, in an attempt to reserve system memory, doesn't
- have the intended effect under automatic trimming, since that memory
- will immediately be returned to the system.
-
-DEFAULT_MMAP_THRESHOLD default: 256K
- Also settable using mallopt(M_MMAP_THRESHOLD, x)
- The request size threshold for using MMAP to directly service a
- request. Requests of at least this size that cannot be allocated
- using already-existing space will be serviced via mmap. (If enough
- normal freed space already exists it is used instead.) Using mmap
- segregates relatively large chunks of memory so that they can be
- individually obtained and released from the host system. A request
- serviced through mmap is never reused by any other request (at least
- not directly; the system may just so happen to remap successive
- requests to the same locations). Segregating space in this way has
- the benefits that: Mmapped space can always be individually released
- back to the system, which helps keep the system level memory demands
- of a long-lived program low. Also, mapped memory doesn't become
- `locked' between other chunks, as can happen with normally allocated
- chunks, which means that even trimming via malloc_trim would not
- release them. However, it has the disadvantage that the space
- cannot be reclaimed, consolidated, and then used to service later
- requests, as happens with normal chunks. The advantages of mmap
- nearly always outweigh disadvantages for "large" chunks, but the
- value of "large" may vary across systems. The default is an
- empirically derived value that works well in most systems. You can
- disable mmap by setting to MAX_SIZE_T.
-
-MAX_RELEASE_CHECK_RATE default: 4095 unless not HAVE_MMAP
- The number of consolidated frees between checks to release
- unused segments when freeing. When using non-contiguous segments,
- especially with multiple mspaces, checking only for topmost space
- doesn't always suffice to trigger trimming. To compensate for this,
- free() will, with a period of MAX_RELEASE_CHECK_RATE (or the
- current number of segments, if greater) try to release unused
- segments to the OS when freeing chunks that result in
- consolidation. The best value for this parameter is a compromise
- between slowing down frees with relatively costly checks that
- rarely trigger versus holding on to unused memory. To effectively
- disable, set to MAX_SIZE_T. This may lead to a very slight speed
- improvement at the expense of carrying around more memory.
-*/
-
-/* Version identifier to allow people to support multiple versions */
-#ifndef DLMALLOC_VERSION
-#define DLMALLOC_VERSION 20804
-#endif /* DLMALLOC_VERSION */
-
-#ifndef WIN32
-#ifdef _WIN32
-#define WIN32 1
-#endif /* _WIN32 */
-#ifdef _WIN32_WCE
-#define LACKS_FCNTL_H
-#define WIN32 1
-#endif /* _WIN32_WCE */
-#endif /* WIN32 */
-#ifdef WIN32
-#define WIN32_LEAN_AND_MEAN
-#include <windows.h>
-#include <tchar.h>
-#define HAVE_MMAP 1
-#define HAVE_MORECORE 0
-#define LACKS_UNISTD_H
-#define LACKS_SYS_PARAM_H
-#define LACKS_SYS_MMAN_H
-#define LACKS_STRING_H
-#define LACKS_STRINGS_H
-#define LACKS_SYS_TYPES_H
-#define LACKS_ERRNO_H
-#ifndef MALLOC_FAILURE_ACTION
-#define MALLOC_FAILURE_ACTION
-#endif /* MALLOC_FAILURE_ACTION */
-#ifdef _WIN32_WCE /* WINCE reportedly does not clear */
-#define MMAP_CLEARS 0
-#else
-#define MMAP_CLEARS 1
-#endif /* _WIN32_WCE */
-#endif /* WIN32 */
-
-#if defined(DARWIN) || defined(_DARWIN)
-/* Mac OSX docs advise not to use sbrk; it seems better to use mmap */
-#ifndef HAVE_MORECORE
-#define HAVE_MORECORE 0
-#define HAVE_MMAP 1
-/* OSX allocators provide 16 byte alignment */
-#ifndef MALLOC_ALIGNMENT
-#define MALLOC_ALIGNMENT ((size_t)16U)
-#endif
-#endif /* HAVE_MORECORE */
-#endif /* DARWIN */
-
-#ifndef LACKS_SYS_TYPES_H
-#include <sys/types.h> /* For size_t */
-#endif /* LACKS_SYS_TYPES_H */
-
-#if (defined(__GNUC__) && ((defined(__i386__) || defined(__x86_64__)))) || (defined(_MSC_VER) && _MSC_VER>=1310)
-#define SPIN_LOCKS_AVAILABLE 1
-#else
-#define SPIN_LOCKS_AVAILABLE 0
-#endif
-
-/* The maximum possible size_t value has all bits set */
-#define MAX_SIZE_T (~(size_t)0)
-
-#ifndef ONLY_MSPACES
-#define ONLY_MSPACES 0 /* define to a value */
-#else
-#define ONLY_MSPACES 1
-#endif /* ONLY_MSPACES */
-#ifndef MSPACES
-#if ONLY_MSPACES
-#define MSPACES 1
-#else /* ONLY_MSPACES */
-#define MSPACES 0
-#endif /* ONLY_MSPACES */
-#endif /* MSPACES */
-#ifndef MALLOC_ALIGNMENT
-#define MALLOC_ALIGNMENT ((size_t)8U)
-#endif /* MALLOC_ALIGNMENT */
-#ifndef FOOTERS
-#define FOOTERS 0
-#endif /* FOOTERS */
-#ifndef ABORT
-#define ABORT abort()
-#endif /* ABORT */
-#ifndef ABORT_ON_ASSERT_FAILURE
-#define ABORT_ON_ASSERT_FAILURE 1
-#endif /* ABORT_ON_ASSERT_FAILURE */
-#ifndef PROCEED_ON_ERROR
-#define PROCEED_ON_ERROR 0
-#endif /* PROCEED_ON_ERROR */
-#ifndef USE_LOCKS
-#define USE_LOCKS 0
-#endif /* USE_LOCKS */
-#ifndef USE_SPIN_LOCKS
-#if USE_LOCKS && SPIN_LOCKS_AVAILABLE
-#define USE_SPIN_LOCKS 1
-#else
-#define USE_SPIN_LOCKS 0
-#endif /* USE_LOCKS && SPIN_LOCKS_AVAILABLE. */
-#endif /* USE_SPIN_LOCKS */
-#ifndef INSECURE
-#define INSECURE 0
-#endif /* INSECURE */
-#ifndef HAVE_MMAP
-#define HAVE_MMAP 1
-#endif /* HAVE_MMAP */
-#ifndef MMAP_CLEARS
-#define MMAP_CLEARS 1
-#endif /* MMAP_CLEARS */
-#ifndef HAVE_MREMAP
-#ifdef linux
-#define HAVE_MREMAP 1
-#else /* linux */
-#define HAVE_MREMAP 0
-#endif /* linux */
-#endif /* HAVE_MREMAP */
-#ifndef MALLOC_FAILURE_ACTION
-#define MALLOC_FAILURE_ACTION errno = ENOMEM;
-#endif /* MALLOC_FAILURE_ACTION */
-#ifndef HAVE_MORECORE
-#if ONLY_MSPACES
-#define HAVE_MORECORE 0
-#else /* ONLY_MSPACES */
-#define HAVE_MORECORE 1
-#endif /* ONLY_MSPACES */
-#endif /* HAVE_MORECORE */
-#if !HAVE_MORECORE
-#define MORECORE_CONTIGUOUS 0
-#else /* !HAVE_MORECORE */
-#define MORECORE_DEFAULT sbrk
-#ifndef MORECORE_CONTIGUOUS
-#define MORECORE_CONTIGUOUS 1
-#endif /* MORECORE_CONTIGUOUS */
-#endif /* HAVE_MORECORE */
-#ifndef DEFAULT_GRANULARITY
-#if (MORECORE_CONTIGUOUS || defined(WIN32))
-#define DEFAULT_GRANULARITY (0) /* 0 means to compute in init_mparams */
-#else /* MORECORE_CONTIGUOUS */
-#define DEFAULT_GRANULARITY ((size_t)64U * (size_t)1024U)
-#endif /* MORECORE_CONTIGUOUS */
-#endif /* DEFAULT_GRANULARITY */
-#ifndef DEFAULT_TRIM_THRESHOLD
-#ifndef MORECORE_CANNOT_TRIM
-#define DEFAULT_TRIM_THRESHOLD ((size_t)2U * (size_t)1024U * (size_t)1024U)
-#else /* MORECORE_CANNOT_TRIM */
-#define DEFAULT_TRIM_THRESHOLD MAX_SIZE_T
-#endif /* MORECORE_CANNOT_TRIM */
-#endif /* DEFAULT_TRIM_THRESHOLD */
-#ifndef DEFAULT_MMAP_THRESHOLD
-#if HAVE_MMAP
-#define DEFAULT_MMAP_THRESHOLD ((size_t)256U * (size_t)1024U)
-#else /* HAVE_MMAP */
-#define DEFAULT_MMAP_THRESHOLD MAX_SIZE_T
-#endif /* HAVE_MMAP */
-#endif /* DEFAULT_MMAP_THRESHOLD */
-#ifndef MAX_RELEASE_CHECK_RATE
-#if HAVE_MMAP
-#define MAX_RELEASE_CHECK_RATE 4095
-#else
-#define MAX_RELEASE_CHECK_RATE MAX_SIZE_T
-#endif /* HAVE_MMAP */
-#endif /* MAX_RELEASE_CHECK_RATE */
-#ifndef USE_BUILTIN_FFS
-#define USE_BUILTIN_FFS 0
-#endif /* USE_BUILTIN_FFS */
-#ifndef USE_DEV_RANDOM
-#define USE_DEV_RANDOM 0
-#endif /* USE_DEV_RANDOM */
-#ifndef NO_MALLINFO
-#define NO_MALLINFO 0
-#endif /* NO_MALLINFO */
-#ifndef MALLINFO_FIELD_TYPE
-#define MALLINFO_FIELD_TYPE size_t
-#endif /* MALLINFO_FIELD_TYPE */
-#ifndef NO_SEGMENT_TRAVERSAL
-#define NO_SEGMENT_TRAVERSAL 0
-#endif /* NO_SEGMENT_TRAVERSAL */
-
-/*
- mallopt tuning options. SVID/XPG defines four standard parameter
- numbers for mallopt, normally defined in malloc.h. None of these
- are used in this malloc, so setting them has no effect. But this
- malloc does support the following options.
-*/
-
-#define M_TRIM_THRESHOLD (-1)
-#define M_GRANULARITY (-2)
-#define M_MMAP_THRESHOLD (-3)
-
-/* ------------------------ Mallinfo declarations ------------------------ */
-
-#if !NO_MALLINFO
-/*
- This version of malloc supports the standard SVID/XPG mallinfo
- routine that returns a struct containing usage properties and
- statistics. It should work on any system that has a
- /usr/include/malloc.h defining struct mallinfo. The main
- declaration needed is the mallinfo struct that is returned (by-copy)
- by mallinfo(). The malloinfo struct contains a bunch of fields that
- are not even meaningful in this version of malloc. These fields are
- are instead filled by mallinfo() with other numbers that might be of
- interest.
-
- HAVE_USR_INCLUDE_MALLOC_H should be set if you have a
- /usr/include/malloc.h file that includes a declaration of struct
- mallinfo. If so, it is included; else a compliant version is
- declared below. These must be precisely the same for mallinfo() to
- work. The original SVID version of this struct, defined on most
- systems with mallinfo, declares all fields as ints. But some others
- define as unsigned long. If your system defines the fields using a
- type of different width than listed here, you MUST #include your
- system version and #define HAVE_USR_INCLUDE_MALLOC_H.
-*/
-
-/* #define HAVE_USR_INCLUDE_MALLOC_H */
-
-#ifdef HAVE_USR_INCLUDE_MALLOC_H
-#include "/usr/include/malloc.h"
-#else /* HAVE_USR_INCLUDE_MALLOC_H */
-#ifndef STRUCT_MALLINFO_DECLARED
-#define STRUCT_MALLINFO_DECLARED 1
-struct mallinfo {
- MALLINFO_FIELD_TYPE arena; /* non-mmapped space allocated from system */
- MALLINFO_FIELD_TYPE ordblks; /* number of free chunks */
- MALLINFO_FIELD_TYPE smblks; /* always 0 */
- MALLINFO_FIELD_TYPE hblks; /* always 0 */
- MALLINFO_FIELD_TYPE hblkhd; /* space in mmapped regions */
- MALLINFO_FIELD_TYPE usmblks; /* maximum total allocated space */
- MALLINFO_FIELD_TYPE fsmblks; /* always 0 */
- MALLINFO_FIELD_TYPE uordblks; /* total allocated space */
- MALLINFO_FIELD_TYPE fordblks; /* total free space */
- MALLINFO_FIELD_TYPE keepcost; /* releasable (via malloc_trim) space */
-};
-#endif /* STRUCT_MALLINFO_DECLARED */
-#endif /* HAVE_USR_INCLUDE_MALLOC_H */
-#endif /* NO_MALLINFO */
-
-/*
- Try to persuade compilers to inline. The most critical functions for
- inlining are defined as macros, so these aren't used for them.
-*/
-
-#ifndef FORCEINLINE
- #if defined(__GNUC__)
-#define FORCEINLINE __inline __attribute__ ((always_inline))
- #elif defined(_MSC_VER)
- #define FORCEINLINE __forceinline
- #endif
-#endif
-#ifndef NOINLINE
- #if defined(__GNUC__)
- #define NOINLINE __attribute__ ((noinline))
- #elif defined(_MSC_VER)
- #define NOINLINE __declspec(noinline)
- #else
- #define NOINLINE
- #endif
-#endif
-
-#ifdef __cplusplus
-extern "C" {
-#ifndef FORCEINLINE
- #define FORCEINLINE inline
-#endif
-#endif /* __cplusplus */
-#ifndef FORCEINLINE
- #define FORCEINLINE
-#endif
-
-#if !ONLY_MSPACES
-
-/* ------------------- Declarations of public routines ------------------- */
-
-#ifndef USE_DL_PREFIX
-#define dlcalloc calloc
-#define dlfree free
-#define dlmalloc malloc
-#define dlmemalign memalign
-#define dlrealloc realloc
-#define dlvalloc valloc
-#define dlpvalloc pvalloc
-#define dlmallinfo mallinfo
-#define dlmallopt mallopt
-#define dlmalloc_trim malloc_trim
-#define dlmalloc_stats malloc_stats
-#define dlmalloc_usable_size malloc_usable_size
-#define dlmalloc_footprint malloc_footprint
-#define dlmalloc_max_footprint malloc_max_footprint
-#define dlindependent_calloc independent_calloc
-#define dlindependent_comalloc independent_comalloc
-#endif /* USE_DL_PREFIX */
-
-
-/*
- malloc(size_t n)
- Returns a pointer to a newly allocated chunk of at least n bytes, or
- null if no space is available, in which case errno is set to ENOMEM
- on ANSI C systems.
-
- If n is zero, malloc returns a minimum-sized chunk. (The minimum
- size is 16 bytes on most 32bit systems, and 32 bytes on 64bit
- systems.) Note that size_t is an unsigned type, so calls with
- arguments that would be negative if signed are interpreted as
- requests for huge amounts of space, which will often fail. The
- maximum supported value of n differs across systems, but is in all
- cases less than the maximum representable value of a size_t.
-*/
-void* dlmalloc(size_t);
-
-/*
- free(void* p)
- Releases the chunk of memory pointed to by p, that had been previously
- allocated using malloc or a related routine such as realloc.
- It has no effect if p is null. If p was not malloced or already
- freed, free(p) will by default cause the current program to abort.
-*/
-void dlfree(void*);
-
-/*
- calloc(size_t n_elements, size_t element_size);
- Returns a pointer to n_elements * element_size bytes, with all locations
- set to zero.
-*/
-void* dlcalloc(size_t, size_t);
-
-/*
- realloc(void* p, size_t n)
- Returns a pointer to a chunk of size n that contains the same data
- as does chunk p up to the minimum of (n, p's size) bytes, or null
- if no space is available.
-
- The returned pointer may or may not be the same as p. The algorithm
- prefers extending p in most cases when possible, otherwise it
- employs the equivalent of a malloc-copy-free sequence.
-
- If p is null, realloc is equivalent to malloc.
-
- If space is not available, realloc returns null, errno is set (if on
- ANSI) and p is NOT freed.
-
- if n is for fewer bytes than already held by p, the newly unused
- space is lopped off and freed if possible. realloc with a size
- argument of zero (re)allocates a minimum-sized chunk.
-
- The old unix realloc convention of allowing the last-free'd chunk
- to be used as an argument to realloc is not supported.
-*/
-
-void* dlrealloc(void*, size_t);
-
-/*
- memalign(size_t alignment, size_t n);
- Returns a pointer to a newly allocated chunk of n bytes, aligned
- in accord with the alignment argument.
-
- The alignment argument should be a power of two. If the argument is
- not a power of two, the nearest greater power is used.
- 8-byte alignment is guaranteed by normal malloc calls, so don't
- bother calling memalign with an argument of 8 or less.
-
- Overreliance on memalign is a sure way to fragment space.
-*/
-void* dlmemalign(size_t, size_t);
-
-/*
- valloc(size_t n);
- Equivalent to memalign(pagesize, n), where pagesize is the page
- size of the system. If the pagesize is unknown, 4096 is used.
-*/
-void* dlvalloc(size_t);
-
-/*
- mallopt(int parameter_number, int parameter_value)
- Sets tunable parameters The format is to provide a
- (parameter-number, parameter-value) pair. mallopt then sets the
- corresponding parameter to the argument value if it can (i.e., so
- long as the value is meaningful), and returns 1 if successful else
- 0. To workaround the fact that mallopt is specified to use int,
- not size_t parameters, the value -1 is specially treated as the
- maximum unsigned size_t value.
-
- SVID/XPG/ANSI defines four standard param numbers for mallopt,
- normally defined in malloc.h. None of these are use in this malloc,
- so setting them has no effect. But this malloc also supports other
- options in mallopt. See below for details. Briefly, supported
- parameters are as follows (listed defaults are for "typical"
- configurations).
-
- Symbol param # default allowed param values
- M_TRIM_THRESHOLD -1 2*1024*1024 any (-1 disables)
- M_GRANULARITY -2 page size any power of 2 >= page size
- M_MMAP_THRESHOLD -3 256*1024 any (or 0 if no MMAP support)
-*/
-int dlmallopt(int, int);
-
-/*
- malloc_footprint();
- Returns the number of bytes obtained from the system. The total
- number of bytes allocated by malloc, realloc etc., is less than this
- value. Unlike mallinfo, this function returns only a precomputed
- result, so can be called frequently to monitor memory consumption.
- Even if locks are otherwise defined, this function does not use them,
- so results might not be up to date.
-*/
-size_t dlmalloc_footprint(void);
-
-/*
- malloc_max_footprint();
- Returns the maximum number of bytes obtained from the system. This
- value will be greater than current footprint if deallocated space
- has been reclaimed by the system. The peak number of bytes allocated
- by malloc, realloc etc., is less than this value. Unlike mallinfo,
- this function returns only a precomputed result, so can be called
- frequently to monitor memory consumption. Even if locks are
- otherwise defined, this function does not use them, so results might
- not be up to date.
-*/
-size_t dlmalloc_max_footprint(void);
-
-#if !NO_MALLINFO
-/*
- mallinfo()
- Returns (by copy) a struct containing various summary statistics:
-
- arena: current total non-mmapped bytes allocated from system
- ordblks: the number of free chunks
- smblks: always zero.
- hblks: current number of mmapped regions
- hblkhd: total bytes held in mmapped regions
- usmblks: the maximum total allocated space. This will be greater
- than current total if trimming has occurred.
- fsmblks: always zero
- uordblks: current total allocated space (normal or mmapped)
- fordblks: total free space
- keepcost: the maximum number of bytes that could ideally be released
- back to system via malloc_trim. ("ideally" means that
- it ignores page restrictions etc.)
-
- Because these fields are ints, but internal bookkeeping may
- be kept as longs, the reported values may wrap around zero and
- thus be inaccurate.
-*/
-struct mallinfo dlmallinfo(void);
-#endif /* NO_MALLINFO */
-
-/*
- independent_calloc(size_t n_elements, size_t element_size, void* chunks[]);
-
- independent_calloc is similar to calloc, but instead of returning a
- single cleared space, it returns an array of pointers to n_elements
- independent elements that can hold contents of size elem_size, each
- of which starts out cleared, and can be independently freed,
- realloc'ed etc. The elements are guaranteed to be adjacently
- allocated (this is not guaranteed to occur with multiple callocs or
- mallocs), which may also improve cache locality in some
- applications.
-
- The "chunks" argument is optional (i.e., may be null, which is
- probably the most typical usage). If it is null, the returned array
- is itself dynamically allocated and should also be freed when it is
- no longer needed. Otherwise, the chunks array must be of at least
- n_elements in length. It is filled in with the pointers to the
- chunks.
-
- In either case, independent_calloc returns this pointer array, or
- null if the allocation failed. If n_elements is zero and "chunks"
- is null, it returns a chunk representing an array with zero elements
- (which should be freed if not wanted).
-
- Each element must be individually freed when it is no longer
- needed. If you'd like to instead be able to free all at once, you
- should instead use regular calloc and assign pointers into this
- space to represent elements. (In this case though, you cannot
- independently free elements.)
-
- independent_calloc simplifies and speeds up implementations of many
- kinds of pools. It may also be useful when constructing large data
- structures that initially have a fixed number of fixed-sized nodes,
- but the number is not known at compile time, and some of the nodes
- may later need to be freed. For example:
-
- struct Node { int item; struct Node* next; };
-
- struct Node* build_list() {
- struct Node** pool;
- int n = read_number_of_nodes_needed();
- if (n <= 0) return 0;
- pool = (struct Node**)(independent_calloc(n, sizeof(struct Node), 0);
- if (pool == 0) die();
- // organize into a linked list...
- struct Node* first = pool[0];
- for (i = 0; i < n-1; ++i)
- pool[i]->next = pool[i+1];
- free(pool); // Can now free the array (or not, if it is needed later)
- return first;
- }
-*/
-void** dlindependent_calloc(size_t, size_t, void**);
-
-/*
- independent_comalloc(size_t n_elements, size_t sizes[], void* chunks[]);
-
- independent_comalloc allocates, all at once, a set of n_elements
- chunks with sizes indicated in the "sizes" array. It returns
- an array of pointers to these elements, each of which can be
- independently freed, realloc'ed etc. The elements are guaranteed to
- be adjacently allocated (this is not guaranteed to occur with
- multiple callocs or mallocs), which may also improve cache locality
- in some applications.
-
- The "chunks" argument is optional (i.e., may be null). If it is null
- the returned array is itself dynamically allocated and should also
- be freed when it is no longer needed. Otherwise, the chunks array
- must be of at least n_elements in length. It is filled in with the
- pointers to the chunks.
-
- In either case, independent_comalloc returns this pointer array, or
- null if the allocation failed. If n_elements is zero and chunks is
- null, it returns a chunk representing an array with zero elements
- (which should be freed if not wanted).
-
- Each element must be individually freed when it is no longer
- needed. If you'd like to instead be able to free all at once, you
- should instead use a single regular malloc, and assign pointers at
- particular offsets in the aggregate space. (In this case though, you
- cannot independently free elements.)
-
- independent_comallac differs from independent_calloc in that each
- element may have a different size, and also that it does not
- automatically clear elements.
-
- independent_comalloc can be used to speed up allocation in cases
- where several structs or objects must always be allocated at the
- same time. For example:
-
- struct Head { ... }
- struct Foot { ... }
-
- void send_message(char* msg) {
- int msglen = strlen(msg);
- size_t sizes[3] = { sizeof(struct Head), msglen, sizeof(struct Foot) };
- void* chunks[3];
- if (independent_comalloc(3, sizes, chunks) == 0)
- die();
- struct Head* head = (struct Head*)(chunks[0]);
- char* body = (char*)(chunks[1]);
- struct Foot* foot = (struct Foot*)(chunks[2]);
- // ...
- }
-
- In general though, independent_comalloc is worth using only for
- larger values of n_elements. For small values, you probably won't
- detect enough difference from series of malloc calls to bother.
-
- Overuse of independent_comalloc can increase overall memory usage,
- since it cannot reuse existing noncontiguous small chunks that
- might be available for some of the elements.
-*/
-void** dlindependent_comalloc(size_t, size_t*, void**);
-
-
-/*
- pvalloc(size_t n);
- Equivalent to valloc(minimum-page-that-holds(n)), that is,
- round up n to nearest pagesize.
- */
-void* dlpvalloc(size_t);
-
-/*
- malloc_trim(size_t pad);
-
- If possible, gives memory back to the system (via negative arguments
- to sbrk) if there is unused memory at the `high' end of the malloc
- pool or in unused MMAP segments. You can call this after freeing
- large blocks of memory to potentially reduce the system-level memory
- requirements of a program. However, it cannot guarantee to reduce
- memory. Under some allocation patterns, some large free blocks of
- memory will be locked between two used chunks, so they cannot be
- given back to the system.
-
- The `pad' argument to malloc_trim represents the amount of free
- trailing space to leave untrimmed. If this argument is zero, only
- the minimum amount of memory to maintain internal data structures
- will be left. Non-zero arguments can be supplied to maintain enough
- trailing space to service future expected allocations without having
- to re-obtain memory from the system.
-
- Malloc_trim returns 1 if it actually released any memory, else 0.
-*/
-int dlmalloc_trim(size_t);
-
-/*
- malloc_stats();
- Prints on stderr the amount of space obtained from the system (both
- via sbrk and mmap), the maximum amount (which may be more than
- current if malloc_trim and/or munmap got called), and the current
- number of bytes allocated via malloc (or realloc, etc) but not yet
- freed. Note that this is the number of bytes allocated, not the
- number requested. It will be larger than the number requested
- because of alignment and bookkeeping overhead. Because it includes
- alignment wastage as being in use, this figure may be greater than
- zero even when no user-level chunks are allocated.
-
- The reported current and maximum system memory can be inaccurate if
- a program makes other calls to system memory allocation functions
- (normally sbrk) outside of malloc.
-
- malloc_stats prints only the most commonly interesting statistics.
- More information can be obtained by calling mallinfo.
-*/
-void dlmalloc_stats(void);
-
-#endif /* ONLY_MSPACES */
-
-/*
- malloc_usable_size(void* p);
-
- Returns the number of bytes you can actually use in
- an allocated chunk, which may be more than you requested (although
- often not) due to alignment and minimum size constraints.
- You can use this many bytes without worrying about
- overwriting other allocated objects. This is not a particularly great
- programming practice. malloc_usable_size can be more useful in
- debugging and assertions, for example:
-
- p = malloc(n);
- assert(malloc_usable_size(p) >= 256);
-*/
-size_t dlmalloc_usable_size(void*);
-
-
-#if MSPACES
-
-/*
- mspace is an opaque type representing an independent
- region of space that supports mspace_malloc, etc.
-*/
-typedef void* mspace;
-
-/*
- create_mspace creates and returns a new independent space with the
- given initial capacity, or, if 0, the default granularity size. It
- returns null if there is no system memory available to create the
- space. If argument locked is non-zero, the space uses a separate
- lock to control access. The capacity of the space will grow
- dynamically as needed to service mspace_malloc requests. You can
- control the sizes of incremental increases of this space by
- compiling with a different DEFAULT_GRANULARITY or dynamically
- setting with mallopt(M_GRANULARITY, value).
-*/
-mspace create_mspace(size_t capacity, int locked);
-
-/*
- destroy_mspace destroys the given space, and attempts to return all
- of its memory back to the system, returning the total number of
- bytes freed. After destruction, the results of access to all memory
- used by the space become undefined.
-*/
-size_t destroy_mspace(mspace msp);
-
-/*
- create_mspace_with_base uses the memory supplied as the initial base
- of a new mspace. Part (less than 128*sizeof(size_t) bytes) of this
- space is used for bookkeeping, so the capacity must be at least this
- large. (Otherwise 0 is returned.) When this initial space is
- exhausted, additional memory will be obtained from the system.
- Destroying this space will deallocate all additionally allocated
- space (if possible) but not the initial base.
-*/
-mspace create_mspace_with_base(void* base, size_t capacity, int locked);
-
-/*
- mspace_track_large_chunks controls whether requests for large chunks
- are allocated in their own untracked mmapped regions, separate from
- others in this mspace. By default large chunks are not tracked,
- which reduces fragmentation. However, such chunks are not
- necessarily released to the system upon destroy_mspace. Enabling
- tracking by setting to true may increase fragmentation, but avoids
- leakage when relying on destroy_mspace to release all memory
- allocated using this space. The function returns the previous
- setting.
-*/
-int mspace_track_large_chunks(mspace msp, int enable);
-
-
-/*
- mspace_malloc behaves as malloc, but operates within
- the given space.
-*/
-void* mspace_malloc(mspace msp, size_t bytes);
-
-/*
- mspace_free behaves as free, but operates within
- the given space.
-
- If compiled with FOOTERS==1, mspace_free is not actually needed.
- free may be called instead of mspace_free because freed chunks from
- any space are handled by their originating spaces.
-*/
-void mspace_free(mspace msp, void* mem);
-
-/*
- mspace_realloc behaves as realloc, but operates within
- the given space.
-
- If compiled with FOOTERS==1, mspace_realloc is not actually
- needed. realloc may be called instead of mspace_realloc because
- realloced chunks from any space are handled by their originating
- spaces.
-*/
-void* mspace_realloc(mspace msp, void* mem, size_t newsize);
-
-/*
- mspace_calloc behaves as calloc, but operates within
- the given space.
-*/
-void* mspace_calloc(mspace msp, size_t n_elements, size_t elem_size);
-
-/*
- mspace_memalign behaves as memalign, but operates within
- the given space.
-*/
-void* mspace_memalign(mspace msp, size_t alignment, size_t bytes);
-
-/*
- mspace_independent_calloc behaves as independent_calloc, but
- operates within the given space.
-*/
-void** mspace_independent_calloc(mspace msp, size_t n_elements,
- size_t elem_size, void* chunks[]);
-
-/*
- mspace_independent_comalloc behaves as independent_comalloc, but
- operates within the given space.
-*/
-void** mspace_independent_comalloc(mspace msp, size_t n_elements,
- size_t sizes[], void* chunks[]);
-
-/*
- mspace_footprint() returns the number of bytes obtained from the
- system for this space.
-*/
-size_t mspace_footprint(mspace msp);
-
-/*
- mspace_max_footprint() returns the peak number of bytes obtained from the
- system for this space.
-*/
-size_t mspace_max_footprint(mspace msp);
-
-
-#if !NO_MALLINFO
-/*
- mspace_mallinfo behaves as mallinfo, but reports properties of
- the given space.
-*/
-struct mallinfo mspace_mallinfo(mspace msp);
-#endif /* NO_MALLINFO */
-
-/*
- malloc_usable_size(void* p) behaves the same as malloc_usable_size;
-*/
- size_t mspace_usable_size(void* mem);
-
-/*
- mspace_malloc_stats behaves as malloc_stats, but reports
- properties of the given space.
-*/
-void mspace_malloc_stats(mspace msp);
-
-/*
- mspace_trim behaves as malloc_trim, but
- operates within the given space.
-*/
-int mspace_trim(mspace msp, size_t pad);
-
-/*
- An alias for mallopt.
-*/
-int mspace_mallopt(int, int);
-
-#endif /* MSPACES */
-
-#ifdef __cplusplus
-} /* end of extern "C" */
-#endif /* __cplusplus */
-
-/*
- ========================================================================
- To make a fully customizable malloc.h header file, cut everything
- above this line, put into file malloc.h, edit to suit, and #include it
- on the next line, as well as in programs that use this malloc.
- ========================================================================
-*/
-
-/* #include "malloc.h" */
-
-/*------------------------------ internal #includes ---------------------- */
-
-#ifdef WIN32
-#pragma warning( disable : 4146 ) /* no "unsigned" warnings */
-#endif /* WIN32 */
-
-#include <stdio.h> /* for printing in malloc_stats */
-
-#ifndef LACKS_ERRNO_H
-#include <errno.h> /* for MALLOC_FAILURE_ACTION */
-#endif /* LACKS_ERRNO_H */
-#if FOOTERS || DEBUG
-#include <time.h> /* for magic initialization */
-#endif /* FOOTERS */
-#ifndef LACKS_STDLIB_H
-#include <stdlib.h> /* for abort() */
-#endif /* LACKS_STDLIB_H */
-#ifdef DEBUG
-#if ABORT_ON_ASSERT_FAILURE
-#undef assert
-#define assert(x) if(!(x)) ABORT
-#else /* ABORT_ON_ASSERT_FAILURE */
-#include <assert.h>
-#endif /* ABORT_ON_ASSERT_FAILURE */
-#else /* DEBUG */
-#ifndef assert
-#define assert(x)
-#endif
-#define DEBUG 0
-#endif /* DEBUG */
-#ifndef LACKS_STRING_H
-#include <string.h> /* for memset etc */
-#endif /* LACKS_STRING_H */
-#if USE_BUILTIN_FFS
-#ifndef LACKS_STRINGS_H
-#include <strings.h> /* for ffs */
-#endif /* LACKS_STRINGS_H */
-#endif /* USE_BUILTIN_FFS */
-#if HAVE_MMAP
-#ifndef LACKS_SYS_MMAN_H
-/* On some versions of linux, mremap decl in mman.h needs __USE_GNU set */
-#if (defined(linux) && !defined(__USE_GNU))
-#define __USE_GNU 1
-#include <sys/mman.h> /* for mmap */
-#undef __USE_GNU
-#else
-#include <sys/mman.h> /* for mmap */
-#endif /* linux */
-#endif /* LACKS_SYS_MMAN_H */
-#ifndef LACKS_FCNTL_H
-#include <fcntl.h>
-#endif /* LACKS_FCNTL_H */
-#endif /* HAVE_MMAP */
-#ifndef LACKS_UNISTD_H
-#include <unistd.h> /* for sbrk, sysconf */
-#else /* LACKS_UNISTD_H */
-#if !defined(__FreeBSD__) && !defined(__OpenBSD__) && !defined(__NetBSD__)
-extern void* sbrk(ptrdiff_t);
-#endif /* FreeBSD etc */
-#endif /* LACKS_UNISTD_H */
-
-/* Declarations for locking */
-#if USE_LOCKS
-#ifndef WIN32
-#include <pthread.h>
-#if defined (__SVR4) && defined (__sun) /* solaris */
-#include <thread.h>
-#endif /* solaris */
-#else
-#ifndef _M_AMD64
-/* These are already defined on AMD64 builds */
-#ifdef __cplusplus
-extern "C" {
-#endif /* __cplusplus */
-LONG __cdecl _InterlockedCompareExchange(LONG volatile *Dest, LONG Exchange, LONG Comp);
-LONG __cdecl _InterlockedExchange(LONG volatile *Target, LONG Value);
-#ifdef __cplusplus
-}
-#endif /* __cplusplus */
-#endif /* _M_AMD64 */
-#pragma intrinsic (_InterlockedCompareExchange)
-#pragma intrinsic (_InterlockedExchange)
-#define interlockedcompareexchange _InterlockedCompareExchange
-#define interlockedexchange _InterlockedExchange
-#endif /* Win32 */
-#endif /* USE_LOCKS */
-
-/* Declarations for bit scanning on win32 */
-#if defined(_MSC_VER) && _MSC_VER>=1300
-#ifndef BitScanForward /* Try to avoid pulling in WinNT.h */
-#ifdef __cplusplus
-extern "C" {
-#endif /* __cplusplus */
-unsigned char _BitScanForward(unsigned long *index, unsigned long mask);
-unsigned char _BitScanReverse(unsigned long *index, unsigned long mask);
-#ifdef __cplusplus
-}
-#endif /* __cplusplus */
-
-#define BitScanForward _BitScanForward
-#define BitScanReverse _BitScanReverse
-#pragma intrinsic(_BitScanForward)
-#pragma intrinsic(_BitScanReverse)
-#endif /* BitScanForward */
-#endif /* defined(_MSC_VER) && _MSC_VER>=1300 */
-
-#ifndef WIN32
-#ifndef malloc_getpagesize
-# ifdef _SC_PAGESIZE /* some SVR4 systems omit an underscore */
-# ifndef _SC_PAGE_SIZE
-# define _SC_PAGE_SIZE _SC_PAGESIZE
-# endif
-# endif
-# ifdef _SC_PAGE_SIZE
-# define malloc_getpagesize sysconf(_SC_PAGE_SIZE)
-# else
-# if defined(BSD) || defined(DGUX) || defined(HAVE_GETPAGESIZE)
- extern size_t getpagesize();
-# define malloc_getpagesize getpagesize()
-# else
-# ifdef WIN32 /* use supplied emulation of getpagesize */
-# define malloc_getpagesize getpagesize()
-# else
-# ifndef LACKS_SYS_PARAM_H
-# include <sys/param.h>
-# endif
-# ifdef EXEC_PAGESIZE
-# define malloc_getpagesize EXEC_PAGESIZE
-# else
-# ifdef NBPG
-# ifndef CLSIZE
-# define malloc_getpagesize NBPG
-# else
-# define malloc_getpagesize (NBPG * CLSIZE)
-# endif
-# else
-# ifdef NBPC
-# define malloc_getpagesize NBPC
-# else
-# ifdef PAGESIZE
-# define malloc_getpagesize PAGESIZE
-# else /* just guess */
-# define malloc_getpagesize ((size_t)4096U)
-# endif
-# endif
-# endif
-# endif
-# endif
-# endif
-# endif
-#endif
-#endif
-
-
-
-/* ------------------- size_t and alignment properties -------------------- */
-
-/* The byte and bit size of a size_t */
-#define SIZE_T_SIZE (sizeof(size_t))
-#define SIZE_T_BITSIZE (sizeof(size_t) << 3)
-
-/* Some constants coerced to size_t */
-/* Annoying but necessary to avoid errors on some platforms */
-#define SIZE_T_ZERO ((size_t)0)
-#define SIZE_T_ONE ((size_t)1)
-#define SIZE_T_TWO ((size_t)2)
-#define SIZE_T_FOUR ((size_t)4)
-#define TWO_SIZE_T_SIZES (SIZE_T_SIZE<<1)
-#define FOUR_SIZE_T_SIZES (SIZE_T_SIZE<<2)
-#define SIX_SIZE_T_SIZES (FOUR_SIZE_T_SIZES+TWO_SIZE_T_SIZES)
-#define HALF_MAX_SIZE_T (MAX_SIZE_T / 2U)
-
-/* The bit mask value corresponding to MALLOC_ALIGNMENT */
-#define CHUNK_ALIGN_MASK (MALLOC_ALIGNMENT - SIZE_T_ONE)
-
-/* True if address a has acceptable alignment */
-#define is_aligned(A) (((size_t)((A)) & (CHUNK_ALIGN_MASK)) == 0)
-
-/* the number of bytes to offset an address to align it */
-#define align_offset(A)\
- ((((size_t)(A) & CHUNK_ALIGN_MASK) == 0)? 0 :\
- ((MALLOC_ALIGNMENT - ((size_t)(A) & CHUNK_ALIGN_MASK)) & CHUNK_ALIGN_MASK))
-
-/*
- malloc_params holds global properties, including those that can be
- dynamically set using mallopt. There is a single instance, mparams,
- initialized in init_mparams. Note that the non-zeroness of "magic"
- also serves as an initialization flag.
-*/
-typedef unsigned int flag_t;
-struct malloc_params {
- volatile size_t magic;
- size_t page_size;
- size_t granularity;
- size_t mmap_threshold;
- size_t trim_threshold;
- flag_t default_mflags;
-};
-
-static struct malloc_params mparams;
-
-/* Ensure mparams initialized */
-#define ensure_initialization() (void)(mparams.magic != 0 || init_mparams())
-
-/* -------------------------- MMAP preliminaries ------------------------- */
-
-/*
- If HAVE_MORECORE or HAVE_MMAP are false, we just define calls and
- checks to fail so compiler optimizer can delete code rather than
- using so many "#if"s.
-*/
-
-
-/* MORECORE and MMAP must return MFAIL on failure */
-#define MFAIL ((void*)(MAX_SIZE_T))
-#define CMFAIL ((char*)(MFAIL)) /* defined for convenience */
-
-#if HAVE_MMAP
-
-#ifndef WIN32
-#if !defined(MAP_ANONYMOUS) && defined(MAP_ANON)
-#define MAP_ANONYMOUS MAP_ANON
-#endif /* MAP_ANON */
-#ifdef DEFAULT_GRANULARITY_ALIGNED
-#define MMAP_IMPL mmap_aligned
-static void* lastAlignedmmap; /* Used as a hint */
-static void* mmap_aligned(void *start, size_t length, int prot, int flags, int fd, off_t offset) {
- void* baseaddress = 0;
- void* ptr = 0;
- if(!start) {
- baseaddress = lastAlignedmmap;
- for(;;) {
- if(baseaddress) flags|=MAP_FIXED;
- ptr = mmap(baseaddress, length, prot, flags, fd, offset);
- if(!ptr)
- baseaddress = (void*)((size_t)baseaddress + mparams.granularity);
- else if((size_t)ptr & (mparams.granularity - SIZE_T_ONE)) {
- munmap(ptr, length);
- baseaddress = (void*)(((size_t)ptr + mparams.granularity) & ~(mparams.granularity - SIZE_T_ONE));
- }
- else break;
- }
- }
- else ptr = mmap(start, length, prot, flags, fd, offset);
- if(ptr) lastAlignedmmap = (void*)((size_t) ptr + mparams.granularity);
- return ptr;
-}
-#else
-#define MMAP_IMPL mmap
-#endif /* DEFAULT_GRANULARITY_ALIGNED */
-#define MUNMAP_DEFAULT(a, s) munmap((a), (s))
-#define MMAP_PROT (PROT_READ|PROT_WRITE)
-#ifdef MAP_ANONYMOUS
-#define MMAP_FLAGS (MAP_PRIVATE|MAP_ANONYMOUS)
-#define MMAP_DEFAULT(s) MMAP_IMPL(0, (s), MMAP_PROT, MMAP_FLAGS, -1, 0)
-#else /* MAP_ANONYMOUS */
-/*
- Nearly all versions of mmap support MAP_ANONYMOUS, so the following
- is unlikely to be needed, but is supplied just in case.
-*/
-#define MMAP_FLAGS (MAP_PRIVATE)
-static int dev_zero_fd = -1; /* Cached file descriptor for /dev/zero. */
-#define MMAP_DEFAULT(s) ((dev_zero_fd < 0) ? \
- (dev_zero_fd = open("/dev/zero", O_RDWR), \
- MMAP_IMPL(0, (s), MMAP_PROT, MMAP_FLAGS, dev_zero_fd, 0)) : \
- MMAP_IMPL(0, (s), MMAP_PROT, MMAP_FLAGS, dev_zero_fd, 0))
-#endif /* MAP_ANONYMOUS */
-
-#define DIRECT_MMAP_DEFAULT(s) MMAP_DEFAULT(s)
-
-#else /* WIN32 */
-
-/* Win32 MMAP via VirtualAlloc */
-#ifdef DEFAULT_GRANULARITY_ALIGNED
-static void* lastWin32mmap; /* Used as a hint */
-#endif /* DEFAULT_GRANULARITY_ALIGNED */
-#ifdef ENABLE_LARGE_PAGES
-static int largepagesavailable = 1;
-#endif /* ENABLE_LARGE_PAGES */
-static FORCEINLINE void* win32mmap(size_t size) {
- void* baseaddress = 0;
- void* ptr = 0;
-#ifdef ENABLE_LARGE_PAGES
- /* Note that large pages are *always* allocated on a large page boundary.
- If however granularity is small then don't waste a kernel call if size
- isn't around the size of a large page */
- if(largepagesavailable && size >= 1*1024*1024) {
- ptr = VirtualAlloc(baseaddress, size, MEM_RESERVE|MEM_COMMIT|MEM_LARGE_PAGES, PAGE_READWRITE);
- if(!ptr && ERROR_PRIVILEGE_NOT_HELD==GetLastError()) largepagesavailable=0;
- }
-#endif
- if(!ptr) {
-#ifdef DEFAULT_GRANULARITY_ALIGNED
- /* We try to avoid overhead by speculatively reserving at aligned
- addresses until we succeed */
- baseaddress = lastWin32mmap;
- for(;;) {
- void* reserveaddr = VirtualAlloc(baseaddress, size, MEM_RESERVE, PAGE_READWRITE);
- if(!reserveaddr)
- baseaddress = (void*)((size_t)baseaddress + mparams.granularity);
- else if((size_t)reserveaddr & (mparams.granularity - SIZE_T_ONE)) {
- VirtualFree(reserveaddr, 0, MEM_RELEASE);
- baseaddress = (void*)(((size_t)reserveaddr + mparams.granularity) & ~(mparams.granularity - SIZE_T_ONE));
- }
- else break;
- }
-#endif
- if(!ptr) ptr = VirtualAlloc(baseaddress, size, baseaddress ? MEM_COMMIT : MEM_RESERVE|MEM_COMMIT, PAGE_READWRITE);
-#if DEBUG
- if(lastWin32mmap && ptr!=lastWin32mmap) printf("Non-contiguous VirtualAlloc between %p and %p\n", ptr, lastWin32mmap);
-#endif
-#ifdef DEFAULT_GRANULARITY_ALIGNED
- if(ptr) lastWin32mmap = (void*)((size_t) ptr + mparams.granularity);
-#endif
- }
-#if DEBUG
-#ifdef ENABLE_LARGE_PAGES
- printf("VirtualAlloc returns %p size %u. LargePagesAvailable=%d\n", ptr, size, largepagesavailable);
-#else
- printf("VirtualAlloc returns %p size %u\n", ptr, size);
-#endif
-#endif
- return (ptr != 0)? ptr: MFAIL;
-}
-
-/* For direct MMAP, use MEM_TOP_DOWN to minimize interference */
-static FORCEINLINE void* win32direct_mmap(size_t size) {
- void* ptr = VirtualAlloc(0, size, MEM_RESERVE|MEM_COMMIT|MEM_TOP_DOWN,
- PAGE_READWRITE);
- return (ptr != 0)? ptr: MFAIL;
-}
-
-/* This function supports releasing coalesed segments */
-static FORCEINLINE int win32munmap(void* ptr, size_t size) {
- MEMORY_BASIC_INFORMATION minfo;
- char* cptr = (char*)ptr;
- while (size) {
- if (VirtualQuery(cptr, &minfo, sizeof(minfo)) == 0)
- return -1;
- if (minfo.BaseAddress != cptr || minfo.AllocationBase != cptr ||
- minfo.State != MEM_COMMIT || minfo.RegionSize > size)
- return -1;
- if (VirtualFree(cptr, 0, MEM_RELEASE) == 0)
- return -1;
- cptr += minfo.RegionSize;
- size -= minfo.RegionSize;
- }
- return 0;
-}
-
-#define MMAP_DEFAULT(s) win32mmap(s)
-#define MUNMAP_DEFAULT(a, s) win32munmap((a), (s))
-#define DIRECT_MMAP_DEFAULT(s) win32direct_mmap(s)
-#endif /* WIN32 */
-#endif /* HAVE_MMAP */
-
-#if HAVE_MREMAP
-#ifndef WIN32
-#define MREMAP_DEFAULT(addr, osz, nsz, mv) mremap((addr), (osz), (nsz), (mv))
-#endif /* WIN32 */
-#endif /* HAVE_MREMAP */
-
-
-/**
- * Define CALL_MORECORE
- */
-#if HAVE_MORECORE
- #ifdef MORECORE
- #define CALL_MORECORE(S) MORECORE(S)
- #else /* MORECORE */
- #define CALL_MORECORE(S) MORECORE_DEFAULT(S)
- #endif /* MORECORE */
-#else /* HAVE_MORECORE */
- #define CALL_MORECORE(S) MFAIL
-#endif /* HAVE_MORECORE */
-
-/**
- * Define CALL_MMAP/CALL_MUNMAP/CALL_DIRECT_MMAP
- */
-#if HAVE_MMAP
- #define USE_MMAP_BIT (SIZE_T_ONE)
-
- #ifdef MMAP
- #define CALL_MMAP(s) MMAP(s)
- #else /* MMAP */
- #define CALL_MMAP(s) MMAP_DEFAULT(s)
- #endif /* MMAP */
- #ifdef MUNMAP
- #define CALL_MUNMAP(a, s) MUNMAP((a), (s))
- #else /* MUNMAP */
- #define CALL_MUNMAP(a, s) MUNMAP_DEFAULT((a), (s))
- #endif /* MUNMAP */
- #ifdef DIRECT_MMAP
- #define CALL_DIRECT_MMAP(s) DIRECT_MMAP(s)
- #else /* DIRECT_MMAP */
- #define CALL_DIRECT_MMAP(s) DIRECT_MMAP_DEFAULT(s)
- #endif /* DIRECT_MMAP */
-#else /* HAVE_MMAP */
- #define USE_MMAP_BIT (SIZE_T_ZERO)
-
- #define MMAP(s) MFAIL
- #define MUNMAP(a, s) (-1)
- #define DIRECT_MMAP(s) MFAIL
- #define CALL_DIRECT_MMAP(s) DIRECT_MMAP(s)
- #define CALL_MMAP(s) MMAP(s)
- #define CALL_MUNMAP(a, s) MUNMAP((a), (s))
-#endif /* HAVE_MMAP */
-
-/**
- * Define CALL_MREMAP
- */
-#if HAVE_MMAP && HAVE_MREMAP
- #ifdef MREMAP
- #define CALL_MREMAP(addr, osz, nsz, mv) MREMAP((addr), (osz), (nsz), (mv))
- #else /* MREMAP */
- #define CALL_MREMAP(addr, osz, nsz, mv) MREMAP_DEFAULT((addr), (osz), (nsz), (mv))
- #endif /* MREMAP */
-#else /* HAVE_MMAP && HAVE_MREMAP */
- #define CALL_MREMAP(addr, osz, nsz, mv) MFAIL
-#endif /* HAVE_MMAP && HAVE_MREMAP */
-
-/* mstate bit set if continguous morecore disabled or failed */
-#define USE_NONCONTIGUOUS_BIT (4U)
-
-/* segment bit set in create_mspace_with_base */
-#define EXTERN_BIT (8U)
-
-
-/* --------------------------- Lock preliminaries ------------------------ */
-
-/*
- When locks are defined, there is one global lock, plus
- one per-mspace lock.
-
- The global lock_ensures that mparams.magic and other unique
- mparams values are initialized only once. It also protects
- sequences of calls to MORECORE. In many cases sys_alloc requires
- two calls, that should not be interleaved with calls by other
- threads. This does not protect against direct calls to MORECORE
- by other threads not using this lock, so there is still code to
- cope the best we can on interference.
-
- Per-mspace locks surround calls to malloc, free, etc. To enable use
- in layered extensions, per-mspace locks are reentrant.
-
- Because lock-protected regions generally have bounded times, it is
- OK to use the supplied simple spinlocks in the custom versions for
- x86. Spinlocks are likely to improve performance for lightly
- contended applications, but worsen performance under heavy
- contention.
-
- If USE_LOCKS is > 1, the definitions of lock routines here are
- bypassed, in which case you will need to define the type MLOCK_T,
- and at least INITIAL_LOCK, ACQUIRE_LOCK, RELEASE_LOCK and possibly
- TRY_LOCK (which is not used in this malloc, but commonly needed in
- extensions.) You must also declare a
- static MLOCK_T malloc_global_mutex = { initialization values };.
-
-*/
-
-#if USE_LOCKS == 1
-
-#if USE_SPIN_LOCKS && SPIN_LOCKS_AVAILABLE
-#ifndef WIN32
-
-/* Custom pthread-style spin locks on x86 and x64 for gcc */
-struct pthread_mlock_t {
- volatile unsigned int l;
- char cachelinepadding[64];
- unsigned int c;
- pthread_t threadid;
-};
-#define MLOCK_T struct pthread_mlock_t
-#define CURRENT_THREAD pthread_self()
-#define INITIAL_LOCK(sl) ((sl)->threadid = 0, (sl)->l = (sl)->c = 0, 0)
-#define ACQUIRE_LOCK(sl) pthread_acquire_lock(sl)
-#define RELEASE_LOCK(sl) pthread_release_lock(sl)
-#define TRY_LOCK(sl) pthread_try_lock(sl)
-#define SPINS_PER_YIELD 63
-
-static MLOCK_T malloc_global_mutex = { 0, "", 0, 0};
-
-static FORCEINLINE int pthread_acquire_lock (MLOCK_T *sl) {
- int spins = 0;
- volatile unsigned int* lp = &sl->l;
- for (;;) {
- if (*lp != 0) {
- if (sl->threadid == CURRENT_THREAD) {
- ++sl->c;
- return 0;
- }
- }
- else {
- /* place args to cmpxchgl in locals to evade oddities in some gccs */
- int cmp = 0;
- int val = 1;
- int ret;
- __asm__ __volatile__ ("lock; cmpxchgl %1, %2"
- : "=a" (ret)
- : "r" (val), "m" (*(lp)), "0"(cmp)
- : "memory", "cc");
- if (!ret) {
- assert(!sl->threadid);
- sl->threadid = CURRENT_THREAD;
- sl->c = 1;
- return 0;
- }
- }
- if ((++spins & SPINS_PER_YIELD) == 0) {
-#if defined (__SVR4) && defined (__sun) /* solaris */
- thr_yield();
-#else
-#if defined(__linux__) || defined(__FreeBSD__) || defined(__APPLE__)
- sched_yield();
-#else /* no-op yield on unknown systems */
- ;
-#endif /* __linux__ || __FreeBSD__ || __APPLE__ */
-#endif /* solaris */
- }
- }
-}
-
-static FORCEINLINE void pthread_release_lock (MLOCK_T *sl) {
- volatile unsigned int* lp = &sl->l;
- assert(*lp != 0);
- assert(sl->threadid == CURRENT_THREAD);
- if (--sl->c == 0) {
- sl->threadid = 0;
- int prev = 0;
- int ret;
- __asm__ __volatile__ ("lock; xchgl %0, %1"
- : "=r" (ret)
- : "m" (*(lp)), "0"(prev)
- : "memory");
- }
-}
-
-static FORCEINLINE int pthread_try_lock (MLOCK_T *sl) {
- volatile unsigned int* lp = &sl->l;
- if (*lp != 0) {
- if (sl->threadid == CURRENT_THREAD) {
- ++sl->c;
- return 1;
- }
- }
- else {
- int cmp = 0;
- int val = 1;
- int ret;
- __asm__ __volatile__ ("lock; cmpxchgl %1, %2"
- : "=a" (ret)
- : "r" (val), "m" (*(lp)), "0"(cmp)
- : "memory", "cc");
- if (!ret) {
- assert(!sl->threadid);
- sl->threadid = CURRENT_THREAD;
- sl->c = 1;
- return 1;
- }
- }
- return 0;
-}
-
-
-#else /* WIN32 */
-/* Custom win32-style spin locks on x86 and x64 for MSC */
-struct win32_mlock_t {
- volatile long l;
- char cachelinepadding[64];
- unsigned int c;
- long threadid;
-};
-
-#define MLOCK_T struct win32_mlock_t
-#define CURRENT_THREAD ((long)GetCurrentThreadId())
-#define INITIAL_LOCK(sl) ((sl)->threadid = 0, (sl)->l = (sl)->c = 0, 0)
-#define ACQUIRE_LOCK(sl) win32_acquire_lock(sl)
-#define RELEASE_LOCK(sl) win32_release_lock(sl)
-#define TRY_LOCK(sl) win32_try_lock(sl)
-#define SPINS_PER_YIELD 63
-
-static MLOCK_T malloc_global_mutex = { 0, 0, 0};
-
-static FORCEINLINE int win32_acquire_lock (MLOCK_T *sl) {
- int spins = 0;
- for (;;) {
- if (sl->l != 0) {
- if (sl->threadid == CURRENT_THREAD) {
- ++sl->c;
- return 0;
- }
- }
- else {
- if (!interlockedexchange(&sl->l, 1)) {
- assert(!sl->threadid);
- sl->threadid = CURRENT_THREAD;
- sl->c = 1;
- return 0;
- }
- }
- if ((++spins & SPINS_PER_YIELD) == 0)
- SleepEx(0, FALSE);
- }
-}
-
-static FORCEINLINE void win32_release_lock (MLOCK_T *sl) {
- assert(sl->threadid == CURRENT_THREAD);
- assert(sl->l != 0);
- if (--sl->c == 0) {
- sl->threadid = 0;
- interlockedexchange (&sl->l, 0);
- }
-}
-
-static FORCEINLINE int win32_try_lock (MLOCK_T *sl) {
- if (sl->l != 0) {
- if (sl->threadid == CURRENT_THREAD) {
- ++sl->c;
- return 1;
- }
- }
- else {
- if (!interlockedexchange(&sl->l, 1)){
- assert(!sl->threadid);
- sl->threadid = CURRENT_THREAD;
- sl->c = 1;
- return 1;
- }
- }
- return 0;
-}
-
-#endif /* WIN32 */
-#else /* USE_SPIN_LOCKS */
-
-#ifndef WIN32
-/* pthreads-based locks */
-
-#define MLOCK_T pthread_mutex_t
-#define CURRENT_THREAD pthread_self()
-#define INITIAL_LOCK(sl) pthread_init_lock(sl)
-#define ACQUIRE_LOCK(sl) pthread_mutex_lock(sl)
-#define RELEASE_LOCK(sl) pthread_mutex_unlock(sl)
-#define TRY_LOCK(sl) (!pthread_mutex_trylock(sl))
-
-static MLOCK_T malloc_global_mutex = PTHREAD_MUTEX_INITIALIZER;
-
-/* Cope with old-style linux recursive lock initialization by adding */
-/* skipped internal declaration from pthread.h */
-#ifdef linux
-#ifndef PTHREAD_MUTEX_RECURSIVE
-extern int pthread_mutexattr_setkind_np __P ((pthread_mutexattr_t *__attr,
- int __kind));
-#define PTHREAD_MUTEX_RECURSIVE PTHREAD_MUTEX_RECURSIVE_NP
-#define pthread_mutexattr_settype(x,y) pthread_mutexattr_setkind_np(x,y)
-#endif
-#endif
-
-static int pthread_init_lock (MLOCK_T *sl) {
- pthread_mutexattr_t attr;
- if (pthread_mutexattr_init(&attr)) return 1;
- if (pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_RECURSIVE)) return 1;
- if (pthread_mutex_init(sl, &attr)) return 1;
- if (pthread_mutexattr_destroy(&attr)) return 1;
- return 0;
-}
-
-#else /* WIN32 */
-/* Win32 critical sections */
-#define MLOCK_T CRITICAL_SECTION
-#define CURRENT_THREAD GetCurrentThreadId()
-#define INITIAL_LOCK(s) (!InitializeCriticalSectionAndSpinCount((s), 0x80000000|4000))
-#define ACQUIRE_LOCK(s) (EnterCriticalSection(sl), 0)
-#define RELEASE_LOCK(s) LeaveCriticalSection(sl)
-#define TRY_LOCK(s) TryEnterCriticalSection(sl)
-#define NEED_GLOBAL_LOCK_INIT
-
-static MLOCK_T malloc_global_mutex;
-static volatile long malloc_global_mutex_status;
-
-/* Use spin loop to initialize global lock */
-static void init_malloc_global_mutex() {
- for (;;) {
- long stat = malloc_global_mutex_status;
- if (stat > 0)
- return;
- /* transition to < 0 while initializing, then to > 0) */
- if (stat == 0 &&
- interlockedcompareexchange(&malloc_global_mutex_status, -1, 0) == 0) {
- InitializeCriticalSection(&malloc_global_mutex);
- interlockedexchange(&malloc_global_mutex_status,1);
- return;
- }
- SleepEx(0, FALSE);
- }
-}
-
-#endif /* WIN32 */
-#endif /* USE_SPIN_LOCKS */
-#endif /* USE_LOCKS == 1 */
-
-/* ----------------------- User-defined locks ------------------------ */
-
-#if USE_LOCKS > 1
-/* Define your own lock implementation here */
-/* #define INITIAL_LOCK(sl) ... */
-/* #define ACQUIRE_LOCK(sl) ... */
-/* #define RELEASE_LOCK(sl) ... */
-/* #define TRY_LOCK(sl) ... */
-/* static MLOCK_T malloc_global_mutex = ... */
-#endif /* USE_LOCKS > 1 */
-
-/* ----------------------- Lock-based state ------------------------ */
-
-#if USE_LOCKS
-#define USE_LOCK_BIT (2U)
-#else /* USE_LOCKS */
-#define USE_LOCK_BIT (0U)
-#define INITIAL_LOCK(l)
-#endif /* USE_LOCKS */
-
-#if USE_LOCKS
-#ifndef ACQUIRE_MALLOC_GLOBAL_LOCK
-#define ACQUIRE_MALLOC_GLOBAL_LOCK() ACQUIRE_LOCK(&malloc_global_mutex);
-#endif
-#ifndef RELEASE_MALLOC_GLOBAL_LOCK
-#define RELEASE_MALLOC_GLOBAL_LOCK() RELEASE_LOCK(&malloc_global_mutex);
-#endif
-#else /* USE_LOCKS */
-#define ACQUIRE_MALLOC_GLOBAL_LOCK()
-#define RELEASE_MALLOC_GLOBAL_LOCK()
-#endif /* USE_LOCKS */
-
-
-/* ----------------------- Chunk representations ------------------------ */
-
-/*
- (The following includes lightly edited explanations by Colin Plumb.)
-
- The malloc_chunk declaration below is misleading (but accurate and
- necessary). It declares a "view" into memory allowing access to
- necessary fields at known offsets from a given base.
-
- Chunks of memory are maintained using a `boundary tag' method as
- originally described by Knuth. (See the paper by Paul Wilson
- ftp://ftp.cs.utexas.edu/pub/garbage/allocsrv.ps for a survey of such
- techniques.) Sizes of free chunks are stored both in the front of
- each chunk and at the end. This makes consolidating fragmented
- chunks into bigger chunks fast. The head fields also hold bits
- representing whether chunks are free or in use.
-
- Here are some pictures to make it clearer. They are "exploded" to
- show that the state of a chunk can be thought of as extending from
- the high 31 bits of the head field of its header through the
- prev_foot and PINUSE_BIT bit of the following chunk header.
-
- A chunk that's in use looks like:
-
- chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
- | Size of previous chunk (if P = 0) |
- +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
- +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |P|
- | Size of this chunk 1| +-+
- mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
- | |
- +- -+
- | |
- +- -+
- | :
- +- size - sizeof(size_t) available payload bytes -+
- : |
- chunk-> +- -+
- | |
- +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
- +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |1|
- | Size of next chunk (may or may not be in use) | +-+
- mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
-
- And if it's free, it looks like this:
-
- chunk-> +- -+
- | User payload (must be in use, or we would have merged!) |
- +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
- +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |P|
- | Size of this chunk 0| +-+
- mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
- | Next pointer |
- +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
- | Prev pointer |
- +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
- | :
- +- size - sizeof(struct chunk) unused bytes -+
- : |
- chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
- | Size of this chunk |
- +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
- +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |0|
- | Size of next chunk (must be in use, or we would have merged)| +-+
- mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
- | :
- +- User payload -+
- : |
- +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
- |0|
- +-+
- Note that since we always merge adjacent free chunks, the chunks
- adjacent to a free chunk must be in use.
-
- Given a pointer to a chunk (which can be derived trivially from the
- payload pointer) we can, in O(1) time, find out whether the adjacent
- chunks are free, and if so, unlink them from the lists that they
- are on and merge them with the current chunk.
-
- Chunks always begin on even word boundaries, so the mem portion
- (which is returned to the user) is also on an even word boundary, and
- thus at least double-word aligned.
-
- The P (PINUSE_BIT) bit, stored in the unused low-order bit of the
- chunk size (which is always a multiple of two words), is an in-use
- bit for the *previous* chunk. If that bit is *clear*, then the
- word before the current chunk size contains the previous chunk
- size, and can be used to find the front of the previous chunk.
- The very first chunk allocated always has this bit set, preventing
- access to non-existent (or non-owned) memory. If pinuse is set for
- any given chunk, then you CANNOT determine the size of the
- previous chunk, and might even get a memory addressing fault when
- trying to do so.
-
- The C (CINUSE_BIT) bit, stored in the unused second-lowest bit of
- the chunk size redundantly records whether the current chunk is
- inuse (unless the chunk is mmapped). This redundancy enables usage
- checks within free and realloc, and reduces indirection when freeing
- and consolidating chunks.
-
- Each freshly allocated chunk must have both cinuse and pinuse set.
- That is, each allocated chunk borders either a previously allocated
- and still in-use chunk, or the base of its memory arena. This is
- ensured by making all allocations from the the `lowest' part of any
- found chunk. Further, no free chunk physically borders another one,
- so each free chunk is known to be preceded and followed by either
- inuse chunks or the ends of memory.
-
- Note that the `foot' of the current chunk is actually represented
- as the prev_foot of the NEXT chunk. This makes it easier to
- deal with alignments etc but can be very confusing when trying
- to extend or adapt this code.
-
- The exceptions to all this are
-
- 1. The special chunk `top' is the top-most available chunk (i.e.,
- the one bordering the end of available memory). It is treated
- specially. Top is never included in any bin, is used only if
- no other chunk is available, and is released back to the
- system if it is very large (see M_TRIM_THRESHOLD). In effect,
- the top chunk is treated as larger (and thus less well
- fitting) than any other available chunk. The top chunk
- doesn't update its trailing size field since there is no next
- contiguous chunk that would have to index off it. However,
- space is still allocated for it (TOP_FOOT_SIZE) to enable
- separation or merging when space is extended.
-
- 3. Chunks allocated via mmap, have both cinuse and pinuse bits
- cleared in their head fields. Because they are allocated
- one-by-one, each must carry its own prev_foot field, which is
- also used to hold the offset this chunk has within its mmapped
- region, which is needed to preserve alignment. Each mmapped
- chunk is trailed by the first two fields of a fake next-chunk
- for sake of usage checks.
-
-*/
-
-struct malloc_chunk {
- size_t prev_foot; /* Size of previous chunk (if free). */
- size_t head; /* Size and inuse bits. */
- struct malloc_chunk* fd; /* double links -- used only if free. */
- struct malloc_chunk* bk;
-};
-
-typedef struct malloc_chunk mchunk;
-typedef struct malloc_chunk* mchunkptr;
-typedef struct malloc_chunk* sbinptr; /* The type of bins of chunks */
-typedef unsigned int bindex_t; /* Described below */
-typedef unsigned int binmap_t; /* Described below */
-
-/* ------------------- Chunks sizes and alignments ----------------------- */
-
-#define MCHUNK_SIZE (sizeof(mchunk))
-
-#if FOOTERS
-#define CHUNK_OVERHEAD (TWO_SIZE_T_SIZES)
-#else /* FOOTERS */
-#define CHUNK_OVERHEAD (SIZE_T_SIZE)
-#endif /* FOOTERS */
-
-/* MMapped chunks need a second word of overhead ... */
-#define MMAP_CHUNK_OVERHEAD (TWO_SIZE_T_SIZES)
-/* ... and additional padding for fake next-chunk at foot */
-#define MMAP_FOOT_PAD (FOUR_SIZE_T_SIZES)
-
-/* The smallest size we can malloc is an aligned minimal chunk */
-#define MIN_CHUNK_SIZE\
- ((MCHUNK_SIZE + CHUNK_ALIGN_MASK) & ~CHUNK_ALIGN_MASK)
-
-/* conversion from malloc headers to user pointers, and back */
-#define chunk2mem(p) ((void*)((char*)(p) + TWO_SIZE_T_SIZES))
-#define mem2chunk(mem) ((mchunkptr)((char*)(mem) - TWO_SIZE_T_SIZES))
-/* chunk associated with aligned address A */
-#define align_as_chunk(A) (mchunkptr)((A) + align_offset(chunk2mem(A)))
-
-/* Bounds on request (not chunk) sizes. */
-#define MAX_REQUEST ((-MIN_CHUNK_SIZE) << 2)
-#define MIN_REQUEST (MIN_CHUNK_SIZE - CHUNK_OVERHEAD - SIZE_T_ONE)
-
-/* pad request bytes into a usable size */
-#define pad_request(req) \
- (((req) + CHUNK_OVERHEAD + CHUNK_ALIGN_MASK) & ~CHUNK_ALIGN_MASK)
-
-/* pad request, checking for minimum (but not maximum) */
-#define request2size(req) \
- (((req) < MIN_REQUEST)? MIN_CHUNK_SIZE : pad_request(req))
-
-
-/* ------------------ Operations on head and foot fields ----------------- */
-
-/*
- The head field of a chunk is or'ed with PINUSE_BIT when previous
- adjacent chunk in use, and or'ed with CINUSE_BIT if this chunk is in
- use, unless mmapped, in which case both bits are cleared.
-
- FLAG4_BIT is not used by this malloc, but might be useful in extensions.
-*/
-
-#define PINUSE_BIT (SIZE_T_ONE)
-#define CINUSE_BIT (SIZE_T_TWO)
-#define FLAG4_BIT (SIZE_T_FOUR)
-#define INUSE_BITS (PINUSE_BIT|CINUSE_BIT)
-#define FLAG_BITS (PINUSE_BIT|CINUSE_BIT|FLAG4_BIT)
-
-/* Head value for fenceposts */
-#define FENCEPOST_HEAD (INUSE_BITS|SIZE_T_SIZE)
-
-/* extraction of fields from head words */
-#define cinuse(p) ((p)->head & CINUSE_BIT)
-#define pinuse(p) ((p)->head & PINUSE_BIT)
-#define is_inuse(p) (((p)->head & INUSE_BITS) != PINUSE_BIT)
-#define is_mmapped(p) (((p)->head & INUSE_BITS) == 0)
-
-#define chunksize(p) ((p)->head & ~(FLAG_BITS))
-
-#define clear_pinuse(p) ((p)->head &= ~PINUSE_BIT)
-
-/* Treat space at ptr +/- offset as a chunk */
-#define chunk_plus_offset(p, s) ((mchunkptr)(((char*)(p)) + (s)))
-#define chunk_minus_offset(p, s) ((mchunkptr)(((char*)(p)) - (s)))
-
-/* Ptr to next or previous physical malloc_chunk. */
-#define next_chunk(p) ((mchunkptr)( ((char*)(p)) + ((p)->head & ~FLAG_BITS)))
-#define prev_chunk(p) ((mchunkptr)( ((char*)(p)) - ((p)->prev_foot) ))
-
-/* extract next chunk's pinuse bit */
-#define next_pinuse(p) ((next_chunk(p)->head) & PINUSE_BIT)
-
-/* Get/set size at footer */
-#define get_foot(p, s) (((mchunkptr)((char*)(p) + (s)))->prev_foot)
-#define set_foot(p, s) (((mchunkptr)((char*)(p) + (s)))->prev_foot = (s))
-
-/* Set size, pinuse bit, and foot */
-#define set_size_and_pinuse_of_free_chunk(p, s)\
- ((p)->head = (s|PINUSE_BIT), set_foot(p, s))
-
-/* Set size, pinuse bit, foot, and clear next pinuse */
-#define set_free_with_pinuse(p, s, n)\
- (clear_pinuse(n), set_size_and_pinuse_of_free_chunk(p, s))
-
-/* Get the internal overhead associated with chunk p */
-#define overhead_for(p)\
- (is_mmapped(p)? MMAP_CHUNK_OVERHEAD : CHUNK_OVERHEAD)
-
-/* Return true if malloced space is not necessarily cleared */
-#if MMAP_CLEARS
-#define calloc_must_clear(p) (!is_mmapped(p))
-#else /* MMAP_CLEARS */
-#define calloc_must_clear(p) (1)
-#endif /* MMAP_CLEARS */
-
-/* ---------------------- Overlaid data structures ----------------------- */
-
-/*
- When chunks are not in use, they are treated as nodes of either
- lists or trees.
-
- "Small" chunks are stored in circular doubly-linked lists, and look
- like this:
-
- chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
- | Size of previous chunk |
- +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
- `head:' | Size of chunk, in bytes |P|
- mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
- | Forward pointer to next chunk in list |
- +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
- | Back pointer to previous chunk in list |
- +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
- | Unused space (may be 0 bytes long) .
- . .
- . |
-nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
- `foot:' | Size of chunk, in bytes |
- +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
-
- Larger chunks are kept in a form of bitwise digital trees (aka
- tries) keyed on chunksizes. Because malloc_tree_chunks are only for
- free chunks greater than 256 bytes, their size doesn't impose any
- constraints on user chunk sizes. Each node looks like:
-
- chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
- | Size of previous chunk |
- +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
- `head:' | Size of chunk, in bytes |P|
- mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
- | Forward pointer to next chunk of same size |
- +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
- | Back pointer to previous chunk of same size |
- +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
- | Pointer to left child (child[0]) |
- +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
- | Pointer to right child (child[1]) |
- +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
- | Pointer to parent |
- +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
- | bin index of this chunk |
- +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
- | Unused space .
- . |
-nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
- `foot:' | Size of chunk, in bytes |
- +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
-
- Each tree holding treenodes is a tree of unique chunk sizes. Chunks
- of the same size are arranged in a circularly-linked list, with only
- the oldest chunk (the next to be used, in our FIFO ordering)
- actually in the tree. (Tree members are distinguished by a non-null
- parent pointer.) If a chunk with the same size an an existing node
- is inserted, it is linked off the existing node using pointers that
- work in the same way as fd/bk pointers of small chunks.
-
- Each tree contains a power of 2 sized range of chunk sizes (the
- smallest is 0x100 <= x < 0x180), which is is divided in half at each
- tree level, with the chunks in the smaller half of the range (0x100
- <= x < 0x140 for the top nose) in the left subtree and the larger
- half (0x140 <= x < 0x180) in the right subtree. This is, of course,
- done by inspecting individual bits.
-
- Using these rules, each node's left subtree contains all smaller
- sizes than its right subtree. However, the node at the root of each
- subtree has no particular ordering relationship to either. (The
- dividing line between the subtree sizes is based on trie relation.)
- If we remove the last chunk of a given size from the interior of the
- tree, we need to replace it with a leaf node. The tree ordering
- rules permit a node to be replaced by any leaf below it.
-
- The smallest chunk in a tree (a common operation in a best-fit
- allocator) can be found by walking a path to the leftmost leaf in
- the tree. Unlike a usual binary tree, where we follow left child
- pointers until we reach a null, here we follow the right child
- pointer any time the left one is null, until we reach a leaf with
- both child pointers null. The smallest chunk in the tree will be
- somewhere along that path.
-
- The worst case number of steps to add, find, or remove a node is
- bounded by the number of bits differentiating chunks within
- bins. Under current bin calculations, this ranges from 6 up to 21
- (for 32 bit sizes) or up to 53 (for 64 bit sizes). The typical case
- is of course much better.
-*/
-
-struct malloc_tree_chunk {
- /* The first four fields must be compatible with malloc_chunk */
- size_t prev_foot;
- size_t head;
- struct malloc_tree_chunk* fd;
- struct malloc_tree_chunk* bk;
-
- struct malloc_tree_chunk* child[2];
- struct malloc_tree_chunk* parent;
- bindex_t index;
-};
-
-typedef struct malloc_tree_chunk tchunk;
-typedef struct malloc_tree_chunk* tchunkptr;
-typedef struct malloc_tree_chunk* tbinptr; /* The type of bins of trees */
-
-/* A little helper macro for trees */
-#define leftmost_child(t) ((t)->child[0] != 0? (t)->child[0] : (t)->child[1])
-
-/* ----------------------------- Segments -------------------------------- */
-
-/*
- Each malloc space may include non-contiguous segments, held in a
- list headed by an embedded malloc_segment record representing the
- top-most space. Segments also include flags holding properties of
- the space. Large chunks that are directly allocated by mmap are not
- included in this list. They are instead independently created and
- destroyed without otherwise keeping track of them.
-
- Segment management mainly comes into play for spaces allocated by
- MMAP. Any call to MMAP might or might not return memory that is
- adjacent to an existing segment. MORECORE normally contiguously
- extends the current space, so this space is almost always adjacent,
- which is simpler and faster to deal with. (This is why MORECORE is
- used preferentially to MMAP when both are available -- see
- sys_alloc.) When allocating using MMAP, we don't use any of the
- hinting mechanisms (inconsistently) supported in various
- implementations of unix mmap, or distinguish reserving from
- committing memory. Instead, we just ask for space, and exploit
- contiguity when we get it. It is probably possible to do
- better than this on some systems, but no general scheme seems
- to be significantly better.
-
- Management entails a simpler variant of the consolidation scheme
- used for chunks to reduce fragmentation -- new adjacent memory is
- normally prepended or appended to an existing segment. However,
- there are limitations compared to chunk consolidation that mostly
- reflect the fact that segment processing is relatively infrequent
- (occurring only when getting memory from system) and that we
- don't expect to have huge numbers of segments:
-
- * Segments are not indexed, so traversal requires linear scans. (It
- would be possible to index these, but is not worth the extra
- overhead and complexity for most programs on most platforms.)
- * New segments are only appended to old ones when holding top-most
- memory; if they cannot be prepended to others, they are held in
- different segments.
-
- Except for the top-most segment of an mstate, each segment record
- is kept at the tail of its segment. Segments are added by pushing
- segment records onto the list headed by &mstate.seg for the
- containing mstate.
-
- Segment flags control allocation/merge/deallocation policies:
- * If EXTERN_BIT set, then we did not allocate this segment,
- and so should not try to deallocate or merge with others.
- (This currently holds only for the initial segment passed
- into create_mspace_with_base.)
- * If USE_MMAP_BIT set, the segment may be merged with
- other surrounding mmapped segments and trimmed/de-allocated
- using munmap.
- * If neither bit is set, then the segment was obtained using
- MORECORE so can be merged with surrounding MORECORE'd segments
- and deallocated/trimmed using MORECORE with negative arguments.
-*/
-
-struct malloc_segment {
- char* base; /* base address */
- size_t size; /* allocated size */
- struct malloc_segment* next; /* ptr to next segment */
- flag_t sflags; /* mmap and extern flag */
-};
-
-#define is_mmapped_segment(S) ((S)->sflags & USE_MMAP_BIT)
-#define is_extern_segment(S) ((S)->sflags & EXTERN_BIT)
-
-typedef struct malloc_segment msegment;
-typedef struct malloc_segment* msegmentptr;
-
-/* ---------------------------- malloc_state ----------------------------- */
-
-/*
- A malloc_state holds all of the bookkeeping for a space.
- The main fields are:
-
- Top
- The topmost chunk of the currently active segment. Its size is
- cached in topsize. The actual size of topmost space is
- topsize+TOP_FOOT_SIZE, which includes space reserved for adding
- fenceposts and segment records if necessary when getting more
- space from the system. The size at which to autotrim top is
- cached from mparams in trim_check, except that it is disabled if
- an autotrim fails.
-
- Designated victim (dv)
- This is the preferred chunk for servicing small requests that
- don't have exact fits. It is normally the chunk split off most
- recently to service another small request. Its size is cached in
- dvsize. The link fields of this chunk are not maintained since it
- is not kept in a bin.
-
- SmallBins
- An array of bin headers for free chunks. These bins hold chunks
- with sizes less than MIN_LARGE_SIZE bytes. Each bin contains
- chunks of all the same size, spaced 8 bytes apart. To simplify
- use in double-linked lists, each bin header acts as a malloc_chunk
- pointing to the real first node, if it exists (else pointing to
- itself). This avoids special-casing for headers. But to avoid
- waste, we allocate only the fd/bk pointers of bins, and then use
- repositioning tricks to treat these as the fields of a chunk.
-
- TreeBins
- Treebins are pointers to the roots of trees holding a range of
- sizes. There are 2 equally spaced treebins for each power of two
- from TREE_SHIFT to TREE_SHIFT+16. The last bin holds anything
- larger.
-
- Bin maps
- There is one bit map for small bins ("smallmap") and one for
- treebins ("treemap). Each bin sets its bit when non-empty, and
- clears the bit when empty. Bit operations are then used to avoid
- bin-by-bin searching -- nearly all "search" is done without ever
- looking at bins that won't be selected. The bit maps
- conservatively use 32 bits per map word, even if on 64bit system.
- For a good description of some of the bit-based techniques used
- here, see Henry S. Warren Jr's book "Hacker's Delight" (and
- supplement at http://hackersdelight.org/). Many of these are
- intended to reduce the branchiness of paths through malloc etc, as
- well as to reduce the number of memory locations read or written.
-
- Segments
- A list of segments headed by an embedded malloc_segment record
- representing the initial space.
-
- Address check support
- The least_addr field is the least address ever obtained from
- MORECORE or MMAP. Attempted frees and reallocs of any address less
- than this are trapped (unless INSECURE is defined).
-
- Magic tag
- A cross-check field that should always hold same value as mparams.magic.
-
- Flags
- Bits recording whether to use MMAP, locks, or contiguous MORECORE
-
- Statistics
- Each space keeps track of current and maximum system memory
- obtained via MORECORE or MMAP.
-
- Trim support
- Fields holding the amount of unused topmost memory that should trigger
- timming, and a counter to force periodic scanning to release unused
- non-topmost segments.
-
- Locking
- If USE_LOCKS is defined, the "mutex" lock is acquired and released
- around every public call using this mspace.
-
- Extension support
- A void* pointer and a size_t field that can be used to help implement
- extensions to this malloc.
-*/
-
-/* Bin types, widths and sizes */
-#define NSMALLBINS (32U)
-#define NTREEBINS (32U)
-#define SMALLBIN_SHIFT (3U)
-#define SMALLBIN_WIDTH (SIZE_T_ONE << SMALLBIN_SHIFT)
-#define TREEBIN_SHIFT (8U)
-#define MIN_LARGE_SIZE (SIZE_T_ONE << TREEBIN_SHIFT)
-#define MAX_SMALL_SIZE (MIN_LARGE_SIZE - SIZE_T_ONE)
-#define MAX_SMALL_REQUEST (MAX_SMALL_SIZE - CHUNK_ALIGN_MASK - CHUNK_OVERHEAD)
-
-struct malloc_state {
- binmap_t smallmap;
- binmap_t treemap;
- size_t dvsize;
- size_t topsize;
- char* least_addr;
- mchunkptr dv;
- mchunkptr top;
- size_t trim_check;
- size_t release_checks;
- size_t magic;
- mchunkptr smallbins[(NSMALLBINS+1)*2];
- tbinptr treebins[NTREEBINS];
- size_t footprint;
- size_t max_footprint;
- flag_t mflags;
- msegment seg;
-#if USE_LOCKS
- MLOCK_T mutex; /* locate lock among fields that rarely change */
-#endif /* USE_LOCKS */
- void* extp; /* Unused but available for extensions */
- size_t exts;
-};
-
-typedef struct malloc_state* mstate;
-
-/* ------------- Global malloc_state and malloc_params ------------------- */
-
-#if !ONLY_MSPACES
-
-/* The global malloc_state used for all non-"mspace" calls */
-static struct malloc_state _gm_;
-#define gm (&_gm_)
-#define is_global(M) ((M) == &_gm_)
-
-#endif /* !ONLY_MSPACES */
-
-#define is_initialized(M) ((M)->top != 0)
-
-/* -------------------------- system alloc setup ------------------------- */
-
-/* Operations on mflags */
-
-#define use_lock(M) ((M)->mflags & USE_LOCK_BIT)
-#define enable_lock(M) ((M)->mflags |= USE_LOCK_BIT)
-#define disable_lock(M) ((M)->mflags &= ~USE_LOCK_BIT)
-
-#define use_mmap(M) ((M)->mflags & USE_MMAP_BIT)
-#define enable_mmap(M) ((M)->mflags |= USE_MMAP_BIT)
-#define disable_mmap(M) ((M)->mflags &= ~USE_MMAP_BIT)
-
-#define use_noncontiguous(M) ((M)->mflags & USE_NONCONTIGUOUS_BIT)
-#define disable_contiguous(M) ((M)->mflags |= USE_NONCONTIGUOUS_BIT)
-
-#define set_lock(M,L)\
- ((M)->mflags = (L)?\
- ((M)->mflags | USE_LOCK_BIT) :\
- ((M)->mflags & ~USE_LOCK_BIT))
-
-/* page-align a size */
-#define page_align(S)\
- (((S) + (mparams.page_size - SIZE_T_ONE)) & ~(mparams.page_size - SIZE_T_ONE))
-
-/* granularity-align a size */
-#define granularity_align(S)\
- (((S) + (mparams.granularity - SIZE_T_ONE))\
- & ~(mparams.granularity - SIZE_T_ONE))
-
-
-/* For mmap, use granularity alignment on windows, else page-align */
-#ifdef WIN32
-#define mmap_align(S) granularity_align(S)
-#else
-#define mmap_align(S) page_align(S)
-#endif
-
-/* For sys_alloc, enough padding to ensure can malloc request on success */
-#define SYS_ALLOC_PADDING (TOP_FOOT_SIZE + MALLOC_ALIGNMENT)
-
-#define is_page_aligned(S)\
- (((size_t)(S) & (mparams.page_size - SIZE_T_ONE)) == 0)
-#define is_granularity_aligned(S)\
- (((size_t)(S) & (mparams.granularity - SIZE_T_ONE)) == 0)
-
-/* True if segment S holds address A */
-#define segment_holds(S, A)\
- ((char*)(A) >= S->base && (char*)(A) < S->base + S->size)
-
-/* Return segment holding given address */
-static msegmentptr segment_holding(mstate m, char* addr) {
- msegmentptr sp = &m->seg;
- for (;;) {
- if (addr >= sp->base && addr < sp->base + sp->size)
- return sp;
- if ((sp = sp->next) == 0)
- return 0;
- }
-}
-
-/* Return true if segment contains a segment link */
-static int has_segment_link(mstate m, msegmentptr ss) {
- msegmentptr sp = &m->seg;
- for (;;) {
- if ((char*)sp >= ss->base && (char*)sp < ss->base + ss->size)
- return 1;
- if ((sp = sp->next) == 0)
- return 0;
- }
-}
-
-#ifndef MORECORE_CANNOT_TRIM
-#define should_trim(M,s) ((s) > (M)->trim_check)
-#else /* MORECORE_CANNOT_TRIM */
-#define should_trim(M,s) (0)
-#endif /* MORECORE_CANNOT_TRIM */
-
-/*
- TOP_FOOT_SIZE is padding at the end of a segment, including space
- that may be needed to place segment records and fenceposts when new
- noncontiguous segments are added.
-*/
-#define TOP_FOOT_SIZE\
- (align_offset(chunk2mem(0))+pad_request(sizeof(struct malloc_segment))+MIN_CHUNK_SIZE)
-
-
-/* ------------------------------- Hooks -------------------------------- */
-
-/*
- PREACTION should be defined to return 0 on success, and nonzero on
- failure. If you are not using locking, you can redefine these to do
- anything you like.
-*/
-
-#if USE_LOCKS
-
-#define PREACTION(M) ((use_lock(M))? ACQUIRE_LOCK(&(M)->mutex) : 0)
-#define POSTACTION(M) { if (use_lock(M)) RELEASE_LOCK(&(M)->mutex); }
-#else /* USE_LOCKS */
-
-#ifndef PREACTION
-#define PREACTION(M) (0)
-#endif /* PREACTION */
-
-#ifndef POSTACTION
-#define POSTACTION(M)
-#endif /* POSTACTION */
-
-#endif /* USE_LOCKS */
-
-/*
- CORRUPTION_ERROR_ACTION is triggered upon detected bad addresses.
- USAGE_ERROR_ACTION is triggered on detected bad frees and
- reallocs. The argument p is an address that might have triggered the
- fault. It is ignored by the two predefined actions, but might be
- useful in custom actions that try to help diagnose errors.
-*/
-
-#if PROCEED_ON_ERROR
-
-/* A count of the number of corruption errors causing resets */
-int malloc_corruption_error_count;
-
-/* default corruption action */
-static void reset_on_error(mstate m);
-
-#define CORRUPTION_ERROR_ACTION(m) reset_on_error(m)
-#define USAGE_ERROR_ACTION(m, p)
-
-#else /* PROCEED_ON_ERROR */
-
-#ifndef CORRUPTION_ERROR_ACTION
-#define CORRUPTION_ERROR_ACTION(m) ABORT
-#endif /* CORRUPTION_ERROR_ACTION */
-
-#ifndef USAGE_ERROR_ACTION
-#define USAGE_ERROR_ACTION(m,p) ABORT
-#endif /* USAGE_ERROR_ACTION */
-
-#endif /* PROCEED_ON_ERROR */
-
-/* -------------------------- Debugging setup ---------------------------- */
-
-#if ! DEBUG
-
-#define check_free_chunk(M,P)
-#define check_inuse_chunk(M,P)
-#define check_malloced_chunk(M,P,N)
-#define check_mmapped_chunk(M,P)
-#define check_malloc_state(M)
-#define check_top_chunk(M,P)
-
-#else /* DEBUG */
-#define check_free_chunk(M,P) do_check_free_chunk(M,P)
-#define check_inuse_chunk(M,P) do_check_inuse_chunk(M,P)
-#define check_top_chunk(M,P) do_check_top_chunk(M,P)
-#define check_malloced_chunk(M,P,N) do_check_malloced_chunk(M,P,N)
-#define check_mmapped_chunk(M,P) do_check_mmapped_chunk(M,P)
-#define check_malloc_state(M) do_check_malloc_state(M)
-
-static void do_check_any_chunk(mstate m, mchunkptr p);
-static void do_check_top_chunk(mstate m, mchunkptr p);
-static void do_check_mmapped_chunk(mstate m, mchunkptr p);
-static void do_check_inuse_chunk(mstate m, mchunkptr p);
-static void do_check_free_chunk(mstate m, mchunkptr p);
-static void do_check_malloced_chunk(mstate m, void* mem, size_t s);
-static void do_check_tree(mstate m, tchunkptr t);
-static void do_check_treebin(mstate m, bindex_t i);
-static void do_check_smallbin(mstate m, bindex_t i);
-static void do_check_malloc_state(mstate m);
-static int bin_find(mstate m, mchunkptr x);
-static size_t traverse_and_check(mstate m);
-#endif /* DEBUG */
-
-/* ---------------------------- Indexing Bins ---------------------------- */
-
-#define is_small(s) (((s) >> SMALLBIN_SHIFT) < NSMALLBINS)
-#define small_index(s) (bindex_t)((s) >> SMALLBIN_SHIFT)
-#define small_index2size(i) ((i) << SMALLBIN_SHIFT)
-#define MIN_SMALL_INDEX (small_index(MIN_CHUNK_SIZE))
-
-/* addressing by index. See above about smallbin repositioning */
-#define smallbin_at(M, i) ((sbinptr)((char*)&((M)->smallbins[(i)<<1])))
-#define treebin_at(M,i) (&((M)->treebins[i]))
-
-/* assign tree index for size S to variable I. Use x86 asm if possible */
-#if defined(__GNUC__) && (defined(__i386__) || defined(__x86_64__))
-#define compute_tree_index(S, I)\
-{\
- unsigned int X = S >> TREEBIN_SHIFT;\
- if (X == 0)\
- I = 0;\
- else if (X > 0xFFFF)\
- I = NTREEBINS-1;\
- else {\
- unsigned int K;\
- __asm__("bsrl\t%1, %0\n\t" : "=r" (K) : "g" (X));\
- I = (bindex_t)((K << 1) + ((S >> (K + (TREEBIN_SHIFT-1)) & 1)));\
- }\
-}
-
-#elif defined (__INTEL_COMPILER)
-#define compute_tree_index(S, I)\
-{\
- size_t X = S >> TREEBIN_SHIFT;\
- if (X == 0)\
- I = 0;\
- else if (X > 0xFFFF)\
- I = NTREEBINS-1;\
- else {\
- unsigned int K = _bit_scan_reverse (X); \
- I = (bindex_t)((K << 1) + ((S >> (K + (TREEBIN_SHIFT-1)) & 1)));\
- }\
-}
-
-#elif defined(_MSC_VER) && _MSC_VER>=1300
-#define compute_tree_index(S, I)\
-{\
- size_t X = S >> TREEBIN_SHIFT;\
- if (X == 0)\
- I = 0;\
- else if (X > 0xFFFF)\
- I = NTREEBINS-1;\
- else {\
- unsigned int K;\
- _BitScanReverse((DWORD *) &K, (DWORD) X);\
- I = (bindex_t)((K << 1) + ((S >> (K + (TREEBIN_SHIFT-1)) & 1)));\
- }\
-}
-
-#else /* GNUC */
-#define compute_tree_index(S, I)\
-{\
- size_t X = S >> TREEBIN_SHIFT;\
- if (X == 0)\
- I = 0;\
- else if (X > 0xFFFF)\
- I = NTREEBINS-1;\
- else {\
- unsigned int Y = (unsigned int)X;\
- unsigned int N = ((Y - 0x100) >> 16) & 8;\
- unsigned int K = (((Y <<= N) - 0x1000) >> 16) & 4;\
- N += K;\
- N += K = (((Y <<= K) - 0x4000) >> 16) & 2;\
- K = 14 - N + ((Y <<= K) >> 15);\
- I = (K << 1) + ((S >> (K + (TREEBIN_SHIFT-1)) & 1));\
- }\
-}
-#endif /* GNUC */
-
-/* Bit representing maximum resolved size in a treebin at i */
-#define bit_for_tree_index(i) \
- (i == NTREEBINS-1)? (SIZE_T_BITSIZE-1) : (((i) >> 1) + TREEBIN_SHIFT - 2)
-
-/* Shift placing maximum resolved bit in a treebin at i as sign bit */
-#define leftshift_for_tree_index(i) \
- ((i == NTREEBINS-1)? 0 : \
- ((SIZE_T_BITSIZE-SIZE_T_ONE) - (((i) >> 1) + TREEBIN_SHIFT - 2)))
-
-/* The size of the smallest chunk held in bin with index i */
-#define minsize_for_tree_index(i) \
- ((SIZE_T_ONE << (((i) >> 1) + TREEBIN_SHIFT)) | \
- (((size_t)((i) & SIZE_T_ONE)) << (((i) >> 1) + TREEBIN_SHIFT - 1)))
-
-
-/* ------------------------ Operations on bin maps ----------------------- */
-
-/* bit corresponding to given index */
-#define idx2bit(i) ((binmap_t)(1) << (i))
-
-/* Mark/Clear bits with given index */
-#define mark_smallmap(M,i) ((M)->smallmap |= idx2bit(i))
-#define clear_smallmap(M,i) ((M)->smallmap &= ~idx2bit(i))
-#define smallmap_is_marked(M,i) ((M)->smallmap & idx2bit(i))
-
-#define mark_treemap(M,i) ((M)->treemap |= idx2bit(i))
-#define clear_treemap(M,i) ((M)->treemap &= ~idx2bit(i))
-#define treemap_is_marked(M,i) ((M)->treemap & idx2bit(i))
-
-/* isolate the least set bit of a bitmap */
-#define least_bit(x) ((x) & -(x))
-
-/* mask with all bits to left of least bit of x on */
-#define left_bits(x) ((x<<1) | -(x<<1))
-
-/* mask with all bits to left of or equal to least bit of x on */
-#define same_or_left_bits(x) ((x) | -(x))
-
-/* index corresponding to given bit. Use x86 asm if possible */
-
-#if defined(__GNUC__) && (defined(__i386__) || defined(__x86_64__))
-#define compute_bit2idx(X, I)\
-{\
- unsigned int J;\
- __asm__("bsfl\t%1, %0\n\t" : "=r" (J) : "g" (X));\
- I = (bindex_t)J;\
-}
-
-#elif defined (__INTEL_COMPILER)
-#define compute_bit2idx(X, I)\
-{\
- unsigned int J;\
- J = _bit_scan_forward (X); \
- I = (bindex_t)J;\
-}
-
-#elif defined(_MSC_VER) && _MSC_VER>=1300
-#define compute_bit2idx(X, I)\
-{\
- unsigned int J;\
- _BitScanForward((DWORD *) &J, X);\
- I = (bindex_t)J;\
-}
-
-#elif USE_BUILTIN_FFS
-#define compute_bit2idx(X, I) I = ffs(X)-1
-
-#else
-#define compute_bit2idx(X, I)\
-{\
- unsigned int Y = X - 1;\
- unsigned int K = Y >> (16-4) & 16;\
- unsigned int N = K; Y >>= K;\
- N += K = Y >> (8-3) & 8; Y >>= K;\
- N += K = Y >> (4-2) & 4; Y >>= K;\
- N += K = Y >> (2-1) & 2; Y >>= K;\
- N += K = Y >> (1-0) & 1; Y >>= K;\
- I = (bindex_t)(N + Y);\
-}
-#endif /* GNUC */
-
-
-/* ----------------------- Runtime Check Support ------------------------- */
-
-/*
- For security, the main invariant is that malloc/free/etc never
- writes to a static address other than malloc_state, unless static
- malloc_state itself has been corrupted, which cannot occur via
- malloc (because of these checks). In essence this means that we
- believe all pointers, sizes, maps etc held in malloc_state, but
- check all of those linked or offsetted from other embedded data
- structures. These checks are interspersed with main code in a way
- that tends to minimize their run-time cost.
-
- When FOOTERS is defined, in addition to range checking, we also
- verify footer fields of inuse chunks, which can be used guarantee
- that the mstate controlling malloc/free is intact. This is a
- streamlined version of the approach described by William Robertson
- et al in "Run-time Detection of Heap-based Overflows" LISA'03
- http://www.usenix.org/events/lisa03/tech/robertson.html The footer
- of an inuse chunk holds the xor of its mstate and a random seed,
- that is checked upon calls to free() and realloc(). This is
- (probablistically) unguessable from outside the program, but can be
- computed by any code successfully malloc'ing any chunk, so does not
- itself provide protection against code that has already broken
- security through some other means. Unlike Robertson et al, we
- always dynamically check addresses of all offset chunks (previous,
- next, etc). This turns out to be cheaper than relying on hashes.
-*/
-
-#if !INSECURE
-/* Check if address a is at least as high as any from MORECORE or MMAP */
-#define ok_address(M, a) ((char*)(a) >= (M)->least_addr)
-/* Check if address of next chunk n is higher than base chunk p */
-#define ok_next(p, n) ((char*)(p) < (char*)(n))
-/* Check if p has inuse status */
-#define ok_inuse(p) is_inuse(p)
-/* Check if p has its pinuse bit on */
-#define ok_pinuse(p) pinuse(p)
-
-#else /* !INSECURE */
-#define ok_address(M, a) (1)
-#define ok_next(b, n) (1)
-#define ok_inuse(p) (1)
-#define ok_pinuse(p) (1)
-#endif /* !INSECURE */
-
-#if (FOOTERS && !INSECURE)
-/* Check if (alleged) mstate m has expected magic field */
-#define ok_magic(M) ((M)->magic == mparams.magic)
-#else /* (FOOTERS && !INSECURE) */
-#define ok_magic(M) (1)
-#endif /* (FOOTERS && !INSECURE) */
-
-
-/* In gcc, use __builtin_expect to minimize impact of checks */
-#if !INSECURE
-#if defined(__GNUC__) && __GNUC__ >= 3
-#define RTCHECK(e) __builtin_expect(e, 1)
-#else /* GNUC */
-#define RTCHECK(e) (e)
-#endif /* GNUC */
-#else /* !INSECURE */
-#define RTCHECK(e) (1)
-#endif /* !INSECURE */
-
-/* macros to set up inuse chunks with or without footers */
-
-#if !FOOTERS
-
-#define mark_inuse_foot(M,p,s)
-
-/* Macros for setting head/foot of non-mmapped chunks */
-
-/* Set cinuse bit and pinuse bit of next chunk */
-#define set_inuse(M,p,s)\
- ((p)->head = (((p)->head & PINUSE_BIT)|s|CINUSE_BIT),\
- ((mchunkptr)(((char*)(p)) + (s)))->head |= PINUSE_BIT)
-
-/* Set cinuse and pinuse of this chunk and pinuse of next chunk */
-#define set_inuse_and_pinuse(M,p,s)\
- ((p)->head = (s|PINUSE_BIT|CINUSE_BIT),\
- ((mchunkptr)(((char*)(p)) + (s)))->head |= PINUSE_BIT)
-
-/* Set size, cinuse and pinuse bit of this chunk */
-#define set_size_and_pinuse_of_inuse_chunk(M, p, s)\
- ((p)->head = (s|PINUSE_BIT|CINUSE_BIT))
-
-#else /* FOOTERS */
-
-/* Set foot of inuse chunk to be xor of mstate and seed */
-#define mark_inuse_foot(M,p,s)\
- (((mchunkptr)((char*)(p) + (s)))->prev_foot = ((size_t)(M) ^ mparams.magic))
-
-#define get_mstate_for(p)\
- ((mstate)(((mchunkptr)((char*)(p) +\
- (chunksize(p))))->prev_foot ^ mparams.magic))
-
-#define set_inuse(M,p,s)\
- ((p)->head = (((p)->head & PINUSE_BIT)|s|CINUSE_BIT),\
- (((mchunkptr)(((char*)(p)) + (s)))->head |= PINUSE_BIT), \
- mark_inuse_foot(M,p,s))
-
-#define set_inuse_and_pinuse(M,p,s)\
- ((p)->head = (s|PINUSE_BIT|CINUSE_BIT),\
- (((mchunkptr)(((char*)(p)) + (s)))->head |= PINUSE_BIT),\
- mark_inuse_foot(M,p,s))
-
-#define set_size_and_pinuse_of_inuse_chunk(M, p, s)\
- ((p)->head = (s|PINUSE_BIT|CINUSE_BIT),\
- mark_inuse_foot(M, p, s))
-
-#endif /* !FOOTERS */
-
-/* ---------------------------- setting mparams -------------------------- */
-
-#ifdef ENABLE_LARGE_PAGES
-typedef size_t (WINAPI *GetLargePageMinimum_t)(void);
-#endif
-
-/* Initialize mparams */
-static int init_mparams(void) {
-#ifdef NEED_GLOBAL_LOCK_INIT
- if (malloc_global_mutex_status <= 0)
- init_malloc_global_mutex();
-#endif
-
- ACQUIRE_MALLOC_GLOBAL_LOCK();
- if (mparams.magic == 0) {
- size_t magic;
- size_t psize;
- size_t gsize;
-
-#ifndef WIN32
- psize = malloc_getpagesize;
- gsize = ((DEFAULT_GRANULARITY != 0)? DEFAULT_GRANULARITY : psize);
-#else /* WIN32 */
- {
- SYSTEM_INFO system_info;
- GetSystemInfo(&system_info);
- psize = system_info.dwPageSize;
- gsize = ((DEFAULT_GRANULARITY != 0)?
- DEFAULT_GRANULARITY : system_info.dwAllocationGranularity);
-#ifdef ENABLE_LARGE_PAGES
- {
- GetLargePageMinimum_t GetLargePageMinimum_ = (GetLargePageMinimum_t) GetProcAddress(GetModuleHandle(__T("kernel32.dll")), "GetLargePageMinimum");
- if(GetLargePageMinimum_) {
- size_t largepagesize = GetLargePageMinimum_();
- if(largepagesize) {
- psize = largepagesize;
- gsize = ((DEFAULT_GRANULARITY != 0)?
- DEFAULT_GRANULARITY : largepagesize);
- if(gsize < largepagesize) gsize = largepagesize;
- }
- }
- }
-#endif
- }
-#endif /* WIN32 */
-
- /* Sanity-check configuration:
- size_t must be unsigned and as wide as pointer type.
- ints must be at least 4 bytes.
- alignment must be at least 8.
- Alignment, min chunk size, and page size must all be powers of 2.
- */
- if ((sizeof(size_t) != sizeof(char*)) ||
- (MAX_SIZE_T < MIN_CHUNK_SIZE) ||
- (sizeof(int) < 4) ||
- (MALLOC_ALIGNMENT < (size_t)8U) ||
- ((MALLOC_ALIGNMENT & (MALLOC_ALIGNMENT-SIZE_T_ONE)) != 0) ||
- ((MCHUNK_SIZE & (MCHUNK_SIZE-SIZE_T_ONE)) != 0) ||
- ((gsize & (gsize-SIZE_T_ONE)) != 0) ||
- ((psize & (psize-SIZE_T_ONE)) != 0))
- ABORT;
-
- mparams.granularity = gsize;
- mparams.page_size = psize;
- mparams.mmap_threshold = DEFAULT_MMAP_THRESHOLD;
- mparams.trim_threshold = DEFAULT_TRIM_THRESHOLD;
-#if MORECORE_CONTIGUOUS
- mparams.default_mflags = USE_LOCK_BIT|USE_MMAP_BIT;
-#else /* MORECORE_CONTIGUOUS */
- mparams.default_mflags = USE_LOCK_BIT|USE_MMAP_BIT|USE_NONCONTIGUOUS_BIT;
-#endif /* MORECORE_CONTIGUOUS */
-
-#if !ONLY_MSPACES
- /* Set up lock for main malloc area */
- gm->mflags = mparams.default_mflags;
- INITIAL_LOCK(&gm->mutex);
-#endif
-
- {
-#if USE_DEV_RANDOM
- int fd;
- unsigned char buf[sizeof(size_t)];
- /* Try to use /dev/urandom, else fall back on using time */
- if ((fd = open("/dev/urandom", O_RDONLY)) >= 0 &&
- read(fd, buf, sizeof(buf)) == sizeof(buf)) {
- magic = *((size_t *) buf);
- close(fd);
- }
- else
-#endif /* USE_DEV_RANDOM */
-#ifdef WIN32
- magic = (size_t)(GetTickCount() ^ (size_t)0x55555555U);
-#else
- magic = (size_t)(time(0) ^ (size_t)0x55555555U);
-#endif
- magic |= (size_t)8U; /* ensure nonzero */
- magic &= ~(size_t)7U; /* improve chances of fault for bad values */
- mparams.magic = magic;
- }
- }
-
- RELEASE_MALLOC_GLOBAL_LOCK();
- return 1;
-}
-
-/* support for mallopt */
-static int change_mparam(int param_number, int value) {
- size_t val;
- ensure_initialization();
- val = (value == -1)? MAX_SIZE_T : (size_t)value;
- switch(param_number) {
- case M_TRIM_THRESHOLD:
- mparams.trim_threshold = val;
- return 1;
- case M_GRANULARITY:
- if (val >= mparams.page_size && ((val & (val-1)) == 0)) {
- mparams.granularity = val;
- return 1;
- }
- else
- return 0;
- case M_MMAP_THRESHOLD:
- mparams.mmap_threshold = val;
- return 1;
- default:
- return 0;
- }
-}
-
-#if DEBUG
-/* ------------------------- Debugging Support --------------------------- */
-
-/* Check properties of any chunk, whether free, inuse, mmapped etc */
-static void do_check_any_chunk(mstate m, mchunkptr p) {
- assert((is_aligned(chunk2mem(p))) || (p->head == FENCEPOST_HEAD));
- assert(ok_address(m, p));
-}
-
-/* Check properties of top chunk */
-static void do_check_top_chunk(mstate m, mchunkptr p) {
- msegmentptr sp = segment_holding(m, (char*)p);
- size_t sz = p->head & ~INUSE_BITS; /* third-lowest bit can be set! */
- assert(sp != 0);
- assert((is_aligned(chunk2mem(p))) || (p->head == FENCEPOST_HEAD));
- assert(ok_address(m, p));
- assert(sz == m->topsize);
- assert(sz > 0);
- assert(sz == ((sp->base + sp->size) - (char*)p) - TOP_FOOT_SIZE);
- assert(pinuse(p));
- assert(!pinuse(chunk_plus_offset(p, sz)));
-}
-
-/* Check properties of (inuse) mmapped chunks */
-static void do_check_mmapped_chunk(mstate m, mchunkptr p) {
- size_t sz = chunksize(p);
- size_t len = (sz + (p->prev_foot) + MMAP_FOOT_PAD);
- assert(is_mmapped(p));
- assert(use_mmap(m));
- assert((is_aligned(chunk2mem(p))) || (p->head == FENCEPOST_HEAD));
- assert(ok_address(m, p));
- assert(!is_small(sz));
- assert((len & (mparams.page_size-SIZE_T_ONE)) == 0);
- assert(chunk_plus_offset(p, sz)->head == FENCEPOST_HEAD);
- assert(chunk_plus_offset(p, sz+SIZE_T_SIZE)->head == 0);
-}
-
-/* Check properties of inuse chunks */
-static void do_check_inuse_chunk(mstate m, mchunkptr p) {
- do_check_any_chunk(m, p);
- assert(is_inuse(p));
- assert(next_pinuse(p));
- /* If not pinuse and not mmapped, previous chunk has OK offset */
- assert(is_mmapped(p) || pinuse(p) || next_chunk(prev_chunk(p)) == p);
- if (is_mmapped(p))
- do_check_mmapped_chunk(m, p);
-}
-
-/* Check properties of free chunks */
-static void do_check_free_chunk(mstate m, mchunkptr p) {
- size_t sz = chunksize(p);
- mchunkptr next = chunk_plus_offset(p, sz);
- do_check_any_chunk(m, p);
- assert(!is_inuse(p));
- assert(!next_pinuse(p));
- assert (!is_mmapped(p));
- if (p != m->dv && p != m->top) {
- if (sz >= MIN_CHUNK_SIZE) {
- assert((sz & CHUNK_ALIGN_MASK) == 0);
- assert(is_aligned(chunk2mem(p)));
- assert(next->prev_foot == sz);
- assert(pinuse(p));
- assert (next == m->top || is_inuse(next));
- assert(p->fd->bk == p);
- assert(p->bk->fd == p);
- }
- else /* markers are always of size SIZE_T_SIZE */
- assert(sz == SIZE_T_SIZE);
- }
-}
-
-/* Check properties of malloced chunks at the point they are malloced */
-static void do_check_malloced_chunk(mstate m, void* mem, size_t s) {
- if (mem != 0) {
- mchunkptr p = mem2chunk(mem);
- size_t sz = p->head & ~INUSE_BITS;
- do_check_inuse_chunk(m, p);
- assert((sz & CHUNK_ALIGN_MASK) == 0);
- assert(sz >= MIN_CHUNK_SIZE);
- assert(sz >= s);
- /* unless mmapped, size is less than MIN_CHUNK_SIZE more than request */
- assert(is_mmapped(p) || sz < (s + MIN_CHUNK_SIZE));
- }
-}
-
-/* Check a tree and its subtrees. */
-static void do_check_tree(mstate m, tchunkptr t) {
- tchunkptr head = 0;
- tchunkptr u = t;
- bindex_t tindex = t->index;
- size_t tsize = chunksize(t);
- bindex_t idx;
- compute_tree_index(tsize, idx);
- assert(tindex == idx);
- assert(tsize >= MIN_LARGE_SIZE);
- assert(tsize >= minsize_for_tree_index(idx));
- assert((idx == NTREEBINS-1) || (tsize < minsize_for_tree_index((idx+1))));
-
- do { /* traverse through chain of same-sized nodes */
- do_check_any_chunk(m, ((mchunkptr)u));
- assert(u->index == tindex);
- assert(chunksize(u) == tsize);
- assert(!is_inuse(u));
- assert(!next_pinuse(u));
- assert(u->fd->bk == u);
- assert(u->bk->fd == u);
- if (u->parent == 0) {
- assert(u->child[0] == 0);
- assert(u->child[1] == 0);
- }
- else {
- assert(head == 0); /* only one node on chain has parent */
- head = u;
- assert(u->parent != u);
- assert (u->parent->child[0] == u ||
- u->parent->child[1] == u ||
- *((tbinptr*)(u->parent)) == u);
- if (u->child[0] != 0) {
- assert(u->child[0]->parent == u);
- assert(u->child[0] != u);
- do_check_tree(m, u->child[0]);
- }
- if (u->child[1] != 0) {
- assert(u->child[1]->parent == u);
- assert(u->child[1] != u);
- do_check_tree(m, u->child[1]);
- }
- if (u->child[0] != 0 && u->child[1] != 0) {
- assert(chunksize(u->child[0]) < chunksize(u->child[1]));
- }
- }
- u = u->fd;
- } while (u != t);
- assert(head != 0);
-}
-
-/* Check all the chunks in a treebin. */
-static void do_check_treebin(mstate m, bindex_t i) {
- tbinptr* tb = treebin_at(m, i);
- tchunkptr t = *tb;
- int empty = (m->treemap & (1U << i)) == 0;
- if (t == 0)
- assert(empty);
- if (!empty)
- do_check_tree(m, t);
-}
-
-/* Check all the chunks in a smallbin. */
-static void do_check_smallbin(mstate m, bindex_t i) {
- sbinptr b = smallbin_at(m, i);
- mchunkptr p = b->bk;
- unsigned int empty = (m->smallmap & (1U << i)) == 0;
- if (p == b)
- assert(empty);
- if (!empty) {
- for (; p != b; p = p->bk) {
- size_t size = chunksize(p);
- mchunkptr q;
- /* each chunk claims to be free */
- do_check_free_chunk(m, p);
- /* chunk belongs in bin */
- assert(small_index(size) == i);
- assert(p->bk == b || chunksize(p->bk) == chunksize(p));
- /* chunk is followed by an inuse chunk */
- q = next_chunk(p);
- if (q->head != FENCEPOST_HEAD)
- do_check_inuse_chunk(m, q);
- }
- }
-}
-
-/* Find x in a bin. Used in other check functions. */
-static int bin_find(mstate m, mchunkptr x) {
- size_t size = chunksize(x);
- if (is_small(size)) {
- bindex_t sidx = small_index(size);
- sbinptr b = smallbin_at(m, sidx);
- if (smallmap_is_marked(m, sidx)) {
- mchunkptr p = b;
- do {
- if (p == x)
- return 1;
- } while ((p = p->fd) != b);
- }
- }
- else {
- bindex_t tidx;
- compute_tree_index(size, tidx);
- if (treemap_is_marked(m, tidx)) {
- tchunkptr t = *treebin_at(m, tidx);
- size_t sizebits = size << leftshift_for_tree_index(tidx);
- while (t != 0 && chunksize(t) != size) {
- t = t->child[(sizebits >> (SIZE_T_BITSIZE-SIZE_T_ONE)) & 1];
- sizebits <<= 1;
- }
- if (t != 0) {
- tchunkptr u = t;
- do {
- if (u == (tchunkptr)x)
- return 1;
- } while ((u = u->fd) != t);
- }
- }
- }
- return 0;
-}
-
-/* Traverse each chunk and check it; return total */
-static size_t traverse_and_check(mstate m) {
- size_t sum = 0;
- if (is_initialized(m)) {
- msegmentptr s = &m->seg;
- sum += m->topsize + TOP_FOOT_SIZE;
- while (s != 0) {
- mchunkptr q = align_as_chunk(s->base);
- mchunkptr lastq = 0;
- assert(pinuse(q));
- while (segment_holds(s, q) &&
- q != m->top && q->head != FENCEPOST_HEAD) {
- sum += chunksize(q);
- if (is_inuse(q)) {
- assert(!bin_find(m, q));
- do_check_inuse_chunk(m, q);
- }
- else {
- assert(q == m->dv || bin_find(m, q));
- assert(lastq == 0 || is_inuse(lastq)); /* Not 2 consecutive free */
- do_check_free_chunk(m, q);
- }
- lastq = q;
- q = next_chunk(q);
- }
- s = s->next;
- }
- }
- return sum;
-}
-
-/* Check all properties of malloc_state. */
-static void do_check_malloc_state(mstate m) {
- bindex_t i;
- size_t total;
- /* check bins */
- for (i = 0; i < NSMALLBINS; ++i)
- do_check_smallbin(m, i);
- for (i = 0; i < NTREEBINS; ++i)
- do_check_treebin(m, i);
-
- if (m->dvsize != 0) { /* check dv chunk */
- do_check_any_chunk(m, m->dv);
- assert(m->dvsize == chunksize(m->dv));
- assert(m->dvsize >= MIN_CHUNK_SIZE);
- assert(bin_find(m, m->dv) == 0);
- }
-
- if (m->top != 0) { /* check top chunk */
- do_check_top_chunk(m, m->top);
- /*assert(m->topsize == chunksize(m->top)); redundant */
- assert(m->topsize > 0);
- assert(bin_find(m, m->top) == 0);
- }
-
- total = traverse_and_check(m);
- assert(total <= m->footprint);
- assert(m->footprint <= m->max_footprint);
-}
-#endif /* DEBUG */
-
-/* ----------------------------- statistics ------------------------------ */
-
-#if !NO_MALLINFO
-static struct mallinfo internal_mallinfo(mstate m) {
- struct mallinfo nm = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
- ensure_initialization();
- if (!PREACTION(m)) {
- check_malloc_state(m);
- if (is_initialized(m)) {
- size_t nfree = SIZE_T_ONE; /* top always free */
- size_t mfree = m->topsize + TOP_FOOT_SIZE;
- size_t sum = mfree;
- msegmentptr s = &m->seg;
- while (s != 0) {
- mchunkptr q = align_as_chunk(s->base);
- while (segment_holds(s, q) &&
- q != m->top && q->head != FENCEPOST_HEAD) {
- size_t sz = chunksize(q);
- sum += sz;
- if (!is_inuse(q)) {
- mfree += sz;
- ++nfree;
- }
- q = next_chunk(q);
- }
- s = s->next;
- }
-
- nm.arena = sum;
- nm.ordblks = nfree;
- nm.hblkhd = m->footprint - sum;
- nm.usmblks = m->max_footprint;
- nm.uordblks = m->footprint - mfree;
- nm.fordblks = mfree;
- nm.keepcost = m->topsize;
- }
-
- POSTACTION(m);
- }
- return nm;
-}
-#endif /* !NO_MALLINFO */
-
-static void internal_malloc_stats(mstate m) {
- ensure_initialization();
- if (!PREACTION(m)) {
- size_t maxfp = 0;
- size_t fp = 0;
- size_t used = 0;
- check_malloc_state(m);
- if (is_initialized(m)) {
- msegmentptr s = &m->seg;
- maxfp = m->max_footprint;
- fp = m->footprint;
- used = fp - (m->topsize + TOP_FOOT_SIZE);
-
- while (s != 0) {
- mchunkptr q = align_as_chunk(s->base);
- while (segment_holds(s, q) &&
- q != m->top && q->head != FENCEPOST_HEAD) {
- if (!is_inuse(q))
- used -= chunksize(q);
- q = next_chunk(q);
- }
- s = s->next;
- }
- }
-
- fprintf(stderr, "max system bytes = %10lu\n", (unsigned long)(maxfp));
- fprintf(stderr, "system bytes = %10lu\n", (unsigned long)(fp));
- fprintf(stderr, "in use bytes = %10lu\n", (unsigned long)(used));
-
- POSTACTION(m);
- }
-}
-
-/* ----------------------- Operations on smallbins ----------------------- */
-
-/*
- Various forms of linking and unlinking are defined as macros. Even
- the ones for trees, which are very long but have very short typical
- paths. This is ugly but reduces reliance on inlining support of
- compilers.
-*/
-
-/* Link a free chunk into a smallbin */
-#define insert_small_chunk(M, P, S) {\
- bindex_t I = small_index(S);\
- mchunkptr B = smallbin_at(M, I);\
- mchunkptr F = B;\
- assert(S >= MIN_CHUNK_SIZE);\
- if (!smallmap_is_marked(M, I))\
- mark_smallmap(M, I);\
- else if (RTCHECK(ok_address(M, B->fd)))\
- F = B->fd;\
- else {\
- CORRUPTION_ERROR_ACTION(M);\
- }\
- B->fd = P;\
- F->bk = P;\
- P->fd = F;\
- P->bk = B;\
-}
-
-/* Unlink a chunk from a smallbin */
-#define unlink_small_chunk(M, P, S) {\
- mchunkptr F = P->fd;\
- mchunkptr B = P->bk;\
- bindex_t I = small_index(S);\
- assert(P != B);\
- assert(P != F);\
- assert(chunksize(P) == small_index2size(I));\
- if (F == B)\
- clear_smallmap(M, I);\
- else if (RTCHECK((F == smallbin_at(M,I) || ok_address(M, F)) &&\
- (B == smallbin_at(M,I) || ok_address(M, B)))) {\
- F->bk = B;\
- B->fd = F;\
- }\
- else {\
- CORRUPTION_ERROR_ACTION(M);\
- }\
-}
-
-/* Unlink the first chunk from a smallbin */
-#define unlink_first_small_chunk(M, B, P, I) {\
- mchunkptr F = P->fd;\
- assert(P != B);\
- assert(P != F);\
- assert(chunksize(P) == small_index2size(I));\
- if (B == F)\
- clear_smallmap(M, I);\
- else if (RTCHECK(ok_address(M, F))) {\
- B->fd = F;\
- F->bk = B;\
- }\
- else {\
- CORRUPTION_ERROR_ACTION(M);\
- }\
-}
-
-
-
-/* Replace dv node, binning the old one */
-/* Used only when dvsize known to be small */
-#define replace_dv(M, P, S) {\
- size_t DVS = M->dvsize;\
- if (DVS != 0) {\
- mchunkptr DV = M->dv;\
- assert(is_small(DVS));\
- insert_small_chunk(M, DV, DVS);\
- }\
- M->dvsize = S;\
- M->dv = P;\
-}
-
-/* ------------------------- Operations on trees ------------------------- */
-
-/* Insert chunk into tree */
-#define insert_large_chunk(M, X, S) {\
- tbinptr* H;\
- bindex_t I;\
- compute_tree_index(S, I);\
- H = treebin_at(M, I);\
- X->index = I;\
- X->child[0] = X->child[1] = 0;\
- if (!treemap_is_marked(M, I)) {\
- mark_treemap(M, I);\
- *H = X;\
- X->parent = (tchunkptr)H;\
- X->fd = X->bk = X;\
- }\
- else {\
- tchunkptr T = *H;\
- size_t K = S << leftshift_for_tree_index(I);\
- for (;;) {\
- if (chunksize(T) != S) {\
- tchunkptr* C = &(T->child[(K >> (SIZE_T_BITSIZE-SIZE_T_ONE)) & 1]);\
- K <<= 1;\
- if (*C != 0)\
- T = *C;\
- else if (RTCHECK(ok_address(M, C))) {\
- *C = X;\
- X->parent = T;\
- X->fd = X->bk = X;\
- break;\
- }\
- else {\
- CORRUPTION_ERROR_ACTION(M);\
- break;\
- }\
- }\
- else {\
- tchunkptr F = T->fd;\
- if (RTCHECK(ok_address(M, T) && ok_address(M, F))) {\
- T->fd = F->bk = X;\
- X->fd = F;\
- X->bk = T;\
- X->parent = 0;\
- break;\
- }\
- else {\
- CORRUPTION_ERROR_ACTION(M);\
- break;\
- }\
- }\
- }\
- }\
-}
-
-/*
- Unlink steps:
-
- 1. If x is a chained node, unlink it from its same-sized fd/bk links
- and choose its bk node as its replacement.
- 2. If x was the last node of its size, but not a leaf node, it must
- be replaced with a leaf node (not merely one with an open left or
- right), to make sure that lefts and rights of descendents
- correspond properly to bit masks. We use the rightmost descendent
- of x. We could use any other leaf, but this is easy to locate and
- tends to counteract removal of leftmosts elsewhere, and so keeps
- paths shorter than minimally guaranteed. This doesn't loop much
- because on average a node in a tree is near the bottom.
- 3. If x is the base of a chain (i.e., has parent links) relink
- x's parent and children to x's replacement (or null if none).
-*/
-
-#define unlink_large_chunk(M, X) {\
- tchunkptr XP = X->parent;\
- tchunkptr R;\
- if (X->bk != X) {\
- tchunkptr F = X->fd;\
- R = X->bk;\
- if (RTCHECK(ok_address(M, F))) {\
- F->bk = R;\
- R->fd = F;\
- }\
- else {\
- CORRUPTION_ERROR_ACTION(M);\
- }\
- }\
- else {\
- tchunkptr* RP;\
- if (((R = *(RP = &(X->child[1]))) != 0) ||\
- ((R = *(RP = &(X->child[0]))) != 0)) {\
- tchunkptr* CP;\
- while ((*(CP = &(R->child[1])) != 0) ||\
- (*(CP = &(R->child[0])) != 0)) {\
- R = *(RP = CP);\
- }\
- if (RTCHECK(ok_address(M, RP)))\
- *RP = 0;\
- else {\
- CORRUPTION_ERROR_ACTION(M);\
- }\
- }\
- }\
- if (XP != 0) {\
- tbinptr* H = treebin_at(M, X->index);\
- if (X == *H) {\
- if ((*H = R) == 0) \
- clear_treemap(M, X->index);\
- }\
- else if (RTCHECK(ok_address(M, XP))) {\
- if (XP->child[0] == X) \
- XP->child[0] = R;\
- else \
- XP->child[1] = R;\
- }\
- else\
- CORRUPTION_ERROR_ACTION(M);\
- if (R != 0) {\
- if (RTCHECK(ok_address(M, R))) {\
- tchunkptr C0, C1;\
- R->parent = XP;\
- if ((C0 = X->child[0]) != 0) {\
- if (RTCHECK(ok_address(M, C0))) {\
- R->child[0] = C0;\
- C0->parent = R;\
- }\
- else\
- CORRUPTION_ERROR_ACTION(M);\
- }\
- if ((C1 = X->child[1]) != 0) {\
- if (RTCHECK(ok_address(M, C1))) {\
- R->child[1] = C1;\
- C1->parent = R;\
- }\
- else\
- CORRUPTION_ERROR_ACTION(M);\
- }\
- }\
- else\
- CORRUPTION_ERROR_ACTION(M);\
- }\
- }\
-}
-
-/* Relays to large vs small bin operations */
-
-#define insert_chunk(M, P, S)\
- if (is_small(S)) insert_small_chunk(M, P, S)\
- else { tchunkptr TP = (tchunkptr)(P); insert_large_chunk(M, TP, S); }
-
-#define unlink_chunk(M, P, S)\
- if (is_small(S)) unlink_small_chunk(M, P, S)\
- else { tchunkptr TP = (tchunkptr)(P); unlink_large_chunk(M, TP); }
-
-
-/* Relays to internal calls to malloc/free from realloc, memalign etc */
-
-#if ONLY_MSPACES
-#define internal_malloc(m, b) mspace_malloc(m, b)
-#define internal_free(m, mem) mspace_free(m,mem);
-#else /* ONLY_MSPACES */
-#if MSPACES
-#define internal_malloc(m, b)\
- (m == gm)? dlmalloc(b) : mspace_malloc(m, b)
-#define internal_free(m, mem)\
- if (m == gm) dlfree(mem); else mspace_free(m,mem);
-#else /* MSPACES */
-#define internal_malloc(m, b) dlmalloc(b)
-#define internal_free(m, mem) dlfree(mem)
-#endif /* MSPACES */
-#endif /* ONLY_MSPACES */
-
-/* ----------------------- Direct-mmapping chunks ----------------------- */
-
-/*
- Directly mmapped chunks are set up with an offset to the start of
- the mmapped region stored in the prev_foot field of the chunk. This
- allows reconstruction of the required argument to MUNMAP when freed,
- and also allows adjustment of the returned chunk to meet alignment
- requirements (especially in memalign).
-*/
-
-/* Malloc using mmap */
-static void* mmap_alloc(mstate m, size_t nb) {
- size_t mmsize = mmap_align(nb + SIX_SIZE_T_SIZES + CHUNK_ALIGN_MASK);
- if (mmsize > nb) { /* Check for wrap around 0 */
- char* mm = (char*)(CALL_DIRECT_MMAP(mmsize));
- if (mm != CMFAIL) {
- size_t offset = align_offset(chunk2mem(mm));
- size_t psize = mmsize - offset - MMAP_FOOT_PAD;
- mchunkptr p = (mchunkptr)(mm + offset);
- p->prev_foot = offset;
- p->head = psize;
- mark_inuse_foot(m, p, psize);
- chunk_plus_offset(p, psize)->head = FENCEPOST_HEAD;
- chunk_plus_offset(p, psize+SIZE_T_SIZE)->head = 0;
-
- if (m->least_addr == 0 || mm < m->least_addr)
- m->least_addr = mm;
- if ((m->footprint += mmsize) > m->max_footprint)
- m->max_footprint = m->footprint;
- assert(is_aligned(chunk2mem(p)));
- check_mmapped_chunk(m, p);
- return chunk2mem(p);
- }
- }
- return 0;
-}
-
-/* Realloc using mmap */
-static mchunkptr mmap_resize(mstate m, mchunkptr oldp, size_t nb) {
- size_t oldsize = chunksize(oldp);
- if (is_small(nb)) /* Can't shrink mmap regions below small size */
- return 0;
- /* Keep old chunk if big enough but not too big */
- if (oldsize >= nb + SIZE_T_SIZE &&
- (oldsize - nb) <= (mparams.granularity << 1))
- return oldp;
- else {
- size_t offset = oldp->prev_foot;
- size_t oldmmsize = oldsize + offset + MMAP_FOOT_PAD;
- size_t newmmsize = mmap_align(nb + SIX_SIZE_T_SIZES + CHUNK_ALIGN_MASK);
- char* cp = (char*)CALL_MREMAP((char*)oldp - offset,
- oldmmsize, newmmsize, 1);
- if (cp != CMFAIL) {
- mchunkptr newp = (mchunkptr)(cp + offset);
- size_t psize = newmmsize - offset - MMAP_FOOT_PAD;
- newp->head = psize;
- mark_inuse_foot(m, newp, psize);
- chunk_plus_offset(newp, psize)->head = FENCEPOST_HEAD;
- chunk_plus_offset(newp, psize+SIZE_T_SIZE)->head = 0;
-
- if (cp < m->least_addr)
- m->least_addr = cp;
- if ((m->footprint += newmmsize - oldmmsize) > m->max_footprint)
- m->max_footprint = m->footprint;
- check_mmapped_chunk(m, newp);
- return newp;
- }
- }
- return 0;
-}
-
-/* -------------------------- mspace management -------------------------- */
-
-/* Initialize top chunk and its size */
-static void init_top(mstate m, mchunkptr p, size_t psize) {
- /* Ensure alignment */
- size_t offset = align_offset(chunk2mem(p));
- p = (mchunkptr)((char*)p + offset);
- psize -= offset;
-
- m->top = p;
- m->topsize = psize;
- p->head = psize | PINUSE_BIT;
- /* set size of fake trailing chunk holding overhead space only once */
- chunk_plus_offset(p, psize)->head = TOP_FOOT_SIZE;
- m->trim_check = mparams.trim_threshold; /* reset on each update */
-}
-
-/* Initialize bins for a new mstate that is otherwise zeroed out */
-static void init_bins(mstate m) {
- /* Establish circular links for smallbins */
- bindex_t i;
- for (i = 0; i < NSMALLBINS; ++i) {
- sbinptr bin = smallbin_at(m,i);
- bin->fd = bin->bk = bin;
- }
-}
-
-#if PROCEED_ON_ERROR
-
-/* default corruption action */
-static void reset_on_error(mstate m) {
- int i;
- ++malloc_corruption_error_count;
- /* Reinitialize fields to forget about all memory */
- m->smallbins = m->treebins = 0;
- m->dvsize = m->topsize = 0;
- m->seg.base = 0;
- m->seg.size = 0;
- m->seg.next = 0;
- m->top = m->dv = 0;
- for (i = 0; i < NTREEBINS; ++i)
- *treebin_at(m, i) = 0;
- init_bins(m);
-}
-#endif /* PROCEED_ON_ERROR */
-
-/* Allocate chunk and prepend remainder with chunk in successor base. */
-static void* prepend_alloc(mstate m, char* newbase, char* oldbase,
- size_t nb) {
- mchunkptr p = align_as_chunk(newbase);
- mchunkptr oldfirst = align_as_chunk(oldbase);
- size_t psize = (char*)oldfirst - (char*)p;
- mchunkptr q = chunk_plus_offset(p, nb);
- size_t qsize = psize - nb;
- set_size_and_pinuse_of_inuse_chunk(m, p, nb);
-
- assert((char*)oldfirst > (char*)q);
- assert(pinuse(oldfirst));
- assert(qsize >= MIN_CHUNK_SIZE);
-
- /* consolidate remainder with first chunk of old base */
- if (oldfirst == m->top) {
- size_t tsize = m->topsize += qsize;
- m->top = q;
- q->head = tsize | PINUSE_BIT;
- check_top_chunk(m, q);
- }
- else if (oldfirst == m->dv) {
- size_t dsize = m->dvsize += qsize;
- m->dv = q;
- set_size_and_pinuse_of_free_chunk(q, dsize);
- }
- else {
- if (!is_inuse(oldfirst)) {
- size_t nsize = chunksize(oldfirst);
- unlink_chunk(m, oldfirst, nsize);
- oldfirst = chunk_plus_offset(oldfirst, nsize);
- qsize += nsize;
- }
- set_free_with_pinuse(q, qsize, oldfirst);
- insert_chunk(m, q, qsize);
- check_free_chunk(m, q);
- }
-
- check_malloced_chunk(m, chunk2mem(p), nb);
- return chunk2mem(p);
-}
-
-/* Add a segment to hold a new noncontiguous region */
-static void add_segment(mstate m, char* tbase, size_t tsize, flag_t mmapped) {
- /* Determine locations and sizes of segment, fenceposts, old top */
- char* old_top = (char*)m->top;
- msegmentptr oldsp = segment_holding(m, old_top);
- char* old_end = oldsp->base + oldsp->size;
- size_t ssize = pad_request(sizeof(struct malloc_segment));
- char* rawsp = old_end - (ssize + FOUR_SIZE_T_SIZES + CHUNK_ALIGN_MASK);
- size_t offset = align_offset(chunk2mem(rawsp));
- char* asp = rawsp + offset;
- char* csp = (asp < (old_top + MIN_CHUNK_SIZE))? old_top : asp;
- mchunkptr sp = (mchunkptr)csp;
- msegmentptr ss = (msegmentptr)(chunk2mem(sp));
- mchunkptr tnext = chunk_plus_offset(sp, ssize);
- mchunkptr p = tnext;
- int nfences = 0;
-
- /* reset top to new space */
- init_top(m, (mchunkptr)tbase, tsize - TOP_FOOT_SIZE);
-
- /* Set up segment record */
- assert(is_aligned(ss));
- set_size_and_pinuse_of_inuse_chunk(m, sp, ssize);
- *ss = m->seg; /* Push current record */
- m->seg.base = tbase;
- m->seg.size = tsize;
- m->seg.sflags = mmapped;
- m->seg.next = ss;
-
- /* Insert trailing fenceposts */
- for (;;) {
- mchunkptr nextp = chunk_plus_offset(p, SIZE_T_SIZE);
- p->head = FENCEPOST_HEAD;
- ++nfences;
- if ((char*)(&(nextp->head)) < old_end)
- p = nextp;
- else
- break;
- }
- assert(nfences >= 2);
-
- /* Insert the rest of old top into a bin as an ordinary free chunk */
- if (csp != old_top) {
- mchunkptr q = (mchunkptr)old_top;
- size_t psize = csp - old_top;
- mchunkptr tn = chunk_plus_offset(q, psize);
- set_free_with_pinuse(q, psize, tn);
- insert_chunk(m, q, psize);
- }
-
- check_top_chunk(m, m->top);
-}
-
-/* -------------------------- System allocation -------------------------- */
-
-/* Get memory from system using MORECORE or MMAP */
-static void* sys_alloc(mstate m, size_t nb) {
- char* tbase = CMFAIL;
- size_t tsize = 0;
- flag_t mmap_flag = 0;
-
- ensure_initialization();
-
- /* Directly map large chunks, but only if already initialized */
- if (use_mmap(m) && nb >= mparams.mmap_threshold && m->topsize != 0) {
- void* mem = mmap_alloc(m, nb);
- if (mem != 0)
- return mem;
- }
-
- /*
- Try getting memory in any of three ways (in most-preferred to
- least-preferred order):
- 1. A call to MORECORE that can normally contiguously extend memory.
- (disabled if not MORECORE_CONTIGUOUS or not HAVE_MORECORE or
- or main space is mmapped or a previous contiguous call failed)
- 2. A call to MMAP new space (disabled if not HAVE_MMAP).
- Note that under the default settings, if MORECORE is unable to
- fulfill a request, and HAVE_MMAP is true, then mmap is
- used as a noncontiguous system allocator. This is a useful backup
- strategy for systems with holes in address spaces -- in this case
- sbrk cannot contiguously expand the heap, but mmap may be able to
- find space.
- 3. A call to MORECORE that cannot usually contiguously extend memory.
- (disabled if not HAVE_MORECORE)
-
- In all cases, we need to request enough bytes from system to ensure
- we can malloc nb bytes upon success, so pad with enough space for
- top_foot, plus alignment-pad to make sure we don't lose bytes if
- not on boundary, and round this up to a granularity unit.
- */
-
- if (MORECORE_CONTIGUOUS && !use_noncontiguous(m)) {
- char* br = CMFAIL;
- msegmentptr ss = (m->top == 0)? 0 : segment_holding(m, (char*)m->top);
- size_t asize = 0;
- ACQUIRE_MALLOC_GLOBAL_LOCK();
-
- if (ss == 0) { /* First time through or recovery */
- char* base = (char*)CALL_MORECORE(0);
- if (base != CMFAIL) {
- asize = granularity_align(nb + SYS_ALLOC_PADDING);
- /* Adjust to end on a page boundary */
- if (!is_page_aligned(base))
- asize += (page_align((size_t)base) - (size_t)base);
- /* Can't call MORECORE if size is negative when treated as signed */
- if (asize < HALF_MAX_SIZE_T &&
- (br = (char*)(CALL_MORECORE(asize))) == base) {
- tbase = base;
- tsize = asize;
- }
- }
- }
- else {
- /* Subtract out existing available top space from MORECORE request. */
- asize = granularity_align(nb - m->topsize + SYS_ALLOC_PADDING);
- /* Use mem here only if it did continuously extend old space */
- if (asize < HALF_MAX_SIZE_T &&
- (br = (char*)(CALL_MORECORE(asize))) == ss->base+ss->size) {
- tbase = br;
- tsize = asize;
- }
- }
-
- if (tbase == CMFAIL) { /* Cope with partial failure */
- if (br != CMFAIL) { /* Try to use/extend the space we did get */
- if (asize < HALF_MAX_SIZE_T &&
- asize < nb + SYS_ALLOC_PADDING) {
- size_t esize = granularity_align(nb + SYS_ALLOC_PADDING - asize);
- if (esize < HALF_MAX_SIZE_T) {
- char* end = (char*)CALL_MORECORE(esize);
- if (end != CMFAIL)
- asize += esize;
- else { /* Can't use; try to release */
- (void) CALL_MORECORE(-asize);
- br = CMFAIL;
- }
- }
- }
- }
- if (br != CMFAIL) { /* Use the space we did get */
- tbase = br;
- tsize = asize;
- }
- else
- disable_contiguous(m); /* Don't try contiguous path in the future */
- }
-
- RELEASE_MALLOC_GLOBAL_LOCK();
- }
-
- if (HAVE_MMAP && tbase == CMFAIL) { /* Try MMAP */
- size_t rsize = granularity_align(nb + SYS_ALLOC_PADDING);
- if (rsize > nb) { /* Fail if wraps around zero */
- char* mp = (char*)(CALL_MMAP(rsize));
- if (mp != CMFAIL) {
- tbase = mp;
- tsize = rsize;
- mmap_flag = USE_MMAP_BIT;
- }
- }
- }
-
- if (HAVE_MORECORE && tbase == CMFAIL) { /* Try noncontiguous MORECORE */
- size_t asize = granularity_align(nb + SYS_ALLOC_PADDING);
- if (asize < HALF_MAX_SIZE_T) {
- char* br = CMFAIL;
- char* end = CMFAIL;
- ACQUIRE_MALLOC_GLOBAL_LOCK();
- br = (char*)(CALL_MORECORE(asize));
- end = (char*)(CALL_MORECORE(0));
- RELEASE_MALLOC_GLOBAL_LOCK();
- if (br != CMFAIL && end != CMFAIL && br < end) {
- size_t ssize = end - br;
- if (ssize > nb + TOP_FOOT_SIZE) {
- tbase = br;
- tsize = ssize;
- }
- }
- }
- }
-
- if (tbase != CMFAIL) {
-
- if ((m->footprint += tsize) > m->max_footprint)
- m->max_footprint = m->footprint;
-
- if (!is_initialized(m)) { /* first-time initialization */
- if (m->least_addr == 0 || tbase < m->least_addr)
- m->least_addr = tbase;
- m->seg.base = tbase;
- m->seg.size = tsize;
- m->seg.sflags = mmap_flag;
- m->magic = mparams.magic;
- m->release_checks = MAX_RELEASE_CHECK_RATE;
- init_bins(m);
-#if !ONLY_MSPACES
- if (is_global(m))
- init_top(m, (mchunkptr)tbase, tsize - TOP_FOOT_SIZE);
- else
-#endif
- {
- /* Offset top by embedded malloc_state */
- mchunkptr mn = next_chunk(mem2chunk(m));
- init_top(m, mn, (size_t)((tbase + tsize) - (char*)mn) -TOP_FOOT_SIZE);
- }
- }
-
- else {
- /* Try to merge with an existing segment */
- msegmentptr sp = &m->seg;
- /* Only consider most recent segment if traversal suppressed */
- while (sp != 0 && tbase != sp->base + sp->size)
- sp = (NO_SEGMENT_TRAVERSAL) ? 0 : sp->next;
- if (sp != 0 &&
- !is_extern_segment(sp) &&
- (sp->sflags & USE_MMAP_BIT) == mmap_flag &&
- segment_holds(sp, m->top)) { /* append */
- sp->size += tsize;
- init_top(m, m->top, m->topsize + tsize);
- }
- else {
- if (tbase < m->least_addr)
- m->least_addr = tbase;
- sp = &m->seg;
- while (sp != 0 && sp->base != tbase + tsize)
- sp = (NO_SEGMENT_TRAVERSAL) ? 0 : sp->next;
- if (sp != 0 &&
- !is_extern_segment(sp) &&
- (sp->sflags & USE_MMAP_BIT) == mmap_flag) {
- char* oldbase = sp->base;
- sp->base = tbase;
- sp->size += tsize;
- return prepend_alloc(m, tbase, oldbase, nb);
- }
- else
- add_segment(m, tbase, tsize, mmap_flag);
- }
- }
-
- if (nb < m->topsize) { /* Allocate from new or extended top space */
- size_t rsize = m->topsize -= nb;
- mchunkptr p = m->top;
- mchunkptr r = m->top = chunk_plus_offset(p, nb);
- r->head = rsize | PINUSE_BIT;
- set_size_and_pinuse_of_inuse_chunk(m, p, nb);
- check_top_chunk(m, m->top);
- check_malloced_chunk(m, chunk2mem(p), nb);
- return chunk2mem(p);
- }
- }
-
- MALLOC_FAILURE_ACTION;
- return 0;
-}
-
-/* ----------------------- system deallocation -------------------------- */
-
-/* Unmap and unlink any mmapped segments that don't contain used chunks */
-static size_t release_unused_segments(mstate m) {
- size_t released = 0;
- int nsegs = 0;
- msegmentptr pred = &m->seg;
- msegmentptr sp = pred->next;
- while (sp != 0) {
- char* base = sp->base;
- size_t size = sp->size;
- msegmentptr next = sp->next;
- ++nsegs;
- if (is_mmapped_segment(sp) && !is_extern_segment(sp)) {
- mchunkptr p = align_as_chunk(base);
- size_t psize = chunksize(p);
- /* Can unmap if first chunk holds entire segment and not pinned */
- if (!is_inuse(p) && (char*)p + psize >= base + size - TOP_FOOT_SIZE) {
- tchunkptr tp = (tchunkptr)p;
- assert(segment_holds(sp, (char*)sp));
- if (p == m->dv) {
- m->dv = 0;
- m->dvsize = 0;
- }
- else {
- unlink_large_chunk(m, tp);
- }
- if (CALL_MUNMAP(base, size) == 0) {
- released += size;
- m->footprint -= size;
- /* unlink obsoleted record */
- sp = pred;
- sp->next = next;
- }
- else { /* back out if cannot unmap */
- insert_large_chunk(m, tp, psize);
- }
- }
- }
- if (NO_SEGMENT_TRAVERSAL) /* scan only first segment */
- break;
- pred = sp;
- sp = next;
- }
- /* Reset check counter */
- m->release_checks = ((nsegs > MAX_RELEASE_CHECK_RATE)?
- nsegs : MAX_RELEASE_CHECK_RATE);
- return released;
-}
-
-static int sys_trim(mstate m, size_t pad) {
- size_t released = 0;
- ensure_initialization();
- if (pad < MAX_REQUEST && is_initialized(m)) {
- pad += TOP_FOOT_SIZE; /* ensure enough room for segment overhead */
-
- if (m->topsize > pad) {
- /* Shrink top space in granularity-size units, keeping at least one */
- size_t unit = mparams.granularity;
- size_t extra = ((m->topsize - pad + (unit - SIZE_T_ONE)) / unit -
- SIZE_T_ONE) * unit;
- msegmentptr sp = segment_holding(m, (char*)m->top);
-
- if (!is_extern_segment(sp)) {
- if (is_mmapped_segment(sp)) {
- if (HAVE_MMAP &&
- sp->size >= extra &&
- !has_segment_link(m, sp)) { /* can't shrink if pinned */
- size_t newsize = sp->size - extra;
- /* Prefer mremap, fall back to munmap */
- if ((CALL_MREMAP(sp->base, sp->size, newsize, 0) != MFAIL) ||
- (CALL_MUNMAP(sp->base + newsize, extra) == 0)) {
- released = extra;
- }
- }
- }
- else if (HAVE_MORECORE) {
- if (extra >= HALF_MAX_SIZE_T) /* Avoid wrapping negative */
- extra = (HALF_MAX_SIZE_T) + SIZE_T_ONE - unit;
- ACQUIRE_MALLOC_GLOBAL_LOCK();
- {
- /* Make sure end of memory is where we last set it. */
- char* old_br = (char*)(CALL_MORECORE(0));
- if (old_br == sp->base + sp->size) {
- char* rel_br = (char*)(CALL_MORECORE(-extra));
- char* new_br = (char*)(CALL_MORECORE(0));
- if (rel_br != CMFAIL && new_br < old_br)
- released = old_br - new_br;
- }
- }
- RELEASE_MALLOC_GLOBAL_LOCK();
- }
- }
-
- if (released != 0) {
- sp->size -= released;
- m->footprint -= released;
- init_top(m, m->top, m->topsize - released);
- check_top_chunk(m, m->top);
- }
- }
-
- /* Unmap any unused mmapped segments */
- if (HAVE_MMAP)
- released += release_unused_segments(m);
-
- /* On failure, disable autotrim to avoid repeated failed future calls */
- if (released == 0 && m->topsize > m->trim_check)
- m->trim_check = MAX_SIZE_T;
- }
-
- return (released != 0)? 1 : 0;
-}
-
-
-/* ---------------------------- malloc support --------------------------- */
-
-/* allocate a large request from the best fitting chunk in a treebin */
-static void* tmalloc_large(mstate m, size_t nb) {
- tchunkptr v = 0;
- size_t rsize = -nb; /* Unsigned negation */
- tchunkptr t;
- bindex_t idx;
- compute_tree_index(nb, idx);
- if ((t = *treebin_at(m, idx)) != 0) {
- /* Traverse tree for this bin looking for node with size == nb */
- size_t sizebits = nb << leftshift_for_tree_index(idx);
- tchunkptr rst = 0; /* The deepest untaken right subtree */
- for (;;) {
- tchunkptr rt;
- size_t trem = chunksize(t) - nb;
- if (trem < rsize) {
- v = t;
- if ((rsize = trem) == 0)
- break;
- }
- rt = t->child[1];
- t = t->child[(sizebits >> (SIZE_T_BITSIZE-SIZE_T_ONE)) & 1];
- if (rt != 0 && rt != t)
- rst = rt;
- if (t == 0) {
- t = rst; /* set t to least subtree holding sizes > nb */
- break;
- }
- sizebits <<= 1;
- }
- }
- if (t == 0 && v == 0) { /* set t to root of next non-empty treebin */
- binmap_t leftbits = left_bits(idx2bit(idx)) & m->treemap;
- if (leftbits != 0) {
- bindex_t i;
- binmap_t leastbit = least_bit(leftbits);
- compute_bit2idx(leastbit, i);
- t = *treebin_at(m, i);
- }
- }
-
- while (t != 0) { /* find smallest of tree or subtree */
- size_t trem = chunksize(t) - nb;
- if (trem < rsize) {
- rsize = trem;
- v = t;
- }
- t = leftmost_child(t);
- }
-
- /* If dv is a better fit, return 0 so malloc will use it */
- if (v != 0 && rsize < (size_t)(m->dvsize - nb)) {
- if (RTCHECK(ok_address(m, v))) { /* split */
- mchunkptr r = chunk_plus_offset(v, nb);
- assert(chunksize(v) == rsize + nb);
- if (RTCHECK(ok_next(v, r))) {
- unlink_large_chunk(m, v);
- if (rsize < MIN_CHUNK_SIZE)
- set_inuse_and_pinuse(m, v, (rsize + nb));
- else {
- set_size_and_pinuse_of_inuse_chunk(m, v, nb);
- set_size_and_pinuse_of_free_chunk(r, rsize);
- insert_chunk(m, r, rsize);
- }
- return chunk2mem(v);
- }
- }
- CORRUPTION_ERROR_ACTION(m);
- }
- return 0;
-}
-
-/* allocate a small request from the best fitting chunk in a treebin */
-static void* tmalloc_small(mstate m, size_t nb) {
- tchunkptr t, v;
- size_t rsize;
- bindex_t i;
- binmap_t leastbit = least_bit(m->treemap);
- compute_bit2idx(leastbit, i);
- v = t = *treebin_at(m, i);
- rsize = chunksize(t) - nb;
-
- while ((t = leftmost_child(t)) != 0) {
- size_t trem = chunksize(t) - nb;
- if (trem < rsize) {
- rsize = trem;
- v = t;
- }
- }
-
- if (RTCHECK(ok_address(m, v))) {
- mchunkptr r = chunk_plus_offset(v, nb);
- assert(chunksize(v) == rsize + nb);
- if (RTCHECK(ok_next(v, r))) {
- unlink_large_chunk(m, v);
- if (rsize < MIN_CHUNK_SIZE)
- set_inuse_and_pinuse(m, v, (rsize + nb));
- else {
- set_size_and_pinuse_of_inuse_chunk(m, v, nb);
- set_size_and_pinuse_of_free_chunk(r, rsize);
- replace_dv(m, r, rsize);
- }
- return chunk2mem(v);
- }
- }
-
- CORRUPTION_ERROR_ACTION(m);
- return 0;
-}
-
-/* --------------------------- realloc support --------------------------- */
-
-static void* internal_realloc(mstate m, void* oldmem, size_t bytes) {
- if (bytes >= MAX_REQUEST) {
- MALLOC_FAILURE_ACTION;
- return 0;
- }
- if (!PREACTION(m)) {
- mchunkptr oldp = mem2chunk(oldmem);
- size_t oldsize = chunksize(oldp);
- mchunkptr next = chunk_plus_offset(oldp, oldsize);
- mchunkptr newp = 0;
- void* extra = 0;
-
- /* Try to either shrink or extend into top. Else malloc-copy-free */
-
- if (RTCHECK(ok_address(m, oldp) && ok_inuse(oldp) &&
- ok_next(oldp, next) && ok_pinuse(next))) {
- size_t nb = request2size(bytes);
- if (is_mmapped(oldp))
- newp = mmap_resize(m, oldp, nb);
- else if (oldsize >= nb) { /* already big enough */
- size_t rsize = oldsize - nb;
- newp = oldp;
- if (rsize >= MIN_CHUNK_SIZE) {
- mchunkptr remainder = chunk_plus_offset(newp, nb);
- set_inuse(m, newp, nb);
- set_inuse_and_pinuse(m, remainder, rsize);
- extra = chunk2mem(remainder);
- }
- }
- else if (next == m->top && oldsize + m->topsize > nb) {
- /* Expand into top */
- size_t newsize = oldsize + m->topsize;
- size_t newtopsize = newsize - nb;
- mchunkptr newtop = chunk_plus_offset(oldp, nb);
- set_inuse(m, oldp, nb);
- newtop->head = newtopsize |PINUSE_BIT;
- m->top = newtop;
- m->topsize = newtopsize;
- newp = oldp;
- }
- }
- else {
- USAGE_ERROR_ACTION(m, oldmem);
- POSTACTION(m);
- return 0;
- }
-#if DEBUG
- if (newp != 0) {
- check_inuse_chunk(m, newp); /* Check requires lock */
- }
-#endif
-
- POSTACTION(m);
-
- if (newp != 0) {
- if (extra != 0) {
- internal_free(m, extra);
- }
- return chunk2mem(newp);
- }
- else {
- void* newmem = internal_malloc(m, bytes);
- if (newmem != 0) {
- size_t oc = oldsize - overhead_for(oldp);
- memcpy(newmem, oldmem, (oc < bytes)? oc : bytes);
- internal_free(m, oldmem);
- }
- return newmem;
- }
- }
- return 0;
-}
-
-/* --------------------------- memalign support -------------------------- */
-
-static void* internal_memalign(mstate m, size_t alignment, size_t bytes) {
- if (alignment <= MALLOC_ALIGNMENT) /* Can just use malloc */
- return internal_malloc(m, bytes);
- if (alignment < MIN_CHUNK_SIZE) /* must be at least a minimum chunk size */
- alignment = MIN_CHUNK_SIZE;
- if ((alignment & (alignment-SIZE_T_ONE)) != 0) {/* Ensure a power of 2 */
- size_t a = MALLOC_ALIGNMENT << 1;
- while (a < alignment) a <<= 1;
- alignment = a;
- }
-
- if (bytes >= MAX_REQUEST - alignment) {
- if (m != 0) { /* Test isn't needed but avoids compiler warning */
- MALLOC_FAILURE_ACTION;
- }
- }
- else {
- size_t nb = request2size(bytes);
- size_t req = nb + alignment + MIN_CHUNK_SIZE - CHUNK_OVERHEAD;
- char* mem = (char*)internal_malloc(m, req);
- if (mem != 0) {
- void* leader = 0;
- void* trailer = 0;
- mchunkptr p = mem2chunk(mem);
-
- if (PREACTION(m)) return 0;
- if ((((size_t)(mem)) % alignment) != 0) { /* misaligned */
- /*
- Find an aligned spot inside chunk. Since we need to give
- back leading space in a chunk of at least MIN_CHUNK_SIZE, if
- the first calculation places us at a spot with less than
- MIN_CHUNK_SIZE leader, we can move to the next aligned spot.
- We've allocated enough total room so that this is always
- possible.
- */
- char* br = (char*)mem2chunk((size_t)(((size_t)(mem +
- alignment -
- SIZE_T_ONE)) &
- -alignment));
- char* pos = ((size_t)(br - (char*)(p)) >= MIN_CHUNK_SIZE)?
- br : br+alignment;
- mchunkptr newp = (mchunkptr)pos;
- size_t leadsize = pos - (char*)(p);
- size_t newsize = chunksize(p) - leadsize;
-
- if (is_mmapped(p)) { /* For mmapped chunks, just adjust offset */
- newp->prev_foot = p->prev_foot + leadsize;
- newp->head = newsize;
- }
- else { /* Otherwise, give back leader, use the rest */
- set_inuse(m, newp, newsize);
- set_inuse(m, p, leadsize);
- leader = chunk2mem(p);
- }
- p = newp;
- }
-
- /* Give back spare room at the end */
- if (!is_mmapped(p)) {
- size_t size = chunksize(p);
- if (size > nb + MIN_CHUNK_SIZE) {
- size_t remainder_size = size - nb;
- mchunkptr remainder = chunk_plus_offset(p, nb);
- set_inuse(m, p, nb);
- set_inuse(m, remainder, remainder_size);
- trailer = chunk2mem(remainder);
- }
- }
-
- assert (chunksize(p) >= nb);
- assert((((size_t)(chunk2mem(p))) % alignment) == 0);
- check_inuse_chunk(m, p);
- POSTACTION(m);
- if (leader != 0) {
- internal_free(m, leader);
- }
- if (trailer != 0) {
- internal_free(m, trailer);
- }
- return chunk2mem(p);
- }
- }
- return 0;
-}
-
-/* ------------------------ comalloc/coalloc support --------------------- */
-
-static void** ialloc(mstate m,
- size_t n_elements,
- size_t* sizes,
- int opts,
- void* chunks[]) {
- /*
- This provides common support for independent_X routines, handling
- all of the combinations that can result.
-
- The opts arg has:
- bit 0 set if all elements are same size (using sizes[0])
- bit 1 set if elements should be zeroed
- */
-
- size_t element_size; /* chunksize of each element, if all same */
- size_t contents_size; /* total size of elements */
- size_t array_size; /* request size of pointer array */
- void* mem; /* malloced aggregate space */
- mchunkptr p; /* corresponding chunk */
- size_t remainder_size; /* remaining bytes while splitting */
- void** marray; /* either "chunks" or malloced ptr array */
- mchunkptr array_chunk; /* chunk for malloced ptr array */
- flag_t was_enabled; /* to disable mmap */
- size_t size;
- size_t i;
-
- ensure_initialization();
- /* compute array length, if needed */
- if (chunks != 0) {
- if (n_elements == 0)
- return chunks; /* nothing to do */
- marray = chunks;
- array_size = 0;
- }
- else {
- /* if empty req, must still return chunk representing empty array */
- if (n_elements == 0)
- return (void**)internal_malloc(m, 0);
- marray = 0;
- array_size = request2size(n_elements * (sizeof(void*)));
- }
-
- /* compute total element size */
- if (opts & 0x1) { /* all-same-size */
- element_size = request2size(*sizes);
- contents_size = n_elements * element_size;
- }
- else { /* add up all the sizes */
- element_size = 0;
- contents_size = 0;
- for (i = 0; i != n_elements; ++i)
- contents_size += request2size(sizes[i]);
- }
-
- size = contents_size + array_size;
-
- /*
- Allocate the aggregate chunk. First disable direct-mmapping so
- malloc won't use it, since we would not be able to later
- free/realloc space internal to a segregated mmap region.
- */
- was_enabled = use_mmap(m);
- disable_mmap(m);
- mem = internal_malloc(m, size - CHUNK_OVERHEAD);
- if (was_enabled)
- enable_mmap(m);
- if (mem == 0)
- return 0;
-
- if (PREACTION(m)) return 0;
- p = mem2chunk(mem);
- remainder_size = chunksize(p);
-
- assert(!is_mmapped(p));
-
- if (opts & 0x2) { /* optionally clear the elements */
- memset((size_t*)mem, 0, remainder_size - SIZE_T_SIZE - array_size);
- }
-
- /* If not provided, allocate the pointer array as final part of chunk */
- if (marray == 0) {
- size_t array_chunk_size;
- array_chunk = chunk_plus_offset(p, contents_size);
- array_chunk_size = remainder_size - contents_size;
- marray = (void**) (chunk2mem(array_chunk));
- set_size_and_pinuse_of_inuse_chunk(m, array_chunk, array_chunk_size);
- remainder_size = contents_size;
- }
-
- /* split out elements */
- for (i = 0; ; ++i) {
- marray[i] = chunk2mem(p);
- if (i != n_elements-1) {
- if (element_size != 0)
- size = element_size;
- else
- size = request2size(sizes[i]);
- remainder_size -= size;
- set_size_and_pinuse_of_inuse_chunk(m, p, size);
- p = chunk_plus_offset(p, size);
- }
- else { /* the final element absorbs any overallocation slop */
- set_size_and_pinuse_of_inuse_chunk(m, p, remainder_size);
- break;
- }
- }
-
-#if DEBUG
- if (marray != chunks) {
- /* final element must have exactly exhausted chunk */
- if (element_size != 0) {
- assert(remainder_size == element_size);
- }
- else {
- assert(remainder_size == request2size(sizes[i]));
- }
- check_inuse_chunk(m, mem2chunk(marray));
- }
- for (i = 0; i != n_elements; ++i)
- check_inuse_chunk(m, mem2chunk(marray[i]));
-
-#endif /* DEBUG */
-
- POSTACTION(m);
- return marray;
-}
-
-
-/* -------------------------- public routines ---------------------------- */
-
-#if !ONLY_MSPACES
-
-void* dlmalloc(size_t bytes) {
- /*
- Basic algorithm:
- If a small request (< 256 bytes minus per-chunk overhead):
- 1. If one exists, use a remainderless chunk in associated smallbin.
- (Remainderless means that there are too few excess bytes to
- represent as a chunk.)
- 2. If it is big enough, use the dv chunk, which is normally the
- chunk adjacent to the one used for the most recent small request.
- 3. If one exists, split the smallest available chunk in a bin,
- saving remainder in dv.
- 4. If it is big enough, use the top chunk.
- 5. If available, get memory from system and use it
- Otherwise, for a large request:
- 1. Find the smallest available binned chunk that fits, and use it
- if it is better fitting than dv chunk, splitting if necessary.
- 2. If better fitting than any binned chunk, use the dv chunk.
- 3. If it is big enough, use the top chunk.
- 4. If request size >= mmap threshold, try to directly mmap this chunk.
- 5. If available, get memory from system and use it
-
- The ugly goto's here ensure that postaction occurs along all paths.
- */
-
-#if USE_LOCKS
- ensure_initialization(); /* initialize in sys_alloc if not using locks */
-#endif
-
- if (!PREACTION(gm)) {
- void* mem;
- size_t nb;
- if (bytes <= MAX_SMALL_REQUEST) {
- bindex_t idx;
- binmap_t smallbits;
- nb = (bytes < MIN_REQUEST)? MIN_CHUNK_SIZE : pad_request(bytes);
- idx = small_index(nb);
- smallbits = gm->smallmap >> idx;
-
- if ((smallbits & 0x3U) != 0) { /* Remainderless fit to a smallbin. */
- mchunkptr b, p;
- idx += ~smallbits & 1; /* Uses next bin if idx empty */
- b = smallbin_at(gm, idx);
- p = b->fd;
- assert(chunksize(p) == small_index2size(idx));
- unlink_first_small_chunk(gm, b, p, idx);
- set_inuse_and_pinuse(gm, p, small_index2size(idx));
- mem = chunk2mem(p);
- check_malloced_chunk(gm, mem, nb);
- goto postaction;
- }
-
- else if (nb > gm->dvsize) {
- if (smallbits != 0) { /* Use chunk in next nonempty smallbin */
- mchunkptr b, p, r;
- size_t rsize;
- bindex_t i;
- binmap_t leftbits = (smallbits << idx) & left_bits(idx2bit(idx));
- binmap_t leastbit = least_bit(leftbits);
- compute_bit2idx(leastbit, i);
- b = smallbin_at(gm, i);
- p = b->fd;
- assert(chunksize(p) == small_index2size(i));
- unlink_first_small_chunk(gm, b, p, i);
- rsize = small_index2size(i) - nb;
- /* Fit here cannot be remainderless if 4byte sizes */
- if (SIZE_T_SIZE != 4 && rsize < MIN_CHUNK_SIZE)
- set_inuse_and_pinuse(gm, p, small_index2size(i));
- else {
- set_size_and_pinuse_of_inuse_chunk(gm, p, nb);
- r = chunk_plus_offset(p, nb);
- set_size_and_pinuse_of_free_chunk(r, rsize);
- replace_dv(gm, r, rsize);
- }
- mem = chunk2mem(p);
- check_malloced_chunk(gm, mem, nb);
- goto postaction;
- }
-
- else if (gm->treemap != 0 && (mem = tmalloc_small(gm, nb)) != 0) {
- check_malloced_chunk(gm, mem, nb);
- goto postaction;
- }
- }
- }
- else if (bytes >= MAX_REQUEST)
- nb = MAX_SIZE_T; /* Too big to allocate. Force failure (in sys alloc) */
- else {
- nb = pad_request(bytes);
- if (gm->treemap != 0 && (mem = tmalloc_large(gm, nb)) != 0) {
- check_malloced_chunk(gm, mem, nb);
- goto postaction;
- }
- }
-
- if (nb <= gm->dvsize) {
- size_t rsize = gm->dvsize - nb;
- mchunkptr p = gm->dv;
- if (rsize >= MIN_CHUNK_SIZE) { /* split dv */
- mchunkptr r = gm->dv = chunk_plus_offset(p, nb);
- gm->dvsize = rsize;
- set_size_and_pinuse_of_free_chunk(r, rsize);
- set_size_and_pinuse_of_inuse_chunk(gm, p, nb);
- }
- else { /* exhaust dv */
- size_t dvs = gm->dvsize;
- gm->dvsize = 0;
- gm->dv = 0;
- set_inuse_and_pinuse(gm, p, dvs);
- }
- mem = chunk2mem(p);
- check_malloced_chunk(gm, mem, nb);
- goto postaction;
- }
-
- else if (nb < gm->topsize) { /* Split top */
- size_t rsize = gm->topsize -= nb;
- mchunkptr p = gm->top;
- mchunkptr r = gm->top = chunk_plus_offset(p, nb);
- r->head = rsize | PINUSE_BIT;
- set_size_and_pinuse_of_inuse_chunk(gm, p, nb);
- mem = chunk2mem(p);
- check_top_chunk(gm, gm->top);
- check_malloced_chunk(gm, mem, nb);
- goto postaction;
- }
-
- mem = sys_alloc(gm, nb);
-
- postaction:
- POSTACTION(gm);
- return mem;
- }
-
- return 0;
-}
-
-void dlfree(void* mem) {
- /*
- Consolidate freed chunks with preceeding or succeeding bordering
- free chunks, if they exist, and then place in a bin. Intermixed
- with special cases for top, dv, mmapped chunks, and usage errors.
- */
-
- if (mem != 0) {
- mchunkptr p = mem2chunk(mem);
-#if FOOTERS
- mstate fm = get_mstate_for(p);
- if (!ok_magic(fm)) {
- USAGE_ERROR_ACTION(fm, p);
- return;
- }
-#else /* FOOTERS */
-#define fm gm
-#endif /* FOOTERS */
- if (!PREACTION(fm)) {
- check_inuse_chunk(fm, p);
- if (RTCHECK(ok_address(fm, p) && ok_inuse(p))) {
- size_t psize = chunksize(p);
- mchunkptr next = chunk_plus_offset(p, psize);
- if (!pinuse(p)) {
- size_t prevsize = p->prev_foot;
- if (is_mmapped(p)) {
- psize += prevsize + MMAP_FOOT_PAD;
- if (CALL_MUNMAP((char*)p - prevsize, psize) == 0)
- fm->footprint -= psize;
- goto postaction;
- }
- else {
- mchunkptr prev = chunk_minus_offset(p, prevsize);
- psize += prevsize;
- p = prev;
- if (RTCHECK(ok_address(fm, prev))) { /* consolidate backward */
- if (p != fm->dv) {
- unlink_chunk(fm, p, prevsize);
- }
- else if ((next->head & INUSE_BITS) == INUSE_BITS) {
- fm->dvsize = psize;
- set_free_with_pinuse(p, psize, next);
- goto postaction;
- }
- }
- else
- goto erroraction;
- }
- }
-
- if (RTCHECK(ok_next(p, next) && ok_pinuse(next))) {
- if (!cinuse(next)) { /* consolidate forward */
- if (next == fm->top) {
- size_t tsize = fm->topsize += psize;
- fm->top = p;
- p->head = tsize | PINUSE_BIT;
- if (p == fm->dv) {
- fm->dv = 0;
- fm->dvsize = 0;
- }
- if (should_trim(fm, tsize))
- sys_trim(fm, 0);
- goto postaction;
- }
- else if (next == fm->dv) {
- size_t dsize = fm->dvsize += psize;
- fm->dv = p;
- set_size_and_pinuse_of_free_chunk(p, dsize);
- goto postaction;
- }
- else {
- size_t nsize = chunksize(next);
- psize += nsize;
- unlink_chunk(fm, next, nsize);
- set_size_and_pinuse_of_free_chunk(p, psize);
- if (p == fm->dv) {
- fm->dvsize = psize;
- goto postaction;
- }
- }
- }
- else
- set_free_with_pinuse(p, psize, next);
-
- if (is_small(psize)) {
- insert_small_chunk(fm, p, psize);
- check_free_chunk(fm, p);
- }
- else {
- tchunkptr tp = (tchunkptr)p;
- insert_large_chunk(fm, tp, psize);
- check_free_chunk(fm, p);
- if (--fm->release_checks == 0)
- release_unused_segments(fm);
- }
- goto postaction;
- }
- }
- erroraction:
- USAGE_ERROR_ACTION(fm, p);
- postaction:
- POSTACTION(fm);
- }
- }
-#if !FOOTERS
-#undef fm
-#endif /* FOOTERS */
-}
-
-void* dlcalloc(size_t n_elements, size_t elem_size) {
- void* mem;
- size_t req = 0;
- if (n_elements != 0) {
- req = n_elements * elem_size;
- if (((n_elements | elem_size) & ~(size_t)0xffff) &&
- (req / n_elements != elem_size))
- req = MAX_SIZE_T; /* force downstream failure on overflow */
- }
- mem = dlmalloc(req);
- if (mem != 0 && calloc_must_clear(mem2chunk(mem)))
- memset(mem, 0, req);
- return mem;
-}
-
-void* dlrealloc(void* oldmem, size_t bytes) {
- if (oldmem == 0)
- return dlmalloc(bytes);
-#ifdef REALLOC_ZERO_BYTES_FREES
- if (bytes == 0) {
- dlfree(oldmem);
- return 0;
- }
-#endif /* REALLOC_ZERO_BYTES_FREES */
- else {
-#if ! FOOTERS
- mstate m = gm;
-#else /* FOOTERS */
- mstate m = get_mstate_for(mem2chunk(oldmem));
- if (!ok_magic(m)) {
- USAGE_ERROR_ACTION(m, oldmem);
- return 0;
- }
-#endif /* FOOTERS */
- return internal_realloc(m, oldmem, bytes);
- }
-}
-
-void* dlmemalign(size_t alignment, size_t bytes) {
- return internal_memalign(gm, alignment, bytes);
-}
-
-void** dlindependent_calloc(size_t n_elements, size_t elem_size,
- void* chunks[]) {
- size_t sz = elem_size; /* serves as 1-element array */
- return ialloc(gm, n_elements, &sz, 3, chunks);
-}
-
-void** dlindependent_comalloc(size_t n_elements, size_t sizes[],
- void* chunks[]) {
- return ialloc(gm, n_elements, sizes, 0, chunks);
-}
-
-void* dlvalloc(size_t bytes) {
- size_t pagesz;
- ensure_initialization();
- pagesz = mparams.page_size;
- return dlmemalign(pagesz, bytes);
-}
-
-void* dlpvalloc(size_t bytes) {
- size_t pagesz;
- ensure_initialization();
- pagesz = mparams.page_size;
- return dlmemalign(pagesz, (bytes + pagesz - SIZE_T_ONE) & ~(pagesz - SIZE_T_ONE));
-}
-
-int dlmalloc_trim(size_t pad) {
- int result = 0;
- ensure_initialization();
- if (!PREACTION(gm)) {
- result = sys_trim(gm, pad);
- POSTACTION(gm);
- }
- return result;
-}
-
-size_t dlmalloc_footprint(void) {
- return gm->footprint;
-}
-
-size_t dlmalloc_max_footprint(void) {
- return gm->max_footprint;
-}
-
-#if !NO_MALLINFO
-struct mallinfo dlmallinfo(void) {
- return internal_mallinfo(gm);
-}
-#endif /* NO_MALLINFO */
-
-void dlmalloc_stats() {
- internal_malloc_stats(gm);
-}
-
-int dlmallopt(int param_number, int value) {
- return change_mparam(param_number, value);
-}
-
-#endif /* !ONLY_MSPACES */
-
-size_t dlmalloc_usable_size(void* mem) {
- if (mem != 0) {
- mchunkptr p = mem2chunk(mem);
- if (is_inuse(p))
- return chunksize(p) - overhead_for(p);
- }
- return 0;
-}
-
-/* ----------------------------- user mspaces ---------------------------- */
-
-#if MSPACES
-
-static mstate init_user_mstate(char* tbase, size_t tsize) {
- size_t msize = pad_request(sizeof(struct malloc_state));
- mchunkptr mn;
- mchunkptr msp = align_as_chunk(tbase);
- mstate m = (mstate)(chunk2mem(msp));
- memset(m, 0, msize);
- INITIAL_LOCK(&m->mutex);
- msp->head = (msize|INUSE_BITS);
- m->seg.base = m->least_addr = tbase;
- m->seg.size = m->footprint = m->max_footprint = tsize;
- m->magic = mparams.magic;
- m->release_checks = MAX_RELEASE_CHECK_RATE;
- m->mflags = mparams.default_mflags;
- m->extp = 0;
- m->exts = 0;
- disable_contiguous(m);
- init_bins(m);
- mn = next_chunk(mem2chunk(m));
- init_top(m, mn, (size_t)((tbase + tsize) - (char*)mn) - TOP_FOOT_SIZE);
- check_top_chunk(m, m->top);
- return m;
-}
-
-mspace create_mspace(size_t capacity, int locked) {
- mstate m = 0;
- size_t msize;
- ensure_initialization();
- msize = pad_request(sizeof(struct malloc_state));
- if (capacity < (size_t) -(msize + TOP_FOOT_SIZE + mparams.page_size)) {
- size_t rs = ((capacity == 0)? mparams.granularity :
- (capacity + TOP_FOOT_SIZE + msize));
- size_t tsize = granularity_align(rs);
- char* tbase = (char*)(CALL_MMAP(tsize));
- if (tbase != CMFAIL) {
- m = init_user_mstate(tbase, tsize);
- m->seg.sflags = USE_MMAP_BIT;
- set_lock(m, locked);
- }
- }
- return (mspace)m;
-}
-
-mspace create_mspace_with_base(void* base, size_t capacity, int locked) {
- mstate m = 0;
- size_t msize;
- ensure_initialization();
- msize = pad_request(sizeof(struct malloc_state));
- if (capacity > msize + TOP_FOOT_SIZE &&
- capacity < (size_t) -(msize + TOP_FOOT_SIZE + mparams.page_size)) {
- m = init_user_mstate((char*)base, capacity);
- m->seg.sflags = EXTERN_BIT;
- set_lock(m, locked);
- }
- return (mspace)m;
-}
-
-int mspace_track_large_chunks(mspace msp, int enable) {
- int ret = 0;
- mstate ms = (mstate)msp;
- if (!PREACTION(ms)) {
- if (!use_mmap(ms))
- ret = 1;
- if (!enable)
- enable_mmap(ms);
- else
- disable_mmap(ms);
- POSTACTION(ms);
- }
- return ret;
-}
-
-size_t destroy_mspace(mspace msp) {
- size_t freed = 0;
- mstate ms = (mstate)msp;
- if (ok_magic(ms)) {
- msegmentptr sp = &ms->seg;
- while (sp != 0) {
- char* base = sp->base;
- size_t size = sp->size;
- flag_t flag = sp->sflags;
- sp = sp->next;
- if ((flag & USE_MMAP_BIT) && !(flag & EXTERN_BIT) &&
- CALL_MUNMAP(base, size) == 0)
- freed += size;
- }
- }
- else {
- USAGE_ERROR_ACTION(ms,ms);
- }
- return freed;
-}
-
-/*
- mspace versions of routines are near-clones of the global
- versions. This is not so nice but better than the alternatives.
