summaryrefslogtreecommitdiff
path: root/drivers/vulkan
diff options
context:
space:
mode:
authorRémi Verschelde <rverschelde@gmail.com>2020-02-11 14:01:43 +0100
committerRémi Verschelde <rverschelde@gmail.com>2020-02-11 14:08:44 +0100
commitdb81928e08cb58d5f67908c6dfcf9433e572ffe8 (patch)
treed9a3ec0c72f3a4eda02e16ed883f560e02cf1ccf /drivers/vulkan
parenteb2b1a602247b88b0710a5eaae0146e0afeed265 (diff)
Vulkan: Move thirdparty code out of drivers, style fixes
- `vk_enum_string_helper.h` is a generated file taken from the SDK (Vulkan-ValidationLayers). - `vk_mem_alloc.h` is a library from GPUOpen: https://github.com/GPUOpen-LibrariesAndSDKs/VulkanMemoryAllocator
Diffstat (limited to 'drivers/vulkan')
-rw-r--r--drivers/vulkan/SCsub4
-rw-r--r--drivers/vulkan/rendering_device_vulkan.cpp4
-rw-r--r--drivers/vulkan/rendering_device_vulkan.h4
-rw-r--r--drivers/vulkan/vk_enum_string_helper.h3722
-rw-r--r--drivers/vulkan/vk_mem_alloc.cpp37
-rw-r--r--drivers/vulkan/vk_mem_alloc.h15448
-rw-r--r--drivers/vulkan/vulkan_context.cpp4
-rw-r--r--drivers/vulkan/vulkan_context.h4
8 files changed, 11 insertions, 19216 deletions
diff --git a/drivers/vulkan/SCsub b/drivers/vulkan/SCsub
index 9cf8bb22aa..8d6eb6b199 100644
--- a/drivers/vulkan/SCsub
+++ b/drivers/vulkan/SCsub
@@ -7,7 +7,7 @@ env.add_source_files(env.drivers_sources, "*.cpp")
if env['builtin_vulkan']:
# Use bundled Vulkan headers
thirdparty_dir = "#thirdparty/vulkan"
- env.Prepend(CPPPATH=[thirdparty_dir + "/include", thirdparty_dir + "/loader"])
+ env.Prepend(CPPPATH=[thirdparty_dir, thirdparty_dir + "/include", thirdparty_dir + "/loader"])
# Build Vulkan loader library
env_thirdparty = env.Clone()
@@ -25,6 +25,7 @@ if env['builtin_vulkan']:
"wsi.c",
"extension_manual.c",
]
+ vma_sources = [thirdparty_dir + "/vk_mem_alloc.cpp"]
if env['platform'] == "windows":
loader_sources.append("dirent_on_windows.c")
@@ -59,3 +60,4 @@ if env['builtin_vulkan']:
loader_sources = [thirdparty_dir + "/loader/" + file for file in loader_sources]
env_thirdparty.add_source_files(env.drivers_sources, loader_sources)
+ env_thirdparty.add_source_files(env.drivers_sources, vma_sources)
diff --git a/drivers/vulkan/rendering_device_vulkan.cpp b/drivers/vulkan/rendering_device_vulkan.cpp
index 13a0948687..4582f1c2c1 100644
--- a/drivers/vulkan/rendering_device_vulkan.cpp
+++ b/drivers/vulkan/rendering_device_vulkan.cpp
@@ -5,8 +5,8 @@
/* GODOT ENGINE */
/* https://godotengine.org */
/*************************************************************************/
-/* Copyright (c) 2007-2019 Juan Linietsky, Ariel Manzur. */
-/* Copyright (c) 2014-2019 Godot Engine contributors (cf. AUTHORS.md) */
+/* Copyright (c) 2007-2020 Juan Linietsky, Ariel Manzur. */
+/* Copyright (c) 2014-2020 Godot Engine contributors (cf. AUTHORS.md). */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
diff --git a/drivers/vulkan/rendering_device_vulkan.h b/drivers/vulkan/rendering_device_vulkan.h
index 3c387a7d52..8ef24d319b 100644
--- a/drivers/vulkan/rendering_device_vulkan.h
+++ b/drivers/vulkan/rendering_device_vulkan.h
@@ -5,8 +5,8 @@
/* GODOT ENGINE */
/* https://godotengine.org */
/*************************************************************************/
-/* Copyright (c) 2007-2019 Juan Linietsky, Ariel Manzur. */
-/* Copyright (c) 2014-2019 Godot Engine contributors (cf. AUTHORS.md) */
+/* Copyright (c) 2007-2020 Juan Linietsky, Ariel Manzur. */
+/* Copyright (c) 2014-2020 Godot Engine contributors (cf. AUTHORS.md). */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
diff --git a/drivers/vulkan/vk_enum_string_helper.h b/drivers/vulkan/vk_enum_string_helper.h
deleted file mode 100644
index a0b955e32b..0000000000
--- a/drivers/vulkan/vk_enum_string_helper.h
+++ /dev/null
@@ -1,3722 +0,0 @@
-// *** THIS FILE IS GENERATED - DO NOT EDIT ***
-// See helper_file_generator.py for modifications
-
-
-/***************************************************************************
- *
- * Copyright (c) 2015-2017 The Khronos Group Inc.
- * Copyright (c) 2015-2017 Valve Corporation
- * Copyright (c) 2015-2017 LunarG, Inc.
- * Copyright (c) 2015-2017 Google Inc.
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- *
- * Author: Mark Lobodzinski <mark@lunarg.com>
- * Author: Courtney Goeltzenleuchter <courtneygo@google.com>
- * Author: Tobin Ehlis <tobine@google.com>
- * Author: Chris Forbes <chrisforbes@google.com>
- * Author: John Zulauf<jzulauf@lunarg.com>
- *
- ****************************************************************************/
-
-
-#pragma once
-#ifdef _WIN32
-#pragma warning( disable : 4065 )
-#endif
-
-#include <vulkan/vulkan.h>
-
-
-static inline const char* string_VkPipelineCacheHeaderVersion(VkPipelineCacheHeaderVersion input_value)
-{
- switch ((VkPipelineCacheHeaderVersion)input_value)
- {
- case VK_PIPELINE_CACHE_HEADER_VERSION_ONE:
- return "VK_PIPELINE_CACHE_HEADER_VERSION_ONE";
- default:
- return "Unhandled VkPipelineCacheHeaderVersion";
- }
-}
-
-static inline const char* string_VkResult(VkResult input_value)
-{
- switch ((VkResult)input_value)
- {
- case VK_ERROR_INITIALIZATION_FAILED:
- return "VK_ERROR_INITIALIZATION_FAILED";
- case VK_ERROR_OUT_OF_DEVICE_MEMORY:
- return "VK_ERROR_OUT_OF_DEVICE_MEMORY";
- case VK_ERROR_NOT_PERMITTED_EXT:
- return "VK_ERROR_NOT_PERMITTED_EXT";
- case VK_ERROR_INVALID_EXTERNAL_HANDLE:
- return "VK_ERROR_INVALID_EXTERNAL_HANDLE";
- case VK_NOT_READY:
- return "VK_NOT_READY";
- case VK_ERROR_FEATURE_NOT_PRESENT:
- return "VK_ERROR_FEATURE_NOT_PRESENT";
- case VK_TIMEOUT:
- return "VK_TIMEOUT";
- case VK_ERROR_FRAGMENTED_POOL:
- return "VK_ERROR_FRAGMENTED_POOL";
- case VK_ERROR_LAYER_NOT_PRESENT:
- return "VK_ERROR_LAYER_NOT_PRESENT";
- case VK_ERROR_FRAGMENTATION_EXT:
- return "VK_ERROR_FRAGMENTATION_EXT";
- case VK_ERROR_INCOMPATIBLE_DISPLAY_KHR:
- return "VK_ERROR_INCOMPATIBLE_DISPLAY_KHR";
- case VK_SUCCESS:
- return "VK_SUCCESS";
- case VK_ERROR_INVALID_SHADER_NV:
- return "VK_ERROR_INVALID_SHADER_NV";
- case VK_ERROR_FORMAT_NOT_SUPPORTED:
- return "VK_ERROR_FORMAT_NOT_SUPPORTED";
- case VK_ERROR_SURFACE_LOST_KHR:
- return "VK_ERROR_SURFACE_LOST_KHR";
- case VK_ERROR_VALIDATION_FAILED_EXT:
- return "VK_ERROR_VALIDATION_FAILED_EXT";
- case VK_SUBOPTIMAL_KHR:
- return "VK_SUBOPTIMAL_KHR";
- case VK_ERROR_TOO_MANY_OBJECTS:
- return "VK_ERROR_TOO_MANY_OBJECTS";
- case VK_EVENT_RESET:
- return "VK_EVENT_RESET";
- case VK_ERROR_OUT_OF_DATE_KHR:
- return "VK_ERROR_OUT_OF_DATE_KHR";
- case VK_ERROR_NATIVE_WINDOW_IN_USE_KHR:
- return "VK_ERROR_NATIVE_WINDOW_IN_USE_KHR";
- case VK_ERROR_MEMORY_MAP_FAILED:
- return "VK_ERROR_MEMORY_MAP_FAILED";
- case VK_EVENT_SET:
- return "VK_EVENT_SET";
- case VK_ERROR_INCOMPATIBLE_DRIVER:
- return "VK_ERROR_INCOMPATIBLE_DRIVER";
- case VK_INCOMPLETE:
- return "VK_INCOMPLETE";
- case VK_ERROR_DEVICE_LOST:
- return "VK_ERROR_DEVICE_LOST";
- case VK_ERROR_EXTENSION_NOT_PRESENT:
- return "VK_ERROR_EXTENSION_NOT_PRESENT";
- case VK_ERROR_OUT_OF_POOL_MEMORY:
- return "VK_ERROR_OUT_OF_POOL_MEMORY";
- case VK_ERROR_OUT_OF_HOST_MEMORY:
- return "VK_ERROR_OUT_OF_HOST_MEMORY";
- default:
- return "Unhandled VkResult";
- }
-}
-
-static inline const char* string_VkStructureType(VkStructureType input_value)
-{
- switch ((VkStructureType)input_value)
- {
- case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DESCRIPTOR_INDEXING_PROPERTIES_EXT:
- return "VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DESCRIPTOR_INDEXING_PROPERTIES_EXT";
- case VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER:
- return "VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER";
- case VK_STRUCTURE_TYPE_MEMORY_DEDICATED_ALLOCATE_INFO:
- return "VK_STRUCTURE_TYPE_MEMORY_DEDICATED_ALLOCATE_INFO";
- case VK_STRUCTURE_TYPE_D3D12_FENCE_SUBMIT_INFO_KHR:
- return "VK_STRUCTURE_TYPE_D3D12_FENCE_SUBMIT_INFO_KHR";
- case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PUSH_DESCRIPTOR_PROPERTIES_KHR:
- return "VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PUSH_DESCRIPTOR_PROPERTIES_KHR";
- case VK_STRUCTURE_TYPE_SWAPCHAIN_CREATE_INFO_KHR:
- return "VK_STRUCTURE_TYPE_SWAPCHAIN_CREATE_INFO_KHR";
- case VK_STRUCTURE_TYPE_LOADER_INSTANCE_CREATE_INFO:
- return "VK_STRUCTURE_TYPE_LOADER_INSTANCE_CREATE_INFO";
- case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MEMORY_PROPERTIES_2:
- return "VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MEMORY_PROPERTIES_2";
- case VK_STRUCTURE_TYPE_DEBUG_MARKER_OBJECT_TAG_INFO_EXT:
- return "VK_STRUCTURE_TYPE_DEBUG_MARKER_OBJECT_TAG_INFO_EXT";
- case VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO:
- return "VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO";
- case VK_STRUCTURE_TYPE_SHADER_MODULE_VALIDATION_CACHE_CREATE_INFO_EXT:
- return "VK_STRUCTURE_TYPE_SHADER_MODULE_VALIDATION_CACHE_CREATE_INFO_EXT";
- case VK_STRUCTURE_TYPE_LOADER_DEVICE_CREATE_INFO:
- return "VK_STRUCTURE_TYPE_LOADER_DEVICE_CREATE_INFO";
- case VK_STRUCTURE_TYPE_PIPELINE_SAMPLE_LOCATIONS_STATE_CREATE_INFO_EXT:
- return "VK_STRUCTURE_TYPE_PIPELINE_SAMPLE_LOCATIONS_STATE_CREATE_INFO_EXT";
- case VK_STRUCTURE_TYPE_DEBUG_UTILS_MESSENGER_CALLBACK_DATA_EXT:
- return "VK_STRUCTURE_TYPE_DEBUG_UTILS_MESSENGER_CALLBACK_DATA_EXT";
- case VK_STRUCTURE_TYPE_BIND_IMAGE_PLANE_MEMORY_INFO:
- return "VK_STRUCTURE_TYPE_BIND_IMAGE_PLANE_MEMORY_INFO";
- case VK_STRUCTURE_TYPE_PIPELINE_DISCARD_RECTANGLE_STATE_CREATE_INFO_EXT:
- return "VK_STRUCTURE_TYPE_PIPELINE_DISCARD_RECTANGLE_STATE_CREATE_INFO_EXT";
- case VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_CONSERVATIVE_STATE_CREATE_INFO_EXT:
- return "VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_CONSERVATIVE_STATE_CREATE_INFO_EXT";
- case VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_BINDING_FLAGS_CREATE_INFO_EXT:
- return "VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_BINDING_FLAGS_CREATE_INFO_EXT";
- case VK_STRUCTURE_TYPE_PIPELINE_CACHE_CREATE_INFO:
- return "VK_STRUCTURE_TYPE_PIPELINE_CACHE_CREATE_INFO";
- case VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_CREATE_INFO:
- return "VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_CREATE_INFO";
- case VK_STRUCTURE_TYPE_MEMORY_REQUIREMENTS_2:
- return "VK_STRUCTURE_TYPE_MEMORY_REQUIREMENTS_2";
- case VK_STRUCTURE_TYPE_EXPORT_MEMORY_ALLOCATE_INFO_NV:
- return "VK_STRUCTURE_TYPE_EXPORT_MEMORY_ALLOCATE_INFO_NV";
- case VK_STRUCTURE_TYPE_IMAGE_PLANE_MEMORY_REQUIREMENTS_INFO:
- return "VK_STRUCTURE_TYPE_IMAGE_PLANE_MEMORY_REQUIREMENTS_INFO";
- case VK_STRUCTURE_TYPE_IMPORT_MEMORY_WIN32_HANDLE_INFO_NV:
- return "VK_STRUCTURE_TYPE_IMPORT_MEMORY_WIN32_HANDLE_INFO_NV";
- case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLER_FILTER_MINMAX_PROPERTIES_EXT:
- return "VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLER_FILTER_MINMAX_PROPERTIES_EXT";
- case VK_STRUCTURE_TYPE_MULTISAMPLE_PROPERTIES_EXT:
- return "VK_STRUCTURE_TYPE_MULTISAMPLE_PROPERTIES_EXT";
- case VK_STRUCTURE_TYPE_BIND_SPARSE_INFO:
- return "VK_STRUCTURE_TYPE_BIND_SPARSE_INFO";
- case VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO:
- return "VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO";
- case VK_STRUCTURE_TYPE_DEVICE_QUEUE_INFO_2:
- return "VK_STRUCTURE_TYPE_DEVICE_QUEUE_INFO_2";
- case VK_STRUCTURE_TYPE_IMPORT_FENCE_FD_INFO_KHR:
- return "VK_STRUCTURE_TYPE_IMPORT_FENCE_FD_INFO_KHR";
- case VK_STRUCTURE_TYPE_DEBUG_REPORT_CALLBACK_CREATE_INFO_EXT:
- return "VK_STRUCTURE_TYPE_DEBUG_REPORT_CALLBACK_CREATE_INFO_EXT";
- case VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO:
- return "VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO";
- case VK_STRUCTURE_TYPE_MEMORY_GET_FD_INFO_KHR:
- return "VK_STRUCTURE_TYPE_MEMORY_GET_FD_INFO_KHR";
- case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_PROPERTIES:
- return "VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_PROPERTIES";
- case VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO:
- return "VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO";
- case VK_STRUCTURE_TYPE_FENCE_GET_FD_INFO_KHR:
- return "VK_STRUCTURE_TYPE_FENCE_GET_FD_INFO_KHR";
- case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SURFACE_INFO_2_KHR:
- return "VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SURFACE_INFO_2_KHR";
- case VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO:
- return "VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO";
- case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROTECTED_MEMORY_FEATURES:
- return "VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROTECTED_MEMORY_FEATURES";
- case VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO:
- return "VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO";
- case VK_STRUCTURE_TYPE_MEMORY_HOST_POINTER_PROPERTIES_EXT:
- return "VK_STRUCTURE_TYPE_MEMORY_HOST_POINTER_PROPERTIES_EXT";
- case VK_STRUCTURE_TYPE_APPLICATION_INFO:
- return "VK_STRUCTURE_TYPE_APPLICATION_INFO";
- case VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO:
- return "VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO";
- case VK_STRUCTURE_TYPE_EXPORT_MEMORY_WIN32_HANDLE_INFO_KHR:
- return "VK_STRUCTURE_TYPE_EXPORT_MEMORY_WIN32_HANDLE_INFO_KHR";
- case VK_STRUCTURE_TYPE_DEVICE_GROUP_BIND_SPARSE_INFO:
- return "VK_STRUCTURE_TYPE_DEVICE_GROUP_BIND_SPARSE_INFO";
- case VK_STRUCTURE_TYPE_DISPLAY_EVENT_INFO_EXT:
- return "VK_STRUCTURE_TYPE_DISPLAY_EVENT_INFO_EXT";
- case VK_STRUCTURE_TYPE_DEBUG_UTILS_OBJECT_NAME_INFO_EXT:
- return "VK_STRUCTURE_TYPE_DEBUG_UTILS_OBJECT_NAME_INFO_EXT";
- case VK_STRUCTURE_TYPE_EXTERNAL_BUFFER_PROPERTIES:
- return "VK_STRUCTURE_TYPE_EXTERNAL_BUFFER_PROPERTIES";
- case VK_STRUCTURE_TYPE_DEDICATED_ALLOCATION_IMAGE_CREATE_INFO_NV:
- return "VK_STRUCTURE_TYPE_DEDICATED_ALLOCATION_IMAGE_CREATE_INFO_NV";
- case VK_STRUCTURE_TYPE_VALIDATION_FLAGS_EXT:
- return "VK_STRUCTURE_TYPE_VALIDATION_FLAGS_EXT";
- case VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_DIVISOR_STATE_CREATE_INFO_EXT:
- return "VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_DIVISOR_STATE_CREATE_INFO_EXT";
- case VK_STRUCTURE_TYPE_EVENT_CREATE_INFO:
- return "VK_STRUCTURE_TYPE_EVENT_CREATE_INFO";
- case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROTECTED_MEMORY_PROPERTIES:
- return "VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROTECTED_MEMORY_PROPERTIES";
- case VK_STRUCTURE_TYPE_MEMORY_FD_PROPERTIES_KHR:
- return "VK_STRUCTURE_TYPE_MEMORY_FD_PROPERTIES_KHR";
- case VK_STRUCTURE_TYPE_DEVICE_GENERATED_COMMANDS_LIMITS_NVX:
- return "VK_STRUCTURE_TYPE_DEVICE_GENERATED_COMMANDS_LIMITS_NVX";
- case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_CORE_PROPERTIES_AMD:
- return "VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_CORE_PROPERTIES_AMD";
- case VK_STRUCTURE_TYPE_IMPORT_MEMORY_HOST_POINTER_INFO_EXT:
- return "VK_STRUCTURE_TYPE_IMPORT_MEMORY_HOST_POINTER_INFO_EXT";
- case VK_STRUCTURE_TYPE_DEDICATED_ALLOCATION_BUFFER_CREATE_INFO_NV:
- return "VK_STRUCTURE_TYPE_DEDICATED_ALLOCATION_BUFFER_CREATE_INFO_NV";
- case VK_STRUCTURE_TYPE_RENDER_PASS_SAMPLE_LOCATIONS_BEGIN_INFO_EXT:
- return "VK_STRUCTURE_TYPE_RENDER_PASS_SAMPLE_LOCATIONS_BEGIN_INFO_EXT";
- case VK_STRUCTURE_TYPE_EXTERNAL_MEMORY_BUFFER_CREATE_INFO:
- return "VK_STRUCTURE_TYPE_EXTERNAL_MEMORY_BUFFER_CREATE_INFO";
- case VK_STRUCTURE_TYPE_IMPORT_FENCE_WIN32_HANDLE_INFO_KHR:
- return "VK_STRUCTURE_TYPE_IMPORT_FENCE_WIN32_HANDLE_INFO_KHR";
- case VK_STRUCTURE_TYPE_VI_SURFACE_CREATE_INFO_NN:
- return "VK_STRUCTURE_TYPE_VI_SURFACE_CREATE_INFO_NN";
- case VK_STRUCTURE_TYPE_EXTERNAL_MEMORY_IMAGE_CREATE_INFO:
- return "VK_STRUCTURE_TYPE_EXTERNAL_MEMORY_IMAGE_CREATE_INFO";
- case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DESCRIPTOR_INDEXING_FEATURES_EXT:
- return "VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DESCRIPTOR_INDEXING_FEATURES_EXT";
- case VK_STRUCTURE_TYPE_TEXTURE_LOD_GATHER_FORMAT_PROPERTIES_AMD:
- return "VK_STRUCTURE_TYPE_TEXTURE_LOD_GATHER_FORMAT_PROPERTIES_AMD";
- case VK_STRUCTURE_TYPE_XLIB_SURFACE_CREATE_INFO_KHR:
- return "VK_STRUCTURE_TYPE_XLIB_SURFACE_CREATE_INFO_KHR";
- case VK_STRUCTURE_TYPE_WIN32_SURFACE_CREATE_INFO_KHR:
- return "VK_STRUCTURE_TYPE_WIN32_SURFACE_CREATE_INFO_KHR";
- case VK_STRUCTURE_TYPE_SURFACE_FORMAT_2_KHR:
- return "VK_STRUCTURE_TYPE_SURFACE_FORMAT_2_KHR";
- case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VARIABLE_POINTER_FEATURES:
- return "VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VARIABLE_POINTER_FEATURES";
- case VK_STRUCTURE_TYPE_DISPLAY_PRESENT_INFO_KHR:
- return "VK_STRUCTURE_TYPE_DISPLAY_PRESENT_INFO_KHR";
- case VK_STRUCTURE_TYPE_QUERY_POOL_CREATE_INFO:
- return "VK_STRUCTURE_TYPE_QUERY_POOL_CREATE_INFO";
- case VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_W_SCALING_STATE_CREATE_INFO_NV:
- return "VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_W_SCALING_STATE_CREATE_INFO_NV";
- case VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO:
- return "VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO";
- case VK_STRUCTURE_TYPE_DISPLAY_POWER_INFO_EXT:
- return "VK_STRUCTURE_TYPE_DISPLAY_POWER_INFO_EXT";
- case VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO:
- return "VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO";
- case VK_STRUCTURE_TYPE_EXTERNAL_MEMORY_IMAGE_CREATE_INFO_NV:
- return "VK_STRUCTURE_TYPE_EXTERNAL_MEMORY_IMAGE_CREATE_INFO_NV";
- case VK_STRUCTURE_TYPE_DEVICE_QUEUE_GLOBAL_PRIORITY_CREATE_INFO_EXT:
- return "VK_STRUCTURE_TYPE_DEVICE_QUEUE_GLOBAL_PRIORITY_CREATE_INFO_EXT";
- case VK_STRUCTURE_TYPE_BIND_IMAGE_MEMORY_SWAPCHAIN_INFO_KHR:
- return "VK_STRUCTURE_TYPE_BIND_IMAGE_MEMORY_SWAPCHAIN_INFO_KHR";
- case VK_STRUCTURE_TYPE_BIND_BUFFER_MEMORY_INFO:
- return "VK_STRUCTURE_TYPE_BIND_BUFFER_MEMORY_INFO";
- case VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_SWIZZLE_STATE_CREATE_INFO_NV:
- return "VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_SWIZZLE_STATE_CREATE_INFO_NV";
- case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_POINT_CLIPPING_PROPERTIES:
- return "VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_POINT_CLIPPING_PROPERTIES";
- case VK_STRUCTURE_TYPE_DEVICE_GROUP_PRESENT_CAPABILITIES_KHR:
- return "VK_STRUCTURE_TYPE_DEVICE_GROUP_PRESENT_CAPABILITIES_KHR";
- case VK_STRUCTURE_TYPE_OBJECT_TABLE_CREATE_INFO_NVX:
- return "VK_STRUCTURE_TYPE_OBJECT_TABLE_CREATE_INFO_NVX";
- case VK_STRUCTURE_TYPE_IMAGE_MEMORY_REQUIREMENTS_INFO_2:
- return "VK_STRUCTURE_TYPE_IMAGE_MEMORY_REQUIREMENTS_INFO_2";
- case VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO:
- return "VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO";
- case VK_STRUCTURE_TYPE_ACQUIRE_NEXT_IMAGE_INFO_KHR:
- return "VK_STRUCTURE_TYPE_ACQUIRE_NEXT_IMAGE_INFO_KHR";
- case VK_STRUCTURE_TYPE_DEDICATED_ALLOCATION_MEMORY_ALLOCATE_INFO_NV:
- return "VK_STRUCTURE_TYPE_DEDICATED_ALLOCATION_MEMORY_ALLOCATE_INFO_NV";
- case VK_STRUCTURE_TYPE_SUBMIT_INFO:
- return "VK_STRUCTURE_TYPE_SUBMIT_INFO";
- case VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_ADVANCED_STATE_CREATE_INFO_EXT:
- return "VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_ADVANCED_STATE_CREATE_INFO_EXT";
- case VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_RASTERIZATION_ORDER_AMD:
- return "VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_RASTERIZATION_ORDER_AMD";
- case VK_STRUCTURE_TYPE_DEVICE_EVENT_INFO_EXT:
- return "VK_STRUCTURE_TYPE_DEVICE_EVENT_INFO_EXT";
- case VK_STRUCTURE_TYPE_SAMPLER_YCBCR_CONVERSION_IMAGE_FORMAT_PROPERTIES:
- return "VK_STRUCTURE_TYPE_SAMPLER_YCBCR_CONVERSION_IMAGE_FORMAT_PROPERTIES";
- case VK_STRUCTURE_TYPE_DEBUG_UTILS_OBJECT_TAG_INFO_EXT:
- return "VK_STRUCTURE_TYPE_DEBUG_UTILS_OBJECT_TAG_INFO_EXT";
- case VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO:
- return "VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO";
- case VK_STRUCTURE_TYPE_EXPORT_MEMORY_WIN32_HANDLE_INFO_NV:
- return "VK_STRUCTURE_TYPE_EXPORT_MEMORY_WIN32_HANDLE_INFO_NV";
- case VK_STRUCTURE_TYPE_SEMAPHORE_GET_FD_INFO_KHR:
- return "VK_STRUCTURE_TYPE_SEMAPHORE_GET_FD_INFO_KHR";
- case VK_STRUCTURE_TYPE_IMPORT_MEMORY_FD_INFO_KHR:
- return "VK_STRUCTURE_TYPE_IMPORT_MEMORY_FD_INFO_KHR";
- case VK_STRUCTURE_TYPE_PRESENT_REGIONS_KHR:
- return "VK_STRUCTURE_TYPE_PRESENT_REGIONS_KHR";
- case VK_STRUCTURE_TYPE_IMAGE_SWAPCHAIN_CREATE_INFO_KHR:
- return "VK_STRUCTURE_TYPE_IMAGE_SWAPCHAIN_CREATE_INFO_KHR";
- case VK_STRUCTURE_TYPE_ANDROID_HARDWARE_BUFFER_USAGE_ANDROID:
- return "VK_STRUCTURE_TYPE_ANDROID_HARDWARE_BUFFER_USAGE_ANDROID";
- case VK_STRUCTURE_TYPE_SAMPLER_REDUCTION_MODE_CREATE_INFO_EXT:
- return "VK_STRUCTURE_TYPE_SAMPLER_REDUCTION_MODE_CREATE_INFO_EXT";
- case VK_STRUCTURE_TYPE_FENCE_CREATE_INFO:
- return "VK_STRUCTURE_TYPE_FENCE_CREATE_INFO";
- case VK_STRUCTURE_TYPE_DESCRIPTOR_SET_VARIABLE_DESCRIPTOR_COUNT_ALLOCATE_INFO_EXT:
- return "VK_STRUCTURE_TYPE_DESCRIPTOR_SET_VARIABLE_DESCRIPTOR_COUNT_ALLOCATE_INFO_EXT";
- case VK_STRUCTURE_TYPE_EXPORT_MEMORY_ALLOCATE_INFO:
- return "VK_STRUCTURE_TYPE_EXPORT_MEMORY_ALLOCATE_INFO";
- case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_BLEND_OPERATION_ADVANCED_PROPERTIES_EXT:
- return "VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_BLEND_OPERATION_ADVANCED_PROPERTIES_EXT";
- case VK_STRUCTURE_TYPE_PROTECTED_SUBMIT_INFO:
- return "VK_STRUCTURE_TYPE_PROTECTED_SUBMIT_INFO";
- case VK_STRUCTURE_TYPE_WAYLAND_SURFACE_CREATE_INFO_KHR:
- return "VK_STRUCTURE_TYPE_WAYLAND_SURFACE_CREATE_INFO_KHR";
- case VK_STRUCTURE_TYPE_DISPLAY_MODE_CREATE_INFO_KHR:
- return "VK_STRUCTURE_TYPE_DISPLAY_MODE_CREATE_INFO_KHR";
- case VK_STRUCTURE_TYPE_INDIRECT_COMMANDS_LAYOUT_CREATE_INFO_NVX:
- return "VK_STRUCTURE_TYPE_INDIRECT_COMMANDS_LAYOUT_CREATE_INFO_NVX";
- case VK_STRUCTURE_TYPE_ANDROID_HARDWARE_BUFFER_FORMAT_PROPERTIES_ANDROID:
- return "VK_STRUCTURE_TYPE_ANDROID_HARDWARE_BUFFER_FORMAT_PROPERTIES_ANDROID";
- case VK_STRUCTURE_TYPE_IMPORT_SEMAPHORE_WIN32_HANDLE_INFO_KHR:
- return "VK_STRUCTURE_TYPE_IMPORT_SEMAPHORE_WIN32_HANDLE_INFO_KHR";
- case VK_STRUCTURE_TYPE_MEMORY_GET_ANDROID_HARDWARE_BUFFER_INFO_ANDROID:
- return "VK_STRUCTURE_TYPE_MEMORY_GET_ANDROID_HARDWARE_BUFFER_INFO_ANDROID";
- case VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO:
- return "VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO";
- case VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO:
- return "VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO";
- case VK_STRUCTURE_TYPE_BIND_BUFFER_MEMORY_DEVICE_GROUP_INFO:
- return "VK_STRUCTURE_TYPE_BIND_BUFFER_MEMORY_DEVICE_GROUP_INFO";
- case VK_STRUCTURE_TYPE_EXPORT_SEMAPHORE_CREATE_INFO:
- return "VK_STRUCTURE_TYPE_EXPORT_SEMAPHORE_CREATE_INFO";
- case VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO:
- return "VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO";
- case VK_STRUCTURE_TYPE_EXPORT_SEMAPHORE_WIN32_HANDLE_INFO_KHR:
- return "VK_STRUCTURE_TYPE_EXPORT_SEMAPHORE_WIN32_HANDLE_INFO_KHR";
- case VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO:
- return "VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO";
- case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_FEATURES:
- return "VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_FEATURES";
- case VK_STRUCTURE_TYPE_EXPORT_FENCE_WIN32_HANDLE_INFO_KHR:
- return "VK_STRUCTURE_TYPE_EXPORT_FENCE_WIN32_HANDLE_INFO_KHR";
- case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_PER_VIEW_ATTRIBUTES_PROPERTIES_NVX:
- return "VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_PER_VIEW_ATTRIBUTES_PROPERTIES_NVX";
- case VK_STRUCTURE_TYPE_CMD_PROCESS_COMMANDS_INFO_NVX:
- return "VK_STRUCTURE_TYPE_CMD_PROCESS_COMMANDS_INFO_NVX";
- case VK_STRUCTURE_TYPE_ANDROID_SURFACE_CREATE_INFO_KHR:
- return "VK_STRUCTURE_TYPE_ANDROID_SURFACE_CREATE_INFO_KHR";
- case VK_STRUCTURE_TYPE_MAPPED_MEMORY_RANGE:
- return "VK_STRUCTURE_TYPE_MAPPED_MEMORY_RANGE";
- case VK_STRUCTURE_TYPE_PRESENT_INFO_KHR:
- return "VK_STRUCTURE_TYPE_PRESENT_INFO_KHR";
- case VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO:
- return "VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO";
- case VK_STRUCTURE_TYPE_EXPORT_FENCE_CREATE_INFO:
- return "VK_STRUCTURE_TYPE_EXPORT_FENCE_CREATE_INFO";
- case VK_STRUCTURE_TYPE_PRESENT_TIMES_INFO_GOOGLE:
- return "VK_STRUCTURE_TYPE_PRESENT_TIMES_INFO_GOOGLE";
- case VK_STRUCTURE_TYPE_PIPELINE_DEPTH_STENCIL_STATE_CREATE_INFO:
- return "VK_STRUCTURE_TYPE_PIPELINE_DEPTH_STENCIL_STATE_CREATE_INFO";
- case VK_STRUCTURE_TYPE_SAMPLER_YCBCR_CONVERSION_INFO:
- return "VK_STRUCTURE_TYPE_SAMPLER_YCBCR_CONVERSION_INFO";
- case VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO:
- return "VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO";
- case VK_STRUCTURE_TYPE_PIPELINE_COVERAGE_TO_COLOR_STATE_CREATE_INFO_NV:
- return "VK_STRUCTURE_TYPE_PIPELINE_COVERAGE_TO_COLOR_STATE_CREATE_INFO_NV";
- case VK_STRUCTURE_TYPE_COMPUTE_PIPELINE_CREATE_INFO:
- return "VK_STRUCTURE_TYPE_COMPUTE_PIPELINE_CREATE_INFO";
- case VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO:
- return "VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO";
- case VK_STRUCTURE_TYPE_DEBUG_MARKER_MARKER_INFO_EXT:
- return "VK_STRUCTURE_TYPE_DEBUG_MARKER_MARKER_INFO_EXT";
- case VK_STRUCTURE_TYPE_IOS_SURFACE_CREATE_INFO_MVK:
- return "VK_STRUCTURE_TYPE_IOS_SURFACE_CREATE_INFO_MVK";
- case VK_STRUCTURE_TYPE_SURFACE_CAPABILITIES_2_KHR:
- return "VK_STRUCTURE_TYPE_SURFACE_CAPABILITIES_2_KHR";
- case VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO:
- return "VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO";
- case VK_STRUCTURE_TYPE_BUFFER_MEMORY_BARRIER:
- return "VK_STRUCTURE_TYPE_BUFFER_MEMORY_BARRIER";
- case VK_STRUCTURE_TYPE_IMAGE_VIEW_USAGE_CREATE_INFO:
- return "VK_STRUCTURE_TYPE_IMAGE_VIEW_USAGE_CREATE_INFO";
- case VK_STRUCTURE_TYPE_MEMORY_WIN32_HANDLE_PROPERTIES_KHR:
- return "VK_STRUCTURE_TYPE_MEMORY_WIN32_HANDLE_PROPERTIES_KHR";
- case VK_STRUCTURE_TYPE_QUEUE_FAMILY_PROPERTIES_2:
- return "VK_STRUCTURE_TYPE_QUEUE_FAMILY_PROPERTIES_2";
- case VK_STRUCTURE_TYPE_RENDER_PASS_INPUT_ATTACHMENT_ASPECT_CREATE_INFO:
- return "VK_STRUCTURE_TYPE_RENDER_PASS_INPUT_ATTACHMENT_ASPECT_CREATE_INFO";
- case VK_STRUCTURE_TYPE_BUFFER_VIEW_CREATE_INFO:
- return "VK_STRUCTURE_TYPE_BUFFER_VIEW_CREATE_INFO";
- case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTERNAL_BUFFER_INFO:
- return "VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTERNAL_BUFFER_INFO";
- case VK_STRUCTURE_TYPE_DEVICE_GROUP_PRESENT_INFO_KHR:
- return "VK_STRUCTURE_TYPE_DEVICE_GROUP_PRESENT_INFO_KHR";
- case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_IMAGE_FORMAT_INFO_2:
- return "VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_IMAGE_FORMAT_INFO_2";
- case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_BLEND_OPERATION_ADVANCED_FEATURES_EXT:
- return "VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_BLEND_OPERATION_ADVANCED_FEATURES_EXT";
- case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLER_YCBCR_CONVERSION_FEATURES:
- return "VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLER_YCBCR_CONVERSION_FEATURES";
- case VK_STRUCTURE_TYPE_HDR_METADATA_EXT:
- return "VK_STRUCTURE_TYPE_HDR_METADATA_EXT";
- case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROPERTIES_2:
- return "VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROPERTIES_2";
- case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SPARSE_IMAGE_FORMAT_INFO_2:
- return "VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SPARSE_IMAGE_FORMAT_INFO_2";
- case VK_STRUCTURE_TYPE_EXTERNAL_SEMAPHORE_PROPERTIES:
- return "VK_STRUCTURE_TYPE_EXTERNAL_SEMAPHORE_PROPERTIES";
- case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_16BIT_STORAGE_FEATURES:
- return "VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_16BIT_STORAGE_FEATURES";
- case VK_STRUCTURE_TYPE_SPARSE_IMAGE_MEMORY_REQUIREMENTS_2:
- return "VK_STRUCTURE_TYPE_SPARSE_IMAGE_MEMORY_REQUIREMENTS_2";
- case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTERNAL_FENCE_INFO:
- return "VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTERNAL_FENCE_INFO";
- case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VERTEX_ATTRIBUTE_DIVISOR_PROPERTIES_EXT:
- return "VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VERTEX_ATTRIBUTE_DIVISOR_PROPERTIES_EXT";
- case VK_STRUCTURE_TYPE_RENDER_PASS_MULTIVIEW_CREATE_INFO:
- return "VK_STRUCTURE_TYPE_RENDER_PASS_MULTIVIEW_CREATE_INFO";
- case VK_STRUCTURE_TYPE_DISPLAY_SURFACE_CREATE_INFO_KHR:
- return "VK_STRUCTURE_TYPE_DISPLAY_SURFACE_CREATE_INFO_KHR";
- case VK_STRUCTURE_TYPE_VALIDATION_CACHE_CREATE_INFO_EXT:
- return "VK_STRUCTURE_TYPE_VALIDATION_CACHE_CREATE_INFO_EXT";
- case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTERNAL_IMAGE_FORMAT_INFO:
- return "VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTERNAL_IMAGE_FORMAT_INFO";
- case VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO:
- return "VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO";
- case VK_STRUCTURE_TYPE_DEVICE_GROUP_SUBMIT_INFO:
- return "VK_STRUCTURE_TYPE_DEVICE_GROUP_SUBMIT_INFO";
- case VK_STRUCTURE_TYPE_EXTERNAL_IMAGE_FORMAT_PROPERTIES:
- return "VK_STRUCTURE_TYPE_EXTERNAL_IMAGE_FORMAT_PROPERTIES";
- case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLE_LOCATIONS_PROPERTIES_EXT:
- return "VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLE_LOCATIONS_PROPERTIES_EXT";
- case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MAINTENANCE_3_PROPERTIES:
- return "VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MAINTENANCE_3_PROPERTIES";
- case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_CONSERVATIVE_RASTERIZATION_PROPERTIES_EXT:
- return "VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_CONSERVATIVE_RASTERIZATION_PROPERTIES_EXT";
- case VK_STRUCTURE_TYPE_SAMPLER_YCBCR_CONVERSION_CREATE_INFO:
- return "VK_STRUCTURE_TYPE_SAMPLER_YCBCR_CONVERSION_CREATE_INFO";
- case VK_STRUCTURE_TYPE_FENCE_GET_WIN32_HANDLE_INFO_KHR:
- return "VK_STRUCTURE_TYPE_FENCE_GET_WIN32_HANDLE_INFO_KHR";
- case VK_STRUCTURE_TYPE_CMD_RESERVE_SPACE_FOR_COMMANDS_INFO_NVX:
- return "VK_STRUCTURE_TYPE_CMD_RESERVE_SPACE_FOR_COMMANDS_INFO_NVX";
- case VK_STRUCTURE_TYPE_IMPORT_MEMORY_WIN32_HANDLE_INFO_KHR:
- return "VK_STRUCTURE_TYPE_IMPORT_MEMORY_WIN32_HANDLE_INFO_KHR";
- case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTERNAL_MEMORY_HOST_PROPERTIES_EXT:
- return "VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTERNAL_MEMORY_HOST_PROPERTIES_EXT";
- case VK_STRUCTURE_TYPE_DEVICE_GROUP_COMMAND_BUFFER_BEGIN_INFO:
- return "VK_STRUCTURE_TYPE_DEVICE_GROUP_COMMAND_BUFFER_BEGIN_INFO";
- case VK_STRUCTURE_TYPE_PIPELINE_TESSELLATION_DOMAIN_ORIGIN_STATE_CREATE_INFO:
- return "VK_STRUCTURE_TYPE_PIPELINE_TESSELLATION_DOMAIN_ORIGIN_STATE_CREATE_INFO";
- case VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS:
- return "VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS";
- case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ID_PROPERTIES:
- return "VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ID_PROPERTIES";
- case VK_STRUCTURE_TYPE_FORMAT_PROPERTIES_2:
- return "VK_STRUCTURE_TYPE_FORMAT_PROPERTIES_2";
- case VK_STRUCTURE_TYPE_DEVICE_GROUP_SWAPCHAIN_CREATE_INFO_KHR:
- return "VK_STRUCTURE_TYPE_DEVICE_GROUP_SWAPCHAIN_CREATE_INFO_KHR";
- case VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO:
- return "VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO";
- case VK_STRUCTURE_TYPE_MEMORY_BARRIER:
- return "VK_STRUCTURE_TYPE_MEMORY_BARRIER";
- case VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO:
- return "VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO";
- case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTERNAL_SEMAPHORE_INFO:
- return "VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTERNAL_SEMAPHORE_INFO";
- case VK_STRUCTURE_TYPE_SURFACE_CAPABILITIES_2_EXT:
- return "VK_STRUCTURE_TYPE_SURFACE_CAPABILITIES_2_EXT";
- case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SUBGROUP_PROPERTIES:
- return "VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SUBGROUP_PROPERTIES";
- case VK_STRUCTURE_TYPE_IMAGE_FORMAT_PROPERTIES_2:
- return "VK_STRUCTURE_TYPE_IMAGE_FORMAT_PROPERTIES_2";
- case VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO:
- return "VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO";
- case VK_STRUCTURE_TYPE_XCB_SURFACE_CREATE_INFO_KHR:
- return "VK_STRUCTURE_TYPE_XCB_SURFACE_CREATE_INFO_KHR";
- case VK_STRUCTURE_TYPE_DEBUG_UTILS_LABEL_EXT:
- return "VK_STRUCTURE_TYPE_DEBUG_UTILS_LABEL_EXT";
- case VK_STRUCTURE_TYPE_IMPORT_ANDROID_HARDWARE_BUFFER_INFO_ANDROID:
- return "VK_STRUCTURE_TYPE_IMPORT_ANDROID_HARDWARE_BUFFER_INFO_ANDROID";
- case VK_STRUCTURE_TYPE_DEBUG_UTILS_MESSENGER_CREATE_INFO_EXT:
- return "VK_STRUCTURE_TYPE_DEBUG_UTILS_MESSENGER_CREATE_INFO_EXT";
- case VK_STRUCTURE_TYPE_EXTERNAL_FENCE_PROPERTIES:
- return "VK_STRUCTURE_TYPE_EXTERNAL_FENCE_PROPERTIES";
- case VK_STRUCTURE_TYPE_SPARSE_IMAGE_FORMAT_PROPERTIES_2:
- return "VK_STRUCTURE_TYPE_SPARSE_IMAGE_FORMAT_PROPERTIES_2";
- case VK_STRUCTURE_TYPE_WIN32_KEYED_MUTEX_ACQUIRE_RELEASE_INFO_NV:
- return "VK_STRUCTURE_TYPE_WIN32_KEYED_MUTEX_ACQUIRE_RELEASE_INFO_NV";
- case VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO:
- return "VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO";
- case VK_STRUCTURE_TYPE_DESCRIPTOR_SET_VARIABLE_DESCRIPTOR_COUNT_LAYOUT_SUPPORT_EXT:
- return "VK_STRUCTURE_TYPE_DESCRIPTOR_SET_VARIABLE_DESCRIPTOR_COUNT_LAYOUT_SUPPORT_EXT";
- case VK_STRUCTURE_TYPE_COMMAND_BUFFER_INHERITANCE_INFO:
- return "VK_STRUCTURE_TYPE_COMMAND_BUFFER_INHERITANCE_INFO";
- case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DISCARD_RECTANGLE_PROPERTIES_EXT:
- return "VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DISCARD_RECTANGLE_PROPERTIES_EXT";
- case VK_STRUCTURE_TYPE_DEVICE_GROUP_RENDER_PASS_BEGIN_INFO:
- return "VK_STRUCTURE_TYPE_DEVICE_GROUP_RENDER_PASS_BEGIN_INFO";
- case VK_STRUCTURE_TYPE_BIND_IMAGE_MEMORY_DEVICE_GROUP_INFO:
- return "VK_STRUCTURE_TYPE_BIND_IMAGE_MEMORY_DEVICE_GROUP_INFO";
- case VK_STRUCTURE_TYPE_DEVICE_GROUP_DEVICE_CREATE_INFO:
- return "VK_STRUCTURE_TYPE_DEVICE_GROUP_DEVICE_CREATE_INFO";
- case VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO:
- return "VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO";
- case VK_STRUCTURE_TYPE_PIPELINE_TESSELLATION_STATE_CREATE_INFO:
- return "VK_STRUCTURE_TYPE_PIPELINE_TESSELLATION_STATE_CREATE_INFO";
- case VK_STRUCTURE_TYPE_DEBUG_MARKER_OBJECT_NAME_INFO_EXT:
- return "VK_STRUCTURE_TYPE_DEBUG_MARKER_OBJECT_NAME_INFO_EXT";
- case VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_SUPPORT:
- return "VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_SUPPORT";
- case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_GROUP_PROPERTIES:
- return "VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_GROUP_PROPERTIES";
- case VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_FLAGS_INFO:
- return "VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_FLAGS_INFO";
- case VK_STRUCTURE_TYPE_WIN32_KEYED_MUTEX_ACQUIRE_RELEASE_INFO_KHR:
- return "VK_STRUCTURE_TYPE_WIN32_KEYED_MUTEX_ACQUIRE_RELEASE_INFO_KHR";
- case VK_STRUCTURE_TYPE_SWAPCHAIN_COUNTER_CREATE_INFO_EXT:
- return "VK_STRUCTURE_TYPE_SWAPCHAIN_COUNTER_CREATE_INFO_EXT";
- case VK_STRUCTURE_TYPE_SHARED_PRESENT_SURFACE_CAPABILITIES_KHR:
- return "VK_STRUCTURE_TYPE_SHARED_PRESENT_SURFACE_CAPABILITIES_KHR";
- case VK_STRUCTURE_TYPE_SAMPLER_CREATE_INFO:
- return "VK_STRUCTURE_TYPE_SAMPLER_CREATE_INFO";
- case VK_STRUCTURE_TYPE_SEMAPHORE_GET_WIN32_HANDLE_INFO_KHR:
- return "VK_STRUCTURE_TYPE_SEMAPHORE_GET_WIN32_HANDLE_INFO_KHR";
- case VK_STRUCTURE_TYPE_COPY_DESCRIPTOR_SET:
- return "VK_STRUCTURE_TYPE_COPY_DESCRIPTOR_SET";
- case VK_STRUCTURE_TYPE_MEMORY_GET_WIN32_HANDLE_INFO_KHR:
- return "VK_STRUCTURE_TYPE_MEMORY_GET_WIN32_HANDLE_INFO_KHR";
- case VK_STRUCTURE_TYPE_PIPELINE_COVERAGE_MODULATION_STATE_CREATE_INFO_NV:
- return "VK_STRUCTURE_TYPE_PIPELINE_COVERAGE_MODULATION_STATE_CREATE_INFO_NV";
- case VK_STRUCTURE_TYPE_DESCRIPTOR_UPDATE_TEMPLATE_CREATE_INFO:
- return "VK_STRUCTURE_TYPE_DESCRIPTOR_UPDATE_TEMPLATE_CREATE_INFO";
- case VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET:
- return "VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET";
- case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_DRAW_PARAMETER_FEATURES:
- return "VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_DRAW_PARAMETER_FEATURES";
- case VK_STRUCTURE_TYPE_MACOS_SURFACE_CREATE_INFO_MVK:
- return "VK_STRUCTURE_TYPE_MACOS_SURFACE_CREATE_INFO_MVK";
- case VK_STRUCTURE_TYPE_EXTERNAL_FORMAT_ANDROID:
- return "VK_STRUCTURE_TYPE_EXTERNAL_FORMAT_ANDROID";
- case VK_STRUCTURE_TYPE_BIND_IMAGE_MEMORY_INFO:
- return "VK_STRUCTURE_TYPE_BIND_IMAGE_MEMORY_INFO";
- case VK_STRUCTURE_TYPE_IMPORT_SEMAPHORE_FD_INFO_KHR:
- return "VK_STRUCTURE_TYPE_IMPORT_SEMAPHORE_FD_INFO_KHR";
- case VK_STRUCTURE_TYPE_SAMPLE_LOCATIONS_INFO_EXT:
- return "VK_STRUCTURE_TYPE_SAMPLE_LOCATIONS_INFO_EXT";
- case VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO:
- return "VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO";
- case VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO:
- return "VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO";
- case VK_STRUCTURE_TYPE_ANDROID_HARDWARE_BUFFER_PROPERTIES_ANDROID:
- return "VK_STRUCTURE_TYPE_ANDROID_HARDWARE_BUFFER_PROPERTIES_ANDROID";
- case VK_STRUCTURE_TYPE_DEVICE_GENERATED_COMMANDS_FEATURES_NVX:
- return "VK_STRUCTURE_TYPE_DEVICE_GENERATED_COMMANDS_FEATURES_NVX";
- case VK_STRUCTURE_TYPE_BUFFER_MEMORY_REQUIREMENTS_INFO_2:
- return "VK_STRUCTURE_TYPE_BUFFER_MEMORY_REQUIREMENTS_INFO_2";
- case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FEATURES_2:
- return "VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FEATURES_2";