-*/
-
-
-void* mspace_malloc(mspace msp, size_t bytes) {
- mstate ms = (mstate)msp;
- if (!ok_magic(ms)) {
- USAGE_ERROR_ACTION(ms,ms);
- return 0;
- }
- if (!PREACTION(ms)) {
- void* mem;
- size_t nb;
- if (bytes <= MAX_SMALL_REQUEST) {
- bindex_t idx;
- binmap_t smallbits;
- nb = (bytes < MIN_REQUEST)? MIN_CHUNK_SIZE : pad_request(bytes);
- idx = small_index(nb);
- smallbits = ms->smallmap >> idx;
-
- if ((smallbits & 0x3U) != 0) { /* Remainderless fit to a smallbin. */
- mchunkptr b, p;
- idx += ~smallbits & 1; /* Uses next bin if idx empty */
- b = smallbin_at(ms, idx);
- p = b->fd;
- assert(chunksize(p) == small_index2size(idx));
- unlink_first_small_chunk(ms, b, p, idx);
- set_inuse_and_pinuse(ms, p, small_index2size(idx));
- mem = chunk2mem(p);
- check_malloced_chunk(ms, mem, nb);
- goto postaction;
- }
-
- else if (nb > ms->dvsize) {
- if (smallbits != 0) { /* Use chunk in next nonempty smallbin */
- mchunkptr b, p, r;
- size_t rsize;
- bindex_t i;
- binmap_t leftbits = (smallbits << idx) & left_bits(idx2bit(idx));
- binmap_t leastbit = least_bit(leftbits);
- compute_bit2idx(leastbit, i);
- b = smallbin_at(ms, i);
- p = b->fd;
- assert(chunksize(p) == small_index2size(i));
- unlink_first_small_chunk(ms, b, p, i);
- rsize = small_index2size(i) - nb;
- /* Fit here cannot be remainderless if 4byte sizes */
- if (SIZE_T_SIZE != 4 && rsize < MIN_CHUNK_SIZE)
- set_inuse_and_pinuse(ms, p, small_index2size(i));
- else {
- set_size_and_pinuse_of_inuse_chunk(ms, p, nb);
- r = chunk_plus_offset(p, nb);
- set_size_and_pinuse_of_free_chunk(r, rsize);
- replace_dv(ms, r, rsize);
- }
- mem = chunk2mem(p);
- check_malloced_chunk(ms, mem, nb);
- goto postaction;
- }
-
- else if (ms->treemap != 0 && (mem = tmalloc_small(ms, nb)) != 0) {
- check_malloced_chunk(ms, mem, nb);
- goto postaction;
- }
- }
- }
- else if (bytes >= MAX_REQUEST)
- nb = MAX_SIZE_T; /* Too big to allocate. Force failure (in sys alloc) */
- else {
- nb = pad_request(bytes);
- if (ms->treemap != 0 && (mem = tmalloc_large(ms, nb)) != 0) {
- check_malloced_chunk(ms, mem, nb);
- goto postaction;
- }
- }
-
- if (nb <= ms->dvsize) {
- size_t rsize = ms->dvsize - nb;
- mchunkptr p = ms->dv;
- if (rsize >= MIN_CHUNK_SIZE) { /* split dv */
- mchunkptr r = ms->dv = chunk_plus_offset(p, nb);
- ms->dvsize = rsize;
- set_size_and_pinuse_of_free_chunk(r, rsize);
- set_size_and_pinuse_of_inuse_chunk(ms, p, nb);
- }
- else { /* exhaust dv */
- size_t dvs = ms->dvsize;
- ms->dvsize = 0;
- ms->dv = 0;
- set_inuse_and_pinuse(ms, p, dvs);
- }
- mem = chunk2mem(p);
- check_malloced_chunk(ms, mem, nb);
- goto postaction;
- }
-
- else if (nb < ms->topsize) { /* Split top */
- size_t rsize = ms->topsize -= nb;
- mchunkptr p = ms->top;
- mchunkptr r = ms->top = chunk_plus_offset(p, nb);
- r->head = rsize | PINUSE_BIT;
- set_size_and_pinuse_of_inuse_chunk(ms, p, nb);
- mem = chunk2mem(p);
- check_top_chunk(ms, ms->top);
- check_malloced_chunk(ms, mem, nb);
- goto postaction;
- }
-
- mem = sys_alloc(ms, nb);
-
- postaction:
- POSTACTION(ms);
- return mem;
- }
-
- return 0;
-}
-
-void mspace_free(mspace msp, void* mem) {
- if (mem != 0) {
- mchunkptr p = mem2chunk(mem);
-#if FOOTERS
- mstate fm = get_mstate_for(p);
- msp = msp; /* placate people compiling -Wunused */
-#else /* FOOTERS */
- mstate fm = (mstate)msp;
-#endif /* FOOTERS */
- if (!ok_magic(fm)) {
- USAGE_ERROR_ACTION(fm, p);
- return;
- }
- if (!PREACTION(fm)) {
- check_inuse_chunk(fm, p);
- if (RTCHECK(ok_address(fm, p) && ok_inuse(p))) {
- size_t psize = chunksize(p);
- mchunkptr next = chunk_plus_offset(p, psize);
- if (!pinuse(p)) {
- size_t prevsize = p->prev_foot;
- if (is_mmapped(p)) {
- psize += prevsize + MMAP_FOOT_PAD;
- if (CALL_MUNMAP((char*)p - prevsize, psize) == 0)
- fm->footprint -= psize;
- goto postaction;
- }
- else {
- mchunkptr prev = chunk_minus_offset(p, prevsize);
- psize += prevsize;
- p = prev;
- if (RTCHECK(ok_address(fm, prev))) { /* consolidate backward */
- if (p != fm->dv) {
- unlink_chunk(fm, p, prevsize);
- }
- else if ((next->head & INUSE_BITS) == INUSE_BITS) {
- fm->dvsize = psize;
- set_free_with_pinuse(p, psize, next);
- goto postaction;
- }
- }
- else
- goto erroraction;
- }
- }
-
- if (RTCHECK(ok_next(p, next) && ok_pinuse(next))) {
- if (!cinuse(next)) { /* consolidate forward */
- if (next == fm->top) {
- size_t tsize = fm->topsize += psize;
- fm->top = p;
- p->head = tsize | PINUSE_BIT;
- if (p == fm->dv) {
- fm->dv = 0;
- fm->dvsize = 0;
- }
- if (should_trim(fm, tsize))
- sys_trim(fm, 0);
- goto postaction;
- }
- else if (next == fm->dv) {
- size_t dsize = fm->dvsize += psize;
- fm->dv = p;
- set_size_and_pinuse_of_free_chunk(p, dsize);
- goto postaction;
- }
- else {
- size_t nsize = chunksize(next);
- psize += nsize;
- unlink_chunk(fm, next, nsize);
- set_size_and_pinuse_of_free_chunk(p, psize);
- if (p == fm->dv) {
- fm->dvsize = psize;
- goto postaction;
- }
- }
- }
- else
- set_free_with_pinuse(p, psize, next);
-
- if (is_small(psize)) {
- insert_small_chunk(fm, p, psize);
- check_free_chunk(fm, p);
- }
- else {
- tchunkptr tp = (tchunkptr)p;
- insert_large_chunk(fm, tp, psize);
- check_free_chunk(fm, p);
- if (--fm->release_checks == 0)
- release_unused_segments(fm);
- }
- goto postaction;
- }
- }
- erroraction:
- USAGE_ERROR_ACTION(fm, p);
- postaction:
- POSTACTION(fm);
- }
- }
-}
-
-void* mspace_calloc(mspace msp, size_t n_elements, size_t elem_size) {
- void* mem;
- size_t req = 0;
- mstate ms = (mstate)msp;
- if (!ok_magic(ms)) {
- USAGE_ERROR_ACTION(ms,ms);
- return 0;
- }
- if (n_elements != 0) {
- req = n_elements * elem_size;
- if (((n_elements | elem_size) & ~(size_t)0xffff) &&
- (req / n_elements != elem_size))
- req = MAX_SIZE_T; /* force downstream failure on overflow */
- }
- mem = internal_malloc(ms, req);
- if (mem != 0 && calloc_must_clear(mem2chunk(mem)))
- memset(mem, 0, req);
- return mem;
-}
-
-void* mspace_realloc(mspace msp, void* oldmem, size_t bytes) {
- if (oldmem == 0)
- return mspace_malloc(msp, bytes);
-#ifdef REALLOC_ZERO_BYTES_FREES
- if (bytes == 0) {
- mspace_free(msp, oldmem);
- return 0;
- }
-#endif /* REALLOC_ZERO_BYTES_FREES */
- else {
-#if FOOTERS
- mchunkptr p = mem2chunk(oldmem);
- mstate ms = get_mstate_for(p);
-#else /* FOOTERS */
- mstate ms = (mstate)msp;
-#endif /* FOOTERS */
- if (!ok_magic(ms)) {
- USAGE_ERROR_ACTION(ms,ms);
- return 0;
- }
- return internal_realloc(ms, oldmem, bytes);
- }
-}
-
-void* mspace_memalign(mspace msp, size_t alignment, size_t bytes) {
- mstate ms = (mstate)msp;
- if (!ok_magic(ms)) {
- USAGE_ERROR_ACTION(ms,ms);
- return 0;
- }
- return internal_memalign(ms, alignment, bytes);
-}
-
-void** mspace_independent_calloc(mspace msp, size_t n_elements,
- size_t elem_size, void* chunks[]) {
- size_t sz = elem_size; /* serves as 1-element array */
- mstate ms = (mstate)msp;
- if (!ok_magic(ms)) {
- USAGE_ERROR_ACTION(ms,ms);
- return 0;
- }
- return ialloc(ms, n_elements, &sz, 3, chunks);
-}
-
-void** mspace_independent_comalloc(mspace msp, size_t n_elements,
- size_t sizes[], void* chunks[]) {
- mstate ms = (mstate)msp;
- if (!ok_magic(ms)) {
- USAGE_ERROR_ACTION(ms,ms);
- return 0;
- }
- return ialloc(ms, n_elements, sizes, 0, chunks);
-}
-
-int mspace_trim(mspace msp, size_t pad) {
- int result = 0;
- mstate ms = (mstate)msp;
- if (ok_magic(ms)) {
- if (!PREACTION(ms)) {
- result = sys_trim(ms, pad);
- POSTACTION(ms);
- }
- }
- else {
- USAGE_ERROR_ACTION(ms,ms);
- }
- return result;
-}
-
-void mspace_malloc_stats(mspace msp) {
- mstate ms = (mstate)msp;
- if (ok_magic(ms)) {
- internal_malloc_stats(ms);
- }
- else {
- USAGE_ERROR_ACTION(ms,ms);
- }
-}
-
-size_t mspace_footprint(mspace msp) {
- size_t result = 0;
- mstate ms = (mstate)msp;
- if (ok_magic(ms)) {
- result = ms->footprint;
- }
- else {
- USAGE_ERROR_ACTION(ms,ms);
- }
- return result;
-}
-
-
-size_t mspace_max_footprint(mspace msp) {
- size_t result = 0;
- mstate ms = (mstate)msp;
- if (ok_magic(ms)) {
- result = ms->max_footprint;
- }
- else {
- USAGE_ERROR_ACTION(ms,ms);
- }
- return result;
-}
-
-
-#if !NO_MALLINFO
-struct mallinfo mspace_mallinfo(mspace msp) {
- mstate ms = (mstate)msp;
- if (!ok_magic(ms)) {
- USAGE_ERROR_ACTION(ms,ms);
- }
- return internal_mallinfo(ms);
-}
-#endif /* NO_MALLINFO */
-
-size_t mspace_usable_size(void* mem) {
- if (mem != 0) {
- mchunkptr p = mem2chunk(mem);
- if (is_inuse(p))
- return chunksize(p) - overhead_for(p);
- }
- return 0;
-}
-
-int mspace_mallopt(int param_number, int value) {
- return change_mparam(param_number, value);
-}
-
-#endif /* MSPACES */
-
-
-/* -------------------- Alternative MORECORE functions ------------------- */
-
-/*
- Guidelines for creating a custom version of MORECORE:
-
- * For best performance, MORECORE should allocate in multiples of pagesize.
- * MORECORE may allocate more memory than requested. (Or even less,
- but this will usually result in a malloc failure.)
- * MORECORE must not allocate memory when given argument zero, but
- instead return one past the end address of memory from previous
- nonzero call.
- * For best performance, consecutive calls to MORECORE with positive
- arguments should return increasing addresses, indicating that
- space has been contiguously extended.
- * Even though consecutive calls to MORECORE need not return contiguous
- addresses, it must be OK for malloc'ed chunks to span multiple
- regions in those cases where they do happen to be contiguous.
- * MORECORE need not handle negative arguments -- it may instead
- just return MFAIL when given negative arguments.
- Negative arguments are always multiples of pagesize. MORECORE
- must not misinterpret negative args as large positive unsigned
- args. You can suppress all such calls from even occurring by defining
- MORECORE_CANNOT_TRIM,
-
- As an example alternative MORECORE, here is a custom allocator
- kindly contributed for pre-OSX macOS. It uses virtually but not
- necessarily physically contiguous non-paged memory (locked in,
- present and won't get swapped out). You can use it by uncommenting
- this section, adding some #includes, and setting up the appropriate
- defines above:
-
- #define MORECORE osMoreCore
-
- There is also a shutdown routine that should somehow be called for
- cleanup upon program exit.
-
- #define MAX_POOL_ENTRIES 100
- #define MINIMUM_MORECORE_SIZE (64 * 1024U)
- static int next_os_pool;
- void *our_os_pools[MAX_POOL_ENTRIES];
-
- void *osMoreCore(int size)
- {
- void *ptr = 0;
- static void *sbrk_top = 0;
-
- if (size > 0)
- {
- if (size < MINIMUM_MORECORE_SIZE)
- size = MINIMUM_MORECORE_SIZE;
- if (CurrentExecutionLevel() == kTaskLevel)
- ptr = PoolAllocateResident(size + RM_PAGE_SIZE, 0);
- if (ptr == 0)
- {
- return (void *) MFAIL;
- }
- // save ptrs so they can be freed during cleanup
- our_os_pools[next_os_pool] = ptr;
- next_os_pool++;
- ptr = (void *) ((((size_t) ptr) + RM_PAGE_MASK) & ~RM_PAGE_MASK);
- sbrk_top = (char *) ptr + size;
- return ptr;
- }
- else if (size < 0)
- {
- // we don't currently support shrink behavior
- return (void *) MFAIL;
- }
- else
- {
- return sbrk_top;
- }
- }
-
- // cleanup any allocated memory pools
- // called as last thing before shutting down driver
-
- void osCleanupMem(void)
- {
- void **ptr;
-
- for (ptr = our_os_pools; ptr < &our_os_pools[MAX_POOL_ENTRIES]; ptr++)
- if (*ptr)
- {
- PoolDeallocate(*ptr);
- *ptr = 0;
- }
- }
-
-*/
-
-
-/* -----------------------------------------------------------------------
-History:
- V2.8.4 Wed May 27 09:56:23 2009 Doug Lea (dl at gee)
- * Use zeros instead of prev foot for is_mmapped
- * Add mspace_track_large_chunks; thanks to Jean Brouwers
- * Fix set_inuse in internal_realloc; thanks to Jean Brouwers
- * Fix insufficient sys_alloc padding when using 16byte alignment
- * Fix bad error check in mspace_footprint
- * Adaptations for ptmalloc; thanks to Wolfram Gloger.
- * Reentrant spin locks; thanks to Earl Chew and others
- * Win32 improvements; thanks to Niall Douglas and Earl Chew
- * Add NO_SEGMENT_TRAVERSAL and MAX_RELEASE_CHECK_RATE options
- * Extension hook in malloc_state
- * Various small adjustments to reduce warnings on some compilers
- * Various configuration extensions/changes for more platforms. Thanks
- to all who contributed these.
-
- V2.8.3 Thu Sep 22 11:16:32 2005 Doug Lea (dl at gee)
- * Add max_footprint functions
- * Ensure all appropriate literals are size_t
- * Fix conditional compilation problem for some #define settings
- * Avoid concatenating segments with the one provided
- in create_mspace_with_base
- * Rename some variables to avoid compiler shadowing warnings
- * Use explicit lock initialization.
- * Better handling of sbrk interference.
- * Simplify and fix segment insertion, trimming and mspace_destroy
- * Reinstate REALLOC_ZERO_BYTES_FREES option from 2.7.x
- * Thanks especially to Dennis Flanagan for help on these.
-
- V2.8.2 Sun Jun 12 16:01:10 2005 Doug Lea (dl at gee)
- * Fix memalign brace error.
-
- V2.8.1 Wed Jun 8 16:11:46 2005 Doug Lea (dl at gee)
- * Fix improper #endif nesting in C++
- * Add explicit casts needed for C++
-
- V2.8.0 Mon May 30 14:09:02 2005 Doug Lea (dl at gee)
- * Use trees for large bins
- * Support mspaces
- * Use segments to unify sbrk-based and mmap-based system allocation,
- removing need for emulation on most platforms without sbrk.
- * Default safety checks
- * Optional footer checks. Thanks to William Robertson for the idea.
- * Internal code refactoring
- * Incorporate suggestions and platform-specific changes.
- Thanks to Dennis Flanagan, Colin Plumb, Niall Douglas,
- Aaron Bachmann, Emery Berger, and others.
- * Speed up non-fastbin processing enough to remove fastbins.
- * Remove useless cfree() to avoid conflicts with other apps.
- * Remove internal memcpy, memset. Compilers handle builtins better.
- * Remove some options that no one ever used and rename others.
-
- V2.7.2 Sat Aug 17 09:07:30 2002 Doug Lea (dl at gee)
- * Fix malloc_state bitmap array misdeclaration
-
- V2.7.1 Thu Jul 25 10:58:03 2002 Doug Lea (dl at gee)
- * Allow tuning of FIRST_SORTED_BIN_SIZE
- * Use PTR_UINT as type for all ptr->int casts. Thanks to John Belmonte.
- * Better detection and support for non-contiguousness of MORECORE.
- Thanks to Andreas Mueller, Conal Walsh, and Wolfram Gloger
- * Bypass most of malloc if no frees. Thanks To Emery Berger.
- * Fix freeing of old top non-contiguous chunk im sysmalloc.
- * Raised default trim and map thresholds to 256K.
- * Fix mmap-related #defines. Thanks to Lubos Lunak.
- * Fix copy macros; added LACKS_FCNTL_H. Thanks to Neal Walfield.
- * Branch-free bin calculation
- * Default trim and mmap thresholds now 256K.
-
- V2.7.0 Sun Mar 11 14:14:06 2001 Doug Lea (dl at gee)
- * Introduce independent_comalloc and independent_calloc.
- Thanks to Michael Pachos for motivation and help.
- * Make optional .h file available
- * Allow > 2GB requests on 32bit systems.
- * new WIN32 sbrk, mmap, munmap, lock code from <Walter@GeNeSys-e.de>.
- Thanks also to Andreas Mueller <a.mueller at paradatec.de>,
- and Anonymous.
- * Allow override of MALLOC_ALIGNMENT (Thanks to Ruud Waij for
- helping test this.)
- * memalign: check alignment arg
- * realloc: don't try to shift chunks backwards, since this
- leads to more fragmentation in some programs and doesn't
- seem to help in any others.
- * Collect all cases in malloc requiring system memory into sysmalloc
- * Use mmap as backup to sbrk
- * Place all internal state in malloc_state
- * Introduce fastbins (although similar to 2.5.1)
- * Many minor tunings and cosmetic improvements
- * Introduce USE_PUBLIC_MALLOC_WRAPPERS, USE_MALLOC_LOCK
- * Introduce MALLOC_FAILURE_ACTION, MORECORE_CONTIGUOUS
- Thanks to Tony E. Bennett <tbennett@nvidia.com> and others.
- * Include errno.h to support default failure action.
-
- V2.6.6 Sun Dec 5 07:42:19 1999 Doug Lea (dl at gee)
- * return null for negative arguments
- * Added Several WIN32 cleanups from Martin C. Fong <mcfong at yahoo.com>
- * Add 'LACKS_SYS_PARAM_H' for those systems without 'sys/param.h'
- (e.g. WIN32 platforms)
- * Cleanup header file inclusion for WIN32 platforms
- * Cleanup code to avoid Microsoft Visual C++ compiler complaints
- * Add 'USE_DL_PREFIX' to quickly allow co-existence with existing
- memory allocation routines
- * Set 'malloc_getpagesize' for WIN32 platforms (needs more work)
- * Use 'assert' rather than 'ASSERT' in WIN32 code to conform to
- usage of 'assert' in non-WIN32 code
- * Improve WIN32 'sbrk()' emulation's 'findRegion()' routine to
- avoid infinite loop
- * Always call 'fREe()' rather than 'free()'
-
- V2.6.5 Wed Jun 17 15:57:31 1998 Doug Lea (dl at gee)
- * Fixed ordering problem with boundary-stamping
-
- V2.6.3 Sun May 19 08:17:58 1996 Doug Lea (dl at gee)
- * Added pvalloc, as recommended by H.J. Liu
- * Added 64bit pointer support mainly from Wolfram Gloger
- * Added anonymously donated WIN32 sbrk emulation
- * Malloc, calloc, getpagesize: add optimizations from Raymond Nijssen
- * malloc_extend_top: fix mask error that caused wastage after
- foreign sbrks
- * Add linux mremap support code from HJ Liu
-
- V2.6.2 Tue Dec 5 06:52:55 1995 Doug Lea (dl at gee)
- * Integrated most documentation with the code.
- * Add support for mmap, with help from
- Wolfram Gloger (Gloger@lrz.uni-muenchen.de).
- * Use last_remainder in more cases.
- * Pack bins using idea from colin@nyx10.cs.du.edu
- * Use ordered bins instead of best-fit threshhold
- * Eliminate block-local decls to simplify tracing and debugging.
- * Support another case of realloc via move into top
- * Fix error occuring when initial sbrk_base not word-aligned.
- * Rely on page size for units instead of SBRK_UNIT to
- avoid surprises about sbrk alignment conventions.
- * Add mallinfo, mallopt. Thanks to Raymond Nijssen
- (raymond@es.ele.tue.nl) for the suggestion.
- * Add `pad' argument to malloc_trim and top_pad mallopt parameter.
- * More precautions for cases where other routines call sbrk,
- courtesy of Wolfram Gloger (Gloger@lrz.uni-muenchen.de).
- * Added macros etc., allowing use in linux libc from
- H.J. Lu (hjl@gnu.ai.mit.edu)
- * Inverted this history list
-
- V2.6.1 Sat Dec 2 14:10:57 1995 Doug Lea (dl at gee)
- * Re-tuned and fixed to behave more nicely with V2.6.0 changes.
- * Removed all preallocation code since under current scheme
- the work required to undo bad preallocations exceeds
- the work saved in good cases for most test programs.
- * No longer use return list or unconsolidated bins since
- no scheme using them consistently outperforms those that don't
- given above changes.
- * Use best fit for very large chunks to prevent some worst-cases.
- * Added some support for debugging
-
- V2.6.0 Sat Nov 4 07:05:23 1995 Doug Lea (dl at gee)
- * Removed footers when chunks are in use. Thanks to
- Paul Wilson (wilson@cs.texas.edu) for the suggestion.
-
- V2.5.4 Wed Nov 1 07:54:51 1995 Doug Lea (dl at gee)
- * Added malloc_trim, with help from Wolfram Gloger
- (wmglo@Dent.MED.Uni-Muenchen.DE).
-
- V2.5.3 Tue Apr 26 10:16:01 1994 Doug Lea (dl at g)
-
- V2.5.2 Tue Apr 5 16:20:40 1994 Doug Lea (dl at g)
- * realloc: try to expand in both directions
- * malloc: swap order of clean-bin strategy;
- * realloc: only conditionally expand backwards
- * Try not to scavenge used bins
- * Use bin counts as a guide to preallocation
- * Occasionally bin return list chunks in first scan
- * Add a few optimizations from colin@nyx10.cs.du.edu
-
- V2.5.1 Sat Aug 14 15:40:43 1993 Doug Lea (dl at g)
- * faster bin computation & slightly different binning
- * merged all consolidations to one part of malloc proper
- (eliminating old malloc_find_space & malloc_clean_bin)
- * Scan 2 returns chunks (not just 1)
- * Propagate failure in realloc if malloc returns 0
- * Add stuff to allow compilation on non-ANSI compilers
- from kpv@research.att.com
-
- V2.5 Sat Aug 7 07:41:59 1993 Doug Lea (dl at g.oswego.edu)
- * removed potential for odd address access in prev_chunk
- * removed dependency on getpagesize.h
- * misc cosmetics and a bit more internal documentation
- * anticosmetics: mangled names in macros to evade debugger strangeness
- * tested on sparc, hp-700, dec-mips, rs6000
- with gcc & native cc (hp, dec only) allowing
- Detlefs & Zorn comparison study (in SIGPLAN Notices.)
-
- Trial version Fri Aug 28 13:14:29 1992 Doug Lea (dl at g.oswego.edu)
- * Based loosely on libg++-1.2X malloc. (It retains some of the overall
- structure of old version, but most details differ.)
-
-*/
-
-#endif
+#ifdef NEDMALLOC_ENABLED
+/*
+ This is a version (aka dlmalloc) of malloc/free/realloc written by
+ Doug Lea and released to the public domain, as explained at
+ http://creativecommons.org/licenses/publicdomain. Send questions,
+ comments, complaints, performance data, etc to dl@cs.oswego.edu
+
+* Version 2.8.4 Wed May 27 09:56:23 2009 Doug Lea (dl at gee)
+
+ Note: There may be an updated version of this malloc obtainable at
+ ftp://gee.cs.oswego.edu/pub/misc/malloc.c
+ Check before installing!
+
+* Quickstart
+
+ This library is all in one file to simplify the most common usage:
+ ftp it, compile it (-O3), and link it into another program. All of
+ the compile-time options default to reasonable values for use on
+ most platforms. You might later want to step through various
+ compile-time and dynamic tuning options.
+
+ For convenience, an include file for code using this malloc is at:
+ ftp://gee.cs.oswego.edu/pub/misc/malloc-2.8.4.h
+ You don't really need this .h file unless you call functions not
+ defined in your system include files. The .h file contains only the
+ excerpts from this file needed for using this malloc on ANSI C/C++
+ systems, so long as you haven't changed compile-time options about
+ naming and tuning parameters. If you do, then you can create your
+ own malloc.h that does include all settings by cutting at the point
+ indicated below. Note that you may already by default be using a C
+ library containing a malloc that is based on some version of this
+ malloc (for example in linux). You might still want to use the one
+ in this file to customize settings or to avoid overheads associated
+ with library versions.
+
+* Vital statistics:
+
+ Supported pointer/size_t representation: 4 or 8 bytes
+ size_t MUST be an unsigned type of the same width as
+ pointers. (If you are using an ancient system that declares
+ size_t as a signed type, or need it to be a different width
+ than pointers, you can use a previous release of this malloc
+ (e.g. 2.7.2) supporting these.)
+
+ Alignment: 8 bytes (default)
+ This suffices for nearly all current machines and C compilers.
+ However, you can define MALLOC_ALIGNMENT to be wider than this
+ if necessary (up to 128bytes), at the expense of using more space.
+
+ Minimum overhead per allocated chunk: 4 or 8 bytes (if 4byte sizes)
+ 8 or 16 bytes (if 8byte sizes)
+ Each malloced chunk has a hidden word of overhead holding size
+ and status information, and additional cross-check word
+ if FOOTERS is defined.
+
+ Minimum allocated size: 4-byte ptrs: 16 bytes (including overhead)
+ 8-byte ptrs: 32 bytes (including overhead)
+
+ Even a request for zero bytes (i.e., malloc(0)) returns a
+ pointer to something of the minimum allocatable size.
+ The maximum overhead wastage (i.e., number of extra bytes
+ allocated than were requested in malloc) is less than or equal
+ to the minimum size, except for requests >= mmap_threshold that
+ are serviced via mmap(), where the worst case wastage is about
+ 32 bytes plus the remainder from a system page (the minimal
+ mmap unit); typically 4096 or 8192 bytes.
+
+ Security: static-safe; optionally more or less
+ The "security" of malloc refers to the ability of malicious
+ code to accentuate the effects of errors (for example, freeing
+ space that is not currently malloc'ed or overwriting past the
+ ends of chunks) in code that calls malloc. This malloc
+ guarantees not to modify any memory locations below the base of
+ heap, i.e., static variables, even in the presence of usage
+ errors. The routines additionally detect most improper frees
+ and reallocs. All this holds as long as the static bookkeeping
+ for malloc itself is not corrupted by some other means. This
+ is only one aspect of security -- these checks do not, and
+ cannot, detect all possible programming errors.
+
+ If FOOTERS is defined nonzero, then each allocated chunk
+ carries an additional check word to verify that it was malloced
+ from its space. These check words are the same within each
+ execution of a program using malloc, but differ across
+ executions, so externally crafted fake chunks cannot be
+ freed. This improves security by rejecting frees/reallocs that
+ could corrupt heap memory, in addition to the checks preventing
+ writes to statics that are always on. This may further improve
+ security at the expense of time and space overhead. (Note that
+ FOOTERS may also be worth using with MSPACES.)
+
+ By default detected errors cause the program to abort (calling
+ "abort()"). You can override this to instead proceed past
+ errors by defining PROCEED_ON_ERROR. In this case, a bad free
+ has no effect, and a malloc that encounters a bad address
+ caused by user overwrites will ignore the bad address by
+ dropping pointers and indices to all known memory. This may
+ be appropriate for programs that should continue if at all
+ possible in the face of programming errors, although they may
+ run out of memory because dropped memory is never reclaimed.
+
+ If you don't like either of these options, you can define
+ CORRUPTION_ERROR_ACTION and USAGE_ERROR_ACTION to do anything
+ else. And if if you are sure that your program using malloc has
+ no errors or vulnerabilities, you can define INSECURE to 1,
+ which might (or might not) provide a small performance improvement.
+
+ Thread-safety: NOT thread-safe unless USE_LOCKS defined
+ When USE_LOCKS is defined, each public call to malloc, free,
+ etc is surrounded with either a pthread mutex or a win32
+ spinlock (depending on WIN32). This is not especially fast, and
+ can be a major bottleneck. It is designed only to provide
+ minimal protection in concurrent environments, and to provide a
+ basis for extensions. If you are using malloc in a concurrent
+ program, consider instead using nedmalloc
+ (http://www.nedprod.com/programs/portable/nedmalloc/) or
+ ptmalloc (See http://www.malloc.de), which are derived
+ from versions of this malloc.
+
+ System requirements: Any combination of MORECORE and/or MMAP/MUNMAP
+ This malloc can use unix sbrk or any emulation (invoked using
+ the CALL_MORECORE macro) and/or mmap/munmap or any emulation
+ (invoked using CALL_MMAP/CALL_MUNMAP) to get and release system
+ memory. On most unix systems, it tends to work best if both
+ MORECORE and MMAP are enabled. On Win32, it uses emulations
+ based on VirtualAlloc. It also uses common C library functions
+ like memset.
+
+ Compliance: I believe it is compliant with the Single Unix Specification
+ (See http://www.unix.org). Also SVID/XPG, ANSI C, and probably
+ others as well.
+
+* Overview of algorithms
+
+ This is not the fastest, most space-conserving, most portable, or
+ most tunable malloc ever written. However it is among the fastest
+ while also being among the most space-conserving, portable and
+ tunable. Consistent balance across these factors results in a good
+ general-purpose allocator for malloc-intensive programs.
+
+ In most ways, this malloc is a best-fit allocator. Generally, it
+ chooses the best-fitting existing chunk for a request, with ties
+ broken in approximately least-recently-used order. (This strategy
+ normally maintains low fragmentation.) However, for requests less
+ than 256bytes, it deviates from best-fit when there is not an
+ exactly fitting available chunk by preferring to use space adjacent
+ to that used for the previous small request, as well as by breaking
+ ties in approximately most-recently-used order. (These enhance
+ locality of series of small allocations.) And for very large requests
+ (>= 256Kb by default), it relies on system memory mapping
+ facilities, if supported. (This helps avoid carrying around and
+ possibly fragmenting memory used only for large chunks.)
+
+ All operations (except malloc_stats and mallinfo) have execution
+ times that are bounded by a constant factor of the number of bits in
+ a size_t, not counting any clearing in calloc or copying in realloc,
+ or actions surrounding MORECORE and MMAP that have times
+ proportional to the number of non-contiguous regions returned by
+ system allocation routines, which is often just 1. In real-time
+ applications, you can optionally suppress segment traversals using
+ NO_SEGMENT_TRAVERSAL, which assures bounded execution even when
+ system allocators return non-contiguous spaces, at the typical
+ expense of carrying around more memory and increased fragmentation.
+
+ The implementation is not very modular and seriously overuses
+ macros. Perhaps someday all C compilers will do as good a job
+ inlining modular code as can now be done by brute-force expansion,
+ but now, enough of them seem not to.
+
+ Some compilers issue a lot of warnings about code that is
+ dead/unreachable only on some platforms, and also about intentional
+ uses of negation on unsigned types. All known cases of each can be
+ ignored.
+
+ For a longer but out of date high-level description, see
+ http://gee.cs.oswego.edu/dl/html/malloc.html
+
+* MSPACES
+ If MSPACES is defined, then in addition to malloc, free, etc.,
+ this file also defines mspace_malloc, mspace_free, etc. These
+ are versions of malloc routines that take an "mspace" argument
+ obtained using create_mspace, to control all internal bookkeeping.
+ If ONLY_MSPACES is defined, only these versions are compiled.
+ So if you would like to use this allocator for only some allocations,
+ and your system malloc for others, you can compile with
+ ONLY_MSPACES and then do something like...
+ static mspace mymspace = create_mspace(0,0); // for example
+ #define mymalloc(bytes) mspace_malloc(mymspace, bytes)
+
+ (Note: If you only need one instance of an mspace, you can instead
+ use "USE_DL_PREFIX" to relabel the global malloc.)
+
+ You can similarly create thread-local allocators by storing
+ mspaces as thread-locals. For example:
+ static __thread mspace tlms = 0;
+ void* tlmalloc(size_t bytes) {
+ if (tlms == 0) tlms = create_mspace(0, 0);
+ return mspace_malloc(tlms, bytes);
+ }
+ void tlfree(void* mem) { mspace_free(tlms, mem); }
+
+ Unless FOOTERS is defined, each mspace is completely independent.
+ You cannot allocate from one and free to another (although
+ conformance is only weakly checked, so usage errors are not always
+ caught). If FOOTERS is defined, then each chunk carries around a tag
+ indicating its originating mspace, and frees are directed to their
+ originating spaces.
+
+ ------------------------- Compile-time options ---------------------------
+
+Be careful in setting #define values for numerical constants of type
+size_t. On some systems, literal values are not automatically extended
+to size_t precision unless they are explicitly casted. You can also
+use the symbolic values MAX_SIZE_T, SIZE_T_ONE, etc below.
+
+WIN32 default: defined if _WIN32 defined
+ Defining WIN32 sets up defaults for MS environment and compilers.
+ Otherwise defaults are for unix. Beware that there seem to be some
+ cases where this malloc might not be a pure drop-in replacement for
+ Win32 malloc: Random-looking failures from Win32 GDI API's (eg;
+ SetDIBits()) may be due to bugs in some video driver implementations
+ when pixel buffers are malloc()ed, and the region spans more than
+ one VirtualAlloc()ed region. Because dlmalloc uses a small (64Kb)
+ default granularity, pixel buffers may straddle virtual allocation
+ regions more often than when using the Microsoft allocator. You can
+ avoid this by using VirtualAlloc() and VirtualFree() for all pixel
+ buffers rather than using malloc(). If this is not possible,
+ recompile this malloc with a larger DEFAULT_GRANULARITY.
+
+MALLOC_ALIGNMENT default: (size_t)8
+ Controls the minimum alignment for malloc'ed chunks. It must be a
+ power of two and at least 8, even on machines for which smaller
+ alignments would suffice. It may be defined as larger than this
+ though. Note however that code and data structures are optimized for
+ the case of 8-byte alignment.
+
+MSPACES default: 0 (false)
+ If true, compile in support for independent allocation spaces.
+ This is only supported if HAVE_MMAP is true.
+
+ONLY_MSPACES default: 0 (false)
+ If true, only compile in mspace versions, not regular versions.
+
+USE_LOCKS default: 0 (false)
+ Causes each call to each public routine to be surrounded with
+ pthread or WIN32 mutex lock/unlock. (If set true, this can be
+ overridden on a per-mspace basis for mspace versions.) If set to a
+ non-zero value other than 1, locks are used, but their
+ implementation is left out, so lock functions must be supplied manually,
+ as described below.
+
+USE_SPIN_LOCKS default: 1 iff USE_LOCKS and on x86 using gcc or MSC
+ If true, uses custom spin locks for locking. This is currently
+ supported only for x86 platforms using gcc or recent MS compilers.
+ Otherwise, posix locks or win32 critical sections are used.
+
+FOOTERS default: 0
+ If true, provide extra checking and dispatching by placing
+ information in the footers of allocated chunks. This adds
+ space and time overhead.
+
+INSECURE default: 0
+ If true, omit checks for usage errors and heap space overwrites.
+
+USE_DL_PREFIX default: NOT defined
+ Causes compiler to prefix all public routines with the string 'dl'.
+ This can be useful when you only want to use this malloc in one part
+ of a program, using your regular system malloc elsewhere.
+
+ABORT default: defined as abort()
+ Defines how to abort on failed checks. On most systems, a failed
+ check cannot die with an "assert" or even print an informative
+ message, because the underlying print routines in turn call malloc,
+ which will fail again. Generally, the best policy is to simply call
+ abort(). It's not very useful to do more than this because many
+ errors due to overwriting will show up as address faults (null, odd
+ addresses etc) rather than malloc-triggered checks, so will also
+ abort. Also, most compilers know that abort() does not return, so
+ can better optimize code conditionally calling it.
+
+PROCEED_ON_ERROR default: defined as 0 (false)
+ Controls whether detected bad addresses cause them to bypassed
+ rather than aborting. If set, detected bad arguments to free and
+ realloc are ignored. And all bookkeeping information is zeroed out
+ upon a detected overwrite of freed heap space, thus losing the
+ ability to ever return it from malloc again, but enabling the
+ application to proceed. If PROCEED_ON_ERROR is defined, the
+ static variable malloc_corruption_error_count is compiled in
+ and can be examined to see if errors have occurred. This option
+ generates slower code than the default abort policy.
+
+DEBUG default: NOT defined
+ The DEBUG setting is mainly intended for people trying to modify
+ this code or diagnose problems when porting to new platforms.
+ However, it may also be able to better isolate user errors than just
+ using runtime checks. The assertions in the check routines spell
+ out in more detail the assumptions and invariants underlying the
+ algorithms. The checking is fairly extensive, and will slow down
+ execution noticeably. Calling malloc_stats or mallinfo with DEBUG
+ set will attempt to check every non-mmapped allocated and free chunk
+ in the course of computing the summaries.
+
+ABORT_ON_ASSERT_FAILURE default: defined as 1 (true)
+ Debugging assertion failures can be nearly impossible if your
+ version of the assert macro causes malloc to be called, which will
+ lead to a cascade of further failures, blowing the runtime stack.
+ ABORT_ON_ASSERT_FAILURE cause assertions failures to call abort(),
+ which will usually make debugging easier.
+
+MALLOC_FAILURE_ACTION default: sets errno to ENOMEM, or no-op on win32
+ The action to take before "return 0" when malloc fails to be able to
+ return memory because there is none available.
+
+HAVE_MORECORE default: 1 (true) unless win32 or ONLY_MSPACES
+ True if this system supports sbrk or an emulation of it.
+
+MORECORE default: sbrk
+ The name of the sbrk-style system routine to call to obtain more
+ memory. See below for guidance on writing custom MORECORE
+ functions. The type of the argument to sbrk/MORECORE varies across
+ systems. It cannot be size_t, because it supports negative
+ arguments, so it is normally the signed type of the same width as
+ size_t (sometimes declared as "intptr_t"). It doesn't much matter
+ though. Internally, we only call it with arguments less than half
+ the max value of a size_t, which should work across all reasonable
+ possibilities, although sometimes generating compiler warnings.
+
+MORECORE_CONTIGUOUS default: 1 (true) if HAVE_MORECORE
+ If true, take advantage of fact that consecutive calls to MORECORE
+ with positive arguments always return contiguous increasing
+ addresses. This is true of unix sbrk. It does not hurt too much to
+ set it true anyway, since malloc copes with non-contiguities.
+ Setting it false when definitely non-contiguous saves time
+ and possibly wasted space it would take to discover this though.
+
+MORECORE_CANNOT_TRIM default: NOT defined
+ True if MORECORE cannot release space back to the system when given
+ negative arguments. This is generally necessary only if you are
+ using a hand-crafted MORECORE function that cannot handle negative
+ arguments.
+
+NO_SEGMENT_TRAVERSAL default: 0
+ If non-zero, suppresses traversals of memory segments
+ returned by either MORECORE or CALL_MMAP. This disables
+ merging of segments that are contiguous, and selectively
+ releasing them to the OS if unused, but bounds execution times.
+
+HAVE_MMAP default: 1 (true)
+ True if this system supports mmap or an emulation of it. If so, and
+ HAVE_MORECORE is not true, MMAP is used for all system
+ allocation. If set and HAVE_MORECORE is true as well, MMAP is
+ primarily used to directly allocate very large blocks. It is also
+ used as a backup strategy in cases where MORECORE fails to provide
+ space from system. Note: A single call to MUNMAP is assumed to be
+ able to unmap memory that may have be allocated using multiple calls
+ to MMAP, so long as they are adjacent.
+
+HAVE_MREMAP default: 1 on linux, else 0
+ If true realloc() uses mremap() to re-allocate large blocks and
+ extend or shrink allocation spaces.
+
+MMAP_CLEARS default: 1 except on WINCE.
+ True if mmap clears memory so calloc doesn't need to. This is true
+ for standard unix mmap using /dev/zero and on WIN32 except for WINCE.
+
+USE_BUILTIN_FFS default: 0 (i.e., not used)
+ Causes malloc to use the builtin ffs() function to compute indices.
+ Some compilers may recognize and intrinsify ffs to be faster than the
+ supplied C version. Also, the case of x86 using gcc is special-cased
+ to an asm instruction, so is already as fast as it can be, and so
+ this setting has no effect. Similarly for Win32 under recent MS compilers.
+ (On most x86s, the asm version is only slightly faster than the C version.)
+
+malloc_getpagesize default: derive from system includes, or 4096.
+ The system page size. To the extent possible, this malloc manages
+ memory from the system in page-size units. This may be (and
+ usually is) a function rather than a constant. This is ignored
+ if WIN32, where page size is determined using getSystemInfo during
+ initialization. This may be several megabytes if ENABLE_LARGE_PAGES
+ is enabled.
+
+ENABLE_LARGE_PAGES default: NOT defined
+ Causes the system page size to be the value of GetLargePageMinimum()
+ if that function is available (Windows Server 2003/Vista or later).
+ This allows the use of large page entries in the MMU which can
+ significantly improve performance in large working set applications
+ as TLB cache load is reduced by a factor of three. Note that enabling
+ this option is equal to locking the process' memory in current
+ implementations of Windows and requires the SE_LOCK_MEMORY_PRIVILEGE
+ to be held by the process in order to succeed.
+
+USE_DEV_RANDOM default: 0 (i.e., not used)
+ Causes malloc to use /dev/random to initialize secure magic seed for
+ stamping footers. Otherwise, the current time is used.
+
+NO_MALLINFO default: 0
+ If defined, don't compile "mallinfo". This can be a simple way
+ of dealing with mismatches between system declarations and
+ those in this file.
+
+MALLINFO_FIELD_TYPE default: size_t
+ The type of the fields in the mallinfo struct. This was originally
+ defined as "int" in SVID etc, but is more usefully defined as
+ size_t. The value is used only if HAVE_USR_INCLUDE_MALLOC_H is not set
+
+REALLOC_ZERO_BYTES_FREES default: not defined
+ This should be set if a call to realloc with zero bytes should
+ be the same as a call to free. Some people think it should. Otherwise,
+ since this malloc returns a unique pointer for malloc(0), so does
+ realloc(p, 0).
+
+LACKS_UNISTD_H, LACKS_FCNTL_H, LACKS_SYS_PARAM_H, LACKS_SYS_MMAN_H
+LACKS_STRINGS_H, LACKS_STRING_H, LACKS_SYS_TYPES_H, LACKS_ERRNO_H
+LACKS_STDLIB_H default: NOT defined unless on WIN32
+ Define these if your system does not have these header files.
+ You might need to manually insert some of the declarations they provide.
+
+DEFAULT_GRANULARITY default: page size if MORECORE_CONTIGUOUS,
+ system_info.dwAllocationGranularity in WIN32,
+ GetLargePageMinimum() if ENABLE_LARGE_PAGES,
+ otherwise 64K.
+ Also settable using mallopt(M_GRANULARITY, x)
+ The unit for allocating and deallocating memory from the system. On
+ most systems with contiguous MORECORE, there is no reason to
+ make this more than a page. However, systems with MMAP tend to
+ either require or encourage larger granularities. You can increase
+ this value to prevent system allocation functions to be called so
+ often, especially if they are slow. The value must be at least one
+ page and must be a power of two. Setting to 0 causes initialization
+ to either page size or win32 region size. (Note: In previous
+ versions of malloc, the equivalent of this option was called
+ "TOP_PAD")
+
+DEFAULT_GRANULARITY_ALIGNED default: undefined (which means page size)
+ Whether to enforce alignment when allocating and deallocating memory
+ from the system i.e. the base address of all allocations will be
+ aligned to DEFAULT_GRANULARITY if it is set. Note that enabling this carries
+ some overhead as multiple calls must now be made when probing for a valid
+ aligned value, however it does greatly ease the checking for whether
+ a given memory pointer was allocated by this allocator rather than
+ some other.
+
+DEFAULT_TRIM_THRESHOLD default: 2MB
+ Also settable using mallopt(M_TRIM_THRESHOLD, x)
+ The maximum amount of unused top-most memory to keep before
+ releasing via malloc_trim in free(). Automatic trimming is mainly
+ useful in long-lived programs using contiguous MORECORE. Because
+ trimming via sbrk can be slow on some systems, and can sometimes be
+ wasteful (in cases where programs immediately afterward allocate
+ more large chunks) the value should be high enough so that your
+ overall system performance would improve by releasing this much
+ memory. As a rough guide, you might set to a value close to the
+ average size of a process (program) running on your system.
+ Releasing this much memory would allow such a process to run in
+ memory. Generally, it is worth tuning trim thresholds when a
+ program undergoes phases where several large chunks are allocated
+ and released in ways that can reuse each other's storage, perhaps
+ mixed with phases where there are no such chunks at all. The trim
+ value must be greater than page size to have any useful effect. To
+ disable trimming completely, you can set to MAX_SIZE_T. Note that the trick
+ some people use of mallocing a huge space and then freeing it at
+ program startup, in an attempt to reserve system memory, doesn't
+ have the intended effect under automatic trimming, since that memory
+ will immediately be returned to the system.
+
+DEFAULT_MMAP_THRESHOLD default: 256K
+ Also settable using mallopt(M_MMAP_THRESHOLD, x)
+ The request size threshold for using MMAP to directly service a
+ request. Requests of at least this size that cannot be allocated
+ using already-existing space will be serviced via mmap. (If enough
+ normal freed space already exists it is used instead.) Using mmap
+ segregates relatively large chunks of memory so that they can be
+ individually obtained and released from the host system. A request
+ serviced through mmap is never reused by any other request (at least
+ not directly; the system may just so happen to remap successive
+ requests to the same locations). Segregating space in this way has
+ the benefits that: Mmapped space can always be individually released
+ back to the system, which helps keep the system level memory demands
+ of a long-lived program low. Also, mapped memory doesn't become
+ `locked' between other chunks, as can happen with normally allocated
+ chunks, which means that even trimming via malloc_trim would not
+ release them. However, it has the disadvantage that the space
+ cannot be reclaimed, consolidated, and then used to service later
+ requests, as happens with normal chunks. The advantages of mmap
+ nearly always outweigh disadvantages for "large" chunks, but the
+ value of "large" may vary across systems. The default is an
+ empirically derived value that works well in most systems. You can
+ disable mmap by setting to MAX_SIZE_T.
+
+MAX_RELEASE_CHECK_RATE default: 4095 unless not HAVE_MMAP
+ The number of consolidated frees between checks to release
+ unused segments when freeing. When using non-contiguous segments,
+ especially with multiple mspaces, checking only for topmost space
+ doesn't always suffice to trigger trimming. To compensate for this,
+ free() will, with a period of MAX_RELEASE_CHECK_RATE (or the
+ current number of segments, if greater) try to release unused
+ segments to the OS when freeing chunks that result in
+ consolidation. The best value for this parameter is a compromise
+ between slowing down frees with relatively costly checks that
+ rarely trigger versus holding on to unused memory. To effectively
+ disable, set to MAX_SIZE_T. This may lead to a very slight speed
+ improvement at the expense of carrying around more memory.
+*/
+
+/* Version identifier to allow people to support multiple versions */
+#ifndef DLMALLOC_VERSION
+#define DLMALLOC_VERSION 20804
+#endif /* DLMALLOC_VERSION */
+
+#ifndef WIN32
+#ifdef _WIN32
+#define WIN32 1
+#endif /* _WIN32 */
+#ifdef _WIN32_WCE
+#define LACKS_FCNTL_H
+#define WIN32 1
+#endif /* _WIN32_WCE */
+#endif /* WIN32 */
+#ifdef WIN32
+#define WIN32_LEAN_AND_MEAN
+#include <windows.h>
+#include <tchar.h>
+#define HAVE_MMAP 1
+#define HAVE_MORECORE 0
+#define LACKS_UNISTD_H
+#define LACKS_SYS_PARAM_H
+#define LACKS_SYS_MMAN_H
+#define LACKS_STRING_H
+#define LACKS_STRINGS_H
+#define LACKS_SYS_TYPES_H
+#define LACKS_ERRNO_H
+#ifndef MALLOC_FAILURE_ACTION
+#define MALLOC_FAILURE_ACTION
+#endif /* MALLOC_FAILURE_ACTION */
+#ifdef _WIN32_WCE /* WINCE reportedly does not clear */
+#define MMAP_CLEARS 0
+#else
+#define MMAP_CLEARS 1
+#endif /* _WIN32_WCE */
+#endif /* WIN32 */
+
+#if defined(DARWIN) || defined(_DARWIN)
+/* Mac OSX docs advise not to use sbrk; it seems better to use mmap */
+#ifndef HAVE_MORECORE
+#define HAVE_MORECORE 0
+#define HAVE_MMAP 1
+/* OSX allocators provide 16 byte alignment */
+#ifndef MALLOC_ALIGNMENT
+#define MALLOC_ALIGNMENT ((size_t)16U)
+#endif
+#endif /* HAVE_MORECORE */
+#endif /* DARWIN */
+
+#ifndef LACKS_SYS_TYPES_H
+#include <sys/types.h> /* For size_t */
+#endif /* LACKS_SYS_TYPES_H */
+
+#if (defined(__GNUC__) && ((defined(__i386__) || defined(__x86_64__)))) || (defined(_MSC_VER) && _MSC_VER>=1310)
+#define SPIN_LOCKS_AVAILABLE 1
+#else
+#define SPIN_LOCKS_AVAILABLE 0
+#endif
+
+/* The maximum possible size_t value has all bits set */
+#define MAX_SIZE_T (~(size_t)0)
+
+#ifndef ONLY_MSPACES
+#define ONLY_MSPACES 0 /* define to a value */
+#else
+#define ONLY_MSPACES 1
+#endif /* ONLY_MSPACES */
+#ifndef MSPACES
+#if ONLY_MSPACES
+#define MSPACES 1
+#else /* ONLY_MSPACES */
+#define MSPACES 0
+#endif /* ONLY_MSPACES */
+#endif /* MSPACES */
+#ifndef MALLOC_ALIGNMENT
+#define MALLOC_ALIGNMENT ((size_t)8U)
+#endif /* MALLOC_ALIGNMENT */
+#ifndef FOOTERS
+#define FOOTERS 0
+#endif /* FOOTERS */
+#ifndef ABORT
+#define ABORT abort()
+#endif /* ABORT */
+#ifndef ABORT_ON_ASSERT_FAILURE
+#define ABORT_ON_ASSERT_FAILURE 1
+#endif /* ABORT_ON_ASSERT_FAILURE */
+#ifndef PROCEED_ON_ERROR
+#define PROCEED_ON_ERROR 0
+#endif /* PROCEED_ON_ERROR */
+#ifndef USE_LOCKS
+#define USE_LOCKS 0
+#endif /* USE_LOCKS */
+#ifndef USE_SPIN_LOCKS
+#if USE_LOCKS && SPIN_LOCKS_AVAILABLE
+#define USE_SPIN_LOCKS 1
+#else
+#define USE_SPIN_LOCKS 0
+#endif /* USE_LOCKS && SPIN_LOCKS_AVAILABLE. */
+#endif /* USE_SPIN_LOCKS */
+#ifndef INSECURE
+#define INSECURE 0
+#endif /* INSECURE */
+#ifndef HAVE_MMAP
+#define HAVE_MMAP 1
+#endif /* HAVE_MMAP */
+#ifndef MMAP_CLEARS
+#define MMAP_CLEARS 1
+#endif /* MMAP_CLEARS */
+#ifndef HAVE_MREMAP
+#ifdef linux
+#define HAVE_MREMAP 1
+#else /* linux */
+#define HAVE_MREMAP 0
+#endif /* linux */
+#endif /* HAVE_MREMAP */
+#ifndef MALLOC_FAILURE_ACTION
+#define MALLOC_FAILURE_ACTION errno = ENOMEM;
+#endif /* MALLOC_FAILURE_ACTION */
+#ifndef HAVE_MORECORE
+#if ONLY_MSPACES
+#define HAVE_MORECORE 0
+#else /* ONLY_MSPACES */
+#define HAVE_MORECORE 1
+#endif /* ONLY_MSPACES */
+#endif /* HAVE_MORECORE */
+#if !HAVE_MORECORE
+#define MORECORE_CONTIGUOUS 0
+#else /* !HAVE_MORECORE */
+#define MORECORE_DEFAULT sbrk
+#ifndef MORECORE_CONTIGUOUS
+#define MORECORE_CONTIGUOUS 1
+#endif /* MORECORE_CONTIGUOUS */
+#endif /* HAVE_MORECORE */
+#ifndef DEFAULT_GRANULARITY
+#if (MORECORE_CONTIGUOUS || defined(WIN32))
+#define DEFAULT_GRANULARITY (0) /* 0 means to compute in init_mparams */
+#else /* MORECORE_CONTIGUOUS */
+#define DEFAULT_GRANULARITY ((size_t)64U * (size_t)1024U)
+#endif /* MORECORE_CONTIGUOUS */
+#endif /* DEFAULT_GRANULARITY */
+#ifndef DEFAULT_TRIM_THRESHOLD
+#ifndef MORECORE_CANNOT_TRIM
+#define DEFAULT_TRIM_THRESHOLD ((size_t)2U * (size_t)1024U * (size_t)1024U)
+#else /* MORECORE_CANNOT_TRIM */
+#define DEFAULT_TRIM_THRESHOLD MAX_SIZE_T
+#endif /* MORECORE_CANNOT_TRIM */
+#endif /* DEFAULT_TRIM_THRESHOLD */
+#ifndef DEFAULT_MMAP_THRESHOLD
+#if HAVE_MMAP
+#define DEFAULT_MMAP_THRESHOLD ((size_t)256U * (size_t)1024U)
+#else /* HAVE_MMAP */
+#define DEFAULT_MMAP_THRESHOLD MAX_SIZE_T
+#endif /* HAVE_MMAP */
+#endif /* DEFAULT_MMAP_THRESHOLD */
+#ifndef MAX_RELEASE_CHECK_RATE
+#if HAVE_MMAP
+#define MAX_RELEASE_CHECK_RATE 4095
+#else
+#define MAX_RELEASE_CHECK_RATE MAX_SIZE_T
+#endif /* HAVE_MMAP */
+#endif /* MAX_RELEASE_CHECK_RATE */
+#ifndef USE_BUILTIN_FFS
+#define USE_BUILTIN_FFS 0
+#endif /* USE_BUILTIN_FFS */
+#ifndef USE_DEV_RANDOM
+#define USE_DEV_RANDOM 0
+#endif /* USE_DEV_RANDOM */
+#ifndef NO_MALLINFO
+#define NO_MALLINFO 0
+#endif /* NO_MALLINFO */
+#ifndef MALLINFO_FIELD_TYPE
+#define MALLINFO_FIELD_TYPE size_t
+#endif /* MALLINFO_FIELD_TYPE */
+#ifndef NO_SEGMENT_TRAVERSAL
+#define NO_SEGMENT_TRAVERSAL 0
+#endif /* NO_SEGMENT_TRAVERSAL */
+
+/*
+ mallopt tuning options. SVID/XPG defines four standard parameter
+ numbers for mallopt, normally defined in malloc.h. None of these
+ are used in this malloc, so setting them has no effect. But this
+ malloc does support the following options.
+*/
+
+#define M_TRIM_THRESHOLD (-1)
+#define M_GRANULARITY (-2)
+#define M_MMAP_THRESHOLD (-3)
+
+/* ------------------------ Mallinfo declarations ------------------------ */
+
+#if !NO_MALLINFO
+/*
+ This version of malloc supports the standard SVID/XPG mallinfo
+ routine that returns a struct containing usage properties and
+ statistics. It should work on any system that has a
+ /usr/include/malloc.h defining struct mallinfo. The main
+ declaration needed is the mallinfo struct that is returned (by-copy)
+ by mallinfo(). The malloinfo struct contains a bunch of fields that
+ are not even meaningful in this version of malloc. These fields are
+ are instead filled by mallinfo() with other numbers that might be of
+ interest.
+
+ HAVE_USR_INCLUDE_MALLOC_H should be set if you have a
+ /usr/include/malloc.h file that includes a declaration of struct
+ mallinfo. If so, it is included; else a compliant version is
+ declared below. These must be precisely the same for mallinfo() to
+ work. The original SVID version of this struct, defined on most
+ systems with mallinfo, declares all fields as ints. But some others
+ define as unsigned long. If your system defines the fields using a
+ type of different width than listed here, you MUST #include your
+ system version and #define HAVE_USR_INCLUDE_MALLOC_H.
+*/
+
+/* #define HAVE_USR_INCLUDE_MALLOC_H */
+
+#ifdef HAVE_USR_INCLUDE_MALLOC_H
+#include "/usr/include/malloc.h"
+#else /* HAVE_USR_INCLUDE_MALLOC_H */
+#ifndef STRUCT_MALLINFO_DECLARED
+#define STRUCT_MALLINFO_DECLARED 1
+struct mallinfo {
+ MALLINFO_FIELD_TYPE arena; /* non-mmapped space allocated from system */
+ MALLINFO_FIELD_TYPE ordblks; /* number of free chunks */
+ MALLINFO_FIELD_TYPE smblks; /* always 0 */
+ MALLINFO_FIELD_TYPE hblks; /* always 0 */
+ MALLINFO_FIELD_TYPE hblkhd; /* space in mmapped regions */
+ MALLINFO_FIELD_TYPE usmblks; /* maximum total allocated space */
+ MALLINFO_FIELD_TYPE fsmblks; /* always 0 */
+ MALLINFO_FIELD_TYPE uordblks; /* total allocated space */
+ MALLINFO_FIELD_TYPE fordblks; /* total free space */
+ MALLINFO_FIELD_TYPE keepcost; /* releasable (via malloc_trim) space */
+};
+#endif /* STRUCT_MALLINFO_DECLARED */
+#endif /* HAVE_USR_INCLUDE_MALLOC_H */
+#endif /* NO_MALLINFO */
+
+/*
+ Try to persuade compilers to inline. The most critical functions for
+ inlining are defined as macros, so these aren't used for them.
+*/
+
+#ifndef FORCEINLINE
+ #if defined(__GNUC__)
+#define FORCEINLINE __inline __attribute__ ((always_inline))
+ #elif defined(_MSC_VER)
+ #define FORCEINLINE __forceinline
+ #endif
+#endif
+#ifndef NOINLINE
+ #if defined(__GNUC__)
+ #define NOINLINE __attribute__ ((noinline))
+ #elif defined(_MSC_VER)
+ #define NOINLINE __declspec(noinline)
+ #else
+ #define NOINLINE
+ #endif
+#endif
+
+#ifdef __cplusplus
+extern "C" {
+#ifndef FORCEINLINE
+ #define FORCEINLINE inline
+#endif
+#endif /* __cplusplus */
+#ifndef FORCEINLINE
+ #define FORCEINLINE
+#endif
+
+#if !ONLY_MSPACES
+
+/* ------------------- Declarations of public routines ------------------- */
+
+#ifndef USE_DL_PREFIX
+#define dlcalloc calloc
+#define dlfree free
+#define dlmalloc malloc
+#define dlmemalign memalign
+#define dlrealloc realloc
+#define dlvalloc valloc
+#define dlpvalloc pvalloc
+#define dlmallinfo mallinfo
+#define dlmallopt mallopt
+#define dlmalloc_trim malloc_trim
+#define dlmalloc_stats malloc_stats
+#define dlmalloc_usable_size malloc_usable_size
+#define dlmalloc_footprint malloc_footprint
+#define dlmalloc_max_footprint malloc_max_footprint
+#define dlindependent_calloc independent_calloc
+#define dlindependent_comalloc independent_comalloc
+#endif /* USE_DL_PREFIX */
+
+
+/*
+ malloc(size_t n)
+ Returns a pointer to a newly allocated chunk of at least n bytes, or
+ null if no space is available, in which case errno is set to ENOMEM
+ on ANSI C systems.
+
+ If n is zero, malloc returns a minimum-sized chunk. (The minimum
+ size is 16 bytes on most 32bit systems, and 32 bytes on 64bit
+ systems.) Note that size_t is an unsigned type, so calls with
+ arguments that would be negative if signed are interpreted as
+ requests for huge amounts of space, which will often fail. The
+ maximum supported value of n differs across systems, but is in all
+ cases less than the maximum representable value of a size_t.
+*/
+void* dlmalloc(size_t);
+
+/*
+ free(void* p)
+ Releases the chunk of memory pointed to by p, that had been previously
+ allocated using malloc or a related routine such as realloc.
+ It has no effect if p is null. If p was not malloced or already
+ freed, free(p) will by default cause the current program to abort.
+*/
+void dlfree(void*);
+
+/*
+ calloc(size_t n_elements, size_t element_size);
+ Returns a pointer to n_elements * element_size bytes, with all locations
+ set to zero.
+*/
+void* dlcalloc(size_t, size_t);
+
+/*
+ realloc(void* p, size_t n)
+ Returns a pointer to a chunk of size n that contains the same data
+ as does chunk p up to the minimum of (n, p's size) bytes, or null
+ if no space is available.
+
+ The returned pointer may or may not be the same as p. The algorithm
+ prefers extending p in most cases when possible, otherwise it
+ employs the equivalent of a malloc-copy-free sequence.
+
+ If p is null, realloc is equivalent to malloc.
+
+ If space is not available, realloc returns null, errno is set (if on
+ ANSI) and p is NOT freed.
+
+ if n is for fewer bytes than already held by p, the newly unused
+ space is lopped off and freed if possible. realloc with a size
+ argument of zero (re)allocates a minimum-sized chunk.
+
+ The old unix realloc convention of allowing the last-free'd chunk
+ to be used as an argument to realloc is not supported.
+*/
+
+void* dlrealloc(void*, size_t);
+
+/*
+ memalign(size_t alignment, size_t n);
+ Returns a pointer to a newly allocated chunk of n bytes, aligned
+ in accord with the alignment argument.
+
+ The alignment argument should be a power of two. If the argument is
+ not a power of two, the nearest greater power is used.
+ 8-byte alignment is guaranteed by normal malloc calls, so don't
+ bother calling memalign with an argument of 8 or less.
+
+ Overreliance on memalign is a sure way to fragment space.
+*/
+void* dlmemalign(size_t, size_t);
+
+/*
+ valloc(size_t n);
+ Equivalent to memalign(pagesize, n), where pagesize is the page
+ size of the system. If the pagesize is unknown, 4096 is used.
+*/
+void* dlvalloc(size_t);
+
+/*
+ mallopt(int parameter_number, int parameter_value)
+ Sets tunable parameters The format is to provide a
+ (parameter-number, parameter-value) pair. mallopt then sets the
+ corresponding parameter to the argument value if it can (i.e., so
+ long as the value is meaningful), and returns 1 if successful else
+ 0. To workaround the fact that mallopt is specified to use int,
+ not size_t parameters, the value -1 is specially treated as the
+ maximum unsigned size_t value.
+
+ SVID/XPG/ANSI defines four standard param numbers for mallopt,
+ normally defined in malloc.h. None of these are use in this malloc,
+ so setting them has no effect. But this malloc also supports other
+ options in mallopt. See below for details. Briefly, supported
+ parameters are as follows (listed defaults are for "typical"
+ configurations).
+
+ Symbol param # default allowed param values
+ M_TRIM_THRESHOLD -1 2*1024*1024 any (-1 disables)
+ M_GRANULARITY -2 page size any power of 2 >= page size
+ M_MMAP_THRESHOLD -3 256*1024 any (or 0 if no MMAP support)
+*/
+int dlmallopt(int, int);
+
+/*
+ malloc_footprint();
+ Returns the number of bytes obtained from the system. The total
+ number of bytes allocated by malloc, realloc etc., is less than this
+ value. Unlike mallinfo, this function returns only a precomputed
+ result, so can be called frequently to monitor memory consumption.
+ Even if locks are otherwise defined, this function does not use them,
+ so results might not be up to date.
+*/
+size_t dlmalloc_footprint(void);
+
+/*
+ malloc_max_footprint();
+ Returns the maximum number of bytes obtained from the system. This
+ value will be greater than current footprint if deallocated space
+ has been reclaimed by the system. The peak number of bytes allocated
+ by malloc, realloc etc., is less than this value. Unlike mallinfo,
+ this function returns only a precomputed result, so can be called
+ frequently to monitor memory consumption. Even if locks are
+ otherwise defined, this function does not use them, so results might
+ not be up to date.
+*/
+size_t dlmalloc_max_footprint(void);
+
+#if !NO_MALLINFO
+/*
+ mallinfo()
+ Returns (by copy) a struct containing various summary statistics:
+
+ arena: current total non-mmapped bytes allocated from system
+ ordblks: the number of free chunks
+ smblks: always zero.
+ hblks: current number of mmapped regions
+ hblkhd: total bytes held in mmapped regions
+ usmblks: the maximum total allocated space. This will be greater
+ than current total if trimming has occurred.
+ fsmblks: always zero
+ uordblks: current total allocated space (normal or mmapped)
+ fordblks: total free space
+ keepcost: the maximum number of bytes that could ideally be released
+ back to system via malloc_trim. ("ideally" means that
+ it ignores page restrictions etc.)
+
+ Because these fields are ints, but internal bookkeeping may
+ be kept as longs, the reported values may wrap around zero and
+ thus be inaccurate.
+*/
+struct mallinfo dlmallinfo(void);
+#endif /* NO_MALLINFO */
+
+/*
+ independent_calloc(size_t n_elements, size_t element_size, void* chunks[]);
+
+ independent_calloc is similar to calloc, but instead of returning a
+ single cleared space, it returns an array of pointers to n_elements
+ independent elements that can hold contents of size elem_size, each
+ of which starts out cleared, and can be independently freed,
+ realloc'ed etc. The elements are guaranteed to be adjacently
+ allocated (this is not guaranteed to occur with multiple callocs or
+ mallocs), which may also improve cache locality in some
+ applications.
+
+ The "chunks" argument is optional (i.e., may be null, which is
+ probably the most typical usage). If it is null, the returned array
+ is itself dynamically allocated and should also be freed when it is
+ no longer needed. Otherwise, the chunks array must be of at least
+ n_elements in length. It is filled in with the pointers to the
+ chunks.
+
+ In either case, independent_calloc returns this pointer array, or
+ null if the allocation failed. If n_elements is zero and "chunks"
+ is null, it returns a chunk representing an array with zero elements
+ (which should be freed if not wanted).
+
+ Each element must be individually freed when it is no longer
+ needed. If you'd like to instead be able to free all at once, you
+ should instead use regular calloc and assign pointers into this
+ space to represent elements. (In this case though, you cannot
+ independently free elements.)
+
+ independent_calloc simplifies and speeds up implementations of many
+ kinds of pools. It may also be useful when constructing large data
+ structures that initially have a fixed number of fixed-sized nodes,
+ but the number is not known at compile time, and some of the nodes
+ may later need to be freed. For example:
+
+ struct Node { int item; struct Node* next; };
+
+ struct Node* build_list() {
+ struct Node** pool;
+ int n = read_number_of_nodes_needed();
+ if (n <= 0) return 0;
+ pool = (struct Node**)(independent_calloc(n, sizeof(struct Node), 0);
+ if (pool == 0) die();
+ // organize into a linked list...
+ struct Node* first = pool[0];
+ for (i = 0; i < n-1; ++i)
+ pool[i]->next = pool[i+1];
+ free(pool); // Can now free the array (or not, if it is needed later)
+ return first;
+ }
+*/
+void** dlindependent_calloc(size_t, size_t, void**);
+
+/*
+ independent_comalloc(size_t n_elements, size_t sizes[], void* chunks[]);
+
+ independent_comalloc allocates, all at once, a set of n_elements
+ chunks with sizes indicated in the "sizes" array. It returns
+ an array of pointers to these elements, each of which can be
+ independently freed, realloc'ed etc. The elements are guaranteed to
+ be adjacently allocated (this is not guaranteed to occur with
+ multiple callocs or mallocs), which may also improve cache locality
+ in some applications.
+
+ The "chunks" argument is optional (i.e., may be null). If it is null
+ the returned array is itself dynamically allocated and should also
+ be freed when it is no longer needed. Otherwise, the chunks array
+ must be of at least n_elements in length. It is filled in with the
+ pointers to the chunks.
+
+ In either case, independent_comalloc returns this pointer array, or
+ null if the allocation failed. If n_elements is zero and chunks is
+ null, it returns a chunk representing an array with zero elements
+ (which should be freed if not wanted).
+
+ Each element must be individually freed when it is no longer
+ needed. If you'd like to instead be able to free all at once, you
+ should instead use a single regular malloc, and assign pointers at
+ particular offsets in the aggregate space. (In this case though, you
+ cannot independently free elements.)
+
+ independent_comallac differs from independent_calloc in that each
+ element may have a different size, and also that it does not
+ automatically clear elements.
+
+ independent_comalloc can be used to speed up allocation in cases
+ where several structs or objects must always be allocated at the
+ same time. For example:
+
+ struct Head { ... }
+ struct Foot { ... }
+
+ void send_message(char* msg) {
+ int msglen = strlen(msg);
+ size_t sizes[3] = { sizeof(struct Head), msglen, sizeof(struct Foot) };
+ void* chunks[3];
+ if (independent_comalloc(3, sizes, chunks) == 0)
+ die();
+ struct Head* head = (struct Head*)(chunks[0]);
+ char* body = (char*)(chunks[1]);
+ struct Foot* foot = (struct Foot*)(chunks[2]);
+ // ...
+ }
+
+ In general though, independent_comalloc is worth using only for
+ larger values of n_elements. For small values, you probably won't
+ detect enough difference from series of malloc calls to bother.
+
+ Overuse of independent_comalloc can increase overall memory usage,
+ since it cannot reuse existing noncontiguous small chunks that
+ might be available for some of the elements.
+*/
+void** dlindependent_comalloc(size_t, size_t*, void**);
+
+
+/*
+ pvalloc(size_t n);
+ Equivalent to valloc(minimum-page-that-holds(n)), that is,
+ round up n to nearest pagesize.
+ */
+void* dlpvalloc(size_t);
+
+/*
+ malloc_trim(size_t pad);
+
+ If possible, gives memory back to the system (via negative arguments
+ to sbrk) if there is unused memory at the `high' end of the malloc
+ pool or in unused MMAP segments. You can call this after freeing
+ large blocks of memory to potentially reduce the system-level memory
+ requirements of a program. However, it cannot guarantee to reduce
+ memory. Under some allocation patterns, some large free blocks of
+ memory will be locked between two used chunks, so they cannot be
+ given back to the system.
+
+ The `pad' argument to malloc_trim represents the amount of free
+ trailing space to leave untrimmed. If this argument is zero, only
+ the minimum amount of memory to maintain internal data structures
+ will be left. Non-zero arguments can be supplied to maintain enough
+ trailing space to service future expected allocations without having
+ to re-obtain memory from the system.
+
+ Malloc_trim returns 1 if it actually released any memory, else 0.
+*/
+int dlmalloc_trim(size_t);
+
+/*
+ malloc_stats();
+ Prints on stderr the amount of space obtained from the system (both
+ via sbrk and mmap), the maximum amount (which may be more than
+ current if malloc_trim and/or munmap got called), and the current
+ number of bytes allocated via malloc (or realloc, etc) but not yet
+ freed. Note that this is the number of bytes allocated, not the
+ number requested. It will be larger than the number requested
+ because of alignment and bookkeeping overhead. Because it includes
+ alignment wastage as being in use, this figure may be greater than
+ zero even when no user-level chunks are allocated.
+
+ The reported current and maximum system memory can be inaccurate if
+ a program makes other calls to system memory allocation functions
+ (normally sbrk) outside of malloc.
+
+ malloc_stats prints only the most commonly interesting statistics.
+ More information can be obtained by calling mallinfo.
+*/
+void dlmalloc_stats(void);
+
+#endif /* ONLY_MSPACES */
+
+/*
+ malloc_usable_size(void* p);
+
+ Returns the number of bytes you can actually use in
+ an allocated chunk, which may be more than you requested (although
+ often not) due to alignment and minimum size constraints.
+ You can use this many bytes without worrying about
+ overwriting other allocated objects. This is not a particularly great
+ programming practice. malloc_usable_size can be more useful in
+ debugging and assertions, for example:
+
+ p = malloc(n);
+ assert(malloc_usable_size(p) >= 256);
+*/
+size_t dlmalloc_usable_size(void*);
+
+
+#if MSPACES
+
+/*
+ mspace is an opaque type representing an independent
+ region of space that supports mspace_malloc, etc.
+*/
+typedef void* mspace;
+
+/*
+ create_mspace creates and returns a new independent space with the
+ given initial capacity, or, if 0, the default granularity size. It
+ returns null if there is no system memory available to create the
+ space. If argument locked is non-zero, the space uses a separate
+ lock to control access. The capacity of the space will grow
+ dynamically as needed to service mspace_malloc requests. You can
+ control the sizes of incremental increases of this space by
+ compiling with a different DEFAULT_GRANULARITY or dynamically
+ setting with mallopt(M_GRANULARITY, value).
+*/
+mspace create_mspace(size_t capacity, int locked);
+
+/*
+ destroy_mspace destroys the given space, and attempts to return all
+ of its memory back to the system, returning the total number of
+ bytes freed. After destruction, the results of access to all memory
+ used by the space become undefined.
+*/
+size_t destroy_mspace(mspace msp);
+
+/*
+ create_mspace_with_base uses the memory supplied as the initial base
+ of a new mspace. Part (less than 128*sizeof(size_t) bytes) of this
+ space is used for bookkeeping, so the capacity must be at least this
+ large. (Otherwise 0 is returned.) When this initial space is
+ exhausted, additional memory will be obtained from the system.
+ Destroying this space will deallocate all additionally allocated
+ space (if possible) but not the initial base.
+*/
+mspace create_mspace_with_base(void* base, size_t capacity, int locked);
+
+/*
+ mspace_track_large_chunks controls whether requests for large chunks
+ are allocated in their own untracked mmapped regions, separate from
+ others in this mspace. By default large chunks are not tracked,
+ which reduces fragmentation. However, such chunks are not
+ necessarily released to the system upon destroy_mspace. Enabling
+ tracking by setting to true may increase fragmentation, but avoids
+ leakage when relying on destroy_mspace to release all memory
+ allocated using this space. The function returns the previous
+ setting.
+*/
+int mspace_track_large_chunks(mspace msp, int enable);
+
+
+/*
+ mspace_malloc behaves as malloc, but operates within
+ the given space.
+*/
+void* mspace_malloc(mspace msp, size_t bytes);
+
+/*
+ mspace_free behaves as free, but operates within
+ the given space.
+
+ If compiled with FOOTERS==1, mspace_free is not actually needed.
+ free may be called instead of mspace_free because freed chunks from
+ any space are handled by their originating spaces.
+*/
+void mspace_free(mspace msp, void* mem);
+
+/*
+ mspace_realloc behaves as realloc, but operates within
+ the given space.
+
+ If compiled with FOOTERS==1, mspace_realloc is not actually
+ needed. realloc may be called instead of mspace_realloc because
+ realloced chunks from any space are handled by their originating
+ spaces.
+*/
+void* mspace_realloc(mspace msp, void* mem, size_t newsize);
+
+/*
+ mspace_calloc behaves as calloc, but operates within
+ the given space.
+*/
+void* mspace_calloc(mspace msp, size_t n_elements, size_t elem_size);
+
+/*
+ mspace_memalign behaves as memalign, but operates within
+ the given space.
+*/
+void* mspace_memalign(mspace msp, size_t alignment, size_t bytes);
+
+/*
+ mspace_independent_calloc behaves as independent_calloc, but
+ operates within the given space.
+*/
+void** mspace_independent_calloc(mspace msp, size_t n_elements,
+ size_t elem_size, void* chunks[]);
+
+/*
+ mspace_independent_comalloc behaves as independent_comalloc, but
+ operates within the given space.
+*/
+void** mspace_independent_comalloc(mspace msp, size_t n_elements,
+ size_t sizes[], void* chunks[]);
+
+/*
+ mspace_footprint() returns the number of bytes obtained from the
+ system for this space.
+*/
+size_t mspace_footprint(mspace msp);
+
+/*
+ mspace_max_footprint() returns the peak number of bytes obtained from the
+ system for this space.
+*/
+size_t mspace_max_footprint(mspace msp);
+
+
+#if !NO_MALLINFO
+/*
+ mspace_mallinfo behaves as mallinfo, but reports properties of
+ the given space.
+*/
+struct mallinfo mspace_mallinfo(mspace msp);
+#endif /* NO_MALLINFO */
+
+/*
+ malloc_usable_size(void* p) behaves the same as malloc_usable_size;
+*/
+ size_t mspace_usable_size(void* mem);
+
+/*
+ mspace_malloc_stats behaves as malloc_stats, but reports
+ properties of the given space.
+*/
+void mspace_malloc_stats(mspace msp);
+
+/*
+ mspace_trim behaves as malloc_trim, but
+ operates within the given space.
+*/
+int mspace_trim(mspace msp, size_t pad);
+
+/*
+ An alias for mallopt.
+*/
+int mspace_mallopt(int, int);
+
+#endif /* MSPACES */
+
+#ifdef __cplusplus
+} /* end of extern "C" */
+#endif /* __cplusplus */
+
+/*
+ ========================================================================
+ To make a fully customizable malloc.h header file, cut everything
+ above this line, put into file malloc.h, edit to suit, and #include it
+ on the next line, as well as in programs that use this malloc.
+ ========================================================================
+*/
+
+/* #include "malloc.h" */
+
+/*------------------------------ internal #includes ---------------------- */
+
+#ifdef WIN32
+#pragma warning( disable : 4146 ) /* no "unsigned" warnings */
+#endif /* WIN32 */
+
+#include <stdio.h> /* for printing in malloc_stats */
+
+#ifndef LACKS_ERRNO_H
+#include <errno.h> /* for MALLOC_FAILURE_ACTION */
+#endif /* LACKS_ERRNO_H */
+#if FOOTERS || DEBUG
+#include <time.h> /* for magic initialization */
+#endif /* FOOTERS */
+#ifndef LACKS_STDLIB_H
+#include <stdlib.h> /* for abort() */
+#endif /* LACKS_STDLIB_H */
+#ifdef DEBUG
+#if ABORT_ON_ASSERT_FAILURE
+#undef assert
+#define assert(x) if(!(x)) ABORT
+#else /* ABORT_ON_ASSERT_FAILURE */
+#include <assert.h>
+#endif /* ABORT_ON_ASSERT_FAILURE */
+#else /* DEBUG */
+#ifndef assert
+#define assert(x)
+#endif
+#define DEBUG 0
+#endif /* DEBUG */
+#ifndef LACKS_STRING_H
+#include <string.h> /* for memset etc */
+#endif /* LACKS_STRING_H */
+#if USE_BUILTIN_FFS
+#ifndef LACKS_STRINGS_H
+#include <strings.h> /* for ffs */
+#endif /* LACKS_STRINGS_H */
+#endif /* USE_BUILTIN_FFS */
+#if HAVE_MMAP
+#ifndef LACKS_SYS_MMAN_H
+/* On some versions of linux, mremap decl in mman.h needs __USE_GNU set */
+#if (defined(linux) && !defined(__USE_GNU))
+#define __USE_GNU 1
+#include <sys/mman.h> /* for mmap */
+#undef __USE_GNU
+#else
+#include <sys/mman.h> /* for mmap */
+#endif /* linux */
+#endif /* LACKS_SYS_MMAN_H */
+#ifndef LACKS_FCNTL_H
+#include <fcntl.h>
+#endif /* LACKS_FCNTL_H */
+#endif /* HAVE_MMAP */
+#ifndef LACKS_UNISTD_H
+#include <unistd.h> /* for sbrk, sysconf */
+#else /* LACKS_UNISTD_H */
+#if !defined(__FreeBSD__) && !defined(__OpenBSD__) && !defined(__NetBSD__)
+extern void* sbrk(ptrdiff_t);
+#endif /* FreeBSD etc */
+#endif /* LACKS_UNISTD_H */
+
+/* Declarations for locking */
+#if USE_LOCKS
+#ifndef WIN32
+#include <pthread.h>
+#if defined (__SVR4) && defined (__sun) /* solaris */
+#include <thread.h>
+#endif /* solaris */
+#else
+#ifndef _M_AMD64
+/* These are already defined on AMD64 builds */
+#ifdef __cplusplus
+extern "C" {
+#endif /* __cplusplus */
+LONG __cdecl _InterlockedCompareExchange(LONG volatile *Dest, LONG Exchange, LONG Comp);
+LONG __cdecl _InterlockedExchange(LONG volatile *Target, LONG Value);
+#ifdef __cplusplus
+}
+#endif /* __cplusplus */
+#endif /* _M_AMD64 */
+#pragma intrinsic (_InterlockedCompareExchange)
+#pragma intrinsic (_InterlockedExchange)
+#define interlockedcompareexchange _InterlockedCompareExchange
+#define interlockedexchange _InterlockedExchange
+#endif /* Win32 */
+#endif /* USE_LOCKS */
+
+/* Declarations for bit scanning on win32 */
+#if defined(_MSC_VER) && _MSC_VER>=1300
+#ifndef BitScanForward /* Try to avoid pulling in WinNT.h */
+#ifdef __cplusplus
+extern "C" {
+#endif /* __cplusplus */
+unsigned char _BitScanForward(unsigned long *index, unsigned long mask);
+unsigned char _BitScanReverse(unsigned long *index, unsigned long mask);
+#ifdef __cplusplus
+}
+#endif /* __cplusplus */
+
+#define BitScanForward _BitScanForward
+#define BitScanReverse _BitScanReverse
+#pragma intrinsic(_BitScanForward)
+#pragma intrinsic(_BitScanReverse)
+#endif /* BitScanForward */
+#endif /* defined(_MSC_VER) && _MSC_VER>=1300 */
+
+#ifndef WIN32
+#ifndef malloc_getpagesize
+# ifdef _SC_PAGESIZE /* some SVR4 systems omit an underscore */
+# ifndef _SC_PAGE_SIZE
+# define _SC_PAGE_SIZE _SC_PAGESIZE
+# endif
+# endif
+# ifdef _SC_PAGE_SIZE
+# define malloc_getpagesize sysconf(_SC_PAGE_SIZE)
+# else
+# if defined(BSD) || defined(DGUX) || defined(HAVE_GETPAGESIZE)
+ extern size_t getpagesize();
+# define malloc_getpagesize getpagesize()
+# else
+# ifdef WIN32 /* use supplied emulation of getpagesize */
+# define malloc_getpagesize getpagesize()
+# else
+# ifndef LACKS_SYS_PARAM_H
+# include <sys/param.h>
+# endif
+# ifdef EXEC_PAGESIZE
+# define malloc_getpagesize EXEC_PAGESIZE
+# else
+# ifdef NBPG
+# ifndef CLSIZE
+# define malloc_getpagesize NBPG
+# else
+# define malloc_getpagesize (NBPG * CLSIZE)
+# endif
+# else
+# ifdef NBPC
+# define malloc_getpagesize NBPC
+# else
+# ifdef PAGESIZE
+# define malloc_getpagesize PAGESIZE
+# else /* just guess */
+# define malloc_getpagesize ((size_t)4096U)
+# endif
+# endif
+# endif
+# endif
+# endif
+# endif
+# endif
+#endif
+#endif
+
+
+
+/* ------------------- size_t and alignment properties -------------------- */
+
+/* The byte and bit size of a size_t */
+#define SIZE_T_SIZE (sizeof(size_t))
+#define SIZE_T_BITSIZE (sizeof(size_t) << 3)
+
+/* Some constants coerced to size_t */
+/* Annoying but necessary to avoid errors on some platforms */
+#define SIZE_T_ZERO ((size_t)0)
+#define SIZE_T_ONE ((size_t)1)
+#define SIZE_T_TWO ((size_t)2)
+#define SIZE_T_FOUR ((size_t)4)
+#define TWO_SIZE_T_SIZES (SIZE_T_SIZE<<1)
+#define FOUR_SIZE_T_SIZES (SIZE_T_SIZE<<2)
+#define SIX_SIZE_T_SIZES (FOUR_SIZE_T_SIZES+TWO_SIZE_T_SIZES)
+#define HALF_MAX_SIZE_T (MAX_SIZE_T / 2U)
+
+/* The bit mask value corresponding to MALLOC_ALIGNMENT */
+#define CHUNK_ALIGN_MASK (MALLOC_ALIGNMENT - SIZE_T_ONE)
+
+/* True if address a has acceptable alignment */
+#define is_aligned(A) (((size_t)((A)) & (CHUNK_ALIGN_MASK)) == 0)
+
+/* the number of bytes to offset an address to align it */
+#define align_offset(A)\
+ ((((size_t)(A) & CHUNK_ALIGN_MASK) == 0)? 0 :\
+ ((MALLOC_ALIGNMENT - ((size_t)(A) & CHUNK_ALIGN_MASK)) & CHUNK_ALIGN_MASK))
+
+/*
+ malloc_params holds global properties, including those that can be
+ dynamically set using mallopt. There is a single instance, mparams,
+ initialized in init_mparams. Note that the non-zeroness of "magic"
+ also serves as an initialization flag.
+*/
+typedef unsigned int flag_t;
+struct malloc_params {
+ volatile size_t magic;
+ size_t page_size;
+ size_t granularity;
+ size_t mmap_threshold;
+ size_t trim_threshold;
+ flag_t default_mflags;
+};
+
+static struct malloc_params mparams;
+
+/* Ensure mparams initialized */
+#define ensure_initialization() (void)(mparams.magic != 0 || init_mparams())
+
+/* -------------------------- MMAP preliminaries ------------------------- */
+
+/*
+ If HAVE_MORECORE or HAVE_MMAP are false, we just define calls and
+ checks to fail so compiler optimizer can delete code rather than
+ using so many "#if"s.
+*/
+
+
+/* MORECORE and MMAP must return MFAIL on failure */
+#define MFAIL ((void*)(MAX_SIZE_T))
+#define CMFAIL ((char*)(MFAIL)) /* defined for convenience */
+
+#if HAVE_MMAP
+
+#ifndef WIN32
+#if !defined(MAP_ANONYMOUS) && defined(MAP_ANON)
+#define MAP_ANONYMOUS MAP_ANON
+#endif /* MAP_ANON */
+#ifdef DEFAULT_GRANULARITY_ALIGNED
+#define MMAP_IMPL mmap_aligned
+static void* lastAlignedmmap; /* Used as a hint */
+static void* mmap_aligned(void *start, size_t length, int prot, int flags, int fd, off_t offset) {
+ void* baseaddress = 0;
+ void* ptr = 0;
+ if(!start) {
+ baseaddress = lastAlignedmmap;
+ for(;;) {
+ if(baseaddress) flags|=MAP_FIXED;
+ ptr = mmap(baseaddress, length, prot, flags, fd, offset);
+ if(!ptr)
+ baseaddress = (void*)((size_t)baseaddress + mparams.granularity);
+ else if((size_t)ptr & (mparams.granularity - SIZE_T_ONE)) {
+ munmap(ptr, length);
+ baseaddress = (void*)(((size_t)ptr + mparams.granularity) & ~(mparams.granularity - SIZE_T_ONE));
+ }
+ else break;
+ }
+ }
+ else ptr = mmap(start, length, prot, flags, fd, offset);
+ if(ptr) lastAlignedmmap = (void*)((size_t) ptr + mparams.granularity);
+ return ptr;
+}
+#else
+#define MMAP_IMPL mmap
+#endif /* DEFAULT_GRANULARITY_ALIGNED */
+#define MUNMAP_DEFAULT(a, s) munmap((a), (s))
+#define MMAP_PROT (PROT_READ|PROT_WRITE)
+#ifdef MAP_ANONYMOUS
+#define MMAP_FLAGS (MAP_PRIVATE|MAP_ANONYMOUS)
+#define MMAP_DEFAULT(s) MMAP_IMPL(0, (s), MMAP_PROT, MMAP_FLAGS, -1, 0)
+#else /* MAP_ANONYMOUS */
+/*
+ Nearly all versions of mmap support MAP_ANONYMOUS, so the following
+ is unlikely to be needed, but is supplied just in case.
+*/
+#define MMAP_FLAGS (MAP_PRIVATE)
+static int dev_zero_fd = -1; /* Cached file descriptor for /dev/zero. */
+#define MMAP_DEFAULT(s) ((dev_zero_fd < 0) ? \
+ (dev_zero_fd = open("/dev/zero", O_RDWR), \
+ MMAP_IMPL(0, (s), MMAP_PROT, MMAP_FLAGS, dev_zero_fd, 0)) : \
+ MMAP_IMPL(0, (s), MMAP_PROT, MMAP_FLAGS, dev_zero_fd, 0))
+#endif /* MAP_ANONYMOUS */
+
+#define DIRECT_MMAP_DEFAULT(s) MMAP_DEFAULT(s)
+
+#else /* WIN32 */
+
+/* Win32 MMAP via VirtualAlloc */
+#ifdef DEFAULT_GRANULARITY_ALIGNED
+static void* lastWin32mmap; /* Used as a hint */
+#endif /* DEFAULT_GRANULARITY_ALIGNED */
+#ifdef ENABLE_LARGE_PAGES
+static int largepagesavailable = 1;
+#endif /* ENABLE_LARGE_PAGES */
+static FORCEINLINE void* win32mmap(size_t size) {
+ void* baseaddress = 0;
+ void* ptr = 0;
+#ifdef ENABLE_LARGE_PAGES
+ /* Note that large pages are *always* allocated on a large page boundary.
+ If however granularity is small then don't waste a kernel call if size
+ isn't around the size of a large page */
+ if(largepagesavailable && size >= 1*1024*1024) {
+ ptr = VirtualAlloc(baseaddress, size, MEM_RESERVE|MEM_COMMIT|MEM_LARGE_PAGES, PAGE_READWRITE);
+ if(!ptr && ERROR_PRIVILEGE_NOT_HELD==GetLastError()) largepagesavailable=0;
+ }
+#endif
+ if(!ptr) {
+#ifdef DEFAULT_GRANULARITY_ALIGNED
+ /* We try to avoid overhead by speculatively reserving at aligned
+ addresses until we succeed */
+ baseaddress = lastWin32mmap;
+ for(;;) {
+ void* reserveaddr = VirtualAlloc(baseaddress, size, MEM_RESERVE, PAGE_READWRITE);
+ if(!reserveaddr)
+ baseaddress = (void*)((size_t)baseaddress + mparams.granularity);
+ else if((size_t)reserveaddr & (mparams.granularity - SIZE_T_ONE)) {
+ VirtualFree(reserveaddr, 0, MEM_RELEASE);
+ baseaddress = (void*)(((size_t)reserveaddr + mparams.granularity) & ~(mparams.granularity - SIZE_T_ONE));
+ }
+ else break;
+ }
+#endif
+ if(!ptr) ptr = VirtualAlloc(baseaddress, size, baseaddress ? MEM_COMMIT : MEM_RESERVE|MEM_COMMIT, PAGE_READWRITE);
+#if DEBUG
+ if(lastWin32mmap && ptr!=lastWin32mmap) printf("Non-contiguous VirtualAlloc between %p and %p\n", ptr, lastWin32mmap);
+#endif
+#ifdef DEFAULT_GRANULARITY_ALIGNED
+ if(ptr) lastWin32mmap = (void*)((size_t) ptr + mparams.granularity);
+#endif
+ }
+#if DEBUG
+#ifdef ENABLE_LARGE_PAGES
+ printf("VirtualAlloc returns %p size %u. LargePagesAvailable=%d\n", ptr, size, largepagesavailable);
+#else
+ printf("VirtualAlloc returns %p size %u\n", ptr, size);
+#endif
+#endif
+ return (ptr != 0)? ptr: MFAIL;
+}
+
+/* For direct MMAP, use MEM_TOP_DOWN to minimize interference */
+static FORCEINLINE void* win32direct_mmap(size_t size) {
+ void* ptr = VirtualAlloc(0, size, MEM_RESERVE|MEM_COMMIT|MEM_TOP_DOWN,
+ PAGE_READWRITE);
+ return (ptr != 0)? ptr: MFAIL;
+}
+
+/* This function supports releasing coalesed segments */
+static FORCEINLINE int win32munmap(void* ptr, size_t size) {
+ MEMORY_BASIC_INFORMATION minfo;
+ char* cptr = (char*)ptr;
+ while (size) {
+ if (VirtualQuery(cptr, &minfo, sizeof(minfo)) == 0)
+ return -1;
+ if (minfo.BaseAddress != cptr || minfo.AllocationBase != cptr ||
+ minfo.State != MEM_COMMIT || minfo.RegionSize > size)
+ return -1;
+ if (VirtualFree(cptr, 0, MEM_RELEASE) == 0)
+ return -1;
+ cptr += minfo.RegionSize;
+ size -= minfo.RegionSize;
+ }
+ return 0;
+}
+
+#define MMAP_DEFAULT(s) win32mmap(s)
+#define MUNMAP_DEFAULT(a, s) win32munmap((a), (s))
+#define DIRECT_MMAP_DEFAULT(s) win32direct_mmap(s)
+#endif /* WIN32 */
+#endif /* HAVE_MMAP */
+
+#if HAVE_MREMAP
+#ifndef WIN32
+#define MREMAP_DEFAULT(addr, osz, nsz, mv) mremap((addr), (osz), (nsz), (mv))
+#endif /* WIN32 */
+#endif /* HAVE_MREMAP */
+
+
+/**
+ * Define CALL_MORECORE
+ */
+#if HAVE_MORECORE
+ #ifdef MORECORE
+ #define CALL_MORECORE(S) MORECORE(S)
+ #else /* MORECORE */
+ #define CALL_MORECORE(S) MORECORE_DEFAULT(S)
+ #endif /* MORECORE */
+#else /* HAVE_MORECORE */
+ #define CALL_MORECORE(S) MFAIL
+#endif /* HAVE_MORECORE */
+
+/**
+ * Define CALL_MMAP/CALL_MUNMAP/CALL_DIRECT_MMAP
+ */
+#if HAVE_MMAP
+ #define USE_MMAP_BIT (SIZE_T_ONE)
+
+ #ifdef MMAP
+ #define CALL_MMAP(s) MMAP(s)
+ #else /* MMAP */
+ #define CALL_MMAP(s) MMAP_DEFAULT(s)
+ #endif /* MMAP */
+ #ifdef MUNMAP
+ #define CALL_MUNMAP(a, s) MUNMAP((a), (s))
+ #else /* MUNMAP */
+ #define CALL_MUNMAP(a, s) MUNMAP_DEFAULT((a), (s))
+ #endif /* MUNMAP */
+ #ifdef DIRECT_MMAP
+ #define CALL_DIRECT_MMAP(s) DIRECT_MMAP(s)
+ #else /* DIRECT_MMAP */
+ #define CALL_DIRECT_MMAP(s) DIRECT_MMAP_DEFAULT(s)
+ #endif /* DIRECT_MMAP */
+#else /* HAVE_MMAP */
+ #define USE_MMAP_BIT (SIZE_T_ZERO)
+
+ #define MMAP(s) MFAIL
+ #define MUNMAP(a, s) (-1)
+ #define DIRECT_MMAP(s) MFAIL
+ #define CALL_DIRECT_MMAP(s) DIRECT_MMAP(s)
+ #define CALL_MMAP(s) MMAP(s)
+ #define CALL_MUNMAP(a, s) MUNMAP((a), (s))
+#endif /* HAVE_MMAP */
+
+/**
+ * Define CALL_MREMAP
+ */
+#if HAVE_MMAP && HAVE_MREMAP
+ #ifdef MREMAP
+ #define CALL_MREMAP(addr, osz, nsz, mv) MREMAP((addr), (osz), (nsz), (mv))
+ #else /* MREMAP */
+ #define CALL_MREMAP(addr, osz, nsz, mv) MREMAP_DEFAULT((addr), (osz), (nsz), (mv))
+ #endif /* MREMAP */
+#else /* HAVE_MMAP && HAVE_MREMAP */
+ #define CALL_MREMAP(addr, osz, nsz, mv) MFAIL
+#endif /* HAVE_MMAP && HAVE_MREMAP */
+
+/* mstate bit set if continguous morecore disabled or failed */
+#define USE_NONCONTIGUOUS_BIT (4U)
+
+/* segment bit set in create_mspace_with_base */
+#define EXTERN_BIT (8U)
+
+
+/* --------------------------- Lock preliminaries ------------------------ */
+
+/*
+ When locks are defined, there is one global lock, plus
+ one per-mspace lock.
+
+ The global lock_ensures that mparams.magic and other unique
+ mparams values are initialized only once. It also protects
+ sequences of calls to MORECORE. In many cases sys_alloc requires
+ two calls, that should not be interleaved with calls by other
+ threads. This does not protect against direct calls to MORECORE
+ by other threads not using this lock, so there is still code to
+ cope the best we can on interference.
+
+ Per-mspace locks surround calls to malloc, free, etc. To enable use
+ in layered extensions, per-mspace locks are reentrant.
+
+ Because lock-protected regions generally have bounded times, it is
+ OK to use the supplied simple spinlocks in the custom versions for
+ x86. Spinlocks are likely to improve performance for lightly
+ contended applications, but worsen performance under heavy
+ contention.
+
+ If USE_LOCKS is > 1, the definitions of lock routines here are
+ bypassed, in which case you will need to define the type MLOCK_T,
+ and at least INITIAL_LOCK, ACQUIRE_LOCK, RELEASE_LOCK and possibly
+ TRY_LOCK (which is not used in this malloc, but commonly needed in
+ extensions.) You must also declare a
+ static MLOCK_T malloc_global_mutex = { initialization values };.
+
+*/
+
+#if USE_LOCKS == 1
+
+#if USE_SPIN_LOCKS && SPIN_LOCKS_AVAILABLE
+#ifndef WIN32
+
+/* Custom pthread-style spin locks on x86 and x64 for gcc */
+struct pthread_mlock_t {
+ volatile unsigned int l;
+ char cachelinepadding[64];
+ unsigned int c;
+ pthread_t threadid;
+};
+#define MLOCK_T struct pthread_mlock_t
+#define CURRENT_THREAD pthread_self()
+#define INITIAL_LOCK(sl) ((sl)->threadid = 0, (sl)->l = (sl)->c = 0, 0)
+#define ACQUIRE_LOCK(sl) pthread_acquire_lock(sl)
+#define RELEASE_LOCK(sl) pthread_release_lock(sl)
+#define TRY_LOCK(sl) pthread_try_lock(sl)
+#define SPINS_PER_YIELD 63
+
+static MLOCK_T malloc_global_mutex = { 0, "", 0, 0};
+
+static FORCEINLINE int pthread_acquire_lock (MLOCK_T *sl) {
+ int spins = 0;
+ volatile unsigned int* lp = &sl->l;
+ for (;;) {
+ if (*lp != 0) {
+ if (sl->threadid == CURRENT_THREAD) {
+ ++sl->c;
+ return 0;
+ }
+ }
+ else {
+ /* place args to cmpxchgl in locals to evade oddities in some gccs */
+ int cmp = 0;
+ int val = 1;
+ int ret;
+ __asm__ __volatile__ ("lock; cmpxchgl %1, %2"
+ : "=a" (ret)
+ : "r" (val), "m" (*(lp)), "0"(cmp)
+ : "memory", "cc");
+ if (!ret) {
+ assert(!sl->threadid);
+ sl->threadid = CURRENT_THREAD;
+ sl->c = 1;
+ return 0;
+ }
+ }
+ if ((++spins & SPINS_PER_YIELD) == 0) {
+#if defined (__SVR4) && defined (__sun) /* solaris */
+ thr_yield();
+#else
+#if defined(__linux__) || defined(__FreeBSD__) || defined(__APPLE__)
+ sched_yield();
+#else /* no-op yield on unknown systems */
+ ;
+#endif /* __linux__ || __FreeBSD__ || __APPLE__ */
+#endif /* solaris */
+ }
+ }
+}
+
+static FORCEINLINE void pthread_release_lock (MLOCK_T *sl) {
+ volatile unsigned int* lp = &sl->l;
+ assert(*lp != 0);
+ assert(sl->threadid == CURRENT_THREAD);
+ if (--sl->c == 0) {
+ sl->threadid = 0;
+ int prev = 0;
+ int ret;
+ __asm__ __volatile__ ("lock; xchgl %0, %1"
+ : "=r" (ret)
+ : "m" (*(lp)), "0"(prev)
+ : "memory");
+ }
+}
+
+static FORCEINLINE int pthread_try_lock (MLOCK_T *sl) {
+ volatile unsigned int* lp = &sl->l;
+ if (*lp != 0) {
+ if (sl->threadid == CURRENT_THREAD) {
+ ++sl->c;
+ return 1;
+ }
+ }
+ else {
+ int cmp = 0;
+ int val = 1;
+ int ret;
+ __asm__ __volatile__ ("lock; cmpxchgl %1, %2"
+ : "=a" (ret)
+ : "r" (val), "m" (*(lp)), "0"(cmp)
+ : "memory", "cc");
+ if (!ret) {
+ assert(!sl->threadid);
+ sl->threadid = CURRENT_THREAD;
+ sl->c = 1;
+ return 1;
+ }
+ }
+ return 0;
+}
+
+
+#else /* WIN32 */
+/* Custom win32-style spin locks on x86 and x64 for MSC */
+struct win32_mlock_t {
+ volatile long l;
+ char cachelinepadding[64];
+ unsigned int c;
+ long threadid;
+};
+
+#define MLOCK_T struct win32_mlock_t
+#define CURRENT_THREAD ((long)GetCurrentThreadId())
+#define INITIAL_LOCK(sl) ((sl)->threadid = 0, (sl)->l = (sl)->c = 0, 0)
+#define ACQUIRE_LOCK(sl) win32_acquire_lock(sl)
+#define RELEASE_LOCK(sl) win32_release_lock(sl)
+#define TRY_LOCK(sl) win32_try_lock(sl)
+#define SPINS_PER_YIELD 63
+
+static MLOCK_T malloc_global_mutex = { 0, 0, 0};
+
+static FORCEINLINE int win32_acquire_lock (MLOCK_T *sl) {
+ int spins = 0;
+ for (;;) {
+ if (sl->l != 0) {
+ if (sl->threadid == CURRENT_THREAD) {
+ ++sl->c;
+ return 0;
+ }
+ }
+ else {
+ if (!interlockedexchange(&sl->l, 1)) {
+ assert(!sl->threadid);
+ sl->threadid = CURRENT_THREAD;
+ sl->c = 1;
+ return 0;
+ }
+ }
+ if ((++spins & SPINS_PER_YIELD) == 0)
+ SleepEx(0, FALSE);
+ }
+}
+
+static FORCEINLINE void win32_release_lock (MLOCK_T *sl) {
+ assert(sl->threadid == CURRENT_THREAD);
+ assert(sl->l != 0);
+ if (--sl->c == 0) {
+ sl->threadid = 0;
+ interlockedexchange (&sl->l, 0);
+ }
+}
+
+static FORCEINLINE int win32_try_lock (MLOCK_T *sl) {
+ if (sl->l != 0) {
+ if (sl->threadid == CURRENT_THREAD) {
+ ++sl->c;
+ return 1;
+ }
+ }
+ else {
+ if (!interlockedexchange(&sl->l, 1)){
+ assert(!sl->threadid);
+ sl->threadid = CURRENT_THREAD;
+ sl->c = 1;
+ return 1;
+ }
+ }
+ return 0;
+}
+
+#endif /* WIN32 */
+#else /* USE_SPIN_LOCKS */
+
+#ifndef WIN32
+/* pthreads-based locks */
+
+#define MLOCK_T pthread_mutex_t
+#define CURRENT_THREAD pthread_self()
+#define INITIAL_LOCK(sl) pthread_init_lock(sl)
+#define ACQUIRE_LOCK(sl) pthread_mutex_lock(sl)
+#define RELEASE_LOCK(sl) pthread_mutex_unlock(sl)
+#define TRY_LOCK(sl) (!pthread_mutex_trylock(sl))
+
+static MLOCK_T malloc_global_mutex = PTHREAD_MUTEX_INITIALIZER;
+
+/* Cope with old-style linux recursive lock initialization by adding */
+/* skipped internal declaration from pthread.h */
+#ifdef linux
+#ifndef PTHREAD_MUTEX_RECURSIVE
+extern int pthread_mutexattr_setkind_np __P ((pthread_mutexattr_t *__attr,
+ int __kind));
+#define PTHREAD_MUTEX_RECURSIVE PTHREAD_MUTEX_RECURSIVE_NP
+#define pthread_mutexattr_settype(x,y) pthread_mutexattr_setkind_np(x,y)
+#endif
+#endif
+
+static int pthread_init_lock (MLOCK_T *sl) {
+ pthread_mutexattr_t attr;
+ if (pthread_mutexattr_init(&attr)) return 1;
+ if (pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_RECURSIVE)) return 1;
+ if (pthread_mutex_init(sl, &attr)) return 1;
+ if (pthread_mutexattr_destroy(&attr)) return 1;
+ return 0;
+}
+
+#else /* WIN32 */
+/* Win32 critical sections */
+#define MLOCK_T CRITICAL_SECTION
+#define CURRENT_THREAD GetCurrentThreadId()
+#define INITIAL_LOCK(s) (!InitializeCriticalSectionAndSpinCount((s), 0x80000000|4000))
+#define ACQUIRE_LOCK(s) (EnterCriticalSection(sl), 0)
+#define RELEASE_LOCK(s) LeaveCriticalSection(sl)
+#define TRY_LOCK(s) TryEnterCriticalSection(sl)
+#define NEED_GLOBAL_LOCK_INIT
+
+static MLOCK_T malloc_global_mutex;
+static volatile long malloc_global_mutex_status;
+
+/* Use spin loop to initialize global lock */
+static void init_malloc_global_mutex() {
+ for (;;) {
+ long stat = malloc_global_mutex_status;
+ if (stat > 0)
+ return;
+ /* transition to < 0 while initializing, then to > 0) */
+ if (stat == 0 &&
+ interlockedcompareexchange(&malloc_global_mutex_status, -1, 0) == 0) {
+ InitializeCriticalSection(&malloc_global_mutex);
+ interlockedexchange(&malloc_global_mutex_status,1);
+ return;
+ }
+ SleepEx(0, FALSE);
+ }
+}
+
+#endif /* WIN32 */
+#endif /* USE_SPIN_LOCKS */
+#endif /* USE_LOCKS == 1 */
+
+/* ----------------------- User-defined locks ------------------------ */
+
+#if USE_LOCKS > 1
+/* Define your own lock implementation here */
+/* #define INITIAL_LOCK(sl) ... */
+/* #define ACQUIRE_LOCK(sl) ... */
+/* #define RELEASE_LOCK(sl) ... */
+/* #define TRY_LOCK(sl) ... */
+/* static MLOCK_T malloc_global_mutex = ... */
+#endif /* USE_LOCKS > 1 */
+
+/* ----------------------- Lock-based state ------------------------ */
+
+#if USE_LOCKS
+#define USE_LOCK_BIT (2U)
+#else /* USE_LOCKS */
+#define USE_LOCK_BIT (0U)
+#define INITIAL_LOCK(l)
+#endif /* USE_LOCKS */
+
+#if USE_LOCKS
+#ifndef ACQUIRE_MALLOC_GLOBAL_LOCK
+#define ACQUIRE_MALLOC_GLOBAL_LOCK() ACQUIRE_LOCK(&malloc_global_mutex);
+#endif
+#ifndef RELEASE_MALLOC_GLOBAL_LOCK
+#define RELEASE_MALLOC_GLOBAL_LOCK() RELEASE_LOCK(&malloc_global_mutex);
+#endif
+#else /* USE_LOCKS */
+#define ACQUIRE_MALLOC_GLOBAL_LOCK()
+#define RELEASE_MALLOC_GLOBAL_LOCK()
+#endif /* USE_LOCKS */
+
+
+/* ----------------------- Chunk representations ------------------------ */
+
+/*
+ (The following includes lightly edited explanations by Colin Plumb.)
+
+ The malloc_chunk declaration below is misleading (but accurate and
+ necessary). It declares a "view" into memory allowing access to
+ necessary fields at known offsets from a given base.
+
+ Chunks of memory are maintained using a `boundary tag' method as
+ originally described by Knuth. (See the paper by Paul Wilson
+ ftp://ftp.cs.utexas.edu/pub/garbage/allocsrv.ps for a survey of such
+ techniques.) Sizes of free chunks are stored both in the front of
+ each chunk and at the end. This makes consolidating fragmented
+ chunks into bigger chunks fast. The head fields also hold bits
+ representing whether chunks are free or in use.
+
+ Here are some pictures to make it clearer. They are "exploded" to
+ show that the state of a chunk can be thought of as extending from
+ the high 31 bits of the head field of its header through the
+ prev_foot and PINUSE_BIT bit of the following chunk header.
+
+ A chunk that's in use looks like:
+
+ chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+ | Size of previous chunk (if P = 0) |
+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |P|
+ | Size of this chunk 1| +-+
+ mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+ | |
+ +- -+
+ | |
+ +- -+
+ | :
+ +- size - sizeof(size_t) available payload bytes -+
+ : |
+ chunk-> +- -+
+ | |
+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |1|
+ | Size of next chunk (may or may not be in use) | +-+
+ mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+
+ And if it's free, it looks like this:
+
+ chunk-> +- -+
+ | User payload (must be in use, or we would have merged!) |
+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |P|
+ | Size of this chunk 0| +-+
+ mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+ | Next pointer |
+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+ | Prev pointer |
+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+ | :
+ +- size - sizeof(struct chunk) unused bytes -+
+ : |
+ chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+ | Size of this chunk |
+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |0|
+ | Size of next chunk (must be in use, or we would have merged)| +-+
+ mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+ | :
+ +- User payload -+
+ : |
+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+ |0|
+ +-+
+ Note that since we always merge adjacent free chunks, the chunks
+ adjacent to a free chunk must be in use.
+
+ Given a pointer to a chunk (which can be derived trivially from the
+ payload pointer) we can, in O(1) time, find out whether the adjacent
+ chunks are free, and if so, unlink them from the lists that they
+ are on and merge them with the current chunk.
+
+ Chunks always begin on even word boundaries, so the mem portion
+ (which is returned to the user) is also on an even word boundary, and
+ thus at least double-word aligned.
+
+ The P (PINUSE_BIT) bit, stored in the unused low-order bit of the
+ chunk size (which is always a multiple of two words), is an in-use
+ bit for the *previous* chunk. If that bit is *clear*, then the
+ word before the current chunk size contains the previous chunk
+ size, and can be used to find the front of the previous chunk.
+ The very first chunk allocated always has this bit set, preventing
+ access to non-existent (or non-owned) memory. If pinuse is set for
+ any given chunk, then you CANNOT determine the size of the
+ previous chunk, and might even get a memory addressing fault when
+ trying to do so.
+
+ The C (CINUSE_BIT) bit, stored in the unused second-lowest bit of
+ the chunk size redundantly records whether the current chunk is
+ inuse (unless the chunk is mmapped). This redundancy enables usage
+ checks within free and realloc, and reduces indirection when freeing
+ and consolidating chunks.
+
+ Each freshly allocated chunk must have both cinuse and pinuse set.
+ That is, each allocated chunk borders either a previously allocated
+ and still in-use chunk, or the base of its memory arena. This is
+ ensured by making all allocations from the the `lowest' part of any
+ found chunk. Further, no free chunk physically borders another one,
+ so each free chunk is known to be preceded and followed by either
+ inuse chunks or the ends of memory.
+
+ Note that the `foot' of the current chunk is actually represented
+ as the prev_foot of the NEXT chunk. This makes it easier to
+ deal with alignments etc but can be very confusing when trying
+ to extend or adapt this code.
+
+ The exceptions to all this are
+
+ 1. The special chunk `top' is the top-most available chunk (i.e.,
+ the one bordering the end of available memory). It is treated
+ specially. Top is never included in any bin, is used only if
+ no other chunk is available, and is released back to the
+ system if it is very large (see M_TRIM_THRESHOLD). In effect,
+ the top chunk is treated as larger (and thus less well
+ fitting) than any other available chunk. The top chunk
+ doesn't update its trailing size field since there is no next
+ contiguous chunk that would have to index off it. However,
+ space is still allocated for it (TOP_FOOT_SIZE) to enable
+ separation or merging when space is extended.
+
+ 3. Chunks allocated via mmap, have both cinuse and pinuse bits
+ cleared in their head fields. Because they are allocated
+ one-by-one, each must carry its own prev_foot field, which is
+ also used to hold the offset this chunk has within its mmapped
+ region, which is needed to preserve alignment. Each mmapped
+ chunk is trailed by the first two fields of a fake next-chunk
+ for sake of usage checks.
+
+*/
+
+struct malloc_chunk {
+ size_t prev_foot; /* Size of previous chunk (if free). */
+ size_t head; /* Size and inuse bits. */
+ struct malloc_chunk* fd; /* double links -- used only if free. */
+ struct malloc_chunk* bk;
+};
+
+typedef struct malloc_chunk mchunk;
+typedef struct malloc_chunk* mchunkptr;
+typedef struct malloc_chunk* sbinptr; /* The type of bins of chunks */
+typedef unsigned int bindex_t; /* Described below */
+typedef unsigned int binmap_t; /* Described below */
+
+/* ------------------- Chunks sizes and alignments ----------------------- */
+
+#define MCHUNK_SIZE (sizeof(mchunk))
+
+#if FOOTERS
+#define CHUNK_OVERHEAD (TWO_SIZE_T_SIZES)
+#else /* FOOTERS */
+#define CHUNK_OVERHEAD (SIZE_T_SIZE)
+#endif /* FOOTERS */
+
+/* MMapped chunks need a second word of overhead ... */
+#define MMAP_CHUNK_OVERHEAD (TWO_SIZE_T_SIZES)
+/* ... and additional padding for fake next-chunk at foot */
+#define MMAP_FOOT_PAD (FOUR_SIZE_T_SIZES)
+
+/* The smallest size we can malloc is an aligned minimal chunk */
+#define MIN_CHUNK_SIZE\
+ ((MCHUNK_SIZE + CHUNK_ALIGN_MASK) & ~CHUNK_ALIGN_MASK)
+
+/* conversion from malloc headers to user pointers, and back */
+#define chunk2mem(p) ((void*)((char*)(p) + TWO_SIZE_T_SIZES))
+#define mem2chunk(mem) ((mchunkptr)((char*)(mem) - TWO_SIZE_T_SIZES))
+/* chunk associated with aligned address A */
+#define align_as_chunk(A) (mchunkptr)((A) + align_offset(chunk2mem(A)))
+
+/* Bounds on request (not chunk) sizes. */
+#define MAX_REQUEST ((-MIN_CHUNK_SIZE) << 2)
+#define MIN_REQUEST (MIN_CHUNK_SIZE - CHUNK_OVERHEAD - SIZE_T_ONE)
+
+/* pad request bytes into a usable size */
+#define pad_request(req) \
+ (((req) + CHUNK_OVERHEAD + CHUNK_ALIGN_MASK) & ~CHUNK_ALIGN_MASK)
+
+/* pad request, checking for minimum (but not maximum) */
+#define request2size(req) \
+ (((req) < MIN_REQUEST)? MIN_CHUNK_SIZE : pad_request(req))
+
+
+/* ------------------ Operations on head and foot fields ----------------- */
+
+/*
+ The head field of a chunk is or'ed with PINUSE_BIT when previous
+ adjacent chunk in use, and or'ed with CINUSE_BIT if this chunk is in
+ use, unless mmapped, in which case both bits are cleared.
+
+ FLAG4_BIT is not used by this malloc, but might be useful in extensions.
+*/
+
+#define PINUSE_BIT (SIZE_T_ONE)
+#define CINUSE_BIT (SIZE_T_TWO)
+#define FLAG4_BIT (SIZE_T_FOUR)
+#define INUSE_BITS (PINUSE_BIT|CINUSE_BIT)
+#define FLAG_BITS (PINUSE_BIT|CINUSE_BIT|FLAG4_BIT)
+
+/* Head value for fenceposts */
+#define FENCEPOST_HEAD (INUSE_BITS|SIZE_T_SIZE)
+
+/* extraction of fields from head words */
+#define cinuse(p) ((p)->head & CINUSE_BIT)
+#define pinuse(p) ((p)->head & PINUSE_BIT)
+#define is_inuse(p) (((p)->head & INUSE_BITS) != PINUSE_BIT)
+#define is_mmapped(p) (((p)->head & INUSE_BITS) == 0)
+
+#define chunksize(p) ((p)->head & ~(FLAG_BITS))
+
+#define clear_pinuse(p) ((p)->head &= ~PINUSE_BIT)
+
+/* Treat space at ptr +/- offset as a chunk */
+#define chunk_plus_offset(p, s) ((mchunkptr)(((char*)(p)) + (s)))
+#define chunk_minus_offset(p, s) ((mchunkptr)(((char*)(p)) - (s)))
+
+/* Ptr to next or previous physical malloc_chunk. */
+#define next_chunk(p) ((mchunkptr)( ((char*)(p)) + ((p)->head & ~FLAG_BITS)))
+#define prev_chunk(p) ((mchunkptr)( ((char*)(p)) - ((p)->prev_foot) ))
+
+/* extract next chunk's pinuse bit */
+#define next_pinuse(p) ((next_chunk(p)->head) & PINUSE_BIT)
+
+/* Get/set size at footer */
+#define get_foot(p, s) (((mchunkptr)((char*)(p) + (s)))->prev_foot)
+#define set_foot(p, s) (((mchunkptr)((char*)(p) + (s)))->prev_foot = (s))
+
+/* Set size, pinuse bit, and foot */
+#define set_size_and_pinuse_of_free_chunk(p, s)\
+ ((p)->head = (s|PINUSE_BIT), set_foot(p, s))
+
+/* Set size, pinuse bit, foot, and clear next pinuse */
+#define set_free_with_pinuse(p, s, n)\
+ (clear_pinuse(n), set_size_and_pinuse_of_free_chunk(p, s))
+
+/* Get the internal overhead associated with chunk p */
+#define overhead_for(p)\
+ (is_mmapped(p)? MMAP_CHUNK_OVERHEAD : CHUNK_OVERHEAD)
+
+/* Return true if malloced space is not necessarily cleared */
+#if MMAP_CLEARS
+#define calloc_must_clear(p) (!is_mmapped(p))
+#else /* MMAP_CLEARS */
+#define calloc_must_clear(p) (1)
+#endif /* MMAP_CLEARS */
+
+/* ---------------------- Overlaid data structures ----------------------- */
+
+/*
+ When chunks are not in use, they are treated as nodes of either
+ lists or trees.
+
+ "Small" chunks are stored in circular doubly-linked lists, and look
+ like this:
+
+ chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+ | Size of previous chunk |
+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+ `head:' | Size of chunk, in bytes |P|
+ mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+ | Forward pointer to next chunk in list |
+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+ | Back pointer to previous chunk in list |
+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+ | Unused space (may be 0 bytes long) .
+ . .
+ . |
+nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+ `foot:' | Size of chunk, in bytes |
+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+
+ Larger chunks are kept in a form of bitwise digital trees (aka
+ tries) keyed on chunksizes. Because malloc_tree_chunks are only for
+ free chunks greater than 256 bytes, their size doesn't impose any
+ constraints on user chunk sizes. Each node looks like:
+
+ chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+ | Size of previous chunk |
+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+ `head:' | Size of chunk, in bytes |P|
+ mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+ | Forward pointer to next chunk of same size |
+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+ | Back pointer to previous chunk of same size |
+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+ | Pointer to left child (child[0]) |
+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+ | Pointer to right child (child[1]) |
+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+ | Pointer to parent |
+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+ | bin index of this chunk |
+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+ | Unused space .
+ . |
+nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+ `foot:' | Size of chunk, in bytes |
+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+
+ Each tree holding treenodes is a tree of unique chunk sizes. Chunks
+ of the same size are arranged in a circularly-linked list, with only
+ the oldest chunk (the next to be used, in our FIFO ordering)
+ actually in the tree. (Tree members are distinguished by a non-null
+ parent pointer.) If a chunk with the same size an an existing node
+ is inserted, it is linked off the existing node using pointers that
+ work in the same way as fd/bk pointers of small chunks.
+
+ Each tree contains a power of 2 sized range of chunk sizes (the
+ smallest is 0x100 <= x < 0x180), which is is divided in half at each
+ tree level, with the chunks in the smaller half of the range (0x100
+ <= x < 0x140 for the top nose) in the left subtree and the larger
+ half (0x140 <= x < 0x180) in the right subtree. This is, of course,
+ done by inspecting individual bits.
+
+ Using these rules, each node's left subtree contains all smaller
+ sizes than its right subtree. However, the node at the root of each
+ subtree has no particular ordering relationship to either. (The
+ dividing line between the subtree sizes is based on trie relation.)
+ If we remove the last chunk of a given size from the interior of the
+ tree, we need to replace it with a leaf node. The tree ordering
+ rules permit a node to be replaced by any leaf below it.
+
+ The smallest chunk in a tree (a common operation in a best-fit
+ allocator) can be found by walking a path to the leftmost leaf in
+ the tree. Unlike a usual binary tree, where we follow left child
+ pointers until we reach a null, here we follow the right child
+ pointer any time the left one is null, until we reach a leaf with
+ both child pointers null. The smallest chunk in the tree will be
+ somewhere along that path.
+
+ The worst case number of steps to add, find, or remove a node is
+ bounded by the number of bits differentiating chunks within
+ bins. Under current bin calculations, this ranges from 6 up to 21
+ (for 32 bit sizes) or up to 53 (for 64 bit sizes). The typical case
+ is of course much better.
+*/
+
+struct malloc_tree_chunk {
+ /* The first four fields must be compatible with malloc_chunk */
+ size_t prev_foot;
+ size_t head;
+ struct malloc_tree_chunk* fd;
+ struct malloc_tree_chunk* bk;
+
+ struct malloc_tree_chunk* child[2];
+ struct malloc_tree_chunk* parent;
+ bindex_t index;
+};
+
+typedef struct malloc_tree_chunk tchunk;
+typedef struct malloc_tree_chunk* tchunkptr;
+typedef struct malloc_tree_chunk* tbinptr; /* The type of bins of trees */
+
+/* A little helper macro for trees */
+#define leftmost_child(t) ((t)->child[0] != 0? (t)->child[0] : (t)->child[1])
+
+/* ----------------------------- Segments -------------------------------- */
+
+/*
+ Each malloc space may include non-contiguous segments, held in a
+ list headed by an embedded malloc_segment record representing the
+ top-most space. Segments also include flags holding properties of
+ the space. Large chunks that are directly allocated by mmap are not
+ included in this list. They are instead independently created and
+ destroyed without otherwise keeping track of them.
+
+ Segment management mainly comes into play for spaces allocated by
+ MMAP. Any call to MMAP might or might not return memory that is
+ adjacent to an existing segment. MORECORE normally contiguously
+ extends the current space, so this space is almost always adjacent,
+ which is simpler and faster to deal with. (This is why MORECORE is
+ used preferentially to MMAP when both are available -- see
+ sys_alloc.) When allocating using MMAP, we don't use any of the
+ hinting mechanisms (inconsistently) supported in various
+ implementations of unix mmap, or distinguish reserving from
+ committing memory. Instead, we just ask for space, and exploit
+ contiguity when we get it. It is probably possible to do
+ better than this on some systems, but no general scheme seems
+ to be significantly better.
+
+ Management entails a simpler variant of the consolidation scheme
+ used for chunks to reduce fragmentation -- new adjacent memory is
+ normally prepended or appended to an existing segment. However,
+ there are limitations compared to chunk consolidation that mostly
+ reflect the fact that segment processing is relatively infrequent
+ (occurring only when getting memory from system) and that we
+ don't expect to have huge numbers of segments:
+
+ * Segments are not indexed, so traversal requires linear scans. (It
+ would be possible to index these, but is not worth the extra
+ overhead and complexity for most programs on most platforms.)
+ * New segments are only appended to old ones when holding top-most
+ memory; if they cannot be prepended to others, they are held in
+ different segments.
+
+ Except for the top-most segment of an mstate, each segment record
+ is kept at the tail of its segment. Segments are added by pushing
+ segment records onto the list headed by &mstate.seg for the
+ containing mstate.
+
+ Segment flags control allocation/merge/deallocation policies:
+ * If EXTERN_BIT set, then we did not allocate this segment,
+ and so should not try to deallocate or merge with others.
+ (This currently holds only for the initial segment passed
+ into create_mspace_with_base.)
+ * If USE_MMAP_BIT set, the segment may be merged with
+ other surrounding mmapped segments and trimmed/de-allocated
+ using munmap.
+ * If neither bit is set, then the segment was obtained using
+ MORECORE so can be merged with surrounding MORECORE'd segments
+ and deallocated/trimmed using MORECORE with negative arguments.
+*/
+
+struct malloc_segment {
+ char* base; /* base address */
+ size_t size; /* allocated size */
+ struct malloc_segment* next; /* ptr to next segment */
+ flag_t sflags; /* mmap and extern flag */
+};
+
+#define is_mmapped_segment(S) ((S)->sflags & USE_MMAP_BIT)
+#define is_extern_segment(S) ((S)->sflags & EXTERN_BIT)
+
+typedef struct malloc_segment msegment;
+typedef struct malloc_segment* msegmentptr;
+
+/* ---------------------------- malloc_state ----------------------------- */
+
+/*
+ A malloc_state holds all of the bookkeeping for a space.
+ The main fields are:
+
+ Top
+ The topmost chunk of the currently active segment. Its size is
+ cached in topsize. The actual size of topmost space is
+ topsize+TOP_FOOT_SIZE, which includes space reserved for adding
+ fenceposts and segment records if necessary when getting more
+ space from the system. The size at which to autotrim top is
+ cached from mparams in trim_check, except that it is disabled if
+ an autotrim fails.
+
+ Designated victim (dv)
+ This is the preferred chunk for servicing small requests that
+ don't have exact fits. It is normally the chunk split off most
+ recently to service another small request. Its size is cached in
+ dvsize. The link fields of this chunk are not maintained since it
+ is not kept in a bin.
+
+ SmallBins
+ An array of bin headers for free chunks. These bins hold chunks
+ with sizes less than MIN_LARGE_SIZE bytes. Each bin contains
+ chunks of all the same size, spaced 8 bytes apart. To simplify
+ use in double-linked lists, each bin header acts as a malloc_chunk
+ pointing to the real first node, if it exists (else pointing to
+ itself). This avoids special-casing for headers. But to avoid
+ waste, we allocate only the fd/bk pointers of bins, and then use
+ repositioning tricks to treat these as the fields of a chunk.
+
+ TreeBins
+ Treebins are pointers to the roots of trees holding a range of
+ sizes. There are 2 equally spaced treebins for each power of two
+ from TREE_SHIFT to TREE_SHIFT+16. The last bin holds anything
+ larger.
+
+ Bin maps
+ There is one bit map for small bins ("smallmap") and one for
+ treebins ("treemap). Each bin sets its bit when non-empty, and
+ clears the bit when empty. Bit operations are then used to avoid
+ bin-by-bin searching -- nearly all "search" is done without ever
+ looking at bins that won't be selected. The bit maps
+ conservatively use 32 bits per map word, even if on 64bit system.
+ For a good description of some of the bit-based techniques used
+ here, see Henry S. Warren Jr's book "Hacker's Delight" (and
+ supplement at http://hackersdelight.org/). Many of these are
+ intended to reduce the branchiness of paths through malloc etc, as
+ well as to reduce the number of memory locations read or written.
+
+ Segments
+ A list of segments headed by an embedded malloc_segment record
+ representing the initial space.
+
+ Address check support
+ The least_addr field is the least address ever obtained from
+ MORECORE or MMAP. Attempted frees and reallocs of any address less
+ than this are trapped (unless INSECURE is defined).
+
+ Magic tag
+ A cross-check field that should always hold same value as mparams.magic.
+
+ Flags
+ Bits recording whether to use MMAP, locks, or contiguous MORECORE
+
+ Statistics
+ Each space keeps track of current and maximum system memory
+ obtained via MORECORE or MMAP.
+
+ Trim support
+ Fields holding the amount of unused topmost memory that should trigger
+ timming, and a counter to force periodic scanning to release unused
+ non-topmost segments.
+
+ Locking
+ If USE_LOCKS is defined, the "mutex" lock is acquired and released
+ around every public call using this mspace.
+
+ Extension support
+ A void* pointer and a size_t field that can be used to help implement
+ extensions to this malloc.
+*/
+
+/* Bin types, widths and sizes */
+#define NSMALLBINS (32U)
+#define NTREEBINS (32U)
+#define SMALLBIN_SHIFT (3U)
+#define SMALLBIN_WIDTH (SIZE_T_ONE << SMALLBIN_SHIFT)
+#define TREEBIN_SHIFT (8U)
+#define MIN_LARGE_SIZE (SIZE_T_ONE << TREEBIN_SHIFT)
+#define MAX_SMALL_SIZE (MIN_LARGE_SIZE - SIZE_T_ONE)
+#define MAX_SMALL_REQUEST (MAX_SMALL_SIZE - CHUNK_ALIGN_MASK - CHUNK_OVERHEAD)
+
+struct malloc_state {
+ binmap_t smallmap;
+ binmap_t treemap;
+ size_t dvsize;
+ size_t topsize;
+ char* least_addr;
+ mchunkptr dv;
+ mchunkptr top;
+ size_t trim_check;
+ size_t release_checks;
+ size_t magic;
+ mchunkptr smallbins[(NSMALLBINS+1)*2];
+ tbinptr treebins[NTREEBINS];
+ size_t footprint;
+ size_t max_footprint;
+ flag_t mflags;
+ msegment seg;
+#if USE_LOCKS
+ MLOCK_T mutex; /* locate lock among fields that rarely change */
+#endif /* USE_LOCKS */
+ void* extp; /* Unused but available for extensions */
+ size_t exts;
+};
+
+typedef struct malloc_state* mstate;
+
+/* ------------- Global malloc_state and malloc_params ------------------- */
+
+#if !ONLY_MSPACES
+
+/* The global malloc_state used for all non-"mspace" calls */
+static struct malloc_state _gm_;
+#define gm (&_gm_)
+#define is_global(M) ((M) == &_gm_)
+
+#endif /* !ONLY_MSPACES */
+
+#define is_initialized(M) ((M)->top != 0)
+
+/* -------------------------- system alloc setup ------------------------- */
+
+/* Operations on mflags */
+
+#define use_lock(M) ((M)->mflags & USE_LOCK_BIT)
+#define enable_lock(M) ((M)->mflags |= USE_LOCK_BIT)
+#define disable_lock(M) ((M)->mflags &= ~USE_LOCK_BIT)
+
+#define use_mmap(M) ((M)->mflags & USE_MMAP_BIT)
+#define enable_mmap(M) ((M)->mflags |= USE_MMAP_BIT)
+#define disable_mmap(M) ((M)->mflags &= ~USE_MMAP_BIT)
+
+#define use_noncontiguous(M) ((M)->mflags & USE_NONCONTIGUOUS_BIT)
+#define disable_contiguous(M) ((M)->mflags |= USE_NONCONTIGUOUS_BIT)
+
+#define set_lock(M,L)\
+ ((M)->mflags = (L)?\
+ ((M)->mflags | USE_LOCK_BIT) :\
+ ((M)->mflags & ~USE_LOCK_BIT))
+
+/* page-align a size */
+#define page_align(S)\
+ (((S) + (mparams.page_size - SIZE_T_ONE)) & ~(mparams.page_size - SIZE_T_ONE))
+
+/* granularity-align a size */
+#define granularity_align(S)\
+ (((S) + (mparams.granularity - SIZE_T_ONE))\
+ & ~(mparams.granularity - SIZE_T_ONE))
+
+
+/* For mmap, use granularity alignment on windows, else page-align */
+#ifdef WIN32
+#define mmap_align(S) granularity_align(S)
+#else
+#define mmap_align(S) page_align(S)
+#endif
+
+/* For sys_alloc, enough padding to ensure can malloc request on success */
+#define SYS_ALLOC_PADDING (TOP_FOOT_SIZE + MALLOC_ALIGNMENT)
+
+#define is_page_aligned(S)\
+ (((size_t)(S) & (mparams.page_size - SIZE_T_ONE)) == 0)
+#define is_granularity_aligned(S)\
+ (((size_t)(S) & (mparams.granularity - SIZE_T_ONE)) == 0)
+
+/* True if segment S holds address A */
+#define segment_holds(S, A)\
+ ((char*)(A) >= S->base && (char*)(A) < S->base + S->size)
+
+/* Return segment holding given address */
+static msegmentptr segment_holding(mstate m, char* addr) {
+ msegmentptr sp = &m->seg;
+ for (;;) {
+ if (addr >= sp->base && addr < sp->base + sp->size)
+ return sp;
+ if ((sp = sp->next) == 0)
+ return 0;
+ }
+}
+
+/* Return true if segment contains a segment link */
+static int has_segment_link(mstate m, msegmentptr ss) {
+ msegmentptr sp = &m->seg;
+ for (;;) {
+ if ((char*)sp >= ss->base && (char*)sp < ss->base + ss->size)
+ return 1;
+ if ((sp = sp->next) == 0)
+ return 0;
+ }
+}
+
+#ifndef MORECORE_CANNOT_TRIM
+#define should_trim(M,s) ((s) > (M)->trim_check)
+#else /* MORECORE_CANNOT_TRIM */
+#define should_trim(M,s) (0)
+#endif /* MORECORE_CANNOT_TRIM */
+
+/*
+ TOP_FOOT_SIZE is padding at the end of a segment, including space
+ that may be needed to place segment records and fenceposts when new
+ noncontiguous segments are added.
+*/
+#define TOP_FOOT_SIZE\
+ (align_offset(chunk2mem(0))+pad_request(sizeof(struct malloc_segment))+MIN_CHUNK_SIZE)
+
+
+/* ------------------------------- Hooks -------------------------------- */
+
+/*
+ PREACTION should be defined to return 0 on success, and nonzero on
+ failure. If you are not using locking, you can redefine these to do
+ anything you like.
+*/
+
+#if USE_LOCKS
+
+#define PREACTION(M) ((use_lock(M))? ACQUIRE_LOCK(&(M)->mutex) : 0)
+#define POSTACTION(M) { if (use_lock(M)) RELEASE_LOCK(&(M)->mutex); }
+#else /* USE_LOCKS */
+
+#ifndef PREACTION
+#define PREACTION(M) (0)
+#endif /* PREACTION */
+
+#ifndef POSTACTION
+#define POSTACTION(M)
+#endif /* POSTACTION */
+
+#endif /* USE_LOCKS */
+
+/*
+ CORRUPTION_ERROR_ACTION is triggered upon detected bad addresses.
+ USAGE_ERROR_ACTION is triggered on detected bad frees and
+ reallocs. The argument p is an address that might have triggered the
+ fault. It is ignored by the two predefined actions, but might be
+ useful in custom actions that try to help diagnose errors.
+*/
+
+#if PROCEED_ON_ERROR
+
+/* A count of the number of corruption errors causing resets */
+int malloc_corruption_error_count;
+
+/* default corruption action */
+static void reset_on_error(mstate m);
+
+#define CORRUPTION_ERROR_ACTION(m) reset_on_error(m)
+#define USAGE_ERROR_ACTION(m, p)
+
+#else /* PROCEED_ON_ERROR */
+
+#ifndef CORRUPTION_ERROR_ACTION
+#define CORRUPTION_ERROR_ACTION(m) ABORT
+#endif /* CORRUPTION_ERROR_ACTION */
+
+#ifndef USAGE_ERROR_ACTION
+#define USAGE_ERROR_ACTION(m,p) ABORT
+#endif /* USAGE_ERROR_ACTION */
+
+#endif /* PROCEED_ON_ERROR */
+
+/* -------------------------- Debugging setup ---------------------------- */
+
+#if ! DEBUG
+
+#define check_free_chunk(M,P)
+#define check_inuse_chunk(M,P)
+#define check_malloced_chunk(M,P,N)
+#define check_mmapped_chunk(M,P)
+#define check_malloc_state(M)
+#define check_top_chunk(M,P)
+
+#else /* DEBUG */
+#define check_free_chunk(M,P) do_check_free_chunk(M,P)
+#define check_inuse_chunk(M,P) do_check_inuse_chunk(M,P)
+#define check_top_chunk(M,P) do_check_top_chunk(M,P)
+#define check_malloced_chunk(M,P,N) do_check_malloced_chunk(M,P,N)
+#define check_mmapped_chunk(M,P) do_check_mmapped_chunk(M,P)
+#define check_malloc_state(M) do_check_malloc_state(M)
+
+static void do_check_any_chunk(mstate m, mchunkptr p);
+static void do_check_top_chunk(mstate m, mchunkptr p);
+static void do_check_mmapped_chunk(mstate m, mchunkptr p);
+static void do_check_inuse_chunk(mstate m, mchunkptr p);
+static void do_check_free_chunk(mstate m, mchunkptr p);
+static void do_check_malloced_chunk(mstate m, void* mem, size_t s);
+static void do_check_tree(mstate m, tchunkptr t);
+static void do_check_treebin(mstate m, bindex_t i);
+static void do_check_smallbin(mstate m, bindex_t i);
+static void do_check_malloc_state(mstate m);
+static int bin_find(mstate m, mchunkptr x);
+static size_t traverse_and_check(mstate m);
+#endif /* DEBUG */
+
+/* ---------------------------- Indexing Bins ---------------------------- */
+
+#define is_small(s) (((s) >> SMALLBIN_SHIFT) < NSMALLBINS)
+#define small_index(s) (bindex_t)((s) >> SMALLBIN_SHIFT)
+#define small_index2size(i) ((i) << SMALLBIN_SHIFT)
+#define MIN_SMALL_INDEX (small_index(MIN_CHUNK_SIZE))
+
+/* addressing by index. See above about smallbin repositioning */
+#define smallbin_at(M, i) ((sbinptr)((char*)&((M)->smallbins[(i)<<1])))
+#define treebin_at(M,i) (&((M)->treebins[i]))
+
+/* assign tree index for size S to variable I. Use x86 asm if possible */
+#if defined(__GNUC__) && (defined(__i386__) || defined(__x86_64__))
+#define compute_tree_index(S, I)\
+{\
+ unsigned int X = S >> TREEBIN_SHIFT;\
+ if (X == 0)\
+ I = 0;\
+ else if (X > 0xFFFF)\
+ I = NTREEBINS-1;\
+ else {\
+ unsigned int K;\
+ __asm__("bsrl\t%1, %0\n\t" : "=r" (K) : "g" (X));\
+ I = (bindex_t)((K << 1) + ((S >> (K + (TREEBIN_SHIFT-1)) & 1)));\
+ }\
+}
+
+#elif defined (__INTEL_COMPILER)
+#define compute_tree_index(S, I)\
+{\
+ size_t X = S >> TREEBIN_SHIFT;\
+ if (X == 0)\
+ I = 0;\
+ else if (X > 0xFFFF)\
+ I = NTREEBINS-1;\
+ else {\
+ unsigned int K = _bit_scan_reverse (X); \
+ I = (bindex_t)((K << 1) + ((S >> (K + (TREEBIN_SHIFT-1)) & 1)));\
+ }\
+}
+
+#elif defined(_MSC_VER) && _MSC_VER>=1300
+#define compute_tree_index(S, I)\
+{\
+ size_t X = S >> TREEBIN_SHIFT;\
+ if (X == 0)\
+ I = 0;\
+ else if (X > 0xFFFF)\
+ I = NTREEBINS-1;\
+ else {\
+ unsigned int K;\
+ _BitScanReverse((DWORD *) &K, (DWORD) X);\
+ I = (bindex_t)((K << 1) + ((S >> (K + (TREEBIN_SHIFT-1)) & 1)));\
+ }\
+}
+
+#else /* GNUC */
+#define compute_tree_index(S, I)\
+{\
+ size_t X = S >> TREEBIN_SHIFT;\
+ if (X == 0)\
+ I = 0;\
+ else if (X > 0xFFFF)\
+ I = NTREEBINS-1;\
+ else {\
+ unsigned int Y = (unsigned int)X;\
+ unsigned int N = ((Y - 0x100) >> 16) & 8;\
+ unsigned int K = (((Y <<= N) - 0x1000) >> 16) & 4;\
+ N += K;\
+ N += K = (((Y <<= K) - 0x4000) >> 16) & 2;\
+ K = 14 - N + ((Y <<= K) >> 15);\
+ I = (K << 1) + ((S >> (K + (TREEBIN_SHIFT-1)) & 1));\
+ }\
+}
+#endif /* GNUC */
+
+/* Bit representing maximum resolved size in a treebin at i */
+#define bit_for_tree_index(i) \
+ (i == NTREEBINS-1)? (SIZE_T_BITSIZE-1) : (((i) >> 1) + TREEBIN_SHIFT - 2)
+
+/* Shift placing maximum resolved bit in a treebin at i as sign bit */
+#define leftshift_for_tree_index(i) \
+ ((i == NTREEBINS-1)? 0 : \
+ ((SIZE_T_BITSIZE-SIZE_T_ONE) - (((i) >> 1) + TREEBIN_SHIFT - 2)))
+
+/* The size of the smallest chunk held in bin with index i */
+#define minsize_for_tree_index(i) \
+ ((SIZE_T_ONE << (((i) >> 1) + TREEBIN_SHIFT)) | \
+ (((size_t)((i) & SIZE_T_ONE)) << (((i) >> 1) + TREEBIN_SHIFT - 1)))
+
+
+/* ------------------------ Operations on bin maps ----------------------- */
+
+/* bit corresponding to given index */
+#define idx2bit(i) ((binmap_t)(1) << (i))
+
+/* Mark/Clear bits with given index */
+#define mark_smallmap(M,i) ((M)->smallmap |= idx2bit(i))
+#define clear_smallmap(M,i) ((M)->smallmap &= ~idx2bit(i))
+#define smallmap_is_marked(M,i) ((M)->smallmap & idx2bit(i))
+
+#define mark_treemap(M,i) ((M)->treemap |= idx2bit(i))
+#define clear_treemap(M,i) ((M)->treemap &= ~idx2bit(i))
+#define treemap_is_marked(M,i) ((M)->treemap & idx2bit(i))
+
+/* isolate the least set bit of a bitmap */
+#define least_bit(x) ((x) & -(x))
+
+/* mask with all bits to left of least bit of x on */
+#define left_bits(x) ((x<<1) | -(x<<1))
+
+/* mask with all bits to left of or equal to least bit of x on */
+#define same_or_left_bits(x) ((x) | -(x))
+
+/* index corresponding to given bit. Use x86 asm if possible */
+
+#if defined(__GNUC__) && (defined(__i386__) || defined(__x86_64__))
+#define compute_bit2idx(X, I)\
+{\
+ unsigned int J;\
+ __asm__("bsfl\t%1, %0\n\t" : "=r" (J) : "g" (X));\
+ I = (bindex_t)J;\
+}
+
+#elif defined (__INTEL_COMPILER)
+#define compute_bit2idx(X, I)\
+{\
+ unsigned int J;\
+ J = _bit_scan_forward (X); \
+ I = (bindex_t)J;\
+}
+
+#elif defined(_MSC_VER) && _MSC_VER>=1300
+#define compute_bit2idx(X, I)\
+{\
+ unsigned int J;\
+ _BitScanForward((DWORD *) &J, X);\
+ I = (bindex_t)J;\
+}
+
+#elif USE_BUILTIN_FFS
+#define compute_bit2idx(X, I) I = ffs(X)-1
+
+#else
+#define compute_bit2idx(X, I)\
+{\
+ unsigned int Y = X - 1;\
+ unsigned int K = Y >> (16-4) & 16;\
+ unsigned int N = K; Y >>= K;\
+ N += K = Y >> (8-3) & 8; Y >>= K;\
+ N += K = Y >> (4-2) & 4; Y >>= K;\
+ N += K = Y >> (2-1) & 2; Y >>= K;\
+ N += K = Y >> (1-0) & 1; Y >>= K;\
+ I = (bindex_t)(N + Y);\
+}
+#endif /* GNUC */
+
+
+/* ----------------------- Runtime Check Support ------------------------- */
+
+/*
+ For security, the main invariant is that malloc/free/etc never
+ writes to a static address other than malloc_state, unless static
+ malloc_state itself has been corrupted, which cannot occur via
+ malloc (because of these checks). In essence this means that we
+ believe all pointers, sizes, maps etc held in malloc_state, but
+ check all of those linked or offsetted from other embedded data
+ structures. These checks are interspersed with main code in a way
+ that tends to minimize their run-time cost.
+
+ When FOOTERS is defined, in addition to range checking, we also
+ verify footer fields of inuse chunks, which can be used guarantee
+ that the mstate controlling malloc/free is intact. This is a
+ streamlined version of the approach described by William Robertson
+ et al in "Run-time Detection of Heap-based Overflows" LISA'03
+ http://www.usenix.org/events/lisa03/tech/robertson.html The footer
+ of an inuse chunk holds the xor of its mstate and a random seed,
+ that is checked upon calls to free() and realloc(). This is
+ (probablistically) unguessable from outside the program, but can be
+ computed by any code successfully malloc'ing any chunk, so does not
+ itself provide protection against code that has already broken
+ security through some other means. Unlike Robertson et al, we
+ always dynamically check addresses of all offset chunks (previous,
+ next, etc). This turns out to be cheaper than relying on hashes.
+*/
+
+#if !INSECURE
+/* Check if address a is at least as high as any from MORECORE or MMAP */
+#define ok_address(M, a) ((char*)(a) >= (M)->least_addr)
+/* Check if address of next chunk n is higher than base chunk p */
+#define ok_next(p, n) ((char*)(p) < (char*)(n))
+/* Check if p has inuse status */
+#define ok_inuse(p) is_inuse(p)
+/* Check if p has its pinuse bit on */
+#define ok_pinuse(p) pinuse(p)
+
+#else /* !INSECURE */
+#define ok_address(M, a) (1)
+#define ok_next(b, n) (1)
+#define ok_inuse(p) (1)
+#define ok_pinuse(p) (1)
+#endif /* !INSECURE */
+
+#if (FOOTERS && !INSECURE)
+/* Check if (alleged) mstate m has expected magic field */
+#define ok_magic(M) ((M)->magic == mparams.magic)
+#else /* (FOOTERS && !INSECURE) */
+#define ok_magic(M) (1)
+#endif /* (FOOTERS && !INSECURE) */
+
+
+/* In gcc, use __builtin_expect to minimize impact of checks */
+#if !INSECURE
+#if defined(__GNUC__) && __GNUC__ >= 3
+#define RTCHECK(e) __builtin_expect(e, 1)
+#else /* GNUC */
+#define RTCHECK(e) (e)
+#endif /* GNUC */
+#else /* !INSECURE */
+#define RTCHECK(e) (1)
+#endif /* !INSECURE */
+
+/* macros to set up inuse chunks with or without footers */
+
+#if !FOOTERS
+
+#define mark_inuse_foot(M,p,s)
+
+/* Macros for setting head/foot of non-mmapped chunks */
+
+/* Set cinuse bit and pinuse bit of next chunk */
+#define set_inuse(M,p,s)\
+ ((p)->head = (((p)->head & PINUSE_BIT)|s|CINUSE_BIT),\
+ ((mchunkptr)(((char*)(p)) + (s)))->head |= PINUSE_BIT)
+
+/* Set cinuse and pinuse of this chunk and pinuse of next chunk */
+#define set_inuse_and_pinuse(M,p,s)\
+ ((p)->head = (s|PINUSE_BIT|CINUSE_BIT),\
+ ((mchunkptr)(((char*)(p)) + (s)))->head |= PINUSE_BIT)
+
+/* Set size, cinuse and pinuse bit of this chunk */
+#define set_size_and_pinuse_of_inuse_chunk(M, p, s)\
+ ((p)->head = (s|PINUSE_BIT|CINUSE_BIT))
+
+#else /* FOOTERS */
+
+/* Set foot of inuse chunk to be xor of mstate and seed */
+#define mark_inuse_foot(M,p,s)\
+ (((mchunkptr)((char*)(p) + (s)))->prev_foot = ((size_t)(M) ^ mparams.magic))
+
+#define get_mstate_for(p)\
+ ((mstate)(((mchunkptr)((char*)(p) +\
+ (chunksize(p))))->prev_foot ^ mparams.magic))
+
+#define set_inuse(M,p,s)\
+ ((p)->head = (((p)->head & PINUSE_BIT)|s|CINUSE_BIT),\
+ (((mchunkptr)(((char*)(p)) + (s)))->head |= PINUSE_BIT), \
+ mark_inuse_foot(M,p,s))
+
+#define set_inuse_and_pinuse(M,p,s)\
+ ((p)->head = (s|PINUSE_BIT|CINUSE_BIT),\
+ (((mchunkptr)(((char*)(p)) + (s)))->head |= PINUSE_BIT),\
+ mark_inuse_foot(M,p,s))
+
+#define set_size_and_pinuse_of_inuse_chunk(M, p, s)\
+ ((p)->head = (s|PINUSE_BIT|CINUSE_BIT),\
+ mark_inuse_foot(M, p, s))
+
+#endif /* !FOOTERS */
+
+/* ---------------------------- setting mparams -------------------------- */
+
+#ifdef ENABLE_LARGE_PAGES
+typedef size_t (WINAPI *GetLargePageMinimum_t)(void);
+#endif
+
+/* Initialize mparams */
+static int init_mparams(void) {
+#ifdef NEED_GLOBAL_LOCK_INIT
+ if (malloc_global_mutex_status <= 0)
+ init_malloc_global_mutex();
+#endif
+
+ ACQUIRE_MALLOC_GLOBAL_LOCK();
+ if (mparams.magic == 0) {
+ size_t magic;
+ size_t psize;
+ size_t gsize;
+
+#ifndef WIN32
+ psize = malloc_getpagesize;
+ gsize = ((DEFAULT_GRANULARITY != 0)? DEFAULT_GRANULARITY : psize);
+#else /* WIN32 */
+ {
+ SYSTEM_INFO system_info;
+ GetSystemInfo(&system_info);
+ psize = system_info.dwPageSize;
+ gsize = ((DEFAULT_GRANULARITY != 0)?
+ DEFAULT_GRANULARITY : system_info.dwAllocationGranularity);
+#ifdef ENABLE_LARGE_PAGES
+ {
+ GetLargePageMinimum_t GetLargePageMinimum_ = (GetLargePageMinimum_t) GetProcAddress(GetModuleHandle(__T("kernel32.dll")), "GetLargePageMinimum");
+ if(GetLargePageMinimum_) {
+ size_t largepagesize = GetLargePageMinimum_();
+ if(largepagesize) {
+ psize = largepagesize;
+ gsize = ((DEFAULT_GRANULARITY != 0)?
+ DEFAULT_GRANULARITY : largepagesize);
+ if(gsize < largepagesize) gsize = largepagesize;
+ }
+ }
+ }
+#endif
+ }
+#endif /* WIN32 */
+
+ /* Sanity-check configuration:
+ size_t must be unsigned and as wide as pointer type.
+ ints must be at least 4 bytes.
+ alignment must be at least 8.
+ Alignment, min chunk size, and page size must all be powers of 2.
+ */
+ if ((sizeof(size_t) != sizeof(char*)) ||
+ (MAX_SIZE_T < MIN_CHUNK_SIZE) ||
+ (sizeof(int) < 4) ||
+ (MALLOC_ALIGNMENT < (size_t)8U) ||
+ ((MALLOC_ALIGNMENT & (MALLOC_ALIGNMENT-SIZE_T_ONE)) != 0) ||
+ ((MCHUNK_SIZE & (MCHUNK_SIZE-SIZE_T_ONE)) != 0) ||
+ ((gsize & (gsize-SIZE_T_ONE)) != 0) ||
+ ((psize & (psize-SIZE_T_ONE)) != 0))
+ ABORT;
+
+ mparams.granularity = gsize;
+ mparams.page_size = psize;
+ mparams.mmap_threshold = DEFAULT_MMAP_THRESHOLD;
+ mparams.trim_threshold = DEFAULT_TRIM_THRESHOLD;
+#if MORECORE_CONTIGUOUS
+ mparams.default_mflags = USE_LOCK_BIT|USE_MMAP_BIT;
+#else /* MORECORE_CONTIGUOUS */
+ mparams.default_mflags = USE_LOCK_BIT|USE_MMAP_BIT|USE_NONCONTIGUOUS_BIT;
+#endif /* MORECORE_CONTIGUOUS */
+
+#if !ONLY_MSPACES
+ /* Set up lock for main malloc area */
+ gm->mflags = mparams.default_mflags;
+ INITIAL_LOCK(&gm->mutex);
+#endif
+
+ {
+#if USE_DEV_RANDOM
+ int fd;
+ unsigned char buf[sizeof(size_t)];
+ /* Try to use /dev/urandom, else fall back on using time */
+ if ((fd = open("/dev/urandom", O_RDONLY)) >= 0 &&
+ read(fd, buf, sizeof(buf)) == sizeof(buf)) {
+ magic = *((size_t *) buf);
+ close(fd);
+ }
+ else
+#endif /* USE_DEV_RANDOM */
+#ifdef WIN32
+ magic = (size_t)(GetTickCount() ^ (size_t)0x55555555U);
+#else
+ magic = (size_t)(time(0) ^ (size_t)0x55555555U);
+#endif
+ magic |= (size_t)8U; /* ensure nonzero */
+ magic &= ~(size_t)7U; /* improve chances of fault for bad values */
+ mparams.magic = magic;
+ }
+ }
+
+ RELEASE_MALLOC_GLOBAL_LOCK();
+ return 1;
+}
+
+/* support for mallopt */
+static int change_mparam(int param_number, int value) {
+ size_t val;
+ ensure_initialization();
+ val = (value == -1)? MAX_SIZE_T : (size_t)value;
+ switch(param_number) {
+ case M_TRIM_THRESHOLD:
+ mparams.trim_threshold = val;
+ return 1;
+ case M_GRANULARITY:
+ if (val >= mparams.page_size && ((val & (val-1)) == 0)) {
+ mparams.granularity = val;
+ return 1;
+ }
+ else
+ return 0;
+ case M_MMAP_THRESHOLD:
+ mparams.mmap_threshold = val;
+ return 1;
+ default:
+ return 0;
+ }
+}
+
+#if DEBUG
+/* ------------------------- Debugging Support --------------------------- */
+
+/* Check properties of any chunk, whether free, inuse, mmapped etc */
+static void do_check_any_chunk(mstate m, mchunkptr p) {
+ assert((is_aligned(chunk2mem(p))) || (p->head == FENCEPOST_HEAD));
+ assert(ok_address(m, p));
+}
+
+/* Check properties of top chunk */
+static void do_check_top_chunk(mstate m, mchunkptr p) {
+ msegmentptr sp = segment_holding(m, (char*)p);
+ size_t sz = p->head & ~INUSE_BITS; /* third-lowest bit can be set! */
+ assert(sp != 0);
+ assert((is_aligned(chunk2mem(p))) || (p->head == FENCEPOST_HEAD));
+ assert(ok_address(m, p));
+ assert(sz == m->topsize);
+ assert(sz > 0);
+ assert(sz == ((sp->base + sp->size) - (char*)p) - TOP_FOOT_SIZE);
+ assert(pinuse(p));
+ assert(!pinuse(chunk_plus_offset(p, sz)));
+}
+
+/* Check properties of (inuse) mmapped chunks */
+static void do_check_mmapped_chunk(mstate m, mchunkptr p) {
+ size_t sz = chunksize(p);
+ size_t len = (sz + (p->prev_foot) + MMAP_FOOT_PAD);
+ assert(is_mmapped(p));
+ assert(use_mmap(m));
+ assert((is_aligned(chunk2mem(p))) || (p->head == FENCEPOST_HEAD));
+ assert(ok_address(m, p));
+ assert(!is_small(sz));
+ assert((len & (mparams.page_size-SIZE_T_ONE)) == 0);
+ assert(chunk_plus_offset(p, sz)->head == FENCEPOST_HEAD);
+ assert(chunk_plus_offset(p, sz+SIZE_T_SIZE)->head == 0);
+}
+
+/* Check properties of inuse chunks */
+static void do_check_inuse_chunk(mstate m, mchunkptr p) {
+ do_check_any_chunk(m, p);
+ assert(is_inuse(p));
+ assert(next_pinuse(p));
+ /* If not pinuse and not mmapped, previous chunk has OK offset */
+ assert(is_mmapped(p) || pinuse(p) || next_chunk(prev_chunk(p)) == p);
+ if (is_mmapped(p))
+ do_check_mmapped_chunk(m, p);
+}
+
+/* Check properties of free chunks */
+static void do_check_free_chunk(mstate m, mchunkptr p) {
+ size_t sz = chunksize(p);
+ mchunkptr next = chunk_plus_offset(p, sz);
+ do_check_any_chunk(m, p);
+ assert(!is_inuse(p));
+ assert(!next_pinuse(p));
+ assert (!is_mmapped(p));
+ if (p != m->dv && p != m->top) {
+ if (sz >= MIN_CHUNK_SIZE) {
+ assert((sz & CHUNK_ALIGN_MASK) == 0);
+ assert(is_aligned(chunk2mem(p)));
+ assert(next->prev_foot == sz);
+ assert(pinuse(p));
+ assert (next == m->top || is_inuse(next));
+ assert(p->fd->bk == p);
+ assert(p->bk->fd == p);
+ }
+ else /* markers are always of size SIZE_T_SIZE */
+ assert(sz == SIZE_T_SIZE);
+ }
+}
+
+/* Check properties of malloced chunks at the point they are malloced */
+static void do_check_malloced_chunk(mstate m, void* mem, size_t s) {
+ if (mem != 0) {
+ mchunkptr p = mem2chunk(mem);
+ size_t sz = p->head & ~INUSE_BITS;
+ do_check_inuse_chunk(m, p);
+ assert((sz & CHUNK_ALIGN_MASK) == 0);
+ assert(sz >= MIN_CHUNK_SIZE);
+ assert(sz >= s);
+ /* unless mmapped, size is less than MIN_CHUNK_SIZE more than request */
+ assert(is_mmapped(p) || sz < (s + MIN_CHUNK_SIZE));
+ }
+}
+
+/* Check a tree and its subtrees. */
+static void do_check_tree(mstate m, tchunkptr t) {
+ tchunkptr head = 0;
+ tchunkptr u = t;
+ bindex_t tindex = t->index;
+ size_t tsize = chunksize(t);
+ bindex_t idx;
+ compute_tree_index(tsize, idx);
+ assert(tindex == idx);
+ assert(tsize >= MIN_LARGE_SIZE);
+ assert(tsize >= minsize_for_tree_index(idx));
+ assert((idx == NTREEBINS-1) || (tsize < minsize_for_tree_index((idx+1))));
+
+ do { /* traverse through chain of same-sized nodes */
+ do_check_any_chunk(m, ((mchunkptr)u));
+ assert(u->index == tindex);
+ assert(chunksize(u) == tsize);
+ assert(!is_inuse(u));
+ assert(!next_pinuse(u));
+ assert(u->fd->bk == u);
+ assert(u->bk->fd == u);
+ if (u->parent == 0) {
+ assert(u->child[0] == 0);
+ assert(u->child[1] == 0);
+ }
+ else {
+ assert(head == 0); /* only one node on chain has parent */
+ head = u;
+ assert(u->parent != u);
+ assert (u->parent->child[0] == u ||
+ u->parent->child[1] == u ||
+ *((tbinptr*)(u->parent)) == u);
+ if (u->child[0] != 0) {
+ assert(u->child[0]->parent == u);
+ assert(u->child[0] != u);
+ do_check_tree(m, u->child[0]);
+ }
+ if (u->child[1] != 0) {
+ assert(u->child[1]->parent == u);
+ assert(u->child[1] != u);
+ do_check_tree(m, u->child[1]);
+ }
+ if (u->child[0] != 0 && u->child[1] != 0) {
+ assert(chunksize(u->child[0]) < chunksize(u->child[1]));
+ }
+ }
+ u = u->fd;
+ } while (u != t);
+ assert(head != 0);
+}
+
+/* Check all the chunks in a treebin. */
+static void do_check_treebin(mstate m, bindex_t i) {
+ tbinptr* tb = treebin_at(m, i);
+ tchunkptr t = *tb;
+ int empty = (m->treemap & (1U << i)) == 0;
+ if (t == 0)
+ assert(empty);
+ if (!empty)
+ do_check_tree(m, t);
+}
+
+/* Check all the chunks in a smallbin. */
+static void do_check_smallbin(mstate m, bindex_t i) {
+ sbinptr b = smallbin_at(m, i);
+ mchunkptr p = b->bk;
+ unsigned int empty = (m->smallmap & (1U << i)) == 0;
+ if (p == b)
+ assert(empty);
+ if (!empty) {
+ for (; p != b; p = p->bk) {
+ size_t size = chunksize(p);
+ mchunkptr q;
+ /* each chunk claims to be free */
+ do_check_free_chunk(m, p);
+ /* chunk belongs in bin */
+ assert(small_index(size) == i);
+ assert(p->bk == b || chunksize(p->bk) == chunksize(p));
+ /* chunk is followed by an inuse chunk */
+ q = next_chunk(p);
+ if (q->head != FENCEPOST_HEAD)
+ do_check_inuse_chunk(m, q);
+ }
+ }
+}
+
+/* Find x in a bin. Used in other check functions. */
+static int bin_find(mstate m, mchunkptr x) {
+ size_t size = chunksize(x);
+ if (is_small(size)) {
+ bindex_t sidx = small_index(size);
+ sbinptr b = smallbin_at(m, sidx);
+ if (smallmap_is_marked(m, sidx)) {
+ mchunkptr p = b;
+ do {
+ if (p == x)
+ return 1;
+ } while ((p = p->fd) != b);
+ }
+ }
+ else {
+ bindex_t tidx;
+ compute_tree_index(size, tidx);
+ if (treemap_is_marked(m, tidx)) {
+ tchunkptr t = *treebin_at(m, tidx);
+ size_t sizebits = size << leftshift_for_tree_index(tidx);
+ while (t != 0 && chunksize(t) != size) {
+ t = t->child[(sizebits >> (SIZE_T_BITSIZE-SIZE_T_ONE)) & 1];
+ sizebits <<= 1;
+ }
+ if (t != 0) {
+ tchunkptr u = t;
+ do {
+ if (u == (tchunkptr)x)
+ return 1;
+ } while ((u = u->fd) != t);
+ }
+ }
+ }
+ return 0;
+}
+
+/* Traverse each chunk and check it; return total */
+static size_t traverse_and_check(mstate m) {
+ size_t sum = 0;
+ if (is_initialized(m)) {
+ msegmentptr s = &m->seg;
+ sum += m->topsize + TOP_FOOT_SIZE;
+ while (s != 0) {
+ mchunkptr q = align_as_chunk(s->base);
+ mchunkptr lastq = 0;
+ assert(pinuse(q));
+ while (segment_holds(s, q) &&
+ q != m->top && q->head != FENCEPOST_HEAD) {
+ sum += chunksize(q);
+ if (is_inuse(q)) {
+ assert(!bin_find(m, q));
+ do_check_inuse_chunk(m, q);
+ }
+ else {
+ assert(q == m->dv || bin_find(m, q));
+ assert(lastq == 0 || is_inuse(lastq)); /* Not 2 consecutive free */
+ do_check_free_chunk(m, q);
+ }
+ lastq = q;
+ q = next_chunk(q);
+ }
+ s = s->next;
+ }
+ }
+ return sum;
+}
+
+/* Check all properties of malloc_state. */
+static void do_check_malloc_state(mstate m) {
+ bindex_t i;
+ size_t total;
+ /* check bins */
+ for (i = 0; i < NSMALLBINS; ++i)
+ do_check_smallbin(m, i);
+ for (i = 0; i < NTREEBINS; ++i)
+ do_check_treebin(m, i);
+
+ if (m->dvsize != 0) { /* check dv chunk */
+ do_check_any_chunk(m, m->dv);
+ assert(m->dvsize == chunksize(m->dv));
+ assert(m->dvsize >= MIN_CHUNK_SIZE);
+ assert(bin_find(m, m->dv) == 0);
+ }
+
+ if (m->top != 0) { /* check top chunk */
+ do_check_top_chunk(m, m->top);
+ /*assert(m->topsize == chunksize(m->top)); redundant */
+ assert(m->topsize > 0);
+ assert(bin_find(m, m->top) == 0);
+ }
+
+ total = traverse_and_check(m);
+ assert(total <= m->footprint);
+ assert(m->footprint <= m->max_footprint);
+}
+#endif /* DEBUG */
+
+/* ----------------------------- statistics ------------------------------ */
+
+#if !NO_MALLINFO
+static struct mallinfo internal_mallinfo(mstate m) {
+ struct mallinfo nm = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
+ ensure_initialization();
+ if (!PREACTION(m)) {
+ check_malloc_state(m);
+ if (is_initialized(m)) {
+ size_t nfree = SIZE_T_ONE; /* top always free */
+ size_t mfree = m->topsize + TOP_FOOT_SIZE;
+ size_t sum = mfree;
+ msegmentptr s = &m->seg;
+ while (s != 0) {
+ mchunkptr q = align_as_chunk(s->base);
+ while (segment_holds(s, q) &&
+ q != m->top && q->head != FENCEPOST_HEAD) {
+ size_t sz = chunksize(q);
+ sum += sz;
+ if (!is_inuse(q)) {
+ mfree += sz;
+ ++nfree;
+ }
+ q = next_chunk(q);
+ }
+ s = s->next;
+ }
+
+ nm.arena = sum;
+ nm.ordblks = nfree;
+ nm.hblkhd = m->footprint - sum;
+ nm.usmblks = m->max_footprint;
+ nm.uordblks = m->footprint - mfree;
+ nm.fordblks = mfree;
+ nm.keepcost = m->topsize;
+ }
+
+ POSTACTION(m);
+ }
+ return nm;
+}
+#endif /* !NO_MALLINFO */
+
+static void internal_malloc_stats(mstate m) {
+ ensure_initialization();
+ if (!PREACTION(m)) {
+ size_t maxfp = 0;
+ size_t fp = 0;
+ size_t used = 0;
+ check_malloc_state(m);
+ if (is_initialized(m)) {
+ msegmentptr s = &m->seg;
+ maxfp = m->max_footprint;
+ fp = m->footprint;
+ used = fp - (m->topsize + TOP_FOOT_SIZE);
+
+ while (s != 0) {
+ mchunkptr q = align_as_chunk(s->base);
+ while (segment_holds(s, q) &&
+ q != m->top && q->head != FENCEPOST_HEAD) {
+ if (!is_inuse(q))
+ used -= chunksize(q);
+ q = next_chunk(q);
+ }
+ s = s->next;
+ }
+ }
+
+ fprintf(stderr, "max system bytes = %10lu\n", (unsigned long)(maxfp));
+ fprintf(stderr, "system bytes = %10lu\n", (unsigned long)(fp));
+ fprintf(stderr, "in use bytes = %10lu\n", (unsigned long)(used));
+
+ POSTACTION(m);
+ }
+}
+
+/* ----------------------- Operations on smallbins ----------------------- */
+
+/*
+ Various forms of linking and unlinking are defined as macros. Even
+ the ones for trees, which are very long but have very short typical
+ paths. This is ugly but reduces reliance on inlining support of
+ compilers.
+*/
+
+/* Link a free chunk into a smallbin */
+#define insert_small_chunk(M, P, S) {\
+ bindex_t I = small_index(S);\
+ mchunkptr B = smallbin_at(M, I);\
+ mchunkptr F = B;\
+ assert(S >= MIN_CHUNK_SIZE);\
+ if (!smallmap_is_marked(M, I))\
+ mark_smallmap(M, I);\
+ else if (RTCHECK(ok_address(M, B->fd)))\
+ F = B->fd;\
+ else {\
+ CORRUPTION_ERROR_ACTION(M);\
+ }\
+ B->fd = P;\
+ F->bk = P;\
+ P->fd = F;\
+ P->bk = B;\
+}
+
+/* Unlink a chunk from a smallbin */
+#define unlink_small_chunk(M, P, S) {\
+ mchunkptr F = P->fd;\
+ mchunkptr B = P->bk;\
+ bindex_t I = small_index(S);\
+ assert(P != B);\
+ assert(P != F);\
+ assert(chunksize(P) == small_index2size(I));\
+ if (F == B)\
+ clear_smallmap(M, I);\
+ else if (RTCHECK((F == smallbin_at(M,I) || ok_address(M, F)) &&\
+ (B == smallbin_at(M,I) || ok_address(M, B)))) {\
+ F->bk = B;\
+ B->fd = F;\
+ }\
+ else {\
+ CORRUPTION_ERROR_ACTION(M);\
+ }\
+}
+
+/* Unlink the first chunk from a smallbin */
+#define unlink_first_small_chunk(M, B, P, I) {\
+ mchunkptr F = P->fd;\
+ assert(P != B);\
+ assert(P != F);\
+ assert(chunksize(P) == small_index2size(I));\
+ if (B == F)\
+ clear_smallmap(M, I);\
+ else if (RTCHECK(ok_address(M, F))) {\
+ B->fd = F;\
+ F->bk = B;\
+ }\
+ else {\
+ CORRUPTION_ERROR_ACTION(M);\
+ }\
+}
+
+
+
+/* Replace dv node, binning the old one */
+/* Used only when dvsize known to be small */
+#define replace_dv(M, P, S) {\
+ size_t DVS = M->dvsize;\
+ if (DVS != 0) {\
+ mchunkptr DV = M->dv;\
+ assert(is_small(DVS));\
+ insert_small_chunk(M, DV, DVS);\
+ }\
+ M->dvsize = S;\
+ M->dv = P;\
+}
+
+/* ------------------------- Operations on trees ------------------------- */
+
+/* Insert chunk into tree */
+#define insert_large_chunk(M, X, S) {\
+ tbinptr* H;\
+ bindex_t I;\
+ compute_tree_index(S, I);\
+ H = treebin_at(M, I);\
+ X->index = I;\
+ X->child[0] = X->child[1] = 0;\
+ if (!treemap_is_marked(M, I)) {\
+ mark_treemap(M, I);\
+ *H = X;\
+ X->parent = (tchunkptr)H;\
+ X->fd = X->bk = X;\
+ }\
+ else {\
+ tchunkptr T = *H;\
+ size_t K = S << leftshift_for_tree_index(I);\
+ for (;;) {\
+ if (chunksize(T) != S) {\
+ tchunkptr* C = &(T->child[(K >> (SIZE_T_BITSIZE-SIZE_T_ONE)) & 1]);\
+ K <<= 1;\
+ if (*C != 0)\
+ T = *C;\
+ else if (RTCHECK(ok_address(M, C))) {\
+ *C = X;\
+ X->parent = T;\
+ X->fd = X->bk = X;\
+ break;\
+ }\
+ else {\
+ CORRUPTION_ERROR_ACTION(M);\
+ break;\
+ }\
+ }\
+ else {\
+ tchunkptr F = T->fd;\
+ if (RTCHECK(ok_address(M, T) && ok_address(M, F))) {\
+ T->fd = F->bk = X;\
+ X->fd = F;\
+ X->bk = T;\
+ X->parent = 0;\
+ break;\
+ }\
+ else {\
+ CORRUPTION_ERROR_ACTION(M);\
+ break;\
+ }\
+ }\
+ }\
+ }\
+}
+
+/*
+ Unlink steps:
+
+ 1. If x is a chained node, unlink it from its same-sized fd/bk links
+ and choose its bk node as its replacement.
+ 2. If x was the last node of its size, but not a leaf node, it must
+ be replaced with a leaf node (not merely one with an open left or
+ right), to make sure that lefts and rights of descendents
+ correspond properly to bit masks. We use the rightmost descendent
+ of x. We could use any other leaf, but this is easy to locate and
+ tends to counteract removal of leftmosts elsewhere, and so keeps
+ paths shorter than minimally guaranteed. This doesn't loop much
+ because on average a node in a tree is near the bottom.
+ 3. If x is the base of a chain (i.e., has parent links) relink
+ x's parent and children to x's replacement (or null if none).
+*/
+
+#define unlink_large_chunk(M, X) {\
+ tchunkptr XP = X->parent;\
+ tchunkptr R;\
+ if (X->bk != X) {\
+ tchunkptr F = X->fd;\
+ R = X->bk;\
+ if (RTCHECK(ok_address(M, F))) {\
+ F->bk = R;\
+ R->fd = F;\
+ }\
+ else {\
+ CORRUPTION_ERROR_ACTION(M);\
+ }\
+ }\
+ else {\
+ tchunkptr* RP;\
+ if (((R = *(RP = &(X->child[1]))) != 0) ||\
+ ((R = *(RP = &(X->child[0]))) != 0)) {\
+ tchunkptr* CP;\
+ while ((*(CP = &(R->child[1])) != 0) ||\
+ (*(CP = &(R->child[0])) != 0)) {\
+ R = *(RP = CP);\
+ }\
+ if (RTCHECK(ok_address(M, RP)))\
+ *RP = 0;\
+ else {\
+ CORRUPTION_ERROR_ACTION(M);\
+ }\
+ }\
+ }\
+ if (XP != 0) {\
+ tbinptr* H = treebin_at(M, X->index);\
+ if (X == *H) {\
+ if ((*H = R) == 0) \
+ clear_treemap(M, X->index);\
+ }\
+ else if (RTCHECK(ok_address(M, XP))) {\
+ if (XP->child[0] == X) \
+ XP->child[0] = R;\
+ else \
+ XP->child[1] = R;\
+ }\
+ else\
+ CORRUPTION_ERROR_ACTION(M);\
+ if (R != 0) {\
+ if (RTCHECK(ok_address(M, R))) {\
+ tchunkptr C0, C1;\
+ R->parent = XP;\
+ if ((C0 = X->child[0]) != 0) {\
+ if (RTCHECK(ok_address(M, C0))) {\
+ R->child[0] = C0;\
+ C0->parent = R;\
+ }\
+ else\
+ CORRUPTION_ERROR_ACTION(M);\
+ }\
+ if ((C1 = X->child[1]) != 0) {\
+ if (RTCHECK(ok_address(M, C1))) {\
+ R->child[1] = C1;\
+ C1->parent = R;\
+ }\
+ else\
+ CORRUPTION_ERROR_ACTION(M);\
+ }\
+ }\
+ else\
+ CORRUPTION_ERROR_ACTION(M);\
+ }\
+ }\
+}
+
+/* Relays to large vs small bin operations */
+
+#define insert_chunk(M, P, S)\
+ if (is_small(S)) insert_small_chunk(M, P, S)\
+ else { tchunkptr TP = (tchunkptr)(P); insert_large_chunk(M, TP, S); }
+
+#define unlink_chunk(M, P, S)\
+ if (is_small(S)) unlink_small_chunk(M, P, S)\
+ else { tchunkptr TP = (tchunkptr)(P); unlink_large_chunk(M, TP); }
+
+
+/* Relays to internal calls to malloc/free from realloc, memalign etc */
+
+#if ONLY_MSPACES
+#define internal_malloc(m, b) mspace_malloc(m, b)
+#define internal_free(m, mem) mspace_free(m,mem);
+#else /* ONLY_MSPACES */
+#if MSPACES
+#define internal_malloc(m, b)\
+ (m == gm)? dlmalloc(b) : mspace_malloc(m, b)
+#define internal_free(m, mem)\
+ if (m == gm) dlfree(mem); else mspace_free(m,mem);
+#else /* MSPACES */
+#define internal_malloc(m, b) dlmalloc(b)
+#define internal_free(m, mem) dlfree(mem)
+#endif /* MSPACES */
+#endif /* ONLY_MSPACES */
+
+/* ----------------------- Direct-mmapping chunks ----------------------- */
+
+/*
+ Directly mmapped chunks are set up with an offset to the start of
+ the mmapped region stored in the prev_foot field of the chunk. This
+ allows reconstruction of the required argument to MUNMAP when freed,
+ and also allows adjustment of the returned chunk to meet alignment
+ requirements (especially in memalign).
+*/
+
+/* Malloc using mmap */
+static void* mmap_alloc(mstate m, size_t nb) {
+ size_t mmsize = mmap_align(nb + SIX_SIZE_T_SIZES + CHUNK_ALIGN_MASK);
+ if (mmsize > nb) { /* Check for wrap around 0 */
+ char* mm = (char*)(CALL_DIRECT_MMAP(mmsize));
+ if (mm != CMFAIL) {
+ size_t offset = align_offset(chunk2mem(mm));
+ size_t psize = mmsize - offset - MMAP_FOOT_PAD;
+ mchunkptr p = (mchunkptr)(mm + offset);
+ p->prev_foot = offset;
+ p->head = psize;
+ mark_inuse_foot(m, p, psize);
+ chunk_plus_offset(p, psize)->head = FENCEPOST_HEAD;
+ chunk_plus_offset(p, psize+SIZE_T_SIZE)->head = 0;
+
+ if (m->least_addr == 0 || mm < m->least_addr)
+ m->least_addr = mm;
+ if ((m->footprint += mmsize) > m->max_footprint)
+ m->max_footprint = m->footprint;
+ assert(is_aligned(chunk2mem(p)));
+ check_mmapped_chunk(m, p);
+ return chunk2mem(p);
+ }
+ }
+ return 0;
+}
+
+/* Realloc using mmap */
+static mchunkptr mmap_resize(mstate m, mchunkptr oldp, size_t nb) {
+ size_t oldsize = chunksize(oldp);
+ if (is_small(nb)) /* Can't shrink mmap regions below small size */
+ return 0;
+ /* Keep old chunk if big enough but not too big */
+ if (oldsize >= nb + SIZE_T_SIZE &&
+ (oldsize - nb) <= (mparams.granularity << 1))
+ return oldp;
+ else {
+ size_t offset = oldp->prev_foot;
+ size_t oldmmsize = oldsize + offset + MMAP_FOOT_PAD;
+ size_t newmmsize = mmap_align(nb + SIX_SIZE_T_SIZES + CHUNK_ALIGN_MASK);
+ char* cp = (char*)CALL_MREMAP((char*)oldp - offset,
+ oldmmsize, newmmsize, 1);
+ if (cp != CMFAIL) {
+ mchunkptr newp = (mchunkptr)(cp + offset);
+ size_t psize = newmmsize - offset - MMAP_FOOT_PAD;
+ newp->head = psize;
+ mark_inuse_foot(m, newp, psize);
+ chunk_plus_offset(newp, psize)->head = FENCEPOST_HEAD;
+ chunk_plus_offset(newp, psize+SIZE_T_SIZE)->head = 0;
+
+ if (cp < m->least_addr)
+ m->least_addr = cp;
+ if ((m->footprint += newmmsize - oldmmsize) > m->max_footprint)
+ m->max_footprint = m->footprint;
+ check_mmapped_chunk(m, newp);
+ return newp;
+ }
+ }
+ return 0;
+}
+
+/* -------------------------- mspace management -------------------------- */
+
+/* Initialize top chunk and its size */
+static void init_top(mstate m, mchunkptr p, size_t psize) {
+ /* Ensure alignment */
+ size_t offset = align_offset(chunk2mem(p));
+ p = (mchunkptr)((char*)p + offset);
+ psize -= offset;
+
+ m->top = p;
+ m->topsize = psize;
+ p->head = psize | PINUSE_BIT;
+ /* set size of fake trailing chunk holding overhead space only once */
+ chunk_plus_offset(p, psize)->head = TOP_FOOT_SIZE;
+ m->trim_check = mparams.trim_threshold; /* reset on each update */
+}
+
+/* Initialize bins for a new mstate that is otherwise zeroed out */
+static void init_bins(mstate m) {
+ /* Establish circular links for smallbins */
+ bindex_t i;
+ for (i = 0; i < NSMALLBINS; ++i) {
+ sbinptr bin = smallbin_at(m,i);
+ bin->fd = bin->bk = bin;
+ }
+}
+
+#if PROCEED_ON_ERROR
+
+/* default corruption action */
+static void reset_on_error(mstate m) {
+ int i;
+ ++malloc_corruption_error_count;
+ /* Reinitialize fields to forget about all memory */
+ m->smallbins = m->treebins = 0;
+ m->dvsize = m->topsize = 0;
+ m->seg.base = 0;
+ m->seg.size = 0;
+ m->seg.next = 0;
+ m->top = m->dv = 0;
+ for (i = 0; i < NTREEBINS; ++i)
+ *treebin_at(m, i) = 0;
+ init_bins(m);
+}
+#endif /* PROCEED_ON_ERROR */
+
+/* Allocate chunk and prepend remainder with chunk in successor base. */
+static void* prepend_alloc(mstate m, char* newbase, char* oldbase,
+ size_t nb) {
+ mchunkptr p = align_as_chunk(newbase);
+ mchunkptr oldfirst = align_as_chunk(oldbase);
+ size_t psize = (char*)oldfirst - (char*)p;
+ mchunkptr q = chunk_plus_offset(p, nb);
+ size_t qsize = psize - nb;
+ set_size_and_pinuse_of_inuse_chunk(m, p, nb);
+
+ assert((char*)oldfirst > (char*)q);
+ assert(pinuse(oldfirst));
+ assert(qsize >= MIN_CHUNK_SIZE);
+
+ /* consolidate remainder with first chunk of old base */
+ if (oldfirst == m->top) {
+ size_t tsize = m->topsize += qsize;
+ m->top = q;
+ q->head = tsize | PINUSE_BIT;
+ check_top_chunk(m, q);
+ }
+ else if (oldfirst == m->dv) {
+ size_t dsize = m->dvsize += qsize;
+ m->dv = q;
+ set_size_and_pinuse_of_free_chunk(q, dsize);
+ }
+ else {
+ if (!is_inuse(oldfirst)) {
+ size_t nsize = chunksize(oldfirst);
+ unlink_chunk(m, oldfirst, nsize);
+ oldfirst = chunk_plus_offset(oldfirst, nsize);
+ qsize += nsize;
+ }
+ set_free_with_pinuse(q, qsize, oldfirst);
+ insert_chunk(m, q, qsize);
+ check_free_chunk(m, q);
+ }
+
+ check_malloced_chunk(m, chunk2mem(p), nb);
+ return chunk2mem(p);
+}
+
+/* Add a segment to hold a new noncontiguous region */
+static void add_segment(mstate m, char* tbase, size_t tsize, flag_t mmapped) {
+ /* Determine locations and sizes of segment, fenceposts, old top */
+ char* old_top = (char*)m->top;
+ msegmentptr oldsp = segment_holding(m, old_top);
+ char* old_end = oldsp->base + oldsp->size;
+ size_t ssize = pad_request(sizeof(struct malloc_segment));
+ char* rawsp = old_end - (ssize + FOUR_SIZE_T_SIZES + CHUNK_ALIGN_MASK);
+ size_t offset = align_offset(chunk2mem(rawsp));
+ char* asp = rawsp + offset;
+ char* csp = (asp < (old_top + MIN_CHUNK_SIZE))? old_top : asp;
+ mchunkptr sp = (mchunkptr)csp;
+ msegmentptr ss = (msegmentptr)(chunk2mem(sp));
+ mchunkptr tnext = chunk_plus_offset(sp, ssize);
+ mchunkptr p = tnext;
+ int nfences = 0;
+
+ /* reset top to new space */
+ init_top(m, (mchunkptr)tbase, tsize - TOP_FOOT_SIZE);
+
+ /* Set up segment record */
+ assert(is_aligned(ss));
+ set_size_and_pinuse_of_inuse_chunk(m, sp, ssize);
+ *ss = m->seg; /* Push current record */
+ m->seg.base = tbase;
+ m->seg.size = tsize;
+ m->seg.sflags = mmapped;
+ m->seg.next = ss;
+
+ /* Insert trailing fenceposts */
+ for (;;) {
+ mchunkptr nextp = chunk_plus_offset(p, SIZE_T_SIZE);
+ p->head = FENCEPOST_HEAD;
+ ++nfences;
+ if ((char*)(&(nextp->head)) < old_end)
+ p = nextp;
+ else
+ break;
+ }
+ assert(nfences >= 2);
+
+ /* Insert the rest of old top into a bin as an ordinary free chunk */
+ if (csp != old_top) {
+ mchunkptr q = (mchunkptr)old_top;
+ size_t psize = csp - old_top;
+ mchunkptr tn = chunk_plus_offset(q, psize);
+ set_free_with_pinuse(q, psize, tn);
+ insert_chunk(m, q, psize);
+ }
+
+ check_top_chunk(m, m->top);
+}
+
+/* -------------------------- System allocation -------------------------- */
+
+/* Get memory from system using MORECORE or MMAP */
+static void* sys_alloc(mstate m, size_t nb) {
+ char* tbase = CMFAIL;
+ size_t tsize = 0;
+ flag_t mmap_flag = 0;
+
+ ensure_initialization();
+
+ /* Directly map large chunks, but only if already initialized */
+ if (use_mmap(m) && nb >= mparams.mmap_threshold && m->topsize != 0) {
+ void* mem = mmap_alloc(m, nb);
+ if (mem != 0)
+ return mem;
+ }
+
+ /*
+ Try getting memory in any of three ways (in most-preferred to
+ least-preferred order):
+ 1. A call to MORECORE that can normally contiguously extend memory.
+ (disabled if not MORECORE_CONTIGUOUS or not HAVE_MORECORE or
+ or main space is mmapped or a previous contiguous call failed)
+ 2. A call to MMAP new space (disabled if not HAVE_MMAP).
+ Note that under the default settings, if MORECORE is unable to
+ fulfill a request, and HAVE_MMAP is true, then mmap is
+ used as a noncontiguous system allocator. This is a useful backup
+ strategy for systems with holes in address spaces -- in this case
+ sbrk cannot contiguously expand the heap, but mmap may be able to
+ find space.
+ 3. A call to MORECORE that cannot usually contiguously extend memory.
+ (disabled if not HAVE_MORECORE)
+
+ In all cases, we need to request enough bytes from system to ensure
+ we can malloc nb bytes upon success, so pad with enough space for
+ top_foot, plus alignment-pad to make sure we don't lose bytes if
+ not on boundary, and round this up to a granularity unit.
+ */
+
+ if (MORECORE_CONTIGUOUS && !use_noncontiguous(m)) {
+ char* br = CMFAIL;
+ msegmentptr ss = (m->top == 0)? 0 : segment_holding(m, (char*)m->top);
+ size_t asize = 0;
+ ACQUIRE_MALLOC_GLOBAL_LOCK();
+
+ if (ss == 0) { /* First time through or recovery */
+ char* base = (char*)CALL_MORECORE(0);
+ if (base != CMFAIL) {
+ asize = granularity_align(nb + SYS_ALLOC_PADDING);
+ /* Adjust to end on a page boundary */
+ if (!is_page_aligned(base))
+ asize += (page_align((size_t)base) - (size_t)base);
+ /* Can't call MORECORE if size is negative when treated as signed */
+ if (asize < HALF_MAX_SIZE_T &&
+ (br = (char*)(CALL_MORECORE(asize))) == base) {
+ tbase = base;
+ tsize = asize;
+ }
+ }
+ }
+ else {
+ /* Subtract out existing available top space from MORECORE request. */
+ asize = granularity_align(nb - m->topsize + SYS_ALLOC_PADDING);
+ /* Use mem here only if it did continuously extend old space */
+ if (asize < HALF_MAX_SIZE_T &&
+ (br = (char*)(CALL_MORECORE(asize))) == ss->base+ss->size) {
+ tbase = br;
+ tsize = asize;
+ }
+ }
+
+ if (tbase == CMFAIL) { /* Cope with partial failure */
+ if (br != CMFAIL) { /* Try to use/extend the space we did get */
+ if (asize < HALF_MAX_SIZE_T &&
+ asize < nb + SYS_ALLOC_PADDING) {
+ size_t esize = granularity_align(nb + SYS_ALLOC_PADDING - asize);
+ if (esize < HALF_MAX_SIZE_T) {
+ char* end = (char*)CALL_MORECORE(esize);
+ if (end != CMFAIL)
+ asize += esize;
+ else { /* Can't use; try to release */
+ (void) CALL_MORECORE(-asize);
+ br = CMFAIL;
+ }
+ }
+ }
+ }
+ if (br != CMFAIL) { /* Use the space we did get */
+ tbase = br;
+ tsize = asize;
+ }
+ else
+ disable_contiguous(m); /* Don't try contiguous path in the future */
+ }
+
+ RELEASE_MALLOC_GLOBAL_LOCK();
+ }
+
+ if (HAVE_MMAP && tbase == CMFAIL) { /* Try MMAP */
+ size_t rsize = granularity_align(nb + SYS_ALLOC_PADDING);
+ if (rsize > nb) { /* Fail if wraps around zero */
+ char* mp = (char*)(CALL_MMAP(rsize));
+ if (mp != CMFAIL) {
+ tbase = mp;
+ tsize = rsize;
+ mmap_flag = USE_MMAP_BIT;
+ }
+ }
+ }
+
+ if (HAVE_MORECORE && tbase == CMFAIL) { /* Try noncontiguous MORECORE */
+ size_t asize = granularity_align(nb + SYS_ALLOC_PADDING);
+ if (asize < HALF_MAX_SIZE_T) {
+ char* br = CMFAIL;
+ char* end = CMFAIL;
+ ACQUIRE_MALLOC_GLOBAL_LOCK();
+ br = (char*)(CALL_MORECORE(asize));
+ end = (char*)(CALL_MORECORE(0));
+ RELEASE_MALLOC_GLOBAL_LOCK();
+ if (br != CMFAIL && end != CMFAIL && br < end) {
+ size_t ssize = end - br;
+ if (ssize > nb + TOP_FOOT_SIZE) {
+ tbase = br;
+ tsize = ssize;
+ }
+ }
+ }
+ }
+
+ if (tbase != CMFAIL) {
+
+ if ((m->footprint += tsize) > m->max_footprint)
+ m->max_footprint = m->footprint;
+
+ if (!is_initialized(m)) { /* first-time initialization */
+ if (m->least_addr == 0 || tbase < m->least_addr)
+ m->least_addr = tbase;
+ m->seg.base = tbase;
+ m->seg.size = tsize;
+ m->seg.sflags = mmap_flag;
+ m->magic = mparams.magic;
+ m->release_checks = MAX_RELEASE_CHECK_RATE;
+ init_bins(m);
+#if !ONLY_MSPACES
+ if (is_global(m))
+ init_top(m, (mchunkptr)tbase, tsize - TOP_FOOT_SIZE);
+ else
+#endif
+ {
+ /* Offset top by embedded malloc_state */
+ mchunkptr mn = next_chunk(mem2chunk(m));
+ init_top(m, mn, (size_t)((tbase + tsize) - (char*)mn) -TOP_FOOT_SIZE);
+ }
+ }
+
+ else {
+ /* Try to merge with an existing segment */
+ msegmentptr sp = &m->seg;
+ /* Only consider most recent segment if traversal suppressed */
+ while (sp != 0 && tbase != sp->base + sp->size)
+ sp = (NO_SEGMENT_TRAVERSAL) ? 0 : sp->next;
+ if (sp != 0 &&
+ !is_extern_segment(sp) &&
+ (sp->sflags & USE_MMAP_BIT) == mmap_flag &&
+ segment_holds(sp, m->top)) { /* append */
+ sp->size += tsize;
+ init_top(m, m->top, m->topsize + tsize);
+ }
+ else {
+ if (tbase < m->least_addr)
+ m->least_addr = tbase;
+ sp = &m->seg;
+ while (sp != 0 && sp->base != tbase + tsize)
+ sp = (NO_SEGMENT_TRAVERSAL) ? 0 : sp->next;
+ if (sp != 0 &&
+ !is_extern_segment(sp) &&
+ (sp->sflags & USE_MMAP_BIT) == mmap_flag) {
+ char* oldbase = sp->base;
+ sp->base = tbase;
+ sp->size += tsize;
+ return prepend_alloc(m, tbase, oldbase, nb);
+ }
+ else
+ add_segment(m, tbase, tsize, mmap_flag);
+ }
+ }
+
+ if (nb < m->topsize) { /* Allocate from new or extended top space */
+ size_t rsize = m->topsize -= nb;
+ mchunkptr p = m->top;
+ mchunkptr r = m->top = chunk_plus_offset(p, nb);
+ r->head = rsize | PINUSE_BIT;
+ set_size_and_pinuse_of_inuse_chunk(m, p, nb);
+ check_top_chunk(m, m->top);
+ check_malloced_chunk(m, chunk2mem(p), nb);
+ return chunk2mem(p);
+ }
+ }
+
+ MALLOC_FAILURE_ACTION;
+ return 0;
+}
+
+/* ----------------------- system deallocation -------------------------- */
+
+/* Unmap and unlink any mmapped segments that don't contain used chunks */
+static size_t release_unused_segments(mstate m) {
+ size_t released = 0;
+ int nsegs = 0;
+ msegmentptr pred = &m->seg;
+ msegmentptr sp = pred->next;
+ while (sp != 0) {
+ char* base = sp->base;
+ size_t size = sp->size;
+ msegmentptr next = sp->next;
+ ++nsegs;
+ if (is_mmapped_segment(sp) && !is_extern_segment(sp)) {
+ mchunkptr p = align_as_chunk(base);
+ size_t psize = chunksize(p);
+ /* Can unmap if first chunk holds entire segment and not pinned */
+ if (!is_inuse(p) && (char*)p + psize >= base + size - TOP_FOOT_SIZE) {
+ tchunkptr tp = (tchunkptr)p;
+ assert(segment_holds(sp, (char*)sp));
+ if (p == m->dv) {
+ m->dv = 0;
+ m->dvsize = 0;
+ }
+ else {
+ unlink_large_chunk(m, tp);
+ }
+ if (CALL_MUNMAP(base, size) == 0) {
+ released += size;
+ m->footprint -= size;
+ /* unlink obsoleted record */
+ sp = pred;
+ sp->next = next;
+ }
+ else { /* back out if cannot unmap */
+ insert_large_chunk(m, tp, psize);
+ }
+ }
+ }
+ if (NO_SEGMENT_TRAVERSAL) /* scan only first segment */
+ break;
+ pred = sp;
+ sp = next;
+ }
+ /* Reset check counter */
+ m->release_checks = ((nsegs > MAX_RELEASE_CHECK_RATE)?
+ nsegs : MAX_RELEASE_CHECK_RATE);
+ return released;
+}
+
+static int sys_trim(mstate m, size_t pad) {
+ size_t released = 0;
+ ensure_initialization();
+ if (pad < MAX_REQUEST && is_initialized(m)) {
+ pad += TOP_FOOT_SIZE; /* ensure enough room for segment overhead */
+
+ if (m->topsize > pad) {
+ /* Shrink top space in granularity-size units, keeping at least one */
+ size_t unit = mparams.granularity;
+ size_t extra = ((m->topsize - pad + (unit - SIZE_T_ONE)) / unit -
+ SIZE_T_ONE) * unit;
+ msegmentptr sp = segment_holding(m, (char*)m->top);
+
+ if (!is_extern_segment(sp)) {
+ if (is_mmapped_segment(sp)) {
+ if (HAVE_MMAP &&
+ sp->size >= extra &&
+ !has_segment_link(m, sp)) { /* can't shrink if pinned */
+ size_t newsize = sp->size - extra;
+ /* Prefer mremap, fall back to munmap */
+ if ((CALL_MREMAP(sp->base, sp->size, newsize, 0) != MFAIL) ||
+ (CALL_MUNMAP(sp->base + newsize, extra) == 0)) {
+ released = extra;
+ }
+ }
+ }
+ else if (HAVE_MORECORE) {
+ if (extra >= HALF_MAX_SIZE_T) /* Avoid wrapping negative */
+ extra = (HALF_MAX_SIZE_T) + SIZE_T_ONE - unit;
+ ACQUIRE_MALLOC_GLOBAL_LOCK();
+ {
+ /* Make sure end of memory is where we last set it. */
+ char* old_br = (char*)(CALL_MORECORE(0));
+ if (old_br == sp->base + sp->size) {
+ char* rel_br = (char*)(CALL_MORECORE(-extra));
+ char* new_br = (char*)(CALL_MORECORE(0));
+ if (rel_br != CMFAIL && new_br < old_br)
+ released = old_br - new_br;
+ }
+ }
+ RELEASE_MALLOC_GLOBAL_LOCK();
+ }
+ }
+
+ if (released != 0) {
+ sp->size -= released;
+ m->footprint -= released;
+ init_top(m, m->top, m->topsize - released);
+ check_top_chunk(m, m->top);
+ }
+ }
+
+ /* Unmap any unused mmapped segments */
+ if (HAVE_MMAP)
+ released += release_unused_segments(m);
+
+ /* On failure, disable autotrim to avoid repeated failed future calls */
+ if (released == 0 && m->topsize > m->trim_check)
+ m->trim_check = MAX_SIZE_T;
+ }
+
+ return (released != 0)? 1 : 0;
+}
+
+
+/* ---------------------------- malloc support --------------------------- */
+
+/* allocate a large request from the best fitting chunk in a treebin */
+static void* tmalloc_large(mstate m, size_t nb) {
+ tchunkptr v = 0;
+ size_t rsize = -nb; /* Unsigned negation */
+ tchunkptr t;
+ bindex_t idx;
+ compute_tree_index(nb, idx);
+ if ((t = *treebin_at(m, idx)) != 0) {
+ /* Traverse tree for this bin looking for node with size == nb */
+ size_t sizebits = nb << leftshift_for_tree_index(idx);
+ tchunkptr rst = 0; /* The deepest untaken right subtree */
+ for (;;) {
+ tchunkptr rt;
+ size_t trem = chunksize(t) - nb;
+ if (trem < rsize) {
+ v = t;
+ if ((rsize = trem) == 0)
+ break;
+ }
+ rt = t->child[1];
+ t = t->child[(sizebits >> (SIZE_T_BITSIZE-SIZE_T_ONE)) & 1];
+ if (rt != 0 && rt != t)
+ rst = rt;
+ if (t == 0) {
+ t = rst; /* set t to least subtree holding sizes > nb */
+ break;
+ }
+ sizebits <<= 1;
+ }
+ }
+ if (t == 0 && v == 0) { /* set t to root of next non-empty treebin */
+ binmap_t leftbits = left_bits(idx2bit(idx)) & m->treemap;
+ if (leftbits != 0) {
+ bindex_t i;
+ binmap_t leastbit = least_bit(leftbits);
+ compute_bit2idx(leastbit, i);
+ t = *treebin_at(m, i);
+ }
+ }
+
+ while (t != 0) { /* find smallest of tree or subtree */
+ size_t trem = chunksize(t) - nb;
+ if (trem < rsize) {
+ rsize = trem;
+ v = t;
+ }
+ t = leftmost_child(t);
+ }
+
+ /* If dv is a better fit, return 0 so malloc will use it */
+ if (v != 0 && rsize < (size_t)(m->dvsize - nb)) {
+ if (RTCHECK(ok_address(m, v))) { /* split */
+ mchunkptr r = chunk_plus_offset(v, nb);
+ assert(chunksize(v) == rsize + nb);
+ if (RTCHECK(ok_next(v, r))) {
+ unlink_large_chunk(m, v);
+ if (rsize < MIN_CHUNK_SIZE)
+ set_inuse_and_pinuse(m, v, (rsize + nb));
+ else {
+ set_size_and_pinuse_of_inuse_chunk(m, v, nb);
+ set_size_and_pinuse_of_free_chunk(r, rsize);
+ insert_chunk(m, r, rsize);
+ }
+ return chunk2mem(v);
+ }
+ }
+ CORRUPTION_ERROR_ACTION(m);
+ }
+ return 0;
+}
+
+/* allocate a small request from the best fitting chunk in a treebin */
+static void* tmalloc_small(mstate m, size_t nb) {
+ tchunkptr t, v;
+ size_t rsize;
+ bindex_t i;
+ binmap_t leastbit = least_bit(m->treemap);
+ compute_bit2idx(leastbit, i);
+ v = t = *treebin_at(m, i);
+ rsize = chunksize(t) - nb;
+
+ while ((t = leftmost_child(t)) != 0) {
+ size_t trem = chunksize(t) - nb;
+ if (trem < rsize) {
+ rsize = trem;
+ v = t;
+ }
+ }
+
+ if (RTCHECK(ok_address(m, v))) {
+ mchunkptr r = chunk_plus_offset(v, nb);
+ assert(chunksize(v) == rsize + nb);
+ if (RTCHECK(ok_next(v, r))) {
+ unlink_large_chunk(m, v);
+ if (rsize < MIN_CHUNK_SIZE)
+ set_inuse_and_pinuse(m, v, (rsize + nb));
+ else {
+ set_size_and_pinuse_of_inuse_chunk(m, v, nb);
+ set_size_and_pinuse_of_free_chunk(r, rsize);
+ replace_dv(m, r, rsize);
+ }
+ return chunk2mem(v);
+ }
+ }
+
+ CORRUPTION_ERROR_ACTION(m);
+ return 0;
+}
+
+/* --------------------------- realloc support --------------------------- */
+
+static void* internal_realloc(mstate m, void* oldmem, size_t bytes) {
+ if (bytes >= MAX_REQUEST) {
+ MALLOC_FAILURE_ACTION;
+ return 0;
+ }
+ if (!PREACTION(m)) {
+ mchunkptr oldp = mem2chunk(oldmem);
+ size_t oldsize = chunksize(oldp);
+ mchunkptr next = chunk_plus_offset(oldp, oldsize);
+ mchunkptr newp = 0;
+ void* extra = 0;
+
+ /* Try to either shrink or extend into top. Else malloc-copy-free */
+
+ if (RTCHECK(ok_address(m, oldp) && ok_inuse(oldp) &&
+ ok_next(oldp, next) && ok_pinuse(next))) {
+ size_t nb = request2size(bytes);
+ if (is_mmapped(oldp))
+ newp = mmap_resize(m, oldp, nb);
+ else if (oldsize >= nb) { /* already big enough */
+ size_t rsize = oldsize - nb;
+ newp = oldp;
+ if (rsize >= MIN_CHUNK_SIZE) {
+ mchunkptr remainder = chunk_plus_offset(newp, nb);
+ set_inuse(m, newp, nb);
+ set_inuse_and_pinuse(m, remainder, rsize);
+ extra = chunk2mem(remainder);
+ }
+ }
+ else if (next == m->top && oldsize + m->topsize > nb) {
+ /* Expand into top */
+ size_t newsize = oldsize + m->topsize;
+ size_t newtopsize = newsize - nb;
+ mchunkptr newtop = chunk_plus_offset(oldp, nb);
+ set_inuse(m, oldp, nb);
+ newtop->head = newtopsize |PINUSE_BIT;
+ m->top = newtop;
+ m->topsize = newtopsize;
+ newp = oldp;
+ }
+ }
+ else {
+ USAGE_ERROR_ACTION(m, oldmem);
+ POSTACTION(m);
+ return 0;
+ }
+#if DEBUG
+ if (newp != 0) {
+ check_inuse_chunk(m, newp); /* Check requires lock */
+ }
+#endif
+
+ POSTACTION(m);
+
+ if (newp != 0) {
+ if (extra != 0) {
+ internal_free(m, extra);
+ }
+ return chunk2mem(newp);
+ }
+ else {
+ void* newmem = internal_malloc(m, bytes);
+ if (newmem != 0) {
+ size_t oc = oldsize - overhead_for(oldp);
+ memcpy(newmem, oldmem, (oc < bytes)? oc : bytes);
+ internal_free(m, oldmem);
+ }
+ return newmem;
+ }
+ }
+ return 0;
+}
+
+/* --------------------------- memalign support -------------------------- */
+
+static void* internal_memalign(mstate m, size_t alignment, size_t bytes) {
+ if (alignment <= MALLOC_ALIGNMENT) /* Can just use malloc */
+ return internal_malloc(m, bytes);
+ if (alignment < MIN_CHUNK_SIZE) /* must be at least a minimum chunk size */
+ alignment = MIN_CHUNK_SIZE;
+ if ((alignment & (alignment-SIZE_T_ONE)) != 0) {/* Ensure a power of 2 */
+ size_t a = MALLOC_ALIGNMENT << 1;
+ while (a < alignment) a <<= 1;
+ alignment = a;
+ }
+
+ if (bytes >= MAX_REQUEST - alignment) {
+ if (m != 0) { /* Test isn't needed but avoids compiler warning */
+ MALLOC_FAILURE_ACTION;
+ }
+ }
+ else {
+ size_t nb = request2size(bytes);
+ size_t req = nb + alignment + MIN_CHUNK_SIZE - CHUNK_OVERHEAD;
+ char* mem = (char*)internal_malloc(m, req);
+ if (mem != 0) {
+ void* leader = 0;
+ void* trailer = 0;
+ mchunkptr p = mem2chunk(mem);
+
+ if (PREACTION(m)) return 0;
+ if ((((size_t)(mem)) % alignment) != 0) { /* misaligned */
+ /*
+ Find an aligned spot inside chunk. Since we need to give
+ back leading space in a chunk of at least MIN_CHUNK_SIZE, if
+ the first calculation places us at a spot with less than
+ MIN_CHUNK_SIZE leader, we can move to the next aligned spot.
+ We've allocated enough total room so that this is always
+ possible.
+ */
+ char* br = (char*)mem2chunk((size_t)(((size_t)(mem +
+ alignment -
+ SIZE_T_ONE)) &
+ -alignment));
+ char* pos = ((size_t)(br - (char*)(p)) >= MIN_CHUNK_SIZE)?
+ br : br+alignment;
+ mchunkptr newp = (mchunkptr)pos;
+ size_t leadsize = pos - (char*)(p);
+ size_t newsize = chunksize(p) - leadsize;
+
+ if (is_mmapped(p)) { /* For mmapped chunks, just adjust offset */
+ newp->prev_foot = p->prev_foot + leadsize;
+ newp->head = newsize;
+ }
+ else { /* Otherwise, give back leader, use the rest */
+ set_inuse(m, newp, newsize);
+ set_inuse(m, p, leadsize);
+ leader = chunk2mem(p);
+ }
+ p = newp;
+ }
+
+ /* Give back spare room at the end */
+ if (!is_mmapped(p)) {
+ size_t size = chunksize(p);
+ if (size > nb + MIN_CHUNK_SIZE) {
+ size_t remainder_size = size - nb;
+ mchunkptr remainder = chunk_plus_offset(p, nb);
+ set_inuse(m, p, nb);
+ set_inuse(m, remainder, remainder_size);
+ trailer = chunk2mem(remainder);
+ }
+ }
+
+ assert (chunksize(p) >= nb);
+ assert((((size_t)(chunk2mem(p))) % alignment) == 0);
+ check_inuse_chunk(m, p);
+ POSTACTION(m);
+ if (leader != 0) {
+ internal_free(m, leader);
+ }
+ if (trailer != 0) {
+ internal_free(m, trailer);
+ }
+ return chunk2mem(p);
+ }
+ }
+ return 0;
+}
+
+/* ------------------------ comalloc/coalloc support --------------------- */
+
+static void** ialloc(mstate m,
+ size_t n_elements,
+ size_t* sizes,
+ int opts,
+ void* chunks[]) {
+ /*
+ This provides common support for independent_X routines, handling
+ all of the combinations that can result.
+
+ The opts arg has:
+ bit 0 set if all elements are same size (using sizes[0])
+ bit 1 set if elements should be zeroed
+ */
+
+ size_t element_size; /* chunksize of each element, if all same */
+ size_t contents_size; /* total size of elements */
+ size_t array_size; /* request size of pointer array */
+ void* mem; /* malloced aggregate space */
+ mchunkptr p; /* corresponding chunk */
+ size_t remainder_size; /* remaining bytes while splitting */
+ void** marray; /* either "chunks" or malloced ptr array */
+ mchunkptr array_chunk; /* chunk for malloced ptr array */
+ flag_t was_enabled; /* to disable mmap */
+ size_t size;
+ size_t i;
+
+ ensure_initialization();
+ /* compute array length, if needed */
+ if (chunks != 0) {
+ if (n_elements == 0)
+ return chunks; /* nothing to do */
+ marray = chunks;
+ array_size = 0;
+ }
+ else {
+ /* if empty req, must still return chunk representing empty array */
+ if (n_elements == 0)
+ return (void**)internal_malloc(m, 0);
+ marray = 0;
+ array_size = request2size(n_elements * (sizeof(void*)));
+ }
+
+ /* compute total element size */
+ if (opts & 0x1) { /* all-same-size */
+ element_size = request2size(*sizes);
+ contents_size = n_elements * element_size;
+ }
+ else { /* add up all the sizes */
+ element_size = 0;
+ contents_size = 0;
+ for (i = 0; i != n_elements; ++i)
+ contents_size += request2size(sizes[i]);
+ }
+
+ size = contents_size + array_size;
+
+ /*
+ Allocate the aggregate chunk. First disable direct-mmapping so
+ malloc won't use it, since we would not be able to later
+ free/realloc space internal to a segregated mmap region.
+ */
+ was_enabled = use_mmap(m);
+ disable_mmap(m);
+ mem = internal_malloc(m, size - CHUNK_OVERHEAD);
+ if (was_enabled)
+ enable_mmap(m);
+ if (mem == 0)
+ return 0;
+
+ if (PREACTION(m)) return 0;
+ p = mem2chunk(mem);
+ remainder_size = chunksize(p);
+
+ assert(!is_mmapped(p));
+
+ if (opts & 0x2) { /* optionally clear the elements */
+ memset((size_t*)mem, 0, remainder_size - SIZE_T_SIZE - array_size);
+ }
+
+ /* If not provided, allocate the pointer array as final part of chunk */
+ if (marray == 0) {
+ size_t array_chunk_size;
+ array_chunk = chunk_plus_offset(p, contents_size);
+ array_chunk_size = remainder_size - contents_size;
+ marray = (void**) (chunk2mem(array_chunk));
+ set_size_and_pinuse_of_inuse_chunk(m, array_chunk, array_chunk_size);
+ remainder_size = contents_size;
+ }
+
+ /* split out elements */
+ for (i = 0; ; ++i) {
+ marray[i] = chunk2mem(p);
+ if (i != n_elements-1) {
+ if (element_size != 0)
+ size = element_size;
+ else
+ size = request2size(sizes[i]);
+ remainder_size -= size;
+ set_size_and_pinuse_of_inuse_chunk(m, p, size);
+ p = chunk_plus_offset(p, size);
+ }
+ else { /* the final element absorbs any overallocation slop */
+ set_size_and_pinuse_of_inuse_chunk(m, p, remainder_size);
+ break;
+ }
+ }
+
+#if DEBUG
+ if (marray != chunks) {
+ /* final element must have exactly exhausted chunk */
+ if (element_size != 0) {
+ assert(remainder_size == element_size);
+ }
+ else {
+ assert(remainder_size == request2size(sizes[i]));
+ }
+ check_inuse_chunk(m, mem2chunk(marray));
+ }
+ for (i = 0; i != n_elements; ++i)
+ check_inuse_chunk(m, mem2chunk(marray[i]));
+
+#endif /* DEBUG */
+
+ POSTACTION(m);
+ return marray;
+}
+
+
+/* -------------------------- public routines ---------------------------- */
+
+#if !ONLY_MSPACES
+
+void* dlmalloc(size_t bytes) {
+ /*
+ Basic algorithm:
+ If a small request (< 256 bytes minus per-chunk overhead):
+ 1. If one exists, use a remainderless chunk in associated smallbin.
+ (Remainderless means that there are too few excess bytes to
+ represent as a chunk.)
+ 2. If it is big enough, use the dv chunk, which is normally the
+ chunk adjacent to the one used for the most recent small request.
+ 3. If one exists, split the smallest available chunk in a bin,
+ saving remainder in dv.
+ 4. If it is big enough, use the top chunk.
+ 5. If available, get memory from system and use it
+ Otherwise, for a large request:
+ 1. Find the smallest available binned chunk that fits, and use it
+ if it is better fitting than dv chunk, splitting if necessary.
+ 2. If better fitting than any binned chunk, use the dv chunk.
+ 3. If it is big enough, use the top chunk.
+ 4. If request size >= mmap threshold, try to directly mmap this chunk.
+ 5. If available, get memory from system and use it
+
+ The ugly goto's here ensure that postaction occurs along all paths.
+ */
+
+#if USE_LOCKS
+ ensure_initialization(); /* initialize in sys_alloc if not using locks */
+#endif
+
+ if (!PREACTION(gm)) {
+ void* mem;
+ size_t nb;
+ if (bytes <= MAX_SMALL_REQUEST) {
+ bindex_t idx;
+ binmap_t smallbits;
+ nb = (bytes < MIN_REQUEST)? MIN_CHUNK_SIZE : pad_request(bytes);
+ idx = small_index(nb);
+ smallbits = gm->smallmap >> idx;
+
+ if ((smallbits & 0x3U) != 0) { /* Remainderless fit to a smallbin. */
+ mchunkptr b, p;
+ idx += ~smallbits & 1; /* Uses next bin if idx empty */
+ b = smallbin_at(gm, idx);
+ p = b->fd;
+ assert(chunksize(p) == small_index2size(idx));
+ unlink_first_small_chunk(gm, b, p, idx);
+ set_inuse_and_pinuse(gm, p, small_index2size(idx));
+ mem = chunk2mem(p);
+ check_malloced_chunk(gm, mem, nb);
+ goto postaction;
+ }
+
+ else if (nb > gm->dvsize) {
+ if (smallbits != 0) { /* Use chunk in next nonempty smallbin */
+ mchunkptr b, p, r;
+ size_t rsize;
+ bindex_t i;
+ binmap_t leftbits = (smallbits << idx) & left_bits(idx2bit(idx));
+ binmap_t leastbit = least_bit(leftbits);
+ compute_bit2idx(leastbit, i);
+ b = smallbin_at(gm, i);
+ p = b->fd;
+ assert(chunksize(p) == small_index2size(i));
+ unlink_first_small_chunk(gm, b, p, i);
+ rsize = small_index2size(i) - nb;
+ /* Fit here cannot be remainderless if 4byte sizes */
+ if (SIZE_T_SIZE != 4 && rsize < MIN_CHUNK_SIZE)
+ set_inuse_and_pinuse(gm, p, small_index2size(i));
+ else {
+ set_size_and_pinuse_of_inuse_chunk(gm, p, nb);
+ r = chunk_plus_offset(p, nb);
+ set_size_and_pinuse_of_free_chunk(r, rsize);
+ replace_dv(gm, r, rsize);
+ }
+ mem = chunk2mem(p);
+ check_malloced_chunk(gm, mem, nb);
+ goto postaction;
+ }
+
+ else if (gm->treemap != 0 && (mem = tmalloc_small(gm, nb)) != 0) {
+ check_malloced_chunk(gm, mem, nb);
+ goto postaction;
+ }
+ }
+ }
+ else if (bytes >= MAX_REQUEST)
+ nb = MAX_SIZE_T; /* Too big to allocate. Force failure (in sys alloc) */
+ else {
+ nb = pad_request(bytes);
+ if (gm->treemap != 0 && (mem = tmalloc_large(gm, nb)) != 0) {
+ check_malloced_chunk(gm, mem, nb);
+ goto postaction;
+ }
+ }
+
+ if (nb <= gm->dvsize) {
+ size_t rsize = gm->dvsize - nb;
+ mchunkptr p = gm->dv;
+ if (rsize >= MIN_CHUNK_SIZE) { /* split dv */
+ mchunkptr r = gm->dv = chunk_plus_offset(p, nb);
+ gm->dvsize = rsize;
+ set_size_and_pinuse_of_free_chunk(r, rsize);
+ set_size_and_pinuse_of_inuse_chunk(gm, p, nb);
+ }
+ else { /* exhaust dv */
+ size_t dvs = gm->dvsize;
+ gm->dvsize = 0;
+ gm->dv = 0;
+ set_inuse_and_pinuse(gm, p, dvs);
+ }
+ mem = chunk2mem(p);
+ check_malloced_chunk(gm, mem, nb);
+ goto postaction;
+ }
+
+ else if (nb < gm->topsize) { /* Split top */
+ size_t rsize = gm->topsize -= nb;
+ mchunkptr p = gm->top;
+ mchunkptr r = gm->top = chunk_plus_offset(p, nb);
+ r->head = rsize | PINUSE_BIT;
+ set_size_and_pinuse_of_inuse_chunk(gm, p, nb);
+ mem = chunk2mem(p);
+ check_top_chunk(gm, gm->top);
+ check_malloced_chunk(gm, mem, nb);
+ goto postaction;
+ }
+
+ mem = sys_alloc(gm, nb);
+
+ postaction:
+ POSTACTION(gm);
+ return mem;
+ }
+
+ return 0;
+}
+
+void dlfree(void* mem) {
+ /*
+ Consolidate freed chunks with preceeding or succeeding bordering
+ free chunks, if they exist, and then place in a bin. Intermixed
+ with special cases for top, dv, mmapped chunks, and usage errors.
+ */
+
+ if (mem != 0) {
+ mchunkptr p = mem2chunk(mem);
+#if FOOTERS
+ mstate fm = get_mstate_for(p);
+ if (!ok_magic(fm)) {
+ USAGE_ERROR_ACTION(fm, p);
+ return;
+ }
+#else /* FOOTERS */
+#define fm gm
+#endif /* FOOTERS */
+ if (!PREACTION(fm)) {
+ check_inuse_chunk(fm, p);
+ if (RTCHECK(ok_address(fm, p) && ok_inuse(p))) {
+ size_t psize = chunksize(p);
+ mchunkptr next = chunk_plus_offset(p, psize);
+ if (!pinuse(p)) {
+ size_t prevsize = p->prev_foot;
+ if (is_mmapped(p)) {
+ psize += prevsize + MMAP_FOOT_PAD;
+ if (CALL_MUNMAP((char*)p - prevsize, psize) == 0)
+ fm->footprint -= psize;
+ goto postaction;
+ }
+ else {
+ mchunkptr prev = chunk_minus_offset(p, prevsize);
+ psize += prevsize;
+ p = prev;
+ if (RTCHECK(ok_address(fm, prev))) { /* consolidate backward */
+ if (p != fm->dv) {
+ unlink_chunk(fm, p, prevsize);
+ }
+ else if ((next->head & INUSE_BITS) == INUSE_BITS) {
+ fm->dvsize = psize;
+ set_free_with_pinuse(p, psize, next);
+ goto postaction;
+ }
+ }
+ else
+ goto erroraction;
+ }
+ }
+
+ if (RTCHECK(ok_next(p, next) && ok_pinuse(next))) {
+ if (!cinuse(next)) { /* consolidate forward */
+ if (next == fm->top) {
+ size_t tsize = fm->topsize += psize;
+ fm->top = p;
+ p->head = tsize | PINUSE_BIT;
+ if (p == fm->dv) {
+ fm->dv = 0;
+ fm->dvsize = 0;
+ }
+ if (should_trim(fm, tsize))
+ sys_trim(fm, 0);
+ goto postaction;
+ }
+ else if (next == fm->dv) {
+ size_t dsize = fm->dvsize += psize;
+ fm->dv = p;
+ set_size_and_pinuse_of_free_chunk(p, dsize);
+ goto postaction;
+ }
+ else {
+ size_t nsize = chunksize(next);
+ psize += nsize;
+ unlink_chunk(fm, next, nsize);
+ set_size_and_pinuse_of_free_chunk(p, psize);
+ if (p == fm->dv) {
+ fm->dvsize = psize;
+ goto postaction;
+ }
+ }
+ }
+ else
+ set_free_with_pinuse(p, psize, next);
+
+ if (is_small(psize)) {
+ insert_small_chunk(fm, p, psize);
+ check_free_chunk(fm, p);
+ }
+ else {
+ tchunkptr tp = (tchunkptr)p;
+ insert_large_chunk(fm, tp, psize);
+ check_free_chunk(fm, p);
+ if (--fm->release_checks == 0)
+ release_unused_segments(fm);
+ }
+ goto postaction;
+ }
+ }
+ erroraction:
+ USAGE_ERROR_ACTION(fm, p);
+ postaction:
+ POSTACTION(fm);
+ }
+ }
+#if !FOOTERS
+#undef fm
+#endif /* FOOTERS */
+}
+
+void* dlcalloc(size_t n_elements, size_t elem_size) {
+ void* mem;
+ size_t req = 0;
+ if (n_elements != 0) {
+ req = n_elements * elem_size;
+ if (((n_elements | elem_size) & ~(size_t)0xffff) &&
+ (req / n_elements != elem_size))
+ req = MAX_SIZE_T; /* force downstream failure on overflow */
+ }
+ mem = dlmalloc(req);
+ if (mem != 0 && calloc_must_clear(mem2chunk(mem)))
+ memset(mem, 0, req);
+ return mem;
+}
+
+void* dlrealloc(void* oldmem, size_t bytes) {
+ if (oldmem == 0)
+ return dlmalloc(bytes);
+#ifdef REALLOC_ZERO_BYTES_FREES
+ if (bytes == 0) {
+ dlfree(oldmem);
+ return 0;
+ }
+#endif /* REALLOC_ZERO_BYTES_FREES */
+ else {
+#if ! FOOTERS
+ mstate m = gm;
+#else /* FOOTERS */
+ mstate m = get_mstate_for(mem2chunk(oldmem));
+ if (!ok_magic(m)) {
+ USAGE_ERROR_ACTION(m, oldmem);
+ return 0;
+ }
+#endif /* FOOTERS */
+ return internal_realloc(m, oldmem, bytes);
+ }
+}
+
+void* dlmemalign(size_t alignment, size_t bytes) {
+ return internal_memalign(gm, alignment, bytes);
+}
+
+void** dlindependent_calloc(size_t n_elements, size_t elem_size,
+ void* chunks[]) {
+ size_t sz = elem_size; /* serves as 1-element array */
+ return ialloc(gm, n_elements, &sz, 3, chunks);
+}
+
+void** dlindependent_comalloc(size_t n_elements, size_t sizes[],
+ void* chunks[]) {
+ return ialloc(gm, n_elements, sizes, 0, chunks);
+}
+
+void* dlvalloc(size_t bytes) {
+ size_t pagesz;
+ ensure_initialization();
+ pagesz = mparams.page_size;
+ return dlmemalign(pagesz, bytes);
+}
+
+void* dlpvalloc(size_t bytes) {
+ size_t pagesz;
+ ensure_initialization();
+ pagesz = mparams.page_size;
+ return dlmemalign(pagesz, (bytes + pagesz - SIZE_T_ONE) & ~(pagesz - SIZE_T_ONE));
+}
+
+int dlmalloc_trim(size_t pad) {
+ int result = 0;
+ ensure_initialization();
+ if (!PREACTION(gm)) {
+ result = sys_trim(gm, pad);
+ POSTACTION(gm);
+ }
+ return result;
+}
+
+size_t dlmalloc_footprint(void) {
+ return gm->footprint;
+}
+
+size_t dlmalloc_max_footprint(void) {
+ return gm->max_footprint;
+}
+
+#if !NO_MALLINFO
+struct mallinfo dlmallinfo(void) {
+ return internal_mallinfo(gm);
+}
+#endif /* NO_MALLINFO */
+
+void dlmalloc_stats() {
+ internal_malloc_stats(gm);
+}
+
+int dlmallopt(int param_number, int value) {
+ return change_mparam(param_number, value);
+}
+
+#endif /* !ONLY_MSPACES */
+
+size_t dlmalloc_usable_size(void* mem) {
+ if (mem != 0) {
+ mchunkptr p = mem2chunk(mem);
+ if (is_inuse(p))
+ return chunksize(p) - overhead_for(p);
+ }
+ return 0;
+}
+
+/* ----------------------------- user mspaces ---------------------------- */
+
+#if MSPACES
+
+static mstate init_user_mstate(char* tbase, size_t tsize) {
+ size_t msize = pad_request(sizeof(struct malloc_state));
+ mchunkptr mn;
+ mchunkptr msp = align_as_chunk(tbase);
+ mstate m = (mstate)(chunk2mem(msp));
+ memset(m, 0, msize);
+ INITIAL_LOCK(&m->mutex);
+ msp->head = (msize|INUSE_BITS);
+ m->seg.base = m->least_addr = tbase;
+ m->seg.size = m->footprint = m->max_footprint = tsize;
+ m->magic = mparams.magic;
+ m->release_checks = MAX_RELEASE_CHECK_RATE;
+ m->mflags = mparams.default_mflags;
+ m->extp = 0;
+ m->exts = 0;
+ disable_contiguous(m);
+ init_bins(m);
+ mn = next_chunk(mem2chunk(m));
+ init_top(m, mn, (size_t)((tbase + tsize) - (char*)mn) - TOP_FOOT_SIZE);
+ check_top_chunk(m, m->top);
+ return m;
+}
+
+mspace create_mspace(size_t capacity, int locked) {
+ mstate m = 0;
+ size_t msize;
+ ensure_initialization();
+ msize = pad_request(sizeof(struct malloc_state));
+ if (capacity < (size_t) -(msize + TOP_FOOT_SIZE + mparams.page_size)) {
+ size_t rs = ((capacity == 0)? mparams.granularity :
+ (capacity + TOP_FOOT_SIZE + msize));
+ size_t tsize = granularity_align(rs);
+ char* tbase = (char*)(CALL_MMAP(tsize));
+ if (tbase != CMFAIL) {
+ m = init_user_mstate(tbase, tsize);
+ m->seg.sflags = USE_MMAP_BIT;
+ set_lock(m, locked);
+ }
+ }
+ return (mspace)m;
+}
+
+mspace create_mspace_with_base(void* base, size_t capacity, int locked) {
+ mstate m = 0;
+ size_t msize;
+ ensure_initialization();
+ msize = pad_request(sizeof(struct malloc_state));
+ if (capacity > msize + TOP_FOOT_SIZE &&
+ capacity < (size_t) -(msize + TOP_FOOT_SIZE + mparams.page_size)) {
+ m = init_user_mstate((char*)base, capacity);
+ m->seg.sflags = EXTERN_BIT;
+ set_lock(m, locked);
+ }
+ return (mspace)m;
+}
+
+int mspace_track_large_chunks(mspace msp, int enable) {
+ int ret = 0;
+ mstate ms = (mstate)msp;
+ if (!PREACTION(ms)) {
+ if (!use_mmap(ms))
+ ret = 1;
+ if (!enable)
+ enable_mmap(ms);
+ else
+ disable_mmap(ms);
+ POSTACTION(ms);
+ }
+ return ret;
+}
+
+size_t destroy_mspace(mspace msp) {
+ size_t freed = 0;
+ mstate ms = (mstate)msp;
+ if (ok_magic(ms)) {
+ msegmentptr sp = &ms->seg;
+ while (sp != 0) {
+ char* base = sp->base;
+ size_t size = sp->size;
+ flag_t flag = sp->sflags;
+ sp = sp->next;
+ if ((flag & USE_MMAP_BIT) && !(flag & EXTERN_BIT) &&
+ CALL_MUNMAP(base, size) == 0)
+ freed += size;
+ }
+ }
+ else {
+ USAGE_ERROR_ACTION(ms,ms);
+ }
+ return freed;
+}
+
+/*
+ mspace versions of routines are near-clones of the global
+ versions. This is not so nice but better than the alternatives.
+*/
+
+
+void* mspace_malloc(mspace msp, size_t bytes) {
+ mstate ms = (mstate)msp;
+ if (!ok_magic(ms)) {
+ USAGE_ERROR_ACTION(ms,ms);
+ return 0;
+ }
+ if (!PREACTION(ms)) {
+ void* mem;
+ size_t nb;
+ if (bytes <= MAX_SMALL_REQUEST) {
+ bindex_t idx;
+ binmap_t smallbits;
+ nb = (bytes < MIN_REQUEST)? MIN_CHUNK_SIZE : pad_request(bytes);
+ idx = small_index(nb);
+ smallbits = ms->smallmap >> idx;
+
+ if ((smallbits & 0x3U) != 0) { /* Remainderless fit to a smallbin. */
+ mchunkptr b, p;
+ idx += ~smallbits & 1; /* Uses next bin if idx empty */
+ b = smallbin_at(ms, idx);
+ p = b->fd;
+ assert(chunksize(p) == small_index2size(idx));
+ unlink_first_small_chunk(ms, b, p, idx);
+ set_inuse_and_pinuse(ms, p, small_index2size(idx));
+ mem = chunk2mem(p);
+ check_malloced_chunk(ms, mem, nb);
+ goto postaction;
+ }
+
+ else if (nb > ms->dvsize) {
+ if (smallbits != 0) { /* Use chunk in next nonempty smallbin */
+ mchunkptr b, p, r;
+ size_t rsize;
+ bindex_t i;
+ binmap_t leftbits = (smallbits << idx) & left_bits(idx2bit(idx));
+ binmap_t leastbit = least_bit(leftbits);
+ compute_bit2idx(leastbit, i);
+ b = smallbin_at(ms, i);
+ p = b->fd;
+ assert(chunksize(p) == small_index2size(i));
+ unlink_first_small_chunk(ms, b, p, i);
+ rsize = small_index2size(i) - nb;
+ /* Fit here cannot be remainderless if 4byte sizes */
+ if (SIZE_T_SIZE != 4 && rsize < MIN_CHUNK_SIZE)
+ set_inuse_and_pinuse(ms, p, small_index2size(i));
+ else {
+ set_size_and_pinuse_of_inuse_chunk(ms, p, nb);
+ r = chunk_plus_offset(p, nb);
+ set_size_and_pinuse_of_free_chunk(r, rsize);
+ replace_dv(ms, r, rsize);
+ }
+ mem = chunk2mem(p);
+ check_malloced_chunk(ms, mem, nb);
+ goto postaction;
+ }
+
+ else if (ms->treemap != 0 && (mem = tmalloc_small(ms, nb)) != 0) {
+ check_malloced_chunk(ms, mem, nb);
+ goto postaction;
+ }
+ }
+ }
+ else if (bytes >= MAX_REQUEST)
+ nb = MAX_SIZE_T; /* Too big to allocate. Force failure (in sys alloc) */
+ else {
+ nb = pad_request(bytes);
+ if (ms->treemap != 0 && (mem = tmalloc_large(ms, nb)) != 0) {
+ check_malloced_chunk(ms, mem, nb);
+ goto postaction;
+ }
+ }
+
+ if (nb <= ms->dvsize) {
+ size_t rsize = ms->dvsize - nb;
+ mchunkptr p = ms->dv;
+ if (rsize >= MIN_CHUNK_SIZE) { /* split dv */
+ mchunkptr r = ms->dv = chunk_plus_offset(p, nb);
+ ms->dvsize = rsize;
+ set_size_and_pinuse_of_free_chunk(r, rsize);
+ set_size_and_pinuse_of_inuse_chunk(ms, p, nb);
+ }
+ else { /* exhaust dv */
+ size_t dvs = ms->dvsize;
+ ms->dvsize = 0;
+ ms->dv = 0;
+ set_inuse_and_pinuse(ms, p, dvs);
+ }
+ mem = chunk2mem(p);
+ check_malloced_chunk(ms, mem, nb);
+ goto postaction;
+ }
+
+ else if (nb < ms->topsize) { /* Split top */
+ size_t rsize = ms->topsize -= nb;
+ mchunkptr p = ms->top;
+ mchunkptr r = ms->top = chunk_plus_offset(p, nb);
+ r->head = rsize | PINUSE_BIT;
+ set_size_and_pinuse_of_inuse_chunk(ms, p, nb);
+ mem = chunk2mem(p);
+ check_top_chunk(ms, ms->top);
+ check_malloced_chunk(ms, mem, nb);
+ goto postaction;
+ }
+
+ mem = sys_alloc(ms, nb);
+
+ postaction:
+ POSTACTION(ms);
+ return mem;
+ }
+
+ return 0;
+}
+
+void mspace_free(mspace msp, void* mem) {
+ if (mem != 0) {
+ mchunkptr p = mem2chunk(mem);
+#if FOOTERS
+ mstate fm = get_mstate_for(p);
+ msp = msp; /* placate people compiling -Wunused */
+#else /* FOOTERS */
+ mstate fm = (mstate)msp;
+#endif /* FOOTERS */
+ if (!ok_magic(fm)) {
+ USAGE_ERROR_ACTION(fm, p);
+ return;
+ }
+ if (!PREACTION(fm)) {
+ check_inuse_chunk(fm, p);
+ if (RTCHECK(ok_address(fm, p) && ok_inuse(p))) {
+ size_t psize = chunksize(p);
+ mchunkptr next = chunk_plus_offset(p, psize);
+ if (!pinuse(p)) {
+ size_t prevsize = p->prev_foot;
+ if (is_mmapped(p)) {
+ psize += prevsize + MMAP_FOOT_PAD;
+ if (CALL_MUNMAP((char*)p - prevsize, psize) == 0)
+ fm->footprint -= psize;
+ goto postaction;
+ }
+ else {
+ mchunkptr prev = chunk_minus_offset(p, prevsize);
+ psize += prevsize;
+ p = prev;
+ if (RTCHECK(ok_address(fm, prev))) { /* consolidate backward */
+ if (p != fm->dv) {
+ unlink_chunk(fm, p, prevsize);
+ }
+ else if ((next->head & INUSE_BITS) == INUSE_BITS) {
+ fm->dvsize = psize;
+ set_free_with_pinuse(p, psize, next);
+ goto postaction;
+ }
+ }
+ else
+ goto erroraction;
+ }
+ }
+
+ if (RTCHECK(ok_next(p, next) && ok_pinuse(next))) {
+ if (!cinuse(next)) { /* consolidate forward */
+ if (next == fm->top) {
+ size_t tsize = fm->topsize += psize;
+ fm->top = p;
+ p->head = tsize | PINUSE_BIT;
+ if (p == fm->dv) {
+ fm->dv = 0;
+ fm->dvsize = 0;
+ }
+ if (should_trim(fm, tsize))
+ sys_trim(fm, 0);
+ goto postaction;
+ }
+ else if (next == fm->dv) {
+ size_t dsize = fm->dvsize += psize;
+ fm->dv = p;
+ set_size_and_pinuse_of_free_chunk(p, dsize);
+ goto postaction;
+ }
+ else {
+ size_t nsize = chunksize(next);
+ psize += nsize;
+ unlink_chunk(fm, next, nsize);
+ set_size_and_pinuse_of_free_chunk(p, psize);
+ if (p == fm->dv) {
+ fm->dvsize = psize;
+ goto postaction;
+ }
+ }
+ }
+ else
+ set_free_with_pinuse(p, psize, next);
+
+ if (is_small(psize)) {
+ insert_small_chunk(fm, p, psize);
+ check_free_chunk(fm, p);
+ }
+ else {
+ tchunkptr tp = (tchunkptr)p;
+ insert_large_chunk(fm, tp, psize);
+ check_free_chunk(fm, p);
+ if (--fm->release_checks == 0)
+ release_unused_segments(fm);
+ }
+ goto postaction;
+ }
+ }
+ erroraction:
+ USAGE_ERROR_ACTION(fm, p);
+ postaction:
+ POSTACTION(fm);
+ }
+ }
+}
+
+void* mspace_calloc(mspace msp, size_t n_elements, size_t elem_size) {
+ void* mem;
+ size_t req = 0;
+ mstate ms = (mstate)msp;
+ if (!ok_magic(ms)) {
+ USAGE_ERROR_ACTION(ms,ms);
+ return 0;
+ }
+ if (n_elements != 0) {
+ req = n_elements * elem_size;
+ if (((n_elements | elem_size) & ~(size_t)0xffff) &&
+ (req / n_elements != elem_size))
+ req = MAX_SIZE_T; /* force downstream failure on overflow */
+ }
+ mem = internal_malloc(ms, req);
+ if (mem != 0 && calloc_must_clear(mem2chunk(mem)))
+ memset(mem, 0, req);
+ return mem;
+}
+
+void* mspace_realloc(mspace msp, void* oldmem, size_t bytes) {
+ if (oldmem == 0)
+ return mspace_malloc(msp, bytes);
+#ifdef REALLOC_ZERO_BYTES_FREES
+ if (bytes == 0) {
+ mspace_free(msp, oldmem);
+ return 0;
+ }
+#endif /* REALLOC_ZERO_BYTES_FREES */
+ else {
+#if FOOTERS
+ mchunkptr p = mem2chunk(oldmem);
+ mstate ms = get_mstate_for(p);
+#else /* FOOTERS */
+ mstate ms = (mstate)msp;
+#endif /* FOOTERS */
+ if (!ok_magic(ms)) {
+ USAGE_ERROR_ACTION(ms,ms);
+ return 0;
+ }
+ return internal_realloc(ms, oldmem, bytes);
+ }
+}
+
+void* mspace_memalign(mspace msp, size_t alignment, size_t bytes) {
+ mstate ms = (mstate)msp;
+ if (!ok_magic(ms)) {
+ USAGE_ERROR_ACTION(ms,ms);
+ return 0;
+ }
+ return internal_memalign(ms, alignment, bytes);
+}
+
+void** mspace_independent_calloc(mspace msp, size_t n_elements,
+ size_t elem_size, void* chunks[]) {
+ size_t sz = elem_size; /* serves as 1-element array */
+ mstate ms = (mstate)msp;
+ if (!ok_magic(ms)) {
+ USAGE_ERROR_ACTION(ms,ms);
+ return 0;
+ }
+ return ialloc(ms, n_elements, &sz, 3, chunks);
+}
+
+void** mspace_independent_comalloc(mspace msp, size_t n_elements,
+ size_t sizes[], void* chunks[]) {
+ mstate ms = (mstate)msp;
+ if (!ok_magic(ms)) {
+ USAGE_ERROR_ACTION(ms,ms);
+ return 0;
+ }
+ return ialloc(ms, n_elements, sizes, 0, chunks);
+}
+
+int mspace_trim(mspace msp, size_t pad) {
+ int result = 0;
+ mstate ms = (mstate)msp;
+ if (ok_magic(ms)) {
+ if (!PREACTION(ms)) {
+ result = sys_trim(ms, pad);
+ POSTACTION(ms);
+ }
+ }
+ else {
+ USAGE_ERROR_ACTION(ms,ms);
+ }
+ return result;
+}
+
+void mspace_malloc_stats(mspace msp) {
+ mstate ms = (mstate)msp;
+ if (ok_magic(ms)) {
+ internal_malloc_stats(ms);
+ }
+ else {
+ USAGE_ERROR_ACTION(ms,ms);
+ }
+}
+
+size_t mspace_footprint(mspace msp) {
+ size_t result = 0;
+ mstate ms = (mstate)msp;
+ if (ok_magic(ms)) {
+ result = ms->footprint;
+ }
+ else {
+ USAGE_ERROR_ACTION(ms,ms);
+ }
+ return result;
+}
+
+
+size_t mspace_max_footprint(mspace msp) {
+ size_t result = 0;
+ mstate ms = (mstate)msp;
+ if (ok_magic(ms)) {
+ result = ms->max_footprint;
+ }
+ else {
+ USAGE_ERROR_ACTION(ms,ms);
+ }
+ return result;
+}
+
+
+#if !NO_MALLINFO
+struct mallinfo mspace_mallinfo(mspace msp) {
+ mstate ms = (mstate)msp;
+ if (!ok_magic(ms)) {
+ USAGE_ERROR_ACTION(ms,ms);
+ }
+ return internal_mallinfo(ms);
+}
+#endif /* NO_MALLINFO */
+
+size_t mspace_usable_size(void* mem) {
+ if (mem != 0) {
+ mchunkptr p = mem2chunk(mem);
+ if (is_inuse(p))
+ return chunksize(p) - overhead_for(p);
+ }
+ return 0;
+}
+
+int mspace_mallopt(int param_number, int value) {
+ return change_mparam(param_number, value);
+}
+
+#endif /* MSPACES */
+
+
+/* -------------------- Alternative MORECORE functions ------------------- */
+
+/*
+ Guidelines for creating a custom version of MORECORE:
+
+ * For best performance, MORECORE should allocate in multiples of pagesize.
+ * MORECORE may allocate more memory than requested. (Or even less,
+ but this will usually result in a malloc failure.)
+ * MORECORE must not allocate memory when given argument zero, but
+ instead return one past the end address of memory from previous
+ nonzero call.
+ * For best performance, consecutive calls to MORECORE with positive
+ arguments should return increasing addresses, indicating that
+ space has been contiguously extended.
+ * Even though consecutive calls to MORECORE need not return contiguous
+ addresses, it must be OK for malloc'ed chunks to span multiple
+ regions in those cases where they do happen to be contiguous.
+ * MORECORE need not handle negative arguments -- it may instead
+ just return MFAIL when given negative arguments.
+ Negative arguments are always multiples of pagesize. MORECORE
+ must not misinterpret negative args as large positive unsigned
+ args. You can suppress all such calls from even occurring by defining
+ MORECORE_CANNOT_TRIM,
+
+ As an example alternative MORECORE, here is a custom allocator
+ kindly contributed for pre-OSX macOS. It uses virtually but not
+ necessarily physically contiguous non-paged memory (locked in,
+ present and won't get swapped out). You can use it by uncommenting
+ this section, adding some #includes, and setting up the appropriate
+ defines above:
+
+ #define MORECORE osMoreCore
+
+ There is also a shutdown routine that should somehow be called for
+ cleanup upon program exit.
+
+ #define MAX_POOL_ENTRIES 100
+ #define MINIMUM_MORECORE_SIZE (64 * 1024U)
+ static int next_os_pool;
+ void *our_os_pools[MAX_POOL_ENTRIES];
+
+ void *osMoreCore(int size)
+ {
+ void *ptr = 0;
+ static void *sbrk_top = 0;
+
+ if (size > 0)
+ {
+ if (size < MINIMUM_MORECORE_SIZE)
+ size = MINIMUM_MORECORE_SIZE;
+ if (CurrentExecutionLevel() == kTaskLevel)
+ ptr = PoolAllocateResident(size + RM_PAGE_SIZE, 0);
+ if (ptr == 0)
+ {
+ return (void *) MFAIL;
+ }
+ // save ptrs so they can be freed during cleanup
+ our_os_pools[next_os_pool] = ptr;
+ next_os_pool++;
+ ptr = (void *) ((((size_t) ptr) + RM_PAGE_MASK) & ~RM_PAGE_MASK);
+ sbrk_top = (char *) ptr + size;
+ return ptr;
+ }
+ else if (size < 0)
+ {
+ // we don't currently support shrink behavior
+ return (void *) MFAIL;
+ }
+ else
+ {
+ return sbrk_top;
+ }
+ }
+
+ // cleanup any allocated memory pools
+ // called as last thing before shutting down driver
+
+ void osCleanupMem(void)
+ {
+ void **ptr;
+
+ for (ptr = our_os_pools; ptr < &our_os_pools[MAX_POOL_ENTRIES]; ptr++)
+ if (*ptr)
+ {
+ PoolDeallocate(*ptr);
+ *ptr = 0;
+ }
+ }
+
+*/
+
+
+/* -----------------------------------------------------------------------
+History:
+ V2.8.4 Wed May 27 09:56:23 2009 Doug Lea (dl at gee)
+ * Use zeros instead of prev foot for is_mmapped
+ * Add mspace_track_large_chunks; thanks to Jean Brouwers
+ * Fix set_inuse in internal_realloc; thanks to Jean Brouwers
+ * Fix insufficient sys_alloc padding when using 16byte alignment
+ * Fix bad error check in mspace_footprint
+ * Adaptations for ptmalloc; thanks to Wolfram Gloger.
+ * Reentrant spin locks; thanks to Earl Chew and others
+ * Win32 improvements; thanks to Niall Douglas and Earl Chew
+ * Add NO_SEGMENT_TRAVERSAL and MAX_RELEASE_CHECK_RATE options
+ * Extension hook in malloc_state
+ * Various small adjustments to reduce warnings on some compilers
+ * Various configuration extensions/changes for more platforms. Thanks
+ to all who contributed these.
+
+ V2.8.3 Thu Sep 22 11:16:32 2005 Doug Lea (dl at gee)
+ * Add max_footprint functions
+ * Ensure all appropriate literals are size_t
+ * Fix conditional compilation problem for some #define settings
+ * Avoid concatenating segments with the one provided
+ in create_mspace_with_base
+ * Rename some variables to avoid compiler shadowing warnings
+ * Use explicit lock initialization.
+ * Better handling of sbrk interference.
+ * Simplify and fix segment insertion, trimming and mspace_destroy
+ * Reinstate REALLOC_ZERO_BYTES_FREES option from 2.7.x
+ * Thanks especially to Dennis Flanagan for help on these.
+
+ V2.8.2 Sun Jun 12 16:01:10 2005 Doug Lea (dl at gee)
+ * Fix memalign brace error.
+
+ V2.8.1 Wed Jun 8 16:11:46 2005 Doug Lea (dl at gee)
+ * Fix improper #endif nesting in C++
+ * Add explicit casts needed for C++
+
+ V2.8.0 Mon May 30 14:09:02 2005 Doug Lea (dl at gee)
+ * Use trees for large bins
+ * Support mspaces
+ * Use segments to unify sbrk-based and mmap-based system allocation,
+ removing need for emulation on most platforms without sbrk.
+ * Default safety checks
+ * Optional footer checks. Thanks to William Robertson for the idea.
+ * Internal code refactoring
+ * Incorporate suggestions and platform-specific changes.
+ Thanks to Dennis Flanagan, Colin Plumb, Niall Douglas,
+ Aaron Bachmann, Emery Berger, and others.
+ * Speed up non-fastbin processing enough to remove fastbins.
+ * Remove useless cfree() to avoid conflicts with other apps.
+ * Remove internal memcpy, memset. Compilers handle builtins better.
+ * Remove some options that no one ever used and rename others.
+
+ V2.7.2 Sat Aug 17 09:07:30 2002 Doug Lea (dl at gee)
+ * Fix malloc_state bitmap array misdeclaration
+
+ V2.7.1 Thu Jul 25 10:58:03 2002 Doug Lea (dl at gee)
+ * Allow tuning of FIRST_SORTED_BIN_SIZE
+ * Use PTR_UINT as type for all ptr->int casts. Thanks to John Belmonte.
+ * Better detection and support for non-contiguousness of MORECORE.
+ Thanks to Andreas Mueller, Conal Walsh, and Wolfram Gloger
+ * Bypass most of malloc if no frees. Thanks To Emery Berger.
+ * Fix freeing of old top non-contiguous chunk im sysmalloc.
+ * Raised default trim and map thresholds to 256K.
+ * Fix mmap-related #defines. Thanks to Lubos Lunak.
+ * Fix copy macros; added LACKS_FCNTL_H. Thanks to Neal Walfield.
+ * Branch-free bin calculation
+ * Default trim and mmap thresholds now 256K.
+
+ V2.7.0 Sun Mar 11 14:14:06 2001 Doug Lea (dl at gee)
+ * Introduce independent_comalloc and independent_calloc.
+ Thanks to Michael Pachos for motivation and help.
+ * Make optional .h file available
+ * Allow > 2GB requests on 32bit systems.
+ * new WIN32 sbrk, mmap, munmap, lock code from <Walter@GeNeSys-e.de>.
+ Thanks also to Andreas Mueller <a.mueller at paradatec.de>,
+ and Anonymous.
+ * Allow override of MALLOC_ALIGNMENT (Thanks to Ruud Waij for
+ helping test this.)
+ * memalign: check alignment arg
+ * realloc: don't try to shift chunks backwards, since this
+ leads to more fragmentation in some programs and doesn't
+ seem to help in any others.
+ * Collect all cases in malloc requiring system memory into sysmalloc
+ * Use mmap as backup to sbrk
+ * Place all internal state in malloc_state
+ * Introduce fastbins (although similar to 2.5.1)
+ * Many minor tunings and cosmetic improvements
+ * Introduce USE_PUBLIC_MALLOC_WRAPPERS, USE_MALLOC_LOCK
+ * Introduce MALLOC_FAILURE_ACTION, MORECORE_CONTIGUOUS
+ Thanks to Tony E. Bennett <tbennett@nvidia.com> and others.
+ * Include errno.h to support default failure action.
+
+ V2.6.6 Sun Dec 5 07:42:19 1999 Doug Lea (dl at gee)
+ * return null for negative arguments
+ * Added Several WIN32 cleanups from Martin C. Fong <mcfong at yahoo.com>
+ * Add 'LACKS_SYS_PARAM_H' for those systems without 'sys/param.h'
+ (e.g. WIN32 platforms)
+ * Cleanup header file inclusion for WIN32 platforms
+ * Cleanup code to avoid Microsoft Visual C++ compiler complaints
+ * Add 'USE_DL_PREFIX' to quickly allow co-existence with existing
+ memory allocation routines
+ * Set 'malloc_getpagesize' for WIN32 platforms (needs more work)
+ * Use 'assert' rather than 'ASSERT' in WIN32 code to conform to
+ usage of 'assert' in non-WIN32 code
+ * Improve WIN32 'sbrk()' emulation's 'findRegion()' routine to
+ avoid infinite loop
+ * Always call 'fREe()' rather than 'free()'
+
+ V2.6.5 Wed Jun 17 15:57:31 1998 Doug Lea (dl at gee)
+ * Fixed ordering problem with boundary-stamping
+
+ V2.6.3 Sun May 19 08:17:58 1996 Doug Lea (dl at gee)
+ * Added pvalloc, as recommended by H.J. Liu
+ * Added 64bit pointer support mainly from Wolfram Gloger
+ * Added anonymously donated WIN32 sbrk emulation
+ * Malloc, calloc, getpagesize: add optimizations from Raymond Nijssen
+ * malloc_extend_top: fix mask error that caused wastage after
+ foreign sbrks
+ * Add linux mremap support code from HJ Liu
+
+ V2.6.2 Tue Dec 5 06:52:55 1995 Doug Lea (dl at gee)
+ * Integrated most documentation with the code.
+ * Add support for mmap, with help from
+ Wolfram Gloger (Gloger@lrz.uni-muenchen.de).
+ * Use last_remainder in more cases.
+ * Pack bins using idea from colin@nyx10.cs.du.edu
+ * Use ordered bins instead of best-fit threshhold
+ * Eliminate block-local decls to simplify tracing and debugging.
+ * Support another case of realloc via move into top
+ * Fix error occuring when initial sbrk_base not word-aligned.
+ * Rely on page size for units instead of SBRK_UNIT to
+ avoid surprises about sbrk alignment conventions.
+ * Add mallinfo, mallopt. Thanks to Raymond Nijssen
+ (raymond@es.ele.tue.nl) for the suggestion.
+ * Add `pad' argument to malloc_trim and top_pad mallopt parameter.
+ * More precautions for cases where other routines call sbrk,
+ courtesy of Wolfram Gloger (Gloger@lrz.uni-muenchen.de).
+ * Added macros etc., allowing use in linux libc from
+ H.J. Lu (hjl@gnu.ai.mit.edu)
+ * Inverted this history list
+
+ V2.6.1 Sat Dec 2 14:10:57 1995 Doug Lea (dl at gee)
+ * Re-tuned and fixed to behave more nicely with V2.6.0 changes.
+ * Removed all preallocation code since under current scheme
+ the work required to undo bad preallocations exceeds
+ the work saved in good cases for most test programs.
+ * No longer use return list or unconsolidated bins since
+ no scheme using them consistently outperforms those that don't
+ given above changes.
+ * Use best fit for very large chunks to prevent some worst-cases.
+ * Added some support for debugging
+
+ V2.6.0 Sat Nov 4 07:05:23 1995 Doug Lea (dl at gee)
+ * Removed footers when chunks are in use. Thanks to
+ Paul Wilson (wilson@cs.texas.edu) for the suggestion.
+
+ V2.5.4 Wed Nov 1 07:54:51 1995 Doug Lea (dl at gee)
+ * Added malloc_trim, with help from Wolfram Gloger
+ (wmglo@Dent.MED.Uni-Muenchen.DE).
+
+ V2.5.3 Tue Apr 26 10:16:01 1994 Doug Lea (dl at g)
+
+ V2.5.2 Tue Apr 5 16:20:40 1994 Doug Lea (dl at g)
+ * realloc: try to expand in both directions
+ * malloc: swap order of clean-bin strategy;
+ * realloc: only conditionally expand backwards
+ * Try not to scavenge used bins
+ * Use bin counts as a guide to preallocation
+ * Occasionally bin return list chunks in first scan
+ * Add a few optimizations from colin@nyx10.cs.du.edu
+
+ V2.5.1 Sat Aug 14 15:40:43 1993 Doug Lea (dl at g)
+ * faster bin computation & slightly different binning
+ * merged all consolidations to one part of malloc proper
+ (eliminating old malloc_find_space & malloc_clean_bin)
+ * Scan 2 returns chunks (not just 1)
+ * Propagate failure in realloc if malloc returns 0
+ * Add stuff to allow compilation on non-ANSI compilers
+ from kpv@research.att.com
+
+ V2.5 Sat Aug 7 07:41:59 1993 Doug Lea (dl at g.oswego.edu)
+ * removed potential for odd address access in prev_chunk
+ * removed dependency on getpagesize.h
+ * misc cosmetics and a bit more internal documentation
+ * anticosmetics: mangled names in macros to evade debugger strangeness
+ * tested on sparc, hp-700, dec-mips, rs6000
+ with gcc & native cc (hp, dec only) allowing
+ Detlefs & Zorn comparison study (in SIGPLAN Notices.)
+
+ Trial version Fri Aug 28 13:14:29 1992 Doug Lea (dl at g.oswego.edu)
+ * Based loosely on libg++-1.2X malloc. (It retains some of the overall
+ structure of old version, but most details differ.)
+
+*/
+
+#endif
diff --git a/drivers/nedmalloc/nedmalloc.cpp b/drivers/nedmalloc/nedmalloc.cpp
index 8845d96549..9aac277a2a 100644
--- a/drivers/nedmalloc/nedmalloc.cpp
+++ b/drivers/nedmalloc/nedmalloc.cpp
@@ -1,1467 +1,1467 @@
-#ifdef NEDMALLOC_ENABLED
-/* Alternative malloc implementation for multiple threads without
-lock contention based on dlmalloc. (C) 2005-2009 Niall Douglas
-
-Boost Software License - Version 1.0 - August 17th, 2003
-
-Permission is hereby granted, free of charge, to any person or organization
-obtaining a copy of the software and accompanying documentation covered by
-this license (the "Software") to use, reproduce, display, distribute,
-execute, and transmit the Software, and to prepare derivative works of the
-Software, and to permit third-parties to whom the Software is furnished to
-do so, all subject to the following:
-
-The copyright notices in the Software and this entire statement, including
-the above license grant, this restriction and the following disclaimer,
-must be included in all copies of the Software, in whole or in part, and
-all derivative works of the Software, unless such copies or derivative
-works are solely in the form of machine-executable object code generated by
-a source language processor.
-
-THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
-IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
-FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT
-SHALL THE COPYRIGHT HOLDERS OR ANYONE DISTRIBUTING THE SOFTWARE BE LIABLE
-FOR ANY DAMAGES OR OTHER LIABILITY, WHETHER IN CONTRACT, TORT OR OTHERWISE,
-ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
-DEALINGS IN THE SOFTWARE.
-*/
-
-#ifdef _MSC_VER
-/* Enable full aliasing on MSVC */
-/*#pragma optimize("a", on)*/
-#pragma warning(push)
-#pragma warning(disable:4100) /* unreferenced formal parameter */
-#pragma warning(disable:4127) /* conditional expression is constant */
-#pragma warning(disable:4706) /* assignment within conditional expression */
-#endif
-
-/*#define ENABLE_TOLERANT_NEDMALLOC 1*/
-/*#define ENABLE_FAST_HEAP_DETECTION 1*/
-/*#define NEDMALLOC_DEBUG 1*/
-
-/*#define FULLSANITYCHECKS*/
-/* If link time code generation is on, don't force or prevent inlining */
-#if defined(_MSC_VER) && defined(NEDMALLOC_DLL_EXPORTS)
-#define FORCEINLINE
-#define NOINLINE
-#endif
-
-
-#include "nedmalloc.h"
-#ifdef WIN32
- #include <malloc.h>
- #include <stddef.h>
-#endif
-#if USE_ALLOCATOR==1
- #define MSPACES 1
- #define ONLY_MSPACES 1
-#endif
-#define USE_DL_PREFIX 1
-#ifndef USE_LOCKS
- #define USE_LOCKS 1
-#endif
-#define FOOTERS 1 /* Need to enable footers so frees lock the right mspace */
-#ifndef NEDMALLOC_DEBUG
- #if defined(DEBUG) || defined(_DEBUG)
- #define NEDMALLOC_DEBUG 1
- #else
- #define NEDMALLOC_DEBUG 0
- #endif
-#endif
-/* We need to consistently define DEBUG=0|1, _DEBUG and NDEBUG for dlmalloc */
-#undef DEBUG
-#undef _DEBUG
-#if NEDMALLOC_DEBUG
- #define _DEBUG
- #define DEBUG 1
-#else
- #define DEBUG 0
-#endif
-#ifdef NDEBUG /* Disable assert checking on release builds */
- #undef DEBUG
- #undef _DEBUG
-#endif
-/* The default of 64Kb means we spend too much time kernel-side */
-#ifndef DEFAULT_GRANULARITY
-#define DEFAULT_GRANULARITY (1*1024*1024)
-#if DEBUG
-#define DEFAULT_GRANULARITY_ALIGNED
-#endif
-#endif
-/*#define USE_SPIN_LOCKS 0*/
-
-
-#include "malloc.c.h"
-#ifdef NDEBUG /* Disable assert checking on release builds */
- #undef DEBUG
-#elif !NEDMALLOC_DEBUG
- #ifdef __GNUC__
- #warning DEBUG is defined so allocator will run with assert checking! Define NDEBUG to run at full speed.
- #elif defined(_MSC_VER)
- #pragma message(__FILE__ ": WARNING: DEBUG is defined so allocator will run with assert checking! Define NDEBUG to run at full speed.")
- #endif
-#endif
-
-/* The maximum concurrent threads in a pool possible */
-#ifndef MAXTHREADSINPOOL
-#define MAXTHREADSINPOOL 16
-#endif
-/* The maximum number of threadcaches which can be allocated */
-#ifndef THREADCACHEMAXCACHES
-#define THREADCACHEMAXCACHES 256
-#endif
-/* The maximum size to be allocated from the thread cache */
-#ifndef THREADCACHEMAX
-#define THREADCACHEMAX 8192
-#endif
-#if 0
-/* The number of cache entries for finer grained bins. This is (topbitpos(THREADCACHEMAX)-4)*2 */
-#define THREADCACHEMAXBINS ((13-4)*2)
-#else
-/* The number of cache entries. This is (topbitpos(THREADCACHEMAX)-4) */
-#define THREADCACHEMAXBINS (13-4)
-#endif
-/* Point at which the free space in a thread cache is garbage collected */
-#ifndef THREADCACHEMAXFREESPACE
-#define THREADCACHEMAXFREESPACE (512*1024)
-#endif
-
-
-#ifdef WIN32
- #define TLSVAR DWORD
- #define TLSALLOC(k) (*(k)=TlsAlloc(), TLS_OUT_OF_INDEXES==*(k))
- #define TLSFREE(k) (!TlsFree(k))
- #define TLSGET(k) TlsGetValue(k)
- #define TLSSET(k, a) (!TlsSetValue(k, a))
- #ifdef DEBUG
-static LPVOID ChkedTlsGetValue(DWORD idx)
-{
- LPVOID ret=TlsGetValue(idx);
- assert(S_OK==GetLastError());
- return ret;
-}
- #undef TLSGET
- #define TLSGET(k) ChkedTlsGetValue(k)
- #endif
-#else
- #define TLSVAR pthread_key_t
- #define TLSALLOC(k) pthread_key_create(k, 0)
- #define TLSFREE(k) pthread_key_delete(k)
- #define TLSGET(k) pthread_getspecific(k)
- #define TLSSET(k, a) pthread_setspecific(k, a)
-#endif
-
-#if defined(__cplusplus)
-#if !defined(NO_NED_NAMESPACE)
-namespace nedalloc {
-#else
-extern "C" {
-#endif
-#endif
-
-#if USE_ALLOCATOR==0
-static void *unsupported_operation(const char *opname) THROWSPEC
-{
- fprintf(stderr, "nedmalloc: The operation %s is not supported under this build configuration\n", opname);
- abort();
- return 0;
-}
-static size_t mspacecounter=(size_t) 0xdeadbeef;
-#endif
-#ifndef ENABLE_FAST_HEAP_DETECTION
-static void *RESTRICT leastusedaddress;
-static size_t largestusedblock;
-#endif
-
-static FORCEINLINE void *CallMalloc(void *RESTRICT mspace, size_t size, size_t alignment) THROWSPEC
-{
- void *RESTRICT ret=0;
- size_t _alignment=alignment;
-#if USE_MAGIC_HEADERS
- size_t *_ret=0;
- size+=alignment+3*sizeof(size_t);
- _alignment=0;
-#endif
-#if USE_ALLOCATOR==0
- ret=_alignment ?
-#ifdef _MSC_VER
- /* This is the MSVCRT equivalent */
- _aligned_malloc(size, _alignment)
-#elif defined(__linux__) || defined(__FreeBSD__) || defined(__APPLE__)
- /* This is the glibc/ptmalloc2/dlmalloc/BSD libc equivalent. */
- memalign(_alignment, size)
-#else
-#error Cannot aligned allocate with the memory allocator of an unknown system!
-#endif
- : malloc(size);
-#elif USE_ALLOCATOR==1
- ret=_alignment ? mspace_memalign((mstate) mspace, _alignment, size) : mspace_malloc((mstate) mspace, size);
-#ifndef ENABLE_FAST_HEAP_DETECTION
- if(ret)
- {
- size_t truesize=chunksize(mem2chunk(ret));
- if(!leastusedaddress || (void *)((mstate) mspace)->least_addr<leastusedaddress) leastusedaddress=(void *)((mstate) mspace)->least_addr;
- if(!largestusedblock || truesize>largestusedblock) largestusedblock=(truesize+mparams.page_size) & ~(mparams.page_size-1);
- }
-#endif
-#endif
- if(!ret) return 0;
-#if USE_MAGIC_HEADERS
- _ret=(size_t *) ret;
- ret=(void *)(_ret+3);
- if(alignment) ret=(void *)(((size_t) ret+alignment-1)&~(alignment-1));
- for(; _ret<(size_t *)ret-2; _ret++) *_ret=*(size_t *)"NEDMALOC";
- _ret[0]=(size_t) mspace;
- _ret[1]=size-3*sizeof(size_t);
-#endif
- return ret;
-}
-
-static FORCEINLINE void *CallCalloc(void *RESTRICT mspace, size_t size, size_t alignment) THROWSPEC
-{
- void *RESTRICT ret=0;
-#if USE_MAGIC_HEADERS
- size_t *_ret=0;
- size+=alignment+3*sizeof(size_t);
-#endif
-#if USE_ALLOCATOR==0
- ret=calloc(1, size);
-#elif USE_ALLOCATOR==1
- ret=mspace_calloc((mstate) mspace, 1, size);
-#ifndef ENABLE_FAST_HEAP_DETECTION
- if(ret)
- {
- size_t truesize=chunksize(mem2chunk(ret));
- if(!leastusedaddress || (void *)((mstate) mspace)->least_addr<leastusedaddress) leastusedaddress=(void *)((mstate) mspace)->least_addr;
- if(!largestusedblock || truesize>largestusedblock) largestusedblock=(truesize+mparams.page_size) & ~(mparams.page_size-1);
- }
-#endif
-#endif
- if(!ret) return 0;
-#if USE_MAGIC_HEADERS
- _ret=(size_t *) ret;
- ret=(void *)(_ret+3);
- if(alignment) ret=(void *)(((size_t) ret+alignment-1)&~(alignment-1));
- for(; _ret<(size_t *)ret-2; _ret++) *_ret=*(size_t *) "NEDMALOC";
- _ret[0]=(size_t) mspace;
- _ret[1]=size-3*sizeof(size_t);
-#endif
- return ret;
-}
-
-static FORCEINLINE void *CallRealloc(void *RESTRICT mspace, void *RESTRICT mem, int isforeign, size_t oldsize, size_t newsize) THROWSPEC
-{
- void *RESTRICT ret=0;
-#if USE_MAGIC_HEADERS
- mstate oldmspace=0;
- size_t *_ret=0, *_mem=(size_t *) mem-3;
-#endif
- if(isforeign)
- { /* Transfer */
-#if USE_MAGIC_HEADERS
- assert(_mem[0]!=*(size_t *) "NEDMALOC");
-#endif
- if((ret=CallMalloc(mspace, newsize, 0)))
- {
-#if defined(DEBUG)
- printf("*** nedmalloc frees system allocated block %p\n", mem);
-#endif
- memcpy(ret, mem, oldsize<newsize ? oldsize : newsize);
- free(mem);
- }
- return ret;
- }
-#if USE_MAGIC_HEADERS
- assert(_mem[0]==*(size_t *) "NEDMALOC");
- newsize+=3*sizeof(size_t);
- oldmspace=(mstate) _mem[1];
- assert(oldsize>=_mem[2]);
- for(; *_mem==*(size_t *) "NEDMALOC"; *_mem--=*(size_t *) "nedmaloc");
- mem=(void *)(++_mem);
-#endif
-#if USE_ALLOCATOR==0
- ret=realloc(mem, newsize);
-#elif USE_ALLOCATOR==1
- ret=mspace_realloc((mstate) mspace, mem, newsize);
-#ifndef ENABLE_FAST_HEAP_DETECTION
- if(ret)
- {
- size_t truesize=chunksize(mem2chunk(ret));
- if(!largestusedblock || truesize>largestusedblock) largestusedblock=(truesize+mparams.page_size) & ~(mparams.page_size-1);
- }
-#endif
-#endif
- if(!ret)
- { /* Put it back the way it was */
-#if USE_MAGIC_HEADERS
- for(; *_mem==0; *_mem++=*(size_t *) "NEDMALOC");
-#endif
- return 0;
- }
-#if USE_MAGIC_HEADERS
- _ret=(size_t *) ret;
- ret=(void *)(_ret+3);
- for(; _ret<(size_t *)ret-2; _ret++) *_ret=*(size_t *) "NEDMALOC";
- _ret[0]=(size_t) mspace;
- _ret[1]=newsize-3*sizeof(size_t);
-#endif
- return ret;
-}
-
-static FORCEINLINE void CallFree(void *RESTRICT mspace, void *RESTRICT mem, int isforeign) THROWSPEC
-{
-#if USE_MAGIC_HEADERS
- mstate oldmspace=0;
- size_t *_mem=(size_t *) mem-3, oldsize=0;
-#endif
- if(isforeign)
- {
-#if USE_MAGIC_HEADERS
- assert(_mem[0]!=*(size_t *) "NEDMALOC");
-#endif
-#if defined(DEBUG)
- printf("*** nedmalloc frees system allocated block %p\n", mem);
-#endif
- free(mem);
- return;
- }
-#if USE_MAGIC_HEADERS
- assert(_mem[0]==*(size_t *) "NEDMALOC");
- oldmspace=(mstate) _mem[1];
- oldsize=_mem[2];
- for(; *_mem==*(size_t *) "NEDMALOC"; *_mem--=*(size_t *) "nedmaloc");
- mem=(void *)(++_mem);
-#endif
-#if USE_ALLOCATOR==0
- free(mem);
-#elif USE_ALLOCATOR==1
- mspace_free((mstate) mspace, mem);
-#endif
-}
-
-static NEDMALLOCNOALIASATTR mstate nedblkmstate(void *RESTRICT mem) THROWSPEC
-{
- if(mem)
- {
-#if USE_MAGIC_HEADERS
- size_t *_mem=(size_t *) mem-3;
- if(_mem[0]==*(size_t *) "NEDMALOC")
- {
- return (mstate) _mem[1];
- }
- else return 0;
-#else
-#if USE_ALLOCATOR==0
- /* Fail everything */
- return 0;
-#elif USE_ALLOCATOR==1
-#ifdef ENABLE_FAST_HEAP_DETECTION
-#ifdef WIN32
- /* On Windows for RELEASE both x86 and x64 the NT heap precedes each block with an eight byte header
- which looks like:
- normal: 4 bytes of size, 4 bytes of [char < 64, char < 64, char < 64 bit 0 always set, char random ]
- mmaped: 4 bytes of size 4 bytes of [zero, zero, 0xb, zero ]
-
- On Windows for DEBUG both x86 and x64 the preceding four bytes is always 0xfdfdfdfd (no man's land).
- */
-#pragma pack(push, 1)
- struct _HEAP_ENTRY
- {
- USHORT Size;
- USHORT PreviousSize;
- UCHAR Cookie; /* SegmentIndex */
- UCHAR Flags; /* always bit 0 (HEAP_ENTRY_BUSY). bit 1=(HEAP_ENTRY_EXTRA_PRESENT), bit 2=normal block (HEAP_ENTRY_FILL_PATTERN), bit 3=mmap block (HEAP_ENTRY_VIRTUAL_ALLOC). Bit 4 (HEAP_ENTRY_LAST_ENTRY) could be set */
- UCHAR UnusedBytes;
- UCHAR SmallTagIndex; /* fastbin index. Always one of 0x02, 0x03, 0x04 < 0x80 */
- } *RESTRICT he=((struct _HEAP_ENTRY *) mem)-1;
-#pragma pack(pop)
- unsigned int header=((unsigned int *)mem)[-1], mask1=0x8080E100, result1, mask2=0xFFFFFF06, result2;
- result1=header & mask1; /* Positive testing for NT heap */
- result2=header & mask2; /* Positive testing for dlmalloc */
- if(result1==0x00000100 && result2!=0x00000102)
- { /* This is likely a NT heap block */
- return 0;
- }
-#endif
-#ifdef __linux__
- /* On Linux glibc uses ptmalloc2 (really dlmalloc) just as we do, but prev_foot contains rubbish
- when the preceding block is allocated because ptmalloc2 finds the local mstate by rounding the ptr
- down to the nearest megabyte. It's like dlmalloc with FOOTERS disabled. */
- mchunkptr p=mem2chunk(mem);
- mstate fm=get_mstate_for(p);
- /* If it's a ptmalloc2 block, fm is likely to be some crazy value */
- if(!is_aligned(fm)) return 0;
- if((size_t)mem-(size_t)fm>=(size_t)1<<(SIZE_T_BITSIZE-1)) return 0;
- if(ok_magic(fm))
- return fm;
- else
- return 0;
- if(1) { }
-#endif
- else
- {
- mchunkptr p=mem2chunk(mem);
- mstate fm=get_mstate_for(p);
- assert(ok_magic(fm)); /* If this fails, someone tried to free a block twice */
- if(ok_magic(fm))
- return fm;
- }
-#else
-//#ifdef WIN32
-// __try
-//#endif
- {
- /* We try to return zero here if it isn't one of our own blocks, however
- the current block annotation scheme used by dlmalloc makes it impossible
- to be absolutely sure of avoiding a segfault.
-
- mchunkptr->prev_foot = mem-(2*size_t) = mstate ^ mparams.magic for PRECEDING block;
- mchunkptr->head = mem-(1*size_t) = 8 multiple size of this block with bottom three bits = FLAG_BITS
- FLAG_BITS = bit 0 is CINUSE (currently in use unless is mmap), bit 1 is PINUSE (previous block currently
- in use unless mmap), bit 2 is UNUSED and currently is always zero.
- */
- register void *RESTRICT leastusedaddress_=leastusedaddress; /* Cache these to avoid register reloading */
- register size_t largestusedblock_=largestusedblock;
- if(!is_aligned(mem)) return 0; /* Would fail very rarely as all allocators return aligned blocks */
- if(mem<leastusedaddress_) return 0; /* Simple but effective */
- {
- mchunkptr p=mem2chunk(mem);
- mstate fm=0;
- int ismmapped=is_mmapped(p);
- if((!ismmapped && !is_inuse(p)) || (p->head & FLAG4_BIT)) return 0;
- /* Reduced uncertainty by 0.5^2 = 25.0% */
- /* size should never exceed largestusedblock */
- if(chunksize(p)>largestusedblock_) return 0;
- /* Reduced uncertainty by a minimum of 0.5^3 = 12.5%, maximum 0.5^16 = 0.0015% */
- /* Having sanity checked prev_foot and head, check next block */
- if(!ismmapped && (!next_pinuse(p) || (next_chunk(p)->head & FLAG4_BIT))) return 0;
- /* Reduced uncertainty by 0.5^5 = 3.13% or 0.5^18 = 0.00038% */
- #if 0
- /* If previous block is free, check that its next block pointer equals us */
- if(!ismmapped && !pinuse(p))
- if(next_chunk(prev_chunk(p))!=p) return 0;
- /* We could start comparing prev_foot's for similarity but it starts getting slow. */
- #endif
- fm = get_mstate_for(p);
- if(!is_aligned(fm) || (void *)fm<leastusedaddress_) return 0;
- if((size_t)mem-(size_t)fm>=(size_t)1<<(SIZE_T_BITSIZE-1)) return 0;
- assert(ok_magic(fm)); /* If this fails, someone tried to free a block twice */
- if(ok_magic(fm))
- return fm;
- }
- }
-//#ifdef WIN32
-// __except(1) { }
-//#endif
-#endif
-#endif
-#endif
- }
- return 0;
-}
-NEDMALLOCNOALIASATTR size_t nedblksize(int *RESTRICT isforeign, void *RESTRICT mem) THROWSPEC
-{
- if(mem)
- {
- if(isforeign) *isforeign=1;
-#if USE_MAGIC_HEADERS
- {
- size_t *_mem=(size_t *) mem-3;
- if(_mem[0]==*(size_t *) "NEDMALOC")
- {
- mstate mspace=(mstate) _mem[1];
- size_t size=_mem[2];
- if(isforeign) *isforeign=0;
- return size;
- }
- }
-#elif USE_ALLOCATOR==1
- if(nedblkmstate(mem))
- {
- mchunkptr p=mem2chunk(mem);
- if(isforeign) *isforeign=0;
- return chunksize(p)-overhead_for(p);
- }
-#ifdef DEBUG
- else
- {
- int a=1; /* Set breakpoints here if needed */
- }
-#endif
-#endif
-#if defined(ENABLE_TOLERANT_NEDMALLOC) || USE_ALLOCATOR==0
-#ifdef _MSC_VER
- /* This is the MSVCRT equivalent */
- return _msize(mem);
-#elif defined(__linux__)
- /* This is the glibc/ptmalloc2/dlmalloc equivalent. */
- return malloc_usable_size(mem);
-#elif defined(__FreeBSD__) || defined(__APPLE__)
- /* This is the BSD libc equivalent. */
- return malloc_size(mem);
-#else
-#error Cannot tolerate the memory allocator of an unknown system!
-#endif
-#endif
- }
- return 0;
-}
-
-NEDMALLOCNOALIASATTR void nedsetvalue(void *v) THROWSPEC { nedpsetvalue((nedpool *) 0, v); }
-NEDMALLOCNOALIASATTR NEDMALLOCPTRATTR void * nedmalloc(size_t size) THROWSPEC { return nedpmalloc((nedpool *) 0, size); }
-NEDMALLOCNOALIASATTR NEDMALLOCPTRATTR void * nedcalloc(size_t no, size_t size) THROWSPEC { return nedpcalloc((nedpool *) 0, no, size); }
-NEDMALLOCNOALIASATTR NEDMALLOCPTRATTR void * nedrealloc(void *mem, size_t size) THROWSPEC { return nedprealloc((nedpool *) 0, mem, size); }
-NEDMALLOCNOALIASATTR void nedfree(void *mem) THROWSPEC { nedpfree((nedpool *) 0, mem); }
-NEDMALLOCNOALIASATTR NEDMALLOCPTRATTR void * nedmemalign(size_t alignment, size_t bytes) THROWSPEC { return nedpmemalign((nedpool *) 0, alignment, bytes); }
-NEDMALLOCNOALIASATTR struct nedmallinfo nedmallinfo(void) THROWSPEC { return nedpmallinfo((nedpool *) 0); }
-NEDMALLOCNOALIASATTR int nedmallopt(int parno, int value) THROWSPEC { return nedpmallopt((nedpool *) 0, parno, value); }
-NEDMALLOCNOALIASATTR int nedmalloc_trim(size_t pad) THROWSPEC { return nedpmalloc_trim((nedpool *) 0, pad); }
-void nedmalloc_stats() THROWSPEC { nedpmalloc_stats((nedpool *) 0); }
-NEDMALLOCNOALIASATTR size_t nedmalloc_footprint() THROWSPEC { return nedpmalloc_footprint((nedpool *) 0); }
-NEDMALLOCNOALIASATTR NEDMALLOCPTRATTR void **nedindependent_calloc(size_t elemsno, size_t elemsize, void **chunks) THROWSPEC { return nedpindependent_calloc((nedpool *) 0, elemsno, elemsize, chunks); }
-NEDMALLOCNOALIASATTR NEDMALLOCPTRATTR void **nedindependent_comalloc(size_t elems, size_t *sizes, void **chunks) THROWSPEC { return nedpindependent_comalloc((nedpool *) 0, elems, sizes, chunks); }
-
-struct threadcacheblk_t;
-typedef struct threadcacheblk_t threadcacheblk;
-struct threadcacheblk_t
-{ /* Keep less than 16 bytes on 32 bit systems and 32 bytes on 64 bit systems */
-#ifdef FULLSANITYCHECKS
- unsigned int magic;
-#endif
- unsigned int lastUsed, size;
- threadcacheblk *next, *prev;
-};
-typedef struct threadcache_t
-{
-#ifdef FULLSANITYCHECKS
- unsigned int magic1;
-#endif
- int mymspace; /* Last mspace entry this thread used */
- long threadid;
- unsigned int mallocs, frees, successes;
- size_t freeInCache; /* How much free space is stored in this cache */
- threadcacheblk *bins[(THREADCACHEMAXBINS+1)*2];
-#ifdef FULLSANITYCHECKS
- unsigned int magic2;
-#endif
-} threadcache;
-struct nedpool_t
-{
- MLOCK_T mutex;
- void *uservalue;
- int threads; /* Max entries in m to use */
- threadcache *caches[THREADCACHEMAXCACHES];
- TLSVAR mycache; /* Thread cache for this thread. 0 for unset, negative for use mspace-1 directly, otherwise is cache-1 */
- mstate m[MAXTHREADSINPOOL+1]; /* mspace entries for this pool */
-};
-static nedpool syspool;
-
-static FORCEINLINE NEDMALLOCNOALIASATTR unsigned int size2binidx(size_t _size) THROWSPEC
-{ /* 8=1000 16=10000 20=10100 24=11000 32=100000 48=110000 4096=1000000000000 */
- unsigned int topbit, size=(unsigned int)(_size>>4);
- /* 16=1 20=1 24=1 32=10 48=11 64=100 96=110 128=1000 4096=100000000 */
-
-#if defined(__GNUC__)
- topbit = sizeof(size)*__CHAR_BIT__ - 1 - __builtin_clz(size);
-#elif defined(_MSC_VER) && _MSC_VER>=1300
- {
- unsigned long bsrTopBit;
-
- _BitScanReverse(&bsrTopBit, size);
-
- topbit = bsrTopBit;
- }
-#else
-#if 0
- union {
- unsigned asInt[2];
- double asDouble;
- };
- int n;
-
- asDouble = (double)size + 0.5;
- topbit = (asInt[!FOX_BIGENDIAN] >> 20) - 1023;
-#else
- {
- unsigned int x=size;
- x = x | (x >> 1);
- x = x | (x >> 2);
- x = x | (x >> 4);
- x = x | (x >> 8);
- x = x | (x >>16);
- x = ~x;
- x = x - ((x >> 1) & 0x55555555);
- x = (x & 0x33333333) + ((x >> 2) & 0x33333333);
- x = (x + (x >> 4)) & 0x0F0F0F0F;
- x = x + (x << 8);
- x = x + (x << 16);
- topbit=31 - (x >> 24);
- }
-#endif
-#endif
- return topbit;
-}
-
-
-#ifdef FULLSANITYCHECKS
-static void tcsanitycheck(threadcacheblk **ptr) THROWSPEC
-{
- assert((ptr[0] && ptr[1]) || (!ptr[0] && !ptr[1]));
- if(ptr[0] && ptr[1])
- {
- assert(nedblksize(ptr[0])>=sizeof(threadcacheblk));
- assert(nedblksize(ptr[1])>=sizeof(threadcacheblk));
- assert(*(unsigned int *) "NEDN"==ptr[0]->magic);
- assert(*(unsigned int *) "NEDN"==ptr[1]->magic);
- assert(!ptr[0]->prev);
- assert(!ptr[1]->next);
- if(ptr[0]==ptr[1])
- {
- assert(!ptr[0]->next);
- assert(!ptr[1]->prev);
- }
- }
-}
-static void tcfullsanitycheck(threadcache *tc) THROWSPEC
-{
- threadcacheblk **tcbptr=tc->bins;
- int n;
- for(n=0; n<=THREADCACHEMAXBINS; n++, tcbptr+=2)
- {
- threadcacheblk *b, *ob=0;
- tcsanitycheck(tcbptr);
- for(b=tcbptr[0]; b; ob=b, b=b->next)
- {
- assert(*(unsigned int *) "NEDN"==b->magic);
- assert(!ob || ob->next==b);
- assert(!ob || b->prev==ob);
- }
- }
-}
-#endif
-
-static NOINLINE void RemoveCacheEntries(nedpool *RESTRICT p, threadcache *RESTRICT tc, unsigned int age) THROWSPEC
-{
-#ifdef FULLSANITYCHECKS
- tcfullsanitycheck(tc);
-#endif
- if(tc->freeInCache)
- {
- threadcacheblk **tcbptr=tc->bins;
- int n;
- for(n=0; n<=THREADCACHEMAXBINS; n++, tcbptr+=2)
- {
- threadcacheblk **tcb=tcbptr+1; /* come from oldest end of list */
- /*tcsanitycheck(tcbptr);*/
- for(; *tcb && tc->frees-(*tcb)->lastUsed>=age; )
- {
- threadcacheblk *f=*tcb;
- size_t blksize=f->size; /*nedblksize(f);*/
- assert(blksize<=nedblksize(0, f));
- assert(blksize);
-#ifdef FULLSANITYCHECKS
- assert(*(unsigned int *) "NEDN"==(*tcb)->magic);
-#endif
- *tcb=(*tcb)->prev;
- if(*tcb)
- (*tcb)->next=0;
- else
- *tcbptr=0;
- tc->freeInCache-=blksize;
- assert((long) tc->freeInCache>=0);
- CallFree(0, f, 0);
- /*tcsanitycheck(tcbptr);*/
- }
- }
- }
-#ifdef FULLSANITYCHECKS
- tcfullsanitycheck(tc);
-#endif
-}
-static void DestroyCaches(nedpool *RESTRICT p) THROWSPEC
-{
- if(p->caches)
- {
- threadcache *tc;
- int n;
- for(n=0; n<THREADCACHEMAXCACHES; n++)
- {
- if((tc=p->caches[n]))
- {
- tc->frees++;
- RemoveCacheEntries(p, tc, 0);
- assert(!tc->freeInCache);
- tc->mymspace=-1;
- tc->threadid=0;
- CallFree(0, tc, 0);
- p->caches[n]=0;
- }
- }
- }
-}
-
-static NOINLINE threadcache *AllocCache(nedpool *RESTRICT p) THROWSPEC
-{
- threadcache *tc=0;
- int n, end;
- ACQUIRE_LOCK(&p->mutex);
- for(n=0; n<THREADCACHEMAXCACHES && p->caches[n]; n++);
- if(THREADCACHEMAXCACHES==n)
- { /* List exhausted, so disable for this thread */
- RELEASE_LOCK(&p->mutex);
- return 0;
- }
- tc=p->caches[n]=(threadcache *) CallCalloc(p->m[0], sizeof(threadcache), 0);
- if(!tc)
- {
- RELEASE_LOCK(&p->mutex);
- return 0;
- }
-#ifdef FULLSANITYCHECKS
- tc->magic1=*(unsigned int *)"NEDMALC1";
- tc->magic2=*(unsigned int *)"NEDMALC2";
-#endif
- tc->threadid=(long)(size_t)CURRENT_THREAD;
- for(end=0; p->m[end]; end++);
- tc->mymspace=abs(tc->threadid) % end;
- RELEASE_LOCK(&p->mutex);
- if(TLSSET(p->mycache, (void *)(size_t)(n+1))) abort();
- return tc;
-}
-
-static void *threadcache_malloc(nedpool *RESTRICT p, threadcache *RESTRICT tc, size_t *RESTRICT _size) THROWSPEC
-{
- void *RESTRICT ret=0;
- size_t size=*_size, blksize=0;
- unsigned int bestsize;
- unsigned int idx=size2binidx(size);
- threadcacheblk *RESTRICT blk, **RESTRICT binsptr;
-#ifdef FULLSANITYCHECKS
- tcfullsanitycheck(tc);
-#endif
- /* Calculate best fit bin size */
- bestsize=1<<(idx+4);
-#if 0
- /* Finer grained bin fit */
- idx<<=1;
- if(size>bestsize)
- {
- idx++;
- bestsize+=bestsize>>1;
- }
- if(size>bestsize)
- {
- idx++;
- bestsize=1<<(4+(idx>>1));
- }
-#else
- if(size>bestsize)
- {
- idx++;
- bestsize<<=1;
- }
-#endif
- assert(bestsize>=size);
- if(size<bestsize) size=bestsize;
- assert(size<=THREADCACHEMAX);
- assert(idx<=THREADCACHEMAXBINS);
- binsptr=&tc->bins[idx*2];
- /* Try to match close, but move up a bin if necessary */
- blk=*binsptr;
- if(!blk || blk->size<size)
- { /* Bump it up a bin */
- if(idx<THREADCACHEMAXBINS)
- {
- idx++;
- binsptr+=2;
- blk=*binsptr;
- }
- }
- if(blk)
- {
- blksize=blk->size; /*nedblksize(blk);*/
- assert(nedblksize(0, blk)>=blksize);
- assert(blksize>=size);
- if(blk->next)
- blk->next->prev=0;
- *binsptr=blk->next;
- if(!*binsptr)
- binsptr[1]=0;
-#ifdef FULLSANITYCHECKS
- blk->magic=0;
-#endif
- assert(binsptr[0]!=blk && binsptr[1]!=blk);
- assert(nedblksize(0, blk)>=sizeof(threadcacheblk) && nedblksize(0, blk)<=THREADCACHEMAX+CHUNK_OVERHEAD);
- /*printf("malloc: %p, %p, %p, %lu\n", p, tc, blk, (long) _size);*/
- ret=(void *) blk;
- }
- ++tc->mallocs;
- if(ret)
- {
- assert(blksize>=size);
- ++tc->successes;
- tc->freeInCache-=blksize;
- assert((long) tc->freeInCache>=0);
- }
-#if defined(DEBUG) && 0
- if(!(tc->mallocs & 0xfff))
- {
- printf("*** threadcache=%u, mallocs=%u (%f), free=%u (%f), freeInCache=%u\n", (unsigned int) tc->threadid, tc->mallocs,
- (float) tc->successes/tc->mallocs, tc->frees, (float) tc->successes/tc->frees, (unsigned int) tc->freeInCache);
- }
-#endif
-#ifdef FULLSANITYCHECKS
- tcfullsanitycheck(tc);
-#endif
- *_size=size;
- return ret;
-}
-static NOINLINE void ReleaseFreeInCache(nedpool *RESTRICT p, threadcache *RESTRICT tc, int mymspace) THROWSPEC
-{
- unsigned int age=THREADCACHEMAXFREESPACE/8192;
- /*ACQUIRE_LOCK(&p->m[mymspace]->mutex);*/
- while(age && tc->freeInCache>=THREADCACHEMAXFREESPACE)
- {
- RemoveCacheEntries(p, tc, age);
- /*printf("*** Removing cache entries older than %u (%u)\n", age, (unsigned int) tc->freeInCache);*/
- age>>=1;
- }
- /*RELEASE_LOCK(&p->m[mymspace]->mutex);*/
-}
-static void threadcache_free(nedpool *RESTRICT p, threadcache *RESTRICT tc, int mymspace, void *RESTRICT mem, size_t size) THROWSPEC
-{
- unsigned int bestsize;
- unsigned int idx=size2binidx(size);
- threadcacheblk **RESTRICT binsptr, *RESTRICT tck=(threadcacheblk *) mem;
- assert(size>=sizeof(threadcacheblk) && size<=THREADCACHEMAX+CHUNK_OVERHEAD);
-#ifdef DEBUG
- /* Make sure this is a valid memory block */
- assert(nedblksize(0, mem));
-#endif
-#ifdef FULLSANITYCHECKS
- tcfullsanitycheck(tc);
-#endif
- /* Calculate best fit bin size */
- bestsize=1<<(idx+4);
-#if 0
- /* Finer grained bin fit */
- idx<<=1;
- if(size>bestsize)
- {
- unsigned int biggerbestsize=bestsize+bestsize<<1;
- if(size>=biggerbestsize)
- {
- idx++;
- bestsize=biggerbestsize;
- }
- }
-#endif
- if(bestsize!=size) /* dlmalloc can round up, so we round down to preserve indexing */
- size=bestsize;
- binsptr=&tc->bins[idx*2];
- assert(idx<=THREADCACHEMAXBINS);
- if(tck==*binsptr)
- {
- fprintf(stderr, "nedmalloc: Attempt to free already freed memory block %p - aborting!\n", tck);
- abort();
- }
-#ifdef FULLSANITYCHECKS
- tck->magic=*(unsigned int *) "NEDN";
-#endif
- tck->lastUsed=++tc->frees;
- tck->size=(unsigned int) size;
- tck->next=*binsptr;
- tck->prev=0;
- if(tck->next)
- tck->next->prev=tck;
- else
- binsptr[1]=tck;
- assert(!*binsptr || (*binsptr)->size==tck->size);
- *binsptr=tck;
- assert(tck==tc->bins[idx*2]);
- assert(tc->bins[idx*2+1]==tck || binsptr[0]->next->prev==tck);
- /*printf("free: %p, %p, %p, %lu\n", p, tc, mem, (long) size);*/
- tc->freeInCache+=size;
-#ifdef FULLSANITYCHECKS
- tcfullsanitycheck(tc);
-#endif
-#if 1
- if(tc->freeInCache>=THREADCACHEMAXFREESPACE)
- ReleaseFreeInCache(p, tc, mymspace);
-#endif
-}
-
-
-
-
-static NOINLINE int InitPool(nedpool *RESTRICT p, size_t capacity, int threads) THROWSPEC
-{ /* threads is -1 for system pool */
- ensure_initialization();
- ACQUIRE_MALLOC_GLOBAL_LOCK();
- if(p->threads) goto done;
- if(INITIAL_LOCK(&p->mutex)) goto err;
- if(TLSALLOC(&p->mycache)) goto err;
-#if USE_ALLOCATOR==0
- p->m[0]=(mstate) mspacecounter++;
-#elif USE_ALLOCATOR==1
- if(!(p->m[0]=(mstate) create_mspace(capacity, 1))) goto err;
- p->m[0]->extp=p;
-#endif
- p->threads=(threads<1 || threads>MAXTHREADSINPOOL) ? MAXTHREADSINPOOL : threads;
-done:
- RELEASE_MALLOC_GLOBAL_LOCK();
- return 1;
-err:
- if(threads<0)
- abort(); /* If you can't allocate for system pool, we're screwed */
- DestroyCaches(p);
- if(p->m[0])
- {
-#if USE_ALLOCATOR==1
- destroy_mspace(p->m[0]);
-#endif
- p->m[0]=0;
- }
- if(p->mycache)
- {
- if(TLSFREE(p->mycache)) abort();
- p->mycache=0;
- }
- RELEASE_MALLOC_GLOBAL_LOCK();
- return 0;
-}
-static NOINLINE mstate FindMSpace(nedpool *RESTRICT p, threadcache *RESTRICT tc, int *RESTRICT lastUsed, size_t size) THROWSPEC
-{ /* Gets called when thread's last used mspace is in use. The strategy
- is to run through the list of all available mspaces looking for an
- unlocked one and if we fail, we create a new one so long as we don't
- exceed p->threads */
- int n, end;
- for(n=end=*lastUsed+1; p->m[n]; end=++n)
- {
- if(TRY_LOCK(&p->m[n]->mutex)) goto found;
- }
- for(n=0; n<*lastUsed && p->m[n]; n++)
- {
- if(TRY_LOCK(&p->m[n]->mutex)) goto found;
- }
- if(end<p->threads)
- {
- mstate temp;
-#if USE_ALLOCATOR==0
- temp=(mstate) mspacecounter++;
-#elif USE_ALLOCATOR==1
- if(!(temp=(mstate) create_mspace(size, 1)))
- goto badexit;
-#endif
- /* Now we're ready to modify the lists, we lock */
- ACQUIRE_LOCK(&p->mutex);
- while(p->m[end] && end<p->threads)
- end++;
- if(end>=p->threads)
- { /* Drat, must destroy it now */
- RELEASE_LOCK(&p->mutex);
-#if USE_ALLOCATOR==1
- destroy_mspace((mstate) temp);
-#endif
- goto badexit;
- }
- /* We really want to make sure this goes into memory now but we
- have to be careful of breaking aliasing rules, so write it twice */
- *((volatile struct malloc_state **) &p->m[end])=p->m[end]=temp;
- ACQUIRE_LOCK(&p->m[end]->mutex);
- /*printf("Created mspace idx %d\n", end);*/
- RELEASE_LOCK(&p->mutex);
- n=end;
- goto found;
- }
- /* Let it lock on the last one it used */
-badexit:
- ACQUIRE_LOCK(&p->m[*lastUsed]->mutex);
- return p->m[*lastUsed];
-found:
- *lastUsed=n;
- if(tc)
- tc->mymspace=n;
- else
- {
- if(TLSSET(p->mycache, (void *)(size_t)(-(n+1)))) abort();
- }
- return p->m[n];
-}
-
-typedef struct PoolList_t
-{
- size_t size; /* Size of list */
- size_t length; /* Actual entries in list */
-#ifdef DEBUG
- nedpool *list[1]; /* Force testing of list expansion */
-#else
- nedpool *list[16];
-#endif
-} PoolList;
-static MLOCK_T poollistlock;
-static PoolList *poollist;
-NEDMALLOCPTRATTR nedpool *nedcreatepool(size_t capacity, int threads) THROWSPEC
-{
- nedpool *ret=0;
- if(!poollist)
- {
- PoolList *newpoollist=0;
- if(!(newpoollist=(PoolList *) nedpcalloc(0, 1, sizeof(PoolList)+sizeof(nedpool *)))) return 0;
- INITIAL_LOCK(&poollistlock);
- ACQUIRE_LOCK(&poollistlock);
- poollist=newpoollist;
- poollist->size=sizeof(poollist->list)/sizeof(nedpool *);
- }
- else
- ACQUIRE_LOCK(&poollistlock);
- if(poollist->length==poollist->size)
- {
- PoolList *newpoollist=0;
- size_t newsize=0;
- newsize=sizeof(PoolList)+(poollist->size+1)*sizeof(nedpool *);
- if(!(newpoollist=(PoolList *) nedprealloc(0, poollist, newsize))) goto badexit;
- poollist=newpoollist;
- memset(&poollist->list[poollist->size], 0, newsize-((size_t)&poollist->list[poollist->size]-(size_t)&poollist->list[0]));
- poollist->size=((newsize-((char *)&poollist->list[0]-(char *)poollist))/sizeof(nedpool *))-1;
- assert(poollist->size>poollist->length);
- }
- if(!(ret=(nedpool *) nedpcalloc(0, 1, sizeof(nedpool)))) goto badexit;
- if(!InitPool(ret, capacity, threads))
- {
- nedpfree(0, ret);
- goto badexit;
- }
- poollist->list[poollist->length++]=ret;
-badexit:
- RELEASE_LOCK(&poollistlock);
- return ret;
-}
-void neddestroypool(nedpool *p) THROWSPEC
-{
- unsigned int n;
- ACQUIRE_LOCK(&p->mutex);
- DestroyCaches(p);
- for(n=0; p->m[n]; n++)
- {
-#if USE_ALLOCATOR==1
- destroy_mspace(p->m[n]);
-#endif
- p->m[n]=0;
- }
- RELEASE_LOCK(&p->mutex);
- if(TLSFREE(p->mycache)) abort();
- nedpfree(0, p);
- ACQUIRE_LOCK(&poollistlock);
- assert(poollist);
- for(n=0; n<poollist->length && poollist->list[n]!=p; n++);
- assert(n!=poollist->length);
- memmove(&poollist->list[n], &poollist->list[n+1], (size_t)&poollist->list[poollist->length]-(size_t)&poollist->list[n]);
- if(!--poollist->length)
- {
- assert(!poollist->list[0]);
- nedpfree(0, poollist);
- poollist=0;
- }
- RELEASE_LOCK(&poollistlock);
-}
-void neddestroysyspool() THROWSPEC
-{
- nedpool *p=&syspool;
- int n;
- ACQUIRE_LOCK(&p->mutex);
- DestroyCaches(p);
- for(n=0; p->m[n]; n++)
- {
-#if USE_ALLOCATOR==1
- destroy_mspace(p->m[n]);
-#endif
- p->m[n]=0;
- }
- /* Render syspool unusable */
- for(n=0; n<THREADCACHEMAXCACHES; n++)
- p->caches[n]=(threadcache *)(size_t)(sizeof(size_t)>4 ? 0xdeadbeefdeadbeefULL : 0xdeadbeefUL);
- for(n=0; n<MAXTHREADSINPOOL+1; n++)
- p->m[n]=(mstate)(size_t)(sizeof(size_t)>4 ? 0xdeadbeefdeadbeefULL : 0xdeadbeefUL);
- if(TLSFREE(p->mycache)) abort();
- RELEASE_LOCK(&p->mutex);
-}
-nedpool **nedpoollist() THROWSPEC
-{
- nedpool **ret=0;
- if(poollist)
- {
- ACQUIRE_LOCK(&poollistlock);
- if(!(ret=(nedpool **) nedmalloc((poollist->length+1)*sizeof(nedpool *)))) goto badexit;
- memcpy(ret, poollist->list, (poollist->length+1)*sizeof(nedpool *));
-badexit:
- RELEASE_LOCK(&poollistlock);
- }
- return ret;
-}
-
-void nedpsetvalue(nedpool *p, void *v) THROWSPEC
-{
- if(!p) { p=&syspool; if(!syspool.threads) InitPool(&syspool, 0, -1); }
- p->uservalue=v;
-}
-void *nedgetvalue(nedpool **p, void *mem) THROWSPEC
-{
- nedpool *np=0;
- mstate fm=nedblkmstate(mem);
- if(!fm || !fm->extp) return 0;
- np=(nedpool *) fm->extp;
- if(p) *p=np;
- return np->uservalue;
-}
-
-void nedtrimthreadcache(nedpool *p, int disable) THROWSPEC
-{
- int mycache;
- if(!p)
- {
- p=&syspool;
- if(!syspool.threads) InitPool(&syspool, 0, -1);
- }
- mycache=(int)(size_t) TLSGET(p->mycache);
- if(!mycache)
- { /* Set to mspace 0 */
- if(disable && TLSSET(p->mycache, (void *)(size_t)-1)) abort();
- }
- else if(mycache>0)
- { /* Set to last used mspace */
- threadcache *tc=p->caches[mycache-1];
-#if defined(DEBUG)
- printf("Threadcache utilisation: %lf%% in cache with %lf%% lost to other threads\n",
- 100.0*tc->successes/tc->mallocs, 100.0*((double) tc->mallocs-tc->frees)/tc->mallocs);
-#endif
- if(disable && TLSSET(p->mycache, (void *)(size_t)(-tc->mymspace))) abort();
- tc->frees++;
- RemoveCacheEntries(p, tc, 0);
- assert(!tc->freeInCache);
- if(disable)
- {
- tc->mymspace=-1;
- tc->threadid=0;
- CallFree(0, p->caches[mycache-1], 0);
- p->caches[mycache-1]=0;
- }
- }
-}
-void neddisablethreadcache(nedpool *p) THROWSPEC
-{
- nedtrimthreadcache(p, 1);
-}
-
-#define GETMSPACE(m,p,tc,ms,s,action) \
- do \
- { \
- mstate m = GetMSpace((p),(tc),(ms),(s)); \
- action; \
- if(USE_ALLOCATOR==1) { RELEASE_LOCK(&m->mutex); } \
- } while (0)
-
-static FORCEINLINE mstate GetMSpace(nedpool *RESTRICT p, threadcache *RESTRICT tc, int mymspace, size_t size) THROWSPEC
-{ /* Returns a locked and ready for use mspace */
- mstate m=p->m[mymspace];
- assert(m);
-#if USE_ALLOCATOR==1
- if(!TRY_LOCK(&p->m[mymspace]->mutex)) m=FindMSpace(p, tc, &mymspace, size);
- /*assert(IS_LOCKED(&p->m[mymspace]->mutex));*/
-#endif
- return m;
-}
-static NOINLINE void GetThreadCache_cold1(nedpool *RESTRICT *RESTRICT p) THROWSPEC
-{
- *p=&syspool;
- if(!syspool.threads) InitPool(&syspool, 0, -1);
-}
-static NOINLINE void GetThreadCache_cold2(nedpool *RESTRICT *RESTRICT p, threadcache *RESTRICT *RESTRICT tc, int *RESTRICT mymspace, int mycache) THROWSPEC
-{
- if(!mycache)
- { /* Need to allocate a new cache */
- *tc=AllocCache(*p);
- if(!*tc)
- { /* Disable */
- if(TLSSET((*p)->mycache, (void *)(size_t)-1)) abort();
- *mymspace=0;
- }
- else
- *mymspace=(*tc)->mymspace;
- }
- else
- { /* Cache disabled, but we do have an assigned thread pool */
- *tc=0;
- *mymspace=-mycache-1;
- }
-}
-static FORCEINLINE void GetThreadCache(nedpool *RESTRICT *RESTRICT p, threadcache *RESTRICT *RESTRICT tc, int *RESTRICT mymspace, size_t *RESTRICT size) THROWSPEC
-{
- int mycache;
- if(size && *size<sizeof(threadcacheblk)) *size=sizeof(threadcacheblk);
- if(!*p)
- GetThreadCache_cold1(p);
- mycache=(int)(size_t) TLSGET((*p)->mycache);
- if(mycache>0)
- { /* Already have a cache */
- *tc=(*p)->caches[mycache-1];
- *mymspace=(*tc)->mymspace;
- }
- else GetThreadCache_cold2(p, tc, mymspace, mycache);
- assert(*mymspace>=0);
- assert(!(*tc) || (long)(size_t)CURRENT_THREAD==(*tc)->threadid);
-#ifdef FULLSANITYCHECKS
- if(*tc)
- {
- if(*(unsigned int *)"NEDMALC1"!=(*tc)->magic1 || *(unsigned int *)"NEDMALC2"!=(*tc)->magic2)
- {
- abort();
- }
- }
-#endif
-}
-
-NEDMALLOCPTRATTR void * nedpmalloc(nedpool *p, size_t size) THROWSPEC
-{
- void *ret=0;
- threadcache *tc;
- int mymspace;
- GetThreadCache(&p, &tc, &mymspace, &size);
-#if THREADCACHEMAX
- if(tc && size<=THREADCACHEMAX)
- { /* Use the thread cache */
- ret=threadcache_malloc(p, tc, &size);
- }
-#endif
- if(!ret)
- { /* Use this thread's mspace */
- GETMSPACE(m, p, tc, mymspace, size,
- ret=CallMalloc(m, size, 0));
- }
- return ret;
-}
-NEDMALLOCPTRATTR void * nedpcalloc(nedpool *p, size_t no, size_t size) THROWSPEC
-{
- size_t rsize=size*no;
- void *ret=0;
- threadcache *tc;
- int mymspace;
- GetThreadCache(&p, &tc, &mymspace, &rsize);
-#if THREADCACHEMAX
- if(tc && rsize<=THREADCACHEMAX)
- { /* Use the thread cache */
- if((ret=threadcache_malloc(p, tc, &rsize)))
- memset(ret, 0, rsize);
- }
-#endif
- if(!ret)
- { /* Use this thread's mspace */
- GETMSPACE(m, p, tc, mymspace, rsize,
- ret=CallCalloc(m, rsize, 0));
- }
- return ret;
-}
-NEDMALLOCPTRATTR void * nedprealloc(nedpool *p, void *mem, size_t size) THROWSPEC
-{
- void *ret=0;
- threadcache *tc;
- int mymspace, isforeign=1;
- size_t memsize;
- if(!mem) return nedpmalloc(p, size);
- memsize=nedblksize(&isforeign, mem);
- assert(memsize);
- if(!memsize)
- {
- fprintf(stderr, "nedmalloc: nedprealloc() called with a block not created by nedmalloc!\n");
- abort();
- }
- else if(size<=memsize && memsize-size<
-#ifdef DEBUG
- 32
-#else
- 1024
-#endif
- ) /* If realloc size is within 1Kb smaller than existing, noop it */
- return mem;
- GetThreadCache(&p, &tc, &mymspace, &size);
-#if THREADCACHEMAX
- if(tc && size && size<=THREADCACHEMAX)
- { /* Use the thread cache */
- if((ret=threadcache_malloc(p, tc, &size)))
- {
- memcpy(ret, mem, memsize<size ? memsize : size);
- if(memsize>=sizeof(threadcacheblk) && memsize<=(THREADCACHEMAX+CHUNK_OVERHEAD))
- threadcache_free(p, tc, mymspace, mem, memsize);
- else
- CallFree(0, mem, isforeign);
- }
- }
-#endif
- if(!ret)
- { /* Reallocs always happen in the mspace they happened in, so skip
- locking the preferred mspace for this thread */
- ret=CallRealloc(p->m[mymspace], mem, isforeign, memsize, size);
- }
- return ret;
-}
-void nedpfree(nedpool *p, void *mem) THROWSPEC
-{ /* Frees always happen in the mspace they happened in, so skip
- locking the preferred mspace for this thread */
- threadcache *tc;
- int mymspace, isforeign=1;
- size_t memsize;
- if(!mem)
- { /* If you tried this on FreeBSD you'd be sorry! */
-#ifdef DEBUG
- fprintf(stderr, "nedmalloc: WARNING nedpfree() called with zero. This is not portable behaviour!\n");
-#endif
- return;
- }
- memsize=nedblksize(&isforeign, mem);
- assert(memsize);
- if(!memsize)
- {
- fprintf(stderr, "nedmalloc: nedpfree() called with a block not created by nedmalloc!\n");
- abort();
- }
- GetThreadCache(&p, &tc, &mymspace, 0);
-#if THREADCACHEMAX
- if(mem && tc && memsize>=sizeof(threadcacheblk) && memsize<=(THREADCACHEMAX+CHUNK_OVERHEAD))
- threadcache_free(p, tc, mymspace, mem, memsize);
- else
-#endif
- CallFree(0, mem, isforeign);
-}
-NEDMALLOCPTRATTR void * nedpmemalign(nedpool *p, size_t alignment, size_t bytes) THROWSPEC
-{
- void *ret;
- threadcache *tc;
- int mymspace;
- GetThreadCache(&p, &tc, &mymspace, &bytes);
- { /* Use this thread's mspace */
- GETMSPACE(m, p, tc, mymspace, bytes,
- ret=CallMalloc(m, bytes, alignment));
- }
- return ret;
-}
-struct nedmallinfo nedpmallinfo(nedpool *p) THROWSPEC
-{
- int n;
- struct nedmallinfo ret={0};
- if(!p) { p=&syspool; if(!syspool.threads) InitPool(&syspool, 0, -1); }
- for(n=0; p->m[n]; n++)
- {
-#if USE_ALLOCATOR==1 && !NO_MALLINFO
- struct mallinfo t=mspace_mallinfo(p->m[n]);
- ret.arena+=t.arena;
- ret.ordblks+=t.ordblks;
- ret.hblkhd+=t.hblkhd;
- ret.usmblks+=t.usmblks;
- ret.uordblks+=t.uordblks;
- ret.fordblks+=t.fordblks;
- ret.keepcost+=t.keepcost;
-#endif
- }
- return ret;
-}
-int nedpmallopt(nedpool *p, int parno, int value) THROWSPEC
-{
-#if USE_ALLOCATOR==1
- return mspace_mallopt(parno, value);
-#else
- return 0;
-#endif
-}
-NEDMALLOCNOALIASATTR void* nedmalloc_internals(size_t *granularity, size_t *magic) THROWSPEC
-{
-#if USE_ALLOCATOR==1
- if(granularity) *granularity=mparams.granularity;
- if(magic) *magic=mparams.magic;
- return (void *) &syspool;
-#else
- if(granularity) *granularity=0;
- if(magic) *magic=0;
- return 0;
-#endif
-}
-int nedpmalloc_trim(nedpool *p, size_t pad) THROWSPEC
-{
- int n, ret=0;
- if(!p) { p=&syspool; if(!syspool.threads) InitPool(&syspool, 0, -1); }
- for(n=0; p->m[n]; n++)
- {
-#if USE_ALLOCATOR==1
- ret+=mspace_trim(p->m[n], pad);
-#endif
- }
- return ret;
-}
-void nedpmalloc_stats(nedpool *p) THROWSPEC
-{
- int n;
- if(!p) { p=&syspool; if(!syspool.threads) InitPool(&syspool, 0, -1); }
- for(n=0; p->m[n]; n++)
- {
-#if USE_ALLOCATOR==1
- mspace_malloc_stats(p->m[n]);
-#endif
- }
-}
-size_t nedpmalloc_footprint(nedpool *p) THROWSPEC
-{
- size_t ret=0;
- int n;
- if(!p) { p=&syspool; if(!syspool.threads) InitPool(&syspool, 0, -1); }
- for(n=0; p->m[n]; n++)
- {
-#if USE_ALLOCATOR==1
- ret+=mspace_footprint(p->m[n]);
-#endif
- }
- return ret;
-}
-NEDMALLOCPTRATTR void **nedpindependent_calloc(nedpool *p, size_t elemsno, size_t elemsize, void **chunks) THROWSPEC
-{
- void **ret;
- threadcache *tc;
- int mymspace;
- GetThreadCache(&p, &tc, &mymspace, &elemsize);
-#if USE_ALLOCATOR==0
- GETMSPACE(m, p, tc, mymspace, elemsno*elemsize,
- ret=unsupported_operation("independent_calloc"));
-#elif USE_ALLOCATOR==1
- GETMSPACE(m, p, tc, mymspace, elemsno*elemsize,
- ret=mspace_independent_calloc(m, elemsno, elemsize, chunks));
-#endif
- return ret;
-}
-NEDMALLOCPTRATTR void **nedpindependent_comalloc(nedpool *p, size_t elems, size_t *sizes, void **chunks) THROWSPEC
-{
- void **ret;
- threadcache *tc;
- int mymspace;
- size_t i, *adjustedsizes=(size_t *) alloca(elems*sizeof(size_t));
- if(!adjustedsizes) return 0;
- for(i=0; i<elems; i++)
- adjustedsizes[i]=sizes[i]<sizeof(threadcacheblk) ? sizeof(threadcacheblk) : sizes[i];
- GetThreadCache(&p, &tc, &mymspace, 0);
-#if USE_ALLOCATOR==0
- GETMSPACE(m, p, tc, mymspace, 0,
- ret=unsupported_operation("independent_comalloc"));
-#elif USE_ALLOCATOR==1
- GETMSPACE(m, p, tc, mymspace, 0,
- ret=mspace_independent_comalloc(m, elems, adjustedsizes, chunks));
-#endif
- return ret;
-}
-
-#if defined(__cplusplus)
-}
-#endif
-
-#ifdef _MSC_VER
-#pragma warning(pop)
-#endif
-
-#endif
+#ifdef NEDMALLOC_ENABLED
+/* Alternative malloc implementation for multiple threads without
+lock contention based on dlmalloc. (C) 2005-2009 Niall Douglas
+
+Boost Software License - Version 1.0 - August 17th, 2003
+
+Permission is hereby granted, free of charge, to any person or organization
+obtaining a copy of the software and accompanying documentation covered by
+this license (the "Software") to use, reproduce, display, distribute,
+execute, and transmit the Software, and to prepare derivative works of the
+Software, and to permit third-parties to whom the Software is furnished to
+do so, all subject to the following:
+
+The copyright notices in the Software and this entire statement, including
+the above license grant, this restriction and the following disclaimer,
+must be included in all copies of the Software, in whole or in part, and
+all derivative works of the Software, unless such copies or derivative
+works are solely in the form of machine-executable object code generated by
+a source language processor.
+
+THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT
+SHALL THE COPYRIGHT HOLDERS OR ANYONE DISTRIBUTING THE SOFTWARE BE LIABLE
+FOR ANY DAMAGES OR OTHER LIABILITY, WHETHER IN CONTRACT, TORT OR OTHERWISE,
+ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
+DEALINGS IN THE SOFTWARE.
+*/
+
+#ifdef _MSC_VER
+/* Enable full aliasing on MSVC */
+/*#pragma optimize("a", on)*/
+#pragma warning(push)
+#pragma warning(disable:4100) /* unreferenced formal parameter */
+#pragma warning(disable:4127) /* conditional expression is constant */
+#pragma warning(disable:4706) /* assignment within conditional expression */
+#endif
+
+/*#define ENABLE_TOLERANT_NEDMALLOC 1*/
+/*#define ENABLE_FAST_HEAP_DETECTION 1*/
+/*#define NEDMALLOC_DEBUG 1*/
+
+/*#define FULLSANITYCHECKS*/
+/* If link time code generation is on, don't force or prevent inlining */
+#if defined(_MSC_VER) && defined(NEDMALLOC_DLL_EXPORTS)
+#define FORCEINLINE
+#define NOINLINE
+#endif
+
+
+#include "nedmalloc.h"
+#ifdef WIN32
+ #include <malloc.h>
+ #include <stddef.h>
+#endif
+#if USE_ALLOCATOR==1
+ #define MSPACES 1
+ #define ONLY_MSPACES 1
+#endif
+#define USE_DL_PREFIX 1
+#ifndef USE_LOCKS
+ #define USE_LOCKS 1
+#endif
+#define FOOTERS 1 /* Need to enable footers so frees lock the right mspace */
+#ifndef NEDMALLOC_DEBUG
+ #if defined(DEBUG) || defined(_DEBUG)
+ #define NEDMALLOC_DEBUG 1
+ #else
+ #define NEDMALLOC_DEBUG 0
+ #endif
+#endif
+/* We need to consistently define DEBUG=0|1, _DEBUG and NDEBUG for dlmalloc */
+#undef DEBUG
+#undef _DEBUG
+#if NEDMALLOC_DEBUG
+ #define _DEBUG
+ #define DEBUG 1
+#else
+ #define DEBUG 0
+#endif
+#ifdef NDEBUG /* Disable assert checking on release builds */
+ #undef DEBUG
+ #undef _DEBUG
+#endif
+/* The default of 64Kb means we spend too much time kernel-side */
+#ifndef DEFAULT_GRANULARITY
+#define DEFAULT_GRANULARITY (1*1024*1024)
+#if DEBUG
+#define DEFAULT_GRANULARITY_ALIGNED
+#endif
+#endif
+/*#define USE_SPIN_LOCKS 0*/
+
+
+#include "malloc.c.h"
+#ifdef NDEBUG /* Disable assert checking on release builds */
+ #undef DEBUG
+#elif !NEDMALLOC_DEBUG
+ #ifdef __GNUC__
+ #warning DEBUG is defined so allocator will run with assert checking! Define NDEBUG to run at full speed.
+ #elif defined(_MSC_VER)
+ #pragma message(__FILE__ ": WARNING: DEBUG is defined so allocator will run with assert checking! Define NDEBUG to run at full speed.")
+ #endif
+#endif
+
+/* The maximum concurrent threads in a pool possible */
+#ifndef MAXTHREADSINPOOL
+#define MAXTHREADSINPOOL 16
+#endif
+/* The maximum number of threadcaches which can be allocated */
+#ifndef THREADCACHEMAXCACHES
+#define THREADCACHEMAXCACHES 256
+#endif
+/* The maximum size to be allocated from the thread cache */
+#ifndef THREADCACHEMAX
+#define THREADCACHEMAX 8192
+#endif
+#if 0
+/* The number of cache entries for finer grained bins. This is (topbitpos(THREADCACHEMAX)-4)*2 */
+#define THREADCACHEMAXBINS ((13-4)*2)
+#else
+/* The number of cache entries. This is (topbitpos(THREADCACHEMAX)-4) */
+#define THREADCACHEMAXBINS (13-4)
+#endif
+/* Point at which the free space in a thread cache is garbage collected */
+#ifndef THREADCACHEMAXFREESPACE
+#define THREADCACHEMAXFREESPACE (512*1024)
+#endif
+
+
+#ifdef WIN32
+ #define TLSVAR DWORD
+ #define TLSALLOC(k) (*(k)=TlsAlloc(), TLS_OUT_OF_INDEXES==*(k))
+ #define TLSFREE(k) (!TlsFree(k))
+ #define TLSGET(k) TlsGetValue(k)
+ #define TLSSET(k, a) (!TlsSetValue(k, a))
+ #ifdef DEBUG
+static LPVOID ChkedTlsGetValue(DWORD idx)
+{
+ LPVOID ret=TlsGetValue(idx);
+ assert(S_OK==GetLastError());
+ return ret;
+}
+ #undef TLSGET
+ #define TLSGET(k) ChkedTlsGetValue(k)
+ #endif
+#else
+ #define TLSVAR pthread_key_t
+ #define TLSALLOC(k) pthread_key_create(k, 0)
+ #define TLSFREE(k) pthread_key_delete(k)
+ #define TLSGET(k) pthread_getspecific(k)
+ #define TLSSET(k, a) pthread_setspecific(k, a)
+#endif
+
+#if defined(__cplusplus)
+#if !defined(NO_NED_NAMESPACE)
+namespace nedalloc {
+#else
+extern "C" {
+#endif
+#endif
+
+#if USE_ALLOCATOR==0
+static void *unsupported_operation(const char *opname) THROWSPEC
+{
+ fprintf(stderr, "nedmalloc: The operation %s is not supported under this build configuration\n", opname);
+ abort();
+ return 0;
+}
+static size_t mspacecounter=(size_t) 0xdeadbeef;
+#endif
+#ifndef ENABLE_FAST_HEAP_DETECTION
+static void *RESTRICT leastusedaddress;
+static size_t largestusedblock;
+#endif
+
+static FORCEINLINE void *CallMalloc(void *RESTRICT mspace, size_t size, size_t alignment) THROWSPEC
+{
+ void *RESTRICT ret=0;
+ size_t _alignment=alignment;
+#if USE_MAGIC_HEADERS
+ size_t *_ret=0;
+ size+=alignment+3*sizeof(size_t);
+ _alignment=0;
+#endif
+#if USE_ALLOCATOR==0
+ ret=_alignment ?
+#ifdef _MSC_VER
+ /* This is the MSVCRT equivalent */
+ _aligned_malloc(size, _alignment)
+#elif defined(__linux__) || defined(__FreeBSD__) || defined(__APPLE__)
+ /* This is the glibc/ptmalloc2/dlmalloc/BSD libc equivalent. */
+ memalign(_alignment, size)
+#else
+#error Cannot aligned allocate with the memory allocator of an unknown system!
+#endif
+ : malloc(size);
+#elif USE_ALLOCATOR==1
+ ret=_alignment ? mspace_memalign((mstate) mspace, _alignment, size) : mspace_malloc((mstate) mspace, size);
+#ifndef ENABLE_FAST_HEAP_DETECTION
+ if(ret)
+ {
+ size_t truesize=chunksize(mem2chunk(ret));
+ if(!leastusedaddress || (void *)((mstate) mspace)->least_addr<leastusedaddress) leastusedaddress=(void *)((mstate) mspace)->least_addr;
+ if(!largestusedblock || truesize>largestusedblock) largestusedblock=(truesize+mparams.page_size) & ~(mparams.page_size-1);
+ }
+#endif
+#endif
+ if(!ret) return 0;
+#if USE_MAGIC_HEADERS
+ _ret=(size_t *) ret;
+ ret=(void *)(_ret+3);
+ if(alignment) ret=(void *)(((size_t) ret+alignment-1)&~(alignment-1));
+ for(; _ret<(size_t *)ret-2; _ret++) *_ret=*(size_t *)"NEDMALOC";
+ _ret[0]=(size_t) mspace;
+ _ret[1]=size-3*sizeof(size_t);
+#endif
+ return ret;
+}
+
+static FORCEINLINE void *CallCalloc(void *RESTRICT mspace, size_t size, size_t alignment) THROWSPEC
+{
+ void *RESTRICT ret=0;
+#if USE_MAGIC_HEADERS
+ size_t *_ret=0;
+ size+=alignment+3*sizeof(size_t);
+#endif
+#if USE_ALLOCATOR==0
+ ret=calloc(1, size);
+#elif USE_ALLOCATOR==1
+ ret=mspace_calloc((mstate) mspace, 1, size);
+#ifndef ENABLE_FAST_HEAP_DETECTION
+ if(ret)
+ {
+ size_t truesize=chunksize(mem2chunk(ret));
+ if(!leastusedaddress || (void *)((mstate) mspace)->least_addr<leastusedaddress) leastusedaddress=(void *)((mstate) mspace)->least_addr;
+ if(!largestusedblock || truesize>largestusedblock) largestusedblock=(truesize+mparams.page_size) & ~(mparams.page_size-1);
+ }
+#endif
+#endif
+ if(!ret) return 0;
+#if USE_MAGIC_HEADERS
+ _ret=(size_t *) ret;
+ ret=(void *)(_ret+3);
+ if(alignment) ret=(void *)(((size_t) ret+alignment-1)&~(alignment-1));
+ for(; _ret<(size_t *)ret-2; _ret++) *_ret=*(size_t *) "NEDMALOC";
+ _ret[0]=(size_t) mspace;
+ _ret[1]=size-3*sizeof(size_t);
+#endif
+ return ret;
+}
+
+static FORCEINLINE void *CallRealloc(void *RESTRICT mspace, void *RESTRICT mem, int isforeign, size_t oldsize, size_t newsize) THROWSPEC
+{
+ void *RESTRICT ret=0;
+#if USE_MAGIC_HEADERS
+ mstate oldmspace=0;
+ size_t *_ret=0, *_mem=(size_t *) mem-3;
+#endif
+ if(isforeign)
+ { /* Transfer */
+#if USE_MAGIC_HEADERS
+ assert(_mem[0]!=*(size_t *) "NEDMALOC");
+#endif
+ if((ret=CallMalloc(mspace, newsize, 0)))
+ {
+#if defined(DEBUG)
+ printf("*** nedmalloc frees system allocated block %p\n", mem);
+#endif
+ memcpy(ret, mem, oldsize<newsize ? oldsize : newsize);
+ free(mem);
+ }
+ return ret;
+ }
+#if USE_MAGIC_HEADERS
+ assert(_mem[0]==*(size_t *) "NEDMALOC");
+ newsize+=3*sizeof(size_t);
+ oldmspace=(mstate) _mem[1];
+ assert(oldsize>=_mem[2]);
+ for(; *_mem==*(size_t *) "NEDMALOC"; *_mem--=*(size_t *) "nedmaloc");
+ mem=(void *)(++_mem);
+#endif
+#if USE_ALLOCATOR==0
+ ret=realloc(mem, newsize);
+#elif USE_ALLOCATOR==1
+ ret=mspace_realloc((mstate) mspace, mem, newsize);
+#ifndef ENABLE_FAST_HEAP_DETECTION
+ if(ret)
+ {
+ size_t truesize=chunksize(mem2chunk(ret));
+ if(!largestusedblock || truesize>largestusedblock) largestusedblock=(truesize+mparams.page_size) & ~(mparams.page_size-1);
+ }
+#endif
+#endif
+ if(!ret)
+ { /* Put it back the way it was */
+#if USE_MAGIC_HEADERS
+ for(; *_mem==0; *_mem++=*(size_t *) "NEDMALOC");
+#endif
+ return 0;
+ }
+#if USE_MAGIC_HEADERS
+ _ret=(size_t *) ret;
+ ret=(void *)(_ret+3);
+ for(; _ret<(size_t *)ret-2; _ret++) *_ret=*(size_t *) "NEDMALOC";
+ _ret[0]=(size_t) mspace;
+ _ret[1]=newsize-3*sizeof(size_t);
+#endif
+ return ret;
+}
+
+static FORCEINLINE void CallFree(void *RESTRICT mspace, void *RESTRICT mem, int isforeign) THROWSPEC
+{
+#if USE_MAGIC_HEADERS
+ mstate oldmspace=0;
+ size_t *_mem=(size_t *) mem-3, oldsize=0;
+#endif
+ if(isforeign)
+ {
+#if USE_MAGIC_HEADERS
+ assert(_mem[0]!=*(size_t *) "NEDMALOC");
+#endif
+#if defined(DEBUG)
+ printf("*** nedmalloc frees system allocated block %p\n", mem);
+#endif
+ free(mem);
+ return;
+ }
+#if USE_MAGIC_HEADERS
+ assert(_mem[0]==*(size_t *) "NEDMALOC");
+ oldmspace=(mstate) _mem[1];
+ oldsize=_mem[2];
+ for(; *_mem==*(size_t *) "NEDMALOC"; *_mem--=*(size_t *) "nedmaloc");
+ mem=(void *)(++_mem);
+#endif
+#if USE_ALLOCATOR==0
+ free(mem);
+#elif USE_ALLOCATOR==1
+ mspace_free((mstate) mspace, mem);
+#endif
+}
+
+static NEDMALLOCNOALIASATTR mstate nedblkmstate(void *RESTRICT mem) THROWSPEC
+{
+ if(mem)
+ {
+#if USE_MAGIC_HEADERS
+ size_t *_mem=(size_t *) mem-3;
+ if(_mem[0]==*(size_t *) "NEDMALOC")
+ {
+ return (mstate) _mem[1];
+ }
+ else return 0;
+#else
+#if USE_ALLOCATOR==0
+ /* Fail everything */
+ return 0;
+#elif USE_ALLOCATOR==1
+#ifdef ENABLE_FAST_HEAP_DETECTION
+#ifdef WIN32
+ /* On Windows for RELEASE both x86 and x64 the NT heap precedes each block with an eight byte header
+ which looks like:
+ normal: 4 bytes of size, 4 bytes of [char < 64, char < 64, char < 64 bit 0 always set, char random ]
+ mmaped: 4 bytes of size 4 bytes of [zero, zero, 0xb, zero ]
+
+ On Windows for DEBUG both x86 and x64 the preceding four bytes is always 0xfdfdfdfd (no man's land).
+ */
+#pragma pack(push, 1)
+ struct _HEAP_ENTRY
+ {
+ USHORT Size;
+ USHORT PreviousSize;
+ UCHAR Cookie; /* SegmentIndex */
+ UCHAR Flags; /* always bit 0 (HEAP_ENTRY_BUSY). bit 1=(HEAP_ENTRY_EXTRA_PRESENT), bit 2=normal block (HEAP_ENTRY_FILL_PATTERN), bit 3=mmap block (HEAP_ENTRY_VIRTUAL_ALLOC). Bit 4 (HEAP_ENTRY_LAST_ENTRY) could be set */
+ UCHAR UnusedBytes;
+ UCHAR SmallTagIndex; /* fastbin index. Always one of 0x02, 0x03, 0x04 < 0x80 */
+ } *RESTRICT he=((struct _HEAP_ENTRY *) mem)-1;
+#pragma pack(pop)
+ unsigned int header=((unsigned int *)mem)[-1], mask1=0x8080E100, result1, mask2=0xFFFFFF06, result2;
+ result1=header & mask1; /* Positive testing for NT heap */
+ result2=header & mask2; /* Positive testing for dlmalloc */
+ if(result1==0x00000100 && result2!=0x00000102)
+ { /* This is likely a NT heap block */
+ return 0;
+ }
+#endif
+#ifdef __linux__
+ /* On Linux glibc uses ptmalloc2 (really dlmalloc) just as we do, but prev_foot contains rubbish
+ when the preceding block is allocated because ptmalloc2 finds the local mstate by rounding the ptr
+ down to the nearest megabyte. It's like dlmalloc with FOOTERS disabled. */
+ mchunkptr p=mem2chunk(mem);
+ mstate fm=get_mstate_for(p);
+ /* If it's a ptmalloc2 block, fm is likely to be some crazy value */
+ if(!is_aligned(fm)) return 0;
+ if((size_t)mem-(size_t)fm>=(size_t)1<<(SIZE_T_BITSIZE-1)) return 0;
+ if(ok_magic(fm))
+ return fm;
+ else
+ return 0;
+ if(1) { }
+#endif
+ else
+ {
+ mchunkptr p=mem2chunk(mem);
+ mstate fm=get_mstate_for(p);
+ assert(ok_magic(fm)); /* If this fails, someone tried to free a block twice */
+ if(ok_magic(fm))
+ return fm;
+ }
+#else
+//#ifdef WIN32
+// __try
+//#endif
+ {
+ /* We try to return zero here if it isn't one of our own blocks, however
+ the current block annotation scheme used by dlmalloc makes it impossible
+ to be absolutely sure of avoiding a segfault.
+
+ mchunkptr->prev_foot = mem-(2*size_t) = mstate ^ mparams.magic for PRECEDING block;
+ mchunkptr->head = mem-(1*size_t) = 8 multiple size of this block with bottom three bits = FLAG_BITS
+ FLAG_BITS = bit 0 is CINUSE (currently in use unless is mmap), bit 1 is PINUSE (previous block currently
+ in use unless mmap), bit 2 is UNUSED and currently is always zero.
+ */
+ register void *RESTRICT leastusedaddress_=leastusedaddress; /* Cache these to avoid register reloading */
+ register size_t largestusedblock_=largestusedblock;
+ if(!is_aligned(mem)) return 0; /* Would fail very rarely as all allocators return aligned blocks */
+ if(mem<leastusedaddress_) return 0; /* Simple but effective */
+ {
+ mchunkptr p=mem2chunk(mem);
+ mstate fm=0;
+ int ismmapped=is_mmapped(p);
+ if((!ismmapped && !is_inuse(p)) || (p->head & FLAG4_BIT)) return 0;
+ /* Reduced uncertainty by 0.5^2 = 25.0% */
+ /* size should never exceed largestusedblock */
+ if(chunksize(p)>largestusedblock_) return 0;
+ /* Reduced uncertainty by a minimum of 0.5^3 = 12.5%, maximum 0.5^16 = 0.0015% */
+ /* Having sanity checked prev_foot and head, check next block */
+ if(!ismmapped && (!next_pinuse(p) || (next_chunk(p)->head & FLAG4_BIT))) return 0;
+ /* Reduced uncertainty by 0.5^5 = 3.13% or 0.5^18 = 0.00038% */
+ #if 0
+ /* If previous block is free, check that its next block pointer equals us */
+ if(!ismmapped && !pinuse(p))
+ if(next_chunk(prev_chunk(p))!=p) return 0;
+ /* We could start comparing prev_foot's for similarity but it starts getting slow. */
+ #endif
+ fm = get_mstate_for(p);
+ if(!is_aligned(fm) || (void *)fm<leastusedaddress_) return 0;
+ if((size_t)mem-(size_t)fm>=(size_t)1<<(SIZE_T_BITSIZE-1)) return 0;
+ assert(ok_magic(fm)); /* If this fails, someone tried to free a block twice */
+ if(ok_magic(fm))
+ return fm;
+ }
+ }
+//#ifdef WIN32
+// __except(1) { }
+//#endif
+#endif
+#endif
+#endif
+ }
+ return 0;
+}
+NEDMALLOCNOALIASATTR size_t nedblksize(int *RESTRICT isforeign, void *RESTRICT mem) THROWSPEC
+{
+ if(mem)
+ {
+ if(isforeign) *isforeign=1;
+#if USE_MAGIC_HEADERS
+ {
+ size_t *_mem=(size_t *) mem-3;
+ if(_mem[0]==*(size_t *) "NEDMALOC")
+ {
+ mstate mspace=(mstate) _mem[1];
+ size_t size=_mem[2];
+ if(isforeign) *isforeign=0;
+ return size;
+ }
+ }
+#elif USE_ALLOCATOR==1
+ if(nedblkmstate(mem))
+ {
+ mchunkptr p=mem2chunk(mem);
+ if(isforeign) *isforeign=0;
+ return chunksize(p)-overhead_for(p);
+ }
+#ifdef DEBUG
+ else
+ {
+ int a=1; /* Set breakpoints here if needed */
+ }
+#endif
+#endif
+#if defined(ENABLE_TOLERANT_NEDMALLOC) || USE_ALLOCATOR==0
+#ifdef _MSC_VER
+ /* This is the MSVCRT equivalent */
+ return _msize(mem);
+#elif defined(__linux__)
+ /* This is the glibc/ptmalloc2/dlmalloc equivalent. */
+ return malloc_usable_size(mem);
+#elif defined(__FreeBSD__) || defined(__APPLE__)
+ /* This is the BSD libc equivalent. */
+ return malloc_size(mem);
+#else
+#error Cannot tolerate the memory allocator of an unknown system!
+#endif
+#endif
+ }
+ return 0;
+}
+
+NEDMALLOCNOALIASATTR void nedsetvalue(void *v) THROWSPEC { nedpsetvalue((nedpool *) 0, v); }
+NEDMALLOCNOALIASATTR NEDMALLOCPTRATTR void * nedmalloc(size_t size) THROWSPEC { return nedpmalloc((nedpool *) 0, size); }
+NEDMALLOCNOALIASATTR NEDMALLOCPTRATTR void * nedcalloc(size_t no, size_t size) THROWSPEC { return nedpcalloc((nedpool *) 0, no, size); }
+NEDMALLOCNOALIASATTR NEDMALLOCPTRATTR void * nedrealloc(void *mem, size_t size) THROWSPEC { return nedprealloc((nedpool *) 0, mem, size); }
+NEDMALLOCNOALIASATTR void nedfree(void *mem) THROWSPEC { nedpfree((nedpool *) 0, mem); }
+NEDMALLOCNOALIASATTR NEDMALLOCPTRATTR void * nedmemalign(size_t alignment, size_t bytes) THROWSPEC { return nedpmemalign((nedpool *) 0, alignment, bytes); }
+NEDMALLOCNOALIASATTR struct nedmallinfo nedmallinfo(void) THROWSPEC { return nedpmallinfo((nedpool *) 0); }
+NEDMALLOCNOALIASATTR int nedmallopt(int parno, int value) THROWSPEC { return nedpmallopt((nedpool *) 0, parno, value); }
+NEDMALLOCNOALIASATTR int nedmalloc_trim(size_t pad) THROWSPEC { return nedpmalloc_trim((nedpool *) 0, pad); }
+void nedmalloc_stats() THROWSPEC { nedpmalloc_stats((nedpool *) 0); }
+NEDMALLOCNOALIASATTR size_t nedmalloc_footprint() THROWSPEC { return nedpmalloc_footprint((nedpool *) 0); }
+NEDMALLOCNOALIASATTR NEDMALLOCPTRATTR void **nedindependent_calloc(size_t elemsno, size_t elemsize, void **chunks) THROWSPEC { return nedpindependent_calloc((nedpool *) 0, elemsno, elemsize, chunks); }
+NEDMALLOCNOALIASATTR NEDMALLOCPTRATTR void **nedindependent_comalloc(size_t elems, size_t *sizes, void **chunks) THROWSPEC { return nedpindependent_comalloc((nedpool *) 0, elems, sizes, chunks); }
+
+struct threadcacheblk_t;
+typedef struct threadcacheblk_t threadcacheblk;
+struct threadcacheblk_t
+{ /* Keep less than 16 bytes on 32 bit systems and 32 bytes on 64 bit systems */
+#ifdef FULLSANITYCHECKS
+ unsigned int magic;
+#endif
+ unsigned int lastUsed, size;
+ threadcacheblk *next, *prev;
+};
+typedef struct threadcache_t
+{
+#ifdef FULLSANITYCHECKS
+ unsigned int magic1;
+#endif
+ int mymspace; /* Last mspace entry this thread used */
+ long threadid;
+ unsigned int mallocs, frees, successes;
+ size_t freeInCache; /* How much free space is stored in this cache */
+ threadcacheblk *bins[(THREADCACHEMAXBINS+1)*2];
+#ifdef FULLSANITYCHECKS
+ unsigned int magic2;
+#endif
+} threadcache;
+struct nedpool_t
+{
+ MLOCK_T mutex;
+ void *uservalue;
+ int threads; /* Max entries in m to use */
+ threadcache *caches[THREADCACHEMAXCACHES];
+ TLSVAR mycache; /* Thread cache for this thread. 0 for unset, negative for use mspace-1 directly, otherwise is cache-1 */
+ mstate m[MAXTHREADSINPOOL+1]; /* mspace entries for this pool */
+};
+static nedpool syspool;
+
+static FORCEINLINE NEDMALLOCNOALIASATTR unsigned int size2binidx(size_t _size) THROWSPEC
+{ /* 8=1000 16=10000 20=10100 24=11000 32=100000 48=110000 4096=1000000000000 */
+ unsigned int topbit, size=(unsigned int)(_size>>4);
+ /* 16=1 20=1 24=1 32=10 48=11 64=100 96=110 128=1000 4096=100000000 */
+
+#if defined(__GNUC__)
+ topbit = sizeof(size)*__CHAR_BIT__ - 1 - __builtin_clz(size);
+#elif defined(_MSC_VER) && _MSC_VER>=1300
+ {
+ unsigned long bsrTopBit;
+
+ _BitScanReverse(&bsrTopBit, size);
+
+ topbit = bsrTopBit;
+ }
+#else
+#if 0
+ union {
+ unsigned asInt[2];
+ double asDouble;
+ };
+ int n;
+
+ asDouble = (double)size + 0.5;
+ topbit = (asInt[!FOX_BIGENDIAN] >> 20) - 1023;
+#else
+ {
+ unsigned int x=size;
+ x = x | (x >> 1);
+ x = x | (x >> 2);
+ x = x | (x >> 4);
+ x = x | (x >> 8);
+ x = x | (x >>16);
+ x = ~x;
+ x = x - ((x >> 1) & 0x55555555);
+ x = (x & 0x33333333) + ((x >> 2) & 0x33333333);
+ x = (x + (x >> 4)) & 0x0F0F0F0F;
+ x = x + (x << 8);
+ x = x + (x << 16);
+ topbit=31 - (x >> 24);
+ }
+#endif
+#endif
+ return topbit;
+}
+
+
+#ifdef FULLSANITYCHECKS
+static void tcsanitycheck(threadcacheblk **ptr) THROWSPEC
+{
+ assert((ptr[0] && ptr[1]) || (!ptr[0] && !ptr[1]));
+ if(ptr[0] && ptr[1])
+ {
+ assert(nedblksize(ptr[0])>=sizeof(threadcacheblk));
+ assert(nedblksize(ptr[1])>=sizeof(threadcacheblk));
+ assert(*(unsigned int *) "NEDN"==ptr[0]->magic);
+ assert(*(unsigned int *) "NEDN"==ptr[1]->magic);
+ assert(!ptr[0]->prev);
+ assert(!ptr[1]->next);
+ if(ptr[0]==ptr[1])
+ {
+ assert(!ptr[0]->next);
+ assert(!ptr[1]->prev);
+ }
+ }
+}
+static void tcfullsanitycheck(threadcache *tc) THROWSPEC
+{
+ threadcacheblk **tcbptr=tc->bins;
+ int n;
+ for(n=0; n<=THREADCACHEMAXBINS; n++, tcbptr+=2)
+ {
+ threadcacheblk *b, *ob=0;
+ tcsanitycheck(tcbptr);
+ for(b=tcbptr[0]; b; ob=b, b=b->next)
+ {
+ assert(*(unsigned int *) "NEDN"==b->magic);
+ assert(!ob || ob->next==b);
+ assert(!ob || b->prev==ob);
+ }
+ }
+}
+#endif
+
+static NOINLINE void RemoveCacheEntries(nedpool *RESTRICT p, threadcache *RESTRICT tc, unsigned int age) THROWSPEC
+{
+#ifdef FULLSANITYCHECKS
+ tcfullsanitycheck(tc);
+#endif
+ if(tc->freeInCache)
+ {
+ threadcacheblk **tcbptr=tc->bins;
+ int n;
+ for(n=0; n<=THREADCACHEMAXBINS; n++, tcbptr+=2)
+ {
+ threadcacheblk **tcb=tcbptr+1; /* come from oldest end of list */
+ /*tcsanitycheck(tcbptr);*/
+ for(; *tcb && tc->frees-(*tcb)->lastUsed>=age; )
+ {
+ threadcacheblk *f=*tcb;
+ size_t blksize=f->size; /*nedblksize(f);*/
+ assert(blksize<=nedblksize(0, f));
+ assert(blksize);
+#ifdef FULLSANITYCHECKS
+ assert(*(unsigned int *) "NEDN"==(*tcb)->magic);
+#endif
+ *tcb=(*tcb)->prev;
+ if(*tcb)
+ (*tcb)->next=0;
+ else
+ *tcbptr=0;
+ tc->freeInCache-=blksize;
+ assert((long) tc->freeInCache>=0);
+ CallFree(0, f, 0);
+ /*tcsanitycheck(tcbptr);*/
+ }
+ }
+ }
+#ifdef FULLSANITYCHECKS
+ tcfullsanitycheck(tc);
+#endif
+}
+static void DestroyCaches(nedpool *RESTRICT p) THROWSPEC
+{
+ if(p->caches)
+ {
+ threadcache *tc;
+ int n;
+ for(n=0; n<THREADCACHEMAXCACHES; n++)
+ {
+ if((tc=p->caches[n]))
+ {
+ tc->frees++;
+ RemoveCacheEntries(p, tc, 0);
+ assert(!tc->freeInCache);
+ tc->mymspace=-1;
+ tc->threadid=0;
+ CallFree(0, tc, 0);
+ p->caches[n]=0;
+ }
+ }
+ }
+}
+
+static NOINLINE threadcache *AllocCache(nedpool *RESTRICT p) THROWSPEC
+{
+ threadcache *tc=0;
+ int n, end;
+ ACQUIRE_LOCK(&p->mutex);
+ for(n=0; n<THREADCACHEMAXCACHES && p->caches[n]; n++);
+ if(THREADCACHEMAXCACHES==n)
+ { /* List exhausted, so disable for this thread */
+ RELEASE_LOCK(&p->mutex);
+ return 0;
+ }
+ tc=p->caches[n]=(threadcache *) CallCalloc(p->m[0], sizeof(threadcache), 0);
+ if(!tc)
+ {
+ RELEASE_LOCK(&p->mutex);
+ return 0;
+ }
+#ifdef FULLSANITYCHECKS
+ tc->magic1=*(unsigned int *)"NEDMALC1";
+ tc->magic2=*(unsigned int *)"NEDMALC2";
+#endif
+ tc->threadid=(long)(size_t)CURRENT_THREAD;
+ for(end=0; p->m[end]; end++);
+ tc->mymspace=abs(tc->threadid) % end;
+ RELEASE_LOCK(&p->mutex);
+ if(TLSSET(p->mycache, (void *)(size_t)(n+1))) abort();
+ return tc;
+}
+
+static void *threadcache_malloc(nedpool *RESTRICT p, threadcache *RESTRICT tc, size_t *RESTRICT _size) THROWSPEC
+{
+ void *RESTRICT ret=0;
+ size_t size=*_size, blksize=0;
+ unsigned int bestsize;
+ unsigned int idx=size2binidx(size);
+ threadcacheblk *RESTRICT blk, **RESTRICT binsptr;
+#ifdef FULLSANITYCHECKS
+ tcfullsanitycheck(tc);
+#endif
+ /* Calculate best fit bin size */
+ bestsize=1<<(idx+4);
+#if 0
+ /* Finer grained bin fit */
+ idx<<=1;
+ if(size>bestsize)
+ {
+ idx++;
+ bestsize+=bestsize>>1;
+ }
+ if(size>bestsize)
+ {
+ idx++;
+ bestsize=1<<(4+(idx>>1));
+ }
+#else
+ if(size>bestsize)
+ {
+ idx++;
+ bestsize<<=1;
+ }
+#endif
+ assert(bestsize>=size);
+ if(size<bestsize) size=bestsize;
+ assert(size<=THREADCACHEMAX);
+ assert(idx<=THREADCACHEMAXBINS);
+ binsptr=&tc->bins[idx*2];
+ /* Try to match close, but move up a bin if necessary */
+ blk=*binsptr;
+ if(!blk || blk->size<size)
+ { /* Bump it up a bin */
+ if(idx<THREADCACHEMAXBINS)
+ {
+ idx++;
+ binsptr+=2;
+ blk=*binsptr;
+ }
+ }
+ if(blk)
+ {
+ blksize=blk->size; /*nedblksize(blk);*/
+ assert(nedblksize(0, blk)>=blksize);
+ assert(blksize>=size);
+ if(blk->next)
+ blk->next->prev=0;
+ *binsptr=blk->next;
+ if(!*binsptr)
+ binsptr[1]=0;
+#ifdef FULLSANITYCHECKS
+ blk->magic=0;
+#endif
+ assert(binsptr[0]!=blk && binsptr[1]!=blk);
+ assert(nedblksize(0, blk)>=sizeof(threadcacheblk) && nedblksize(0, blk)<=THREADCACHEMAX+CHUNK_OVERHEAD);
+ /*printf("malloc: %p, %p, %p, %lu\n", p, tc, blk, (long) _size);*/
+ ret=(void *) blk;
+ }
+ ++tc->mallocs;
+ if(ret)
+ {
+ assert(blksize>=size);
+ ++tc->successes;
+ tc->freeInCache-=blksize;
+ assert((long) tc->freeInCache>=0);
+ }
+#if defined(DEBUG) && 0
+ if(!(tc->mallocs & 0xfff))
+ {
+ printf("*** threadcache=%u, mallocs=%u (%f), free=%u (%f), freeInCache=%u\n", (unsigned int) tc->threadid, tc->mallocs,
+ (float) tc->successes/tc->mallocs, tc->frees, (float) tc->successes/tc->frees, (unsigned int) tc->freeInCache);
+ }
+#endif
+#ifdef FULLSANITYCHECKS
+ tcfullsanitycheck(tc);
+#endif
+ *_size=size;
+ return ret;
+}
+static NOINLINE void ReleaseFreeInCache(nedpool *RESTRICT p, threadcache *RESTRICT tc, int mymspace) THROWSPEC
+{
+ unsigned int age=THREADCACHEMAXFREESPACE/8192;
+ /*ACQUIRE_LOCK(&p->m[mymspace]->mutex);*/
+ while(age && tc->freeInCache>=THREADCACHEMAXFREESPACE)
+ {
+ RemoveCacheEntries(p, tc, age);
+ /*printf("*** Removing cache entries older than %u (%u)\n", age, (unsigned int) tc->freeInCache);*/
+ age>>=1;
+ }
+ /*RELEASE_LOCK(&p->m[mymspace]->mutex);*/
+}
+static void threadcache_free(nedpool *RESTRICT p, threadcache *RESTRICT tc, int mymspace, void *RESTRICT mem, size_t size) THROWSPEC
+{
+ unsigned int bestsize;
+ unsigned int idx=size2binidx(size);
+ threadcacheblk **RESTRICT binsptr, *RESTRICT tck=(threadcacheblk *) mem;
+ assert(size>=sizeof(threadcacheblk) && size<=THREADCACHEMAX+CHUNK_OVERHEAD);
+#ifdef DEBUG
+ /* Make sure this is a valid memory block */
+ assert(nedblksize(0, mem));
+#endif
+#ifdef FULLSANITYCHECKS
+ tcfullsanitycheck(tc);
+#endif
+ /* Calculate best fit bin size */
+ bestsize=1<<(idx+4);
+#if 0
+ /* Finer grained bin fit */
+ idx<<=1;
+ if(size>bestsize)
+ {
+ unsigned int biggerbestsize=bestsize+bestsize<<1;
+ if(size>=biggerbestsize)
+ {
+ idx++;
+ bestsize=biggerbestsize;
+ }
+ }
+#endif
+ if(bestsize!=size) /* dlmalloc can round up, so we round down to preserve indexing */
+ size=bestsize;
+ binsptr=&tc->bins[idx*2];
+ assert(idx<=THREADCACHEMAXBINS);
+ if(tck==*binsptr)
+ {
+ fprintf(stderr, "nedmalloc: Attempt to free already freed memory block %p - aborting!\n", tck);
+ abort();
+ }
+#ifdef FULLSANITYCHECKS
+ tck->magic=*(unsigned int *) "NEDN";
+#endif
+ tck->lastUsed=++tc->frees;
+ tck->size=(unsigned int) size;
+ tck->next=*binsptr;
+ tck->prev=0;
+ if(tck->next)
+ tck->next->prev=tck;
+ else
+ binsptr[1]=tck;
+ assert(!*binsptr || (*binsptr)->size==tck->size);
+ *binsptr=tck;
+ assert(tck==tc->bins[idx*2]);
+ assert(tc->bins[idx*2+1]==tck || binsptr[0]->next->prev==tck);
+ /*printf("free: %p, %p, %p, %lu\n", p, tc, mem, (long) size);*/
+ tc->freeInCache+=size;
+#ifdef FULLSANITYCHECKS
+ tcfullsanitycheck(tc);
+#endif
+#if 1
+ if(tc->freeInCache>=THREADCACHEMAXFREESPACE)
+ ReleaseFreeInCache(p, tc, mymspace);
+#endif
+}
+
+
+
+
+static NOINLINE int InitPool(nedpool *RESTRICT p, size_t capacity, int threads) THROWSPEC
+{ /* threads is -1 for system pool */
+ ensure_initialization();
+ ACQUIRE_MALLOC_GLOBAL_LOCK();
+ if(p->threads) goto done;
+ if(INITIAL_LOCK(&p->mutex)) goto err;
+ if(TLSALLOC(&p->mycache)) goto err;
+#if USE_ALLOCATOR==0
+ p->m[0]=(mstate) mspacecounter++;
+#elif USE_ALLOCATOR==1
+ if(!(p->m[0]=(mstate) create_mspace(capacity, 1))) goto err;
+ p->m[0]->extp=p;
+#endif
+ p->threads=(threads<1 || threads>MAXTHREADSINPOOL) ? MAXTHREADSINPOOL : threads;
+done:
+ RELEASE_MALLOC_GLOBAL_LOCK();
+ return 1;
+err:
+ if(threads<0)
+ abort(); /* If you can't allocate for system pool, we're screwed */
+ DestroyCaches(p);
+ if(p->m[0])
+ {
+#if USE_ALLOCATOR==1
+ destroy_mspace(p->m[0]);
+#endif
+ p->m[0]=0;
+ }
+ if(p->mycache)
+ {
+ if(TLSFREE(p->mycache)) abort();
+ p->mycache=0;
+ }
+ RELEASE_MALLOC_GLOBAL_LOCK();
+ return 0;
+}
+static NOINLINE mstate FindMSpace(nedpool *RESTRICT p, threadcache *RESTRICT tc, int *RESTRICT lastUsed, size_t size) THROWSPEC
+{ /* Gets called when thread's last used mspace is in use. The strategy
+ is to run through the list of all available mspaces looking for an
+ unlocked one and if we fail, we create a new one so long as we don't
+ exceed p->threads */
+ int n, end;
+ for(n=end=*lastUsed+1; p->m[n]; end=++n)
+ {
+ if(TRY_LOCK(&p->m[n]->mutex)) goto found;
+ }
+ for(n=0; n<*lastUsed && p->m[n]; n++)
+ {
+ if(TRY_LOCK(&p->m[n]->mutex)) goto found;
+ }
+ if(end<p->threads)
+ {
+ mstate temp;
+#if USE_ALLOCATOR==0
+ temp=(mstate) mspacecounter++;
+#elif USE_ALLOCATOR==1
+ if(!(temp=(mstate) create_mspace(size, 1)))
+ goto badexit;
+#endif
+ /* Now we're ready to modify the lists, we lock */
+ ACQUIRE_LOCK(&p->mutex);
+ while(p->m[end] && end<p->threads)
+ end++;
+ if(end>=p->threads)
+ { /* Drat, must destroy it now */
+ RELEASE_LOCK(&p->mutex);
+#if USE_ALLOCATOR==1
+ destroy_mspace((mstate) temp);
+#endif
+ goto badexit;
+ }
+ /* We really want to make sure this goes into memory now but we
+ have to be careful of breaking aliasing rules, so write it twice */
+ *((volatile struct malloc_state **) &p->m[end])=p->m[end]=temp;
+ ACQUIRE_LOCK(&p->m[end]->mutex);
+ /*printf("Created mspace idx %d\n", end);*/
+ RELEASE_LOCK(&p->mutex);
+ n=end;
+ goto found;
+ }
+ /* Let it lock on the last one it used */
+badexit:
+ ACQUIRE_LOCK(&p->m[*lastUsed]->mutex);
+ return p->m[*lastUsed];
+found:
+ *lastUsed=n;
+ if(tc)
+ tc->mymspace=n;
+ else
+ {
+ if(TLSSET(p->mycache, (void *)(size_t)(-(n+1)))) abort();
+ }
+ return p->m[n];
+}
+
+typedef struct PoolList_t
+{
+ size_t size; /* Size of list */
+ size_t length; /* Actual entries in list */
+#ifdef DEBUG
+ nedpool *list[1]; /* Force testing of list expansion */
+#else
+ nedpool *list[16];
+#endif
+} PoolList;
+static MLOCK_T poollistlock;
+static PoolList *poollist;
+NEDMALLOCPTRATTR nedpool *nedcreatepool(size_t capacity, int threads) THROWSPEC
+{
+ nedpool *ret=0;
+ if(!poollist)
+ {
+ PoolList *newpoollist=0;
+ if(!(newpoollist=(PoolList *) nedpcalloc(0, 1, sizeof(PoolList)+sizeof(nedpool *)))) return 0;
+ INITIAL_LOCK(&poollistlock);
+ ACQUIRE_LOCK(&poollistlock);
+ poollist=newpoollist;
+ poollist->size=sizeof(poollist->list)/sizeof(nedpool *);
+ }
+ else
+ ACQUIRE_LOCK(&poollistlock);
+ if(poollist->length==poollist->size)
+ {
+ PoolList *newpoollist=0;
+ size_t newsize=0;
+ newsize=sizeof(PoolList)+(poollist->size+1)*sizeof(nedpool *);
+ if(!(newpoollist=(PoolList *) nedprealloc(0, poollist, newsize))) goto badexit;
+ poollist=newpoollist;
+ memset(&poollist->list[poollist->size], 0, newsize-((size_t)&poollist->list[poollist->size]-(size_t)&poollist->list[0]));
+ poollist->size=((newsize-((char *)&poollist->list[0]-(char *)poollist))/sizeof(nedpool *))-1;
+ assert(poollist->size>poollist->length);
+ }
+ if(!(ret=(nedpool *) nedpcalloc(0, 1, sizeof(nedpool)))) goto badexit;
+ if(!InitPool(ret, capacity, threads))
+ {
+ nedpfree(0, ret);
+ goto badexit;
+ }
+ poollist->list[poollist->length++]=ret;
+badexit:
+ RELEASE_LOCK(&poollistlock);
+ return ret;
+}
+void neddestroypool(nedpool *p) THROWSPEC
+{
+ unsigned int n;
+ ACQUIRE_LOCK(&p->mutex);
+ DestroyCaches(p);
+ for(n=0; p->m[n]; n++)
+ {
+#if USE_ALLOCATOR==1
+ destroy_mspace(p->m[n]);
+#endif
+ p->m[n]=0;
+ }
+ RELEASE_LOCK(&p->mutex);
+ if(TLSFREE(p->mycache)) abort();
+ nedpfree(0, p);
+ ACQUIRE_LOCK(&poollistlock);
+ assert(poollist);
+ for(n=0; n<poollist->length && poollist->list[n]!=p; n++);
+ assert(n!=poollist->length);
+ memmove(&poollist->list[n], &poollist->list[n+1], (size_t)&poollist->list[poollist->length]-(size_t)&poollist->list[n]);
+ if(!--poollist->length)
+ {
+ assert(!poollist->list[0]);
+ nedpfree(0, poollist);
+ poollist=0;
+ }
+ RELEASE_LOCK(&poollistlock);
+}
+void neddestroysyspool() THROWSPEC
+{
+ nedpool *p=&syspool;
+ int n;
+ ACQUIRE_LOCK(&p->mutex);
+ DestroyCaches(p);
+ for(n=0; p->m[n]; n++)
+ {
+#if USE_ALLOCATOR==1
+ destroy_mspace(p->m[n]);
+#endif
+ p->m[n]=0;
+ }
+ /* Render syspool unusable */
+ for(n=0; n<THREADCACHEMAXCACHES; n++)
+ p->caches[n]=(threadcache *)(size_t)(sizeof(size_t)>4 ? 0xdeadbeefdeadbeefULL : 0xdeadbeefUL);
+ for(n=0; n<MAXTHREADSINPOOL+1; n++)
+ p->m[n]=(mstate)(size_t)(sizeof(size_t)>4 ? 0xdeadbeefdeadbeefULL : 0xdeadbeefUL);
+ if(TLSFREE(p->mycache)) abort();
+ RELEASE_LOCK(&p->mutex);
+}
+nedpool **nedpoollist() THROWSPEC
+{
+ nedpool **ret=0;
+ if(poollist)
+ {
+ ACQUIRE_LOCK(&poollistlock);
+ if(!(ret=(nedpool **) nedmalloc((poollist->length+1)*sizeof(nedpool *)))) goto badexit;
+ memcpy(ret, poollist->list, (poollist->length+1)*sizeof(nedpool *));
+badexit:
+ RELEASE_LOCK(&poollistlock);
+ }
+ return ret;
+}
+
+void nedpsetvalue(nedpool *p, void *v) THROWSPEC
+{
+ if(!p) { p=&syspool; if(!syspool.threads) InitPool(&syspool, 0, -1); }
+ p->uservalue=v;
+}
+void *nedgetvalue(nedpool **p, void *mem) THROWSPEC
+{
+ nedpool *np=0;
+ mstate fm=nedblkmstate(mem);
+ if(!fm || !fm->extp) return 0;
+ np=(nedpool *) fm->extp;
+ if(p) *p=np;
+ return np->uservalue;
+}
+
+void nedtrimthreadcache(nedpool *p, int disable) THROWSPEC
+{
+ int mycache;
+ if(!p)
+ {
+ p=&syspool;
+ if(!syspool.threads) InitPool(&syspool, 0, -1);
+ }
+ mycache=(int)(size_t) TLSGET(p->mycache);
+ if(!mycache)
+ { /* Set to mspace 0 */
+ if(disable && TLSSET(p->mycache, (void *)(size_t)-1)) abort();
+ }
+ else if(mycache>0)
+ { /* Set to last used mspace */
+ threadcache *tc=p->caches[mycache-1];
+#if defined(DEBUG)
+ printf("Threadcache utilisation: %lf%% in cache with %lf%% lost to other threads\n",
+ 100.0*tc->successes/tc->mallocs, 100.0*((double) tc->mallocs-tc->frees)/tc->mallocs);
+#endif
+ if(disable && TLSSET(p->mycache, (void *)(size_t)(-tc->mymspace))) abort();
+ tc->frees++;
+ RemoveCacheEntries(p, tc, 0);
+ assert(!tc->freeInCache);
+ if(disable)
+ {
+ tc->mymspace=-1;
+ tc->threadid=0;
+ CallFree(0, p->caches[mycache-1], 0);
+ p->caches[mycache-1]=0;
+ }
+ }
+}
+void neddisablethreadcache(nedpool *p) THROWSPEC
+{
+ nedtrimthreadcache(p, 1);
+}
+
+#define GETMSPACE(m,p,tc,ms,s,action) \
+ do \
+ { \
+ mstate m = GetMSpace((p),(tc),(ms),(s)); \
+ action; \
+ if(USE_ALLOCATOR==1) { RELEASE_LOCK(&m->mutex); } \
+ } while (0)
+
+static FORCEINLINE mstate GetMSpace(nedpool *RESTRICT p, threadcache *RESTRICT tc, int mymspace, size_t size) THROWSPEC
+{ /* Returns a locked and ready for use mspace */
+ mstate m=p->m[mymspace];
+ assert(m);
+#if USE_ALLOCATOR==1
+ if(!TRY_LOCK(&p->m[mymspace]->mutex)) m=FindMSpace(p, tc, &mymspace, size);
+ /*assert(IS_LOCKED(&p->m[mymspace]->mutex));*/
+#endif
+ return m;
+}
+static NOINLINE void GetThreadCache_cold1(nedpool *RESTRICT *RESTRICT p) THROWSPEC
+{
+ *p=&syspool;
+ if(!syspool.threads) InitPool(&syspool, 0, -1);
+}
+static NOINLINE void GetThreadCache_cold2(nedpool *RESTRICT *RESTRICT p, threadcache *RESTRICT *RESTRICT tc, int *RESTRICT mymspace, int mycache) THROWSPEC
+{
+ if(!mycache)
+ { /* Need to allocate a new cache */
+ *tc=AllocCache(*p);
+ if(!*tc)
+ { /* Disable */
+ if(TLSSET((*p)->mycache, (void *)(size_t)-1)) abort();
+ *mymspace=0;
+ }
+ else
+ *mymspace=(*tc)->mymspace;
+ }
+ else
+ { /* Cache disabled, but we do have an assigned thread pool */
+ *tc=0;
+ *mymspace=-mycache-1;
+ }
+}
+static FORCEINLINE void GetThreadCache(nedpool *RESTRICT *RESTRICT p, threadcache *RESTRICT *RESTRICT tc, int *RESTRICT mymspace, size_t *RESTRICT size) THROWSPEC
+{
+ int mycache;
+ if(size && *size<sizeof(threadcacheblk)) *size=sizeof(threadcacheblk);
+ if(!*p)
+ GetThreadCache_cold1(p);
+ mycache=(int)(size_t) TLSGET((*p)->mycache);
+ if(mycache>0)
+ { /* Already have a cache */
+ *tc=(*p)->caches[mycache-1];
+ *mymspace=(*tc)->mymspace;
+ }
+ else GetThreadCache_cold2(p, tc, mymspace, mycache);
+ assert(*mymspace>=0);
+ assert(!(*tc) || (long)(size_t)CURRENT_THREAD==(*tc)->threadid);
+#ifdef FULLSANITYCHECKS
+ if(*tc)
+ {
+ if(*(unsigned int *)"NEDMALC1"!=(*tc)->magic1 || *(unsigned int *)"NEDMALC2"!=(*tc)->magic2)
+ {
+ abort();
+ }
+ }
+#endif
+}
+
+NEDMALLOCPTRATTR void * nedpmalloc(nedpool *p, size_t size) THROWSPEC
+{
+ void *ret=0;
+ threadcache *tc;
+ int mymspace;
+ GetThreadCache(&p, &tc, &mymspace, &size);
+#if THREADCACHEMAX
+ if(tc && size<=THREADCACHEMAX)
+ { /* Use the thread cache */
+ ret=threadcache_malloc(p, tc, &size);
+ }
+#endif
+ if(!ret)
+ { /* Use this thread's mspace */
+ GETMSPACE(m, p, tc, mymspace, size,
+ ret=CallMalloc(m, size, 0));
+ }
+ return ret;
+}
+NEDMALLOCPTRATTR void * nedpcalloc(nedpool *p, size_t no, size_t size) THROWSPEC
+{
+ size_t rsize=size*no;
+ void *ret=0;
+ threadcache *tc;
+ int mymspace;
+ GetThreadCache(&p, &tc, &mymspace, &rsize);
+#if THREADCACHEMAX
+ if(tc && rsize<=THREADCACHEMAX)
+ { /* Use the thread cache */
+ if((ret=threadcache_malloc(p, tc, &rsize)))
+ memset(ret, 0, rsize);
+ }
+#endif
+ if(!ret)
+ { /* Use this thread's mspace */
+ GETMSPACE(m, p, tc, mymspace, rsize,
+ ret=CallCalloc(m, rsize, 0));
+ }
+ return ret;
+}
+NEDMALLOCPTRATTR void * nedprealloc(nedpool *p, void *mem, size_t size) THROWSPEC
+{
+ void *ret=0;
+ threadcache *tc;
+ int mymspace, isforeign=1;
+ size_t memsize;
+ if(!mem) return nedpmalloc(p, size);
+ memsize=nedblksize(&isforeign, mem);
+ assert(memsize);
+ if(!memsize)
+ {
+ fprintf(stderr, "nedmalloc: nedprealloc() called with a block not created by nedmalloc!\n");
+ abort();
+ }
+ else if(size<=memsize && memsize-size<
+#ifdef DEBUG
+ 32
+#else
+ 1024
+#endif
+ ) /* If realloc size is within 1Kb smaller than existing, noop it */
+ return mem;
+ GetThreadCache(&p, &tc, &mymspace, &size);
+#if THREADCACHEMAX
+ if(tc && size && size<=THREADCACHEMAX)
+ { /* Use the thread cache */
+ if((ret=threadcache_malloc(p, tc, &size)))
+ {
+ memcpy(ret, mem, memsize<size ? memsize : size);
+ if(memsize>=sizeof(threadcacheblk) && memsize<=(THREADCACHEMAX+CHUNK_OVERHEAD))
+ threadcache_free(p, tc, mymspace, mem, memsize);
+ else
+ CallFree(0, mem, isforeign);
+ }
+ }
+#endif
+ if(!ret)
+ { /* Reallocs always happen in the mspace they happened in, so skip
+ locking the preferred mspace for this thread */
+ ret=CallRealloc(p->m[mymspace], mem, isforeign, memsize, size);
+ }
+ return ret;
+}
+void nedpfree(nedpool *p, void *mem) THROWSPEC
+{ /* Frees always happen in the mspace they happened in, so skip
+ locking the preferred mspace for this thread */
+ threadcache *tc;
+ int mymspace, isforeign=1;
+ size_t memsize;
+ if(!mem)
+ { /* If you tried this on FreeBSD you'd be sorry! */
+#ifdef DEBUG
+ fprintf(stderr, "nedmalloc: WARNING nedpfree() called with zero. This is not portable behaviour!\n");
+#endif
+ return;
+ }
+ memsize=nedblksize(&isforeign, mem);
+ assert(memsize);
+ if(!memsize)
+ {
+ fprintf(stderr, "nedmalloc: nedpfree() called with a block not created by nedmalloc!\n");
+ abort();
+ }
+ GetThreadCache(&p, &tc, &mymspace, 0);
+#if THREADCACHEMAX
+ if(mem && tc && memsize>=sizeof(threadcacheblk) && memsize<=(THREADCACHEMAX+CHUNK_OVERHEAD))
+ threadcache_free(p, tc, mymspace, mem, memsize);
+ else
+#endif
+ CallFree(0, mem, isforeign);
+}
+NEDMALLOCPTRATTR void * nedpmemalign(nedpool *p, size_t alignment, size_t bytes) THROWSPEC
+{
+ void *ret;
+ threadcache *tc;
+ int mymspace;
+ GetThreadCache(&p, &tc, &mymspace, &bytes);
+ { /* Use this thread's mspace */
+ GETMSPACE(m, p, tc, mymspace, bytes,
+ ret=CallMalloc(m, bytes, alignment));
+ }
+ return ret;
+}
+struct nedmallinfo nedpmallinfo(nedpool *p) THROWSPEC
+{
+ int n;
+ struct nedmallinfo ret={0};
+ if(!p) { p=&syspool; if(!syspool.threads) InitPool(&syspool, 0, -1); }
+ for(n=0; p->m[n]; n++)
+ {
+#if USE_ALLOCATOR==1 && !NO_MALLINFO
+ struct mallinfo t=mspace_mallinfo(p->m[n]);
+ ret.arena+=t.arena;
+ ret.ordblks+=t.ordblks;
+ ret.hblkhd+=t.hblkhd;
+ ret.usmblks+=t.usmblks;
+ ret.uordblks+=t.uordblks;
+ ret.fordblks+=t.fordblks;
+ ret.keepcost+=t.keepcost;
+#endif
+ }
+ return ret;
+}
+int nedpmallopt(nedpool *p, int parno, int value) THROWSPEC
+{
+#if USE_ALLOCATOR==1
+ return mspace_mallopt(parno, value);
+#else
+ return 0;
+#endif
+}
+NEDMALLOCNOALIASATTR void* nedmalloc_internals(size_t *granularity, size_t *magic) THROWSPEC
+{
+#if USE_ALLOCATOR==1
+ if(granularity) *granularity=mparams.granularity;
+ if(magic) *magic=mparams.magic;
+ return (void *) &syspool;
+#else
+ if(granularity) *granularity=0;
+ if(magic) *magic=0;
+ return 0;
+#endif
+}
+int nedpmalloc_trim(nedpool *p, size_t pad) THROWSPEC
+{
+ int n, ret=0;
+ if(!p) { p=&syspool; if(!syspool.threads) InitPool(&syspool, 0, -1); }
+ for(n=0; p->m[n]; n++)
+ {
+#if USE_ALLOCATOR==1
+ ret+=mspace_trim(p->m[n], pad);
+#endif
+ }
+ return ret;
+}
+void nedpmalloc_stats(nedpool *p) THROWSPEC
+{
+ int n;
+ if(!p) { p=&syspool; if(!syspool.threads) InitPool(&syspool, 0, -1); }
+ for(n=0; p->m[n]; n++)
+ {
+#if USE_ALLOCATOR==1
+ mspace_malloc_stats(p->m[n]);
+#endif
+ }
+}
+size_t nedpmalloc_footprint(nedpool *p) THROWSPEC
+{
+ size_t ret=0;
+ int n;
+ if(!p) { p=&syspool; if(!syspool.threads) InitPool(&syspool, 0, -1); }
+ for(n=0; p->m[n]; n++)
+ {
+#if USE_ALLOCATOR==1
+ ret+=mspace_footprint(p->m[n]);
+#endif
+ }
+ return ret;
+}
+NEDMALLOCPTRATTR void **nedpindependent_calloc(nedpool *p, size_t elemsno, size_t elemsize, void **chunks) THROWSPEC
+{
+ void **ret;
+ threadcache *tc;
+ int mymspace;
+ GetThreadCache(&p, &tc, &mymspace, &elemsize);
+#if USE_ALLOCATOR==0
+ GETMSPACE(m, p, tc, mymspace, elemsno*elemsize,
+ ret=unsupported_operation("independent_calloc"));
+#elif USE_ALLOCATOR==1
+ GETMSPACE(m, p, tc, mymspace, elemsno*elemsize,
+ ret=mspace_independent_calloc(m, elemsno, elemsize, chunks));
+#endif
+ return ret;
+}
+NEDMALLOCPTRATTR void **nedpindependent_comalloc(nedpool *p, size_t elems, size_t *sizes, void **chunks) THROWSPEC
+{
+ void **ret;
+ threadcache *tc;
+ int mymspace;
+ size_t i, *adjustedsizes=(size_t *) alloca(elems*sizeof(size_t));
+ if(!adjustedsizes) return 0;
+ for(i=0; i<elems; i++)
+ adjustedsizes[i]=sizes[i]<sizeof(threadcacheblk) ? sizeof(threadcacheblk) : sizes[i];
+ GetThreadCache(&p, &tc, &mymspace, 0);
+#if USE_ALLOCATOR==0
+ GETMSPACE(m, p, tc, mymspace, 0,
+ ret=unsupported_operation("independent_comalloc"));
+#elif USE_ALLOCATOR==1
+ GETMSPACE(m, p, tc, mymspace, 0,
+ ret=mspace_independent_comalloc(m, elems, adjustedsizes, chunks));
+#endif
+ return ret;
+}
+
+#if defined(__cplusplus)
+}
+#endif
+
+#ifdef _MSC_VER
+#pragma warning(pop)
+#endif
+
+#endif
diff --git a/drivers/nedmalloc/nedmalloc.h b/drivers/nedmalloc/nedmalloc.h
index b9add1683a..7ec65849fc 100644
--- a/drivers/nedmalloc/nedmalloc.h
+++ b/drivers/nedmalloc/nedmalloc.h
@@ -1,302 +1,302 @@
-#ifdef NEDMALLOC_ENABLED
-
-/* nedalloc, an alternative malloc implementation for multiple threads without
-lock contention based on dlmalloc v2.8.3. (C) 2005-2009 Niall Douglas
-
-Boost Software License - Version 1.0 - August 17th, 2003
-
-Permission is hereby granted, free of charge, to any person or organization
-obtaining a copy of the software and accompanying documentation covered by
-this license (the "Software") to use, reproduce, display, distribute,
-execute, and transmit the Software, and to prepare derivative works of the
-Software, and to permit third-parties to whom the Software is furnished to
-do so, all subject to the following:
-
-The copyright notices in the Software and this entire statement, including
-the above license grant, this restriction and the following disclaimer,
-must be included in all copies of the Software, in whole or in part, and
-all derivative works of the Software, unless such copies or derivative
-works are solely in the form of machine-executable object code generated by
-a source language processor.