- case VK_STRUCTURE_TYPE_IMAGE_FORMAT_LIST_CREATE_INFO_KHR:
- return "VK_STRUCTURE_TYPE_IMAGE_FORMAT_LIST_CREATE_INFO_KHR";
- case VK_STRUCTURE_TYPE_IMAGE_SPARSE_MEMORY_REQUIREMENTS_INFO_2:
- return "VK_STRUCTURE_TYPE_IMAGE_SPARSE_MEMORY_REQUIREMENTS_INFO_2";
- default:
- return "Unhandled VkStructureType";
- }
-}
-
-static inline const char* string_VkSystemAllocationScope(VkSystemAllocationScope input_value)
-{
- switch ((VkSystemAllocationScope)input_value)
- {
- case VK_SYSTEM_ALLOCATION_SCOPE_COMMAND:
- return "VK_SYSTEM_ALLOCATION_SCOPE_COMMAND";
- case VK_SYSTEM_ALLOCATION_SCOPE_CACHE:
- return "VK_SYSTEM_ALLOCATION_SCOPE_CACHE";
- case VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE:
- return "VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE";
- case VK_SYSTEM_ALLOCATION_SCOPE_OBJECT:
- return "VK_SYSTEM_ALLOCATION_SCOPE_OBJECT";
- case VK_SYSTEM_ALLOCATION_SCOPE_DEVICE:
- return "VK_SYSTEM_ALLOCATION_SCOPE_DEVICE";
- default:
- return "Unhandled VkSystemAllocationScope";
- }
-}
-
-static inline const char* string_VkInternalAllocationType(VkInternalAllocationType input_value)
-{
- switch ((VkInternalAllocationType)input_value)
- {
- case VK_INTERNAL_ALLOCATION_TYPE_EXECUTABLE:
- return "VK_INTERNAL_ALLOCATION_TYPE_EXECUTABLE";
- default:
- return "Unhandled VkInternalAllocationType";
- }
-}
-
-static inline const char* string_VkFormat(VkFormat input_value)
-{
- switch ((VkFormat)input_value)
- {
- case VK_FORMAT_R32G32B32_SINT:
- return "VK_FORMAT_R32G32B32_SINT";
- case VK_FORMAT_G16_B16_R16_3PLANE_422_UNORM:
- return "VK_FORMAT_G16_B16_R16_3PLANE_422_UNORM";
- case VK_FORMAT_B8G8R8A8_UINT:
- return "VK_FORMAT_B8G8R8A8_UINT";
- case VK_FORMAT_ASTC_5x5_SRGB_BLOCK:
- return "VK_FORMAT_ASTC_5x5_SRGB_BLOCK";
- case VK_FORMAT_A2R10G10B10_UINT_PACK32:
- return "VK_FORMAT_A2R10G10B10_UINT_PACK32";
- case VK_FORMAT_ETC2_R8G8B8_UNORM_BLOCK:
- return "VK_FORMAT_ETC2_R8G8B8_UNORM_BLOCK";
- case VK_FORMAT_ASTC_8x6_UNORM_BLOCK:
- return "VK_FORMAT_ASTC_8x6_UNORM_BLOCK";
- case VK_FORMAT_B4G4R4A4_UNORM_PACK16:
- return "VK_FORMAT_B4G4R4A4_UNORM_PACK16";
- case VK_FORMAT_R16G16_SINT:
- return "VK_FORMAT_R16G16_SINT";
- case VK_FORMAT_BC1_RGB_SRGB_BLOCK:
- return "VK_FORMAT_BC1_RGB_SRGB_BLOCK";
- case VK_FORMAT_R8G8_USCALED:
- return "VK_FORMAT_R8G8_USCALED";
- case VK_FORMAT_ASTC_10x8_UNORM_BLOCK:
- return "VK_FORMAT_ASTC_10x8_UNORM_BLOCK";
- case VK_FORMAT_G8_B8R8_2PLANE_420_UNORM:
- return "VK_FORMAT_G8_B8R8_2PLANE_420_UNORM";
- case VK_FORMAT_B8G8R8A8_SNORM:
- return "VK_FORMAT_B8G8R8A8_SNORM";
- case VK_FORMAT_B5G5R5A1_UNORM_PACK16:
- return "VK_FORMAT_B5G5R5A1_UNORM_PACK16";
- case VK_FORMAT_R64G64_UINT:
- return "VK_FORMAT_R64G64_UINT";
- case VK_FORMAT_R5G5B5A1_UNORM_PACK16:
- return "VK_FORMAT_R5G5B5A1_UNORM_PACK16";
- case VK_FORMAT_A2B10G10R10_UNORM_PACK32:
- return "VK_FORMAT_A2B10G10R10_UNORM_PACK32";
- case VK_FORMAT_R16G16_USCALED:
- return "VK_FORMAT_R16G16_USCALED";
- case VK_FORMAT_G8_B8_R8_3PLANE_422_UNORM:
- return "VK_FORMAT_G8_B8_R8_3PLANE_422_UNORM";
- case VK_FORMAT_ASTC_8x8_UNORM_BLOCK:
- return "VK_FORMAT_ASTC_8x8_UNORM_BLOCK";
- case VK_FORMAT_R8G8_SSCALED:
- return "VK_FORMAT_R8G8_SSCALED";
- case VK_FORMAT_R16G16_SSCALED:
- return "VK_FORMAT_R16G16_SSCALED";
- case VK_FORMAT_ASTC_8x5_UNORM_BLOCK:
- return "VK_FORMAT_ASTC_8x5_UNORM_BLOCK";
- case VK_FORMAT_EAC_R11_UNORM_BLOCK:
- return "VK_FORMAT_EAC_R11_UNORM_BLOCK";
- case VK_FORMAT_A1R5G5B5_UNORM_PACK16:
- return "VK_FORMAT_A1R5G5B5_UNORM_PACK16";
- case VK_FORMAT_R16_USCALED:
- return "VK_FORMAT_R16_USCALED";
- case VK_FORMAT_BC2_UNORM_BLOCK:
- return "VK_FORMAT_BC2_UNORM_BLOCK";
- case VK_FORMAT_R16_UNORM:
- return "VK_FORMAT_R16_UNORM";
- case VK_FORMAT_R8_USCALED:
- return "VK_FORMAT_R8_USCALED";
- case VK_FORMAT_R16G16_UNORM:
- return "VK_FORMAT_R16G16_UNORM";
- case VK_FORMAT_ASTC_10x5_UNORM_BLOCK:
- return "VK_FORMAT_ASTC_10x5_UNORM_BLOCK";
- case VK_FORMAT_R16G16B16_SFLOAT:
- return "VK_FORMAT_R16G16B16_SFLOAT";
- case VK_FORMAT_PVRTC1_2BPP_UNORM_BLOCK_IMG:
- return "VK_FORMAT_PVRTC1_2BPP_UNORM_BLOCK_IMG";
- case VK_FORMAT_A2R10G10B10_SNORM_PACK32:
- return "VK_FORMAT_A2R10G10B10_SNORM_PACK32";
- case VK_FORMAT_ASTC_10x6_SRGB_BLOCK:
- return "VK_FORMAT_ASTC_10x6_SRGB_BLOCK";
- case VK_FORMAT_R8_UNORM:
- return "VK_FORMAT_R8_UNORM";
- case VK_FORMAT_PVRTC2_4BPP_SRGB_BLOCK_IMG:
- return "VK_FORMAT_PVRTC2_4BPP_SRGB_BLOCK_IMG";
- case VK_FORMAT_A8B8G8R8_SINT_PACK32:
- return "VK_FORMAT_A8B8G8R8_SINT_PACK32";
- case VK_FORMAT_B8G8R8_UNORM:
- return "VK_FORMAT_B8G8R8_UNORM";
- case VK_FORMAT_R8G8_UINT:
- return "VK_FORMAT_R8G8_UINT";
- case VK_FORMAT_ETC2_R8G8B8_SRGB_BLOCK:
- return "VK_FORMAT_ETC2_R8G8B8_SRGB_BLOCK";
- case VK_FORMAT_R8_SSCALED:
- return "VK_FORMAT_R8_SSCALED";
- case VK_FORMAT_A8B8G8R8_SRGB_PACK32:
- return "VK_FORMAT_A8B8G8R8_SRGB_PACK32";
- case VK_FORMAT_BC7_UNORM_BLOCK:
- return "VK_FORMAT_BC7_UNORM_BLOCK";
- case VK_FORMAT_A2R10G10B10_SSCALED_PACK32:
- return "VK_FORMAT_A2R10G10B10_SSCALED_PACK32";
- case VK_FORMAT_R16G16B16A16_SINT:
- return "VK_FORMAT_R16G16B16A16_SINT";
- case VK_FORMAT_G10X6_B10X6_R10X6_3PLANE_444_UNORM_3PACK16:
- return "VK_FORMAT_G10X6_B10X6_R10X6_3PLANE_444_UNORM_3PACK16";
- case VK_FORMAT_B8G8R8A8_SSCALED:
- return "VK_FORMAT_B8G8R8A8_SSCALED";
- case VK_FORMAT_G16_B16_R16_3PLANE_444_UNORM:
- return "VK_FORMAT_G16_B16_R16_3PLANE_444_UNORM";
- case VK_FORMAT_R8G8B8_USCALED:
- return "VK_FORMAT_R8G8B8_USCALED";
- case VK_FORMAT_PVRTC1_4BPP_UNORM_BLOCK_IMG:
- return "VK_FORMAT_PVRTC1_4BPP_UNORM_BLOCK_IMG";
- case VK_FORMAT_B8G8R8_SRGB:
- return "VK_FORMAT_B8G8R8_SRGB";
- case VK_FORMAT_A2B10G10R10_UINT_PACK32:
- return "VK_FORMAT_A2B10G10R10_UINT_PACK32";
- case VK_FORMAT_R64G64_SINT:
- return "VK_FORMAT_R64G64_SINT";
- case VK_FORMAT_B8G8R8G8_422_UNORM:
- return "VK_FORMAT_B8G8R8G8_422_UNORM";
- case VK_FORMAT_G16_B16_R16_3PLANE_420_UNORM:
- return "VK_FORMAT_G16_B16_R16_3PLANE_420_UNORM";
- case VK_FORMAT_R64_UINT:
- return "VK_FORMAT_R64_UINT";
- case VK_FORMAT_EAC_R11G11_UNORM_BLOCK:
- return "VK_FORMAT_EAC_R11G11_UNORM_BLOCK";
- case VK_FORMAT_BC5_SNORM_BLOCK:
- return "VK_FORMAT_BC5_SNORM_BLOCK";
- case VK_FORMAT_ASTC_6x5_SRGB_BLOCK:
- return "VK_FORMAT_ASTC_6x5_SRGB_BLOCK";
- case VK_FORMAT_R16G16B16A16_SSCALED:
- return "VK_FORMAT_R16G16B16A16_SSCALED";
- case VK_FORMAT_G8_B8R8_2PLANE_422_UNORM:
- return "VK_FORMAT_G8_B8R8_2PLANE_422_UNORM";
- case VK_FORMAT_R32G32B32_UINT:
- return "VK_FORMAT_R32G32B32_UINT";
- case VK_FORMAT_R8G8_SNORM:
- return "VK_FORMAT_R8G8_SNORM";
- case VK_FORMAT_B8G8R8_USCALED:
- return "VK_FORMAT_B8G8R8_USCALED";
- case VK_FORMAT_R16G16B16A16_SFLOAT:
- return "VK_FORMAT_R16G16B16A16_SFLOAT";
- case VK_FORMAT_R16G16B16_USCALED:
- return "VK_FORMAT_R16G16B16_USCALED";
- case VK_FORMAT_A2R10G10B10_SINT_PACK32:
- return "VK_FORMAT_A2R10G10B10_SINT_PACK32";
- case VK_FORMAT_R32_SINT:
- return "VK_FORMAT_R32_SINT";
- case VK_FORMAT_R64_SINT:
- return "VK_FORMAT_R64_SINT";
- case VK_FORMAT_A8B8G8R8_USCALED_PACK32:
- return "VK_FORMAT_A8B8G8R8_USCALED_PACK32";
- case VK_FORMAT_D24_UNORM_S8_UINT:
- return "VK_FORMAT_D24_UNORM_S8_UINT";
- case VK_FORMAT_G8B8G8R8_422_UNORM:
- return "VK_FORMAT_G8B8G8R8_422_UNORM";
- case VK_FORMAT_BC4_SNORM_BLOCK:
- return "VK_FORMAT_BC4_SNORM_BLOCK";
- case VK_FORMAT_R16G16_SFLOAT:
- return "VK_FORMAT_R16G16_SFLOAT";
- case VK_FORMAT_BC1_RGB_UNORM_BLOCK:
- return "VK_FORMAT_BC1_RGB_UNORM_BLOCK";
- case VK_FORMAT_R64_SFLOAT:
- return "VK_FORMAT_R64_SFLOAT";
- case VK_FORMAT_R64G64B64_SFLOAT:
- return "VK_FORMAT_R64G64B64_SFLOAT";
- case VK_FORMAT_BC3_SRGB_BLOCK:
- return "VK_FORMAT_BC3_SRGB_BLOCK";
- case VK_FORMAT_S8_UINT:
- return "VK_FORMAT_S8_UINT";
- case VK_FORMAT_PVRTC2_2BPP_SRGB_BLOCK_IMG:
- return "VK_FORMAT_PVRTC2_2BPP_SRGB_BLOCK_IMG";
- case VK_FORMAT_R8G8B8_SNORM:
- return "VK_FORMAT_R8G8B8_SNORM";
- case VK_FORMAT_D32_SFLOAT:
- return "VK_FORMAT_D32_SFLOAT";
- case VK_FORMAT_ASTC_10x10_SRGB_BLOCK:
- return "VK_FORMAT_ASTC_10x10_SRGB_BLOCK";
- case VK_FORMAT_ASTC_4x4_SRGB_BLOCK:
- return "VK_FORMAT_ASTC_4x4_SRGB_BLOCK";
- case VK_FORMAT_R12X4G12X4_UNORM_2PACK16:
- return "VK_FORMAT_R12X4G12X4_UNORM_2PACK16";
- case VK_FORMAT_G16B16G16R16_422_UNORM:
- return "VK_FORMAT_G16B16G16R16_422_UNORM";
- case VK_FORMAT_BC7_SRGB_BLOCK:
- return "VK_FORMAT_BC7_SRGB_BLOCK";
- case VK_FORMAT_R16G16_SNORM:
- return "VK_FORMAT_R16G16_SNORM";
- case VK_FORMAT_R32_UINT:
- return "VK_FORMAT_R32_UINT";
- case VK_FORMAT_R4G4B4A4_UNORM_PACK16:
- return "VK_FORMAT_R4G4B4A4_UNORM_PACK16";
- case VK_FORMAT_A2R10G10B10_USCALED_PACK32:
- return "VK_FORMAT_A2R10G10B10_USCALED_PACK32";
- case VK_FORMAT_R32_SFLOAT:
- return "VK_FORMAT_R32_SFLOAT";
- case VK_FORMAT_ASTC_10x5_SRGB_BLOCK:
- return "VK_FORMAT_ASTC_10x5_SRGB_BLOCK";
- case VK_FORMAT_R32G32B32_SFLOAT:
- return "VK_FORMAT_R32G32B32_SFLOAT";
- case VK_FORMAT_R16_UINT:
- return "VK_FORMAT_R16_UINT";
- case VK_FORMAT_ASTC_12x12_UNORM_BLOCK:
- return "VK_FORMAT_ASTC_12x12_UNORM_BLOCK";
- case VK_FORMAT_R8G8_SRGB:
- return "VK_FORMAT_R8G8_SRGB";
- case VK_FORMAT_R64G64B64A64_UINT:
- return "VK_FORMAT_R64G64B64A64_UINT";
- case VK_FORMAT_ASTC_12x10_SRGB_BLOCK:
- return "VK_FORMAT_ASTC_12x10_SRGB_BLOCK";
- case VK_FORMAT_R16G16B16_SNORM:
- return "VK_FORMAT_R16G16B16_SNORM";
- case VK_FORMAT_R32G32_UINT:
- return "VK_FORMAT_R32G32_UINT";
- case VK_FORMAT_BC1_RGBA_UNORM_BLOCK:
- return "VK_FORMAT_BC1_RGBA_UNORM_BLOCK";
- case VK_FORMAT_R8G8B8_UNORM:
- return "VK_FORMAT_R8G8B8_UNORM";
- case VK_FORMAT_R8G8B8A8_SSCALED:
- return "VK_FORMAT_R8G8B8A8_SSCALED";
- case VK_FORMAT_G12X4_B12X4R12X4_2PLANE_420_UNORM_3PACK16:
- return "VK_FORMAT_G12X4_B12X4R12X4_2PLANE_420_UNORM_3PACK16";
- case VK_FORMAT_G12X4_B12X4_R12X4_3PLANE_420_UNORM_3PACK16:
- return "VK_FORMAT_G12X4_B12X4_R12X4_3PLANE_420_UNORM_3PACK16";
- case VK_FORMAT_G8_B8_R8_3PLANE_444_UNORM:
- return "VK_FORMAT_G8_B8_R8_3PLANE_444_UNORM";
- case VK_FORMAT_PVRTC2_2BPP_UNORM_BLOCK_IMG:
- return "VK_FORMAT_PVRTC2_2BPP_UNORM_BLOCK_IMG";
- case VK_FORMAT_R16G16B16A16_USCALED:
- return "VK_FORMAT_R16G16B16A16_USCALED";
- case VK_FORMAT_R8G8B8_SINT:
- return "VK_FORMAT_R8G8B8_SINT";
- case VK_FORMAT_G10X6_B10X6_R10X6_3PLANE_422_UNORM_3PACK16:
- return "VK_FORMAT_G10X6_B10X6_R10X6_3PLANE_422_UNORM_3PACK16";
- case VK_FORMAT_G10X6_B10X6R10X6_2PLANE_420_UNORM_3PACK16:
- return "VK_FORMAT_G10X6_B10X6R10X6_2PLANE_420_UNORM_3PACK16";
- case VK_FORMAT_B16G16R16G16_422_UNORM:
- return "VK_FORMAT_B16G16R16G16_422_UNORM";
- case VK_FORMAT_R16G16B16_SINT:
- return "VK_FORMAT_R16G16B16_SINT";
- case VK_FORMAT_UNDEFINED:
- return "VK_FORMAT_UNDEFINED";
- case VK_FORMAT_B5G6R5_UNORM_PACK16:
- return "VK_FORMAT_B5G6R5_UNORM_PACK16";
- case VK_FORMAT_R8G8B8A8_SRGB:
- return "VK_FORMAT_R8G8B8A8_SRGB";
- case VK_FORMAT_A2B10G10R10_SSCALED_PACK32:
- return "VK_FORMAT_A2B10G10R10_SSCALED_PACK32";
- case VK_FORMAT_B8G8R8_SINT:
- return "VK_FORMAT_B8G8R8_SINT";
- case VK_FORMAT_B10G11R11_UFLOAT_PACK32:
- return "VK_FORMAT_B10G11R11_UFLOAT_PACK32";
- case VK_FORMAT_BC5_UNORM_BLOCK:
- return "VK_FORMAT_BC5_UNORM_BLOCK";
- case VK_FORMAT_ASTC_5x4_SRGB_BLOCK:
- return "VK_FORMAT_ASTC_5x4_SRGB_BLOCK";
- case VK_FORMAT_ASTC_5x4_UNORM_BLOCK:
- return "VK_FORMAT_ASTC_5x4_UNORM_BLOCK";
- case VK_FORMAT_R8G8B8A8_SINT:
- return "VK_FORMAT_R8G8B8A8_SINT";
- case VK_FORMAT_G12X4_B12X4_R12X4_3PLANE_422_UNORM_3PACK16:
- return "VK_FORMAT_G12X4_B12X4_R12X4_3PLANE_422_UNORM_3PACK16";
- case VK_FORMAT_R8G8B8A8_UNORM:
- return "VK_FORMAT_R8G8B8A8_UNORM";
- case VK_FORMAT_G16_B16R16_2PLANE_420_UNORM:
- return "VK_FORMAT_G16_B16R16_2PLANE_420_UNORM";
- case VK_FORMAT_G16_B16R16_2PLANE_422_UNORM:
- return "VK_FORMAT_G16_B16R16_2PLANE_422_UNORM";
- case VK_FORMAT_EAC_R11G11_SNORM_BLOCK:
- return "VK_FORMAT_EAC_R11G11_SNORM_BLOCK";
- case VK_FORMAT_R8G8_UNORM:
- return "VK_FORMAT_R8G8_UNORM";
- case VK_FORMAT_A2B10G10R10_SINT_PACK32:
- return "VK_FORMAT_A2B10G10R10_SINT_PACK32";
- case VK_FORMAT_ASTC_4x4_UNORM_BLOCK:
- return "VK_FORMAT_ASTC_4x4_UNORM_BLOCK";
- case VK_FORMAT_G10X6_B10X6R10X6_2PLANE_422_UNORM_3PACK16:
- return "VK_FORMAT_G10X6_B10X6R10X6_2PLANE_422_UNORM_3PACK16";
- case VK_FORMAT_G12X4_B12X4_R12X4_3PLANE_444_UNORM_3PACK16:
- return "VK_FORMAT_G12X4_B12X4_R12X4_3PLANE_444_UNORM_3PACK16";
- case VK_FORMAT_R16_SINT:
- return "VK_FORMAT_R16_SINT";
- case VK_FORMAT_R8G8B8_SRGB:
- return "VK_FORMAT_R8G8B8_SRGB";
- case VK_FORMAT_B8G8R8_SNORM:
- return "VK_FORMAT_B8G8R8_SNORM";
- case VK_FORMAT_ASTC_12x12_SRGB_BLOCK:
- return "VK_FORMAT_ASTC_12x12_SRGB_BLOCK";
- case VK_FORMAT_BC2_SRGB_BLOCK:
- return "VK_FORMAT_BC2_SRGB_BLOCK";
- case VK_FORMAT_R10X6_UNORM_PACK16:
- return "VK_FORMAT_R10X6_UNORM_PACK16";
- case VK_FORMAT_R64G64_SFLOAT:
- return "VK_FORMAT_R64G64_SFLOAT";
- case VK_FORMAT_R4G4_UNORM_PACK8:
- return "VK_FORMAT_R4G4_UNORM_PACK8";
- case VK_FORMAT_R16_SSCALED:
- return "VK_FORMAT_R16_SSCALED";
- case VK_FORMAT_G10X6_B10X6_R10X6_3PLANE_420_UNORM_3PACK16:
- return "VK_FORMAT_G10X6_B10X6_R10X6_3PLANE_420_UNORM_3PACK16";
- case VK_FORMAT_R32G32B32A32_SINT:
- return "VK_FORMAT_R32G32B32A32_SINT";
- case VK_FORMAT_ETC2_R8G8B8A8_SRGB_BLOCK:
- return "VK_FORMAT_ETC2_R8G8B8A8_SRGB_BLOCK";
- case VK_FORMAT_PVRTC1_2BPP_SRGB_BLOCK_IMG:
- return "VK_FORMAT_PVRTC1_2BPP_SRGB_BLOCK_IMG";
- case VK_FORMAT_R8G8B8_UINT:
- return "VK_FORMAT_R8G8B8_UINT";
- case VK_FORMAT_R16G16B16_UNORM:
- return "VK_FORMAT_R16G16B16_UNORM";
- case VK_FORMAT_R16G16B16_UINT:
- return "VK_FORMAT_R16G16B16_UINT";
- case VK_FORMAT_A8B8G8R8_UNORM_PACK32:
- return "VK_FORMAT_A8B8G8R8_UNORM_PACK32";
- case VK_FORMAT_B8G8R8_SSCALED:
- return "VK_FORMAT_B8G8R8_SSCALED";
- case VK_FORMAT_X8_D24_UNORM_PACK32:
- return "VK_FORMAT_X8_D24_UNORM_PACK32";
- case VK_FORMAT_R32G32_SFLOAT:
- return "VK_FORMAT_R32G32_SFLOAT";
- case VK_FORMAT_E5B9G9R9_UFLOAT_PACK32:
- return "VK_FORMAT_E5B9G9R9_UFLOAT_PACK32";
- case VK_FORMAT_ASTC_6x6_SRGB_BLOCK:
- return "VK_FORMAT_ASTC_6x6_SRGB_BLOCK";
- case VK_FORMAT_PVRTC2_4BPP_UNORM_BLOCK_IMG:
- return "VK_FORMAT_PVRTC2_4BPP_UNORM_BLOCK_IMG";
- case VK_FORMAT_R16G16B16A16_UINT:
- return "VK_FORMAT_R16G16B16A16_UINT";
- case VK_FORMAT_R8G8B8A8_USCALED:
- return "VK_FORMAT_R8G8B8A8_USCALED";
- case VK_FORMAT_R16G16B16A16_SNORM:
- return "VK_FORMAT_R16G16B16A16_SNORM";
- case VK_FORMAT_R16G16B16A16_UNORM:
- return "VK_FORMAT_R16G16B16A16_UNORM";
- case VK_FORMAT_D16_UNORM:
- return "VK_FORMAT_D16_UNORM";
- case VK_FORMAT_G12X4B12X4G12X4R12X4_422_UNORM_4PACK16:
- return "VK_FORMAT_G12X4B12X4G12X4R12X4_422_UNORM_4PACK16";
- case VK_FORMAT_BC3_UNORM_BLOCK:
- return "VK_FORMAT_BC3_UNORM_BLOCK";
- case VK_FORMAT_A2B10G10R10_USCALED_PACK32:
- return "VK_FORMAT_A2B10G10R10_USCALED_PACK32";
- case VK_FORMAT_R8_SRGB:
- return "VK_FORMAT_R8_SRGB";
- case VK_FORMAT_R32G32B32A32_SFLOAT:
- return "VK_FORMAT_R32G32B32A32_SFLOAT";
- case VK_FORMAT_A2R10G10B10_UNORM_PACK32:
- return "VK_FORMAT_A2R10G10B10_UNORM_PACK32";
- case VK_FORMAT_R8G8_SINT:
- return "VK_FORMAT_R8G8_SINT";
- case VK_FORMAT_R10X6G10X6B10X6A10X6_UNORM_4PACK16:
- return "VK_FORMAT_R10X6G10X6B10X6A10X6_UNORM_4PACK16";
- case VK_FORMAT_B10X6G10X6R10X6G10X6_422_UNORM_4PACK16:
- return "VK_FORMAT_B10X6G10X6R10X6G10X6_422_UNORM_4PACK16";
- case VK_FORMAT_A2B10G10R10_SNORM_PACK32:
- return "VK_FORMAT_A2B10G10R10_SNORM_PACK32";
- case VK_FORMAT_BC1_RGBA_SRGB_BLOCK:
- return "VK_FORMAT_BC1_RGBA_SRGB_BLOCK";
- case VK_FORMAT_D32_SFLOAT_S8_UINT:
- return "VK_FORMAT_D32_SFLOAT_S8_UINT";
- case VK_FORMAT_B8G8R8A8_USCALED:
- return "VK_FORMAT_B8G8R8A8_USCALED";
- case VK_FORMAT_ASTC_6x6_UNORM_BLOCK:
- return "VK_FORMAT_ASTC_6x6_UNORM_BLOCK";
- case VK_FORMAT_R5G6B5_UNORM_PACK16:
- return "VK_FORMAT_R5G6B5_UNORM_PACK16";
- case VK_FORMAT_ETC2_R8G8B8A8_UNORM_BLOCK:
- return "VK_FORMAT_ETC2_R8G8B8A8_UNORM_BLOCK";
- case VK_FORMAT_R12X4G12X4B12X4A12X4_UNORM_4PACK16:
- return "VK_FORMAT_R12X4G12X4B12X4A12X4_UNORM_4PACK16";
- case VK_FORMAT_PVRTC1_4BPP_SRGB_BLOCK_IMG:
- return "VK_FORMAT_PVRTC1_4BPP_SRGB_BLOCK_IMG";
- case VK_FORMAT_R8G8B8A8_SNORM:
- return "VK_FORMAT_R8G8B8A8_SNORM";
- case VK_FORMAT_ASTC_10x10_UNORM_BLOCK:
- return "VK_FORMAT_ASTC_10x10_UNORM_BLOCK";
- case VK_FORMAT_BC6H_SFLOAT_BLOCK:
- return "VK_FORMAT_BC6H_SFLOAT_BLOCK";
- case VK_FORMAT_R16_SFLOAT:
- return "VK_FORMAT_R16_SFLOAT";
- case VK_FORMAT_A8B8G8R8_SSCALED_PACK32:
- return "VK_FORMAT_A8B8G8R8_SSCALED_PACK32";
- case VK_FORMAT_ASTC_10x8_SRGB_BLOCK:
- return "VK_FORMAT_ASTC_10x8_SRGB_BLOCK";
- case VK_FORMAT_B8G8R8A8_SINT:
- return "VK_FORMAT_B8G8R8A8_SINT";
- case VK_FORMAT_R8_SNORM:
- return "VK_FORMAT_R8_SNORM";
- case VK_FORMAT_R32G32_SINT:
- return "VK_FORMAT_R32G32_SINT";
- case VK_FORMAT_R32G32B32A32_UINT:
- return "VK_FORMAT_R32G32B32A32_UINT";
- case VK_FORMAT_A8B8G8R8_SNORM_PACK32:
- return "VK_FORMAT_A8B8G8R8_SNORM_PACK32";
- case VK_FORMAT_A8B8G8R8_UINT_PACK32:
- return "VK_FORMAT_A8B8G8R8_UINT_PACK32";
- case VK_FORMAT_BC4_UNORM_BLOCK:
- return "VK_FORMAT_BC4_UNORM_BLOCK";
- case VK_FORMAT_B8G8R8_UINT:
- return "VK_FORMAT_B8G8R8_UINT";
- case VK_FORMAT_D16_UNORM_S8_UINT:
- return "VK_FORMAT_D16_UNORM_S8_UINT";
- case VK_FORMAT_ETC2_R8G8B8A1_SRGB_BLOCK:
- return "VK_FORMAT_ETC2_R8G8B8A1_SRGB_BLOCK";
- case VK_FORMAT_R8G8B8A8_UINT:
- return "VK_FORMAT_R8G8B8A8_UINT";
- case VK_FORMAT_R12X4_UNORM_PACK16:
- return "VK_FORMAT_R12X4_UNORM_PACK16";
- case VK_FORMAT_R64G64B64_SINT:
- return "VK_FORMAT_R64G64B64_SINT";
- case VK_FORMAT_EAC_R11_SNORM_BLOCK:
- return "VK_FORMAT_EAC_R11_SNORM_BLOCK";
- case VK_FORMAT_R64G64B64_UINT:
- return "VK_FORMAT_R64G64B64_UINT";
- case VK_FORMAT_R64G64B64A64_SINT:
- return "VK_FORMAT_R64G64B64A64_SINT";
- case VK_FORMAT_ETC2_R8G8B8A1_UNORM_BLOCK:
- return "VK_FORMAT_ETC2_R8G8B8A1_UNORM_BLOCK";
- case VK_FORMAT_ASTC_6x5_UNORM_BLOCK:
- return "VK_FORMAT_ASTC_6x5_UNORM_BLOCK";
- case VK_FORMAT_ASTC_8x5_SRGB_BLOCK:
- return "VK_FORMAT_ASTC_8x5_SRGB_BLOCK";
- case VK_FORMAT_ASTC_12x10_UNORM_BLOCK:
- return "VK_FORMAT_ASTC_12x10_UNORM_BLOCK";
- case VK_FORMAT_ASTC_8x6_SRGB_BLOCK:
- return "VK_FORMAT_ASTC_8x6_SRGB_BLOCK";
- case VK_FORMAT_R8G8B8_SSCALED:
- return "VK_FORMAT_R8G8B8_SSCALED";
- case VK_FORMAT_B8G8R8A8_UNORM:
- return "VK_FORMAT_B8G8R8A8_UNORM";
- case VK_FORMAT_R16_SNORM:
- return "VK_FORMAT_R16_SNORM";
- case VK_FORMAT_R8_UINT:
- return "VK_FORMAT_R8_UINT";
- case VK_FORMAT_R64G64B64A64_SFLOAT:
- return "VK_FORMAT_R64G64B64A64_SFLOAT";
- case VK_FORMAT_ASTC_5x5_UNORM_BLOCK:
- return "VK_FORMAT_ASTC_5x5_UNORM_BLOCK";
- case VK_FORMAT_ASTC_8x8_SRGB_BLOCK:
- return "VK_FORMAT_ASTC_8x8_SRGB_BLOCK";
- case VK_FORMAT_R8_SINT:
- return "VK_FORMAT_R8_SINT";
- case VK_FORMAT_B8G8R8A8_SRGB:
- return "VK_FORMAT_B8G8R8A8_SRGB";
- case VK_FORMAT_G12X4_B12X4R12X4_2PLANE_422_UNORM_3PACK16:
- return "VK_FORMAT_G12X4_B12X4R12X4_2PLANE_422_UNORM_3PACK16";
- case VK_FORMAT_G10X6B10X6G10X6R10X6_422_UNORM_4PACK16:
- return "VK_FORMAT_G10X6B10X6G10X6R10X6_422_UNORM_4PACK16";
- case VK_FORMAT_BC6H_UFLOAT_BLOCK:
- return "VK_FORMAT_BC6H_UFLOAT_BLOCK";
- case VK_FORMAT_G8_B8_R8_3PLANE_420_UNORM:
- return "VK_FORMAT_G8_B8_R8_3PLANE_420_UNORM";
- case VK_FORMAT_R10X6G10X6_UNORM_2PACK16:
- return "VK_FORMAT_R10X6G10X6_UNORM_2PACK16";
- case VK_FORMAT_R16G16_UINT:
- return "VK_FORMAT_R16G16_UINT";
- case VK_FORMAT_ASTC_10x6_UNORM_BLOCK:
- return "VK_FORMAT_ASTC_10x6_UNORM_BLOCK";
- case VK_FORMAT_R16G16B16_SSCALED:
- return "VK_FORMAT_R16G16B16_SSCALED";
- case VK_FORMAT_B12X4G12X4R12X4G12X4_422_UNORM_4PACK16:
- return "VK_FORMAT_B12X4G12X4R12X4G12X4_422_UNORM_4PACK16";
- default:
- return "Unhandled VkFormat";
- }
-}
-
-static inline const char* string_VkFormatFeatureFlagBits(VkFormatFeatureFlagBits input_value)
-{
- switch ((VkFormatFeatureFlagBits)input_value)
- {
- case VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BLEND_BIT:
- return "VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BLEND_BIT";
- case VK_FORMAT_FEATURE_VERTEX_BUFFER_BIT:
- return "VK_FORMAT_FEATURE_VERTEX_BUFFER_BIT";
- case VK_FORMAT_FEATURE_TRANSFER_DST_BIT:
- return "VK_FORMAT_FEATURE_TRANSFER_DST_BIT";
- case VK_FORMAT_FEATURE_COSITED_CHROMA_SAMPLES_BIT:
- return "VK_FORMAT_FEATURE_COSITED_CHROMA_SAMPLES_BIT";
- case VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT:
- return "VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT";
- case VK_FORMAT_FEATURE_SAMPLED_IMAGE_YCBCR_CONVERSION_LINEAR_FILTER_BIT:
- return "VK_FORMAT_FEATURE_SAMPLED_IMAGE_YCBCR_CONVERSION_LINEAR_FILTER_BIT";
- case VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT:
- return "VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT";
- case VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT:
- return "VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT";
- case VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_ATOMIC_BIT:
- return "VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_ATOMIC_BIT";
- case VK_FORMAT_FEATURE_DISJOINT_BIT:
- return "VK_FORMAT_FEATURE_DISJOINT_BIT";
- case VK_FORMAT_FEATURE_SAMPLED_IMAGE_YCBCR_CONVERSION_CHROMA_RECONSTRUCTION_EXPLICIT_BIT:
- return "VK_FORMAT_FEATURE_SAMPLED_IMAGE_YCBCR_CONVERSION_CHROMA_RECONSTRUCTION_EXPLICIT_BIT";
- case VK_FORMAT_FEATURE_TRANSFER_SRC_BIT:
- return "VK_FORMAT_FEATURE_TRANSFER_SRC_BIT";
- case VK_FORMAT_FEATURE_STORAGE_IMAGE_ATOMIC_BIT:
- return "VK_FORMAT_FEATURE_STORAGE_IMAGE_ATOMIC_BIT";
- case VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_CUBIC_BIT_IMG:
- return "VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_CUBIC_BIT_IMG";
- case VK_FORMAT_FEATURE_STORAGE_IMAGE_BIT:
- return "VK_FORMAT_FEATURE_STORAGE_IMAGE_BIT";
- case VK_FORMAT_FEATURE_UNIFORM_TEXEL_BUFFER_BIT:
- return "VK_FORMAT_FEATURE_UNIFORM_TEXEL_BUFFER_BIT";
- case VK_FORMAT_FEATURE_BLIT_DST_BIT:
- return "VK_FORMAT_FEATURE_BLIT_DST_BIT";
- case VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT:
- return "VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT";
- case VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_MINMAX_BIT_EXT:
- return "VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_MINMAX_BIT_EXT";
- case VK_FORMAT_FEATURE_MIDPOINT_CHROMA_SAMPLES_BIT:
- return "VK_FORMAT_FEATURE_MIDPOINT_CHROMA_SAMPLES_BIT";
- case VK_FORMAT_FEATURE_SAMPLED_IMAGE_YCBCR_CONVERSION_SEPARATE_RECONSTRUCTION_FILTER_BIT:
- return "VK_FORMAT_FEATURE_SAMPLED_IMAGE_YCBCR_CONVERSION_SEPARATE_RECONSTRUCTION_FILTER_BIT";
- case VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_BIT:
- return "VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_BIT";
- case VK_FORMAT_FEATURE_BLIT_SRC_BIT:
- return "VK_FORMAT_FEATURE_BLIT_SRC_BIT";
- case VK_FORMAT_FEATURE_SAMPLED_IMAGE_YCBCR_CONVERSION_CHROMA_RECONSTRUCTION_EXPLICIT_FORCEABLE_BIT:
- return "VK_FORMAT_FEATURE_SAMPLED_IMAGE_YCBCR_CONVERSION_CHROMA_RECONSTRUCTION_EXPLICIT_FORCEABLE_BIT";
- default:
- return "Unhandled VkFormatFeatureFlagBits";
- }
-}
-
-static inline const char* string_VkImageType(VkImageType input_value)
-{
- switch ((VkImageType)input_value)
- {
- case VK_IMAGE_TYPE_2D:
- return "VK_IMAGE_TYPE_2D";
- case VK_IMAGE_TYPE_1D:
- return "VK_IMAGE_TYPE_1D";
- case VK_IMAGE_TYPE_3D:
- return "VK_IMAGE_TYPE_3D";
- default:
- return "Unhandled VkImageType";
- }
-}
-
-static inline const char* string_VkImageTiling(VkImageTiling input_value)
-{
- switch ((VkImageTiling)input_value)
- {
- case VK_IMAGE_TILING_OPTIMAL:
- return "VK_IMAGE_TILING_OPTIMAL";
- case VK_IMAGE_TILING_LINEAR:
- return "VK_IMAGE_TILING_LINEAR";
- default:
- return "Unhandled VkImageTiling";
- }
-}
-
-static inline const char* string_VkImageUsageFlagBits(VkImageUsageFlagBits input_value)
-{
- switch ((VkImageUsageFlagBits)input_value)
- {
- case VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT:
- return "VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT";
- case VK_IMAGE_USAGE_TRANSIENT_ATTACHMENT_BIT:
- return "VK_IMAGE_USAGE_TRANSIENT_ATTACHMENT_BIT";
- case VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT:
- return "VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT";
- case VK_IMAGE_USAGE_SAMPLED_BIT:
- return "VK_IMAGE_USAGE_SAMPLED_BIT";
- case VK_IMAGE_USAGE_TRANSFER_DST_BIT:
- return "VK_IMAGE_USAGE_TRANSFER_DST_BIT";
- case VK_IMAGE_USAGE_STORAGE_BIT:
- return "VK_IMAGE_USAGE_STORAGE_BIT";
- case VK_IMAGE_USAGE_TRANSFER_SRC_BIT:
- return "VK_IMAGE_USAGE_TRANSFER_SRC_BIT";
- case VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT:
- return "VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT";
- default:
- return "Unhandled VkImageUsageFlagBits";
- }
-}
-
-static inline const char* string_VkImageCreateFlagBits(VkImageCreateFlagBits input_value)
-{
- switch ((VkImageCreateFlagBits)input_value)
- {
- case VK_IMAGE_CREATE_ALIAS_BIT:
- return "VK_IMAGE_CREATE_ALIAS_BIT";
- case VK_IMAGE_CREATE_PROTECTED_BIT:
- return "VK_IMAGE_CREATE_PROTECTED_BIT";
- case VK_IMAGE_CREATE_BLOCK_TEXEL_VIEW_COMPATIBLE_BIT:
- return "VK_IMAGE_CREATE_BLOCK_TEXEL_VIEW_COMPATIBLE_BIT";
- case VK_IMAGE_CREATE_2D_ARRAY_COMPATIBLE_BIT:
- return "VK_IMAGE_CREATE_2D_ARRAY_COMPATIBLE_BIT";
- case VK_IMAGE_CREATE_EXTENDED_USAGE_BIT:
- return "VK_IMAGE_CREATE_EXTENDED_USAGE_BIT";
- case VK_IMAGE_CREATE_DISJOINT_BIT:
- return "VK_IMAGE_CREATE_DISJOINT_BIT";
- case VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT:
- return "VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT";
- case VK_IMAGE_CREATE_SPARSE_BINDING_BIT:
- return "VK_IMAGE_CREATE_SPARSE_BINDING_BIT";
- case VK_IMAGE_CREATE_SAMPLE_LOCATIONS_COMPATIBLE_DEPTH_BIT_EXT:
- return "VK_IMAGE_CREATE_SAMPLE_LOCATIONS_COMPATIBLE_DEPTH_BIT_EXT";
- case VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT:
- return "VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT";
- case VK_IMAGE_CREATE_SPARSE_ALIASED_BIT:
- return "VK_IMAGE_CREATE_SPARSE_ALIASED_BIT";
- case VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT:
- return "VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT";
- case VK_IMAGE_CREATE_SPLIT_INSTANCE_BIND_REGIONS_BIT:
- return "VK_IMAGE_CREATE_SPLIT_INSTANCE_BIND_REGIONS_BIT";
- default:
- return "Unhandled VkImageCreateFlagBits";
- }
-}
-
-static inline const char* string_VkSampleCountFlagBits(VkSampleCountFlagBits input_value)
-{
- switch ((VkSampleCountFlagBits)input_value)
- {
- case VK_SAMPLE_COUNT_32_BIT:
- return "VK_SAMPLE_COUNT_32_BIT";
- case VK_SAMPLE_COUNT_1_BIT:
- return "VK_SAMPLE_COUNT_1_BIT";
- case VK_SAMPLE_COUNT_2_BIT:
- return "VK_SAMPLE_COUNT_2_BIT";
- case VK_SAMPLE_COUNT_64_BIT:
- return "VK_SAMPLE_COUNT_64_BIT";
- case VK_SAMPLE_COUNT_16_BIT:
- return "VK_SAMPLE_COUNT_16_BIT";
- case VK_SAMPLE_COUNT_4_BIT:
- return "VK_SAMPLE_COUNT_4_BIT";
- case VK_SAMPLE_COUNT_8_BIT:
- return "VK_SAMPLE_COUNT_8_BIT";
- default:
- return "Unhandled VkSampleCountFlagBits";
- }
-}
-
-static inline const char* string_VkPhysicalDeviceType(VkPhysicalDeviceType input_value)
-{
- switch ((VkPhysicalDeviceType)input_value)
- {
- case VK_PHYSICAL_DEVICE_TYPE_DISCRETE_GPU:
- return "VK_PHYSICAL_DEVICE_TYPE_DISCRETE_GPU";
- case VK_PHYSICAL_DEVICE_TYPE_VIRTUAL_GPU:
- return "VK_PHYSICAL_DEVICE_TYPE_VIRTUAL_GPU";
- case VK_PHYSICAL_DEVICE_TYPE_OTHER:
- return "VK_PHYSICAL_DEVICE_TYPE_OTHER";
- case VK_PHYSICAL_DEVICE_TYPE_CPU:
- return "VK_PHYSICAL_DEVICE_TYPE_CPU";
- case VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU:
- return "VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU";
- default:
- return "Unhandled VkPhysicalDeviceType";
- }
-}
-
-static inline const char* string_VkQueueFlagBits(VkQueueFlagBits input_value)
-{
- switch ((VkQueueFlagBits)input_value)
- {
- case VK_QUEUE_SPARSE_BINDING_BIT:
- return "VK_QUEUE_SPARSE_BINDING_BIT";
- case VK_QUEUE_GRAPHICS_BIT:
- return "VK_QUEUE_GRAPHICS_BIT";
- case VK_QUEUE_COMPUTE_BIT:
- return "VK_QUEUE_COMPUTE_BIT";
- case VK_QUEUE_PROTECTED_BIT:
- return "VK_QUEUE_PROTECTED_BIT";
- case VK_QUEUE_TRANSFER_BIT:
- return "VK_QUEUE_TRANSFER_BIT";
- default:
- return "Unhandled VkQueueFlagBits";
- }
-}
-
-static inline const char* string_VkMemoryPropertyFlagBits(VkMemoryPropertyFlagBits input_value)
-{
- switch ((VkMemoryPropertyFlagBits)input_value)
- {
- case VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT:
- return "VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT";
- case VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT:
- return "VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT";
- case VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT:
- return "VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT";
- case VK_MEMORY_PROPERTY_HOST_CACHED_BIT:
- return "VK_MEMORY_PROPERTY_HOST_CACHED_BIT";
- case VK_MEMORY_PROPERTY_HOST_COHERENT_BIT:
- return "VK_MEMORY_PROPERTY_HOST_COHERENT_BIT";
- case VK_MEMORY_PROPERTY_PROTECTED_BIT:
- return "VK_MEMORY_PROPERTY_PROTECTED_BIT";
- default:
- return "Unhandled VkMemoryPropertyFlagBits";
- }
-}
-
-static inline const char* string_VkMemoryHeapFlagBits(VkMemoryHeapFlagBits input_value)
-{
- switch ((VkMemoryHeapFlagBits)input_value)
- {
- case VK_MEMORY_HEAP_DEVICE_LOCAL_BIT:
- return "VK_MEMORY_HEAP_DEVICE_LOCAL_BIT";
- case VK_MEMORY_HEAP_MULTI_INSTANCE_BIT:
- return "VK_MEMORY_HEAP_MULTI_INSTANCE_BIT";
- default:
- return "Unhandled VkMemoryHeapFlagBits";
- }
-}
-
-static inline const char* string_VkDeviceQueueCreateFlagBits(VkDeviceQueueCreateFlagBits input_value)
-{
- switch ((VkDeviceQueueCreateFlagBits)input_value)
- {
- case VK_DEVICE_QUEUE_CREATE_PROTECTED_BIT:
- return "VK_DEVICE_QUEUE_CREATE_PROTECTED_BIT";
- default:
- return "Unhandled VkDeviceQueueCreateFlagBits";
- }
-}
-
-static inline const char* string_VkPipelineStageFlagBits(VkPipelineStageFlagBits input_value)
-{
- switch ((VkPipelineStageFlagBits)input_value)
- {
- case VK_PIPELINE_STAGE_DRAW_INDIRECT_BIT:
- return "VK_PIPELINE_STAGE_DRAW_INDIRECT_BIT";
- case VK_PIPELINE_STAGE_ALL_GRAPHICS_BIT:
- return "VK_PIPELINE_STAGE_ALL_GRAPHICS_BIT";
- case VK_PIPELINE_STAGE_TRANSFER_BIT:
- return "VK_PIPELINE_STAGE_TRANSFER_BIT";
- case VK_PIPELINE_STAGE_TESSELLATION_EVALUATION_SHADER_BIT:
- return "VK_PIPELINE_STAGE_TESSELLATION_EVALUATION_SHADER_BIT";
- case VK_PIPELINE_STAGE_COMMAND_PROCESS_BIT_NVX:
- return "VK_PIPELINE_STAGE_COMMAND_PROCESS_BIT_NVX";
- case VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT:
- return "VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT";
- case VK_PIPELINE_STAGE_TESSELLATION_CONTROL_SHADER_BIT:
- return "VK_PIPELINE_STAGE_TESSELLATION_CONTROL_SHADER_BIT";
- case VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT:
- return "VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT";
- case VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT:
- return "VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT";
- case VK_PIPELINE_STAGE_GEOMETRY_SHADER_BIT:
- return "VK_PIPELINE_STAGE_GEOMETRY_SHADER_BIT";
- case VK_PIPELINE_STAGE_ALL_COMMANDS_BIT:
- return "VK_PIPELINE_STAGE_ALL_COMMANDS_BIT";
- case VK_PIPELINE_STAGE_VERTEX_SHADER_BIT:
- return "VK_PIPELINE_STAGE_VERTEX_SHADER_BIT";
- case VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT:
- return "VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT";
- case VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT:
- return "VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT";
- case VK_PIPELINE_STAGE_HOST_BIT:
- return "VK_PIPELINE_STAGE_HOST_BIT";
- case VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT:
- return "VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT";
- case VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT:
- return "VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT";
- case VK_PIPELINE_STAGE_VERTEX_INPUT_BIT:
- return "VK_PIPELINE_STAGE_VERTEX_INPUT_BIT";
- default:
- return "Unhandled VkPipelineStageFlagBits";
- }
-}
-
-static inline const char* string_VkImageAspectFlagBits(VkImageAspectFlagBits input_value)
-{
- switch ((VkImageAspectFlagBits)input_value)
- {
- case VK_IMAGE_ASPECT_PLANE_0_BIT:
- return "VK_IMAGE_ASPECT_PLANE_0_BIT";
- case VK_IMAGE_ASPECT_PLANE_2_BIT:
- return "VK_IMAGE_ASPECT_PLANE_2_BIT";
- case VK_IMAGE_ASPECT_STENCIL_BIT:
- return "VK_IMAGE_ASPECT_STENCIL_BIT";
- case VK_IMAGE_ASPECT_PLANE_1_BIT:
- return "VK_IMAGE_ASPECT_PLANE_1_BIT";
- case VK_IMAGE_ASPECT_COLOR_BIT:
- return "VK_IMAGE_ASPECT_COLOR_BIT";
- case VK_IMAGE_ASPECT_METADATA_BIT:
- return "VK_IMAGE_ASPECT_METADATA_BIT";
- case VK_IMAGE_ASPECT_DEPTH_BIT:
- return "VK_IMAGE_ASPECT_DEPTH_BIT";
- default:
- return "Unhandled VkImageAspectFlagBits";
- }
-}
-
-static inline const char* string_VkSparseImageFormatFlagBits(VkSparseImageFormatFlagBits input_value)
-{
- switch ((VkSparseImageFormatFlagBits)input_value)
- {
- case VK_SPARSE_IMAGE_FORMAT_ALIGNED_MIP_SIZE_BIT:
- return "VK_SPARSE_IMAGE_FORMAT_ALIGNED_MIP_SIZE_BIT";
- case VK_SPARSE_IMAGE_FORMAT_SINGLE_MIPTAIL_BIT:
- return "VK_SPARSE_IMAGE_FORMAT_SINGLE_MIPTAIL_BIT";
- case VK_SPARSE_IMAGE_FORMAT_NONSTANDARD_BLOCK_SIZE_BIT:
- return "VK_SPARSE_IMAGE_FORMAT_NONSTANDARD_BLOCK_SIZE_BIT";
- default:
- return "Unhandled VkSparseImageFormatFlagBits";
- }
-}
-
-static inline const char* string_VkSparseMemoryBindFlagBits(VkSparseMemoryBindFlagBits input_value)
-{
- switch ((VkSparseMemoryBindFlagBits)input_value)
- {
- case VK_SPARSE_MEMORY_BIND_METADATA_BIT:
- return "VK_SPARSE_MEMORY_BIND_METADATA_BIT";
- default:
- return "Unhandled VkSparseMemoryBindFlagBits";
- }
-}
-
-static inline const char* string_VkFenceCreateFlagBits(VkFenceCreateFlagBits input_value)
-{
- switch ((VkFenceCreateFlagBits)input_value)
- {
- case VK_FENCE_CREATE_SIGNALED_BIT:
- return "VK_FENCE_CREATE_SIGNALED_BIT";
- default:
- return "Unhandled VkFenceCreateFlagBits";
- }
-}
-
-static inline const char* string_VkQueryType(VkQueryType input_value)
-{
- switch ((VkQueryType)input_value)
- {
- case VK_QUERY_TYPE_TIMESTAMP:
- return "VK_QUERY_TYPE_TIMESTAMP";
- case VK_QUERY_TYPE_PIPELINE_STATISTICS:
- return "VK_QUERY_TYPE_PIPELINE_STATISTICS";
- case VK_QUERY_TYPE_OCCLUSION:
- return "VK_QUERY_TYPE_OCCLUSION";
- default:
- return "Unhandled VkQueryType";
- }
-}
-
-static inline const char* string_VkQueryPipelineStatisticFlagBits(VkQueryPipelineStatisticFlagBits input_value)
-{
- switch ((VkQueryPipelineStatisticFlagBits)input_value)
- {
- case VK_QUERY_PIPELINE_STATISTIC_GEOMETRY_SHADER_PRIMITIVES_BIT:
- return "VK_QUERY_PIPELINE_STATISTIC_GEOMETRY_SHADER_PRIMITIVES_BIT";
- case VK_QUERY_PIPELINE_STATISTIC_TESSELLATION_EVALUATION_SHADER_INVOCATIONS_BIT:
- return "VK_QUERY_PIPELINE_STATISTIC_TESSELLATION_EVALUATION_SHADER_INVOCATIONS_BIT";
- case VK_QUERY_PIPELINE_STATISTIC_VERTEX_SHADER_INVOCATIONS_BIT:
- return "VK_QUERY_PIPELINE_STATISTIC_VERTEX_SHADER_INVOCATIONS_BIT";
- case VK_QUERY_PIPELINE_STATISTIC_TESSELLATION_CONTROL_SHADER_PATCHES_BIT:
- return "VK_QUERY_PIPELINE_STATISTIC_TESSELLATION_CONTROL_SHADER_PATCHES_BIT";
- case VK_QUERY_PIPELINE_STATISTIC_COMPUTE_SHADER_INVOCATIONS_BIT:
- return "VK_QUERY_PIPELINE_STATISTIC_COMPUTE_SHADER_INVOCATIONS_BIT";
- case VK_QUERY_PIPELINE_STATISTIC_GEOMETRY_SHADER_INVOCATIONS_BIT:
- return "VK_QUERY_PIPELINE_STATISTIC_GEOMETRY_SHADER_INVOCATIONS_BIT";
- case VK_QUERY_PIPELINE_STATISTIC_FRAGMENT_SHADER_INVOCATIONS_BIT:
- return "VK_QUERY_PIPELINE_STATISTIC_FRAGMENT_SHADER_INVOCATIONS_BIT";
- case VK_QUERY_PIPELINE_STATISTIC_CLIPPING_INVOCATIONS_BIT:
- return "VK_QUERY_PIPELINE_STATISTIC_CLIPPING_INVOCATIONS_BIT";
- case VK_QUERY_PIPELINE_STATISTIC_CLIPPING_PRIMITIVES_BIT:
- return "VK_QUERY_PIPELINE_STATISTIC_CLIPPING_PRIMITIVES_BIT";
- case VK_QUERY_PIPELINE_STATISTIC_INPUT_ASSEMBLY_VERTICES_BIT:
- return "VK_QUERY_PIPELINE_STATISTIC_INPUT_ASSEMBLY_VERTICES_BIT";
- case VK_QUERY_PIPELINE_STATISTIC_INPUT_ASSEMBLY_PRIMITIVES_BIT:
- return "VK_QUERY_PIPELINE_STATISTIC_INPUT_ASSEMBLY_PRIMITIVES_BIT";
- default:
- return "Unhandled VkQueryPipelineStatisticFlagBits";
- }
-}
-
-static inline const char* string_VkQueryResultFlagBits(VkQueryResultFlagBits input_value)
-{
- switch ((VkQueryResultFlagBits)input_value)
- {
- case VK_QUERY_RESULT_64_BIT:
- return "VK_QUERY_RESULT_64_BIT";
- case VK_QUERY_RESULT_WITH_AVAILABILITY_BIT:
- return "VK_QUERY_RESULT_WITH_AVAILABILITY_BIT";
- case VK_QUERY_RESULT_WAIT_BIT:
- return "VK_QUERY_RESULT_WAIT_BIT";
- case VK_QUERY_RESULT_PARTIAL_BIT:
- return "VK_QUERY_RESULT_PARTIAL_BIT";
- default:
- return "Unhandled VkQueryResultFlagBits";
- }
-}
-
-static inline const char* string_VkBufferCreateFlagBits(VkBufferCreateFlagBits input_value)
-{
- switch ((VkBufferCreateFlagBits)input_value)
- {
- case VK_BUFFER_CREATE_SPARSE_RESIDENCY_BIT:
- return "VK_BUFFER_CREATE_SPARSE_RESIDENCY_BIT";
- case VK_BUFFER_CREATE_SPARSE_BINDING_BIT:
- return "VK_BUFFER_CREATE_SPARSE_BINDING_BIT";
- case VK_BUFFER_CREATE_PROTECTED_BIT:
- return "VK_BUFFER_CREATE_PROTECTED_BIT";
- case VK_BUFFER_CREATE_SPARSE_ALIASED_BIT:
- return "VK_BUFFER_CREATE_SPARSE_ALIASED_BIT";
- default:
- return "Unhandled VkBufferCreateFlagBits";
- }
-}
-
-static inline const char* string_VkBufferUsageFlagBits(VkBufferUsageFlagBits input_value)
-{
- switch ((VkBufferUsageFlagBits)input_value)
- {
- case VK_BUFFER_USAGE_STORAGE_TEXEL_BUFFER_BIT:
- return "VK_BUFFER_USAGE_STORAGE_TEXEL_BUFFER_BIT";
- case VK_BUFFER_USAGE_STORAGE_BUFFER_BIT:
- return "VK_BUFFER_USAGE_STORAGE_BUFFER_BIT";
- case VK_BUFFER_USAGE_VERTEX_BUFFER_BIT:
- return "VK_BUFFER_USAGE_VERTEX_BUFFER_BIT";
- case VK_BUFFER_USAGE_INDIRECT_BUFFER_BIT:
- return "VK_BUFFER_USAGE_INDIRECT_BUFFER_BIT";
- case VK_BUFFER_USAGE_TRANSFER_SRC_BIT:
- return "VK_BUFFER_USAGE_TRANSFER_SRC_BIT";
- case VK_BUFFER_USAGE_TRANSFER_DST_BIT:
- return "VK_BUFFER_USAGE_TRANSFER_DST_BIT";
- case VK_BUFFER_USAGE_INDEX_BUFFER_BIT:
- return "VK_BUFFER_USAGE_INDEX_BUFFER_BIT";
- case VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT:
- return "VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT";
- case VK_BUFFER_USAGE_UNIFORM_TEXEL_BUFFER_BIT:
- return "VK_BUFFER_USAGE_UNIFORM_TEXEL_BUFFER_BIT";
- default:
- return "Unhandled VkBufferUsageFlagBits";
- }
-}
-
-static inline const char* string_VkSharingMode(VkSharingMode input_value)
-{
- switch ((VkSharingMode)input_value)
- {
- case VK_SHARING_MODE_EXCLUSIVE:
- return "VK_SHARING_MODE_EXCLUSIVE";
- case VK_SHARING_MODE_CONCURRENT:
- return "VK_SHARING_MODE_CONCURRENT";
- default:
- return "Unhandled VkSharingMode";
- }
-}
-
-static inline const char* string_VkImageLayout(VkImageLayout input_value)
-{
- switch ((VkImageLayout)input_value)
- {
- case VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL:
- return "VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL";
- case VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL:
- return "VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL";
- case VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_STENCIL_ATTACHMENT_OPTIMAL:
- return "VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_STENCIL_ATTACHMENT_OPTIMAL";
- case VK_IMAGE_LAYOUT_GENERAL:
- return "VK_IMAGE_LAYOUT_GENERAL";
- case VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_STENCIL_READ_ONLY_OPTIMAL:
- return "VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_STENCIL_READ_ONLY_OPTIMAL";
- case VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL:
- return "VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL";
- case VK_IMAGE_LAYOUT_UNDEFINED:
- return "VK_IMAGE_LAYOUT_UNDEFINED";
- case VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL:
- return "VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL";
- case VK_IMAGE_LAYOUT_PREINITIALIZED:
- return "VK_IMAGE_LAYOUT_PREINITIALIZED";
- case VK_IMAGE_LAYOUT_PRESENT_SRC_KHR:
- return "VK_IMAGE_LAYOUT_PRESENT_SRC_KHR";
- case VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL:
- return "VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL";
- case VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL:
- return "VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL";
- case VK_IMAGE_LAYOUT_SHARED_PRESENT_KHR:
- return "VK_IMAGE_LAYOUT_SHARED_PRESENT_KHR";
- default:
- return "Unhandled VkImageLayout";
- }
-}
-
-static inline const char* string_VkImageViewType(VkImageViewType input_value)
-{
- switch ((VkImageViewType)input_value)
- {
- case VK_IMAGE_VIEW_TYPE_2D_ARRAY:
- return "VK_IMAGE_VIEW_TYPE_2D_ARRAY";
- case VK_IMAGE_VIEW_TYPE_1D_ARRAY:
- return "VK_IMAGE_VIEW_TYPE_1D_ARRAY";
- case VK_IMAGE_VIEW_TYPE_1D:
- return "VK_IMAGE_VIEW_TYPE_1D";
- case VK_IMAGE_VIEW_TYPE_3D:
- return "VK_IMAGE_VIEW_TYPE_3D";
- case VK_IMAGE_VIEW_TYPE_CUBE:
- return "VK_IMAGE_VIEW_TYPE_CUBE";
- case VK_IMAGE_VIEW_TYPE_CUBE_ARRAY:
- return "VK_IMAGE_VIEW_TYPE_CUBE_ARRAY";
- case VK_IMAGE_VIEW_TYPE_2D:
- return "VK_IMAGE_VIEW_TYPE_2D";
- default:
- return "Unhandled VkImageViewType";
- }
-}
-
-static inline const char* string_VkComponentSwizzle(VkComponentSwizzle input_value)
-{
- switch ((VkComponentSwizzle)input_value)
- {
- case VK_COMPONENT_SWIZZLE_ONE:
- return "VK_COMPONENT_SWIZZLE_ONE";
- case VK_COMPONENT_SWIZZLE_R:
- return "VK_COMPONENT_SWIZZLE_R";
- case VK_COMPONENT_SWIZZLE_ZERO:
- return "VK_COMPONENT_SWIZZLE_ZERO";
- case VK_COMPONENT_SWIZZLE_IDENTITY:
- return "VK_COMPONENT_SWIZZLE_IDENTITY";
- case VK_COMPONENT_SWIZZLE_G:
- return "VK_COMPONENT_SWIZZLE_G";
- case VK_COMPONENT_SWIZZLE_A:
- return "VK_COMPONENT_SWIZZLE_A";
- case VK_COMPONENT_SWIZZLE_B:
- return "VK_COMPONENT_SWIZZLE_B";
- default:
- return "Unhandled VkComponentSwizzle";
- }
-}
-
-static inline const char* string_VkPipelineCreateFlagBits(VkPipelineCreateFlagBits input_value)
-{
- switch ((VkPipelineCreateFlagBits)input_value)
- {
- case VK_PIPELINE_CREATE_DISABLE_OPTIMIZATION_BIT:
- return "VK_PIPELINE_CREATE_DISABLE_OPTIMIZATION_BIT";
- case VK_PIPELINE_CREATE_VIEW_INDEX_FROM_DEVICE_INDEX_BIT:
- return "VK_PIPELINE_CREATE_VIEW_INDEX_FROM_DEVICE_INDEX_BIT";
- case VK_PIPELINE_CREATE_DISPATCH_BASE:
- return "VK_PIPELINE_CREATE_DISPATCH_BASE";
- case VK_PIPELINE_CREATE_DERIVATIVE_BIT:
- return "VK_PIPELINE_CREATE_DERIVATIVE_BIT";
- case VK_PIPELINE_CREATE_ALLOW_DERIVATIVES_BIT:
- return "VK_PIPELINE_CREATE_ALLOW_DERIVATIVES_BIT";
- default:
- return "Unhandled VkPipelineCreateFlagBits";
- }
-}
-
-static inline const char* string_VkShaderStageFlagBits(VkShaderStageFlagBits input_value)
-{
- switch ((VkShaderStageFlagBits)input_value)
- {
- case VK_SHADER_STAGE_VERTEX_BIT:
- return "VK_SHADER_STAGE_VERTEX_BIT";
- case VK_SHADER_STAGE_ALL:
- return "VK_SHADER_STAGE_ALL";
- case VK_SHADER_STAGE_FRAGMENT_BIT:
- return "VK_SHADER_STAGE_FRAGMENT_BIT";
- case VK_SHADER_STAGE_COMPUTE_BIT:
- return "VK_SHADER_STAGE_COMPUTE_BIT";
- case VK_SHADER_STAGE_ALL_GRAPHICS:
- return "VK_SHADER_STAGE_ALL_GRAPHICS";
- case VK_SHADER_STAGE_GEOMETRY_BIT:
- return "VK_SHADER_STAGE_GEOMETRY_BIT";
- case VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT:
- return "VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT";
- case VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT:
- return "VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT";
- default:
- return "Unhandled VkShaderStageFlagBits";
- }
-}
-
-static inline const char* string_VkVertexInputRate(VkVertexInputRate input_value)
-{
- switch ((VkVertexInputRate)input_value)
- {
- case VK_VERTEX_INPUT_RATE_VERTEX:
- return "VK_VERTEX_INPUT_RATE_VERTEX";
- case VK_VERTEX_INPUT_RATE_INSTANCE:
- return "VK_VERTEX_INPUT_RATE_INSTANCE";
- default:
- return "Unhandled VkVertexInputRate";
- }
-}
-
-static inline const char* string_VkPrimitiveTopology(VkPrimitiveTopology input_value)
-{
- switch ((VkPrimitiveTopology)input_value)
- {
- case VK_PRIMITIVE_TOPOLOGY_PATCH_LIST:
- return "VK_PRIMITIVE_TOPOLOGY_PATCH_LIST";
- case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST:
- return "VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST";
- case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_FAN:
- return "VK_PRIMITIVE_TOPOLOGY_TRIANGLE_FAN";
- case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP_WITH_ADJACENCY:
- return "VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP_WITH_ADJACENCY";
- case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJACENCY:
- return "VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJACENCY";
- case VK_PRIMITIVE_TOPOLOGY_LINE_STRIP:
- return "VK_PRIMITIVE_TOPOLOGY_LINE_STRIP";
- case VK_PRIMITIVE_TOPOLOGY_POINT_LIST:
- return "VK_PRIMITIVE_TOPOLOGY_POINT_LIST";
- case VK_PRIMITIVE_TOPOLOGY_LINE_LIST_WITH_ADJACENCY:
- return "VK_PRIMITIVE_TOPOLOGY_LINE_LIST_WITH_ADJACENCY";
- case VK_PRIMITIVE_TOPOLOGY_LINE_STRIP_WITH_ADJACENCY:
- return "VK_PRIMITIVE_TOPOLOGY_LINE_STRIP_WITH_ADJACENCY";
- case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP:
- return "VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP";
- case VK_PRIMITIVE_TOPOLOGY_LINE_LIST:
- return "VK_PRIMITIVE_TOPOLOGY_LINE_LIST";
- default:
- return "Unhandled VkPrimitiveTopology";
- }
-}
-
-static inline const char* string_VkPolygonMode(VkPolygonMode input_value)
-{
- switch ((VkPolygonMode)input_value)
- {
- case VK_POLYGON_MODE_POINT:
- return "VK_POLYGON_MODE_POINT";
- case VK_POLYGON_MODE_FILL:
- return "VK_POLYGON_MODE_FILL";
- case VK_POLYGON_MODE_LINE:
- return "VK_POLYGON_MODE_LINE";
- case VK_POLYGON_MODE_FILL_RECTANGLE_NV:
- return "VK_POLYGON_MODE_FILL_RECTANGLE_NV";
- default:
- return "Unhandled VkPolygonMode";
- }
-}
-
-static inline const char* string_VkCullModeFlagBits(VkCullModeFlagBits input_value)
-{
- switch ((VkCullModeFlagBits)input_value)
- {
- case VK_CULL_MODE_FRONT_BIT:
- return "VK_CULL_MODE_FRONT_BIT";
- case VK_CULL_MODE_FRONT_AND_BACK:
- return "VK_CULL_MODE_FRONT_AND_BACK";
- case VK_CULL_MODE_BACK_BIT:
- return "VK_CULL_MODE_BACK_BIT";
- case VK_CULL_MODE_NONE:
- return "VK_CULL_MODE_NONE";
- default:
- return "Unhandled VkCullModeFlagBits";
- }
-}
-
-static inline const char* string_VkFrontFace(VkFrontFace input_value)
-{
- switch ((VkFrontFace)input_value)
- {
- case VK_FRONT_FACE_CLOCKWISE:
- return "VK_FRONT_FACE_CLOCKWISE";
- case VK_FRONT_FACE_COUNTER_CLOCKWISE:
- return "VK_FRONT_FACE_COUNTER_CLOCKWISE";
- default:
- return "Unhandled VkFrontFace";
- }
-}
-
-static inline const char* string_VkCompareOp(VkCompareOp input_value)
-{
- switch ((VkCompareOp)input_value)
- {
- case VK_COMPARE_OP_ALWAYS:
- return "VK_COMPARE_OP_ALWAYS";
- case VK_COMPARE_OP_NOT_EQUAL:
- return "VK_COMPARE_OP_NOT_EQUAL";
- case VK_COMPARE_OP_LESS:
- return "VK_COMPARE_OP_LESS";
- case VK_COMPARE_OP_LESS_OR_EQUAL:
- return "VK_COMPARE_OP_LESS_OR_EQUAL";
- case VK_COMPARE_OP_NEVER:
- return "VK_COMPARE_OP_NEVER";
- case VK_COMPARE_OP_GREATER:
- return "VK_COMPARE_OP_GREATER";
- case VK_COMPARE_OP_EQUAL:
- return "VK_COMPARE_OP_EQUAL";
- case VK_COMPARE_OP_GREATER_OR_EQUAL:
- return "VK_COMPARE_OP_GREATER_OR_EQUAL";
- default:
- return "Unhandled VkCompareOp";
- }
-}
-
-static inline const char* string_VkStencilOp(VkStencilOp input_value)
-{
- switch ((VkStencilOp)input_value)
- {
- case VK_STENCIL_OP_INVERT:
- return "VK_STENCIL_OP_INVERT";
- case VK_STENCIL_OP_KEEP:
- return "VK_STENCIL_OP_KEEP";
- case VK_STENCIL_OP_DECREMENT_AND_CLAMP:
- return "VK_STENCIL_OP_DECREMENT_AND_CLAMP";
- case VK_STENCIL_OP_REPLACE:
- return "VK_STENCIL_OP_REPLACE";
- case VK_STENCIL_OP_INCREMENT_AND_WRAP:
- return "VK_STENCIL_OP_INCREMENT_AND_WRAP";
- case VK_STENCIL_OP_ZERO:
- return "VK_STENCIL_OP_ZERO";
- case VK_STENCIL_OP_INCREMENT_AND_CLAMP:
- return "VK_STENCIL_OP_INCREMENT_AND_CLAMP";
- case VK_STENCIL_OP_DECREMENT_AND_WRAP:
- return "VK_STENCIL_OP_DECREMENT_AND_WRAP";
- default:
- return "Unhandled VkStencilOp";
- }
-}
-
-static inline const char* string_VkLogicOp(VkLogicOp input_value)
-{
- switch ((VkLogicOp)input_value)
- {
- case VK_LOGIC_OP_NOR:
- return "VK_LOGIC_OP_NOR";
- case VK_LOGIC_OP_OR:
- return "VK_LOGIC_OP_OR";
- case VK_LOGIC_OP_NO_OP:
- return "VK_LOGIC_OP_NO_OP";
- case VK_LOGIC_OP_NAND:
- return "VK_LOGIC_OP_NAND";
- case VK_LOGIC_OP_XOR:
- return "VK_LOGIC_OP_XOR";
- case VK_LOGIC_OP_AND_REVERSE:
- return "VK_LOGIC_OP_AND_REVERSE";
- case VK_LOGIC_OP_COPY:
- return "VK_LOGIC_OP_COPY";
- case VK_LOGIC_OP_AND:
- return "VK_LOGIC_OP_AND";
- case VK_LOGIC_OP_CLEAR:
- return "VK_LOGIC_OP_CLEAR";
- case VK_LOGIC_OP_COPY_INVERTED:
- return "VK_LOGIC_OP_COPY_INVERTED";
- case VK_LOGIC_OP_SET:
- return "VK_LOGIC_OP_SET";
- case VK_LOGIC_OP_INVERT:
- return "VK_LOGIC_OP_INVERT";
- case VK_LOGIC_OP_AND_INVERTED:
- return "VK_LOGIC_OP_AND_INVERTED";
- case VK_LOGIC_OP_OR_REVERSE:
- return "VK_LOGIC_OP_OR_REVERSE";
- case VK_LOGIC_OP_OR_INVERTED:
- return "VK_LOGIC_OP_OR_INVERTED";
- case VK_LOGIC_OP_EQUIVALENT:
- return "VK_LOGIC_OP_EQUIVALENT";
- default:
- return "Unhandled VkLogicOp";
- }
-}
-
-static inline const char* string_VkBlendFactor(VkBlendFactor input_value)
-{
- switch ((VkBlendFactor)input_value)
- {
- case VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA:
- return "VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA";
- case VK_BLEND_FACTOR_CONSTANT_ALPHA:
- return "VK_BLEND_FACTOR_CONSTANT_ALPHA";
- case VK_BLEND_FACTOR_ONE:
- return "VK_BLEND_FACTOR_ONE";
- case VK_BLEND_FACTOR_DST_COLOR:
- return "VK_BLEND_FACTOR_DST_COLOR";
- case VK_BLEND_FACTOR_ONE_MINUS_DST_COLOR:
- return "VK_BLEND_FACTOR_ONE_MINUS_DST_COLOR";
- case VK_BLEND_FACTOR_ONE_MINUS_SRC1_COLOR:
- return "VK_BLEND_FACTOR_ONE_MINUS_SRC1_COLOR";
- case VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_ALPHA:
- return "VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_ALPHA";
- case VK_BLEND_FACTOR_ONE_MINUS_DST_ALPHA:
- return "VK_BLEND_FACTOR_ONE_MINUS_DST_ALPHA";
- case VK_BLEND_FACTOR_SRC1_COLOR:
- return "VK_BLEND_FACTOR_SRC1_COLOR";
- case VK_BLEND_FACTOR_ONE_MINUS_SRC1_ALPHA:
- return "VK_BLEND_FACTOR_ONE_MINUS_SRC1_ALPHA";
- case VK_BLEND_FACTOR_SRC_ALPHA_SATURATE:
- return "VK_BLEND_FACTOR_SRC_ALPHA_SATURATE";
- case VK_BLEND_FACTOR_SRC_COLOR:
- return "VK_BLEND_FACTOR_SRC_COLOR";
- case VK_BLEND_FACTOR_DST_ALPHA:
- return "VK_BLEND_FACTOR_DST_ALPHA";
- case VK_BLEND_FACTOR_SRC_ALPHA:
- return "VK_BLEND_FACTOR_SRC_ALPHA";
- case VK_BLEND_FACTOR_ONE_MINUS_SRC_COLOR:
- return "VK_BLEND_FACTOR_ONE_MINUS_SRC_COLOR";
- case VK_BLEND_FACTOR_SRC1_ALPHA:
- return "VK_BLEND_FACTOR_SRC1_ALPHA";
- case VK_BLEND_FACTOR_CONSTANT_COLOR:
- return "VK_BLEND_FACTOR_CONSTANT_COLOR";
- case VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_COLOR:
- return "VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_COLOR";
- case VK_BLEND_FACTOR_ZERO:
- return "VK_BLEND_FACTOR_ZERO";
- default:
- return "Unhandled VkBlendFactor";
- }
-}
-
-static inline const char* string_VkBlendOp(VkBlendOp input_value)
-{
- switch ((VkBlendOp)input_value)
- {
- case VK_BLEND_OP_ADD:
- return "VK_BLEND_OP_ADD";
- case VK_BLEND_OP_SRC_EXT:
- return "VK_BLEND_OP_SRC_EXT";
- case VK_BLEND_OP_DST_EXT:
- return "VK_BLEND_OP_DST_EXT";
- case VK_BLEND_OP_DIFFERENCE_EXT:
- return "VK_BLEND_OP_DIFFERENCE_EXT";
- case VK_BLEND_OP_MINUS_EXT:
- return "VK_BLEND_OP_MINUS_EXT";
- case VK_BLEND_OP_MINUS_CLAMPED_EXT:
- return "VK_BLEND_OP_MINUS_CLAMPED_EXT";
- case VK_BLEND_OP_SOFTLIGHT_EXT:
- return "VK_BLEND_OP_SOFTLIGHT_EXT";
- case VK_BLEND_OP_LINEARDODGE_EXT:
- return "VK_BLEND_OP_LINEARDODGE_EXT";
- case VK_BLEND_OP_HARDMIX_EXT:
- return "VK_BLEND_OP_HARDMIX_EXT";
- case VK_BLEND_OP_MIN:
- return "VK_BLEND_OP_MIN";
- case VK_BLEND_OP_HSL_LUMINOSITY_EXT:
- return "VK_BLEND_OP_HSL_LUMINOSITY_EXT";
- case VK_BLEND_OP_SRC_ATOP_EXT:
- return "VK_BLEND_OP_SRC_ATOP_EXT";
- case VK_BLEND_OP_SUBTRACT:
- return "VK_BLEND_OP_SUBTRACT";
- case VK_BLEND_OP_HSL_HUE_EXT:
- return "VK_BLEND_OP_HSL_HUE_EXT";
- case VK_BLEND_OP_REVERSE_SUBTRACT:
- return "VK_BLEND_OP_REVERSE_SUBTRACT";
- case VK_BLEND_OP_DST_OVER_EXT:
- return "VK_BLEND_OP_DST_OVER_EXT";
- case VK_BLEND_OP_VIVIDLIGHT_EXT:
- return "VK_BLEND_OP_VIVIDLIGHT_EXT";
- case VK_BLEND_OP_HSL_COLOR_EXT:
- return "VK_BLEND_OP_HSL_COLOR_EXT";
- case VK_BLEND_OP_EXCLUSION_EXT:
- return "VK_BLEND_OP_EXCLUSION_EXT";
- case VK_BLEND_OP_PLUS_DARKER_EXT:
- return "VK_BLEND_OP_PLUS_DARKER_EXT";
- case VK_BLEND_OP_DST_IN_EXT:
- return "VK_BLEND_OP_DST_IN_EXT";
- case VK_BLEND_OP_INVERT_OVG_EXT:
- return "VK_BLEND_OP_INVERT_OVG_EXT";
- case VK_BLEND_OP_CONTRAST_EXT:
- return "VK_BLEND_OP_CONTRAST_EXT";
- case VK_BLEND_OP_SRC_OUT_EXT:
- return "VK_BLEND_OP_SRC_OUT_EXT";
- case VK_BLEND_OP_COLORDODGE_EXT:
- return "VK_BLEND_OP_COLORDODGE_EXT";
- case VK_BLEND_OP_SRC_IN_EXT:
- return "VK_BLEND_OP_SRC_IN_EXT";
- case VK_BLEND_OP_MAX:
- return "VK_BLEND_OP_MAX";
- case VK_BLEND_OP_HSL_SATURATION_EXT:
- return "VK_BLEND_OP_HSL_SATURATION_EXT";
- case VK_BLEND_OP_PLUS_CLAMPED_ALPHA_EXT:
- return "VK_BLEND_OP_PLUS_CLAMPED_ALPHA_EXT";
- case VK_BLEND_OP_DARKEN_EXT:
- return "VK_BLEND_OP_DARKEN_EXT";
- case VK_BLEND_OP_BLUE_EXT:
- return "VK_BLEND_OP_BLUE_EXT";
- case VK_BLEND_OP_XOR_EXT:
- return "VK_BLEND_OP_XOR_EXT";
- case VK_BLEND_OP_HARDLIGHT_EXT:
- return "VK_BLEND_OP_HARDLIGHT_EXT";
- case VK_BLEND_OP_RED_EXT:
- return "VK_BLEND_OP_RED_EXT";
- case VK_BLEND_OP_INVERT_EXT:
- return "VK_BLEND_OP_INVERT_EXT";
- case VK_BLEND_OP_ZERO_EXT:
- return "VK_BLEND_OP_ZERO_EXT";
- case VK_BLEND_OP_LIGHTEN_EXT:
- return "VK_BLEND_OP_LIGHTEN_EXT";
- case VK_BLEND_OP_SCREEN_EXT:
- return "VK_BLEND_OP_SCREEN_EXT";
- case VK_BLEND_OP_DST_OUT_EXT:
- return "VK_BLEND_OP_DST_OUT_EXT";
- case VK_BLEND_OP_MULTIPLY_EXT:
- return "VK_BLEND_OP_MULTIPLY_EXT";
- case VK_BLEND_OP_OVERLAY_EXT:
- return "VK_BLEND_OP_OVERLAY_EXT";
- case VK_BLEND_OP_LINEARLIGHT_EXT:
- return "VK_BLEND_OP_LINEARLIGHT_EXT";
- case VK_BLEND_OP_PLUS_EXT:
- return "VK_BLEND_OP_PLUS_EXT";
- case VK_BLEND_OP_PLUS_CLAMPED_EXT:
- return "VK_BLEND_OP_PLUS_CLAMPED_EXT";
- case VK_BLEND_OP_INVERT_RGB_EXT:
- return "VK_BLEND_OP_INVERT_RGB_EXT";
- case VK_BLEND_OP_DST_ATOP_EXT:
- return "VK_BLEND_OP_DST_ATOP_EXT";
- case VK_BLEND_OP_LINEARBURN_EXT:
- return "VK_BLEND_OP_LINEARBURN_EXT";
- case VK_BLEND_OP_GREEN_EXT:
- return "VK_BLEND_OP_GREEN_EXT";
- case VK_BLEND_OP_COLORBURN_EXT:
- return "VK_BLEND_OP_COLORBURN_EXT";
- case VK_BLEND_OP_PINLIGHT_EXT:
- return "VK_BLEND_OP_PINLIGHT_EXT";
- case VK_BLEND_OP_SRC_OVER_EXT:
- return "VK_BLEND_OP_SRC_OVER_EXT";
- default:
- return "Unhandled VkBlendOp";
- }
-}
-
-static inline const char* string_VkColorComponentFlagBits(VkColorComponentFlagBits input_value)
-{
- switch ((VkColorComponentFlagBits)input_value)
- {
- case VK_COLOR_COMPONENT_R_BIT:
- return "VK_COLOR_COMPONENT_R_BIT";
- case VK_COLOR_COMPONENT_B_BIT:
- return "VK_COLOR_COMPONENT_B_BIT";
- case VK_COLOR_COMPONENT_G_BIT:
- return "VK_COLOR_COMPONENT_G_BIT";
- case VK_COLOR_COMPONENT_A_BIT:
- return "VK_COLOR_COMPONENT_A_BIT";
- default:
- return "Unhandled VkColorComponentFlagBits";
- }
-}
-
-static inline const char* string_VkDynamicState(VkDynamicState input_value)
-{
- switch ((VkDynamicState)input_value)
- {
- case VK_DYNAMIC_STATE_LINE_WIDTH:
- return "VK_DYNAMIC_STATE_LINE_WIDTH";
- case VK_DYNAMIC_STATE_DEPTH_BIAS:
- return "VK_DYNAMIC_STATE_DEPTH_BIAS";
- case VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK:
- return "VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK";
- case VK_DYNAMIC_STATE_STENCIL_REFERENCE:
- return "VK_DYNAMIC_STATE_STENCIL_REFERENCE";
- case VK_DYNAMIC_STATE_VIEWPORT_W_SCALING_NV:
- return "VK_DYNAMIC_STATE_VIEWPORT_W_SCALING_NV";
- case VK_DYNAMIC_STATE_STENCIL_WRITE_MASK:
- return "VK_DYNAMIC_STATE_STENCIL_WRITE_MASK";
- case VK_DYNAMIC_STATE_SCISSOR:
- return "VK_DYNAMIC_STATE_SCISSOR";
- case VK_DYNAMIC_STATE_VIEWPORT:
- return "VK_DYNAMIC_STATE_VIEWPORT";
- case VK_DYNAMIC_STATE_DEPTH_BOUNDS:
- return "VK_DYNAMIC_STATE_DEPTH_BOUNDS";
- case VK_DYNAMIC_STATE_DISCARD_RECTANGLE_EXT:
- return "VK_DYNAMIC_STATE_DISCARD_RECTANGLE_EXT";
- case VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_EXT:
- return "VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_EXT";
- case VK_DYNAMIC_STATE_BLEND_CONSTANTS:
- return "VK_DYNAMIC_STATE_BLEND_CONSTANTS";
- default:
- return "Unhandled VkDynamicState";
- }
-}
-
-static inline const char* string_VkFilter(VkFilter input_value)
-{
- switch ((VkFilter)input_value)
- {
- case VK_FILTER_LINEAR:
- return "VK_FILTER_LINEAR";
- case VK_FILTER_CUBIC_IMG:
- return "VK_FILTER_CUBIC_IMG";
- case VK_FILTER_NEAREST:
- return "VK_FILTER_NEAREST";
- default:
- return "Unhandled VkFilter";
- }
-}
-
-static inline const char* string_VkSamplerMipmapMode(VkSamplerMipmapMode input_value)
-{
- switch ((VkSamplerMipmapMode)input_value)
- {
- case VK_SAMPLER_MIPMAP_MODE_NEAREST:
- return "VK_SAMPLER_MIPMAP_MODE_NEAREST";
- case VK_SAMPLER_MIPMAP_MODE_LINEAR:
- return "VK_SAMPLER_MIPMAP_MODE_LINEAR";
- default:
- return "Unhandled VkSamplerMipmapMode";
- }
-}