-
-THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
-IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
-FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT
-SHALL THE COPYRIGHT HOLDERS OR ANYONE DISTRIBUTING THE SOFTWARE BE LIABLE
-FOR ANY DAMAGES OR OTHER LIABILITY, WHETHER IN CONTRACT, TORT OR OTHERWISE,
-ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
-DEALINGS IN THE SOFTWARE.
-*/
-
-#ifndef NEDMALLOC_H
-#define NEDMALLOC_H
-
-#include "typedefs.h"
-#define MALLOC_ALIGNMENT DEFAULT_ALIGNMENT
-
-#ifdef PSP_ENABLED
-#define USE_LOCKS 0
-#define HAVE_MMAP 0
-#endif
-
-/* See malloc.c.h for what each function does.
-
-REPLACE_SYSTEM_ALLOCATOR on POSIX causes nedalloc's functions to be called
-malloc, free etc. instead of nedmalloc, nedfree etc. You may or may not want
-this. On Windows it causes nedmalloc to patch all loaded DLLs and binaries
-to replace usage of the system allocator.
-
-NO_NED_NAMESPACE prevents the functions from being defined in the nedalloc
-namespace when in C++ (uses the global namespace instead).
-
-NEDMALLOCEXTSPEC can be defined to be __declspec(dllexport) or
-__attribute__ ((visibility("default"))) or whatever you like. It defaults
-to extern unless NEDMALLOC_DLL_EXPORTS is set as it would be when building
-nedmalloc.dll.
-
-USE_LOCKS can be 2 if you want to define your own MLOCK_T, INITIAL_LOCK,
-ACQUIRE_LOCK, RELEASE_LOCK, TRY_LOCK, IS_LOCKED and NULL_LOCK_INITIALIZER.
-
-NEDMALLOC_DEBUG can be defined to cause DEBUG to be set differently for nedmalloc
-than for the rest of the build. Remember to set NDEBUG to disable all assertion
-checking too.
-
-USE_MAGIC_HEADERS causes nedalloc to allocate an extra three sizeof(size_t)
-to each block. nedpfree() and nedprealloc() can then automagically know when
-to free a system allocated block. Enabling this typically adds 20-50% to
-application memory usage.
-
-ENABLE_TOLERANT_NEDMALLOC is automatically turned on if REPLACE_SYSTEM_ALLOCATOR
-is set or the Windows DLL is being built. This causes nedmalloc to detect when a
-system allocator block is passed to it and to handle it appropriately. Note that
-without USE_MAGIC_HEADERS there is a very tiny chance that nedmalloc will segfault
-on non-Windows builds (it uses Win32 SEH to trap segfaults on Windows and there
-is no comparable system on POSIX).
-
-USE_ALLOCATOR can be one of these settings (it defaults to 1):
- 0: System allocator (nedmalloc now simply acts as a threadcache).
- WARNING: Intended for DEBUG USE ONLY - not all functions work correctly.
- 1: dlmalloc
-
-ENABLE_LARGE_PAGES enables support for requesting memory from the system in large
-(typically >=2Mb) pages if the host OS supports this. These occupy just a single
-TLB entry and can significantly improve performance in large working set applications.
-
-ENABLE_FAST_HEAP_DETECTION enables special logic to detect blocks allocated
-by the system heap. This avoids 1.5%-2% overhead when checking for non-nedmalloc
-blocks, but it assumes that the NT and glibc heaps function in a very specific
-fashion which may not hold true across OS upgrades.
-*/
-
-#include <stddef.h> /* for size_t */
-
-#ifndef NEDMALLOCEXTSPEC
- #ifdef NEDMALLOC_DLL_EXPORTS
- #ifdef WIN32
- #define NEDMALLOCEXTSPEC extern __declspec(dllexport)
- #elif defined(__GNUC__)
- #define NEDMALLOCEXTSPEC extern __attribute__ ((visibility("default")))
- #endif
- #ifndef ENABLE_TOLERANT_NEDMALLOC
- #define ENABLE_TOLERANT_NEDMALLOC 1
- #endif
- #else
- #define NEDMALLOCEXTSPEC extern
- #endif
-#endif
-
-#if __STDC_VERSION__ >= 199901L /* C99 or better */
- #define RESTRICT restrict
-#else
- #if defined(_MSC_VER) && _MSC_VER>=1400
- #define RESTRICT __restrict
- #endif
- #ifdef __GNUC__
- #define RESTRICT __restrict
- #endif
-#endif
-#ifndef RESTRICT
- #define RESTRICT
-#endif
-
-#if defined(_MSC_VER) && _MSC_VER>=1400
- #define NEDMALLOCPTRATTR __declspec(restrict)
- #define NEDMALLOCNOALIASATTR __declspec(noalias)
-#endif
-#ifdef __GNUC__
- #define NEDMALLOCPTRATTR __attribute__ ((malloc))
-#endif
-#ifndef NEDMALLOCPTRATTR
- #define NEDMALLOCPTRATTR
-#endif
-#ifndef NEDMALLOCNOALIASATTR
- #define NEDMALLOCNOALIASATTR
-#endif
-
-#ifndef USE_MAGIC_HEADERS
- #define USE_MAGIC_HEADERS 0
-#endif
-
-#ifndef USE_ALLOCATOR
- #define USE_ALLOCATOR 1 /* dlmalloc */
-#endif
-
-#if !USE_ALLOCATOR && !USE_MAGIC_HEADERS
-#error If you are using the system allocator then you MUST use magic headers
-#endif
-
-#ifdef REPLACE_SYSTEM_ALLOCATOR
- #if USE_ALLOCATOR==0
- #error Cannot combine using the system allocator with replacing the system allocator
- #endif
- #ifndef ENABLE_TOLERANT_NEDMALLOC
- #define ENABLE_TOLERANT_NEDMALLOC 1
- #endif
- #ifndef WIN32 /* We have a dedicated patcher for Windows */
- #define nedmalloc malloc
- #define nedcalloc calloc
- #define nedrealloc realloc
- #define nedfree free
- #define nedmemalign memalign
- #define nedmallinfo mallinfo
- #define nedmallopt mallopt
- #define nedmalloc_trim malloc_trim
- #define nedmalloc_stats malloc_stats
- #define nedmalloc_footprint malloc_footprint
- #define nedindependent_calloc independent_calloc
- #define nedindependent_comalloc independent_comalloc
- #ifdef _MSC_VER
- #define nedblksize _msize
- #endif
- #endif
-#endif
-
-#if defined(__cplusplus)
-extern "C" {
-#endif
-struct nedmallinfo {
- size_t arena; /* non-mmapped space allocated from system */
- size_t ordblks; /* number of free chunks */
- size_t smblks; /* always 0 */
- size_t hblks; /* always 0 */
- size_t hblkhd; /* space in mmapped regions */
- size_t usmblks; /* maximum total allocated space */
- size_t fsmblks; /* always 0 */
- size_t uordblks; /* total allocated space */
- size_t fordblks; /* total free space */
- size_t keepcost; /* releasable (via malloc_trim) space */
-};
-#if defined(__cplusplus)
-}
-#endif
-
-#if defined(__cplusplus)
- #if !defined(NO_NED_NAMESPACE)
-namespace nedalloc {
- #else
-extern "C" {
- #endif
- #define THROWSPEC throw()
-#else
- #define THROWSPEC
-#endif
-
-/* These are the global functions */
-
-/* Gets the usable size of an allocated block. Note this will always be bigger than what was
-asked for due to rounding etc. Optionally returns 1 in isforeign if the block came from the
-system allocator - note that there is a small (>0.01%) but real chance of segfault on non-Windows
-systems when passing non-nedmalloc blocks if you don't use USE_MAGIC_HEADERS.
-*/
-NEDMALLOCEXTSPEC NEDMALLOCNOALIASATTR size_t nedblksize(int *RESTRICT isforeign, void *RESTRICT mem) THROWSPEC;
-
-NEDMALLOCEXTSPEC NEDMALLOCNOALIASATTR void nedsetvalue(void *v) THROWSPEC;
-
-NEDMALLOCEXTSPEC NEDMALLOCNOALIASATTR NEDMALLOCPTRATTR void * nedmalloc(size_t size) THROWSPEC;
-NEDMALLOCEXTSPEC NEDMALLOCNOALIASATTR NEDMALLOCPTRATTR void * nedcalloc(size_t no, size_t size) THROWSPEC;
-NEDMALLOCEXTSPEC NEDMALLOCNOALIASATTR NEDMALLOCPTRATTR void * nedrealloc(void *mem, size_t size) THROWSPEC;
-NEDMALLOCEXTSPEC NEDMALLOCNOALIASATTR void nedfree(void *mem) THROWSPEC;
-NEDMALLOCEXTSPEC NEDMALLOCNOALIASATTR NEDMALLOCPTRATTR void * nedmemalign(size_t alignment, size_t bytes) THROWSPEC;
-NEDMALLOCEXTSPEC NEDMALLOCNOALIASATTR struct nedmallinfo nedmallinfo(void) THROWSPEC;
-NEDMALLOCEXTSPEC NEDMALLOCNOALIASATTR int nedmallopt(int parno, int value) THROWSPEC;
-NEDMALLOCEXTSPEC NEDMALLOCNOALIASATTR void* nedmalloc_internals(size_t *granularity, size_t *magic) THROWSPEC;
-NEDMALLOCEXTSPEC NEDMALLOCNOALIASATTR int nedmalloc_trim(size_t pad) THROWSPEC;
-NEDMALLOCEXTSPEC void nedmalloc_stats(void) THROWSPEC;
-NEDMALLOCEXTSPEC NEDMALLOCNOALIASATTR size_t nedmalloc_footprint(void) THROWSPEC;
-NEDMALLOCEXTSPEC NEDMALLOCNOALIASATTR NEDMALLOCPTRATTR void **nedindependent_calloc(size_t elemsno, size_t elemsize, void **chunks) THROWSPEC;
-NEDMALLOCEXTSPEC NEDMALLOCNOALIASATTR NEDMALLOCPTRATTR void **nedindependent_comalloc(size_t elems, size_t *sizes, void **chunks) THROWSPEC;
-
-/* Destroys the system memory pool used by the functions above.
-Useful for when you have nedmalloc in a DLL you're about to unload.
-If you call ANY nedmalloc functions after calling this you will
-get a fatal exception!
-*/
-NEDMALLOCEXTSPEC void neddestroysyspool() THROWSPEC;
-
-/* These are the pool functions */
-struct nedpool_t;
-typedef struct nedpool_t nedpool;
-
-/* Creates a memory pool for use with the nedp* functions below.
-Capacity is how much to allocate immediately (if you know you'll be allocating a lot
-of memory very soon) which you can leave at zero. Threads specifies how many threads
-will *normally* be accessing the pool concurrently. Setting this to zero means it
-extends on demand, but be careful of this as it can rapidly consume system resources
-where bursts of concurrent threads use a pool at once.
-*/
-NEDMALLOCEXTSPEC NEDMALLOCPTRATTR nedpool *nedcreatepool(size_t capacity, int threads) THROWSPEC;
-
-/* Destroys a memory pool previously created by nedcreatepool().
-*/
-NEDMALLOCEXTSPEC void neddestroypool(nedpool *p) THROWSPEC;
-
-/* Returns a zero terminated snapshot of threadpools existing at the time of call. Call
-nedfree() on the returned list when you are done. Returns zero if there is only the
-system pool in existence.
-*/
-NEDMALLOCEXTSPEC nedpool **nedpoollist() THROWSPEC;
-
-/* Sets a value to be associated with a pool. You can retrieve this value by passing
-any memory block allocated from that pool.
-*/
-NEDMALLOCEXTSPEC void nedpsetvalue(nedpool *p, void *v) THROWSPEC;
-
-/* Gets a previously set value using nedpsetvalue() or zero if memory is unknown.
-Optionally can also retrieve pool. You can detect an unknown block by the return
-being zero and *p being unmodifed.
-*/
-NEDMALLOCEXTSPEC void *nedgetvalue(nedpool **p, void *mem) THROWSPEC;
-
-/* Trims the thread cache for the calling thread, returning any existing cache
-data to the central pool. Remember to ALWAYS call with zero if you used the
-system pool. Setting disable to non-zero replicates neddisablethreadcache().
-*/
-NEDMALLOCEXTSPEC void nedtrimthreadcache(nedpool *p, int disable) THROWSPEC;
-
-/* Disables the thread cache for the calling thread, returning any existing cache
-data to the central pool. Remember to ALWAYS call with zero if you used the
-system pool.
-*/
-NEDMALLOCEXTSPEC void neddisablethreadcache(nedpool *p) THROWSPEC;
-
-
-NEDMALLOCEXTSPEC NEDMALLOCPTRATTR void * nedpmalloc(nedpool *p, size_t size) THROWSPEC;
-NEDMALLOCEXTSPEC NEDMALLOCPTRATTR void * nedpcalloc(nedpool *p, size_t no, size_t size) THROWSPEC;
-NEDMALLOCEXTSPEC NEDMALLOCPTRATTR void * nedprealloc(nedpool *p, void *mem, size_t size) THROWSPEC;
-NEDMALLOCEXTSPEC void nedpfree(nedpool *p, void *mem) THROWSPEC;
-NEDMALLOCEXTSPEC NEDMALLOCPTRATTR void * nedpmemalign(nedpool *p, size_t alignment, size_t bytes) THROWSPEC;
-NEDMALLOCEXTSPEC struct nedmallinfo nedpmallinfo(nedpool *p) THROWSPEC;
-NEDMALLOCEXTSPEC int nedpmallopt(nedpool *p, int parno, int value) THROWSPEC;
-NEDMALLOCEXTSPEC int nedpmalloc_trim(nedpool *p, size_t pad) THROWSPEC;
-NEDMALLOCEXTSPEC void nedpmalloc_stats(nedpool *p) THROWSPEC;
-NEDMALLOCEXTSPEC size_t nedpmalloc_footprint(nedpool *p) THROWSPEC;
-NEDMALLOCEXTSPEC NEDMALLOCPTRATTR void **nedpindependent_calloc(nedpool *p, size_t elemsno, size_t elemsize, void **chunks) THROWSPEC;
-NEDMALLOCEXTSPEC NEDMALLOCPTRATTR void **nedpindependent_comalloc(nedpool *p, size_t elems, size_t *sizes, void **chunks) THROWSPEC;
-
-#if defined(__cplusplus)
-}
-#endif
-
-#endif
-
-#endif
+#ifdef NEDMALLOC_ENABLED
+
+/* nedalloc, an alternative malloc implementation for multiple threads without
+lock contention based on dlmalloc v2.8.3. (C) 2005-2009 Niall Douglas
+
+Boost Software License - Version 1.0 - August 17th, 2003
+
+Permission is hereby granted, free of charge, to any person or organization
+obtaining a copy of the software and accompanying documentation covered by
+this license (the "Software") to use, reproduce, display, distribute,
+execute, and transmit the Software, and to prepare derivative works of the
+Software, and to permit third-parties to whom the Software is furnished to
+do so, all subject to the following:
+
+The copyright notices in the Software and this entire statement, including
+the above license grant, this restriction and the following disclaimer,
+must be included in all copies of the Software, in whole or in part, and
+all derivative works of the Software, unless such copies or derivative
+works are solely in the form of machine-executable object code generated by
+a source language processor.
+
+THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT
+SHALL THE COPYRIGHT HOLDERS OR ANYONE DISTRIBUTING THE SOFTWARE BE LIABLE
+FOR ANY DAMAGES OR OTHER LIABILITY, WHETHER IN CONTRACT, TORT OR OTHERWISE,
+ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
+DEALINGS IN THE SOFTWARE.
+*/
+
+#ifndef NEDMALLOC_H
+#define NEDMALLOC_H
+
+#include "typedefs.h"
+#define MALLOC_ALIGNMENT DEFAULT_ALIGNMENT
+
+#ifdef PSP_ENABLED
+#define USE_LOCKS 0
+#define HAVE_MMAP 0
+#endif
+
+/* See malloc.c.h for what each function does.
+
+REPLACE_SYSTEM_ALLOCATOR on POSIX causes nedalloc's functions to be called
+malloc, free etc. instead of nedmalloc, nedfree etc. You may or may not want
+this. On Windows it causes nedmalloc to patch all loaded DLLs and binaries
+to replace usage of the system allocator.
+
+NO_NED_NAMESPACE prevents the functions from being defined in the nedalloc
+namespace when in C++ (uses the global namespace instead).
+
+NEDMALLOCEXTSPEC can be defined to be __declspec(dllexport) or
+__attribute__ ((visibility("default"))) or whatever you like. It defaults
+to extern unless NEDMALLOC_DLL_EXPORTS is set as it would be when building
+nedmalloc.dll.
+
+USE_LOCKS can be 2 if you want to define your own MLOCK_T, INITIAL_LOCK,
+ACQUIRE_LOCK, RELEASE_LOCK, TRY_LOCK, IS_LOCKED and NULL_LOCK_INITIALIZER.
+
+NEDMALLOC_DEBUG can be defined to cause DEBUG to be set differently for nedmalloc
+than for the rest of the build. Remember to set NDEBUG to disable all assertion
+checking too.
+
+USE_MAGIC_HEADERS causes nedalloc to allocate an extra three sizeof(size_t)
+to each block. nedpfree() and nedprealloc() can then automagically know when
+to free a system allocated block. Enabling this typically adds 20-50% to
+application memory usage.
+
+ENABLE_TOLERANT_NEDMALLOC is automatically turned on if REPLACE_SYSTEM_ALLOCATOR
+is set or the Windows DLL is being built. This causes nedmalloc to detect when a
+system allocator block is passed to it and to handle it appropriately. Note that
+without USE_MAGIC_HEADERS there is a very tiny chance that nedmalloc will segfault
+on non-Windows builds (it uses Win32 SEH to trap segfaults on Windows and there
+is no comparable system on POSIX).
+
+USE_ALLOCATOR can be one of these settings (it defaults to 1):
+ 0: System allocator (nedmalloc now simply acts as a threadcache).
+ WARNING: Intended for DEBUG USE ONLY - not all functions work correctly.
+ 1: dlmalloc
+
+ENABLE_LARGE_PAGES enables support for requesting memory from the system in large
+(typically >=2Mb) pages if the host OS supports this. These occupy just a single
+TLB entry and can significantly improve performance in large working set applications.
+
+ENABLE_FAST_HEAP_DETECTION enables special logic to detect blocks allocated
+by the system heap. This avoids 1.5%-2% overhead when checking for non-nedmalloc
+blocks, but it assumes that the NT and glibc heaps function in a very specific
+fashion which may not hold true across OS upgrades.
+*/
+
+#include <stddef.h> /* for size_t */
+
+#ifndef NEDMALLOCEXTSPEC
+ #ifdef NEDMALLOC_DLL_EXPORTS
+ #ifdef WIN32
+ #define NEDMALLOCEXTSPEC extern __declspec(dllexport)
+ #elif defined(__GNUC__)
+ #define NEDMALLOCEXTSPEC extern __attribute__ ((visibility("default")))
+ #endif
+ #ifndef ENABLE_TOLERANT_NEDMALLOC
+ #define ENABLE_TOLERANT_NEDMALLOC 1
+ #endif
+ #else
+ #define NEDMALLOCEXTSPEC extern
+ #endif
+#endif
+
+#if __STDC_VERSION__ >= 199901L /* C99 or better */
+ #define RESTRICT restrict
+#else
+ #if defined(_MSC_VER) && _MSC_VER>=1400
+ #define RESTRICT __restrict
+ #endif
+ #ifdef __GNUC__
+ #define RESTRICT __restrict
+ #endif
+#endif
+#ifndef RESTRICT
+ #define RESTRICT
+#endif
+
+#if defined(_MSC_VER) && _MSC_VER>=1400
+ #define NEDMALLOCPTRATTR __declspec(restrict)
+ #define NEDMALLOCNOALIASATTR __declspec(noalias)
+#endif
+#ifdef __GNUC__
+ #define NEDMALLOCPTRATTR __attribute__ ((malloc))
+#endif
+#ifndef NEDMALLOCPTRATTR
+ #define NEDMALLOCPTRATTR
+#endif
+#ifndef NEDMALLOCNOALIASATTR
+ #define NEDMALLOCNOALIASATTR
+#endif
+
+#ifndef USE_MAGIC_HEADERS
+ #define USE_MAGIC_HEADERS 0
+#endif
+
+#ifndef USE_ALLOCATOR
+ #define USE_ALLOCATOR 1 /* dlmalloc */
+#endif
+
+#if !USE_ALLOCATOR && !USE_MAGIC_HEADERS
+#error If you are using the system allocator then you MUST use magic headers
+#endif
+
+#ifdef REPLACE_SYSTEM_ALLOCATOR
+ #if USE_ALLOCATOR==0
+ #error Cannot combine using the system allocator with replacing the system allocator
+ #endif
+ #ifndef ENABLE_TOLERANT_NEDMALLOC
+ #define ENABLE_TOLERANT_NEDMALLOC 1
+ #endif
+ #ifndef WIN32 /* We have a dedicated patcher for Windows */
+ #define nedmalloc malloc
+ #define nedcalloc calloc
+ #define nedrealloc realloc
+ #define nedfree free
+ #define nedmemalign memalign
+ #define nedmallinfo mallinfo
+ #define nedmallopt mallopt
+ #define nedmalloc_trim malloc_trim
+ #define nedmalloc_stats malloc_stats
+ #define nedmalloc_footprint malloc_footprint
+ #define nedindependent_calloc independent_calloc
+ #define nedindependent_comalloc independent_comalloc
+ #ifdef _MSC_VER
+ #define nedblksize _msize
+ #endif
+ #endif
+#endif
+
+#if defined(__cplusplus)
+extern "C" {
+#endif
+struct nedmallinfo {
+ size_t arena; /* non-mmapped space allocated from system */
+ size_t ordblks; /* number of free chunks */
+ size_t smblks; /* always 0 */
+ size_t hblks; /* always 0 */
+ size_t hblkhd; /* space in mmapped regions */
+ size_t usmblks; /* maximum total allocated space */
+ size_t fsmblks; /* always 0 */
+ size_t uordblks; /* total allocated space */
+ size_t fordblks; /* total free space */
+ size_t keepcost; /* releasable (via malloc_trim) space */
+};
+#if defined(__cplusplus)
+}
+#endif
+
+#if defined(__cplusplus)
+ #if !defined(NO_NED_NAMESPACE)
+namespace nedalloc {
+ #else
+extern "C" {
+ #endif
+ #define THROWSPEC throw()
+#else
+ #define THROWSPEC
+#endif
+
+/* These are the global functions */
+
+/* Gets the usable size of an allocated block. Note this will always be bigger than what was
+asked for due to rounding etc. Optionally returns 1 in isforeign if the block came from the
+system allocator - note that there is a small (>0.01%) but real chance of segfault on non-Windows
+systems when passing non-nedmalloc blocks if you don't use USE_MAGIC_HEADERS.
+*/
+NEDMALLOCEXTSPEC NEDMALLOCNOALIASATTR size_t nedblksize(int *RESTRICT isforeign, void *RESTRICT mem) THROWSPEC;
+
+NEDMALLOCEXTSPEC NEDMALLOCNOALIASATTR void nedsetvalue(void *v) THROWSPEC;
+
+NEDMALLOCEXTSPEC NEDMALLOCNOALIASATTR NEDMALLOCPTRATTR void * nedmalloc(size_t size) THROWSPEC;
+NEDMALLOCEXTSPEC NEDMALLOCNOALIASATTR NEDMALLOCPTRATTR void * nedcalloc(size_t no, size_t size) THROWSPEC;
+NEDMALLOCEXTSPEC NEDMALLOCNOALIASATTR NEDMALLOCPTRATTR void * nedrealloc(void *mem, size_t size) THROWSPEC;
+NEDMALLOCEXTSPEC NEDMALLOCNOALIASATTR void nedfree(void *mem) THROWSPEC;
+NEDMALLOCEXTSPEC NEDMALLOCNOALIASATTR NEDMALLOCPTRATTR void * nedmemalign(size_t alignment, size_t bytes) THROWSPEC;
+NEDMALLOCEXTSPEC NEDMALLOCNOALIASATTR struct nedmallinfo nedmallinfo(void) THROWSPEC;
+NEDMALLOCEXTSPEC NEDMALLOCNOALIASATTR int nedmallopt(int parno, int value) THROWSPEC;
+NEDMALLOCEXTSPEC NEDMALLOCNOALIASATTR void* nedmalloc_internals(size_t *granularity, size_t *magic) THROWSPEC;
+NEDMALLOCEXTSPEC NEDMALLOCNOALIASATTR int nedmalloc_trim(size_t pad) THROWSPEC;
+NEDMALLOCEXTSPEC void nedmalloc_stats(void) THROWSPEC;
+NEDMALLOCEXTSPEC NEDMALLOCNOALIASATTR size_t nedmalloc_footprint(void) THROWSPEC;
+NEDMALLOCEXTSPEC NEDMALLOCNOALIASATTR NEDMALLOCPTRATTR void **nedindependent_calloc(size_t elemsno, size_t elemsize, void **chunks) THROWSPEC;
+NEDMALLOCEXTSPEC NEDMALLOCNOALIASATTR NEDMALLOCPTRATTR void **nedindependent_comalloc(size_t elems, size_t *sizes, void **chunks) THROWSPEC;
+
+/* Destroys the system memory pool used by the functions above.
+Useful for when you have nedmalloc in a DLL you're about to unload.
+If you call ANY nedmalloc functions after calling this you will
+get a fatal exception!
+*/
+NEDMALLOCEXTSPEC void neddestroysyspool() THROWSPEC;
+
+/* These are the pool functions */
+struct nedpool_t;
+typedef struct nedpool_t nedpool;
+
+/* Creates a memory pool for use with the nedp* functions below.
+Capacity is how much to allocate immediately (if you know you'll be allocating a lot
+of memory very soon) which you can leave at zero. Threads specifies how many threads
+will *normally* be accessing the pool concurrently. Setting this to zero means it
+extends on demand, but be careful of this as it can rapidly consume system resources
+where bursts of concurrent threads use a pool at once.
+*/
+NEDMALLOCEXTSPEC NEDMALLOCPTRATTR nedpool *nedcreatepool(size_t capacity, int threads) THROWSPEC;
+
+/* Destroys a memory pool previously created by nedcreatepool().
+*/
+NEDMALLOCEXTSPEC void neddestroypool(nedpool *p) THROWSPEC;
+
+/* Returns a zero terminated snapshot of threadpools existing at the time of call. Call
+nedfree() on the returned list when you are done. Returns zero if there is only the
+system pool in existence.
+*/
+NEDMALLOCEXTSPEC nedpool **nedpoollist() THROWSPEC;
+
+/* Sets a value to be associated with a pool. You can retrieve this value by passing
+any memory block allocated from that pool.
+*/
+NEDMALLOCEXTSPEC void nedpsetvalue(nedpool *p, void *v) THROWSPEC;
+
+/* Gets a previously set value using nedpsetvalue() or zero if memory is unknown.
+Optionally can also retrieve pool. You can detect an unknown block by the return
+being zero and *p being unmodifed.
+*/
+NEDMALLOCEXTSPEC void *nedgetvalue(nedpool **p, void *mem) THROWSPEC;
+
+/* Trims the thread cache for the calling thread, returning any existing cache
+data to the central pool. Remember to ALWAYS call with zero if you used the
+system pool. Setting disable to non-zero replicates neddisablethreadcache().
+*/
+NEDMALLOCEXTSPEC void nedtrimthreadcache(nedpool *p, int disable) THROWSPEC;
+
+/* Disables the thread cache for the calling thread, returning any existing cache
+data to the central pool. Remember to ALWAYS call with zero if you used the
+system pool.
+*/
+NEDMALLOCEXTSPEC void neddisablethreadcache(nedpool *p) THROWSPEC;
+
+
+NEDMALLOCEXTSPEC NEDMALLOCPTRATTR void * nedpmalloc(nedpool *p, size_t size) THROWSPEC;
+NEDMALLOCEXTSPEC NEDMALLOCPTRATTR void * nedpcalloc(nedpool *p, size_t no, size_t size) THROWSPEC;
+NEDMALLOCEXTSPEC NEDMALLOCPTRATTR void * nedprealloc(nedpool *p, void *mem, size_t size) THROWSPEC;
+NEDMALLOCEXTSPEC void nedpfree(nedpool *p, void *mem) THROWSPEC;
+NEDMALLOCEXTSPEC NEDMALLOCPTRATTR void * nedpmemalign(nedpool *p, size_t alignment, size_t bytes) THROWSPEC;
+NEDMALLOCEXTSPEC struct nedmallinfo nedpmallinfo(nedpool *p) THROWSPEC;
+NEDMALLOCEXTSPEC int nedpmallopt(nedpool *p, int parno, int value) THROWSPEC;
+NEDMALLOCEXTSPEC int nedpmalloc_trim(nedpool *p, size_t pad) THROWSPEC;
+NEDMALLOCEXTSPEC void nedpmalloc_stats(nedpool *p) THROWSPEC;
+NEDMALLOCEXTSPEC size_t nedpmalloc_footprint(nedpool *p) THROWSPEC;
+NEDMALLOCEXTSPEC NEDMALLOCPTRATTR void **nedpindependent_calloc(nedpool *p, size_t elemsno, size_t elemsize, void **chunks) THROWSPEC;
+NEDMALLOCEXTSPEC NEDMALLOCPTRATTR void **nedpindependent_comalloc(nedpool *p, size_t elems, size_t *sizes, void **chunks) THROWSPEC;
+
+#if defined(__cplusplus)
+}
+#endif
+
+#endif
+
+#endif
diff --git a/drivers/openssl/register_openssl.cpp b/drivers/openssl/register_openssl.cpp
index a4a60813b6..ed2150bef5 100644
--- a/drivers/openssl/register_openssl.cpp
+++ b/drivers/openssl/register_openssl.cpp
@@ -1,19 +1,19 @@
-#include "register_openssl.h"
-
-#include "stream_peer_openssl.h"
-#ifdef OPENSSL_ENABLED
-
-void register_openssl() {
-
- ObjectTypeDB::register_type<StreamPeerOpenSSL>();
- StreamPeerOpenSSL::initialize_ssl();
-
-}
-
-void unregister_openssl() {
-
- StreamPeerOpenSSL::finalize_ssl();
-
-}
-#endif
-
+#include "register_openssl.h"
+
+#include "stream_peer_openssl.h"
+#ifdef OPENSSL_ENABLED
+
+void register_openssl() {
+
+ ObjectTypeDB::register_type<StreamPeerOpenSSL>();
+ StreamPeerOpenSSL::initialize_ssl();
+
+}
+
+void unregister_openssl() {
+
+ StreamPeerOpenSSL::finalize_ssl();
+
+}
+#endif
+
diff --git a/drivers/openssl/register_openssl.h b/drivers/openssl/register_openssl.h
index e1c554ca4a..e547a2b750 100644
--- a/drivers/openssl/register_openssl.h
+++ b/drivers/openssl/register_openssl.h
@@ -1,11 +1,11 @@
-#ifndef REGISTER_OPENSSL_H
-#define REGISTER_OPENSSL_H
-
-#ifdef OPENSSL_ENABLED
-
-void register_openssl();
-void unregister_openssl();
-
-#endif
-
-#endif // REGISTER_OPENSSL_H
+#ifndef REGISTER_OPENSSL_H
+#define REGISTER_OPENSSL_H
+
+#ifdef OPENSSL_ENABLED
+
+void register_openssl();
+void unregister_openssl();
+
+#endif
+
+#endif // REGISTER_OPENSSL_H
diff --git a/drivers/rtaudio/RtAudio.cpp b/drivers/rtaudio/RtAudio.cpp
index 8876f72e21..72ca836907 100644
--- a/drivers/rtaudio/RtAudio.cpp
+++ b/drivers/rtaudio/RtAudio.cpp
@@ -1,10234 +1,10234 @@
-#ifdef RTAUDIO_ENABLED
-/************************************************************************/
-/*! \class RtAudio
- \brief Realtime audio i/o C++ classes.
-
- RtAudio provides a common API (Application Programming Interface)
- for realtime audio input/output across Linux (native ALSA, Jack,
- and OSS), Macintosh OS X (CoreAudio and Jack), and Windows
- (DirectSound, ASIO and WASAPI) operating systems.
-
- RtAudio WWW site: http://www.music.mcgill.ca/~gary/rtaudio/
-
- RtAudio: realtime audio i/o C++ classes
- Copyright (c) 2001-2014 Gary P. Scavone
-
- Permission is hereby granted, free of charge, to any person
- obtaining a copy of this software and associated documentation files
- (the "Software"), to deal in the Software without restriction,
- including without limitation the rights to use, copy, modify, merge,
- publish, distribute, sublicense, and/or sell copies of the Software,
- and to permit persons to whom the Software is furnished to do so,
- subject to the following conditions:
-
- The above copyright notice and this permission notice shall be
- included in all copies or substantial portions of the Software.
-
- Any person wishing to distribute modifications to the Software is
- asked to send the modifications to the original developer so that
- they can be incorporated into the canonical version. This is,
- however, not a binding provision of this license.
-
- THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
- EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
- MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
- IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR
- ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF
- CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
- WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
-*/
-/************************************************************************/
-
-// RtAudio: Version 4.1.1
-
-#include "RtAudio.h"
-#include <iostream>
-#include <cstdlib>
-#include <cstring>
-#include <climits>
-#include <algorithm>
-
-// Static variable definitions.
-const unsigned int RtApi::MAX_SAMPLE_RATES = 14;
-const unsigned int RtApi::SAMPLE_RATES[] = {
- 4000, 5512, 8000, 9600, 11025, 16000, 22050,
- 32000, 44100, 48000, 88200, 96000, 176400, 192000
-};
-
-#if defined(__WINDOWS_DS__) || defined(__WINDOWS_ASIO__) || defined(__WINDOWS_WASAPI__)
-#ifdef WINRT_ENABLED
- #define MUTEX_INITIALIZE(A) InitializeCriticalSectionEx(A, 0, 0)
-#else
- #define MUTEX_INITIALIZE(A) InitializeCriticalSection(A)
-#endif
- #define MUTEX_DESTROY(A) DeleteCriticalSection(A)
- #define MUTEX_LOCK(A) EnterCriticalSection(A)
- #define MUTEX_UNLOCK(A) LeaveCriticalSection(A)
-
- #include "tchar.h"
-
- static std::string convertCharPointerToStdString(const char *text)
- {
- return std::string(text);
- }
-
- static std::string convertCharPointerToStdString(const wchar_t *text)
- {
- int length = WideCharToMultiByte(CP_UTF8, 0, text, -1, NULL, 0, NULL, NULL);
- std::string s( length-1, '\0' );
- WideCharToMultiByte(CP_UTF8, 0, text, -1, &s[0], length, NULL, NULL);
- return s;
- }
-
-#elif defined(__LINUX_ALSA__) || defined(__LINUX_PULSE__) || defined(__UNIX_JACK__) || defined(__LINUX_OSS__) || defined(__MACOSX_CORE__)
- // pthread API
- #define MUTEX_INITIALIZE(A) pthread_mutex_init(A, NULL)
- #define MUTEX_DESTROY(A) pthread_mutex_destroy(A)
- #define MUTEX_LOCK(A) pthread_mutex_lock(A)
- #define MUTEX_UNLOCK(A) pthread_mutex_unlock(A)
-#else
- #define MUTEX_INITIALIZE(A) abs(*A) // dummy definitions
- #define MUTEX_DESTROY(A) abs(*A) // dummy definitions
-#endif
-
-// *************************************************** //
-//
-// RtAudio definitions.
-//
-// *************************************************** //
-
-std::string RtAudio :: getVersion( void ) throw()
-{
- return RTAUDIO_VERSION;
-}
-
-void RtAudio :: getCompiledApi( std::vector<RtAudio::Api> &apis ) throw()
-{
- apis.clear();
-
- // The order here will control the order of RtAudio's API search in
- // the constructor.
-#if defined(__UNIX_JACK__)
- apis.push_back( UNIX_JACK );
-#endif
-#if defined(__LINUX_ALSA__)
- apis.push_back( LINUX_ALSA );
-#endif
-#if defined(__LINUX_PULSE__)
- apis.push_back( LINUX_PULSE );
-#endif
-#if defined(__LINUX_OSS__)
- apis.push_back( LINUX_OSS );
-#endif
-#if defined(__WINDOWS_ASIO__)
- apis.push_back( WINDOWS_ASIO );
-#endif
-#if defined(__WINDOWS_WASAPI__)
- apis.push_back( WINDOWS_WASAPI );
-#endif
-#if defined(__WINDOWS_DS__)
- apis.push_back( WINDOWS_DS );
-#endif
-#if defined(__MACOSX_CORE__)
- apis.push_back( MACOSX_CORE );
-#endif
-#if defined(__RTAUDIO_DUMMY__)
- apis.push_back( RTAUDIO_DUMMY );
-#endif
-}
-
-void RtAudio :: openRtApi( RtAudio::Api api )
-{
- if ( rtapi_ )
- delete rtapi_;
- rtapi_ = 0;
-
-#if defined(__UNIX_JACK__)
- if ( api == UNIX_JACK )
- rtapi_ = new RtApiJack();
-#endif
-#if defined(__LINUX_ALSA__)
- if ( api == LINUX_ALSA )
- rtapi_ = new RtApiAlsa();
-#endif
-#if defined(__LINUX_PULSE__)
- if ( api == LINUX_PULSE )
- rtapi_ = new RtApiPulse();
-#endif
-#if defined(__LINUX_OSS__)
- if ( api == LINUX_OSS )
- rtapi_ = new RtApiOss();
-#endif
-#if defined(__WINDOWS_ASIO__)
- if ( api == WINDOWS_ASIO )
- rtapi_ = new RtApiAsio();
-#endif
-#if defined(__WINDOWS_WASAPI__)
- if ( api == WINDOWS_WASAPI )
- rtapi_ = new RtApiWasapi();
-#endif
-#if defined(__WINDOWS_DS__)
- if ( api == WINDOWS_DS )
- rtapi_ = new RtApiDs();
-#endif
-#if defined(__MACOSX_CORE__)
- if ( api == MACOSX_CORE )
- rtapi_ = new RtApiCore();
-#endif
-#if defined(__RTAUDIO_DUMMY__)
- if ( api == RTAUDIO_DUMMY )
- rtapi_ = new RtApiDummy();
-#endif
-}
-
-RtAudio :: RtAudio( RtAudio::Api api )
-{
- rtapi_ = 0;
-
- if ( api != UNSPECIFIED ) {
- // Attempt to open the specified API.
- openRtApi( api );
- if ( rtapi_ ) return;
-
- // No compiled support for specified API value. Issue a debug
- // warning and continue as if no API was specified.
- std::cerr << "\nRtAudio: no compiled support for specified API argument!\n" << std::endl;
- }
-
- // Iterate through the compiled APIs and return as soon as we find
- // one with at least one device or we reach the end of the list.
- std::vector< RtAudio::Api > apis;
- getCompiledApi( apis );
- for ( unsigned int i=0; i<apis.size(); i++ ) {
- openRtApi( apis[i] );
- if ( rtapi_ && rtapi_->getDeviceCount() ) break;
- }
-
- if ( rtapi_ ) return;
-
- // It should not be possible to get here because the preprocessor
- // definition __RTAUDIO_DUMMY__ is automatically defined if no
- // API-specific definitions are passed to the compiler. But just in
- // case something weird happens, we'll thow an error.
- std::string errorText = "\nRtAudio: no compiled API support found ... critical error!!\n\n";
- throw( RtAudioError( errorText, RtAudioError::UNSPECIFIED ) );
-}
-
-RtAudio :: ~RtAudio() throw()
-{
- if ( rtapi_ )
- delete rtapi_;
-}
-
-void RtAudio :: openStream( RtAudio::StreamParameters *outputParameters,
- RtAudio::StreamParameters *inputParameters,
- RtAudioFormat format, unsigned int sampleRate,
- unsigned int *bufferFrames,
- RtAudioCallback callback, void *userData,
- RtAudio::StreamOptions *options,
- RtAudioErrorCallback errorCallback )
-{
- return rtapi_->openStream( outputParameters, inputParameters, format,
- sampleRate, bufferFrames, callback,
- userData, options, errorCallback );
-}
-
-// *************************************************** //
-//
-// Public RtApi definitions (see end of file for
-// private or protected utility functions).
-//
-// *************************************************** //
-
-RtApi :: RtApi()
-{
- stream_.state = STREAM_CLOSED;
- stream_.mode = UNINITIALIZED;
- stream_.apiHandle = 0;
- stream_.userBuffer[0] = 0;
- stream_.userBuffer[1] = 0;
- MUTEX_INITIALIZE( &stream_.mutex );
- showWarnings_ = true;
- firstErrorOccurred_ = false;
-}
-
-RtApi :: ~RtApi()
-{
- MUTEX_DESTROY( &stream_.mutex );
-}
-
-void RtApi :: openStream( RtAudio::StreamParameters *oParams,
- RtAudio::StreamParameters *iParams,
- RtAudioFormat format, unsigned int sampleRate,
- unsigned int *bufferFrames,
- RtAudioCallback callback, void *userData,
- RtAudio::StreamOptions *options,
- RtAudioErrorCallback errorCallback )
-{
- if ( stream_.state != STREAM_CLOSED ) {
- errorText_ = "RtApi::openStream: a stream is already open!";
- error( RtAudioError::INVALID_USE );
- return;
- }
-
- // Clear stream information potentially left from a previously open stream.
- clearStreamInfo();
-
- if ( oParams && oParams->nChannels < 1 ) {
- errorText_ = "RtApi::openStream: a non-NULL output StreamParameters structure cannot have an nChannels value less than one.";
- error( RtAudioError::INVALID_USE );
- return;
- }
-
- if ( iParams && iParams->nChannels < 1 ) {
- errorText_ = "RtApi::openStream: a non-NULL input StreamParameters structure cannot have an nChannels value less than one.";
- error( RtAudioError::INVALID_USE );
- return;
- }
-
- if ( oParams == NULL && iParams == NULL ) {
- errorText_ = "RtApi::openStream: input and output StreamParameters structures are both NULL!";
- error( RtAudioError::INVALID_USE );
- return;
- }
-
- if ( formatBytes(format) == 0 ) {
- errorText_ = "RtApi::openStream: 'format' parameter value is undefined.";
- error( RtAudioError::INVALID_USE );
- return;
- }
-
- unsigned int nDevices = getDeviceCount();
- unsigned int oChannels = 0;
- if ( oParams ) {
- oChannels = oParams->nChannels;
- if ( oParams->deviceId >= nDevices ) {
- errorText_ = "RtApi::openStream: output device parameter value is invalid.";
- error( RtAudioError::INVALID_USE );
- return;
- }
- }
-
- unsigned int iChannels = 0;
- if ( iParams ) {
- iChannels = iParams->nChannels;
- if ( iParams->deviceId >= nDevices ) {
- errorText_ = "RtApi::openStream: input device parameter value is invalid.";
- error( RtAudioError::INVALID_USE );
- return;
- }
- }
-
- bool result;
-
- if ( oChannels > 0 ) {
-
- result = probeDeviceOpen( oParams->deviceId, OUTPUT, oChannels, oParams->firstChannel,
- sampleRate, format, bufferFrames, options );
- if ( result == false ) {
- error( RtAudioError::SYSTEM_ERROR );
- return;
- }
- }
-
- if ( iChannels > 0 ) {
-
- result = probeDeviceOpen( iParams->deviceId, INPUT, iChannels, iParams->firstChannel,
- sampleRate, format, bufferFrames, options );
- if ( result == false ) {
- if ( oChannels > 0 ) closeStream();
- error( RtAudioError::SYSTEM_ERROR );
- return;
- }
- }
-
- stream_.callbackInfo.callback = (void *) callback;
- stream_.callbackInfo.userData = userData;
- stream_.callbackInfo.errorCallback = (void *) errorCallback;
-
- if ( options ) options->numberOfBuffers = stream_.nBuffers;
- stream_.state = STREAM_STOPPED;
-}
-
-unsigned int RtApi :: getDefaultInputDevice( void )
-{
- // Should be implemented in subclasses if possible.
- return 0;
-}
-
-unsigned int RtApi :: getDefaultOutputDevice( void )
-{
- // Should be implemented in subclasses if possible.
- return 0;
-}
-
-void RtApi :: closeStream( void )
-{
- // MUST be implemented in subclasses!
- return;
-}
-
-bool RtApi :: probeDeviceOpen( unsigned int /*device*/, StreamMode /*mode*/, unsigned int /*channels*/,
- unsigned int /*firstChannel*/, unsigned int /*sampleRate*/,
- RtAudioFormat /*format*/, unsigned int * /*bufferSize*/,
- RtAudio::StreamOptions * /*options*/ )
-{
- // MUST be implemented in subclasses!
- return FAILURE;
-}
-
-void RtApi :: tickStreamTime( void )
-{
- // Subclasses that do not provide their own implementation of
- // getStreamTime should call this function once per buffer I/O to
- // provide basic stream time support.
-
- stream_.streamTime += ( stream_.bufferSize * 1.0 / stream_.sampleRate );
-
-#if defined( HAVE_GETTIMEOFDAY )
- gettimeofday( &stream_.lastTickTimestamp, NULL );
-#endif
-}
-
-long RtApi :: getStreamLatency( void )
-{
- verifyStream();
-
- long totalLatency = 0;
- if ( stream_.mode == OUTPUT || stream_.mode == DUPLEX )
- totalLatency = stream_.latency[0];
- if ( stream_.mode == INPUT || stream_.mode == DUPLEX )
- totalLatency += stream_.latency[1];
-
- return totalLatency;
-}
-
-double RtApi :: getStreamTime( void )
-{
- verifyStream();
-
-#if defined( HAVE_GETTIMEOFDAY )
- // Return a very accurate estimate of the stream time by
- // adding in the elapsed time since the last tick.
- struct timeval then;
- struct timeval now;
-
- if ( stream_.state != STREAM_RUNNING || stream_.streamTime == 0.0 )
- return stream_.streamTime;
-
- gettimeofday( &now, NULL );
- then = stream_.lastTickTimestamp;
- return stream_.streamTime +
- ((now.tv_sec + 0.000001 * now.tv_usec) -
- (then.tv_sec + 0.000001 * then.tv_usec));
-#else
- return stream_.streamTime;
-#endif
-}
-
-void RtApi :: setStreamTime( double time )
-{
- verifyStream();
-
- if ( time >= 0.0 )
- stream_.streamTime = time;
-}
-
-unsigned int RtApi :: getStreamSampleRate( void )
-{
- verifyStream();
-
- return stream_.sampleRate;
-}
-
-
-// *************************************************** //
-//
-// OS/API-specific methods.
-//
-// *************************************************** //
-
-#if defined(__MACOSX_CORE__)
-
-// The OS X CoreAudio API is designed to use a separate callback
-// procedure for each of its audio devices. A single RtAudio duplex
-// stream using two different devices is supported here, though it
-// cannot be guaranteed to always behave correctly because we cannot
-// synchronize these two callbacks.
-//
-// A property listener is installed for over/underrun information.
-// However, no functionality is currently provided to allow property
-// listeners to trigger user handlers because it is unclear what could
-// be done if a critical stream parameter (buffer size, sample rate,
-// device disconnect) notification arrived. The listeners entail
-// quite a bit of extra code and most likely, a user program wouldn't
-// be prepared for the result anyway. However, we do provide a flag
-// to the client callback function to inform of an over/underrun.
-
-// A structure to hold various information related to the CoreAudio API
-// implementation.
-struct CoreHandle {
- AudioDeviceID id[2]; // device ids
-#if defined( MAC_OS_X_VERSION_10_5 ) && ( MAC_OS_X_VERSION_MIN_REQUIRED >= MAC_OS_X_VERSION_10_5 )
- AudioDeviceIOProcID procId[2];
-#endif
- UInt32 iStream[2]; // device stream index (or first if using multiple)
- UInt32 nStreams[2]; // number of streams to use
- bool xrun[2];
- char *deviceBuffer;
- pthread_cond_t condition;
- int drainCounter; // Tracks callback counts when draining
- bool internalDrain; // Indicates if stop is initiated from callback or not.
-
- CoreHandle()
- :deviceBuffer(0), drainCounter(0), internalDrain(false) { nStreams[0] = 1; nStreams[1] = 1; id[0] = 0; id[1] = 0; xrun[0] = false; xrun[1] = false; }
-};
-
-RtApiCore:: RtApiCore()
-{
-#if defined( AVAILABLE_MAC_OS_X_VERSION_10_6_AND_LATER )
- // This is a largely undocumented but absolutely necessary
- // requirement starting with OS-X 10.6. If not called, queries and
- // updates to various audio device properties are not handled
- // correctly.
- CFRunLoopRef theRunLoop = NULL;
- AudioObjectPropertyAddress property = { kAudioHardwarePropertyRunLoop,
- kAudioObjectPropertyScopeGlobal,
- kAudioObjectPropertyElementMaster };
- OSStatus result = AudioObjectSetPropertyData( kAudioObjectSystemObject, &property, 0, NULL, sizeof(CFRunLoopRef), &theRunLoop);
- if ( result != noErr ) {
- errorText_ = "RtApiCore::RtApiCore: error setting run loop property!";
- error( RtAudioError::WARNING );
- }
-#endif
-}
-
-RtApiCore :: ~RtApiCore()
-{
- // The subclass destructor gets called before the base class
- // destructor, so close an existing stream before deallocating
- // apiDeviceId memory.
- if ( stream_.state != STREAM_CLOSED ) closeStream();
-}
-
-unsigned int RtApiCore :: getDeviceCount( void )
-{
- // Find out how many audio devices there are, if any.
- UInt32 dataSize;
- AudioObjectPropertyAddress propertyAddress = { kAudioHardwarePropertyDevices, kAudioObjectPropertyScopeGlobal, kAudioObjectPropertyElementMaster };
- OSStatus result = AudioObjectGetPropertyDataSize( kAudioObjectSystemObject, &propertyAddress, 0, NULL, &dataSize );
- if ( result != noErr ) {
- errorText_ = "RtApiCore::getDeviceCount: OS-X error getting device info!";
- error( RtAudioError::WARNING );
- return 0;
- }
-
- return dataSize / sizeof( AudioDeviceID );
-}
-
-unsigned int RtApiCore :: getDefaultInputDevice( void )
-{
- unsigned int nDevices = getDeviceCount();
- if ( nDevices <= 1 ) return 0;
-
- AudioDeviceID id;
- UInt32 dataSize = sizeof( AudioDeviceID );
- AudioObjectPropertyAddress property = { kAudioHardwarePropertyDefaultInputDevice, kAudioObjectPropertyScopeGlobal, kAudioObjectPropertyElementMaster };
- OSStatus result = AudioObjectGetPropertyData( kAudioObjectSystemObject, &property, 0, NULL, &dataSize, &id );
- if ( result != noErr ) {
- errorText_ = "RtApiCore::getDefaultInputDevice: OS-X system error getting device.";
- error( RtAudioError::WARNING );
- return 0;
- }
-
- dataSize *= nDevices;
- AudioDeviceID deviceList[ nDevices ];
- property.mSelector = kAudioHardwarePropertyDevices;
- result = AudioObjectGetPropertyData( kAudioObjectSystemObject, &property, 0, NULL, &dataSize, (void *) &deviceList );
- if ( result != noErr ) {
- errorText_ = "RtApiCore::getDefaultInputDevice: OS-X system error getting device IDs.";
- error( RtAudioError::WARNING );
- return 0;
- }
-
- for ( unsigned int i=0; i<nDevices; i++ )
- if ( id == deviceList[i] ) return i;
-
- errorText_ = "RtApiCore::getDefaultInputDevice: No default device found!";
- error( RtAudioError::WARNING );
- return 0;
-}
-
-unsigned int RtApiCore :: getDefaultOutputDevice( void )
-{
- unsigned int nDevices = getDeviceCount();
- if ( nDevices <= 1 ) return 0;
-
- AudioDeviceID id;
- UInt32 dataSize = sizeof( AudioDeviceID );
- AudioObjectPropertyAddress property = { kAudioHardwarePropertyDefaultOutputDevice, kAudioObjectPropertyScopeGlobal, kAudioObjectPropertyElementMaster };
- OSStatus result = AudioObjectGetPropertyData( kAudioObjectSystemObject, &property, 0, NULL, &dataSize, &id );
- if ( result != noErr ) {
- errorText_ = "RtApiCore::getDefaultOutputDevice: OS-X system error getting device.";
- error( RtAudioError::WARNING );
- return 0;
- }
-
- dataSize = sizeof( AudioDeviceID ) * nDevices;
- AudioDeviceID deviceList[ nDevices ];
- property.mSelector = kAudioHardwarePropertyDevices;
- result = AudioObjectGetPropertyData( kAudioObjectSystemObject, &property, 0, NULL, &dataSize, (void *) &deviceList );
- if ( result != noErr ) {
- errorText_ = "RtApiCore::getDefaultOutputDevice: OS-X system error getting device IDs.";
- error( RtAudioError::WARNING );
- return 0;
- }
-
- for ( unsigned int i=0; i<nDevices; i++ )
- if ( id == deviceList[i] ) return i;
-
- errorText_ = "RtApiCore::getDefaultOutputDevice: No default device found!";
- error( RtAudioError::WARNING );
- return 0;
-}
-
-RtAudio::DeviceInfo RtApiCore :: getDeviceInfo( unsigned int device )
-{
- RtAudio::DeviceInfo info;
- info.probed = false;
-
- // Get device ID
- unsigned int nDevices = getDeviceCount();
- if ( nDevices == 0 ) {
- errorText_ = "RtApiCore::getDeviceInfo: no devices found!";
- error( RtAudioError::INVALID_USE );
- return info;
- }
-
- if ( device >= nDevices ) {
- errorText_ = "RtApiCore::getDeviceInfo: device ID is invalid!";
- error( RtAudioError::INVALID_USE );
- return info;
- }
-
- AudioDeviceID deviceList[ nDevices ];
- UInt32 dataSize = sizeof( AudioDeviceID ) * nDevices;
- AudioObjectPropertyAddress property = { kAudioHardwarePropertyDevices,
- kAudioObjectPropertyScopeGlobal,
- kAudioObjectPropertyElementMaster };
- OSStatus result = AudioObjectGetPropertyData( kAudioObjectSystemObject, &property,
- 0, NULL, &dataSize, (void *) &deviceList );
- if ( result != noErr ) {
- errorText_ = "RtApiCore::getDeviceInfo: OS-X system error getting device IDs.";
- error( RtAudioError::WARNING );
- return info;
- }
-
- AudioDeviceID id = deviceList[ device ];
-
- // Get the device name.
- info.name.erase();
- CFStringRef cfname;
- dataSize = sizeof( CFStringRef );
- property.mSelector = kAudioObjectPropertyManufacturer;
- result = AudioObjectGetPropertyData( id, &property, 0, NULL, &dataSize, &cfname );
- if ( result != noErr ) {
- errorStream_ << "RtApiCore::probeDeviceInfo: system error (" << getErrorCode( result ) << ") getting device manufacturer.";
- errorText_ = errorStream_.str();
- error( RtAudioError::WARNING );
- return info;
- }
-
- //const char *mname = CFStringGetCStringPtr( cfname, CFStringGetSystemEncoding() );
- int length = CFStringGetLength(cfname);
- char *mname = (char *)malloc(length * 3 + 1);
-#if defined( UNICODE ) || defined( _UNICODE )
- CFStringGetCString(cfname, mname, length * 3 + 1, kCFStringEncodingUTF8);
-#else
- CFStringGetCString(cfname, mname, length * 3 + 1, CFStringGetSystemEncoding());
-#endif
- info.name.append( (const char *)mname, strlen(mname) );
- info.name.append( ": " );
- CFRelease( cfname );
- free(mname);
-
- property.mSelector = kAudioObjectPropertyName;
- result = AudioObjectGetPropertyData( id, &property, 0, NULL, &dataSize, &cfname );
- if ( result != noErr ) {
- errorStream_ << "RtApiCore::probeDeviceInfo: system error (" << getErrorCode( result ) << ") getting device name.";
- errorText_ = errorStream_.str();
- error( RtAudioError::WARNING );
- return info;
- }
-
- //const char *name = CFStringGetCStringPtr( cfname, CFStringGetSystemEncoding() );
- length = CFStringGetLength(cfname);
- char *name = (char *)malloc(length * 3 + 1);
-#if defined( UNICODE ) || defined( _UNICODE )
- CFStringGetCString(cfname, name, length * 3 + 1, kCFStringEncodingUTF8);
-#else
- CFStringGetCString(cfname, name, length * 3 + 1, CFStringGetSystemEncoding());
-#endif
- info.name.append( (const char *)name, strlen(name) );
- CFRelease( cfname );
- free(name);
-
- // Get the output stream "configuration".
- AudioBufferList *bufferList = nil;
- property.mSelector = kAudioDevicePropertyStreamConfiguration;
- property.mScope = kAudioDevicePropertyScopeOutput;
- // property.mElement = kAudioObjectPropertyElementWildcard;
- dataSize = 0;
- result = AudioObjectGetPropertyDataSize( id, &property, 0, NULL, &dataSize );
- if ( result != noErr || dataSize == 0 ) {
- errorStream_ << "RtApiCore::getDeviceInfo: system error (" << getErrorCode( result ) << ") getting output stream configuration info for device (" << device << ").";
- errorText_ = errorStream_.str();
- error( RtAudioError::WARNING );
- return info;
- }
-
- // Allocate the AudioBufferList.
- bufferList = (AudioBufferList *) malloc( dataSize );
- if ( bufferList == NULL ) {
- errorText_ = "RtApiCore::getDeviceInfo: memory error allocating output AudioBufferList.";
- error( RtAudioError::WARNING );
- return info;
- }
-
- result = AudioObjectGetPropertyData( id, &property, 0, NULL, &dataSize, bufferList );
- if ( result != noErr || dataSize == 0 ) {
- free( bufferList );
- errorStream_ << "RtApiCore::getDeviceInfo: system error (" << getErrorCode( result ) << ") getting output stream configuration for device (" << device << ").";
- errorText_ = errorStream_.str();
- error( RtAudioError::WARNING );
- return info;
- }
-
- // Get output channel information.
- unsigned int i, nStreams = bufferList->mNumberBuffers;
- for ( i=0; i<nStreams; i++ )
- info.outputChannels += bufferList->mBuffers[i].mNumberChannels;
- free( bufferList );
-
- // Get the input stream "configuration".
- property.mScope = kAudioDevicePropertyScopeInput;
- result = AudioObjectGetPropertyDataSize( id, &property, 0, NULL, &dataSize );
- if ( result != noErr || dataSize == 0 ) {
- errorStream_ << "RtApiCore::getDeviceInfo: system error (" << getErrorCode( result ) << ") getting input stream configuration info for device (" << device << ").";
- errorText_ = errorStream_.str();
- error( RtAudioError::WARNING );
- return info;
- }
-
- // Allocate the AudioBufferList.
- bufferList = (AudioBufferList *) malloc( dataSize );
- if ( bufferList == NULL ) {
- errorText_ = "RtApiCore::getDeviceInfo: memory error allocating input AudioBufferList.";
- error( RtAudioError::WARNING );
- return info;
- }
-
- result = AudioObjectGetPropertyData( id, &property, 0, NULL, &dataSize, bufferList );
- if (result != noErr || dataSize == 0) {
- free( bufferList );
- errorStream_ << "RtApiCore::getDeviceInfo: system error (" << getErrorCode( result ) << ") getting input stream configuration for device (" << device << ").";
- errorText_ = errorStream_.str();
- error( RtAudioError::WARNING );
- return info;
- }
-
- // Get input channel information.
- nStreams = bufferList->mNumberBuffers;
- for ( i=0; i<nStreams; i++ )
- info.inputChannels += bufferList->mBuffers[i].mNumberChannels;
- free( bufferList );
-
- // If device opens for both playback and capture, we determine the channels.
- if ( info.outputChannels > 0 && info.inputChannels > 0 )
- info.duplexChannels = (info.outputChannels > info.inputChannels) ? info.inputChannels : info.outputChannels;
-
- // Probe the device sample rates.
- bool isInput = false;
- if ( info.outputChannels == 0 ) isInput = true;
-
- // Determine the supported sample rates.
- property.mSelector = kAudioDevicePropertyAvailableNominalSampleRates;
- if ( isInput == false ) property.mScope = kAudioDevicePropertyScopeOutput;
- result = AudioObjectGetPropertyDataSize( id, &property, 0, NULL, &dataSize );
- if ( result != kAudioHardwareNoError || dataSize == 0 ) {
- errorStream_ << "RtApiCore::getDeviceInfo: system error (" << getErrorCode( result ) << ") getting sample rate info.";
- errorText_ = errorStream_.str();
- error( RtAudioError::WARNING );
- return info;
- }
-
- UInt32 nRanges = dataSize / sizeof( AudioValueRange );
- AudioValueRange rangeList[ nRanges ];
- result = AudioObjectGetPropertyData( id, &property, 0, NULL, &dataSize, &rangeList );
- if ( result != kAudioHardwareNoError ) {
- errorStream_ << "RtApiCore::getDeviceInfo: system error (" << getErrorCode( result ) << ") getting sample rates.";
- errorText_ = errorStream_.str();
- error( RtAudioError::WARNING );
- return info;
- }
-
- // The sample rate reporting mechanism is a bit of a mystery. It
- // seems that it can either return individual rates or a range of
- // rates. I assume that if the min / max range values are the same,
- // then that represents a single supported rate and if the min / max
- // range values are different, the device supports an arbitrary
- // range of values (though there might be multiple ranges, so we'll
- // use the most conservative range).
- Float64 minimumRate = 1.0, maximumRate = 10000000000.0;
- bool haveValueRange = false;
- info.sampleRates.clear();
- for ( UInt32 i=0; i<nRanges; i++ ) {
- if ( rangeList[i].mMinimum == rangeList[i].mMaximum ) {
- unsigned int tmpSr = (unsigned int) rangeList[i].mMinimum;
- info.sampleRates.push_back( tmpSr );
-
- if ( !info.preferredSampleRate || ( tmpSr <= 48000 && tmpSr > info.preferredSampleRate ) )
- info.preferredSampleRate = tmpSr;
-
- } else {
- haveValueRange = true;
- if ( rangeList[i].mMinimum > minimumRate ) minimumRate = rangeList[i].mMinimum;
- if ( rangeList[i].mMaximum < maximumRate ) maximumRate = rangeList[i].mMaximum;
- }
- }
-
- if ( haveValueRange ) {
- for ( unsigned int k=0; k<MAX_SAMPLE_RATES; k++ ) {
- if ( SAMPLE_RATES[k] >= (unsigned int) minimumRate && SAMPLE_RATES[k] <= (unsigned int) maximumRate ) {
- info.sampleRates.push_back( SAMPLE_RATES[k] );
-
- if ( !info.preferredSampleRate || ( SAMPLE_RATES[k] <= 48000 && SAMPLE_RATES[k] > info.preferredSampleRate ) )
- info.preferredSampleRate = SAMPLE_RATES[k];
- }
- }
- }
-
- // Sort and remove any redundant values
- std::sort( info.sampleRates.begin(), info.sampleRates.end() );
- info.sampleRates.erase( unique( info.sampleRates.begin(), info.sampleRates.end() ), info.sampleRates.end() );
-
- if ( info.sampleRates.size() == 0 ) {
- errorStream_ << "RtApiCore::probeDeviceInfo: No supported sample rates found for device (" << device << ").";
- errorText_ = errorStream_.str();
- error( RtAudioError::WARNING );
- return info;
- }
-
- // CoreAudio always uses 32-bit floating point data for PCM streams.
- // Thus, any other "physical" formats supported by the device are of
- // no interest to the client.
- info.nativeFormats = RTAUDIO_FLOAT32;
-
- if ( info.outputChannels > 0 )
- if ( getDefaultOutputDevice() == device ) info.isDefaultOutput = true;
- if ( info.inputChannels > 0 )
- if ( getDefaultInputDevice() == device ) info.isDefaultInput = true;
-
- info.probed = true;
- return info;
-}
-
-static OSStatus callbackHandler( AudioDeviceID inDevice,
- const AudioTimeStamp* /*inNow*/,
- const AudioBufferList* inInputData,
- const AudioTimeStamp* /*inInputTime*/,
- AudioBufferList* outOutputData,
- const AudioTimeStamp* /*inOutputTime*/,
- void* infoPointer )
-{
- CallbackInfo *info = (CallbackInfo *) infoPointer;
-
- RtApiCore *object = (RtApiCore *) info->object;
- if ( object->callbackEvent( inDevice, inInputData, outOutputData ) == false )
- return kAudioHardwareUnspecifiedError;
- else
- return kAudioHardwareNoError;
-}
-
-static OSStatus xrunListener( AudioObjectID /*inDevice*/,
- UInt32 nAddresses,
- const AudioObjectPropertyAddress properties[],
- void* handlePointer )
-{
- CoreHandle *handle = (CoreHandle *) handlePointer;
- for ( UInt32 i=0; i<nAddresses; i++ ) {
- if ( properties[i].mSelector == kAudioDeviceProcessorOverload ) {
- if ( properties[i].mScope == kAudioDevicePropertyScopeInput )
- handle->xrun[1] = true;
- else
- handle->xrun[0] = true;
- }
- }
-
- return kAudioHardwareNoError;
-}
-
-static OSStatus rateListener( AudioObjectID inDevice,
- UInt32 /*nAddresses*/,
- const AudioObjectPropertyAddress /*properties*/[],
- void* ratePointer )
-{
- Float64 *rate = (Float64 *) ratePointer;
- UInt32 dataSize = sizeof( Float64 );
- AudioObjectPropertyAddress property = { kAudioDevicePropertyNominalSampleRate,
- kAudioObjectPropertyScopeGlobal,
- kAudioObjectPropertyElementMaster };
- AudioObjectGetPropertyData( inDevice, &property, 0, NULL, &dataSize, rate );
- return kAudioHardwareNoError;
-}
-
-bool RtApiCore :: probeDeviceOpen( unsigned int device, StreamMode mode, unsigned int channels,
- unsigned int firstChannel, unsigned int sampleRate,
- RtAudioFormat format, unsigned int *bufferSize,
- RtAudio::StreamOptions *options )
-{
- // Get device ID
- unsigned int nDevices = getDeviceCount();
- if ( nDevices == 0 ) {
- // This should not happen because a check is made before this function is called.
- errorText_ = "RtApiCore::probeDeviceOpen: no devices found!";
- return FAILURE;
- }
-
- if ( device >= nDevices ) {
- // This should not happen because a check is made before this function is called.
- errorText_ = "RtApiCore::probeDeviceOpen: device ID is invalid!";
- return FAILURE;
- }
-
- AudioDeviceID deviceList[ nDevices ];
- UInt32 dataSize = sizeof( AudioDeviceID ) * nDevices;
- AudioObjectPropertyAddress property = { kAudioHardwarePropertyDevices,
- kAudioObjectPropertyScopeGlobal,
- kAudioObjectPropertyElementMaster };
- OSStatus result = AudioObjectGetPropertyData( kAudioObjectSystemObject, &property,
- 0, NULL, &dataSize, (void *) &deviceList );
- if ( result != noErr ) {
- errorText_ = "RtApiCore::probeDeviceOpen: OS-X system error getting device IDs.";
- return FAILURE;
- }
-
- AudioDeviceID id = deviceList[ device ];
-
- // Setup for stream mode.
- bool isInput = false;
- if ( mode == INPUT ) {
- isInput = true;
- property.mScope = kAudioDevicePropertyScopeInput;
- }
- else
- property.mScope = kAudioDevicePropertyScopeOutput;
-
- // Get the stream "configuration".
- AudioBufferList *bufferList = nil;
- dataSize = 0;
- property.mSelector = kAudioDevicePropertyStreamConfiguration;
- result = AudioObjectGetPropertyDataSize( id, &property, 0, NULL, &dataSize );
- if ( result != noErr || dataSize == 0 ) {
- errorStream_ << "RtApiCore::probeDeviceOpen: system error (" << getErrorCode( result ) << ") getting stream configuration info for device (" << device << ").";
- errorText_ = errorStream_.str();
- return FAILURE;
- }
-
- // Allocate the AudioBufferList.
- bufferList = (AudioBufferList *) malloc( dataSize );
- if ( bufferList == NULL ) {
- errorText_ = "RtApiCore::probeDeviceOpen: memory error allocating AudioBufferList.";
- return FAILURE;
- }
-
- result = AudioObjectGetPropertyData( id, &property, 0, NULL, &dataSize, bufferList );
- if (result != noErr || dataSize == 0) {
- free( bufferList );
- errorStream_ << "RtApiCore::probeDeviceOpen: system error (" << getErrorCode( result ) << ") getting stream configuration for device (" << device << ").";
- errorText_ = errorStream_.str();
- return FAILURE;
- }
-
- // Search for one or more streams that contain the desired number of
- // channels. CoreAudio devices can have an arbitrary number of
- // streams and each stream can have an arbitrary number of channels.
- // For each stream, a single buffer of interleaved samples is
- // provided. RtAudio prefers the use of one stream of interleaved
- // data or multiple consecutive single-channel streams. However, we
- // now support multiple consecutive multi-channel streams of
- // interleaved data as well.
- UInt32 iStream, offsetCounter = firstChannel;
- UInt32 nStreams = bufferList->mNumberBuffers;
- bool monoMode = false;
- bool foundStream = false;
-
- // First check that the device supports the requested number of
- // channels.
- UInt32 deviceChannels = 0;
- for ( iStream=0; iStream<nStreams; iStream++ )
- deviceChannels += bufferList->mBuffers[iStream].mNumberChannels;
-
- if ( deviceChannels < ( channels + firstChannel ) ) {
- free( bufferList );
- errorStream_ << "RtApiCore::probeDeviceOpen: the device (" << device << ") does not support the requested channel count.";
- errorText_ = errorStream_.str();
- return FAILURE;
- }
-
- // Look for a single stream meeting our needs.
- UInt32 firstStream, streamCount = 1, streamChannels = 0, channelOffset = 0;
- for ( iStream=0; iStream<nStreams; iStream++ ) {
- streamChannels = bufferList->mBuffers[iStream].mNumberChannels;
- if ( streamChannels >= channels + offsetCounter ) {
- firstStream = iStream;
- channelOffset = offsetCounter;
- foundStream = true;
- break;
- }
- if ( streamChannels > offsetCounter ) break;
- offsetCounter -= streamChannels;
- }
-
- // If we didn't find a single stream above, then we should be able
- // to meet the channel specification with multiple streams.
- if ( foundStream == false ) {
- monoMode = true;
- offsetCounter = firstChannel;
- for ( iStream=0; iStream<nStreams; iStream++ ) {
- streamChannels = bufferList->mBuffers[iStream].mNumberChannels;
- if ( streamChannels > offsetCounter ) break;
- offsetCounter -= streamChannels;
- }
-
- firstStream = iStream;
- channelOffset = offsetCounter;
- Int32 channelCounter = channels + offsetCounter - streamChannels;
-
- if ( streamChannels > 1 ) monoMode = false;
- while ( channelCounter > 0 ) {
- streamChannels = bufferList->mBuffers[++iStream].mNumberChannels;
- if ( streamChannels > 1 ) monoMode = false;
- channelCounter -= streamChannels;
- streamCount++;
- }
- }
-
- free( bufferList );
-
- // Determine the buffer size.
- AudioValueRange bufferRange;
- dataSize = sizeof( AudioValueRange );
- property.mSelector = kAudioDevicePropertyBufferFrameSizeRange;
- result = AudioObjectGetPropertyData( id, &property, 0, NULL, &dataSize, &bufferRange );
-
- if ( result != noErr ) {
- errorStream_ << "RtApiCore::probeDeviceOpen: system error (" << getErrorCode( result ) << ") getting buffer size range for device (" << device << ").";
- errorText_ = errorStream_.str();
- return FAILURE;
- }
-
- if ( bufferRange.mMinimum > *bufferSize ) *bufferSize = (unsigned long) bufferRange.mMinimum;
- else if ( bufferRange.mMaximum < *bufferSize ) *bufferSize = (unsigned long) bufferRange.mMaximum;
- if ( options && options->flags & RTAUDIO_MINIMIZE_LATENCY ) *bufferSize = (unsigned long) bufferRange.mMinimum;
-
- // Set the buffer size. For multiple streams, I'm assuming we only
- // need to make this setting for the master channel.
- UInt32 theSize = (UInt32) *bufferSize;
- dataSize = sizeof( UInt32 );
- property.mSelector = kAudioDevicePropertyBufferFrameSize;
- result = AudioObjectSetPropertyData( id, &property, 0, NULL, dataSize, &theSize );
-
- if ( result != noErr ) {
- errorStream_ << "RtApiCore::probeDeviceOpen: system error (" << getErrorCode( result ) << ") setting the buffer size for device (" << device << ").";
- errorText_ = errorStream_.str();
- return FAILURE;
- }
-
- // If attempting to setup a duplex stream, the bufferSize parameter
- // MUST be the same in both directions!
- *bufferSize = theSize;
- if ( stream_.mode == OUTPUT && mode == INPUT && *bufferSize != stream_.bufferSize ) {
- errorStream_ << "RtApiCore::probeDeviceOpen: system error setting buffer size for duplex stream on device (" << device << ").";
- errorText_ = errorStream_.str();
- return FAILURE;
- }
-
- stream_.bufferSize = *bufferSize;
- stream_.nBuffers = 1;
-
- // Try to set "hog" mode ... it's not clear to me this is working.
- if ( options && options->flags & RTAUDIO_HOG_DEVICE ) {
- pid_t hog_pid;
- dataSize = sizeof( hog_pid );
- property.mSelector = kAudioDevicePropertyHogMode;
- result = AudioObjectGetPropertyData( id, &property, 0, NULL, &dataSize, &hog_pid );
- if ( result != noErr ) {
- errorStream_ << "RtApiCore::probeDeviceOpen: system error (" << getErrorCode( result ) << ") getting 'hog' state!";
- errorText_ = errorStream_.str();
- return FAILURE;
- }
-
- if ( hog_pid != getpid() ) {
- hog_pid = getpid();
- result = AudioObjectSetPropertyData( id, &property, 0, NULL, dataSize, &hog_pid );
- if ( result != noErr ) {
- errorStream_ << "RtApiCore::probeDeviceOpen: system error (" << getErrorCode( result ) << ") setting 'hog' state!";
- errorText_ = errorStream_.str();
- return FAILURE;
- }
- }
- }
-
- // Check and if necessary, change the sample rate for the device.
- Float64 nominalRate;
- dataSize = sizeof( Float64 );
- property.mSelector = kAudioDevicePropertyNominalSampleRate;
- result = AudioObjectGetPropertyData( id, &property, 0, NULL, &dataSize, &nominalRate );
- if ( result != noErr ) {
- errorStream_ << "RtApiCore::probeDeviceOpen: system error (" << getErrorCode( result ) << ") getting current sample rate.";
- errorText_ = errorStream_.str();
- return FAILURE;
- }
-
- // Only change the sample rate if off by more than 1 Hz.
- if ( fabs( nominalRate - (double)sampleRate ) > 1.0 ) {
-
- // Set a property listener for the sample rate change
- Float64 reportedRate = 0.0;
- AudioObjectPropertyAddress tmp = { kAudioDevicePropertyNominalSampleRate, kAudioObjectPropertyScopeGlobal, kAudioObjectPropertyElementMaster };
- result = AudioObjectAddPropertyListener( id, &tmp, rateListener, (void *) &reportedRate );
- if ( result != noErr ) {
- errorStream_ << "RtApiCore::probeDeviceOpen: system error (" << getErrorCode( result ) << ") setting sample rate property listener for device (" << device << ").";
- errorText_ = errorStream_.str();
- return FAILURE;
- }
-
- nominalRate = (Float64) sampleRate;
- result = AudioObjectSetPropertyData( id, &property, 0, NULL, dataSize, &nominalRate );
- if ( result != noErr ) {
- AudioObjectRemovePropertyListener( id, &tmp, rateListener, (void *) &reportedRate );
- errorStream_ << "RtApiCore::probeDeviceOpen: system error (" << getErrorCode( result ) << ") setting sample rate for device (" << device << ").";
- errorText_ = errorStream_.str();
- return FAILURE;
- }
-
- // Now wait until the reported nominal rate is what we just set.
- UInt32 microCounter = 0;
- while ( reportedRate != nominalRate ) {
- microCounter += 5000;
- if ( microCounter > 5000000 ) break;
- usleep( 5000 );
- }
-
- // Remove the property listener.
- AudioObjectRemovePropertyListener( id, &tmp, rateListener, (void *) &reportedRate );
-
- if ( microCounter > 5000000 ) {
- errorStream_ << "RtApiCore::probeDeviceOpen: timeout waiting for sample rate update for device (" << device << ").";
- errorText_ = errorStream_.str();
- return FAILURE;
- }
- }
-
- // Now set the stream format for all streams. Also, check the
- // physical format of the device and change that if necessary.
- AudioStreamBasicDescription description;
- dataSize = sizeof( AudioStreamBasicDescription );
- property.mSelector = kAudioStreamPropertyVirtualFormat;
- result = AudioObjectGetPropertyData( id, &property, 0, NULL, &dataSize, &description );
- if ( result != noErr ) {
- errorStream_ << "RtApiCore::probeDeviceOpen: system error (" << getErrorCode( result ) << ") getting stream format for device (" << device << ").";
- errorText_ = errorStream_.str();
- return FAILURE;
- }
-
- // Set the sample rate and data format id. However, only make the
- // change if the sample rate is not within 1.0 of the desired
- // rate and the format is not linear pcm.
- bool updateFormat = false;
- if ( fabs( description.mSampleRate - (Float64)sampleRate ) > 1.0 ) {
- description.mSampleRate = (Float64) sampleRate;
- updateFormat = true;
- }
-
- if ( description.mFormatID != kAudioFormatLinearPCM ) {
- description.mFormatID = kAudioFormatLinearPCM;
- updateFormat = true;
- }
-
- if ( updateFormat ) {
- result = AudioObjectSetPropertyData( id, &property, 0, NULL, dataSize, &description );
- if ( result != noErr ) {
- errorStream_ << "RtApiCore::probeDeviceOpen: system error (" << getErrorCode( result ) << ") setting sample rate or data format for device (" << device << ").";
- errorText_ = errorStream_.str();
- return FAILURE;
- }
- }
-
- // Now check the physical format.
- property.mSelector = kAudioStreamPropertyPhysicalFormat;
- result = AudioObjectGetPropertyData( id, &property, 0, NULL, &dataSize, &description );
- if ( result != noErr ) {
- errorStream_ << "RtApiCore::probeDeviceOpen: system error (" << getErrorCode( result ) << ") getting stream physical format for device (" << device << ").";
- errorText_ = errorStream_.str();
- return FAILURE;
- }
-
- //std::cout << "Current physical stream format:" << std::endl;
- //std::cout << " mBitsPerChan = " << description.mBitsPerChannel << std::endl;
- //std::cout << " aligned high = " << (description.mFormatFlags & kAudioFormatFlagIsAlignedHigh) << ", isPacked = " << (description.mFormatFlags & kAudioFormatFlagIsPacked) << std::endl;
- //std::cout << " bytesPerFrame = " << description.mBytesPerFrame << std::endl;
- //std::cout << " sample rate = " << description.mSampleRate << std::endl;
-
- if ( description.mFormatID != kAudioFormatLinearPCM || description.mBitsPerChannel < 16 ) {
- description.mFormatID = kAudioFormatLinearPCM;
- //description.mSampleRate = (Float64) sampleRate;
- AudioStreamBasicDescription testDescription = description;
- UInt32 formatFlags;
-
- // We'll try higher bit rates first and then work our way down.
- std::vector< std::pair<UInt32, UInt32> > physicalFormats;
- formatFlags = (description.mFormatFlags | kLinearPCMFormatFlagIsFloat) & ~kLinearPCMFormatFlagIsSignedInteger;
- physicalFormats.push_back( std::pair<Float32, UInt32>( 32, formatFlags ) );
- formatFlags = (description.mFormatFlags | kLinearPCMFormatFlagIsSignedInteger | kAudioFormatFlagIsPacked) & ~kLinearPCMFormatFlagIsFloat;
- physicalFormats.push_back( std::pair<Float32, UInt32>( 32, formatFlags ) );
- physicalFormats.push_back( std::pair<Float32, UInt32>( 24, formatFlags ) ); // 24-bit packed
- formatFlags &= ~( kAudioFormatFlagIsPacked | kAudioFormatFlagIsAlignedHigh );
- physicalFormats.push_back( std::pair<Float32, UInt32>( 24.2, formatFlags ) ); // 24-bit in 4 bytes, aligned low
- formatFlags |= kAudioFormatFlagIsAlignedHigh;
- physicalFormats.push_back( std::pair<Float32, UInt32>( 24.4, formatFlags ) ); // 24-bit in 4 bytes, aligned high
- formatFlags = (description.mFormatFlags | kLinearPCMFormatFlagIsSignedInteger | kAudioFormatFlagIsPacked) & ~kLinearPCMFormatFlagIsFloat;
- physicalFormats.push_back( std::pair<Float32, UInt32>( 16, formatFlags ) );
- physicalFormats.push_back( std::pair<Float32, UInt32>( 8, formatFlags ) );
-
- bool setPhysicalFormat = false;
- for( unsigned int i=0; i<physicalFormats.size(); i++ ) {
- testDescription = description;
- testDescription.mBitsPerChannel = (UInt32) physicalFormats[i].first;
- testDescription.mFormatFlags = physicalFormats[i].second;
- if ( (24 == (UInt32)physicalFormats[i].first) && ~( physicalFormats[i].second & kAudioFormatFlagIsPacked ) )
- testDescription.mBytesPerFrame = 4 * testDescription.mChannelsPerFrame;
- else
- testDescription.mBytesPerFrame = testDescription.mBitsPerChannel/8 * testDescription.mChannelsPerFrame;
- testDescription.mBytesPerPacket = testDescription.mBytesPerFrame * testDescription.mFramesPerPacket;
- result = AudioObjectSetPropertyData( id, &property, 0, NULL, dataSize, &testDescription );
- if ( result == noErr ) {
- setPhysicalFormat = true;
- //std::cout << "Updated physical stream format:" << std::endl;
- //std::cout << " mBitsPerChan = " << testDescription.mBitsPerChannel << std::endl;
- //std::cout << " aligned high = " << (testDescription.mFormatFlags & kAudioFormatFlagIsAlignedHigh) << ", isPacked = " << (testDescription.mFormatFlags & kAudioFormatFlagIsPacked) << std::endl;
- //std::cout << " bytesPerFrame = " << testDescription.mBytesPerFrame << std::endl;
- //std::cout << " sample rate = " << testDescription.mSampleRate << std::endl;
- break;
- }
- }
-
- if ( !setPhysicalFormat ) {
- errorStream_ << "RtApiCore::probeDeviceOpen: system error (" << getErrorCode( result ) << ") setting physical data format for device (" << device << ").";
- errorText_ = errorStream_.str();
- return FAILURE;
- }
- } // done setting virtual/physical formats.
-
- // Get the stream / device latency.
- UInt32 latency;
- dataSize = sizeof( UInt32 );
- property.mSelector = kAudioDevicePropertyLatency;
- if ( AudioObjectHasProperty( id, &property ) == true ) {
- result = AudioObjectGetPropertyData( id, &property, 0, NULL, &dataSize, &latency );
- if ( result == kAudioHardwareNoError ) stream_.latency[ mode ] = latency;
- else {
- errorStream_ << "RtApiCore::probeDeviceOpen: system error (" << getErrorCode( result ) << ") getting device latency for device (" << device << ").";
- errorText_ = errorStream_.str();
- error( RtAudioError::WARNING );
- }
- }
-
- // Byte-swapping: According to AudioHardware.h, the stream data will
- // always be presented in native-endian format, so we should never
- // need to byte swap.
- stream_.doByteSwap[mode] = false;
-
- // From the CoreAudio documentation, PCM data must be supplied as
- // 32-bit floats.
- stream_.userFormat = format;
- stream_.deviceFormat[mode] = RTAUDIO_FLOAT32;
-
- if ( streamCount == 1 )
- stream_.nDeviceChannels[mode] = description.mChannelsPerFrame;
- else // multiple streams
- stream_.nDeviceChannels[mode] = channels;
- stream_.nUserChannels[mode] = channels;
- stream_.channelOffset[mode] = channelOffset; // offset within a CoreAudio stream
- if ( options && options->flags & RTAUDIO_NONINTERLEAVED ) stream_.userInterleaved = false;
- else stream_.userInterleaved = true;
- stream_.deviceInterleaved[mode] = true;
- if ( monoMode == true ) stream_.deviceInterleaved[mode] = false;
-
- // Set flags for buffer conversion.
- stream_.doConvertBuffer[mode] = false;
- if ( stream_.userFormat != stream_.deviceFormat[mode] )
- stream_.doConvertBuffer[mode] = true;
- if ( stream_.nUserChannels[mode] < stream_.nDeviceChannels[mode] )
- stream_.doConvertBuffer[mode] = true;
- if ( streamCount == 1 ) {
- if ( stream_.nUserChannels[mode] > 1 &&
- stream_.userInterleaved != stream_.deviceInterleaved[mode] )
- stream_.doConvertBuffer[mode] = true;
- }
- else if ( monoMode && stream_.userInterleaved )
- stream_.doConvertBuffer[mode] = true;
-
- // Allocate our CoreHandle structure for the stream.
- CoreHandle *handle = 0;
- if ( stream_.apiHandle == 0 ) {
- try {
- handle = new CoreHandle;
- }
- catch ( std::bad_alloc& ) {
- errorText_ = "RtApiCore::probeDeviceOpen: error allocating CoreHandle memory.";
- goto error;
- }
-
- if ( pthread_cond_init( &handle->condition, NULL ) ) {
- errorText_ = "RtApiCore::probeDeviceOpen: error initializing pthread condition variable.";
- goto error;
- }
- stream_.apiHandle = (void *) handle;
- }
- else
- handle = (CoreHandle *) stream_.apiHandle;
- handle->iStream[mode] = firstStream;
- handle->nStreams[mode] = streamCount;
- handle->id[mode] = id;
-
- // Allocate necessary internal buffers.
- unsigned long bufferBytes;
- bufferBytes = stream_.nUserChannels[mode] * *bufferSize * formatBytes( stream_.userFormat );
- // stream_.userBuffer[mode] = (char *) calloc( bufferBytes, 1 );
- stream_.userBuffer[mode] = (char *) malloc( bufferBytes * sizeof(char) );
- memset( stream_.userBuffer[mode], 0, bufferBytes * sizeof(char) );
- if ( stream_.userBuffer[mode] == NULL ) {
- errorText_ = "RtApiCore::probeDeviceOpen: error allocating user buffer memory.";
- goto error;
- }
-
- // If possible, we will make use of the CoreAudio stream buffers as
- // "device buffers". However, we can't do this if using multiple
- // streams.
- if ( stream_.doConvertBuffer[mode] && handle->nStreams[mode] > 1 ) {
-
- bool makeBuffer = true;
- bufferBytes = stream_.nDeviceChannels[mode] * formatBytes( stream_.deviceFormat[mode] );
- if ( mode == INPUT ) {
- if ( stream_.mode == OUTPUT && stream_.deviceBuffer ) {
- unsigned long bytesOut = stream_.nDeviceChannels[0] * formatBytes( stream_.deviceFormat[0] );
- if ( bufferBytes <= bytesOut ) makeBuffer = false;
- }
- }
-
- if ( makeBuffer ) {
- bufferBytes *= *bufferSize;
- if ( stream_.deviceBuffer ) free( stream_.deviceBuffer );
- stream_.deviceBuffer = (char *) calloc( bufferBytes, 1 );
- if ( stream_.deviceBuffer == NULL ) {
- errorText_ = "RtApiCore::probeDeviceOpen: error allocating device buffer memory.";
- goto error;
- }
- }
- }
-
- stream_.sampleRate = sampleRate;
- stream_.device[mode] = device;
- stream_.state = STREAM_STOPPED;
- stream_.callbackInfo.object = (void *) this;
-
- // Setup the buffer conversion information structure.
- if ( stream_.doConvertBuffer[mode] ) {
- if ( streamCount > 1 ) setConvertInfo( mode, 0 );
- else setConvertInfo( mode, channelOffset );
- }
-
- if ( mode == INPUT && stream_.mode == OUTPUT && stream_.device[0] == device )
- // Only one callback procedure per device.
- stream_.mode = DUPLEX;
- else {
-#if defined( MAC_OS_X_VERSION_10_5 ) && ( MAC_OS_X_VERSION_MIN_REQUIRED >= MAC_OS_X_VERSION_10_5 )
- result = AudioDeviceCreateIOProcID( id, callbackHandler, (void *) &stream_.callbackInfo, &handle->procId[mode] );
-#else
- // deprecated in favor of AudioDeviceCreateIOProcID()
- result = AudioDeviceAddIOProc( id, callbackHandler, (void *) &stream_.callbackInfo );
-#endif
- if ( result != noErr ) {
- errorStream_ << "RtApiCore::probeDeviceOpen: system error setting callback for device (" << device << ").";
- errorText_ = errorStream_.str();
- goto error;
- }
- if ( stream_.mode == OUTPUT && mode == INPUT )
- stream_.mode = DUPLEX;
- else
- stream_.mode = mode;
- }
-
- // Setup the device property listener for over/underload.
- property.mSelector = kAudioDeviceProcessorOverload;
- property.mScope = kAudioObjectPropertyScopeGlobal;
- result = AudioObjectAddPropertyListener( id, &property, xrunListener, (void *) handle );
-
- return SUCCESS;
-
- error:
- if ( handle ) {
- pthread_cond_destroy( &handle->condition );
- delete handle;
- stream_.apiHandle = 0;
- }
-
- for ( int i=0; i<2; i++ ) {
- if ( stream_.userBuffer[i] ) {
- free( stream_.userBuffer[i] );
- stream_.userBuffer[i] = 0;
- }
- }
-
- if ( stream_.deviceBuffer ) {
- free( stream_.deviceBuffer );
- stream_.deviceBuffer = 0;
- }
-
- stream_.state = STREAM_CLOSED;
- return FAILURE;
-}
-
-void RtApiCore :: closeStream( void )
-{
- if ( stream_.state == STREAM_CLOSED ) {
- errorText_ = "RtApiCore::closeStream(): no open stream to close!";
- error( RtAudioError::WARNING );
- return;
- }
-
- CoreHandle *handle = (CoreHandle *) stream_.apiHandle;
- if ( stream_.mode == OUTPUT || stream_.mode == DUPLEX ) {
- if (handle) {
- AudioObjectPropertyAddress property = { kAudioHardwarePropertyDevices,
- kAudioObjectPropertyScopeGlobal,
- kAudioObjectPropertyElementMaster };
-
- property.mSelector = kAudioDeviceProcessorOverload;
- property.mScope = kAudioObjectPropertyScopeGlobal;
- if (AudioObjectRemovePropertyListener( handle->id[0], &property, xrunListener, (void *) handle ) != noErr) {
- errorText_ = "RtApiCore::closeStream(): error removing property listener!";
- error( RtAudioError::WARNING );
- }
- }
- if ( stream_.state == STREAM_RUNNING )
- AudioDeviceStop( handle->id[0], callbackHandler );
-#if defined( MAC_OS_X_VERSION_10_5 ) && ( MAC_OS_X_VERSION_MIN_REQUIRED >= MAC_OS_X_VERSION_10_5 )
- AudioDeviceDestroyIOProcID( handle->id[0], handle->procId[0] );
-#else
- // deprecated in favor of AudioDeviceDestroyIOProcID()
- AudioDeviceRemoveIOProc( handle->id[0], callbackHandler );
-#endif
- }
-
- if ( stream_.mode == INPUT || ( stream_.mode == DUPLEX && stream_.device[0] != stream_.device[1] ) ) {
- if (handle) {
- AudioObjectPropertyAddress property = { kAudioHardwarePropertyDevices,
- kAudioObjectPropertyScopeGlobal,
- kAudioObjectPropertyElementMaster };
-
- property.mSelector = kAudioDeviceProcessorOverload;
- property.mScope = kAudioObjectPropertyScopeGlobal;
- if (AudioObjectRemovePropertyListener( handle->id[1], &property, xrunListener, (void *) handle ) != noErr) {
- errorText_ = "RtApiCore::closeStream(): error removing property listener!";
- error( RtAudioError::WARNING );
- }
- }
- if ( stream_.state == STREAM_RUNNING )
- AudioDeviceStop( handle->id[1], callbackHandler );
-#if defined( MAC_OS_X_VERSION_10_5 ) && ( MAC_OS_X_VERSION_MIN_REQUIRED >= MAC_OS_X_VERSION_10_5 )
- AudioDeviceDestroyIOProcID( handle->id[1], handle->procId[1] );
-#else
- // deprecated in favor of AudioDeviceDestroyIOProcID()
- AudioDeviceRemoveIOProc( handle->id[1], callbackHandler );
-#endif
- }
-
- for ( int i=0; i<2; i++ ) {
- if ( stream_.userBuffer[i] ) {
- free( stream_.userBuffer[i] );
- stream_.userBuffer[i] = 0;
- }
- }
-
- if ( stream_.deviceBuffer ) {
- free( stream_.deviceBuffer );
- stream_.deviceBuffer = 0;
- }
-
- // Destroy pthread condition variable.
- pthread_cond_destroy( &handle->condition );
- delete handle;
- stream_.apiHandle = 0;
-
- stream_.mode = UNINITIALIZED;
- stream_.state = STREAM_CLOSED;
-}
-
-void RtApiCore :: startStream( void )
-{
- verifyStream();
- if ( stream_.state == STREAM_RUNNING ) {
- errorText_ = "RtApiCore::startStream(): the stream is already running!";
- error( RtAudioError::WARNING );
- return;
- }
-
- OSStatus result = noErr;
- CoreHandle *handle = (CoreHandle *) stream_.apiHandle;
- if ( stream_.mode == OUTPUT || stream_.mode == DUPLEX ) {
-
- result = AudioDeviceStart( handle->id[0], callbackHandler );
- if ( result != noErr ) {
- errorStream_ << "RtApiCore::startStream: system error (" << getErrorCode( result ) << ") starting callback procedure on device (" << stream_.device[0] << ").";
- errorText_ = errorStream_.str();
- goto unlock;
- }
- }
-
- if ( stream_.mode == INPUT ||
- ( stream_.mode == DUPLEX && stream_.device[0] != stream_.device[1] ) ) {
-
- result = AudioDeviceStart( handle->id[1], callbackHandler );
- if ( result != noErr ) {
- errorStream_ << "RtApiCore::startStream: system error starting input callback procedure on device (" << stream_.device[1] << ").";
- errorText_ = errorStream_.str();
- goto unlock;
- }
- }
-
- handle->drainCounter = 0;
- handle->internalDrain = false;
- stream_.state = STREAM_RUNNING;
-
- unlock:
- if ( result == noErr ) return;
- error( RtAudioError::SYSTEM_ERROR );
-}
-
-void RtApiCore :: stopStream( void )
-{
- verifyStream();
- if ( stream_.state == STREAM_STOPPED ) {
- errorText_ = "RtApiCore::stopStream(): the stream is already stopped!";
- error( RtAudioError::WARNING );
- return;
- }
-
- OSStatus result = noErr;
- CoreHandle *handle = (CoreHandle *) stream_.apiHandle;
- if ( stream_.mode == OUTPUT || stream_.mode == DUPLEX ) {
-
- if ( handle->drainCounter == 0 ) {
- handle->drainCounter = 2;
- pthread_cond_wait( &handle->condition, &stream_.mutex ); // block until signaled
- }
-
- result = AudioDeviceStop( handle->id[0], callbackHandler );
- if ( result != noErr ) {
- errorStream_ << "RtApiCore::stopStream: system error (" << getErrorCode( result ) << ") stopping callback procedure on device (" << stream_.device[0] << ").";
- errorText_ = errorStream_.str();
- goto unlock;
- }
- }
-
- if ( stream_.mode == INPUT || ( stream_.mode == DUPLEX && stream_.device[0] != stream_.device[1] ) ) {
-
- result = AudioDeviceStop( handle->id[1], callbackHandler );
- if ( result != noErr ) {
- errorStream_ << "RtApiCore::stopStream: system error (" << getErrorCode( result ) << ") stopping input callback procedure on device (" << stream_.device[1] << ").";
- errorText_ = errorStream_.str();
- goto unlock;
- }
- }
-
- stream_.state = STREAM_STOPPED;
-
- unlock:
- if ( result == noErr ) return;
- error( RtAudioError::SYSTEM_ERROR );
-}
-
-void RtApiCore :: abortStream( void )
-{
- verifyStream();
- if ( stream_.state == STREAM_STOPPED ) {
- errorText_ = "RtApiCore::abortStream(): the stream is already stopped!";
- error( RtAudioError::WARNING );
- return;
- }
-
- CoreHandle *handle = (CoreHandle *) stream_.apiHandle;
- handle->drainCounter = 2;
-
- stopStream();
-}
-
-// This function will be called by a spawned thread when the user
-// callback function signals that the stream should be stopped or
-// aborted. It is better to handle it this way because the
-// callbackEvent() function probably should return before the AudioDeviceStop()
-// function is called.
-static void *coreStopStream( void *ptr )
-{
- CallbackInfo *info = (CallbackInfo *) ptr;
- RtApiCore *object = (RtApiCore *) info->object;
-
- object->stopStream();
- pthread_exit( NULL );
-}
-
-bool RtApiCore :: callbackEvent( AudioDeviceID deviceId,
- const AudioBufferList *inBufferList,
- const AudioBufferList *outBufferList )
-{
- if ( stream_.state == STREAM_STOPPED || stream_.state == STREAM_STOPPING ) return SUCCESS;
- if ( stream_.state == STREAM_CLOSED ) {
- errorText_ = "RtApiCore::callbackEvent(): the stream is closed ... this shouldn't happen!";
- error( RtAudioError::WARNING );
- return FAILURE;
- }
-
- CallbackInfo *info = (CallbackInfo *) &stream_.callbackInfo;
- CoreHandle *handle = (CoreHandle *) stream_.apiHandle;
-
- // Check if we were draining the stream and signal is finished.
- if ( handle->drainCounter > 3 ) {
- ThreadHandle threadId;
-
- stream_.state = STREAM_STOPPING;
- if ( handle->internalDrain == true )
- pthread_create( &threadId, NULL, coreStopStream, info );
- else // external call to stopStream()
- pthread_cond_signal( &handle->condition );
- return SUCCESS;
- }
-
- AudioDeviceID outputDevice = handle->id[0];
-
- // Invoke user callback to get fresh output data UNLESS we are
- // draining stream or duplex mode AND the input/output devices are
- // different AND this function is called for the input device.
- if ( handle->drainCounter == 0 && ( stream_.mode != DUPLEX || deviceId == outputDevice ) ) {
- RtAudioCallback callback = (RtAudioCallback) info->callback;
- double streamTime = getStreamTime();
- RtAudioStreamStatus status = 0;
- if ( stream_.mode != INPUT && handle->xrun[0] == true ) {
- status |= RTAUDIO_OUTPUT_UNDERFLOW;
- handle->xrun[0] = false;
- }
- if ( stream_.mode != OUTPUT && handle->xrun[1] == true ) {
- status |= RTAUDIO_INPUT_OVERFLOW;
- handle->xrun[1] = false;
- }
-
- int cbReturnValue = callback( stream_.userBuffer[0], stream_.userBuffer[1],
- stream_.bufferSize, streamTime, status, info->userData );
- if ( cbReturnValue == 2 ) {
- stream_.state = STREAM_STOPPING;
- handle->drainCounter = 2;
- abortStream();
- return SUCCESS;
- }
- else if ( cbReturnValue == 1 ) {
- handle->drainCounter = 1;
- handle->internalDrain = true;
- }
- }
-
- if ( stream_.mode == OUTPUT || ( stream_.mode == DUPLEX && deviceId == outputDevice ) ) {
-
- if ( handle->drainCounter > 1 ) { // write zeros to the output stream
-
- if ( handle->nStreams[0] == 1 ) {
- memset( outBufferList->mBuffers[handle->iStream[0]].mData,
- 0,
- outBufferList->mBuffers[handle->iStream[0]].mDataByteSize );
- }
- else { // fill multiple streams with zeros
- for ( unsigned int i=0; i<handle->nStreams[0]; i++ ) {
- memset( outBufferList->mBuffers[handle->iStream[0]+i].mData,
- 0,
- outBufferList->mBuffers[handle->iStream[0]+i].mDataByteSize );
- }
- }
- }
- else if ( handle->nStreams[0] == 1 ) {
- if ( stream_.doConvertBuffer[0] ) { // convert directly to CoreAudio stream buffer
- convertBuffer( (char *) outBufferList->mBuffers[handle->iStream[0]].mData,
- stream_.userBuffer[0], stream_.convertInfo[0] );
- }
- else { // copy from user buffer
- memcpy( outBufferList->mBuffers[handle->iStream[0]].mData,
- stream_.userBuffer[0],
- outBufferList->mBuffers[handle->iStream[0]].mDataByteSize );
- }
- }
- else { // fill multiple streams
- Float32 *inBuffer = (Float32 *) stream_.userBuffer[0];
- if ( stream_.doConvertBuffer[0] ) {
- convertBuffer( stream_.deviceBuffer, stream_.userBuffer[0], stream_.convertInfo[0] );
- inBuffer = (Float32 *) stream_.deviceBuffer;
- }
-
- if ( stream_.deviceInterleaved[0] == false ) { // mono mode
- UInt32 bufferBytes = outBufferList->mBuffers[handle->iStream[0]].mDataByteSize;
- for ( unsigned int i=0; i<stream_.nUserChannels[0]; i++ ) {
- memcpy( outBufferList->mBuffers[handle->iStream[0]+i].mData,
- (void *)&inBuffer[i*stream_.bufferSize], bufferBytes );
- }
- }
- else { // fill multiple multi-channel streams with interleaved data
- UInt32 streamChannels, channelsLeft, inJump, outJump, inOffset;
- Float32 *out, *in;
-
- bool inInterleaved = ( stream_.userInterleaved ) ? true : false;
- UInt32 inChannels = stream_.nUserChannels[0];
- if ( stream_.doConvertBuffer[0] ) {
- inInterleaved = true; // device buffer will always be interleaved for nStreams > 1 and not mono mode
- inChannels = stream_.nDeviceChannels[0];
- }
-
- if ( inInterleaved ) inOffset = 1;
- else inOffset = stream_.bufferSize;
-
- channelsLeft = inChannels;
- for ( unsigned int i=0; i<handle->nStreams[0]; i++ ) {
- in = inBuffer;
- out = (Float32 *) outBufferList->mBuffers[handle->iStream[0]+i].mData;
- streamChannels = outBufferList->mBuffers[handle->iStream[0]+i].mNumberChannels;
-
- outJump = 0;
- // Account for possible channel offset in first stream
- if ( i == 0 && stream_.channelOffset[0] > 0 ) {
- streamChannels -= stream_.channelOffset[0];
- outJump = stream_.channelOffset[0];
- out += outJump;
- }
-
- // Account for possible unfilled channels at end of the last stream
- if ( streamChannels > channelsLeft ) {
- outJump = streamChannels - channelsLeft;
- streamChannels = channelsLeft;
- }
-
- // Determine input buffer offsets and skips
- if ( inInterleaved ) {
- inJump = inChannels;
- in += inChannels - channelsLeft;
- }
- else {
- inJump = 1;
- in += (inChannels - channelsLeft) * inOffset;
- }
-
- for ( unsigned int i=0; i<stream_.bufferSize; i++ ) {
- for ( unsigned int j=0; j<streamChannels; j++ ) {
- *out++ = in[j*inOffset];
- }
- out += outJump;
- in += inJump;
- }
- channelsLeft -= streamChannels;
- }
- }
- }
- }
-
- // Don't bother draining input
- if ( handle->drainCounter ) {
- handle->drainCounter++;
- goto unlock;
- }
-
- AudioDeviceID inputDevice;
- inputDevice = handle->id[1];
- if ( stream_.mode == INPUT || ( stream_.mode == DUPLEX && deviceId == inputDevice ) ) {
-
- if ( handle->nStreams[1] == 1 ) {
- if ( stream_.doConvertBuffer[1] ) { // convert directly from CoreAudio stream buffer
- convertBuffer( stream_.userBuffer[1],
- (char *) inBufferList->mBuffers[handle->iStream[1]].mData,
- stream_.convertInfo[1] );
- }
- else { // copy to user buffer
- memcpy( stream_.userBuffer[1],
- inBufferList->mBuffers[handle->iStream[1]].mData,
- inBufferList->mBuffers[handle->iStream[1]].mDataByteSize );
- }
- }
- else { // read from multiple streams
- Float32 *outBuffer = (Float32 *) stream_.userBuffer[1];
- if ( stream_.doConvertBuffer[1] ) outBuffer = (Float32 *) stream_.deviceBuffer;
-
- if ( stream_.deviceInterleaved[1] == false ) { // mono mode
- UInt32 bufferBytes = inBufferList->mBuffers[handle->iStream[1]].mDataByteSize;
- for ( unsigned int i=0; i<stream_.nUserChannels[1]; i++ ) {
- memcpy( (void *)&outBuffer[i*stream_.bufferSize],
- inBufferList->mBuffers[handle->iStream[1]+i].mData, bufferBytes );
- }
- }
- else { // read from multiple multi-channel streams
- UInt32 streamChannels, channelsLeft, inJump, outJump, outOffset;
- Float32 *out, *in;
-
- bool outInterleaved = ( stream_.userInterleaved ) ? true : false;
- UInt32 outChannels = stream_.nUserChannels[1];
- if ( stream_.doConvertBuffer[1] ) {
- outInterleaved = true; // device buffer will always be interleaved for nStreams > 1 and not mono mode
- outChannels = stream_.nDeviceChannels[1];
- }
-
- if ( outInterleaved ) outOffset = 1;
- else outOffset = stream_.bufferSize;
-
- channelsLeft = outChannels;
- for ( unsigned int i=0; i<handle->nStreams[1]; i++ ) {
- out = outBuffer;
- in = (Float32 *) inBufferList->mBuffers[handle->iStream[1]+i].mData;
- streamChannels = inBufferList->mBuffers[handle->iStream[1]+i].mNumberChannels;
-
- inJump = 0;
- // Account for possible channel offset in first stream
- if ( i == 0 && stream_.channelOffset[1] > 0 ) {
- streamChannels -= stream_.channelOffset[1];
- inJump = stream_.channelOffset[1];
- in += inJump;
- }
-
- // Account for possible unread channels at end of the last stream
- if ( streamChannels > channelsLeft ) {
- inJump = streamChannels - channelsLeft;
- streamChannels = channelsLeft;
- }
-
- // Determine output buffer offsets and skips
- if ( outInterleaved ) {
- outJump = outChannels;
- out += outChannels - channelsLeft;
- }
- else {
- outJump = 1;
- out += (outChannels - channelsLeft) * outOffset;
- }
-
- for ( unsigned int i=0; i<stream_.bufferSize; i++ ) {
- for ( unsigned int j=0; j<streamChannels; j++ ) {
- out[j*outOffset] = *in++;
- }
- out += outJump;
- in += inJump;
- }
- channelsLeft -= streamChannels;
- }
- }
-
- if ( stream_.doConvertBuffer[1] ) { // convert from our internal "device" buffer
- convertBuffer( stream_.userBuffer[1],
- stream_.deviceBuffer,
- stream_.convertInfo[1] );
- }
- }
- }
-
- unlock:
- //MUTEX_UNLOCK( &stream_.mutex );
-
- RtApi::tickStreamTime();
- return SUCCESS;
-}
-
-const char* RtApiCore :: getErrorCode( OSStatus code )
-{
- switch( code ) {
-
- case kAudioHardwareNotRunningError:
- return "kAudioHardwareNotRunningError";
-
- case kAudioHardwareUnspecifiedError:
- return "kAudioHardwareUnspecifiedError";
-
- case kAudioHardwareUnknownPropertyError:
- return "kAudioHardwareUnknownPropertyError";
-
- case kAudioHardwareBadPropertySizeError:
- return "kAudioHardwareBadPropertySizeError";
-
- case kAudioHardwareIllegalOperationError:
- return "kAudioHardwareIllegalOperationError";
-
- case kAudioHardwareBadObjectError:
- return "kAudioHardwareBadObjectError";
-
- case kAudioHardwareBadDeviceError:
- return "kAudioHardwareBadDeviceError";
-
- case kAudioHardwareBadStreamError:
- return "kAudioHardwareBadStreamError";
-
- case kAudioHardwareUnsupportedOperationError:
- return "kAudioHardwareUnsupportedOperationError";
-
- case kAudioDeviceUnsupportedFormatError:
- return "kAudioDeviceUnsupportedFormatError";
-
- case kAudioDevicePermissionsError:
- return "kAudioDevicePermissionsError";
-
- default:
- return "CoreAudio unknown error";
- }
-}
-
- //******************** End of __MACOSX_CORE__ *********************//
-#endif
-
-#if defined(__UNIX_JACK__)
-
-// JACK is a low-latency audio server, originally written for the
-// GNU/Linux operating system and now also ported to OS-X. It can
-// connect a number of different applications to an audio device, as
-// well as allowing them to share audio between themselves.
-//
-// When using JACK with RtAudio, "devices" refer to JACK clients that
-// have ports connected to the server. The JACK server is typically
-// started in a terminal as follows:
-//
-// .jackd -d alsa -d hw:0
-//
-// or through an interface program such as qjackctl. Many of the
-// parameters normally set for a stream are fixed by the JACK server
-// and can be specified when the JACK server is started. In
-// particular,
-//
-// .jackd -d alsa -d hw:0 -r 44100 -p 512 -n 4
-//
-// specifies a sample rate of 44100 Hz, a buffer size of 512 sample
-// frames, and number of buffers = 4. Once the server is running, it
-// is not possible to override these values. If the values are not
-// specified in the command-line, the JACK server uses default values.
-//
-// The JACK server does not have to be running when an instance of
-// RtApiJack is created, though the function getDeviceCount() will
-// report 0 devices found until JACK has been started. When no
-// devices are available (i.e., the JACK server is not running), a
-// stream cannot be opened.
-
-#include <jack/jack.h>
-#include <unistd.h>
-#include <cstdio>
-
-// A structure to hold various information related to the Jack API
-// implementation.
-struct JackHandle {
- jack_client_t *client;
- jack_port_t **ports[2];
- std::string deviceName[2];
- bool xrun[2];
- pthread_cond_t condition;
- int drainCounter; // Tracks callback counts when draining
- bool internalDrain; // Indicates if stop is initiated from callback or not.
-
- JackHandle()
- :client(0), drainCounter(0), internalDrain(false) { ports[0] = 0; ports[1] = 0; xrun[0] = false; xrun[1] = false; }
-};
-
-static void jackSilentError( const char * ) {};
-
-RtApiJack :: RtApiJack()
-{
- // Nothing to do here.
-#if !defined(__RTAUDIO_DEBUG__)
- // Turn off Jack's internal error reporting.
- jack_set_error_function( &jackSilentError );
-#endif
-}
-
-RtApiJack :: ~RtApiJack()
-{
- if ( stream_.state != STREAM_CLOSED ) closeStream();
-}
-
-unsigned int RtApiJack :: getDeviceCount( void )
-{
- // See if we can become a jack client.
- jack_options_t options = (jack_options_t) ( JackNoStartServer ); //JackNullOption;
- jack_status_t *status = NULL;
- jack_client_t *client = jack_client_open( "RtApiJackCount", options, status );
- if ( client == 0 ) return 0;
-
- const char **ports;
- std::string port, previousPort;
- unsigned int nChannels = 0, nDevices = 0;
- ports = jack_get_ports( client, NULL, NULL, 0 );
- if ( ports ) {
- // Parse the port names up to the first colon (:).
- size_t iColon = 0;
- do {
- port = (char *) ports[ nChannels ];
- iColon = port.find(":");
- if ( iColon != std::string::npos ) {
- port = port.substr( 0, iColon + 1 );
- if ( port != previousPort ) {
- nDevices++;
- previousPort = port;
- }
- }
- } while ( ports[++nChannels] );
- free( ports );
- }
-
- jack_client_close( client );
- return nDevices;
-}
-
-RtAudio::DeviceInfo RtApiJack :: getDeviceInfo( unsigned int device )
-{
- RtAudio::DeviceInfo info;
- info.probed = false;
-
- jack_options_t options = (jack_options_t) ( JackNoStartServer ); //JackNullOption
- jack_status_t *status = NULL;
- jack_client_t *client = jack_client_open( "RtApiJackInfo", options, status );
- if ( client == 0 ) {
- errorText_ = "RtApiJack::getDeviceInfo: Jack server not found or connection error!";
- error( RtAudioError::WARNING );
- return info;
- }
-
- const char **ports;
- std::string port, previousPort;
- unsigned int nPorts = 0, nDevices = 0;
- ports = jack_get_ports( client, NULL, NULL, 0 );
- if ( ports ) {
- // Parse the port names up to the first colon (:).
- size_t iColon = 0;
- do {
- port = (char *) ports[ nPorts ];
- iColon = port.find(":");
- if ( iColon != std::string::npos ) {
- port = port.substr( 0, iColon );
- if ( port != previousPort ) {
- if ( nDevices == device ) info.name = port;
- nDevices++;
- previousPort = port;
- }
- }
- } while ( ports[++nPorts] );
- free( ports );
- }
-
- if ( device >= nDevices ) {
- jack_client_close( client );
- errorText_ = "RtApiJack::getDeviceInfo: device ID is invalid!";
- error( RtAudioError::INVALID_USE );
- return info;
- }
-
- // Get the current jack server sample rate.
- info.sampleRates.clear();
-
- info.preferredSampleRate = jack_get_sample_rate( client );
- info.sampleRates.push_back( info.preferredSampleRate );
-
- // Count the available ports containing the client name as device
- // channels. Jack "input ports" equal RtAudio output channels.
- unsigned int nChannels = 0;
- ports = jack_get_ports( client, info.name.c_str(), NULL, JackPortIsInput );
- if ( ports ) {
- while ( ports[ nChannels ] ) nChannels++;
- free( ports );
- info.outputChannels = nChannels;
- }
-
- // Jack "output ports" equal RtAudio input channels.
- nChannels = 0;
- ports = jack_get_ports( client, info.name.c_str(), NULL, JackPortIsOutput );
- if ( ports ) {
- while ( ports[ nChannels ] ) nChannels++;
- free( ports );
- info.inputChannels = nChannels;
- }
-
- if ( info.outputChannels == 0 && info.inputChannels == 0 ) {
- jack_client_close(client);
- errorText_ = "RtApiJack::getDeviceInfo: error determining Jack input/output channels!";
- error( RtAudioError::WARNING );
- return info;
- }
-
- // If device opens for both playback and capture, we determine the channels.
- if ( info.outputChannels > 0 && info.inputChannels > 0 )
- info.duplexChannels = (info.outputChannels > info.inputChannels) ? info.inputChannels : info.outputChannels;
-
- // Jack always uses 32-bit floats.
- info.nativeFormats = RTAUDIO_FLOAT32;
-
- // Jack doesn't provide default devices so we'll use the first available one.
- if ( device == 0 && info.outputChannels > 0 )
- info.isDefaultOutput = true;
- if ( device == 0 && info.inputChannels > 0 )
- info.isDefaultInput = true;
-
- jack_client_close(client);
- info.probed = true;
- return info;
-}
-
-static int jackCallbackHandler( jack_nframes_t nframes, void *infoPointer )
-{
- CallbackInfo *info = (CallbackInfo *) infoPointer;
-
- RtApiJack *object = (RtApiJack *) info->object;
- if ( object->callbackEvent( (unsigned long) nframes ) == false ) return 1;
-
- return 0;
-}
-
-// This function will be called by a spawned thread when the Jack
-// server signals that it is shutting down. It is necessary to handle
-// it this way because the jackShutdown() function must return before
-// the jack_deactivate() function (in closeStream()) will return.
-static void *jackCloseStream( void *ptr )
-{
- CallbackInfo *info = (CallbackInfo *) ptr;
- RtApiJack *object = (RtApiJack *) info->object;
-
- object->closeStream();
-
- pthread_exit( NULL );
-}
-static void jackShutdown( void *infoPointer )
-{
- CallbackInfo *info = (CallbackInfo *) infoPointer;
- RtApiJack *object = (RtApiJack *) info->object;
-
- // Check current stream state. If stopped, then we'll assume this
- // was called as a result of a call to RtApiJack::stopStream (the
- // deactivation of a client handle causes this function to be called).
- // If not, we'll assume the Jack server is shutting down or some
- // other problem occurred and we should close the stream.
- if ( object->isStreamRunning() == false ) return;
-
- ThreadHandle threadId;
- pthread_create( &threadId, NULL, jackCloseStream, info );
- std::cerr << "\nRtApiJack: the Jack server is shutting down this client ... stream stopped and closed!!\n" << std::endl;
-}
-
-static int jackXrun( void *infoPointer )
-{
- JackHandle *handle = (JackHandle *) infoPointer;
-
- if ( handle->ports[0] ) handle->xrun[0] = true;
- if ( handle->ports[1] ) handle->xrun[1] = true;
-
- return 0;
-}
-
-bool RtApiJack :: probeDeviceOpen( unsigned int device, StreamMode mode, unsigned int channels,
- unsigned int firstChannel, unsigned int sampleRate,
- RtAudioFormat format, unsigned int *bufferSize,
- RtAudio::StreamOptions *options )
-{
- JackHandle *handle = (JackHandle *) stream_.apiHandle;
-
- // Look for jack server and try to become a client (only do once per stream).
- jack_client_t *client = 0;
- if ( mode == OUTPUT || ( mode == INPUT && stream_.mode != OUTPUT ) ) {
- jack_options_t jackoptions = (jack_options_t) ( JackNoStartServer ); //JackNullOption;
- jack_status_t *status = NULL;
- if ( options && !options->streamName.empty() )
- client = jack_client_open( options->streamName.c_str(), jackoptions, status );
- else
- client = jack_client_open( "RtApiJack", jackoptions, status );
- if ( client == 0 ) {
- errorText_ = "RtApiJack::probeDeviceOpen: Jack server not found or connection error!";
- error( RtAudioError::WARNING );
- return FAILURE;
- }
- }
- else {
- // The handle must have been created on an earlier pass.
- client = handle->client;
- }
-
- const char **ports;
- std::string port, previousPort, deviceName;
- unsigned int nPorts = 0, nDevices = 0;
- ports = jack_get_ports( client, NULL, NULL, 0 );
- if ( ports ) {
- // Parse the port names up to the first colon (:).
- size_t iColon = 0;
- do {
- port = (char *) ports[ nPorts ];
- iColon = port.find(":");
- if ( iColon != std::string::npos ) {
- port = port.substr( 0, iColon );
- if ( port != previousPort ) {
- if ( nDevices == device ) deviceName = port;
- nDevices++;
- previousPort = port;
- }
- }
- } while ( ports[++nPorts] );
- free( ports );
- }
-
- if ( device >= nDevices ) {
- errorText_ = "RtApiJack::probeDeviceOpen: device ID is invalid!";
- return FAILURE;
- }
-
- // Count the available ports containing the client name as device
- // channels. Jack "input ports" equal RtAudio output channels.
- unsigned int nChannels = 0;
- unsigned long flag = JackPortIsInput;
- if ( mode == INPUT ) flag = JackPortIsOutput;
- ports = jack_get_ports( client, deviceName.c_str(), NULL, flag );
- if ( ports ) {
- while ( ports[ nChannels ] ) nChannels++;
- free( ports );
- }
-
- // Compare the jack ports for specified client to the requested number of channels.
- if ( nChannels < (channels + firstChannel) ) {
- errorStream_ << "RtApiJack::probeDeviceOpen: requested number of channels (" << channels << ") + offset (" << firstChannel << ") not found for specified device (" << device << ":" << deviceName << ").";
- errorText_ = errorStream_.str();
- return FAILURE;
- }
-
- // Check the jack server sample rate.
- unsigned int jackRate = jack_get_sample_rate( client );
- if ( sampleRate != jackRate ) {
- jack_client_close( client );
- errorStream_ << "RtApiJack::probeDeviceOpen: the requested sample rate (" << sampleRate << ") is different than the JACK server rate (" << jackRate << ").";
- errorText_ = errorStream_.str();
- return FAILURE;
- }
- stream_.sampleRate = jackRate;
-
- // Get the latency of the JACK port.
- ports = jack_get_ports( client, deviceName.c_str(), NULL, flag );
- if ( ports[ firstChannel ] ) {
- // Added by Ge Wang
- jack_latency_callback_mode_t cbmode = (mode == INPUT ? JackCaptureLatency : JackPlaybackLatency);
- // the range (usually the min and max are equal)
- jack_latency_range_t latrange; latrange.min = latrange.max = 0;
- // get the latency range
- jack_port_get_latency_range( jack_port_by_name( client, ports[firstChannel] ), cbmode, &latrange );
- // be optimistic, use the min!
- stream_.latency[mode] = latrange.min;
- //stream_.latency[mode] = jack_port_get_latency( jack_port_by_name( client, ports[ firstChannel ] ) );
- }
- free( ports );
-
- // The jack server always uses 32-bit floating-point data.
- stream_.deviceFormat[mode] = RTAUDIO_FLOAT32;
- stream_.userFormat = format;
-
- if ( options && options->flags & RTAUDIO_NONINTERLEAVED ) stream_.userInterleaved = false;
- else stream_.userInterleaved = true;
-
- // Jack always uses non-interleaved buffers.
- stream_.deviceInterleaved[mode] = false;
-
- // Jack always provides host byte-ordered data.
- stream_.doByteSwap[mode] = false;
-
- // Get the buffer size. The buffer size and number of buffers
- // (periods) is set when the jack server is started.
- stream_.bufferSize = (int) jack_get_buffer_size( client );
- *bufferSize = stream_.bufferSize;
-
- stream_.nDeviceChannels[mode] = channels;
- stream_.nUserChannels[mode] = channels;
-
- // Set flags for buffer conversion.
- stream_.doConvertBuffer[mode] = false;
- if ( stream_.userFormat != stream_.deviceFormat[mode] )
- stream_.doConvertBuffer[mode] = true;
- if ( stream_.userInterleaved != stream_.deviceInterleaved[mode] &&
- stream_.nUserChannels[mode] > 1 )
- stream_.doConvertBuffer[mode] = true;
-
- // Allocate our JackHandle structure for the stream.
- if ( handle == 0 ) {
- try {
- handle = new JackHandle;
- }
- catch ( std::bad_alloc& ) {
- errorText_ = "RtApiJack::probeDeviceOpen: error allocating JackHandle memory.";
- goto error;
- }
-
- if ( pthread_cond_init(&handle->condition, NULL) ) {
- errorText_ = "RtApiJack::probeDeviceOpen: error initializing pthread condition variable.";
- goto error;
- }
- stream_.apiHandle = (void *) handle;
- handle->client = client;
- }
- handle->deviceName[mode] = deviceName;
-
- // Allocate necessary internal buffers.
- unsigned long bufferBytes;
- bufferBytes = stream_.nUserChannels[mode] * *bufferSize * formatBytes( stream_.userFormat );
- stream_.userBuffer[mode] = (char *) calloc( bufferBytes, 1 );
- if ( stream_.userBuffer[mode] == NULL ) {
- errorText_ = "RtApiJack::probeDeviceOpen: error allocating user buffer memory.";
- goto error;
- }
-
- if ( stream_.doConvertBuffer[mode] ) {
-
- bool makeBuffer = true;
- if ( mode == OUTPUT )
- bufferBytes = stream_.nDeviceChannels[0] * formatBytes( stream_.deviceFormat[0] );
- else { // mode == INPUT
- bufferBytes = stream_.nDeviceChannels[1] * formatBytes( stream_.deviceFormat[1] );
- if ( stream_.mode == OUTPUT && stream_.deviceBuffer ) {
- unsigned long bytesOut = stream_.nDeviceChannels[0] * formatBytes(stream_.deviceFormat[0]);
- if ( bufferBytes < bytesOut ) makeBuffer = false;
- }
- }
-
- if ( makeBuffer ) {
- bufferBytes *= *bufferSize;
- if ( stream_.deviceBuffer ) free( stream_.deviceBuffer );
- stream_.deviceBuffer = (char *) calloc( bufferBytes, 1 );
- if ( stream_.deviceBuffer == NULL ) {
- errorText_ = "RtApiJack::probeDeviceOpen: error allocating device buffer memory.";
- goto error;
- }
- }
- }
-
- // Allocate memory for the Jack ports (channels) identifiers.
- handle->ports[mode] = (jack_port_t **) malloc ( sizeof (jack_port_t *) * channels );
- if ( handle->ports[mode] == NULL ) {
- errorText_ = "RtApiJack::probeDeviceOpen: error allocating port memory.";
- goto error;
- }
-
- stream_.device[mode] = device;
- stream_.channelOffset[mode] = firstChannel;
- stream_.state = STREAM_STOPPED;
- stream_.callbackInfo.object = (void *) this;
-
- if ( stream_.mode == OUTPUT && mode == INPUT )
- // We had already set up the stream for output.
- stream_.mode = DUPLEX;
- else {
- stream_.mode = mode;
- jack_set_process_callback( handle->client, jackCallbackHandler, (void *) &stream_.callbackInfo );
- jack_set_xrun_callback( handle->client, jackXrun, (void *) &handle );
- jack_on_shutdown( handle->client, jackShutdown, (void *) &stream_.callbackInfo );
- }
-
- // Register our ports.
- char label[64];
- if ( mode == OUTPUT ) {
- for ( unsigned int i=0; i<stream_.nUserChannels[0]; i++ ) {
- snprintf( label, 64, "outport %d", i );
- handle->ports[0][i] = jack_port_register( handle->client, (const char *)label,
- JACK_DEFAULT_AUDIO_TYPE, JackPortIsOutput, 0 );
- }
- }
- else {
- for ( unsigned int i=0; i<stream_.nUserChannels[1]; i++ ) {
- snprintf( label, 64, "inport %d", i );
- handle->ports[1][i] = jack_port_register( handle->client, (const char *)label,
- JACK_DEFAULT_AUDIO_TYPE, JackPortIsInput, 0 );
- }
- }
-
- // Setup the buffer conversion information structure. We don't use
- // buffers to do channel offsets, so we override that parameter
- // here.
- if ( stream_.doConvertBuffer[mode] ) setConvertInfo( mode, 0 );
-
- return SUCCESS;
-
- error:
- if ( handle ) {
- pthread_cond_destroy( &handle->condition );
- jack_client_close( handle->client );
-
- if ( handle->ports[0] ) free( handle->ports[0] );
- if ( handle->ports[1] ) free( handle->ports[1] );
-
- delete handle;
- stream_.apiHandle = 0;
- }
-
- for ( int i=0; i<2; i++ ) {
- if ( stream_.userBuffer[i] ) {
- free( stream_.userBuffer[i] );
- stream_.userBuffer[i] = 0;
- }
- }
-
- if ( stream_.deviceBuffer ) {
- free( stream_.deviceBuffer );
- stream_.deviceBuffer = 0;
- }
-
- return FAILURE;
-}
-
-void RtApiJack :: closeStream( void )
-{
- if ( stream_.state == STREAM_CLOSED ) {
- errorText_ = "RtApiJack::closeStream(): no open stream to close!";
- error( RtAudioError::WARNING );
- return;
- }
-
- JackHandle *handle = (JackHandle *) stream_.apiHandle;
- if ( handle ) {
-
- if ( stream_.state == STREAM_RUNNING )
- jack_deactivate( handle->client );
-
- jack_client_close( handle->client );
- }
-
- if ( handle ) {
- if ( handle->ports[0] ) free( handle->ports[0] );
- if ( handle->ports[1] ) free( handle->ports[1] );
- pthread_cond_destroy( &handle->condition );
- delete handle;
- stream_.apiHandle = 0;
- }
-
- for ( int i=0; i<2; i++ ) {
- if ( stream_.userBuffer[i] ) {
- free( stream_.userBuffer[i] );
- stream_.userBuffer[i] = 0;
- }
- }
-
- if ( stream_.deviceBuffer ) {
- free( stream_.deviceBuffer );
- stream_.deviceBuffer = 0;
- }
-
- stream_.mode = UNINITIALIZED;
- stream_.state = STREAM_CLOSED;
-}
-
-void RtApiJack :: startStream( void )
-{
- verifyStream();
- if ( stream_.state == STREAM_RUNNING ) {
- errorText_ = "RtApiJack::startStream(): the stream is already running!";
- error( RtAudioError::WARNING );
- return;
- }
-
- JackHandle *handle = (JackHandle *) stream_.apiHandle;
- int result = jack_activate( handle->client );
- if ( result ) {
- errorText_ = "RtApiJack::startStream(): unable to activate JACK client!";
- goto unlock;
- }
-
- const char **ports;
-
- // Get the list of available ports.
- if ( stream_.mode == OUTPUT || stream_.mode == DUPLEX ) {
- result = 1;
- ports = jack_get_ports( handle->client, handle->deviceName[0].c_str(), NULL, JackPortIsInput);
- if ( ports == NULL) {
- errorText_ = "RtApiJack::startStream(): error determining available JACK input ports!";
- goto unlock;
- }
-
- // Now make the port connections. Since RtAudio wasn't designed to
- // allow the user to select particular channels of a device, we'll
- // just open the first "nChannels" ports with offset.
- for ( unsigned int i=0; i<stream_.nUserChannels[0]; i++ ) {
- result = 1;
- if ( ports[ stream_.channelOffset[0] + i ] )
- result = jack_connect( handle->client, jack_port_name( handle->ports[0][i] ), ports[ stream_.channelOffset[0] + i ] );
- if ( result ) {
- free( ports );
- errorText_ = "RtApiJack::startStream(): error connecting output ports!";
- goto unlock;
- }
- }
- free(ports);
- }
-
- if ( stream_.mode == INPUT || stream_.mode == DUPLEX ) {
- result = 1;
- ports = jack_get_ports( handle->client, handle->deviceName[1].c_str(), NULL, JackPortIsOutput );
- if ( ports == NULL) {
- errorText_ = "RtApiJack::startStream(): error determining available JACK output ports!";
- goto unlock;
- }
-
- // Now make the port connections. See note above.
- for ( unsigned int i=0; i<stream_.nUserChannels[1]; i++ ) {
- result = 1;
- if ( ports[ stream_.channelOffset[1] + i ] )
- result = jack_connect( handle->client, ports[ stream_.channelOffset[1] + i ], jack_port_name( handle->ports[1][i] ) );
- if ( result ) {
- free( ports );
- errorText_ = "RtApiJack::startStream(): error connecting input ports!";
- goto unlock;
- }
- }
- free(ports);
- }
-
- handle->drainCounter = 0;
- handle->internalDrain = false;
- stream_.state = STREAM_RUNNING;
-
- unlock:
- if ( result == 0 ) return;
- error( RtAudioError::SYSTEM_ERROR );
-}
-
-void RtApiJack :: stopStream( void )
-{
- verifyStream();
- if ( stream_.state == STREAM_STOPPED ) {
- errorText_ = "RtApiJack::stopStream(): the stream is already stopped!";
- error( RtAudioError::WARNING );
- return;
- }
-
- JackHandle *handle = (JackHandle *) stream_.apiHandle;
- if ( stream_.mode == OUTPUT || stream_.mode == DUPLEX ) {
-
- if ( handle->drainCounter == 0 ) {
- handle->drainCounter = 2;
- pthread_cond_wait( &handle->condition, &stream_.mutex ); // block until signaled
- }
- }
-
- jack_deactivate( handle->client );
- stream_.state = STREAM_STOPPED;
-}
-
-void RtApiJack :: abortStream( void )
-{
- verifyStream();
- if ( stream_.state == STREAM_STOPPED ) {
- errorText_ = "RtApiJack::abortStream(): the stream is already stopped!";
- error( RtAudioError::WARNING );
- return;
- }
-
- JackHandle *handle = (JackHandle *) stream_.apiHandle;
- handle->drainCounter = 2;
-
- stopStream();
-}
-
-// This function will be called by a spawned thread when the user
-// callback function signals that the stream should be stopped or
-// aborted. It is necessary to handle it this way because the
-// callbackEvent() function must return before the jack_deactivate()
-// function will return.
-static void *jackStopStream( void *ptr )
-{
- CallbackInfo *info = (CallbackInfo *) ptr;
- RtApiJack *object = (RtApiJack *) info->object;
-
- object->stopStream();
- pthread_exit( NULL );
-}
-
-bool RtApiJack :: callbackEvent( unsigned long nframes )
-{
- if ( stream_.state == STREAM_STOPPED || stream_.state == STREAM_STOPPING ) return SUCCESS;
- if ( stream_.state == STREAM_CLOSED ) {
- errorText_ = "RtApiCore::callbackEvent(): the stream is closed ... this shouldn't happen!";
- error( RtAudioError::WARNING );
- return FAILURE;
- }
- if ( stream_.bufferSize != nframes ) {
- errorText_ = "RtApiCore::callbackEvent(): the JACK buffer size has changed ... cannot process!";
- error( RtAudioError::WARNING );
- return FAILURE;
- }
-
- CallbackInfo *info = (CallbackInfo *) &stream_.callbackInfo;
- JackHandle *handle = (JackHandle *) stream_.apiHandle;
-
- // Check if we were draining the stream and signal is finished.
- if ( handle->drainCounter > 3 ) {
- ThreadHandle threadId;
-
- stream_.state = STREAM_STOPPING;
- if ( handle->internalDrain == true )
- pthread_create( &threadId, NULL, jackStopStream, info );
- else
- pthread_cond_signal( &handle->condition );
- return SUCCESS;
- }
-
- // Invoke user callback first, to get fresh output data.
- if ( handle->drainCounter == 0 ) {
- RtAudioCallback callback = (RtAudioCallback) info->callback;
- double streamTime = getStreamTime();
- RtAudioStreamStatus status = 0;
- if ( stream_.mode != INPUT && handle->xrun[0] == true ) {
- status |= RTAUDIO_OUTPUT_UNDERFLOW;
- handle->xrun[0] = false;
- }
- if ( stream_.mode != OUTPUT && handle->xrun[1] == true ) {
- status |= RTAUDIO_INPUT_OVERFLOW;
- handle->xrun[1] = false;
- }
- int cbReturnValue = callback( stream_.userBuffer[0], stream_.userBuffer[1],
- stream_.bufferSize, streamTime, status, info->userData );
- if ( cbReturnValue == 2 ) {
- stream_.state = STREAM_STOPPING;
- handle->drainCounter = 2;
- ThreadHandle id;
- pthread_create( &id, NULL, jackStopStream, info );
- return SUCCESS;
- }
- else if ( cbReturnValue == 1 ) {
- handle->drainCounter = 1;
- handle->internalDrain = true;
- }
- }
-
- jack_default_audio_sample_t *jackbuffer;
- unsigned long bufferBytes = nframes * sizeof( jack_default_audio_sample_t );
- if ( stream_.mode == OUTPUT || stream_.mode == DUPLEX ) {
-
- if ( handle->drainCounter > 1 ) { // write zeros to the output stream
-
- for ( unsigned int i=0; i<stream_.nDeviceChannels[0]; i++ ) {
- jackbuffer = (jack_default_audio_sample_t *) jack_port_get_buffer( handle->ports[0][i], (jack_nframes_t) nframes );
- memset( jackbuffer, 0, bufferBytes );
- }
-
- }
- else if ( stream_.doConvertBuffer[0] ) {
-
- convertBuffer( stream_.deviceBuffer, stream_.userBuffer[0], stream_.convertInfo[0] );
-
- for ( unsigned int i=0; i<stream_.nDeviceChannels[0]; i++ ) {
- jackbuffer = (jack_default_audio_sample_t *) jack_port_get_buffer( handle->ports[0][i], (jack_nframes_t) nframes );
- memcpy( jackbuffer, &stream_.deviceBuffer[i*bufferBytes], bufferBytes );
- }
- }
- else { // no buffer conversion
- for ( unsigned int i=0; i<stream_.nUserChannels[0]; i++ ) {
- jackbuffer = (jack_default_audio_sample_t *) jack_port_get_buffer( handle->ports[0][i], (jack_nframes_t) nframes );
- memcpy( jackbuffer, &stream_.userBuffer[0][i*bufferBytes], bufferBytes );
- }
- }
- }
-
- // Don't bother draining input
- if ( handle->drainCounter ) {
- handle->drainCounter++;
- goto unlock;
- }
-
- if ( stream_.mode == INPUT || stream_.mode == DUPLEX ) {
-
- if ( stream_.doConvertBuffer[1] ) {
- for ( unsigned int i=0; i<stream_.nDeviceChannels[1]; i++ ) {
- jackbuffer = (jack_default_audio_sample_t *) jack_port_get_buffer( handle->ports[1][i], (jack_nframes_t) nframes );
- memcpy( &stream_.deviceBuffer[i*bufferBytes], jackbuffer, bufferBytes );
- }
- convertBuffer( stream_.userBuffer[1], stream_.deviceBuffer, stream_.convertInfo[1] );
- }
- else { // no buffer conversion
- for ( unsigned int i=0; i<stream_.nUserChannels[1]; i++ ) {
- jackbuffer = (jack_default_audio_sample_t *) jack_port_get_buffer( handle->ports[1][i], (jack_nframes_t) nframes );
- memcpy( &stream_.userBuffer[1][i*bufferBytes], jackbuffer, bufferBytes );
- }
- }
- }
-
- unlock:
- RtApi::tickStreamTime();
- return SUCCESS;
-}
- //******************** End of __UNIX_JACK__ *********************//
-#endif
-
-#if defined(__WINDOWS_ASIO__) // ASIO API on Windows
-
-// The ASIO API is designed around a callback scheme, so this
-// implementation is similar to that used for OS-X CoreAudio and Linux
-// Jack. The primary constraint with ASIO is that it only allows
-// access to a single driver at a time. Thus, it is not possible to
-// have more than one simultaneous RtAudio stream.
-//
-// This implementation also requires a number of external ASIO files
-// and a few global variables. The ASIO callback scheme does not
-// allow for the passing of user data, so we must create a global
-// pointer to our callbackInfo structure.
-//
-// On unix systems, we make use of a pthread condition variable.
-// Since there is no equivalent in Windows, I hacked something based
-// on information found in
-// http://www.cs.wustl.edu/~schmidt/win32-cv-1.html.
-
-#include "asiosys.h"
-#include "asio.h"
-#include "iasiothiscallresolver.h"
-#include "asiodrivers.h"
-#include <cmath>
-
-static AsioDrivers drivers;
-static ASIOCallbacks asioCallbacks;
-static ASIODriverInfo driverInfo;
-static CallbackInfo *asioCallbackInfo;
-static bool asioXRun;
-
-struct AsioHandle {
- int drainCounter; // Tracks callback counts when draining
- bool internalDrain; // Indicates if stop is initiated from callback or not.
- ASIOBufferInfo *bufferInfos;
- HANDLE condition;
-
- AsioHandle()
- :drainCounter(0), internalDrain(false), bufferInfos(0) {}
-};
-
-// Function declarations (definitions at end of section)
-static const char* getAsioErrorString( ASIOError result );
-static void sampleRateChanged( ASIOSampleRate sRate );
-static long asioMessages( long selector, long value, void* message, double* opt );
-
-RtApiAsio :: RtApiAsio()
-{
- // ASIO cannot run on a multi-threaded appartment. You can call
- // CoInitialize beforehand, but it must be for appartment threading
- // (in which case, CoInitilialize will return S_FALSE here).
- coInitialized_ = false;
- HRESULT hr = CoInitialize( NULL );
- if ( FAILED(hr) ) {
- errorText_ = "RtApiAsio::ASIO requires a single-threaded appartment. Call CoInitializeEx(0,COINIT_APARTMENTTHREADED)";
- error( RtAudioError::WARNING );
- }
- coInitialized_ = true;
-
- drivers.removeCurrentDriver();
- driverInfo.asioVersion = 2;
-
- // See note in DirectSound implementation about GetDesktopWindow().
- driverInfo.sysRef = GetForegroundWindow();
-}
-
-RtApiAsio :: ~RtApiAsio()
-{
- if ( stream_.state != STREAM_CLOSED ) closeStream();
- if ( coInitialized_ ) CoUninitialize();
-}
-
-unsigned int RtApiAsio :: getDeviceCount( void )
-{
- return (unsigned int) drivers.asioGetNumDev();
-}
-
-RtAudio::DeviceInfo RtApiAsio :: getDeviceInfo( unsigned int device )
-{
- RtAudio::DeviceInfo info;
- info.probed = false;
-
- // Get device ID
- unsigned int nDevices = getDeviceCount();
- if ( nDevices == 0 ) {
- errorText_ = "RtApiAsio::getDeviceInfo: no devices found!";
- error( RtAudioError::INVALID_USE );
- return info;
- }
-
- if ( device >= nDevices ) {
- errorText_ = "RtApiAsio::getDeviceInfo: device ID is invalid!";
- error( RtAudioError::INVALID_USE );
- return info;
- }
-
- // If a stream is already open, we cannot probe other devices. Thus, use the saved results.
- if ( stream_.state != STREAM_CLOSED ) {
- if ( device >= devices_.size() ) {
- errorText_ = "RtApiAsio::getDeviceInfo: device ID was not present before stream was opened.";
- error( RtAudioError::WARNING );
- return info;
- }
- return devices_[ device ];
- }
-
- char driverName[32];
- ASIOError result = drivers.asioGetDriverName( (int) device, driverName, 32 );
- if ( result != ASE_OK ) {
- errorStream_ << "RtApiAsio::getDeviceInfo: unable to get driver name (" << getAsioErrorString( result ) << ").";
- errorText_ = errorStream_.str();
- error( RtAudioError::WARNING );
- return info;
- }
-
- info.name = driverName;
-
- if ( !drivers.loadDriver( driverName ) ) {
- errorStream_ << "RtApiAsio::getDeviceInfo: unable to load driver (" << driverName << ").";
- errorText_ = errorStream_.str();
- error( RtAudioError::WARNING );
- return info;
- }
-
- result = ASIOInit( &driverInfo );
- if ( result != ASE_OK ) {
- errorStream_ << "RtApiAsio::getDeviceInfo: error (" << getAsioErrorString( result ) << ") initializing driver (" << driverName << ").";
- errorText_ = errorStream_.str();
- error( RtAudioError::WARNING );
- return info;
- }
-
- // Determine the device channel information.
- long inputChannels, outputChannels;
- result = ASIOGetChannels( &inputChannels, &outputChannels );
- if ( result != ASE_OK ) {
- drivers.removeCurrentDriver();
- errorStream_ << "RtApiAsio::getDeviceInfo: error (" << getAsioErrorString( result ) << ") getting channel count (" << driverName << ").";
- errorText_ = errorStream_.str();
- error( RtAudioError::WARNING );
- return info;
- }
-
- info.outputChannels = outputChannels;
- info.inputChannels = inputChannels;
- if ( info.outputChannels > 0 && info.inputChannels > 0 )
- info.duplexChannels = (info.outputChannels > info.inputChannels) ? info.inputChannels : info.outputChannels;
-
- // Determine the supported sample rates.
- info.sampleRates.clear();
- for ( unsigned int i=0; i<MAX_SAMPLE_RATES; i++ ) {
- result = ASIOCanSampleRate( (ASIOSampleRate) SAMPLE_RATES[i] );
- if ( result == ASE_OK ) {
- info.sampleRates.push_back( SAMPLE_RATES[i] );
-
- if ( !info.preferredSampleRate || ( SAMPLE_RATES[i] <= 48000 && SAMPLE_RATES[i] > info.preferredSampleRate ) )
- info.preferredSampleRate = SAMPLE_RATES[i];
- }
- }
-
- // Determine supported data types ... just check first channel and assume rest are the same.
- ASIOChannelInfo channelInfo;
- channelInfo.channel = 0;
- channelInfo.isInput = true;
- if ( info.inputChannels <= 0 ) channelInfo.isInput = false;
- result = ASIOGetChannelInfo( &channelInfo );
- if ( result != ASE_OK ) {
- drivers.removeCurrentDriver();
- errorStream_ << "RtApiAsio::getDeviceInfo: error (" << getAsioErrorString( result ) << ") getting driver channel info (" << driverName << ").";
- errorText_ = errorStream_.str();
- error( RtAudioError::WARNING );
- return info;
- }
-
- info.nativeFormats = 0;
- if ( channelInfo.type == ASIOSTInt16MSB || channelInfo.type == ASIOSTInt16LSB )
- info.nativeFormats |= RTAUDIO_SINT16;
- else if ( channelInfo.type == ASIOSTInt32MSB || channelInfo.type == ASIOSTInt32LSB )
- info.nativeFormats |= RTAUDIO_SINT32;
- else if ( channelInfo.type == ASIOSTFloat32MSB || channelInfo.type == ASIOSTFloat32LSB )
- info.nativeFormats |= RTAUDIO_FLOAT32;
- else if ( channelInfo.type == ASIOSTFloat64MSB || channelInfo.type == ASIOSTFloat64LSB )
- info.nativeFormats |= RTAUDIO_FLOAT64;
- else if ( channelInfo.type == ASIOSTInt24MSB || channelInfo.type == ASIOSTInt24LSB )
- info.nativeFormats |= RTAUDIO_SINT24;
-
- if ( info.outputChannels > 0 )
- if ( getDefaultOutputDevice() == device ) info.isDefaultOutput = true;
- if ( info.inputChannels > 0 )
- if ( getDefaultInputDevice() == device ) info.isDefaultInput = true;
-
- info.probed = true;
- drivers.removeCurrentDriver();
- return info;
-}
-
-static void bufferSwitch( long index, ASIOBool /*processNow*/ )
-{
- RtApiAsio *object = (RtApiAsio *) asioCallbackInfo->object;
- object->callbackEvent( index );
-}
-
-void RtApiAsio :: saveDeviceInfo( void )
-{
- devices_.clear();
-
- unsigned int nDevices = getDeviceCount();
- devices_.resize( nDevices );
- for ( unsigned int i=0; i<nDevices; i++ )
- devices_[i] = getDeviceInfo( i );
-}
-
-bool RtApiAsio :: probeDeviceOpen( unsigned int device, StreamMode mode, unsigned int channels,
- unsigned int firstChannel, unsigned int sampleRate,
- RtAudioFormat format, unsigned int *bufferSize,
- RtAudio::StreamOptions *options )
-{////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
-
- bool isDuplexInput = mode == INPUT && stream_.mode == OUTPUT;
-
- // For ASIO, a duplex stream MUST use the same driver.
- if ( isDuplexInput && stream_.device[0] != device ) {
- errorText_ = "RtApiAsio::probeDeviceOpen: an ASIO duplex stream must use the same device for input and output!";
- return FAILURE;
- }
-
- char driverName[32];
- ASIOError result = drivers.asioGetDriverName( (int) device, driverName, 32 );
- if ( result != ASE_OK ) {
- errorStream_ << "RtApiAsio::probeDeviceOpen: unable to get driver name (" << getAsioErrorString( result ) << ").";
- errorText_ = errorStream_.str();
- return FAILURE;
- }
-
- // Only load the driver once for duplex stream.
- if ( !isDuplexInput ) {
- // The getDeviceInfo() function will not work when a stream is open
- // because ASIO does not allow multiple devices to run at the same
- // time. Thus, we'll probe the system before opening a stream and
- // save the results for use by getDeviceInfo().
- this->saveDeviceInfo();
-
- if ( !drivers.loadDriver( driverName ) ) {
- errorStream_ << "RtApiAsio::probeDeviceOpen: unable to load driver (" << driverName << ").";
- errorText_ = errorStream_.str();
- return FAILURE;
- }
-
- result = ASIOInit( &driverInfo );
- if ( result != ASE_OK ) {
- errorStream_ << "RtApiAsio::probeDeviceOpen: error (" << getAsioErrorString( result ) << ") initializing driver (" << driverName << ").";
- errorText_ = errorStream_.str();
- return FAILURE;
- }
- }
-
- // keep them before any "goto error", they are used for error cleanup + goto device boundary checks
- bool buffersAllocated = false;
- AsioHandle *handle = (AsioHandle *) stream_.apiHandle;
- unsigned int nChannels;
-
-
- // Check the device channel count.
- long inputChannels, outputChannels;
- result = ASIOGetChannels( &inputChannels, &outputChannels );
- if ( result != ASE_OK ) {
- errorStream_ << "RtApiAsio::probeDeviceOpen: error (" << getAsioErrorString( result ) << ") getting channel count (" << driverName << ").";
- errorText_ = errorStream_.str();
- goto error;
- }
-
- if ( ( mode == OUTPUT && (channels+firstChannel) > (unsigned int) outputChannels) ||
- ( mode == INPUT && (channels+firstChannel) > (unsigned int) inputChannels) ) {
- errorStream_ << "RtApiAsio::probeDeviceOpen: driver (" << driverName << ") does not support requested channel count (" << channels << ") + offset (" << firstChannel << ").";
- errorText_ = errorStream_.str();
- goto error;
- }
- stream_.nDeviceChannels[mode] = channels;
- stream_.nUserChannels[mode] = channels;
- stream_.channelOffset[mode] = firstChannel;
-
- // Verify the sample rate is supported.
- result = ASIOCanSampleRate( (ASIOSampleRate) sampleRate );
- if ( result != ASE_OK ) {
- errorStream_ << "RtApiAsio::probeDeviceOpen: driver (" << driverName << ") does not support requested sample rate (" << sampleRate << ").";
- errorText_ = errorStream_.str();
- goto error;
- }
-
- // Get the current sample rate
- ASIOSampleRate currentRate;
- result = ASIOGetSampleRate( &currentRate );
- if ( result != ASE_OK ) {
- errorStream_ << "RtApiAsio::probeDeviceOpen: driver (" << driverName << ") error getting sample rate.";
- errorText_ = errorStream_.str();
- goto error;
- }
-
- // Set the sample rate only if necessary
- if ( currentRate != sampleRate ) {
- result = ASIOSetSampleRate( (ASIOSampleRate) sampleRate );
- if ( result != ASE_OK ) {
- errorStream_ << "RtApiAsio::probeDeviceOpen: driver (" << driverName << ") error setting sample rate (" << sampleRate << ").";
- errorText_ = errorStream_.str();
- goto error;
- }
- }
-
- // Determine the driver data type.
- ASIOChannelInfo channelInfo;
- channelInfo.channel = 0;
- if ( mode == OUTPUT ) channelInfo.isInput = false;
- else channelInfo.isInput = true;
- result = ASIOGetChannelInfo( &channelInfo );
- if ( result != ASE_OK ) {
- errorStream_ << "RtApiAsio::probeDeviceOpen: driver (" << driverName << ") error (" << getAsioErrorString( result ) << ") getting data format.";
- errorText_ = errorStream_.str();
- goto error;
- }
-
- // Assuming WINDOWS host is always little-endian.
- stream_.doByteSwap[mode] = false;
- stream_.userFormat = format;
- stream_.deviceFormat[mode] = 0;
- if ( channelInfo.type == ASIOSTInt16MSB || channelInfo.type == ASIOSTInt16LSB ) {
- stream_.deviceFormat[mode] = RTAUDIO_SINT16;
- if ( channelInfo.type == ASIOSTInt16MSB ) stream_.doByteSwap[mode] = true;
- }
- else if ( channelInfo.type == ASIOSTInt32MSB || channelInfo.type == ASIOSTInt32LSB ) {
- stream_.deviceFormat[mode] = RTAUDIO_SINT32;
- if ( channelInfo.type == ASIOSTInt32MSB ) stream_.doByteSwap[mode] = true;
- }
- else if ( channelInfo.type == ASIOSTFloat32MSB || channelInfo.type == ASIOSTFloat32LSB ) {
- stream_.deviceFormat[mode] = RTAUDIO_FLOAT32;
- if ( channelInfo.type == ASIOSTFloat32MSB ) stream_.doByteSwap[mode] = true;
- }
- else if ( channelInfo.type == ASIOSTFloat64MSB || channelInfo.type == ASIOSTFloat64LSB ) {
- stream_.deviceFormat[mode] = RTAUDIO_FLOAT64;
- if ( channelInfo.type == ASIOSTFloat64MSB ) stream_.doByteSwap[mode] = true;
- }
- else if ( channelInfo.type == ASIOSTInt24MSB || channelInfo.type == ASIOSTInt24LSB ) {
- stream_.deviceFormat[mode] = RTAUDIO_SINT24;
- if ( channelInfo.type == ASIOSTInt24MSB ) stream_.doByteSwap[mode] = true;
- }
-
- if ( stream_.deviceFormat[mode] == 0 ) {
- errorStream_ << "RtApiAsio::probeDeviceOpen: driver (" << driverName << ") data format not supported by RtAudio.";
- errorText_ = errorStream_.str();
- goto error;
- }
-
- // Set the buffer size. For a duplex stream, this will end up
- // setting the buffer size based on the input constraints, which
- // should be ok.
- long minSize, maxSize, preferSize, granularity;
- result = ASIOGetBufferSize( &minSize, &maxSize, &preferSize, &granularity );
- if ( result != ASE_OK ) {
- errorStream_ << "RtApiAsio::probeDeviceOpen: driver (" << driverName << ") error (" << getAsioErrorString( result ) << ") getting buffer size.";
- errorText_ = errorStream_.str();
- goto error;
- }
-
- if ( isDuplexInput ) {
- // When this is the duplex input (output was opened before), then we have to use the same
- // buffersize as the output, because it might use the preferred buffer size, which most
- // likely wasn't passed as input to this. The buffer sizes have to be identically anyway,
- // So instead of throwing an error, make them equal. The caller uses the reference
- // to the "bufferSize" param as usual to set up processing buffers.
-
- *bufferSize = stream_.bufferSize;
-
- } else {
- if ( *bufferSize == 0 ) *bufferSize = preferSize;
- else if ( *bufferSize < (unsigned int) minSize ) *bufferSize = (unsigned int) minSize;
- else if ( *bufferSize > (unsigned int) maxSize ) *bufferSize = (unsigned int) maxSize;
- else if ( granularity == -1 ) {
- // Make sure bufferSize is a power of two.
- int log2_of_min_size = 0;
- int log2_of_max_size = 0;
-
- for ( unsigned int i = 0; i < sizeof(long) * 8; i++ ) {
- if ( minSize & ((long)1 << i) ) log2_of_min_size = i;
- if ( maxSize & ((long)1 << i) ) log2_of_max_size = i;
- }
-
- long min_delta = std::abs( (long)*bufferSize - ((long)1 << log2_of_min_size) );
- int min_delta_num = log2_of_min_size;
-
- for (int i = log2_of_min_size + 1; i <= log2_of_max_size; i++) {
- long current_delta = std::abs( (long)*bufferSize - ((long)1 << i) );
- if (current_delta < min_delta) {
- min_delta = current_delta;
- min_delta_num = i;
- }
- }
-
- *bufferSize = ( (unsigned int)1 << min_delta_num );
- if ( *bufferSize < (unsigned int) minSize ) *bufferSize = (unsigned int) minSize;
- else if ( *bufferSize > (unsigned int) maxSize ) *bufferSize = (unsigned int) maxSize;
- }
- else if ( granularity != 0 ) {
- // Set to an even multiple of granularity, rounding up.
- *bufferSize = (*bufferSize + granularity-1) / granularity * granularity;
- }
- }
-
- /*
- // we don't use it anymore, see above!
- // Just left it here for the case...
- if ( isDuplexInput && stream_.bufferSize != *bufferSize ) {
- errorText_ = "RtApiAsio::probeDeviceOpen: input/output buffersize discrepancy!";
- goto error;
- }
- */
-
- stream_.bufferSize = *bufferSize;
- stream_.nBuffers = 2;
-
- if ( options && options->flags & RTAUDIO_NONINTERLEAVED ) stream_.userInterleaved = false;
- else stream_.userInterleaved = true;
-
- // ASIO always uses non-interleaved buffers.
- stream_.deviceInterleaved[mode] = false;
-
- // Allocate, if necessary, our AsioHandle structure for the stream.
- if ( handle == 0 ) {
- try {
- handle = new AsioHandle;
- }
- catch ( std::bad_alloc& ) {
- errorText_ = "RtApiAsio::probeDeviceOpen: error allocating AsioHandle memory.";
- goto error;
- }
- handle->bufferInfos = 0;
-
- // Create a manual-reset event.
- handle->condition = CreateEvent( NULL, // no security
- TRUE, // manual-reset
- FALSE, // non-signaled initially
- NULL ); // unnamed
- stream_.apiHandle = (void *) handle;
- }
-
- // Create the ASIO internal buffers. Since RtAudio sets up input
- // and output separately, we'll have to dispose of previously
- // created output buffers for a duplex stream.
- if ( mode == INPUT && stream_.mode == OUTPUT ) {
- ASIODisposeBuffers();
- if ( handle->bufferInfos ) free( handle->bufferInfos );
- }
-
- // Allocate, initialize, and save the bufferInfos in our stream callbackInfo structure.
- unsigned int i;
- nChannels = stream_.nDeviceChannels[0] + stream_.nDeviceChannels[1];
- handle->bufferInfos = (ASIOBufferInfo *) malloc( nChannels * sizeof(ASIOBufferInfo) );
- if ( handle->bufferInfos == NULL ) {
- errorStream_ << "RtApiAsio::probeDeviceOpen: error allocating bufferInfo memory for driver (" << driverName << ").";
- errorText_ = errorStream_.str();
- goto error;
- }
-
- ASIOBufferInfo *infos;
- infos = handle->bufferInfos;
- for ( i=0; i<stream_.nDeviceChannels[0]; i++, infos++ ) {
- infos->isInput = ASIOFalse;
- infos->channelNum = i + stream_.channelOffset[0];
- infos->buffers[0] = infos->buffers[1] = 0;
- }
- for ( i=0; i<stream_.nDeviceChannels[1]; i++, infos++ ) {
- infos->isInput = ASIOTrue;
- infos->channelNum = i + stream_.channelOffset[1];
- infos->buffers[0] = infos->buffers[1] = 0;
- }
-
- // prepare for callbacks
- stream_.sampleRate = sampleRate;
- stream_.device[mode] = device;
- stream_.mode = isDuplexInput ? DUPLEX : mode;
-
- // store this class instance before registering callbacks, that are going to use it
- asioCallbackInfo = &stream_.callbackInfo;
- stream_.callbackInfo.object = (void *) this;
-
- // Set up the ASIO callback structure and create the ASIO data buffers.
- asioCallbacks.bufferSwitch = &bufferSwitch;
- asioCallbacks.sampleRateDidChange = &sampleRateChanged;
- asioCallbacks.asioMessage = &asioMessages;
- asioCallbacks.bufferSwitchTimeInfo = NULL;
- result = ASIOCreateBuffers( handle->bufferInfos, nChannels, stream_.bufferSize, &asioCallbacks );
- if ( result != ASE_OK ) {
- // Standard method failed. This can happen with strict/misbehaving drivers that return valid buffer size ranges
- // but only accept the preferred buffer size as parameter for ASIOCreateBuffers. eg. Creatives ASIO driver
- // in that case, let's be naïve and try that instead
- *bufferSize = preferSize;
- stream_.bufferSize = *bufferSize;
- result = ASIOCreateBuffers( handle->bufferInfos, nChannels, stream_.bufferSize, &asioCallbacks );
- }
-
- if ( result != ASE_OK ) {
- errorStream_ << "RtApiAsio::probeDeviceOpen: driver (" << driverName << ") error (" << getAsioErrorString( result ) << ") creating buffers.";
- errorText_ = errorStream_.str();
- goto error;
- }
- buffersAllocated = true;
- stream_.state = STREAM_STOPPED;
-
- // Set flags for buffer conversion.
- stream_.doConvertBuffer[mode] = false;
- if ( stream_.userFormat != stream_.deviceFormat[mode] )
- stream_.doConvertBuffer[mode] = true;
- if ( stream_.userInterleaved != stream_.deviceInterleaved[mode] &&
- stream_.nUserChannels[mode] > 1 )
- stream_.doConvertBuffer[mode] = true;
-
- // Allocate necessary internal buffers
- unsigned long bufferBytes;
- bufferBytes = stream_.nUserChannels[mode] * *bufferSize * formatBytes( stream_.userFormat );
- stream_.userBuffer[mode] = (char *) calloc( bufferBytes, 1 );
- if ( stream_.userBuffer[mode] == NULL ) {
- errorText_ = "RtApiAsio::probeDeviceOpen: error allocating user buffer memory.";
- goto error;
- }
-
- if ( stream_.doConvertBuffer[mode] ) {
-
- bool makeBuffer = true;
- bufferBytes = stream_.nDeviceChannels[mode] * formatBytes( stream_.deviceFormat[mode] );
- if ( isDuplexInput && stream_.deviceBuffer ) {
- unsigned long bytesOut = stream_.nDeviceChannels[0] * formatBytes( stream_.deviceFormat[0] );
- if ( bufferBytes <= bytesOut ) makeBuffer = false;
- }
-
- if ( makeBuffer ) {
- bufferBytes *= *bufferSize;
- if ( stream_.deviceBuffer ) free( stream_.deviceBuffer );
- stream_.deviceBuffer = (char *) calloc( bufferBytes, 1 );
- if ( stream_.deviceBuffer == NULL ) {
- errorText_ = "RtApiAsio::probeDeviceOpen: error allocating device buffer memory.";
- goto error;
- }
- }
- }
-
- // Determine device latencies
- long inputLatency, outputLatency;
- result = ASIOGetLatencies( &inputLatency, &outputLatency );
- if ( result != ASE_OK ) {
- errorStream_ << "RtApiAsio::probeDeviceOpen: driver (" << driverName << ") error (" << getAsioErrorString( result ) << ") getting latency.";
- errorText_ = errorStream_.str();
- error( RtAudioError::WARNING); // warn but don't fail
- }
- else {
- stream_.latency[0] = outputLatency;
- stream_.latency[1] = inputLatency;
- }
-
- // Setup the buffer conversion information structure. We don't use
- // buffers to do channel offsets, so we override that parameter
- // here.
- if ( stream_.doConvertBuffer[mode] ) setConvertInfo( mode, 0 );
-
- return SUCCESS;
-
- error:
- if ( !isDuplexInput ) {
- // the cleanup for error in the duplex input, is done by RtApi::openStream
- // So we clean up for single channel only
-
- if ( buffersAllocated )
- ASIODisposeBuffers();
-
- drivers.removeCurrentDriver();
-
- if ( handle ) {
- CloseHandle( handle->condition );
- if ( handle->bufferInfos )
- free( handle->bufferInfos );
-
- delete handle;
- stream_.apiHandle = 0;
- }
-
-
- if ( stream_.userBuffer[mode] ) {
- free( stream_.userBuffer[mode] );
- stream_.userBuffer[mode] = 0;
- }
-
- if ( stream_.deviceBuffer ) {
- free( stream_.deviceBuffer );
- stream_.deviceBuffer = 0;
- }
- }
-
- return FAILURE;
-}////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
-
-void RtApiAsio :: closeStream()
-{
- if ( stream_.state == STREAM_CLOSED ) {
- errorText_ = "RtApiAsio::closeStream(): no open stream to close!";
- error( RtAudioError::WARNING );
- return;
- }
-
- if ( stream_.state == STREAM_RUNNING ) {
- stream_.state = STREAM_STOPPED;
- ASIOStop();
- }
- ASIODisposeBuffers();
- drivers.removeCurrentDriver();
-
- AsioHandle *handle = (AsioHandle *) stream_.apiHandle;
- if ( handle ) {
- CloseHandle( handle->condition );
- if ( handle->bufferInfos )
- free( handle->bufferInfos );
- delete handle;
- stream_.apiHandle = 0;
- }
-
- for ( int i=0; i<2; i++ ) {
- if ( stream_.userBuffer[i] ) {
- free( stream_.userBuffer[i] );
- stream_.userBuffer[i] = 0;
- }
- }
-
- if ( stream_.deviceBuffer ) {
- free( stream_.deviceBuffer );
- stream_.deviceBuffer = 0;
- }
-
- stream_.mode = UNINITIALIZED;
- stream_.state = STREAM_CLOSED;
-}
-
-bool stopThreadCalled = false;
-
-void RtApiAsio :: startStream()
-{
- verifyStream();
- if ( stream_.state == STREAM_RUNNING ) {
- errorText_ = "RtApiAsio::startStream(): the stream is already running!";
- error( RtAudioError::WARNING );
- return;
- }
-
- AsioHandle *handle = (AsioHandle *) stream_.apiHandle;
- ASIOError result = ASIOStart();
- if ( result != ASE_OK ) {
- errorStream_ << "RtApiAsio::startStream: error (" << getAsioErrorString( result ) << ") starting device.";
- errorText_ = errorStream_.str();
- goto unlock;
- }
-
- handle->drainCounter = 0;
- handle->internalDrain = false;
- ResetEvent( handle->condition );
- stream_.state = STREAM_RUNNING;
- asioXRun = false;
-
- unlock:
- stopThreadCalled = false;
-
- if ( result == ASE_OK ) return;
- error( RtAudioError::SYSTEM_ERROR );
-}
-
-void RtApiAsio :: stopStream()
-{
- verifyStream();
- if ( stream_.state == STREAM_STOPPED ) {
- errorText_ = "RtApiAsio::stopStream(): the stream is already stopped!";
- error( RtAudioError::WARNING );
- return;
- }
-
- AsioHandle *handle = (AsioHandle *) stream_.apiHandle;
- if ( stream_.mode == OUTPUT || stream_.mode == DUPLEX ) {
- if ( handle->drainCounter == 0 ) {
- handle->drainCounter = 2;
- WaitForSingleObject( handle->condition, INFINITE ); // block until signaled
- }
- }
-
- stream_.state = STREAM_STOPPED;
-
- ASIOError result = ASIOStop();
- if ( result != ASE_OK ) {
- errorStream_ << "RtApiAsio::stopStream: error (" << getAsioErrorString( result ) << ") stopping device.";
- errorText_ = errorStream_.str();
- }
-
- if ( result == ASE_OK ) return;
- error( RtAudioError::SYSTEM_ERROR );
-}
-
-void RtApiAsio :: abortStream()
-{
- verifyStream();
- if ( stream_.state == STREAM_STOPPED ) {
- errorText_ = "RtApiAsio::abortStream(): the stream is already stopped!";
- error( RtAudioError::WARNING );
- return;
- }
-
- // The following lines were commented-out because some behavior was
- // noted where the device buffers need to be zeroed to avoid
- // continuing sound, even when the device buffers are completely
- // disposed. So now, calling abort is the same as calling stop.
- // AsioHandle *handle = (AsioHandle *) stream_.apiHandle;
- // handle->drainCounter = 2;
- stopStream();
-}
-
-// This function will be called by a spawned thread when the user
-// callback function signals that the stream should be stopped or
-// aborted. It is necessary to handle it this way because the
-// callbackEvent() function must return before the ASIOStop()
-// function will return.
-static unsigned __stdcall asioStopStream( void *ptr )
-{
- CallbackInfo *info = (CallbackInfo *) ptr;
- RtApiAsio *object = (RtApiAsio *) info->object;
-
- object->stopStream();
- _endthreadex( 0 );
- return 0;
-}
-
-bool RtApiAsio :: callbackEvent( long bufferIndex )
-{
- if ( stream_.state == STREAM_STOPPED || stream_.state == STREAM_STOPPING ) return SUCCESS;
- if ( stream_.state == STREAM_CLOSED ) {
- errorText_ = "RtApiAsio::callbackEvent(): the stream is closed ... this shouldn't happen!";
- error( RtAudioError::WARNING );
- return FAILURE;
- }
-
- CallbackInfo *info = (CallbackInfo *) &stream_.callbackInfo;
- AsioHandle *handle = (AsioHandle *) stream_.apiHandle;
-
- // Check if we were draining the stream and signal if finished.
- if ( handle->drainCounter > 3 ) {
-
- stream_.state = STREAM_STOPPING;
- if ( handle->internalDrain == false )
- SetEvent( handle->condition );
- else { // spawn a thread to stop the stream
- unsigned threadId;
- stream_.callbackInfo.thread = _beginthreadex( NULL, 0, &asioStopStream,
- &stream_.callbackInfo, 0, &threadId );
- }
- return SUCCESS;
- }
-
- // Invoke user callback to get fresh output data UNLESS we are
- // draining stream.
- if ( handle->drainCounter == 0 ) {
- RtAudioCallback callback = (RtAudioCallback) info->callback;
- double streamTime = getStreamTime();
- RtAudioStreamStatus status = 0;
- if ( stream_.mode != INPUT && asioXRun == true ) {
- status |= RTAUDIO_OUTPUT_UNDERFLOW;
- asioXRun = false;
- }
- if ( stream_.mode != OUTPUT && asioXRun == true ) {
- status |= RTAUDIO_INPUT_OVERFLOW;
- asioXRun = false;
- }
- int cbReturnValue = callback( stream_.userBuffer[0], stream_.userBuffer[1],
- stream_.bufferSize, streamTime, status, info->userData );
- if ( cbReturnValue == 2 ) {
- stream_.state = STREAM_STOPPING;
- handle->drainCounter = 2;
- unsigned threadId;
- stream_.callbackInfo.thread = _beginthreadex( NULL, 0, &asioStopStream,
- &stream_.callbackInfo, 0, &threadId );
- return SUCCESS;
- }
- else if ( cbReturnValue == 1 ) {
- handle->drainCounter = 1;
- handle->internalDrain = true;
- }
- }
-
- unsigned int nChannels, bufferBytes, i, j;
- nChannels = stream_.nDeviceChannels[0] + stream_.nDeviceChannels[1];
- if ( stream_.mode == OUTPUT || stream_.mode == DUPLEX ) {
-
- bufferBytes = stream_.bufferSize * formatBytes( stream_.deviceFormat[0] );
-
- if ( handle->drainCounter > 1 ) { // write zeros to the output stream
-
- for ( i=0, j=0; i<nChannels; i++ ) {
- if ( handle->bufferInfos[i].isInput != ASIOTrue )
- memset( handle->bufferInfos[i].buffers[bufferIndex], 0, bufferBytes );
- }
-
- }
- else if ( stream_.doConvertBuffer[0] ) {
-
- convertBuffer( stream_.deviceBuffer, stream_.userBuffer[0], stream_.convertInfo[0] );
- if ( stream_.doByteSwap[0] )
- byteSwapBuffer( stream_.deviceBuffer,
- stream_.bufferSize * stream_.nDeviceChannels[0],
- stream_.deviceFormat[0] );
-
- for ( i=0, j=0; i<nChannels; i++ ) {
- if ( handle->bufferInfos[i].isInput != ASIOTrue )
- memcpy( handle->bufferInfos[i].buffers[bufferIndex],
- &stream_.deviceBuffer[j++*bufferBytes], bufferBytes );
- }
-
- }
- else {
-
- if ( stream_.doByteSwap[0] )
- byteSwapBuffer( stream_.userBuffer[0],
- stream_.bufferSize * stream_.nUserChannels[0],
- stream_.userFormat );
-
- for ( i=0, j=0; i<nChannels; i++ ) {
- if ( handle->bufferInfos[i].isInput != ASIOTrue )
- memcpy( handle->bufferInfos[i].buffers[bufferIndex],
- &stream_.userBuffer[0][bufferBytes*j++], bufferBytes );
- }
-
- }
- }
-
- // Don't bother draining input
- if ( handle->drainCounter ) {
- handle->drainCounter++;
- goto unlock;
- }
-
- if ( stream_.mode == INPUT || stream_.mode == DUPLEX ) {
-
- bufferBytes = stream_.bufferSize * formatBytes(stream_.deviceFormat[1]);
-
- if (stream_.doConvertBuffer[1]) {
-
- // Always interleave ASIO input data.
- for ( i=0, j=0; i<nChannels; i++ ) {
- if ( handle->bufferInfos[i].isInput == ASIOTrue )
- memcpy( &stream_.deviceBuffer[j++*bufferBytes],
- handle->bufferInfos[i].buffers[bufferIndex],
- bufferBytes );
- }
-
- if ( stream_.doByteSwap[1] )
- byteSwapBuffer( stream_.deviceBuffer,
- stream_.bufferSize * stream_.nDeviceChannels[1],
- stream_.deviceFormat[1] );
- convertBuffer( stream_.userBuffer[1], stream_.deviceBuffer, stream_.convertInfo[1] );
-
- }
- else {
- for ( i=0, j=0; i<nChannels; i++ ) {
- if ( handle->bufferInfos[i].isInput == ASIOTrue ) {
- memcpy( &stream_.userBuffer[1][bufferBytes*j++],
- handle->bufferInfos[i].buffers[bufferIndex],
- bufferBytes );
- }
- }
-
- if ( stream_.doByteSwap[1] )
- byteSwapBuffer( stream_.userBuffer[1],
- stream_.bufferSize * stream_.nUserChannels[1],
- stream_.userFormat );
- }
- }
-
- unlock:
- // The following call was suggested by Malte Clasen. While the API
- // documentation indicates it should not be required, some device
- // drivers apparently do not function correctly without it.
- ASIOOutputReady();
-
- RtApi::tickStreamTime();
- return SUCCESS;
-}
-
-static void sampleRateChanged( ASIOSampleRate sRate )
-{
- // The ASIO documentation says that this usually only happens during
- // external sync. Audio processing is not stopped by the driver,
- // actual sample rate might not have even changed, maybe only the
- // sample rate status of an AES/EBU or S/PDIF digital input at the
- // audio device.
-
- RtApi *object = (RtApi *) asioCallbackInfo->object;
- try {
- object->stopStream();
- }
- catch ( RtAudioError &exception ) {
- std::cerr << "\nRtApiAsio: sampleRateChanged() error (" << exception.getMessage() << ")!\n" << std::endl;
- return;
- }
-
- std::cerr << "\nRtApiAsio: driver reports sample rate changed to " << sRate << " ... stream stopped!!!\n" << std::endl;
-}
-
-static long asioMessages( long selector, long value, void* /*message*/, double* /*opt*/ )
-{
- long ret = 0;
-
- switch( selector ) {
- case kAsioSelectorSupported:
- if ( value == kAsioResetRequest
- || value == kAsioEngineVersion
- || value == kAsioResyncRequest
- || value == kAsioLatenciesChanged
- // The following three were added for ASIO 2.0, you don't
- // necessarily have to support them.
- || value == kAsioSupportsTimeInfo
- || value == kAsioSupportsTimeCode
- || value == kAsioSupportsInputMonitor)
- ret = 1L;
- break;
- case kAsioResetRequest:
- // Defer the task and perform the reset of the driver during the
- // next "safe" situation. You cannot reset the driver right now,
- // as this code is called from the driver. Reset the driver is
- // done by completely destruct is. I.e. ASIOStop(),
- // ASIODisposeBuffers(), Destruction Afterwards you initialize the
- // driver again.
- std::cerr << "\nRtApiAsio: driver reset requested!!!" << std::endl;
- ret = 1L;
- break;
- case kAsioResyncRequest:
- // This informs the application that the driver encountered some
- // non-fatal data loss. It is used for synchronization purposes
- // of different media. Added mainly to work around the Win16Mutex
- // problems in Windows 95/98 with the Windows Multimedia system,
- // which could lose data because the Mutex was held too long by
- // another thread. However a driver can issue it in other
- // situations, too.
- // std::cerr << "\nRtApiAsio: driver resync requested!!!" << std::endl;
- asioXRun = true;
- ret = 1L;
- break;
- case kAsioLatenciesChanged:
- // This will inform the host application that the drivers were
- // latencies changed. Beware, it this does not mean that the
- // buffer sizes have changed! You might need to update internal
- // delay data.
- std::cerr << "\nRtApiAsio: driver latency may have changed!!!" << std::endl;
- ret = 1L;
- break;
- case kAsioEngineVersion:
- // Return the supported ASIO version of the host application. If
- // a host application does not implement this selector, ASIO 1.0
- // is assumed by the driver.
- ret = 2L;
- break;
- case kAsioSupportsTimeInfo:
- // Informs the driver whether the
- // asioCallbacks.bufferSwitchTimeInfo() callback is supported.
- // For compatibility with ASIO 1.0 drivers the host application
- // should always support the "old" bufferSwitch method, too.
- ret = 0;
- break;
- case kAsioSupportsTimeCode:
- // Informs the driver whether application is interested in time
- // code info. If an application does not need to know about time
- // code, the driver has less work to do.
- ret = 0;
- break;
- }
- return ret;
-}
-
-static const char* getAsioErrorString( ASIOError result )
-{
- struct Messages
- {
- ASIOError value;
- const char*message;
- };
-
- static const Messages m[] =
- {
- { ASE_NotPresent, "Hardware input or output is not present or available." },
- { ASE_HWMalfunction, "Hardware is malfunctioning." },
- { ASE_InvalidParameter, "Invalid input parameter." },
- { ASE_InvalidMode, "Invalid mode." },
- { ASE_SPNotAdvancing, "Sample position not advancing." },
- { ASE_NoClock, "Sample clock or rate cannot be determined or is not present." },
- { ASE_NoMemory, "Not enough memory to complete the request." }
- };
-
- for ( unsigned int i = 0; i < sizeof(m)/sizeof(m[0]); ++i )
- if ( m[i].value == result ) return m[i].message;
-
- return "Unknown error.";
-}
-
-//******************** End of __WINDOWS_ASIO__ *********************//
-#endif
-
-
-#if defined(__WINDOWS_WASAPI__) // Windows WASAPI API
-
-// Authored by Marcus Tomlinson <themarcustomlinson@gmail.com>, April 2014
-// - Introduces support for the Windows WASAPI API
-// - Aims to deliver bit streams to and from hardware at the lowest possible latency, via the absolute minimum buffer sizes required
-// - Provides flexible stream configuration to an otherwise strict and inflexible WASAPI interface
-// - Includes automatic internal conversion of sample rate and buffer size between hardware and the user
-
-#ifndef INITGUID
- #define INITGUID
-#endif
-#include <audioclient.h>
-#include <avrt.h>
-#include <mmdeviceapi.h>
-#include <functiondiscoverykeys_devpkey.h>
-
-//=============================================================================
-
-#define SAFE_RELEASE( objectPtr )\
-if ( objectPtr )\
-{\
- objectPtr->Release();\
- objectPtr = NULL;\
-}
-
-typedef HANDLE ( __stdcall *TAvSetMmThreadCharacteristicsPtr )( LPCWSTR TaskName, LPDWORD TaskIndex );
-
-//-----------------------------------------------------------------------------
-
-// WASAPI dictates stream sample rate, format, channel count, and in some cases, buffer size.
-// Therefore we must perform all necessary conversions to user buffers in order to satisfy these
-// requirements. WasapiBuffer ring buffers are used between HwIn->UserIn and UserOut->HwOut to
-// provide intermediate storage for read / write synchronization.
-class WasapiBuffer
-{
-public:
- WasapiBuffer()
- : buffer_( NULL ),
- bufferSize_( 0 ),
- inIndex_( 0 ),
- outIndex_( 0 ) {}
-
- ~WasapiBuffer() {
- free( buffer_ );
- }
-
- // sets the length of the internal ring buffer
- void setBufferSize( unsigned int bufferSize, unsigned int formatBytes ) {
- free( buffer_ );
-
- buffer_ = ( char* ) calloc( bufferSize, formatBytes );
-
- bufferSize_ = bufferSize;
- inIndex_ = 0;
- outIndex_ = 0;
- }
-
- // attempt to push a buffer into the ring buffer at the current "in" index
- bool pushBuffer( char* buffer, unsigned int bufferSize, RtAudioFormat format )
- {
- if ( !buffer || // incoming buffer is NULL
- bufferSize == 0 || // incoming buffer has no data
- bufferSize > bufferSize_ ) // incoming buffer too large
- {
- return false;
- }
-
- unsigned int relOutIndex = outIndex_;
- unsigned int inIndexEnd = inIndex_ + bufferSize;
- if ( relOutIndex < inIndex_ && inIndexEnd >= bufferSize_ ) {
- relOutIndex += bufferSize_;
- }
-
- // "in" index can end on the "out" index but cannot begin at it
- if ( inIndex_ <= relOutIndex && inIndexEnd > relOutIndex ) {
- return false; // not enough space between "in" index and "out" index
- }
-
- // copy buffer from external to internal
- int fromZeroSize = inIndex_ + bufferSize - bufferSize_;
- fromZeroSize = fromZeroSize < 0 ? 0 : fromZeroSize;
- int fromInSize = bufferSize - fromZeroSize;
-
- switch( format )
- {
- case RTAUDIO_SINT8:
- memcpy( &( ( char* ) buffer_ )[inIndex_], buffer, fromInSize * sizeof( char ) );
- memcpy( buffer_, &( ( char* ) buffer )[fromInSize], fromZeroSize * sizeof( char ) );
- break;
- case RTAUDIO_SINT16:
- memcpy( &( ( short* ) buffer_ )[inIndex_], buffer, fromInSize * sizeof( short ) );
- memcpy( buffer_, &( ( short* ) buffer )[fromInSize], fromZeroSize * sizeof( short ) );
- break;
- case RTAUDIO_SINT24:
- memcpy( &( ( S24* ) buffer_ )[inIndex_], buffer, fromInSize * sizeof( S24 ) );
- memcpy( buffer_, &( ( S24* ) buffer )[fromInSize], fromZeroSize * sizeof( S24 ) );
- break;
- case RTAUDIO_SINT32:
- memcpy( &( ( int* ) buffer_ )[inIndex_], buffer, fromInSize * sizeof( int ) );
- memcpy( buffer_, &( ( int* ) buffer )[fromInSize], fromZeroSize * sizeof( int ) );
- break;
- case RTAUDIO_FLOAT32:
- memcpy( &( ( float* ) buffer_ )[inIndex_], buffer, fromInSize * sizeof( float ) );
- memcpy( buffer_, &( ( float* ) buffer )[fromInSize], fromZeroSize * sizeof( float ) );
- break;
- case RTAUDIO_FLOAT64:
- memcpy( &( ( double* ) buffer_ )[inIndex_], buffer, fromInSize * sizeof( double ) );
- memcpy( buffer_, &( ( double* ) buffer )[fromInSize], fromZeroSize * sizeof( double ) );
- break;
- }
-
- // update "in" index
- inIndex_ += bufferSize;
- inIndex_ %= bufferSize_;
-
- return true;
- }
-
- // attempt to pull a buffer from the ring buffer from the current "out" index
- bool pullBuffer( char* buffer, unsigned int bufferSize, RtAudioFormat format )
- {
- if ( !buffer || // incoming buffer is NULL
- bufferSize == 0 || // incoming buffer has no data
- bufferSize > bufferSize_ ) // incoming buffer too large
- {
- return false;
- }
-
- unsigned int relInIndex = inIndex_;
- unsigned int outIndexEnd = outIndex_ + bufferSize;
- if ( relInIndex < outIndex_ && outIndexEnd >= bufferSize_ ) {
- relInIndex += bufferSize_;
- }
-
- // "out" index can begin at and end on the "in" index
- if ( outIndex_ < relInIndex && outIndexEnd > relInIndex ) {
- return false; // not enough space between "out" index and "in" index
- }
-
- // copy buffer from internal to external
- int fromZeroSize = outIndex_ + bufferSize - bufferSize_;
- fromZeroSize = fromZeroSize < 0 ? 0 : fromZeroSize;
- int fromOutSize = bufferSize - fromZeroSize;
-
- switch( format )
- {
- case RTAUDIO_SINT8:
- memcpy( buffer, &( ( char* ) buffer_ )[outIndex_], fromOutSize * sizeof( char ) );
- memcpy( &( ( char* ) buffer )[fromOutSize], buffer_, fromZeroSize * sizeof( char ) );
- break;
- case RTAUDIO_SINT16:
- memcpy( buffer, &( ( short* ) buffer_ )[outIndex_], fromOutSize * sizeof( short ) );
- memcpy( &( ( short* ) buffer )[fromOutSize], buffer_, fromZeroSize * sizeof( short ) );
- break;
- case RTAUDIO_SINT24:
- memcpy( buffer, &( ( S24* ) buffer_ )[outIndex_], fromOutSize * sizeof( S24 ) );
- memcpy( &( ( S24* ) buffer )[fromOutSize], buffer_, fromZeroSize * sizeof( S24 ) );
- break;
- case RTAUDIO_SINT32:
- memcpy( buffer, &( ( int* ) buffer_ )[outIndex_], fromOutSize * sizeof( int ) );
- memcpy( &( ( int* ) buffer )[fromOutSize], buffer_, fromZeroSize * sizeof( int ) );
- break;
- case RTAUDIO_FLOAT32:
- memcpy( buffer, &( ( float* ) buffer_ )[outIndex_], fromOutSize * sizeof( float ) );
- memcpy( &( ( float* ) buffer )[fromOutSize], buffer_, fromZeroSize * sizeof( float ) );
- break;
- case RTAUDIO_FLOAT64:
- memcpy( buffer, &( ( double* ) buffer_ )[outIndex_], fromOutSize * sizeof( double ) );
- memcpy( &( ( double* ) buffer )[fromOutSize], buffer_, fromZeroSize * sizeof( double ) );
- break;
- }
-
- // update "out" index
- outIndex_ += bufferSize;
- outIndex_ %= bufferSize_;
-
- return true;
- }
-
-private:
- char* buffer_;
- unsigned int bufferSize_;
- unsigned int inIndex_;
- unsigned int outIndex_;
-};
-
-//-----------------------------------------------------------------------------
-
-// In order to satisfy WASAPI's buffer requirements, we need a means of converting sample rate
-// between HW and the user. The convertBufferWasapi function is used to perform this conversion
-// between HwIn->UserIn and UserOut->HwOut during the stream callback loop.
-// This sample rate converter favors speed over quality, and works best with conversions between
-// one rate and its multiple.
-void convertBufferWasapi( char* outBuffer,
- const char* inBuffer,
- const unsigned int& channelCount,
- const unsigned int& inSampleRate,
- const unsigned int& outSampleRate,
- const unsigned int& inSampleCount,
- unsigned int& outSampleCount,
- const RtAudioFormat& format )
-{
- // calculate the new outSampleCount and relative sampleStep
- float sampleRatio = ( float ) outSampleRate / inSampleRate;
- float sampleStep = 1.0f / sampleRatio;
- float inSampleFraction = 0.0f;
-
- outSampleCount = ( unsigned int ) roundf( inSampleCount * sampleRatio );
-
- // frame-by-frame, copy each relative input sample into it's corresponding output sample
- for ( unsigned int outSample = 0; outSample < outSampleCount; outSample++ )
- {
- unsigned int inSample = ( unsigned int ) inSampleFraction;
-
- switch ( format )
- {
- case RTAUDIO_SINT8:
- memcpy( &( ( char* ) outBuffer )[ outSample * channelCount ], &( ( char* ) inBuffer )[ inSample * channelCount ], channelCount * sizeof( char ) );
- break;
- case RTAUDIO_SINT16:
- memcpy( &( ( short* ) outBuffer )[ outSample * channelCount ], &( ( short* ) inBuffer )[ inSample * channelCount ], channelCount * sizeof( short ) );
- break;
- case RTAUDIO_SINT24:
- memcpy( &( ( S24* ) outBuffer )[ outSample * channelCount ], &( ( S24* ) inBuffer )[ inSample * channelCount ], channelCount * sizeof( S24 ) );
- break;
- case RTAUDIO_SINT32:
- memcpy( &( ( int* ) outBuffer )[ outSample * channelCount ], &( ( int* ) inBuffer )[ inSample * channelCount ], channelCount * sizeof( int ) );
- break;
- case RTAUDIO_FLOAT32:
- memcpy( &( ( float* ) outBuffer )[ outSample * channelCount ], &( ( float* ) inBuffer )[ inSample * channelCount ], channelCount * sizeof( float ) );
- break;
- case RTAUDIO_FLOAT64:
- memcpy( &( ( double* ) outBuffer )[ outSample * channelCount ], &( ( double* ) inBuffer )[ inSample * channelCount ], channelCount * sizeof( double ) );
- break;
- }
-
- // jump to next in sample
- inSampleFraction += sampleStep;
- }
-}
-
-//-----------------------------------------------------------------------------
-
-// A structure to hold various information related to the WASAPI implementation.
-struct WasapiHandle
-{
- IAudioClient* captureAudioClient;
- IAudioClient* renderAudioClient;
- IAudioCaptureClient* captureClient;
- IAudioRenderClient* renderClient;
- HANDLE captureEvent;
- HANDLE renderEvent;
-
- WasapiHandle()
- : captureAudioClient( NULL ),
- renderAudioClient( NULL ),
- captureClient( NULL ),
- renderClient( NULL ),
- captureEvent( NULL ),
- renderEvent( NULL ) {}
-};
-
-//=============================================================================
-
-RtApiWasapi::RtApiWasapi()
- : coInitialized_( false ), deviceEnumerator_( NULL )
-{
- // WASAPI can run either apartment or multi-threaded
- HRESULT hr = CoInitialize( NULL );
- if ( !FAILED( hr ) )
- coInitialized_ = true;
-
- // Instantiate device enumerator
- hr = CoCreateInstance( __uuidof( MMDeviceEnumerator ), NULL,
- CLSCTX_ALL, __uuidof( IMMDeviceEnumerator ),
- ( void** ) &deviceEnumerator_ );
-
- if ( FAILED( hr ) ) {
- errorText_ = "RtApiWasapi::RtApiWasapi: Unable to instantiate device enumerator";
- error( RtAudioError::DRIVER_ERROR );
- }
-}
-
-//-----------------------------------------------------------------------------
-
-RtApiWasapi::~RtApiWasapi()
-{
- if ( stream_.state != STREAM_CLOSED )
- closeStream();
-
- SAFE_RELEASE( deviceEnumerator_ );
-
- // If this object previously called CoInitialize()
- if ( coInitialized_ )
- CoUninitialize();
-}
-
-//=============================================================================
-
-unsigned int RtApiWasapi::getDeviceCount( void )
-{
- unsigned int captureDeviceCount = 0;
- unsigned int renderDeviceCount = 0;
-
- IMMDeviceCollection* captureDevices = NULL;
- IMMDeviceCollection* renderDevices = NULL;
-
- // Count capture devices
- errorText_.clear();
- HRESULT hr = deviceEnumerator_->EnumAudioEndpoints( eCapture, DEVICE_STATE_ACTIVE, &captureDevices );
- if ( FAILED( hr ) ) {
- errorText_ = "RtApiWasapi::getDeviceCount: Unable to retrieve capture device collection.";
- goto Exit;
- }
-
- hr = captureDevices->GetCount( &captureDeviceCount );
- if ( FAILED( hr ) ) {
- errorText_ = "RtApiWasapi::getDeviceCount: Unable to retrieve capture device count.";
- goto Exit;
- }
-
- // Count render devices
- hr = deviceEnumerator_->EnumAudioEndpoints( eRender, DEVICE_STATE_ACTIVE, &renderDevices );
- if ( FAILED( hr ) ) {
- errorText_ = "RtApiWasapi::getDeviceCount: Unable to retrieve render device collection.";
- goto Exit;
- }
-
- hr = renderDevices->GetCount( &renderDeviceCount );
- if ( FAILED( hr ) ) {
- errorText_ = "RtApiWasapi::getDeviceCount: Unable to retrieve render device count.";
- goto Exit;
- }
-
-Exit:
- // release all references
- SAFE_RELEASE( captureDevices );
- SAFE_RELEASE( renderDevices );
-
- if ( errorText_.empty() )
- return captureDeviceCount + renderDeviceCount;
-
- error( RtAudioError::DRIVER_ERROR );
- return 0;
-}
-
-//-----------------------------------------------------------------------------
-
-RtAudio::DeviceInfo RtApiWasapi::getDeviceInfo( unsigned int device )
-{
- RtAudio::DeviceInfo info;
- unsigned int captureDeviceCount = 0;
- unsigned int renderDeviceCount = 0;
- std::string defaultDeviceName;
- bool isCaptureDevice = false;
-
- PROPVARIANT deviceNameProp;
- PROPVARIANT defaultDeviceNameProp;
-
- IMMDeviceCollection* captureDevices = NULL;
- IMMDeviceCollection* renderDevices = NULL;
- IMMDevice* devicePtr = NULL;
- IMMDevice* defaultDevicePtr = NULL;
- IAudioClient* audioClient = NULL;
- IPropertyStore* devicePropStore = NULL;
- IPropertyStore* defaultDevicePropStore = NULL;
-
- WAVEFORMATEX* deviceFormat = NULL;
- WAVEFORMATEX* closestMatchFormat = NULL;
-
- // probed
- info.probed = false;
-
- // Count capture devices
- errorText_.clear();
- RtAudioError::Type errorType = RtAudioError::DRIVER_ERROR;
- HRESULT hr = deviceEnumerator_->EnumAudioEndpoints( eCapture, DEVICE_STATE_ACTIVE, &captureDevices );
- if ( FAILED( hr ) ) {
- errorText_ = "RtApiWasapi::getDeviceInfo: Unable to retrieve capture device collection.";
- goto Exit;
- }
-
- hr = captureDevices->GetCount( &captureDeviceCount );
- if ( FAILED( hr ) ) {
- errorText_ = "RtApiWasapi::getDeviceInfo: Unable to retrieve capture device count.";
- goto Exit;
- }
-
- // Count render devices
- hr = deviceEnumerator_->EnumAudioEndpoints( eRender, DEVICE_STATE_ACTIVE, &renderDevices );
- if ( FAILED( hr ) ) {
- errorText_ = "RtApiWasapi::getDeviceInfo: Unable to retrieve render device collection.";
- goto Exit;
- }
-
- hr = renderDevices->GetCount( &renderDeviceCount );
- if ( FAILED( hr ) ) {
- errorText_ = "RtApiWasapi::getDeviceInfo: Unable to retrieve render device count.";
- goto Exit;
- }
-
- // validate device index
- if ( device >= captureDeviceCount + renderDeviceCount ) {
- errorText_ = "RtApiWasapi::getDeviceInfo: Invalid device index.";
- errorType = RtAudioError::INVALID_USE;
- goto Exit;
- }
-
- // determine whether index falls within capture or render devices
- if ( device >= renderDeviceCount ) {
- hr = captureDevices->Item( device - renderDeviceCount, &devicePtr );
- if ( FAILED( hr ) ) {
- errorText_ = "RtApiWasapi::getDeviceInfo: Unable to retrieve capture device handle.";
- goto Exit;
- }
- isCaptureDevice = true;
- }
- else {
- hr = renderDevices->Item( device, &devicePtr );
- if ( FAILED( hr ) ) {
- errorText_ = "RtApiWasapi::getDeviceInfo: Unable to retrieve render device handle.";
- goto Exit;
- }
- isCaptureDevice = false;
- }
-
- // get default device name
- if ( isCaptureDevice ) {
- hr = deviceEnumerator_->GetDefaultAudioEndpoint( eCapture, eConsole, &defaultDevicePtr );
- if ( FAILED( hr ) ) {
- errorText_ = "RtApiWasapi::getDeviceInfo: Unable to retrieve default capture device handle.";
- goto Exit;
- }
- }
- else {
- hr = deviceEnumerator_->GetDefaultAudioEndpoint( eRender, eConsole, &defaultDevicePtr );
- if ( FAILED( hr ) ) {
- errorText_ = "RtApiWasapi::getDeviceInfo: Unable to retrieve default render device handle.";
- goto Exit;
- }
- }
-
- hr = defaultDevicePtr->OpenPropertyStore( STGM_READ, &defaultDevicePropStore );
- if ( FAILED( hr ) ) {
- errorText_ = "RtApiWasapi::getDeviceInfo: Unable to open default device property store.";
- goto Exit;
- }
- PropVariantInit( &defaultDeviceNameProp );
-
- hr = defaultDevicePropStore->GetValue( PKEY_Device_FriendlyName, &defaultDeviceNameProp );
- if ( FAILED( hr ) ) {
- errorText_ = "RtApiWasapi::getDeviceInfo: Unable to retrieve default device property: PKEY_Device_FriendlyName.";
- goto Exit;
- }
-
- defaultDeviceName = convertCharPointerToStdString(defaultDeviceNameProp.pwszVal);
-
- // name
- hr = devicePtr->OpenPropertyStore( STGM_READ, &devicePropStore );
- if ( FAILED( hr ) ) {
- errorText_ = "RtApiWasapi::getDeviceInfo: Unable to open device property store.";
- goto Exit;
- }
-
- PropVariantInit( &deviceNameProp );
-
- hr = devicePropStore->GetValue( PKEY_Device_FriendlyName, &deviceNameProp );
- if ( FAILED( hr ) ) {
- errorText_ = "RtApiWasapi::getDeviceInfo: Unable to retrieve device property: PKEY_Device_FriendlyName.";
- goto Exit;
- }
-
- info.name =convertCharPointerToStdString(deviceNameProp.pwszVal);
-
- // is default
- if ( isCaptureDevice ) {
- info.isDefaultInput = info.name == defaultDeviceName;
- info.isDefaultOutput = false;
- }
- else {
- info.isDefaultInput = false;
- info.isDefaultOutput = info.name == defaultDeviceName;
- }
-
- // channel count
- hr = devicePtr->Activate( __uuidof( IAudioClient ), CLSCTX_ALL, NULL, ( void** ) &audioClient );
- if ( FAILED( hr ) ) {
- errorText_ = "RtApiWasapi::getDeviceInfo: Unable to retrieve device audio client.";
- goto Exit;
- }
-
- hr = audioClient->GetMixFormat( &deviceFormat );
- if ( FAILED( hr ) ) {
- errorText_ = "RtApiWasapi::getDeviceInfo: Unable to retrieve device mix format.";
- goto Exit;
- }
-
- if ( isCaptureDevice ) {
- info.inputChannels = deviceFormat->nChannels;
- info.outputChannels = 0;
- info.duplexChannels = 0;
- }
- else {
- info.inputChannels = 0;
- info.outputChannels = deviceFormat->nChannels;
- info.duplexChannels = 0;
- }
-
- // sample rates
- info.sampleRates.clear();
-
- // allow support for all sample rates as we have a built-in sample rate converter
- for ( unsigned int i = 0; i < MAX_SAMPLE_RATES; i++ ) {
- info.sampleRates.push_back( SAMPLE_RATES[i] );
- }
- info.preferredSampleRate = deviceFormat->nSamplesPerSec;
-
- // native format
- info.nativeFormats = 0;
-
- if ( deviceFormat->wFormatTag == WAVE_FORMAT_IEEE_FLOAT ||
- ( deviceFormat->wFormatTag == WAVE_FORMAT_EXTENSIBLE &&
- ( ( WAVEFORMATEXTENSIBLE* ) deviceFormat )->SubFormat == KSDATAFORMAT_SUBTYPE_IEEE_FLOAT ) )
- {
- if ( deviceFormat->wBitsPerSample == 32 ) {
- info.nativeFormats |= RTAUDIO_FLOAT32;
- }
- else if ( deviceFormat->wBitsPerSample == 64 ) {
- info.nativeFormats |= RTAUDIO_FLOAT64;
- }
- }
- else if ( deviceFormat->wFormatTag == WAVE_FORMAT_PCM ||
- ( deviceFormat->wFormatTag == WAVE_FORMAT_EXTENSIBLE &&
- ( ( WAVEFORMATEXTENSIBLE* ) deviceFormat )->SubFormat == KSDATAFORMAT_SUBTYPE_PCM ) )
- {
- if ( deviceFormat->wBitsPerSample == 8 ) {
- info.nativeFormats |= RTAUDIO_SINT8;
- }
- else if ( deviceFormat->wBitsPerSample == 16 ) {
- info.nativeFormats |= RTAUDIO_SINT16;
- }
- else if ( deviceFormat->wBitsPerSample == 24 ) {
- info.nativeFormats |= RTAUDIO_SINT24;
- }
- else if ( deviceFormat->wBitsPerSample == 32 ) {
- info.nativeFormats |= RTAUDIO_SINT32;
- }
- }
-
- // probed
- info.probed = true;
-
-Exit:
- // release all references
- PropVariantClear( &deviceNameProp );
- PropVariantClear( &defaultDeviceNameProp );
-
- SAFE_RELEASE( captureDevices );
- SAFE_RELEASE( renderDevices );
- SAFE_RELEASE( devicePtr );
- SAFE_RELEASE( defaultDevicePtr );
- SAFE_RELEASE( audioClient );
- SAFE_RELEASE( devicePropStore );
- SAFE_RELEASE( defaultDevicePropStore );
-
- CoTaskMemFree( deviceFormat );
- CoTaskMemFree( closestMatchFormat );
-
- if ( !errorText_.empty() )
- error( errorType );
- return info;
-}
-
-//-----------------------------------------------------------------------------
-
-unsigned int RtApiWasapi::getDefaultOutputDevice( void )
-{
- for ( unsigned int i = 0; i < getDeviceCount(); i++ ) {
- if ( getDeviceInfo( i ).isDefaultOutput ) {
- return i;
- }
- }
-
- return 0;
-}
-
-//-----------------------------------------------------------------------------
-
-unsigned int RtApiWasapi::getDefaultInputDevice( void )
-{
- for ( unsigned int i = 0; i < getDeviceCount(); i++ ) {
- if ( getDeviceInfo( i ).isDefaultInput ) {
- return i;
- }
- }
-
- return 0;
-}
-
-//-----------------------------------------------------------------------------
-
-void RtApiWasapi::closeStream( void )
-{
- if ( stream_.state == STREAM_CLOSED ) {
- errorText_ = "RtApiWasapi::closeStream: No open stream to close.";
- error( RtAudioError::WARNING );
- return;
- }
-
- if ( stream_.state != STREAM_STOPPED )
- stopStream();
-
- // clean up stream memory
- SAFE_RELEASE( ( ( WasapiHandle* ) stream_.apiHandle )->captureAudioClient )
- SAFE_RELEASE( ( ( WasapiHandle* ) stream_.apiHandle )->renderAudioClient )
-
- SAFE_RELEASE( ( ( WasapiHandle* ) stream_.apiHandle )->captureClient )
- SAFE_RELEASE( ( ( WasapiHandle* ) stream_.apiHandle )->renderClient )
-
- if ( ( ( WasapiHandle* ) stream_.apiHandle )->captureEvent )
- CloseHandle( ( ( WasapiHandle* ) stream_.apiHandle )->captureEvent );
-
- if ( ( ( WasapiHandle* ) stream_.apiHandle )->renderEvent )
- CloseHandle( ( ( WasapiHandle* ) stream_.apiHandle )->renderEvent );
-
- delete ( WasapiHandle* ) stream_.apiHandle;
- stream_.apiHandle = NULL;
-
- for ( int i = 0; i < 2; i++ ) {
- if ( stream_.userBuffer[i] ) {
- free( stream_.userBuffer[i] );
- stream_.userBuffer[i] = 0;
- }
- }
-
- if ( stream_.deviceBuffer ) {
- free( stream_.deviceBuffer );
- stream_.deviceBuffer = 0;
- }
-
- // update stream state
- stream_.state = STREAM_CLOSED;
-}
-
-//-----------------------------------------------------------------------------
-
-void RtApiWasapi::startStream( void )
-{
- verifyStream();
-
- if ( stream_.state == STREAM_RUNNING ) {
- errorText_ = "RtApiWasapi::startStream: The stream is already running.";
- error( RtAudioError::WARNING );
- return;
- }
-
- // update stream state
- stream_.state = STREAM_RUNNING;
-
- // create WASAPI stream thread
- stream_.callbackInfo.thread = ( ThreadHandle ) CreateThread( NULL, 0, runWasapiThread, this, CREATE_SUSPENDED, NULL );
-
- if ( !stream_.callbackInfo.thread ) {
- errorText_ = "RtApiWasapi::startStream: Unable to instantiate callback thread.";
- error( RtAudioError::THREAD_ERROR );
- }
- else {
- SetThreadPriority( ( void* ) stream_.callbackInfo.thread, stream_.callbackInfo.priority );
- ResumeThread( ( void* ) stream_.callbackInfo.thread );
- }
-}
-
-//-----------------------------------------------------------------------------
-
-void RtApiWasapi::stopStream( void )
-{
- verifyStream();
-
- if ( stream_.state == STREAM_STOPPED ) {
- errorText_ = "RtApiWasapi::stopStream: The stream is already stopped.";
- error( RtAudioError::WARNING );
- return;
- }
-
- // inform stream thread by setting stream state to STREAM_STOPPING
- stream_.state = STREAM_STOPPING;
-
- // wait until stream thread is stopped
- while( stream_.state != STREAM_STOPPED ) {
- Sleep( 1 );
- }
-
- // Wait for the last buffer to play before stopping.
- Sleep( 1000 * stream_.bufferSize / stream_.sampleRate );
-
- // stop capture client if applicable
- if ( ( ( WasapiHandle* ) stream_.apiHandle )->captureAudioClient ) {
- HRESULT hr = ( ( WasapiHandle* ) stream_.apiHandle )->captureAudioClient->Stop();
- if ( FAILED( hr ) ) {
- errorText_ = "RtApiWasapi::stopStream: Unable to stop capture stream.";
- error( RtAudioError::DRIVER_ERROR );
- return;
- }
- }
-
- // stop render client if applicable
- if ( ( ( WasapiHandle* ) stream_.apiHandle )->renderAudioClient ) {
- HRESULT hr = ( ( WasapiHandle* ) stream_.apiHandle )->renderAudioClient->Stop();
- if ( FAILED( hr ) ) {
- errorText_ = "RtApiWasapi::stopStream: Unable to stop render stream.";
- error( RtAudioError::DRIVER_ERROR );
- return;
- }
- }
-
- // close thread handle
- if ( stream_.callbackInfo.thread && !CloseHandle( ( void* ) stream_.callbackInfo.thread ) ) {
- errorText_ = "RtApiWasapi::stopStream: Unable to close callback thread.";
- error( RtAudioError::THREAD_ERROR );
- return;
- }
-
- stream_.callbackInfo.thread = (ThreadHandle) NULL;
-}
-
-//-----------------------------------------------------------------------------
-
-void RtApiWasapi::abortStream( void )
-{
- verifyStream();
-
- if ( stream_.state == STREAM_STOPPED ) {
- errorText_ = "RtApiWasapi::abortStream: The stream is already stopped.";
- error( RtAudioError::WARNING );
- return;
- }
-
- // inform stream thread by setting stream state to STREAM_STOPPING
- stream_.state = STREAM_STOPPING;
-
- // wait until stream thread is stopped
- while ( stream_.state != STREAM_STOPPED ) {
- Sleep( 1 );
- }
-
- // stop capture client if applicable
- if ( ( ( WasapiHandle* ) stream_.apiHandle )->captureAudioClient ) {
- HRESULT hr = ( ( WasapiHandle* ) stream_.apiHandle )->captureAudioClient->Stop();
- if ( FAILED( hr ) ) {
- errorText_ = "RtApiWasapi::abortStream: Unable to stop capture stream.";
- error( RtAudioError::DRIVER_ERROR );
- return;
- }
- }
-
- // stop render client if applicable
- if ( ( ( WasapiHandle* ) stream_.apiHandle )->renderAudioClient ) {
- HRESULT hr = ( ( WasapiHandle* ) stream_.apiHandle )->renderAudioClient->Stop();
- if ( FAILED( hr ) ) {
- errorText_ = "RtApiWasapi::abortStream: Unable to stop render stream.";
- error( RtAudioError::DRIVER_ERROR );
- return;
- }
- }
-
- // close thread handle
- if ( stream_.callbackInfo.thread && !CloseHandle( ( void* ) stream_.callbackInfo.thread ) ) {
- errorText_ = "RtApiWasapi::abortStream: Unable to close callback thread.";
- error( RtAudioError::THREAD_ERROR );
- return;
- }
-
- stream_.callbackInfo.thread = (ThreadHandle) NULL;
-}
-
-//-----------------------------------------------------------------------------
-
-bool RtApiWasapi::probeDeviceOpen( unsigned int device, StreamMode mode, unsigned int channels,
- unsigned int firstChannel, unsigned int sampleRate,
- RtAudioFormat format, unsigned int* bufferSize,
- RtAudio::StreamOptions* options )
-{
- bool methodResult = FAILURE;
- unsigned int captureDeviceCount = 0;
- unsigned int renderDeviceCount = 0;
-
- IMMDeviceCollection* captureDevices = NULL;
- IMMDeviceCollection* renderDevices = NULL;
- IMMDevice* devicePtr = NULL;
- WAVEFORMATEX* deviceFormat = NULL;
- unsigned int bufferBytes;
- stream_.state = STREAM_STOPPED;
-
- // create API Handle if not already created
- if ( !stream_.apiHandle )
- stream_.apiHandle = ( void* ) new WasapiHandle();
-
- // Count capture devices
- errorText_.clear();
- RtAudioError::Type errorType = RtAudioError::DRIVER_ERROR;
- HRESULT hr = deviceEnumerator_->EnumAudioEndpoints( eCapture, DEVICE_STATE_ACTIVE, &captureDevices );
- if ( FAILED( hr ) ) {
- errorText_ = "RtApiWasapi::probeDeviceOpen: Unable to retrieve capture device collection.";
- goto Exit;
- }
-
- hr = captureDevices->GetCount( &captureDeviceCount );
- if ( FAILED( hr ) ) {
- errorText_ = "RtApiWasapi::probeDeviceOpen: Unable to retrieve capture device count.";
- goto Exit;
- }
-
- // Count render devices
- hr = deviceEnumerator_->EnumAudioEndpoints( eRender, DEVICE_STATE_ACTIVE, &renderDevices );
- if ( FAILED( hr ) ) {
- errorText_ = "RtApiWasapi::probeDeviceOpen: Unable to retrieve render device collection.";
- goto Exit;
- }
-
- hr = renderDevices->GetCount( &renderDeviceCount );
- if ( FAILED( hr ) ) {
- errorText_ = "RtApiWasapi::probeDeviceOpen: Unable to retrieve render device count.";
- goto Exit;
- }
-
- // validate device index
- if ( device >= captureDeviceCount + renderDeviceCount ) {
- errorType = RtAudioError::INVALID_USE;
- errorText_ = "RtApiWasapi::probeDeviceOpen: Invalid device index.";
- goto Exit;
- }
-
- // determine whether index falls within capture or render devices
- if ( device >= renderDeviceCount ) {
- if ( mode != INPUT ) {
- errorType = RtAudioError::INVALID_USE;
- errorText_ = "RtApiWasapi::probeDeviceOpen: Capture device selected as output device.";
- goto Exit;
- }
-
- // retrieve captureAudioClient from devicePtr
- IAudioClient*& captureAudioClient = ( ( WasapiHandle* ) stream_.apiHandle )->captureAudioClient;
-
- hr = captureDevices->Item( device - renderDeviceCount, &devicePtr );
- if ( FAILED( hr ) ) {
- errorText_ = "RtApiWasapi::probeDeviceOpen: Unable to retrieve capture device handle.";
- goto Exit;
- }
-
- hr = devicePtr->Activate( __uuidof( IAudioClient ), CLSCTX_ALL,
- NULL, ( void** ) &captureAudioClient );
- if ( FAILED( hr ) ) {
- errorText_ = "RtApiWasapi::probeDeviceOpen: Unable to retrieve device audio client.";
- goto Exit;
- }
-
- hr = captureAudioClient->GetMixFormat( &deviceFormat );
- if ( FAILED( hr ) ) {
- errorText_ = "RtApiWasapi::probeDeviceOpen: Unable to retrieve device mix format.";
- goto Exit;
- }
-
- stream_.nDeviceChannels[mode] = deviceFormat->nChannels;
- captureAudioClient->GetStreamLatency( ( long long* ) &stream_.latency[mode] );
- }
- else {
- if ( mode != OUTPUT ) {
- errorType = RtAudioError::INVALID_USE;
- errorText_ = "RtApiWasapi::probeDeviceOpen: Render device selected as input device.";
- goto Exit;
- }
-
- // retrieve renderAudioClient from devicePtr
- IAudioClient*& renderAudioClient = ( ( WasapiHandle* ) stream_.apiHandle )->renderAudioClient;
-
- hr = renderDevices->Item( device, &devicePtr );
- if ( FAILED( hr ) ) {
- errorText_ = "RtApiWasapi::probeDeviceOpen: Unable to retrieve render device handle.";
- goto Exit;
- }
-
- hr = devicePtr->Activate( __uuidof( IAudioClient ), CLSCTX_ALL,
- NULL, ( void** ) &renderAudioClient );
- if ( FAILED( hr ) ) {
- errorText_ = "RtApiWasapi::probeDeviceOpen: Unable to retrieve device audio client.";
- goto Exit;
- }
-
- hr = renderAudioClient->GetMixFormat( &deviceFormat );
- if ( FAILED( hr ) ) {
- errorText_ = "RtApiWasapi::probeDeviceOpen: Unable to retrieve device mix format.";
- goto Exit;
- }
-
- stream_.nDeviceChannels[mode] = deviceFormat->nChannels;
- renderAudioClient->GetStreamLatency( ( long long* ) &stream_.latency[mode] );
- }
-
- // fill stream data
- if ( ( stream_.mode == OUTPUT && mode == INPUT ) ||
- ( stream_.mode == INPUT && mode == OUTPUT ) ) {
- stream_.mode = DUPLEX;
- }
- else {
- stream_.mode = mode;
- }
-
- stream_.device[mode] = device;
- stream_.doByteSwap[mode] = false;
- stream_.sampleRate = sampleRate;
- stream_.bufferSize = *bufferSize;
- stream_.nBuffers = 1;
- stream_.nUserChannels[mode] = channels;
- stream_.channelOffset[mode] = firstChannel;
- stream_.userFormat = format;
- stream_.deviceFormat[mode] = getDeviceInfo( device ).nativeFormats;
-
- if ( options && options->flags & RTAUDIO_NONINTERLEAVED )
- stream_.userInterleaved = false;
- else
- stream_.userInterleaved = true;
- stream_.deviceInterleaved[mode] = true;
-
- // Set flags for buffer conversion.
- stream_.doConvertBuffer[mode] = false;
- if ( stream_.userFormat != stream_.deviceFormat[mode] ||
- stream_.nUserChannels != stream_.nDeviceChannels )
- stream_.doConvertBuffer[mode] = true;
- else if ( stream_.userInterleaved != stream_.deviceInterleaved[mode] &&
- stream_.nUserChannels[mode] > 1 )
- stream_.doConvertBuffer[mode] = true;
-
- if ( stream_.doConvertBuffer[mode] )
- setConvertInfo( mode, 0 );
-
- // Allocate necessary internal buffers
- bufferBytes = stream_.nUserChannels[mode] * stream_.bufferSize * formatBytes( stream_.userFormat );
-
- stream_.userBuffer[mode] = ( char* ) calloc( bufferBytes, 1 );
- if ( !stream_.userBuffer[mode] ) {
- errorType = RtAudioError::MEMORY_ERROR;
- errorText_ = "RtApiWasapi::probeDeviceOpen: Error allocating user buffer memory.";
- goto Exit;
- }
-
- if ( options && options->flags & RTAUDIO_SCHEDULE_REALTIME )
- stream_.callbackInfo.priority = 15;
- else
- stream_.callbackInfo.priority = 0;
-
- ///! TODO: RTAUDIO_MINIMIZE_LATENCY // Provide stream buffers directly to callback
- ///! TODO: RTAUDIO_HOG_DEVICE // Exclusive mode
-
- methodResult = SUCCESS;
-
-Exit:
- //clean up
- SAFE_RELEASE( captureDevices );
- SAFE_RELEASE( renderDevices );
- SAFE_RELEASE( devicePtr );
- CoTaskMemFree( deviceFormat );
-
- // if method failed, close the stream
- if ( methodResult == FAILURE )
- closeStream();
-
- if ( !errorText_.empty() )
- error( errorType );
- return methodResult;
-}
-
-//=============================================================================
-
-DWORD WINAPI RtApiWasapi::runWasapiThread( void* wasapiPtr )
-{
- if ( wasapiPtr )
- ( ( RtApiWasapi* ) wasapiPtr )->wasapiThread();
-
- return 0;
-}
-
-DWORD WINAPI RtApiWasapi::stopWasapiThread( void* wasapiPtr )
-{
- if ( wasapiPtr )
- ( ( RtApiWasapi* ) wasapiPtr )->stopStream();
-
- return 0;
-}
-
-DWORD WINAPI RtApiWasapi::abortWasapiThread( void* wasapiPtr )
-{
- if ( wasapiPtr )
- ( ( RtApiWasapi* ) wasapiPtr )->abortStream();
-
- return 0;
-}
-
-//-----------------------------------------------------------------------------
-
-void RtApiWasapi::wasapiThread()
-{
- // as this is a new thread, we must CoInitialize it
- CoInitialize( NULL );
-
- HRESULT hr;
-
- IAudioClient* captureAudioClient = ( ( WasapiHandle* ) stream_.apiHandle )->captureAudioClient;
- IAudioClient* renderAudioClient = ( ( WasapiHandle* ) stream_.apiHandle )->renderAudioClient;
- IAudioCaptureClient* captureClient = ( ( WasapiHandle* ) stream_.apiHandle )->captureClient;
- IAudioRenderClient* renderClient = ( ( WasapiHandle* ) stream_.apiHandle )->renderClient;
- HANDLE captureEvent = ( ( WasapiHandle* ) stream_.apiHandle )->captureEvent;
- HANDLE renderEvent = ( ( WasapiHandle* ) stream_.apiHandle )->renderEvent;
-
- WAVEFORMATEX* captureFormat = NULL;
- WAVEFORMATEX* renderFormat = NULL;
- float captureSrRatio = 0.0f;
- float renderSrRatio = 0.0f;
- WasapiBuffer captureBuffer;
- WasapiBuffer renderBuffer;
-
- // declare local stream variables
- RtAudioCallback callback = ( RtAudioCallback ) stream_.callbackInfo.callback;
- BYTE* streamBuffer = NULL;
- unsigned long captureFlags = 0;
- unsigned int bufferFrameCount = 0;
- unsigned int numFramesPadding = 0;
- unsigned int convBufferSize = 0;
- bool callbackPushed = false;
- bool callbackPulled = false;
- bool callbackStopped = false;
- int callbackResult = 0;
-
- // convBuffer is used to store converted buffers between WASAPI and the user
- char* convBuffer = NULL;
- unsigned int convBuffSize = 0;
- unsigned int deviceBuffSize = 0;
-
- errorText_.clear();
- RtAudioError::Type errorType = RtAudioError::DRIVER_ERROR;
-
- // Attempt to assign "Pro Audio" characteristic to thread
- HMODULE AvrtDll = LoadLibrary( (LPCTSTR) "AVRT.dll" );
- if ( AvrtDll ) {
- DWORD taskIndex = 0;
- TAvSetMmThreadCharacteristicsPtr AvSetMmThreadCharacteristicsPtr = ( TAvSetMmThreadCharacteristicsPtr ) GetProcAddress( AvrtDll, "AvSetMmThreadCharacteristicsW" );
- AvSetMmThreadCharacteristicsPtr( L"Pro Audio", &taskIndex );
- FreeLibrary( AvrtDll );
- }
-
- // start capture stream if applicable
- if ( captureAudioClient ) {
- hr = captureAudioClient->GetMixFormat( &captureFormat );
- if ( FAILED( hr ) ) {
- errorText_ = "RtApiWasapi::wasapiThread: Unable to retrieve device mix format.";
- goto Exit;
- }
-
- captureSrRatio = ( ( float ) captureFormat->nSamplesPerSec / stream_.sampleRate );
-
- // initialize capture stream according to desire buffer size
- float desiredBufferSize = stream_.bufferSize * captureSrRatio;
- REFERENCE_TIME desiredBufferPeriod = ( REFERENCE_TIME ) ( ( float ) desiredBufferSize * 10000000 / captureFormat->nSamplesPerSec );
-
- if ( !captureClient ) {
- hr = captureAudioClient->Initialize( AUDCLNT_SHAREMODE_SHARED,
- AUDCLNT_STREAMFLAGS_EVENTCALLBACK,
- desiredBufferPeriod,
- desiredBufferPeriod,
- captureFormat,
- NULL );
- if ( FAILED( hr ) ) {
- errorText_ = "RtApiWasapi::wasapiThread: Unable to initialize capture audio client.";
- goto Exit;
- }
-
- hr = captureAudioClient->GetService( __uuidof( IAudioCaptureClient ),
- ( void** ) &captureClient );
- if ( FAILED( hr ) ) {
- errorText_ = "RtApiWasapi::wasapiThread: Unable to retrieve capture client handle.";
- goto Exit;
- }
-
- // configure captureEvent to trigger on every available capture buffer
- captureEvent = CreateEvent( NULL, FALSE, FALSE, NULL );
- if ( !captureEvent ) {
- errorType = RtAudioError::SYSTEM_ERROR;
- errorText_ = "RtApiWasapi::wasapiThread: Unable to create capture event.";
- goto Exit;
- }
-
- hr = captureAudioClient->SetEventHandle( captureEvent );
- if ( FAILED( hr ) ) {
- errorText_ = "RtApiWasapi::wasapiThread: Unable to set capture event handle.";
- goto Exit;
- }
-
- ( ( WasapiHandle* ) stream_.apiHandle )->captureClient = captureClient;
- ( ( WasapiHandle* ) stream_.apiHandle )->captureEvent = captureEvent;
- }
-
- unsigned int inBufferSize = 0;
- hr = captureAudioClient->GetBufferSize( &inBufferSize );
- if ( FAILED( hr ) ) {
- errorText_ = "RtApiWasapi::wasapiThread: Unable to get capture buffer size.";
- goto Exit;
- }
-
- // scale outBufferSize according to stream->user sample rate ratio
- unsigned int outBufferSize = ( unsigned int ) ( stream_.bufferSize * captureSrRatio ) * stream_.nDeviceChannels[INPUT];
- inBufferSize *= stream_.nDeviceChannels[INPUT];
-
- // set captureBuffer size
- captureBuffer.setBufferSize( inBufferSize + outBufferSize, formatBytes( stream_.deviceFormat[INPUT] ) );
-
- // reset the capture stream
- hr = captureAudioClient->Reset();
- if ( FAILED( hr ) ) {
- errorText_ = "RtApiWasapi::wasapiThread: Unable to reset capture stream.";
- goto Exit;
- }
-
- // start the capture stream
- hr = captureAudioClient->Start();
- if ( FAILED( hr ) ) {
- errorText_ = "RtApiWasapi::wasapiThread: Unable to start capture stream.";
- goto Exit;
- }
- }
-
- // start render stream if applicable
- if ( renderAudioClient ) {
- hr = renderAudioClient->GetMixFormat( &renderFormat );
- if ( FAILED( hr ) ) {
- errorText_ = "RtApiWasapi::wasapiThread: Unable to retrieve device mix format.";
- goto Exit;
- }
-
- renderSrRatio = ( ( float ) renderFormat->nSamplesPerSec / stream_.sampleRate );
-
- // initialize render stream according to desire buffer size
- float desiredBufferSize = stream_.bufferSize * renderSrRatio;
- REFERENCE_TIME desiredBufferPeriod = ( REFERENCE_TIME ) ( ( float ) desiredBufferSize * 10000000 / renderFormat->nSamplesPerSec );
-
- if ( !renderClient ) {
- hr = renderAudioClient->Initialize( AUDCLNT_SHAREMODE_SHARED,
- AUDCLNT_STREAMFLAGS_EVENTCALLBACK,
- desiredBufferPeriod,
- desiredBufferPeriod,
- renderFormat,
- NULL );
- if ( FAILED( hr ) ) {
- errorText_ = "RtApiWasapi::wasapiThread: Unable to initialize render audio client.";
- goto Exit;
- }
-
- hr = renderAudioClient->GetService( __uuidof( IAudioRenderClient ),
- ( void** ) &renderClient );
- if ( FAILED( hr ) ) {
- errorText_ = "RtApiWasapi::wasapiThread: Unable to retrieve render client handle.";
- goto Exit;
- }
-
- // configure renderEvent to trigger on every available render buffer
- renderEvent = CreateEvent( NULL, FALSE, FALSE, NULL );
- if ( !renderEvent ) {
- errorType = RtAudioError::SYSTEM_ERROR;
- errorText_ = "RtApiWasapi::wasapiThread: Unable to create render event.";
- goto Exit;
- }
-
- hr = renderAudioClient->SetEventHandle( renderEvent );
- if ( FAILED( hr ) ) {
- errorText_ = "RtApiWasapi::wasapiThread: Unable to set render event handle.";
- goto Exit;
- }
-
- ( ( WasapiHandle* ) stream_.apiHandle )->renderClient = renderClient;
- ( ( WasapiHandle* ) stream_.apiHandle )->renderEvent = renderEvent;
- }
-
- unsigned int outBufferSize = 0;
- hr = renderAudioClient->GetBufferSize( &outBufferSize );
- if ( FAILED( hr ) ) {
- errorText_ = "RtApiWasapi::wasapiThread: Unable to get render buffer size.";
- goto Exit;
- }
-
- // scale inBufferSize according to user->stream sample rate ratio
- unsigned int inBufferSize = ( unsigned int ) ( stream_.bufferSize * renderSrRatio ) * stream_.nDeviceChannels[OUTPUT];
- outBufferSize *= stream_.nDeviceChannels[OUTPUT];
-
- // set renderBuffer size
- renderBuffer.setBufferSize( inBufferSize + outBufferSize, formatBytes( stream_.deviceFormat[OUTPUT] ) );
-
- // reset the render stream
- hr = renderAudioClient->Reset();
- if ( FAILED( hr ) ) {
- errorText_ = "RtApiWasapi::wasapiThread: Unable to reset render stream.";
- goto Exit;
- }
-
- // start the render stream
- hr = renderAudioClient->Start();
- if ( FAILED( hr ) ) {
- errorText_ = "RtApiWasapi::wasapiThread: Unable to start render stream.";
- goto Exit;
- }
- }
-
- if ( stream_.mode == INPUT ) {
- convBuffSize = ( size_t ) ( stream_.bufferSize * captureSrRatio ) * stream_.nDeviceChannels[INPUT] * formatBytes( stream_.deviceFormat[INPUT] );
- deviceBuffSize = stream_.bufferSize * stream_.nDeviceChannels[INPUT] * formatBytes( stream_.deviceFormat[INPUT] );
- }
- else if ( stream_.mode == OUTPUT ) {
- convBuffSize = ( size_t ) ( stream_.bufferSize * renderSrRatio ) * stream_.nDeviceChannels[OUTPUT] * formatBytes( stream_.deviceFormat[OUTPUT] );
- deviceBuffSize = stream_.bufferSize * stream_.nDeviceChannels[OUTPUT] * formatBytes( stream_.deviceFormat[OUTPUT] );
- }
- else if ( stream_.mode == DUPLEX ) {
- convBuffSize = std::max( ( size_t ) ( stream_.bufferSize * captureSrRatio ) * stream_.nDeviceChannels[INPUT] * formatBytes( stream_.deviceFormat[INPUT] ),
- ( size_t ) ( stream_.bufferSize * renderSrRatio ) * stream_.nDeviceChannels[OUTPUT] * formatBytes( stream_.deviceFormat[OUTPUT] ) );
- deviceBuffSize = std::max( stream_.bufferSize * stream_.nDeviceChannels[INPUT] * formatBytes( stream_.deviceFormat[INPUT] ),
- stream_.bufferSize * stream_.nDeviceChannels[OUTPUT] * formatBytes( stream_.deviceFormat[OUTPUT] ) );
- }
-
- convBuffer = ( char* ) malloc( convBuffSize );
- stream_.deviceBuffer = ( char* ) malloc( deviceBuffSize );
- if ( !convBuffer || !stream_.deviceBuffer ) {
- errorType = RtAudioError::MEMORY_ERROR;
- errorText_ = "RtApiWasapi::wasapiThread: Error allocating device buffer memory.";
- goto Exit;
- }
-
- // stream process loop
- while ( stream_.state != STREAM_STOPPING ) {
- if ( !callbackPulled ) {
- // Callback Input
- // ==============
- // 1. Pull callback buffer from inputBuffer
- // 2. If 1. was successful: Convert callback buffer to user sample rate and channel count
- // Convert callback buffer to user format
-
- if ( captureAudioClient ) {
- // Pull callback buffer from inputBuffer
- callbackPulled = captureBuffer.pullBuffer( convBuffer,
- ( unsigned int ) ( stream_.bufferSize * captureSrRatio ) * stream_.nDeviceChannels[INPUT],
- stream_.deviceFormat[INPUT] );
-
- if ( callbackPulled ) {
- // Convert callback buffer to user sample rate
- convertBufferWasapi( stream_.deviceBuffer,
- convBuffer,
- stream_.nDeviceChannels[INPUT],
- captureFormat->nSamplesPerSec,
- stream_.sampleRate,
- ( unsigned int ) ( stream_.bufferSize * captureSrRatio ),
- convBufferSize,
- stream_.deviceFormat[INPUT] );
-
- if ( stream_.doConvertBuffer[INPUT] ) {
- // Convert callback buffer to user format
- convertBuffer( stream_.userBuffer[INPUT],
- stream_.deviceBuffer,
- stream_.convertInfo[INPUT] );
- }
- else {
- // no further conversion, simple copy deviceBuffer to userBuffer
- memcpy( stream_.userBuffer[INPUT],
- stream_.deviceBuffer,
- stream_.bufferSize * stream_.nUserChannels[INPUT] * formatBytes( stream_.userFormat ) );
- }
- }
- }
- else {
- // if there is no capture stream, set callbackPulled flag
- callbackPulled = true;
- }
-
- // Execute Callback
- // ================
- // 1. Execute user callback method
- // 2. Handle return value from callback
-
- // if callback has not requested the stream to stop
- if ( callbackPulled && !callbackStopped ) {
- // Execute user callback method
- callbackResult = callback( stream_.userBuffer[OUTPUT],
- stream_.userBuffer[INPUT],
- stream_.bufferSize,
- getStreamTime(),
- captureFlags & AUDCLNT_BUFFERFLAGS_DATA_DISCONTINUITY ? RTAUDIO_INPUT_OVERFLOW : 0,
- stream_.callbackInfo.userData );
-
- // Handle return value from callback
- if ( callbackResult == 1 ) {
- // instantiate a thread to stop this thread
- HANDLE threadHandle = CreateThread( NULL, 0, stopWasapiThread, this, 0, NULL );
- if ( !threadHandle ) {
- errorType = RtAudioError::THREAD_ERROR;
- errorText_ = "RtApiWasapi::wasapiThread: Unable to instantiate stream stop thread.";
- goto Exit;
- }
- else if ( !CloseHandle( threadHandle ) ) {
- errorType = RtAudioError::THREAD_ERROR;
- errorText_ = "RtApiWasapi::wasapiThread: Unable to close stream stop thread handle.";
- goto Exit;
- }
-
- callbackStopped = true;
- }
- else if ( callbackResult == 2 ) {
- // instantiate a thread to stop this thread
- HANDLE threadHandle = CreateThread( NULL, 0, abortWasapiThread, this, 0, NULL );
- if ( !threadHandle ) {
- errorType = RtAudioError::THREAD_ERROR;
- errorText_ = "RtApiWasapi::wasapiThread: Unable to instantiate stream abort thread.";
- goto Exit;
- }
- else if ( !CloseHandle( threadHandle ) ) {
- errorType = RtAudioError::THREAD_ERROR;
- errorText_ = "RtApiWasapi::wasapiThread: Unable to close stream abort thread handle.";
- goto Exit;
- }
-
- callbackStopped = true;
- }
- }
- }
-
- // Callback Output
- // ===============
- // 1. Convert callback buffer to stream format
- // 2. Convert callback buffer to stream sample rate and channel count
- // 3. Push callback buffer into outputBuffer
-
- if ( renderAudioClient && callbackPulled ) {
- if ( stream_.doConvertBuffer[OUTPUT] ) {
- // Convert callback buffer to stream format
- convertBuffer( stream_.deviceBuffer,
- stream_.userBuffer[OUTPUT],
- stream_.convertInfo[OUTPUT] );
-
- }
-
- // Convert callback buffer to stream sample rate
- convertBufferWasapi( convBuffer,
- stream_.deviceBuffer,
- stream_.nDeviceChannels[OUTPUT],
- stream_.sampleRate,
- renderFormat->nSamplesPerSec,
- stream_.bufferSize,
- convBufferSize,
- stream_.deviceFormat[OUTPUT] );
-
- // Push callback buffer into outputBuffer
- callbackPushed = renderBuffer.pushBuffer( convBuffer,
- convBufferSize * stream_.nDeviceChannels[OUTPUT],
- stream_.deviceFormat[OUTPUT] );
- }
- else {
- // if there is no render stream, set callbackPushed flag
- callbackPushed = true;
- }
-
- // Stream Capture
- // ==============
- // 1. Get capture buffer from stream
- // 2. Push capture buffer into inputBuffer
- // 3. If 2. was successful: Release capture buffer
-
- if ( captureAudioClient ) {
- // if the callback input buffer was not pulled from captureBuffer, wait for next capture event
- if ( !callbackPulled ) {
- WaitForSingleObject( captureEvent, INFINITE );
- }
-
- // Get capture buffer from stream
- hr = captureClient->GetBuffer( &streamBuffer,
- &bufferFrameCount,
- &captureFlags, NULL, NULL );
- if ( FAILED( hr ) ) {
- errorText_ = "RtApiWasapi::wasapiThread: Unable to retrieve capture buffer.";
- goto Exit;
- }
-
- if ( bufferFrameCount != 0 ) {
- // Push capture buffer into inputBuffer
- if ( captureBuffer.pushBuffer( ( char* ) streamBuffer,
- bufferFrameCount * stream_.nDeviceChannels[INPUT],
- stream_.deviceFormat[INPUT] ) )
- {
- // Release capture buffer
- hr = captureClient->ReleaseBuffer( bufferFrameCount );
- if ( FAILED( hr ) ) {
- errorText_ = "RtApiWasapi::wasapiThread: Unable to release capture buffer.";
- goto Exit;
- }
- }
- else
- {
- // Inform WASAPI that capture was unsuccessful
- hr = captureClient->ReleaseBuffer( 0 );
- if ( FAILED( hr ) ) {
- errorText_ = "RtApiWasapi::wasapiThread: Unable to release capture buffer.";
- goto Exit;
- }
- }
- }
- else
- {
- // Inform WASAPI that capture was unsuccessful
- hr = captureClient->ReleaseBuffer( 0 );
- if ( FAILED( hr ) ) {
- errorText_ = "RtApiWasapi::wasapiThread: Unable to release capture buffer.";
- goto Exit;
- }
- }
- }
-
- // Stream Render
- // =============
- // 1. Get render buffer from stream
- // 2. Pull next buffer from outputBuffer
- // 3. If 2. was successful: Fill render buffer with next buffer
- // Release render buffer
-
- if ( renderAudioClient ) {
- // if the callback output buffer was not pushed to renderBuffer, wait for next render event
- if ( callbackPulled && !callbackPushed ) {
- WaitForSingleObject( renderEvent, INFINITE );
- }
-
- // Get render buffer from stream
- hr = renderAudioClient->GetBufferSize( &bufferFrameCount );
- if ( FAILED( hr ) ) {
- errorText_ = "RtApiWasapi::wasapiThread: Unable to retrieve render buffer size.";
- goto Exit;
- }
-
- hr = renderAudioClient->GetCurrentPadding( &numFramesPadding );
- if ( FAILED( hr ) ) {
- errorText_ = "RtApiWasapi::wasapiThread: Unable to retrieve render buffer padding.";
- goto Exit;
- }
-
- bufferFrameCount -= numFramesPadding;
-
- if ( bufferFrameCount != 0 ) {
- hr = renderClient->GetBuffer( bufferFrameCount, &streamBuffer );
- if ( FAILED( hr ) ) {
- errorText_ = "RtApiWasapi::wasapiThread: Unable to retrieve render buffer.";
- goto Exit;
- }
-
- // Pull next buffer from outputBuffer
- // Fill render buffer with next buffer
- if ( renderBuffer.pullBuffer( ( char* ) streamBuffer,
- bufferFrameCount * stream_.nDeviceChannels[OUTPUT],
- stream_.deviceFormat[OUTPUT] ) )
- {
- // Release render buffer
- hr = renderClient->ReleaseBuffer( bufferFrameCount, 0 );
- if ( FAILED( hr ) ) {
- errorText_ = "RtApiWasapi::wasapiThread: Unable to release render buffer.";
- goto Exit;
- }
- }
- else
- {
- // Inform WASAPI that render was unsuccessful
- hr = renderClient->ReleaseBuffer( 0, 0 );
- if ( FAILED( hr ) ) {
- errorText_ = "RtApiWasapi::wasapiThread: Unable to release render buffer.";
- goto Exit;
- }
- }
- }
- else
- {
- // Inform WASAPI that render was unsuccessful
- hr = renderClient->ReleaseBuffer( 0, 0 );
- if ( FAILED( hr ) ) {
- errorText_ = "RtApiWasapi::wasapiThread: Unable to release render buffer.";
- goto Exit;
- }
- }
- }
-
- // if the callback buffer was pushed renderBuffer reset callbackPulled flag
- if ( callbackPushed ) {
- callbackPulled = false;
- }
-
- // tick stream time
- RtApi::tickStreamTime();
- }
-
-Exit:
- // clean up
- CoTaskMemFree( captureFormat );
- CoTaskMemFree( renderFormat );
-
- free ( convBuffer );
-
- CoUninitialize();
-
- // update stream state
- stream_.state = STREAM_STOPPED;
-
- if ( errorText_.empty() )
- return;
- else
- error( errorType );
-}
-
-//******************** End of __WINDOWS_WASAPI__ *********************//
-#endif
-
-
-#if defined(__WINDOWS_DS__) // Windows DirectSound API
-
-// Modified by Robin Davies, October 2005
-// - Improvements to DirectX pointer chasing.
-// - Bug fix for non-power-of-two Asio granularity used by Edirol PCR-A30.
-// - Auto-call CoInitialize for DSOUND and ASIO platforms.
-// Various revisions for RtAudio 4.0 by Gary Scavone, April 2007
-// Changed device query structure for RtAudio 4.0.7, January 2010
-
-#include <dsound.h>
-#include <assert.h>
-#include <algorithm>
-
-#if defined(__MINGW32__)
- // missing from latest mingw winapi
-#define WAVE_FORMAT_96M08 0x00010000 /* 96 kHz, Mono, 8-bit */
-#define WAVE_FORMAT_96S08 0x00020000 /* 96 kHz, Stereo, 8-bit */
-#define WAVE_FORMAT_96M16 0x00040000 /* 96 kHz, Mono, 16-bit */
-#define WAVE_FORMAT_96S16 0x00080000 /* 96 kHz, Stereo, 16-bit */
-#endif
-
-#define MINIMUM_DEVICE_BUFFER_SIZE 32768
-
-#ifdef _MSC_VER // if Microsoft Visual C++
-#pragma comment( lib, "winmm.lib" ) // then, auto-link winmm.lib. Otherwise, it has to be added manually.
-#endif
-
-static inline DWORD dsPointerBetween( DWORD pointer, DWORD laterPointer, DWORD earlierPointer, DWORD bufferSize )
-{
- if ( pointer > bufferSize ) pointer -= bufferSize;
- if ( laterPointer < earlierPointer ) laterPointer += bufferSize;
- if ( pointer < earlierPointer ) pointer += bufferSize;
- return pointer >= earlierPointer && pointer < laterPointer;
-}
-
-// A structure to hold various information related to the DirectSound
-// API implementation.
-struct DsHandle {
- unsigned int drainCounter; // Tracks callback counts when draining
- bool internalDrain; // Indicates if stop is initiated from callback or not.
- void *id[2];
- void *buffer[2];
- bool xrun[2];
- UINT bufferPointer[2];
- DWORD dsBufferSize[2];
- DWORD dsPointerLeadTime[2]; // the number of bytes ahead of the safe pointer to lead by.
- HANDLE condition;
-
- DsHandle()
- :drainCounter(0), internalDrain(false) { id[0] = 0; id[1] = 0; buffer[0] = 0; buffer[1] = 0; xrun[0] = false; xrun[1] = false; bufferPointer[0] = 0; bufferPointer[1] = 0; }
-};
-
-// Declarations for utility functions, callbacks, and structures
-// specific to the DirectSound implementation.
-static BOOL CALLBACK deviceQueryCallback( LPGUID lpguid,
- LPCTSTR description,
- LPCTSTR module,
- LPVOID lpContext );
-
-static const char* getErrorString( int code );
-
-static unsigned __stdcall callbackHandler( void *ptr );
-
-struct DsDevice {
- LPGUID id[2];
- bool validId[2];
- bool found;
- std::string name;
-
- DsDevice()
- : found(false) { validId[0] = false; validId[1] = false; }
-};
-
-struct DsProbeData {
- bool isInput;
- std::vector<struct DsDevice>* dsDevices;
-};
-
-RtApiDs :: RtApiDs()
-{
- // Dsound will run both-threaded. If CoInitialize fails, then just
- // accept whatever the mainline chose for a threading model.
- coInitialized_ = false;
- HRESULT hr = CoInitialize( NULL );
- if ( !FAILED( hr ) ) coInitialized_ = true;
-}
-
-RtApiDs :: ~RtApiDs()
-{
- if ( coInitialized_ ) CoUninitialize(); // balanced call.
- if ( stream_.state != STREAM_CLOSED ) closeStream();
-}
-
-// The DirectSound default output is always the first device.
-unsigned int RtApiDs :: getDefaultOutputDevice( void )
-{
- return 0;
-}
-
-// The DirectSound default input is always the first input device,
-// which is the first capture device enumerated.
-unsigned int RtApiDs :: getDefaultInputDevice( void )
-{
- return 0;
-}
-
-unsigned int RtApiDs :: getDeviceCount( void )
-{
- // Set query flag for previously found devices to false, so that we
- // can check for any devices that have disappeared.
- for ( unsigned int i=0; i<dsDevices.size(); i++ )
- dsDevices[i].found = false;
-
- // Query DirectSound devices.
- struct DsProbeData probeInfo;
- probeInfo.isInput = false;
- probeInfo.dsDevices = &dsDevices;
- HRESULT result = DirectSoundEnumerate( (LPDSENUMCALLBACK) deviceQueryCallback, &probeInfo );
- if ( FAILED( result ) ) {
- errorStream_ << "RtApiDs::getDeviceCount: error (" << getErrorString( result ) << ") enumerating output devices!";
- errorText_ = errorStream_.str();
- error( RtAudioError::WARNING );
- }
-
- // Query DirectSoundCapture devices.
- probeInfo.isInput = true;
- result = DirectSoundCaptureEnumerate( (LPDSENUMCALLBACK) deviceQueryCallback, &probeInfo );
- if ( FAILED( result ) ) {
- errorStream_ << "RtApiDs::getDeviceCount: error (" << getErrorString( result ) << ") enumerating input devices!";
- errorText_ = errorStream_.str();
- error( RtAudioError::WARNING );
- }
-
- // Clean out any devices that may have disappeared (code update submitted by Eli Zehngut).
- for ( unsigned int i=0; i<dsDevices.size(); ) {
- if ( dsDevices[i].found == false ) dsDevices.erase( dsDevices.begin() + i );
- else i++;
- }
-
- return static_cast<unsigned int>(dsDevices.size());
-}
-
-RtAudio::DeviceInfo RtApiDs :: getDeviceInfo( unsigned int device )
-{
- RtAudio::DeviceInfo info;
- info.probed = false;
-
- if ( dsDevices.size() == 0 ) {
- // Force a query of all devices
- getDeviceCount();
- if ( dsDevices.size() == 0 ) {
- errorText_ = "RtApiDs::getDeviceInfo: no devices found!";
- error( RtAudioError::INVALID_USE );
- return info;
- }
- }
-
- if ( device >= dsDevices.size() ) {
- errorText_ = "RtApiDs::getDeviceInfo: device ID is invalid!";
- error( RtAudioError::INVALID_USE );
- return info;
- }
-
- HRESULT result;
- if ( dsDevices[ device ].validId[0] == false ) goto probeInput;
-
- LPDIRECTSOUND output;
- DSCAPS outCaps;
- result = DirectSoundCreate( dsDevices[ device ].id[0], &output, NULL );
- if ( FAILED( result ) ) {
- errorStream_ << "RtApiDs::getDeviceInfo: error (" << getErrorString( result ) << ") opening output device (" << dsDevices[ device ].name << ")!";
- errorText_ = errorStream_.str();
- error( RtAudioError::WARNING );
- goto probeInput;
- }
-
- outCaps.dwSize = sizeof( outCaps );
- result = output->GetCaps( &outCaps );
- if ( FAILED( result ) ) {
- output->Release();
- errorStream_ << "RtApiDs::getDeviceInfo: error (" << getErrorString( result ) << ") getting capabilities!";
- errorText_ = errorStream_.str();
- error( RtAudioError::WARNING );
- goto probeInput;
- }
-
- // Get output channel information.
- info.outputChannels = ( outCaps.dwFlags & DSCAPS_PRIMARYSTEREO ) ? 2 : 1;
-
- // Get sample rate information.
- info.sampleRates.clear();
- for ( unsigned int k=0; k<MAX_SAMPLE_RATES; k++ ) {
- if ( SAMPLE_RATES[k] >= (unsigned int) outCaps.dwMinSecondarySampleRate &&
- SAMPLE_RATES[k] <= (unsigned int) outCaps.dwMaxSecondarySampleRate ) {
- info.sampleRates.push_back( SAMPLE_RATES[k] );
-
- if ( !info.preferredSampleRate || ( SAMPLE_RATES[k] <= 48000 && SAMPLE_RATES[k] > info.preferredSampleRate ) )
- info.preferredSampleRate = SAMPLE_RATES[k];
- }
- }
-
- // Get format information.
- if ( outCaps.dwFlags & DSCAPS_PRIMARY16BIT ) info.nativeFormats |= RTAUDIO_SINT16;
- if ( outCaps.dwFlags & DSCAPS_PRIMARY8BIT ) info.nativeFormats |= RTAUDIO_SINT8;
-
- output->Release();
-
- if ( getDefaultOutputDevice() == device )
- info.isDefaultOutput = true;
-
- if ( dsDevices[ device ].validId[1] == false ) {
- info.name = dsDevices[ device ].name;
- info.probed = true;
- return info;
- }
-
- probeInput:
-
- LPDIRECTSOUNDCAPTURE input;
- result = DirectSoundCaptureCreate( dsDevices[ device ].id[1], &input, NULL );
- if ( FAILED( result ) ) {
- errorStream_ << "RtApiDs::getDeviceInfo: error (" << getErrorString( result ) << ") opening input device (" << dsDevices[ device ].name << ")!";
- errorText_ = errorStream_.str();
- error( RtAudioError::WARNING );
- return info;
- }
-
- DSCCAPS inCaps;
- inCaps.dwSize = sizeof( inCaps );
- result = input->GetCaps( &inCaps );
- if ( FAILED( result ) ) {
- input->Release();
- errorStream_ << "RtApiDs::getDeviceInfo: error (" << getErrorString( result ) << ") getting object capabilities (" << dsDevices[ device ].name << ")!";
- errorText_ = errorStream_.str();
- error( RtAudioError::WARNING );
- return info;
- }
-
- // Get input channel information.
- info.inputChannels = inCaps.dwChannels;
-
- // Get sample rate and format information.
- std::vector<unsigned int> rates;
- if ( inCaps.dwChannels >= 2 ) {
- if ( inCaps.dwFormats & WAVE_FORMAT_1S16 ) info.nativeFormats |= RTAUDIO_SINT16;
- if ( inCaps.dwFormats & WAVE_FORMAT_2S16 ) info.nativeFormats |= RTAUDIO_SINT16;
- if ( inCaps.dwFormats & WAVE_FORMAT_4S16 ) info.nativeFormats |= RTAUDIO_SINT16;
- if ( inCaps.dwFormats & WAVE_FORMAT_96S16 ) info.nativeFormats |= RTAUDIO_SINT16;
- if ( inCaps.dwFormats & WAVE_FORMAT_1S08 ) info.nativeFormats |= RTAUDIO_SINT8;
- if ( inCaps.dwFormats & WAVE_FORMAT_2S08 ) info.nativeFormats |= RTAUDIO_SINT8;
- if ( inCaps.dwFormats & WAVE_FORMAT_4S08 ) info.nativeFormats |= RTAUDIO_SINT8;
- if ( inCaps.dwFormats & WAVE_FORMAT_96S08 ) info.nativeFormats |= RTAUDIO_SINT8;
-
- if ( info.nativeFormats & RTAUDIO_SINT16 ) {
- if ( inCaps.dwFormats & WAVE_FORMAT_1S16 ) rates.push_back( 11025 );
- if ( inCaps.dwFormats & WAVE_FORMAT_2S16 ) rates.push_back( 22050 );
- if ( inCaps.dwFormats & WAVE_FORMAT_4S16 ) rates.push_back( 44100 );
- if ( inCaps.dwFormats & WAVE_FORMAT_96S16 ) rates.push_back( 96000 );
- }
- else if ( info.nativeFormats & RTAUDIO_SINT8 ) {
- if ( inCaps.dwFormats & WAVE_FORMAT_1S08 ) rates.push_back( 11025 );
- if ( inCaps.dwFormats & WAVE_FORMAT_2S08 ) rates.push_back( 22050 );
- if ( inCaps.dwFormats & WAVE_FORMAT_4S08 ) rates.push_back( 44100 );
- if ( inCaps.dwFormats & WAVE_FORMAT_96S08 ) rates.push_back( 96000 );
- }
- }
- else if ( inCaps.dwChannels == 1 ) {
- if ( inCaps.dwFormats & WAVE_FORMAT_1M16 ) info.nativeFormats |= RTAUDIO_SINT16;
- if ( inCaps.dwFormats & WAVE_FORMAT_2M16 ) info.nativeFormats |= RTAUDIO_SINT16;
- if ( inCaps.dwFormats & WAVE_FORMAT_4M16 ) info.nativeFormats |= RTAUDIO_SINT16;
- if ( inCaps.dwFormats & WAVE_FORMAT_96M16 ) info.nativeFormats |= RTAUDIO_SINT16;
- if ( inCaps.dwFormats & WAVE_FORMAT_1M08 ) info.nativeFormats |= RTAUDIO_SINT8;
- if ( inCaps.dwFormats & WAVE_FORMAT_2M08 ) info.nativeFormats |= RTAUDIO_SINT8;
- if ( inCaps.dwFormats & WAVE_FORMAT_4M08 ) info.nativeFormats |= RTAUDIO_SINT8;
- if ( inCaps.dwFormats & WAVE_FORMAT_96M08 ) info.nativeFormats |= RTAUDIO_SINT8;
-
- if ( info.nativeFormats & RTAUDIO_SINT16 ) {
- if ( inCaps.dwFormats & WAVE_FORMAT_1M16 ) rates.push_back( 11025 );
- if ( inCaps.dwFormats & WAVE_FORMAT_2M16 ) rates.push_back( 22050 );
- if ( inCaps.dwFormats & WAVE_FORMAT_4M16 ) rates.push_back( 44100 );
- if ( inCaps.dwFormats & WAVE_FORMAT_96M16 ) rates.push_back( 96000 );
- }
- else if ( info.nativeFormats & RTAUDIO_SINT8 ) {
- if ( inCaps.dwFormats & WAVE_FORMAT_1M08 ) rates.push_back( 11025 );
- if ( inCaps.dwFormats & WAVE_FORMAT_2M08 ) rates.push_back( 22050 );
- if ( inCaps.dwFormats & WAVE_FORMAT_4M08 ) rates.push_back( 44100 );
- if ( inCaps.dwFormats & WAVE_FORMAT_96M08 ) rates.push_back( 96000 );
- }
- }
- else info.inputChannels = 0; // technically, this would be an error
-
- input->Release();
-
- if ( info.inputChannels == 0 ) return info;
-
- // Copy the supported rates to the info structure but avoid duplication.
- bool found;
- for ( unsigned int i=0; i<rates.size(); i++ ) {
- found = false;
- for ( unsigned int j=0; j<info.sampleRates.size(); j++ ) {
- if ( rates[i] == info.sampleRates[j] ) {
- found = true;
- break;
- }
- }
- if ( found == false ) info.sampleRates.push_back( rates[i] );
- }
- std::sort( info.sampleRates.begin(), info.sampleRates.end() );
-
- // If device opens for both playback and capture, we determine the channels.
- if ( info.outputChannels > 0 && info.inputChannels > 0 )
- info.duplexChannels = (info.outputChannels > info.inputChannels) ? info.inputChannels : info.outputChannels;
-
- if ( device == 0 ) info.isDefaultInput = true;
-
- // Copy name and return.
- info.name = dsDevices[ device ].name;
- info.probed = true;
- return info;
-}
-
-bool RtApiDs :: probeDeviceOpen( unsigned int device, StreamMode mode, unsigned int channels,
- unsigned int firstChannel, unsigned int sampleRate,
- RtAudioFormat format, unsigned int *bufferSize,
- RtAudio::StreamOptions *options )
-{
- if ( channels + firstChannel > 2 ) {
- errorText_ = "RtApiDs::probeDeviceOpen: DirectSound does not support more than 2 channels per device.";
- return FAILURE;
- }
-
- size_t nDevices = dsDevices.size();
- if ( nDevices == 0 ) {
- // This should not happen because a check is made before this function is called.
- errorText_ = "RtApiDs::probeDeviceOpen: no devices found!";
- return FAILURE;
- }
-
- if ( device >= nDevices ) {
- // This should not happen because a check is made before this function is called.
- errorText_ = "RtApiDs::probeDeviceOpen: device ID is invalid!";
- return FAILURE;
- }
-
- if ( mode == OUTPUT ) {
- if ( dsDevices[ device ].validId[0] == false ) {
- errorStream_ << "RtApiDs::probeDeviceOpen: device (" << device << ") does not support output!";
- errorText_ = errorStream_.str();
- return FAILURE;
- }
- }
- else { // mode == INPUT
- if ( dsDevices[ device ].validId[1] == false ) {
- errorStream_ << "RtApiDs::probeDeviceOpen: device (" << device << ") does not support input!";
- errorText_ = errorStream_.str();
- return FAILURE;
- }
- }
-
- // According to a note in PortAudio, using GetDesktopWindow()
- // instead of GetForegroundWindow() is supposed to avoid problems
- // that occur when the application's window is not the foreground
- // window. Also, if the application window closes before the
- // DirectSound buffer, DirectSound can crash. In the past, I had
- // problems when using GetDesktopWindow() but it seems fine now
- // (January 2010). I'll leave it commented here.
- // HWND hWnd = GetForegroundWindow();
- HWND hWnd = GetDesktopWindow();
-
- // Check the numberOfBuffers parameter and limit the lowest value to
- // two. This is a judgement call and a value of two is probably too
- // low for capture, but it should work for playback.
- int nBuffers = 0;
- if ( options ) nBuffers = options->numberOfBuffers;
- if ( options && options->flags & RTAUDIO_MINIMIZE_LATENCY ) nBuffers = 2;
- if ( nBuffers < 2 ) nBuffers = 3;
-
- // Check the lower range of the user-specified buffer size and set
- // (arbitrarily) to a lower bound of 32.
- if ( *bufferSize < 32 ) *bufferSize = 32;
-
- // Create the wave format structure. The data format setting will
- // be determined later.
- WAVEFORMATEX waveFormat;
- ZeroMemory( &waveFormat, sizeof(WAVEFORMATEX) );
- waveFormat.wFormatTag = WAVE_FORMAT_PCM;
- waveFormat.nChannels = channels + firstChannel;
- waveFormat.nSamplesPerSec = (unsigned long) sampleRate;
-
- // Determine the device buffer size. By default, we'll use the value
- // defined above (32K), but we will grow it to make allowances for
- // very large software buffer sizes.
- DWORD dsBufferSize = MINIMUM_DEVICE_BUFFER_SIZE;
- DWORD dsPointerLeadTime = 0;
-
- void *ohandle = 0, *bhandle = 0;
- HRESULT result;
- if ( mode == OUTPUT ) {
-
- LPDIRECTSOUND output;
- result = DirectSoundCreate( dsDevices[ device ].id[0], &output, NULL );
- if ( FAILED( result ) ) {
- errorStream_ << "RtApiDs::probeDeviceOpen: error (" << getErrorString( result ) << ") opening output device (" << dsDevices[ device ].name << ")!";
- errorText_ = errorStream_.str();
- return FAILURE;
- }
-
- DSCAPS outCaps;
- outCaps.dwSize = sizeof( outCaps );
- result = output->GetCaps( &outCaps );
- if ( FAILED( result ) ) {
- output->Release();
- errorStream_ << "RtApiDs::probeDeviceOpen: error (" << getErrorString( result ) << ") getting capabilities (" << dsDevices[ device ].name << ")!";
- errorText_ = errorStream_.str();
- return FAILURE;
- }
-
- // Check channel information.
- if ( channels + firstChannel == 2 && !( outCaps.dwFlags & DSCAPS_PRIMARYSTEREO ) ) {
- errorStream_ << "RtApiDs::getDeviceInfo: the output device (" << dsDevices[ device ].name << ") does not support stereo playback.";
- errorText_ = errorStream_.str();
- return FAILURE;
- }
-
- // Check format information. Use 16-bit format unless not
- // supported or user requests 8-bit.
- if ( outCaps.dwFlags & DSCAPS_PRIMARY16BIT &&
- !( format == RTAUDIO_SINT8 && outCaps.dwFlags & DSCAPS_PRIMARY8BIT ) ) {
- waveFormat.wBitsPerSample = 16;
- stream_.deviceFormat[mode] = RTAUDIO_SINT16;
- }
- else {
- waveFormat.wBitsPerSample = 8;
- stream_.deviceFormat[mode] = RTAUDIO_SINT8;
- }
- stream_.userFormat = format;
-
- // Update wave format structure and buffer information.
- waveFormat.nBlockAlign = waveFormat.nChannels * waveFormat.wBitsPerSample / 8;
- waveFormat.nAvgBytesPerSec = waveFormat.nSamplesPerSec * waveFormat.nBlockAlign;
- dsPointerLeadTime = nBuffers * (*bufferSize) * (waveFormat.wBitsPerSample / 8) * channels;
-
- // If the user wants an even bigger buffer, increase the device buffer size accordingly.
- while ( dsPointerLeadTime * 2U > dsBufferSize )
- dsBufferSize *= 2;
-
- // Set cooperative level to DSSCL_EXCLUSIVE ... sound stops when window focus changes.
- // result = output->SetCooperativeLevel( hWnd, DSSCL_EXCLUSIVE );
- // Set cooperative level to DSSCL_PRIORITY ... sound remains when window focus changes.
- result = output->SetCooperativeLevel( hWnd, DSSCL_PRIORITY );
- if ( FAILED( result ) ) {
- output->Release();
- errorStream_ << "RtApiDs::probeDeviceOpen: error (" << getErrorString( result ) << ") setting cooperative level (" << dsDevices[ device ].name << ")!";
- errorText_ = errorStream_.str();
- return FAILURE;
- }
-
- // Even though we will write to the secondary buffer, we need to
- // access the primary buffer to set the correct output format
- // (since the default is 8-bit, 22 kHz!). Setup the DS primary
- // buffer description.
- DSBUFFERDESC bufferDescription;
- ZeroMemory( &bufferDescription, sizeof( DSBUFFERDESC ) );
- bufferDescription.dwSize = sizeof( DSBUFFERDESC );
- bufferDescription.dwFlags = DSBCAPS_PRIMARYBUFFER;
-
- // Obtain the primary buffer
- LPDIRECTSOUNDBUFFER buffer;
- result = output->CreateSoundBuffer( &bufferDescription, &buffer, NULL );
- if ( FAILED( result ) ) {
- output->Release();
- errorStream_ << "RtApiDs::probeDeviceOpen: error (" << getErrorString( result ) << ") accessing primary buffer (" << dsDevices[ device ].name << ")!";
- errorText_ = errorStream_.str();
- return FAILURE;
- }
-
- // Set the primary DS buffer sound format.
- result = buffer->SetFormat( &waveFormat );
- if ( FAILED( result ) ) {
- output->Release();
- errorStream_ << "RtApiDs::probeDeviceOpen: error (" << getErrorString( result ) << ") setting primary buffer format (" << dsDevices[ device ].name << ")!";
- errorText_ = errorStream_.str();
- return FAILURE;
- }
-
- // Setup the secondary DS buffer description.
- ZeroMemory( &bufferDescription, sizeof( DSBUFFERDESC ) );
- bufferDescription.dwSize = sizeof( DSBUFFERDESC );
- bufferDescription.dwFlags = ( DSBCAPS_STICKYFOCUS |
- DSBCAPS_GLOBALFOCUS |
- DSBCAPS_GETCURRENTPOSITION2 |
- DSBCAPS_LOCHARDWARE ); // Force hardware mixing
- bufferDescription.dwBufferBytes = dsBufferSize;
- bufferDescription.lpwfxFormat = &waveFormat;
-
- // Try to create the secondary DS buffer. If that doesn't work,
- // try to use software mixing. Otherwise, there's a problem.
- result = output->CreateSoundBuffer( &bufferDescription, &buffer, NULL );
- if ( FAILED( result ) ) {
- bufferDescription.dwFlags = ( DSBCAPS_STICKYFOCUS |
- DSBCAPS_GLOBALFOCUS |
- DSBCAPS_GETCURRENTPOSITION2 |
- DSBCAPS_LOCSOFTWARE ); // Force software mixing
- result = output->CreateSoundBuffer( &bufferDescription, &buffer, NULL );
- if ( FAILED( result ) ) {
- output->Release();
- errorStream_ << "RtApiDs::probeDeviceOpen: error (" << getErrorString( result ) << ") creating secondary buffer (" << dsDevices[ device ].name << ")!";
- errorText_ = errorStream_.str();
- return FAILURE;
- }
- }
-
- // Get the buffer size ... might be different from what we specified.
- DSBCAPS dsbcaps;
- dsbcaps.dwSize = sizeof( DSBCAPS );
- result = buffer->GetCaps( &dsbcaps );
- if ( FAILED( result ) ) {
- output->Release();
- buffer->Release();
- errorStream_ << "RtApiDs::probeDeviceOpen: error (" << getErrorString( result ) << ") getting buffer settings (" << dsDevices[ device ].name << ")!";
- errorText_ = errorStream_.str();
- return FAILURE;
- }
-
- dsBufferSize = dsbcaps.dwBufferBytes;
-
- // Lock the DS buffer
- LPVOID audioPtr;
- DWORD dataLen;
- result = buffer->Lock( 0, dsBufferSize, &audioPtr, &dataLen, NULL, NULL, 0 );
- if ( FAILED( result ) ) {
- output->Release();
- buffer->Release();
- errorStream_ << "RtApiDs::probeDeviceOpen: error (" << getErrorString( result ) << ") locking buffer (" << dsDevices[ device ].name << ")!";
- errorText_ = errorStream_.str();
- return FAILURE;
- }
-
- // Zero the DS buffer
- ZeroMemory( audioPtr, dataLen );
-
- // Unlock the DS buffer
- result = buffer->Unlock( audioPtr, dataLen, NULL, 0 );
- if ( FAILED( result ) ) {
- output->Release();
- buffer->Release();
- errorStream_ << "RtApiDs::probeDeviceOpen: error (" << getErrorString( result ) << ") unlocking buffer (" << dsDevices[ device ].name << ")!";
- errorText_ = errorStream_.str();
- return FAILURE;
- }
-
- ohandle = (void *) output;
- bhandle = (void *) buffer;
- }
-
- if ( mode == INPUT ) {
-
- LPDIRECTSOUNDCAPTURE input;
- result = DirectSoundCaptureCreate( dsDevices[ device ].id[1], &input, NULL );
- if ( FAILED( result ) ) {
- errorStream_ << "RtApiDs::probeDeviceOpen: error (" << getErrorString( result ) << ") opening input device (" << dsDevices[ device ].name << ")!";
- errorText_ = errorStream_.str();
- return FAILURE;
- }
-
- DSCCAPS inCaps;
- inCaps.dwSize = sizeof( inCaps );
- result = input->GetCaps( &inCaps );
- if ( FAILED( result ) ) {
- input->Release();
- errorStream_ << "RtApiDs::probeDeviceOpen: error (" << getErrorString( result ) << ") getting input capabilities (" << dsDevices[ device ].name << ")!";
- errorText_ = errorStream_.str();
- return FAILURE;
- }
-
- // Check channel information.
- if ( inCaps.dwChannels < channels + firstChannel ) {
- errorText_ = "RtApiDs::getDeviceInfo: the input device does not support requested input channels.";
- return FAILURE;
- }
-
- // Check format information. Use 16-bit format unless user
- // requests 8-bit.
- DWORD deviceFormats;
- if ( channels + firstChannel == 2 ) {
- deviceFormats = WAVE_FORMAT_1S08 | WAVE_FORMAT_2S08 | WAVE_FORMAT_4S08 | WAVE_FORMAT_96S08;
- if ( format == RTAUDIO_SINT8 && inCaps.dwFormats & deviceFormats ) {
- waveFormat.wBitsPerSample = 8;
- stream_.deviceFormat[mode] = RTAUDIO_SINT8;
- }
- else { // assume 16-bit is supported
- waveFormat.wBitsPerSample = 16;
- stream_.deviceFormat[mode] = RTAUDIO_SINT16;
- }
- }
- else { // channel == 1
- deviceFormats = WAVE_FORMAT_1M08 | WAVE_FORMAT_2M08 | WAVE_FORMAT_4M08 | WAVE_FORMAT_96M08;
- if ( format == RTAUDIO_SINT8 && inCaps.dwFormats & deviceFormats ) {
- waveFormat.wBitsPerSample = 8;
- stream_.deviceFormat[mode] = RTAUDIO_SINT8;
- }
- else { // assume 16-bit is supported
- waveFormat.wBitsPerSample = 16;
- stream_.deviceFormat[mode] = RTAUDIO_SINT16;
- }
- }
- stream_.userFormat = format;
-
- // Update wave format structure and buffer information.
- waveFormat.nBlockAlign = waveFormat.nChannels * waveFormat.wBitsPerSample / 8;
- waveFormat.nAvgBytesPerSec = waveFormat.nSamplesPerSec * waveFormat.nBlockAlign;
- dsPointerLeadTime = nBuffers * (*bufferSize) * (waveFormat.wBitsPerSample / 8) * channels;
-
- // If the user wants an even bigger buffer, increase the device buffer size accordingly.
- while ( dsPointerLeadTime * 2U > dsBufferSize )
- dsBufferSize *= 2;
-
- // Setup the secondary DS buffer description.
- DSCBUFFERDESC bufferDescription;
- ZeroMemory( &bufferDescription, sizeof( DSCBUFFERDESC ) );
- bufferDescription.dwSize = sizeof( DSCBUFFERDESC );
- bufferDescription.dwFlags = 0;
- bufferDescription.dwReserved = 0;
- bufferDescription.dwBufferBytes = dsBufferSize;
- bufferDescription.lpwfxFormat = &waveFormat;
-
- // Create the capture buffer.
- LPDIRECTSOUNDCAPTUREBUFFER buffer;
- result = input->CreateCaptureBuffer( &bufferDescription, &buffer, NULL );
- if ( FAILED( result ) ) {
- input->Release();
- errorStream_ << "RtApiDs::probeDeviceOpen: error (" << getErrorString( result ) << ") creating input buffer (" << dsDevices[ device ].name << ")!";
- errorText_ = errorStream_.str();
- return FAILURE;
- }
-
- // Get the buffer size ... might be different from what we specified.
- DSCBCAPS dscbcaps;
- dscbcaps.dwSize = sizeof( DSCBCAPS );
- result = buffer->GetCaps( &dscbcaps );
- if ( FAILED( result ) ) {
- input->Release();
- buffer->Release();
- errorStream_ << "RtApiDs::probeDeviceOpen: error (" << getErrorString( result ) << ") getting buffer settings (" << dsDevices[ device ].name << ")!";
- errorText_ = errorStream_.str();
- return FAILURE;
- }
-
- dsBufferSize = dscbcaps.dwBufferBytes;
-
- // NOTE: We could have a problem here if this is a duplex stream
- // and the play and capture hardware buffer sizes are different
- // (I'm actually not sure if that is a problem or not).
- // Currently, we are not verifying that.
-
- // Lock the capture buffer
- LPVOID audioPtr;
- DWORD dataLen;
- result = buffer->Lock( 0, dsBufferSize, &audioPtr, &dataLen, NULL, NULL, 0 );
- if ( FAILED( result ) ) {
- input->Release();
- buffer->Release();
- errorStream_ << "RtApiDs::probeDeviceOpen: error (" << getErrorString( result ) << ") locking input buffer (" << dsDevices[ device ].name << ")!";
- errorText_ = errorStream_.str();
- return FAILURE;
- }
-
- // Zero the buffer
- ZeroMemory( audioPtr, dataLen );
-
- // Unlock the buffer
- result = buffer->Unlock( audioPtr, dataLen, NULL, 0 );
- if ( FAILED( result ) ) {
- input->Release();
- buffer->Release();
- errorStream_ << "RtApiDs::probeDeviceOpen: error (" << getErrorString( result ) << ") unlocking input buffer (" << dsDevices[ device ].name << ")!";
- errorText_ = errorStream_.str();
- return FAILURE;
- }
-
- ohandle = (void *) input;
- bhandle = (void *) buffer;
- }
-
- // Set various stream parameters
- DsHandle *handle = 0;
- stream_.nDeviceChannels[mode] = channels + firstChannel;
- stream_.nUserChannels[mode] = channels;
- stream_.bufferSize = *bufferSize;
- stream_.channelOffset[mode] = firstChannel;
- stream_.deviceInterleaved[mode] = true;
- if ( options && options->flags & RTAUDIO_NONINTERLEAVED ) stream_.userInterleaved = false;
- else stream_.userInterleaved = true;
-
- // Set flag for buffer conversion
- stream_.doConvertBuffer[mode] = false;
- if (stream_.nUserChannels[mode] != stream_.nDeviceChannels[mode])
- stream_.doConvertBuffer[mode] = true;
- if (stream_.userFormat != stream_.deviceFormat[mode])
- stream_.doConvertBuffer[mode] = true;
- if ( stream_.userInterleaved != stream_.deviceInterleaved[mode] &&
- stream_.nUserChannels[mode] > 1 )
- stream_.doConvertBuffer[mode] = true;
-
- // Allocate necessary internal buffers
- long bufferBytes = stream_.nUserChannels[mode] * *bufferSize * formatBytes( stream_.userFormat );
- stream_.userBuffer[mode] = (char *) calloc( bufferBytes, 1 );
- if ( stream_.userBuffer[mode] == NULL ) {
- errorText_ = "RtApiDs::probeDeviceOpen: error allocating user buffer memory.";
- goto error;
- }
-
- if ( stream_.doConvertBuffer[mode] ) {
-
- bool makeBuffer = true;
- bufferBytes = stream_.nDeviceChannels[mode] * formatBytes( stream_.deviceFormat[mode] );
- if ( mode == INPUT ) {
- if ( stream_.mode == OUTPUT && stream_.deviceBuffer ) {
- unsigned long bytesOut = stream_.nDeviceChannels[0] * formatBytes( stream_.deviceFormat[0] );
- if ( bufferBytes <= (long) bytesOut ) makeBuffer = false;
- }
- }
-
- if ( makeBuffer ) {
- bufferBytes *= *bufferSize;
- if ( stream_.deviceBuffer ) free( stream_.deviceBuffer );
- stream_.deviceBuffer = (char *) calloc( bufferBytes, 1 );
- if ( stream_.deviceBuffer == NULL ) {
- errorText_ = "RtApiDs::probeDeviceOpen: error allocating device buffer memory.";
- goto error;
- }
- }
- }
-
- // Allocate our DsHandle structures for the stream.
- if ( stream_.apiHandle == 0 ) {
- try {
- handle = new DsHandle;
- }
- catch ( std::bad_alloc& ) {
- errorText_ = "RtApiDs::probeDeviceOpen: error allocating AsioHandle memory.";
- goto error;
- }
-
- // Create a manual-reset event.
- handle->condition = CreateEvent( NULL, // no security
- TRUE, // manual-reset
- FALSE, // non-signaled initially
- NULL ); // unnamed
- stream_.apiHandle = (void *) handle;
- }
- else
- handle = (DsHandle *) stream_.apiHandle;
- handle->id[mode] = ohandle;
- handle->buffer[mode] = bhandle;
- handle->dsBufferSize[mode] = dsBufferSize;
- handle->dsPointerLeadTime[mode] = dsPointerLeadTime;
-
- stream_.device[mode] = device;
- stream_.state = STREAM_STOPPED;
- if ( stream_.mode == OUTPUT && mode == INPUT )
- // We had already set up an output stream.
- stream_.mode = DUPLEX;
- else
- stream_.mode = mode;
- stream_.nBuffers = nBuffers;
- stream_.sampleRate = sampleRate;
-
- // Setup the buffer conversion information structure.
- if ( stream_.doConvertBuffer[mode] ) setConvertInfo( mode, firstChannel );
-
- // Setup the callback thread.
- if ( stream_.callbackInfo.isRunning == false ) {
- unsigned threadId;
- stream_.callbackInfo.isRunning = true;
- stream_.callbackInfo.object = (void *) this;
- stream_.callbackInfo.thread = _beginthreadex( NULL, 0, &callbackHandler,
- &stream_.callbackInfo, 0, &threadId );
- if ( stream_.callbackInfo.thread == 0 ) {
- errorText_ = "RtApiDs::probeDeviceOpen: error creating callback thread!";
- goto error;
- }
-
- // Boost DS thread priority
- SetThreadPriority( (HANDLE) stream_.callbackInfo.thread, THREAD_PRIORITY_HIGHEST );
- }
- return SUCCESS;
-
- error:
- if ( handle ) {
- if ( handle->buffer[0] ) { // the object pointer can be NULL and valid
- LPDIRECTSOUND object = (LPDIRECTSOUND) handle->id[0];
- LPDIRECTSOUNDBUFFER buffer = (LPDIRECTSOUNDBUFFER) handle->buffer[0];
- if ( buffer ) buffer->Release();
- object->Release();
- }
- if ( handle->buffer[1] ) {
- LPDIRECTSOUNDCAPTURE object = (LPDIRECTSOUNDCAPTURE) handle->id[1];
- LPDIRECTSOUNDCAPTUREBUFFER buffer = (LPDIRECTSOUNDCAPTUREBUFFER) handle->buffer[1];
- if ( buffer ) buffer->Release();
- object->Release();
- }
- CloseHandle( handle->condition );
- delete handle;
- stream_.apiHandle = 0;
- }
-
- for ( int i=0; i<2; i++ ) {
- if ( stream_.userBuffer[i] ) {
- free( stream_.userBuffer[i] );
- stream_.userBuffer[i] = 0;
- }
- }
-
- if ( stream_.deviceBuffer ) {
- free( stream_.deviceBuffer );
- stream_.deviceBuffer = 0;
- }
-
- stream_.state = STREAM_CLOSED;
- return FAILURE;
-}
-
-void RtApiDs :: closeStream()
-{
- if ( stream_.state == STREAM_CLOSED ) {
- errorText_ = "RtApiDs::closeStream(): no open stream to close!";
- error( RtAudioError::WARNING );
- return;
- }
-
- // Stop the callback thread.
- stream_.callbackInfo.isRunning = false;
- WaitForSingleObject( (HANDLE) stream_.callbackInfo.thread, INFINITE );
- CloseHandle( (HANDLE) stream_.callbackInfo.thread );
-
- DsHandle *handle = (DsHandle *) stream_.apiHandle;
- if ( handle ) {
- if ( handle->buffer[0] ) { // the object pointer can be NULL and valid
- LPDIRECTSOUND object = (LPDIRECTSOUND) handle->id[0];
- LPDIRECTSOUNDBUFFER buffer = (LPDIRECTSOUNDBUFFER) handle->buffer[0];
- if ( buffer ) {
- buffer->Stop();
- buffer->Release();
- }
- object->Release();
- }
- if ( handle->buffer[1] ) {
- LPDIRECTSOUNDCAPTURE object = (LPDIRECTSOUNDCAPTURE) handle->id[1];
- LPDIRECTSOUNDCAPTUREBUFFER buffer = (LPDIRECTSOUNDCAPTUREBUFFER) handle->buffer[1];
- if ( buffer ) {
- buffer->Stop();
- buffer->Release();
- }
- object->Release();
- }
- CloseHandle( handle->condition );
- delete handle;
- stream_.apiHandle = 0;
- }
-
- for ( int i=0; i<2; i++ ) {
- if ( stream_.userBuffer[i] ) {
- free( stream_.userBuffer[i] );
- stream_.userBuffer[i] = 0;
- }
- }
-
- if ( stream_.deviceBuffer ) {
- free( stream_.deviceBuffer );
- stream_.deviceBuffer = 0;
- }
-
- stream_.mode = UNINITIALIZED;
- stream_.state = STREAM_CLOSED;
-}
-
-void RtApiDs :: startStream()
-{
- verifyStream();
- if ( stream_.state == STREAM_RUNNING ) {
- errorText_ = "RtApiDs::startStream(): the stream is already running!";
- error( RtAudioError::WARNING );
- return;
- }
-
- DsHandle *handle = (DsHandle *) stream_.apiHandle;
-
- // Increase scheduler frequency on lesser windows (a side-effect of
- // increasing timer accuracy). On greater windows (Win2K or later),
- // this is already in effect.
- timeBeginPeriod( 1 );
-
- buffersRolling = false;
- duplexPrerollBytes = 0;
-
- if ( stream_.mode == DUPLEX ) {
- // 0.5 seconds of silence in DUPLEX mode while the devices spin up and synchronize.
- duplexPrerollBytes = (int) ( 0.5 * stream_.sampleRate * formatBytes( stream_.deviceFormat[1] ) * stream_.nDeviceChannels[1] );
- }
-
- HRESULT result = 0;
- if ( stream_.mode == OUTPUT || stream_.mode == DUPLEX ) {
-
- LPDIRECTSOUNDBUFFER buffer = (LPDIRECTSOUNDBUFFER) handle->buffer[0];
- result = buffer->Play( 0, 0, DSBPLAY_LOOPING );
- if ( FAILED( result ) ) {
- errorStream_ << "RtApiDs::startStream: error (" << getErrorString( result ) << ") starting output buffer!";
- errorText_ = errorStream_.str();
- goto unlock;
- }
- }
-
- if ( stream_.mode == INPUT || stream_.mode == DUPLEX ) {
-
- LPDIRECTSOUNDCAPTUREBUFFER buffer = (LPDIRECTSOUNDCAPTUREBUFFER) handle->buffer[1];
- result = buffer->Start( DSCBSTART_LOOPING );
- if ( FAILED( result ) ) {
- errorStream_ << "RtApiDs::startStream: error (" << getErrorString( result ) << ") starting input buffer!";
- errorText_ = errorStream_.str();
- goto unlock;
- }
- }
-
- handle->drainCounter = 0;
- handle->internalDrain = false;
- ResetEvent( handle->condition );
- stream_.state = STREAM_RUNNING;
-
- unlock:
- if ( FAILED( result ) ) error( RtAudioError::SYSTEM_ERROR );
-}
-
-void RtApiDs :: stopStream()
-{
- verifyStream();
- if ( stream_.state == STREAM_STOPPED ) {
- errorText_ = "RtApiDs::stopStream(): the stream is already stopped!";
- error( RtAudioError::WARNING );
- return;
- }
-
- HRESULT result = 0;
- LPVOID audioPtr;
- DWORD dataLen;
- DsHandle *handle = (DsHandle *) stream_.apiHandle;
- if ( stream_.mode == OUTPUT || stream_.mode == DUPLEX ) {
- if ( handle->drainCounter == 0 ) {
- handle->drainCounter = 2;
- WaitForSingleObject( handle->condition, INFINITE ); // block until signaled
- }
-
- stream_.state = STREAM_STOPPED;
-
- MUTEX_LOCK( &stream_.mutex );
-
- // Stop the buffer and clear memory
- LPDIRECTSOUNDBUFFER buffer = (LPDIRECTSOUNDBUFFER) handle->buffer[0];
- result = buffer->Stop();
- if ( FAILED( result ) ) {
- errorStream_ << "RtApiDs::stopStream: error (" << getErrorString( result ) << ") stopping output buffer!";
- errorText_ = errorStream_.str();
- goto unlock;
- }
-
- // Lock the buffer and clear it so that if we start to play again,
- // we won't have old data playing.
- result = buffer->Lock( 0, handle->dsBufferSize[0], &audioPtr, &dataLen, NULL, NULL, 0 );
- if ( FAILED( result ) ) {
- errorStream_ << "RtApiDs::stopStream: error (" << getErrorString( result ) << ") locking output buffer!";
- errorText_ = errorStream_.str();
- goto unlock;
- }
-
- // Zero the DS buffer
- ZeroMemory( audioPtr, dataLen );
-
- // Unlock the DS buffer
- result = buffer->Unlock( audioPtr, dataLen, NULL, 0 );
- if ( FAILED( result ) ) {
- errorStream_ << "RtApiDs::stopStream: error (" << getErrorString( result ) << ") unlocking output buffer!";
- errorText_ = errorStream_.str();
- goto unlock;
- }
-
- // If we start playing again, we must begin at beginning of buffer.
- handle->bufferPointer[0] = 0;
- }
-
- if ( stream_.mode == INPUT || stream_.mode == DUPLEX ) {
- LPDIRECTSOUNDCAPTUREBUFFER buffer = (LPDIRECTSOUNDCAPTUREBUFFER) handle->buffer[1];
- audioPtr = NULL;
- dataLen = 0;
-
- stream_.state = STREAM_STOPPED;
-
- if ( stream_.mode != DUPLEX )
- MUTEX_LOCK( &stream_.mutex );
-
- result = buffer->Stop();
- if ( FAILED( result ) ) {
- errorStream_ << "RtApiDs::stopStream: error (" << getErrorString( result ) << ") stopping input buffer!";
- errorText_ = errorStream_.str();
- goto unlock;
- }
-
- // Lock the buffer and clear it so that if we start to play again,
- // we won't have old data playing.
- result = buffer->Lock( 0, handle->dsBufferSize[1], &audioPtr, &dataLen, NULL, NULL, 0 );
- if ( FAILED( result ) ) {
- errorStream_ << "RtApiDs::stopStream: error (" << getErrorString( result ) << ") locking input buffer!";
- errorText_ = errorStream_.str();
- goto unlock;
- }
-
- // Zero the DS buffer
- ZeroMemory( audioPtr, dataLen );
-
- // Unlock the DS buffer
- result = buffer->Unlock( audioPtr, dataLen, NULL, 0 );
- if ( FAILED( result ) ) {
- errorStream_ << "RtApiDs::stopStream: error (" << getErrorString( result ) << ") unlocking input buffer!";
- errorText_ = errorStream_.str();
- goto unlock;
- }
-
- // If we start recording again, we must begin at beginning of buffer.
- handle->bufferPointer[1] = 0;
- }
-
- unlock:
- timeEndPeriod( 1 ); // revert to normal scheduler frequency on lesser windows.
- MUTEX_UNLOCK( &stream_.mutex );
-
- if ( FAILED( result ) ) error( RtAudioError::SYSTEM_ERROR );
-}
-
-void RtApiDs :: abortStream()
-{
- verifyStream();
- if ( stream_.state == STREAM_STOPPED ) {
- errorText_ = "RtApiDs::abortStream(): the stream is already stopped!";
- error( RtAudioError::WARNING );
- return;
- }
-
- DsHandle *handle = (DsHandle *) stream_.apiHandle;
- handle->drainCounter = 2;
-
- stopStream();
-}
-
-void RtApiDs :: callbackEvent()
-{
- if ( stream_.state == STREAM_STOPPED || stream_.state == STREAM_STOPPING ) {
- Sleep( 50 ); // sleep 50 milliseconds
- return;
- }
-
- if ( stream_.state == STREAM_CLOSED ) {
- errorText_ = "RtApiDs::callbackEvent(): the stream is closed ... this shouldn't happen!";
- error( RtAudioError::WARNING );
- return;
- }
-
- CallbackInfo *info = (CallbackInfo *) &stream_.callbackInfo;
- DsHandle *handle = (DsHandle *) stream_.apiHandle;
-
- // Check if we were draining the stream and signal is finished.
- if ( handle->drainCounter > stream_.nBuffers + 2 ) {
-
- stream_.state = STREAM_STOPPING;
- if ( handle->internalDrain == false )
- SetEvent( handle->condition );
- else
- stopStream();
- return;
- }
-
- // Invoke user callback to get fresh output data UNLESS we are
- // draining stream.
- if ( handle->drainCounter == 0 ) {
- RtAudioCallback callback = (RtAudioCallback) info->callback;
- double streamTime = getStreamTime();
- RtAudioStreamStatus status = 0;
- if ( stream_.mode != INPUT && handle->xrun[0] == true ) {
- status |= RTAUDIO_OUTPUT_UNDERFLOW;
- handle->xrun[0] = false;
- }
- if ( stream_.mode != OUTPUT && handle->xrun[1] == true ) {
- status |= RTAUDIO_INPUT_OVERFLOW;
- handle->xrun[1] = false;
- }
- int cbReturnValue = callback( stream_.userBuffer[0], stream_.userBuffer[1],
- stream_.bufferSize, streamTime, status, info->userData );
- if ( cbReturnValue == 2 ) {
- stream_.state = STREAM_STOPPING;
- handle->drainCounter = 2;
- abortStream();
- return;
- }
- else if ( cbReturnValue == 1 ) {
- handle->drainCounter = 1;
- handle->internalDrain = true;
- }
- }
-
- HRESULT result;
- DWORD currentWritePointer, safeWritePointer;
- DWORD currentReadPointer, safeReadPointer;
- UINT nextWritePointer;
-
- LPVOID buffer1 = NULL;
- LPVOID buffer2 = NULL;
- DWORD bufferSize1 = 0;
- DWORD bufferSize2 = 0;
-
- char *buffer;
- long bufferBytes;
-
- MUTEX_LOCK( &stream_.mutex );
- if ( stream_.state == STREAM_STOPPED ) {
- MUTEX_UNLOCK( &stream_.mutex );
- return;
- }
-
- if ( buffersRolling == false ) {
- if ( stream_.mode == DUPLEX ) {
- //assert( handle->dsBufferSize[0] == handle->dsBufferSize[1] );
-
- // It takes a while for the devices to get rolling. As a result,
- // there's no guarantee that the capture and write device pointers
- // will move in lockstep. Wait here for both devices to start
- // rolling, and then set our buffer pointers accordingly.
- // e.g. Crystal Drivers: the capture buffer starts up 5700 to 9600
- // bytes later than the write buffer.
-
- // Stub: a serious risk of having a pre-emptive scheduling round
- // take place between the two GetCurrentPosition calls... but I'm
- // really not sure how to solve the problem. Temporarily boost to
- // Realtime priority, maybe; but I'm not sure what priority the
- // DirectSound service threads run at. We *should* be roughly
- // within a ms or so of correct.
-
- LPDIRECTSOUNDBUFFER dsWriteBuffer = (LPDIRECTSOUNDBUFFER) handle->buffer[0];
- LPDIRECTSOUNDCAPTUREBUFFER dsCaptureBuffer = (LPDIRECTSOUNDCAPTUREBUFFER) handle->buffer[1];
-
- DWORD startSafeWritePointer, startSafeReadPointer;
-
- result = dsWriteBuffer->GetCurrentPosition( NULL, &startSafeWritePointer );
- if ( FAILED( result ) ) {
- errorStream_ << "RtApiDs::callbackEvent: error (" << getErrorString( result ) << ") getting current write position!";
- errorText_ = errorStream_.str();
- MUTEX_UNLOCK( &stream_.mutex );
- error( RtAudioError::SYSTEM_ERROR );
- return;
- }
- result = dsCaptureBuffer->GetCurrentPosition( NULL, &startSafeReadPointer );
- if ( FAILED( result ) ) {
- errorStream_ << "RtApiDs::callbackEvent: error (" << getErrorString( result ) << ") getting current read position!";
- errorText_ = errorStream_.str();
- MUTEX_UNLOCK( &stream_.mutex );
- error( RtAudioError::SYSTEM_ERROR );
- return;
- }
- while ( true ) {
- result = dsWriteBuffer->GetCurrentPosition( NULL, &safeWritePointer );
- if ( FAILED( result ) ) {
- errorStream_ << "RtApiDs::callbackEvent: error (" << getErrorString( result ) << ") getting current write position!";
- errorText_ = errorStream_.str();
- MUTEX_UNLOCK( &stream_.mutex );
- error( RtAudioError::SYSTEM_ERROR );
- return;
- }
- result = dsCaptureBuffer->GetCurrentPosition( NULL, &safeReadPointer );
- if ( FAILED( result ) ) {
- errorStream_ << "RtApiDs::callbackEvent: error (" << getErrorString( result ) << ") getting current read position!";
- errorText_ = errorStream_.str();
- MUTEX_UNLOCK( &stream_.mutex );
- error( RtAudioError::SYSTEM_ERROR );
- return;
- }
- if ( safeWritePointer != startSafeWritePointer && safeReadPointer != startSafeReadPointer ) break;
- Sleep( 1 );
- }
-
- //assert( handle->dsBufferSize[0] == handle->dsBufferSize[1] );
-
- handle->bufferPointer[0] = safeWritePointer + handle->dsPointerLeadTime[0];
- if ( handle->bufferPointer[0] >= handle->dsBufferSize[0] ) handle->bufferPointer[0] -= handle->dsBufferSize[0];
- handle->bufferPointer[1] = safeReadPointer;
- }
- else if ( stream_.mode == OUTPUT ) {
-
- // Set the proper nextWritePosition after initial startup.
- LPDIRECTSOUNDBUFFER dsWriteBuffer = (LPDIRECTSOUNDBUFFER) handle->buffer[0];
- result = dsWriteBuffer->GetCurrentPosition( &currentWritePointer, &safeWritePointer );
- if ( FAILED( result ) ) {
- errorStream_ << "RtApiDs::callbackEvent: error (" << getErrorString( result ) << ") getting current write position!";
- errorText_ = errorStream_.str();
- MUTEX_UNLOCK( &stream_.mutex );
- error( RtAudioError::SYSTEM_ERROR );
- return;
- }
- handle->bufferPointer[0] = safeWritePointer + handle->dsPointerLeadTime[0];
- if ( handle->bufferPointer[0] >= handle->dsBufferSize[0] ) handle->bufferPointer[0] -= handle->dsBufferSize[0];
- }
-
- buffersRolling = true;
- }
-
- if ( stream_.mode == OUTPUT || stream_.mode == DUPLEX ) {
-
- LPDIRECTSOUNDBUFFER dsBuffer = (LPDIRECTSOUNDBUFFER) handle->buffer[0];
-
- if ( handle->drainCounter > 1 ) { // write zeros to the output stream
- bufferBytes = stream_.bufferSize * stream_.nUserChannels[0];
- bufferBytes *= formatBytes( stream_.userFormat );
- memset( stream_.userBuffer[0], 0, bufferBytes );
- }
-
- // Setup parameters and do buffer conversion if necessary.
- if ( stream_.doConvertBuffer[0] ) {
- buffer = stream_.deviceBuffer;
- convertBuffer( buffer, stream_.userBuffer[0], stream_.convertInfo[0] );
- bufferBytes = stream_.bufferSize * stream_.nDeviceChannels[0];
- bufferBytes *= formatBytes( stream_.deviceFormat[0] );
- }
- else {
- buffer = stream_.userBuffer[0];
- bufferBytes = stream_.bufferSize * stream_.nUserChannels[0];
- bufferBytes *= formatBytes( stream_.userFormat );
- }
-
- // No byte swapping necessary in DirectSound implementation.
-
- // Ahhh ... windoze. 16-bit data is signed but 8-bit data is
- // unsigned. So, we need to convert our signed 8-bit data here to
- // unsigned.
- if ( stream_.deviceFormat[0] == RTAUDIO_SINT8 )
- for ( int i=0; i<bufferBytes; i++ ) buffer[i] = (unsigned char) ( buffer[i] + 128 );
-
- DWORD dsBufferSize = handle->dsBufferSize[0];
- nextWritePointer = handle->bufferPointer[0];
-
- DWORD endWrite, leadPointer;
- while ( true ) {
- // Find out where the read and "safe write" pointers are.
- result = dsBuffer->GetCurrentPosition( &currentWritePointer, &safeWritePointer );
- if ( FAILED( result ) ) {
- errorStream_ << "RtApiDs::callbackEvent: error (" << getErrorString( result ) << ") getting current write position!";
- errorText_ = errorStream_.str();
- error( RtAudioError::SYSTEM_ERROR );
- return;
- }
-
- // We will copy our output buffer into the region between
- // safeWritePointer and leadPointer. If leadPointer is not
- // beyond the next endWrite position, wait until it is.
- leadPointer = safeWritePointer + handle->dsPointerLeadTime[0];
- //std::cout << "safeWritePointer = " << safeWritePointer << ", leadPointer = " << leadPointer << ", nextWritePointer = " << nextWritePointer << std::endl;
- if ( leadPointer > dsBufferSize ) leadPointer -= dsBufferSize;
- if ( leadPointer < nextWritePointer ) leadPointer += dsBufferSize; // unwrap offset
- endWrite = nextWritePointer + bufferBytes;
-
- // Check whether the entire write region is behind the play pointer.
- if ( leadPointer >= endWrite ) break;
-
- // If we are here, then we must wait until the leadPointer advances
- // beyond the end of our next write region. We use the
- // Sleep() function to suspend operation until that happens.
- double millis = ( endWrite - leadPointer ) * 1000.0;
- millis /= ( formatBytes( stream_.deviceFormat[0]) * stream_.nDeviceChannels[0] * stream_.sampleRate);
- if ( millis < 1.0 ) millis = 1.0;
- Sleep( (DWORD) millis );
- }
-
- if ( dsPointerBetween( nextWritePointer, safeWritePointer, currentWritePointer, dsBufferSize )
- || dsPointerBetween( endWrite, safeWritePointer, currentWritePointer, dsBufferSize ) ) {
- // We've strayed into the forbidden zone ... resync the read pointer.
- handle->xrun[0] = true;
- nextWritePointer = safeWritePointer + handle->dsPointerLeadTime[0] - bufferBytes;
- if ( nextWritePointer >= dsBufferSize ) nextWritePointer -= dsBufferSize;
- handle->bufferPointer[0] = nextWritePointer;
- endWrite = nextWritePointer + bufferBytes;
- }
-
- // Lock free space in the buffer
- result = dsBuffer->Lock( nextWritePointer, bufferBytes, &buffer1,
- &bufferSize1, &buffer2, &bufferSize2, 0 );
- if ( FAILED( result ) ) {
- errorStream_ << "RtApiDs::callbackEvent: error (" << getErrorString( result ) << ") locking buffer during playback!";
- errorText_ = errorStream_.str();
- MUTEX_UNLOCK( &stream_.mutex );
- error( RtAudioError::SYSTEM_ERROR );
- return;
- }
-
- // Copy our buffer into the DS buffer
- CopyMemory( buffer1, buffer, bufferSize1 );
- if ( buffer2 != NULL ) CopyMemory( buffer2, buffer+bufferSize1, bufferSize2 );
-
- // Update our buffer offset and unlock sound buffer
- dsBuffer->Unlock( buffer1, bufferSize1, buffer2, bufferSize2 );
- if ( FAILED( result ) ) {
- errorStream_ << "RtApiDs::callbackEvent: error (" << getErrorString( result ) << ") unlocking buffer during playback!";
- errorText_ = errorStream_.str();
- MUTEX_UNLOCK( &stream_.mutex );
- error( RtAudioError::SYSTEM_ERROR );
- return;
- }
- nextWritePointer = ( nextWritePointer + bufferSize1 + bufferSize2 ) % dsBufferSize;
- handle->bufferPointer[0] = nextWritePointer;
- }
-
- // Don't bother draining input
- if ( handle->drainCounter ) {
- handle->drainCounter++;
- goto unlock;
- }
-
- if ( stream_.mode == INPUT || stream_.mode == DUPLEX ) {
-
- // Setup parameters.
- if ( stream_.doConvertBuffer[1] ) {
- buffer = stream_.deviceBuffer;
- bufferBytes = stream_.bufferSize * stream_.nDeviceChannels[1];
- bufferBytes *= formatBytes( stream_.deviceFormat[1] );
- }
- else {
- buffer = stream_.userBuffer[1];
- bufferBytes = stream_.bufferSize * stream_.nUserChannels[1];
- bufferBytes *= formatBytes( stream_.userFormat );
- }
-
- LPDIRECTSOUNDCAPTUREBUFFER dsBuffer = (LPDIRECTSOUNDCAPTUREBUFFER) handle->buffer[1];
- long nextReadPointer = handle->bufferPointer[1];
- DWORD dsBufferSize = handle->dsBufferSize[1];
-
- // Find out where the write and "safe read" pointers are.
- result = dsBuffer->GetCurrentPosition( &currentReadPointer, &safeReadPointer );
- if ( FAILED( result ) ) {
- errorStream_ << "RtApiDs::callbackEvent: error (" << getErrorString( result ) << ") getting current read position!";
- errorText_ = errorStream_.str();
- MUTEX_UNLOCK( &stream_.mutex );
- error( RtAudioError::SYSTEM_ERROR );
- return;
- }
-
- if ( safeReadPointer < (DWORD)nextReadPointer ) safeReadPointer += dsBufferSize; // unwrap offset
- DWORD endRead = nextReadPointer + bufferBytes;
-
- // Handling depends on whether we are INPUT or DUPLEX.
- // If we're in INPUT mode then waiting is a good thing. If we're in DUPLEX mode,
- // then a wait here will drag the write pointers into the forbidden zone.
- //
- // In DUPLEX mode, rather than wait, we will back off the read pointer until
- // it's in a safe position. This causes dropouts, but it seems to be the only
- // practical way to sync up the read and write pointers reliably, given the
- // the very complex relationship between phase and increment of the read and write
- // pointers.
- //
- // In order to minimize audible dropouts in DUPLEX mode, we will
- // provide a pre-roll period of 0.5 seconds in which we return
- // zeros from the read buffer while the pointers sync up.
-
- if ( stream_.mode == DUPLEX ) {
- if ( safeReadPointer < endRead ) {
- if ( duplexPrerollBytes <= 0 ) {
- // Pre-roll time over. Be more agressive.
- int adjustment = endRead-safeReadPointer;
-
- handle->xrun[1] = true;
- // Two cases:
- // - large adjustments: we've probably run out of CPU cycles, so just resync exactly,
- // and perform fine adjustments later.
- // - small adjustments: back off by twice as much.
- if ( adjustment >= 2*bufferBytes )
- nextReadPointer = safeReadPointer-2*bufferBytes;
- else
- nextReadPointer = safeReadPointer-bufferBytes-adjustment;
-
- if ( nextReadPointer < 0 ) nextReadPointer += dsBufferSize;
-
- }
- else {
- // In pre=roll time. Just do it.
- nextReadPointer = safeReadPointer - bufferBytes;
- while ( nextReadPointer < 0 ) nextReadPointer += dsBufferSize;
- }
- endRead = nextReadPointer + bufferBytes;
- }
- }
- else { // mode == INPUT
- while ( safeReadPointer < endRead && stream_.callbackInfo.isRunning ) {
- // See comments for playback.
- double millis = (endRead - safeReadPointer) * 1000.0;
- millis /= ( formatBytes(stream_.deviceFormat[1]) * stream_.nDeviceChannels[1] * stream_.sampleRate);
- if ( millis < 1.0 ) millis = 1.0;
- Sleep( (DWORD) millis );
-
- // Wake up and find out where we are now.
- result = dsBuffer->GetCurrentPosition( &currentReadPointer, &safeReadPointer );
- if ( FAILED( result ) ) {
- errorStream_ << "RtApiDs::callbackEvent: error (" << getErrorString( result ) << ") getting current read position!";
- errorText_ = errorStream_.str();
- MUTEX_UNLOCK( &stream_.mutex );
- error( RtAudioError::SYSTEM_ERROR );
- return;
- }
-
- if ( safeReadPointer < (DWORD)nextReadPointer ) safeReadPointer += dsBufferSize; // unwrap offset
- }
- }
-
- // Lock free space in the buffer
- result = dsBuffer->Lock( nextReadPointer, bufferBytes, &buffer1,
- &bufferSize1, &buffer2, &bufferSize2, 0 );
- if ( FAILED( result ) ) {
- errorStream_ << "RtApiDs::callbackEvent: error (" << getErrorString( result ) << ") locking capture buffer!";
- errorText_ = errorStream_.str();
- MUTEX_UNLOCK( &stream_.mutex );
- error( RtAudioError::SYSTEM_ERROR );
- return;
- }
-
- if ( duplexPrerollBytes <= 0 ) {
- // Copy our buffer into the DS buffer
- CopyMemory( buffer, buffer1, bufferSize1 );
- if ( buffer2 != NULL ) CopyMemory( buffer+bufferSize1, buffer2, bufferSize2 );
- }
- else {
- memset( buffer, 0, bufferSize1 );
- if ( buffer2 != NULL ) memset( buffer + bufferSize1, 0, bufferSize2 );
- duplexPrerollBytes -= bufferSize1 + bufferSize2;
- }
-
- // Update our buffer offset and unlock sound buffer
- nextReadPointer = ( nextReadPointer + bufferSize1 + bufferSize2 ) % dsBufferSize;
- dsBuffer->Unlock( buffer1, bufferSize1, buffer2, bufferSize2 );
- if ( FAILED( result ) ) {
- errorStream_ << "RtApiDs::callbackEvent: error (" << getErrorString( result ) << ") unlocking capture buffer!";
- errorText_ = errorStream_.str();
- MUTEX_UNLOCK( &stream_.mutex );
- error( RtAudioError::SYSTEM_ERROR );
- return;
- }
- handle->bufferPointer[1] = nextReadPointer;
-
- // No byte swapping necessary in DirectSound implementation.
-
- // If necessary, convert 8-bit data from unsigned to signed.
- if ( stream_.deviceFormat[1] == RTAUDIO_SINT8 )
- for ( int j=0; j<bufferBytes; j++ ) buffer[j] = (signed char) ( buffer[j] - 128 );
-
- // Do buffer conversion if necessary.
- if ( stream_.doConvertBuffer[1] )
- convertBuffer( stream_.userBuffer[1], stream_.deviceBuffer, stream_.convertInfo[1] );
- }
-
- unlock:
- MUTEX_UNLOCK( &stream_.mutex );
- RtApi::tickStreamTime();
-}
-
-// Definitions for utility functions and callbacks
-// specific to the DirectSound implementation.
-
-static unsigned __stdcall callbackHandler( void *ptr )
-{
- CallbackInfo *info = (CallbackInfo *) ptr;
- RtApiDs *object = (RtApiDs *) info->object;
- bool* isRunning = &info->isRunning;
-
- while ( *isRunning == true ) {
- object->callbackEvent();
- }
-
- _endthreadex( 0 );
- return 0;
-}
-
-static BOOL CALLBACK deviceQueryCallback( LPGUID lpguid,
- LPCTSTR description,
- LPCTSTR /*module*/,
- LPVOID lpContext )
-{
- struct DsProbeData& probeInfo = *(struct DsProbeData*) lpContext;
- std::vector<struct DsDevice>& dsDevices = *probeInfo.dsDevices;
-
- HRESULT hr;
- bool validDevice = false;
- if ( probeInfo.isInput == true ) {
- DSCCAPS caps;
- LPDIRECTSOUNDCAPTURE object;
-
- hr = DirectSoundCaptureCreate( lpguid, &object, NULL );
- if ( hr != DS_OK ) return TRUE;
-
- caps.dwSize = sizeof(caps);
- hr = object->GetCaps( &caps );
- if ( hr == DS_OK ) {
- if ( caps.dwChannels > 0 && caps.dwFormats > 0 )
- validDevice = true;
- }
- object->Release();
- }
- else {
- DSCAPS caps;
- LPDIRECTSOUND object;
- hr = DirectSoundCreate( lpguid, &object, NULL );
- if ( hr != DS_OK ) return TRUE;
-
- caps.dwSize = sizeof(caps);
- hr = object->GetCaps( &caps );
- if ( hr == DS_OK ) {
- if ( caps.dwFlags & DSCAPS_PRIMARYMONO || caps.dwFlags & DSCAPS_PRIMARYSTEREO )
- validDevice = true;
- }
- object->Release();
- }
-
- // If good device, then save its name and guid.
- std::string name = convertCharPointerToStdString( description );
- //if ( name == "Primary Sound Driver" || name == "Primary Sound Capture Driver" )
- if ( lpguid == NULL )
- name = "Default Device";
- if ( validDevice ) {
- for ( unsigned int i=0; i<dsDevices.size(); i++ ) {
- if ( dsDevices[i].name == name ) {
- dsDevices[i].found = true;
- if ( probeInfo.isInput ) {
- dsDevices[i].id[1] = lpguid;
- dsDevices[i].validId[1] = true;
- }
- else {
- dsDevices[i].id[0] = lpguid;
- dsDevices[i].validId[0] = true;
- }
- return TRUE;
- }
- }
-
- DsDevice device;
- device.name = name;
- device.found = true;
- if ( probeInfo.isInput ) {
- device.id[1] = lpguid;
- device.validId[1] = true;
- }
- else {
- device.id[0] = lpguid;
- device.validId[0] = true;
- }
- dsDevices.push_back( device );
- }
-
- return TRUE;
-}
-
-static const char* getErrorString( int code )
-{
- switch ( code ) {
-
- case DSERR_ALLOCATED:
- return "Already allocated";
-
- case DSERR_CONTROLUNAVAIL:
- return "Control unavailable";
-
- case DSERR_INVALIDPARAM:
- return "Invalid parameter";
-
- case DSERR_INVALIDCALL:
- return "Invalid call";
-
- case DSERR_GENERIC:
- return "Generic error";
-
- case DSERR_PRIOLEVELNEEDED:
- return "Priority level needed";
-
- case DSERR_OUTOFMEMORY:
- return "Out of memory";
-
- case DSERR_BADFORMAT:
- return "The sample rate or the channel format is not supported";
-
- case DSERR_UNSUPPORTED:
- return "Not supported";
-
- case DSERR_NODRIVER:
- return "No driver";
-
- case DSERR_ALREADYINITIALIZED:
- return "Already initialized";
-
- case DSERR_NOAGGREGATION:
- return "No aggregation";
-
- case DSERR_BUFFERLOST:
- return "Buffer lost";
-
- case DSERR_OTHERAPPHASPRIO:
- return "Another application already has priority";
-
- case DSERR_UNINITIALIZED:
- return "Uninitialized";
-
- default:
- return "DirectSound unknown error";
- }
-}
-//******************** End of __WINDOWS_DS__ *********************//
-#endif
-
-
-#if defined(__LINUX_ALSA__)
-
-#include <alsa/asoundlib.h>
-#include <unistd.h>
-
- // A structure to hold various information related to the ALSA API
- // implementation.
-struct AlsaHandle {
- snd_pcm_t *handles[2];
- bool synchronized;
- bool xrun[2];
- pthread_cond_t runnable_cv;
- bool runnable;
-
- AlsaHandle()
- :synchronized(false), runnable(false) { xrun[0] = false; xrun[1] = false; }
-};
-
-static void *alsaCallbackHandler( void * ptr );
-
-RtApiAlsa :: RtApiAlsa()
-{
- // Nothing to do here.
-}
-
-RtApiAlsa :: ~RtApiAlsa()
-{
- if ( stream_.state != STREAM_CLOSED ) closeStream();
-}
-
-unsigned int RtApiAlsa :: getDeviceCount( void )
-{
- unsigned nDevices = 0;
- int result, subdevice, card;
- char name[64];
- snd_ctl_t *handle;
-
- // Count cards and devices
- card = -1;
- snd_card_next( &card );
- while ( card >= 0 ) {
- sprintf( name, "hw:%d", card );
- result = snd_ctl_open( &handle, name, 0 );
- if ( result < 0 ) {
- errorStream_ << "RtApiAlsa::getDeviceCount: control open, card = " << card << ", " << snd_strerror( result ) << ".";
- errorText_ = errorStream_.str();
- error( RtAudioError::WARNING );
- goto nextcard;
- }
- subdevice = -1;
- while( 1 ) {
- result = snd_ctl_pcm_next_device( handle, &subdevice );
- if ( result < 0 ) {
- errorStream_ << "RtApiAlsa::getDeviceCount: control next device, card = " << card << ", " << snd_strerror( result ) << ".";
- errorText_ = errorStream_.str();
- error( RtAudioError::WARNING );
- break;
- }
- if ( subdevice < 0 )
- break;
- nDevices++;
- }
- nextcard:
- snd_ctl_close( handle );
- snd_card_next( &card );
- }
-
- result = snd_ctl_open( &handle, "default", 0 );
- if (result == 0) {
- nDevices++;
- snd_ctl_close( handle );
- }
-
- return nDevices;
-}
-
-RtAudio::DeviceInfo RtApiAlsa :: getDeviceInfo( unsigned int device )
-{
- RtAudio::DeviceInfo info;
- info.probed = false;
-
- unsigned nDevices = 0;
- int result, subdevice, card;
- char name[64];
- snd_ctl_t *chandle;
-
- // Count cards and devices
- card = -1;
- subdevice = -1;
- snd_card_next( &card );
- while ( card >= 0 ) {
- sprintf( name, "hw:%d", card );
- result = snd_ctl_open( &chandle, name, SND_CTL_NONBLOCK );
- if ( result < 0 ) {
- errorStream_ << "RtApiAlsa::getDeviceInfo: control open, card = " << card << ", " << snd_strerror( result ) << ".";
- errorText_ = errorStream_.str();
- error( RtAudioError::WARNING );
- goto nextcard;
- }
- subdevice = -1;
- while( 1 ) {
- result = snd_ctl_pcm_next_device( chandle, &subdevice );
- if ( result < 0 ) {
- errorStream_ << "RtApiAlsa::getDeviceInfo: control next device, card = " << card << ", " << snd_strerror( result ) << ".";
- errorText_ = errorStream_.str();
- error( RtAudioError::WARNING );
- break;
- }
- if ( subdevice < 0 ) break;
- if ( nDevices == device ) {
- sprintf( name, "hw:%d,%d", card, subdevice );
- goto foundDevice;
- }
- nDevices++;
- }
- nextcard:
- snd_ctl_close( chandle );
- snd_card_next( &card );
- }
-
- result = snd_ctl_open( &chandle, "default", SND_CTL_NONBLOCK );
- if ( result == 0 ) {
- if ( nDevices == device ) {
- strcpy( name, "default" );
- goto foundDevice;
- }
- nDevices++;
- }
-
- if ( nDevices == 0 ) {
- errorText_ = "RtApiAlsa::getDeviceInfo: no devices found!";
- error( RtAudioError::INVALID_USE );
- return info;
- }
-
- if ( device >= nDevices ) {
- errorText_ = "RtApiAlsa::getDeviceInfo: device ID is invalid!";
- error( RtAudioError::INVALID_USE );
- return info;
- }
-
- foundDevice:
-
- // If a stream is already open, we cannot probe the stream devices.
- // Thus, use the saved results.
- if ( stream_.state != STREAM_CLOSED &&
- ( stream_.device[0] == device || stream_.device[1] == device ) ) {
- snd_ctl_close( chandle );
- if ( device >= devices_.size() ) {
- errorText_ = "RtApiAlsa::getDeviceInfo: device ID was not present before stream was opened.";
- error( RtAudioError::WARNING );
- return info;
- }
- return devices_[ device ];
- }
-
- int openMode = SND_PCM_ASYNC;
- snd_pcm_stream_t stream;
- snd_pcm_info_t *pcminfo;
- snd_pcm_info_alloca( &pcminfo );
- snd_pcm_t *phandle;
- snd_pcm_hw_params_t *params;
- snd_pcm_hw_params_alloca( &params );
-
- // First try for playback unless default device (which has subdev -1)
- stream = SND_PCM_STREAM_PLAYBACK;
- snd_pcm_info_set_stream( pcminfo, stream );
- if ( subdevice != -1 ) {
- snd_pcm_info_set_device( pcminfo, subdevice );
- snd_pcm_info_set_subdevice( pcminfo, 0 );
-
- result = snd_ctl_pcm_info( chandle, pcminfo );
- if ( result < 0 ) {
- // Device probably doesn't support playback.
- goto captureProbe;
- }
- }
-
- result = snd_pcm_open( &phandle, name, stream, openMode | SND_PCM_NONBLOCK );
- if ( result < 0 ) {
- errorStream_ << "RtApiAlsa::getDeviceInfo: snd_pcm_open error for device (" << name << "), " << snd_strerror( result ) << ".";
- errorText_ = errorStream_.str();
- error( RtAudioError::WARNING );
- goto captureProbe;
- }
-
- // The device is open ... fill the parameter structure.
- result = snd_pcm_hw_params_any( phandle, params );
- if ( result < 0 ) {
- snd_pcm_close( phandle );
- errorStream_ << "RtApiAlsa::getDeviceInfo: snd_pcm_hw_params error for device (" << name << "), " << snd_strerror( result ) << ".";
- errorText_ = errorStream_.str();
- error( RtAudioError::WARNING );
- goto captureProbe;
- }
-
- // Get output channel information.
- unsigned int value;
- result = snd_pcm_hw_params_get_channels_max( params, &value );
- if ( result < 0 ) {
- snd_pcm_close( phandle );
- errorStream_ << "RtApiAlsa::getDeviceInfo: error getting device (" << name << ") output channels, " << snd_strerror( result ) << ".";
- errorText_ = errorStream_.str();
- error( RtAudioError::WARNING );
- goto captureProbe;
- }
- info.outputChannels = value;
- snd_pcm_close( phandle );
-
- captureProbe:
- stream = SND_PCM_STREAM_CAPTURE;
- snd_pcm_info_set_stream( pcminfo, stream );
-
- // Now try for capture unless default device (with subdev = -1)
- if ( subdevice != -1 ) {
- result = snd_ctl_pcm_info( chandle, pcminfo );
- snd_ctl_close( chandle );
- if ( result < 0 ) {
- // Device probably doesn't support capture.
- if ( info.outputChannels == 0 ) return info;
- goto probeParameters;
- }
- }
- else
- snd_ctl_close( chandle );
-
- result = snd_pcm_open( &phandle, name, stream, openMode | SND_PCM_NONBLOCK);
- if ( result < 0 ) {
- errorStream_ << "RtApiAlsa::getDeviceInfo: snd_pcm_open error for device (" << name << "), " << snd_strerror( result ) << ".";
- errorText_ = errorStream_.str();
- error( RtAudioError::WARNING );
- if ( info.outputChannels == 0 ) return info;
- goto probeParameters;
- }
-
- // The device is open ... fill the parameter structure.
- result = snd_pcm_hw_params_any( phandle, params );
- if ( result < 0 ) {
- snd_pcm_close( phandle );
- errorStream_ << "RtApiAlsa::getDeviceInfo: snd_pcm_hw_params error for device (" << name << "), " << snd_strerror( result ) << ".";
- errorText_ = errorStream_.str();
- error( RtAudioError::WARNING );
- if ( info.outputChannels == 0 ) return info;
- goto probeParameters;
- }
-
- result = snd_pcm_hw_params_get_channels_max( params, &value );
- if ( result < 0 ) {
- snd_pcm_close( phandle );
- errorStream_ << "RtApiAlsa::getDeviceInfo: error getting device (" << name << ") input channels, " << snd_strerror( result ) << ".";
- errorText_ = errorStream_.str();
- error( RtAudioError::WARNING );
- if ( info.outputChannels == 0 ) return info;
- goto probeParameters;
- }
- info.inputChannels = value;
- snd_pcm_close( phandle );
-
- // If device opens for both playback and capture, we determine the channels.
- if ( info.outputChannels > 0 && info.inputChannels > 0 )
- info.duplexChannels = (info.outputChannels > info.inputChannels) ? info.inputChannels : info.outputChannels;
-
- // ALSA doesn't provide default devices so we'll use the first available one.
- if ( device == 0 && info.outputChannels > 0 )
- info.isDefaultOutput = true;
- if ( device == 0 && info.inputChannels > 0 )
- info.isDefaultInput = true;
-
- probeParameters:
- // At this point, we just need to figure out the supported data
- // formats and sample rates. We'll proceed by opening the device in
- // the direction with the maximum number of channels, or playback if
- // they are equal. This might limit our sample rate options, but so
- // be it.
-
- if ( info.outputChannels >= info.inputChannels )
- stream = SND_PCM_STREAM_PLAYBACK;
- else
- stream = SND_PCM_STREAM_CAPTURE;
- snd_pcm_info_set_stream( pcminfo, stream );
-
- result = snd_pcm_open( &phandle, name, stream, openMode | SND_PCM_NONBLOCK);
- if ( result < 0 ) {
- errorStream_ << "RtApiAlsa::getDeviceInfo: snd_pcm_open error for device (" << name << "), " << snd_strerror( result ) << ".";
- errorText_ = errorStream_.str();
- error( RtAudioError::WARNING );
- return info;
- }
-
- // The device is open ... fill the parameter structure.
- result = snd_pcm_hw_params_any( phandle, params );
- if ( result < 0 ) {
- snd_pcm_close( phandle );
- errorStream_ << "RtApiAlsa::getDeviceInfo: snd_pcm_hw_params error for device (" << name << "), " << snd_strerror( result ) << ".";
- errorText_ = errorStream_.str();
- error( RtAudioError::WARNING );
- return info;
- }
-
- // Test our discrete set of sample rate values.
- info.sampleRates.clear();
- for ( unsigned int i=0; i<MAX_SAMPLE_RATES; i++ ) {
- if ( snd_pcm_hw_params_test_rate( phandle, params, SAMPLE_RATES[i], 0 ) == 0 ) {
- info.sampleRates.push_back( SAMPLE_RATES[i] );
-
- if ( !info.preferredSampleRate || ( SAMPLE_RATES[i] <= 48000 && SAMPLE_RATES[i] > info.preferredSampleRate ) )
- info.preferredSampleRate = SAMPLE_RATES[i];
- }
- }
- if ( info.sampleRates.size() == 0 ) {
- snd_pcm_close( phandle );
- errorStream_ << "RtApiAlsa::getDeviceInfo: no supported sample rates found for device (" << name << ").";
- errorText_ = errorStream_.str();
- error( RtAudioError::WARNING );
- return info;
- }
-
- // Probe the supported data formats ... we don't care about endian-ness just yet
- snd_pcm_format_t format;
- info.nativeFormats = 0;
- format = SND_PCM_FORMAT_S8;
- if ( snd_pcm_hw_params_test_format( phandle, params, format ) == 0 )
- info.nativeFormats |= RTAUDIO_SINT8;
- format = SND_PCM_FORMAT_S16;
- if ( snd_pcm_hw_params_test_format( phandle, params, format ) == 0 )
- info.nativeFormats |= RTAUDIO_SINT16;
- format = SND_PCM_FORMAT_S24;
- if ( snd_pcm_hw_params_test_format( phandle, params, format ) == 0 )
- info.nativeFormats |= RTAUDIO_SINT24;
- format = SND_PCM_FORMAT_S32;
- if ( snd_pcm_hw_params_test_format( phandle, params, format ) == 0 )
- info.nativeFormats |= RTAUDIO_SINT32;
- format = SND_PCM_FORMAT_FLOAT;
- if ( snd_pcm_hw_params_test_format( phandle, params, format ) == 0 )
- info.nativeFormats |= RTAUDIO_FLOAT32;
- format = SND_PCM_FORMAT_FLOAT64;
- if ( snd_pcm_hw_params_test_format( phandle, params, format ) == 0 )
- info.nativeFormats |= RTAUDIO_FLOAT64;
-
- // Check that we have at least one supported format
- if ( info.nativeFormats == 0 ) {
- snd_pcm_close( phandle );
- errorStream_ << "RtApiAlsa::getDeviceInfo: pcm device (" << name << ") data format not supported by RtAudio.";
- errorText_ = errorStream_.str();
- error( RtAudioError::WARNING );
- return info;
- }
-
- // Get the device name
- char *cardname;
- result = snd_card_get_name( card, &cardname );
- if ( result >= 0 ) {
- sprintf( name, "hw:%s,%d", cardname, subdevice );
- free( cardname );
- }
- info.name = name;
-
- // That's all ... close the device and return
- snd_pcm_close( phandle );
- info.probed = true;
- return info;
-}
-
-void RtApiAlsa :: saveDeviceInfo( void )
-{
- devices_.clear();
-
- unsigned int nDevices = getDeviceCount();
- devices_.resize( nDevices );
- for ( unsigned int i=0; i<nDevices; i++ )
- devices_[i] = getDeviceInfo( i );
-}
-
-bool RtApiAlsa :: probeDeviceOpen( unsigned int device, StreamMode mode, unsigned int channels,
- unsigned int firstChannel, unsigned int sampleRate,
- RtAudioFormat format, unsigned int *bufferSize,
- RtAudio::StreamOptions *options )
-
-{
-#if defined(__RTAUDIO_DEBUG__)
- snd_output_t *out;
- snd_output_stdio_attach(&out, stderr, 0);
-#endif
-
- // I'm not using the "plug" interface ... too much inconsistent behavior.
-
- unsigned nDevices = 0;
- int result, subdevice, card;
- char name[64];
- snd_ctl_t *chandle;
-
- if ( options && options->flags & RTAUDIO_ALSA_USE_DEFAULT )
- snprintf(name, sizeof(name), "%s", "default");
- else {
- // Count cards and devices
- card = -1;
- snd_card_next( &card );
- while ( card >= 0 ) {
- sprintf( name, "hw:%d", card );
- result = snd_ctl_open( &chandle, name, SND_CTL_NONBLOCK );
- if ( result < 0 ) {
- errorStream_ << "RtApiAlsa::probeDeviceOpen: control open, card = " << card << ", " << snd_strerror( result ) << ".";
- errorText_ = errorStream_.str();
- return FAILURE;
- }
- subdevice = -1;
- while( 1 ) {
- result = snd_ctl_pcm_next_device( chandle, &subdevice );
- if ( result < 0 ) break;
- if ( subdevice < 0 ) break;
- if ( nDevices == device ) {
- sprintf( name, "hw:%d,%d", card, subdevice );
- snd_ctl_close( chandle );
- goto foundDevice;
- }
- nDevices++;
- }
- snd_ctl_close( chandle );
- snd_card_next( &card );
- }
-
- result = snd_ctl_open( &chandle, "default", SND_CTL_NONBLOCK );
- if ( result == 0 ) {
- if ( nDevices == device ) {
- strcpy( name, "default" );
- goto foundDevice;
- }
- nDevices++;
- }
-
- if ( nDevices == 0 ) {
- // This should not happen because a check is made before this function is called.
- errorText_ = "RtApiAlsa::probeDeviceOpen: no devices found!";
- return FAILURE;
- }
-
- if ( device >= nDevices ) {
- // This should not happen because a check is made before this function is called.
- errorText_ = "RtApiAlsa::probeDeviceOpen: device ID is invalid!";
- return FAILURE;
- }
- }
-
- foundDevice:
-
- // The getDeviceInfo() function will not work for a device that is
- // already open. Thus, we'll probe the system before opening a
- // stream and save the results for use by getDeviceInfo().
- if ( mode == OUTPUT || ( mode == INPUT && stream_.mode != OUTPUT ) ) // only do once
- this->saveDeviceInfo();
-
- snd_pcm_stream_t stream;
- if ( mode == OUTPUT )
- stream = SND_PCM_STREAM_PLAYBACK;
- else
- stream = SND_PCM_STREAM_CAPTURE;
-
- snd_pcm_t *phandle;
- int openMode = SND_PCM_ASYNC;
- result = snd_pcm_open( &phandle, name, stream, openMode );
- if ( result < 0 ) {
- if ( mode == OUTPUT )
- errorStream_ << "RtApiAlsa::probeDeviceOpen: pcm device (" << name << ") won't open for output.";
- else
- errorStream_ << "RtApiAlsa::probeDeviceOpen: pcm device (" << name << ") won't open for input.";
- errorText_ = errorStream_.str();
- return FAILURE;
- }
-
- // Fill the parameter structure.
- snd_pcm_hw_params_t *hw_params;
- snd_pcm_hw_params_alloca( &hw_params );
- result = snd_pcm_hw_params_any( phandle, hw_params );
- if ( result < 0 ) {
- snd_pcm_close( phandle );
- errorStream_ << "RtApiAlsa::probeDeviceOpen: error getting pcm device (" << name << ") parameters, " << snd_strerror( result ) << ".";
- errorText_ = errorStream_.str();
- return FAILURE;
- }
-
-#if defined(__RTAUDIO_DEBUG__)
- fprintf( stderr, "\nRtApiAlsa: dump hardware params just after device open:\n\n" );
- snd_pcm_hw_params_dump( hw_params, out );
-#endif
-
- // Set access ... check user preference.
- if ( options && options->flags & RTAUDIO_NONINTERLEAVED ) {
- stream_.userInterleaved = false;
- result = snd_pcm_hw_params_set_access( phandle, hw_params, SND_PCM_ACCESS_RW_NONINTERLEAVED );
- if ( result < 0 ) {
- result = snd_pcm_hw_params_set_access( phandle, hw_params, SND_PCM_ACCESS_RW_INTERLEAVED );
- stream_.deviceInterleaved[mode] = true;
- }
- else
- stream_.deviceInterleaved[mode] = false;
- }
- else {
- stream_.userInterleaved = true;
- result = snd_pcm_hw_params_set_access( phandle, hw_params, SND_PCM_ACCESS_RW_INTERLEAVED );
- if ( result < 0 ) {
- result = snd_pcm_hw_params_set_access( phandle, hw_params, SND_PCM_ACCESS_RW_NONINTERLEAVED );
- stream_.deviceInterleaved[mode] = false;
- }
- else
- stream_.deviceInterleaved[mode] = true;
- }
-
- if ( result < 0 ) {
- snd_pcm_close( phandle );
- errorStream_ << "RtApiAlsa::probeDeviceOpen: error setting pcm device (" << name << ") access, " << snd_strerror( result ) << ".";
- errorText_ = errorStream_.str();
- return FAILURE;
- }
-
- // Determine how to set the device format.
- stream_.userFormat = format;
- snd_pcm_format_t deviceFormat = SND_PCM_FORMAT_UNKNOWN;
-
- if ( format == RTAUDIO_SINT8 )
- deviceFormat = SND_PCM_FORMAT_S8;
- else if ( format == RTAUDIO_SINT16 )
- deviceFormat = SND_PCM_FORMAT_S16;
- else if ( format == RTAUDIO_SINT24 )
- deviceFormat = SND_PCM_FORMAT_S24;
- else if ( format == RTAUDIO_SINT32 )
- deviceFormat = SND_PCM_FORMAT_S32;
- else if ( format == RTAUDIO_FLOAT32 )
- deviceFormat = SND_PCM_FORMAT_FLOAT;
- else if ( format == RTAUDIO_FLOAT64 )
- deviceFormat = SND_PCM_FORMAT_FLOAT64;
-
- if ( snd_pcm_hw_params_test_format(phandle, hw_params, deviceFormat) == 0) {
- stream_.deviceFormat[mode] = format;
- goto setFormat;
- }
-
- // The user requested format is not natively supported by the device.
- deviceFormat = SND_PCM_FORMAT_FLOAT64;
- if ( snd_pcm_hw_params_test_format( phandle, hw_params, deviceFormat ) == 0 ) {
- stream_.deviceFormat[mode] = RTAUDIO_FLOAT64;
- goto setFormat;
- }
-
- deviceFormat = SND_PCM_FORMAT_FLOAT;
- if ( snd_pcm_hw_params_test_format(phandle, hw_params, deviceFormat ) == 0 ) {
- stream_.deviceFormat[mode] = RTAUDIO_FLOAT32;
- goto setFormat;
- }
-
- deviceFormat = SND_PCM_FORMAT_S32;
- if ( snd_pcm_hw_params_test_format(phandle, hw_params, deviceFormat ) == 0 ) {
- stream_.deviceFormat[mode] = RTAUDIO_SINT32;
- goto setFormat;
- }
-
- deviceFormat = SND_PCM_FORMAT_S24;
- if ( snd_pcm_hw_params_test_format(phandle, hw_params, deviceFormat ) == 0 ) {
- stream_.deviceFormat[mode] = RTAUDIO_SINT24;
- goto setFormat;
- }
-
- deviceFormat = SND_PCM_FORMAT_S16;
- if ( snd_pcm_hw_params_test_format(phandle, hw_params, deviceFormat ) == 0 ) {
- stream_.deviceFormat[mode] = RTAUDIO_SINT16;
- goto setFormat;
- }
-
- deviceFormat = SND_PCM_FORMAT_S8;
- if ( snd_pcm_hw_params_test_format(phandle, hw_params, deviceFormat ) == 0 ) {
- stream_.deviceFormat[mode] = RTAUDIO_SINT8;
- goto setFormat;
- }
-
- // If we get here, no supported format was found.
- snd_pcm_close( phandle );
- errorStream_ << "RtApiAlsa::probeDeviceOpen: pcm device " << device << " data format not supported by RtAudio.";
- errorText_ = errorStream_.str();
- return FAILURE;
-
- setFormat:
- result = snd_pcm_hw_params_set_format( phandle, hw_params, deviceFormat );
- if ( result < 0 ) {
- snd_pcm_close( phandle );
- errorStream_ << "RtApiAlsa::probeDeviceOpen: error setting pcm device (" << name << ") data format, " << snd_strerror( result ) << ".";
- errorText_ = errorStream_.str();
- return FAILURE;
- }
-
- // Determine whether byte-swaping is necessary.
- stream_.doByteSwap[mode] = false;
- if ( deviceFormat != SND_PCM_FORMAT_S8 ) {
- result = snd_pcm_format_cpu_endian( deviceFormat );
- if ( result == 0 )
- stream_.doByteSwap[mode] = true;
- else if (result < 0) {
- snd_pcm_close( phandle );
- errorStream_ << "RtApiAlsa::probeDeviceOpen: error getting pcm device (" << name << ") endian-ness, " << snd_strerror( result ) << ".";
- errorText_ = errorStream_.str();
- return FAILURE;
- }
- }
-
- // Set the sample rate.
- result = snd_pcm_hw_params_set_rate_near( phandle, hw_params, (unsigned int*) &sampleRate, 0 );
- if ( result < 0 ) {
- snd_pcm_close( phandle );
- errorStream_ << "RtApiAlsa::probeDeviceOpen: error setting sample rate on device (" << name << "), " << snd_strerror( result ) << ".";
- errorText_ = errorStream_.str();
- return FAILURE;
- }
-
- // Determine the number of channels for this device. We support a possible
- // minimum device channel number > than the value requested by the user.
- stream_.nUserChannels[mode] = channels;
- unsigned int value;
- result = snd_pcm_hw_params_get_channels_max( hw_params, &value );
- unsigned int deviceChannels = value;
- if ( result < 0 || deviceChannels < channels + firstChannel ) {
- snd_pcm_close( phandle );
- errorStream_ << "RtApiAlsa::probeDeviceOpen: requested channel parameters not supported by device (" << name << "), " << snd_strerror( result ) << ".";
- errorText_ = errorStream_.str();
- return FAILURE;
- }
-
- result = snd_pcm_hw_params_get_channels_min( hw_params, &value );
- if ( result < 0 ) {
- snd_pcm_close( phandle );
- errorStream_ << "RtApiAlsa::probeDeviceOpen: error getting minimum channels for device (" << name << "), " << snd_strerror( result ) << ".";
- errorText_ = errorStream_.str();
- return FAILURE;
- }
- deviceChannels = value;
- if ( deviceChannels < channels + firstChannel ) deviceChannels = channels + firstChannel;
- stream_.nDeviceChannels[mode] = deviceChannels;
-
- // Set the device channels.
- result = snd_pcm_hw_params_set_channels( phandle, hw_params, deviceChannels );
- if ( result < 0 ) {
- snd_pcm_close( phandle );
- errorStream_ << "RtApiAlsa::probeDeviceOpen: error setting channels for device (" << name << "), " << snd_strerror( result ) << ".";
- errorText_ = errorStream_.str();
- return FAILURE;
- }
-
- // Set the buffer (or period) size.
- int dir = 0;
- snd_pcm_uframes_t periodSize = *bufferSize;
- result = snd_pcm_hw_params_set_period_size_near( phandle, hw_params, &periodSize, &dir );
- if ( result < 0 ) {
- snd_pcm_close( phandle );
- errorStream_ << "RtApiAlsa::probeDeviceOpen: error setting period size for device (" << name << "), " << snd_strerror( result ) << ".";
- errorText_ = errorStream_.str();
- return FAILURE;
- }
- *bufferSize = periodSize;
-
- // Set the buffer number, which in ALSA is referred to as the "period".
- unsigned int periods = 0;
- if ( options && options->flags & RTAUDIO_MINIMIZE_LATENCY ) periods = 2;
- if ( options && options->numberOfBuffers > 0 ) periods = options->numberOfBuffers;
- if ( periods < 2 ) periods = 4; // a fairly safe default value
- result = snd_pcm_hw_params_set_periods_near( phandle, hw_params, &periods, &dir );
- if ( result < 0 ) {
- snd_pcm_close( phandle );
- errorStream_ << "RtApiAlsa::probeDeviceOpen: error setting periods for device (" << name << "), " << snd_strerror( result ) << ".";
- errorText_ = errorStream_.str();
- return FAILURE;
- }
-
- // If attempting to setup a duplex stream, the bufferSize parameter
- // MUST be the same in both directions!
- if ( stream_.mode == OUTPUT && mode == INPUT && *bufferSize != stream_.bufferSize ) {
- snd_pcm_close( phandle );
- errorStream_ << "RtApiAlsa::probeDeviceOpen: system error setting buffer size for duplex stream on device (" << name << ").";
- errorText_ = errorStream_.str();
- return FAILURE;
- }
-
- stream_.bufferSize = *bufferSize;
-
- // Install the hardware configuration
- result = snd_pcm_hw_params( phandle, hw_params );
- if ( result < 0 ) {
- snd_pcm_close( phandle );
- errorStream_ << "RtApiAlsa::probeDeviceOpen: error installing hardware configuration on device (" << name << "), " << snd_strerror( result ) << ".";
- errorText_ = errorStream_.str();
- return FAILURE;
- }
-
-#if defined(__RTAUDIO_DEBUG__)
- fprintf(stderr, "\nRtApiAlsa: dump hardware params after installation:\n\n");
- snd_pcm_hw_params_dump( hw_params, out );
-#endif
-
- // Set the software configuration to fill buffers with zeros and prevent device stopping on xruns.
- snd_pcm_sw_params_t *sw_params = NULL;
- snd_pcm_sw_params_alloca( &sw_params );
- snd_pcm_sw_params_current( phandle, sw_params );
- snd_pcm_sw_params_set_start_threshold( phandle, sw_params, *bufferSize );
- snd_pcm_sw_params_set_stop_threshold( phandle, sw_params, ULONG_MAX );
- snd_pcm_sw_params_set_silence_threshold( phandle, sw_params, 0 );
-
- // The following two settings were suggested by Theo Veenker
- //snd_pcm_sw_params_set_avail_min( phandle, sw_params, *bufferSize );
- //snd_pcm_sw_params_set_xfer_align( phandle, sw_params, 1 );
-
- // here are two options for a fix
- //snd_pcm_sw_params_set_silence_size( phandle, sw_params, ULONG_MAX );
- snd_pcm_uframes_t val;
- snd_pcm_sw_params_get_boundary( sw_params, &val );
- snd_pcm_sw_params_set_silence_size( phandle, sw_params, val );
-
- result = snd_pcm_sw_params( phandle, sw_params );
- if ( result < 0 ) {
- snd_pcm_close( phandle );
- errorStream_ << "RtApiAlsa::probeDeviceOpen: error installing software configuration on device (" << name << "), " << snd_strerror( result ) << ".";
- errorText_ = errorStream_.str();
- return FAILURE;
- }
-
-#if defined(__RTAUDIO_DEBUG__)
- fprintf(stderr, "\nRtApiAlsa: dump software params after installation:\n\n");
- snd_pcm_sw_params_dump( sw_params, out );
-#endif
-
- // Set flags for buffer conversion
- stream_.doConvertBuffer[mode] = false;
- if ( stream_.userFormat != stream_.deviceFormat[mode] )
- stream_.doConvertBuffer[mode] = true;
- if ( stream_.nUserChannels[mode] < stream_.nDeviceChannels[mode] )
- stream_.doConvertBuffer[mode] = true;
- if ( stream_.userInterleaved != stream_.deviceInterleaved[mode] &&
- stream_.nUserChannels[mode] > 1 )
- stream_.doConvertBuffer[mode] = true;
-
- // Allocate the ApiHandle if necessary and then save.
- AlsaHandle *apiInfo = 0;
- if ( stream_.apiHandle == 0 ) {
- try {
- apiInfo = (AlsaHandle *) new AlsaHandle;
- }
- catch ( std::bad_alloc& ) {
- errorText_ = "RtApiAlsa::probeDeviceOpen: error allocating AlsaHandle memory.";
- goto error;
- }
-
- if ( pthread_cond_init( &apiInfo->runnable_cv, NULL ) ) {
- errorText_ = "RtApiAlsa::probeDeviceOpen: error initializing pthread condition variable.";
- goto error;
- }
-
- stream_.apiHandle = (void *) apiInfo;
- apiInfo->handles[0] = 0;
- apiInfo->handles[1] = 0;
- }
- else {
- apiInfo = (AlsaHandle *) stream_.apiHandle;
- }
- apiInfo->handles[mode] = phandle;
- phandle = 0;
-
- // Allocate necessary internal buffers.
- unsigned long bufferBytes;
- bufferBytes = stream_.nUserChannels[mode] * *bufferSize * formatBytes( stream_.userFormat );
- stream_.userBuffer[mode] = (char *) calloc( bufferBytes, 1 );
- if ( stream_.userBuffer[mode] == NULL ) {
- errorText_ = "RtApiAlsa::probeDeviceOpen: error allocating user buffer memory.";
- goto error;
- }
-
- if ( stream_.doConvertBuffer[mode] ) {
-
- bool makeBuffer = true;
- bufferBytes = stream_.nDeviceChannels[mode] * formatBytes( stream_.deviceFormat[mode] );
- if ( mode == INPUT ) {
- if ( stream_.mode == OUTPUT && stream_.deviceBuffer ) {
- unsigned long bytesOut = stream_.nDeviceChannels[0] * formatBytes( stream_.deviceFormat[0] );
- if ( bufferBytes <= bytesOut ) makeBuffer = false;
- }
- }
-
- if ( makeBuffer ) {
- bufferBytes *= *bufferSize;
- if ( stream_.deviceBuffer ) free( stream_.deviceBuffer );
- stream_.deviceBuffer = (char *) calloc( bufferBytes, 1 );
- if ( stream_.deviceBuffer == NULL ) {
- errorText_ = "RtApiAlsa::probeDeviceOpen: error allocating device buffer memory.";
- goto error;
- }
- }
- }
-
- stream_.sampleRate = sampleRate;
- stream_.nBuffers = periods;
- stream_.device[mode] = device;
- stream_.state = STREAM_STOPPED;
-
- // Setup the buffer conversion information structure.
- if ( stream_.doConvertBuffer[mode] ) setConvertInfo( mode, firstChannel );
-
- // Setup thread if necessary.
- if ( stream_.mode == OUTPUT && mode == INPUT ) {
- // We had already set up an output stream.
- stream_.mode = DUPLEX;
- // Link the streams if possible.
- apiInfo->synchronized = false;
- if ( snd_pcm_link( apiInfo->handles[0], apiInfo->handles[1] ) == 0 )
- apiInfo->synchronized = true;
- else {
- errorText_ = "RtApiAlsa::probeDeviceOpen: unable to synchronize input and output devices.";
- error( RtAudioError::WARNING );
- }
- }
- else {
- stream_.mode = mode;
-
- // Setup callback thread.
- stream_.callbackInfo.object = (void *) this;
-
- // Set the thread attributes for joinable and realtime scheduling
- // priority (optional). The higher priority will only take affect
- // if the program is run as root or suid. Note, under Linux
- // processes with CAP_SYS_NICE privilege, a user can change
- // scheduling policy and priority (thus need not be root). See
- // POSIX "capabilities".
- pthread_attr_t attr;
- pthread_attr_init( &attr );
- pthread_attr_setdetachstate( &attr, PTHREAD_CREATE_JOINABLE );
-
-#ifdef SCHED_RR // Undefined with some OSes (eg: NetBSD 1.6.x with GNU Pthread)
- if ( options && options->flags & RTAUDIO_SCHEDULE_REALTIME ) {
- // We previously attempted to increase the audio callback priority
- // to SCHED_RR here via the attributes. However, while no errors
- // were reported in doing so, it did not work. So, now this is
- // done in the alsaCallbackHandler function.