-
-static inline const char* string_VkSamplerAddressMode(VkSamplerAddressMode input_value)
-{
- switch ((VkSamplerAddressMode)input_value)
- {
- case VK_SAMPLER_ADDRESS_MODE_MIRROR_CLAMP_TO_EDGE:
- return "VK_SAMPLER_ADDRESS_MODE_MIRROR_CLAMP_TO_EDGE";
- case VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_BORDER:
- return "VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_BORDER";
- case VK_SAMPLER_ADDRESS_MODE_MIRRORED_REPEAT:
- return "VK_SAMPLER_ADDRESS_MODE_MIRRORED_REPEAT";
- case VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE:
- return "VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE";
- case VK_SAMPLER_ADDRESS_MODE_REPEAT:
- return "VK_SAMPLER_ADDRESS_MODE_REPEAT";
- default:
- return "Unhandled VkSamplerAddressMode";
- }
-}
-
-static inline const char* string_VkBorderColor(VkBorderColor input_value)
-{
- switch ((VkBorderColor)input_value)
- {
- case VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK:
- return "VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK";
- case VK_BORDER_COLOR_INT_OPAQUE_BLACK:
- return "VK_BORDER_COLOR_INT_OPAQUE_BLACK";
- case VK_BORDER_COLOR_INT_TRANSPARENT_BLACK:
- return "VK_BORDER_COLOR_INT_TRANSPARENT_BLACK";
- case VK_BORDER_COLOR_INT_OPAQUE_WHITE:
- return "VK_BORDER_COLOR_INT_OPAQUE_WHITE";
- case VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE:
- return "VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE";
- case VK_BORDER_COLOR_FLOAT_OPAQUE_BLACK:
- return "VK_BORDER_COLOR_FLOAT_OPAQUE_BLACK";
- default:
- return "Unhandled VkBorderColor";
- }
-}
-
-static inline const char* string_VkDescriptorSetLayoutCreateFlagBits(VkDescriptorSetLayoutCreateFlagBits input_value)
-{
- switch ((VkDescriptorSetLayoutCreateFlagBits)input_value)
- {
- case VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT_EXT:
- return "VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT_EXT";
- case VK_DESCRIPTOR_SET_LAYOUT_CREATE_PUSH_DESCRIPTOR_BIT_KHR:
- return "VK_DESCRIPTOR_SET_LAYOUT_CREATE_PUSH_DESCRIPTOR_BIT_KHR";
- default:
- return "Unhandled VkDescriptorSetLayoutCreateFlagBits";
- }
-}
-
-static inline const char* string_VkDescriptorType(VkDescriptorType input_value)
-{
- switch ((VkDescriptorType)input_value)
- {
- case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER:
- return "VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER";
- case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER:
- return "VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER";
- case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC:
- return "VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC";
- case VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT:
- return "VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT";
- case VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER:
- return "VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER";
- case VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER:
- return "VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER";
- case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE:
- return "VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE";
- case VK_DESCRIPTOR_TYPE_SAMPLER:
- return "VK_DESCRIPTOR_TYPE_SAMPLER";
- case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE:
- return "VK_DESCRIPTOR_TYPE_STORAGE_IMAGE";
- case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC:
- return "VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC";
- case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER:
- return "VK_DESCRIPTOR_TYPE_STORAGE_BUFFER";
- default:
- return "Unhandled VkDescriptorType";
- }
-}
-
-static inline const char* string_VkDescriptorPoolCreateFlagBits(VkDescriptorPoolCreateFlagBits input_value)
-{
- switch ((VkDescriptorPoolCreateFlagBits)input_value)
- {
- case VK_DESCRIPTOR_POOL_CREATE_UPDATE_AFTER_BIND_BIT_EXT:
- return "VK_DESCRIPTOR_POOL_CREATE_UPDATE_AFTER_BIND_BIT_EXT";
- case VK_DESCRIPTOR_POOL_CREATE_FREE_DESCRIPTOR_SET_BIT:
- return "VK_DESCRIPTOR_POOL_CREATE_FREE_DESCRIPTOR_SET_BIT";
- default:
- return "Unhandled VkDescriptorPoolCreateFlagBits";
- }
-}
-
-static inline const char* string_VkAttachmentDescriptionFlagBits(VkAttachmentDescriptionFlagBits input_value)
-{
- switch ((VkAttachmentDescriptionFlagBits)input_value)
- {
- case VK_ATTACHMENT_DESCRIPTION_MAY_ALIAS_BIT:
- return "VK_ATTACHMENT_DESCRIPTION_MAY_ALIAS_BIT";
- default:
- return "Unhandled VkAttachmentDescriptionFlagBits";
- }
-}
-
-static inline const char* string_VkAttachmentLoadOp(VkAttachmentLoadOp input_value)
-{
- switch ((VkAttachmentLoadOp)input_value)
- {
- case VK_ATTACHMENT_LOAD_OP_DONT_CARE:
- return "VK_ATTACHMENT_LOAD_OP_DONT_CARE";
- case VK_ATTACHMENT_LOAD_OP_CLEAR:
- return "VK_ATTACHMENT_LOAD_OP_CLEAR";
- case VK_ATTACHMENT_LOAD_OP_LOAD:
- return "VK_ATTACHMENT_LOAD_OP_LOAD";
- default:
- return "Unhandled VkAttachmentLoadOp";
- }
-}
-
-static inline const char* string_VkAttachmentStoreOp(VkAttachmentStoreOp input_value)
-{
- switch ((VkAttachmentStoreOp)input_value)
- {
- case VK_ATTACHMENT_STORE_OP_DONT_CARE:
- return "VK_ATTACHMENT_STORE_OP_DONT_CARE";
- case VK_ATTACHMENT_STORE_OP_STORE:
- return "VK_ATTACHMENT_STORE_OP_STORE";
- default:
- return "Unhandled VkAttachmentStoreOp";
- }
-}
-
-static inline const char* string_VkSubpassDescriptionFlagBits(VkSubpassDescriptionFlagBits input_value)
-{
- switch ((VkSubpassDescriptionFlagBits)input_value)
- {
- case VK_SUBPASS_DESCRIPTION_PER_VIEW_ATTRIBUTES_BIT_NVX:
- return "VK_SUBPASS_DESCRIPTION_PER_VIEW_ATTRIBUTES_BIT_NVX";
- case VK_SUBPASS_DESCRIPTION_PER_VIEW_POSITION_X_ONLY_BIT_NVX:
- return "VK_SUBPASS_DESCRIPTION_PER_VIEW_POSITION_X_ONLY_BIT_NVX";
- default:
- return "Unhandled VkSubpassDescriptionFlagBits";
- }
-}
-
-static inline const char* string_VkPipelineBindPoint(VkPipelineBindPoint input_value)
-{
- switch ((VkPipelineBindPoint)input_value)
- {
- case VK_PIPELINE_BIND_POINT_COMPUTE:
- return "VK_PIPELINE_BIND_POINT_COMPUTE";
- case VK_PIPELINE_BIND_POINT_GRAPHICS:
- return "VK_PIPELINE_BIND_POINT_GRAPHICS";
- default:
- return "Unhandled VkPipelineBindPoint";
- }
-}
-
-static inline const char* string_VkAccessFlagBits(VkAccessFlagBits input_value)
-{
- switch ((VkAccessFlagBits)input_value)
- {
- case VK_ACCESS_UNIFORM_READ_BIT:
- return "VK_ACCESS_UNIFORM_READ_BIT";
- case VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT:
- return "VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT";
- case VK_ACCESS_INDIRECT_COMMAND_READ_BIT:
- return "VK_ACCESS_INDIRECT_COMMAND_READ_BIT";
- case VK_ACCESS_HOST_READ_BIT:
- return "VK_ACCESS_HOST_READ_BIT";
- case VK_ACCESS_HOST_WRITE_BIT:
- return "VK_ACCESS_HOST_WRITE_BIT";
- case VK_ACCESS_COLOR_ATTACHMENT_READ_NONCOHERENT_BIT_EXT:
- return "VK_ACCESS_COLOR_ATTACHMENT_READ_NONCOHERENT_BIT_EXT";
- case VK_ACCESS_COLOR_ATTACHMENT_READ_BIT:
- return "VK_ACCESS_COLOR_ATTACHMENT_READ_BIT";
- case VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT:
- return "VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT";
- case VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT:
- return "VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT";
- case VK_ACCESS_TRANSFER_WRITE_BIT:
- return "VK_ACCESS_TRANSFER_WRITE_BIT";
- case VK_ACCESS_COMMAND_PROCESS_WRITE_BIT_NVX:
- return "VK_ACCESS_COMMAND_PROCESS_WRITE_BIT_NVX";
- case VK_ACCESS_INPUT_ATTACHMENT_READ_BIT:
- return "VK_ACCESS_INPUT_ATTACHMENT_READ_BIT";
- case VK_ACCESS_SHADER_READ_BIT:
- return "VK_ACCESS_SHADER_READ_BIT";
- case VK_ACCESS_VERTEX_ATTRIBUTE_READ_BIT:
- return "VK_ACCESS_VERTEX_ATTRIBUTE_READ_BIT";
- case VK_ACCESS_COMMAND_PROCESS_READ_BIT_NVX:
- return "VK_ACCESS_COMMAND_PROCESS_READ_BIT_NVX";
- case VK_ACCESS_MEMORY_READ_BIT:
- return "VK_ACCESS_MEMORY_READ_BIT";
- case VK_ACCESS_SHADER_WRITE_BIT:
- return "VK_ACCESS_SHADER_WRITE_BIT";
- case VK_ACCESS_INDEX_READ_BIT:
- return "VK_ACCESS_INDEX_READ_BIT";
- case VK_ACCESS_MEMORY_WRITE_BIT:
- return "VK_ACCESS_MEMORY_WRITE_BIT";
- case VK_ACCESS_TRANSFER_READ_BIT:
- return "VK_ACCESS_TRANSFER_READ_BIT";
- default:
- return "Unhandled VkAccessFlagBits";
- }
-}
-
-static inline const char* string_VkDependencyFlagBits(VkDependencyFlagBits input_value)
-{
- switch ((VkDependencyFlagBits)input_value)
- {
- case VK_DEPENDENCY_DEVICE_GROUP_BIT:
- return "VK_DEPENDENCY_DEVICE_GROUP_BIT";
- case VK_DEPENDENCY_BY_REGION_BIT:
- return "VK_DEPENDENCY_BY_REGION_BIT";
- case VK_DEPENDENCY_VIEW_LOCAL_BIT:
- return "VK_DEPENDENCY_VIEW_LOCAL_BIT";
- default:
- return "Unhandled VkDependencyFlagBits";
- }
-}
-
-static inline const char* string_VkCommandPoolCreateFlagBits(VkCommandPoolCreateFlagBits input_value)
-{
- switch ((VkCommandPoolCreateFlagBits)input_value)
- {
- case VK_COMMAND_POOL_CREATE_TRANSIENT_BIT:
- return "VK_COMMAND_POOL_CREATE_TRANSIENT_BIT";
- case VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT:
- return "VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT";
- case VK_COMMAND_POOL_CREATE_PROTECTED_BIT:
- return "VK_COMMAND_POOL_CREATE_PROTECTED_BIT";
- default:
- return "Unhandled VkCommandPoolCreateFlagBits";
- }
-}
-
-static inline const char* string_VkCommandPoolResetFlagBits(VkCommandPoolResetFlagBits input_value)
-{
- switch ((VkCommandPoolResetFlagBits)input_value)
- {
- case VK_COMMAND_POOL_RESET_RELEASE_RESOURCES_BIT:
- return "VK_COMMAND_POOL_RESET_RELEASE_RESOURCES_BIT";
- default:
- return "Unhandled VkCommandPoolResetFlagBits";
- }
-}
-
-static inline const char* string_VkCommandBufferLevel(VkCommandBufferLevel input_value)
-{
- switch ((VkCommandBufferLevel)input_value)
- {
- case VK_COMMAND_BUFFER_LEVEL_SECONDARY:
- return "VK_COMMAND_BUFFER_LEVEL_SECONDARY";
- case VK_COMMAND_BUFFER_LEVEL_PRIMARY:
- return "VK_COMMAND_BUFFER_LEVEL_PRIMARY";
- default:
- return "Unhandled VkCommandBufferLevel";
- }
-}
-
-static inline const char* string_VkCommandBufferUsageFlagBits(VkCommandBufferUsageFlagBits input_value)
-{
- switch ((VkCommandBufferUsageFlagBits)input_value)
- {
- case VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT:
- return "VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT";
- case VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT:
- return "VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT";
- case VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT:
- return "VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT";
- default:
- return "Unhandled VkCommandBufferUsageFlagBits";
- }
-}
-
-static inline const char* string_VkQueryControlFlagBits(VkQueryControlFlagBits input_value)
-{
- switch ((VkQueryControlFlagBits)input_value)
- {
- case VK_QUERY_CONTROL_PRECISE_BIT:
- return "VK_QUERY_CONTROL_PRECISE_BIT";
- default:
- return "Unhandled VkQueryControlFlagBits";
- }
-}
-
-static inline const char* string_VkCommandBufferResetFlagBits(VkCommandBufferResetFlagBits input_value)
-{
- switch ((VkCommandBufferResetFlagBits)input_value)
- {
- case VK_COMMAND_BUFFER_RESET_RELEASE_RESOURCES_BIT:
- return "VK_COMMAND_BUFFER_RESET_RELEASE_RESOURCES_BIT";
- default:
- return "Unhandled VkCommandBufferResetFlagBits";
- }
-}
-
-static inline const char* string_VkStencilFaceFlagBits(VkStencilFaceFlagBits input_value)
-{
- switch ((VkStencilFaceFlagBits)input_value)
- {
- case VK_STENCIL_FACE_BACK_BIT:
- return "VK_STENCIL_FACE_BACK_BIT";
- case VK_STENCIL_FRONT_AND_BACK:
- return "VK_STENCIL_FRONT_AND_BACK";
- case VK_STENCIL_FACE_FRONT_BIT:
- return "VK_STENCIL_FACE_FRONT_BIT";
- default:
- return "Unhandled VkStencilFaceFlagBits";
- }
-}
-
-static inline const char* string_VkIndexType(VkIndexType input_value)
-{
- switch ((VkIndexType)input_value)
- {
- case VK_INDEX_TYPE_UINT16:
- return "VK_INDEX_TYPE_UINT16";
- case VK_INDEX_TYPE_UINT32:
- return "VK_INDEX_TYPE_UINT32";
- default:
- return "Unhandled VkIndexType";
- }
-}
-
-static inline const char* string_VkSubpassContents(VkSubpassContents input_value)
-{
- switch ((VkSubpassContents)input_value)
- {
- case VK_SUBPASS_CONTENTS_SECONDARY_COMMAND_BUFFERS:
- return "VK_SUBPASS_CONTENTS_SECONDARY_COMMAND_BUFFERS";
- case VK_SUBPASS_CONTENTS_INLINE:
- return "VK_SUBPASS_CONTENTS_INLINE";
- default:
- return "Unhandled VkSubpassContents";
- }
-}
-
-static inline const char* string_VkObjectType(VkObjectType input_value)
-{
- switch ((VkObjectType)input_value)
- {
- case VK_OBJECT_TYPE_SEMAPHORE:
- return "VK_OBJECT_TYPE_SEMAPHORE";
- case VK_OBJECT_TYPE_PIPELINE:
- return "VK_OBJECT_TYPE_PIPELINE";
- case VK_OBJECT_TYPE_DEBUG_UTILS_MESSENGER_EXT:
- return "VK_OBJECT_TYPE_DEBUG_UTILS_MESSENGER_EXT";
- case VK_OBJECT_TYPE_SURFACE_KHR:
- return "VK_OBJECT_TYPE_SURFACE_KHR";
- case VK_OBJECT_TYPE_BUFFER:
- return "VK_OBJECT_TYPE_BUFFER";
- case VK_OBJECT_TYPE_PHYSICAL_DEVICE:
- return "VK_OBJECT_TYPE_PHYSICAL_DEVICE";
- case VK_OBJECT_TYPE_SAMPLER_YCBCR_CONVERSION:
- return "VK_OBJECT_TYPE_SAMPLER_YCBCR_CONVERSION";
- case VK_OBJECT_TYPE_QUEUE:
- return "VK_OBJECT_TYPE_QUEUE";
- case VK_OBJECT_TYPE_DEVICE:
- return "VK_OBJECT_TYPE_DEVICE";
- case VK_OBJECT_TYPE_COMMAND_BUFFER:
- return "VK_OBJECT_TYPE_COMMAND_BUFFER";
- case VK_OBJECT_TYPE_DESCRIPTOR_SET:
- return "VK_OBJECT_TYPE_DESCRIPTOR_SET";
- case VK_OBJECT_TYPE_DESCRIPTOR_SET_LAYOUT:
- return "VK_OBJECT_TYPE_DESCRIPTOR_SET_LAYOUT";
- case VK_OBJECT_TYPE_COMMAND_POOL:
- return "VK_OBJECT_TYPE_COMMAND_POOL";
- case VK_OBJECT_TYPE_UNKNOWN:
- return "VK_OBJECT_TYPE_UNKNOWN";
- case VK_OBJECT_TYPE_DESCRIPTOR_POOL:
- return "VK_OBJECT_TYPE_DESCRIPTOR_POOL";
- case VK_OBJECT_TYPE_DESCRIPTOR_UPDATE_TEMPLATE:
- return "VK_OBJECT_TYPE_DESCRIPTOR_UPDATE_TEMPLATE";
- case VK_OBJECT_TYPE_BUFFER_VIEW:
- return "VK_OBJECT_TYPE_BUFFER_VIEW";
- case VK_OBJECT_TYPE_DEVICE_MEMORY:
- return "VK_OBJECT_TYPE_DEVICE_MEMORY";
- case VK_OBJECT_TYPE_DEBUG_REPORT_CALLBACK_EXT:
- return "VK_OBJECT_TYPE_DEBUG_REPORT_CALLBACK_EXT";
- case VK_OBJECT_TYPE_IMAGE:
- return "VK_OBJECT_TYPE_IMAGE";
- case VK_OBJECT_TYPE_INSTANCE:
- return "VK_OBJECT_TYPE_INSTANCE";
- case VK_OBJECT_TYPE_DISPLAY_MODE_KHR:
- return "VK_OBJECT_TYPE_DISPLAY_MODE_KHR";
- case VK_OBJECT_TYPE_IMAGE_VIEW:
- return "VK_OBJECT_TYPE_IMAGE_VIEW";
- case VK_OBJECT_TYPE_PIPELINE_LAYOUT:
- return "VK_OBJECT_TYPE_PIPELINE_LAYOUT";
- case VK_OBJECT_TYPE_EVENT:
- return "VK_OBJECT_TYPE_EVENT";
- case VK_OBJECT_TYPE_RENDER_PASS:
- return "VK_OBJECT_TYPE_RENDER_PASS";
- case VK_OBJECT_TYPE_FRAMEBUFFER:
- return "VK_OBJECT_TYPE_FRAMEBUFFER";
- case VK_OBJECT_TYPE_SAMPLER:
- return "VK_OBJECT_TYPE_SAMPLER";
- case VK_OBJECT_TYPE_SWAPCHAIN_KHR:
- return "VK_OBJECT_TYPE_SWAPCHAIN_KHR";
- case VK_OBJECT_TYPE_QUERY_POOL:
- return "VK_OBJECT_TYPE_QUERY_POOL";
- case VK_OBJECT_TYPE_DISPLAY_KHR:
- return "VK_OBJECT_TYPE_DISPLAY_KHR";
- case VK_OBJECT_TYPE_SHADER_MODULE:
- return "VK_OBJECT_TYPE_SHADER_MODULE";
- case VK_OBJECT_TYPE_PIPELINE_CACHE:
- return "VK_OBJECT_TYPE_PIPELINE_CACHE";
- case VK_OBJECT_TYPE_FENCE:
- return "VK_OBJECT_TYPE_FENCE";
- case VK_OBJECT_TYPE_INDIRECT_COMMANDS_LAYOUT_NVX:
- return "VK_OBJECT_TYPE_INDIRECT_COMMANDS_LAYOUT_NVX";
- case VK_OBJECT_TYPE_OBJECT_TABLE_NVX:
- return "VK_OBJECT_TYPE_OBJECT_TABLE_NVX";
- case VK_OBJECT_TYPE_VALIDATION_CACHE_EXT:
- return "VK_OBJECT_TYPE_VALIDATION_CACHE_EXT";
- default:
- return "Unhandled VkObjectType";
- }
-}
-
-static inline const char* string_VkSubgroupFeatureFlagBits(VkSubgroupFeatureFlagBits input_value)
-{
- switch ((VkSubgroupFeatureFlagBits)input_value)
- {
- case VK_SUBGROUP_FEATURE_SHUFFLE_BIT:
- return "VK_SUBGROUP_FEATURE_SHUFFLE_BIT";
- case VK_SUBGROUP_FEATURE_SHUFFLE_RELATIVE_BIT:
- return "VK_SUBGROUP_FEATURE_SHUFFLE_RELATIVE_BIT";
- case VK_SUBGROUP_FEATURE_QUAD_BIT:
- return "VK_SUBGROUP_FEATURE_QUAD_BIT";
- case VK_SUBGROUP_FEATURE_BALLOT_BIT:
- return "VK_SUBGROUP_FEATURE_BALLOT_BIT";
- case VK_SUBGROUP_FEATURE_CLUSTERED_BIT:
- return "VK_SUBGROUP_FEATURE_CLUSTERED_BIT";
- case VK_SUBGROUP_FEATURE_ARITHMETIC_BIT:
- return "VK_SUBGROUP_FEATURE_ARITHMETIC_BIT";
- case VK_SUBGROUP_FEATURE_VOTE_BIT:
- return "VK_SUBGROUP_FEATURE_VOTE_BIT";
- case VK_SUBGROUP_FEATURE_PARTITIONED_BIT_NV:
- return "VK_SUBGROUP_FEATURE_PARTITIONED_BIT_NV";
- case VK_SUBGROUP_FEATURE_BASIC_BIT:
- return "VK_SUBGROUP_FEATURE_BASIC_BIT";
- default:
- return "Unhandled VkSubgroupFeatureFlagBits";
- }
-}
-
-static inline const char* string_VkPeerMemoryFeatureFlagBits(VkPeerMemoryFeatureFlagBits input_value)
-{
- switch ((VkPeerMemoryFeatureFlagBits)input_value)
- {
- case VK_PEER_MEMORY_FEATURE_GENERIC_DST_BIT:
- return "VK_PEER_MEMORY_FEATURE_GENERIC_DST_BIT";
- case VK_PEER_MEMORY_FEATURE_COPY_SRC_BIT:
- return "VK_PEER_MEMORY_FEATURE_COPY_SRC_BIT";
- case VK_PEER_MEMORY_FEATURE_GENERIC_SRC_BIT:
- return "VK_PEER_MEMORY_FEATURE_GENERIC_SRC_BIT";
- case VK_PEER_MEMORY_FEATURE_COPY_DST_BIT:
- return "VK_PEER_MEMORY_FEATURE_COPY_DST_BIT";
- default:
- return "Unhandled VkPeerMemoryFeatureFlagBits";
- }
-}
-
-static inline const char* string_VkMemoryAllocateFlagBits(VkMemoryAllocateFlagBits input_value)
-{
- switch ((VkMemoryAllocateFlagBits)input_value)
- {
- case VK_MEMORY_ALLOCATE_DEVICE_MASK_BIT:
- return "VK_MEMORY_ALLOCATE_DEVICE_MASK_BIT";
- default:
- return "Unhandled VkMemoryAllocateFlagBits";
- }
-}
-
-static inline const char* string_VkPointClippingBehavior(VkPointClippingBehavior input_value)
-{
- switch ((VkPointClippingBehavior)input_value)
- {
- case VK_POINT_CLIPPING_BEHAVIOR_ALL_CLIP_PLANES:
- return "VK_POINT_CLIPPING_BEHAVIOR_ALL_CLIP_PLANES";
- case VK_POINT_CLIPPING_BEHAVIOR_USER_CLIP_PLANES_ONLY:
- return "VK_POINT_CLIPPING_BEHAVIOR_USER_CLIP_PLANES_ONLY";
- default:
- return "Unhandled VkPointClippingBehavior";
- }
-}
-
-static inline const char* string_VkTessellationDomainOrigin(VkTessellationDomainOrigin input_value)
-{
- switch ((VkTessellationDomainOrigin)input_value)
- {
- case VK_TESSELLATION_DOMAIN_ORIGIN_LOWER_LEFT:
- return "VK_TESSELLATION_DOMAIN_ORIGIN_LOWER_LEFT";
- case VK_TESSELLATION_DOMAIN_ORIGIN_UPPER_LEFT:
- return "VK_TESSELLATION_DOMAIN_ORIGIN_UPPER_LEFT";
- default:
- return "Unhandled VkTessellationDomainOrigin";
- }
-}
-
-static inline const char* string_VkSamplerYcbcrModelConversion(VkSamplerYcbcrModelConversion input_value)
-{
- switch ((VkSamplerYcbcrModelConversion)input_value)
- {
- case VK_SAMPLER_YCBCR_MODEL_CONVERSION_YCBCR_2020:
- return "VK_SAMPLER_YCBCR_MODEL_CONVERSION_YCBCR_2020";
- case VK_SAMPLER_YCBCR_MODEL_CONVERSION_YCBCR_IDENTITY:
- return "VK_SAMPLER_YCBCR_MODEL_CONVERSION_YCBCR_IDENTITY";
- case VK_SAMPLER_YCBCR_MODEL_CONVERSION_RGB_IDENTITY:
- return "VK_SAMPLER_YCBCR_MODEL_CONVERSION_RGB_IDENTITY";
- case VK_SAMPLER_YCBCR_MODEL_CONVERSION_YCBCR_709:
- return "VK_SAMPLER_YCBCR_MODEL_CONVERSION_YCBCR_709";
- case VK_SAMPLER_YCBCR_MODEL_CONVERSION_YCBCR_601:
- return "VK_SAMPLER_YCBCR_MODEL_CONVERSION_YCBCR_601";
- default:
- return "Unhandled VkSamplerYcbcrModelConversion";
- }
-}
-