- stream_.callbackInfo.doRealtime = true;
- int priority = options->priority;
- int min = sched_get_priority_min( SCHED_RR );
- int max = sched_get_priority_max( SCHED_RR );
- if ( priority < min ) priority = min;
- else if ( priority > max ) priority = max;
- stream_.callbackInfo.priority = priority;
- }
-#endif
-
- stream_.callbackInfo.isRunning = true;
- result = pthread_create( &stream_.callbackInfo.thread, &attr, alsaCallbackHandler, &stream_.callbackInfo );
- pthread_attr_destroy( &attr );
- if ( result ) {
- stream_.callbackInfo.isRunning = false;
- errorText_ = "RtApiAlsa::error creating callback thread!";
- goto error;
- }
- }
-
- return SUCCESS;
-
- error:
- if ( apiInfo ) {
- pthread_cond_destroy( &apiInfo->runnable_cv );
- if ( apiInfo->handles[0] ) snd_pcm_close( apiInfo->handles[0] );
- if ( apiInfo->handles[1] ) snd_pcm_close( apiInfo->handles[1] );
- delete apiInfo;
- stream_.apiHandle = 0;
- }
-
- if ( phandle) snd_pcm_close( phandle );
-
- for ( int i=0; i<2; i++ ) {
- if ( stream_.userBuffer[i] ) {
- free( stream_.userBuffer[i] );
- stream_.userBuffer[i] = 0;
- }
- }
-
- if ( stream_.deviceBuffer ) {
- free( stream_.deviceBuffer );
- stream_.deviceBuffer = 0;
- }
-
- stream_.state = STREAM_CLOSED;
- return FAILURE;
-}
-
-void RtApiAlsa :: closeStream()
-{
- if ( stream_.state == STREAM_CLOSED ) {
- errorText_ = "RtApiAlsa::closeStream(): no open stream to close!";
- error( RtAudioError::WARNING );
- return;
- }
-
- AlsaHandle *apiInfo = (AlsaHandle *) stream_.apiHandle;
- stream_.callbackInfo.isRunning = false;
- MUTEX_LOCK( &stream_.mutex );
- if ( stream_.state == STREAM_STOPPED ) {
- apiInfo->runnable = true;
- pthread_cond_signal( &apiInfo->runnable_cv );
- }
- MUTEX_UNLOCK( &stream_.mutex );
- pthread_join( stream_.callbackInfo.thread, NULL );
-
- if ( stream_.state == STREAM_RUNNING ) {
- stream_.state = STREAM_STOPPED;
- if ( stream_.mode == OUTPUT || stream_.mode == DUPLEX )
- snd_pcm_drop( apiInfo->handles[0] );
- if ( stream_.mode == INPUT || stream_.mode == DUPLEX )
- snd_pcm_drop( apiInfo->handles[1] );
- }
-
- if ( apiInfo ) {
- pthread_cond_destroy( &apiInfo->runnable_cv );
- if ( apiInfo->handles[0] ) snd_pcm_close( apiInfo->handles[0] );
- if ( apiInfo->handles[1] ) snd_pcm_close( apiInfo->handles[1] );
- delete apiInfo;
- stream_.apiHandle = 0;
- }
-
- for ( int i=0; i<2; i++ ) {
- if ( stream_.userBuffer[i] ) {
- free( stream_.userBuffer[i] );
- stream_.userBuffer[i] = 0;
- }
- }
-
- if ( stream_.deviceBuffer ) {
- free( stream_.deviceBuffer );
- stream_.deviceBuffer = 0;
- }
-
- stream_.mode = UNINITIALIZED;
- stream_.state = STREAM_CLOSED;
-}
-
-void RtApiAlsa :: startStream()
-{
- // This method calls snd_pcm_prepare if the device isn't already in that state.
-
- verifyStream();
- if ( stream_.state == STREAM_RUNNING ) {
- errorText_ = "RtApiAlsa::startStream(): the stream is already running!";
- error( RtAudioError::WARNING );
- return;
- }
-
- MUTEX_LOCK( &stream_.mutex );
-
- int result = 0;
- snd_pcm_state_t state;
- AlsaHandle *apiInfo = (AlsaHandle *) stream_.apiHandle;
- snd_pcm_t **handle = (snd_pcm_t **) apiInfo->handles;
- if ( stream_.mode == OUTPUT || stream_.mode == DUPLEX ) {
- state = snd_pcm_state( handle[0] );
- if ( state != SND_PCM_STATE_PREPARED ) {
- result = snd_pcm_prepare( handle[0] );
- if ( result < 0 ) {
- errorStream_ << "RtApiAlsa::startStream: error preparing output pcm device, " << snd_strerror( result ) << ".";
- errorText_ = errorStream_.str();
- goto unlock;
- }
- }
- }
-
- if ( ( stream_.mode == INPUT || stream_.mode == DUPLEX ) && !apiInfo->synchronized ) {
- result = snd_pcm_drop(handle[1]); // fix to remove stale data received since device has been open
- state = snd_pcm_state( handle[1] );
- if ( state != SND_PCM_STATE_PREPARED ) {
- result = snd_pcm_prepare( handle[1] );
- if ( result < 0 ) {
- errorStream_ << "RtApiAlsa::startStream: error preparing input pcm device, " << snd_strerror( result ) << ".";
- errorText_ = errorStream_.str();
- goto unlock;
- }
- }
- }
-
- stream_.state = STREAM_RUNNING;
-
- unlock:
- apiInfo->runnable = true;
- pthread_cond_signal( &apiInfo->runnable_cv );
- MUTEX_UNLOCK( &stream_.mutex );
-
- if ( result >= 0 ) return;
- error( RtAudioError::SYSTEM_ERROR );
-}
-
-void RtApiAlsa :: stopStream()
-{
- verifyStream();
- if ( stream_.state == STREAM_STOPPED ) {
- errorText_ = "RtApiAlsa::stopStream(): the stream is already stopped!";
- error( RtAudioError::WARNING );
- return;
- }
-
- stream_.state = STREAM_STOPPED;
- MUTEX_LOCK( &stream_.mutex );
-
- int result = 0;
- AlsaHandle *apiInfo = (AlsaHandle *) stream_.apiHandle;
- snd_pcm_t **handle = (snd_pcm_t **) apiInfo->handles;
- if ( stream_.mode == OUTPUT || stream_.mode == DUPLEX ) {
- if ( apiInfo->synchronized )
- result = snd_pcm_drop( handle[0] );
- else
- result = snd_pcm_drain( handle[0] );
- if ( result < 0 ) {
- errorStream_ << "RtApiAlsa::stopStream: error draining output pcm device, " << snd_strerror( result ) << ".";
- errorText_ = errorStream_.str();
- goto unlock;
- }
- }
-
- if ( ( stream_.mode == INPUT || stream_.mode == DUPLEX ) && !apiInfo->synchronized ) {
- result = snd_pcm_drop( handle[1] );
- if ( result < 0 ) {
- errorStream_ << "RtApiAlsa::stopStream: error stopping input pcm device, " << snd_strerror( result ) << ".";
- errorText_ = errorStream_.str();
- goto unlock;
- }
- }
-
- unlock:
- apiInfo->runnable = false; // fixes high CPU usage when stopped
- MUTEX_UNLOCK( &stream_.mutex );
-
- if ( result >= 0 ) return;
- error( RtAudioError::SYSTEM_ERROR );
-}
-
-void RtApiAlsa :: abortStream()
-{
- verifyStream();
- if ( stream_.state == STREAM_STOPPED ) {
- errorText_ = "RtApiAlsa::abortStream(): the stream is already stopped!";
- error( RtAudioError::WARNING );
- return;
- }
-
- stream_.state = STREAM_STOPPED;
- MUTEX_LOCK( &stream_.mutex );
-
- int result = 0;
- AlsaHandle *apiInfo = (AlsaHandle *) stream_.apiHandle;
- snd_pcm_t **handle = (snd_pcm_t **) apiInfo->handles;
- if ( stream_.mode == OUTPUT || stream_.mode == DUPLEX ) {
- result = snd_pcm_drop( handle[0] );
- if ( result < 0 ) {
- errorStream_ << "RtApiAlsa::abortStream: error aborting output pcm device, " << snd_strerror( result ) << ".";
- errorText_ = errorStream_.str();
- goto unlock;
- }
- }
-
- if ( ( stream_.mode == INPUT || stream_.mode == DUPLEX ) && !apiInfo->synchronized ) {
- result = snd_pcm_drop( handle[1] );
- if ( result < 0 ) {
- errorStream_ << "RtApiAlsa::abortStream: error aborting input pcm device, " << snd_strerror( result ) << ".";
- errorText_ = errorStream_.str();
- goto unlock;
- }
- }
-
- unlock:
- apiInfo->runnable = false; // fixes high CPU usage when stopped
- MUTEX_UNLOCK( &stream_.mutex );
-
- if ( result >= 0 ) return;
- error( RtAudioError::SYSTEM_ERROR );
-}
-
-void RtApiAlsa :: callbackEvent()
-{
- AlsaHandle *apiInfo = (AlsaHandle *) stream_.apiHandle;
- if ( stream_.state == STREAM_STOPPED ) {
- MUTEX_LOCK( &stream_.mutex );
- while ( !apiInfo->runnable )
- pthread_cond_wait( &apiInfo->runnable_cv, &stream_.mutex );
-
- if ( stream_.state != STREAM_RUNNING ) {
- MUTEX_UNLOCK( &stream_.mutex );
- return;
- }
- MUTEX_UNLOCK( &stream_.mutex );
- }
-
- if ( stream_.state == STREAM_CLOSED ) {
- errorText_ = "RtApiAlsa::callbackEvent(): the stream is closed ... this shouldn't happen!";
- error( RtAudioError::WARNING );
- return;
- }
-
- int doStopStream = 0;
- RtAudioCallback callback = (RtAudioCallback) stream_.callbackInfo.callback;
- double streamTime = getStreamTime();
- RtAudioStreamStatus status = 0;
- if ( stream_.mode != INPUT && apiInfo->xrun[0] == true ) {
- status |= RTAUDIO_OUTPUT_UNDERFLOW;
- apiInfo->xrun[0] = false;
- }
- if ( stream_.mode != OUTPUT && apiInfo->xrun[1] == true ) {
- status |= RTAUDIO_INPUT_OVERFLOW;
- apiInfo->xrun[1] = false;
- }
- doStopStream = callback( stream_.userBuffer[0], stream_.userBuffer[1],
- stream_.bufferSize, streamTime, status, stream_.callbackInfo.userData );
-
- if ( doStopStream == 2 ) {
- abortStream();
- return;
- }
-
- MUTEX_LOCK( &stream_.mutex );
-
- // The state might change while waiting on a mutex.
- if ( stream_.state == STREAM_STOPPED ) goto unlock;
-
- int result;
- char *buffer;
- int channels;
- snd_pcm_t **handle;
- snd_pcm_sframes_t frames;
- RtAudioFormat format;
- handle = (snd_pcm_t **) apiInfo->handles;
-
- if ( stream_.mode == INPUT || stream_.mode == DUPLEX ) {
-
- // Setup parameters.
- if ( stream_.doConvertBuffer[1] ) {
- buffer = stream_.deviceBuffer;
- channels = stream_.nDeviceChannels[1];
- format = stream_.deviceFormat[1];
- }
- else {
- buffer = stream_.userBuffer[1];
- channels = stream_.nUserChannels[1];
- format = stream_.userFormat;
- }
-
- // Read samples from device in interleaved/non-interleaved format.
- if ( stream_.deviceInterleaved[1] )
- result = snd_pcm_readi( handle[1], buffer, stream_.bufferSize );
- else {
- void *bufs[channels];
- size_t offset = stream_.bufferSize * formatBytes( format );
- for ( int i=0; i<channels; i++ )
- bufs[i] = (void *) (buffer + (i * offset));
- result = snd_pcm_readn( handle[1], bufs, stream_.bufferSize );
- }
-
- if ( result < (int) stream_.bufferSize ) {
- // Either an error or overrun occured.
- if ( result == -EPIPE ) {
- snd_pcm_state_t state = snd_pcm_state( handle[1] );
- if ( state == SND_PCM_STATE_XRUN ) {
- apiInfo->xrun[1] = true;
- result = snd_pcm_prepare( handle[1] );
- if ( result < 0 ) {
- errorStream_ << "RtApiAlsa::callbackEvent: error preparing device after overrun, " << snd_strerror( result ) << ".";
- errorText_ = errorStream_.str();
- }
- }
- else {
- errorStream_ << "RtApiAlsa::callbackEvent: error, current state is " << snd_pcm_state_name( state ) << ", " << snd_strerror( result ) << ".";
- errorText_ = errorStream_.str();
- }
- }
- else {
- errorStream_ << "RtApiAlsa::callbackEvent: audio read error, " << snd_strerror( result ) << ".";
- errorText_ = errorStream_.str();
- }
- error( RtAudioError::WARNING );
- goto tryOutput;
- }
-
- // Do byte swapping if necessary.
- if ( stream_.doByteSwap[1] )
- byteSwapBuffer( buffer, stream_.bufferSize * channels, format );
-
- // Do buffer conversion if necessary.
- if ( stream_.doConvertBuffer[1] )
- convertBuffer( stream_.userBuffer[1], stream_.deviceBuffer, stream_.convertInfo[1] );
-
- // Check stream latency
- result = snd_pcm_delay( handle[1], &frames );
- if ( result == 0 && frames > 0 ) stream_.latency[1] = frames;
- }
-
- tryOutput:
-
- if ( stream_.mode == OUTPUT || stream_.mode == DUPLEX ) {
-
- // Setup parameters and do buffer conversion if necessary.
- if ( stream_.doConvertBuffer[0] ) {
- buffer = stream_.deviceBuffer;
- convertBuffer( buffer, stream_.userBuffer[0], stream_.convertInfo[0] );
- channels = stream_.nDeviceChannels[0];
- format = stream_.deviceFormat[0];
- }
- else {
- buffer = stream_.userBuffer[0];
- channels = stream_.nUserChannels[0];
- format = stream_.userFormat;
- }
-
- // Do byte swapping if necessary.
- if ( stream_.doByteSwap[0] )
- byteSwapBuffer(buffer, stream_.bufferSize * channels, format);
-
- // Write samples to device in interleaved/non-interleaved format.
- if ( stream_.deviceInterleaved[0] )
- result = snd_pcm_writei( handle[0], buffer, stream_.bufferSize );
- else {
- void *bufs[channels];
- size_t offset = stream_.bufferSize * formatBytes( format );
- for ( int i=0; i<channels; i++ )
- bufs[i] = (void *) (buffer + (i * offset));
- result = snd_pcm_writen( handle[0], bufs, stream_.bufferSize );
- }
-
- if ( result < (int) stream_.bufferSize ) {
- // Either an error or underrun occured.
- if ( result == -EPIPE ) {
- snd_pcm_state_t state = snd_pcm_state( handle[0] );
- if ( state == SND_PCM_STATE_XRUN ) {
- apiInfo->xrun[0] = true;
- result = snd_pcm_prepare( handle[0] );
- if ( result < 0 ) {
- errorStream_ << "RtApiAlsa::callbackEvent: error preparing device after underrun, " << snd_strerror( result ) << ".";
- errorText_ = errorStream_.str();
- }
- else
- errorText_ = "RtApiAlsa::callbackEvent: audio write error, underrun.";
- }
- else {
- errorStream_ << "RtApiAlsa::callbackEvent: error, current state is " << snd_pcm_state_name( state ) << ", " << snd_strerror( result ) << ".";
- errorText_ = errorStream_.str();
- }
- }
- else {
- errorStream_ << "RtApiAlsa::callbackEvent: audio write error, " << snd_strerror( result ) << ".";
- errorText_ = errorStream_.str();
- }
- error( RtAudioError::WARNING );
- goto unlock;
- }
-
- // Check stream latency
- result = snd_pcm_delay( handle[0], &frames );
- if ( result == 0 && frames > 0 ) stream_.latency[0] = frames;
- }
-
- unlock:
- MUTEX_UNLOCK( &stream_.mutex );
-
- RtApi::tickStreamTime();
- if ( doStopStream == 1 ) this->stopStream();
-}
-
-static void *alsaCallbackHandler( void *ptr )
-{
- CallbackInfo *info = (CallbackInfo *) ptr;
- RtApiAlsa *object = (RtApiAlsa *) info->object;
- bool *isRunning = &info->isRunning;
-
-#ifdef SCHED_RR // Undefined with some OSes (eg: NetBSD 1.6.x with GNU Pthread)
- if ( &info->doRealtime ) {
- pthread_t tID = pthread_self(); // ID of this thread
- sched_param prio = { info->priority }; // scheduling priority of thread
- pthread_setschedparam( tID, SCHED_RR, &prio );
- }
-#endif
-
- while ( *isRunning == true ) {
- pthread_testcancel();
- object->callbackEvent();
- }
-
- pthread_exit( NULL );
-}
-
-//******************** End of __LINUX_ALSA__ *********************//
-#endif
-
-#if defined(__LINUX_PULSE__)
-
-// Code written by Peter Meerwald, pmeerw@pmeerw.net
-// and Tristan Matthews.
-
-#include <pulse/error.h>
-#include <pulse/simple.h>
-#include <cstdio>
-
-static const unsigned int SUPPORTED_SAMPLERATES[] = { 8000, 16000, 22050, 32000,
- 44100, 48000, 96000, 0};
-
-struct rtaudio_pa_format_mapping_t {
- RtAudioFormat rtaudio_format;
- pa_sample_format_t pa_format;
-};
-
-static const rtaudio_pa_format_mapping_t supported_sampleformats[] = {
- {RTAUDIO_SINT16, PA_SAMPLE_S16LE},
- {RTAUDIO_SINT32, PA_SAMPLE_S32LE},
- {RTAUDIO_FLOAT32, PA_SAMPLE_FLOAT32LE},
- {0, PA_SAMPLE_INVALID}};
-
-struct PulseAudioHandle {
- pa_simple *s_play;
- pa_simple *s_rec;
- pthread_t thread;
- pthread_cond_t runnable_cv;
- bool runnable;
- PulseAudioHandle() : s_play(0), s_rec(0), runnable(false) { }
-};
-
-RtApiPulse::~RtApiPulse()
-{
- if ( stream_.state != STREAM_CLOSED )
- closeStream();
-}
-
-unsigned int RtApiPulse::getDeviceCount( void )
-{
- return 1;
-}
-
-RtAudio::DeviceInfo RtApiPulse::getDeviceInfo( unsigned int /*device*/ )
-{
- RtAudio::DeviceInfo info;
- info.probed = true;
- info.name = "PulseAudio";
- info.outputChannels = 2;
- info.inputChannels = 2;
- info.duplexChannels = 2;
- info.isDefaultOutput = true;
- info.isDefaultInput = true;
-
- for ( const unsigned int *sr = SUPPORTED_SAMPLERATES; *sr; ++sr )
- info.sampleRates.push_back( *sr );
-
- info.preferredSampleRate = 48000;
- info.nativeFormats = RTAUDIO_SINT16 | RTAUDIO_SINT32 | RTAUDIO_FLOAT32;
-
- return info;
-}
-
-static void *pulseaudio_callback( void * user )
-{
- CallbackInfo *cbi = static_cast<CallbackInfo *>( user );
- RtApiPulse *context = static_cast<RtApiPulse *>( cbi->object );
- volatile bool *isRunning = &cbi->isRunning;
-
- while ( *isRunning ) {
- pthread_testcancel();
- context->callbackEvent();
- }
-
- pthread_exit( NULL );
-}
-
-void RtApiPulse::closeStream( void )
-{
- PulseAudioHandle *pah = static_cast<PulseAudioHandle *>( stream_.apiHandle );
-
- stream_.callbackInfo.isRunning = false;
- if ( pah ) {
- MUTEX_LOCK( &stream_.mutex );
- if ( stream_.state == STREAM_STOPPED ) {
- pah->runnable = true;
- pthread_cond_signal( &pah->runnable_cv );
- }
- MUTEX_UNLOCK( &stream_.mutex );
-
- pthread_join( pah->thread, 0 );
- if ( pah->s_play ) {
- pa_simple_flush( pah->s_play, NULL );
- pa_simple_free( pah->s_play );
- }
- if ( pah->s_rec )
- pa_simple_free( pah->s_rec );
-
- pthread_cond_destroy( &pah->runnable_cv );
- delete pah;
- stream_.apiHandle = 0;
- }
-
- if ( stream_.userBuffer[0] ) {
- free( stream_.userBuffer[0] );
- stream_.userBuffer[0] = 0;
- }
- if ( stream_.userBuffer[1] ) {
- free( stream_.userBuffer[1] );
- stream_.userBuffer[1] = 0;
- }
-
- stream_.state = STREAM_CLOSED;
- stream_.mode = UNINITIALIZED;
-}
-
-void RtApiPulse::callbackEvent( void )
-{
- PulseAudioHandle *pah = static_cast<PulseAudioHandle *>( stream_.apiHandle );
-
- if ( stream_.state == STREAM_STOPPED ) {
- MUTEX_LOCK( &stream_.mutex );
- while ( !pah->runnable )
- pthread_cond_wait( &pah->runnable_cv, &stream_.mutex );
-
- if ( stream_.state != STREAM_RUNNING ) {
- MUTEX_UNLOCK( &stream_.mutex );
- return;
- }
- MUTEX_UNLOCK( &stream_.mutex );
- }
-
- if ( stream_.state == STREAM_CLOSED ) {
- errorText_ = "RtApiPulse::callbackEvent(): the stream is closed ... "
- "this shouldn't happen!";
- error( RtAudioError::WARNING );
- return;
- }
-
- RtAudioCallback callback = (RtAudioCallback) stream_.callbackInfo.callback;
- double streamTime = getStreamTime();
- RtAudioStreamStatus status = 0;
- int doStopStream = callback( stream_.userBuffer[OUTPUT], stream_.userBuffer[INPUT],
- stream_.bufferSize, streamTime, status,
- stream_.callbackInfo.userData );
-
- if ( doStopStream == 2 ) {
- abortStream();
- return;
- }
-
- MUTEX_LOCK( &stream_.mutex );
- void *pulse_in = stream_.doConvertBuffer[INPUT] ? stream_.deviceBuffer : stream_.userBuffer[INPUT];
- void *pulse_out = stream_.doConvertBuffer[OUTPUT] ? stream_.deviceBuffer : stream_.userBuffer[OUTPUT];
-
- if ( stream_.state != STREAM_RUNNING )
- goto unlock;
-
- int pa_error;
- size_t bytes;
- if (stream_.mode == OUTPUT || stream_.mode == DUPLEX ) {
- if ( stream_.doConvertBuffer[OUTPUT] ) {
- convertBuffer( stream_.deviceBuffer,
- stream_.userBuffer[OUTPUT],
- stream_.convertInfo[OUTPUT] );
- bytes = stream_.nDeviceChannels[OUTPUT] * stream_.bufferSize *
- formatBytes( stream_.deviceFormat[OUTPUT] );
- } else
- bytes = stream_.nUserChannels[OUTPUT] * stream_.bufferSize *
- formatBytes( stream_.userFormat );
-
- if ( pa_simple_write( pah->s_play, pulse_out, bytes, &pa_error ) < 0 ) {
- errorStream_ << "RtApiPulse::callbackEvent: audio write error, " <<
- pa_strerror( pa_error ) << ".";
- errorText_ = errorStream_.str();
- error( RtAudioError::WARNING );
- }
- }
-
- if ( stream_.mode == INPUT || stream_.mode == DUPLEX) {
- if ( stream_.doConvertBuffer[INPUT] )
- bytes = stream_.nDeviceChannels[INPUT] * stream_.bufferSize *
- formatBytes( stream_.deviceFormat[INPUT] );
- else
- bytes = stream_.nUserChannels[INPUT] * stream_.bufferSize *
- formatBytes( stream_.userFormat );
-
- if ( pa_simple_read( pah->s_rec, pulse_in, bytes, &pa_error ) < 0 ) {
- errorStream_ << "RtApiPulse::callbackEvent: audio read error, " <<
- pa_strerror( pa_error ) << ".";
- errorText_ = errorStream_.str();
- error( RtAudioError::WARNING );
- }
- if ( stream_.doConvertBuffer[INPUT] ) {
- convertBuffer( stream_.userBuffer[INPUT],
- stream_.deviceBuffer,
- stream_.convertInfo[INPUT] );
- }
- }
-
- unlock:
- MUTEX_UNLOCK( &stream_.mutex );
- RtApi::tickStreamTime();
-
- if ( doStopStream == 1 )
- stopStream();
-}
-
-void RtApiPulse::startStream( void )
-{
- PulseAudioHandle *pah = static_cast<PulseAudioHandle *>( stream_.apiHandle );
-
- if ( stream_.state == STREAM_CLOSED ) {
- errorText_ = "RtApiPulse::startStream(): the stream is not open!";
- error( RtAudioError::INVALID_USE );
- return;
- }
- if ( stream_.state == STREAM_RUNNING ) {
- errorText_ = "RtApiPulse::startStream(): the stream is already running!";
- error( RtAudioError::WARNING );
- return;
- }
-
- MUTEX_LOCK( &stream_.mutex );
-
- stream_.state = STREAM_RUNNING;
-
- pah->runnable = true;
- pthread_cond_signal( &pah->runnable_cv );
- MUTEX_UNLOCK( &stream_.mutex );
-}
-
-void RtApiPulse::stopStream( void )
-{
- PulseAudioHandle *pah = static_cast<PulseAudioHandle *>( stream_.apiHandle );
-
- if ( stream_.state == STREAM_CLOSED ) {
- errorText_ = "RtApiPulse::stopStream(): the stream is not open!";
- error( RtAudioError::INVALID_USE );
- return;
- }
- if ( stream_.state == STREAM_STOPPED ) {
- errorText_ = "RtApiPulse::stopStream(): the stream is already stopped!";
- error( RtAudioError::WARNING );
- return;
- }
-
- stream_.state = STREAM_STOPPED;
- MUTEX_LOCK( &stream_.mutex );
-
- if ( pah && pah->s_play ) {
- int pa_error;
- if ( pa_simple_drain( pah->s_play, &pa_error ) < 0 ) {
- errorStream_ << "RtApiPulse::stopStream: error draining output device, " <<
- pa_strerror( pa_error ) << ".";
- errorText_ = errorStream_.str();
- MUTEX_UNLOCK( &stream_.mutex );
- error( RtAudioError::SYSTEM_ERROR );
- return;
- }
- }
-
- stream_.state = STREAM_STOPPED;
- MUTEX_UNLOCK( &stream_.mutex );
-}
-
-void RtApiPulse::abortStream( void )
-{
- PulseAudioHandle *pah = static_cast<PulseAudioHandle*>( stream_.apiHandle );
-
- if ( stream_.state == STREAM_CLOSED ) {
- errorText_ = "RtApiPulse::abortStream(): the stream is not open!";
- error( RtAudioError::INVALID_USE );
- return;
- }
- if ( stream_.state == STREAM_STOPPED ) {
- errorText_ = "RtApiPulse::abortStream(): the stream is already stopped!";
- error( RtAudioError::WARNING );
- return;
- }
-
- stream_.state = STREAM_STOPPED;
- MUTEX_LOCK( &stream_.mutex );
-
- if ( pah && pah->s_play ) {
- int pa_error;
- if ( pa_simple_flush( pah->s_play, &pa_error ) < 0 ) {
- errorStream_ << "RtApiPulse::abortStream: error flushing output device, " <<
- pa_strerror( pa_error ) << ".";
- errorText_ = errorStream_.str();
- MUTEX_UNLOCK( &stream_.mutex );
- error( RtAudioError::SYSTEM_ERROR );
- return;
- }
- }
-
- stream_.state = STREAM_STOPPED;
- MUTEX_UNLOCK( &stream_.mutex );
-}
-
-bool RtApiPulse::probeDeviceOpen( unsigned int device, StreamMode mode,
- unsigned int channels, unsigned int firstChannel,
- unsigned int sampleRate, RtAudioFormat format,
- unsigned int *bufferSize, RtAudio::StreamOptions *options )
-{
- PulseAudioHandle *pah = 0;
- unsigned long bufferBytes = 0;
- pa_sample_spec ss;
-
- if ( device != 0 ) return false;
- if ( mode != INPUT && mode != OUTPUT ) return false;
- if ( channels != 1 && channels != 2 ) {
- errorText_ = "RtApiPulse::probeDeviceOpen: unsupported number of channels.";
- return false;
- }
- ss.channels = channels;
-
- if ( firstChannel != 0 ) return false;
-
- bool sr_found = false;
- for ( const unsigned int *sr = SUPPORTED_SAMPLERATES; *sr; ++sr ) {
- if ( sampleRate == *sr ) {
- sr_found = true;
- stream_.sampleRate = sampleRate;
- ss.rate = sampleRate;
- break;
- }
- }
- if ( !sr_found ) {
- errorText_ = "RtApiPulse::probeDeviceOpen: unsupported sample rate.";
- return false;
- }
-
- bool sf_found = 0;
- for ( const rtaudio_pa_format_mapping_t *sf = supported_sampleformats;
- sf->rtaudio_format && sf->pa_format != PA_SAMPLE_INVALID; ++sf ) {
- if ( format == sf->rtaudio_format ) {
- sf_found = true;
- stream_.userFormat = sf->rtaudio_format;
- stream_.deviceFormat[mode] = stream_.userFormat;
- ss.format = sf->pa_format;
- break;
- }
- }
- if ( !sf_found ) { // Use internal data format conversion.
- stream_.userFormat = format;
- stream_.deviceFormat[mode] = RTAUDIO_FLOAT32;
- ss.format = PA_SAMPLE_FLOAT32LE;
- }
-
- // Set other stream parameters.
- if ( options && options->flags & RTAUDIO_NONINTERLEAVED ) stream_.userInterleaved = false;
- else stream_.userInterleaved = true;
- stream_.deviceInterleaved[mode] = true;
- stream_.nBuffers = 1;
- stream_.doByteSwap[mode] = false;
- stream_.nUserChannels[mode] = channels;
- stream_.nDeviceChannels[mode] = channels + firstChannel;
- stream_.channelOffset[mode] = 0;
- std::string streamName = "RtAudio";
-
- // Set flags for buffer conversion.
- stream_.doConvertBuffer[mode] = false;
- if ( stream_.userFormat != stream_.deviceFormat[mode] )
- stream_.doConvertBuffer[mode] = true;
- if ( stream_.nUserChannels[mode] < stream_.nDeviceChannels[mode] )
- stream_.doConvertBuffer[mode] = true;
-
- // Allocate necessary internal buffers.
- bufferBytes = stream_.nUserChannels[mode] * *bufferSize * formatBytes( stream_.userFormat );
- stream_.userBuffer[mode] = (char *) calloc( bufferBytes, 1 );
- if ( stream_.userBuffer[mode] == NULL ) {
- errorText_ = "RtApiPulse::probeDeviceOpen: error allocating user buffer memory.";
- goto error;
- }
- stream_.bufferSize = *bufferSize;
-
- if ( stream_.doConvertBuffer[mode] ) {
-
- bool makeBuffer = true;
- bufferBytes = stream_.nDeviceChannels[mode] * formatBytes( stream_.deviceFormat[mode] );
- if ( mode == INPUT ) {
- if ( stream_.mode == OUTPUT && stream_.deviceBuffer ) {
- unsigned long bytesOut = stream_.nDeviceChannels[0] * formatBytes( stream_.deviceFormat[0] );
- if ( bufferBytes <= bytesOut ) makeBuffer = false;
- }
- }
-
- if ( makeBuffer ) {
- bufferBytes *= *bufferSize;
- if ( stream_.deviceBuffer ) free( stream_.deviceBuffer );
- stream_.deviceBuffer = (char *) calloc( bufferBytes, 1 );
- if ( stream_.deviceBuffer == NULL ) {
- errorText_ = "RtApiPulse::probeDeviceOpen: error allocating device buffer memory.";
- goto error;
- }
- }
- }
-
- stream_.device[mode] = device;
-
- // Setup the buffer conversion information structure.
- if ( stream_.doConvertBuffer[mode] ) setConvertInfo( mode, firstChannel );
-
- if ( !stream_.apiHandle ) {
- PulseAudioHandle *pah = new PulseAudioHandle;
- if ( !pah ) {
- errorText_ = "RtApiPulse::probeDeviceOpen: error allocating memory for handle.";
- goto error;
- }
-
- stream_.apiHandle = pah;
- if ( pthread_cond_init( &pah->runnable_cv, NULL ) != 0 ) {
- errorText_ = "RtApiPulse::probeDeviceOpen: error creating condition variable.";
- goto error;
- }
- }
- pah = static_cast<PulseAudioHandle *>( stream_.apiHandle );
-
- int error;
- if ( options && !options->streamName.empty() ) streamName = options->streamName;
- switch ( mode ) {
- case INPUT:
- pa_buffer_attr buffer_attr;
- buffer_attr.fragsize = bufferBytes;
- buffer_attr.maxlength = -1;
-
- pah->s_rec = pa_simple_new( NULL, streamName.c_str(), PA_STREAM_RECORD, NULL, "Record", &ss, NULL, &buffer_attr, &error );
- if ( !pah->s_rec ) {
- errorText_ = "RtApiPulse::probeDeviceOpen: error connecting input to PulseAudio server.";
- goto error;
- }
- break;
- case OUTPUT:
- pah->s_play = pa_simple_new( NULL, "RtAudio", PA_STREAM_PLAYBACK, NULL, "Playback", &ss, NULL, NULL, &error );
- if ( !pah->s_play ) {
- errorText_ = "RtApiPulse::probeDeviceOpen: error connecting output to PulseAudio server.";
- goto error;
- }
- break;
- default:
- goto error;
- }
-
- if ( stream_.mode == UNINITIALIZED )
- stream_.mode = mode;
- else if ( stream_.mode == mode )
- goto error;
- else
- stream_.mode = DUPLEX;
-
- if ( !stream_.callbackInfo.isRunning ) {
- stream_.callbackInfo.object = this;
- stream_.callbackInfo.isRunning = true;
- if ( pthread_create( &pah->thread, NULL, pulseaudio_callback, (void *)&stream_.callbackInfo) != 0 ) {
- errorText_ = "RtApiPulse::probeDeviceOpen: error creating thread.";
- goto error;
- }
- }
-
- stream_.state = STREAM_STOPPED;
- return true;
-
- error:
- if ( pah && stream_.callbackInfo.isRunning ) {
- pthread_cond_destroy( &pah->runnable_cv );
- delete pah;
- stream_.apiHandle = 0;
- }
-
- for ( int i=0; i<2; i++ ) {
- if ( stream_.userBuffer[i] ) {
- free( stream_.userBuffer[i] );
- stream_.userBuffer[i] = 0;
- }
- }
-
- if ( stream_.deviceBuffer ) {
- free( stream_.deviceBuffer );
- stream_.deviceBuffer = 0;
- }
-
- return FAILURE;
-}
-
-//******************** End of __LINUX_PULSE__ *********************//
-#endif
-
-#if defined(__LINUX_OSS__)
-
-#include <unistd.h>
-#include <sys/ioctl.h>
-#include <unistd.h>
-#include <fcntl.h>
-#include <sys/soundcard.h>
-#include <errno.h>
-#include <math.h>
-
-static void *ossCallbackHandler(void * ptr);
-
-// A structure to hold various information related to the OSS API
-// implementation.
-struct OssHandle {
- int id[2]; // device ids
- bool xrun[2];
- bool triggered;
- pthread_cond_t runnable;
-
- OssHandle()
- :triggered(false) { id[0] = 0; id[1] = 0; xrun[0] = false; xrun[1] = false; }
-};
-
-RtApiOss :: RtApiOss()
-{
- // Nothing to do here.
-}
-
-RtApiOss :: ~RtApiOss()
-{
- if ( stream_.state != STREAM_CLOSED ) closeStream();
-}
-
-unsigned int RtApiOss :: getDeviceCount( void )
-{
- int mixerfd = open( "/dev/mixer", O_RDWR, 0 );
- if ( mixerfd == -1 ) {
- errorText_ = "RtApiOss::getDeviceCount: error opening '/dev/mixer'.";
- error( RtAudioError::WARNING );
- return 0;
- }
-
- oss_sysinfo sysinfo;
- if ( ioctl( mixerfd, SNDCTL_SYSINFO, &sysinfo ) == -1 ) {
- close( mixerfd );
- errorText_ = "RtApiOss::getDeviceCount: error getting sysinfo, OSS version >= 4.0 is required.";
- error( RtAudioError::WARNING );
- return 0;
- }
-
- close( mixerfd );
- return sysinfo.numaudios;
-}
-
-RtAudio::DeviceInfo RtApiOss :: getDeviceInfo( unsigned int device )
-{
- RtAudio::DeviceInfo info;
- info.probed = false;
-
- int mixerfd = open( "/dev/mixer", O_RDWR, 0 );
- if ( mixerfd == -1 ) {
- errorText_ = "RtApiOss::getDeviceInfo: error opening '/dev/mixer'.";
- error( RtAudioError::WARNING );
- return info;
- }
-
- oss_sysinfo sysinfo;
- int result = ioctl( mixerfd, SNDCTL_SYSINFO, &sysinfo );
- if ( result == -1 ) {
- close( mixerfd );
- errorText_ = "RtApiOss::getDeviceInfo: error getting sysinfo, OSS version >= 4.0 is required.";
- error( RtAudioError::WARNING );
- return info;
- }
-
- unsigned nDevices = sysinfo.numaudios;
- if ( nDevices == 0 ) {
- close( mixerfd );
- errorText_ = "RtApiOss::getDeviceInfo: no devices found!";
- error( RtAudioError::INVALID_USE );
- return info;
- }
-
- if ( device >= nDevices ) {
- close( mixerfd );
- errorText_ = "RtApiOss::getDeviceInfo: device ID is invalid!";
- error( RtAudioError::INVALID_USE );
- return info;
- }
-
- oss_audioinfo ainfo;
- ainfo.dev = device;
- result = ioctl( mixerfd, SNDCTL_AUDIOINFO, &ainfo );
- close( mixerfd );
- if ( result == -1 ) {
- errorStream_ << "RtApiOss::getDeviceInfo: error getting device (" << ainfo.name << ") info.";
- errorText_ = errorStream_.str();
- error( RtAudioError::WARNING );
- return info;
- }
-
- // Probe channels
- if ( ainfo.caps & PCM_CAP_OUTPUT ) info.outputChannels = ainfo.max_channels;
- if ( ainfo.caps & PCM_CAP_INPUT ) info.inputChannels = ainfo.max_channels;
- if ( ainfo.caps & PCM_CAP_DUPLEX ) {
- if ( info.outputChannels > 0 && info.inputChannels > 0 && ainfo.caps & PCM_CAP_DUPLEX )
- info.duplexChannels = (info.outputChannels > info.inputChannels) ? info.inputChannels : info.outputChannels;
- }
-
- // Probe data formats ... do for input
- unsigned long mask = ainfo.iformats;
- if ( mask & AFMT_S16_LE || mask & AFMT_S16_BE )
- info.nativeFormats |= RTAUDIO_SINT16;
- if ( mask & AFMT_S8 )
- info.nativeFormats |= RTAUDIO_SINT8;
- if ( mask & AFMT_S32_LE || mask & AFMT_S32_BE )
- info.nativeFormats |= RTAUDIO_SINT32;
- if ( mask & AFMT_FLOAT )
- info.nativeFormats |= RTAUDIO_FLOAT32;
- if ( mask & AFMT_S24_LE || mask & AFMT_S24_BE )
- info.nativeFormats |= RTAUDIO_SINT24;
-
- // Check that we have at least one supported format
- if ( info.nativeFormats == 0 ) {
- errorStream_ << "RtApiOss::getDeviceInfo: device (" << ainfo.name << ") data format not supported by RtAudio.";
- errorText_ = errorStream_.str();
- error( RtAudioError::WARNING );
- return info;
- }
-
- // Probe the supported sample rates.
- info.sampleRates.clear();
- if ( ainfo.nrates ) {
- for ( unsigned int i=0; i<ainfo.nrates; i++ ) {
- for ( unsigned int k=0; k<MAX_SAMPLE_RATES; k++ ) {
- if ( ainfo.rates[i] == SAMPLE_RATES[k] ) {
- info.sampleRates.push_back( SAMPLE_RATES[k] );
-
- if ( !info.preferredSampleRate || ( SAMPLE_RATES[k] <= 48000 && SAMPLE_RATES[k] > info.preferredSampleRate ) )
- info.preferredSampleRate = SAMPLE_RATES[k];
-
- break;
- }
- }
- }
- }
- else {
- // Check min and max rate values;
- for ( unsigned int k=0; k<MAX_SAMPLE_RATES; k++ ) {
- if ( ainfo.min_rate <= (int) SAMPLE_RATES[k] && ainfo.max_rate >= (int) SAMPLE_RATES[k] ) {
- info.sampleRates.push_back( SAMPLE_RATES[k] );
-
- if ( !info.preferredSampleRate || ( SAMPLE_RATES[k] <= 48000 && SAMPLE_RATES[k] > info.preferredSampleRate ) )
- info.preferredSampleRate = SAMPLE_RATES[k];
- }
- }
- }
-
- if ( info.sampleRates.size() == 0 ) {
- errorStream_ << "RtApiOss::getDeviceInfo: no supported sample rates found for device (" << ainfo.name << ").";
- errorText_ = errorStream_.str();
- error( RtAudioError::WARNING );
- }
- else {
- info.probed = true;
- info.name = ainfo.name;
- }
-
- return info;
-}
-
-
-bool RtApiOss :: probeDeviceOpen( unsigned int device, StreamMode mode, unsigned int channels,
- unsigned int firstChannel, unsigned int sampleRate,
- RtAudioFormat format, unsigned int *bufferSize,
- RtAudio::StreamOptions *options )
-{
- int mixerfd = open( "/dev/mixer", O_RDWR, 0 );
- if ( mixerfd == -1 ) {
- errorText_ = "RtApiOss::probeDeviceOpen: error opening '/dev/mixer'.";
- return FAILURE;
- }
-
- oss_sysinfo sysinfo;
- int result = ioctl( mixerfd, SNDCTL_SYSINFO, &sysinfo );
- if ( result == -1 ) {
- close( mixerfd );
- errorText_ = "RtApiOss::probeDeviceOpen: error getting sysinfo, OSS version >= 4.0 is required.";
- return FAILURE;
- }
-
- unsigned nDevices = sysinfo.numaudios;
- if ( nDevices == 0 ) {
- // This should not happen because a check is made before this function is called.
- close( mixerfd );
- errorText_ = "RtApiOss::probeDeviceOpen: no devices found!";
- return FAILURE;
- }
-
- if ( device >= nDevices ) {
- // This should not happen because a check is made before this function is called.
- close( mixerfd );
- errorText_ = "RtApiOss::probeDeviceOpen: device ID is invalid!";
- return FAILURE;
- }
-
- oss_audioinfo ainfo;
- ainfo.dev = device;
- result = ioctl( mixerfd, SNDCTL_AUDIOINFO, &ainfo );
- close( mixerfd );
- if ( result == -1 ) {
- errorStream_ << "RtApiOss::getDeviceInfo: error getting device (" << ainfo.name << ") info.";
- errorText_ = errorStream_.str();
- return FAILURE;
- }
-
- // Check if device supports input or output
- if ( ( mode == OUTPUT && !( ainfo.caps & PCM_CAP_OUTPUT ) ) ||
- ( mode == INPUT && !( ainfo.caps & PCM_CAP_INPUT ) ) ) {
- if ( mode == OUTPUT )
- errorStream_ << "RtApiOss::probeDeviceOpen: device (" << ainfo.name << ") does not support output.";
- else
- errorStream_ << "RtApiOss::probeDeviceOpen: device (" << ainfo.name << ") does not support input.";
- errorText_ = errorStream_.str();
- return FAILURE;
- }
-
- int flags = 0;
- OssHandle *handle = (OssHandle *) stream_.apiHandle;
- if ( mode == OUTPUT )
- flags |= O_WRONLY;
- else { // mode == INPUT
- if (stream_.mode == OUTPUT && stream_.device[0] == device) {
- // We just set the same device for playback ... close and reopen for duplex (OSS only).
- close( handle->id[0] );
- handle->id[0] = 0;
- if ( !( ainfo.caps & PCM_CAP_DUPLEX ) ) {
- errorStream_ << "RtApiOss::probeDeviceOpen: device (" << ainfo.name << ") does not support duplex mode.";
- errorText_ = errorStream_.str();
- return FAILURE;
- }
- // Check that the number previously set channels is the same.
- if ( stream_.nUserChannels[0] != channels ) {
- errorStream_ << "RtApiOss::probeDeviceOpen: input/output channels must be equal for OSS duplex device (" << ainfo.name << ").";
- errorText_ = errorStream_.str();
- return FAILURE;
- }
- flags |= O_RDWR;
- }
- else
- flags |= O_RDONLY;
- }
-
- // Set exclusive access if specified.
- if ( options && options->flags & RTAUDIO_HOG_DEVICE ) flags |= O_EXCL;
-
- // Try to open the device.
- int fd;
- fd = open( ainfo.devnode, flags, 0 );
- if ( fd == -1 ) {
- if ( errno == EBUSY )
- errorStream_ << "RtApiOss::probeDeviceOpen: device (" << ainfo.name << ") is busy.";
- else
- errorStream_ << "RtApiOss::probeDeviceOpen: error opening device (" << ainfo.name << ").";
- errorText_ = errorStream_.str();
- return FAILURE;
- }
-
- // For duplex operation, specifically set this mode (this doesn't seem to work).
- /*
- if ( flags | O_RDWR ) {
- result = ioctl( fd, SNDCTL_DSP_SETDUPLEX, NULL );
- if ( result == -1) {
- errorStream_ << "RtApiOss::probeDeviceOpen: error setting duplex mode for device (" << ainfo.name << ").";
- errorText_ = errorStream_.str();
- return FAILURE;
- }
- }
- */
-
- // Check the device channel support.
- stream_.nUserChannels[mode] = channels;
- if ( ainfo.max_channels < (int)(channels + firstChannel) ) {
- close( fd );
- errorStream_ << "RtApiOss::probeDeviceOpen: the device (" << ainfo.name << ") does not support requested channel parameters.";
- errorText_ = errorStream_.str();
- return FAILURE;
- }
-
- // Set the number of channels.
- int deviceChannels = channels + firstChannel;
- result = ioctl( fd, SNDCTL_DSP_CHANNELS, &deviceChannels );
- if ( result == -1 || deviceChannels < (int)(channels + firstChannel) ) {
- close( fd );
- errorStream_ << "RtApiOss::probeDeviceOpen: error setting channel parameters on device (" << ainfo.name << ").";
- errorText_ = errorStream_.str();
- return FAILURE;
- }
- stream_.nDeviceChannels[mode] = deviceChannels;
-
- // Get the data format mask
- int mask;
- result = ioctl( fd, SNDCTL_DSP_GETFMTS, &mask );
- if ( result == -1 ) {
- close( fd );
- errorStream_ << "RtApiOss::probeDeviceOpen: error getting device (" << ainfo.name << ") data formats.";
- errorText_ = errorStream_.str();
- return FAILURE;
- }
-
- // Determine how to set the device format.
- stream_.userFormat = format;
- int deviceFormat = -1;
- stream_.doByteSwap[mode] = false;
- if ( format == RTAUDIO_SINT8 ) {
- if ( mask & AFMT_S8 ) {
- deviceFormat = AFMT_S8;
- stream_.deviceFormat[mode] = RTAUDIO_SINT8;
- }
- }
- else if ( format == RTAUDIO_SINT16 ) {
- if ( mask & AFMT_S16_NE ) {
- deviceFormat = AFMT_S16_NE;
- stream_.deviceFormat[mode] = RTAUDIO_SINT16;
- }
- else if ( mask & AFMT_S16_OE ) {
- deviceFormat = AFMT_S16_OE;
- stream_.deviceFormat[mode] = RTAUDIO_SINT16;
- stream_.doByteSwap[mode] = true;
- }
- }
- else if ( format == RTAUDIO_SINT24 ) {
- if ( mask & AFMT_S24_NE ) {
- deviceFormat = AFMT_S24_NE;
- stream_.deviceFormat[mode] = RTAUDIO_SINT24;
- }
- else if ( mask & AFMT_S24_OE ) {
- deviceFormat = AFMT_S24_OE;
- stream_.deviceFormat[mode] = RTAUDIO_SINT24;
- stream_.doByteSwap[mode] = true;
- }
- }
- else if ( format == RTAUDIO_SINT32 ) {
- if ( mask & AFMT_S32_NE ) {
- deviceFormat = AFMT_S32_NE;
- stream_.deviceFormat[mode] = RTAUDIO_SINT32;
- }
- else if ( mask & AFMT_S32_OE ) {
- deviceFormat = AFMT_S32_OE;
- stream_.deviceFormat[mode] = RTAUDIO_SINT32;
- stream_.doByteSwap[mode] = true;
- }
- }
-
- if ( deviceFormat == -1 ) {
- // The user requested format is not natively supported by the device.
- if ( mask & AFMT_S16_NE ) {
- deviceFormat = AFMT_S16_NE;
- stream_.deviceFormat[mode] = RTAUDIO_SINT16;
- }
- else if ( mask & AFMT_S32_NE ) {
- deviceFormat = AFMT_S32_NE;
- stream_.deviceFormat[mode] = RTAUDIO_SINT32;
- }
- else if ( mask & AFMT_S24_NE ) {
- deviceFormat = AFMT_S24_NE;
- stream_.deviceFormat[mode] = RTAUDIO_SINT24;
- }
- else if ( mask & AFMT_S16_OE ) {
- deviceFormat = AFMT_S16_OE;
- stream_.deviceFormat[mode] = RTAUDIO_SINT16;
- stream_.doByteSwap[mode] = true;
- }
- else if ( mask & AFMT_S32_OE ) {
- deviceFormat = AFMT_S32_OE;
- stream_.deviceFormat[mode] = RTAUDIO_SINT32;
- stream_.doByteSwap[mode] = true;
- }
- else if ( mask & AFMT_S24_OE ) {
- deviceFormat = AFMT_S24_OE;
- stream_.deviceFormat[mode] = RTAUDIO_SINT24;
- stream_.doByteSwap[mode] = true;
- }
- else if ( mask & AFMT_S8) {
- deviceFormat = AFMT_S8;
- stream_.deviceFormat[mode] = RTAUDIO_SINT8;
- }
- }
-
- if ( stream_.deviceFormat[mode] == 0 ) {
- // This really shouldn't happen ...
- close( fd );
- errorStream_ << "RtApiOss::probeDeviceOpen: device (" << ainfo.name << ") data format not supported by RtAudio.";
- errorText_ = errorStream_.str();
- return FAILURE;
- }
-
- // Set the data format.
- int temp = deviceFormat;
- result = ioctl( fd, SNDCTL_DSP_SETFMT, &deviceFormat );
- if ( result == -1 || deviceFormat != temp ) {
- close( fd );
- errorStream_ << "RtApiOss::probeDeviceOpen: error setting data format on device (" << ainfo.name << ").";
- errorText_ = errorStream_.str();
- return FAILURE;
- }
-
- // Attempt to set the buffer size. According to OSS, the minimum
- // number of buffers is two. The supposed minimum buffer size is 16
- // bytes, so that will be our lower bound. The argument to this
- // call is in the form 0xMMMMSSSS (hex), where the buffer size (in
- // bytes) is given as 2^SSSS and the number of buffers as 2^MMMM.
- // We'll check the actual value used near the end of the setup
- // procedure.
- int ossBufferBytes = *bufferSize * formatBytes( stream_.deviceFormat[mode] ) * deviceChannels;
- if ( ossBufferBytes < 16 ) ossBufferBytes = 16;
- int buffers = 0;
- if ( options ) buffers = options->numberOfBuffers;
- if ( options && options->flags & RTAUDIO_MINIMIZE_LATENCY ) buffers = 2;
- if ( buffers < 2 ) buffers = 3;
- temp = ((int) buffers << 16) + (int)( log10( (double)ossBufferBytes ) / log10( 2.0 ) );
- result = ioctl( fd, SNDCTL_DSP_SETFRAGMENT, &temp );
- if ( result == -1 ) {
- close( fd );
- errorStream_ << "RtApiOss::probeDeviceOpen: error setting buffer size on device (" << ainfo.name << ").";
- errorText_ = errorStream_.str();
- return FAILURE;
- }
- stream_.nBuffers = buffers;
-
- // Save buffer size (in sample frames).
- *bufferSize = ossBufferBytes / ( formatBytes(stream_.deviceFormat[mode]) * deviceChannels );
- stream_.bufferSize = *bufferSize;
-
- // Set the sample rate.
- int srate = sampleRate;
- result = ioctl( fd, SNDCTL_DSP_SPEED, &srate );
- if ( result == -1 ) {
- close( fd );
- errorStream_ << "RtApiOss::probeDeviceOpen: error setting sample rate (" << sampleRate << ") on device (" << ainfo.name << ").";
- errorText_ = errorStream_.str();
- return FAILURE;
- }
-
- // Verify the sample rate setup worked.
- if ( abs( srate - sampleRate ) > 100 ) {
- close( fd );
- errorStream_ << "RtApiOss::probeDeviceOpen: device (" << ainfo.name << ") does not support sample rate (" << sampleRate << ").";
- errorText_ = errorStream_.str();
- return FAILURE;
- }
- stream_.sampleRate = sampleRate;
-
- if ( mode == INPUT && stream_.mode == OUTPUT && stream_.device[0] == device) {
- // We're doing duplex setup here.
- stream_.deviceFormat[0] = stream_.deviceFormat[1];
- stream_.nDeviceChannels[0] = deviceChannels;
- }
-
- // Set interleaving parameters.
- stream_.userInterleaved = true;
- stream_.deviceInterleaved[mode] = true;
- if ( options && options->flags & RTAUDIO_NONINTERLEAVED )
- stream_.userInterleaved = false;
-
- // Set flags for buffer conversion
- stream_.doConvertBuffer[mode] = false;
- if ( stream_.userFormat != stream_.deviceFormat[mode] )
- stream_.doConvertBuffer[mode] = true;
- if ( stream_.nUserChannels[mode] < stream_.nDeviceChannels[mode] )
- stream_.doConvertBuffer[mode] = true;
- if ( stream_.userInterleaved != stream_.deviceInterleaved[mode] &&
- stream_.nUserChannels[mode] > 1 )
- stream_.doConvertBuffer[mode] = true;
-
- // Allocate the stream handles if necessary and then save.
- if ( stream_.apiHandle == 0 ) {
- try {
- handle = new OssHandle;
- }
- catch ( std::bad_alloc& ) {
- errorText_ = "RtApiOss::probeDeviceOpen: error allocating OssHandle memory.";
- goto error;
- }
-
- if ( pthread_cond_init( &handle->runnable, NULL ) ) {
- errorText_ = "RtApiOss::probeDeviceOpen: error initializing pthread condition variable.";
- goto error;
- }
-
- stream_.apiHandle = (void *) handle;
- }
- else {
- handle = (OssHandle *) stream_.apiHandle;
- }
- handle->id[mode] = fd;
-
- // Allocate necessary internal buffers.
- unsigned long bufferBytes;
- bufferBytes = stream_.nUserChannels[mode] * *bufferSize * formatBytes( stream_.userFormat );
- stream_.userBuffer[mode] = (char *) calloc( bufferBytes, 1 );
- if ( stream_.userBuffer[mode] == NULL ) {
- errorText_ = "RtApiOss::probeDeviceOpen: error allocating user buffer memory.";
- goto error;
- }
-
- if ( stream_.doConvertBuffer[mode] ) {
-
- bool makeBuffer = true;
- bufferBytes = stream_.nDeviceChannels[mode] * formatBytes( stream_.deviceFormat[mode] );
- if ( mode == INPUT ) {
- if ( stream_.mode == OUTPUT && stream_.deviceBuffer ) {
- unsigned long bytesOut = stream_.nDeviceChannels[0] * formatBytes( stream_.deviceFormat[0] );
- if ( bufferBytes <= bytesOut ) makeBuffer = false;
- }
- }
-
- if ( makeBuffer ) {
- bufferBytes *= *bufferSize;
- if ( stream_.deviceBuffer ) free( stream_.deviceBuffer );
- stream_.deviceBuffer = (char *) calloc( bufferBytes, 1 );
- if ( stream_.deviceBuffer == NULL ) {
- errorText_ = "RtApiOss::probeDeviceOpen: error allocating device buffer memory.";
- goto error;
- }
- }
- }
-
- stream_.device[mode] = device;
- stream_.state = STREAM_STOPPED;
-
- // Setup the buffer conversion information structure.
- if ( stream_.doConvertBuffer[mode] ) setConvertInfo( mode, firstChannel );
-
- // Setup thread if necessary.
- if ( stream_.mode == OUTPUT && mode == INPUT ) {
- // We had already set up an output stream.
- stream_.mode = DUPLEX;
- if ( stream_.device[0] == device ) handle->id[0] = fd;
- }
- else {
- stream_.mode = mode;
-
- // Setup callback thread.
- stream_.callbackInfo.object = (void *) this;
-
- // Set the thread attributes for joinable and realtime scheduling
- // priority. The higher priority will only take affect if the
- // program is run as root or suid.
- pthread_attr_t attr;
- pthread_attr_init( &attr );
- pthread_attr_setdetachstate( &attr, PTHREAD_CREATE_JOINABLE );
-#ifdef SCHED_RR // Undefined with some OSes (eg: NetBSD 1.6.x with GNU Pthread)
- if ( options && options->flags & RTAUDIO_SCHEDULE_REALTIME ) {
- struct sched_param param;
- int priority = options->priority;
- int min = sched_get_priority_min( SCHED_RR );
- int max = sched_get_priority_max( SCHED_RR );
- if ( priority < min ) priority = min;
- else if ( priority > max ) priority = max;
- param.sched_priority = priority;
- pthread_attr_setschedparam( &attr, &param );
- pthread_attr_setschedpolicy( &attr, SCHED_RR );
- }
- else
- pthread_attr_setschedpolicy( &attr, SCHED_OTHER );
-#else
- pthread_attr_setschedpolicy( &attr, SCHED_OTHER );
-#endif
-
- stream_.callbackInfo.isRunning = true;
- result = pthread_create( &stream_.callbackInfo.thread, &attr, ossCallbackHandler, &stream_.callbackInfo );
- pthread_attr_destroy( &attr );
- if ( result ) {
- stream_.callbackInfo.isRunning = false;
- errorText_ = "RtApiOss::error creating callback thread!";
- goto error;
- }
- }
-
- return SUCCESS;
-
- error:
- if ( handle ) {
- pthread_cond_destroy( &handle->runnable );
- if ( handle->id[0] ) close( handle->id[0] );
- if ( handle->id[1] ) close( handle->id[1] );
- delete handle;
- stream_.apiHandle = 0;
- }
-
- for ( int i=0; i<2; i++ ) {
- if ( stream_.userBuffer[i] ) {
- free( stream_.userBuffer[i] );
- stream_.userBuffer[i] = 0;
- }
- }
-
- if ( stream_.deviceBuffer ) {
- free( stream_.deviceBuffer );
- stream_.deviceBuffer = 0;
- }
-
- return FAILURE;
-}
-
-void RtApiOss :: closeStream()
-{
- if ( stream_.state == STREAM_CLOSED ) {
- errorText_ = "RtApiOss::closeStream(): no open stream to close!";
- error( RtAudioError::WARNING );
- return;
- }
-
- OssHandle *handle = (OssHandle *) stream_.apiHandle;
- stream_.callbackInfo.isRunning = false;
- MUTEX_LOCK( &stream_.mutex );
- if ( stream_.state == STREAM_STOPPED )
- pthread_cond_signal( &handle->runnable );
- MUTEX_UNLOCK( &stream_.mutex );
- pthread_join( stream_.callbackInfo.thread, NULL );
-
- if ( stream_.state == STREAM_RUNNING ) {
- if ( stream_.mode == OUTPUT || stream_.mode == DUPLEX )
- ioctl( handle->id[0], SNDCTL_DSP_HALT, 0 );
- else
- ioctl( handle->id[1], SNDCTL_DSP_HALT, 0 );
- stream_.state = STREAM_STOPPED;
- }
-
- if ( handle ) {
- pthread_cond_destroy( &handle->runnable );
- if ( handle->id[0] ) close( handle->id[0] );
- if ( handle->id[1] ) close( handle->id[1] );
- delete handle;
- stream_.apiHandle = 0;
- }
-
- for ( int i=0; i<2; i++ ) {
- if ( stream_.userBuffer[i] ) {
- free( stream_.userBuffer[i] );
- stream_.userBuffer[i] = 0;
- }
- }
-
- if ( stream_.deviceBuffer ) {
- free( stream_.deviceBuffer );
- stream_.deviceBuffer = 0;
- }
-
- stream_.mode = UNINITIALIZED;
- stream_.state = STREAM_CLOSED;
-}
-
-void RtApiOss :: startStream()
-{
- verifyStream();
- if ( stream_.state == STREAM_RUNNING ) {
- errorText_ = "RtApiOss::startStream(): the stream is already running!";
- error( RtAudioError::WARNING );
- return;
- }
-
- MUTEX_LOCK( &stream_.mutex );
-
- stream_.state = STREAM_RUNNING;
-
- // No need to do anything else here ... OSS automatically starts
- // when fed samples.
-
- MUTEX_UNLOCK( &stream_.mutex );
-
- OssHandle *handle = (OssHandle *) stream_.apiHandle;
- pthread_cond_signal( &handle->runnable );
-}
-
-void RtApiOss :: stopStream()
-{
- verifyStream();
- if ( stream_.state == STREAM_STOPPED ) {
- errorText_ = "RtApiOss::stopStream(): the stream is already stopped!";
- error( RtAudioError::WARNING );
- return;
- }
-
- MUTEX_LOCK( &stream_.mutex );
-
- // The state might change while waiting on a mutex.
- if ( stream_.state == STREAM_STOPPED ) {
- MUTEX_UNLOCK( &stream_.mutex );
- return;
- }
-
- int result = 0;
- OssHandle *handle = (OssHandle *) stream_.apiHandle;
- if ( stream_.mode == OUTPUT || stream_.mode == DUPLEX ) {
-
- // Flush the output with zeros a few times.
- char *buffer;
- int samples;
- RtAudioFormat format;
-
- if ( stream_.doConvertBuffer[0] ) {
- buffer = stream_.deviceBuffer;
- samples = stream_.bufferSize * stream_.nDeviceChannels[0];
- format = stream_.deviceFormat[0];
- }
- else {
- buffer = stream_.userBuffer[0];
- samples = stream_.bufferSize * stream_.nUserChannels[0];
- format = stream_.userFormat;
- }
-
- memset( buffer, 0, samples * formatBytes(format) );
- for ( unsigned int i=0; i<stream_.nBuffers+1; i++ ) {
- result = write( handle->id[0], buffer, samples * formatBytes(format) );
- if ( result == -1 ) {
- errorText_ = "RtApiOss::stopStream: audio write error.";
- error( RtAudioError::WARNING );
- }
- }
-
- result = ioctl( handle->id[0], SNDCTL_DSP_HALT, 0 );
- if ( result == -1 ) {
- errorStream_ << "RtApiOss::stopStream: system error stopping callback procedure on device (" << stream_.device[0] << ").";
- errorText_ = errorStream_.str();
- goto unlock;
- }
- handle->triggered = false;
- }
-
- if ( stream_.mode == INPUT || ( stream_.mode == DUPLEX && handle->id[0] != handle->id[1] ) ) {
- result = ioctl( handle->id[1], SNDCTL_DSP_HALT, 0 );
- if ( result == -1 ) {
- errorStream_ << "RtApiOss::stopStream: system error stopping input callback procedure on device (" << stream_.device[0] << ").";
- errorText_ = errorStream_.str();
- goto unlock;
- }
- }
-
- unlock:
- stream_.state = STREAM_STOPPED;
- MUTEX_UNLOCK( &stream_.mutex );
-
- if ( result != -1 ) return;
- error( RtAudioError::SYSTEM_ERROR );
-}
-
-void RtApiOss :: abortStream()
-{
- verifyStream();
- if ( stream_.state == STREAM_STOPPED ) {
- errorText_ = "RtApiOss::abortStream(): the stream is already stopped!";
- error( RtAudioError::WARNING );
- return;
- }
-
- MUTEX_LOCK( &stream_.mutex );
-
- // The state might change while waiting on a mutex.
- if ( stream_.state == STREAM_STOPPED ) {
- MUTEX_UNLOCK( &stream_.mutex );
- return;
- }
-
- int result = 0;
- OssHandle *handle = (OssHandle *) stream_.apiHandle;
- if ( stream_.mode == OUTPUT || stream_.mode == DUPLEX ) {
- result = ioctl( handle->id[0], SNDCTL_DSP_HALT, 0 );
- if ( result == -1 ) {
- errorStream_ << "RtApiOss::abortStream: system error stopping callback procedure on device (" << stream_.device[0] << ").";
- errorText_ = errorStream_.str();
- goto unlock;
- }
- handle->triggered = false;
- }
-
- if ( stream_.mode == INPUT || ( stream_.mode == DUPLEX && handle->id[0] != handle->id[1] ) ) {
- result = ioctl( handle->id[1], SNDCTL_DSP_HALT, 0 );
- if ( result == -1 ) {
- errorStream_ << "RtApiOss::abortStream: system error stopping input callback procedure on device (" << stream_.device[0] << ").";
- errorText_ = errorStream_.str();
- goto unlock;
- }
- }
-
- unlock:
- stream_.state = STREAM_STOPPED;
- MUTEX_UNLOCK( &stream_.mutex );
-
- if ( result != -1 ) return;
- error( RtAudioError::SYSTEM_ERROR );
-}
-
-void RtApiOss :: callbackEvent()
-{
- OssHandle *handle = (OssHandle *) stream_.apiHandle;
- if ( stream_.state == STREAM_STOPPED ) {
- MUTEX_LOCK( &stream_.mutex );
- pthread_cond_wait( &handle->runnable, &stream_.mutex );
- if ( stream_.state != STREAM_RUNNING ) {
- MUTEX_UNLOCK( &stream_.mutex );
- return;
- }
- MUTEX_UNLOCK( &stream_.mutex );
- }
-
- if ( stream_.state == STREAM_CLOSED ) {
- errorText_ = "RtApiOss::callbackEvent(): the stream is closed ... this shouldn't happen!";
- error( RtAudioError::WARNING );
- return;
- }
-
- // Invoke user callback to get fresh output data.
- int doStopStream = 0;
- RtAudioCallback callback = (RtAudioCallback) stream_.callbackInfo.callback;
- double streamTime = getStreamTime();
- RtAudioStreamStatus status = 0;
- if ( stream_.mode != INPUT && handle->xrun[0] == true ) {
- status |= RTAUDIO_OUTPUT_UNDERFLOW;
- handle->xrun[0] = false;
- }
- if ( stream_.mode != OUTPUT && handle->xrun[1] == true ) {
- status |= RTAUDIO_INPUT_OVERFLOW;
- handle->xrun[1] = false;
- }
- doStopStream = callback( stream_.userBuffer[0], stream_.userBuffer[1],
- stream_.bufferSize, streamTime, status, stream_.callbackInfo.userData );
- if ( doStopStream == 2 ) {
- this->abortStream();
- return;
- }
-
- MUTEX_LOCK( &stream_.mutex );
-
- // The state might change while waiting on a mutex.
- if ( stream_.state == STREAM_STOPPED ) goto unlock;
-
- int result;
- char *buffer;
- int samples;
- RtAudioFormat format;
-
- if ( stream_.mode == OUTPUT || stream_.mode == DUPLEX ) {
-
- // Setup parameters and do buffer conversion if necessary.
- if ( stream_.doConvertBuffer[0] ) {
- buffer = stream_.deviceBuffer;
- convertBuffer( buffer, stream_.userBuffer[0], stream_.convertInfo[0] );
- samples = stream_.bufferSize * stream_.nDeviceChannels[0];
- format = stream_.deviceFormat[0];
- }
- else {
- buffer = stream_.userBuffer[0];
- samples = stream_.bufferSize * stream_.nUserChannels[0];
- format = stream_.userFormat;
- }
-
- // Do byte swapping if necessary.
- if ( stream_.doByteSwap[0] )
- byteSwapBuffer( buffer, samples, format );
-
- if ( stream_.mode == DUPLEX && handle->triggered == false ) {
- int trig = 0;
- ioctl( handle->id[0], SNDCTL_DSP_SETTRIGGER, &trig );
- result = write( handle->id[0], buffer, samples * formatBytes(format) );
- trig = PCM_ENABLE_INPUT|PCM_ENABLE_OUTPUT;
- ioctl( handle->id[0], SNDCTL_DSP_SETTRIGGER, &trig );
- handle->triggered = true;
- }
- else
- // Write samples to device.
- result = write( handle->id[0], buffer, samples * formatBytes(format) );
-
- if ( result == -1 ) {
- // We'll assume this is an underrun, though there isn't a
- // specific means for determining that.
- handle->xrun[0] = true;
- errorText_ = "RtApiOss::callbackEvent: audio write error.";
- error( RtAudioError::WARNING );
- // Continue on to input section.
- }
- }
-
- if ( stream_.mode == INPUT || stream_.mode == DUPLEX ) {
-
- // Setup parameters.
- if ( stream_.doConvertBuffer[1] ) {
- buffer = stream_.deviceBuffer;
- samples = stream_.bufferSize * stream_.nDeviceChannels[1];
- format = stream_.deviceFormat[1];
- }
- else {
- buffer = stream_.userBuffer[1];
- samples = stream_.bufferSize * stream_.nUserChannels[1];
- format = stream_.userFormat;
- }
-
- // Read samples from device.
- result = read( handle->id[1], buffer, samples * formatBytes(format) );
-
- if ( result == -1 ) {
- // We'll assume this is an overrun, though there isn't a
- // specific means for determining that.
- handle->xrun[1] = true;
- errorText_ = "RtApiOss::callbackEvent: audio read error.";
- error( RtAudioError::WARNING );
- goto unlock;
- }
-
- // Do byte swapping if necessary.
- if ( stream_.doByteSwap[1] )
- byteSwapBuffer( buffer, samples, format );
-
- // Do buffer conversion if necessary.
- if ( stream_.doConvertBuffer[1] )
- convertBuffer( stream_.userBuffer[1], stream_.deviceBuffer, stream_.convertInfo[1] );
- }
-
- unlock:
- MUTEX_UNLOCK( &stream_.mutex );
-
- RtApi::tickStreamTime();
- if ( doStopStream == 1 ) this->stopStream();
-}
-
-static void *ossCallbackHandler( void *ptr )
-{
- CallbackInfo *info = (CallbackInfo *) ptr;
- RtApiOss *object = (RtApiOss *) info->object;
- bool *isRunning = &info->isRunning;
-
- while ( *isRunning == true ) {
- pthread_testcancel();
- object->callbackEvent();
- }
-
- pthread_exit( NULL );
-}
-
-//******************** End of __LINUX_OSS__ *********************//
-#endif
-
-
-// *************************************************** //
-//
-// Protected common (OS-independent) RtAudio methods.
-//
-// *************************************************** //
-
-// This method can be modified to control the behavior of error
-// message printing.
-void RtApi :: error( RtAudioError::Type type )
-{
- errorStream_.str(""); // clear the ostringstream
-
- RtAudioErrorCallback errorCallback = (RtAudioErrorCallback) stream_.callbackInfo.errorCallback;
- if ( errorCallback ) {
- // abortStream() can generate new error messages. Ignore them. Just keep original one.
-
- if ( firstErrorOccurred_ )
- return;
-
- firstErrorOccurred_ = true;
- const std::string errorMessage = errorText_;
-
- if ( type != RtAudioError::WARNING && stream_.state != STREAM_STOPPED) {
- stream_.callbackInfo.isRunning = false; // exit from the thread
- abortStream();
- }
-
- errorCallback( type, errorMessage );
- firstErrorOccurred_ = false;
- return;
- }
-
- if ( type == RtAudioError::WARNING && showWarnings_ == true )
- std::cerr << '\n' << errorText_ << "\n\n";
- else if ( type != RtAudioError::WARNING )
- throw( RtAudioError( errorText_, type ) );
-}
-
-void RtApi :: verifyStream()
-{
- if ( stream_.state == STREAM_CLOSED ) {
- errorText_ = "RtApi:: a stream is not open!";
- error( RtAudioError::INVALID_USE );
- }
-}
-
-void RtApi :: clearStreamInfo()
-{
- stream_.mode = UNINITIALIZED;
- stream_.state = STREAM_CLOSED;
- stream_.sampleRate = 0;
- stream_.bufferSize = 0;
- stream_.nBuffers = 0;
- stream_.userFormat = 0;
- stream_.userInterleaved = true;
- stream_.streamTime = 0.0;
- stream_.apiHandle = 0;
- stream_.deviceBuffer = 0;
- stream_.callbackInfo.callback = 0;
- stream_.callbackInfo.userData = 0;
- stream_.callbackInfo.isRunning = false;
- stream_.callbackInfo.errorCallback = 0;
- for ( int i=0; i<2; i++ ) {
- stream_.device[i] = 11111;
- stream_.doConvertBuffer[i] = false;
- stream_.deviceInterleaved[i] = true;
- stream_.doByteSwap[i] = false;
- stream_.nUserChannels[i] = 0;
- stream_.nDeviceChannels[i] = 0;
- stream_.channelOffset[i] = 0;
- stream_.deviceFormat[i] = 0;
- stream_.latency[i] = 0;
- stream_.userBuffer[i] = 0;
- stream_.convertInfo[i].channels = 0;
- stream_.convertInfo[i].inJump = 0;
- stream_.convertInfo[i].outJump = 0;
- stream_.convertInfo[i].inFormat = 0;
- stream_.convertInfo[i].outFormat = 0;
- stream_.convertInfo[i].inOffset.clear();
- stream_.convertInfo[i].outOffset.clear();
- }
-}
-
-unsigned int RtApi :: formatBytes( RtAudioFormat format )
-{
- if ( format == RTAUDIO_SINT16 )
- return 2;
- else if ( format == RTAUDIO_SINT32 || format == RTAUDIO_FLOAT32 )
- return 4;
- else if ( format == RTAUDIO_FLOAT64 )
- return 8;
- else if ( format == RTAUDIO_SINT24 )
- return 3;
- else if ( format == RTAUDIO_SINT8 )
- return 1;
-
- errorText_ = "RtApi::formatBytes: undefined format.";
- error( RtAudioError::WARNING );
-
- return 0;
-}
-
-void RtApi :: setConvertInfo( StreamMode mode, unsigned int firstChannel )
-{
- if ( mode == INPUT ) { // convert device to user buffer
- stream_.convertInfo[mode].inJump = stream_.nDeviceChannels[1];
- stream_.convertInfo[mode].outJump = stream_.nUserChannels[1];
- stream_.convertInfo[mode].inFormat = stream_.deviceFormat[1];
- stream_.convertInfo[mode].outFormat = stream_.userFormat;
- }
- else { // convert user to device buffer
- stream_.convertInfo[mode].inJump = stream_.nUserChannels[0];
- stream_.convertInfo[mode].outJump = stream_.nDeviceChannels[0];
- stream_.convertInfo[mode].inFormat = stream_.userFormat;
- stream_.convertInfo[mode].outFormat = stream_.deviceFormat[0];
- }
-
- if ( stream_.convertInfo[mode].inJump < stream_.convertInfo[mode].outJump )
- stream_.convertInfo[mode].channels = stream_.convertInfo[mode].inJump;
- else
- stream_.convertInfo[mode].channels = stream_.convertInfo[mode].outJump;
-
- // Set up the interleave/deinterleave offsets.
- if ( stream_.deviceInterleaved[mode] != stream_.userInterleaved ) {
- if ( ( mode == OUTPUT && stream_.deviceInterleaved[mode] ) ||
- ( mode == INPUT && stream_.userInterleaved ) ) {
- for ( int k=0; k<stream_.convertInfo[mode].channels; k++ ) {
- stream_.convertInfo[mode].inOffset.push_back( k * stream_.bufferSize );
- stream_.convertInfo[mode].outOffset.push_back( k );
- stream_.convertInfo[mode].inJump = 1;
- }
- }
- else {
- for ( int k=0; k<stream_.convertInfo[mode].channels; k++ ) {
- stream_.convertInfo[mode].inOffset.push_back( k );
- stream_.convertInfo[mode].outOffset.push_back( k * stream_.bufferSize );
- stream_.convertInfo[mode].outJump = 1;
- }
- }
- }
- else { // no (de)interleaving
- if ( stream_.userInterleaved ) {
- for ( int k=0; k<stream_.convertInfo[mode].channels; k++ ) {
- stream_.convertInfo[mode].inOffset.push_back( k );
- stream_.convertInfo[mode].outOffset.push_back( k );
- }
- }
- else {
- for ( int k=0; k<stream_.convertInfo[mode].channels; k++ ) {
- stream_.convertInfo[mode].inOffset.push_back( k * stream_.bufferSize );
- stream_.convertInfo[mode].outOffset.push_back( k * stream_.bufferSize );
- stream_.convertInfo[mode].inJump = 1;
- stream_.convertInfo[mode].outJump = 1;
- }
- }
- }
-
- // Add channel offset.
- if ( firstChannel > 0 ) {
- if ( stream_.deviceInterleaved[mode] ) {
- if ( mode == OUTPUT ) {
- for ( int k=0; k<stream_.convertInfo[mode].channels; k++ )
- stream_.convertInfo[mode].outOffset[k] += firstChannel;
- }
- else {
- for ( int k=0; k<stream_.convertInfo[mode].channels; k++ )
- stream_.convertInfo[mode].inOffset[k] += firstChannel;
- }
- }
- else {
- if ( mode == OUTPUT ) {
- for ( int k=0; k<stream_.convertInfo[mode].channels; k++ )
- stream_.convertInfo[mode].outOffset[k] += ( firstChannel * stream_.bufferSize );
- }
- else {
- for ( int k=0; k<stream_.convertInfo[mode].channels; k++ )
- stream_.convertInfo[mode].inOffset[k] += ( firstChannel * stream_.bufferSize );
- }
- }
- }
-}
-
-void RtApi :: convertBuffer( char *outBuffer, char *inBuffer, ConvertInfo &info )
-{
- // This function does format conversion, input/output channel compensation, and
- // data interleaving/deinterleaving. 24-bit integers are assumed to occupy
- // the lower three bytes of a 32-bit integer.
-
- // Clear our device buffer when in/out duplex device channels are different
- if ( outBuffer == stream_.deviceBuffer && stream_.mode == DUPLEX &&
- ( stream_.nDeviceChannels[0] < stream_.nDeviceChannels[1] ) )
- memset( outBuffer, 0, stream_.bufferSize * info.outJump * formatBytes( info.outFormat ) );
-
- int j;
- if (info.outFormat == RTAUDIO_FLOAT64) {
- Float64 scale;
- Float64 *out = (Float64 *)outBuffer;
-
- if (info.inFormat == RTAUDIO_SINT8) {
- signed char *in = (signed char *)inBuffer;
- scale = 1.0 / 127.5;
- for (unsigned int i=0; i<stream_.bufferSize; i++) {
- for (j=0; j<info.channels; j++) {
- out[info.outOffset[j]] = (Float64) in[info.inOffset[j]];
- out[info.outOffset[j]] += 0.5;
- out[info.outOffset[j]] *= scale;
- }
- in += info.inJump;
- out += info.outJump;
- }
- }
- else if (info.inFormat == RTAUDIO_SINT16) {
- Int16 *in = (Int16 *)inBuffer;
- scale = 1.0 / 32767.5;
- for (unsigned int i=0; i<stream_.bufferSize; i++) {
- for (j=0; j<info.channels; j++) {
- out[info.outOffset[j]] = (Float64) in[info.inOffset[j]];
- out[info.outOffset[j]] += 0.5;
- out[info.outOffset[j]] *= scale;
- }
- in += info.inJump;
- out += info.outJump;
- }
- }
- else if (info.inFormat == RTAUDIO_SINT24) {
- Int24 *in = (Int24 *)inBuffer;
- scale = 1.0 / 8388607.5;
- for (unsigned int i=0; i<stream_.bufferSize; i++) {
- for (j=0; j<info.channels; j++) {
- out[info.outOffset[j]] = (Float64) (in[info.inOffset[j]].asInt());
- out[info.outOffset[j]] += 0.5;
- out[info.outOffset[j]] *= scale;
- }
- in += info.inJump;
- out += info.outJump;
- }
- }
- else if (info.inFormat == RTAUDIO_SINT32) {
- Int32 *in = (Int32 *)inBuffer;
- scale = 1.0 / 2147483647.5;
- for (unsigned int i=0; i<stream_.bufferSize; i++) {
- for (j=0; j<info.channels; j++) {
- out[info.outOffset[j]] = (Float64) in[info.inOffset[j]];
- out[info.outOffset[j]] += 0.5;
- out[info.outOffset[j]] *= scale;
- }
- in += info.inJump;
- out += info.outJump;
- }
- }
- else if (info.inFormat == RTAUDIO_FLOAT32) {
- Float32 *in = (Float32 *)inBuffer;
- for (unsigned int i=0; i<stream_.bufferSize; i++) {
- for (j=0; j<info.channels; j++) {
- out[info.outOffset[j]] = (Float64) in[info.inOffset[j]];
- }
- in += info.inJump;
- out += info.outJump;
- }
- }
- else if (info.inFormat == RTAUDIO_FLOAT64) {
- // Channel compensation and/or (de)interleaving only.
- Float64 *in = (Float64 *)inBuffer;
- for (unsigned int i=0; i<stream_.bufferSize; i++) {
- for (j=0; j<info.channels; j++) {
- out[info.outOffset[j]] = in[info.inOffset[j]];
- }
- in += info.inJump;
- out += info.outJump;
- }
- }
- }
- else if (info.outFormat == RTAUDIO_FLOAT32) {
- Float32 scale;
- Float32 *out = (Float32 *)outBuffer;
-
- if (info.inFormat == RTAUDIO_SINT8) {
- signed char *in = (signed char *)inBuffer;
- scale = (Float32) ( 1.0 / 127.5 );
- for (unsigned int i=0; i<stream_.bufferSize; i++) {
- for (j=0; j<info.channels; j++) {
- out[info.outOffset[j]] = (Float32) in[info.inOffset[j]];
- out[info.outOffset[j]] += 0.5;
- out[info.outOffset[j]] *= scale;
- }
- in += info.inJump;
- out += info.outJump;
- }
- }
- else if (info.inFormat == RTAUDIO_SINT16) {
- Int16 *in = (Int16 *)inBuffer;
- scale = (Float32) ( 1.0 / 32767.5 );
- for (unsigned int i=0; i<stream_.bufferSize; i++) {
- for (j=0; j<info.channels; j++) {
- out[info.outOffset[j]] = (Float32) in[info.inOffset[j]];
- out[info.outOffset[j]] += 0.5;
- out[info.outOffset[j]] *= scale;
- }
- in += info.inJump;
- out += info.outJump;
- }
- }
- else if (info.inFormat == RTAUDIO_SINT24) {
- Int24 *in = (Int24 *)inBuffer;
- scale = (Float32) ( 1.0 / 8388607.5 );
- for (unsigned int i=0; i<stream_.bufferSize; i++) {
- for (j=0; j<info.channels; j++) {
- out[info.outOffset[j]] = (Float32) (in[info.inOffset[j]].asInt());
- out[info.outOffset[j]] += 0.5;
- out[info.outOffset[j]] *= scale;
- }
- in += info.inJump;
- out += info.outJump;
- }
- }
- else if (info.inFormat == RTAUDIO_SINT32) {
- Int32 *in = (Int32 *)inBuffer;
- scale = (Float32) ( 1.0 / 2147483647.5 );
- for (unsigned int i=0; i<stream_.bufferSize; i++) {
- for (j=0; j<info.channels; j++) {
- out[info.outOffset[j]] = (Float32) in[info.inOffset[j]];
- out[info.outOffset[j]] += 0.5;
- out[info.outOffset[j]] *= scale;
- }
- in += info.inJump;
- out += info.outJump;
- }
- }
- else if (info.inFormat == RTAUDIO_FLOAT32) {
- // Channel compensation and/or (de)interleaving only.
- Float32 *in = (Float32 *)inBuffer;
- for (unsigned int i=0; i<stream_.bufferSize; i++) {
- for (j=0; j<info.channels; j++) {
- out[info.outOffset[j]] = in[info.inOffset[j]];
- }
- in += info.inJump;
- out += info.outJump;
- }
- }
- else if (info.inFormat == RTAUDIO_FLOAT64) {
- Float64 *in = (Float64 *)inBuffer;
- for (unsigned int i=0; i<stream_.bufferSize; i++) {
- for (j=0; j<info.channels; j++) {
- out[info.outOffset[j]] = (Float32) in[info.inOffset[j]];
- }
- in += info.inJump;
- out += info.outJump;
- }
- }
- }
- else if (info.outFormat == RTAUDIO_SINT32) {
- Int32 *out = (Int32 *)outBuffer;
- if (info.inFormat == RTAUDIO_SINT8) {
- signed char *in = (signed char *)inBuffer;
- for (unsigned int i=0; i<stream_.bufferSize; i++) {
- for (j=0; j<info.channels; j++) {
- out[info.outOffset[j]] = (Int32) in[info.inOffset[j]];
- out[info.outOffset[j]] <<= 24;
- }
- in += info.inJump;
- out += info.outJump;
- }
- }
- else if (info.inFormat == RTAUDIO_SINT16) {
- Int16 *in = (Int16 *)inBuffer;
- for (unsigned int i=0; i<stream_.bufferSize; i++) {
- for (j=0; j<info.channels; j++) {
- out[info.outOffset[j]] = (Int32) in[info.inOffset[j]];
- out[info.outOffset[j]] <<= 16;
- }
- in += info.inJump;
- out += info.outJump;
- }
- }
- else if (info.inFormat == RTAUDIO_SINT24) {
- Int24 *in = (Int24 *)inBuffer;
- for (unsigned int i=0; i<stream_.bufferSize; i++) {
- for (j=0; j<info.channels; j++) {
- out[info.outOffset[j]] = (Int32) in[info.inOffset[j]].asInt();
- out[info.outOffset[j]] <<= 8;
- }
- in += info.inJump;
- out += info.outJump;
- }
- }
- else if (info.inFormat == RTAUDIO_SINT32) {
- // Channel compensation and/or (de)interleaving only.
- Int32 *in = (Int32 *)inBuffer;
- for (unsigned int i=0; i<stream_.bufferSize; i++) {
- for (j=0; j<info.channels; j++) {
- out[info.outOffset[j]] = in[info.inOffset[j]];
- }
- in += info.inJump;
- out += info.outJump;
- }
- }
- else if (info.inFormat == RTAUDIO_FLOAT32) {
- Float32 *in = (Float32 *)inBuffer;
- for (unsigned int i=0; i<stream_.bufferSize; i++) {
- for (j=0; j<info.channels; j++) {
- out[info.outOffset[j]] = (Int32) (in[info.inOffset[j]] * 2147483647.5 - 0.5);
- }
- in += info.inJump;
- out += info.outJump;
- }
- }
- else if (info.inFormat == RTAUDIO_FLOAT64) {
- Float64 *in = (Float64 *)inBuffer;
- for (unsigned int i=0; i<stream_.bufferSize; i++) {
- for (j=0; j<info.channels; j++) {
- out[info.outOffset[j]] = (Int32) (in[info.inOffset[j]] * 2147483647.5 - 0.5);
- }
- in += info.inJump;
- out += info.outJump;
- }
- }
- }
- else if (info.outFormat == RTAUDIO_SINT24) {
- Int24 *out = (Int24 *)outBuffer;
- if (info.inFormat == RTAUDIO_SINT8) {
- signed char *in = (signed char *)inBuffer;
- for (unsigned int i=0; i<stream_.bufferSize; i++) {
- for (j=0; j<info.channels; j++) {
- out[info.outOffset[j]] = (Int32) (in[info.inOffset[j]] << 16);
- //out[info.outOffset[j]] <<= 16;
- }
- in += info.inJump;
- out += info.outJump;
- }
- }
- else if (info.inFormat == RTAUDIO_SINT16) {
- Int16 *in = (Int16 *)inBuffer;
- for (unsigned int i=0; i<stream_.bufferSize; i++) {
- for (j=0; j<info.channels; j++) {
- out[info.outOffset[j]] = (Int32) (in[info.inOffset[j]] << 8);
- //out[info.outOffset[j]] <<= 8;
- }
- in += info.inJump;
- out += info.outJump;
- }
- }
- else if (info.inFormat == RTAUDIO_SINT24) {
- // Channel compensation and/or (de)interleaving only.
- Int24 *in = (Int24 *)inBuffer;
- for (unsigned int i=0; i<stream_.bufferSize; i++) {
- for (j=0; j<info.channels; j++) {
- out[info.outOffset[j]] = in[info.inOffset[j]];
- }
- in += info.inJump;
- out += info.outJump;
- }
- }
- else if (info.inFormat == RTAUDIO_SINT32) {
- Int32 *in = (Int32 *)inBuffer;
- for (unsigned int i=0; i<stream_.bufferSize; i++) {
- for (j=0; j<info.channels; j++) {
- out[info.outOffset[j]] = (Int32) (in[info.inOffset[j]] >> 8);
- //out[info.outOffset[j]] >>= 8;
- }
- in += info.inJump;
- out += info.outJump;
- }
- }
- else if (info.inFormat == RTAUDIO_FLOAT32) {
- Float32 *in = (Float32 *)inBuffer;
- for (unsigned int i=0; i<stream_.bufferSize; i++) {
- for (j=0; j<info.channels; j++) {
- out[info.outOffset[j]] = (Int32) (in[info.inOffset[j]] * 8388607.5 - 0.5);
- }
- in += info.inJump;
- out += info.outJump;
- }
- }
- else if (info.inFormat == RTAUDIO_FLOAT64) {
- Float64 *in = (Float64 *)inBuffer;
- for (unsigned int i=0; i<stream_.bufferSize; i++) {
- for (j=0; j<info.channels; j++) {
- out[info.outOffset[j]] = (Int32) (in[info.inOffset[j]] * 8388607.5 - 0.5);
- }
- in += info.inJump;
- out += info.outJump;
- }
- }
- }
- else if (info.outFormat == RTAUDIO_SINT16) {
- Int16 *out = (Int16 *)outBuffer;
- if (info.inFormat == RTAUDIO_SINT8) {
- signed char *in = (signed char *)inBuffer;
- for (unsigned int i=0; i<stream_.bufferSize; i++) {
- for (j=0; j<info.channels; j++) {
- out[info.outOffset[j]] = (Int16) in[info.inOffset[j]];
- out[info.outOffset[j]] <<= 8;
- }
- in += info.inJump;
- out += info.outJump;
- }
- }
- else if (info.inFormat == RTAUDIO_SINT16) {
- // Channel compensation and/or (de)interleaving only.
- Int16 *in = (Int16 *)inBuffer;
- for (unsigned int i=0; i<stream_.bufferSize; i++) {
- for (j=0; j<info.channels; j++) {
- out[info.outOffset[j]] = in[info.inOffset[j]];
- }
- in += info.inJump;
- out += info.outJump;
- }
- }
- else if (info.inFormat == RTAUDIO_SINT24) {
- Int24 *in = (Int24 *)inBuffer;
- for (unsigned int i=0; i<stream_.bufferSize; i++) {
- for (j=0; j<info.channels; j++) {
- out[info.outOffset[j]] = (Int16) (in[info.inOffset[j]].asInt() >> 8);
- }
- in += info.inJump;
- out += info.outJump;
- }
- }
- else if (info.inFormat == RTAUDIO_SINT32) {
- Int32 *in = (Int32 *)inBuffer;
- for (unsigned int i=0; i<stream_.bufferSize; i++) {
- for (j=0; j<info.channels; j++) {
- out[info.outOffset[j]] = (Int16) ((in[info.inOffset[j]] >> 16) & 0x0000ffff);
- }
- in += info.inJump;
- out += info.outJump;
- }
- }
- else if (info.inFormat == RTAUDIO_FLOAT32) {
- Float32 *in = (Float32 *)inBuffer;
- for (unsigned int i=0; i<stream_.bufferSize; i++) {
- for (j=0; j<info.channels; j++) {
- out[info.outOffset[j]] = (Int16) (in[info.inOffset[j]] * 32767.5 - 0.5);
- }
- in += info.inJump;
- out += info.outJump;
- }
- }
- else if (info.inFormat == RTAUDIO_FLOAT64) {
- Float64 *in = (Float64 *)inBuffer;
- for (unsigned int i=0; i<stream_.bufferSize; i++) {
- for (j=0; j<info.channels; j++) {
- out[info.outOffset[j]] = (Int16) (in[info.inOffset[j]] * 32767.5 - 0.5);
- }
- in += info.inJump;
- out += info.outJump;
- }
- }
- }
- else if (info.outFormat == RTAUDIO_SINT8) {
- signed char *out = (signed char *)outBuffer;
- if (info.inFormat == RTAUDIO_SINT8) {
- // Channel compensation and/or (de)interleaving only.
- signed char *in = (signed char *)inBuffer;
- for (unsigned int i=0; i<stream_.bufferSize; i++) {
- for (j=0; j<info.channels; j++) {
- out[info.outOffset[j]] = in[info.inOffset[j]];
- }
- in += info.inJump;
- out += info.outJump;
- }
- }
- if (info.inFormat == RTAUDIO_SINT16) {
- Int16 *in = (Int16 *)inBuffer;
- for (unsigned int i=0; i<stream_.bufferSize; i++) {
- for (j=0; j<info.channels; j++) {
- out[info.outOffset[j]] = (signed char) ((in[info.inOffset[j]] >> 8) & 0x00ff);
- }
- in += info.inJump;
- out += info.outJump;
- }
- }
- else if (info.inFormat == RTAUDIO_SINT24) {
- Int24 *in = (Int24 *)inBuffer;
- for (unsigned int i=0; i<stream_.bufferSize; i++) {
- for (j=0; j<info.channels; j++) {
- out[info.outOffset[j]] = (signed char) (in[info.inOffset[j]].asInt() >> 16);
- }
- in += info.inJump;
- out += info.outJump;
- }
- }
- else if (info.inFormat == RTAUDIO_SINT32) {
- Int32 *in = (Int32 *)inBuffer;
- for (unsigned int i=0; i<stream_.bufferSize; i++) {
- for (j=0; j<info.channels; j++) {
- out[info.outOffset[j]] = (signed char) ((in[info.inOffset[j]] >> 24) & 0x000000ff);
- }
- in += info.inJump;
- out += info.outJump;
- }
- }
- else if (info.inFormat == RTAUDIO_FLOAT32) {
- Float32 *in = (Float32 *)inBuffer;
- for (unsigned int i=0; i<stream_.bufferSize; i++) {
- for (j=0; j<info.channels; j++) {
- out[info.outOffset[j]] = (signed char) (in[info.inOffset[j]] * 127.5 - 0.5);
- }
- in += info.inJump;
- out += info.outJump;
- }
- }
- else if (info.inFormat == RTAUDIO_FLOAT64) {
- Float64 *in = (Float64 *)inBuffer;
- for (unsigned int i=0; i<stream_.bufferSize; i++) {
- for (j=0; j<info.channels; j++) {
- out[info.outOffset[j]] = (signed char) (in[info.inOffset[j]] * 127.5 - 0.5);
- }
- in += info.inJump;
- out += info.outJump;
- }
- }
- }
-}
-
-//static inline uint16_t bswap_16(uint16_t x) { return (x>>8) | (x<<8); }
-//static inline uint32_t bswap_32(uint32_t x) { return (bswap_16(x&0xffff)<<16) | (bswap_16(x>>16)); }
-//static inline uint64_t bswap_64(uint64_t x) { return (((unsigned long long)bswap_32(x&0xffffffffull))<<32) | (bswap_32(x>>32)); }
-
-void RtApi :: byteSwapBuffer( char *buffer, unsigned int samples, RtAudioFormat format )
-{
- register char val;
- register char *ptr;
-
- ptr = buffer;
- if ( format == RTAUDIO_SINT16 ) {
- for ( unsigned int i=0; i<samples; i++ ) {
- // Swap 1st and 2nd bytes.
- val = *(ptr);
- *(ptr) = *(ptr+1);
- *(ptr+1) = val;
-
- // Increment 2 bytes.
- ptr += 2;
- }
- }
- else if ( format == RTAUDIO_SINT32 ||
- format == RTAUDIO_FLOAT32 ) {
- for ( unsigned int i=0; i<samples; i++ ) {
- // Swap 1st and 4th bytes.
- val = *(ptr);
- *(ptr) = *(ptr+3);
- *(ptr+3) = val;
-
- // Swap 2nd and 3rd bytes.
- ptr += 1;
- val = *(ptr);
- *(ptr) = *(ptr+1);
- *(ptr+1) = val;
-
- // Increment 3 more bytes.
- ptr += 3;
- }
- }
- else if ( format == RTAUDIO_SINT24 ) {
- for ( unsigned int i=0; i<samples; i++ ) {
- // Swap 1st and 3rd bytes.
- val = *(ptr);
- *(ptr) = *(ptr+2);
- *(ptr+2) = val;
-
- // Increment 2 more bytes.
- ptr += 2;
- }
- }
- else if ( format == RTAUDIO_FLOAT64 ) {
- for ( unsigned int i=0; i<samples; i++ ) {
- // Swap 1st and 8th bytes
- val = *(ptr);
- *(ptr) = *(ptr+7);
- *(ptr+7) = val;
-
- // Swap 2nd and 7th bytes
- ptr += 1;
- val = *(ptr);
- *(ptr) = *(ptr+5);
- *(ptr+5) = val;
-
- // Swap 3rd and 6th bytes
- ptr += 1;
- val = *(ptr);
- *(ptr) = *(ptr+3);
- *(ptr+3) = val;
-
- // Swap 4th and 5th bytes
- ptr += 1;
- val = *(ptr);
- *(ptr) = *(ptr+1);
- *(ptr+1) = val;
-
- // Increment 5 more bytes.
- ptr += 5;
- }
- }
-}
-
- // Indentation settings for Vim and Emacs
- //
- // Local Variables:
- // c-basic-offset: 2
- // indent-tabs-mode: nil
- // End:
- //
- // vim: et sts=2 sw=2
-
-#endif
+#ifdef RTAUDIO_ENABLED
+/************************************************************************/
+/*! \class RtAudio
+ \brief Realtime audio i/o C++ classes.
+
+ RtAudio provides a common API (Application Programming Interface)
+ for realtime audio input/output across Linux (native ALSA, Jack,
+ and OSS), Macintosh OS X (CoreAudio and Jack), and Windows
+ (DirectSound, ASIO and WASAPI) operating systems.
+
+ RtAudio WWW site: http://www.music.mcgill.ca/~gary/rtaudio/
+
+ RtAudio: realtime audio i/o C++ classes
+ Copyright (c) 2001-2014 Gary P. Scavone
+
+ Permission is hereby granted, free of charge, to any person
+ obtaining a copy of this software and associated documentation files
+ (the "Software"), to deal in the Software without restriction,
+ including without limitation the rights to use, copy, modify, merge,
+ publish, distribute, sublicense, and/or sell copies of the Software,
+ and to permit persons to whom the Software is furnished to do so,
+ subject to the following conditions:
+
+ The above copyright notice and this permission notice shall be
+ included in all copies or substantial portions of the Software.
+
+ Any person wishing to distribute modifications to the Software is
+ asked to send the modifications to the original developer so that
+ they can be incorporated into the canonical version. This is,
+ however, not a binding provision of this license.
+
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
+ EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
+ MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
+ IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR
+ ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF
+ CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
+ WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
+*/
+/************************************************************************/
+
+// RtAudio: Version 4.1.1
+
+#include "RtAudio.h"
+#include <iostream>
+#include <cstdlib>
+#include <cstring>
+#include <climits>
+#include <algorithm>
+
+// Static variable definitions.
+const unsigned int RtApi::MAX_SAMPLE_RATES = 14;
+const unsigned int RtApi::SAMPLE_RATES[] = {
+ 4000, 5512, 8000, 9600, 11025, 16000, 22050,
+ 32000, 44100, 48000, 88200, 96000, 176400, 192000
+};
+
+#if defined(__WINDOWS_DS__) || defined(__WINDOWS_ASIO__) || defined(__WINDOWS_WASAPI__)
+#ifdef WINRT_ENABLED
+ #define MUTEX_INITIALIZE(A) InitializeCriticalSectionEx(A, 0, 0)
+#else
+ #define MUTEX_INITIALIZE(A) InitializeCriticalSection(A)
+#endif
+ #define MUTEX_DESTROY(A) DeleteCriticalSection(A)
+ #define MUTEX_LOCK(A) EnterCriticalSection(A)
+ #define MUTEX_UNLOCK(A) LeaveCriticalSection(A)
+
+ #include "tchar.h"
+
+ static std::string convertCharPointerToStdString(const char *text)
+ {
+ return std::string(text);
+ }
+
+ static std::string convertCharPointerToStdString(const wchar_t *text)
+ {
+ int length = WideCharToMultiByte(CP_UTF8, 0, text, -1, NULL, 0, NULL, NULL);
+ std::string s( length-1, '\0' );
+ WideCharToMultiByte(CP_UTF8, 0, text, -1, &s[0], length, NULL, NULL);
+ return s;
+ }
+
+#elif defined(__LINUX_ALSA__) || defined(__LINUX_PULSE__) || defined(__UNIX_JACK__) || defined(__LINUX_OSS__) || defined(__MACOSX_CORE__)
+ // pthread API
+ #define MUTEX_INITIALIZE(A) pthread_mutex_init(A, NULL)
+ #define MUTEX_DESTROY(A) pthread_mutex_destroy(A)
+ #define MUTEX_LOCK(A) pthread_mutex_lock(A)
+ #define MUTEX_UNLOCK(A) pthread_mutex_unlock(A)
+#else
+ #define MUTEX_INITIALIZE(A) abs(*A) // dummy definitions
+ #define MUTEX_DESTROY(A) abs(*A) // dummy definitions
+#endif
+
+// *************************************************** //
+//
+// RtAudio definitions.
+//
+// *************************************************** //
+
+std::string RtAudio :: getVersion( void ) throw()
+{
+ return RTAUDIO_VERSION;
+}
+
+void RtAudio :: getCompiledApi( std::vector<RtAudio::Api> &apis ) throw()
+{
+ apis.clear();
+
+ // The order here will control the order of RtAudio's API search in
+ // the constructor.
+#if defined(__UNIX_JACK__)
+ apis.push_back( UNIX_JACK );
+#endif
+#if defined(__LINUX_ALSA__)
+ apis.push_back( LINUX_ALSA );
+#endif
+#if defined(__LINUX_PULSE__)
+ apis.push_back( LINUX_PULSE );
+#endif
+#if defined(__LINUX_OSS__)
+ apis.push_back( LINUX_OSS );
+#endif
+#if defined(__WINDOWS_ASIO__)
+ apis.push_back( WINDOWS_ASIO );
+#endif
+#if defined(__WINDOWS_WASAPI__)
+ apis.push_back( WINDOWS_WASAPI );
+#endif
+#if defined(__WINDOWS_DS__)
+ apis.push_back( WINDOWS_DS );
+#endif
+#if defined(__MACOSX_CORE__)
+ apis.push_back( MACOSX_CORE );
+#endif
+#if defined(__RTAUDIO_DUMMY__)
+ apis.push_back( RTAUDIO_DUMMY );
+#endif
+}
+
+void RtAudio :: openRtApi( RtAudio::Api api )
+{
+ if ( rtapi_ )
+ delete rtapi_;
+ rtapi_ = 0;
+
+#if defined(__UNIX_JACK__)
+ if ( api == UNIX_JACK )
+ rtapi_ = new RtApiJack();
+#endif
+#if defined(__LINUX_ALSA__)
+ if ( api == LINUX_ALSA )
+ rtapi_ = new RtApiAlsa();
+#endif
+#if defined(__LINUX_PULSE__)
+ if ( api == LINUX_PULSE )
+ rtapi_ = new RtApiPulse();
+#endif
+#if defined(__LINUX_OSS__)
+ if ( api == LINUX_OSS )
+ rtapi_ = new RtApiOss();
+#endif
+#if defined(__WINDOWS_ASIO__)
+ if ( api == WINDOWS_ASIO )
+ rtapi_ = new RtApiAsio();
+#endif
+#if defined(__WINDOWS_WASAPI__)
+ if ( api == WINDOWS_WASAPI )
+ rtapi_ = new RtApiWasapi();
+#endif
+#if defined(__WINDOWS_DS__)
+ if ( api == WINDOWS_DS )
+ rtapi_ = new RtApiDs();
+#endif
+#if defined(__MACOSX_CORE__)
+ if ( api == MACOSX_CORE )
+ rtapi_ = new RtApiCore();
+#endif
+#if defined(__RTAUDIO_DUMMY__)
+ if ( api == RTAUDIO_DUMMY )
+ rtapi_ = new RtApiDummy();
+#endif
+}
+
+RtAudio :: RtAudio( RtAudio::Api api )
+{
+ rtapi_ = 0;
+
+ if ( api != UNSPECIFIED ) {
+ // Attempt to open the specified API.
+ openRtApi( api );
+ if ( rtapi_ ) return;
+
+ // No compiled support for specified API value. Issue a debug
+ // warning and continue as if no API was specified.
+ std::cerr << "\nRtAudio: no compiled support for specified API argument!\n" << std::endl;
+ }
+
+ // Iterate through the compiled APIs and return as soon as we find
+ // one with at least one device or we reach the end of the list.
+ std::vector< RtAudio::Api > apis;
+ getCompiledApi( apis );
+ for ( unsigned int i=0; i<apis.size(); i++ ) {
+ openRtApi( apis[i] );
+ if ( rtapi_ && rtapi_->getDeviceCount() ) break;
+ }
+
+ if ( rtapi_ ) return;
+
+ // It should not be possible to get here because the preprocessor
+ // definition __RTAUDIO_DUMMY__ is automatically defined if no
+ // API-specific definitions are passed to the compiler. But just in
+ // case something weird happens, we'll thow an error.
+ std::string errorText = "\nRtAudio: no compiled API support found ... critical error!!\n\n";
+ throw( RtAudioError( errorText, RtAudioError::UNSPECIFIED ) );
+}
+
+RtAudio :: ~RtAudio() throw()
+{
+ if ( rtapi_ )
+ delete rtapi_;
+}
+
+void RtAudio :: openStream( RtAudio::StreamParameters *outputParameters,
+ RtAudio::StreamParameters *inputParameters,
+ RtAudioFormat format, unsigned int sampleRate,
+ unsigned int *bufferFrames,
+ RtAudioCallback callback, void *userData,
+ RtAudio::StreamOptions *options,
+ RtAudioErrorCallback errorCallback )
+{
+ return rtapi_->openStream( outputParameters, inputParameters, format,
+ sampleRate, bufferFrames, callback,
+ userData, options, errorCallback );
+}
+
+// *************************************************** //
+//
+// Public RtApi definitions (see end of file for
+// private or protected utility functions).
+//
+// *************************************************** //
+
+RtApi :: RtApi()
+{
+ stream_.state = STREAM_CLOSED;
+ stream_.mode = UNINITIALIZED;
+ stream_.apiHandle = 0;
+ stream_.userBuffer[0] = 0;
+ stream_.userBuffer[1] = 0;
+ MUTEX_INITIALIZE( &stream_.mutex );
+ showWarnings_ = true;
+ firstErrorOccurred_ = false;
+}
+
+RtApi :: ~RtApi()
+{
+ MUTEX_DESTROY( &stream_.mutex );
+}
+
+void RtApi :: openStream( RtAudio::StreamParameters *oParams,
+ RtAudio::StreamParameters *iParams,
+ RtAudioFormat format, unsigned int sampleRate,
+ unsigned int *bufferFrames,
+ RtAudioCallback callback, void *userData,
+ RtAudio::StreamOptions *options,
+ RtAudioErrorCallback errorCallback )
+{
+ if ( stream_.state != STREAM_CLOSED ) {
+ errorText_ = "RtApi::openStream: a stream is already open!";
+ error( RtAudioError::INVALID_USE );
+ return;
+ }
+
+ // Clear stream information potentially left from a previously open stream.
+ clearStreamInfo();
+
+ if ( oParams && oParams->nChannels < 1 ) {
+ errorText_ = "RtApi::openStream: a non-NULL output StreamParameters structure cannot have an nChannels value less than one.";
+ error( RtAudioError::INVALID_USE );
+ return;
+ }
+
+ if ( iParams && iParams->nChannels < 1 ) {
+ errorText_ = "RtApi::openStream: a non-NULL input StreamParameters structure cannot have an nChannels value less than one.";
+ error( RtAudioError::INVALID_USE );
+ return;
+ }
+
+ if ( oParams == NULL && iParams == NULL ) {
+ errorText_ = "RtApi::openStream: input and output StreamParameters structures are both NULL!";
+ error( RtAudioError::INVALID_USE );
+ return;
+ }
+
+ if ( formatBytes(format) == 0 ) {
+ errorText_ = "RtApi::openStream: 'format' parameter value is undefined.";
+ error( RtAudioError::INVALID_USE );
+ return;
+ }
+
+ unsigned int nDevices = getDeviceCount();
+ unsigned int oChannels = 0;
+ if ( oParams ) {
+ oChannels = oParams->nChannels;
+ if ( oParams->deviceId >= nDevices ) {
+ errorText_ = "RtApi::openStream: output device parameter value is invalid.";
+ error( RtAudioError::INVALID_USE );
+ return;
+ }
+ }
+
+ unsigned int iChannels = 0;
+ if ( iParams ) {
+ iChannels = iParams->nChannels;
+ if ( iParams->deviceId >= nDevices ) {
+ errorText_ = "RtApi::openStream: input device parameter value is invalid.";
+ error( RtAudioError::INVALID_USE );
+ return;
+ }
+ }
+
+ bool result;
+
+ if ( oChannels > 0 ) {
+
+ result = probeDeviceOpen( oParams->deviceId, OUTPUT, oChannels, oParams->firstChannel,
+ sampleRate, format, bufferFrames, options );
+ if ( result == false ) {
+ error( RtAudioError::SYSTEM_ERROR );
+ return;
+ }
+ }
+
+ if ( iChannels > 0 ) {
+
+ result = probeDeviceOpen( iParams->deviceId, INPUT, iChannels, iParams->firstChannel,
+ sampleRate, format, bufferFrames, options );
+ if ( result == false ) {
+ if ( oChannels > 0 ) closeStream();
+ error( RtAudioError::SYSTEM_ERROR );
+ return;
+ }
+ }
+
+ stream_.callbackInfo.callback = (void *) callback;
+ stream_.callbackInfo.userData = userData;
+ stream_.callbackInfo.errorCallback = (void *) errorCallback;
+
+ if ( options ) options->numberOfBuffers = stream_.nBuffers;
+ stream_.state = STREAM_STOPPED;
+}
+
+unsigned int RtApi :: getDefaultInputDevice( void )
+{
+ // Should be implemented in subclasses if possible.
+ return 0;
+}
+
+unsigned int RtApi :: getDefaultOutputDevice( void )
+{
+ // Should be implemented in subclasses if possible.
+ return 0;
+}
+
+void RtApi :: closeStream( void )
+{
+ // MUST be implemented in subclasses!
+ return;
+}
+
+bool RtApi :: probeDeviceOpen( unsigned int /*device*/, StreamMode /*mode*/, unsigned int /*channels*/,
+ unsigned int /*firstChannel*/, unsigned int /*sampleRate*/,
+ RtAudioFormat /*format*/, unsigned int * /*bufferSize*/,
+ RtAudio::StreamOptions * /*options*/ )
+{
+ // MUST be implemented in subclasses!
+ return FAILURE;
+}
+
+void RtApi :: tickStreamTime( void )
+{
+ // Subclasses that do not provide their own implementation of
+ // getStreamTime should call this function once per buffer I/O to
+ // provide basic stream time support.
+
+ stream_.streamTime += ( stream_.bufferSize * 1.0 / stream_.sampleRate );
+
+#if defined( HAVE_GETTIMEOFDAY )
+ gettimeofday( &stream_.lastTickTimestamp, NULL );
+#endif
+}
+
+long RtApi :: getStreamLatency( void )
+{
+ verifyStream();
+
+ long totalLatency = 0;
+ if ( stream_.mode == OUTPUT || stream_.mode == DUPLEX )
+ totalLatency = stream_.latency[0];
+ if ( stream_.mode == INPUT || stream_.mode == DUPLEX )
+ totalLatency += stream_.latency[1];
+
+ return totalLatency;
+}
+
+double RtApi :: getStreamTime( void )
+{
+ verifyStream();
+
+#if defined( HAVE_GETTIMEOFDAY )
+ // Return a very accurate estimate of the stream time by
+ // adding in the elapsed time since the last tick.
+ struct timeval then;
+ struct timeval now;
+
+ if ( stream_.state != STREAM_RUNNING || stream_.streamTime == 0.0 )
+ return stream_.streamTime;
+
+ gettimeofday( &now, NULL );
+ then = stream_.lastTickTimestamp;
+ return stream_.streamTime +
+ ((now.tv_sec + 0.000001 * now.tv_usec) -
+ (then.tv_sec + 0.000001 * then.tv_usec));
+#else
+ return stream_.streamTime;
+#endif
+}
+
+void RtApi :: setStreamTime( double time )
+{
+ verifyStream();
+
+ if ( time >= 0.0 )
+ stream_.streamTime = time;
+}
+
+unsigned int RtApi :: getStreamSampleRate( void )
+{
+ verifyStream();
+
+ return stream_.sampleRate;
+}
+
+
+// *************************************************** //
+//
+// OS/API-specific methods.
+//
+// *************************************************** //
+
+#if defined(__MACOSX_CORE__)
+
+// The OS X CoreAudio API is designed to use a separate callback
+// procedure for each of its audio devices. A single RtAudio duplex
+// stream using two different devices is supported here, though it
+// cannot be guaranteed to always behave correctly because we cannot
+// synchronize these two callbacks.
+//
+// A property listener is installed for over/underrun information.
+// However, no functionality is currently provided to allow property
+// listeners to trigger user handlers because it is unclear what could
+// be done if a critical stream parameter (buffer size, sample rate,
+// device disconnect) notification arrived. The listeners entail
+// quite a bit of extra code and most likely, a user program wouldn't
+// be prepared for the result anyway. However, we do provide a flag
+// to the client callback function to inform of an over/underrun.
+
+// A structure to hold various information related to the CoreAudio API
+// implementation.
+struct CoreHandle {
+ AudioDeviceID id[2]; // device ids
+#if defined( MAC_OS_X_VERSION_10_5 ) && ( MAC_OS_X_VERSION_MIN_REQUIRED >= MAC_OS_X_VERSION_10_5 )
+ AudioDeviceIOProcID procId[2];
+#endif
+ UInt32 iStream[2]; // device stream index (or first if using multiple)
+ UInt32 nStreams[2]; // number of streams to use
+ bool xrun[2];
+ char *deviceBuffer;
+ pthread_cond_t condition;
+ int drainCounter; // Tracks callback counts when draining
+ bool internalDrain; // Indicates if stop is initiated from callback or not.
+
+ CoreHandle()
+ :deviceBuffer(0), drainCounter(0), internalDrain(false) { nStreams[0] = 1; nStreams[1] = 1; id[0] = 0; id[1] = 0; xrun[0] = false; xrun[1] = false; }
+};
+
+RtApiCore:: RtApiCore()
+{
+#if defined( AVAILABLE_MAC_OS_X_VERSION_10_6_AND_LATER )
+ // This is a largely undocumented but absolutely necessary
+ // requirement starting with OS-X 10.6. If not called, queries and
+ // updates to various audio device properties are not handled
+ // correctly.
+ CFRunLoopRef theRunLoop = NULL;
+ AudioObjectPropertyAddress property = { kAudioHardwarePropertyRunLoop,
+ kAudioObjectPropertyScopeGlobal,
+ kAudioObjectPropertyElementMaster };
+ OSStatus result = AudioObjectSetPropertyData( kAudioObjectSystemObject, &property, 0, NULL, sizeof(CFRunLoopRef), &theRunLoop);
+ if ( result != noErr ) {
+ errorText_ = "RtApiCore::RtApiCore: error setting run loop property!";
+ error( RtAudioError::WARNING );
+ }
+#endif
+}
+
+RtApiCore :: ~RtApiCore()
+{
+ // The subclass destructor gets called before the base class
+ // destructor, so close an existing stream before deallocating
+ // apiDeviceId memory.
+ if ( stream_.state != STREAM_CLOSED ) closeStream();
+}
+
+unsigned int RtApiCore :: getDeviceCount( void )
+{
+ // Find out how many audio devices there are, if any.
+ UInt32 dataSize;
+ AudioObjectPropertyAddress propertyAddress = { kAudioHardwarePropertyDevices, kAudioObjectPropertyScopeGlobal, kAudioObjectPropertyElementMaster };
+ OSStatus result = AudioObjectGetPropertyDataSize( kAudioObjectSystemObject, &propertyAddress, 0, NULL, &dataSize );
+ if ( result != noErr ) {
+ errorText_ = "RtApiCore::getDeviceCount: OS-X error getting device info!";
+ error( RtAudioError::WARNING );
+ return 0;
+ }
+
+ return dataSize / sizeof( AudioDeviceID );
+}
+
+unsigned int RtApiCore :: getDefaultInputDevice( void )
+{
+ unsigned int nDevices = getDeviceCount();
+ if ( nDevices <= 1 ) return 0;
+
+ AudioDeviceID id;
+ UInt32 dataSize = sizeof( AudioDeviceID );
+ AudioObjectPropertyAddress property = { kAudioHardwarePropertyDefaultInputDevice, kAudioObjectPropertyScopeGlobal, kAudioObjectPropertyElementMaster };
+ OSStatus result = AudioObjectGetPropertyData( kAudioObjectSystemObject, &property, 0, NULL, &dataSize, &id );
+ if ( result != noErr ) {
+ errorText_ = "RtApiCore::getDefaultInputDevice: OS-X system error getting device.";
+ error( RtAudioError::WARNING );
+ return 0;
+ }
+
+ dataSize *= nDevices;
+ AudioDeviceID deviceList[ nDevices ];
+ property.mSelector = kAudioHardwarePropertyDevices;
+ result = AudioObjectGetPropertyData( kAudioObjectSystemObject, &property, 0, NULL, &dataSize, (void *) &deviceList );
+ if ( result != noErr ) {
+ errorText_ = "RtApiCore::getDefaultInputDevice: OS-X system error getting device IDs.";
+ error( RtAudioError::WARNING );
+ return 0;
+ }
+
+ for ( unsigned int i=0; i<nDevices; i++ )
+ if ( id == deviceList[i] ) return i;
+
+ errorText_ = "RtApiCore::getDefaultInputDevice: No default device found!";
+ error( RtAudioError::WARNING );
+ return 0;
+}
+
+unsigned int RtApiCore :: getDefaultOutputDevice( void )
+{
+ unsigned int nDevices = getDeviceCount();
+ if ( nDevices <= 1 ) return 0;
+
+ AudioDeviceID id;
+ UInt32 dataSize = sizeof( AudioDeviceID );
+ AudioObjectPropertyAddress property = { kAudioHardwarePropertyDefaultOutputDevice, kAudioObjectPropertyScopeGlobal, kAudioObjectPropertyElementMaster };
+ OSStatus result = AudioObjectGetPropertyData( kAudioObjectSystemObject, &property, 0, NULL, &dataSize, &id );
+ if ( result != noErr ) {
+ errorText_ = "RtApiCore::getDefaultOutputDevice: OS-X system error getting device.";
+ error( RtAudioError::WARNING );
+ return 0;
+ }
+
+ dataSize = sizeof( AudioDeviceID ) * nDevices;
+ AudioDeviceID deviceList[ nDevices ];
+ property.mSelector = kAudioHardwarePropertyDevices;
+ result = AudioObjectGetPropertyData( kAudioObjectSystemObject, &property, 0, NULL, &dataSize, (void *) &deviceList );
+ if ( result != noErr ) {
+ errorText_ = "RtApiCore::getDefaultOutputDevice: OS-X system error getting device IDs.";
+ error( RtAudioError::WARNING );
+ return 0;
+ }
+
+ for ( unsigned int i=0; i<nDevices; i++ )
+ if ( id == deviceList[i] ) return i;
+
+ errorText_ = "RtApiCore::getDefaultOutputDevice: No default device found!";
+ error( RtAudioError::WARNING );
+ return 0;
+}
+
+RtAudio::DeviceInfo RtApiCore :: getDeviceInfo( unsigned int device )
+{
+ RtAudio::DeviceInfo info;
+ info.probed = false;
+
+ // Get device ID
+ unsigned int nDevices = getDeviceCount();
+ if ( nDevices == 0 ) {
+ errorText_ = "RtApiCore::getDeviceInfo: no devices found!";
+ error( RtAudioError::INVALID_USE );
+ return info;
+ }
+
+ if ( device >= nDevices ) {
+ errorText_ = "RtApiCore::getDeviceInfo: device ID is invalid!";
+ error( RtAudioError::INVALID_USE );
+ return info;
+ }
+
+ AudioDeviceID deviceList[ nDevices ];
+ UInt32 dataSize = sizeof( AudioDeviceID ) * nDevices;
+ AudioObjectPropertyAddress property = { kAudioHardwarePropertyDevices,
+ kAudioObjectPropertyScopeGlobal,
+ kAudioObjectPropertyElementMaster };
+ OSStatus result = AudioObjectGetPropertyData( kAudioObjectSystemObject, &property,
+ 0, NULL, &dataSize, (void *) &deviceList );
+ if ( result != noErr ) {
+ errorText_ = "RtApiCore::getDeviceInfo: OS-X system error getting device IDs.";
+ error( RtAudioError::WARNING );
+ return info;
+ }
+
+ AudioDeviceID id = deviceList[ device ];
+
+ // Get the device name.
+ info.name.erase();
+ CFStringRef cfname;
+ dataSize = sizeof( CFStringRef );
+ property.mSelector = kAudioObjectPropertyManufacturer;
+ result = AudioObjectGetPropertyData( id, &property, 0, NULL, &dataSize, &cfname );
+ if ( result != noErr ) {
+ errorStream_ << "RtApiCore::probeDeviceInfo: system error (" << getErrorCode( result ) << ") getting device manufacturer.";
+ errorText_ = errorStream_.str();
+ error( RtAudioError::WARNING );
+ return info;
+ }
+
+ //const char *mname = CFStringGetCStringPtr( cfname, CFStringGetSystemEncoding() );
+ int length = CFStringGetLength(cfname);
+ char *mname = (char *)malloc(length * 3 + 1);
+#if defined( UNICODE ) || defined( _UNICODE )
+ CFStringGetCString(cfname, mname, length * 3 + 1, kCFStringEncodingUTF8);
+#else
+ CFStringGetCString(cfname, mname, length * 3 + 1, CFStringGetSystemEncoding());
+#endif
+ info.name.append( (const char *)mname, strlen(mname) );
+ info.name.append( ": " );
+ CFRelease( cfname );
+ free(mname);
+
+ property.mSelector = kAudioObjectPropertyName;
+ result = AudioObjectGetPropertyData( id, &property, 0, NULL, &dataSize, &cfname );
+ if ( result != noErr ) {
+ errorStream_ << "RtApiCore::probeDeviceInfo: system error (" << getErrorCode( result ) << ") getting device name.";
+ errorText_ = errorStream_.str();
+ error( RtAudioError::WARNING );
+ return info;
+ }
+
+ //const char *name = CFStringGetCStringPtr( cfname, CFStringGetSystemEncoding() );
+ length = CFStringGetLength(cfname);
+ char *name = (char *)malloc(length * 3 + 1);
+#if defined( UNICODE ) || defined( _UNICODE )
+ CFStringGetCString(cfname, name, length * 3 + 1, kCFStringEncodingUTF8);
+#else
+ CFStringGetCString(cfname, name, length * 3 + 1, CFStringGetSystemEncoding());
+#endif
+ info.name.append( (const char *)name, strlen(name) );
+ CFRelease( cfname );
+ free(name);
+
+ // Get the output stream "configuration".
+ AudioBufferList *bufferList = nil;
+ property.mSelector = kAudioDevicePropertyStreamConfiguration;
+ property.mScope = kAudioDevicePropertyScopeOutput;
+ // property.mElement = kAudioObjectPropertyElementWildcard;
+ dataSize = 0;
+ result = AudioObjectGetPropertyDataSize( id, &property, 0, NULL, &dataSize );
+ if ( result != noErr || dataSize == 0 ) {
+ errorStream_ << "RtApiCore::getDeviceInfo: system error (" << getErrorCode( result ) << ") getting output stream configuration info for device (" << device << ").";
+ errorText_ = errorStream_.str();
+ error( RtAudioError::WARNING );
+ return info;
+ }
+
+ // Allocate the AudioBufferList.
+ bufferList = (AudioBufferList *) malloc( dataSize );
+ if ( bufferList == NULL ) {
+ errorText_ = "RtApiCore::getDeviceInfo: memory error allocating output AudioBufferList.";
+ error( RtAudioError::WARNING );
+ return info;
+ }
+
+ result = AudioObjectGetPropertyData( id, &property, 0, NULL, &dataSize, bufferList );
+ if ( result != noErr || dataSize == 0 ) {
+ free( bufferList );
+ errorStream_ << "RtApiCore::getDeviceInfo: system error (" << getErrorCode( result ) << ") getting output stream configuration for device (" << device << ").";
+ errorText_ = errorStream_.str();
+ error( RtAudioError::WARNING );
+ return info;
+ }
+
+ // Get output channel information.
+ unsigned int i, nStreams = bufferList->mNumberBuffers;
+ for ( i=0; i<nStreams; i++ )
+ info.outputChannels += bufferList->mBuffers[i].mNumberChannels;
+ free( bufferList );
+
+ // Get the input stream "configuration".
+ property.mScope = kAudioDevicePropertyScopeInput;
+ result = AudioObjectGetPropertyDataSize( id, &property, 0, NULL, &dataSize );
+ if ( result != noErr || dataSize == 0 ) {
+ errorStream_ << "RtApiCore::getDeviceInfo: system error (" << getErrorCode( result ) << ") getting input stream configuration info for device (" << device << ").";
+ errorText_ = errorStream_.str();
+ error( RtAudioError::WARNING );
+ return info;
+ }
+
+ // Allocate the AudioBufferList.
+ bufferList = (AudioBufferList *) malloc( dataSize );
+ if ( bufferList == NULL ) {
+ errorText_ = "RtApiCore::getDeviceInfo: memory error allocating input AudioBufferList.";
+ error( RtAudioError::WARNING );
+ return info;
+ }
+
+ result = AudioObjectGetPropertyData( id, &property, 0, NULL, &dataSize, bufferList );
+ if (result != noErr || dataSize == 0) {
+ free( bufferList );
+ errorStream_ << "RtApiCore::getDeviceInfo: system error (" << getErrorCode( result ) << ") getting input stream configuration for device (" << device << ").";
+ errorText_ = errorStream_.str();
+ error( RtAudioError::WARNING );
+ return info;
+ }
+
+ // Get input channel information.
+ nStreams = bufferList->mNumberBuffers;
+ for ( i=0; i<nStreams; i++ )
+ info.inputChannels += bufferList->mBuffers[i].mNumberChannels;
+ free( bufferList );
+
+ // If device opens for both playback and capture, we determine the channels.
+ if ( info.outputChannels > 0 && info.inputChannels > 0 )
+ info.duplexChannels = (info.outputChannels > info.inputChannels) ? info.inputChannels : info.outputChannels;
+
+ // Probe the device sample rates.
+ bool isInput = false;
+ if ( info.outputChannels == 0 ) isInput = true;
+
+ // Determine the supported sample rates.
+ property.mSelector = kAudioDevicePropertyAvailableNominalSampleRates;
+ if ( isInput == false ) property.mScope = kAudioDevicePropertyScopeOutput;
+ result = AudioObjectGetPropertyDataSize( id, &property, 0, NULL, &dataSize );
+ if ( result != kAudioHardwareNoError || dataSize == 0 ) {
+ errorStream_ << "RtApiCore::getDeviceInfo: system error (" << getErrorCode( result ) << ") getting sample rate info.";
+ errorText_ = errorStream_.str();
+ error( RtAudioError::WARNING );
+ return info;
+ }
+
+ UInt32 nRanges = dataSize / sizeof( AudioValueRange );
+ AudioValueRange rangeList[ nRanges ];
+ result = AudioObjectGetPropertyData( id, &property, 0, NULL, &dataSize, &rangeList );
+ if ( result != kAudioHardwareNoError ) {
+ errorStream_ << "RtApiCore::getDeviceInfo: system error (" << getErrorCode( result ) << ") getting sample rates.";
+ errorText_ = errorStream_.str();
+ error( RtAudioError::WARNING );
+ return info;
+ }
+
+ // The sample rate reporting mechanism is a bit of a mystery. It
+ // seems that it can either return individual rates or a range of
+ // rates. I assume that if the min / max range values are the same,
+ // then that represents a single supported rate and if the min / max
+ // range values are different, the device supports an arbitrary
+ // range of values (though there might be multiple ranges, so we'll
+ // use the most conservative range).
+ Float64 minimumRate = 1.0, maximumRate = 10000000000.0;
+ bool haveValueRange = false;
+ info.sampleRates.clear();
+ for ( UInt32 i=0; i<nRanges; i++ ) {
+ if ( rangeList[i].mMinimum == rangeList[i].mMaximum ) {
+ unsigned int tmpSr = (unsigned int) rangeList[i].mMinimum;
+ info.sampleRates.push_back( tmpSr );
+
+ if ( !info.preferredSampleRate || ( tmpSr <= 48000 && tmpSr > info.preferredSampleRate ) )
+ info.preferredSampleRate = tmpSr;
+
+ } else {
+ haveValueRange = true;
+ if ( rangeList[i].mMinimum > minimumRate ) minimumRate = rangeList[i].mMinimum;
+ if ( rangeList[i].mMaximum < maximumRate ) maximumRate = rangeList[i].mMaximum;
+ }
+ }
+
+ if ( haveValueRange ) {
+ for ( unsigned int k=0; k<MAX_SAMPLE_RATES; k++ ) {
+ if ( SAMPLE_RATES[k] >= (unsigned int) minimumRate && SAMPLE_RATES[k] <= (unsigned int) maximumRate ) {
+ info.sampleRates.push_back( SAMPLE_RATES[k] );
+
+ if ( !info.preferredSampleRate || ( SAMPLE_RATES[k] <= 48000 && SAMPLE_RATES[k] > info.preferredSampleRate ) )
+ info.preferredSampleRate = SAMPLE_RATES[k];
+ }
+ }
+ }
+
+ // Sort and remove any redundant values
+ std::sort( info.sampleRates.begin(), info.sampleRates.end() );
+ info.sampleRates.erase( unique( info.sampleRates.begin(), info.sampleRates.end() ), info.sampleRates.end() );
+
+ if ( info.sampleRates.size() == 0 ) {
+ errorStream_ << "RtApiCore::probeDeviceInfo: No supported sample rates found for device (" << device << ").";
+ errorText_ = errorStream_.str();
+ error( RtAudioError::WARNING );
+ return info;
+ }
+
+ // CoreAudio always uses 32-bit floating point data for PCM streams.
+ // Thus, any other "physical" formats supported by the device are of
+ // no interest to the client.
+ info.nativeFormats = RTAUDIO_FLOAT32;
+
+ if ( info.outputChannels > 0 )
+ if ( getDefaultOutputDevice() == device ) info.isDefaultOutput = true;
+ if ( info.inputChannels > 0 )
+ if ( getDefaultInputDevice() == device ) info.isDefaultInput = true;
+
+ info.probed = true;
+ return info;
+}
+
+static OSStatus callbackHandler( AudioDeviceID inDevice,
+ const AudioTimeStamp* /*inNow*/,
+ const AudioBufferList* inInputData,
+ const AudioTimeStamp* /*inInputTime*/,
+ AudioBufferList* outOutputData,
+ const AudioTimeStamp* /*inOutputTime*/,
+ void* infoPointer )
+{
+ CallbackInfo *info = (CallbackInfo *) infoPointer;
+
+ RtApiCore *object = (RtApiCore *) info->object;
+ if ( object->callbackEvent( inDevice, inInputData, outOutputData ) == false )
+ return kAudioHardwareUnspecifiedError;
+ else
+ return kAudioHardwareNoError;
+}
+
+static OSStatus xrunListener( AudioObjectID /*inDevice*/,
+ UInt32 nAddresses,
+ const AudioObjectPropertyAddress properties[],
+ void* handlePointer )
+{
+ CoreHandle *handle = (CoreHandle *) handlePointer;
+ for ( UInt32 i=0; i<nAddresses; i++ ) {
+ if ( properties[i].mSelector == kAudioDeviceProcessorOverload ) {
+ if ( properties[i].mScope == kAudioDevicePropertyScopeInput )
+ handle->xrun[1] = true;
+ else
+ handle->xrun[0] = true;
+ }
+ }
+
+ return kAudioHardwareNoError;
+}
+
+static OSStatus rateListener( AudioObjectID inDevice,
+ UInt32 /*nAddresses*/,
+ const AudioObjectPropertyAddress /*properties*/[],
+ void* ratePointer )
+{
+ Float64 *rate = (Float64 *) ratePointer;
+ UInt32 dataSize = sizeof( Float64 );
+ AudioObjectPropertyAddress property = { kAudioDevicePropertyNominalSampleRate,
+ kAudioObjectPropertyScopeGlobal,
+ kAudioObjectPropertyElementMaster };
+ AudioObjectGetPropertyData( inDevice, &property, 0, NULL, &dataSize, rate );
+ return kAudioHardwareNoError;
+}
+
+bool RtApiCore :: probeDeviceOpen( unsigned int device, StreamMode mode, unsigned int channels,
+ unsigned int firstChannel, unsigned int sampleRate,
+ RtAudioFormat format, unsigned int *bufferSize,
+ RtAudio::StreamOptions *options )
+{
+ // Get device ID
+ unsigned int nDevices = getDeviceCount();
+ if ( nDevices == 0 ) {
+ // This should not happen because a check is made before this function is called.
+ errorText_ = "RtApiCore::probeDeviceOpen: no devices found!";
+ return FAILURE;
+ }
+
+ if ( device >= nDevices ) {
+ // This should not happen because a check is made before this function is called.
+ errorText_ = "RtApiCore::probeDeviceOpen: device ID is invalid!";
+ return FAILURE;
+ }
+
+ AudioDeviceID deviceList[ nDevices ];
+ UInt32 dataSize = sizeof( AudioDeviceID ) * nDevices;
+ AudioObjectPropertyAddress property = { kAudioHardwarePropertyDevices,
+ kAudioObjectPropertyScopeGlobal,
+ kAudioObjectPropertyElementMaster };
+ OSStatus result = AudioObjectGetPropertyData( kAudioObjectSystemObject, &property,
+ 0, NULL, &dataSize, (void *) &deviceList );
+ if ( result != noErr ) {
+ errorText_ = "RtApiCore::probeDeviceOpen: OS-X system error getting device IDs.";
+ return FAILURE;
+ }
+
+ AudioDeviceID id = deviceList[ device ];
+
+ // Setup for stream mode.
+ bool isInput = false;
+ if ( mode == INPUT ) {
+ isInput = true;
+ property.mScope = kAudioDevicePropertyScopeInput;
+ }
+ else
+ property.mScope = kAudioDevicePropertyScopeOutput;
+
+ // Get the stream "configuration".
+ AudioBufferList *bufferList = nil;
+ dataSize = 0;
+ property.mSelector = kAudioDevicePropertyStreamConfiguration;
+ result = AudioObjectGetPropertyDataSize( id, &property, 0, NULL, &dataSize );
+ if ( result != noErr || dataSize == 0 ) {
+ errorStream_ << "RtApiCore::probeDeviceOpen: system error (" << getErrorCode( result ) << ") getting stream configuration info for device (" << device << ").";
+ errorText_ = errorStream_.str();
+ return FAILURE;
+ }
+
+ // Allocate the AudioBufferList.
+ bufferList = (AudioBufferList *) malloc( dataSize );
+ if ( bufferList == NULL ) {
+ errorText_ = "RtApiCore::probeDeviceOpen: memory error allocating AudioBufferList.";
+ return FAILURE;
+ }
+
+ result = AudioObjectGetPropertyData( id, &property, 0, NULL, &dataSize, bufferList );
+ if (result != noErr || dataSize == 0) {
+ free( bufferList );
+ errorStream_ << "RtApiCore::probeDeviceOpen: system error (" << getErrorCode( result ) << ") getting stream configuration for device (" << device << ").";
+ errorText_ = errorStream_.str();
+ return FAILURE;
+ }
+
+ // Search for one or more streams that contain the desired number of
+ // channels. CoreAudio devices can have an arbitrary number of
+ // streams and each stream can have an arbitrary number of channels.
+ // For each stream, a single buffer of interleaved samples is
+ // provided. RtAudio prefers the use of one stream of interleaved
+ // data or multiple consecutive single-channel streams. However, we
+ // now support multiple consecutive multi-channel streams of
+ // interleaved data as well.
+ UInt32 iStream, offsetCounter = firstChannel;
+ UInt32 nStreams = bufferList->mNumberBuffers;
+ bool monoMode = false;
+ bool foundStream = false;
+
+ // First check that the device supports the requested number of
+ // channels.
+ UInt32 deviceChannels = 0;
+ for ( iStream=0; iStream<nStreams; iStream++ )
+ deviceChannels += bufferList->mBuffers[iStream].mNumberChannels;
+
+ if ( deviceChannels < ( channels + firstChannel ) ) {
+ free( bufferList );
+ errorStream_ << "RtApiCore::probeDeviceOpen: the device (" << device << ") does not support the requested channel count.";
+ errorText_ = errorStream_.str();
+ return FAILURE;
+ }
+
+ // Look for a single stream meeting our needs.
+ UInt32 firstStream, streamCount = 1, streamChannels = 0, channelOffset = 0;
+ for ( iStream=0; iStream<nStreams; iStream++ ) {
+ streamChannels = bufferList->mBuffers[iStream].mNumberChannels;
+ if ( streamChannels >= channels + offsetCounter ) {
+ firstStream = iStream;
+ channelOffset = offsetCounter;
+ foundStream = true;
+ break;
+ }
+ if ( streamChannels > offsetCounter ) break;
+ offsetCounter -= streamChannels;
+ }
+
+ // If we didn't find a single stream above, then we should be able
+ // to meet the channel specification with multiple streams.
+ if ( foundStream == false ) {
+ monoMode = true;
+ offsetCounter = firstChannel;
+ for ( iStream=0; iStream<nStreams; iStream++ ) {
+ streamChannels = bufferList->mBuffers[iStream].mNumberChannels;
+ if ( streamChannels > offsetCounter ) break;
+ offsetCounter -= streamChannels;
+ }
+
+ firstStream = iStream;
+ channelOffset = offsetCounter;
+ Int32 channelCounter = channels + offsetCounter - streamChannels;
+
+ if ( streamChannels > 1 ) monoMode = false;
+ while ( channelCounter > 0 ) {
+ streamChannels = bufferList->mBuffers[++iStream].mNumberChannels;
+ if ( streamChannels > 1 ) monoMode = false;
+ channelCounter -= streamChannels;
+ streamCount++;
+ }
+ }
+
+ free( bufferList );
+
+ // Determine the buffer size.
+ AudioValueRange bufferRange;
+ dataSize = sizeof( AudioValueRange );
+ property.mSelector = kAudioDevicePropertyBufferFrameSizeRange;
+ result = AudioObjectGetPropertyData( id, &property, 0, NULL, &dataSize, &bufferRange );
+
+ if ( result != noErr ) {
+ errorStream_ << "RtApiCore::probeDeviceOpen: system error (" << getErrorCode( result ) << ") getting buffer size range for device (" << device << ").";
+ errorText_ = errorStream_.str();
+ return FAILURE;
+ }
+
+ if ( bufferRange.mMinimum > *bufferSize ) *bufferSize = (unsigned long) bufferRange.mMinimum;
+ else if ( bufferRange.mMaximum < *bufferSize ) *bufferSize = (unsigned long) bufferRange.mMaximum;
+ if ( options && options->flags & RTAUDIO_MINIMIZE_LATENCY ) *bufferSize = (unsigned long) bufferRange.mMinimum;
+
+ // Set the buffer size. For multiple streams, I'm assuming we only
+ // need to make this setting for the master channel.
+ UInt32 theSize = (UInt32) *bufferSize;
+ dataSize = sizeof( UInt32 );
+ property.mSelector = kAudioDevicePropertyBufferFrameSize;
+ result = AudioObjectSetPropertyData( id, &property, 0, NULL, dataSize, &theSize );
+
+ if ( result != noErr ) {
+ errorStream_ << "RtApiCore::probeDeviceOpen: system error (" << getErrorCode( result ) << ") setting the buffer size for device (" << device << ").";
+ errorText_ = errorStream_.str();
+ return FAILURE;
+ }
+
+ // If attempting to setup a duplex stream, the bufferSize parameter
+ // MUST be the same in both directions!
+ *bufferSize = theSize;
+ if ( stream_.mode == OUTPUT && mode == INPUT && *bufferSize != stream_.bufferSize ) {
+ errorStream_ << "RtApiCore::probeDeviceOpen: system error setting buffer size for duplex stream on device (" << device << ").";
+ errorText_ = errorStream_.str();
+ return FAILURE;
+ }
+
+ stream_.bufferSize = *bufferSize;
+ stream_.nBuffers = 1;
+
+ // Try to set "hog" mode ... it's not clear to me this is working.
+ if ( options && options->flags & RTAUDIO_HOG_DEVICE ) {
+ pid_t hog_pid;
+ dataSize = sizeof( hog_pid );
+ property.mSelector = kAudioDevicePropertyHogMode;
+ result = AudioObjectGetPropertyData( id, &property, 0, NULL, &dataSize, &hog_pid );
+ if ( result != noErr ) {
+ errorStream_ << "RtApiCore::probeDeviceOpen: system error (" << getErrorCode( result ) << ") getting 'hog' state!";
+ errorText_ = errorStream_.str();
+ return FAILURE;
+ }
+
+ if ( hog_pid != getpid() ) {
+ hog_pid = getpid();
+ result = AudioObjectSetPropertyData( id, &property, 0, NULL, dataSize, &hog_pid );
+ if ( result != noErr ) {
+ errorStream_ << "RtApiCore::probeDeviceOpen: system error (" << getErrorCode( result ) << ") setting 'hog' state!";
+ errorText_ = errorStream_.str();
+ return FAILURE;
+ }
+ }
+ }
+
+ // Check and if necessary, change the sample rate for the device.
+ Float64 nominalRate;
+ dataSize = sizeof( Float64 );
+ property.mSelector = kAudioDevicePropertyNominalSampleRate;
+ result = AudioObjectGetPropertyData( id, &property, 0, NULL, &dataSize, &nominalRate );
+ if ( result != noErr ) {
+ errorStream_ << "RtApiCore::probeDeviceOpen: system error (" << getErrorCode( result ) << ") getting current sample rate.";
+ errorText_ = errorStream_.str();
+ return FAILURE;
+ }
+
+ // Only change the sample rate if off by more than 1 Hz.
+ if ( fabs( nominalRate - (double)sampleRate ) > 1.0 ) {
+
+ // Set a property listener for the sample rate change
+ Float64 reportedRate = 0.0;
+ AudioObjectPropertyAddress tmp = { kAudioDevicePropertyNominalSampleRate, kAudioObjectPropertyScopeGlobal, kAudioObjectPropertyElementMaster };
+ result = AudioObjectAddPropertyListener( id, &tmp, rateListener, (void *) &reportedRate );
+ if ( result != noErr ) {
+ errorStream_ << "RtApiCore::probeDeviceOpen: system error (" << getErrorCode( result ) << ") setting sample rate property listener for device (" << device << ").";
+ errorText_ = errorStream_.str();
+ return FAILURE;
+ }
+
+ nominalRate = (Float64) sampleRate;
+ result = AudioObjectSetPropertyData( id, &property, 0, NULL, dataSize, &nominalRate );
+ if ( result != noErr ) {
+ AudioObjectRemovePropertyListener( id, &tmp, rateListener, (void *) &reportedRate );
+ errorStream_ << "RtApiCore::probeDeviceOpen: system error (" << getErrorCode( result ) << ") setting sample rate for device (" << device << ").";
+ errorText_ = errorStream_.str();
+ return FAILURE;
+ }
+
+ // Now wait until the reported nominal rate is what we just set.
+ UInt32 microCounter = 0;
+ while ( reportedRate != nominalRate ) {
+ microCounter += 5000;
+ if ( microCounter > 5000000 ) break;
+ usleep( 5000 );
+ }
+
+ // Remove the property listener.
+ AudioObjectRemovePropertyListener( id, &tmp, rateListener, (void *) &reportedRate );
+
+ if ( microCounter > 5000000 ) {
+ errorStream_ << "RtApiCore::probeDeviceOpen: timeout waiting for sample rate update for device (" << device << ").";
+ errorText_ = errorStream_.str();
+ return FAILURE;
+ }
+ }
+
+ // Now set the stream format for all streams. Also, check the
+ // physical format of the device and change that if necessary.
+ AudioStreamBasicDescription description;
+ dataSize = sizeof( AudioStreamBasicDescription );
+ property.mSelector = kAudioStreamPropertyVirtualFormat;
+ result = AudioObjectGetPropertyData( id, &property, 0, NULL, &dataSize, &description );
+ if ( result != noErr ) {
+ errorStream_ << "RtApiCore::probeDeviceOpen: system error (" << getErrorCode( result ) << ") getting stream format for device (" << device << ").";
+ errorText_ = errorStream_.str();
+ return FAILURE;
+ }
+
+ // Set the sample rate and data format id. However, only make the
+ // change if the sample rate is not within 1.0 of the desired
+ // rate and the format is not linear pcm.
+ bool updateFormat = false;
+ if ( fabs( description.mSampleRate - (Float64)sampleRate ) > 1.0 ) {
+ description.mSampleRate = (Float64) sampleRate;
+ updateFormat = true;
+ }
+
+ if ( description.mFormatID != kAudioFormatLinearPCM ) {
+ description.mFormatID = kAudioFormatLinearPCM;
+ updateFormat = true;
+ }
+
+ if ( updateFormat ) {
+ result = AudioObjectSetPropertyData( id, &property, 0, NULL, dataSize, &description );
+ if ( result != noErr ) {
+ errorStream_ << "RtApiCore::probeDeviceOpen: system error (" << getErrorCode( result ) << ") setting sample rate or data format for device (" << device << ").";
+ errorText_ = errorStream_.str();
+ return FAILURE;
+ }
+ }
+
+ // Now check the physical format.
+ property.mSelector = kAudioStreamPropertyPhysicalFormat;
+ result = AudioObjectGetPropertyData( id, &property, 0, NULL, &dataSize, &description );
+ if ( result != noErr ) {
+ errorStream_ << "RtApiCore::probeDeviceOpen: system error (" << getErrorCode( result ) << ") getting stream physical format for device (" << device << ").";
+ errorText_ = errorStream_.str();
+ return FAILURE;
+ }
+
+ //std::cout << "Current physical stream format:" << std::endl;
+ //std::cout << " mBitsPerChan = " << description.mBitsPerChannel << std::endl;
+ //std::cout << " aligned high = " << (description.mFormatFlags & kAudioFormatFlagIsAlignedHigh) << ", isPacked = " << (description.mFormatFlags & kAudioFormatFlagIsPacked) << std::endl;
+ //std::cout << " bytesPerFrame = " << description.mBytesPerFrame << std::endl;
+ //std::cout << " sample rate = " << description.mSampleRate << std::endl;
+
+ if ( description.mFormatID != kAudioFormatLinearPCM || description.mBitsPerChannel < 16 ) {
+ description.mFormatID = kAudioFormatLinearPCM;
+ //description.mSampleRate = (Float64) sampleRate;
+ AudioStreamBasicDescription testDescription = description;
+ UInt32 formatFlags;
+
+ // We'll try higher bit rates first and then work our way down.
+ std::vector< std::pair<UInt32, UInt32> > physicalFormats;
+ formatFlags = (description.mFormatFlags | kLinearPCMFormatFlagIsFloat) & ~kLinearPCMFormatFlagIsSignedInteger;
+ physicalFormats.push_back( std::pair<Float32, UInt32>( 32, formatFlags ) );
+ formatFlags = (description.mFormatFlags | kLinearPCMFormatFlagIsSignedInteger | kAudioFormatFlagIsPacked) & ~kLinearPCMFormatFlagIsFloat;
+ physicalFormats.push_back( std::pair<Float32, UInt32>( 32, formatFlags ) );
+ physicalFormats.push_back( std::pair<Float32, UInt32>( 24, formatFlags ) ); // 24-bit packed
+ formatFlags &= ~( kAudioFormatFlagIsPacked | kAudioFormatFlagIsAlignedHigh );
+ physicalFormats.push_back( std::pair<Float32, UInt32>( 24.2, formatFlags ) ); // 24-bit in 4 bytes, aligned low
+ formatFlags |= kAudioFormatFlagIsAlignedHigh;
+ physicalFormats.push_back( std::pair<Float32, UInt32>( 24.4, formatFlags ) ); // 24-bit in 4 bytes, aligned high
+ formatFlags = (description.mFormatFlags | kLinearPCMFormatFlagIsSignedInteger | kAudioFormatFlagIsPacked) & ~kLinearPCMFormatFlagIsFloat;
+ physicalFormats.push_back( std::pair<Float32, UInt32>( 16, formatFlags ) );
+ physicalFormats.push_back( std::pair<Float32, UInt32>( 8, formatFlags ) );
+
+ bool setPhysicalFormat = false;
+ for( unsigned int i=0; i<physicalFormats.size(); i++ ) {
+ testDescription = description;
+ testDescription.mBitsPerChannel = (UInt32) physicalFormats[i].first;
+ testDescription.mFormatFlags = physicalFormats[i].second;
+ if ( (24 == (UInt32)physicalFormats[i].first) && ~( physicalFormats[i].second & kAudioFormatFlagIsPacked ) )
+ testDescription.mBytesPerFrame = 4 * testDescription.mChannelsPerFrame;
+ else
+ testDescription.mBytesPerFrame = testDescription.mBitsPerChannel/8 * testDescription.mChannelsPerFrame;
+ testDescription.mBytesPerPacket = testDescription.mBytesPerFrame * testDescription.mFramesPerPacket;
+ result = AudioObjectSetPropertyData( id, &property, 0, NULL, dataSize, &testDescription );
+ if ( result == noErr ) {
+ setPhysicalFormat = true;
+ //std::cout << "Updated physical stream format:" << std::endl;
+ //std::cout << " mBitsPerChan = " << testDescription.mBitsPerChannel << std::endl;
+ //std::cout << " aligned high = " << (testDescription.mFormatFlags & kAudioFormatFlagIsAlignedHigh) << ", isPacked = " << (testDescription.mFormatFlags & kAudioFormatFlagIsPacked) << std::endl;
+ //std::cout << " bytesPerFrame = " << testDescription.mBytesPerFrame << std::endl;
+ //std::cout << " sample rate = " << testDescription.mSampleRate << std::endl;
+ break;
+ }
+ }
+
+ if ( !setPhysicalFormat ) {
+ errorStream_ << "RtApiCore::probeDeviceOpen: system error (" << getErrorCode( result ) << ") setting physical data format for device (" << device << ").";
+ errorText_ = errorStream_.str();
+ return FAILURE;
+ }
+ } // done setting virtual/physical formats.
+
+ // Get the stream / device latency.
+ UInt32 latency;
+ dataSize = sizeof( UInt32 );
+ property.mSelector = kAudioDevicePropertyLatency;
+ if ( AudioObjectHasProperty( id, &property ) == true ) {
+ result = AudioObjectGetPropertyData( id, &property, 0, NULL, &dataSize, &latency );
+ if ( result == kAudioHardwareNoError ) stream_.latency[ mode ] = latency;
+ else {
+ errorStream_ << "RtApiCore::probeDeviceOpen: system error (" << getErrorCode( result ) << ") getting device latency for device (" << device << ").";
+ errorText_ = errorStream_.str();
+ error( RtAudioError::WARNING );
+ }
+ }
+
+ // Byte-swapping: According to AudioHardware.h, the stream data will
+ // always be presented in native-endian format, so we should never
+ // need to byte swap.
+ stream_.doByteSwap[mode] = false;
+
+ // From the CoreAudio documentation, PCM data must be supplied as
+ // 32-bit floats.
+ stream_.userFormat = format;
+ stream_.deviceFormat[mode] = RTAUDIO_FLOAT32;
+
+ if ( streamCount == 1 )
+ stream_.nDeviceChannels[mode] = description.mChannelsPerFrame;
+ else // multiple streams
+ stream_.nDeviceChannels[mode] = channels;
+ stream_.nUserChannels[mode] = channels;
+ stream_.channelOffset[mode] = channelOffset; // offset within a CoreAudio stream
+ if ( options && options->flags & RTAUDIO_NONINTERLEAVED ) stream_.userInterleaved = false;
+ else stream_.userInterleaved = true;
+ stream_.deviceInterleaved[mode] = true;
+ if ( monoMode == true ) stream_.deviceInterleaved[mode] = false;
+
+ // Set flags for buffer conversion.
+ stream_.doConvertBuffer[mode] = false;
+ if ( stream_.userFormat != stream_.deviceFormat[mode] )
+ stream_.doConvertBuffer[mode] = true;
+ if ( stream_.nUserChannels[mode] < stream_.nDeviceChannels[mode] )
+ stream_.doConvertBuffer[mode] = true;
+ if ( streamCount == 1 ) {
+ if ( stream_.nUserChannels[mode] > 1 &&
+ stream_.userInterleaved != stream_.deviceInterleaved[mode] )
+ stream_.doConvertBuffer[mode] = true;
+ }
+ else if ( monoMode && stream_.userInterleaved )
+ stream_.doConvertBuffer[mode] = true;
+
+ // Allocate our CoreHandle structure for the stream.
+ CoreHandle *handle = 0;
+ if ( stream_.apiHandle == 0 ) {
+ try {
+ handle = new CoreHandle;
+ }
+ catch ( std::bad_alloc& ) {
+ errorText_ = "RtApiCore::probeDeviceOpen: error allocating CoreHandle memory.";
+ goto error;
+ }
+
+ if ( pthread_cond_init( &handle->condition, NULL ) ) {
+ errorText_ = "RtApiCore::probeDeviceOpen: error initializing pthread condition variable.";
+ goto error;
+ }
+ stream_.apiHandle = (void *) handle;
+ }
+ else
+ handle = (CoreHandle *) stream_.apiHandle;
+ handle->iStream[mode] = firstStream;
+ handle->nStreams[mode] = streamCount;
+ handle->id[mode] = id;
+
+ // Allocate necessary internal buffers.
+ unsigned long bufferBytes;
+ bufferBytes = stream_.nUserChannels[mode] * *bufferSize * formatBytes( stream_.userFormat );
+ // stream_.userBuffer[mode] = (char *) calloc( bufferBytes, 1 );
+ stream_.userBuffer[mode] = (char *) malloc( bufferBytes * sizeof(char) );
+ memset( stream_.userBuffer[mode], 0, bufferBytes * sizeof(char) );
+ if ( stream_.userBuffer[mode] == NULL ) {
+ errorText_ = "RtApiCore::probeDeviceOpen: error allocating user buffer memory.";
+ goto error;
+ }
+
+ // If possible, we will make use of the CoreAudio stream buffers as
+ // "device buffers". However, we can't do this if using multiple
+ // streams.
+ if ( stream_.doConvertBuffer[mode] && handle->nStreams[mode] > 1 ) {
+
+ bool makeBuffer = true;
+ bufferBytes = stream_.nDeviceChannels[mode] * formatBytes( stream_.deviceFormat[mode] );
+ if ( mode == INPUT ) {
+ if ( stream_.mode == OUTPUT && stream_.deviceBuffer ) {
+ unsigned long bytesOut = stream_.nDeviceChannels[0] * formatBytes( stream_.deviceFormat[0] );
+ if ( bufferBytes <= bytesOut ) makeBuffer = false;
+ }
+ }
+
+ if ( makeBuffer ) {
+ bufferBytes *= *bufferSize;
+ if ( stream_.deviceBuffer ) free( stream_.deviceBuffer );
+ stream_.deviceBuffer = (char *) calloc( bufferBytes, 1 );
+ if ( stream_.deviceBuffer == NULL ) {
+ errorText_ = "RtApiCore::probeDeviceOpen: error allocating device buffer memory.";
+ goto error;
+ }
+ }
+ }
+
+ stream_.sampleRate = sampleRate;
+ stream_.device[mode] = device;
+ stream_.state = STREAM_STOPPED;
+ stream_.callbackInfo.object = (void *) this;
+
+ // Setup the buffer conversion information structure.
+ if ( stream_.doConvertBuffer[mode] ) {
+ if ( streamCount > 1 ) setConvertInfo( mode, 0 );
+ else setConvertInfo( mode, channelOffset );
+ }
+
+ if ( mode == INPUT && stream_.mode == OUTPUT && stream_.device[0] == device )
+ // Only one callback procedure per device.
+ stream_.mode = DUPLEX;
+ else {
+#if defined( MAC_OS_X_VERSION_10_5 ) && ( MAC_OS_X_VERSION_MIN_REQUIRED >= MAC_OS_X_VERSION_10_5 )
+ result = AudioDeviceCreateIOProcID( id, callbackHandler, (void *) &stream_.callbackInfo, &handle->procId[mode] );
+#else
+ // deprecated in favor of AudioDeviceCreateIOProcID()
+ result = AudioDeviceAddIOProc( id, callbackHandler, (void *) &stream_.callbackInfo );
+#endif
+ if ( result != noErr ) {
+ errorStream_ << "RtApiCore::probeDeviceOpen: system error setting callback for device (" << device << ").";
+ errorText_ = errorStream_.str();
+ goto error;
+ }
+ if ( stream_.mode == OUTPUT && mode == INPUT )
+ stream_.mode = DUPLEX;
+ else
+ stream_.mode = mode;
+ }
+
+ // Setup the device property listener for over/underload.
+ property.mSelector = kAudioDeviceProcessorOverload;
+ property.mScope = kAudioObjectPropertyScopeGlobal;
+ result = AudioObjectAddPropertyListener( id, &property, xrunListener, (void *) handle );
+
+ return SUCCESS;
+
+ error:
+ if ( handle ) {
+ pthread_cond_destroy( &handle->condition );
+ delete handle;
+ stream_.apiHandle = 0;
+ }
+
+ for ( int i=0; i<2; i++ ) {
+ if ( stream_.userBuffer[i] ) {
+ free( stream_.userBuffer[i] );
+ stream_.userBuffer[i] = 0;
+ }
+ }
+
+ if ( stream_.deviceBuffer ) {
+ free( stream_.deviceBuffer );
+ stream_.deviceBuffer = 0;
+ }
+
+ stream_.state = STREAM_CLOSED;
+ return FAILURE;
+}
+
+void RtApiCore :: closeStream( void )
+{
+ if ( stream_.state == STREAM_CLOSED ) {
+ errorText_ = "RtApiCore::closeStream(): no open stream to close!";
+ error( RtAudioError::WARNING );
+ return;
+ }
+
+ CoreHandle *handle = (CoreHandle *) stream_.apiHandle;
+ if ( stream_.mode == OUTPUT || stream_.mode == DUPLEX ) {
+ if (handle) {
+ AudioObjectPropertyAddress property = { kAudioHardwarePropertyDevices,
+ kAudioObjectPropertyScopeGlobal,
+ kAudioObjectPropertyElementMaster };
+
+ property.mSelector = kAudioDeviceProcessorOverload;
+ property.mScope = kAudioObjectPropertyScopeGlobal;
+ if (AudioObjectRemovePropertyListener( handle->id[0], &property, xrunListener, (void *) handle ) != noErr) {
+ errorText_ = "RtApiCore::closeStream(): error removing property listener!";
+ error( RtAudioError::WARNING );
+ }
+ }
+ if ( stream_.state == STREAM_RUNNING )
+ AudioDeviceStop( handle->id[0], callbackHandler );
+#if defined( MAC_OS_X_VERSION_10_5 ) && ( MAC_OS_X_VERSION_MIN_REQUIRED >= MAC_OS_X_VERSION_10_5 )
+ AudioDeviceDestroyIOProcID( handle->id[0], handle->procId[0] );
+#else
+ // deprecated in favor of AudioDeviceDestroyIOProcID()
+ AudioDeviceRemoveIOProc( handle->id[0], callbackHandler );
+#endif
+ }
+
+ if ( stream_.mode == INPUT || ( stream_.mode == DUPLEX && stream_.device[0] != stream_.device[1] ) ) {
+ if (handle) {
+ AudioObjectPropertyAddress property = { kAudioHardwarePropertyDevices,
+ kAudioObjectPropertyScopeGlobal,
+ kAudioObjectPropertyElementMaster };
+
+ property.mSelector = kAudioDeviceProcessorOverload;
+ property.mScope = kAudioObjectPropertyScopeGlobal;
+ if (AudioObjectRemovePropertyListener( handle->id[1], &property, xrunListener, (void *) handle ) != noErr) {
+ errorText_ = "RtApiCore::closeStream(): error removing property listener!";
+ error( RtAudioError::WARNING );
+ }
+ }
+ if ( stream_.state == STREAM_RUNNING )
+ AudioDeviceStop( handle->id[1], callbackHandler );
+#if defined( MAC_OS_X_VERSION_10_5 ) && ( MAC_OS_X_VERSION_MIN_REQUIRED >= MAC_OS_X_VERSION_10_5 )
+ AudioDeviceDestroyIOProcID( handle->id[1], handle->procId[1] );
+#else
+ // deprecated in favor of AudioDeviceDestroyIOProcID()
+ AudioDeviceRemoveIOProc( handle->id[1], callbackHandler );
+#endif
+ }
+
+ for ( int i=0; i<2; i++ ) {
+ if ( stream_.userBuffer[i] ) {
+ free( stream_.userBuffer[i] );
+ stream_.userBuffer[i] = 0;
+ }
+ }
+
+ if ( stream_.deviceBuffer ) {
+ free( stream_.deviceBuffer );
+ stream_.deviceBuffer = 0;
+ }
+
+ // Destroy pthread condition variable.
+ pthread_cond_destroy( &handle->condition );
+ delete handle;
+ stream_.apiHandle = 0;
+
+ stream_.mode = UNINITIALIZED;
+ stream_.state = STREAM_CLOSED;
+}
+
+void RtApiCore :: startStream( void )
+{
+ verifyStream();
+ if ( stream_.state == STREAM_RUNNING ) {
+ errorText_ = "RtApiCore::startStream(): the stream is already running!";
+ error( RtAudioError::WARNING );
+ return;
+ }
+
+ OSStatus result = noErr;
+ CoreHandle *handle = (CoreHandle *) stream_.apiHandle;
+ if ( stream_.mode == OUTPUT || stream_.mode == DUPLEX ) {
+
+ result = AudioDeviceStart( handle->id[0], callbackHandler );
+ if ( result != noErr ) {
+ errorStream_ << "RtApiCore::startStream: system error (" << getErrorCode( result ) << ") starting callback procedure on device (" << stream_.device[0] << ").";
+ errorText_ = errorStream_.str();
+ goto unlock;
+ }
+ }
+
+ if ( stream_.mode == INPUT ||
+ ( stream_.mode == DUPLEX && stream_.device[0] != stream_.device[1] ) ) {
+
+ result = AudioDeviceStart( handle->id[1], callbackHandler );
+ if ( result != noErr ) {
+ errorStream_ << "RtApiCore::startStream: system error starting input callback procedure on device (" << stream_.device[1] << ").";
+ errorText_ = errorStream_.str();
+ goto unlock;
+ }
+ }
+
+ handle->drainCounter = 0;
+ handle->internalDrain = false;
+ stream_.state = STREAM_RUNNING;
+
+ unlock:
+ if ( result == noErr ) return;
+ error( RtAudioError::SYSTEM_ERROR );
+}
+
+void RtApiCore :: stopStream( void )
+{
+ verifyStream();
+ if ( stream_.state == STREAM_STOPPED ) {
+ errorText_ = "RtApiCore::stopStream(): the stream is already stopped!";
+ error( RtAudioError::WARNING );
+ return;
+ }
+
+ OSStatus result = noErr;
+ CoreHandle *handle = (CoreHandle *) stream_.apiHandle;
+ if ( stream_.mode == OUTPUT || stream_.mode == DUPLEX ) {
+
+ if ( handle->drainCounter == 0 ) {
+ handle->drainCounter = 2;
+ pthread_cond_wait( &handle->condition, &stream_.mutex ); // block until signaled
+ }
+
+ result = AudioDeviceStop( handle->id[0], callbackHandler );
+ if ( result != noErr ) {
+ errorStream_ << "RtApiCore::stopStream: system error (" << getErrorCode( result ) << ") stopping callback procedure on device (" << stream_.device[0] << ").";
+ errorText_ = errorStream_.str();
+ goto unlock;
+ }
+ }
+
+ if ( stream_.mode == INPUT || ( stream_.mode == DUPLEX && stream_.device[0] != stream_.device[1] ) ) {
+
+ result = AudioDeviceStop( handle->id[1], callbackHandler );
+ if ( result != noErr ) {
+ errorStream_ << "RtApiCore::stopStream: system error (" << getErrorCode( result ) << ") stopping input callback procedure on device (" << stream_.device[1] << ").";
+ errorText_ = errorStream_.str();
+ goto unlock;
+ }
+ }
+
+ stream_.state = STREAM_STOPPED;
+
+ unlock:
+ if ( result == noErr ) return;
+ error( RtAudioError::SYSTEM_ERROR );
+}
+
+void RtApiCore :: abortStream( void )
+{
+ verifyStream();
+ if ( stream_.state == STREAM_STOPPED ) {
+ errorText_ = "RtApiCore::abortStream(): the stream is already stopped!";
+ error( RtAudioError::WARNING );
+ return;
+ }
+
+ CoreHandle *handle = (CoreHandle *) stream_.apiHandle;
+ handle->drainCounter = 2;
+
+ stopStream();
+}
+
+// This function will be called by a spawned thread when the user
+// callback function signals that the stream should be stopped or
+// aborted. It is better to handle it this way because the
+// callbackEvent() function probably should return before the AudioDeviceStop()
+// function is called.
+static void *coreStopStream( void *ptr )
+{
+ CallbackInfo *info = (CallbackInfo *) ptr;
+ RtApiCore *object = (RtApiCore *) info->object;
+
+ object->stopStream();
+ pthread_exit( NULL );
+}
+
+bool RtApiCore :: callbackEvent( AudioDeviceID deviceId,
+ const AudioBufferList *inBufferList,
+ const AudioBufferList *outBufferList )
+{
+ if ( stream_.state == STREAM_STOPPED || stream_.state == STREAM_STOPPING ) return SUCCESS;
+ if ( stream_.state == STREAM_CLOSED ) {
+ errorText_ = "RtApiCore::callbackEvent(): the stream is closed ... this shouldn't happen!";
+ error( RtAudioError::WARNING );
+ return FAILURE;
+ }
+
+ CallbackInfo *info = (CallbackInfo *) &stream_.callbackInfo;
+ CoreHandle *handle = (CoreHandle *) stream_.apiHandle;
+
+ // Check if we were draining the stream and signal is finished.
+ if ( handle->drainCounter > 3 ) {
+ ThreadHandle threadId;
+
+ stream_.state = STREAM_STOPPING;
+ if ( handle->internalDrain == true )
+ pthread_create( &threadId, NULL, coreStopStream, info );
+ else // external call to stopStream()
+ pthread_cond_signal( &handle->condition );
+ return SUCCESS;
+ }
+
+ AudioDeviceID outputDevice = handle->id[0];
+
+ // Invoke user callback to get fresh output data UNLESS we are
+ // draining stream or duplex mode AND the input/output devices are
+ // different AND this function is called for the input device.
+ if ( handle->drainCounter == 0 && ( stream_.mode != DUPLEX || deviceId == outputDevice ) ) {
+ RtAudioCallback callback = (RtAudioCallback) info->callback;
+ double streamTime = getStreamTime();
+ RtAudioStreamStatus status = 0;
+ if ( stream_.mode != INPUT && handle->xrun[0] == true ) {
+ status |= RTAUDIO_OUTPUT_UNDERFLOW;
+ handle->xrun[0] = false;
+ }
+ if ( stream_.mode != OUTPUT && handle->xrun[1] == true ) {
+ status |= RTAUDIO_INPUT_OVERFLOW;
+ handle->xrun[1] = false;
+ }
+
+ int cbReturnValue = callback( stream_.userBuffer[0], stream_.userBuffer[1],
+ stream_.bufferSize, streamTime, status, info->userData );
+ if ( cbReturnValue == 2 ) {
+ stream_.state = STREAM_STOPPING;
+ handle->drainCounter = 2;
+ abortStream();
+ return SUCCESS;
+ }
+ else if ( cbReturnValue == 1 ) {
+ handle->drainCounter = 1;
+ handle->internalDrain = true;
+ }
+ }
+
+ if ( stream_.mode == OUTPUT || ( stream_.mode == DUPLEX && deviceId == outputDevice ) ) {
+
+ if ( handle->drainCounter > 1 ) { // write zeros to the output stream
+
+ if ( handle->nStreams[0] == 1 ) {
+ memset( outBufferList->mBuffers[handle->iStream[0]].mData,
+ 0,
+ outBufferList->mBuffers[handle->iStream[0]].mDataByteSize );
+ }
+ else { // fill multiple streams with zeros
+ for ( unsigned int i=0; i<handle->nStreams[0]; i++ ) {
+ memset( outBufferList->mBuffers[handle->iStream[0]+i].mData,
+ 0,
+ outBufferList->mBuffers[handle->iStream[0]+i].mDataByteSize );
+ }
+ }
+ }
+ else if ( handle->nStreams[0] == 1 ) {
+ if ( stream_.doConvertBuffer[0] ) { // convert directly to CoreAudio stream buffer
+ convertBuffer( (char *) outBufferList->mBuffers[handle->iStream[0]].mData,
+ stream_.userBuffer[0], stream_.convertInfo[0] );
+ }
+ else { // copy from user buffer
+ memcpy( outBufferList->mBuffers[handle->iStream[0]].mData,
+ stream_.userBuffer[0],
+ outBufferList->mBuffers[handle->iStream[0]].mDataByteSize );
+ }
+ }
+ else { // fill multiple streams
+ Float32 *inBuffer = (Float32 *) stream_.userBuffer[0];
+ if ( stream_.doConvertBuffer[0] ) {
+ convertBuffer( stream_.deviceBuffer, stream_.userBuffer[0], stream_.convertInfo[0] );
+ inBuffer = (Float32 *) stream_.deviceBuffer;
+ }
+
+ if ( stream_.deviceInterleaved[0] == false ) { // mono mode
+ UInt32 bufferBytes = outBufferList->mBuffers[handle->iStream[0]].mDataByteSize;
+ for ( unsigned int i=0; i<stream_.nUserChannels[0]; i++ ) {
+ memcpy( outBufferList->mBuffers[handle->iStream[0]+i].mData,
+ (void *)&inBuffer[i*stream_.bufferSize], bufferBytes );
+ }
+ }
+ else { // fill multiple multi-channel streams with interleaved data
+ UInt32 streamChannels, channelsLeft, inJump, outJump, inOffset;
+ Float32 *out, *in;
+
+ bool inInterleaved = ( stream_.userInterleaved ) ? true : false;
+ UInt32 inChannels = stream_.nUserChannels[0];
+ if ( stream_.doConvertBuffer[0] ) {
+ inInterleaved = true; // device buffer will always be interleaved for nStreams > 1 and not mono mode
+ inChannels = stream_.nDeviceChannels[0];
+ }
+
+ if ( inInterleaved ) inOffset = 1;
+ else inOffset = stream_.bufferSize;
+
+ channelsLeft = inChannels;
+ for ( unsigned int i=0; i<handle->nStreams[0]; i++ ) {
+ in = inBuffer;
+ out = (Float32 *) outBufferList->mBuffers[handle->iStream[0]+i].mData;
+ streamChannels = outBufferList->mBuffers[handle->iStream[0]+i].mNumberChannels;
+
+ outJump = 0;
+ // Account for possible channel offset in first stream
+ if ( i == 0 && stream_.channelOffset[0] > 0 ) {
+ streamChannels -= stream_.channelOffset[0];
+ outJump = stream_.channelOffset[0];
+ out += outJump;
+ }
+
+ // Account for possible unfilled channels at end of the last stream
+ if ( streamChannels > channelsLeft ) {
+ outJump = streamChannels - channelsLeft;
+ streamChannels = channelsLeft;
+ }
+
+ // Determine input buffer offsets and skips
+ if ( inInterleaved ) {
+ inJump = inChannels;
+ in += inChannels - channelsLeft;
+ }
+ else {
+ inJump = 1;
+ in += (inChannels - channelsLeft) * inOffset;
+ }
+
+ for ( unsigned int i=0; i<stream_.bufferSize; i++ ) {
+ for ( unsigned int j=0; j<streamChannels; j++ ) {
+ *out++ = in[j*inOffset];
+ }
+ out += outJump;
+ in += inJump;
+ }
+ channelsLeft -= streamChannels;
+ }
+ }
+ }
+ }
+
+ // Don't bother draining input
+ if ( handle->drainCounter ) {
+ handle->drainCounter++;
+ goto unlock;
+ }
+
+ AudioDeviceID inputDevice;
+ inputDevice = handle->id[1];
+ if ( stream_.mode == INPUT || ( stream_.mode == DUPLEX && deviceId == inputDevice ) ) {
+
+ if ( handle->nStreams[1] == 1 ) {
+ if ( stream_.doConvertBuffer[1] ) { // convert directly from CoreAudio stream buffer
+ convertBuffer( stream_.userBuffer[1],
+ (char *) inBufferList->mBuffers[handle->iStream[1]].mData,
+ stream_.convertInfo[1] );
+ }
+ else { // copy to user buffer
+ memcpy( stream_.userBuffer[1],
+ inBufferList->mBuffers[handle->iStream[1]].mData,
+ inBufferList->mBuffers[handle->iStream[1]].mDataByteSize );
+ }
+ }
+ else { // read from multiple streams
+ Float32 *outBuffer = (Float32 *) stream_.userBuffer[1];
+ if ( stream_.doConvertBuffer[1] ) outBuffer = (Float32 *) stream_.deviceBuffer;
+
+ if ( stream_.deviceInterleaved[1] == false ) { // mono mode
+ UInt32 bufferBytes = inBufferList->mBuffers[handle->iStream[1]].mDataByteSize;
+ for ( unsigned int i=0; i<stream_.nUserChannels[1]; i++ ) {
+ memcpy( (void *)&outBuffer[i*stream_.bufferSize],
+ inBufferList->mBuffers[handle->iStream[1]+i].mData, bufferBytes );
+ }
+ }
+ else { // read from multiple multi-channel streams
+ UInt32 streamChannels, channelsLeft, inJump, outJump, outOffset;
+ Float32 *out, *in;
+
+ bool outInterleaved = ( stream_.userInterleaved ) ? true : false;
+ UInt32 outChannels = stream_.nUserChannels[1];
+ if ( stream_.doConvertBuffer[1] ) {
+ outInterleaved = true; // device buffer will always be interleaved for nStreams > 1 and not mono mode
+ outChannels = stream_.nDeviceChannels[1];
+ }
+
+ if ( outInterleaved ) outOffset = 1;
+ else outOffset = stream_.bufferSize;
+
+ channelsLeft = outChannels;
+ for ( unsigned int i=0; i<handle->nStreams[1]; i++ ) {
+ out = outBuffer;
+ in = (Float32 *) inBufferList->mBuffers[handle->iStream[1]+i].mData;
+ streamChannels = inBufferList->mBuffers[handle->iStream[1]+i].mNumberChannels;
+
+ inJump = 0;
+ // Account for possible channel offset in first stream
+ if ( i == 0 && stream_.channelOffset[1] > 0 ) {
+ streamChannels -= stream_.channelOffset[1];
+ inJump = stream_.channelOffset[1];
+ in += inJump;
+ }
+
+ // Account for possible unread channels at end of the last stream
+ if ( streamChannels > channelsLeft ) {
+ inJump = streamChannels - channelsLeft;
+ streamChannels = channelsLeft;
+ }
+
+ // Determine output buffer offsets and skips
+ if ( outInterleaved ) {
+ outJump = outChannels;
+ out += outChannels - channelsLeft;
+ }
+ else {
+ outJump = 1;
+ out += (outChannels - channelsLeft) * outOffset;
+ }
+
+ for ( unsigned int i=0; i<stream_.bufferSize; i++ ) {
+ for ( unsigned int j=0; j<streamChannels; j++ ) {
+ out[j*outOffset] = *in++;
+ }
+ out += outJump;
+ in += inJump;
+ }
+ channelsLeft -= streamChannels;
+ }
+ }
+
+ if ( stream_.doConvertBuffer[1] ) { // convert from our internal "device" buffer
+ convertBuffer( stream_.userBuffer[1],
+ stream_.deviceBuffer,
+ stream_.convertInfo[1] );
+ }
+ }
+ }
+
+ unlock:
+ //MUTEX_UNLOCK( &stream_.mutex );
+
+ RtApi::tickStreamTime();
+ return SUCCESS;
+}
+
+const char* RtApiCore :: getErrorCode( OSStatus code )
+{
+ switch( code ) {
+
+ case kAudioHardwareNotRunningError:
+ return "kAudioHardwareNotRunningError";
+
+ case kAudioHardwareUnspecifiedError:
+ return "kAudioHardwareUnspecifiedError";
+
+ case kAudioHardwareUnknownPropertyError:
+ return "kAudioHardwareUnknownPropertyError";
+
+ case kAudioHardwareBadPropertySizeError:
+ return "kAudioHardwareBadPropertySizeError";
+
+ case kAudioHardwareIllegalOperationError:
+ return "kAudioHardwareIllegalOperationError";
+
+ case kAudioHardwareBadObjectError:
+ return "kAudioHardwareBadObjectError";
+
+ case kAudioHardwareBadDeviceError:
+ return "kAudioHardwareBadDeviceError";
+
+ case kAudioHardwareBadStreamError:
+ return "kAudioHardwareBadStreamError";
+
+ case kAudioHardwareUnsupportedOperationError:
+ return "kAudioHardwareUnsupportedOperationError";
+
+ case kAudioDeviceUnsupportedFormatError:
+ return "kAudioDeviceUnsupportedFormatError";
+
+ case kAudioDevicePermissionsError:
+ return "kAudioDevicePermissionsError";
+
+ default:
+ return "CoreAudio unknown error";
+ }
+}
+
+ //******************** End of __MACOSX_CORE__ *********************//
+#endif
+
+#if defined(__UNIX_JACK__)
+
+// JACK is a low-latency audio server, originally written for the
+// GNU/Linux operating system and now also ported to OS-X. It can
+// connect a number of different applications to an audio device, as
+// well as allowing them to share audio between themselves.
+//
+// When using JACK with RtAudio, "devices" refer to JACK clients that
+// have ports connected to the server. The JACK server is typically
+// started in a terminal as follows:
+//
+// .jackd -d alsa -d hw:0
+//
+// or through an interface program such as qjackctl. Many of the
+// parameters normally set for a stream are fixed by the JACK server
+// and can be specified when the JACK server is started. In
+// particular,
+//
+// .jackd -d alsa -d hw:0 -r 44100 -p 512 -n 4
+//
+// specifies a sample rate of 44100 Hz, a buffer size of 512 sample
+// frames, and number of buffers = 4. Once the server is running, it
+// is not possible to override these values. If the values are not
+// specified in the command-line, the JACK server uses default values.
+//
+// The JACK server does not have to be running when an instance of
+// RtApiJack is created, though the function getDeviceCount() will
+// report 0 devices found until JACK has been started. When no
+// devices are available (i.e., the JACK server is not running), a
+// stream cannot be opened.
+
+#include <jack/jack.h>
+#include <unistd.h>
+#include <cstdio>
+
+// A structure to hold various information related to the Jack API
+// implementation.