-static inline const char* string_VkSamplerYcbcrRange(VkSamplerYcbcrRange input_value)
-{
- switch ((VkSamplerYcbcrRange)input_value)
- {
- case VK_SAMPLER_YCBCR_RANGE_ITU_FULL:
- return "VK_SAMPLER_YCBCR_RANGE_ITU_FULL";
- case VK_SAMPLER_YCBCR_RANGE_ITU_NARROW:
- return "VK_SAMPLER_YCBCR_RANGE_ITU_NARROW";
- default:
- return "Unhandled VkSamplerYcbcrRange";
- }
-}
-
-static inline const char* string_VkChromaLocation(VkChromaLocation input_value)
-{
- switch ((VkChromaLocation)input_value)
- {
- case VK_CHROMA_LOCATION_COSITED_EVEN:
- return "VK_CHROMA_LOCATION_COSITED_EVEN";
- case VK_CHROMA_LOCATION_MIDPOINT:
- return "VK_CHROMA_LOCATION_MIDPOINT";
- default:
- return "Unhandled VkChromaLocation";
- }
-}
-
-static inline const char* string_VkDescriptorUpdateTemplateType(VkDescriptorUpdateTemplateType input_value)
-{
- switch ((VkDescriptorUpdateTemplateType)input_value)
- {
- case VK_DESCRIPTOR_UPDATE_TEMPLATE_TYPE_PUSH_DESCRIPTORS_KHR:
- return "VK_DESCRIPTOR_UPDATE_TEMPLATE_TYPE_PUSH_DESCRIPTORS_KHR";
- case VK_DESCRIPTOR_UPDATE_TEMPLATE_TYPE_DESCRIPTOR_SET:
- return "VK_DESCRIPTOR_UPDATE_TEMPLATE_TYPE_DESCRIPTOR_SET";
- default:
- return "Unhandled VkDescriptorUpdateTemplateType";
- }
-}
-
-static inline const char* string_VkExternalMemoryHandleTypeFlagBits(VkExternalMemoryHandleTypeFlagBits input_value)
-{
- switch ((VkExternalMemoryHandleTypeFlagBits)input_value)
- {
- case VK_EXTERNAL_MEMORY_HANDLE_TYPE_D3D11_TEXTURE_KMT_BIT:
- return "VK_EXTERNAL_MEMORY_HANDLE_TYPE_D3D11_TEXTURE_KMT_BIT";
- case VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT:
- return "VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT";
- case VK_EXTERNAL_MEMORY_HANDLE_TYPE_D3D12_HEAP_BIT:
- return "VK_EXTERNAL_MEMORY_HANDLE_TYPE_D3D12_HEAP_BIT";
- case VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_MAPPED_FOREIGN_MEMORY_BIT_EXT:
- return "VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_MAPPED_FOREIGN_MEMORY_BIT_EXT";
- case VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT:
- return "VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT";
- case VK_EXTERNAL_MEMORY_HANDLE_TYPE_ANDROID_HARDWARE_BUFFER_BIT_ANDROID:
- return "VK_EXTERNAL_MEMORY_HANDLE_TYPE_ANDROID_HARDWARE_BUFFER_BIT_ANDROID";
- case VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_ALLOCATION_BIT_EXT:
- return "VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_ALLOCATION_BIT_EXT";
- case VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_WIN32_KMT_BIT:
- return "VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_WIN32_KMT_BIT";
- case VK_EXTERNAL_MEMORY_HANDLE_TYPE_D3D12_RESOURCE_BIT:
- return "VK_EXTERNAL_MEMORY_HANDLE_TYPE_D3D12_RESOURCE_BIT";
- case VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_WIN32_BIT:
- return "VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_WIN32_BIT";
- case VK_EXTERNAL_MEMORY_HANDLE_TYPE_D3D11_TEXTURE_BIT:
- return "VK_EXTERNAL_MEMORY_HANDLE_TYPE_D3D11_TEXTURE_BIT";
- default:
- return "Unhandled VkExternalMemoryHandleTypeFlagBits";
- }
-}
-
-static inline const char* string_VkExternalMemoryFeatureFlagBits(VkExternalMemoryFeatureFlagBits input_value)
-{
- switch ((VkExternalMemoryFeatureFlagBits)input_value)
- {
- case VK_EXTERNAL_MEMORY_FEATURE_EXPORTABLE_BIT:
- return "VK_EXTERNAL_MEMORY_FEATURE_EXPORTABLE_BIT";
- case VK_EXTERNAL_MEMORY_FEATURE_DEDICATED_ONLY_BIT:
- return "VK_EXTERNAL_MEMORY_FEATURE_DEDICATED_ONLY_BIT";
- case VK_EXTERNAL_MEMORY_FEATURE_IMPORTABLE_BIT:
- return "VK_EXTERNAL_MEMORY_FEATURE_IMPORTABLE_BIT";
- default:
- return "Unhandled VkExternalMemoryFeatureFlagBits";
- }
-}
-
-static inline const char* string_VkExternalFenceHandleTypeFlagBits(VkExternalFenceHandleTypeFlagBits input_value)
-{
- switch ((VkExternalFenceHandleTypeFlagBits)input_value)
- {
- case VK_EXTERNAL_FENCE_HANDLE_TYPE_OPAQUE_WIN32_KMT_BIT:
- return "VK_EXTERNAL_FENCE_HANDLE_TYPE_OPAQUE_WIN32_KMT_BIT";
- case VK_EXTERNAL_FENCE_HANDLE_TYPE_SYNC_FD_BIT:
- return "VK_EXTERNAL_FENCE_HANDLE_TYPE_SYNC_FD_BIT";
- case VK_EXTERNAL_FENCE_HANDLE_TYPE_OPAQUE_FD_BIT:
- return "VK_EXTERNAL_FENCE_HANDLE_TYPE_OPAQUE_FD_BIT";
- case VK_EXTERNAL_FENCE_HANDLE_TYPE_OPAQUE_WIN32_BIT:
- return "VK_EXTERNAL_FENCE_HANDLE_TYPE_OPAQUE_WIN32_BIT";
- default:
- return "Unhandled VkExternalFenceHandleTypeFlagBits";
- }
-}
-
-static inline const char* string_VkExternalFenceFeatureFlagBits(VkExternalFenceFeatureFlagBits input_value)
-{
- switch ((VkExternalFenceFeatureFlagBits)input_value)
- {
- case VK_EXTERNAL_FENCE_FEATURE_IMPORTABLE_BIT:
- return "VK_EXTERNAL_FENCE_FEATURE_IMPORTABLE_BIT";
- case VK_EXTERNAL_FENCE_FEATURE_EXPORTABLE_BIT:
- return "VK_EXTERNAL_FENCE_FEATURE_EXPORTABLE_BIT";
- default:
- return "Unhandled VkExternalFenceFeatureFlagBits";
- }
-}
-
-static inline const char* string_VkFenceImportFlagBits(VkFenceImportFlagBits input_value)
-{
- switch ((VkFenceImportFlagBits)input_value)
- {
- case VK_FENCE_IMPORT_TEMPORARY_BIT:
- return "VK_FENCE_IMPORT_TEMPORARY_BIT";
- default:
- return "Unhandled VkFenceImportFlagBits";
- }
-}
-
-static inline const char* string_VkSemaphoreImportFlagBits(VkSemaphoreImportFlagBits input_value)
-{
- switch ((VkSemaphoreImportFlagBits)input_value)
- {
- case VK_SEMAPHORE_IMPORT_TEMPORARY_BIT:
- return "VK_SEMAPHORE_IMPORT_TEMPORARY_BIT";
- default:
- return "Unhandled VkSemaphoreImportFlagBits";
- }
-}
-
-static inline const char* string_VkExternalSemaphoreHandleTypeFlagBits(VkExternalSemaphoreHandleTypeFlagBits input_value)
-{
- switch ((VkExternalSemaphoreHandleTypeFlagBits)input_value)
- {
- case VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_SYNC_FD_BIT:
- return "VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_SYNC_FD_BIT";
- case VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_WIN32_BIT:
- return "VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_WIN32_BIT";
- case VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_D3D12_FENCE_BIT:
- return "VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_D3D12_FENCE_BIT";
- case VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_FD_BIT:
- return "VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_FD_BIT";
- case VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_WIN32_KMT_BIT:
- return "VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_WIN32_KMT_BIT";
- default:
- return "Unhandled VkExternalSemaphoreHandleTypeFlagBits";
- }
-}
-
-static inline const char* string_VkExternalSemaphoreFeatureFlagBits(VkExternalSemaphoreFeatureFlagBits input_value)
-{
- switch ((VkExternalSemaphoreFeatureFlagBits)input_value)
- {
- case VK_EXTERNAL_SEMAPHORE_FEATURE_EXPORTABLE_BIT:
- return "VK_EXTERNAL_SEMAPHORE_FEATURE_EXPORTABLE_BIT";
- case VK_EXTERNAL_SEMAPHORE_FEATURE_IMPORTABLE_BIT:
- return "VK_EXTERNAL_SEMAPHORE_FEATURE_IMPORTABLE_BIT";
- default:
- return "Unhandled VkExternalSemaphoreFeatureFlagBits";
- }
-}
-
-static inline const char* string_VkSurfaceTransformFlagBitsKHR(VkSurfaceTransformFlagBitsKHR input_value)
-{
- switch ((VkSurfaceTransformFlagBitsKHR)input_value)
- {
- case VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_ROTATE_90_BIT_KHR:
- return "VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_ROTATE_90_BIT_KHR";
- case VK_SURFACE_TRANSFORM_ROTATE_270_BIT_KHR:
- return "VK_SURFACE_TRANSFORM_ROTATE_270_BIT_KHR";
- case VK_SURFACE_TRANSFORM_ROTATE_90_BIT_KHR:
- return "VK_SURFACE_TRANSFORM_ROTATE_90_BIT_KHR";
- case VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR:
- return "VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR";
- case VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_ROTATE_270_BIT_KHR:
- return "VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_ROTATE_270_BIT_KHR";
- case VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_BIT_KHR:
- return "VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_BIT_KHR";
- case VK_SURFACE_TRANSFORM_ROTATE_180_BIT_KHR:
- return "VK_SURFACE_TRANSFORM_ROTATE_180_BIT_KHR";
- case VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_ROTATE_180_BIT_KHR:
- return "VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_ROTATE_180_BIT_KHR";
- case VK_SURFACE_TRANSFORM_INHERIT_BIT_KHR:
- return "VK_SURFACE_TRANSFORM_INHERIT_BIT_KHR";
- default:
- return "Unhandled VkSurfaceTransformFlagBitsKHR";
- }
-}
-
-static inline const char* string_VkCompositeAlphaFlagBitsKHR(VkCompositeAlphaFlagBitsKHR input_value)
-{
- switch ((VkCompositeAlphaFlagBitsKHR)input_value)
- {
- case VK_COMPOSITE_ALPHA_INHERIT_BIT_KHR:
- return "VK_COMPOSITE_ALPHA_INHERIT_BIT_KHR";
- case VK_COMPOSITE_ALPHA_OPAQUE_BIT_KHR:
- return "VK_COMPOSITE_ALPHA_OPAQUE_BIT_KHR";
- case VK_COMPOSITE_ALPHA_POST_MULTIPLIED_BIT_KHR:
- return "VK_COMPOSITE_ALPHA_POST_MULTIPLIED_BIT_KHR";
- case VK_COMPOSITE_ALPHA_PRE_MULTIPLIED_BIT_KHR:
- return "VK_COMPOSITE_ALPHA_PRE_MULTIPLIED_BIT_KHR";
- default:
- return "Unhandled VkCompositeAlphaFlagBitsKHR";
- }
-}
-
-static inline const char* string_VkColorSpaceKHR(VkColorSpaceKHR input_value)
-{
- switch ((VkColorSpaceKHR)input_value)
- {
- case VK_COLOR_SPACE_DISPLAY_P3_NONLINEAR_EXT:
- return "VK_COLOR_SPACE_DISPLAY_P3_NONLINEAR_EXT";
- case VK_COLOR_SPACE_DCI_P3_LINEAR_EXT:
- return "VK_COLOR_SPACE_DCI_P3_LINEAR_EXT";
- case VK_COLOR_SPACE_ADOBERGB_NONLINEAR_EXT:
- return "VK_COLOR_SPACE_ADOBERGB_NONLINEAR_EXT";
- case VK_COLOR_SPACE_BT709_NONLINEAR_EXT:
- return "VK_COLOR_SPACE_BT709_NONLINEAR_EXT";
- case VK_COLOR_SPACE_DCI_P3_NONLINEAR_EXT:
- return "VK_COLOR_SPACE_DCI_P3_NONLINEAR_EXT";
- case VK_COLOR_SPACE_EXTENDED_SRGB_NONLINEAR_EXT:
- return "VK_COLOR_SPACE_EXTENDED_SRGB_NONLINEAR_EXT";
- case VK_COLOR_SPACE_HDR10_HLG_EXT:
- return "VK_COLOR_SPACE_HDR10_HLG_EXT";
- case VK_COLOR_SPACE_EXTENDED_SRGB_LINEAR_EXT:
- return "VK_COLOR_SPACE_EXTENDED_SRGB_LINEAR_EXT";
- case VK_COLOR_SPACE_ADOBERGB_LINEAR_EXT:
- return "VK_COLOR_SPACE_ADOBERGB_LINEAR_EXT";
- case VK_COLOR_SPACE_PASS_THROUGH_EXT:
- return "VK_COLOR_SPACE_PASS_THROUGH_EXT";
- case VK_COLOR_SPACE_HDR10_ST2084_EXT:
- return "VK_COLOR_SPACE_HDR10_ST2084_EXT";
- case VK_COLOR_SPACE_SRGB_NONLINEAR_KHR:
- return "VK_COLOR_SPACE_SRGB_NONLINEAR_KHR";
- case VK_COLOR_SPACE_BT2020_LINEAR_EXT:
- return "VK_COLOR_SPACE_BT2020_LINEAR_EXT";
- case VK_COLOR_SPACE_BT709_LINEAR_EXT:
- return "VK_COLOR_SPACE_BT709_LINEAR_EXT";
- case VK_COLOR_SPACE_DOLBYVISION_EXT:
- return "VK_COLOR_SPACE_DOLBYVISION_EXT";
- default:
- return "Unhandled VkColorSpaceKHR";
- }
-}
-
-static inline const char* string_VkPresentModeKHR(VkPresentModeKHR input_value)
-{
- switch ((VkPresentModeKHR)input_value)
- {
- case VK_PRESENT_MODE_FIFO_KHR:
- return "VK_PRESENT_MODE_FIFO_KHR";
- case VK_PRESENT_MODE_SHARED_DEMAND_REFRESH_KHR:
- return "VK_PRESENT_MODE_SHARED_DEMAND_REFRESH_KHR";
- case VK_PRESENT_MODE_SHARED_CONTINUOUS_REFRESH_KHR:
- return "VK_PRESENT_MODE_SHARED_CONTINUOUS_REFRESH_KHR";
- case VK_PRESENT_MODE_MAILBOX_KHR:
- return "VK_PRESENT_MODE_MAILBOX_KHR";
- case VK_PRESENT_MODE_IMMEDIATE_KHR:
- return "VK_PRESENT_MODE_IMMEDIATE_KHR";
- case VK_PRESENT_MODE_FIFO_RELAXED_KHR:
- return "VK_PRESENT_MODE_FIFO_RELAXED_KHR";
- default:
- return "Unhandled VkPresentModeKHR";
- }
-}
-
-static inline const char* string_VkSwapchainCreateFlagBitsKHR(VkSwapchainCreateFlagBitsKHR input_value)
-{
- switch ((VkSwapchainCreateFlagBitsKHR)input_value)
- {
- case VK_SWAPCHAIN_CREATE_PROTECTED_BIT_KHR:
- return "VK_SWAPCHAIN_CREATE_PROTECTED_BIT_KHR";
- case VK_SWAPCHAIN_CREATE_SPLIT_INSTANCE_BIND_REGIONS_BIT_KHR:
- return "VK_SWAPCHAIN_CREATE_SPLIT_INSTANCE_BIND_REGIONS_BIT_KHR";
- default:
- return "Unhandled VkSwapchainCreateFlagBitsKHR";
- }
-}
-
-static inline const char* string_VkDeviceGroupPresentModeFlagBitsKHR(VkDeviceGroupPresentModeFlagBitsKHR input_value)
-{
- switch ((VkDeviceGroupPresentModeFlagBitsKHR)input_value)
- {
- case VK_DEVICE_GROUP_PRESENT_MODE_SUM_BIT_KHR:
- return "VK_DEVICE_GROUP_PRESENT_MODE_SUM_BIT_KHR";
- case VK_DEVICE_GROUP_PRESENT_MODE_REMOTE_BIT_KHR:
- return "VK_DEVICE_GROUP_PRESENT_MODE_REMOTE_BIT_KHR";
- case VK_DEVICE_GROUP_PRESENT_MODE_LOCAL_MULTI_DEVICE_BIT_KHR:
- return "VK_DEVICE_GROUP_PRESENT_MODE_LOCAL_MULTI_DEVICE_BIT_KHR";
- case VK_DEVICE_GROUP_PRESENT_MODE_LOCAL_BIT_KHR:
- return "VK_DEVICE_GROUP_PRESENT_MODE_LOCAL_BIT_KHR";
- default:
- return "Unhandled VkDeviceGroupPresentModeFlagBitsKHR";
- }
-}
-
-static inline const char* string_VkDisplayPlaneAlphaFlagBitsKHR(VkDisplayPlaneAlphaFlagBitsKHR input_value)
-{
- switch ((VkDisplayPlaneAlphaFlagBitsKHR)input_value)
- {
- case VK_DISPLAY_PLANE_ALPHA_PER_PIXEL_BIT_KHR:
- return "VK_DISPLAY_PLANE_ALPHA_PER_PIXEL_BIT_KHR";
- case VK_DISPLAY_PLANE_ALPHA_GLOBAL_BIT_KHR:
- return "VK_DISPLAY_PLANE_ALPHA_GLOBAL_BIT_KHR";
- case VK_DISPLAY_PLANE_ALPHA_OPAQUE_BIT_KHR:
- return "VK_DISPLAY_PLANE_ALPHA_OPAQUE_BIT_KHR";
- case VK_DISPLAY_PLANE_ALPHA_PER_PIXEL_PREMULTIPLIED_BIT_KHR:
- return "VK_DISPLAY_PLANE_ALPHA_PER_PIXEL_PREMULTIPLIED_BIT_KHR";
- default:
- return "Unhandled VkDisplayPlaneAlphaFlagBitsKHR";
- }
-}
-
-static inline const char* string_VkPeerMemoryFeatureFlagBitsKHR(VkPeerMemoryFeatureFlagBitsKHR input_value)
-{
- switch ((VkPeerMemoryFeatureFlagBitsKHR)input_value)
- {
- case VK_PEER_MEMORY_FEATURE_GENERIC_DST_BIT:
- return "VK_PEER_MEMORY_FEATURE_GENERIC_DST_BIT";
- case VK_PEER_MEMORY_FEATURE_COPY_SRC_BIT:
- return "VK_PEER_MEMORY_FEATURE_COPY_SRC_BIT";
- case VK_PEER_MEMORY_FEATURE_GENERIC_SRC_BIT:
- return "VK_PEER_MEMORY_FEATURE_GENERIC_SRC_BIT";
- case VK_PEER_MEMORY_FEATURE_COPY_DST_BIT:
- return "VK_PEER_MEMORY_FEATURE_COPY_DST_BIT";
- default:
- return "Unhandled VkPeerMemoryFeatureFlagBitsKHR";
- }
-}
-
-static inline const char* string_VkMemoryAllocateFlagBitsKHR(VkMemoryAllocateFlagBitsKHR input_value)
-{
- switch ((VkMemoryAllocateFlagBitsKHR)input_value)
- {
- case VK_MEMORY_ALLOCATE_DEVICE_MASK_BIT:
- return "VK_MEMORY_ALLOCATE_DEVICE_MASK_BIT";
- default:
- return "Unhandled VkMemoryAllocateFlagBitsKHR";
- }
-}
-
-static inline const char* string_VkExternalMemoryHandleTypeFlagBitsKHR(VkExternalMemoryHandleTypeFlagBitsKHR input_value)
-{
- switch ((VkExternalMemoryHandleTypeFlagBitsKHR)input_value)
- {
- case VK_EXTERNAL_MEMORY_HANDLE_TYPE_D3D11_TEXTURE_KMT_BIT:
- return "VK_EXTERNAL_MEMORY_HANDLE_TYPE_D3D11_TEXTURE_KMT_BIT";
- case VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT:
- return "VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT";
- case VK_EXTERNAL_MEMORY_HANDLE_TYPE_D3D12_HEAP_BIT:
- return "VK_EXTERNAL_MEMORY_HANDLE_TYPE_D3D12_HEAP_BIT";
- case VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_MAPPED_FOREIGN_MEMORY_BIT_EXT:
- return "VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_MAPPED_FOREIGN_MEMORY_BIT_EXT";
- case VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT:
- return "VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT";
- case VK_EXTERNAL_MEMORY_HANDLE_TYPE_ANDROID_HARDWARE_BUFFER_BIT_ANDROID:
- return "VK_EXTERNAL_MEMORY_HANDLE_TYPE_ANDROID_HARDWARE_BUFFER_BIT_ANDROID";
- case VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_ALLOCATION_BIT_EXT:
- return "VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_ALLOCATION_BIT_EXT";
- case VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_WIN32_KMT_BIT:
- return "VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_WIN32_KMT_BIT";
- case VK_EXTERNAL_MEMORY_HANDLE_TYPE_D3D12_RESOURCE_BIT:
- return "VK_EXTERNAL_MEMORY_HANDLE_TYPE_D3D12_RESOURCE_BIT";
- case VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_WIN32_BIT:
- return "VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_WIN32_BIT";
- case VK_EXTERNAL_MEMORY_HANDLE_TYPE_D3D11_TEXTURE_BIT:
- return "VK_EXTERNAL_MEMORY_HANDLE_TYPE_D3D11_TEXTURE_BIT";
- default:
- return "Unhandled VkExternalMemoryHandleTypeFlagBitsKHR";
- }
-}
-
-static inline const char* string_VkExternalMemoryFeatureFlagBitsKHR(VkExternalMemoryFeatureFlagBitsKHR input_value)
-{
- switch ((VkExternalMemoryFeatureFlagBitsKHR)input_value)
- {
- case VK_EXTERNAL_MEMORY_FEATURE_EXPORTABLE_BIT:
- return "VK_EXTERNAL_MEMORY_FEATURE_EXPORTABLE_BIT";
- case VK_EXTERNAL_MEMORY_FEATURE_DEDICATED_ONLY_BIT:
- return "VK_EXTERNAL_MEMORY_FEATURE_DEDICATED_ONLY_BIT";
- case VK_EXTERNAL_MEMORY_FEATURE_IMPORTABLE_BIT:
- return "VK_EXTERNAL_MEMORY_FEATURE_IMPORTABLE_BIT";
- default:
- return "Unhandled VkExternalMemoryFeatureFlagBitsKHR";
- }
-}
-
-static inline const char* string_VkExternalSemaphoreHandleTypeFlagBitsKHR(VkExternalSemaphoreHandleTypeFlagBitsKHR input_value)
-{
- switch ((VkExternalSemaphoreHandleTypeFlagBitsKHR)input_value)
- {
- case VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_SYNC_FD_BIT:
- return "VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_SYNC_FD_BIT";
- case VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_WIN32_BIT:
- return "VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_WIN32_BIT";
- case VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_D3D12_FENCE_BIT:
- return "VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_D3D12_FENCE_BIT";
- case VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_FD_BIT:
- return "VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_FD_BIT";
- case VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_WIN32_KMT_BIT:
- return "VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_WIN32_KMT_BIT";
- default:
- return "Unhandled VkExternalSemaphoreHandleTypeFlagBitsKHR";
- }
-}
-
-static inline const char* string_VkExternalSemaphoreFeatureFlagBitsKHR(VkExternalSemaphoreFeatureFlagBitsKHR input_value)
-{
- switch ((VkExternalSemaphoreFeatureFlagBitsKHR)input_value)
- {
- case VK_EXTERNAL_SEMAPHORE_FEATURE_EXPORTABLE_BIT:
- return "VK_EXTERNAL_SEMAPHORE_FEATURE_EXPORTABLE_BIT";
- case VK_EXTERNAL_SEMAPHORE_FEATURE_IMPORTABLE_BIT:
- return "VK_EXTERNAL_SEMAPHORE_FEATURE_IMPORTABLE_BIT";
- default:
- return "Unhandled VkExternalSemaphoreFeatureFlagBitsKHR";
- }
-}
-
-static inline const char* string_VkSemaphoreImportFlagBitsKHR(VkSemaphoreImportFlagBitsKHR input_value)
-{
- switch ((VkSemaphoreImportFlagBitsKHR)input_value)
- {
- case VK_SEMAPHORE_IMPORT_TEMPORARY_BIT:
- return "VK_SEMAPHORE_IMPORT_TEMPORARY_BIT";
- default:
- return "Unhandled VkSemaphoreImportFlagBitsKHR";
- }
-}
-
-static inline const char* string_VkDescriptorUpdateTemplateTypeKHR(VkDescriptorUpdateTemplateTypeKHR input_value)
-{
- switch ((VkDescriptorUpdateTemplateTypeKHR)input_value)
- {
- case VK_DESCRIPTOR_UPDATE_TEMPLATE_TYPE_PUSH_DESCRIPTORS_KHR:
- return "VK_DESCRIPTOR_UPDATE_TEMPLATE_TYPE_PUSH_DESCRIPTORS_KHR";
- case VK_DESCRIPTOR_UPDATE_TEMPLATE_TYPE_DESCRIPTOR_SET:
- return "VK_DESCRIPTOR_UPDATE_TEMPLATE_TYPE_DESCRIPTOR_SET";
- default:
- return "Unhandled VkDescriptorUpdateTemplateTypeKHR";
- }
-}
-
-static inline const char* string_VkExternalFenceHandleTypeFlagBitsKHR(VkExternalFenceHandleTypeFlagBitsKHR input_value)
-{
- switch ((VkExternalFenceHandleTypeFlagBitsKHR)input_value)