+struct JackHandle {
+ jack_client_t *client;
+ jack_port_t **ports[2];
+ std::string deviceName[2];
+ bool xrun[2];
+ pthread_cond_t condition;
+ int drainCounter; // Tracks callback counts when draining
+ bool internalDrain; // Indicates if stop is initiated from callback or not.
+
+ JackHandle()
+ :client(0), drainCounter(0), internalDrain(false) { ports[0] = 0; ports[1] = 0; xrun[0] = false; xrun[1] = false; }
+};
+
+static void jackSilentError( const char * ) {};
+
+RtApiJack :: RtApiJack()
+{
+ // Nothing to do here.
+#if !defined(__RTAUDIO_DEBUG__)
+ // Turn off Jack's internal error reporting.
+ jack_set_error_function( &jackSilentError );
+#endif
+}
+
+RtApiJack :: ~RtApiJack()
+{
+ if ( stream_.state != STREAM_CLOSED ) closeStream();
+}
+
+unsigned int RtApiJack :: getDeviceCount( void )
+{
+ // See if we can become a jack client.
+ jack_options_t options = (jack_options_t) ( JackNoStartServer ); //JackNullOption;
+ jack_status_t *status = NULL;
+ jack_client_t *client = jack_client_open( "RtApiJackCount", options, status );
+ if ( client == 0 ) return 0;
+
+ const char **ports;
+ std::string port, previousPort;
+ unsigned int nChannels = 0, nDevices = 0;
+ ports = jack_get_ports( client, NULL, NULL, 0 );
+ if ( ports ) {
+ // Parse the port names up to the first colon (:).
+ size_t iColon = 0;
+ do {
+ port = (char *) ports[ nChannels ];
+ iColon = port.find(":");
+ if ( iColon != std::string::npos ) {
+ port = port.substr( 0, iColon + 1 );
+ if ( port != previousPort ) {
+ nDevices++;
+ previousPort = port;
+ }
+ }
+ } while ( ports[++nChannels] );
+ free( ports );
+ }
+
+ jack_client_close( client );
+ return nDevices;
+}
+
+RtAudio::DeviceInfo RtApiJack :: getDeviceInfo( unsigned int device )
+{
+ RtAudio::DeviceInfo info;
+ info.probed = false;
+
+ jack_options_t options = (jack_options_t) ( JackNoStartServer ); //JackNullOption
+ jack_status_t *status = NULL;
+ jack_client_t *client = jack_client_open( "RtApiJackInfo", options, status );
+ if ( client == 0 ) {
+ errorText_ = "RtApiJack::getDeviceInfo: Jack server not found or connection error!";
+ error( RtAudioError::WARNING );
+ return info;
+ }
+
+ const char **ports;
+ std::string port, previousPort;
+ unsigned int nPorts = 0, nDevices = 0;
+ ports = jack_get_ports( client, NULL, NULL, 0 );
+ if ( ports ) {
+ // Parse the port names up to the first colon (:).
+ size_t iColon = 0;
+ do {
+ port = (char *) ports[ nPorts ];
+ iColon = port.find(":");
+ if ( iColon != std::string::npos ) {
+ port = port.substr( 0, iColon );
+ if ( port != previousPort ) {
+ if ( nDevices == device ) info.name = port;
+ nDevices++;
+ previousPort = port;
+ }
+ }
+ } while ( ports[++nPorts] );
+ free( ports );
+ }
+
+ if ( device >= nDevices ) {
+ jack_client_close( client );
+ errorText_ = "RtApiJack::getDeviceInfo: device ID is invalid!";
+ error( RtAudioError::INVALID_USE );
+ return info;
+ }
+
+ // Get the current jack server sample rate.
+ info.sampleRates.clear();
+
+ info.preferredSampleRate = jack_get_sample_rate( client );
+ info.sampleRates.push_back( info.preferredSampleRate );
+
+ // Count the available ports containing the client name as device
+ // channels. Jack "input ports" equal RtAudio output channels.
+ unsigned int nChannels = 0;
+ ports = jack_get_ports( client, info.name.c_str(), NULL, JackPortIsInput );
+ if ( ports ) {
+ while ( ports[ nChannels ] ) nChannels++;
+ free( ports );
+ info.outputChannels = nChannels;
+ }
+
+ // Jack "output ports" equal RtAudio input channels.
+ nChannels = 0;
+ ports = jack_get_ports( client, info.name.c_str(), NULL, JackPortIsOutput );
+ if ( ports ) {
+ while ( ports[ nChannels ] ) nChannels++;
+ free( ports );
+ info.inputChannels = nChannels;
+ }
+
+ if ( info.outputChannels == 0 && info.inputChannels == 0 ) {
+ jack_client_close(client);
+ errorText_ = "RtApiJack::getDeviceInfo: error determining Jack input/output channels!";
+ error( RtAudioError::WARNING );
+ return info;
+ }
+
+ // If device opens for both playback and capture, we determine the channels.
+ if ( info.outputChannels > 0 && info.inputChannels > 0 )
+ info.duplexChannels = (info.outputChannels > info.inputChannels) ? info.inputChannels : info.outputChannels;
+
+ // Jack always uses 32-bit floats.
+ info.nativeFormats = RTAUDIO_FLOAT32;
+
+ // Jack doesn't provide default devices so we'll use the first available one.
+ if ( device == 0 && info.outputChannels > 0 )
+ info.isDefaultOutput = true;
+ if ( device == 0 && info.inputChannels > 0 )
+ info.isDefaultInput = true;
+
+ jack_client_close(client);
+ info.probed = true;
+ return info;
+}
+
+static int jackCallbackHandler( jack_nframes_t nframes, void *infoPointer )
+{
+ CallbackInfo *info = (CallbackInfo *) infoPointer;
+
+ RtApiJack *object = (RtApiJack *) info->object;
+ if ( object->callbackEvent( (unsigned long) nframes ) == false ) return 1;
+
+ return 0;
+}
+
+// This function will be called by a spawned thread when the Jack
+// server signals that it is shutting down. It is necessary to handle
+// it this way because the jackShutdown() function must return before
+// the jack_deactivate() function (in closeStream()) will return.
+static void *jackCloseStream( void *ptr )
+{
+ CallbackInfo *info = (CallbackInfo *) ptr;
+ RtApiJack *object = (RtApiJack *) info->object;
+
+ object->closeStream();
+
+ pthread_exit( NULL );
+}
+static void jackShutdown( void *infoPointer )
+{
+ CallbackInfo *info = (CallbackInfo *) infoPointer;
+ RtApiJack *object = (RtApiJack *) info->object;
+
+ // Check current stream state. If stopped, then we'll assume this
+ // was called as a result of a call to RtApiJack::stopStream (the
+ // deactivation of a client handle causes this function to be called).
+ // If not, we'll assume the Jack server is shutting down or some
+ // other problem occurred and we should close the stream.
+ if ( object->isStreamRunning() == false ) return;
+
+ ThreadHandle threadId;
+ pthread_create( &threadId, NULL, jackCloseStream, info );
+ std::cerr << "\nRtApiJack: the Jack server is shutting down this client ... stream stopped and closed!!\n" << std::endl;
+}
+
+static int jackXrun( void *infoPointer )
+{
+ JackHandle *handle = (JackHandle *) infoPointer;
+
+ if ( handle->ports[0] ) handle->xrun[0] = true;
+ if ( handle->ports[1] ) handle->xrun[1] = true;
+
+ return 0;
+}
+
+bool RtApiJack :: probeDeviceOpen( unsigned int device, StreamMode mode, unsigned int channels,
+ unsigned int firstChannel, unsigned int sampleRate,
+ RtAudioFormat format, unsigned int *bufferSize,
+ RtAudio::StreamOptions *options )
+{
+ JackHandle *handle = (JackHandle *) stream_.apiHandle;
+
+ // Look for jack server and try to become a client (only do once per stream).
+ jack_client_t *client = 0;
+ if ( mode == OUTPUT || ( mode == INPUT && stream_.mode != OUTPUT ) ) {
+ jack_options_t jackoptions = (jack_options_t) ( JackNoStartServer ); //JackNullOption;
+ jack_status_t *status = NULL;
+ if ( options && !options->streamName.empty() )
+ client = jack_client_open( options->streamName.c_str(), jackoptions, status );
+ else
+ client = jack_client_open( "RtApiJack", jackoptions, status );
+ if ( client == 0 ) {
+ errorText_ = "RtApiJack::probeDeviceOpen: Jack server not found or connection error!";
+ error( RtAudioError::WARNING );
+ return FAILURE;
+ }
+ }
+ else {
+ // The handle must have been created on an earlier pass.
+ client = handle->client;
+ }
+
+ const char **ports;
+ std::string port, previousPort, deviceName;
+ unsigned int nPorts = 0, nDevices = 0;
+ ports = jack_get_ports( client, NULL, NULL, 0 );
+ if ( ports ) {
+ // Parse the port names up to the first colon (:).
+ size_t iColon = 0;
+ do {
+ port = (char *) ports[ nPorts ];
+ iColon = port.find(":");
+ if ( iColon != std::string::npos ) {
+ port = port.substr( 0, iColon );
+ if ( port != previousPort ) {
+ if ( nDevices == device ) deviceName = port;
+ nDevices++;
+ previousPort = port;
+ }
+ }
+ } while ( ports[++nPorts] );
+ free( ports );
+ }
+
+ if ( device >= nDevices ) {
+ errorText_ = "RtApiJack::probeDeviceOpen: device ID is invalid!";
+ return FAILURE;
+ }
+
+ // Count the available ports containing the client name as device
+ // channels. Jack "input ports" equal RtAudio output channels.
+ unsigned int nChannels = 0;
+ unsigned long flag = JackPortIsInput;
+ if ( mode == INPUT ) flag = JackPortIsOutput;
+ ports = jack_get_ports( client, deviceName.c_str(), NULL, flag );
+ if ( ports ) {
+ while ( ports[ nChannels ] ) nChannels++;
+ free( ports );
+ }
+
+ // Compare the jack ports for specified client to the requested number of channels.
+ if ( nChannels < (channels + firstChannel) ) {
+ errorStream_ << "RtApiJack::probeDeviceOpen: requested number of channels (" << channels << ") + offset (" << firstChannel << ") not found for specified device (" << device << ":" << deviceName << ").";
+ errorText_ = errorStream_.str();
+ return FAILURE;
+ }
+
+ // Check the jack server sample rate.
+ unsigned int jackRate = jack_get_sample_rate( client );
+ if ( sampleRate != jackRate ) {
+ jack_client_close( client );
+ errorStream_ << "RtApiJack::probeDeviceOpen: the requested sample rate (" << sampleRate << ") is different than the JACK server rate (" << jackRate << ").";
+ errorText_ = errorStream_.str();
+ return FAILURE;
+ }
+ stream_.sampleRate = jackRate;
+
+ // Get the latency of the JACK port.
+ ports = jack_get_ports( client, deviceName.c_str(), NULL, flag );
+ if ( ports[ firstChannel ] ) {
+ // Added by Ge Wang
+ jack_latency_callback_mode_t cbmode = (mode == INPUT ? JackCaptureLatency : JackPlaybackLatency);
+ // the range (usually the min and max are equal)
+ jack_latency_range_t latrange; latrange.min = latrange.max = 0;
+ // get the latency range
+ jack_port_get_latency_range( jack_port_by_name( client, ports[firstChannel] ), cbmode, &latrange );
+ // be optimistic, use the min!
+ stream_.latency[mode] = latrange.min;
+ //stream_.latency[mode] = jack_port_get_latency( jack_port_by_name( client, ports[ firstChannel ] ) );
+ }
+ free( ports );
+
+ // The jack server always uses 32-bit floating-point data.
+ stream_.deviceFormat[mode] = RTAUDIO_FLOAT32;
+ stream_.userFormat = format;
+
+ if ( options && options->flags & RTAUDIO_NONINTERLEAVED ) stream_.userInterleaved = false;
+ else stream_.userInterleaved = true;
+
+ // Jack always uses non-interleaved buffers.
+ stream_.deviceInterleaved[mode] = false;
+
+ // Jack always provides host byte-ordered data.
+ stream_.doByteSwap[mode] = false;
+
+ // Get the buffer size. The buffer size and number of buffers
+ // (periods) is set when the jack server is started.
+ stream_.bufferSize = (int) jack_get_buffer_size( client );
+ *bufferSize = stream_.bufferSize;
+
+ stream_.nDeviceChannels[mode] = channels;
+ stream_.nUserChannels[mode] = channels;
+
+ // Set flags for buffer conversion.
+ stream_.doConvertBuffer[mode] = false;
+ if ( stream_.userFormat != stream_.deviceFormat[mode] )
+ stream_.doConvertBuffer[mode] = true;
+ if ( stream_.userInterleaved != stream_.deviceInterleaved[mode] &&
+ stream_.nUserChannels[mode] > 1 )
+ stream_.doConvertBuffer[mode] = true;
+
+ // Allocate our JackHandle structure for the stream.
+ if ( handle == 0 ) {
+ try {
+ handle = new JackHandle;
+ }
+ catch ( std::bad_alloc& ) {
+ errorText_ = "RtApiJack::probeDeviceOpen: error allocating JackHandle memory.";
+ goto error;
+ }
+
+ if ( pthread_cond_init(&handle->condition, NULL) ) {
+ errorText_ = "RtApiJack::probeDeviceOpen: error initializing pthread condition variable.";
+ goto error;
+ }
+ stream_.apiHandle = (void *) handle;
+ handle->client = client;
+ }
+ handle->deviceName[mode] = deviceName;
+
+ // Allocate necessary internal buffers.
+ unsigned long bufferBytes;
+ bufferBytes = stream_.nUserChannels[mode] * *bufferSize * formatBytes( stream_.userFormat );
+ stream_.userBuffer[mode] = (char *) calloc( bufferBytes, 1 );
+ if ( stream_.userBuffer[mode] == NULL ) {
+ errorText_ = "RtApiJack::probeDeviceOpen: error allocating user buffer memory.";
+ goto error;
+ }
+
+ if ( stream_.doConvertBuffer[mode] ) {
+
+ bool makeBuffer = true;
+ if ( mode == OUTPUT )
+ bufferBytes = stream_.nDeviceChannels[0] * formatBytes( stream_.deviceFormat[0] );
+ else { // mode == INPUT
+ bufferBytes = stream_.nDeviceChannels[1] * formatBytes( stream_.deviceFormat[1] );
+ if ( stream_.mode == OUTPUT && stream_.deviceBuffer ) {
+ unsigned long bytesOut = stream_.nDeviceChannels[0] * formatBytes(stream_.deviceFormat[0]);
+ if ( bufferBytes < bytesOut ) makeBuffer = false;
+ }
+ }
+
+ if ( makeBuffer ) {
+ bufferBytes *= *bufferSize;
+ if ( stream_.deviceBuffer ) free( stream_.deviceBuffer );
+ stream_.deviceBuffer = (char *) calloc( bufferBytes, 1 );
+ if ( stream_.deviceBuffer == NULL ) {
+ errorText_ = "RtApiJack::probeDeviceOpen: error allocating device buffer memory.";
+ goto error;
+ }
+ }
+ }
+
+ // Allocate memory for the Jack ports (channels) identifiers.
+ handle->ports[mode] = (jack_port_t **) malloc ( sizeof (jack_port_t *) * channels );
+ if ( handle->ports[mode] == NULL ) {
+ errorText_ = "RtApiJack::probeDeviceOpen: error allocating port memory.";
+ goto error;
+ }
+
+ stream_.device[mode] = device;
+ stream_.channelOffset[mode] = firstChannel;
+ stream_.state = STREAM_STOPPED;
+ stream_.callbackInfo.object = (void *) this;
+
+ if ( stream_.mode == OUTPUT && mode == INPUT )
+ // We had already set up the stream for output.
+ stream_.mode = DUPLEX;
+ else {
+ stream_.mode = mode;
+ jack_set_process_callback( handle->client, jackCallbackHandler, (void *) &stream_.callbackInfo );
+ jack_set_xrun_callback( handle->client, jackXrun, (void *) &handle );
+ jack_on_shutdown( handle->client, jackShutdown, (void *) &stream_.callbackInfo );
+ }
+
+ // Register our ports.
+ char label[64];
+ if ( mode == OUTPUT ) {
+ for ( unsigned int i=0; i<stream_.nUserChannels[0]; i++ ) {
+ snprintf( label, 64, "outport %d", i );
+ handle->ports[0][i] = jack_port_register( handle->client, (const char *)label,
+ JACK_DEFAULT_AUDIO_TYPE, JackPortIsOutput, 0 );
+ }
+ }
+ else {
+ for ( unsigned int i=0; i<stream_.nUserChannels[1]; i++ ) {
+ snprintf( label, 64, "inport %d", i );
+ handle->ports[1][i] = jack_port_register( handle->client, (const char *)label,
+ JACK_DEFAULT_AUDIO_TYPE, JackPortIsInput, 0 );
+ }
+ }
+
+ // Setup the buffer conversion information structure. We don't use
+ // buffers to do channel offsets, so we override that parameter
+ // here.
+ if ( stream_.doConvertBuffer[mode] ) setConvertInfo( mode, 0 );
+
+ return SUCCESS;
+
+ error:
+ if ( handle ) {
+ pthread_cond_destroy( &handle->condition );
+ jack_client_close( handle->client );
+
+ if ( handle->ports[0] ) free( handle->ports[0] );
+ if ( handle->ports[1] ) free( handle->ports[1] );
+
+ delete handle;
+ stream_.apiHandle = 0;
+ }
+
+ for ( int i=0; i<2; i++ ) {
+ if ( stream_.userBuffer[i] ) {
+ free( stream_.userBuffer[i] );
+ stream_.userBuffer[i] = 0;
+ }
+ }
+
+ if ( stream_.deviceBuffer ) {
+ free( stream_.deviceBuffer );
+ stream_.deviceBuffer = 0;
+ }
+
+ return FAILURE;
+}
+
+void RtApiJack :: closeStream( void )
+{
+ if ( stream_.state == STREAM_CLOSED ) {
+ errorText_ = "RtApiJack::closeStream(): no open stream to close!";
+ error( RtAudioError::WARNING );
+ return;
+ }
+
+ JackHandle *handle = (JackHandle *) stream_.apiHandle;
+ if ( handle ) {
+
+ if ( stream_.state == STREAM_RUNNING )
+ jack_deactivate( handle->client );
+
+ jack_client_close( handle->client );
+ }
+
+ if ( handle ) {
+ if ( handle->ports[0] ) free( handle->ports[0] );
+ if ( handle->ports[1] ) free( handle->ports[1] );
+ pthread_cond_destroy( &handle->condition );
+ delete handle;
+ stream_.apiHandle = 0;
+ }
+
+ for ( int i=0; i<2; i++ ) {
+ if ( stream_.userBuffer[i] ) {
+ free( stream_.userBuffer[i] );
+ stream_.userBuffer[i] = 0;
+ }
+ }
+
+ if ( stream_.deviceBuffer ) {
+ free( stream_.deviceBuffer );
+ stream_.deviceBuffer = 0;
+ }
+
+ stream_.mode = UNINITIALIZED;
+ stream_.state = STREAM_CLOSED;
+}
+
+void RtApiJack :: startStream( void )
+{
+ verifyStream();
+ if ( stream_.state == STREAM_RUNNING ) {
+ errorText_ = "RtApiJack::startStream(): the stream is already running!";
+ error( RtAudioError::WARNING );
+ return;
+ }
+
+ JackHandle *handle = (JackHandle *) stream_.apiHandle;
+ int result = jack_activate( handle->client );
+ if ( result ) {
+ errorText_ = "RtApiJack::startStream(): unable to activate JACK client!";
+ goto unlock;
+ }
+
+ const char **ports;
+
+ // Get the list of available ports.
+ if ( stream_.mode == OUTPUT || stream_.mode == DUPLEX ) {
+ result = 1;
+ ports = jack_get_ports( handle->client, handle->deviceName[0].c_str(), NULL, JackPortIsInput);
+ if ( ports == NULL) {
+ errorText_ = "RtApiJack::startStream(): error determining available JACK input ports!";
+ goto unlock;
+ }
+
+ // Now make the port connections. Since RtAudio wasn't designed to
+ // allow the user to select particular channels of a device, we'll
+ // just open the first "nChannels" ports with offset.
+ for ( unsigned int i=0; i<stream_.nUserChannels[0]; i++ ) {
+ result = 1;
+ if ( ports[ stream_.channelOffset[0] + i ] )
+ result = jack_connect( handle->client, jack_port_name( handle->ports[0][i] ), ports[ stream_.channelOffset[0] + i ] );
+ if ( result ) {
+ free( ports );
+ errorText_ = "RtApiJack::startStream(): error connecting output ports!";
+ goto unlock;
+ }
+ }
+ free(ports);
+ }
+
+ if ( stream_.mode == INPUT || stream_.mode == DUPLEX ) {
+ result = 1;
+ ports = jack_get_ports( handle->client, handle->deviceName[1].c_str(), NULL, JackPortIsOutput );
+ if ( ports == NULL) {
+ errorText_ = "RtApiJack::startStream(): error determining available JACK output ports!";
+ goto unlock;
+ }
+
+ // Now make the port connections. See note above.
+ for ( unsigned int i=0; i<stream_.nUserChannels[1]; i++ ) {
+ result = 1;
+ if ( ports[ stream_.channelOffset[1] + i ] )
+ result = jack_connect( handle->client, ports[ stream_.channelOffset[1] + i ], jack_port_name( handle->ports[1][i] ) );
+ if ( result ) {
+ free( ports );
+ errorText_ = "RtApiJack::startStream(): error connecting input ports!";
+ goto unlock;
+ }
+ }
+ free(ports);
+ }
+
+ handle->drainCounter = 0;
+ handle->internalDrain = false;
+ stream_.state = STREAM_RUNNING;
+
+ unlock:
+ if ( result == 0 ) return;
+ error( RtAudioError::SYSTEM_ERROR );
+}
+
+void RtApiJack :: stopStream( void )
+{
+ verifyStream();
+ if ( stream_.state == STREAM_STOPPED ) {
+ errorText_ = "RtApiJack::stopStream(): the stream is already stopped!";
+ error( RtAudioError::WARNING );
+ return;
+ }
+
+ JackHandle *handle = (JackHandle *) stream_.apiHandle;
+ if ( stream_.mode == OUTPUT || stream_.mode == DUPLEX ) {
+
+ if ( handle->drainCounter == 0 ) {
+ handle->drainCounter = 2;
+ pthread_cond_wait( &handle->condition, &stream_.mutex ); // block until signaled
+ }
+ }
+
+ jack_deactivate( handle->client );
+ stream_.state = STREAM_STOPPED;
+}
+
+void RtApiJack :: abortStream( void )
+{
+ verifyStream();
+ if ( stream_.state == STREAM_STOPPED ) {
+ errorText_ = "RtApiJack::abortStream(): the stream is already stopped!";
+ error( RtAudioError::WARNING );
+ return;
+ }
+
+ JackHandle *handle = (JackHandle *) stream_.apiHandle;
+ handle->drainCounter = 2;
+
+ stopStream();
+}
+
+// This function will be called by a spawned thread when the user
+// callback function signals that the stream should be stopped or
+// aborted. It is necessary to handle it this way because the
+// callbackEvent() function must return before the jack_deactivate()
+// function will return.
+static void *jackStopStream( void *ptr )
+{
+ CallbackInfo *info = (CallbackInfo *) ptr;
+ RtApiJack *object = (RtApiJack *) info->object;
+
+ object->stopStream();
+ pthread_exit( NULL );
+}
+
+bool RtApiJack :: callbackEvent( unsigned long nframes )
+{
+ if ( stream_.state == STREAM_STOPPED || stream_.state == STREAM_STOPPING ) return SUCCESS;
+ if ( stream_.state == STREAM_CLOSED ) {
+ errorText_ = "RtApiCore::callbackEvent(): the stream is closed ... this shouldn't happen!";
+ error( RtAudioError::WARNING );
+ return FAILURE;
+ }
+ if ( stream_.bufferSize != nframes ) {
+ errorText_ = "RtApiCore::callbackEvent(): the JACK buffer size has changed ... cannot process!";
+ error( RtAudioError::WARNING );
+ return FAILURE;
+ }
+
+ CallbackInfo *info = (CallbackInfo *) &stream_.callbackInfo;
+ JackHandle *handle = (JackHandle *) stream_.apiHandle;
+
+ // Check if we were draining the stream and signal is finished.
+ if ( handle->drainCounter > 3 ) {
+ ThreadHandle threadId;
+
+ stream_.state = STREAM_STOPPING;
+ if ( handle->internalDrain == true )
+ pthread_create( &threadId, NULL, jackStopStream, info );
+ else
+ pthread_cond_signal( &handle->condition );
+ return SUCCESS;
+ }
+
+ // Invoke user callback first, to get fresh output data.
+ if ( handle->drainCounter == 0 ) {
+ RtAudioCallback callback = (RtAudioCallback) info->callback;
+ double streamTime = getStreamTime();
+ RtAudioStreamStatus status = 0;
+ if ( stream_.mode != INPUT && handle->xrun[0] == true ) {
+ status |= RTAUDIO_OUTPUT_UNDERFLOW;
+ handle->xrun[0] = false;
+ }
+ if ( stream_.mode != OUTPUT && handle->xrun[1] == true ) {
+ status |= RTAUDIO_INPUT_OVERFLOW;
+ handle->xrun[1] = false;
+ }
+ int cbReturnValue = callback( stream_.userBuffer[0], stream_.userBuffer[1],
+ stream_.bufferSize, streamTime, status, info->userData );
+ if ( cbReturnValue == 2 ) {
+ stream_.state = STREAM_STOPPING;
+ handle->drainCounter = 2;
+ ThreadHandle id;
+ pthread_create( &id, NULL, jackStopStream, info );
+ return SUCCESS;
+ }
+ else if ( cbReturnValue == 1 ) {
+ handle->drainCounter = 1;
+ handle->internalDrain = true;
+ }
+ }
+
+ jack_default_audio_sample_t *jackbuffer;
+ unsigned long bufferBytes = nframes * sizeof( jack_default_audio_sample_t );
+ if ( stream_.mode == OUTPUT || stream_.mode == DUPLEX ) {
+
+ if ( handle->drainCounter > 1 ) { // write zeros to the output stream
+
+ for ( unsigned int i=0; i<stream_.nDeviceChannels[0]; i++ ) {
+ jackbuffer = (jack_default_audio_sample_t *) jack_port_get_buffer( handle->ports[0][i], (jack_nframes_t) nframes );
+ memset( jackbuffer, 0, bufferBytes );
+ }
+
+ }
+ else if ( stream_.doConvertBuffer[0] ) {
+
+ convertBuffer( stream_.deviceBuffer, stream_.userBuffer[0], stream_.convertInfo[0] );
+
+ for ( unsigned int i=0; i<stream_.nDeviceChannels[0]; i++ ) {
+ jackbuffer = (jack_default_audio_sample_t *) jack_port_get_buffer( handle->ports[0][i], (jack_nframes_t) nframes );
+ memcpy( jackbuffer, &stream_.deviceBuffer[i*bufferBytes], bufferBytes );
+ }
+ }
+ else { // no buffer conversion
+ for ( unsigned int i=0; i<stream_.nUserChannels[0]; i++ ) {
+ jackbuffer = (jack_default_audio_sample_t *) jack_port_get_buffer( handle->ports[0][i], (jack_nframes_t) nframes );
+ memcpy( jackbuffer, &stream_.userBuffer[0][i*bufferBytes], bufferBytes );
+ }
+ }
+ }
+
+ // Don't bother draining input
+ if ( handle->drainCounter ) {
+ handle->drainCounter++;
+ goto unlock;
+ }
+
+ if ( stream_.mode == INPUT || stream_.mode == DUPLEX ) {
+
+ if ( stream_.doConvertBuffer[1] ) {
+ for ( unsigned int i=0; i<stream_.nDeviceChannels[1]; i++ ) {
+ jackbuffer = (jack_default_audio_sample_t *) jack_port_get_buffer( handle->ports[1][i], (jack_nframes_t) nframes );
+ memcpy( &stream_.deviceBuffer[i*bufferBytes], jackbuffer, bufferBytes );
+ }
+ convertBuffer( stream_.userBuffer[1], stream_.deviceBuffer, stream_.convertInfo[1] );
+ }
+ else { // no buffer conversion
+ for ( unsigned int i=0; i<stream_.nUserChannels[1]; i++ ) {
+ jackbuffer = (jack_default_audio_sample_t *) jack_port_get_buffer( handle->ports[1][i], (jack_nframes_t) nframes );
+ memcpy( &stream_.userBuffer[1][i*bufferBytes], jackbuffer, bufferBytes );
+ }
+ }
+ }
+
+ unlock:
+ RtApi::tickStreamTime();
+ return SUCCESS;
+}
+ //******************** End of __UNIX_JACK__ *********************//
+#endif
+
+#if defined(__WINDOWS_ASIO__) // ASIO API on Windows
+
+// The ASIO API is designed around a callback scheme, so this
+// implementation is similar to that used for OS-X CoreAudio and Linux
+// Jack. The primary constraint with ASIO is that it only allows
+// access to a single driver at a time. Thus, it is not possible to
+// have more than one simultaneous RtAudio stream.
+//
+// This implementation also requires a number of external ASIO files
+// and a few global variables. The ASIO callback scheme does not
+// allow for the passing of user data, so we must create a global
+// pointer to our callbackInfo structure.
+//
+// On unix systems, we make use of a pthread condition variable.
+// Since there is no equivalent in Windows, I hacked something based
+// on information found in
+// http://www.cs.wustl.edu/~schmidt/win32-cv-1.html.
+
+#include "asiosys.h"
+#include "asio.h"
+#include "iasiothiscallresolver.h"
+#include "asiodrivers.h"
+#include <cmath>
+
+static AsioDrivers drivers;
+static ASIOCallbacks asioCallbacks;
+static ASIODriverInfo driverInfo;
+static CallbackInfo *asioCallbackInfo;
+static bool asioXRun;
+
+struct AsioHandle {
+ int drainCounter; // Tracks callback counts when draining
+ bool internalDrain; // Indicates if stop is initiated from callback or not.
+ ASIOBufferInfo *bufferInfos;
+ HANDLE condition;
+
+ AsioHandle()
+ :drainCounter(0), internalDrain(false), bufferInfos(0) {}
+};
+
+// Function declarations (definitions at end of section)
+static const char* getAsioErrorString( ASIOError result );
+static void sampleRateChanged( ASIOSampleRate sRate );
+static long asioMessages( long selector, long value, void* message, double* opt );
+
+RtApiAsio :: RtApiAsio()
+{
+ // ASIO cannot run on a multi-threaded appartment. You can call
+ // CoInitialize beforehand, but it must be for appartment threading
+ // (in which case, CoInitilialize will return S_FALSE here).
+ coInitialized_ = false;
+ HRESULT hr = CoInitialize( NULL );
+ if ( FAILED(hr) ) {
+ errorText_ = "RtApiAsio::ASIO requires a single-threaded appartment. Call CoInitializeEx(0,COINIT_APARTMENTTHREADED)";
+ error( RtAudioError::WARNING );
+ }
+ coInitialized_ = true;
+
+ drivers.removeCurrentDriver();
+ driverInfo.asioVersion = 2;
+
+ // See note in DirectSound implementation about GetDesktopWindow().
+ driverInfo.sysRef = GetForegroundWindow();
+}
+
+RtApiAsio :: ~RtApiAsio()
+{
+ if ( stream_.state != STREAM_CLOSED ) closeStream();
+ if ( coInitialized_ ) CoUninitialize();
+}
+
+unsigned int RtApiAsio :: getDeviceCount( void )
+{
+ return (unsigned int) drivers.asioGetNumDev();
+}
+
+RtAudio::DeviceInfo RtApiAsio :: getDeviceInfo( unsigned int device )
+{
+ RtAudio::DeviceInfo info;
+ info.probed = false;
+
+ // Get device ID
+ unsigned int nDevices = getDeviceCount();
+ if ( nDevices == 0 ) {
+ errorText_ = "RtApiAsio::getDeviceInfo: no devices found!";
+ error( RtAudioError::INVALID_USE );
+ return info;
+ }
+
+ if ( device >= nDevices ) {
+ errorText_ = "RtApiAsio::getDeviceInfo: device ID is invalid!";
+ error( RtAudioError::INVALID_USE );
+ return info;
+ }
+
+ // If a stream is already open, we cannot probe other devices. Thus, use the saved results.
+ if ( stream_.state != STREAM_CLOSED ) {
+ if ( device >= devices_.size() ) {
+ errorText_ = "RtApiAsio::getDeviceInfo: device ID was not present before stream was opened.";
+ error( RtAudioError::WARNING );
+ return info;
+ }
+ return devices_[ device ];
+ }
+
+ char driverName[32];
+ ASIOError result = drivers.asioGetDriverName( (int) device, driverName, 32 );
+ if ( result != ASE_OK ) {
+ errorStream_ << "RtApiAsio::getDeviceInfo: unable to get driver name (" << getAsioErrorString( result ) << ").";
+ errorText_ = errorStream_.str();
+ error( RtAudioError::WARNING );
+ return info;
+ }
+
+ info.name = driverName;
+
+ if ( !drivers.loadDriver( driverName ) ) {
+ errorStream_ << "RtApiAsio::getDeviceInfo: unable to load driver (" << driverName << ").";
+ errorText_ = errorStream_.str();
+ error( RtAudioError::WARNING );
+ return info;
+ }
+
+ result = ASIOInit( &driverInfo );
+ if ( result != ASE_OK ) {
+ errorStream_ << "RtApiAsio::getDeviceInfo: error (" << getAsioErrorString( result ) << ") initializing driver (" << driverName << ").";
+ errorText_ = errorStream_.str();
+ error( RtAudioError::WARNING );
+ return info;
+ }
+
+ // Determine the device channel information.
+ long inputChannels, outputChannels;
+ result = ASIOGetChannels( &inputChannels, &outputChannels );
+ if ( result != ASE_OK ) {
+ drivers.removeCurrentDriver();
+ errorStream_ << "RtApiAsio::getDeviceInfo: error (" << getAsioErrorString( result ) << ") getting channel count (" << driverName << ").";
+ errorText_ = errorStream_.str();
+ error( RtAudioError::WARNING );
+ return info;
+ }
+
+ info.outputChannels = outputChannels;
+ info.inputChannels = inputChannels;
+ if ( info.outputChannels > 0 && info.inputChannels > 0 )
+ info.duplexChannels = (info.outputChannels > info.inputChannels) ? info.inputChannels : info.outputChannels;
+
+ // Determine the supported sample rates.
+ info.sampleRates.clear();
+ for ( unsigned int i=0; i<MAX_SAMPLE_RATES; i++ ) {
+ result = ASIOCanSampleRate( (ASIOSampleRate) SAMPLE_RATES[i] );
+ if ( result == ASE_OK ) {
+ info.sampleRates.push_back( SAMPLE_RATES[i] );
+
+ if ( !info.preferredSampleRate || ( SAMPLE_RATES[i] <= 48000 && SAMPLE_RATES[i] > info.preferredSampleRate ) )
+ info.preferredSampleRate = SAMPLE_RATES[i];
+ }
+ }
+
+ // Determine supported data types ... just check first channel and assume rest are the same.
+ ASIOChannelInfo channelInfo;
+ channelInfo.channel = 0;
+ channelInfo.isInput = true;
+ if ( info.inputChannels <= 0 ) channelInfo.isInput = false;
+ result = ASIOGetChannelInfo( &channelInfo );
+ if ( result != ASE_OK ) {
+ drivers.removeCurrentDriver();
+ errorStream_ << "RtApiAsio::getDeviceInfo: error (" << getAsioErrorString( result ) << ") getting driver channel info (" << driverName << ").";
+ errorText_ = errorStream_.str();
+ error( RtAudioError::WARNING );
+ return info;
+ }
+
+ info.nativeFormats = 0;
+ if ( channelInfo.type == ASIOSTInt16MSB || channelInfo.type == ASIOSTInt16LSB )
+ info.nativeFormats |= RTAUDIO_SINT16;
+ else if ( channelInfo.type == ASIOSTInt32MSB || channelInfo.type == ASIOSTInt32LSB )
+ info.nativeFormats |= RTAUDIO_SINT32;
+ else if ( channelInfo.type == ASIOSTFloat32MSB || channelInfo.type == ASIOSTFloat32LSB )
+ info.nativeFormats |= RTAUDIO_FLOAT32;
+ else if ( channelInfo.type == ASIOSTFloat64MSB || channelInfo.type == ASIOSTFloat64LSB )
+ info.nativeFormats |= RTAUDIO_FLOAT64;
+ else if ( channelInfo.type == ASIOSTInt24MSB || channelInfo.type == ASIOSTInt24LSB )
+ info.nativeFormats |= RTAUDIO_SINT24;
+
+ if ( info.outputChannels > 0 )
+ if ( getDefaultOutputDevice() == device ) info.isDefaultOutput = true;
+ if ( info.inputChannels > 0 )
+ if ( getDefaultInputDevice() == device ) info.isDefaultInput = true;
+
+ info.probed = true;
+ drivers.removeCurrentDriver();
+ return info;
+}
+
+static void bufferSwitch( long index, ASIOBool /*processNow*/ )
+{
+ RtApiAsio *object = (RtApiAsio *) asioCallbackInfo->object;
+ object->callbackEvent( index );
+}
+
+void RtApiAsio :: saveDeviceInfo( void )
+{
+ devices_.clear();
+
+ unsigned int nDevices = getDeviceCount();
+ devices_.resize( nDevices );
+ for ( unsigned int i=0; i<nDevices; i++ )
+ devices_[i] = getDeviceInfo( i );
+}
+
+bool RtApiAsio :: probeDeviceOpen( unsigned int device, StreamMode mode, unsigned int channels,
+ unsigned int firstChannel, unsigned int sampleRate,
+ RtAudioFormat format, unsigned int *bufferSize,
+ RtAudio::StreamOptions *options )
+{////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
+
+ bool isDuplexInput = mode == INPUT && stream_.mode == OUTPUT;
+
+ // For ASIO, a duplex stream MUST use the same driver.
+ if ( isDuplexInput && stream_.device[0] != device ) {
+ errorText_ = "RtApiAsio::probeDeviceOpen: an ASIO duplex stream must use the same device for input and output!";
+ return FAILURE;
+ }
+
+ char driverName[32];
+ ASIOError result = drivers.asioGetDriverName( (int) device, driverName, 32 );
+ if ( result != ASE_OK ) {
+ errorStream_ << "RtApiAsio::probeDeviceOpen: unable to get driver name (" << getAsioErrorString( result ) << ").";
+ errorText_ = errorStream_.str();
+ return FAILURE;
+ }
+
+ // Only load the driver once for duplex stream.
+ if ( !isDuplexInput ) {
+ // The getDeviceInfo() function will not work when a stream is open
+ // because ASIO does not allow multiple devices to run at the same
+ // time. Thus, we'll probe the system before opening a stream and
+ // save the results for use by getDeviceInfo().
+ this->saveDeviceInfo();
+
+ if ( !drivers.loadDriver( driverName ) ) {
+ errorStream_ << "RtApiAsio::probeDeviceOpen: unable to load driver (" << driverName << ").";
+ errorText_ = errorStream_.str();
+ return FAILURE;
+ }
+
+ result = ASIOInit( &driverInfo );
+ if ( result != ASE_OK ) {
+ errorStream_ << "RtApiAsio::probeDeviceOpen: error (" << getAsioErrorString( result ) << ") initializing driver (" << driverName << ").";
+ errorText_ = errorStream_.str();
+ return FAILURE;
+ }
+ }
+
+ // keep them before any "goto error", they are used for error cleanup + goto device boundary checks
+ bool buffersAllocated = false;
+ AsioHandle *handle = (AsioHandle *) stream_.apiHandle;
+ unsigned int nChannels;
+
+
+ // Check the device channel count.
+ long inputChannels, outputChannels;
+ result = ASIOGetChannels( &inputChannels, &outputChannels );
+ if ( result != ASE_OK ) {
+ errorStream_ << "RtApiAsio::probeDeviceOpen: error (" << getAsioErrorString( result ) << ") getting channel count (" << driverName << ").";
+ errorText_ = errorStream_.str();
+ goto error;
+ }
+
+ if ( ( mode == OUTPUT && (channels+firstChannel) > (unsigned int) outputChannels) ||
+ ( mode == INPUT && (channels+firstChannel) > (unsigned int) inputChannels) ) {
+ errorStream_ << "RtApiAsio::probeDeviceOpen: driver (" << driverName << ") does not support requested channel count (" << channels << ") + offset (" << firstChannel << ").";
+ errorText_ = errorStream_.str();
+ goto error;
+ }
+ stream_.nDeviceChannels[mode] = channels;
+ stream_.nUserChannels[mode] = channels;
+ stream_.channelOffset[mode] = firstChannel;
+
+ // Verify the sample rate is supported.
+ result = ASIOCanSampleRate( (ASIOSampleRate) sampleRate );
+ if ( result != ASE_OK ) {
+ errorStream_ << "RtApiAsio::probeDeviceOpen: driver (" << driverName << ") does not support requested sample rate (" << sampleRate << ").";
+ errorText_ = errorStream_.str();
+ goto error;
+ }
+
+ // Get the current sample rate
+ ASIOSampleRate currentRate;
+ result = ASIOGetSampleRate( &currentRate );
+ if ( result != ASE_OK ) {
+ errorStream_ << "RtApiAsio::probeDeviceOpen: driver (" << driverName << ") error getting sample rate.";
+ errorText_ = errorStream_.str();
+ goto error;
+ }
+
+ // Set the sample rate only if necessary
+ if ( currentRate != sampleRate ) {
+ result = ASIOSetSampleRate( (ASIOSampleRate) sampleRate );
+ if ( result != ASE_OK ) {
+ errorStream_ << "RtApiAsio::probeDeviceOpen: driver (" << driverName << ") error setting sample rate (" << sampleRate << ").";
+ errorText_ = errorStream_.str();
+ goto error;
+ }
+ }
+
+ // Determine the driver data type.
+ ASIOChannelInfo channelInfo;
+ channelInfo.channel = 0;
+ if ( mode == OUTPUT ) channelInfo.isInput = false;
+ else channelInfo.isInput = true;
+ result = ASIOGetChannelInfo( &channelInfo );
+ if ( result != ASE_OK ) {
+ errorStream_ << "RtApiAsio::probeDeviceOpen: driver (" << driverName << ") error (" << getAsioErrorString( result ) << ") getting data format.";
+ errorText_ = errorStream_.str();
+ goto error;
+ }
+
+ // Assuming WINDOWS host is always little-endian.
+ stream_.doByteSwap[mode] = false;
+ stream_.userFormat = format;
+ stream_.deviceFormat[mode] = 0;
+ if ( channelInfo.type == ASIOSTInt16MSB || channelInfo.type == ASIOSTInt16LSB ) {
+ stream_.deviceFormat[mode] = RTAUDIO_SINT16;
+ if ( channelInfo.type == ASIOSTInt16MSB ) stream_.doByteSwap[mode] = true;
+ }
+ else if ( channelInfo.type == ASIOSTInt32MSB || channelInfo.type == ASIOSTInt32LSB ) {
+ stream_.deviceFormat[mode] = RTAUDIO_SINT32;
+ if ( channelInfo.type == ASIOSTInt32MSB ) stream_.doByteSwap[mode] = true;
+ }
+ else if ( channelInfo.type == ASIOSTFloat32MSB || channelInfo.type == ASIOSTFloat32LSB ) {
+ stream_.deviceFormat[mode] = RTAUDIO_FLOAT32;
+ if ( channelInfo.type == ASIOSTFloat32MSB ) stream_.doByteSwap[mode] = true;
+ }
+ else if ( channelInfo.type == ASIOSTFloat64MSB || channelInfo.type == ASIOSTFloat64LSB ) {
+ stream_.deviceFormat[mode] = RTAUDIO_FLOAT64;
+ if ( channelInfo.type == ASIOSTFloat64MSB ) stream_.doByteSwap[mode] = true;
+ }
+ else if ( channelInfo.type == ASIOSTInt24MSB || channelInfo.type == ASIOSTInt24LSB ) {
+ stream_.deviceFormat[mode] = RTAUDIO_SINT24;
+ if ( channelInfo.type == ASIOSTInt24MSB ) stream_.doByteSwap[mode] = true;
+ }
+
+ if ( stream_.deviceFormat[mode] == 0 ) {
+ errorStream_ << "RtApiAsio::probeDeviceOpen: driver (" << driverName << ") data format not supported by RtAudio.";
+ errorText_ = errorStream_.str();
+ goto error;
+ }
+
+ // Set the buffer size. For a duplex stream, this will end up
+ // setting the buffer size based on the input constraints, which
+ // should be ok.
+ long minSize, maxSize, preferSize, granularity;
+ result = ASIOGetBufferSize( &minSize, &maxSize, &preferSize, &granularity );
+ if ( result != ASE_OK ) {
+ errorStream_ << "RtApiAsio::probeDeviceOpen: driver (" << driverName << ") error (" << getAsioErrorString( result ) << ") getting buffer size.";
+ errorText_ = errorStream_.str();
+ goto error;
+ }
+
+ if ( isDuplexInput ) {
+ // When this is the duplex input (output was opened before), then we have to use the same
+ // buffersize as the output, because it might use the preferred buffer size, which most
+ // likely wasn't passed as input to this. The buffer sizes have to be identically anyway,
+ // So instead of throwing an error, make them equal. The caller uses the reference
+ // to the "bufferSize" param as usual to set up processing buffers.
+
+ *bufferSize = stream_.bufferSize;
+
+ } else {
+ if ( *bufferSize == 0 ) *bufferSize = preferSize;
+ else if ( *bufferSize < (unsigned int) minSize ) *bufferSize = (unsigned int) minSize;
+ else if ( *bufferSize > (unsigned int) maxSize ) *bufferSize = (unsigned int) maxSize;
+ else if ( granularity == -1 ) {
+ // Make sure bufferSize is a power of two.
+ int log2_of_min_size = 0;
+ int log2_of_max_size = 0;
+
+ for ( unsigned int i = 0; i < sizeof(long) * 8; i++ ) {
+ if ( minSize & ((long)1 << i) ) log2_of_min_size = i;
+ if ( maxSize & ((long)1 << i) ) log2_of_max_size = i;
+ }
+
+ long min_delta = std::abs( (long)*bufferSize - ((long)1 << log2_of_min_size) );
+ int min_delta_num = log2_of_min_size;
+
+ for (int i = log2_of_min_size + 1; i <= log2_of_max_size; i++) {
+ long current_delta = std::abs( (long)*bufferSize - ((long)1 << i) );
+ if (current_delta < min_delta) {
+ min_delta = current_delta;
+ min_delta_num = i;
+ }
+ }
+
+ *bufferSize = ( (unsigned int)1 << min_delta_num );
+ if ( *bufferSize < (unsigned int) minSize ) *bufferSize = (unsigned int) minSize;
+ else if ( *bufferSize > (unsigned int) maxSize ) *bufferSize = (unsigned int) maxSize;
+ }
+ else if ( granularity != 0 ) {
+ // Set to an even multiple of granularity, rounding up.
+ *bufferSize = (*bufferSize + granularity-1) / granularity * granularity;
+ }
+ }
+
+ /*
+ // we don't use it anymore, see above!
+ // Just left it here for the case...
+ if ( isDuplexInput && stream_.bufferSize != *bufferSize ) {
+ errorText_ = "RtApiAsio::probeDeviceOpen: input/output buffersize discrepancy!";
+ goto error;
+ }
+ */
+
+ stream_.bufferSize = *bufferSize;
+ stream_.nBuffers = 2;
+
+ if ( options && options->flags & RTAUDIO_NONINTERLEAVED ) stream_.userInterleaved = false;
+ else stream_.userInterleaved = true;
+
+ // ASIO always uses non-interleaved buffers.
+ stream_.deviceInterleaved[mode] = false;
+
+ // Allocate, if necessary, our AsioHandle structure for the stream.
+ if ( handle == 0 ) {
+ try {
+ handle = new AsioHandle;
+ }
+ catch ( std::bad_alloc& ) {
+ errorText_ = "RtApiAsio::probeDeviceOpen: error allocating AsioHandle memory.";
+ goto error;
+ }
+ handle->bufferInfos = 0;
+
+ // Create a manual-reset event.
+ handle->condition = CreateEvent( NULL, // no security
+ TRUE, // manual-reset
+ FALSE, // non-signaled initially
+ NULL ); // unnamed
+ stream_.apiHandle = (void *) handle;
+ }
+
+ // Create the ASIO internal buffers. Since RtAudio sets up input
+ // and output separately, we'll have to dispose of previously
+ // created output buffers for a duplex stream.
+ if ( mode == INPUT && stream_.mode == OUTPUT ) {
+ ASIODisposeBuffers();
+ if ( handle->bufferInfos ) free( handle->bufferInfos );
+ }
+
+ // Allocate, initialize, and save the bufferInfos in our stream callbackInfo structure.
+ unsigned int i;
+ nChannels = stream_.nDeviceChannels[0] + stream_.nDeviceChannels[1];
+ handle->bufferInfos = (ASIOBufferInfo *) malloc( nChannels * sizeof(ASIOBufferInfo) );
+ if ( handle->bufferInfos == NULL ) {
+ errorStream_ << "RtApiAsio::probeDeviceOpen: error allocating bufferInfo memory for driver (" << driverName << ").";
+ errorText_ = errorStream_.str();
+ goto error;
+ }
+
+ ASIOBufferInfo *infos;
+ infos = handle->bufferInfos;
+ for ( i=0; i<stream_.nDeviceChannels[0]; i++, infos++ ) {
+ infos->isInput = ASIOFalse;
+ infos->channelNum = i + stream_.channelOffset[0];
+ infos->buffers[0] = infos->buffers[1] = 0;
+ }
+ for ( i=0; i<stream_.nDeviceChannels[1]; i++, infos++ ) {
+ infos->isInput = ASIOTrue;
+ infos->channelNum = i + stream_.channelOffset[1];
+ infos->buffers[0] = infos->buffers[1] = 0;
+ }
+
+ // prepare for callbacks
+ stream_.sampleRate = sampleRate;
+ stream_.device[mode] = device;
+ stream_.mode = isDuplexInput ? DUPLEX : mode;
+
+ // store this class instance before registering callbacks, that are going to use it
+ asioCallbackInfo = &stream_.callbackInfo;
+ stream_.callbackInfo.object = (void *) this;
+
+ // Set up the ASIO callback structure and create the ASIO data buffers.
+ asioCallbacks.bufferSwitch = &bufferSwitch;
+ asioCallbacks.sampleRateDidChange = &sampleRateChanged;
+ asioCallbacks.asioMessage = &asioMessages;
+ asioCallbacks.bufferSwitchTimeInfo = NULL;
+ result = ASIOCreateBuffers( handle->bufferInfos, nChannels, stream_.bufferSize, &asioCallbacks );
+ if ( result != ASE_OK ) {
+ // Standard method failed. This can happen with strict/misbehaving drivers that return valid buffer size ranges
+ // but only accept the preferred buffer size as parameter for ASIOCreateBuffers. eg. Creatives ASIO driver
+ // in that case, let's be naïve and try that instead
+ *bufferSize = preferSize;
+ stream_.bufferSize = *bufferSize;
+ result = ASIOCreateBuffers( handle->bufferInfos, nChannels, stream_.bufferSize, &asioCallbacks );
+ }
+
+ if ( result != ASE_OK ) {
+ errorStream_ << "RtApiAsio::probeDeviceOpen: driver (" << driverName << ") error (" << getAsioErrorString( result ) << ") creating buffers.";
+ errorText_ = errorStream_.str();
+ goto error;
+ }
+ buffersAllocated = true;
+ stream_.state = STREAM_STOPPED;
+
+ // Set flags for buffer conversion.
+ stream_.doConvertBuffer[mode] = false;
+ if ( stream_.userFormat != stream_.deviceFormat[mode] )
+ stream_.doConvertBuffer[mode] = true;
+ if ( stream_.userInterleaved != stream_.deviceInterleaved[mode] &&
+ stream_.nUserChannels[mode] > 1 )
+ stream_.doConvertBuffer[mode] = true;
+
+ // Allocate necessary internal buffers
+ unsigned long bufferBytes;
+ bufferBytes = stream_.nUserChannels[mode] * *bufferSize * formatBytes( stream_.userFormat );
+ stream_.userBuffer[mode] = (char *) calloc( bufferBytes, 1 );
+ if ( stream_.userBuffer[mode] == NULL ) {
+ errorText_ = "RtApiAsio::probeDeviceOpen: error allocating user buffer memory.";
+ goto error;
+ }
+
+ if ( stream_.doConvertBuffer[mode] ) {
+
+ bool makeBuffer = true;
+ bufferBytes = stream_.nDeviceChannels[mode] * formatBytes( stream_.deviceFormat[mode] );
+ if ( isDuplexInput && stream_.deviceBuffer ) {
+ unsigned long bytesOut = stream_.nDeviceChannels[0] * formatBytes( stream_.deviceFormat[0] );
+ if ( bufferBytes <= bytesOut ) makeBuffer = false;
+ }
+
+ if ( makeBuffer ) {
+ bufferBytes *= *bufferSize;
+ if ( stream_.deviceBuffer ) free( stream_.deviceBuffer );
+ stream_.deviceBuffer = (char *) calloc( bufferBytes, 1 );
+ if ( stream_.deviceBuffer == NULL ) {
+ errorText_ = "RtApiAsio::probeDeviceOpen: error allocating device buffer memory.";
+ goto error;
+ }
+ }
+ }
+
+ // Determine device latencies
+ long inputLatency, outputLatency;
+ result = ASIOGetLatencies( &inputLatency, &outputLatency );
+ if ( result != ASE_OK ) {
+ errorStream_ << "RtApiAsio::probeDeviceOpen: driver (" << driverName << ") error (" << getAsioErrorString( result ) << ") getting latency.";
+ errorText_ = errorStream_.str();
+ error( RtAudioError::WARNING); // warn but don't fail
+ }
+ else {
+ stream_.latency[0] = outputLatency;
+ stream_.latency[1] = inputLatency;
+ }
+
+ // Setup the buffer conversion information structure. We don't use
+ // buffers to do channel offsets, so we override that parameter
+ // here.
+ if ( stream_.doConvertBuffer[mode] ) setConvertInfo( mode, 0 );
+
+ return SUCCESS;
+
+ error:
+ if ( !isDuplexInput ) {
+ // the cleanup for error in the duplex input, is done by RtApi::openStream
+ // So we clean up for single channel only
+
+ if ( buffersAllocated )
+ ASIODisposeBuffers();
+
+ drivers.removeCurrentDriver();
+
+ if ( handle ) {
+ CloseHandle( handle->condition );
+ if ( handle->bufferInfos )
+ free( handle->bufferInfos );
+
+ delete handle;
+ stream_.apiHandle = 0;
+ }
+
+
+ if ( stream_.userBuffer[mode] ) {
+ free( stream_.userBuffer[mode] );
+ stream_.userBuffer[mode] = 0;
+ }
+
+ if ( stream_.deviceBuffer ) {
+ free( stream_.deviceBuffer );
+ stream_.deviceBuffer = 0;
+ }
+ }
+
+ return FAILURE;
+}////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
+
+void RtApiAsio :: closeStream()
+{
+ if ( stream_.state == STREAM_CLOSED ) {
+ errorText_ = "RtApiAsio::closeStream(): no open stream to close!";
+ error( RtAudioError::WARNING );
+ return;
+ }
+
+ if ( stream_.state == STREAM_RUNNING ) {
+ stream_.state = STREAM_STOPPED;
+ ASIOStop();
+ }
+ ASIODisposeBuffers();
+ drivers.removeCurrentDriver();
+
+ AsioHandle *handle = (AsioHandle *) stream_.apiHandle;
+ if ( handle ) {
+ CloseHandle( handle->condition );
+ if ( handle->bufferInfos )
+ free( handle->bufferInfos );
+ delete handle;
+ stream_.apiHandle = 0;
+ }
+
+ for ( int i=0; i<2; i++ ) {
+ if ( stream_.userBuffer[i] ) {
+ free( stream_.userBuffer[i] );
+ stream_.userBuffer[i] = 0;
+ }
+ }
+
+ if ( stream_.deviceBuffer ) {
+ free( stream_.deviceBuffer );
+ stream_.deviceBuffer = 0;
+ }
+
+ stream_.mode = UNINITIALIZED;
+ stream_.state = STREAM_CLOSED;
+}
+
+bool stopThreadCalled = false;
+
+void RtApiAsio :: startStream()
+{
+ verifyStream();
+ if ( stream_.state == STREAM_RUNNING ) {
+ errorText_ = "RtApiAsio::startStream(): the stream is already running!";
+ error( RtAudioError::WARNING );
+ return;
+ }
+
+ AsioHandle *handle = (AsioHandle *) stream_.apiHandle;
+ ASIOError result = ASIOStart();
+ if ( result != ASE_OK ) {
+ errorStream_ << "RtApiAsio::startStream: error (" << getAsioErrorString( result ) << ") starting device.";
+ errorText_ = errorStream_.str();
+ goto unlock;
+ }
+
+ handle->drainCounter = 0;
+ handle->internalDrain = false;
+ ResetEvent( handle->condition );
+ stream_.state = STREAM_RUNNING;
+ asioXRun = false;
+
+ unlock:
+ stopThreadCalled = false;
+
+ if ( result == ASE_OK ) return;
+ error( RtAudioError::SYSTEM_ERROR );
+}
+
+void RtApiAsio :: stopStream()
+{
+ verifyStream();
+ if ( stream_.state == STREAM_STOPPED ) {
+ errorText_ = "RtApiAsio::stopStream(): the stream is already stopped!";
+ error( RtAudioError::WARNING );
+ return;
+ }
+
+ AsioHandle *handle = (AsioHandle *) stream_.apiHandle;
+ if ( stream_.mode == OUTPUT || stream_.mode == DUPLEX ) {
+ if ( handle->drainCounter == 0 ) {
+ handle->drainCounter = 2;
+ WaitForSingleObject( handle->condition, INFINITE ); // block until signaled
+ }
+ }
+
+ stream_.state = STREAM_STOPPED;
+
+ ASIOError result = ASIOStop();
+ if ( result != ASE_OK ) {
+ errorStream_ << "RtApiAsio::stopStream: error (" << getAsioErrorString( result ) << ") stopping device.";
+ errorText_ = errorStream_.str();
+ }
+
+ if ( result == ASE_OK ) return;
+ error( RtAudioError::SYSTEM_ERROR );
+}
+
+void RtApiAsio :: abortStream()
+{
+ verifyStream();
+ if ( stream_.state == STREAM_STOPPED ) {
+ errorText_ = "RtApiAsio::abortStream(): the stream is already stopped!";
+ error( RtAudioError::WARNING );
+ return;
+ }
+
+ // The following lines were commented-out because some behavior was
+ // noted where the device buffers need to be zeroed to avoid
+ // continuing sound, even when the device buffers are completely
+ // disposed. So now, calling abort is the same as calling stop.
+ // AsioHandle *handle = (AsioHandle *) stream_.apiHandle;
+ // handle->drainCounter = 2;
+ stopStream();
+}
+
+// This function will be called by a spawned thread when the user
+// callback function signals that the stream should be stopped or
+// aborted. It is necessary to handle it this way because the
+// callbackEvent() function must return before the ASIOStop()
+// function will return.
+static unsigned __stdcall asioStopStream( void *ptr )
+{
+ CallbackInfo *info = (CallbackInfo *) ptr;
+ RtApiAsio *object = (RtApiAsio *) info->object;
+
+ object->stopStream();
+ _endthreadex( 0 );
+ return 0;
+}
+
+bool RtApiAsio :: callbackEvent( long bufferIndex )
+{
+ if ( stream_.state == STREAM_STOPPED || stream_.state == STREAM_STOPPING ) return SUCCESS;
+ if ( stream_.state == STREAM_CLOSED ) {
+ errorText_ = "RtApiAsio::callbackEvent(): the stream is closed ... this shouldn't happen!";
+ error( RtAudioError::WARNING );
+ return FAILURE;
+ }
+
+ CallbackInfo *info = (CallbackInfo *) &stream_.callbackInfo;
+ AsioHandle *handle = (AsioHandle *) stream_.apiHandle;
+
+ // Check if we were draining the stream and signal if finished.
+ if ( handle->drainCounter > 3 ) {
+
+ stream_.state = STREAM_STOPPING;
+ if ( handle->internalDrain == false )
+ SetEvent( handle->condition );
+ else { // spawn a thread to stop the stream
+ unsigned threadId;
+ stream_.callbackInfo.thread = _beginthreadex( NULL, 0, &asioStopStream,
+ &stream_.callbackInfo, 0, &threadId );
+ }
+ return SUCCESS;
+ }
+
+ // Invoke user callback to get fresh output data UNLESS we are
+ // draining stream.
+ if ( handle->drainCounter == 0 ) {
+ RtAudioCallback callback = (RtAudioCallback) info->callback;
+ double streamTime = getStreamTime();
+ RtAudioStreamStatus status = 0;
+ if ( stream_.mode != INPUT && asioXRun == true ) {
+ status |= RTAUDIO_OUTPUT_UNDERFLOW;
+ asioXRun = false;
+ }
+ if ( stream_.mode != OUTPUT && asioXRun == true ) {
+ status |= RTAUDIO_INPUT_OVERFLOW;
+ asioXRun = false;
+ }
+ int cbReturnValue = callback( stream_.userBuffer[0], stream_.userBuffer[1],
+ stream_.bufferSize, streamTime, status, info->userData );
+ if ( cbReturnValue == 2 ) {
+ stream_.state = STREAM_STOPPING;
+ handle->drainCounter = 2;
+ unsigned threadId;
+ stream_.callbackInfo.thread = _beginthreadex( NULL, 0, &asioStopStream,
+ &stream_.callbackInfo, 0, &threadId );
+ return SUCCESS;
+ }
+ else if ( cbReturnValue == 1 ) {
+ handle->drainCounter = 1;
+ handle->internalDrain = true;
+ }
+ }
+
+ unsigned int nChannels, bufferBytes, i, j;
+ nChannels = stream_.nDeviceChannels[0] + stream_.nDeviceChannels[1];
+ if ( stream_.mode == OUTPUT || stream_.mode == DUPLEX ) {
+
+ bufferBytes = stream_.bufferSize * formatBytes( stream_.deviceFormat[0] );
+
+ if ( handle->drainCounter > 1 ) { // write zeros to the output stream
+
+ for ( i=0, j=0; i<nChannels; i++ ) {
+ if ( handle->bufferInfos[i].isInput != ASIOTrue )
+ memset( handle->bufferInfos[i].buffers[bufferIndex], 0, bufferBytes );
+ }
+
+ }
+ else if ( stream_.doConvertBuffer[0] ) {
+
+ convertBuffer( stream_.deviceBuffer, stream_.userBuffer[0], stream_.convertInfo[0] );
+ if ( stream_.doByteSwap[0] )
+ byteSwapBuffer( stream_.deviceBuffer,
+ stream_.bufferSize * stream_.nDeviceChannels[0],
+ stream_.deviceFormat[0] );
+
+ for ( i=0, j=0; i<nChannels; i++ ) {
+ if ( handle->bufferInfos[i].isInput != ASIOTrue )
+ memcpy( handle->bufferInfos[i].buffers[bufferIndex],
+ &stream_.deviceBuffer[j++*bufferBytes], bufferBytes );
+ }
+
+ }
+ else {
+
+ if ( stream_.doByteSwap[0] )
+ byteSwapBuffer( stream_.userBuffer[0],
+ stream_.bufferSize * stream_.nUserChannels[0],
+ stream_.userFormat );
+
+ for ( i=0, j=0; i<nChannels; i++ ) {
+ if ( handle->bufferInfos[i].isInput != ASIOTrue )
+ memcpy( handle->bufferInfos[i].buffers[bufferIndex],
+ &stream_.userBuffer[0][bufferBytes*j++], bufferBytes );
+ }
+
+ }
+ }
+
+ // Don't bother draining input
+ if ( handle->drainCounter ) {
+ handle->drainCounter++;
+ goto unlock;
+ }
+
+ if ( stream_.mode == INPUT || stream_.mode == DUPLEX ) {
+
+ bufferBytes = stream_.bufferSize * formatBytes(stream_.deviceFormat[1]);
+
+ if (stream_.doConvertBuffer[1]) {
+
+ // Always interleave ASIO input data.
+ for ( i=0, j=0; i<nChannels; i++ ) {
+ if ( handle->bufferInfos[i].isInput == ASIOTrue )
+ memcpy( &stream_.deviceBuffer[j++*bufferBytes],
+ handle->bufferInfos[i].buffers[bufferIndex],
+ bufferBytes );
+ }
+
+ if ( stream_.doByteSwap[1] )
+ byteSwapBuffer( stream_.deviceBuffer,
+ stream_.bufferSize * stream_.nDeviceChannels[1],
+ stream_.deviceFormat[1] );
+ convertBuffer( stream_.userBuffer[1], stream_.deviceBuffer, stream_.convertInfo[1] );
+
+ }
+ else {
+ for ( i=0, j=0; i<nChannels; i++ ) {
+ if ( handle->bufferInfos[i].isInput == ASIOTrue ) {
+ memcpy( &stream_.userBuffer[1][bufferBytes*j++],
+ handle->bufferInfos[i].buffers[bufferIndex],
+ bufferBytes );
+ }
+ }
+
+ if ( stream_.doByteSwap[1] )
+ byteSwapBuffer( stream_.userBuffer[1],
+ stream_.bufferSize * stream_.nUserChannels[1],
+ stream_.userFormat );
+ }
+ }
+
+ unlock:
+ // The following call was suggested by Malte Clasen. While the API
+ // documentation indicates it should not be required, some device
+ // drivers apparently do not function correctly without it.
+ ASIOOutputReady();
+
+ RtApi::tickStreamTime();
+ return SUCCESS;
+}
+
+static void sampleRateChanged( ASIOSampleRate sRate )
+{
+ // The ASIO documentation says that this usually only happens during
+ // external sync. Audio processing is not stopped by the driver,
+ // actual sample rate might not have even changed, maybe only the
+ // sample rate status of an AES/EBU or S/PDIF digital input at the
+ // audio device.
+
+ RtApi *object = (RtApi *) asioCallbackInfo->object;
+ try {
+ object->stopStream();
+ }
+ catch ( RtAudioError &exception ) {
+ std::cerr << "\nRtApiAsio: sampleRateChanged() error (" << exception.getMessage() << ")!\n" << std::endl;
+ return;
+ }
+
+ std::cerr << "\nRtApiAsio: driver reports sample rate changed to " << sRate << " ... stream stopped!!!\n" << std::endl;
+}
+
+static long asioMessages( long selector, long value, void* /*message*/, double* /*opt*/ )
+{
+ long ret = 0;
+
+ switch( selector ) {
+ case kAsioSelectorSupported:
+ if ( value == kAsioResetRequest
+ || value == kAsioEngineVersion
+ || value == kAsioResyncRequest
+ || value == kAsioLatenciesChanged
+ // The following three were added for ASIO 2.0, you don't
+ // necessarily have to support them.
+ || value == kAsioSupportsTimeInfo
+ || value == kAsioSupportsTimeCode
+ || value == kAsioSupportsInputMonitor)
+ ret = 1L;
+ break;
+ case kAsioResetRequest:
+ // Defer the task and perform the reset of the driver during the
+ // next "safe" situation. You cannot reset the driver right now,
+ // as this code is called from the driver. Reset the driver is
+ // done by completely destruct is. I.e. ASIOStop(),
+ // ASIODisposeBuffers(), Destruction Afterwards you initialize the
+ // driver again.
+ std::cerr << "\nRtApiAsio: driver reset requested!!!" << std::endl;
+ ret = 1L;
+ break;
+ case kAsioResyncRequest:
+ // This informs the application that the driver encountered some
+ // non-fatal data loss. It is used for synchronization purposes
+ // of different media. Added mainly to work around the Win16Mutex
+ // problems in Windows 95/98 with the Windows Multimedia system,
+ // which could lose data because the Mutex was held too long by
+ // another thread. However a driver can issue it in other
+ // situations, too.
+ // std::cerr << "\nRtApiAsio: driver resync requested!!!" << std::endl;
+ asioXRun = true;
+ ret = 1L;
+ break;
+ case kAsioLatenciesChanged:
+ // This will inform the host application that the drivers were
+ // latencies changed. Beware, it this does not mean that the
+ // buffer sizes have changed! You might need to update internal
+ // delay data.
+ std::cerr << "\nRtApiAsio: driver latency may have changed!!!" << std::endl;
+ ret = 1L;
+ break;
+ case kAsioEngineVersion:
+ // Return the supported ASIO version of the host application. If
+ // a host application does not implement this selector, ASIO 1.0
+ // is assumed by the driver.
+ ret = 2L;
+ break;
+ case kAsioSupportsTimeInfo:
+ // Informs the driver whether the
+ // asioCallbacks.bufferSwitchTimeInfo() callback is supported.
+ // For compatibility with ASIO 1.0 drivers the host application
+ // should always support the "old" bufferSwitch method, too.
+ ret = 0;
+ break;
+ case kAsioSupportsTimeCode:
+ // Informs the driver whether application is interested in time
+ // code info. If an application does not need to know about time
+ // code, the driver has less work to do.
+ ret = 0;
+ break;
+ }
+ return ret;
+}
+
+static const char* getAsioErrorString( ASIOError result )
+{
+ struct Messages
+ {
+ ASIOError value;
+ const char*message;
+ };
+
+ static const Messages m[] =
+ {
+ { ASE_NotPresent, "Hardware input or output is not present or available." },
+ { ASE_HWMalfunction, "Hardware is malfunctioning." },
+ { ASE_InvalidParameter, "Invalid input parameter." },
+ { ASE_InvalidMode, "Invalid mode." },
+ { ASE_SPNotAdvancing, "Sample position not advancing." },
+ { ASE_NoClock, "Sample clock or rate cannot be determined or is not present." },
+ { ASE_NoMemory, "Not enough memory to complete the request." }
+ };
+
+ for ( unsigned int i = 0; i < sizeof(m)/sizeof(m[0]); ++i )
+ if ( m[i].value == result ) return m[i].message;
+
+ return "Unknown error.";
+}
+
+//******************** End of __WINDOWS_ASIO__ *********************//
+#endif
+
+
+#if defined(__WINDOWS_WASAPI__) // Windows WASAPI API
+
+// Authored by Marcus Tomlinson <themarcustomlinson@gmail.com>, April 2014
+// - Introduces support for the Windows WASAPI API
+// - Aims to deliver bit streams to and from hardware at the lowest possible latency, via the absolute minimum buffer sizes required
+// - Provides flexible stream configuration to an otherwise strict and inflexible WASAPI interface
+// - Includes automatic internal conversion of sample rate and buffer size between hardware and the user
+
+#ifndef INITGUID
+ #define INITGUID
+#endif
+#include <audioclient.h>
+#include <avrt.h>
+#include <mmdeviceapi.h>
+#include <functiondiscoverykeys_devpkey.h>
+
+//=============================================================================
+
+#define SAFE_RELEASE( objectPtr )\
+if ( objectPtr )\
+{\
+ objectPtr->Release();\
+ objectPtr = NULL;\
+}
+
+typedef HANDLE ( __stdcall *TAvSetMmThreadCharacteristicsPtr )( LPCWSTR TaskName, LPDWORD TaskIndex );
+
+//-----------------------------------------------------------------------------
+
+// WASAPI dictates stream sample rate, format, channel count, and in some cases, buffer size.
+// Therefore we must perform all necessary conversions to user buffers in order to satisfy these
+// requirements. WasapiBuffer ring buffers are used between HwIn->UserIn and UserOut->HwOut to
+// provide intermediate storage for read / write synchronization.
+class WasapiBuffer
+{
+public:
+ WasapiBuffer()
+ : buffer_( NULL ),
+ bufferSize_( 0 ),
+ inIndex_( 0 ),
+ outIndex_( 0 ) {}
+
+ ~WasapiBuffer() {
+ free( buffer_ );
+ }
+
+ // sets the length of the internal ring buffer
+ void setBufferSize( unsigned int bufferSize, unsigned int formatBytes ) {
+ free( buffer_ );
+
+ buffer_ = ( char* ) calloc( bufferSize, formatBytes );
+
+ bufferSize_ = bufferSize;
+ inIndex_ = 0;
+ outIndex_ = 0;
+ }
+
+ // attempt to push a buffer into the ring buffer at the current "in" index
+ bool pushBuffer( char* buffer, unsigned int bufferSize, RtAudioFormat format )
+ {
+ if ( !buffer || // incoming buffer is NULL
+ bufferSize == 0 || // incoming buffer has no data
+ bufferSize > bufferSize_ ) // incoming buffer too large
+ {
+ return false;
+ }
+
+ unsigned int relOutIndex = outIndex_;
+ unsigned int inIndexEnd = inIndex_ + bufferSize;
+ if ( relOutIndex < inIndex_ && inIndexEnd >= bufferSize_ ) {
+ relOutIndex += bufferSize_;
+ }
+
+ // "in" index can end on the "out" index but cannot begin at it
+ if ( inIndex_ <= relOutIndex && inIndexEnd > relOutIndex ) {
+ return false; // not enough space between "in" index and "out" index
+ }
+
+ // copy buffer from external to internal
+ int fromZeroSize = inIndex_ + bufferSize - bufferSize_;
+ fromZeroSize = fromZeroSize < 0 ? 0 : fromZeroSize;
+ int fromInSize = bufferSize - fromZeroSize;
+
+ switch( format )
+ {
+ case RTAUDIO_SINT8:
+ memcpy( &( ( char* ) buffer_ )[inIndex_], buffer, fromInSize * sizeof( char ) );
+ memcpy( buffer_, &( ( char* ) buffer )[fromInSize], fromZeroSize * sizeof( char ) );
+ break;
+ case RTAUDIO_SINT16:
+ memcpy( &( ( short* ) buffer_ )[inIndex_], buffer, fromInSize * sizeof( short ) );
+ memcpy( buffer_, &( ( short* ) buffer )[fromInSize], fromZeroSize * sizeof( short ) );
+ break;
+ case RTAUDIO_SINT24:
+ memcpy( &( ( S24* ) buffer_ )[inIndex_], buffer, fromInSize * sizeof( S24 ) );
+ memcpy( buffer_, &( ( S24* ) buffer )[fromInSize], fromZeroSize * sizeof( S24 ) );
+ break;
+ case RTAUDIO_SINT32:
+ memcpy( &( ( int* ) buffer_ )[inIndex_], buffer, fromInSize * sizeof( int ) );
+ memcpy( buffer_, &( ( int* ) buffer )[fromInSize], fromZeroSize * sizeof( int ) );
+ break;
+ case RTAUDIO_FLOAT32:
+ memcpy( &( ( float* ) buffer_ )[inIndex_], buffer, fromInSize * sizeof( float ) );
+ memcpy( buffer_, &( ( float* ) buffer )[fromInSize], fromZeroSize * sizeof( float ) );
+ break;
+ case RTAUDIO_FLOAT64:
+ memcpy( &( ( double* ) buffer_ )[inIndex_], buffer, fromInSize * sizeof( double ) );
+ memcpy( buffer_, &( ( double* ) buffer )[fromInSize], fromZeroSize * sizeof( double ) );
+ break;
+ }
+
+ // update "in" index
+ inIndex_ += bufferSize;
+ inIndex_ %= bufferSize_;
+
+ return true;
+ }
+
+ // attempt to pull a buffer from the ring buffer from the current "out" index
+ bool pullBuffer( char* buffer, unsigned int bufferSize, RtAudioFormat format )
+ {
+ if ( !buffer || // incoming buffer is NULL
+ bufferSize == 0 || // incoming buffer has no data
+ bufferSize > bufferSize_ ) // incoming buffer too large
+ {
+ return false;
+ }
+
+ unsigned int relInIndex = inIndex_;
+ unsigned int outIndexEnd = outIndex_ + bufferSize;
+ if ( relInIndex < outIndex_ && outIndexEnd >= bufferSize_ ) {
+ relInIndex += bufferSize_;
+ }
+
+ // "out" index can begin at and end on the "in" index
+ if ( outIndex_ < relInIndex && outIndexEnd > relInIndex ) {
+ return false; // not enough space between "out" index and "in" index
+ }
+
+ // copy buffer from internal to external
+ int fromZeroSize = outIndex_ + bufferSize - bufferSize_;
+ fromZeroSize = fromZeroSize < 0 ? 0 : fromZeroSize;
+ int fromOutSize = bufferSize - fromZeroSize;
+
+ switch( format )
+ {
+ case RTAUDIO_SINT8:
+ memcpy( buffer, &( ( char* ) buffer_ )[outIndex_], fromOutSize * sizeof( char ) );
+ memcpy( &( ( char* ) buffer )[fromOutSize], buffer_, fromZeroSize * sizeof( char ) );
+ break;
+ case RTAUDIO_SINT16:
+ memcpy( buffer, &( ( short* ) buffer_ )[outIndex_], fromOutSize * sizeof( short ) );
+ memcpy( &( ( short* ) buffer )[fromOutSize], buffer_, fromZeroSize * sizeof( short ) );
+ break;
+ case RTAUDIO_SINT24:
+ memcpy( buffer, &( ( S24* ) buffer_ )[outIndex_], fromOutSize * sizeof( S24 ) );
+ memcpy( &( ( S24* ) buffer )[fromOutSize], buffer_, fromZeroSize * sizeof( S24 ) );
+ break;
+ case RTAUDIO_SINT32:
+ memcpy( buffer, &( ( int* ) buffer_ )[outIndex_], fromOutSize * sizeof( int ) );
+ memcpy( &( ( int* ) buffer )[fromOutSize], buffer_, fromZeroSize * sizeof( int ) );
+ break;
+ case RTAUDIO_FLOAT32:
+ memcpy( buffer, &( ( float* ) buffer_ )[outIndex_], fromOutSize * sizeof( float ) );
+ memcpy( &( ( float* ) buffer )[fromOutSize], buffer_, fromZeroSize * sizeof( float ) );
+ break;
+ case RTAUDIO_FLOAT64:
+ memcpy( buffer, &( ( double* ) buffer_ )[outIndex_], fromOutSize * sizeof( double ) );
+ memcpy( &( ( double* ) buffer )[fromOutSize], buffer_, fromZeroSize * sizeof( double ) );
+ break;
+ }
+
+ // update "out" index
+ outIndex_ += bufferSize;
+ outIndex_ %= bufferSize_;
+
+ return true;
+ }
+
+private:
+ char* buffer_;
+ unsigned int bufferSize_;
+ unsigned int inIndex_;
+ unsigned int outIndex_;
+};
+
+//-----------------------------------------------------------------------------
+
+// In order to satisfy WASAPI's buffer requirements, we need a means of converting sample rate
+// between HW and the user. The convertBufferWasapi function is used to perform this conversion
+// between HwIn->UserIn and UserOut->HwOut during the stream callback loop.
+// This sample rate converter favors speed over quality, and works best with conversions between
+// one rate and its multiple.
+void convertBufferWasapi( char* outBuffer,
+ const char* inBuffer,
+ const unsigned int& channelCount,
+ const unsigned int& inSampleRate,
+ const unsigned int& outSampleRate,
+ const unsigned int& inSampleCount,
+ unsigned int& outSampleCount,
+ const RtAudioFormat& format )
+{
+ // calculate the new outSampleCount and relative sampleStep
+ float sampleRatio = ( float ) outSampleRate / inSampleRate;
+ float sampleStep = 1.0f / sampleRatio;
+ float inSampleFraction = 0.0f;
+
+ outSampleCount = ( unsigned int ) roundf( inSampleCount * sampleRatio );
+
+ // frame-by-frame, copy each relative input sample into it's corresponding output sample
+ for ( unsigned int outSample = 0; outSample < outSampleCount; outSample++ )
+ {
+ unsigned int inSample = ( unsigned int ) inSampleFraction;
+
+ switch ( format )
+ {
+ case RTAUDIO_SINT8:
+ memcpy( &( ( char* ) outBuffer )[ outSample * channelCount ], &( ( char* ) inBuffer )[ inSample * channelCount ], channelCount * sizeof( char ) );
+ break;
+ case RTAUDIO_SINT16:
+ memcpy( &( ( short* ) outBuffer )[ outSample * channelCount ], &( ( short* ) inBuffer )[ inSample * channelCount ], channelCount * sizeof( short ) );
+ break;
+ case RTAUDIO_SINT24:
+ memcpy( &( ( S24* ) outBuffer )[ outSample * channelCount ], &( ( S24* ) inBuffer )[ inSample * channelCount ], channelCount * sizeof( S24 ) );
+ break;
+ case RTAUDIO_SINT32:
+ memcpy( &( ( int* ) outBuffer )[ outSample * channelCount ], &( ( int* ) inBuffer )[ inSample * channelCount ], channelCount * sizeof( int ) );
+ break;
+ case RTAUDIO_FLOAT32:
+ memcpy( &( ( float* ) outBuffer )[ outSample * channelCount ], &( ( float* ) inBuffer )[ inSample * channelCount ], channelCount * sizeof( float ) );
+ break;
+ case RTAUDIO_FLOAT64:
+ memcpy( &( ( double* ) outBuffer )[ outSample * channelCount ], &( ( double* ) inBuffer )[ inSample * channelCount ], channelCount * sizeof( double ) );
+ break;
+ }
+
+ // jump to next in sample
+ inSampleFraction += sampleStep;
+ }
+}
+
+//-----------------------------------------------------------------------------
+
+// A structure to hold various information related to the WASAPI implementation.
+struct WasapiHandle
+{
+ IAudioClient* captureAudioClient;
+ IAudioClient* renderAudioClient;
+ IAudioCaptureClient* captureClient;
+ IAudioRenderClient* renderClient;
+ HANDLE captureEvent;
+ HANDLE renderEvent;
+
+ WasapiHandle()
+ : captureAudioClient( NULL ),
+ renderAudioClient( NULL ),
+ captureClient( NULL ),
+ renderClient( NULL ),
+ captureEvent( NULL ),
+ renderEvent( NULL ) {}
+};
+
+//=============================================================================
+
+RtApiWasapi::RtApiWasapi()
+ : coInitialized_( false ), deviceEnumerator_( NULL )
+{
+ // WASAPI can run either apartment or multi-threaded
+ HRESULT hr = CoInitialize( NULL );
+ if ( !FAILED( hr ) )
+ coInitialized_ = true;
+
+ // Instantiate device enumerator
+ hr = CoCreateInstance( __uuidof( MMDeviceEnumerator ), NULL,
+ CLSCTX_ALL, __uuidof( IMMDeviceEnumerator ),
+ ( void** ) &deviceEnumerator_ );
+
+ if ( FAILED( hr ) ) {
+ errorText_ = "RtApiWasapi::RtApiWasapi: Unable to instantiate device enumerator";
+ error( RtAudioError::DRIVER_ERROR );
+ }
+}
+
+//-----------------------------------------------------------------------------
+
+RtApiWasapi::~RtApiWasapi()
+{
+ if ( stream_.state != STREAM_CLOSED )
+ closeStream();
+
+ SAFE_RELEASE( deviceEnumerator_ );
+
+ // If this object previously called CoInitialize()
+ if ( coInitialized_ )
+ CoUninitialize();
+}
+
+//=============================================================================
+
+unsigned int RtApiWasapi::getDeviceCount( void )
+{
+ unsigned int captureDeviceCount = 0;
+ unsigned int renderDeviceCount = 0;
+
+ IMMDeviceCollection* captureDevices = NULL;
+ IMMDeviceCollection* renderDevices = NULL;
+
+ // Count capture devices
+ errorText_.clear();
+ HRESULT hr = deviceEnumerator_->EnumAudioEndpoints( eCapture, DEVICE_STATE_ACTIVE, &captureDevices );
+ if ( FAILED( hr ) ) {
+ errorText_ = "RtApiWasapi::getDeviceCount: Unable to retrieve capture device collection.";
+ goto Exit;
+ }
+
+ hr = captureDevices->GetCount( &captureDeviceCount );
+ if ( FAILED( hr ) ) {
+ errorText_ = "RtApiWasapi::getDeviceCount: Unable to retrieve capture device count.";
+ goto Exit;
+ }
+
+ // Count render devices
+ hr = deviceEnumerator_->EnumAudioEndpoints( eRender, DEVICE_STATE_ACTIVE, &renderDevices );
+ if ( FAILED( hr ) ) {
+ errorText_ = "RtApiWasapi::getDeviceCount: Unable to retrieve render device collection.";
+ goto Exit;
+ }
+
+ hr = renderDevices->GetCount( &renderDeviceCount );
+ if ( FAILED( hr ) ) {
+ errorText_ = "RtApiWasapi::getDeviceCount: Unable to retrieve render device count.";
+ goto Exit;
+ }
+
+Exit:
+ // release all references
+ SAFE_RELEASE( captureDevices );
+ SAFE_RELEASE( renderDevices );
+
+ if ( errorText_.empty() )
+ return captureDeviceCount + renderDeviceCount;
+
+ error( RtAudioError::DRIVER_ERROR );
+ return 0;
+}
+
+//-----------------------------------------------------------------------------
+
+RtAudio::DeviceInfo RtApiWasapi::getDeviceInfo( unsigned int device )
+{
+ RtAudio::DeviceInfo info;
+ unsigned int captureDeviceCount = 0;
+ unsigned int renderDeviceCount = 0;
+ std::string defaultDeviceName;
+ bool isCaptureDevice = false;
+
+ PROPVARIANT deviceNameProp;
+ PROPVARIANT defaultDeviceNameProp;
+
+ IMMDeviceCollection* captureDevices = NULL;
+ IMMDeviceCollection* renderDevices = NULL;
+ IMMDevice* devicePtr = NULL;
+ IMMDevice* defaultDevicePtr = NULL;
+ IAudioClient* audioClient = NULL;
+ IPropertyStore* devicePropStore = NULL;
+ IPropertyStore* defaultDevicePropStore = NULL;
+
+ WAVEFORMATEX* deviceFormat = NULL;
+ WAVEFORMATEX* closestMatchFormat = NULL;
+
+ // probed
+ info.probed = false;
+
+ // Count capture devices
+ errorText_.clear();
+ RtAudioError::Type errorType = RtAudioError::DRIVER_ERROR;
+ HRESULT hr = deviceEnumerator_->EnumAudioEndpoints( eCapture, DEVICE_STATE_ACTIVE, &captureDevices );
+ if ( FAILED( hr ) ) {
+ errorText_ = "RtApiWasapi::getDeviceInfo: Unable to retrieve capture device collection.";
+ goto Exit;
+ }
+
+ hr = captureDevices->GetCount( &captureDeviceCount );
+ if ( FAILED( hr ) ) {
+ errorText_ = "RtApiWasapi::getDeviceInfo: Unable to retrieve capture device count.";
+ goto Exit;
+ }
+
+ // Count render devices
+ hr = deviceEnumerator_->EnumAudioEndpoints( eRender, DEVICE_STATE_ACTIVE, &renderDevices );
+ if ( FAILED( hr ) ) {
+ errorText_ = "RtApiWasapi::getDeviceInfo: Unable to retrieve render device collection.";
+ goto Exit;
+ }
+
+ hr = renderDevices->GetCount( &renderDeviceCount );
+ if ( FAILED( hr ) ) {
+ errorText_ = "RtApiWasapi::getDeviceInfo: Unable to retrieve render device count.";
+ goto Exit;
+ }
+
+ // validate device index
+ if ( device >= captureDeviceCount + renderDeviceCount ) {
+ errorText_ = "RtApiWasapi::getDeviceInfo: Invalid device index.";
+ errorType = RtAudioError::INVALID_USE;
+ goto Exit;
+ }
+
+ // determine whether index falls within capture or render devices
+ if ( device >= renderDeviceCount ) {
+ hr = captureDevices->Item( device - renderDeviceCount, &devicePtr );
+ if ( FAILED( hr ) ) {
+ errorText_ = "RtApiWasapi::getDeviceInfo: Unable to retrieve capture device handle.";
+ goto Exit;
+ }
+ isCaptureDevice = true;
+ }
+ else {
+ hr = renderDevices->Item( device, &devicePtr );
+ if ( FAILED( hr ) ) {
+ errorText_ = "RtApiWasapi::getDeviceInfo: Unable to retrieve render device handle.";
+ goto Exit;
+ }
+ isCaptureDevice = false;
+ }
+
+ // get default device name
+ if ( isCaptureDevice ) {
+ hr = deviceEnumerator_->GetDefaultAudioEndpoint( eCapture, eConsole, &defaultDevicePtr );
+ if ( FAILED( hr ) ) {
+ errorText_ = "RtApiWasapi::getDeviceInfo: Unable to retrieve default capture device handle.";
+ goto Exit;
+ }
+ }
+ else {
+ hr = deviceEnumerator_->GetDefaultAudioEndpoint( eRender, eConsole, &defaultDevicePtr );
+ if ( FAILED( hr ) ) {
+ errorText_ = "RtApiWasapi::getDeviceInfo: Unable to retrieve default render device handle.";
+ goto Exit;
+ }
+ }
+
+ hr = defaultDevicePtr->OpenPropertyStore( STGM_READ, &defaultDevicePropStore );
+ if ( FAILED( hr ) ) {
+ errorText_ = "RtApiWasapi::getDeviceInfo: Unable to open default device property store.";
+ goto Exit;
+ }
+ PropVariantInit( &defaultDeviceNameProp );
+
+ hr = defaultDevicePropStore->GetValue( PKEY_Device_FriendlyName, &defaultDeviceNameProp );
+ if ( FAILED( hr ) ) {
+ errorText_ = "RtApiWasapi::getDeviceInfo: Unable to retrieve default device property: PKEY_Device_FriendlyName.";
+ goto Exit;
+ }
+
+ defaultDeviceName = convertCharPointerToStdString(defaultDeviceNameProp.pwszVal);
+
+ // name
+ hr = devicePtr->OpenPropertyStore( STGM_READ, &devicePropStore );
+ if ( FAILED( hr ) ) {
+ errorText_ = "RtApiWasapi::getDeviceInfo: Unable to open device property store.";
+ goto Exit;
+ }
+
+ PropVariantInit( &deviceNameProp );
+
+ hr = devicePropStore->GetValue( PKEY_Device_FriendlyName, &deviceNameProp );
+ if ( FAILED( hr ) ) {
+ errorText_ = "RtApiWasapi::getDeviceInfo: Unable to retrieve device property: PKEY_Device_FriendlyName.";
+ goto Exit;
+ }
+
+ info.name =convertCharPointerToStdString(deviceNameProp.pwszVal);
+
+ // is default
+ if ( isCaptureDevice ) {
+ info.isDefaultInput = info.name == defaultDeviceName;
+ info.isDefaultOutput = false;
+ }
+ else {
+ info.isDefaultInput = false;
+ info.isDefaultOutput = info.name == defaultDeviceName;
+ }
+
+ // channel count
+ hr = devicePtr->Activate( __uuidof( IAudioClient ), CLSCTX_ALL, NULL, ( void** ) &audioClient );
+ if ( FAILED( hr ) ) {
+ errorText_ = "RtApiWasapi::getDeviceInfo: Unable to retrieve device audio client.";
+ goto Exit;
+ }
+
+ hr = audioClient->GetMixFormat( &deviceFormat );
+ if ( FAILED( hr ) ) {
+ errorText_ = "RtApiWasapi::getDeviceInfo: Unable to retrieve device mix format.";
+ goto Exit;
+ }
+
+ if ( isCaptureDevice ) {
+ info.inputChannels = deviceFormat->nChannels;
+ info.outputChannels = 0;
+ info.duplexChannels = 0;
+ }
+ else {
+ info.inputChannels = 0;
+ info.outputChannels = deviceFormat->nChannels;
+ info.duplexChannels = 0;
+ }
+
+ // sample rates
+ info.sampleRates.clear();
+
+ // allow support for all sample rates as we have a built-in sample rate converter
+ for ( unsigned int i = 0; i < MAX_SAMPLE_RATES; i++ ) {
+ info.sampleRates.push_back( SAMPLE_RATES[i] );
+ }
+ info.preferredSampleRate = deviceFormat->nSamplesPerSec;
+
+ // native format
+ info.nativeFormats = 0;
+
+ if ( deviceFormat->wFormatTag == WAVE_FORMAT_IEEE_FLOAT ||
+ ( deviceFormat->wFormatTag == WAVE_FORMAT_EXTENSIBLE &&
+ ( ( WAVEFORMATEXTENSIBLE* ) deviceFormat )->SubFormat == KSDATAFORMAT_SUBTYPE_IEEE_FLOAT ) )
+ {
+ if ( deviceFormat->wBitsPerSample == 32 ) {
+ info.nativeFormats |= RTAUDIO_FLOAT32;
+ }
+ else if ( deviceFormat->wBitsPerSample == 64 ) {
+ info.nativeFormats |= RTAUDIO_FLOAT64;
+ }
+ }
+ else if ( deviceFormat->wFormatTag == WAVE_FORMAT_PCM ||
+ ( deviceFormat->wFormatTag == WAVE_FORMAT_EXTENSIBLE &&
+ ( ( WAVEFORMATEXTENSIBLE* ) deviceFormat )->SubFormat == KSDATAFORMAT_SUBTYPE_PCM ) )
+ {
+ if ( deviceFormat->wBitsPerSample == 8 ) {
+ info.nativeFormats |= RTAUDIO_SINT8;
+ }
+ else if ( deviceFormat->wBitsPerSample == 16 ) {
+ info.nativeFormats |= RTAUDIO_SINT16;
+ }
+ else if ( deviceFormat->wBitsPerSample == 24 ) {
+ info.nativeFormats |= RTAUDIO_SINT24;
+ }
+ else if ( deviceFormat->wBitsPerSample == 32 ) {
+ info.nativeFormats |= RTAUDIO_SINT32;
+ }
+ }
+
+ // probed
+ info.probed = true;
+
+Exit:
+ // release all references
+ PropVariantClear( &deviceNameProp );
+ PropVariantClear( &defaultDeviceNameProp );
+
+ SAFE_RELEASE( captureDevices );
+ SAFE_RELEASE( renderDevices );
+ SAFE_RELEASE( devicePtr );
+ SAFE_RELEASE( defaultDevicePtr );
+ SAFE_RELEASE( audioClient );
+ SAFE_RELEASE( devicePropStore );
+ SAFE_RELEASE( defaultDevicePropStore );
+
+ CoTaskMemFree( deviceFormat );
+ CoTaskMemFree( closestMatchFormat );
+
+ if ( !errorText_.empty() )
+ error( errorType );
+ return info;
+}
+
+//-----------------------------------------------------------------------------
+
+unsigned int RtApiWasapi::getDefaultOutputDevice( void )
+{
+ for ( unsigned int i = 0; i < getDeviceCount(); i++ ) {
+ if ( getDeviceInfo( i ).isDefaultOutput ) {
+ return i;
+ }
+ }
+
+ return 0;
+}
+
+//-----------------------------------------------------------------------------
+
+unsigned int RtApiWasapi::getDefaultInputDevice( void )
+{
+ for ( unsigned int i = 0; i < getDeviceCount(); i++ ) {
+ if ( getDeviceInfo( i ).isDefaultInput ) {
+ return i;
+ }
+ }
+
+ return 0;
+}
+
+//-----------------------------------------------------------------------------
+
+void RtApiWasapi::closeStream( void )
+{
+ if ( stream_.state == STREAM_CLOSED ) {
+ errorText_ = "RtApiWasapi::closeStream: No open stream to close.";
+ error( RtAudioError::WARNING );
+ return;
+ }
+
+ if ( stream_.state != STREAM_STOPPED )
+ stopStream();
+
+ // clean up stream memory
+ SAFE_RELEASE( ( ( WasapiHandle* ) stream_.apiHandle )->captureAudioClient )
+ SAFE_RELEASE( ( ( WasapiHandle* ) stream_.apiHandle )->renderAudioClient )
+
+ SAFE_RELEASE( ( ( WasapiHandle* ) stream_.apiHandle )->captureClient )
+ SAFE_RELEASE( ( ( WasapiHandle* ) stream_.apiHandle )->renderClient )
+
+ if ( ( ( WasapiHandle* ) stream_.apiHandle )->captureEvent )
+ CloseHandle( ( ( WasapiHandle* ) stream_.apiHandle )->captureEvent );
+
+ if ( ( ( WasapiHandle* ) stream_.apiHandle )->renderEvent )
+ CloseHandle( ( ( WasapiHandle* ) stream_.apiHandle )->renderEvent );
+
+ delete ( WasapiHandle* ) stream_.apiHandle;
+ stream_.apiHandle = NULL;
+
+ for ( int i = 0; i < 2; i++ ) {
+ if ( stream_.userBuffer[i] ) {
+ free( stream_.userBuffer[i] );
+ stream_.userBuffer[i] = 0;
+ }
+ }
+
+ if ( stream_.deviceBuffer ) {
+ free( stream_.deviceBuffer );
+ stream_.deviceBuffer = 0;
+ }
+
+ // update stream state
+ stream_.state = STREAM_CLOSED;
+}
+
+//-----------------------------------------------------------------------------
+
+void RtApiWasapi::startStream( void )
+{
+ verifyStream();
+
+ if ( stream_.state == STREAM_RUNNING ) {
+ errorText_ = "RtApiWasapi::startStream: The stream is already running.";
+ error( RtAudioError::WARNING );
+ return;
+ }
+
+ // update stream state
+ stream_.state = STREAM_RUNNING;
+
+ // create WASAPI stream thread
+ stream_.callbackInfo.thread = ( ThreadHandle ) CreateThread( NULL, 0, runWasapiThread, this, CREATE_SUSPENDED, NULL );
+
+ if ( !stream_.callbackInfo.thread ) {
+ errorText_ = "RtApiWasapi::startStream: Unable to instantiate callback thread.";
+ error( RtAudioError::THREAD_ERROR );
+ }
+ else {
+ SetThreadPriority( ( void* ) stream_.callbackInfo.thread, stream_.callbackInfo.priority );
+ ResumeThread( ( void* ) stream_.callbackInfo.thread );
+ }
+}
+
+//-----------------------------------------------------------------------------
+
+void RtApiWasapi::stopStream( void )
+{
+ verifyStream();
+
+ if ( stream_.state == STREAM_STOPPED ) {
+ errorText_ = "RtApiWasapi::stopStream: The stream is already stopped.";
+ error( RtAudioError::WARNING );
+ return;
+ }
+
+ // inform stream thread by setting stream state to STREAM_STOPPING
+ stream_.state = STREAM_STOPPING;
+
+ // wait until stream thread is stopped
+ while( stream_.state != STREAM_STOPPED ) {
+ Sleep( 1 );
+ }
+
+ // Wait for the last buffer to play before stopping.
+ Sleep( 1000 * stream_.bufferSize / stream_.sampleRate );
+
+ // stop capture client if applicable
+ if ( ( ( WasapiHandle* ) stream_.apiHandle )->captureAudioClient ) {
+ HRESULT hr = ( ( WasapiHandle* ) stream_.apiHandle )->captureAudioClient->Stop();
+ if ( FAILED( hr ) ) {
+ errorText_ = "RtApiWasapi::stopStream: Unable to stop capture stream.";
+ error( RtAudioError::DRIVER_ERROR );
+ return;
+ }
+ }
+
+ // stop render client if applicable
+ if ( ( ( WasapiHandle* ) stream_.apiHandle )->renderAudioClient ) {
+ HRESULT hr = ( ( WasapiHandle* ) stream_.apiHandle )->renderAudioClient->Stop();
+ if ( FAILED( hr ) ) {
+ errorText_ = "RtApiWasapi::stopStream: Unable to stop render stream.";
+ error( RtAudioError::DRIVER_ERROR );
+ return;
+ }
+ }
+
+ // close thread handle
+ if ( stream_.callbackInfo.thread && !CloseHandle( ( void* ) stream_.callbackInfo.thread ) ) {
+ errorText_ = "RtApiWasapi::stopStream: Unable to close callback thread.";
+ error( RtAudioError::THREAD_ERROR );
+ return;
+ }
+
+ stream_.callbackInfo.thread = (ThreadHandle) NULL;
+}
+
+//-----------------------------------------------------------------------------
+
+void RtApiWasapi::abortStream( void )
+{
+ verifyStream();
+
+ if ( stream_.state == STREAM_STOPPED ) {
+ errorText_ = "RtApiWasapi::abortStream: The stream is already stopped.";
+ error( RtAudioError::WARNING );
+ return;
+ }
+
+ // inform stream thread by setting stream state to STREAM_STOPPING
+ stream_.state = STREAM_STOPPING;
+
+ // wait until stream thread is stopped
+ while ( stream_.state != STREAM_STOPPED ) {
+ Sleep( 1 );
+ }
+
+ // stop capture client if applicable
+ if ( ( ( WasapiHandle* ) stream_.apiHandle )->captureAudioClient ) {
+ HRESULT hr = ( ( WasapiHandle* ) stream_.apiHandle )->captureAudioClient->Stop();
+ if ( FAILED( hr ) ) {
+ errorText_ = "RtApiWasapi::abortStream: Unable to stop capture stream.";
+ error( RtAudioError::DRIVER_ERROR );
+ return;
+ }
+ }
+
+ // stop render client if applicable
+ if ( ( ( WasapiHandle* ) stream_.apiHandle )->renderAudioClient ) {
+ HRESULT hr = ( ( WasapiHandle* ) stream_.apiHandle )->renderAudioClient->Stop();
+ if ( FAILED( hr ) ) {
+ errorText_ = "RtApiWasapi::abortStream: Unable to stop render stream.";
+ error( RtAudioError::DRIVER_ERROR );
+ return;
+ }
+ }
+
+ // close thread handle
+ if ( stream_.callbackInfo.thread && !CloseHandle( ( void* ) stream_.callbackInfo.thread ) ) {
+ errorText_ = "RtApiWasapi::abortStream: Unable to close callback thread.";
+ error( RtAudioError::THREAD_ERROR );
+ return;
+ }
+
+ stream_.callbackInfo.thread = (ThreadHandle) NULL;
+}
+
+//-----------------------------------------------------------------------------
+
+bool RtApiWasapi::probeDeviceOpen( unsigned int device, StreamMode mode, unsigned int channels,
+ unsigned int firstChannel, unsigned int sampleRate,
+ RtAudioFormat format, unsigned int* bufferSize,
+ RtAudio::StreamOptions* options )
+{
+ bool methodResult = FAILURE;
+ unsigned int captureDeviceCount = 0;
+ unsigned int renderDeviceCount = 0;
+
+ IMMDeviceCollection* captureDevices = NULL;
+ IMMDeviceCollection* renderDevices = NULL;
+ IMMDevice* devicePtr = NULL;
+ WAVEFORMATEX* deviceFormat = NULL;
+ unsigned int bufferBytes;
+ stream_.state = STREAM_STOPPED;
+
+ // create API Handle if not already created
+ if ( !stream_.apiHandle )
+ stream_.apiHandle = ( void* ) new WasapiHandle();
+
+ // Count capture devices
+ errorText_.clear();
+ RtAudioError::Type errorType = RtAudioError::DRIVER_ERROR;
+ HRESULT hr = deviceEnumerator_->EnumAudioEndpoints( eCapture, DEVICE_STATE_ACTIVE, &captureDevices );
+ if ( FAILED( hr ) ) {
+ errorText_ = "RtApiWasapi::probeDeviceOpen: Unable to retrieve capture device collection.";
+ goto Exit;
+ }
+
+ hr = captureDevices->GetCount( &captureDeviceCount );
+ if ( FAILED( hr ) ) {
+ errorText_ = "RtApiWasapi::probeDeviceOpen: Unable to retrieve capture device count.";
+ goto Exit;
+ }
+
+ // Count render devices
+ hr = deviceEnumerator_->EnumAudioEndpoints( eRender, DEVICE_STATE_ACTIVE, &renderDevices );
+ if ( FAILED( hr ) ) {
+ errorText_ = "RtApiWasapi::probeDeviceOpen: Unable to retrieve render device collection.";
+ goto Exit;
+ }
+
+ hr = renderDevices->GetCount( &renderDeviceCount );
+ if ( FAILED( hr ) ) {
+ errorText_ = "RtApiWasapi::probeDeviceOpen: Unable to retrieve render device count.";
+ goto Exit;
+ }
+
+ // validate device index
+ if ( device >= captureDeviceCount + renderDeviceCount ) {
+ errorType = RtAudioError::INVALID_USE;
+ errorText_ = "RtApiWasapi::probeDeviceOpen: Invalid device index.";
+ goto Exit;
+ }
+
+ // determine whether index falls within capture or render devices
+ if ( device >= renderDeviceCount ) {
+ if ( mode != INPUT ) {
+ errorType = RtAudioError::INVALID_USE;
+ errorText_ = "RtApiWasapi::probeDeviceOpen: Capture device selected as output device.";
+ goto Exit;
+ }
+
+ // retrieve captureAudioClient from devicePtr
+ IAudioClient*& captureAudioClient = ( ( WasapiHandle* ) stream_.apiHandle )->captureAudioClient;
+
+ hr = captureDevices->Item( device - renderDeviceCount, &devicePtr );
+ if ( FAILED( hr ) ) {
+ errorText_ = "RtApiWasapi::probeDeviceOpen: Unable to retrieve capture device handle.";
+ goto Exit;
+ }
+
+ hr = devicePtr->Activate( __uuidof( IAudioClient ), CLSCTX_ALL,
+ NULL, ( void** ) &captureAudioClient );
+ if ( FAILED( hr ) ) {
+ errorText_ = "RtApiWasapi::probeDeviceOpen: Unable to retrieve device audio client.";
+ goto Exit;
+ }
+
+ hr = captureAudioClient->GetMixFormat( &deviceFormat );
+ if ( FAILED( hr ) ) {
+ errorText_ = "RtApiWasapi::probeDeviceOpen: Unable to retrieve device mix format.";
+ goto Exit;
+ }
+
+ stream_.nDeviceChannels[mode] = deviceFormat->nChannels;
+ captureAudioClient->GetStreamLatency( ( long long* ) &stream_.latency[mode] );
+ }
+ else {
+ if ( mode != OUTPUT ) {
+ errorType = RtAudioError::INVALID_USE;
+ errorText_ = "RtApiWasapi::probeDeviceOpen: Render device selected as input device.";
+ goto Exit;
+ }
+
+ // retrieve renderAudioClient from devicePtr
+ IAudioClient*& renderAudioClient = ( ( WasapiHandle* ) stream_.apiHandle )->renderAudioClient;
+
+ hr = renderDevices->Item( device, &devicePtr );
+ if ( FAILED( hr ) ) {
+ errorText_ = "RtApiWasapi::probeDeviceOpen: Unable to retrieve render device handle.";
+ goto Exit;
+ }
+
+ hr = devicePtr->Activate( __uuidof( IAudioClient ), CLSCTX_ALL,
+ NULL, ( void** ) &renderAudioClient );
+ if ( FAILED( hr ) ) {
+ errorText_ = "RtApiWasapi::probeDeviceOpen: Unable to retrieve device audio client.";
+ goto Exit;
+ }
+
+ hr = renderAudioClient->GetMixFormat( &deviceFormat );
+ if ( FAILED( hr ) ) {
+ errorText_ = "RtApiWasapi::probeDeviceOpen: Unable to retrieve device mix format.";
+ goto Exit;
+ }
+
+ stream_.nDeviceChannels[mode] = deviceFormat->nChannels;
+ renderAudioClient->GetStreamLatency( ( long long* ) &stream_.latency[mode] );
+ }
+
+ // fill stream data
+ if ( ( stream_.mode == OUTPUT && mode == INPUT ) ||
+ ( stream_.mode == INPUT && mode == OUTPUT ) ) {
+ stream_.mode = DUPLEX;
+ }
+ else {
+ stream_.mode = mode;
+ }
+
+ stream_.device[mode] = device;
+ stream_.doByteSwap[mode] = false;
+ stream_.sampleRate = sampleRate;
+ stream_.bufferSize = *bufferSize;
+ stream_.nBuffers = 1;
+ stream_.nUserChannels[mode] = channels;
+ stream_.channelOffset[mode] = firstChannel;
+ stream_.userFormat = format;
+ stream_.deviceFormat[mode] = getDeviceInfo( device ).nativeFormats;
+
+ if ( options && options->flags & RTAUDIO_NONINTERLEAVED )
+ stream_.userInterleaved = false;
+ else
+ stream_.userInterleaved = true;
+ stream_.deviceInterleaved[mode] = true;
+
+ // Set flags for buffer conversion.
+ stream_.doConvertBuffer[mode] = false;
+ if ( stream_.userFormat != stream_.deviceFormat[mode] ||
+ stream_.nUserChannels != stream_.nDeviceChannels )
+ stream_.doConvertBuffer[mode] = true;
+ else if ( stream_.userInterleaved != stream_.deviceInterleaved[mode] &&
+ stream_.nUserChannels[mode] > 1 )
+ stream_.doConvertBuffer[mode] = true;
+
+ if ( stream_.doConvertBuffer[mode] )
+ setConvertInfo( mode, 0 );
+
+ // Allocate necessary internal buffers
+ bufferBytes = stream_.nUserChannels[mode] * stream_.bufferSize * formatBytes( stream_.userFormat );
+
+ stream_.userBuffer[mode] = ( char* ) calloc( bufferBytes, 1 );
+ if ( !stream_.userBuffer[mode] ) {
+ errorType = RtAudioError::MEMORY_ERROR;
+ errorText_ = "RtApiWasapi::probeDeviceOpen: Error allocating user buffer memory.";
+ goto Exit;
+ }
+
+ if ( options && options->flags & RTAUDIO_SCHEDULE_REALTIME )
+ stream_.callbackInfo.priority = 15;
+ else
+ stream_.callbackInfo.priority = 0;
+
+ ///! TODO: RTAUDIO_MINIMIZE_LATENCY // Provide stream buffers directly to callback
+ ///! TODO: RTAUDIO_HOG_DEVICE // Exclusive mode
+
+ methodResult = SUCCESS;
+
+Exit:
+ //clean up
+ SAFE_RELEASE( captureDevices );
+ SAFE_RELEASE( renderDevices );
+ SAFE_RELEASE( devicePtr );
+ CoTaskMemFree( deviceFormat );
+
+ // if method failed, close the stream
+ if ( methodResult == FAILURE )
+ closeStream();
+
+ if ( !errorText_.empty() )
+ error( errorType );
+ return methodResult;
+}
+
+//=============================================================================
+
+DWORD WINAPI RtApiWasapi::runWasapiThread( void* wasapiPtr )
+{
+ if ( wasapiPtr )
+ ( ( RtApiWasapi* ) wasapiPtr )->wasapiThread();
+
+ return 0;
+}
+
+DWORD WINAPI RtApiWasapi::stopWasapiThread( void* wasapiPtr )
+{
+ if ( wasapiPtr )
+ ( ( RtApiWasapi* ) wasapiPtr )->stopStream();
+
+ return 0;
+}
+
+DWORD WINAPI RtApiWasapi::abortWasapiThread( void* wasapiPtr )
+{
+ if ( wasapiPtr )
+ ( ( RtApiWasapi* ) wasapiPtr )->abortStream();
+
+ return 0;
+}
+
+//-----------------------------------------------------------------------------
+
+void RtApiWasapi::wasapiThread()
+{
+ // as this is a new thread, we must CoInitialize it
+ CoInitialize( NULL );
+
+ HRESULT hr;
+
+ IAudioClient* captureAudioClient = ( ( WasapiHandle* ) stream_.apiHandle )->captureAudioClient;
+ IAudioClient* renderAudioClient = ( ( WasapiHandle* ) stream_.apiHandle )->renderAudioClient;
+ IAudioCaptureClient* captureClient = ( ( WasapiHandle* ) stream_.apiHandle )->captureClient;
+ IAudioRenderClient* renderClient = ( ( WasapiHandle* ) stream_.apiHandle )->renderClient;
+ HANDLE captureEvent = ( ( WasapiHandle* ) stream_.apiHandle )->captureEvent;
+ HANDLE renderEvent = ( ( WasapiHandle* ) stream_.apiHandle )->renderEvent;
+
+ WAVEFORMATEX* captureFormat = NULL;
+ WAVEFORMATEX* renderFormat = NULL;
+ float captureSrRatio = 0.0f;
+ float renderSrRatio = 0.0f;
+ WasapiBuffer captureBuffer;
+ WasapiBuffer renderBuffer;
+
+ // declare local stream variables
+ RtAudioCallback callback = ( RtAudioCallback ) stream_.callbackInfo.callback;
+ BYTE* streamBuffer = NULL;
+ unsigned long captureFlags = 0;
+ unsigned int bufferFrameCount = 0;
+ unsigned int numFramesPadding = 0;
+ unsigned int convBufferSize = 0;
+ bool callbackPushed = false;
+ bool callbackPulled = false;
+ bool callbackStopped = false;
+ int callbackResult = 0;
+
+ // convBuffer is used to store converted buffers between WASAPI and the user
+ char* convBuffer = NULL;
+ unsigned int convBuffSize = 0;
+ unsigned int deviceBuffSize = 0;
+
+ errorText_.clear();
+ RtAudioError::Type errorType = RtAudioError::DRIVER_ERROR;
+
+ // Attempt to assign "Pro Audio" characteristic to thread
+ HMODULE AvrtDll = LoadLibrary( (LPCTSTR) "AVRT.dll" );
+ if ( AvrtDll ) {
+ DWORD taskIndex = 0;
+ TAvSetMmThreadCharacteristicsPtr AvSetMmThreadCharacteristicsPtr = ( TAvSetMmThreadCharacteristicsPtr ) GetProcAddress( AvrtDll, "AvSetMmThreadCharacteristicsW" );
+ AvSetMmThreadCharacteristicsPtr( L"Pro Audio", &taskIndex );
+ FreeLibrary( AvrtDll );
+ }
+
+ // start capture stream if applicable
+ if ( captureAudioClient ) {
+ hr = captureAudioClient->GetMixFormat( &captureFormat );
+ if ( FAILED( hr ) ) {
+ errorText_ = "RtApiWasapi::wasapiThread: Unable to retrieve device mix format.";
+ goto Exit;
+ }
+
+ captureSrRatio = ( ( float ) captureFormat->nSamplesPerSec / stream_.sampleRate );
+
+ // initialize capture stream according to desire buffer size
+ float desiredBufferSize = stream_.bufferSize * captureSrRatio;
+ REFERENCE_TIME desiredBufferPeriod = ( REFERENCE_TIME ) ( ( float ) desiredBufferSize * 10000000 / captureFormat->nSamplesPerSec );
+
+ if ( !captureClient ) {
+ hr = captureAudioClient->Initialize( AUDCLNT_SHAREMODE_SHARED,
+ AUDCLNT_STREAMFLAGS_EVENTCALLBACK,
+ desiredBufferPeriod,
+ desiredBufferPeriod,
+ captureFormat,
+ NULL );
+ if ( FAILED( hr ) ) {
+ errorText_ = "RtApiWasapi::wasapiThread: Unable to initialize capture audio client.";
+ goto Exit;
+ }
+
+ hr = captureAudioClient->GetService( __uuidof( IAudioCaptureClient ),
+ ( void** ) &captureClient );
+ if ( FAILED( hr ) ) {
+ errorText_ = "RtApiWasapi::wasapiThread: Unable to retrieve capture client handle.";
+ goto Exit;
+ }
+
+ // configure captureEvent to trigger on every available capture buffer
+ captureEvent = CreateEvent( NULL, FALSE, FALSE, NULL );
+ if ( !captureEvent ) {
+ errorType = RtAudioError::SYSTEM_ERROR;
+ errorText_ = "RtApiWasapi::wasapiThread: Unable to create capture event.";
+ goto Exit;
+ }
+
+ hr = captureAudioClient->SetEventHandle( captureEvent );
+ if ( FAILED( hr ) ) {
+ errorText_ = "RtApiWasapi::wasapiThread: Unable to set capture event handle.";
+ goto Exit;
+ }
+
+ ( ( WasapiHandle* ) stream_.apiHandle )->captureClient = captureClient;
+ ( ( WasapiHandle* ) stream_.apiHandle )->captureEvent = captureEvent;
+ }
+
+ unsigned int inBufferSize = 0;
+ hr = captureAudioClient->GetBufferSize( &inBufferSize );
+ if ( FAILED( hr ) ) {
+ errorText_ = "RtApiWasapi::wasapiThread: Unable to get capture buffer size.";
+ goto Exit;
+ }
+
+ // scale outBufferSize according to stream->user sample rate ratio
+ unsigned int outBufferSize = ( unsigned int ) ( stream_.bufferSize * captureSrRatio ) * stream_.nDeviceChannels[INPUT];
+ inBufferSize *= stream_.nDeviceChannels[INPUT];
+
+ // set captureBuffer size
+ captureBuffer.setBufferSize( inBufferSize + outBufferSize, formatBytes( stream_.deviceFormat[INPUT] ) );
+
+ // reset the capture stream
+ hr = captureAudioClient->Reset();
+ if ( FAILED( hr ) ) {
+ errorText_ = "RtApiWasapi::wasapiThread: Unable to reset capture stream.";
+ goto Exit;
+ }
+
+ // start the capture stream
+ hr = captureAudioClient->Start();
+ if ( FAILED( hr ) ) {
+ errorText_ = "RtApiWasapi::wasapiThread: Unable to start capture stream.";
+ goto Exit;
+ }
+ }
+
+ // start render stream if applicable
+ if ( renderAudioClient ) {
+ hr = renderAudioClient->GetMixFormat( &renderFormat );
+ if ( FAILED( hr ) ) {
+ errorText_ = "RtApiWasapi::wasapiThread: Unable to retrieve device mix format.";
+ goto Exit;
+ }
+
+ renderSrRatio = ( ( float ) renderFormat->nSamplesPerSec / stream_.sampleRate );
+
+ // initialize render stream according to desire buffer size
+ float desiredBufferSize = stream_.bufferSize * renderSrRatio;
+ REFERENCE_TIME desiredBufferPeriod = ( REFERENCE_TIME ) ( ( float ) desiredBufferSize * 10000000 / renderFormat->nSamplesPerSec );
+
+ if ( !renderClient ) {
+ hr = renderAudioClient->Initialize( AUDCLNT_SHAREMODE_SHARED,
+ AUDCLNT_STREAMFLAGS_EVENTCALLBACK,
+ desiredBufferPeriod,
+ desiredBufferPeriod,
+ renderFormat,
+ NULL );
+ if ( FAILED( hr ) ) {
+ errorText_ = "RtApiWasapi::wasapiThread: Unable to initialize render audio client.";
+ goto Exit;
+ }
+
+ hr = renderAudioClient->GetService( __uuidof( IAudioRenderClient ),
+ ( void** ) &renderClient );
+ if ( FAILED( hr ) ) {
+ errorText_ = "RtApiWasapi::wasapiThread: Unable to retrieve render client handle.";
+ goto Exit;
+ }
+
+ // configure renderEvent to trigger on every available render buffer
+ renderEvent = CreateEvent( NULL, FALSE, FALSE, NULL );
+ if ( !renderEvent ) {
+ errorType = RtAudioError::SYSTEM_ERROR;
+ errorText_ = "RtApiWasapi::wasapiThread: Unable to create render event.";
+ goto Exit;
+ }
+
+ hr = renderAudioClient->SetEventHandle( renderEvent );
+ if ( FAILED( hr ) ) {
+ errorText_ = "RtApiWasapi::wasapiThread: Unable to set render event handle.";
+ goto Exit;
+ }
+
+ ( ( WasapiHandle* ) stream_.apiHandle )->renderClient = renderClient;
+ ( ( WasapiHandle* ) stream_.apiHandle )->renderEvent = renderEvent;
+ }
+
+ unsigned int outBufferSize = 0;
+ hr = renderAudioClient->GetBufferSize( &outBufferSize );
+ if ( FAILED( hr ) ) {
+ errorText_ = "RtApiWasapi::wasapiThread: Unable to get render buffer size.";
+ goto Exit;
+ }
+
+ // scale inBufferSize according to user->stream sample rate ratio
+ unsigned int inBufferSize = ( unsigned int ) ( stream_.bufferSize * renderSrRatio ) * stream_.nDeviceChannels[OUTPUT];
+ outBufferSize *= stream_.nDeviceChannels[OUTPUT];
+
+ // set renderBuffer size
+ renderBuffer.setBufferSize( inBufferSize + outBufferSize, formatBytes( stream_.deviceFormat[OUTPUT] ) );
+
+ // reset the render stream
+ hr = renderAudioClient->Reset();
+ if ( FAILED( hr ) ) {
+ errorText_ = "RtApiWasapi::wasapiThread: Unable to reset render stream.";
+ goto Exit;
+ }
+
+ // start the render stream
+ hr = renderAudioClient->Start();
+ if ( FAILED( hr ) ) {
+ errorText_ = "RtApiWasapi::wasapiThread: Unable to start render stream.";
+ goto Exit;
+ }
+ }
+
+ if ( stream_.mode == INPUT ) {
+ convBuffSize = ( size_t ) ( stream_.bufferSize * captureSrRatio ) * stream_.nDeviceChannels[INPUT] * formatBytes( stream_.deviceFormat[INPUT] );
+ deviceBuffSize = stream_.bufferSize * stream_.nDeviceChannels[INPUT] * formatBytes( stream_.deviceFormat[INPUT] );
+ }
+ else if ( stream_.mode == OUTPUT ) {
+ convBuffSize = ( size_t ) ( stream_.bufferSize * renderSrRatio ) * stream_.nDeviceChannels[OUTPUT] * formatBytes( stream_.deviceFormat[OUTPUT] );
+ deviceBuffSize = stream_.bufferSize * stream_.nDeviceChannels[OUTPUT] * formatBytes( stream_.deviceFormat[OUTPUT] );
+ }
+ else if ( stream_.mode == DUPLEX ) {
+ convBuffSize = std::max( ( size_t ) ( stream_.bufferSize * captureSrRatio ) * stream_.nDeviceChannels[INPUT] * formatBytes( stream_.deviceFormat[INPUT] ),
+ ( size_t ) ( stream_.bufferSize * renderSrRatio ) * stream_.nDeviceChannels[OUTPUT] * formatBytes( stream_.deviceFormat[OUTPUT] ) );
+ deviceBuffSize = std::max( stream_.bufferSize * stream_.nDeviceChannels[INPUT] * formatBytes( stream_.deviceFormat[INPUT] ),
+ stream_.bufferSize * stream_.nDeviceChannels[OUTPUT] * formatBytes( stream_.deviceFormat[OUTPUT] ) );
+ }
+
+ convBuffer = ( char* ) malloc( convBuffSize );
+ stream_.deviceBuffer = ( char* ) malloc( deviceBuffSize );
+ if ( !convBuffer || !stream_.deviceBuffer ) {
+ errorType = RtAudioError::MEMORY_ERROR;
+ errorText_ = "RtApiWasapi::wasapiThread: Error allocating device buffer memory.";
+ goto Exit;
+ }
+
+ // stream process loop
+ while ( stream_.state != STREAM_STOPPING ) {
+ if ( !callbackPulled ) {
+ // Callback Input
+ // ==============
+ // 1. Pull callback buffer from inputBuffer
+ // 2. If 1. was successful: Convert callback buffer to user sample rate and channel count
+ // Convert callback buffer to user format
+
+ if ( captureAudioClient ) {
+ // Pull callback buffer from inputBuffer
+ callbackPulled = captureBuffer.pullBuffer( convBuffer,
+ ( unsigned int ) ( stream_.bufferSize * captureSrRatio ) * stream_.nDeviceChannels[INPUT],
+ stream_.deviceFormat[INPUT] );
+
+ if ( callbackPulled ) {
+ // Convert callback buffer to user sample rate
+ convertBufferWasapi( stream_.deviceBuffer,
+ convBuffer,
+ stream_.nDeviceChannels[INPUT],
+ captureFormat->nSamplesPerSec,
+ stream_.sampleRate,
+ ( unsigned int ) ( stream_.bufferSize * captureSrRatio ),
+ convBufferSize,
+ stream_.deviceFormat[INPUT] );
+
+ if ( stream_.doConvertBuffer[INPUT] ) {
+ // Convert callback buffer to user format
+ convertBuffer( stream_.userBuffer[INPUT],
+ stream_.deviceBuffer,
+ stream_.convertInfo[INPUT] );
+ }
+ else {
+ // no further conversion, simple copy deviceBuffer to userBuffer
+ memcpy( stream_.userBuffer[INPUT],
+ stream_.deviceBuffer,
+ stream_.bufferSize * stream_.nUserChannels[INPUT] * formatBytes( stream_.userFormat ) );
+ }
+ }
+ }
+ else {
+ // if there is no capture stream, set callbackPulled flag
+ callbackPulled = true;
+ }
+
+ // Execute Callback
+ // ================
+ // 1. Execute user callback method
+ // 2. Handle return value from callback
+
+ // if callback has not requested the stream to stop
+ if ( callbackPulled && !callbackStopped ) {
+ // Execute user callback method
+ callbackResult = callback( stream_.userBuffer[OUTPUT],
+ stream_.userBuffer[INPUT],
+ stream_.bufferSize,
+ getStreamTime(),
+ captureFlags & AUDCLNT_BUFFERFLAGS_DATA_DISCONTINUITY ? RTAUDIO_INPUT_OVERFLOW : 0,
+ stream_.callbackInfo.userData );
+
+ // Handle return value from callback
+ if ( callbackResult == 1 ) {
+ // instantiate a thread to stop this thread
+ HANDLE threadHandle = CreateThread( NULL, 0, stopWasapiThread, this, 0, NULL );
+ if ( !threadHandle ) {
+ errorType = RtAudioError::THREAD_ERROR;
+ errorText_ = "RtApiWasapi::wasapiThread: Unable to instantiate stream stop thread.";
+ goto Exit;
+ }
+ else if ( !CloseHandle( threadHandle ) ) {
+ errorType = RtAudioError::THREAD_ERROR;
+ errorText_ = "RtApiWasapi::wasapiThread: Unable to close stream stop thread handle.";
+ goto Exit;
+ }
+
+ callbackStopped = true;
+ }
+ else if ( callbackResult == 2 ) {
+ // instantiate a thread to stop this thread
+ HANDLE threadHandle = CreateThread( NULL, 0, abortWasapiThread, this, 0, NULL );
+ if ( !threadHandle ) {
+ errorType = RtAudioError::THREAD_ERROR;
+ errorText_ = "RtApiWasapi::wasapiThread: Unable to instantiate stream abort thread.";
+ goto Exit;
+ }
+ else if ( !CloseHandle( threadHandle ) ) {
+ errorType = RtAudioError::THREAD_ERROR;
+ errorText_ = "RtApiWasapi::wasapiThread: Unable to close stream abort thread handle.";
+ goto Exit;
+ }
+
+ callbackStopped = true;
+ }
+ }
+ }
+
+ // Callback Output
+ // ===============
+ // 1. Convert callback buffer to stream format
+ // 2. Convert callback buffer to stream sample rate and channel count
+ // 3. Push callback buffer into outputBuffer
+
+ if ( renderAudioClient && callbackPulled ) {
+ if ( stream_.doConvertBuffer[OUTPUT] ) {
+ // Convert callback buffer to stream format
+ convertBuffer( stream_.deviceBuffer,
+ stream_.userBuffer[OUTPUT],
+ stream_.convertInfo[OUTPUT] );
+
+ }
+
+ // Convert callback buffer to stream sample rate
+ convertBufferWasapi( convBuffer,
+ stream_.deviceBuffer,
+ stream_.nDeviceChannels[OUTPUT],
+ stream_.sampleRate,
+ renderFormat->nSamplesPerSec,
+ stream_.bufferSize,
+ convBufferSize,
+ stream_.deviceFormat[OUTPUT] );
+
+ // Push callback buffer into outputBuffer
+ callbackPushed = renderBuffer.pushBuffer( convBuffer,
+ convBufferSize * stream_.nDeviceChannels[OUTPUT],
+ stream_.deviceFormat[OUTPUT] );
+ }
+ else {
+ // if there is no render stream, set callbackPushed flag
+ callbackPushed = true;
+ }
+
+ // Stream Capture
+ // ==============
+ // 1. Get capture buffer from stream
+ // 2. Push capture buffer into inputBuffer
+ // 3. If 2. was successful: Release capture buffer
+
+ if ( captureAudioClient ) {
+ // if the callback input buffer was not pulled from captureBuffer, wait for next capture event
+ if ( !callbackPulled ) {
+ WaitForSingleObject( captureEvent, INFINITE );
+ }
+
+ // Get capture buffer from stream
+ hr = captureClient->GetBuffer( &streamBuffer,
+ &bufferFrameCount,
+ &captureFlags, NULL, NULL );
+ if ( FAILED( hr ) ) {
+ errorText_ = "RtApiWasapi::wasapiThread: Unable to retrieve capture buffer.";
+ goto Exit;
+ }
+
+ if ( bufferFrameCount != 0 ) {
+ // Push capture buffer into inputBuffer
+ if ( captureBuffer.pushBuffer( ( char* ) streamBuffer,
+ bufferFrameCount * stream_.nDeviceChannels[INPUT],
+ stream_.deviceFormat[INPUT] ) )
+ {
+ // Release capture buffer
+ hr = captureClient->ReleaseBuffer( bufferFrameCount );
+ if ( FAILED( hr ) ) {
+ errorText_ = "RtApiWasapi::wasapiThread: Unable to release capture buffer.";
+ goto Exit;
+ }
+ }
+ else
+ {
+ // Inform WASAPI that capture was unsuccessful
+ hr = captureClient->ReleaseBuffer( 0 );
+ if ( FAILED( hr ) ) {
+ errorText_ = "RtApiWasapi::wasapiThread: Unable to release capture buffer.";
+ goto Exit;
+ }
+ }
+ }
+ else
+ {
+ // Inform WASAPI that capture was unsuccessful
+ hr = captureClient->ReleaseBuffer( 0 );
+ if ( FAILED( hr ) ) {
+ errorText_ = "RtApiWasapi::wasapiThread: Unable to release capture buffer.";
+ goto Exit;
+ }
+ }
+ }
+
+ // Stream Render
+ // =============
+ // 1. Get render buffer from stream
+ // 2. Pull next buffer from outputBuffer
+ // 3. If 2. was successful: Fill render buffer with next buffer
+ // Release render buffer
+
+ if ( renderAudioClient ) {
+ // if the callback output buffer was not pushed to renderBuffer, wait for next render event
+ if ( callbackPulled && !callbackPushed ) {
+ WaitForSingleObject( renderEvent, INFINITE );
+ }
+
+ // Get render buffer from stream
+ hr = renderAudioClient->GetBufferSize( &bufferFrameCount );
+ if ( FAILED( hr ) ) {
+ errorText_ = "RtApiWasapi::wasapiThread: Unable to retrieve render buffer size.";
+ goto Exit;
+ }
+
+ hr = renderAudioClient->GetCurrentPadding( &numFramesPadding );
+ if ( FAILED( hr ) ) {
+ errorText_ = "RtApiWasapi::wasapiThread: Unable to retrieve render buffer padding.";
+ goto Exit;
+ }
+
+ bufferFrameCount -= numFramesPadding;
+
+ if ( bufferFrameCount != 0 ) {
+ hr = renderClient->GetBuffer( bufferFrameCount, &streamBuffer );
+ if ( FAILED( hr ) ) {
+ errorText_ = "RtApiWasapi::wasapiThread: Unable to retrieve render buffer.";
+ goto Exit;
+ }
+
+ // Pull next buffer from outputBuffer
+ // Fill render buffer with next buffer
+ if ( renderBuffer.pullBuffer( ( char* ) streamBuffer,
+ bufferFrameCount * stream_.nDeviceChannels[OUTPUT],
+ stream_.deviceFormat[OUTPUT] ) )
+ {
+ // Release render buffer
+ hr = renderClient->ReleaseBuffer( bufferFrameCount, 0 );
+ if ( FAILED( hr ) ) {
+ errorText_ = "RtApiWasapi::wasapiThread: Unable to release render buffer.";
+ goto Exit;
+ }
+ }
+ else
+ {
+ // Inform WASAPI that render was unsuccessful
+ hr = renderClient->ReleaseBuffer( 0, 0 );
+ if ( FAILED( hr ) ) {
+ errorText_ = "RtApiWasapi::wasapiThread: Unable to release render buffer.";
+ goto Exit;
+ }
+ }
+ }
+ else
+ {
+ // Inform WASAPI that render was unsuccessful
+ hr = renderClient->ReleaseBuffer( 0, 0 );
+ if ( FAILED( hr ) ) {
+ errorText_ = "RtApiWasapi::wasapiThread: Unable to release render buffer.";
+ goto Exit;
+ }
+ }
+ }
+
+ // if the callback buffer was pushed renderBuffer reset callbackPulled flag
+ if ( callbackPushed ) {
+ callbackPulled = false;
+ }
+
+ // tick stream time
+ RtApi::tickStreamTime();
+ }
+
+Exit:
+ // clean up
+ CoTaskMemFree( captureFormat );
+ CoTaskMemFree( renderFormat );
+
+ free ( convBuffer );
+
+ CoUninitialize();
+
+ // update stream state
+ stream_.state = STREAM_STOPPED;
+
+ if ( errorText_.empty() )
+ return;
+ else
+ error( errorType );
+}
+
+//******************** End of __WINDOWS_WASAPI__ *********************//
+#endif
+
+
+#if defined(__WINDOWS_DS__) // Windows DirectSound API
+
+// Modified by Robin Davies, October 2005
+// - Improvements to DirectX pointer chasing.
+// - Bug fix for non-power-of-two Asio granularity used by Edirol PCR-A30.
+// - Auto-call CoInitialize for DSOUND and ASIO platforms.
+// Various revisions for RtAudio 4.0 by Gary Scavone, April 2007
+// Changed device query structure for RtAudio 4.0.7, January 2010
+
+#include <dsound.h>
+#include <assert.h>
+#include <algorithm>
+
+#if defined(__MINGW32__)
+ // missing from latest mingw winapi
+#define WAVE_FORMAT_96M08 0x00010000 /* 96 kHz, Mono, 8-bit */
+#define WAVE_FORMAT_96S08 0x00020000 /* 96 kHz, Stereo, 8-bit */
+#define WAVE_FORMAT_96M16 0x00040000 /* 96 kHz, Mono, 16-bit */
+#define WAVE_FORMAT_96S16 0x00080000 /* 96 kHz, Stereo, 16-bit */
+#endif
+
+#define MINIMUM_DEVICE_BUFFER_SIZE 32768
+
+#ifdef _MSC_VER // if Microsoft Visual C++
+#pragma comment( lib, "winmm.lib" ) // then, auto-link winmm.lib. Otherwise, it has to be added manually.
+#endif
+
+static inline DWORD dsPointerBetween( DWORD pointer, DWORD laterPointer, DWORD earlierPointer, DWORD bufferSize )
+{
+ if ( pointer > bufferSize ) pointer -= bufferSize;
+ if ( laterPointer < earlierPointer ) laterPointer += bufferSize;
+ if ( pointer < earlierPointer ) pointer += bufferSize;
+ return pointer >= earlierPointer && pointer < laterPointer;
+}
+
+// A structure to hold various information related to the DirectSound
+// API implementation.
+struct DsHandle {
+ unsigned int drainCounter; // Tracks callback counts when draining
+ bool internalDrain; // Indicates if stop is initiated from callback or not.
+ void *id[2];
+ void *buffer[2];
+ bool xrun[2];
+ UINT bufferPointer[2];
+ DWORD dsBufferSize[2];
+ DWORD dsPointerLeadTime[2]; // the number of bytes ahead of the safe pointer to lead by.
+ HANDLE condition;
+
+ DsHandle()
+ :drainCounter(0), internalDrain(false) { id[0] = 0; id[1] = 0; buffer[0] = 0; buffer[1] = 0; xrun[0] = false; xrun[1] = false; bufferPointer[0] = 0; bufferPointer[1] = 0; }
+};
+
+// Declarations for utility functions, callbacks, and structures
+// specific to the DirectSound implementation.
+static BOOL CALLBACK deviceQueryCallback( LPGUID lpguid,
+ LPCTSTR description,
+ LPCTSTR module,
+ LPVOID lpContext );
+
+static const char* getErrorString( int code );
+
+static unsigned __stdcall callbackHandler( void *ptr );
+
+struct DsDevice {
+ LPGUID id[2];
+ bool validId[2];
+ bool found;
+ std::string name;
+
+ DsDevice()
+ : found(false) { validId[0] = false; validId[1] = false; }
+};
+
+struct DsProbeData {
+ bool isInput;
+ std::vector<struct DsDevice>* dsDevices;
+};
+
+RtApiDs :: RtApiDs()
+{
+ // Dsound will run both-threaded. If CoInitialize fails, then just
+ // accept whatever the mainline chose for a threading model.
+ coInitialized_ = false;
+ HRESULT hr = CoInitialize( NULL );
+ if ( !FAILED( hr ) ) coInitialized_ = true;
+}
+
+RtApiDs :: ~RtApiDs()
+{
+ if ( coInitialized_ ) CoUninitialize(); // balanced call.
+ if ( stream_.state != STREAM_CLOSED ) closeStream();
+}
+
+// The DirectSound default output is always the first device.
+unsigned int RtApiDs :: getDefaultOutputDevice( void )
+{
+ return 0;
+}
+
+// The DirectSound default input is always the first input device,
+// which is the first capture device enumerated.
+unsigned int RtApiDs :: getDefaultInputDevice( void )
+{
+ return 0;
+}
+
+unsigned int RtApiDs :: getDeviceCount( void )
+{
+ // Set query flag for previously found devices to false, so that we
+ // can check for any devices that have disappeared.
+ for ( unsigned int i=0; i<dsDevices.size(); i++ )
+ dsDevices[i].found = false;
+
+ // Query DirectSound devices.
+ struct DsProbeData probeInfo;
+ probeInfo.isInput = false;
+ probeInfo.dsDevices = &dsDevices;
+ HRESULT result = DirectSoundEnumerate( (LPDSENUMCALLBACK) deviceQueryCallback, &probeInfo );
+ if ( FAILED( result ) ) {
+ errorStream_ << "RtApiDs::getDeviceCount: error (" << getErrorString( result ) << ") enumerating output devices!";
+ errorText_ = errorStream_.str();
+ error( RtAudioError::WARNING );
+ }
+
+ // Query DirectSoundCapture devices.
+ probeInfo.isInput = true;
+ result = DirectSoundCaptureEnumerate( (LPDSENUMCALLBACK) deviceQueryCallback, &probeInfo );
+ if ( FAILED( result ) ) {
+ errorStream_ << "RtApiDs::getDeviceCount: error (" << getErrorString( result ) << ") enumerating input devices!";
+ errorText_ = errorStream_.str();
+ error( RtAudioError::WARNING );
+ }
+
+ // Clean out any devices that may have disappeared (code update submitted by Eli Zehngut).
+ for ( unsigned int i=0; i<dsDevices.size(); ) {
+ if ( dsDevices[i].found == false ) dsDevices.erase( dsDevices.begin() + i );
+ else i++;
+ }
+
+ return static_cast<unsigned int>(dsDevices.size());
+}
+
+RtAudio::DeviceInfo RtApiDs :: getDeviceInfo( unsigned int device )
+{
+ RtAudio::DeviceInfo info;
+ info.probed = false;
+
+ if ( dsDevices.size() == 0 ) {
+ // Force a query of all devices
+ getDeviceCount();
+ if ( dsDevices.size() == 0 ) {
+ errorText_ = "RtApiDs::getDeviceInfo: no devices found!";
+ error( RtAudioError::INVALID_USE );
+ return info;
+ }
+ }
+
+ if ( device >= dsDevices.size() ) {
+ errorText_ = "RtApiDs::getDeviceInfo: device ID is invalid!";
+ error( RtAudioError::INVALID_USE );
+ return info;
+ }
+
+ HRESULT result;
+ if ( dsDevices[ device ].validId[0] == false ) goto probeInput;
+
+ LPDIRECTSOUND output;
+ DSCAPS outCaps;
+ result = DirectSoundCreate( dsDevices[ device ].id[0], &output, NULL );
+ if ( FAILED( result ) ) {
+ errorStream_ << "RtApiDs::getDeviceInfo: error (" << getErrorString( result ) << ") opening output device (" << dsDevices[ device ].name << ")!";
+ errorText_ = errorStream_.str();
+ error( RtAudioError::WARNING );
+ goto probeInput;
+ }
+
+ outCaps.dwSize = sizeof( outCaps );
+ result = output->GetCaps( &outCaps );
+ if ( FAILED( result ) ) {
+ output->Release();
+ errorStream_ << "RtApiDs::getDeviceInfo: error (" << getErrorString( result ) << ") getting capabilities!";
+ errorText_ = errorStream_.str();
+ error( RtAudioError::WARNING );
+ goto probeInput;
+ }
+
+ // Get output channel information.
+ info.outputChannels = ( outCaps.dwFlags & DSCAPS_PRIMARYSTEREO ) ? 2 : 1;
+
+ // Get sample rate information.
+ info.sampleRates.clear();
+ for ( unsigned int k=0; k<MAX_SAMPLE_RATES; k++ ) {
+ if ( SAMPLE_RATES[k] >= (unsigned int) outCaps.dwMinSecondarySampleRate &&
+ SAMPLE_RATES[k] <= (unsigned int) outCaps.dwMaxSecondarySampleRate ) {
+ info.sampleRates.push_back( SAMPLE_RATES[k] );
+
+ if ( !info.preferredSampleRate || ( SAMPLE_RATES[k] <= 48000 && SAMPLE_RATES[k] > info.preferredSampleRate ) )
+ info.preferredSampleRate = SAMPLE_RATES[k];
+ }
+ }
+
+ // Get format information.
+ if ( outCaps.dwFlags & DSCAPS_PRIMARY16BIT ) info.nativeFormats |= RTAUDIO_SINT16;
+ if ( outCaps.dwFlags & DSCAPS_PRIMARY8BIT ) info.nativeFormats |= RTAUDIO_SINT8;
+
+ output->Release();
+
+ if ( getDefaultOutputDevice() == device )
+ info.isDefaultOutput = true;
+
+ if ( dsDevices[ device ].validId[1] == false ) {
+ info.name = dsDevices[ device ].name;
+ info.probed = true;
+ return info;
+ }
+
+ probeInput:
+
+ LPDIRECTSOUNDCAPTURE input;
+ result = DirectSoundCaptureCreate( dsDevices[ device ].id[1], &input, NULL );
+ if ( FAILED( result ) ) {
+ errorStream_ << "RtApiDs::getDeviceInfo: error (" << getErrorString( result ) << ") opening input device (" << dsDevices[ device ].name << ")!";
+ errorText_ = errorStream_.str();
+ error( RtAudioError::WARNING );
+ return info;
+ }
+
+ DSCCAPS inCaps;
+ inCaps.dwSize = sizeof( inCaps );
+ result = input->GetCaps( &inCaps );
+ if ( FAILED( result ) ) {
+ input->Release();
+ errorStream_ << "RtApiDs::getDeviceInfo: error (" << getErrorString( result ) << ") getting object capabilities (" << dsDevices[ device ].name << ")!";
+ errorText_ = errorStream_.str();
+ error( RtAudioError::WARNING );
+ return info;
+ }
+
+ // Get input channel information.
+ info.inputChannels = inCaps.dwChannels;
+
+ // Get sample rate and format information.
+ std::vector<unsigned int> rates;
+ if ( inCaps.dwChannels >= 2 ) {
+ if ( inCaps.dwFormats & WAVE_FORMAT_1S16 ) info.nativeFormats |= RTAUDIO_SINT16;
+ if ( inCaps.dwFormats & WAVE_FORMAT_2S16 ) info.nativeFormats |= RTAUDIO_SINT16;
+ if ( inCaps.dwFormats & WAVE_FORMAT_4S16 ) info.nativeFormats |= RTAUDIO_SINT16;
+ if ( inCaps.dwFormats & WAVE_FORMAT_96S16 ) info.nativeFormats |= RTAUDIO_SINT16;
+ if ( inCaps.dwFormats & WAVE_FORMAT_1S08 ) info.nativeFormats |= RTAUDIO_SINT8;
+ if ( inCaps.dwFormats & WAVE_FORMAT_2S08 ) info.nativeFormats |= RTAUDIO_SINT8;
+ if ( inCaps.dwFormats & WAVE_FORMAT_4S08 ) info.nativeFormats |= RTAUDIO_SINT8;
+ if ( inCaps.dwFormats & WAVE_FORMAT_96S08 ) info.nativeFormats |= RTAUDIO_SINT8;
+
+ if ( info.nativeFormats & RTAUDIO_SINT16 ) {
+ if ( inCaps.dwFormats & WAVE_FORMAT_1S16 ) rates.push_back( 11025 );
+ if ( inCaps.dwFormats & WAVE_FORMAT_2S16 ) rates.push_back( 22050 );
+ if ( inCaps.dwFormats & WAVE_FORMAT_4S16 ) rates.push_back( 44100 );
+ if ( inCaps.dwFormats & WAVE_FORMAT_96S16 ) rates.push_back( 96000 );
+ }
+ else if ( info.nativeFormats & RTAUDIO_SINT8 ) {
+ if ( inCaps.dwFormats & WAVE_FORMAT_1S08 ) rates.push_back( 11025 );
+ if ( inCaps.dwFormats & WAVE_FORMAT_2S08 ) rates.push_back( 22050 );
+ if ( inCaps.dwFormats & WAVE_FORMAT_4S08 ) rates.push_back( 44100 );
+ if ( inCaps.dwFormats & WAVE_FORMAT_96S08 ) rates.push_back( 96000 );
+ }
+ }
+ else if ( inCaps.dwChannels == 1 ) {
+ if ( inCaps.dwFormats & WAVE_FORMAT_1M16 ) info.nativeFormats |= RTAUDIO_SINT16;
+ if ( inCaps.dwFormats & WAVE_FORMAT_2M16 ) info.nativeFormats |= RTAUDIO_SINT16;
+ if ( inCaps.dwFormats & WAVE_FORMAT_4M16 ) info.nativeFormats |= RTAUDIO_SINT16;
+ if ( inCaps.dwFormats & WAVE_FORMAT_96M16 ) info.nativeFormats |= RTAUDIO_SINT16;
+ if ( inCaps.dwFormats & WAVE_FORMAT_1M08 ) info.nativeFormats |= RTAUDIO_SINT8;
+ if ( inCaps.dwFormats & WAVE_FORMAT_2M08 ) info.nativeFormats |= RTAUDIO_SINT8;
+ if ( inCaps.dwFormats & WAVE_FORMAT_4M08 ) info.nativeFormats |= RTAUDIO_SINT8;
+ if ( inCaps.dwFormats & WAVE_FORMAT_96M08 ) info.nativeFormats |= RTAUDIO_SINT8;
+
+ if ( info.nativeFormats & RTAUDIO_SINT16 ) {
+ if ( inCaps.dwFormats & WAVE_FORMAT_1M16 ) rates.push_back( 11025 );
+ if ( inCaps.dwFormats & WAVE_FORMAT_2M16 ) rates.push_back( 22050 );
+ if ( inCaps.dwFormats & WAVE_FORMAT_4M16 ) rates.push_back( 44100 );
+ if ( inCaps.dwFormats & WAVE_FORMAT_96M16 ) rates.push_back( 96000 );
+ }
+ else if ( info.nativeFormats & RTAUDIO_SINT8 ) {
+ if ( inCaps.dwFormats & WAVE_FORMAT_1M08 ) rates.push_back( 11025 );
+ if ( inCaps.dwFormats & WAVE_FORMAT_2M08 ) rates.push_back( 22050 );
+ if ( inCaps.dwFormats & WAVE_FORMAT_4M08 ) rates.push_back( 44100 );
+ if ( inCaps.dwFormats & WAVE_FORMAT_96M08 ) rates.push_back( 96000 );
+ }
+ }
+ else info.inputChannels = 0; // technically, this would be an error
+
+ input->Release();
+
+ if ( info.inputChannels == 0 ) return info;
+
+ // Copy the supported rates to the info structure but avoid duplication.
+ bool found;
+ for ( unsigned int i=0; i<rates.size(); i++ ) {
+ found = false;
+ for ( unsigned int j=0; j<info.sampleRates.size(); j++ ) {
+ if ( rates[i] == info.sampleRates[j] ) {
+ found = true;
+ break;
+ }
+ }
+ if ( found == false ) info.sampleRates.push_back( rates[i] );
+ }
+ std::sort( info.sampleRates.begin(), info.sampleRates.end() );
+
+ // If device opens for both playback and capture, we determine the channels.
+ if ( info.outputChannels > 0 && info.inputChannels > 0 )
+ info.duplexChannels = (info.outputChannels > info.inputChannels) ? info.inputChannels : info.outputChannels;
+
+ if ( device == 0 ) info.isDefaultInput = true;
+
+ // Copy name and return.
+ info.name = dsDevices[ device ].name;
+ info.probed = true;
+ return info;
+}
+
+bool RtApiDs :: probeDeviceOpen( unsigned int device, StreamMode mode, unsigned int channels,
+ unsigned int firstChannel, unsigned int sampleRate,
+ RtAudioFormat format, unsigned int *bufferSize,
+ RtAudio::StreamOptions *options )
+{
+ if ( channels + firstChannel > 2 ) {
+ errorText_ = "RtApiDs::probeDeviceOpen: DirectSound does not support more than 2 channels per device.";
+ return FAILURE;
+ }
+
+ size_t nDevices = dsDevices.size();
+ if ( nDevices == 0 ) {
+ // This should not happen because a check is made before this function is called.
+ errorText_ = "RtApiDs::probeDeviceOpen: no devices found!";
+ return FAILURE;
+ }
+
+ if ( device >= nDevices ) {
+ // This should not happen because a check is made before this function is called.
+ errorText_ = "RtApiDs::probeDeviceOpen: device ID is invalid!";
+ return FAILURE;
+ }
+
+ if ( mode == OUTPUT ) {
+ if ( dsDevices[ device ].validId[0] == false ) {
+ errorStream_ << "RtApiDs::probeDeviceOpen: device (" << device << ") does not support output!";
+ errorText_ = errorStream_.str();
+ return FAILURE;
+ }
+ }
+ else { // mode == INPUT
+ if ( dsDevices[ device ].validId[1] == false ) {
+ errorStream_ << "RtApiDs::probeDeviceOpen: device (" << device << ") does not support input!";
+ errorText_ = errorStream_.str();
+ return FAILURE;
+ }
+ }
+
+ // According to a note in PortAudio, using GetDesktopWindow()
+ // instead of GetForegroundWindow() is supposed to avoid problems
+ // that occur when the application's window is not the foreground
+ // window. Also, if the application window closes before the
+ // DirectSound buffer, DirectSound can crash. In the past, I had
+ // problems when using GetDesktopWindow() but it seems fine now
+ // (January 2010). I'll leave it commented here.
+ // HWND hWnd = GetForegroundWindow();
+ HWND hWnd = GetDesktopWindow();
+
+ // Check the numberOfBuffers parameter and limit the lowest value to
+ // two. This is a judgement call and a value of two is probably too
+ // low for capture, but it should work for playback.
+ int nBuffers = 0;
+ if ( options ) nBuffers = options->numberOfBuffers;
+ if ( options && options->flags & RTAUDIO_MINIMIZE_LATENCY ) nBuffers = 2;
+ if ( nBuffers < 2 ) nBuffers = 3;
+
+ // Check the lower range of the user-specified buffer size and set
+ // (arbitrarily) to a lower bound of 32.
+ if ( *bufferSize < 32 ) *bufferSize = 32;
+
+ // Create the wave format structure. The data format setting will
+ // be determined later.
+ WAVEFORMATEX waveFormat;
+ ZeroMemory( &waveFormat, sizeof(WAVEFORMATEX) );
+ waveFormat.wFormatTag = WAVE_FORMAT_PCM;
+ waveFormat.nChannels = channels + firstChannel;
+ waveFormat.nSamplesPerSec = (unsigned long) sampleRate;
+
+ // Determine the device buffer size. By default, we'll use the value
+ // defined above (32K), but we will grow it to make allowances for
+ // very large software buffer sizes.
+ DWORD dsBufferSize = MINIMUM_DEVICE_BUFFER_SIZE;
+ DWORD dsPointerLeadTime = 0;
+
+ void *ohandle = 0, *bhandle = 0;
+ HRESULT result;
+ if ( mode == OUTPUT ) {
+
+ LPDIRECTSOUND output;
+ result = DirectSoundCreate( dsDevices[ device ].id[0], &output, NULL );
+ if ( FAILED( result ) ) {
+ errorStream_ << "RtApiDs::probeDeviceOpen: error (" << getErrorString( result ) << ") opening output device (" << dsDevices[ device ].name << ")!";
+ errorText_ = errorStream_.str();
+ return FAILURE;
+ }
+
+ DSCAPS outCaps;
+ outCaps.dwSize = sizeof( outCaps );
+ result = output->GetCaps( &outCaps );
+ if ( FAILED( result ) ) {
+ output->Release();
+ errorStream_ << "RtApiDs::probeDeviceOpen: error (" << getErrorString( result ) << ") getting capabilities (" << dsDevices[ device ].name << ")!";
+ errorText_ = errorStream_.str();
+ return FAILURE;
+ }
+
+ // Check channel information.
+ if ( channels + firstChannel == 2 && !( outCaps.dwFlags & DSCAPS_PRIMARYSTEREO ) ) {
+ errorStream_ << "RtApiDs::getDeviceInfo: the output device (" << dsDevices[ device ].name << ") does not support stereo playback.";
+ errorText_ = errorStream_.str();
+ return FAILURE;
+ }
+
+ // Check format information. Use 16-bit format unless not
+ // supported or user requests 8-bit.
+ if ( outCaps.dwFlags & DSCAPS_PRIMARY16BIT &&
+ !( format == RTAUDIO_SINT8 && outCaps.dwFlags & DSCAPS_PRIMARY8BIT ) ) {
+ waveFormat.wBitsPerSample = 16;
+ stream_.deviceFormat[mode] = RTAUDIO_SINT16;
+ }
+ else {
+ waveFormat.wBitsPerSample = 8;
+ stream_.deviceFormat[mode] = RTAUDIO_SINT8;
+ }
+ stream_.userFormat = format;
+
+ // Update wave format structure and buffer information.
+ waveFormat.nBlockAlign = waveFormat.nChannels * waveFormat.wBitsPerSample / 8;
+ waveFormat.nAvgBytesPerSec = waveFormat.nSamplesPerSec * waveFormat.nBlockAlign;
+ dsPointerLeadTime = nBuffers * (*bufferSize) * (waveFormat.wBitsPerSample / 8) * channels;
+
+ // If the user wants an even bigger buffer, increase the device buffer size accordingly.
+ while ( dsPointerLeadTime * 2U > dsBufferSize )
+ dsBufferSize *= 2;
+
+ // Set cooperative level to DSSCL_EXCLUSIVE ... sound stops when window focus changes.
+ // result = output->SetCooperativeLevel( hWnd, DSSCL_EXCLUSIVE );
+ // Set cooperative level to DSSCL_PRIORITY ... sound remains when window focus changes.
+ result = output->SetCooperativeLevel( hWnd, DSSCL_PRIORITY );
+ if ( FAILED( result ) ) {
+ output->Release();
+ errorStream_ << "RtApiDs::probeDeviceOpen: error (" << getErrorString( result ) << ") setting cooperative level (" << dsDevices[ device ].name << ")!";
+ errorText_ = errorStream_.str();
+ return FAILURE;
+ }
+
+ // Even though we will write to the secondary buffer, we need to
+ // access the primary buffer to set the correct output format
+ // (since the default is 8-bit, 22 kHz!). Setup the DS primary
+ // buffer description.
+ DSBUFFERDESC bufferDescription;
+ ZeroMemory( &bufferDescription, sizeof( DSBUFFERDESC ) );
+ bufferDescription.dwSize = sizeof( DSBUFFERDESC );
+ bufferDescription.dwFlags = DSBCAPS_PRIMARYBUFFER;
+
+ // Obtain the primary buffer
+ LPDIRECTSOUNDBUFFER buffer;
+ result = output->CreateSoundBuffer( &bufferDescription, &buffer, NULL );
+ if ( FAILED( result ) ) {
+ output->Release();
+ errorStream_ << "RtApiDs::probeDeviceOpen: error (" << getErrorString( result ) << ") accessing primary buffer (" << dsDevices[ device ].name << ")!";
+ errorText_ = errorStream_.str();
+ return FAILURE;
+ }
+
+ // Set the primary DS buffer sound format.
+ result = buffer->SetFormat( &waveFormat );
+ if ( FAILED( result ) ) {
+ output->Release();
+ errorStream_ << "RtApiDs::probeDeviceOpen: error (" << getErrorString( result ) << ") setting primary buffer format (" << dsDevices[ device ].name << ")!";
+ errorText_ = errorStream_.str();
+ return FAILURE;
+ }
+
+ // Setup the secondary DS buffer description.
+ ZeroMemory( &bufferDescription, sizeof( DSBUFFERDESC ) );
+ bufferDescription.dwSize = sizeof( DSBUFFERDESC );
+ bufferDescription.dwFlags = ( DSBCAPS_STICKYFOCUS |
+ DSBCAPS_GLOBALFOCUS |
+ DSBCAPS_GETCURRENTPOSITION2 |
+ DSBCAPS_LOCHARDWARE ); // Force hardware mixing
+ bufferDescription.dwBufferBytes = dsBufferSize;
+ bufferDescription.lpwfxFormat = &waveFormat;
+
+ // Try to create the secondary DS buffer. If that doesn't work,
+ // try to use software mixing. Otherwise, there's a problem.
+ result = output->CreateSoundBuffer( &bufferDescription, &buffer, NULL );
+ if ( FAILED( result ) ) {
+ bufferDescription.dwFlags = ( DSBCAPS_STICKYFOCUS |
+ DSBCAPS_GLOBALFOCUS |
+ DSBCAPS_GETCURRENTPOSITION2 |
+ DSBCAPS_LOCSOFTWARE ); // Force software mixing
+ result = output->CreateSoundBuffer( &bufferDescription, &buffer, NULL );
+ if ( FAILED( result ) ) {
+ output->Release();
+ errorStream_ << "RtApiDs::probeDeviceOpen: error (" << getErrorString( result ) << ") creating secondary buffer (" << dsDevices[ device ].name << ")!";
+ errorText_ = errorStream_.str();
+ return FAILURE;
+ }
+ }
+
+ // Get the buffer size ... might be different from what we specified.
+ DSBCAPS dsbcaps;
+ dsbcaps.dwSize = sizeof( DSBCAPS );
+ result = buffer->GetCaps( &dsbcaps );
+ if ( FAILED( result ) ) {
+ output->Release();
+ buffer->Release();
+ errorStream_ << "RtApiDs::probeDeviceOpen: error (" << getErrorString( result ) << ") getting buffer settings (" << dsDevices[ device ].name << ")!";
+ errorText_ = errorStream_.str();
+ return FAILURE;
+ }
+
+ dsBufferSize = dsbcaps.dwBufferBytes;
+
+ // Lock the DS buffer
+ LPVOID audioPtr;
+ DWORD dataLen;
+ result = buffer->Lock( 0, dsBufferSize, &audioPtr, &dataLen, NULL, NULL, 0 );
+ if ( FAILED( result ) ) {
+ output->Release();
+ buffer->Release();
+ errorStream_ << "RtApiDs::probeDeviceOpen: error (" << getErrorString( result ) << ") locking buffer (" << dsDevices[ device ].name << ")!";
+ errorText_ = errorStream_.str();
+ return FAILURE;
+ }
+
+ // Zero the DS buffer
+ ZeroMemory( audioPtr, dataLen );
+
+ // Unlock the DS buffer
+ result = buffer->Unlock( audioPtr, dataLen, NULL, 0 );
+ if ( FAILED( result ) ) {
+ output->Release();
+ buffer->Release();
+ errorStream_ << "RtApiDs::probeDeviceOpen: error (" << getErrorString( result ) << ") unlocking buffer (" << dsDevices[ device ].name << ")!";
+ errorText_ = errorStream_.str();
+ return FAILURE;
+ }
+
+ ohandle = (void *) output;
+ bhandle = (void *) buffer;
+ }
+
+ if ( mode == INPUT ) {
+
+ LPDIRECTSOUNDCAPTURE input;
+ result = DirectSoundCaptureCreate( dsDevices[ device ].id[1], &input, NULL );
+ if ( FAILED( result ) ) {
+ errorStream_ << "RtApiDs::probeDeviceOpen: error (" << getErrorString( result ) << ") opening input device (" << dsDevices[ device ].name << ")!";
+ errorText_ = errorStream_.str();
+ return FAILURE;
+ }
+
+ DSCCAPS inCaps;
+ inCaps.dwSize = sizeof( inCaps );
+ result = input->GetCaps( &inCaps );
+ if ( FAILED( result ) ) {
+ input->Release();
+ errorStream_ << "RtApiDs::probeDeviceOpen: error (" << getErrorString( result ) << ") getting input capabilities (" << dsDevices[ device ].name << ")!";
+ errorText_ = errorStream_.str();
+ return FAILURE;
+ }
+
+ // Check channel information.
+ if ( inCaps.dwChannels < channels + firstChannel ) {
+ errorText_ = "RtApiDs::getDeviceInfo: the input device does not support requested input channels.";
+ return FAILURE;
+ }
+
+ // Check format information. Use 16-bit format unless user
+ // requests 8-bit.
+ DWORD deviceFormats;
+ if ( channels + firstChannel == 2 ) {
+ deviceFormats = WAVE_FORMAT_1S08 | WAVE_FORMAT_2S08 | WAVE_FORMAT_4S08 | WAVE_FORMAT_96S08;
+ if ( format == RTAUDIO_SINT8 && inCaps.dwFormats & deviceFormats ) {
+ waveFormat.wBitsPerSample = 8;
+ stream_.deviceFormat[mode] = RTAUDIO_SINT8;
+ }
+ else { // assume 16-bit is supported
+ waveFormat.wBitsPerSample = 16;
+ stream_.deviceFormat[mode] = RTAUDIO_SINT16;
+ }
+ }
+ else { // channel == 1
+ deviceFormats = WAVE_FORMAT_1M08 | WAVE_FORMAT_2M08 | WAVE_FORMAT_4M08 | WAVE_FORMAT_96M08;
+ if ( format == RTAUDIO_SINT8 && inCaps.dwFormats & deviceFormats ) {
+ waveFormat.wBitsPerSample = 8;
+ stream_.deviceFormat[mode] = RTAUDIO_SINT8;
+ }
+ else { // assume 16-bit is supported
+ waveFormat.wBitsPerSample = 16;
+ stream_.deviceFormat[mode] = RTAUDIO_SINT16;
+ }
+ }
+ stream_.userFormat = format;
+
+ // Update wave format structure and buffer information.
+ waveFormat.nBlockAlign = waveFormat.nChannels * waveFormat.wBitsPerSample / 8;
+ waveFormat.nAvgBytesPerSec = waveFormat.nSamplesPerSec * waveFormat.nBlockAlign;
+ dsPointerLeadTime = nBuffers * (*bufferSize) * (waveFormat.wBitsPerSample / 8) * channels;
+
+ // If the user wants an even bigger buffer, increase the device buffer size accordingly.
+ while ( dsPointerLeadTime * 2U > dsBufferSize )
+ dsBufferSize *= 2;
+
+ // Setup the secondary DS buffer description.
+ DSCBUFFERDESC bufferDescription;
+ ZeroMemory( &bufferDescription, sizeof( DSCBUFFERDESC ) );
+ bufferDescription.dwSize = sizeof( DSCBUFFERDESC );
+ bufferDescription.dwFlags = 0;
+ bufferDescription.dwReserved = 0;
+ bufferDescription.dwBufferBytes = dsBufferSize;
+ bufferDescription.lpwfxFormat = &waveFormat;
+
+ // Create the capture buffer.
+ LPDIRECTSOUNDCAPTUREBUFFER buffer;
+ result = input->CreateCaptureBuffer( &bufferDescription, &buffer, NULL );
+ if ( FAILED( result ) ) {
+ input->Release();
+ errorStream_ << "RtApiDs::probeDeviceOpen: error (" << getErrorString( result ) << ") creating input buffer (" << dsDevices[ device ].name << ")!";
+ errorText_ = errorStream_.str();
+ return FAILURE;
+ }
+
+ // Get the buffer size ... might be different from what we specified.
+ DSCBCAPS dscbcaps;
+ dscbcaps.dwSize = sizeof( DSCBCAPS );
+ result = buffer->GetCaps( &dscbcaps );
+ if ( FAILED( result ) ) {
+ input->Release();
+ buffer->Release();
+ errorStream_ << "RtApiDs::probeDeviceOpen: error (" << getErrorString( result ) << ") getting buffer settings (" << dsDevices[ device ].name << ")!";
+ errorText_ = errorStream_.str();
+ return FAILURE;
+ }
+
+ dsBufferSize = dscbcaps.dwBufferBytes;
+
+ // NOTE: We could have a problem here if this is a duplex stream
+ // and the play and capture hardware buffer sizes are different
+ // (I'm actually not sure if that is a problem or not).
+ // Currently, we are not verifying that.
+
+ // Lock the capture buffer
+ LPVOID audioPtr;
+ DWORD dataLen;
+ result = buffer->Lock( 0, dsBufferSize, &audioPtr, &dataLen, NULL, NULL, 0 );
+ if ( FAILED( result ) ) {
+ input->Release();
+ buffer->Release();
+ errorStream_ << "RtApiDs::probeDeviceOpen: error (" << getErrorString( result ) << ") locking input buffer (" << dsDevices[ device ].name << ")!";
+ errorText_ = errorStream_.str();
+ return FAILURE;
+ }
+
+ // Zero the buffer
+ ZeroMemory( audioPtr, dataLen );
+
+ // Unlock the buffer
+ result = buffer->Unlock( audioPtr, dataLen, NULL, 0 );
+ if ( FAILED( result ) ) {
+ input->Release();
+ buffer->Release();
+ errorStream_ << "RtApiDs::probeDeviceOpen: error (" << getErrorString( result ) << ") unlocking input buffer (" << dsDevices[ device ].name << ")!";
+ errorText_ = errorStream_.str();
+ return FAILURE;
+ }
+
+ ohandle = (void *) input;
+ bhandle = (void *) buffer;
+ }
+
+ // Set various stream parameters
+ DsHandle *handle = 0;
+ stream_.nDeviceChannels[mode] = channels + firstChannel;
+ stream_.nUserChannels[mode] = channels;
+ stream_.bufferSize = *bufferSize;
+ stream_.channelOffset[mode] = firstChannel;
+ stream_.deviceInterleaved[mode] = true;
+ if ( options && options->flags & RTAUDIO_NONINTERLEAVED ) stream_.userInterleaved = false;
+ else stream_.userInterleaved = true;
+
+ // Set flag for buffer conversion
+ stream_.doConvertBuffer[mode] = false;
+ if (stream_.nUserChannels[mode] != stream_.nDeviceChannels[mode])
+ stream_.doConvertBuffer[mode] = true;
+ if (stream_.userFormat != stream_.deviceFormat[mode])
+ stream_.doConvertBuffer[mode] = true;
+ if ( stream_.userInterleaved != stream_.deviceInterleaved[mode] &&
+ stream_.nUserChannels[mode] > 1 )
+ stream_.doConvertBuffer[mode] = true;
+
+ // Allocate necessary internal buffers
+ long bufferBytes = stream_.nUserChannels[mode] * *bufferSize * formatBytes( stream_.userFormat );
+ stream_.userBuffer[mode] = (char *) calloc( bufferBytes, 1 );
+ if ( stream_.userBuffer[mode] == NULL ) {
+ errorText_ = "RtApiDs::probeDeviceOpen: error allocating user buffer memory.";
+ goto error;
+ }
+
+ if ( stream_.doConvertBuffer[mode] ) {
+
+ bool makeBuffer = true;
+ bufferBytes = stream_.nDeviceChannels[mode] * formatBytes( stream_.deviceFormat[mode] );
+ if ( mode == INPUT ) {
+ if ( stream_.mode == OUTPUT && stream_.deviceBuffer ) {
+ unsigned long bytesOut = stream_.nDeviceChannels[0] * formatBytes( stream_.deviceFormat[0] );
+ if ( bufferBytes <= (long) bytesOut ) makeBuffer = false;
+ }
+ }
+
+ if ( makeBuffer ) {
+ bufferBytes *= *bufferSize;
+ if ( stream_.deviceBuffer ) free( stream_.deviceBuffer );
+ stream_.deviceBuffer = (char *) calloc( bufferBytes, 1 );
+ if ( stream_.deviceBuffer == NULL ) {
+ errorText_ = "RtApiDs::probeDeviceOpen: error allocating device buffer memory.";
+ goto error;
+ }
+ }
+ }
+
+ // Allocate our DsHandle structures for the stream.
+ if ( stream_.apiHandle == 0 ) {
+ try {
+ handle = new DsHandle;
+ }
+ catch ( std::bad_alloc& ) {
+ errorText_ = "RtApiDs::probeDeviceOpen: error allocating AsioHandle memory.";
+ goto error;
+ }
+
+ // Create a manual-reset event.
+ handle->condition = CreateEvent( NULL, // no security
+ TRUE, // manual-reset
+ FALSE, // non-signaled initially
+ NULL ); // unnamed
+ stream_.apiHandle = (void *) handle;
+ }
+ else
+ handle = (DsHandle *) stream_.apiHandle;
+ handle->id[mode] = ohandle;
+ handle->buffer[mode] = bhandle;
+ handle->dsBufferSize[mode] = dsBufferSize;
+ handle->dsPointerLeadTime[mode] = dsPointerLeadTime;
+
+ stream_.device[mode] = device;
+ stream_.state = STREAM_STOPPED;
+ if ( stream_.mode == OUTPUT && mode == INPUT )
+ // We had already set up an output stream.
+ stream_.mode = DUPLEX;
+ else
+ stream_.mode = mode;
+ stream_.nBuffers = nBuffers;
+ stream_.sampleRate = sampleRate;
+
+ // Setup the buffer conversion information structure.
+ if ( stream_.doConvertBuffer[mode] ) setConvertInfo( mode, firstChannel );
+
+ // Setup the callback thread.
+ if ( stream_.callbackInfo.isRunning == false ) {
+ unsigned threadId;
+ stream_.callbackInfo.isRunning = true;
+ stream_.callbackInfo.object = (void *) this;
+ stream_.callbackInfo.thread = _beginthreadex( NULL, 0, &callbackHandler,
+ &stream_.callbackInfo, 0, &threadId );
+ if ( stream_.callbackInfo.thread == 0 ) {
+ errorText_ = "RtApiDs::probeDeviceOpen: error creating callback thread!";
+ goto error;
+ }
+
+ // Boost DS thread priority
+ SetThreadPriority( (HANDLE) stream_.callbackInfo.thread, THREAD_PRIORITY_HIGHEST );
+ }
+ return SUCCESS;
+
+ error:
+ if ( handle ) {
+ if ( handle->buffer[0] ) { // the object pointer can be NULL and valid
+ LPDIRECTSOUND object = (LPDIRECTSOUND) handle->id[0];
+ LPDIRECTSOUNDBUFFER buffer = (LPDIRECTSOUNDBUFFER) handle->buffer[0];
+ if ( buffer ) buffer->Release();
+ object->Release();
+ }
+ if ( handle->buffer[1] ) {
+ LPDIRECTSOUNDCAPTURE object = (LPDIRECTSOUNDCAPTURE) handle->id[1];
+ LPDIRECTSOUNDCAPTUREBUFFER buffer = (LPDIRECTSOUNDCAPTUREBUFFER) handle->buffer[1];
+ if ( buffer ) buffer->Release();
+ object->Release();
+ }
+ CloseHandle( handle->condition );
+ delete handle;
+ stream_.apiHandle = 0;
+ }
+
+ for ( int i=0; i<2; i++ ) {
+ if ( stream_.userBuffer[i] ) {
+ free( stream_.userBuffer[i] );
+ stream_.userBuffer[i] = 0;
+ }
+ }
+
+ if ( stream_.deviceBuffer ) {
+ free( stream_.deviceBuffer );
+ stream_.deviceBuffer = 0;
+ }
+
+ stream_.state = STREAM_CLOSED;
+ return FAILURE;
+}
+
+void RtApiDs :: closeStream()
+{
+ if ( stream_.state == STREAM_CLOSED ) {
+ errorText_ = "RtApiDs::closeStream(): no open stream to close!";
+ error( RtAudioError::WARNING );
+ return;
+ }
+
+ // Stop the callback thread.
+ stream_.callbackInfo.isRunning = false;
+ WaitForSingleObject( (HANDLE) stream_.callbackInfo.thread, INFINITE );
+ CloseHandle( (HANDLE) stream_.callbackInfo.thread );
+
+ DsHandle *handle = (DsHandle *) stream_.apiHandle;
+ if ( handle ) {
+ if ( handle->buffer[0] ) { // the object pointer can be NULL and valid
+ LPDIRECTSOUND object = (LPDIRECTSOUND) handle->id[0];
+ LPDIRECTSOUNDBUFFER buffer = (LPDIRECTSOUNDBUFFER) handle->buffer[0];
+ if ( buffer ) {
+ buffer->Stop();
+ buffer->Release();
+ }
+ object->Release();
+ }
+ if ( handle->buffer[1] ) {
+ LPDIRECTSOUNDCAPTURE object = (LPDIRECTSOUNDCAPTURE) handle->id[1];
+ LPDIRECTSOUNDCAPTUREBUFFER buffer = (LPDIRECTSOUNDCAPTUREBUFFER) handle->buffer[1];
+ if ( buffer ) {
+ buffer->Stop();
+ buffer->Release();
+ }
+ object->Release();
+ }
+ CloseHandle( handle->condition );
+ delete handle;
+ stream_.apiHandle = 0;
+ }
+
+ for ( int i=0; i<2; i++ ) {
+ if ( stream_.userBuffer[i] ) {
+ free( stream_.userBuffer[i] );
+ stream_.userBuffer[i] = 0;
+ }
+ }
+
+ if ( stream_.deviceBuffer ) {
+ free( stream_.deviceBuffer );
+ stream_.deviceBuffer = 0;
+ }
+
+ stream_.mode = UNINITIALIZED;
+ stream_.state = STREAM_CLOSED;
+}
+
+void RtApiDs :: startStream()
+{
+ verifyStream();
+ if ( stream_.state == STREAM_RUNNING ) {
+ errorText_ = "RtApiDs::startStream(): the stream is already running!";
+ error( RtAudioError::WARNING );
+ return;
+ }
+
+ DsHandle *handle = (DsHandle *) stream_.apiHandle;
+
+ // Increase scheduler frequency on lesser windows (a side-effect of
+ // increasing timer accuracy). On greater windows (Win2K or later),
+ // this is already in effect.
+ timeBeginPeriod( 1 );
+
+ buffersRolling = false;
+ duplexPrerollBytes = 0;
+
+ if ( stream_.mode == DUPLEX ) {
+ // 0.5 seconds of silence in DUPLEX mode while the devices spin up and synchronize.
+ duplexPrerollBytes = (int) ( 0.5 * stream_.sampleRate * formatBytes( stream_.deviceFormat[1] ) * stream_.nDeviceChannels[1] );
+ }
+
+ HRESULT result = 0;
+ if ( stream_.mode == OUTPUT || stream_.mode == DUPLEX ) {
+
+ LPDIRECTSOUNDBUFFER buffer = (LPDIRECTSOUNDBUFFER) handle->buffer[0];
+ result = buffer->Play( 0, 0, DSBPLAY_LOOPING );
+ if ( FAILED( result ) ) {
+ errorStream_ << "RtApiDs::startStream: error (" << getErrorString( result ) << ") starting output buffer!";
+ errorText_ = errorStream_.str();
+ goto unlock;
+ }
+ }
+
+ if ( stream_.mode == INPUT || stream_.mode == DUPLEX ) {
+
+ LPDIRECTSOUNDCAPTUREBUFFER buffer = (LPDIRECTSOUNDCAPTUREBUFFER) handle->buffer[1];
+ result = buffer->Start( DSCBSTART_LOOPING );
+ if ( FAILED( result ) ) {
+ errorStream_ << "RtApiDs::startStream: error (" << getErrorString( result ) << ") starting input buffer!";
+ errorText_ = errorStream_.str();
+ goto unlock;
+ }
+ }
+
+ handle->drainCounter = 0;
+ handle->internalDrain = false;
+ ResetEvent( handle->condition );
+ stream_.state = STREAM_RUNNING;
+
+ unlock:
+ if ( FAILED( result ) ) error( RtAudioError::SYSTEM_ERROR );
+}
+
+void RtApiDs :: stopStream()
+{
+ verifyStream();
+ if ( stream_.state == STREAM_STOPPED ) {
+ errorText_ = "RtApiDs::stopStream(): the stream is already stopped!";
+ error( RtAudioError::WARNING );
+ return;
+ }
+
+ HRESULT result = 0;
+ LPVOID audioPtr;
+ DWORD dataLen;
+ DsHandle *handle = (DsHandle *) stream_.apiHandle;
+ if ( stream_.mode == OUTPUT || stream_.mode == DUPLEX ) {
+ if ( handle->drainCounter == 0 ) {
+ handle->drainCounter = 2;
+ WaitForSingleObject( handle->condition, INFINITE ); // block until signaled
+ }
+
+ stream_.state = STREAM_STOPPED;
+
+ MUTEX_LOCK( &stream_.mutex );
+
+ // Stop the buffer and clear memory
+ LPDIRECTSOUNDBUFFER buffer = (LPDIRECTSOUNDBUFFER) handle->buffer[0];
+ result = buffer->Stop();
+ if ( FAILED( result ) ) {
+ errorStream_ << "RtApiDs::stopStream: error (" << getErrorString( result ) << ") stopping output buffer!";
+ errorText_ = errorStream_.str();
+ goto unlock;
+ }
+
+ // Lock the buffer and clear it so that if we start to play again,
+ // we won't have old data playing.
+ result = buffer->Lock( 0, handle->dsBufferSize[0], &audioPtr, &dataLen, NULL, NULL, 0 );
+ if ( FAILED( result ) ) {
+ errorStream_ << "RtApiDs::stopStream: error (" << getErrorString( result ) << ") locking output buffer!";
+ errorText_ = errorStream_.str();
+ goto unlock;
+ }
+
+ // Zero the DS buffer
+ ZeroMemory( audioPtr, dataLen );
+
+ // Unlock the DS buffer
+ result = buffer->Unlock( audioPtr, dataLen, NULL, 0 );
+ if ( FAILED( result ) ) {
+ errorStream_ << "RtApiDs::stopStream: error (" << getErrorString( result ) << ") unlocking output buffer!";
+ errorText_ = errorStream_.str();
+ goto unlock;
+ }
+
+ // If we start playing again, we must begin at beginning of buffer.
+ handle->bufferPointer[0] = 0;
+ }
+
+ if ( stream_.mode == INPUT || stream_.mode == DUPLEX ) {
+ LPDIRECTSOUNDCAPTUREBUFFER buffer = (LPDIRECTSOUNDCAPTUREBUFFER) handle->buffer[1];
+ audioPtr = NULL;
+ dataLen = 0;
+
+ stream_.state = STREAM_STOPPED;
+
+ if ( stream_.mode != DUPLEX )
+ MUTEX_LOCK( &stream_.mutex );
+
+ result = buffer->Stop();
+ if ( FAILED( result ) ) {
+ errorStream_ << "RtApiDs::stopStream: error (" << getErrorString( result ) << ") stopping input buffer!";
+ errorText_ = errorStream_.str();
+ goto unlock;
+ }
+
+ // Lock the buffer and clear it so that if we start to play again,
+ // we won't have old data playing.
+ result = buffer->Lock( 0, handle->dsBufferSize[1], &audioPtr, &dataLen, NULL, NULL, 0 );
+ if ( FAILED( result ) ) {
+ errorStream_ << "RtApiDs::stopStream: error (" << getErrorString( result ) << ") locking input buffer!";
+ errorText_ = errorStream_.str();
+ goto unlock;
+ }
+
+ // Zero the DS buffer
+ ZeroMemory( audioPtr, dataLen );
+
+ // Unlock the DS buffer
+ result = buffer->Unlock( audioPtr, dataLen, NULL, 0 );
+ if ( FAILED( result ) ) {
+ errorStream_ << "RtApiDs::stopStream: error (" << getErrorString( result ) << ") unlocking input buffer!";
+ errorText_ = errorStream_.str();
+ goto unlock;
+ }
+
+ // If we start recording again, we must begin at beginning of buffer.
+ handle->bufferPointer[1] = 0;
+ }
+
+ unlock:
+ timeEndPeriod( 1 ); // revert to normal scheduler frequency on lesser windows.
+ MUTEX_UNLOCK( &stream_.mutex );
+
+ if ( FAILED( result ) ) error( RtAudioError::SYSTEM_ERROR );
+}
+
+void RtApiDs :: abortStream()
+{
+ verifyStream();
+ if ( stream_.state == STREAM_STOPPED ) {
+ errorText_ = "RtApiDs::abortStream(): the stream is already stopped!";
+ error( RtAudioError::WARNING );
+ return;
+ }
+
+ DsHandle *handle = (DsHandle *) stream_.apiHandle;
+ handle->drainCounter = 2;
+
+ stopStream();
+}
+
+void RtApiDs :: callbackEvent()
+{
+ if ( stream_.state == STREAM_STOPPED || stream_.state == STREAM_STOPPING ) {
+ Sleep( 50 ); // sleep 50 milliseconds
+ return;
+ }
+
+ if ( stream_.state == STREAM_CLOSED ) {
+ errorText_ = "RtApiDs::callbackEvent(): the stream is closed ... this shouldn't happen!";
+ error( RtAudioError::WARNING );
+ return;
+ }
+
+ CallbackInfo *info = (CallbackInfo *) &stream_.callbackInfo;
+ DsHandle *handle = (DsHandle *) stream_.apiHandle;
+
+ // Check if we were draining the stream and signal is finished.
+ if ( handle->drainCounter > stream_.nBuffers + 2 ) {
+
+ stream_.state = STREAM_STOPPING;
+ if ( handle->internalDrain == false )
+ SetEvent( handle->condition );
+ else
+ stopStream();
+ return;
+ }
+
+ // Invoke user callback to get fresh output data UNLESS we are
+ // draining stream.
+ if ( handle->drainCounter == 0 ) {
+ RtAudioCallback callback = (RtAudioCallback) info->callback;
+ double streamTime = getStreamTime();
+ RtAudioStreamStatus status = 0;
+ if ( stream_.mode != INPUT && handle->xrun[0] == true ) {
+ status |= RTAUDIO_OUTPUT_UNDERFLOW;
+ handle->xrun[0] = false;
+ }
+ if ( stream_.mode != OUTPUT && handle->xrun[1] == true ) {
+ status |= RTAUDIO_INPUT_OVERFLOW;
+ handle->xrun[1] = false;
+ }
+ int cbReturnValue = callback( stream_.userBuffer[0], stream_.userBuffer[1],
+ stream_.bufferSize, streamTime, status, info->userData );
+ if ( cbReturnValue == 2 ) {
+ stream_.state = STREAM_STOPPING;
+ handle->drainCounter = 2;
+ abortStream();
+ return;
+ }
+ else if ( cbReturnValue == 1 ) {
+ handle->drainCounter = 1;
+ handle->internalDrain = true;
+ }
+ }
+
+ HRESULT result;
+ DWORD currentWritePointer, safeWritePointer;
+ DWORD currentReadPointer, safeReadPointer;
+ UINT nextWritePointer;
+
+ LPVOID buffer1 = NULL;
+ LPVOID buffer2 = NULL;
+ DWORD bufferSize1 = 0;
+ DWORD bufferSize2 = 0;
+
+ char *buffer;
+ long bufferBytes;
+
+ MUTEX_LOCK( &stream_.mutex );
+ if ( stream_.state == STREAM_STOPPED ) {
+ MUTEX_UNLOCK( &stream_.mutex );
+ return;
+ }
+
+ if ( buffersRolling == false ) {
+ if ( stream_.mode == DUPLEX ) {
+ //assert( handle->dsBufferSize[0] == handle->dsBufferSize[1] );
+
+ // It takes a while for the devices to get rolling. As a result,
+ // there's no guarantee that the capture and write device pointers
+ // will move in lockstep. Wait here for both devices to start
+ // rolling, and then set our buffer pointers accordingly.
+ // e.g. Crystal Drivers: the capture buffer starts up 5700 to 9600
+ // bytes later than the write buffer.
+
+ // Stub: a serious risk of having a pre-emptive scheduling round
+ // take place between the two GetCurrentPosition calls... but I'm
+ // really not sure how to solve the problem. Temporarily boost to
+ // Realtime priority, maybe; but I'm not sure what priority the
+ // DirectSound service threads run at. We *should* be roughly
+ // within a ms or so of correct.
+
+ LPDIRECTSOUNDBUFFER dsWriteBuffer = (LPDIRECTSOUNDBUFFER) handle->buffer[0];
+ LPDIRECTSOUNDCAPTUREBUFFER dsCaptureBuffer = (LPDIRECTSOUNDCAPTUREBUFFER) handle->buffer[1];
+
+ DWORD startSafeWritePointer, startSafeReadPointer;
+
+ result = dsWriteBuffer->GetCurrentPosition( NULL, &startSafeWritePointer );
+ if ( FAILED( result ) ) {
+ errorStream_ << "RtApiDs::callbackEvent: error (" << getErrorString( result ) << ") getting current write position!";
+ errorText_ = errorStream_.str();
+ MUTEX_UNLOCK( &stream_.mutex );
+ error( RtAudioError::SYSTEM_ERROR );
+ return;
+ }
+ result = dsCaptureBuffer->GetCurrentPosition( NULL, &startSafeReadPointer );
+ if ( FAILED( result ) ) {
+ errorStream_ << "RtApiDs::callbackEvent: error (" << getErrorString( result ) << ") getting current read position!";
+ errorText_ = errorStream_.str();
+ MUTEX_UNLOCK( &stream_.mutex );
+ error( RtAudioError::SYSTEM_ERROR );
+ return;
+ }
+ while ( true ) {
+ result = dsWriteBuffer->GetCurrentPosition( NULL, &safeWritePointer );
+ if ( FAILED( result ) ) {
+ errorStream_ << "RtApiDs::callbackEvent: error (" << getErrorString( result ) << ") getting current write position!";
+ errorText_ = errorStream_.str();
+ MUTEX_UNLOCK( &stream_.mutex );
+ error( RtAudioError::SYSTEM_ERROR );
+ return;
+ }
+ result = dsCaptureBuffer->GetCurrentPosition( NULL, &safeReadPointer );
+ if ( FAILED( result ) ) {
+ errorStream_ << "RtApiDs::callbackEvent: error (" << getErrorString( result ) << ") getting current read position!";
+ errorText_ = errorStream_.str();
+ MUTEX_UNLOCK( &stream_.mutex );
+ error( RtAudioError::SYSTEM_ERROR );
+ return;
+ }
+ if ( safeWritePointer != startSafeWritePointer && safeReadPointer != startSafeReadPointer ) break;
+ Sleep( 1 );
+ }
+
+ //assert( handle->dsBufferSize[0] == handle->dsBufferSize[1] );
+
+ handle->bufferPointer[0] = safeWritePointer + handle->dsPointerLeadTime[0];
+ if ( handle->bufferPointer[0] >= handle->dsBufferSize[0] ) handle->bufferPointer[0] -= handle->dsBufferSize[0];
+ handle->bufferPointer[1] = safeReadPointer;
+ }
+ else if ( stream_.mode == OUTPUT ) {
+
+ // Set the proper nextWritePosition after initial startup.
+ LPDIRECTSOUNDBUFFER dsWriteBuffer = (LPDIRECTSOUNDBUFFER) handle->buffer[0];
+ result = dsWriteBuffer->GetCurrentPosition( &currentWritePointer, &safeWritePointer );
+ if ( FAILED( result ) ) {
+ errorStream_ << "RtApiDs::callbackEvent: error (" << getErrorString( result ) << ") getting current write position!";
+ errorText_ = errorStream_.str();
+ MUTEX_UNLOCK( &stream_.mutex );
+ error( RtAudioError::SYSTEM_ERROR );
+ return;
+ }
+ handle->bufferPointer[0] = safeWritePointer + handle->dsPointerLeadTime[0];
+ if ( handle->bufferPointer[0] >= handle->dsBufferSize[0] ) handle->bufferPointer[0] -= handle->dsBufferSize[0];
+ }
+
+ buffersRolling = true;
+ }
+
+ if ( stream_.mode == OUTPUT || stream_.mode == DUPLEX ) {
+
+ LPDIRECTSOUNDBUFFER dsBuffer = (LPDIRECTSOUNDBUFFER) handle->buffer[0];
+
+ if ( handle->drainCounter > 1 ) { // write zeros to the output stream
+ bufferBytes = stream_.bufferSize * stream_.nUserChannels[0];
+ bufferBytes *= formatBytes( stream_.userFormat );
+ memset( stream_.userBuffer[0], 0, bufferBytes );
+ }
+
+ // Setup parameters and do buffer conversion if necessary.
+ if ( stream_.doConvertBuffer[0] ) {
+ buffer = stream_.deviceBuffer;
+ convertBuffer( buffer, stream_.userBuffer[0], stream_.convertInfo[0] );
+ bufferBytes = stream_.bufferSize * stream_.nDeviceChannels[0];
+ bufferBytes *= formatBytes( stream_.deviceFormat[0] );
+ }
+ else {
+ buffer = stream_.userBuffer[0];
+ bufferBytes = stream_.bufferSize * stream_.nUserChannels[0];
+ bufferBytes *= formatBytes( stream_.userFormat );
+ }
+
+ // No byte swapping necessary in DirectSound implementation.
+
+ // Ahhh ... windoze. 16-bit data is signed but 8-bit data is
+ // unsigned. So, we need to convert our signed 8-bit data here to
+ // unsigned.
+ if ( stream_.deviceFormat[0] == RTAUDIO_SINT8 )
+ for ( int i=0; i<bufferBytes; i++ ) buffer[i] = (unsigned char) ( buffer[i] + 128 );
+
+ DWORD dsBufferSize = handle->dsBufferSize[0];
+ nextWritePointer = handle->bufferPointer[0];
+
+ DWORD endWrite, leadPointer;
+ while ( true ) {
+ // Find out where the read and "safe write" pointers are.
+ result = dsBuffer->GetCurrentPosition( &currentWritePointer, &safeWritePointer );
+ if ( FAILED( result ) ) {
+ errorStream_ << "RtApiDs::callbackEvent: error (" << getErrorString( result ) << ") getting current write position!";
+ errorText_ = errorStream_.str();
+ error( RtAudioError::SYSTEM_ERROR );
+ return;
+ }
+
+ // We will copy our output buffer into the region between
+ // safeWritePointer and leadPointer. If leadPointer is not
+ // beyond the next endWrite position, wait until it is.
+ leadPointer = safeWritePointer + handle->dsPointerLeadTime[0];
+ //std::cout << "safeWritePointer = " << safeWritePointer << ", leadPointer = " << leadPointer << ", nextWritePointer = " << nextWritePointer << std::endl;
+ if ( leadPointer > dsBufferSize ) leadPointer -= dsBufferSize;
+ if ( leadPointer < nextWritePointer ) leadPointer += dsBufferSize; // unwrap offset
+ endWrite = nextWritePointer + bufferBytes;
+
+ // Check whether the entire write region is behind the play pointer.
+ if ( leadPointer >= endWrite ) break;
+
+ // If we are here, then we must wait until the leadPointer advances
+ // beyond the end of our next write region. We use the
+ // Sleep() function to suspend operation until that happens.
+ double millis = ( endWrite - leadPointer ) * 1000.0;
+ millis /= ( formatBytes( stream_.deviceFormat[0]) * stream_.nDeviceChannels[0] * stream_.sampleRate);
+ if ( millis < 1.0 ) millis = 1.0;
+ Sleep( (DWORD) millis );
+ }
+
+ if ( dsPointerBetween( nextWritePointer, safeWritePointer, currentWritePointer, dsBufferSize )
+ || dsPointerBetween( endWrite, safeWritePointer, currentWritePointer, dsBufferSize ) ) {
+ // We've strayed into the forbidden zone ... resync the read pointer.
+ handle->xrun[0] = true;
+ nextWritePointer = safeWritePointer + handle->dsPointerLeadTime[0] - bufferBytes;
+ if ( nextWritePointer >= dsBufferSize ) nextWritePointer -= dsBufferSize;
+ handle->bufferPointer[0] = nextWritePointer;
+ endWrite = nextWritePointer + bufferBytes;
+ }
+
+ // Lock free space in the buffer
+ result = dsBuffer->Lock( nextWritePointer, bufferBytes, &buffer1,
+ &bufferSize1, &buffer2, &bufferSize2, 0 );
+ if ( FAILED( result ) ) {
+ errorStream_ << "RtApiDs::callbackEvent: error (" << getErrorString( result ) << ") locking buffer during playback!";
+ errorText_ = errorStream_.str();
+ MUTEX_UNLOCK( &stream_.mutex );
+ error( RtAudioError::SYSTEM_ERROR );
+ return;
+ }
+
+ // Copy our buffer into the DS buffer
+ CopyMemory( buffer1, buffer, bufferSize1 );
+ if ( buffer2 != NULL ) CopyMemory( buffer2, buffer+bufferSize1, bufferSize2 );
+
+ // Update our buffer offset and unlock sound buffer
+ dsBuffer->Unlock( buffer1, bufferSize1, buffer2, bufferSize2 );
+ if ( FAILED( result ) ) {
+ errorStream_ << "RtApiDs::callbackEvent: error (" << getErrorString( result ) << ") unlocking buffer during playback!";
+ errorText_ = errorStream_.str();
+ MUTEX_UNLOCK( &stream_.mutex );
+ error( RtAudioError::SYSTEM_ERROR );
+ return;
+ }
+ nextWritePointer = ( nextWritePointer + bufferSize1 + bufferSize2 ) % dsBufferSize;
+ handle->bufferPointer[0] = nextWritePointer;
+ }
+
+ // Don't bother draining input
+ if ( handle->drainCounter ) {
+ handle->drainCounter++;
+ goto unlock;
+ }
+
+ if ( stream_.mode == INPUT || stream_.mode == DUPLEX ) {
+
+ // Setup parameters.
+ if ( stream_.doConvertBuffer[1] ) {
+ buffer = stream_.deviceBuffer;
+ bufferBytes = stream_.bufferSize * stream_.nDeviceChannels[1];
+ bufferBytes *= formatBytes( stream_.deviceFormat[1] );
+ }
+ else {
+ buffer = stream_.userBuffer[1];
+ bufferBytes = stream_.bufferSize * stream_.nUserChannels[1];
+ bufferBytes *= formatBytes( stream_.userFormat );
+ }
+
+ LPDIRECTSOUNDCAPTUREBUFFER dsBuffer = (LPDIRECTSOUNDCAPTUREBUFFER) handle->buffer[1];
+ long nextReadPointer = handle->bufferPointer[1];
+ DWORD dsBufferSize = handle->dsBufferSize[1];
+
+ // Find out where the write and "safe read" pointers are.
+ result = dsBuffer->GetCurrentPosition( &currentReadPointer, &safeReadPointer );
+ if ( FAILED( result ) ) {
+ errorStream_ << "RtApiDs::callbackEvent: error (" << getErrorString( result ) << ") getting current read position!";
+ errorText_ = errorStream_.str();
+ MUTEX_UNLOCK( &stream_.mutex );
+ error( RtAudioError::SYSTEM_ERROR );
+ return;
+ }
+
+ if ( safeReadPointer < (DWORD)nextReadPointer ) safeReadPointer += dsBufferSize; // unwrap offset
+ DWORD endRead = nextReadPointer + bufferBytes;
+
+ // Handling depends on whether we are INPUT or DUPLEX.
+ // If we're in INPUT mode then waiting is a good thing. If we're in DUPLEX mode,
+ // then a wait here will drag the write pointers into the forbidden zone.
+ //
+ // In DUPLEX mode, rather than wait, we will back off the read pointer until
+ // it's in a safe position. This causes dropouts, but it seems to be the only
+ // practical way to sync up the read and write pointers reliably, given the
+ // the very complex relationship between phase and increment of the read and write
+ // pointers.
+ //
+ // In order to minimize audible dropouts in DUPLEX mode, we will
+ // provide a pre-roll period of 0.5 seconds in which we return
+ // zeros from the read buffer while the pointers sync up.
+
+ if ( stream_.mode == DUPLEX ) {
+ if ( safeReadPointer < endRead ) {
+ if ( duplexPrerollBytes <= 0 ) {
+ // Pre-roll time over. Be more agressive.
+ int adjustment = endRead-safeReadPointer;
+
+ handle->xrun[1] = true;
+ // Two cases:
+ // - large adjustments: we've probably run out of CPU cycles, so just resync exactly,
+ // and perform fine adjustments later.
+ // - small adjustments: back off by twice as much.
+ if ( adjustment >= 2*bufferBytes )
+ nextReadPointer = safeReadPointer-2*bufferBytes;
+ else
+ nextReadPointer = safeReadPointer-bufferBytes-adjustment;
+
+ if ( nextReadPointer < 0 ) nextReadPointer += dsBufferSize;
+
+ }
+ else {
+ // In pre=roll time. Just do it.
+ nextReadPointer = safeReadPointer - bufferBytes;
+ while ( nextReadPointer < 0 ) nextReadPointer += dsBufferSize;
+ }
+ endRead = nextReadPointer + bufferBytes;
+ }
+ }
+ else { // mode == INPUT
+ while ( safeReadPointer < endRead && stream_.callbackInfo.isRunning ) {
+ // See comments for playback.
+ double millis = (endRead - safeReadPointer) * 1000.0;
+ millis /= ( formatBytes(stream_.deviceFormat[1]) * stream_.nDeviceChannels[1] * stream_.sampleRate);
+ if ( millis < 1.0 ) millis = 1.0;
+ Sleep( (DWORD) millis );
+
+ // Wake up and find out where we are now.
+ result = dsBuffer->GetCurrentPosition( &currentReadPointer, &safeReadPointer );
+ if ( FAILED( result ) ) {
+ errorStream_ << "RtApiDs::callbackEvent: error (" << getErrorString( result ) << ") getting current read position!";
+ errorText_ = errorStream_.str();
+ MUTEX_UNLOCK( &stream_.mutex );
+ error( RtAudioError::SYSTEM_ERROR );
+ return;
+ }
+
+ if ( safeReadPointer < (DWORD)nextReadPointer ) safeReadPointer += dsBufferSize; // unwrap offset
+ }
+ }
+
+ // Lock free space in the buffer
+ result = dsBuffer->Lock( nextReadPointer, bufferBytes, &buffer1,
+ &bufferSize1, &buffer2, &bufferSize2, 0 );
+ if ( FAILED( result ) ) {
+ errorStream_ << "RtApiDs::callbackEvent: error (" << getErrorString( result ) << ") locking capture buffer!";
+ errorText_ = errorStream_.str();
+ MUTEX_UNLOCK( &stream_.mutex );
+ error( RtAudioError::SYSTEM_ERROR );
+ return;
+ }
+
+ if ( duplexPrerollBytes <= 0 ) {
+ // Copy our buffer into the DS buffer
+ CopyMemory( buffer, buffer1, bufferSize1 );
+ if ( buffer2 != NULL ) CopyMemory( buffer+bufferSize1, buffer2, bufferSize2 );
+ }
+ else {
+ memset( buffer, 0, bufferSize1 );
+ if ( buffer2 != NULL ) memset( buffer + bufferSize1, 0, bufferSize2 );
+ duplexPrerollBytes -= bufferSize1 + bufferSize2;
+ }
+
+ // Update our buffer offset and unlock sound buffer
+ nextReadPointer = ( nextReadPointer + bufferSize1 + bufferSize2 ) % dsBufferSize;
+ dsBuffer->Unlock( buffer1, bufferSize1, buffer2, bufferSize2 );
+ if ( FAILED( result ) ) {
+ errorStream_ << "RtApiDs::callbackEvent: error (" << getErrorString( result ) << ") unlocking capture buffer!";
+ errorText_ = errorStream_.str();
+ MUTEX_UNLOCK( &stream_.mutex );
+ error( RtAudioError::SYSTEM_ERROR );
+ return;
+ }
+ handle->bufferPointer[1] = nextReadPointer;
+
+ // No byte swapping necessary in DirectSound implementation.
+
+ // If necessary, convert 8-bit data from unsigned to signed.
+ if ( stream_.deviceFormat[1] == RTAUDIO_SINT8 )
+ for ( int j=0; j<bufferBytes; j++ ) buffer[j] = (signed char) ( buffer[j] - 128 );
+
+ // Do buffer conversion if necessary.
+ if ( stream_.doConvertBuffer[1] )
+ convertBuffer( stream_.userBuffer[1], stream_.deviceBuffer, stream_.convertInfo[1] );
+ }
+
+ unlock:
+ MUTEX_UNLOCK( &stream_.mutex );
+ RtApi::tickStreamTime();
+}
+
+// Definitions for utility functions and callbacks
+// specific to the DirectSound implementation.
+
+static unsigned __stdcall callbackHandler( void *ptr )
+{
+ CallbackInfo *info = (CallbackInfo *) ptr;
+ RtApiDs *object = (RtApiDs *) info->object;
+ bool* isRunning = &info->isRunning;
+
+ while ( *isRunning == true ) {
+ object->callbackEvent();
+ }
+
+ _endthreadex( 0 );
+ return 0;
+}
+
+static BOOL CALLBACK deviceQueryCallback( LPGUID lpguid,
+ LPCTSTR description,
+ LPCTSTR /*module*/,
+ LPVOID lpContext )
+{
+ struct DsProbeData& probeInfo = *(struct DsProbeData*) lpContext;
+ std::vector<struct DsDevice>& dsDevices = *probeInfo.dsDevices;
+
+ HRESULT hr;
+ bool validDevice = false;
+ if ( probeInfo.isInput == true ) {
+ DSCCAPS caps;
+ LPDIRECTSOUNDCAPTURE object;
+
+ hr = DirectSoundCaptureCreate( lpguid, &object, NULL );
+ if ( hr != DS_OK ) return TRUE;
+
+ caps.dwSize = sizeof(caps);
+ hr = object->GetCaps( &caps );
+ if ( hr == DS_OK ) {
+ if ( caps.dwChannels > 0 && caps.dwFormats > 0 )
+ validDevice = true;
+ }
+ object->Release();
+ }
+ else {
+ DSCAPS caps;
+ LPDIRECTSOUND object;
+ hr = DirectSoundCreate( lpguid, &object, NULL );
+ if ( hr != DS_OK ) return TRUE;
+
+ caps.dwSize = sizeof(caps);
+ hr = object->GetCaps( &caps );
+ if ( hr == DS_OK ) {
+ if ( caps.dwFlags & DSCAPS_PRIMARYMONO || caps.dwFlags & DSCAPS_PRIMARYSTEREO )
+ validDevice = true;
+ }
+ object->Release();
+ }
+
+ // If good device, then save its name and guid.
+ std::string name = convertCharPointerToStdString( description );
+ //if ( name == "Primary Sound Driver" || name == "Primary Sound Capture Driver" )
+ if ( lpguid == NULL )
+ name = "Default Device";
+ if ( validDevice ) {
+ for ( unsigned int i=0; i<dsDevices.size(); i++ ) {
+ if ( dsDevices[i].name == name ) {
+ dsDevices[i].found = true;
+ if ( probeInfo.isInput ) {
+ dsDevices[i].id[1] = lpguid;
+ dsDevices[i].validId[1] = true;
+ }
+ else {
+ dsDevices[i].id[0] = lpguid;
+ dsDevices[i].validId[0] = true;
+ }
+ return TRUE;
+ }
+ }
+
+ DsDevice device;
+ device.name = name;
+ device.found = true;
+ if ( probeInfo.isInput ) {
+ device.id[1] = lpguid;
+ device.validId[1] = true;
+ }
+ else {
+ device.id[0] = lpguid;
+ device.validId[0] = true;
+ }
+ dsDevices.push_back( device );
+ }
+
+ return TRUE;
+}
+
+static const char* getErrorString( int code )
+{
+ switch ( code ) {
+
+ case DSERR_ALLOCATED:
+ return "Already allocated";
+
+ case DSERR_CONTROLUNAVAIL:
+ return "Control unavailable";
+
+ case DSERR_INVALIDPARAM:
+ return "Invalid parameter";
+
+ case DSERR_INVALIDCALL:
+ return "Invalid call";
+
+ case DSERR_GENERIC:
+ return "Generic error";
+
+ case DSERR_PRIOLEVELNEEDED:
+ return "Priority level needed";
+
+ case DSERR_OUTOFMEMORY:
+ return "Out of memory";
+
+ case DSERR_BADFORMAT:
+ return "The sample rate or the channel format is not supported";
+
+ case DSERR_UNSUPPORTED:
+ return "Not supported";
+
+ case DSERR_NODRIVER:
+ return "No driver";
+
+ case DSERR_ALREADYINITIALIZED:
+ return "Already initialized";
+
+ case DSERR_NOAGGREGATION:
+ return "No aggregation";
+
+ case DSERR_BUFFERLOST:
+ return "Buffer lost";
+
+ case DSERR_OTHERAPPHASPRIO:
+ return "Another application already has priority";
+
+ case DSERR_UNINITIALIZED:
+ return "Uninitialized";
+
+ default:
+ return "DirectSound unknown error";
+ }
+}
+//******************** End of __WINDOWS_DS__ *********************//
+#endif
+
+
+#if defined(__LINUX_ALSA__)
+
+#include <alsa/asoundlib.h>
+#include <unistd.h>
+
+ // A structure to hold various information related to the ALSA API
+ // implementation.
+struct AlsaHandle {
+ snd_pcm_t *handles[2];
+ bool synchronized;
+ bool xrun[2];
+ pthread_cond_t runnable_cv;
+ bool runnable;
+
+ AlsaHandle()
+ :synchronized(false), runnable(false) { xrun[0] = false; xrun[1] = false; }
+};
+
+static void *alsaCallbackHandler( void * ptr );
+
+RtApiAlsa :: RtApiAlsa()
+{
+ // Nothing to do here.
+}
+
+RtApiAlsa :: ~RtApiAlsa()
+{
+ if ( stream_.state != STREAM_CLOSED ) closeStream();
+}
+
+unsigned int RtApiAlsa :: getDeviceCount( void )
+{
+ unsigned nDevices = 0;
+ int result, subdevice, card;
+ char name[64];
+ snd_ctl_t *handle;
+
+ // Count cards and devices
+ card = -1;
+ snd_card_next( &card );
+ while ( card >= 0 ) {
+ sprintf( name, "hw:%d", card );
+ result = snd_ctl_open( &handle, name, 0 );
+ if ( result < 0 ) {
+ errorStream_ << "RtApiAlsa::getDeviceCount: control open, card = " << card << ", " << snd_strerror( result ) << ".";
+ errorText_ = errorStream_.str();
+ error( RtAudioError::WARNING );
+ goto nextcard;
+ }
+ subdevice = -1;
+ while( 1 ) {
+ result = snd_ctl_pcm_next_device( handle, &subdevice );
+ if ( result < 0 ) {
+ errorStream_ << "RtApiAlsa::getDeviceCount: control next device, card = " << card << ", " << snd_strerror( result ) << ".";
+ errorText_ = errorStream_.str();
+ error( RtAudioError::WARNING );
+ break;
+ }
+ if ( subdevice < 0 )
+ break;
+ nDevices++;
+ }
+ nextcard:
+ snd_ctl_close( handle );
+ snd_card_next( &card );
+ }
+
+ result = snd_ctl_open( &handle, "default", 0 );
+ if (result == 0) {
+ nDevices++;
+ snd_ctl_close( handle );
+ }
+
+ return nDevices;
+}
+
+RtAudio::DeviceInfo RtApiAlsa :: getDeviceInfo( unsigned int device )
+{
+ RtAudio::DeviceInfo info;
+ info.probed = false;
+
+ unsigned nDevices = 0;
+ int result, subdevice, card;
+ char name[64];
+ snd_ctl_t *chandle;
+
+ // Count cards and devices
+ card = -1;
+ subdevice = -1;
+ snd_card_next( &card );
+ while ( card >= 0 ) {
+ sprintf( name, "hw:%d", card );
+ result = snd_ctl_open( &chandle, name, SND_CTL_NONBLOCK );
+ if ( result < 0 ) {
+ errorStream_ << "RtApiAlsa::getDeviceInfo: control open, card = " << card << ", " << snd_strerror( result ) << ".";
+ errorText_ = errorStream_.str();
+ error( RtAudioError::WARNING );
+ goto nextcard;
+ }
+ subdevice = -1;
+ while( 1 ) {
+ result = snd_ctl_pcm_next_device( chandle, &subdevice );
+ if ( result < 0 ) {
+ errorStream_ << "RtApiAlsa::getDeviceInfo: control next device, card = " << card << ", " << snd_strerror( result ) << ".";
+ errorText_ = errorStream_.str();
+ error( RtAudioError::WARNING );
+ break;
+ }
+ if ( subdevice < 0 ) break;
+ if ( nDevices == device ) {
+ sprintf( name, "hw:%d,%d", card, subdevice );
+ goto foundDevice;
+ }
+ nDevices++;
+ }
+ nextcard:
+ snd_ctl_close( chandle );
+ snd_card_next( &card );
+ }
+
+ result = snd_ctl_open( &chandle, "default", SND_CTL_NONBLOCK );
+ if ( result == 0 ) {
+ if ( nDevices == device ) {
+ strcpy( name, "default" );
+ goto foundDevice;
+ }
+ nDevices++;
+ }
+
+ if ( nDevices == 0 ) {
+ errorText_ = "RtApiAlsa::getDeviceInfo: no devices found!";
+ error( RtAudioError::INVALID_USE );
+ return info;
+ }
+
+ if ( device >= nDevices ) {
+ errorText_ = "RtApiAlsa::getDeviceInfo: device ID is invalid!";
+ error( RtAudioError::INVALID_USE );
+ return info;
+ }
+
+ foundDevice:
+
+ // If a stream is already open, we cannot probe the stream devices.
+ // Thus, use the saved results.
+ if ( stream_.state != STREAM_CLOSED &&
+ ( stream_.device[0] == device || stream_.device[1] == device ) ) {
+ snd_ctl_close( chandle );
+ if ( device >= devices_.size() ) {
+ errorText_ = "RtApiAlsa::getDeviceInfo: device ID was not present before stream was opened.";
+ error( RtAudioError::WARNING );
+ return info;
+ }
+ return devices_[ device ];
+ }
+
+ int openMode = SND_PCM_ASYNC;
+ snd_pcm_stream_t stream;
+ snd_pcm_info_t *pcminfo;
+ snd_pcm_info_alloca( &pcminfo );
+ snd_pcm_t *phandle;
+ snd_pcm_hw_params_t *params;
+ snd_pcm_hw_params_alloca( &params );
+
+ // First try for playback unless default device (which has subdev -1)
+ stream = SND_PCM_STREAM_PLAYBACK;
+ snd_pcm_info_set_stream( pcminfo, stream );
+ if ( subdevice != -1 ) {
+ snd_pcm_info_set_device( pcminfo, subdevice );
+ snd_pcm_info_set_subdevice( pcminfo, 0 );
+
+ result = snd_ctl_pcm_info( chandle, pcminfo );
+ if ( result < 0 ) {
+ // Device probably doesn't support playback.
+ goto captureProbe;
+ }
+ }
+
+ result = snd_pcm_open( &phandle, name, stream, openMode | SND_PCM_NONBLOCK );
+ if ( result < 0 ) {
+ errorStream_ << "RtApiAlsa::getDeviceInfo: snd_pcm_open error for device (" << name << "), " << snd_strerror( result ) << ".";
+ errorText_ = errorStream_.str();
+ error( RtAudioError::WARNING );
+ goto captureProbe;
+ }
+
+ // The device is open ... fill the parameter structure.
+ result = snd_pcm_hw_params_any( phandle, params );
+ if ( result < 0 ) {
+ snd_pcm_close( phandle );
+ errorStream_ << "RtApiAlsa::getDeviceInfo: snd_pcm_hw_params error for device (" << name << "), " << snd_strerror( result ) << ".";
+ errorText_ = errorStream_.str();
+ error( RtAudioError::WARNING );
+ goto captureProbe;
+ }
+
+ // Get output channel information.
+ unsigned int value;
+ result = snd_pcm_hw_params_get_channels_max( params, &value );
+ if ( result < 0 ) {
+ snd_pcm_close( phandle );
+ errorStream_ << "RtApiAlsa::getDeviceInfo: error getting device (" << name << ") output channels, " << snd_strerror( result ) << ".";
+ errorText_ = errorStream_.str();
+ error( RtAudioError::WARNING );
+ goto captureProbe;
+ }
+ info.outputChannels = value;
+ snd_pcm_close( phandle );
+
+ captureProbe:
+ stream = SND_PCM_STREAM_CAPTURE;
+ snd_pcm_info_set_stream( pcminfo, stream );
+
+ // Now try for capture unless default device (with subdev = -1)
+ if ( subdevice != -1 ) {
+ result = snd_ctl_pcm_info( chandle, pcminfo );
+ snd_ctl_close( chandle );
+ if ( result < 0 ) {
+ // Device probably doesn't support capture.
+ if ( info.outputChannels == 0 ) return info;
+ goto probeParameters;
+ }
+ }
+ else
+ snd_ctl_close( chandle );
+
+ result = snd_pcm_open( &phandle, name, stream, openMode | SND_PCM_NONBLOCK);
+ if ( result < 0 ) {
+ errorStream_ << "RtApiAlsa::getDeviceInfo: snd_pcm_open error for device (" << name << "), " << snd_strerror( result ) << ".";
+ errorText_ = errorStream_.str();
+ error( RtAudioError::WARNING );
+ if ( info.outputChannels == 0 ) return info;
+ goto probeParameters;
+ }
+
+ // The device is open ... fill the parameter structure.
+ result = snd_pcm_hw_params_any( phandle, params );
+ if ( result < 0 ) {
+ snd_pcm_close( phandle );
+ errorStream_ << "RtApiAlsa::getDeviceInfo: snd_pcm_hw_params error for device (" << name << "), " << snd_strerror( result ) << ".";
+ errorText_ = errorStream_.str();
+ error( RtAudioError::WARNING );
+ if ( info.outputChannels == 0 ) return info;
+ goto probeParameters;
+ }
+
+ result = snd_pcm_hw_params_get_channels_max( params, &value );
+ if ( result < 0 ) {
+ snd_pcm_close( phandle );
+ errorStream_ << "RtApiAlsa::getDeviceInfo: error getting device (" << name << ") input channels, " << snd_strerror( result ) << ".";
+ errorText_ = errorStream_.str();
+ error( RtAudioError::WARNING );
+ if ( info.outputChannels == 0 ) return info;
+ goto probeParameters;
+ }
+ info.inputChannels = value;
+ snd_pcm_close( phandle );
+
+ // If device opens for both playback and capture, we determine the channels.
+ if ( info.outputChannels > 0 && info.inputChannels > 0 )
+ info.duplexChannels = (info.outputChannels > info.inputChannels) ? info.inputChannels : info.outputChannels;
+
+ // ALSA doesn't provide default devices so we'll use the first available one.
+ if ( device == 0 && info.outputChannels > 0 )
+ info.isDefaultOutput = true;
+ if ( device == 0 && info.inputChannels > 0 )
+ info.isDefaultInput = true;
+
+ probeParameters:
+ // At this point, we just need to figure out the supported data
+ // formats and sample rates. We'll proceed by opening the device in
+ // the direction with the maximum number of channels, or playback if
+ // they are equal. This might limit our sample rate options, but so
+ // be it.
+
+ if ( info.outputChannels >= info.inputChannels )
+ stream = SND_PCM_STREAM_PLAYBACK;
+ else
+ stream = SND_PCM_STREAM_CAPTURE;
+ snd_pcm_info_set_stream( pcminfo, stream );
+
+ result = snd_pcm_open( &phandle, name, stream, openMode | SND_PCM_NONBLOCK);
+ if ( result < 0 ) {
+ errorStream_ << "RtApiAlsa::getDeviceInfo: snd_pcm_open error for device (" << name << "), " << snd_strerror( result ) << ".";
+ errorText_ = errorStream_.str();
+ error( RtAudioError::WARNING );
+ return info;
+ }
+
+ // The device is open ... fill the parameter structure.
+ result = snd_pcm_hw_params_any( phandle, params );
+ if ( result < 0 ) {
+ snd_pcm_close( phandle );
+ errorStream_ << "RtApiAlsa::getDeviceInfo: snd_pcm_hw_params error for device (" << name << "), " << snd_strerror( result ) << ".";
+ errorText_ = errorStream_.str();
+ error( RtAudioError::WARNING );
+ return info;
+ }
+
+ // Test our discrete set of sample rate values.
+ info.sampleRates.clear();
+ for ( unsigned int i=0; i<MAX_SAMPLE_RATES; i++ ) {
+ if ( snd_pcm_hw_params_test_rate( phandle, params, SAMPLE_RATES[i], 0 ) == 0 ) {
+ info.sampleRates.push_back( SAMPLE_RATES[i] );
+
+ if ( !info.preferredSampleRate || ( SAMPLE_RATES[i] <= 48000 && SAMPLE_RATES[i] > info.preferredSampleRate ) )
+ info.preferredSampleRate = SAMPLE_RATES[i];
+ }
+ }
+ if ( info.sampleRates.size() == 0 ) {
+ snd_pcm_close( phandle );
+ errorStream_ << "RtApiAlsa::getDeviceInfo: no supported sample rates found for device (" << name << ").";
+ errorText_ = errorStream_.str();
+ error( RtAudioError::WARNING );
+ return info;
+ }
+
+ // Probe the supported data formats ... we don't care about endian-ness just yet
+ snd_pcm_format_t format;
+ info.nativeFormats = 0;
+ format = SND_PCM_FORMAT_S8;
+ if ( snd_pcm_hw_params_test_format( phandle, params, format ) == 0 )
+ info.nativeFormats |= RTAUDIO_SINT8;
+ format = SND_PCM_FORMAT_S16;
+ if ( snd_pcm_hw_params_test_format( phandle, params, format ) == 0 )
+ info.nativeFormats |= RTAUDIO_SINT16;
+ format = SND_PCM_FORMAT_S24;
+ if ( snd_pcm_hw_params_test_format( phandle, params, format ) == 0 )
+ info.nativeFormats |= RTAUDIO_SINT24;
+ format = SND_PCM_FORMAT_S32;
+ if ( snd_pcm_hw_params_test_format( phandle, params, format ) == 0 )
+ info.nativeFormats |= RTAUDIO_SINT32;
+ format = SND_PCM_FORMAT_FLOAT;
+ if ( snd_pcm_hw_params_test_format( phandle, params, format ) == 0 )
+ info.nativeFormats |= RTAUDIO_FLOAT32;
+ format = SND_PCM_FORMAT_FLOAT64;
+ if ( snd_pcm_hw_params_test_format( phandle, params, format ) == 0 )
+ info.nativeFormats |= RTAUDIO_FLOAT64;
+
+ // Check that we have at least one supported format
+ if ( info.nativeFormats == 0 ) {
+ snd_pcm_close( phandle );
+ errorStream_ << "RtApiAlsa::getDeviceInfo: pcm device (" << name << ") data format not supported by RtAudio.";
+ errorText_ = errorStream_.str();
+ error( RtAudioError::WARNING );
+ return info;
+ }
+
+ // Get the device name
+ char *cardname;
+ result = snd_card_get_name( card, &cardname );
+ if ( result >= 0 ) {
+ sprintf( name, "hw:%s,%d", cardname, subdevice );
+ free( cardname );
+ }
+ info.name = name;
+
+ // That's all ... close the device and return
+ snd_pcm_close( phandle );
+ info.probed = true;
+ return info;
+}
+
+void RtApiAlsa :: saveDeviceInfo( void )
+{
+ devices_.clear();
+
+ unsigned int nDevices = getDeviceCount();
+ devices_.resize( nDevices );
+ for ( unsigned int i=0; i<nDevices; i++ )
+ devices_[i] = getDeviceInfo( i );
+}
+
+bool RtApiAlsa :: probeDeviceOpen( unsigned int device, StreamMode mode, unsigned int channels,
+ unsigned int firstChannel, unsigned int sampleRate,
+ RtAudioFormat format, unsigned int *bufferSize,
+ RtAudio::StreamOptions *options )
+
+{
+#if defined(__RTAUDIO_DEBUG__)
+ snd_output_t *out;
+ snd_output_stdio_attach(&out, stderr, 0);
+#endif
+
+ // I'm not using the "plug" interface ... too much inconsistent behavior.
+
+ unsigned nDevices = 0;
+ int result, subdevice, card;
+ char name[64];
+ snd_ctl_t *chandle;
+
+ if ( options && options->flags & RTAUDIO_ALSA_USE_DEFAULT )
+ snprintf(name, sizeof(name), "%s", "default");
+ else {
+ // Count cards and devices
+ card = -1;
+ snd_card_next( &card );
+ while ( card >= 0 ) {
+ sprintf( name, "hw:%d", card );
+ result = snd_ctl_open( &chandle, name, SND_CTL_NONBLOCK );
+ if ( result < 0 ) {
+ errorStream_ << "RtApiAlsa::probeDeviceOpen: control open, card = " << card << ", " << snd_strerror( result ) << ".";
+ errorText_ = errorStream_.str();
+ return FAILURE;
+ }
+ subdevice = -1;
+ while( 1 ) {
+ result = snd_ctl_pcm_next_device( chandle, &subdevice );
+ if ( result < 0 ) break;
+ if ( subdevice < 0 ) break;
+ if ( nDevices == device ) {
+ sprintf( name, "hw:%d,%d", card, subdevice );
+ snd_ctl_close( chandle );
+ goto foundDevice;
+ }
+ nDevices++;
+ }
+ snd_ctl_close( chandle );
+ snd_card_next( &card );
+ }
+
+ result = snd_ctl_open( &chandle, "default", SND_CTL_NONBLOCK );
+ if ( result == 0 ) {
+ if ( nDevices == device ) {
+ strcpy( name, "default" );
+ goto foundDevice;
+ }
+ nDevices++;
+ }
+
+ if ( nDevices == 0 ) {
+ // This should not happen because a check is made before this function is called.
+ errorText_ = "RtApiAlsa::probeDeviceOpen: no devices found!";
+ return FAILURE;
+ }
+
+ if ( device >= nDevices ) {
+ // This should not happen because a check is made before this function is called.
+ errorText_ = "RtApiAlsa::probeDeviceOpen: device ID is invalid!";
+ return FAILURE;
+ }
+ }
+
+ foundDevice:
+
+ // The getDeviceInfo() function will not work for a device that is
+ // already open. Thus, we'll probe the system before opening a
+ // stream and save the results for use by getDeviceInfo().
+ if ( mode == OUTPUT || ( mode == INPUT && stream_.mode != OUTPUT ) ) // only do once
+ this->saveDeviceInfo();
+
+ snd_pcm_stream_t stream;
+ if ( mode == OUTPUT )
+ stream = SND_PCM_STREAM_PLAYBACK;
+ else
+ stream = SND_PCM_STREAM_CAPTURE;
+
+ snd_pcm_t *phandle;
+ int openMode = SND_PCM_ASYNC;
+ result = snd_pcm_open( &phandle, name, stream, openMode );
+ if ( result < 0 ) {
+ if ( mode == OUTPUT )
+ errorStream_ << "RtApiAlsa::probeDeviceOpen: pcm device (" << name << ") won't open for output.";
+ else
+ errorStream_ << "RtApiAlsa::probeDeviceOpen: pcm device (" << name << ") won't open for input.";
+ errorText_ = errorStream_.str();
+ return FAILURE;
+ }
+
+ // Fill the parameter structure.
+ snd_pcm_hw_params_t *hw_params;
+ snd_pcm_hw_params_alloca( &hw_params );
+ result = snd_pcm_hw_params_any( phandle, hw_params );
+ if ( result < 0 ) {
+ snd_pcm_close( phandle );
+ errorStream_ << "RtApiAlsa::probeDeviceOpen: error getting pcm device (" << name << ") parameters, " << snd_strerror( result ) << ".";
+ errorText_ = errorStream_.str();
+ return FAILURE;
+ }
+
+#if defined(__RTAUDIO_DEBUG__)
+ fprintf( stderr, "\nRtApiAlsa: dump hardware params just after device open:\n\n" );
+ snd_pcm_hw_params_dump( hw_params, out );
+#endif
+
+ // Set access ... check user preference.
+ if ( options && options->flags & RTAUDIO_NONINTERLEAVED ) {
+ stream_.userInterleaved = false;
+ result = snd_pcm_hw_params_set_access( phandle, hw_params, SND_PCM_ACCESS_RW_NONINTERLEAVED );
+ if ( result < 0 ) {
+ result = snd_pcm_hw_params_set_access( phandle, hw_params, SND_PCM_ACCESS_RW_INTERLEAVED );
+ stream_.deviceInterleaved[mode] = true;
+ }
+ else
+ stream_.deviceInterleaved[mode] = false;
+ }
+ else {
+ stream_.userInterleaved = true;
+ result = snd_pcm_hw_params_set_access( phandle, hw_params, SND_PCM_ACCESS_RW_INTERLEAVED );
+ if ( result < 0 ) {
+ result = snd_pcm_hw_params_set_access( phandle, hw_params, SND_PCM_ACCESS_RW_NONINTERLEAVED );
+ stream_.deviceInterleaved[mode] = false;
+ }
+ else
+ stream_.deviceInterleaved[mode] = true;
+ }
+
+ if ( result < 0 ) {
+ snd_pcm_close( phandle );
+ errorStream_ << "RtApiAlsa::probeDeviceOpen: error setting pcm device (" << name << ") access, " << snd_strerror( result ) << ".";
+ errorText_ = errorStream_.str();
+ return FAILURE;
+ }
+
+ // Determine how to set the device format.
+ stream_.userFormat = format;
+ snd_pcm_format_t deviceFormat = SND_PCM_FORMAT_UNKNOWN;
+
+ if ( format == RTAUDIO_SINT8 )
+ deviceFormat = SND_PCM_FORMAT_S8;
+ else if ( format == RTAUDIO_SINT16 )
+ deviceFormat = SND_PCM_FORMAT_S16;
+ else if ( format == RTAUDIO_SINT24 )
+ deviceFormat = SND_PCM_FORMAT_S24;
+ else if ( format == RTAUDIO_SINT32 )
+ deviceFormat = SND_PCM_FORMAT_S32;
+ else if ( format == RTAUDIO_FLOAT32 )
+ deviceFormat = SND_PCM_FORMAT_FLOAT;
+ else if ( format == RTAUDIO_FLOAT64 )
+ deviceFormat = SND_PCM_FORMAT_FLOAT64;
+
+ if ( snd_pcm_hw_params_test_format(phandle, hw_params, deviceFormat) == 0) {
+ stream_.deviceFormat[mode] = format;
+ goto setFormat;
+ }
+
+ // The user requested format is not natively supported by the device.
+ deviceFormat = SND_PCM_FORMAT_FLOAT64;
+ if ( snd_pcm_hw_params_test_format( phandle, hw_params, deviceFormat ) == 0 ) {
+ stream_.deviceFormat[mode] = RTAUDIO_FLOAT64;
+ goto setFormat;
+ }
+
+ deviceFormat = SND_PCM_FORMAT_FLOAT;
+ if ( snd_pcm_hw_params_test_format(phandle, hw_params, deviceFormat ) == 0 ) {
+ stream_.deviceFormat[mode] = RTAUDIO_FLOAT32;
+ goto setFormat;
+ }
+
+ deviceFormat = SND_PCM_FORMAT_S32;
+ if ( snd_pcm_hw_params_test_format(phandle, hw_params, deviceFormat ) == 0 ) {
+ stream_.deviceFormat[mode] = RTAUDIO_SINT32;
+ goto setFormat;
+ }
+
+ deviceFormat = SND_PCM_FORMAT_S24;
+ if ( snd_pcm_hw_params_test_format(phandle, hw_params, deviceFormat ) == 0 ) {
+ stream_.deviceFormat[mode] = RTAUDIO_SINT24;
+ goto setFormat;
+ }
+
+ deviceFormat = SND_PCM_FORMAT_S16;
+ if ( snd_pcm_hw_params_test_format(phandle, hw_params, deviceFormat ) == 0 ) {
+ stream_.deviceFormat[mode] = RTAUDIO_SINT16;
+ goto setFormat;
+ }
+
+ deviceFormat = SND_PCM_FORMAT_S8;
+ if ( snd_pcm_hw_params_test_format(phandle, hw_params, deviceFormat ) == 0 ) {
+ stream_.deviceFormat[mode] = RTAUDIO_SINT8;
+ goto setFormat;
+ }
+
+ // If we get here, no supported format was found.
+ snd_pcm_close( phandle );
+ errorStream_ << "RtApiAlsa::probeDeviceOpen: pcm device " << device << " data format not supported by RtAudio.";
+ errorText_ = errorStream_.str();
+ return FAILURE;
+
+ setFormat:
+ result = snd_pcm_hw_params_set_format( phandle, hw_params, deviceFormat );
+ if ( result < 0 ) {
+ snd_pcm_close( phandle );
+ errorStream_ << "RtApiAlsa::probeDeviceOpen: error setting pcm device (" << name << ") data format, " << snd_strerror( result ) << ".";
+ errorText_ = errorStream_.str();
+ return FAILURE;
+ }
+
+ // Determine whether byte-swaping is necessary.
+ stream_.doByteSwap[mode] = false;
+ if ( deviceFormat != SND_PCM_FORMAT_S8 ) {
+ result = snd_pcm_format_cpu_endian( deviceFormat );
+ if ( result == 0 )
+ stream_.doByteSwap[mode] = true;
+ else if (result < 0) {
+ snd_pcm_close( phandle );
+ errorStream_ << "RtApiAlsa::probeDeviceOpen: error getting pcm device (" << name << ") endian-ness, " << snd_strerror( result ) << ".";
+ errorText_ = errorStream_.str();
+ return FAILURE;
+ }
+ }
+
+ // Set the sample rate.
+ result = snd_pcm_hw_params_set_rate_near( phandle, hw_params, (unsigned int*) &sampleRate, 0 );
+ if ( result < 0 ) {
+ snd_pcm_close( phandle );
+ errorStream_ << "RtApiAlsa::probeDeviceOpen: error setting sample rate on device (" << name << "), " << snd_strerror( result ) << ".";
+ errorText_ = errorStream_.str();
+ return FAILURE;
+ }
+
+ // Determine the number of channels for this device. We support a possible
+ // minimum device channel number > than the value requested by the user.
+ stream_.nUserChannels[mode] = channels;
+ unsigned int value;
+ result = snd_pcm_hw_params_get_channels_max( hw_params, &value );
+ unsigned int deviceChannels = value;
+ if ( result < 0 || deviceChannels < channels + firstChannel ) {
+ snd_pcm_close( phandle );
+ errorStream_ << "RtApiAlsa::probeDeviceOpen: requested channel parameters not supported by device (" << name << "), " << snd_strerror( result ) << ".";
+ errorText_ = errorStream_.str();
+ return FAILURE;
+ }
+
+ result = snd_pcm_hw_params_get_channels_min( hw_params, &value );
+ if ( result < 0 ) {
+ snd_pcm_close( phandle );
+ errorStream_ << "RtApiAlsa::probeDeviceOpen: error getting minimum channels for device (" << name << "), " << snd_strerror( result ) << ".";
+ errorText_ = errorStream_.str();
+ return FAILURE;
+ }
+ deviceChannels = value;
+ if ( deviceChannels < channels + firstChannel ) deviceChannels = channels + firstChannel;
+ stream_.nDeviceChannels[mode] = deviceChannels;
+
+ // Set the device channels.
+ result = snd_pcm_hw_params_set_channels( phandle, hw_params, deviceChannels );
+ if ( result < 0 ) {
+ snd_pcm_close( phandle );
+ errorStream_ << "RtApiAlsa::probeDeviceOpen: error setting channels for device (" << name << "), " << snd_strerror( result ) << ".";
+ errorText_ = errorStream_.str();
+ return FAILURE;
+ }
+
+ // Set the buffer (or period) size.
+ int dir = 0;
+ snd_pcm_uframes_t periodSize = *bufferSize;
+ result = snd_pcm_hw_params_set_period_size_near( phandle, hw_params, &periodSize, &dir );
+ if ( result < 0 ) {
+ snd_pcm_close( phandle );
+ errorStream_ << "RtApiAlsa::probeDeviceOpen: error setting period size for device (" << name << "), " << snd_strerror( result ) << ".";
+ errorText_ = errorStream_.str();
+ return FAILURE;
+ }
+ *bufferSize = periodSize;
+
+ // Set the buffer number, which in ALSA is referred to as the "period".
+ unsigned int periods = 0;
+ if ( options && options->flags & RTAUDIO_MINIMIZE_LATENCY ) periods = 2;
+ if ( options && options->numberOfBuffers > 0 ) periods = options->numberOfBuffers;
+ if ( periods < 2 ) periods = 4; // a fairly safe default value
+ result = snd_pcm_hw_params_set_periods_near( phandle, hw_params, &periods, &dir );
+ if ( result < 0 ) {
+ snd_pcm_close( phandle );
+ errorStream_ << "RtApiAlsa::probeDeviceOpen: error setting periods for device (" << name << "), " << snd_strerror( result ) << ".";
+ errorText_ = errorStream_.str();
+ return FAILURE;
+ }
+
+ // If attempting to setup a duplex stream, the bufferSize parameter
+ // MUST be the same in both directions!
+ if ( stream_.mode == OUTPUT && mode == INPUT && *bufferSize != stream_.bufferSize ) {
+ snd_pcm_close( phandle );
+ errorStream_ << "RtApiAlsa::probeDeviceOpen: system error setting buffer size for duplex stream on device (" << name << ").";
+ errorText_ = errorStream_.str();
+ return FAILURE;
+ }
+
+ stream_.bufferSize = *bufferSize;
+
+ // Install the hardware configuration
+ result = snd_pcm_hw_params( phandle, hw_params );
+ if ( result < 0 ) {
+ snd_pcm_close( phandle );
+ errorStream_ << "RtApiAlsa::probeDeviceOpen: error installing hardware configuration on device (" << name << "), " << snd_strerror( result ) << ".";
+ errorText_ = errorStream_.str();
+ return FAILURE;
+ }
+
+#if defined(__RTAUDIO_DEBUG__)
+ fprintf(stderr, "\nRtApiAlsa: dump hardware params after installation:\n\n");
+ snd_pcm_hw_params_dump( hw_params, out );
+#endif
+
+ // Set the software configuration to fill buffers with zeros and prevent device stopping on xruns.
+ snd_pcm_sw_params_t *sw_params = NULL;
+ snd_pcm_sw_params_alloca( &sw_params );
+ snd_pcm_sw_params_current( phandle, sw_params );
+ snd_pcm_sw_params_set_start_threshold( phandle, sw_params, *bufferSize );
+ snd_pcm_sw_params_set_stop_threshold( phandle, sw_params, ULONG_MAX );
+ snd_pcm_sw_params_set_silence_threshold( phandle, sw_params, 0 );
+
+ // The following two settings were suggested by Theo Veenker
+ //snd_pcm_sw_params_set_avail_min( phandle, sw_params, *bufferSize );
+ //snd_pcm_sw_params_set_xfer_align( phandle, sw_params, 1 );
+
+ // here are two options for a fix
+ //snd_pcm_sw_params_set_silence_size( phandle, sw_params, ULONG_MAX );
+ snd_pcm_uframes_t val;
+ snd_pcm_sw_params_get_boundary( sw_params, &val );
+ snd_pcm_sw_params_set_silence_size( phandle, sw_params, val );
+
+ result = snd_pcm_sw_params( phandle, sw_params );
+ if ( result < 0 ) {
+ snd_pcm_close( phandle );
+ errorStream_ << "RtApiAlsa::probeDeviceOpen: error installing software configuration on device (" << name << "), " << snd_strerror( result ) << ".";
+ errorText_ = errorStream_.str();
+ return FAILURE;
+ }
+
+#if defined(__RTAUDIO_DEBUG__)
+ fprintf(stderr, "\nRtApiAlsa: dump software params after installation:\n\n");
+ snd_pcm_sw_params_dump( sw_params, out );
+#endif
+
+ // Set flags for buffer conversion
+ stream_.doConvertBuffer[mode] = false;
+ if ( stream_.userFormat != stream_.deviceFormat[mode] )
+ stream_.doConvertBuffer[mode] = true;
+ if ( stream_.nUserChannels[mode] < stream_.nDeviceChannels[mode] )
+ stream_.doConvertBuffer[mode] = true;
+ if ( stream_.userInterleaved != stream_.deviceInterleaved[mode] &&
+ stream_.nUserChannels[mode] > 1 )
+ stream_.doConvertBuffer[mode] = true;
+
+ // Allocate the ApiHandle if necessary and then save.
+ AlsaHandle *apiInfo = 0;
+ if ( stream_.apiHandle == 0 ) {
+ try {
+ apiInfo = (AlsaHandle *) new AlsaHandle;
+ }
+ catch ( std::bad_alloc& ) {
+ errorText_ = "RtApiAlsa::probeDeviceOpen: error allocating AlsaHandle memory.";
+ goto error;
+ }
+
+ if ( pthread_cond_init( &apiInfo->runnable_cv, NULL ) ) {
+ errorText_ = "RtApiAlsa::probeDeviceOpen: error initializing pthread condition variable.";
+ goto error;
+ }
+
+ stream_.apiHandle = (void *) apiInfo;
+ apiInfo->handles[0] = 0;
+ apiInfo->handles[1] = 0;
+ }
+ else {
+ apiInfo = (AlsaHandle *) stream_.apiHandle;
+ }
+ apiInfo->handles[mode] = phandle;
+ phandle = 0;
+
+ // Allocate necessary internal buffers.
+ unsigned long bufferBytes;
+ bufferBytes = stream_.nUserChannels[mode] * *bufferSize * formatBytes( stream_.userFormat );
+ stream_.userBuffer[mode] = (char *) calloc( bufferBytes, 1 );
+ if ( stream_.userBuffer[mode] == NULL ) {
+ errorText_ = "RtApiAlsa::probeDeviceOpen: error allocating user buffer memory.";
+ goto error;
+ }
+
+ if ( stream_.doConvertBuffer[mode] ) {
+
+ bool makeBuffer = true;
+ bufferBytes = stream_.nDeviceChannels[mode] * formatBytes( stream_.deviceFormat[mode] );
+ if ( mode == INPUT ) {
+ if ( stream_.mode == OUTPUT && stream_.deviceBuffer ) {
+ unsigned long bytesOut = stream_.nDeviceChannels[0] * formatBytes( stream_.deviceFormat[0] );
+ if ( bufferBytes <= bytesOut ) makeBuffer = false;
+ }
+ }
+
+ if ( makeBuffer ) {
+ bufferBytes *= *bufferSize;
+ if ( stream_.deviceBuffer ) free( stream_.deviceBuffer );
+ stream_.deviceBuffer = (char *) calloc( bufferBytes, 1 );
+ if ( stream_.deviceBuffer == NULL ) {
+ errorText_ = "RtApiAlsa::probeDeviceOpen: error allocating device buffer memory.";
+ goto error;
+ }
+ }
+ }
+
+ stream_.sampleRate = sampleRate;
+ stream_.nBuffers = periods;
+ stream_.device[mode] = device;
+ stream_.state = STREAM_STOPPED;
+
+ // Setup the buffer conversion information structure.
+ if ( stream_.doConvertBuffer[mode] ) setConvertInfo( mode, firstChannel );
+
+ // Setup thread if necessary.
+ if ( stream_.mode == OUTPUT && mode == INPUT ) {
+ // We had already set up an output stream.
+ stream_.mode = DUPLEX;
+ // Link the streams if possible.
+ apiInfo->synchronized = false;
+ if ( snd_pcm_link( apiInfo->handles[0], apiInfo->handles[1] ) == 0 )
+ apiInfo->synchronized = true;
+ else {
+ errorText_ = "RtApiAlsa::probeDeviceOpen: unable to synchronize input and output devices.";
+ error( RtAudioError::WARNING );
+ }
+ }
+ else {
+ stream_.mode = mode;
+
+ // Setup callback thread.
+ stream_.callbackInfo.object = (void *) this;
+
+ // Set the thread attributes for joinable and realtime scheduling
+ // priority (optional). The higher priority will only take affect
+ // if the program is run as root or suid. Note, under Linux
+ // processes with CAP_SYS_NICE privilege, a user can change
+ // scheduling policy and priority (thus need not be root). See
+ // POSIX "capabilities".
+ pthread_attr_t attr;
+ pthread_attr_init( &attr );
+ pthread_attr_setdetachstate( &attr, PTHREAD_CREATE_JOINABLE );
+
+#ifdef SCHED_RR // Undefined with some OSes (eg: NetBSD 1.6.x with GNU Pthread)
+ if ( options && options->flags & RTAUDIO_SCHEDULE_REALTIME ) {
+ // We previously attempted to increase the audio callback priority
+ // to SCHED_RR here via the attributes. However, while no errors
+ // were reported in doing so, it did not work. So, now this is
+ // done in the alsaCallbackHandler function.
+ stream_.callbackInfo.doRealtime = true;
+ int priority = options->priority;
+ int min = sched_get_priority_min( SCHED_RR );
+ int max = sched_get_priority_max( SCHED_RR );
+ if ( priority < min ) priority = min;
+ else if ( priority > max ) priority = max;
+ stream_.callbackInfo.priority = priority;
+ }
+#endif
+
+ stream_.callbackInfo.isRunning = true;
+ result = pthread_create( &stream_.callbackInfo.thread, &attr, alsaCallbackHandler, &stream_.callbackInfo );
+ pthread_attr_destroy( &attr );
+ if ( result ) {
+ stream_.callbackInfo.isRunning = false;
+ errorText_ = "RtApiAlsa::error creating callback thread!";
+ goto error;
+ }
+ }
+
+ return SUCCESS;
+
+ error:
+ if ( apiInfo ) {
+ pthread_cond_destroy( &apiInfo->runnable_cv );
+ if ( apiInfo->handles[0] ) snd_pcm_close( apiInfo->handles[0] );
+ if ( apiInfo->handles[1] ) snd_pcm_close( apiInfo->handles[1] );
+ delete apiInfo;
+ stream_.apiHandle = 0;
+ }
+
+ if ( phandle) snd_pcm_close( phandle );
+
+ for ( int i=0; i<2; i++ ) {
+ if ( stream_.userBuffer[i] ) {
+ free( stream_.userBuffer[i] );
+ stream_.userBuffer[i] = 0;
+ }
+ }
+
+ if ( stream_.deviceBuffer ) {
+ free( stream_.deviceBuffer );
+ stream_.deviceBuffer = 0;
+ }
+
+ stream_.state = STREAM_CLOSED;
+ return FAILURE;
+}
+
+void RtApiAlsa :: closeStream()
+{
+ if ( stream_.state == STREAM_CLOSED ) {
+ errorText_ = "RtApiAlsa::closeStream(): no open stream to close!";
+ error( RtAudioError::WARNING );
+ return;
+ }
+
+ AlsaHandle *apiInfo = (AlsaHandle *) stream_.apiHandle;
+ stream_.callbackInfo.isRunning = false;
+ MUTEX_LOCK( &stream_.mutex );
+ if ( stream_.state == STREAM_STOPPED ) {
+ apiInfo->runnable = true;
+ pthread_cond_signal( &apiInfo->runnable_cv );
+ }
+ MUTEX_UNLOCK( &stream_.mutex );
+ pthread_join( stream_.callbackInfo.thread, NULL );
+
+ if ( stream_.state == STREAM_RUNNING ) {
+ stream_.state = STREAM_STOPPED;
+ if ( stream_.mode == OUTPUT || stream_.mode == DUPLEX )
+ snd_pcm_drop( apiInfo->handles[0] );
+ if ( stream_.mode == INPUT || stream_.mode == DUPLEX )
+ snd_pcm_drop( apiInfo->handles[1] );
+ }
+
+ if ( apiInfo ) {
+ pthread_cond_destroy( &apiInfo->runnable_cv );
+ if ( apiInfo->handles[0] ) snd_pcm_close( apiInfo->handles[0] );
+ if ( apiInfo->handles[1] ) snd_pcm_close( apiInfo->handles[1] );
+ delete apiInfo;
+ stream_.apiHandle = 0;
+ }
+
+ for ( int i=0; i<2; i++ ) {
+ if ( stream_.userBuffer[i] ) {
+ free( stream_.userBuffer[i] );
+ stream_.userBuffer[i] = 0;
+ }
+ }
+
+ if ( stream_.deviceBuffer ) {
+ free( stream_.deviceBuffer );
+ stream_.deviceBuffer = 0;
+ }
+
+ stream_.mode = UNINITIALIZED;
+ stream_.state = STREAM_CLOSED;
+}
+
+void RtApiAlsa :: startStream()
+{
+ // This method calls snd_pcm_prepare if the device isn't already in that state.
+
+ verifyStream();
+ if ( stream_.state == STREAM_RUNNING ) {
+ errorText_ = "RtApiAlsa::startStream(): the stream is already running!";
+ error( RtAudioError::WARNING );
+ return;
+ }
+
+ MUTEX_LOCK( &stream_.mutex );
+
+ int result = 0;
+ snd_pcm_state_t state;
+ AlsaHandle *apiInfo = (AlsaHandle *) stream_.apiHandle;
+ snd_pcm_t **handle = (snd_pcm_t **) apiInfo->handles;
+ if ( stream_.mode == OUTPUT || stream_.mode == DUPLEX ) {
+ state = snd_pcm_state( handle[0] );
+ if ( state != SND_PCM_STATE_PREPARED ) {
+ result = snd_pcm_prepare( handle[0] );
+ if ( result < 0 ) {
+ errorStream_ << "RtApiAlsa::startStream: error preparing output pcm device, " << snd_strerror( result ) << ".";
+ errorText_ = errorStream_.str();
+ goto unlock;
+ }
+ }
+ }
+
+ if ( ( stream_.mode == INPUT || stream_.mode == DUPLEX ) && !apiInfo->synchronized ) {
+ result = snd_pcm_drop(handle[1]); // fix to remove stale data received since device has been open
+ state = snd_pcm_state( handle[1] );
+ if ( state != SND_PCM_STATE_PREPARED ) {
+ result = snd_pcm_prepare( handle[1] );
+ if ( result < 0 ) {
+ errorStream_ << "RtApiAlsa::startStream: error preparing input pcm device, " << snd_strerror( result ) << ".";
+ errorText_ = errorStream_.str();
+ goto unlock;
+ }
+ }
+ }
+
+ stream_.state = STREAM_RUNNING;
+
+ unlock:
+ apiInfo->runnable = true;
+ pthread_cond_signal( &apiInfo->runnable_cv );
+ MUTEX_UNLOCK( &stream_.mutex );
+
+ if ( result >= 0 ) return;
+ error( RtAudioError::SYSTEM_ERROR );
+}
+
+void RtApiAlsa :: stopStream()
+{
+ verifyStream();
+ if ( stream_.state == STREAM_STOPPED ) {
+ errorText_ = "RtApiAlsa::stopStream(): the stream is already stopped!";
+ error( RtAudioError::WARNING );
+ return;
+ }
+
+ stream_.state = STREAM_STOPPED;
+ MUTEX_LOCK( &stream_.mutex );
+
+ int result = 0;
+ AlsaHandle *apiInfo = (AlsaHandle *) stream_.apiHandle;
+ snd_pcm_t **handle = (snd_pcm_t **) apiInfo->handles;
+ if ( stream_.mode == OUTPUT || stream_.mode == DUPLEX ) {
+ if ( apiInfo->synchronized )
+ result = snd_pcm_drop( handle[0] );
+ else
+ result = snd_pcm_drain( handle[0] );
+ if ( result < 0 ) {
+ errorStream_ << "RtApiAlsa::stopStream: error draining output pcm device, " << snd_strerror( result ) << ".";
+ errorText_ = errorStream_.str();
+ goto unlock;
+ }
+ }
+
+ if ( ( stream_.mode == INPUT || stream_.mode == DUPLEX ) && !apiInfo->synchronized ) {
+ result = snd_pcm_drop( handle[1] );
+ if ( result < 0 ) {
+ errorStream_ << "RtApiAlsa::stopStream: error stopping input pcm device, " << snd_strerror( result ) << ".";
+ errorText_ = errorStream_.str();
+ goto unlock;
+ }
+ }
+
+ unlock:
+ apiInfo->runnable = false; // fixes high CPU usage when stopped
+ MUTEX_UNLOCK( &stream_.mutex );
+
+ if ( result >= 0 ) return;
+ error( RtAudioError::SYSTEM_ERROR );
+}
+
+void RtApiAlsa :: abortStream()
+{
+ verifyStream();
+ if ( stream_.state == STREAM_STOPPED ) {
+ errorText_ = "RtApiAlsa::abortStream(): the stream is already stopped!";
+ error( RtAudioError::WARNING );
+ return;
+ }
+
+ stream_.state = STREAM_STOPPED;
+ MUTEX_LOCK( &stream_.mutex );
+
+ int result = 0;
+ AlsaHandle *apiInfo = (AlsaHandle *) stream_.apiHandle;
+ snd_pcm_t **handle = (snd_pcm_t **) apiInfo->handles;
+ if ( stream_.mode == OUTPUT || stream_.mode == DUPLEX ) {
+ result = snd_pcm_drop( handle[0] );
+ if ( result < 0 ) {
+ errorStream_ << "RtApiAlsa::abortStream: error aborting output pcm device, " << snd_strerror( result ) << ".";
+ errorText_ = errorStream_.str();
+ goto unlock;
+ }
+ }
+
+ if ( ( stream_.mode == INPUT || stream_.mode == DUPLEX ) && !apiInfo->synchronized ) {
+ result = snd_pcm_drop( handle[1] );
+ if ( result < 0 ) {
+ errorStream_ << "RtApiAlsa::abortStream: error aborting input pcm device, " << snd_strerror( result ) << ".";
+ errorText_ = errorStream_.str();
+ goto unlock;
+ }
+ }
+
+ unlock:
+ apiInfo->runnable = false; // fixes high CPU usage when stopped
+ MUTEX_UNLOCK( &stream_.mutex );
+
+ if ( result >= 0 ) return;
+ error( RtAudioError::SYSTEM_ERROR );
+}
+
+void RtApiAlsa :: callbackEvent()
+{
+ AlsaHandle *apiInfo = (AlsaHandle *) stream_.apiHandle;
+ if ( stream_.state == STREAM_STOPPED ) {
+ MUTEX_LOCK( &stream_.mutex );
+ while ( !apiInfo->runnable )
+ pthread_cond_wait( &apiInfo->runnable_cv, &stream_.mutex );
+
+ if ( stream_.state != STREAM_RUNNING ) {
+ MUTEX_UNLOCK( &stream_.mutex );
+ return;
+ }
+ MUTEX_UNLOCK( &stream_.mutex );
+ }
+
+ if ( stream_.state == STREAM_CLOSED ) {
+ errorText_ = "RtApiAlsa::callbackEvent(): the stream is closed ... this shouldn't happen!";
+ error( RtAudioError::WARNING );
+ return;
+ }
+
+ int doStopStream = 0;
+ RtAudioCallback callback = (RtAudioCallback) stream_.callbackInfo.callback;
+ double streamTime = getStreamTime();
+ RtAudioStreamStatus status = 0;
+ if ( stream_.mode != INPUT && apiInfo->xrun[0] == true ) {
+ status |= RTAUDIO_OUTPUT_UNDERFLOW;
+ apiInfo->xrun[0] = false;
+ }
+ if ( stream_.mode != OUTPUT && apiInfo->xrun[1] == true ) {
+ status |= RTAUDIO_INPUT_OVERFLOW;
+ apiInfo->xrun[1] = false;
+ }
+ doStopStream = callback( stream_.userBuffer[0], stream_.userBuffer[1],
+ stream_.bufferSize, streamTime, status, stream_.callbackInfo.userData );
+
+ if ( doStopStream == 2 ) {
+ abortStream();
+ return;
+ }
+
+ MUTEX_LOCK( &stream_.mutex );
+
+ // The state might change while waiting on a mutex.
+ if ( stream_.state == STREAM_STOPPED ) goto unlock;
+
+ int result;
+ char *buffer;
+ int channels;
+ snd_pcm_t **handle;
+ snd_pcm_sframes_t frames;
+ RtAudioFormat format;
+ handle = (snd_pcm_t **) apiInfo->handles;
+
+ if ( stream_.mode == INPUT || stream_.mode == DUPLEX ) {
+
+ // Setup parameters.
+ if ( stream_.doConvertBuffer[1] ) {
+ buffer = stream_.deviceBuffer;
+ channels = stream_.nDeviceChannels[1];
+ format = stream_.deviceFormat[1];
+ }
+ else {
+ buffer = stream_.userBuffer[1];
+ channels = stream_.nUserChannels[1];
+ format = stream_.userFormat;
+ }
+
+ // Read samples from device in interleaved/non-interleaved format.
+ if ( stream_.deviceInterleaved[1] )
+ result = snd_pcm_readi( handle[1], buffer, stream_.bufferSize );
+ else {
+ void *bufs[channels];
+ size_t offset = stream_.bufferSize * formatBytes( format );
+ for ( int i=0; i<channels; i++ )
+ bufs[i] = (void *) (buffer + (i * offset));
+ result = snd_pcm_readn( handle[1], bufs, stream_.bufferSize );
+ }
+
+ if ( result < (int) stream_.bufferSize ) {
+ // Either an error or overrun occured.
+ if ( result == -EPIPE ) {
+ snd_pcm_state_t state = snd_pcm_state( handle[1] );
+ if ( state == SND_PCM_STATE_XRUN ) {
+ apiInfo->xrun[1] = true;
+ result = snd_pcm_prepare( handle[1] );
+ if ( result < 0 ) {
+ errorStream_ << "RtApiAlsa::callbackEvent: error preparing device after overrun, " << snd_strerror( result ) << ".";
+ errorText_ = errorStream_.str();
+ }
+ }
+ else {
+ errorStream_ << "RtApiAlsa::callbackEvent: error, current state is " << snd_pcm_state_name( state ) << ", " << snd_strerror( result ) << ".";
+ errorText_ = errorStream_.str();
+ }
+ }
+ else {
+ errorStream_ << "RtApiAlsa::callbackEvent: audio read error, " << snd_strerror( result ) << ".";
+ errorText_ = errorStream_.str();
+ }
+ error( RtAudioError::WARNING );
+ goto tryOutput;
+ }
+
+ // Do byte swapping if necessary.
+ if ( stream_.doByteSwap[1] )
+ byteSwapBuffer( buffer, stream_.bufferSize * channels, format );
+
+ // Do buffer conversion if necessary.
+ if ( stream_.doConvertBuffer[1] )
+ convertBuffer( stream_.userBuffer[1], stream_.deviceBuffer, stream_.convertInfo[1] );
+
+ // Check stream latency
+ result = snd_pcm_delay( handle[1], &frames );
+ if ( result == 0 && frames > 0 ) stream_.latency[1] = frames;
+ }
+
+ tryOutput:
+
+ if ( stream_.mode == OUTPUT || stream_.mode == DUPLEX ) {
+
+ // Setup parameters and do buffer conversion if necessary.
+ if ( stream_.doConvertBuffer[0] ) {
+ buffer = stream_.deviceBuffer;
+ convertBuffer( buffer, stream_.userBuffer[0], stream_.convertInfo[0] );
+ channels = stream_.nDeviceChannels[0];
+ format = stream_.deviceFormat[0];
+ }
+ else {
+ buffer = stream_.userBuffer[0];
+ channels = stream_.nUserChannels[0];
+ format = stream_.userFormat;
+ }
+
+ // Do byte swapping if necessary.
+ if ( stream_.doByteSwap[0] )
+ byteSwapBuffer(buffer, stream_.bufferSize * channels, format);
+
+ // Write samples to device in interleaved/non-interleaved format.
+ if ( stream_.deviceInterleaved[0] )
+ result = snd_pcm_writei( handle[0], buffer, stream_.bufferSize );
+ else {
+ void *bufs[channels];
+ size_t offset = stream_.bufferSize * formatBytes( format );
+ for ( int i=0; i<channels; i++ )
+ bufs[i] = (void *) (buffer + (i * offset));
+ result = snd_pcm_writen( handle[0], bufs, stream_.bufferSize );
+ }
+
+ if ( result < (int) stream_.bufferSize ) {
+ // Either an error or underrun occured.
+ if ( result == -EPIPE ) {
+ snd_pcm_state_t state = snd_pcm_state( handle[0] );
+ if ( state == SND_PCM_STATE_XRUN ) {
+ apiInfo->xrun[0] = true;
+ result = snd_pcm_prepare( handle[0] );
+ if ( result < 0 ) {
+ errorStream_ << "RtApiAlsa::callbackEvent: error preparing device after underrun, " << snd_strerror( result ) << ".";
+ errorText_ = errorStream_.str();
+ }
+ else
+ errorText_ = "RtApiAlsa::callbackEvent: audio write error, underrun.";
+ }
+ else {
+ errorStream_ << "RtApiAlsa::callbackEvent: error, current state is " << snd_pcm_state_name( state ) << ", " << snd_strerror( result ) << ".";
+ errorText_ = errorStream_.str();
+ }
+ }
+ else {
+ errorStream_ << "RtApiAlsa::callbackEvent: audio write error, " << snd_strerror( result ) << ".";
+ errorText_ = errorStream_.str();
+ }
+ error( RtAudioError::WARNING );
+ goto unlock;
+ }
+
+ // Check stream latency
+ result = snd_pcm_delay( handle[0], &frames );
+ if ( result == 0 && frames > 0 ) stream_.latency[0] = frames;
+ }
+
+ unlock:
+ MUTEX_UNLOCK( &stream_.mutex );
+
+ RtApi::tickStreamTime();
+ if ( doStopStream == 1 ) this->stopStream();
+}
+
+static void *alsaCallbackHandler( void *ptr )
+{
+ CallbackInfo *info = (CallbackInfo *) ptr;
+ RtApiAlsa *object = (RtApiAlsa *) info->object;
+ bool *isRunning = &info->isRunning;
+
+#ifdef SCHED_RR // Undefined with some OSes (eg: NetBSD 1.6.x with GNU Pthread)
+ if ( &info->doRealtime ) {
+ pthread_t tID = pthread_self(); // ID of this thread
+ sched_param prio = { info->priority }; // scheduling priority of thread
+ pthread_setschedparam( tID, SCHED_RR, &prio );
+ }
+#endif
+
+ while ( *isRunning == true ) {
+ pthread_testcancel();
+ object->callbackEvent();
+ }
+
+ pthread_exit( NULL );
+}
+
+//******************** End of __LINUX_ALSA__ *********************//
+#endif
+
+#if defined(__LINUX_PULSE__)
+
+// Code written by Peter Meerwald, pmeerw@pmeerw.net
+// and Tristan Matthews.
+
+#include <pulse/error.h>
+#include <pulse/simple.h>
+#include <cstdio>
+
+static const unsigned int SUPPORTED_SAMPLERATES[] = { 8000, 16000, 22050, 32000,
+ 44100, 48000, 96000, 0};
+
+struct rtaudio_pa_format_mapping_t {
+ RtAudioFormat rtaudio_format;
+ pa_sample_format_t pa_format;
+};
+
+static const rtaudio_pa_format_mapping_t supported_sampleformats[] = {
+ {RTAUDIO_SINT16, PA_SAMPLE_S16LE},
+ {RTAUDIO_SINT32, PA_SAMPLE_S32LE},
+ {RTAUDIO_FLOAT32, PA_SAMPLE_FLOAT32LE},
+ {0, PA_SAMPLE_INVALID}};
+
+struct PulseAudioHandle {
+ pa_simple *s_play;
+ pa_simple *s_rec;
+ pthread_t thread;
+ pthread_cond_t runnable_cv;
+ bool runnable;
+ PulseAudioHandle() : s_play(0), s_rec(0), runnable(false) { }
+};
+
+RtApiPulse::~RtApiPulse()
+{
+ if ( stream_.state != STREAM_CLOSED )
+ closeStream();
+}
+
+unsigned int RtApiPulse::getDeviceCount( void )
+{
+ return 1;
+}
+
+RtAudio::DeviceInfo RtApiPulse::getDeviceInfo( unsigned int /*device*/ )
+{
+ RtAudio::DeviceInfo info;
+ info.probed = true;
+ info.name = "PulseAudio";
+ info.outputChannels = 2;
+ info.inputChannels = 2;
+ info.duplexChannels = 2;
+ info.isDefaultOutput = true;
+ info.isDefaultInput = true;
+
+ for ( const unsigned int *sr = SUPPORTED_SAMPLERATES; *sr; ++sr )
+ info.sampleRates.push_back( *sr );
+
+ info.preferredSampleRate = 48000;
+ info.nativeFormats = RTAUDIO_SINT16 | RTAUDIO_SINT32 | RTAUDIO_FLOAT32;
+
+ return info;
+}
+
+static void *pulseaudio_callback( void * user )
+{
+ CallbackInfo *cbi = static_cast<CallbackInfo *>( user );
+ RtApiPulse *context = static_cast<RtApiPulse *>( cbi->object );
+ volatile bool *isRunning = &cbi->isRunning;
+
+ while ( *isRunning ) {
+ pthread_testcancel();
+ context->callbackEvent();
+ }
+
+ pthread_exit( NULL );
+}
+
+void RtApiPulse::closeStream( void )
+{
+ PulseAudioHandle *pah = static_cast<PulseAudioHandle *>( stream_.apiHandle );
+
+ stream_.callbackInfo.isRunning = false;
+ if ( pah ) {
+ MUTEX_LOCK( &stream_.mutex );
+ if ( stream_.state == STREAM_STOPPED ) {
+ pah->runnable = true;
+ pthread_cond_signal( &pah->runnable_cv );
+ }
+ MUTEX_UNLOCK( &stream_.mutex );
+
+ pthread_join( pah->thread, 0 );
+ if ( pah->s_play ) {
+ pa_simple_flush( pah->s_play, NULL );
+ pa_simple_free( pah->s_play );
+ }
+ if ( pah->s_rec )
+ pa_simple_free( pah->s_rec );
+
+ pthread_cond_destroy( &pah->runnable_cv );
+ delete pah;
+ stream_.apiHandle = 0;
+ }
+
+ if ( stream_.userBuffer[0] ) {
+ free( stream_.userBuffer[0] );
+ stream_.userBuffer[0] = 0;
+ }
+ if ( stream_.userBuffer[1] ) {
+ free( stream_.userBuffer[1] );
+ stream_.userBuffer[1] = 0;
+ }
+
+ stream_.state = STREAM_CLOSED;
+ stream_.mode = UNINITIALIZED;
+}
+
+void RtApiPulse::callbackEvent( void )
+{
+ PulseAudioHandle *pah = static_cast<PulseAudioHandle *>( stream_.apiHandle );
+
+ if ( stream_.state == STREAM_STOPPED ) {
+ MUTEX_LOCK( &stream_.mutex );
+ while ( !pah->runnable )
+ pthread_cond_wait( &pah->runnable_cv, &stream_.mutex );
+
+ if ( stream_.state != STREAM_RUNNING ) {
+ MUTEX_UNLOCK( &stream_.mutex );
+ return;
+ }
+ MUTEX_UNLOCK( &stream_.mutex );
+ }
+
+ if ( stream_.state == STREAM_CLOSED ) {
+ errorText_ = "RtApiPulse::callbackEvent(): the stream is closed ... "
+ "this shouldn't happen!";
+ error( RtAudioError::WARNING );
+ return;
+ }
+
+ RtAudioCallback callback = (RtAudioCallback) stream_.callbackInfo.callback;
+ double streamTime = getStreamTime();
+ RtAudioStreamStatus status = 0;
+ int doStopStream = callback( stream_.userBuffer[OUTPUT], stream_.userBuffer[INPUT],
+ stream_.bufferSize, streamTime, status,
+ stream_.callbackInfo.userData );
+
+ if ( doStopStream == 2 ) {
+ abortStream();
+ return;
+ }
+
+ MUTEX_LOCK( &stream_.mutex );
+ void *pulse_in = stream_.doConvertBuffer[INPUT] ? stream_.deviceBuffer : stream_.userBuffer[INPUT];
+ void *pulse_out = stream_.doConvertBuffer[OUTPUT] ? stream_.deviceBuffer : stream_.userBuffer[OUTPUT];
+
+ if ( stream_.state != STREAM_RUNNING )
+ goto unlock;
+
+ int pa_error;
+ size_t bytes;
+ if (stream_.mode == OUTPUT || stream_.mode == DUPLEX ) {
+ if ( stream_.doConvertBuffer[OUTPUT] ) {
+ convertBuffer( stream_.deviceBuffer,
+ stream_.userBuffer[OUTPUT],
+ stream_.convertInfo[OUTPUT] );
+ bytes = stream_.nDeviceChannels[OUTPUT] * stream_.bufferSize *
+ formatBytes( stream_.deviceFormat[OUTPUT] );
+ } else
+ bytes = stream_.nUserChannels[OUTPUT] * stream_.bufferSize *
+ formatBytes( stream_.userFormat );
+
+ if ( pa_simple_write( pah->s_play, pulse_out, bytes, &pa_error ) < 0 ) {
+ errorStream_ << "RtApiPulse::callbackEvent: audio write error, " <<
+ pa_strerror( pa_error ) << ".";
+ errorText_ = errorStream_.str();
+ error( RtAudioError::WARNING );
+ }
+ }
+
+ if ( stream_.mode == INPUT || stream_.mode == DUPLEX) {
+ if ( stream_.doConvertBuffer[INPUT] )
+ bytes = stream_.nDeviceChannels[INPUT] * stream_.bufferSize *
+ formatBytes( stream_.deviceFormat[INPUT] );
+ else
+ bytes = stream_.nUserChannels[INPUT] * stream_.bufferSize *
+ formatBytes( stream_.userFormat );
+
+ if ( pa_simple_read( pah->s_rec, pulse_in, bytes, &pa_error ) < 0 ) {
+ errorStream_ << "RtApiPulse::callbackEvent: audio read error, " <<
+ pa_strerror( pa_error ) << ".";
+ errorText_ = errorStream_.str();
+ error( RtAudioError::WARNING );
+ }
+ if ( stream_.doConvertBuffer[INPUT] ) {
+ convertBuffer( stream_.userBuffer[INPUT],
+ stream_.deviceBuffer,
+ stream_.convertInfo[INPUT] );
+ }
+ }
+
+ unlock:
+ MUTEX_UNLOCK( &stream_.mutex );
+ RtApi::tickStreamTime();
+
+ if ( doStopStream == 1 )
+ stopStream();
+}
+
+void RtApiPulse::startStream( void )
+{
+ PulseAudioHandle *pah = static_cast<PulseAudioHandle *>( stream_.apiHandle );
+
+ if ( stream_.state == STREAM_CLOSED ) {
+ errorText_ = "RtApiPulse::startStream(): the stream is not open!";
+ error( RtAudioError::INVALID_USE );
+ return;
+ }
+ if ( stream_.state == STREAM_RUNNING ) {
+ errorText_ = "RtApiPulse::startStream(): the stream is already running!";
+ error( RtAudioError::WARNING );
+ return;
+ }
+
+ MUTEX_LOCK( &stream_.mutex );
+
+ stream_.state = STREAM_RUNNING;
+
+ pah->runnable = true;
+ pthread_cond_signal( &pah->runnable_cv );
+ MUTEX_UNLOCK( &stream_.mutex );
+}
+
+void RtApiPulse::stopStream( void )
+{
+ PulseAudioHandle *pah = static_cast<PulseAudioHandle *>( stream_.apiHandle );
+
+ if ( stream_.state == STREAM_CLOSED ) {
+ errorText_ = "RtApiPulse::stopStream(): the stream is not open!";
+ error( RtAudioError::INVALID_USE );
+ return;
+ }
+ if ( stream_.state == STREAM_STOPPED ) {
+ errorText_ = "RtApiPulse::stopStream(): the stream is already stopped!";
+ error( RtAudioError::WARNING );
+ return;
+ }
+
+ stream_.state = STREAM_STOPPED;
+ MUTEX_LOCK( &stream_.mutex );
+
+ if ( pah && pah->s_play ) {
+ int pa_error;
+ if ( pa_simple_drain( pah->s_play, &pa_error ) < 0 ) {
+ errorStream_ << "RtApiPulse::stopStream: error draining output device, " <<
+ pa_strerror( pa_error ) << ".";
+ errorText_ = errorStream_.str();
+ MUTEX_UNLOCK( &stream_.mutex );
+ error( RtAudioError::SYSTEM_ERROR );
+ return;
+ }
+ }
+
+ stream_.state = STREAM_STOPPED;
+ MUTEX_UNLOCK( &stream_.mutex );
+}
+
+void RtApiPulse::abortStream( void )
+{
+ PulseAudioHandle *pah = static_cast<PulseAudioHandle*>( stream_.apiHandle );
+
+ if ( stream_.state == STREAM_CLOSED ) {
+ errorText_ = "RtApiPulse::abortStream(): the stream is not open!";
+ error( RtAudioError::INVALID_USE );
+ return;
+ }
+ if ( stream_.state == STREAM_STOPPED ) {
+ errorText_ = "RtApiPulse::abortStream(): the stream is already stopped!";
+ error( RtAudioError::WARNING );
+ return;
+ }
+
+ stream_.state = STREAM_STOPPED;
+ MUTEX_LOCK( &stream_.mutex );
+
+ if ( pah && pah->s_play ) {
+ int pa_error;
+ if ( pa_simple_flush( pah->s_play, &pa_error ) < 0 ) {
+ errorStream_ << "RtApiPulse::abortStream: error flushing output device, " <<
+ pa_strerror( pa_error ) << ".";
+ errorText_ = errorStream_.str();
+ MUTEX_UNLOCK( &stream_.mutex );
+ error( RtAudioError::SYSTEM_ERROR );
+ return;
+ }
+ }
+
+ stream_.state = STREAM_STOPPED;
+ MUTEX_UNLOCK( &stream_.mutex );
+}
+
+bool RtApiPulse::probeDeviceOpen( unsigned int device, StreamMode mode,
+ unsigned int channels, unsigned int firstChannel,
+ unsigned int sampleRate, RtAudioFormat format,
+ unsigned int *bufferSize, RtAudio::StreamOptions *options )
+{
+ PulseAudioHandle *pah = 0;
+ unsigned long bufferBytes = 0;
+ pa_sample_spec ss;
+
+ if ( device != 0 ) return false;
+ if ( mode != INPUT && mode != OUTPUT ) return false;
+ if ( channels != 1 && channels != 2 ) {
+ errorText_ = "RtApiPulse::probeDeviceOpen: unsupported number of channels.";
+ return false;
+ }
+ ss.channels = channels;
+
+ if ( firstChannel != 0 ) return false;
+
+ bool sr_found = false;
+ for ( const unsigned int *sr = SUPPORTED_SAMPLERATES; *sr; ++sr ) {
+ if ( sampleRate == *sr ) {
+ sr_found = true;
+ stream_.sampleRate = sampleRate;
+ ss.rate = sampleRate;
+ break;
+ }
+ }
+ if ( !sr_found ) {
+ errorText_ = "RtApiPulse::probeDeviceOpen: unsupported sample rate.";
+ return false;
+ }
+
+ bool sf_found = 0;
+ for ( const rtaudio_pa_format_mapping_t *sf = supported_sampleformats;
+ sf->rtaudio_format && sf->pa_format != PA_SAMPLE_INVALID; ++sf ) {
+ if ( format == sf->rtaudio_format ) {
+ sf_found = true;
+ stream_.userFormat = sf->rtaudio_format;
+ stream_.deviceFormat[mode] = stream_.userFormat;
+ ss.format = sf->pa_format;
+ break;
+ }
+ }
+ if ( !sf_found ) { // Use internal data format conversion.
+ stream_.userFormat = format;
+ stream_.deviceFormat[mode] = RTAUDIO_FLOAT32;
+ ss.format = PA_SAMPLE_FLOAT32LE;
+ }
+
+ // Set other stream parameters.
+ if ( options && options->flags & RTAUDIO_NONINTERLEAVED ) stream_.userInterleaved = false;
+ else stream_.userInterleaved = true;
+ stream_.deviceInterleaved[mode] = true;
+ stream_.nBuffers = 1;
+ stream_.doByteSwap[mode] = false;
+ stream_.nUserChannels[mode] = channels;
+ stream_.nDeviceChannels[mode] = channels + firstChannel;
+ stream_.channelOffset[mode] = 0;
+ std::string streamName = "RtAudio";
+
+ // Set flags for buffer conversion.
+ stream_.doConvertBuffer[mode] = false;
+ if ( stream_.userFormat != stream_.deviceFormat[mode] )
+ stream_.doConvertBuffer[mode] = true;
+ if ( stream_.nUserChannels[mode] < stream_.nDeviceChannels[mode] )
+ stream_.doConvertBuffer[mode] = true;
+
+ // Allocate necessary internal buffers.
+ bufferBytes = stream_.nUserChannels[mode] * *bufferSize * formatBytes( stream_.userFormat );
+ stream_.userBuffer[mode] = (char *) calloc( bufferBytes, 1 );
+ if ( stream_.userBuffer[mode] == NULL ) {
+ errorText_ = "RtApiPulse::probeDeviceOpen: error allocating user buffer memory.";
+ goto error;
+ }
+ stream_.bufferSize = *bufferSize;
+
+ if ( stream_.doConvertBuffer[mode] ) {
+
+ bool makeBuffer = true;
+ bufferBytes = stream_.nDeviceChannels[mode] * formatBytes( stream_.deviceFormat[mode] );
+ if ( mode == INPUT ) {
+ if ( stream_.mode == OUTPUT && stream_.deviceBuffer ) {
+ unsigned long bytesOut = stream_.nDeviceChannels[0] * formatBytes( stream_.deviceFormat[0] );
+ if ( bufferBytes <= bytesOut ) makeBuffer = false;
+ }
+ }
+
+ if ( makeBuffer ) {
+ bufferBytes *= *bufferSize;
+ if ( stream_.deviceBuffer ) free( stream_.deviceBuffer );
+ stream_.deviceBuffer = (char *) calloc( bufferBytes, 1 );
+ if ( stream_.deviceBuffer == NULL ) {
+ errorText_ = "RtApiPulse::probeDeviceOpen: error allocating device buffer memory.";
+ goto error;
+ }
+ }
+ }
+
+ stream_.device[mode] = device;
+
+ // Setup the buffer conversion information structure.
+ if ( stream_.doConvertBuffer[mode] ) setConvertInfo( mode, firstChannel );
+
+ if ( !stream_.apiHandle ) {
+ PulseAudioHandle *pah = new PulseAudioHandle;
+ if ( !pah ) {
+ errorText_ = "RtApiPulse::probeDeviceOpen: error allocating memory for handle.";
+ goto error;
+ }
+
+ stream_.apiHandle = pah;
+ if ( pthread_cond_init( &pah->runnable_cv, NULL ) != 0 ) {
+ errorText_ = "RtApiPulse::probeDeviceOpen: error creating condition variable.";
+ goto error;
+ }
+ }
+ pah = static_cast<PulseAudioHandle *>( stream_.apiHandle );
+
+ int error;
+ if ( options && !options->streamName.empty() ) streamName = options->streamName;
+ switch ( mode ) {
+ case INPUT:
+ pa_buffer_attr buffer_attr;
+ buffer_attr.fragsize = bufferBytes;
+ buffer_attr.maxlength = -1;
+
+ pah->s_rec = pa_simple_new( NULL, streamName.c_str(), PA_STREAM_RECORD, NULL, "Record", &ss, NULL, &buffer_attr, &error );
+ if ( !pah->s_rec ) {
+ errorText_ = "RtApiPulse::probeDeviceOpen: error connecting input to PulseAudio server.";
+ goto error;
+ }
+ break;
+ case OUTPUT:
+ pah->s_play = pa_simple_new( NULL, "RtAudio", PA_STREAM_PLAYBACK, NULL, "Playback", &ss, NULL, NULL, &error );
+ if ( !pah->s_play ) {
+ errorText_ = "RtApiPulse::probeDeviceOpen: error connecting output to PulseAudio server.";
+ goto error;
+ }
+ break;
+ default:
+ goto error;
+ }
+
+ if ( stream_.mode == UNINITIALIZED )
+ stream_.mode = mode;
+ else if ( stream_.mode == mode )
+ goto error;
+ else
+ stream_.mode = DUPLEX;
+
+ if ( !stream_.callbackInfo.isRunning ) {
+ stream_.callbackInfo.object = this;
+ stream_.callbackInfo.isRunning = true;
+ if ( pthread_create( &pah->thread, NULL, pulseaudio_callback, (void *)&stream_.callbackInfo) != 0 ) {
+ errorText_ = "RtApiPulse::probeDeviceOpen: error creating thread.";
+ goto error;
+ }
+ }
+
+ stream_.state = STREAM_STOPPED;
+ return true;
+
+ error:
+ if ( pah && stream_.callbackInfo.isRunning ) {
+ pthread_cond_destroy( &pah->runnable_cv );
+ delete pah;
+ stream_.apiHandle = 0;
+ }
+
+ for ( int i=0; i<2; i++ ) {
+ if ( stream_.userBuffer[i] ) {
+ free( stream_.userBuffer[i] );
+ stream_.userBuffer[i] = 0;
+ }
+ }
+
+ if ( stream_.deviceBuffer ) {
+ free( stream_.deviceBuffer );
+ stream_.deviceBuffer = 0;
+ }
+
+ return FAILURE;
+}
+
+//******************** End of __LINUX_PULSE__ *********************//
+#endif
+
+#if defined(__LINUX_OSS__)
+
+#include <unistd.h>
+#include <sys/ioctl.h>
+#include <unistd.h>
+#include <fcntl.h>
+#include <sys/soundcard.h>
+#include <errno.h>
+#include <math.h>
+
+static void *ossCallbackHandler(void * ptr);
+
+// A structure to hold various information related to the OSS API
+// implementation.
+struct OssHandle {
+ int id[2]; // device ids
+ bool xrun[2];
+ bool triggered;
+ pthread_cond_t runnable;
+
+ OssHandle()
+ :triggered(false) { id[0] = 0; id[1] = 0; xrun[0] = false; xrun[1] = false; }
+};
+
+RtApiOss :: RtApiOss()
+{
+ // Nothing to do here.
+}
+
+RtApiOss :: ~RtApiOss()
+{
+ if ( stream_.state != STREAM_CLOSED ) closeStream();
+}
+
+unsigned int RtApiOss :: getDeviceCount( void )
+{
+ int mixerfd = open( "/dev/mixer", O_RDWR, 0 );
+ if ( mixerfd == -1 ) {
+ errorText_ = "RtApiOss::getDeviceCount: error opening '/dev/mixer'.";
+ error( RtAudioError::WARNING );
+ return 0;
+ }
+
+ oss_sysinfo sysinfo;
+ if ( ioctl( mixerfd, SNDCTL_SYSINFO, &sysinfo ) == -1 ) {
+ close( mixerfd );
+ errorText_ = "RtApiOss::getDeviceCount: error getting sysinfo, OSS version >= 4.0 is required.";
+ error( RtAudioError::WARNING );
+ return 0;
+ }
+
+ close( mixerfd );
+ return sysinfo.numaudios;
+}
+
+RtAudio::DeviceInfo RtApiOss :: getDeviceInfo( unsigned int device )
+{
+ RtAudio::DeviceInfo info;
+ info.probed = false;
+
+ int mixerfd = open( "/dev/mixer", O_RDWR, 0 );
+ if ( mixerfd == -1 ) {
+ errorText_ = "RtApiOss::getDeviceInfo: error opening '/dev/mixer'.";
+ error( RtAudioError::WARNING );
+ return info;
+ }
+
+ oss_sysinfo sysinfo;
+ int result = ioctl( mixerfd, SNDCTL_SYSINFO, &sysinfo );
+ if ( result == -1 ) {
+ close( mixerfd );
+ errorText_ = "RtApiOss::getDeviceInfo: error getting sysinfo, OSS version >= 4.0 is required.";
+ error( RtAudioError::WARNING );
+ return info;
+ }
+
+ unsigned nDevices = sysinfo.numaudios;
+ if ( nDevices == 0 ) {
+ close( mixerfd );
+ errorText_ = "RtApiOss::getDeviceInfo: no devices found!";
+ error( RtAudioError::INVALID_USE );
+ return info;
+ }
+
+ if ( device >= nDevices ) {
+ close( mixerfd );
+ errorText_ = "RtApiOss::getDeviceInfo: device ID is invalid!";
+ error( RtAudioError::INVALID_USE );
+ return info;
+ }
+
+ oss_audioinfo ainfo;
+ ainfo.dev = device;
+ result = ioctl( mixerfd, SNDCTL_AUDIOINFO, &ainfo );
+ close( mixerfd );
+ if ( result == -1 ) {
+ errorStream_ << "RtApiOss::getDeviceInfo: error getting device (" << ainfo.name << ") info.";
+ errorText_ = errorStream_.str();
+ error( RtAudioError::WARNING );
+ return info;
+ }
+
+ // Probe channels
+ if ( ainfo.caps & PCM_CAP_OUTPUT ) info.outputChannels = ainfo.max_channels;
+ if ( ainfo.caps & PCM_CAP_INPUT ) info.inputChannels = ainfo.max_channels;
+ if ( ainfo.caps & PCM_CAP_DUPLEX ) {
+ if ( info.outputChannels > 0 && info.inputChannels > 0 && ainfo.caps & PCM_CAP_DUPLEX )
+ info.duplexChannels = (info.outputChannels > info.inputChannels) ? info.inputChannels : info.outputChannels;
+ }
+
+ // Probe data formats ... do for input
+ unsigned long mask = ainfo.iformats;
+ if ( mask & AFMT_S16_LE || mask & AFMT_S16_BE )
+ info.nativeFormats |= RTAUDIO_SINT16;
+ if ( mask & AFMT_S8 )
+ info.nativeFormats |= RTAUDIO_SINT8;
+ if ( mask & AFMT_S32_LE || mask & AFMT_S32_BE )
+ info.nativeFormats |= RTAUDIO_SINT32;
+ if ( mask & AFMT_FLOAT )
+ info.nativeFormats |= RTAUDIO_FLOAT32;
+ if ( mask & AFMT_S24_LE || mask & AFMT_S24_BE )
+ info.nativeFormats |= RTAUDIO_SINT24;
+
+ // Check that we have at least one supported format
+ if ( info.nativeFormats == 0 ) {
+ errorStream_ << "RtApiOss::getDeviceInfo: device (" << ainfo.name << ") data format not supported by RtAudio.";
+ errorText_ = errorStream_.str();
+ error( RtAudioError::WARNING );
+ return info;
+ }
+
+ // Probe the supported sample rates.
+ info.sampleRates.clear();
+ if ( ainfo.nrates ) {
+ for ( unsigned int i=0; i<ainfo.nrates; i++ ) {
+ for ( unsigned int k=0; k<MAX_SAMPLE_RATES; k++ ) {
+ if ( ainfo.rates[i] == SAMPLE_RATES[k] ) {
+ info.sampleRates.push_back( SAMPLE_RATES[k] );
+
+ if ( !info.preferredSampleRate || ( SAMPLE_RATES[k] <= 48000 && SAMPLE_RATES[k] > info.preferredSampleRate ) )
+ info.preferredSampleRate = SAMPLE_RATES[k];
+
+ break;
+ }
+ }
+ }
+ }
+ else {
+ // Check min and max rate values;
+ for ( unsigned int k=0; k<MAX_SAMPLE_RATES; k++ ) {
+ if ( ainfo.min_rate <= (int) SAMPLE_RATES[k] && ainfo.max_rate >= (int) SAMPLE_RATES[k] ) {
+ info.sampleRates.push_back( SAMPLE_RATES[k] );
+
+ if ( !info.preferredSampleRate || ( SAMPLE_RATES[k] <= 48000 && SAMPLE_RATES[k] > info.preferredSampleRate ) )
+ info.preferredSampleRate = SAMPLE_RATES[k];
+ }
+ }
+ }
+
+ if ( info.sampleRates.size() == 0 ) {
+ errorStream_ << "RtApiOss::getDeviceInfo: no supported sample rates found for device (" << ainfo.name << ").";
+ errorText_ = errorStream_.str();
+ error( RtAudioError::WARNING );
+ }
+ else {
+ info.probed = true;
+ info.name = ainfo.name;
+ }
+
+ return info;
+}
+
+
+bool RtApiOss :: probeDeviceOpen( unsigned int device, StreamMode mode, unsigned int channels,
+ unsigned int firstChannel, unsigned int sampleRate,
+ RtAudioFormat format, unsigned int *bufferSize,
+ RtAudio::StreamOptions *options )
+{
+ int mixerfd = open( "/dev/mixer", O_RDWR, 0 );
+ if ( mixerfd == -1 ) {
+ errorText_ = "RtApiOss::probeDeviceOpen: error opening '/dev/mixer'.";
+ return FAILURE;
+ }
+
+ oss_sysinfo sysinfo;
+ int result = ioctl( mixerfd, SNDCTL_SYSINFO, &sysinfo );
+ if ( result == -1 ) {
+ close( mixerfd );
+ errorText_ = "RtApiOss::probeDeviceOpen: error getting sysinfo, OSS version >= 4.0 is required.";
+ return FAILURE;
+ }
+
+ unsigned nDevices = sysinfo.numaudios;
+ if ( nDevices == 0 ) {
+ // This should not happen because a check is made before this function is called.
+ close( mixerfd );
+ errorText_ = "RtApiOss::probeDeviceOpen: no devices found!";
+ return FAILURE;
+ }
+
+ if ( device >= nDevices ) {
+ // This should not happen because a check is made before this function is called.
+ close( mixerfd );
+ errorText_ = "RtApiOss::probeDeviceOpen: device ID is invalid!";
+ return FAILURE;
+ }
+
+ oss_audioinfo ainfo;
+ ainfo.dev = device;
+ result = ioctl( mixerfd, SNDCTL_AUDIOINFO, &ainfo );
+ close( mixerfd );
+ if ( result == -1 ) {
+ errorStream_ << "RtApiOss::getDeviceInfo: error getting device (" << ainfo.name << ") info.";
+ errorText_ = errorStream_.str();
+ return FAILURE;
+ }
+
+ // Check if device supports input or output
+ if ( ( mode == OUTPUT && !( ainfo.caps & PCM_CAP_OUTPUT ) ) ||
+ ( mode == INPUT && !( ainfo.caps & PCM_CAP_INPUT ) ) ) {
+ if ( mode == OUTPUT )
+ errorStream_ << "RtApiOss::probeDeviceOpen: device (" << ainfo.name << ") does not support output.";
+ else
+ errorStream_ << "RtApiOss::probeDeviceOpen: device (" << ainfo.name << ") does not support input.";
+ errorText_ = errorStream_.str();
+ return FAILURE;
+ }
+
+ int flags = 0;
+ OssHandle *handle = (OssHandle *) stream_.apiHandle;
+ if ( mode == OUTPUT )
+ flags |= O_WRONLY;
+ else { // mode == INPUT
+ if (stream_.mode == OUTPUT && stream_.device[0] == device) {
+ // We just set the same device for playback ... close and reopen for duplex (OSS only).
+ close( handle->id[0] );
+ handle->id[0] = 0;
+ if ( !( ainfo.caps & PCM_CAP_DUPLEX ) ) {
+ errorStream_ << "RtApiOss::probeDeviceOpen: device (" << ainfo.name << ") does not support duplex mode.";
+ errorText_ = errorStream_.str();
+ return FAILURE;
+ }
+ // Check that the number previously set channels is the same.
+ if ( stream_.nUserChannels[0] != channels ) {
+ errorStream_ << "RtApiOss::probeDeviceOpen: input/output channels must be equal for OSS duplex device (" << ainfo.name << ").";
+ errorText_ = errorStream_.str();
+ return FAILURE;
+ }
+ flags |= O_RDWR;
+ }
+ else
+ flags |= O_RDONLY;
+ }
+
+ // Set exclusive access if specified.
+ if ( options && options->flags & RTAUDIO_HOG_DEVICE ) flags |= O_EXCL;
+
+ // Try to open the device.
+ int fd;
+ fd = open( ainfo.devnode, flags, 0 );
+ if ( fd == -1 ) {
+ if ( errno == EBUSY )
+ errorStream_ << "RtApiOss::probeDeviceOpen: device (" << ainfo.name << ") is busy.";
+ else
+ errorStream_ << "RtApiOss::probeDeviceOpen: error opening device (" << ainfo.name << ").";
+ errorText_ = errorStream_.str();
+ return FAILURE;
+ }
+
+ // For duplex operation, specifically set this mode (this doesn't seem to work).
+ /*
+ if ( flags | O_RDWR ) {
+ result = ioctl( fd, SNDCTL_DSP_SETDUPLEX, NULL );
+ if ( result == -1) {
+ errorStream_ << "RtApiOss::probeDeviceOpen: error setting duplex mode for device (" << ainfo.name << ").";
+ errorText_ = errorStream_.str();
+ return FAILURE;
+ }
+ }
+ */
+
+ // Check the device channel support.
+ stream_.nUserChannels[mode] = channels;
+ if ( ainfo.max_channels < (int)(channels + firstChannel) ) {
+ close( fd );
+ errorStream_ << "RtApiOss::probeDeviceOpen: the device (" << ainfo.name << ") does not support requested channel parameters.";
+ errorText_ = errorStream_.str();
+ return FAILURE;
+ }
+
+ // Set the number of channels.
+ int deviceChannels = channels + firstChannel;
+ result = ioctl( fd, SNDCTL_DSP_CHANNELS, &deviceChannels );
+ if ( result == -1 || deviceChannels < (int)(channels + firstChannel) ) {
+ close( fd );
+ errorStream_ << "RtApiOss::probeDeviceOpen: error setting channel parameters on device (" << ainfo.name << ").";
+ errorText_ = errorStream_.str();
+ return FAILURE;
+ }
+ stream_.nDeviceChannels[mode] = deviceChannels;
+
+ // Get the data format mask
+ int mask;
+ result = ioctl( fd, SNDCTL_DSP_GETFMTS, &mask );
+ if ( result == -1 ) {
+ close( fd );
+ errorStream_ << "RtApiOss::probeDeviceOpen: error getting device (" << ainfo.name << ") data formats.";
+ errorText_ = errorStream_.str();
+ return FAILURE;
+ }
+
+ // Determine how to set the device format.
+ stream_.userFormat = format;
+ int deviceFormat = -1;
+ stream_.doByteSwap[mode] = false;
+ if ( format == RTAUDIO_SINT8 ) {
+ if ( mask & AFMT_S8 ) {
+ deviceFormat = AFMT_S8;
+ stream_.deviceFormat[mode] = RTAUDIO_SINT8;
+ }
+ }
+ else if ( format == RTAUDIO_SINT16 ) {
+ if ( mask & AFMT_S16_NE ) {
+ deviceFormat = AFMT_S16_NE;
+ stream_.deviceFormat[mode] = RTAUDIO_SINT16;
+ }
+ else if ( mask & AFMT_S16_OE ) {
+ deviceFormat = AFMT_S16_OE;
+ stream_.deviceFormat[mode] = RTAUDIO_SINT16;
+ stream_.doByteSwap[mode] = true;
+ }
+ }
+ else if ( format == RTAUDIO_SINT24 ) {
+ if ( mask & AFMT_S24_NE ) {
+ deviceFormat = AFMT_S24_NE;
+ stream_.deviceFormat[mode] = RTAUDIO_SINT24;
+ }
+ else if ( mask & AFMT_S24_OE ) {
+ deviceFormat = AFMT_S24_OE;
+ stream_.deviceFormat[mode] = RTAUDIO_SINT24;
+ stream_.doByteSwap[mode] = true;
+ }
+ }
+ else if ( format == RTAUDIO_SINT32 ) {
+ if ( mask & AFMT_S32_NE ) {
+ deviceFormat = AFMT_S32_NE;
+ stream_.deviceFormat[mode] = RTAUDIO_SINT32;
+ }
+ else if ( mask & AFMT_S32_OE ) {
+ deviceFormat = AFMT_S32_OE;
+ stream_.deviceFormat[mode] = RTAUDIO_SINT32;
+ stream_.doByteSwap[mode] = true;
+ }
+ }
+
+ if ( deviceFormat == -1 ) {
+ // The user requested format is not natively supported by the device.
+ if ( mask & AFMT_S16_NE ) {
+ deviceFormat = AFMT_S16_NE;
+ stream_.deviceFormat[mode] = RTAUDIO_SINT16;
+ }
+ else if ( mask & AFMT_S32_NE ) {
+ deviceFormat = AFMT_S32_NE;
+ stream_.deviceFormat[mode] = RTAUDIO_SINT32;
+ }
+ else if ( mask & AFMT_S24_NE ) {
+ deviceFormat = AFMT_S24_NE;
+ stream_.deviceFormat[mode] = RTAUDIO_SINT24;
+ }
+ else if ( mask & AFMT_S16_OE ) {
+ deviceFormat = AFMT_S16_OE;
+ stream_.deviceFormat[mode] = RTAUDIO_SINT16;
+ stream_.doByteSwap[mode] = true;
+ }
+ else if ( mask & AFMT_S32_OE ) {
+ deviceFormat = AFMT_S32_OE;
+ stream_.deviceFormat[mode] = RTAUDIO_SINT32;
+ stream_.doByteSwap[mode] = true;
+ }
+ else if ( mask & AFMT_S24_OE ) {
+ deviceFormat = AFMT_S24_OE;
+ stream_.deviceFormat[mode] = RTAUDIO_SINT24;
+ stream_.doByteSwap[mode] = true;
+ }
+ else if ( mask & AFMT_S8) {
+ deviceFormat = AFMT_S8;
+ stream_.deviceFormat[mode] = RTAUDIO_SINT8;
+ }
+ }
+
+ if ( stream_.deviceFormat[mode] == 0 ) {
+ // This really shouldn't happen ...
+ close( fd );
+ errorStream_ << "RtApiOss::probeDeviceOpen: device (" << ainfo.name << ") data format not supported by RtAudio.";
+ errorText_ = errorStream_.str();
+ return FAILURE;
+ }
+
+ // Set the data format.
+ int temp = deviceFormat;
+ result = ioctl( fd, SNDCTL_DSP_SETFMT, &deviceFormat );
+ if ( result == -1 || deviceFormat != temp ) {
+ close( fd );
+ errorStream_ << "RtApiOss::probeDeviceOpen: error setting data format on device (" << ainfo.name << ").";
+ errorText_ = errorStream_.str();
+ return FAILURE;
+ }
+
+ // Attempt to set the buffer size. According to OSS, the minimum
+ // number of buffers is two. The supposed minimum buffer size is 16
+ // bytes, so that will be our lower bound. The argument to this
+ // call is in the form 0xMMMMSSSS (hex), where the buffer size (in
+ // bytes) is given as 2^SSSS and the number of buffers as 2^MMMM.
+ // We'll check the actual value used near the end of the setup
+ // procedure.
+ int ossBufferBytes = *bufferSize * formatBytes( stream_.deviceFormat[mode] ) * deviceChannels;
+ if ( ossBufferBytes < 16 ) ossBufferBytes = 16;
+ int buffers = 0;
+ if ( options ) buffers = options->numberOfBuffers;
+ if ( options && options->flags & RTAUDIO_MINIMIZE_LATENCY ) buffers = 2;
+ if ( buffers < 2 ) buffers = 3;
+ temp = ((int) buffers << 16) + (int)( log10( (double)ossBufferBytes ) / log10( 2.0 ) );
+ result = ioctl( fd, SNDCTL_DSP_SETFRAGMENT, &temp );
+ if ( result == -1 ) {
+ close( fd );
+ errorStream_ << "RtApiOss::probeDeviceOpen: error setting buffer size on device (" << ainfo.name << ").";
+ errorText_ = errorStream_.str();
+ return FAILURE;
+ }
+ stream_.nBuffers = buffers;
+
+ // Save buffer size (in sample frames).
+ *bufferSize = ossBufferBytes / ( formatBytes(stream_.deviceFormat[mode]) * deviceChannels );
+ stream_.bufferSize = *bufferSize;
+
+ // Set the sample rate.
+ int srate = sampleRate;
+ result = ioctl( fd, SNDCTL_DSP_SPEED, &srate );
+ if ( result == -1 ) {
+ close( fd );
+ errorStream_ << "RtApiOss::probeDeviceOpen: error setting sample rate (" << sampleRate << ") on device (" << ainfo.name << ").";
+ errorText_ = errorStream_.str();
+ return FAILURE;
+ }
+
+ // Verify the sample rate setup worked.
+ if ( abs( srate - sampleRate ) > 100 ) {
+ close( fd );
+ errorStream_ << "RtApiOss::probeDeviceOpen: device (" << ainfo.name << ") does not support sample rate (" << sampleRate << ").";
+ errorText_ = errorStream_.str();
+ return FAILURE;
+ }
+ stream_.sampleRate = sampleRate;
+
+ if ( mode == INPUT && stream_.mode == OUTPUT && stream_.device[0] == device) {
+ // We're doing duplex setup here.
+ stream_.deviceFormat[0] = stream_.deviceFormat[1];
+ stream_.nDeviceChannels[0] = deviceChannels;
+ }
+
+ // Set interleaving parameters.
+ stream_.userInterleaved = true;
+ stream_.deviceInterleaved[mode] = true;
+ if ( options && options->flags & RTAUDIO_NONINTERLEAVED )
+ stream_.userInterleaved = false;
+
+ // Set flags for buffer conversion
+ stream_.doConvertBuffer[mode] = false;
+ if ( stream_.userFormat != stream_.deviceFormat[mode] )
+ stream_.doConvertBuffer[mode] = true;
+ if ( stream_.nUserChannels[mode] < stream_.nDeviceChannels[mode] )
+ stream_.doConvertBuffer[mode] = true;
+ if ( stream_.userInterleaved != stream_.deviceInterleaved[mode] &&
+ stream_.nUserChannels[mode] > 1 )
+ stream_.doConvertBuffer[mode] = true;
+
+ // Allocate the stream handles if necessary and then save.
+ if ( stream_.apiHandle == 0 ) {
+ try {
+ handle = new OssHandle;
+ }
+ catch ( std::bad_alloc& ) {
+ errorText_ = "RtApiOss::probeDeviceOpen: error allocating OssHandle memory.";
+ goto error;
+ }
+
+ if ( pthread_cond_init( &handle->runnable, NULL ) ) {
+ errorText_ = "RtApiOss::probeDeviceOpen: error initializing pthread condition variable.";
+ goto error;
+ }
+
+ stream_.apiHandle = (void *) handle;
+ }
+ else {
+ handle = (OssHandle *) stream_.apiHandle;
+ }
+ handle->id[mode] = fd;
+
+ // Allocate necessary internal buffers.
+ unsigned long bufferBytes;
+ bufferBytes = stream_.nUserChannels[mode] * *bufferSize * formatBytes( stream_.userFormat );
+ stream_.userBuffer[mode] = (char *) calloc( bufferBytes, 1 );
+ if ( stream_.userBuffer[mode] == NULL ) {
+ errorText_ = "RtApiOss::probeDeviceOpen: error allocating user buffer memory.";
+ goto error;
+ }
+
+ if ( stream_.doConvertBuffer[mode] ) {
+
+ bool makeBuffer = true;
+ bufferBytes = stream_.nDeviceChannels[mode] * formatBytes( stream_.deviceFormat[mode] );
+ if ( mode == INPUT ) {
+ if ( stream_.mode == OUTPUT && stream_.deviceBuffer ) {
+ unsigned long bytesOut = stream_.nDeviceChannels[0] * formatBytes( stream_.deviceFormat[0] );
+ if ( bufferBytes <= bytesOut ) makeBuffer = false;
+ }
+ }
+
+ if ( makeBuffer ) {
+ bufferBytes *= *bufferSize;
+ if ( stream_.deviceBuffer ) free( stream_.deviceBuffer );
+ stream_.deviceBuffer = (char *) calloc( bufferBytes, 1 );
+ if ( stream_.deviceBuffer == NULL ) {
+ errorText_ = "RtApiOss::probeDeviceOpen: error allocating device buffer memory.";
+ goto error;
+ }
+ }
+ }
+
+ stream_.device[mode] = device;
+ stream_.state = STREAM_STOPPED;
+
+ // Setup the buffer conversion information structure.
+ if ( stream_.doConvertBuffer[mode] ) setConvertInfo( mode, firstChannel );
+
+ // Setup thread if necessary.
+ if ( stream_.mode == OUTPUT && mode == INPUT ) {
+ // We had already set up an output stream.
+ stream_.mode = DUPLEX;
+ if ( stream_.device[0] == device ) handle->id[0] = fd;
+ }
+ else {
+ stream_.mode = mode;
+
+ // Setup callback thread.
+ stream_.callbackInfo.object = (void *) this;
+
+ // Set the thread attributes for joinable and realtime scheduling
+ // priority. The higher priority will only take affect if the
+ // program is run as root or suid.
+ pthread_attr_t attr;
+ pthread_attr_init( &attr );
+ pthread_attr_setdetachstate( &attr, PTHREAD_CREATE_JOINABLE );
+#ifdef SCHED_RR // Undefined with some OSes (eg: NetBSD 1.6.x with GNU Pthread)
+ if ( options && options->flags & RTAUDIO_SCHEDULE_REALTIME ) {
+ struct sched_param param;
+ int priority = options->priority;
+ int min = sched_get_priority_min( SCHED_RR );
+ int max = sched_get_priority_max( SCHED_RR );
+ if ( priority < min ) priority = min;
+ else if ( priority > max ) priority = max;
+ param.sched_priority = priority;
+ pthread_attr_setschedparam( &attr, &param );
+ pthread_attr_setschedpolicy( &attr, SCHED_RR );
+ }
+ else
+ pthread_attr_setschedpolicy( &attr, SCHED_OTHER );
+#else
+ pthread_attr_setschedpolicy( &attr, SCHED_OTHER );
+#endif
+
+ stream_.callbackInfo.isRunning = true;
+ result = pthread_create( &stream_.callbackInfo.thread, &attr, ossCallbackHandler, &stream_.callbackInfo );
+ pthread_attr_destroy( &attr );
+ if ( result ) {
+ stream_.callbackInfo.isRunning = false;
+ errorText_ = "RtApiOss::error creating callback thread!";
+ goto error;
+ }
+ }
+
+ return SUCCESS;
+
+ error:
+ if ( handle ) {
+ pthread_cond_destroy( &handle->runnable );
+ if ( handle->id[0] ) close( handle->id[0] );
+ if ( handle->id[1] ) close( handle->id[1] );
+ delete handle;
+ stream_.apiHandle = 0;
+ }
+
+ for ( int i=0; i<2; i++ ) {
+ if ( stream_.userBuffer[i] ) {
+ free( stream_.userBuffer[i] );
+ stream_.userBuffer[i] = 0;
+ }
+ }
+
+ if ( stream_.deviceBuffer ) {
+ free( stream_.deviceBuffer );
+ stream_.deviceBuffer = 0;
+ }
+
+ return FAILURE;
+}
+
+void RtApiOss :: closeStream()
+{
+ if ( stream_.state == STREAM_CLOSED ) {
+ errorText_ = "RtApiOss::closeStream(): no open stream to close!";
+ error( RtAudioError::WARNING );
+ return;
+ }
+
+ OssHandle *handle = (OssHandle *) stream_.apiHandle;
+ stream_.callbackInfo.isRunning = false;
+ MUTEX_LOCK( &stream_.mutex );
+ if ( stream_.state == STREAM_STOPPED )
+ pthread_cond_signal( &handle->runnable );
+ MUTEX_UNLOCK( &stream_.mutex );
+ pthread_join( stream_.callbackInfo.thread, NULL );
+
+ if ( stream_.state == STREAM_RUNNING ) {
+ if ( stream_.mode == OUTPUT || stream_.mode == DUPLEX )
+ ioctl( handle->id[0], SNDCTL_DSP_HALT, 0 );
+ else
+ ioctl( handle->id[1], SNDCTL_DSP_HALT, 0 );
+ stream_.state = STREAM_STOPPED;
+ }
+
+ if ( handle ) {
+ pthread_cond_destroy( &handle->runnable );
+ if ( handle->id[0] ) close( handle->id[0] );
+ if ( handle->id[1] ) close( handle->id[1] );
+ delete handle;
+ stream_.apiHandle = 0;
+ }
+
+ for ( int i=0; i<2; i++ ) {
+ if ( stream_.userBuffer[i] ) {
+ free( stream_.userBuffer[i] );
+ stream_.userBuffer[i] = 0;
+ }
+ }
+
+ if ( stream_.deviceBuffer ) {
+ free( stream_.deviceBuffer );
+ stream_.deviceBuffer = 0;
+ }
+
+ stream_.mode = UNINITIALIZED;
+ stream_.state = STREAM_CLOSED;
+}
+
+void RtApiOss :: startStream()
+{
+ verifyStream();
+ if ( stream_.state == STREAM_RUNNING ) {
+ errorText_ = "RtApiOss::startStream(): the stream is already running!";
+ error( RtAudioError::WARNING );
+ return;
+ }
+
+ MUTEX_LOCK( &stream_.mutex );
+
+ stream_.state = STREAM_RUNNING;
+
+ // No need to do anything else here ... OSS automatically starts
+ // when fed samples.
+
+ MUTEX_UNLOCK( &stream_.mutex );
+
+ OssHandle *handle = (OssHandle *) stream_.apiHandle;
+ pthread_cond_signal( &handle->runnable );
+}
+
+void RtApiOss :: stopStream()
+{
+ verifyStream();
+ if ( stream_.state == STREAM_STOPPED ) {
+ errorText_ = "RtApiOss::stopStream(): the stream is already stopped!";
+ error( RtAudioError::WARNING );
+ return;
+ }
+
+ MUTEX_LOCK( &stream_.mutex );
+
+ // The state might change while waiting on a mutex.
+ if ( stream_.state == STREAM_STOPPED ) {
+ MUTEX_UNLOCK( &stream_.mutex );
+ return;
+ }
+
+ int result = 0;
+ OssHandle *handle = (OssHandle *) stream_.apiHandle;
+ if ( stream_.mode == OUTPUT || stream_.mode == DUPLEX ) {
+
+ // Flush the output with zeros a few times.
+ char *buffer;
+ int samples;
+ RtAudioFormat format;
+
+ if ( stream_.doConvertBuffer[0] ) {
+ buffer = stream_.deviceBuffer;
+ samples = stream_.bufferSize * stream_.nDeviceChannels[0];
+ format = stream_.deviceFormat[0];
+ }
+ else {
+ buffer = stream_.userBuffer[0];
+ samples = stream_.bufferSize * stream_.nUserChannels[0];
+ format = stream_.userFormat;
+ }
+
+ memset( buffer, 0, samples * formatBytes(format) );
+ for ( unsigned int i=0; i<stream_.nBuffers+1; i++ ) {
+ result = write( handle->id[0], buffer, samples * formatBytes(format) );
+ if ( result == -1 ) {
+ errorText_ = "RtApiOss::stopStream: audio write error.";
+ error( RtAudioError::WARNING );
+ }
+ }
+
+ result = ioctl( handle->id[0], SNDCTL_DSP_HALT, 0 );
+ if ( result == -1 ) {
+ errorStream_ << "RtApiOss::stopStream: system error stopping callback procedure on device (" << stream_.device[0] << ").";
+ errorText_ = errorStream_.str();
+ goto unlock;
+ }
+ handle->triggered = false;
+ }
+
+ if ( stream_.mode == INPUT || ( stream_.mode == DUPLEX && handle->id[0] != handle->id[1] ) ) {
+ result = ioctl( handle->id[1], SNDCTL_DSP_HALT, 0 );
+ if ( result == -1 ) {
+ errorStream_ << "RtApiOss::stopStream: system error stopping input callback procedure on device (" << stream_.device[0] << ").";
+ errorText_ = errorStream_.str();
+ goto unlock;
+ }
+ }
+
+ unlock:
+ stream_.state = STREAM_STOPPED;
+ MUTEX_UNLOCK( &stream_.mutex );
+
+ if ( result != -1 ) return;
+ error( RtAudioError::SYSTEM_ERROR );
+}
+
+void RtApiOss :: abortStream()
+{
+ verifyStream();
+ if ( stream_.state == STREAM_STOPPED ) {
+ errorText_ = "RtApiOss::abortStream(): the stream is already stopped!";
+ error( RtAudioError::WARNING );
+ return;
+ }
+
+ MUTEX_LOCK( &stream_.mutex );
+
+ // The state might change while waiting on a mutex.
+ if ( stream_.state == STREAM_STOPPED ) {
+ MUTEX_UNLOCK( &stream_.mutex );
+ return;
+ }
+
+ int result = 0;
+ OssHandle *handle = (OssHandle *) stream_.apiHandle;
+ if ( stream_.mode == OUTPUT || stream_.mode == DUPLEX ) {
+ result = ioctl( handle->id[0], SNDCTL_DSP_HALT, 0 );
+ if ( result == -1 ) {
+ errorStream_ << "RtApiOss::abortStream: system error stopping callback procedure on device (" << stream_.device[0] << ").";
+ errorText_ = errorStream_.str();
+ goto unlock;
+ }
+ handle->triggered = false;
+ }
+
+ if ( stream_.mode == INPUT || ( stream_.mode == DUPLEX && handle->id[0] != handle->id[1] ) ) {
+ result = ioctl( handle->id[1], SNDCTL_DSP_HALT, 0 );
+ if ( result == -1 ) {
+ errorStream_ << "RtApiOss::abortStream: system error stopping input callback procedure on device (" << stream_.device[0] << ").";
+ errorText_ = errorStream_.str();
+ goto unlock;
+ }
+ }
+
+ unlock:
+ stream_.state = STREAM_STOPPED;
+ MUTEX_UNLOCK( &stream_.mutex );
+
+ if ( result != -1 ) return;
+ error( RtAudioError::SYSTEM_ERROR );
+}
+
+void RtApiOss :: callbackEvent()
+{
+ OssHandle *handle = (OssHandle *) stream_.apiHandle;
+ if ( stream_.state == STREAM_STOPPED ) {
+ MUTEX_LOCK( &stream_.mutex );
+ pthread_cond_wait( &handle->runnable, &stream_.mutex );
+ if ( stream_.state != STREAM_RUNNING ) {
+ MUTEX_UNLOCK( &stream_.mutex );
+ return;
+ }
+ MUTEX_UNLOCK( &stream_.mutex );
+ }
+
+ if ( stream_.state == STREAM_CLOSED ) {
+ errorText_ = "RtApiOss::callbackEvent(): the stream is closed ... this shouldn't happen!";
+ error( RtAudioError::WARNING );
+ return;
+ }
+
+ // Invoke user callback to get fresh output data.
+ int doStopStream = 0;
+ RtAudioCallback callback = (RtAudioCallback) stream_.callbackInfo.callback;
+ double streamTime = getStreamTime();
+ RtAudioStreamStatus status = 0;
+ if ( stream_.mode != INPUT && handle->xrun[0] == true ) {
+ status |= RTAUDIO_OUTPUT_UNDERFLOW;
+ handle->xrun[0] = false;
+ }
+ if ( stream_.mode != OUTPUT && handle->xrun[1] == true ) {
+ status |= RTAUDIO_INPUT_OVERFLOW;
+ handle->xrun[1] = false;
+ }
+ doStopStream = callback( stream_.userBuffer[0], stream_.userBuffer[1],
+ stream_.bufferSize, streamTime, status, stream_.callbackInfo.userData );
+ if ( doStopStream == 2 ) {
+ this->abortStream();
+ return;
+ }
+
+ MUTEX_LOCK( &stream_.mutex );
+
+ // The state might change while waiting on a mutex.
+ if ( stream_.state == STREAM_STOPPED ) goto unlock;
+
+ int result;
+ char *buffer;
+ int samples;
+ RtAudioFormat format;
+
+ if ( stream_.mode == OUTPUT || stream_.mode == DUPLEX ) {
+
+ // Setup parameters and do buffer conversion if necessary.
+ if ( stream_.doConvertBuffer[0] ) {
+ buffer = stream_.deviceBuffer;
+ convertBuffer( buffer, stream_.userBuffer[0], stream_.convertInfo[0] );
+ samples = stream_.bufferSize * stream_.nDeviceChannels[0];
+ format = stream_.deviceFormat[0];
+ }
+ else {
+ buffer = stream_.userBuffer[0];
+ samples = stream_.bufferSize * stream_.nUserChannels[0];
+ format = stream_.userFormat;
+ }
+
+ // Do byte swapping if necessary.
+ if ( stream_.doByteSwap[0] )
+ byteSwapBuffer( buffer, samples, format );
+
+ if ( stream_.mode == DUPLEX && handle->triggered == false ) {
+ int trig = 0;
+ ioctl( handle->id[0], SNDCTL_DSP_SETTRIGGER, &trig );
+ result = write( handle->id[0], buffer, samples * formatBytes(format) );
+ trig = PCM_ENABLE_INPUT|PCM_ENABLE_OUTPUT;
+ ioctl( handle->id[0], SNDCTL_DSP_SETTRIGGER, &trig );
+ handle->triggered = true;
+ }
+ else
+ // Write samples to device.
+ result = write( handle->id[0], buffer, samples * formatBytes(format) );
+
+ if ( result == -1 ) {
+ // We'll assume this is an underrun, though there isn't a
+ // specific means for determining that.
+ handle->xrun[0] = true;
+ errorText_ = "RtApiOss::callbackEvent: audio write error.";
+ error( RtAudioError::WARNING );
+ // Continue on to input section.
+ }
+ }
+
+ if ( stream_.mode == INPUT || stream_.mode == DUPLEX ) {
+
+ // Setup parameters.
+ if ( stream_.doConvertBuffer[1] ) {
+ buffer = stream_.deviceBuffer;
+ samples = stream_.bufferSize * stream_.nDeviceChannels[1];
+ format = stream_.deviceFormat[1];
+ }
+ else {
+ buffer = stream_.userBuffer[1];
+ samples = stream_.bufferSize * stream_.nUserChannels[1];
+ format = stream_.userFormat;
+ }
+
+ // Read samples from device.
+ result = read( handle->id[1], buffer, samples * formatBytes(format) );
+
+ if ( result == -1 ) {
+ // We'll assume this is an overrun, though there isn't a
+ // specific means for determining that.
+ handle->xrun[1] = true;
+ errorText_ = "RtApiOss::callbackEvent: audio read error.";
+ error( RtAudioError::WARNING );
+ goto unlock;
+ }
+
+ // Do byte swapping if necessary.
+ if ( stream_.doByteSwap[1] )
+ byteSwapBuffer( buffer, samples, format );
+
+ // Do buffer conversion if necessary.
+ if ( stream_.doConvertBuffer[1] )
+ convertBuffer( stream_.userBuffer[1], stream_.deviceBuffer, stream_.convertInfo[1] );
+ }
+
+ unlock:
+ MUTEX_UNLOCK( &stream_.mutex );
+
+ RtApi::tickStreamTime();
+ if ( doStopStream == 1 ) this->stopStream();
+}
+
+static void *ossCallbackHandler( void *ptr )
+{
+ CallbackInfo *info = (CallbackInfo *) ptr;
+ RtApiOss *object = (RtApiOss *) info->object;
+ bool *isRunning = &info->isRunning;
+
+ while ( *isRunning == true ) {
+ pthread_testcancel();
+ object->callbackEvent();
+ }
+
+ pthread_exit( NULL );
+}
+
+//******************** End of __LINUX_OSS__ *********************//
+#endif
+
+
+// *************************************************** //
+//
+// Protected common (OS-independent) RtAudio methods.
+//
+// *************************************************** //
+
+// This method can be modified to control the behavior of error
+// message printing.
+void RtApi :: error( RtAudioError::Type type )
+{
+ errorStream_.str(""); // clear the ostringstream
+
+ RtAudioErrorCallback errorCallback = (RtAudioErrorCallback) stream_.callbackInfo.errorCallback;
+ if ( errorCallback ) {
+ // abortStream() can generate new error messages. Ignore them. Just keep original one.
+
+ if ( firstErrorOccurred_ )
+ return;
+
+ firstErrorOccurred_ = true;
+ const std::string errorMessage = errorText_;
+
+ if ( type != RtAudioError::WARNING && stream_.state != STREAM_STOPPED) {
+ stream_.callbackInfo.isRunning = false; // exit from the thread
+ abortStream();
+ }
+
+ errorCallback( type, errorMessage );
+ firstErrorOccurred_ = false;
+ return;
+ }
+
+ if ( type == RtAudioError::WARNING && showWarnings_ == true )
+ std::cerr << '\n' << errorText_ << "\n\n";
+ else if ( type != RtAudioError::WARNING )
+ throw( RtAudioError( errorText_, type ) );
+}
+
+void RtApi :: verifyStream()
+{
+ if ( stream_.state == STREAM_CLOSED ) {
+ errorText_ = "RtApi:: a stream is not open!";
+ error( RtAudioError::INVALID_USE );
+ }
+}
+
+void RtApi :: clearStreamInfo()
+{
+ stream_.mode = UNINITIALIZED;
+ stream_.state = STREAM_CLOSED;
+ stream_.sampleRate = 0;
+ stream_.bufferSize = 0;
+ stream_.nBuffers = 0;
+ stream_.userFormat = 0;
+ stream_.userInterleaved = true;
+ stream_.streamTime = 0.0;
+ stream_.apiHandle = 0;
+ stream_.deviceBuffer = 0;
+ stream_.callbackInfo.callback = 0;
+ stream_.callbackInfo.userData = 0;
+ stream_.callbackInfo.isRunning = false;
+ stream_.callbackInfo.errorCallback = 0;
+ for ( int i=0; i<2; i++ ) {
+ stream_.device[i] = 11111;
+ stream_.doConvertBuffer[i] = false;
+ stream_.deviceInterleaved[i] = true;
+ stream_.doByteSwap[i] = false;
+ stream_.nUserChannels[i] = 0;
+ stream_.nDeviceChannels[i] = 0;
+ stream_.channelOffset[i] = 0;
+ stream_.deviceFormat[i] = 0;
+ stream_.latency[i] = 0;
+ stream_.userBuffer[i] = 0;
+ stream_.convertInfo[i].channels = 0;
+ stream_.convertInfo[i].inJump = 0;
+ stream_.convertInfo[i].outJump = 0;
+ stream_.convertInfo[i].inFormat = 0;
+ stream_.convertInfo[i].outFormat = 0;
+ stream_.convertInfo[i].inOffset.clear();
+ stream_.convertInfo[i].outOffset.clear();
+ }
+}
+
+unsigned int RtApi :: formatBytes( RtAudioFormat format )
+{
+ if ( format == RTAUDIO_SINT16 )
+ return 2;
+ else if ( format == RTAUDIO_SINT32 || format == RTAUDIO_FLOAT32 )
+ return 4;
+ else if ( format == RTAUDIO_FLOAT64 )
+ return 8;
+ else if ( format == RTAUDIO_SINT24 )
+ return 3;
+ else if ( format == RTAUDIO_SINT8 )
+ return 1;
+
+ errorText_ = "RtApi::formatBytes: undefined format.";
+ error( RtAudioError::WARNING );
+
+ return 0;
+}
+
+void RtApi :: setConvertInfo( StreamMode mode, unsigned int firstChannel )
+{
+ if ( mode == INPUT ) { // convert device to user buffer
+ stream_.convertInfo[mode].inJump = stream_.nDeviceChannels[1];
+ stream_.convertInfo[mode].outJump = stream_.nUserChannels[1];
+ stream_.convertInfo[mode].inFormat = stream_.deviceFormat[1];
+ stream_.convertInfo[mode].outFormat = stream_.userFormat;
+ }
+ else { // convert user to device buffer
+ stream_.convertInfo[mode].inJump = stream_.nUserChannels[0];
+ stream_.convertInfo[mode].outJump = stream_.nDeviceChannels[0];
+ stream_.convertInfo[mode].inFormat = stream_.userFormat;
+ stream_.convertInfo[mode].outFormat = stream_.deviceFormat[0];
+ }
+
+ if ( stream_.convertInfo[mode].inJump < stream_.convertInfo[mode].outJump )
+ stream_.convertInfo[mode].channels = stream_.convertInfo[mode].inJump;
+ else
+ stream_.convertInfo[mode].channels = stream_.convertInfo[mode].outJump;
+
+ // Set up the interleave/deinterleave offsets.
+ if ( stream_.deviceInterleaved[mode] != stream_.userInterleaved ) {
+ if ( ( mode == OUTPUT && stream_.deviceInterleaved[mode] ) ||
+ ( mode == INPUT && stream_.userInterleaved ) ) {
+ for ( int k=0; k<stream_.convertInfo[mode].channels; k++ ) {
+ stream_.convertInfo[mode].inOffset.push_back( k * stream_.bufferSize );
+ stream_.convertInfo[mode].outOffset.push_back( k );
+ stream_.convertInfo[mode].inJump = 1;
+ }
+ }
+ else {
+ for ( int k=0; k<stream_.convertInfo[mode].channels; k++ ) {
+ stream_.convertInfo[mode].inOffset.push_back( k );
+ stream_.convertInfo[mode].outOffset.push_back( k * stream_.bufferSize );
+ stream_.convertInfo[mode].outJump = 1;
+ }
+ }
+ }
+ else { // no (de)interleaving
+ if ( stream_.userInterleaved ) {
+ for ( int k=0; k<stream_.convertInfo[mode].channels; k++ ) {
+ stream_.convertInfo[mode].inOffset.push_back( k );
+ stream_.convertInfo[mode].outOffset.push_back( k );
+ }
+ }
+ else {
+ for ( int k=0; k<stream_.convertInfo[mode].channels; k++ ) {
+ stream_.convertInfo[mode].inOffset.push_back( k * stream_.bufferSize );
+ stream_.convertInfo[mode].outOffset.push_back( k * stream_.bufferSize );
+ stream_.convertInfo[mode].inJump = 1;
+ stream_.convertInfo[mode].outJump = 1;
+ }
+ }
+ }
+
+ // Add channel offset.
+ if ( firstChannel > 0 ) {
+ if ( stream_.deviceInterleaved[mode] ) {
+ if ( mode == OUTPUT ) {
+ for ( int k=0; k<stream_.convertInfo[mode].channels; k++ )
+ stream_.convertInfo[mode].outOffset[k] += firstChannel;
+ }
+ else {
+ for ( int k=0; k<stream_.convertInfo[mode].channels; k++ )
+ stream_.convertInfo[mode].inOffset[k] += firstChannel;
+ }
+ }
+ else {
+ if ( mode == OUTPUT ) {
+ for ( int k=0; k<stream_.convertInfo[mode].channels; k++ )
+ stream_.convertInfo[mode].outOffset[k] += ( firstChannel * stream_.bufferSize );
+ }
+ else {
+ for ( int k=0; k<stream_.convertInfo[mode].channels; k++ )
+ stream_.convertInfo[mode].inOffset[k] += ( firstChannel * stream_.bufferSize );
+ }
+ }
+ }
+}
+
+void RtApi :: convertBuffer( char *outBuffer, char *inBuffer, ConvertInfo &info )
+{
+ // This function does format conversion, input/output channel compensation, and
+ // data interleaving/deinterleaving. 24-bit integers are assumed to occupy
+ // the lower three bytes of a 32-bit integer.
+
+ // Clear our device buffer when in/out duplex device channels are different
+ if ( outBuffer == stream_.deviceBuffer && stream_.mode == DUPLEX &&
+ ( stream_.nDeviceChannels[0] < stream_.nDeviceChannels[1] ) )
+ memset( outBuffer, 0, stream_.bufferSize * info.outJump * formatBytes( info.outFormat ) );
+
+ int j;
+ if (info.outFormat == RTAUDIO_FLOAT64) {
+ Float64 scale;
+ Float64 *out = (Float64 *)outBuffer;
+
+ if (info.inFormat == RTAUDIO_SINT8) {
+ signed char *in = (signed char *)inBuffer;
+ scale = 1.0 / 127.5;
+ for (unsigned int i=0; i<stream_.bufferSize; i++) {
+ for (j=0; j<info.channels; j++) {
+ out[info.outOffset[j]] = (Float64) in[info.inOffset[j]];
+ out[info.outOffset[j]] += 0.5;
+ out[info.outOffset[j]] *= scale;
+ }
+ in += info.inJump;
+ out += info.outJump;
+ }
+ }
+ else if (info.inFormat == RTAUDIO_SINT16) {
+ Int16 *in = (Int16 *)inBuffer;
+ scale = 1.0 / 32767.5;
+ for (unsigned int i=0; i<stream_.bufferSize; i++) {
+ for (j=0; j<info.channels; j++) {
+ out[info.outOffset[j]] = (Float64) in[info.inOffset[j]];
+ out[info.outOffset[j]] += 0.5;
+ out[info.outOffset[j]] *= scale;
+ }
+ in += info.inJump;
+ out += info.outJump;
+ }
+ }
+ else if (info.inFormat == RTAUDIO_SINT24) {
+ Int24 *in = (Int24 *)inBuffer;
+ scale = 1.0 / 8388607.5;
+ for (unsigned int i=0; i<stream_.bufferSize; i++) {
+ for (j=0; j<info.channels; j++) {
+ out[info.outOffset[j]] = (Float64) (in[info.inOffset[j]].asInt());
+ out[info.outOffset[j]] += 0.5;
+ out[info.outOffset[j]] *= scale;
+ }
+ in += info.inJump;
+ out += info.outJump;
+ }
+ }
+ else if (info.inFormat == RTAUDIO_SINT32) {
+ Int32 *in = (Int32 *)inBuffer;
+ scale = 1.0 / 2147483647.5;
+ for (unsigned int i=0; i<stream_.bufferSize; i++) {
+ for (j=0; j<info.channels; j++) {
+ out[info.outOffset[j]] = (Float64) in[info.inOffset[j]];
+ out[info.outOffset[j]] += 0.5;
+ out[info.outOffset[j]] *= scale;
+ }
+ in += info.inJump;
+ out += info.outJump;
+ }
+ }
+ else if (info.inFormat == RTAUDIO_FLOAT32) {
+ Float32 *in = (Float32 *)inBuffer;
+ for (unsigned int i=0; i<stream_.bufferSize; i++) {
+ for (j=0; j<info.channels; j++) {
+ out[info.outOffset[j]] = (Float64) in[info.inOffset[j]];
+ }
+ in += info.inJump;
+ out += info.outJump;
+ }
+ }
+ else if (info.inFormat == RTAUDIO_FLOAT64) {
+ // Channel compensation and/or (de)interleaving only.
+ Float64 *in = (Float64 *)inBuffer;
+ for (unsigned int i=0; i<stream_.bufferSize; i++) {
+ for (j=0; j<info.channels; j++) {
+ out[info.outOffset[j]] = in[info.inOffset[j]];
+ }
+ in += info.inJump;
+ out += info.outJump;
+ }
+ }
+ }
+ else if (info.outFormat == RTAUDIO_FLOAT32) {
+ Float32 scale;
+ Float32 *out = (Float32 *)outBuffer;
+
+ if (info.inFormat == RTAUDIO_SINT8) {
+ signed char *in = (signed char *)inBuffer;
+ scale = (Float32) ( 1.0 / 127.5 );
+ for (unsigned int i=0; i<stream_.bufferSize; i++) {
+ for (j=0; j<info.channels; j++) {
+ out[info.outOffset[j]] = (Float32) in[info.inOffset[j]];
+ out[info.outOffset[j]] += 0.5;
+ out[info.outOffset[j]] *= scale;
+ }
+ in += info.inJump;
+ out += info.outJump;
+ }
+ }
+ else if (info.inFormat == RTAUDIO_SINT16) {
+ Int16 *in = (Int16 *)inBuffer;
+ scale = (Float32) ( 1.0 / 32767.5 );
+ for (unsigned int i=0; i<stream_.bufferSize; i++) {
+ for (j=0; j<info.channels; j++) {
+ out[info.outOffset[j]] = (Float32) in[info.inOffset[j]];
+ out[info.outOffset[j]] += 0.5;
+ out[info.outOffset[j]] *= scale;
+ }
+ in += info.inJump;
+ out += info.outJump;
+ }
+ }
+ else if (info.inFormat == RTAUDIO_SINT24) {
+ Int24 *in = (Int24 *)inBuffer;
+ scale = (Float32) ( 1.0 / 8388607.5 );
+ for (unsigned int i=0; i<stream_.bufferSize; i++) {
+ for (j=0; j<info.channels; j++) {
+ out[info.outOffset[j]] = (Float32) (in[info.inOffset[j]].asInt());
+ out[info.outOffset[j]] += 0.5;
+ out[info.outOffset[j]] *= scale;
+ }
+ in += info.inJump;
+ out += info.outJump;
+ }
+ }
+ else if (info.inFormat == RTAUDIO_SINT32) {
+ Int32 *in = (Int32 *)inBuffer;
+ scale = (Float32) ( 1.0 / 2147483647.5 );
+ for (unsigned int i=0; i<stream_.bufferSize; i++) {
+ for (j=0; j<info.channels; j++) {
+ out[info.outOffset[j]] = (Float32) in[info.inOffset[j]];
+ out[info.outOffset[j]] += 0.5;
+ out[info.outOffset[j]] *= scale;
+ }
+ in += info.inJump;
+ out += info.outJump;
+ }
+ }
+ else if (info.inFormat == RTAUDIO_FLOAT32) {
+ // Channel compensation and/or (de)interleaving only.
+ Float32 *in = (Float32 *)inBuffer;
+ for (unsigned int i=0; i<stream_.bufferSize; i++) {
+ for (j=0; j<info.channels; j++) {
+ out[info.outOffset[j]] = in[info.inOffset[j]];
+ }
+ in += info.inJump;
+ out += info.outJump;
+ }
+ }
+ else if (info.inFormat == RTAUDIO_FLOAT64) {
+ Float64 *in = (Float64 *)inBuffer;
+ for (unsigned int i=0; i<stream_.bufferSize; i++) {
+ for (j=0; j<info.channels; j++) {
+ out[info.outOffset[j]] = (Float32) in[info.inOffset[j]];
+ }
+ in += info.inJump;
+ out += info.outJump;
+ }
+ }
+ }
+ else if (info.outFormat == RTAUDIO_SINT32) {
+ Int32 *out = (Int32 *)outBuffer;
+ if (info.inFormat == RTAUDIO_SINT8) {
+ signed char *in = (signed char *)inBuffer;
+ for (unsigned int i=0; i<stream_.bufferSize; i++) {
+ for (j=0; j<info.channels; j++) {
+ out[info.outOffset[j]] = (Int32) in[info.inOffset[j]];
+ out[info.outOffset[j]] <<= 24;
+ }
+ in += info.inJump;
+ out += info.outJump;
+ }
+ }
+ else if (info.inFormat == RTAUDIO_SINT16) {
+ Int16 *in = (Int16 *)inBuffer;
+ for (unsigned int i=0; i<stream_.bufferSize; i++) {
+ for (j=0; j<info.channels; j++) {
+ out[info.outOffset[j]] = (Int32) in[info.inOffset[j]];
+ out[info.outOffset[j]] <<= 16;
+ }
+ in += info.inJump;
+ out += info.outJump;
+ }
+ }
+ else if (info.inFormat == RTAUDIO_SINT24) {
+ Int24 *in = (Int24 *)inBuffer;
+ for (unsigned int i=0; i<stream_.bufferSize; i++) {
+ for (j=0; j<info.channels; j++) {
+ out[info.outOffset[j]] = (Int32) in[info.inOffset[j]].asInt();
+ out[info.outOffset[j]] <<= 8;
+ }
+ in += info.inJump;
+ out += info.outJump;
+ }
+ }
+ else if (info.inFormat == RTAUDIO_SINT32) {
+ // Channel compensation and/or (de)interleaving only.
+ Int32 *in = (Int32 *)inBuffer;
+ for (unsigned int i=0; i<stream_.bufferSize; i++) {
+ for (j=0; j<info.channels; j++) {
+ out[info.outOffset[j]] = in[info.inOffset[j]];
+ }
+ in += info.inJump;
+ out += info.outJump;
+ }
+ }
+ else if (info.inFormat == RTAUDIO_FLOAT32) {
+ Float32 *in = (Float32 *)inBuffer;
+ for (unsigned int i=0; i<stream_.bufferSize; i++) {
+ for (j=0; j<info.channels; j++) {
+ out[info.outOffset[j]] = (Int32) (in[info.inOffset[j]] * 2147483647.5 - 0.5);
+ }
+ in += info.inJump;
+ out += info.outJump;
+ }
+ }
+ else if (info.inFormat == RTAUDIO_FLOAT64) {
+ Float64 *in = (Float64 *)inBuffer;
+ for (unsigned int i=0; i<stream_.bufferSize; i++) {
+ for (j=0; j<info.channels; j++) {
+ out[info.outOffset[j]] = (Int32) (in[info.inOffset[j]] * 2147483647.5 - 0.5);
+ }
+ in += info.inJump;
+ out += info.outJump;
+ }
+ }
+ }
+ else if (info.outFormat == RTAUDIO_SINT24) {
+ Int24 *out = (Int24 *)outBuffer;
+ if (info.inFormat == RTAUDIO_SINT8) {
+ signed char *in = (signed char *)inBuffer;
+ for (unsigned int i=0; i<stream_.bufferSize; i++) {
+ for (j=0; j<info.channels; j++) {
+ out[info.outOffset[j]] = (Int32) (in[info.inOffset[j]] << 16);
+ //out[info.outOffset[j]] <<= 16;
+ }
+ in += info.inJump;
+ out += info.outJump;
+ }
+ }
+ else if (info.inFormat == RTAUDIO_SINT16) {
+ Int16 *in = (Int16 *)inBuffer;
+ for (unsigned int i=0; i<stream_.bufferSize; i++) {
+ for (j=0; j<info.channels; j++) {
+ out[info.outOffset[j]] = (Int32) (in[info.inOffset[j]] << 8);
+ //out[info.outOffset[j]] <<= 8;
+ }
+ in += info.inJump;
+ out += info.outJump;
+ }
+ }
+ else if (info.inFormat == RTAUDIO_SINT24) {
+ // Channel compensation and/or (de)interleaving only.
+ Int24 *in = (Int24 *)inBuffer;
+ for (unsigned int i=0; i<stream_.bufferSize; i++) {
+ for (j=0; j<info.channels; j++) {
+ out[info.outOffset[j]] = in[info.inOffset[j]];
+ }
+ in += info.inJump;
+ out += info.outJump;
+ }
+ }
+ else if (info.inFormat == RTAUDIO_SINT32) {
+ Int32 *in = (Int32 *)inBuffer;
+ for (unsigned int i=0; i<stream_.bufferSize; i++) {
+ for (j=0; j<info.channels; j++) {
+ out[info.outOffset[j]] = (Int32) (in[info.inOffset[j]] >> 8);
+ //out[info.outOffset[j]] >>= 8;
+ }
+ in += info.inJump;
+ out += info.outJump;
+ }
+ }
+ else if (info.inFormat == RTAUDIO_FLOAT32) {
+ Float32 *in = (Float32 *)inBuffer;
+ for (unsigned int i=0; i<stream_.bufferSize; i++) {
+ for (j=0; j<info.channels; j++) {
+ out[info.outOffset[j]] = (Int32) (in[info.inOffset[j]] * 8388607.5 - 0.5);
+ }
+ in += info.inJump;
+ out += info.outJump;
+ }
+ }
+ else if (info.inFormat == RTAUDIO_FLOAT64) {
+ Float64 *in = (Float64 *)inBuffer;
+ for (unsigned int i=0; i<stream_.bufferSize; i++) {
+ for (j=0; j<info.channels; j++) {
+ out[info.outOffset[j]] = (Int32) (in[info.inOffset[j]] * 8388607.5 - 0.5);
+ }
+ in += info.inJump;
+ out += info.outJump;
+ }
+ }
+ }
+ else if (info.outFormat == RTAUDIO_SINT16) {
+ Int16 *out = (Int16 *)outBuffer;
+ if (info.inFormat == RTAUDIO_SINT8) {
+ signed char *in = (signed char *)inBuffer;
+ for (unsigned int i=0; i<stream_.bufferSize; i++) {
+ for (j=0; j<info.channels; j++) {
+ out[info.outOffset[j]] = (Int16) in[info.inOffset[j]];
+ out[info.outOffset[j]] <<= 8;
+ }
+ in += info.inJump;
+ out += info.outJump;
+ }
+ }
+ else if (info.inFormat == RTAUDIO_SINT16) {
+ // Channel compensation and/or (de)interleaving only.
+ Int16 *in = (Int16 *)inBuffer;
+ for (unsigned int i=0; i<stream_.bufferSize; i++) {
+ for (j=0; j<info.channels; j++) {
+ out[info.outOffset[j]] = in[info.inOffset[j]];
+ }
+ in += info.inJump;
+ out += info.outJump;
+ }
+ }
+ else if (info.inFormat == RTAUDIO_SINT24) {
+ Int24 *in = (Int24 *)inBuffer;
+ for (unsigned int i=0; i<stream_.bufferSize; i++) {
+ for (j=0; j<info.channels; j++) {
+ out[info.outOffset[j]] = (Int16) (in[info.inOffset[j]].asInt() >> 8);
+ }
+ in += info.inJump;
+ out += info.outJump;
+ }
+ }
+ else if (info.inFormat == RTAUDIO_SINT32) {
+ Int32 *in = (Int32 *)inBuffer;
+ for (unsigned int i=0; i<stream_.bufferSize; i++) {
+ for (j=0; j<info.channels; j++) {
+ out[info.outOffset[j]] = (Int16) ((in[info.inOffset[j]] >> 16) & 0x0000ffff);
+ }
+ in += info.inJump;
+ out += info.outJump;
+ }
+ }
+ else if (info.inFormat == RTAUDIO_FLOAT32) {
+ Float32 *in = (Float32 *)inBuffer;
+ for (unsigned int i=0; i<stream_.bufferSize; i++) {
+ for (j=0; j<info.channels; j++) {
+ out[info.outOffset[j]] = (Int16) (in[info.inOffset[j]] * 32767.5 - 0.5);
+ }
+ in += info.inJump;
+ out += info.outJump;
+ }
+ }
+ else if (info.inFormat == RTAUDIO_FLOAT64) {
+ Float64 *in = (Float64 *)inBuffer;
+ for (unsigned int i=0; i<stream_.bufferSize; i++) {
+ for (j=0; j<info.channels; j++) {
+ out[info.outOffset[j]] = (Int16) (in[info.inOffset[j]] * 32767.5 - 0.5);
+ }
+ in += info.inJump;
+ out += info.outJump;
+ }
+ }
+ }
+ else if (info.outFormat == RTAUDIO_SINT8) {
+ signed char *out = (signed char *)outBuffer;
+ if (info.inFormat == RTAUDIO_SINT8) {
+ // Channel compensation and/or (de)interleaving only.
+ signed char *in = (signed char *)inBuffer;
+ for (unsigned int i=0; i<stream_.bufferSize; i++) {
+ for (j=0; j<info.channels; j++) {
+ out[info.outOffset[j]] = in[info.inOffset[j]];
+ }
+ in += info.inJump;
+ out += info.outJump;
+ }
+ }
+ if (info.inFormat == RTAUDIO_SINT16) {
+ Int16 *in = (Int16 *)inBuffer;
+ for (unsigned int i=0; i<stream_.bufferSize; i++) {
+ for (j=0; j<info.channels; j++) {
+ out[info.outOffset[j]] = (signed char) ((in[info.inOffset[j]] >> 8) & 0x00ff);
+ }
+ in += info.inJump;
+ out += info.outJump;
+ }
+ }
+ else if (info.inFormat == RTAUDIO_SINT24) {
+ Int24 *in = (Int24 *)inBuffer;
+ for (unsigned int i=0; i<stream_.bufferSize; i++) {
+ for (j=0; j<info.channels; j++) {
+ out[info.outOffset[j]] = (signed char) (in[info.inOffset[j]].asInt() >> 16);
+ }
+ in += info.inJump;
+ out += info.outJump;
+ }
+ }
+ else if (info.inFormat == RTAUDIO_SINT32) {
+ Int32 *in = (Int32 *)inBuffer;
+ for (unsigned int i=0; i<stream_.bufferSize; i++) {
+ for (j=0; j<info.channels; j++) {
+ out[info.outOffset[j]] = (signed char) ((in[info.inOffset[j]] >> 24) & 0x000000ff);
+ }
+ in += info.inJump;
+ out += info.outJump;
+ }
+ }
+ else if (info.inFormat == RTAUDIO_FLOAT32) {
+ Float32 *in = (Float32 *)inBuffer;
+ for (unsigned int i=0; i<stream_.bufferSize; i++) {
+ for (j=0; j<info.channels; j++) {
+ out[info.outOffset[j]] = (signed char) (in[info.inOffset[j]] * 127.5 - 0.5);
+ }
+ in += info.inJump;
+ out += info.outJump;
+ }
+ }
+ else if (info.inFormat == RTAUDIO_FLOAT64) {
+ Float64 *in = (Float64 *)inBuffer;
+ for (unsigned int i=0; i<stream_.bufferSize; i++) {
+ for (j=0; j<info.channels; j++) {
+ out[info.outOffset[j]] = (signed char) (in[info.inOffset[j]] * 127.5 - 0.5);
+ }
+ in += info.inJump;
+ out += info.outJump;
+ }
+ }
+ }
+}
+
+//static inline uint16_t bswap_16(uint16_t x) { return (x>>8) | (x<<8); }
+//static inline uint32_t bswap_32(uint32_t x) { return (bswap_16(x&0xffff)<<16) | (bswap_16(x>>16)); }
+//static inline uint64_t bswap_64(uint64_t x) { return (((unsigned long long)bswap_32(x&0xffffffffull))<<32) | (bswap_32(x>>32)); }
+
+void RtApi :: byteSwapBuffer( char *buffer, unsigned int samples, RtAudioFormat format )
+{
+ register char val;
+ register char *ptr;
+
+ ptr = buffer;
+ if ( format == RTAUDIO_SINT16 ) {
+ for ( unsigned int i=0; i<samples; i++ ) {
+ // Swap 1st and 2nd bytes.
+ val = *(ptr);
+ *(ptr) = *(ptr+1);
+ *(ptr+1) = val;
+
+ // Increment 2 bytes.
+ ptr += 2;
+ }
+ }
+ else if ( format == RTAUDIO_SINT32 ||
+ format == RTAUDIO_FLOAT32 ) {
+ for ( unsigned int i=0; i<samples; i++ ) {
+ // Swap 1st and 4th bytes.
+ val = *(ptr);
+ *(ptr) = *(ptr+3);
+ *(ptr+3) = val;
+
+ // Swap 2nd and 3rd bytes.
+ ptr += 1;
+ val = *(ptr);
+ *(ptr) = *(ptr+1);
+ *(ptr+1) = val;
+
+ // Increment 3 more bytes.
+ ptr += 3;
+ }
+ }
+ else if ( format == RTAUDIO_SINT24 ) {
+ for ( unsigned int i=0; i<samples; i++ ) {
+ // Swap 1st and 3rd bytes.
+ val = *(ptr);
+ *(ptr) = *(ptr+2);
+ *(ptr+2) = val;
+
+ // Increment 2 more bytes.
+ ptr += 2;
+ }
+ }
+ else if ( format == RTAUDIO_FLOAT64 ) {
+ for ( unsigned int i=0; i<samples; i++ ) {
+ // Swap 1st and 8th bytes
+ val = *(ptr);
+ *(ptr) = *(ptr+7);
+ *(ptr+7) = val;
+
+ // Swap 2nd and 7th bytes
+ ptr += 1;
+ val = *(ptr);
+ *(ptr) = *(ptr+5);
+ *(ptr+5) = val;
+
+ // Swap 3rd and 6th bytes
+ ptr += 1;
+ val = *(ptr);
+ *(ptr) = *(ptr+3);
+ *(ptr+3) = val;
+
+ // Swap 4th and 5th bytes
+ ptr += 1;
+ val = *(ptr);
+ *(ptr) = *(ptr+1);
+ *(ptr+1) = val;
+
+ // Increment 5 more bytes.
+ ptr += 5;
+ }
+ }
+}
+
+ // Indentation settings for Vim and Emacs
+ //
+ // Local Variables:
+ // c-basic-offset: 2
+ // indent-tabs-mode: nil
+ // End:
+ //
+ // vim: et sts=2 sw=2
+
+#endif
diff --git a/drivers/speex/config.h b/drivers/speex/config.h
index d31382702c..8c48e3b99d 100644
--- a/drivers/speex/config.h
+++ b/drivers/speex/config.h
@@ -1,52 +1,52 @@
-/*
- Copyright (C) 2003 Commonwealth Scientific and Industrial Research
- Organisation (CSIRO) Australia
-
- Redistribution and use in source and binary forms, with or without
- modification, are permitted provided that the following conditions
- are met:
-
- - Redistributions of source code must retain the above copyright
- notice, this list of conditions and the following disclaimer.
-
- - Redistributions in binary form must reproduce the above copyright
- notice, this list of conditions and the following disclaimer in the
- documentation and/or other materials provided with the distribution.
-
- - Neither the name of CSIRO Australia nor the names of its
- contributors may be used to endorse or promote products derived from
- this software without specific prior written permission.
-
- THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
- ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
- LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
- PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE ORGANISATION OR
- CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
- EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
- PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
- PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
- LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
- NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
- SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-*/
-
-#ifndef CONFIG_H
-#define CONFIG_H
-
-/* An inline macro is required for use of the inline keyword as not all C compilers support */
-/* inline. It is officially C99 and C++ only */
-
-
-/* Use only fixed point arithmetic */
-
-//#ifdef _MSC_VER
-//#define inline _inline
-//#endif
-
-#define FIXED_POINT 1
-
-#ifdef _MSC_VER
-#define inline __inline
-#endif
-
-#endif /* ! CONFIG_H */
+/*
+ Copyright (C) 2003 Commonwealth Scientific and Industrial Research
+ Organisation (CSIRO) Australia
+
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions
+ are met:
+
+ - Redistributions of source code must retain the above copyright
+ notice, this list of conditions and the following disclaimer.
+
+ - Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ - Neither the name of CSIRO Australia nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
+ PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE ORGANISATION OR
+ CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
+ EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
+ PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
+ PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
+ LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
+ NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+*/
+
+#ifndef CONFIG_H
+#define CONFIG_H
+
+/* An inline macro is required for use of the inline keyword as not all C compilers support */
+/* inline. It is officially C99 and C++ only */
+
+
+/* Use only fixed point arithmetic */
+
+//#ifdef _MSC_VER
+//#define inline _inline
+//#endif
+
+#define FIXED_POINT 1
+
+#ifdef _MSC_VER
+#define inline __inline
+#endif
+
+#endif /* ! CONFIG_H */
diff --git a/drivers/speex/lsp.h b/drivers/speex/lsp.h
index 648652fb9e..b55bd42f2c 100644
--- a/drivers/speex/lsp.h
+++ b/drivers/speex/lsp.h
@@ -1,64 +1,64 @@
-/*---------------------------------------------------------------------------*\
-Original Copyright
- FILE........: AK2LSPD.H
- TYPE........: Turbo C header file
- COMPANY.....: Voicetronix
- AUTHOR......: James Whitehall
- DATE CREATED: 21/11/95
-
-Modified by Jean-Marc Valin
-
- This file contains functions for converting Linear Prediction
- Coefficients (LPC) to Line Spectral Pair (LSP) and back. Note that the
- LSP coefficients are not in radians format but in the x domain of the
- unit circle.
-
-\*---------------------------------------------------------------------------*/
-/**
- @file lsp.h
- @brief Line Spectral Pair (LSP) functions.
-*/
-/* Speex License:
-
- Redistribution and use in source and binary forms, with or without
- modification, are permitted provided that the following conditions
- are met:
-
- - Redistributions of source code must retain the above copyright
- notice, this list of conditions and the following disclaimer.
-
- - Redistributions in binary form must reproduce the above copyright
- notice, this list of conditions and the following disclaimer in the
- documentation and/or other materials provided with the distribution.
-
- - Neither the name of the Xiph.org Foundation nor the names of its
- contributors may be used to endorse or promote products derived from
- this software without specific prior written permission.
-
- THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
- ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
- LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
- A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR
- CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
- EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
- PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
- PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
- LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
- NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
- SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-*/
-
-#ifndef __AK2LSPD__
-#define __AK2LSPD__
-
-#include "arch.h"
-
-int lpc_to_lsp (spx_coef_t *a, int lpcrdr, spx_lsp_t *freq, int nb, spx_word16_t delta, char *stack);
-void lsp_to_lpc(spx_lsp_t *freq, spx_coef_t *ak, int lpcrdr, char *stack);
-
-/*Added by JMV*/
-void lsp_enforce_margin(spx_lsp_t *lsp, int len, spx_word16_t margin);
-
-void lsp_interpolate(spx_lsp_t *old_lsp, spx_lsp_t *new_lsp, spx_lsp_t *interp_lsp, int len, int subframe, int nb_subframes);
-
-#endif /* __AK2LSPD__ */
+/*---------------------------------------------------------------------------*\
+Original Copyright
+ FILE........: AK2LSPD.H
+ TYPE........: Turbo C header file
+ COMPANY.....: Voicetronix
+ AUTHOR......: James Whitehall
+ DATE CREATED: 21/11/95
+
+Modified by Jean-Marc Valin
+
+ This file contains functions for converting Linear Prediction
+ Coefficients (LPC) to Line Spectral Pair (LSP) and back. Note that the
+ LSP coefficients are not in radians format but in the x domain of the
+ unit circle.
+
+\*---------------------------------------------------------------------------*/
+/**
+ @file lsp.h
+ @brief Line Spectral Pair (LSP) functions.
+*/
+/* Speex License:
+
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions
+ are met:
+
+ - Redistributions of source code must retain the above copyright
+ notice, this list of conditions and the following disclaimer.
+
+ - Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ - Neither the name of the Xiph.org Foundation nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR
+ CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
+ EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
+ PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
+ PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
+ LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
+ NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+*/
+
+#ifndef __AK2LSPD__
+#define __AK2LSPD__
+
+#include "arch.h"
+
+int lpc_to_lsp (spx_coef_t *a, int lpcrdr, spx_lsp_t *freq, int nb, spx_word16_t delta, char *stack);
+void lsp_to_lpc(spx_lsp_t *freq, spx_coef_t *ak, int lpcrdr, char *stack);
+
+/*Added by JMV*/
+void lsp_enforce_margin(spx_lsp_t *lsp, int len, spx_word16_t margin);
+
+void lsp_interpolate(spx_lsp_t *old_lsp, spx_lsp_t *new_lsp, spx_lsp_t *interp_lsp, int len, int subframe, int nb_subframes);
+
+#endif /* __AK2LSPD__ */
diff --git a/drivers/speex/speex_bind.cpp b/drivers/speex/speex_bind.cpp
index 6e9eb638a2..d15bb3da8c 100644
--- a/drivers/speex/speex_bind.cpp
+++ b/drivers/speex/speex_bind.cpp
@@ -1,64 +1,64 @@
-
-#include "memory.h"
-#include "speex_bind.h"
-#include
-#ifdef __cplusplus
-extern "C" {
-#endif
-
-void *speex_alloc (int size) {
-
- uint8_t * mem = (uint8_t*)memalloc(size);
- for(int i=0;i<size;i++)
- mem[i]=0;
- return mem;
-}
-
-void *speex_alloc_scratch (int size) {
-
- return memalloc(size);
-}
-
-void *speex_realloc (void *ptr, int size) {
-
- return memrealloc(ptr,size);
-}
-
-void speex_free (void *ptr) {
-
- memfree(ptr);
-}
-
-void speex_free_scratch (void *ptr) {
-
- memfree(ptr);
-}
-
-void _speex_fatal(const char *str, const char *file, int line) {
-
- _err_print_error("SPEEX ERROR",p_file,p_line,str);
-}
-
-void speex_warning(const char *str) {
-
- _err_print_error("SPEEX WARNING","",0,str);
-}
-
-void speex_warning_int(const char *str, int val) {
-
- _err_print_error("SPEEX WARNING INT","Value",val,str);
-}
-
-void speex_notify(const char *str) {
-
- print_line(str);
-}
-
-void _speex_putc(int ch, void *file) {
-
- // will not putc, no.
-}
-
-#ifdef __cplusplus
-}
-#endif
+
+#include "memory.h"
+#include "speex_bind.h"
+#include
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+void *speex_alloc (int size) {
+
+ uint8_t * mem = (uint8_t*)memalloc(size);
+ for(int i=0;i<size;i++)
+ mem[i]=0;
+ return mem;
+}
+
+void *speex_alloc_scratch (int size) {
+
+ return memalloc(size);
+}
+
+void *speex_realloc (void *ptr, int size) {
+
+ return memrealloc(ptr,size);
+}
+
+void speex_free (void *ptr) {
+
+ memfree(ptr);
+}
+
+void speex_free_scratch (void *ptr) {
+
+ memfree(ptr);
+}
+
+void _speex_fatal(const char *str, const char *file, int line) {
+
+ _err_print_error("SPEEX ERROR",p_file,p_line,str);
+}
+
+void speex_warning(const char *str) {
+
+ _err_print_error("SPEEX WARNING","",0,str);
+}
+
+void speex_warning_int(const char *str, int val) {
+
+ _err_print_error("SPEEX WARNING INT","Value",val,str);
+}
+
+void speex_notify(const char *str) {
+
+ print_line(str);
+}
+
+void _speex_putc(int ch, void *file) {
+
+ // will not putc, no.
+}
+
+#ifdef __cplusplus
+}
+#endif
diff --git a/drivers/speex/speex_bind.h b/drivers/speex/speex_bind.h
index e842960d3c..c928430a33 100644
--- a/drivers/speex/speex_bind.h
+++ b/drivers/speex/speex_bind.h
@@ -1,48 +1,48 @@
-#ifndef SPEEX_BIND_H
-#define SPEEX_BIND_H
-
-#ifdef __cplusplus
-extern "C" {
-#endif
-
-/*
-#define OVERRIDE_SPEEX_ALLOC
-#define OVERRIDE_SPEEX_ALLOC_SCRATCH
-#define OVERRIDE_SPEEX_REALLOC
-#define OVERRIDE_SPEEX_FREE
-#define OVERRIDE_SPEEX_FREE_SCRATCH
-#define OVERRIDE_SPEEX_FATAL
-#define OVERRIDE_SPEEX_WARNING
-#define OVERRIDE_SPEEX_WARNING_INT
-#define OVERRIDE_SPEEX_NOTIFY
-#define OVERRIDE_SPEEX_PUTC
-
-void *speex_alloc (int size);
-void *speex_alloc_scratch (int size);
-void *speex_realloc (void *ptr, int size);
-void speex_free (void *ptr);
-void speex_free_scratch (void *ptr);
-void _speex_fatal(const char *str, const char *file, int line);
-void speex_warning(const char *str);
-void speex_warning_int(const char *str, int val);
-void speex_notify(const char *str);
-void _speex_putc(int ch, void *file);
-
-
-*/
-#define RELEASE
-#define SPEEX_PI 3.14159265358979323846
-
-#ifdef _MSC_VER
-#define SPEEX_INLINE __inline
-#else
-#define SPEEX_INLINE inline
-#endif
-
-
-
-#ifdef __cplusplus
-}
-#endif
-
-#endif // SPEEX_BIND_H
+#ifndef SPEEX_BIND_H
+#define SPEEX_BIND_H
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+/*
+#define OVERRIDE_SPEEX_ALLOC
+#define OVERRIDE_SPEEX_ALLOC_SCRATCH
+#define OVERRIDE_SPEEX_REALLOC
+#define OVERRIDE_SPEEX_FREE
+#define OVERRIDE_SPEEX_FREE_SCRATCH
+#define OVERRIDE_SPEEX_FATAL
+#define OVERRIDE_SPEEX_WARNING
+#define OVERRIDE_SPEEX_WARNING_INT
+#define OVERRIDE_SPEEX_NOTIFY
+#define OVERRIDE_SPEEX_PUTC
+
+void *speex_alloc (int size);
+void *speex_alloc_scratch (int size);
+void *speex_realloc (void *ptr, int size);
+void speex_free (void *ptr);
+void speex_free_scratch (void *ptr);
+void _speex_fatal(const char *str, const char *file, int line);
+void speex_warning(const char *str);
+void speex_warning_int(const char *str, int val);
+void speex_notify(const char *str);
+void _speex_putc(int ch, void *file);
+
+
+*/
+#define RELEASE
+#define SPEEX_PI 3.14159265358979323846
+
+#ifdef _MSC_VER
+#define SPEEX_INLINE __inline
+#else
+#define SPEEX_INLINE inline
+#endif
+
+
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif // SPEEX_BIND_H