- {
- case VK_EXTERNAL_FENCE_HANDLE_TYPE_OPAQUE_WIN32_KMT_BIT:
- return "VK_EXTERNAL_FENCE_HANDLE_TYPE_OPAQUE_WIN32_KMT_BIT";
- case VK_EXTERNAL_FENCE_HANDLE_TYPE_SYNC_FD_BIT:
- return "VK_EXTERNAL_FENCE_HANDLE_TYPE_SYNC_FD_BIT";
- case VK_EXTERNAL_FENCE_HANDLE_TYPE_OPAQUE_FD_BIT:
- return "VK_EXTERNAL_FENCE_HANDLE_TYPE_OPAQUE_FD_BIT";
- case VK_EXTERNAL_FENCE_HANDLE_TYPE_OPAQUE_WIN32_BIT:
- return "VK_EXTERNAL_FENCE_HANDLE_TYPE_OPAQUE_WIN32_BIT";
- default:
- return "Unhandled VkExternalFenceHandleTypeFlagBitsKHR";
- }
-}
-
-static inline const char* string_VkExternalFenceFeatureFlagBitsKHR(VkExternalFenceFeatureFlagBitsKHR input_value)
-{
- switch ((VkExternalFenceFeatureFlagBitsKHR)input_value)
- {
- case VK_EXTERNAL_FENCE_FEATURE_IMPORTABLE_BIT:
- return "VK_EXTERNAL_FENCE_FEATURE_IMPORTABLE_BIT";
- case VK_EXTERNAL_FENCE_FEATURE_EXPORTABLE_BIT:
- return "VK_EXTERNAL_FENCE_FEATURE_EXPORTABLE_BIT";
- default:
- return "Unhandled VkExternalFenceFeatureFlagBitsKHR";
- }
-}
-
-static inline const char* string_VkFenceImportFlagBitsKHR(VkFenceImportFlagBitsKHR input_value)
-{
- switch ((VkFenceImportFlagBitsKHR)input_value)
- {
- case VK_FENCE_IMPORT_TEMPORARY_BIT:
- return "VK_FENCE_IMPORT_TEMPORARY_BIT";
- default:
- return "Unhandled VkFenceImportFlagBitsKHR";
- }
-}
-
-static inline const char* string_VkPointClippingBehaviorKHR(VkPointClippingBehaviorKHR input_value)
-{
- switch ((VkPointClippingBehaviorKHR)input_value)
- {
- case VK_POINT_CLIPPING_BEHAVIOR_ALL_CLIP_PLANES:
- return "VK_POINT_CLIPPING_BEHAVIOR_ALL_CLIP_PLANES";
- case VK_POINT_CLIPPING_BEHAVIOR_USER_CLIP_PLANES_ONLY:
- return "VK_POINT_CLIPPING_BEHAVIOR_USER_CLIP_PLANES_ONLY";
- default:
- return "Unhandled VkPointClippingBehaviorKHR";
- }
-}
-
-static inline const char* string_VkTessellationDomainOriginKHR(VkTessellationDomainOriginKHR input_value)
-{
- switch ((VkTessellationDomainOriginKHR)input_value)
- {
- case VK_TESSELLATION_DOMAIN_ORIGIN_LOWER_LEFT:
- return "VK_TESSELLATION_DOMAIN_ORIGIN_LOWER_LEFT";
- case VK_TESSELLATION_DOMAIN_ORIGIN_UPPER_LEFT:
- return "VK_TESSELLATION_DOMAIN_ORIGIN_UPPER_LEFT";
- default:
- return "Unhandled VkTessellationDomainOriginKHR";
- }
-}
-
-static inline const char* string_VkSamplerYcbcrModelConversionKHR(VkSamplerYcbcrModelConversionKHR input_value)
-{
- switch ((VkSamplerYcbcrModelConversionKHR)input_value)
- {
- case VK_SAMPLER_YCBCR_MODEL_CONVERSION_YCBCR_2020:
- return "VK_SAMPLER_YCBCR_MODEL_CONVERSION_YCBCR_2020";
- case VK_SAMPLER_YCBCR_MODEL_CONVERSION_YCBCR_IDENTITY:
- return "VK_SAMPLER_YCBCR_MODEL_CONVERSION_YCBCR_IDENTITY";
- case VK_SAMPLER_YCBCR_MODEL_CONVERSION_RGB_IDENTITY:
- return "VK_SAMPLER_YCBCR_MODEL_CONVERSION_RGB_IDENTITY";
- case VK_SAMPLER_YCBCR_MODEL_CONVERSION_YCBCR_709:
- return "VK_SAMPLER_YCBCR_MODEL_CONVERSION_YCBCR_709";
- case VK_SAMPLER_YCBCR_MODEL_CONVERSION_YCBCR_601:
- return "VK_SAMPLER_YCBCR_MODEL_CONVERSION_YCBCR_601";
- default:
- return "Unhandled VkSamplerYcbcrModelConversionKHR";
- }
-}
-
-static inline const char* string_VkSamplerYcbcrRangeKHR(VkSamplerYcbcrRangeKHR input_value)
-{
- switch ((VkSamplerYcbcrRangeKHR)input_value)
- {
- case VK_SAMPLER_YCBCR_RANGE_ITU_FULL:
- return "VK_SAMPLER_YCBCR_RANGE_ITU_FULL";
- case VK_SAMPLER_YCBCR_RANGE_ITU_NARROW:
- return "VK_SAMPLER_YCBCR_RANGE_ITU_NARROW";
- default:
- return "Unhandled VkSamplerYcbcrRangeKHR";
- }
-}
-
-static inline const char* string_VkChromaLocationKHR(VkChromaLocationKHR input_value)
-{
- switch ((VkChromaLocationKHR)input_value)
- {
- case VK_CHROMA_LOCATION_COSITED_EVEN:
- return "VK_CHROMA_LOCATION_COSITED_EVEN";
- case VK_CHROMA_LOCATION_MIDPOINT:
- return "VK_CHROMA_LOCATION_MIDPOINT";
- default:
- return "Unhandled VkChromaLocationKHR";
- }
-}
-
-static inline const char* string_VkDebugReportObjectTypeEXT(VkDebugReportObjectTypeEXT input_value)
-{
- switch ((VkDebugReportObjectTypeEXT)input_value)
- {
- case VK_DEBUG_REPORT_OBJECT_TYPE_EVENT_EXT:
- return "VK_DEBUG_REPORT_OBJECT_TYPE_EVENT_EXT";
- case VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_POOL_EXT:
- return "VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_POOL_EXT";
- case VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_SET_EXT:
- return "VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_SET_EXT";
- case VK_DEBUG_REPORT_OBJECT_TYPE_OBJECT_TABLE_NVX_EXT:
- return "VK_DEBUG_REPORT_OBJECT_TYPE_OBJECT_TABLE_NVX_EXT";
- case VK_DEBUG_REPORT_OBJECT_TYPE_BUFFER_EXT:
- return "VK_DEBUG_REPORT_OBJECT_TYPE_BUFFER_EXT";
- case VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_LAYOUT_EXT:
- return "VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_LAYOUT_EXT";
- case VK_DEBUG_REPORT_OBJECT_TYPE_SHADER_MODULE_EXT:
- return "VK_DEBUG_REPORT_OBJECT_TYPE_SHADER_MODULE_EXT";
- case VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_SET_LAYOUT_EXT:
- return "VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_SET_LAYOUT_EXT";
- case VK_DEBUG_REPORT_OBJECT_TYPE_DISPLAY_KHR_EXT:
- return "VK_DEBUG_REPORT_OBJECT_TYPE_DISPLAY_KHR_EXT";
- case VK_DEBUG_REPORT_OBJECT_TYPE_INSTANCE_EXT:
- return "VK_DEBUG_REPORT_OBJECT_TYPE_INSTANCE_EXT";
- case VK_DEBUG_REPORT_OBJECT_TYPE_RENDER_PASS_EXT:
- return "VK_DEBUG_REPORT_OBJECT_TYPE_RENDER_PASS_EXT";
- case VK_DEBUG_REPORT_OBJECT_TYPE_QUERY_POOL_EXT:
- return "VK_DEBUG_REPORT_OBJECT_TYPE_QUERY_POOL_EXT";
- case VK_DEBUG_REPORT_OBJECT_TYPE_FENCE_EXT:
- return "VK_DEBUG_REPORT_OBJECT_TYPE_FENCE_EXT";
- case VK_DEBUG_REPORT_OBJECT_TYPE_PHYSICAL_DEVICE_EXT:
- return "VK_DEBUG_REPORT_OBJECT_TYPE_PHYSICAL_DEVICE_EXT";
- case VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_CACHE_EXT:
- return "VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_CACHE_EXT";
- case VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT:
- return "VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT";
- case VK_DEBUG_REPORT_OBJECT_TYPE_SAMPLER_YCBCR_CONVERSION_EXT:
- return "VK_DEBUG_REPORT_OBJECT_TYPE_SAMPLER_YCBCR_CONVERSION_EXT";
- case VK_DEBUG_REPORT_OBJECT_TYPE_INDIRECT_COMMANDS_LAYOUT_NVX_EXT:
- return "VK_DEBUG_REPORT_OBJECT_TYPE_INDIRECT_COMMANDS_LAYOUT_NVX_EXT";
- case VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT:
- return "VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT";
- case VK_DEBUG_REPORT_OBJECT_TYPE_DEBUG_REPORT_CALLBACK_EXT_EXT:
- return "VK_DEBUG_REPORT_OBJECT_TYPE_DEBUG_REPORT_CALLBACK_EXT_EXT";
- case VK_DEBUG_REPORT_OBJECT_TYPE_DISPLAY_MODE_KHR_EXT:
- return "VK_DEBUG_REPORT_OBJECT_TYPE_DISPLAY_MODE_KHR_EXT";
- case VK_DEBUG_REPORT_OBJECT_TYPE_SWAPCHAIN_KHR_EXT:
- return "VK_DEBUG_REPORT_OBJECT_TYPE_SWAPCHAIN_KHR_EXT";
- case VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT:
- return "VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT";
- case VK_DEBUG_REPORT_OBJECT_TYPE_BUFFER_VIEW_EXT:
- return "VK_DEBUG_REPORT_OBJECT_TYPE_BUFFER_VIEW_EXT";
- case VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_POOL_EXT:
- return "VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_POOL_EXT";
- case VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_EXT:
- return "VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_EXT";
- case VK_DEBUG_REPORT_OBJECT_TYPE_VALIDATION_CACHE_EXT_EXT:
- return "VK_DEBUG_REPORT_OBJECT_TYPE_VALIDATION_CACHE_EXT_EXT";
- case VK_DEBUG_REPORT_OBJECT_TYPE_FRAMEBUFFER_EXT:
- return "VK_DEBUG_REPORT_OBJECT_TYPE_FRAMEBUFFER_EXT";
- case VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_MEMORY_EXT:
- return "VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_MEMORY_EXT";
- case VK_DEBUG_REPORT_OBJECT_TYPE_SURFACE_KHR_EXT:
- return "VK_DEBUG_REPORT_OBJECT_TYPE_SURFACE_KHR_EXT";
- case VK_DEBUG_REPORT_OBJECT_TYPE_SAMPLER_EXT:
- return "VK_DEBUG_REPORT_OBJECT_TYPE_SAMPLER_EXT";
- case VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT:
- return "VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT";
- case VK_DEBUG_REPORT_OBJECT_TYPE_SEMAPHORE_EXT:
- return "VK_DEBUG_REPORT_OBJECT_TYPE_SEMAPHORE_EXT";
- case VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_VIEW_EXT:
- return "VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_VIEW_EXT";
- case VK_DEBUG_REPORT_OBJECT_TYPE_QUEUE_EXT:
- return "VK_DEBUG_REPORT_OBJECT_TYPE_QUEUE_EXT";
- case VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_UPDATE_TEMPLATE_EXT:
- return "VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_UPDATE_TEMPLATE_EXT";
- default:
- return "Unhandled VkDebugReportObjectTypeEXT";
- }
-}
-
-static inline const char* string_VkDebugReportFlagBitsEXT(VkDebugReportFlagBitsEXT input_value)
-{
- switch ((VkDebugReportFlagBitsEXT)input_value)
- {
- case VK_DEBUG_REPORT_DEBUG_BIT_EXT:
- return "VK_DEBUG_REPORT_DEBUG_BIT_EXT";
- case VK_DEBUG_REPORT_ERROR_BIT_EXT:
- return "VK_DEBUG_REPORT_ERROR_BIT_EXT";
- case VK_DEBUG_REPORT_INFORMATION_BIT_EXT:
- return "VK_DEBUG_REPORT_INFORMATION_BIT_EXT";
- case VK_DEBUG_REPORT_WARNING_BIT_EXT:
- return "VK_DEBUG_REPORT_WARNING_BIT_EXT";
- case VK_DEBUG_REPORT_PERFORMANCE_WARNING_BIT_EXT:
- return "VK_DEBUG_REPORT_PERFORMANCE_WARNING_BIT_EXT";
- default:
- return "Unhandled VkDebugReportFlagBitsEXT";
- }
-}
-
-static inline const char* string_VkRasterizationOrderAMD(VkRasterizationOrderAMD input_value)
-{
- switch ((VkRasterizationOrderAMD)input_value)
- {
- case VK_RASTERIZATION_ORDER_STRICT_AMD:
- return "VK_RASTERIZATION_ORDER_STRICT_AMD";
- case VK_RASTERIZATION_ORDER_RELAXED_AMD:
- return "VK_RASTERIZATION_ORDER_RELAXED_AMD";
- default:
- return "Unhandled VkRasterizationOrderAMD";
- }
-}
-
-static inline const char* string_VkShaderInfoTypeAMD(VkShaderInfoTypeAMD input_value)
-{
- switch ((VkShaderInfoTypeAMD)input_value)
- {
- case VK_SHADER_INFO_TYPE_STATISTICS_AMD:
- return "VK_SHADER_INFO_TYPE_STATISTICS_AMD";
- case VK_SHADER_INFO_TYPE_BINARY_AMD:
- return "VK_SHADER_INFO_TYPE_BINARY_AMD";
- case VK_SHADER_INFO_TYPE_DISASSEMBLY_AMD:
- return "VK_SHADER_INFO_TYPE_DISASSEMBLY_AMD";
- default:
- return "Unhandled VkShaderInfoTypeAMD";
- }
-}
-
-static inline const char* string_VkExternalMemoryHandleTypeFlagBitsNV(VkExternalMemoryHandleTypeFlagBitsNV input_value)
-{
- switch ((VkExternalMemoryHandleTypeFlagBitsNV)input_value)
- {
- case VK_EXTERNAL_MEMORY_HANDLE_TYPE_D3D11_IMAGE_KMT_BIT_NV:
- return "VK_EXTERNAL_MEMORY_HANDLE_TYPE_D3D11_IMAGE_KMT_BIT_NV";
- case VK_EXTERNAL_MEMORY_HANDLE_TYPE_D3D11_IMAGE_BIT_NV:
- return "VK_EXTERNAL_MEMORY_HANDLE_TYPE_D3D11_IMAGE_BIT_NV";
- case VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_WIN32_KMT_BIT_NV:
- return "VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_WIN32_KMT_BIT_NV";
- case VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_WIN32_BIT_NV:
- return "VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_WIN32_BIT_NV";
- default:
- return "Unhandled VkExternalMemoryHandleTypeFlagBitsNV";
- }
-}
-
-static inline const char* string_VkExternalMemoryFeatureFlagBitsNV(VkExternalMemoryFeatureFlagBitsNV input_value)
-{
- switch ((VkExternalMemoryFeatureFlagBitsNV)input_value)
- {
- case VK_EXTERNAL_MEMORY_FEATURE_IMPORTABLE_BIT_NV:
- return "VK_EXTERNAL_MEMORY_FEATURE_IMPORTABLE_BIT_NV";
- case VK_EXTERNAL_MEMORY_FEATURE_EXPORTABLE_BIT_NV:
- return "VK_EXTERNAL_MEMORY_FEATURE_EXPORTABLE_BIT_NV";
- case VK_EXTERNAL_MEMORY_FEATURE_DEDICATED_ONLY_BIT_NV:
- return "VK_EXTERNAL_MEMORY_FEATURE_DEDICATED_ONLY_BIT_NV";
- default:
- return "Unhandled VkExternalMemoryFeatureFlagBitsNV";
- }
-}
-
-static inline const char* string_VkValidationCheckEXT(VkValidationCheckEXT input_value)
-{
- switch ((VkValidationCheckEXT)input_value)
- {
- case VK_VALIDATION_CHECK_SHADERS_EXT:
- return "VK_VALIDATION_CHECK_SHADERS_EXT";
- case VK_VALIDATION_CHECK_ALL_EXT:
- return "VK_VALIDATION_CHECK_ALL_EXT";
- default:
- return "Unhandled VkValidationCheckEXT";
- }
-}
-
-static inline const char* string_VkIndirectCommandsLayoutUsageFlagBitsNVX(VkIndirectCommandsLayoutUsageFlagBitsNVX input_value)
-{
- switch ((VkIndirectCommandsLayoutUsageFlagBitsNVX)input_value)
- {
- case VK_INDIRECT_COMMANDS_LAYOUT_USAGE_SPARSE_SEQUENCES_BIT_NVX:
- return "VK_INDIRECT_COMMANDS_LAYOUT_USAGE_SPARSE_SEQUENCES_BIT_NVX";
- case VK_INDIRECT_COMMANDS_LAYOUT_USAGE_UNORDERED_SEQUENCES_BIT_NVX:
- return "VK_INDIRECT_COMMANDS_LAYOUT_USAGE_UNORDERED_SEQUENCES_BIT_NVX";
- case VK_INDIRECT_COMMANDS_LAYOUT_USAGE_INDEXED_SEQUENCES_BIT_NVX:
- return "VK_INDIRECT_COMMANDS_LAYOUT_USAGE_INDEXED_SEQUENCES_BIT_NVX";
- case VK_INDIRECT_COMMANDS_LAYOUT_USAGE_EMPTY_EXECUTIONS_BIT_NVX:
- return "VK_INDIRECT_COMMANDS_LAYOUT_USAGE_EMPTY_EXECUTIONS_BIT_NVX";
- default:
- return "Unhandled VkIndirectCommandsLayoutUsageFlagBitsNVX";
- }
-}
-
-static inline const char* string_VkObjectEntryUsageFlagBitsNVX(VkObjectEntryUsageFlagBitsNVX input_value)
-{
- switch ((VkObjectEntryUsageFlagBitsNVX)input_value)
- {
- case VK_OBJECT_ENTRY_USAGE_GRAPHICS_BIT_NVX:
- return "VK_OBJECT_ENTRY_USAGE_GRAPHICS_BIT_NVX";
- case VK_OBJECT_ENTRY_USAGE_COMPUTE_BIT_NVX:
- return "VK_OBJECT_ENTRY_USAGE_COMPUTE_BIT_NVX";
- default:
- return "Unhandled VkObjectEntryUsageFlagBitsNVX";
- }
-}
-
-static inline const char* string_VkIndirectCommandsTokenTypeNVX(VkIndirectCommandsTokenTypeNVX input_value)
-{
- switch ((VkIndirectCommandsTokenTypeNVX)input_value)
- {
- case VK_INDIRECT_COMMANDS_TOKEN_TYPE_DRAW_INDEXED_NVX:
- return "VK_INDIRECT_COMMANDS_TOKEN_TYPE_DRAW_INDEXED_NVX";
- case VK_INDIRECT_COMMANDS_TOKEN_TYPE_PUSH_CONSTANT_NVX:
- return "VK_INDIRECT_COMMANDS_TOKEN_TYPE_PUSH_CONSTANT_NVX";
- case VK_INDIRECT_COMMANDS_TOKEN_TYPE_DESCRIPTOR_SET_NVX:
- return "VK_INDIRECT_COMMANDS_TOKEN_TYPE_DESCRIPTOR_SET_NVX";
- case VK_INDIRECT_COMMANDS_TOKEN_TYPE_DISPATCH_NVX:
- return "VK_INDIRECT_COMMANDS_TOKEN_TYPE_DISPATCH_NVX";
- case VK_INDIRECT_COMMANDS_TOKEN_TYPE_VERTEX_BUFFER_NVX:
- return "VK_INDIRECT_COMMANDS_TOKEN_TYPE_VERTEX_BUFFER_NVX";
- case VK_INDIRECT_COMMANDS_TOKEN_TYPE_PIPELINE_NVX:
- return "VK_INDIRECT_COMMANDS_TOKEN_TYPE_PIPELINE_NVX";
- case VK_INDIRECT_COMMANDS_TOKEN_TYPE_DRAW_NVX:
- return "VK_INDIRECT_COMMANDS_TOKEN_TYPE_DRAW_NVX";
- case VK_INDIRECT_COMMANDS_TOKEN_TYPE_INDEX_BUFFER_NVX:
- return "VK_INDIRECT_COMMANDS_TOKEN_TYPE_INDEX_BUFFER_NVX";
- default:
- return "Unhandled VkIndirectCommandsTokenTypeNVX";
- }
-}
-
-static inline const char* string_VkObjectEntryTypeNVX(VkObjectEntryTypeNVX input_value)
-{
- switch ((VkObjectEntryTypeNVX)input_value)
- {
- case VK_OBJECT_ENTRY_TYPE_INDEX_BUFFER_NVX:
- return "VK_OBJECT_ENTRY_TYPE_INDEX_BUFFER_NVX";
- case VK_OBJECT_ENTRY_TYPE_DESCRIPTOR_SET_NVX:
- return "VK_OBJECT_ENTRY_TYPE_DESCRIPTOR_SET_NVX";
- case VK_OBJECT_ENTRY_TYPE_VERTEX_BUFFER_NVX:
- return "VK_OBJECT_ENTRY_TYPE_VERTEX_BUFFER_NVX";
- case VK_OBJECT_ENTRY_TYPE_PIPELINE_NVX:
- return "VK_OBJECT_ENTRY_TYPE_PIPELINE_NVX";
- case VK_OBJECT_ENTRY_TYPE_PUSH_CONSTANT_NVX:
- return "VK_OBJECT_ENTRY_TYPE_PUSH_CONSTANT_NVX";
- default:
- return "Unhandled VkObjectEntryTypeNVX";
- }
-}
-
-static inline const char* string_VkSurfaceCounterFlagBitsEXT(VkSurfaceCounterFlagBitsEXT input_value)
-{
- switch ((VkSurfaceCounterFlagBitsEXT)input_value)
- {
- case VK_SURFACE_COUNTER_VBLANK_EXT:
- return "VK_SURFACE_COUNTER_VBLANK_EXT";
- default:
- return "Unhandled VkSurfaceCounterFlagBitsEXT";
- }
-}
-
-static inline const char* string_VkDisplayPowerStateEXT(VkDisplayPowerStateEXT input_value)
-{
- switch ((VkDisplayPowerStateEXT)input_value)
- {
- case VK_DISPLAY_POWER_STATE_SUSPEND_EXT:
- return "VK_DISPLAY_POWER_STATE_SUSPEND_EXT";
- case VK_DISPLAY_POWER_STATE_ON_EXT:
- return "VK_DISPLAY_POWER_STATE_ON_EXT";
- case VK_DISPLAY_POWER_STATE_OFF_EXT:
- return "VK_DISPLAY_POWER_STATE_OFF_EXT";
- default:
- return "Unhandled VkDisplayPowerStateEXT";
- }
-}
-
-static inline const char* string_VkDeviceEventTypeEXT(VkDeviceEventTypeEXT input_value)
-{
- switch ((VkDeviceEventTypeEXT)input_value)
- {
- case VK_DEVICE_EVENT_TYPE_DISPLAY_HOTPLUG_EXT:
- return "VK_DEVICE_EVENT_TYPE_DISPLAY_HOTPLUG_EXT";
- default:
- return "Unhandled VkDeviceEventTypeEXT";
- }
-}
-
-static inline const char* string_VkDisplayEventTypeEXT(VkDisplayEventTypeEXT input_value)
-{
- switch ((VkDisplayEventTypeEXT)input_value)
- {
- case VK_DISPLAY_EVENT_TYPE_FIRST_PIXEL_OUT_EXT:
- return "VK_DISPLAY_EVENT_TYPE_FIRST_PIXEL_OUT_EXT";
- default:
- return "Unhandled VkDisplayEventTypeEXT";
- }
-}
-
-static inline const char* string_VkViewportCoordinateSwizzleNV(VkViewportCoordinateSwizzleNV input_value)
-{
- switch ((VkViewportCoordinateSwizzleNV)input_value)
- {
- case VK_VIEWPORT_COORDINATE_SWIZZLE_NEGATIVE_Y_NV:
- return "VK_VIEWPORT_COORDINATE_SWIZZLE_NEGATIVE_Y_NV";
- case VK_VIEWPORT_COORDINATE_SWIZZLE_NEGATIVE_Z_NV:
- return "VK_VIEWPORT_COORDINATE_SWIZZLE_NEGATIVE_Z_NV";
- case VK_VIEWPORT_COORDINATE_SWIZZLE_POSITIVE_X_NV:
- return "VK_VIEWPORT_COORDINATE_SWIZZLE_POSITIVE_X_NV";
- case VK_VIEWPORT_COORDINATE_SWIZZLE_NEGATIVE_X_NV:
- return "VK_VIEWPORT_COORDINATE_SWIZZLE_NEGATIVE_X_NV";
- case VK_VIEWPORT_COORDINATE_SWIZZLE_NEGATIVE_W_NV:
- return "VK_VIEWPORT_COORDINATE_SWIZZLE_NEGATIVE_W_NV";
- case VK_VIEWPORT_COORDINATE_SWIZZLE_POSITIVE_W_NV:
- return "VK_VIEWPORT_COORDINATE_SWIZZLE_POSITIVE_W_NV";
- case VK_VIEWPORT_COORDINATE_SWIZZLE_POSITIVE_Z_NV:
- return "VK_VIEWPORT_COORDINATE_SWIZZLE_POSITIVE_Z_NV";
- case VK_VIEWPORT_COORDINATE_SWIZZLE_POSITIVE_Y_NV:
- return "VK_VIEWPORT_COORDINATE_SWIZZLE_POSITIVE_Y_NV";
- default:
- return "Unhandled VkViewportCoordinateSwizzleNV";
- }
-}
-
-static inline const char* string_VkDiscardRectangleModeEXT(VkDiscardRectangleModeEXT input_value)
-{
- switch ((VkDiscardRectangleModeEXT)input_value)
- {
- case VK_DISCARD_RECTANGLE_MODE_EXCLUSIVE_EXT:
- return "VK_DISCARD_RECTANGLE_MODE_EXCLUSIVE_EXT";
- case VK_DISCARD_RECTANGLE_MODE_INCLUSIVE_EXT:
- return "VK_DISCARD_RECTANGLE_MODE_INCLUSIVE_EXT";
- default:
- return "Unhandled VkDiscardRectangleModeEXT";
- }
-}
-
-static inline const char* string_VkConservativeRasterizationModeEXT(VkConservativeRasterizationModeEXT input_value)
-{
- switch ((VkConservativeRasterizationModeEXT)input_value)
- {
- case VK_CONSERVATIVE_RASTERIZATION_MODE_OVERESTIMATE_EXT:
- return "VK_CONSERVATIVE_RASTERIZATION_MODE_OVERESTIMATE_EXT";
- case VK_CONSERVATIVE_RASTERIZATION_MODE_DISABLED_EXT:
- return "VK_CONSERVATIVE_RASTERIZATION_MODE_DISABLED_EXT";
- case VK_CONSERVATIVE_RASTERIZATION_MODE_UNDERESTIMATE_EXT:
- return "VK_CONSERVATIVE_RASTERIZATION_MODE_UNDERESTIMATE_EXT";
- default:
- return "Unhandled VkConservativeRasterizationModeEXT";
- }
-}
-
-static inline const char* string_VkDebugUtilsMessageSeverityFlagBitsEXT(VkDebugUtilsMessageSeverityFlagBitsEXT input_value)
-{
- switch ((VkDebugUtilsMessageSeverityFlagBitsEXT)input_value)
- {
- case VK_DEBUG_UTILS_MESSAGE_SEVERITY_ERROR_BIT_EXT:
- return "VK_DEBUG_UTILS_MESSAGE_SEVERITY_ERROR_BIT_EXT";
- case VK_DEBUG_UTILS_MESSAGE_SEVERITY_INFO_BIT_EXT:
- return "VK_DEBUG_UTILS_MESSAGE_SEVERITY_INFO_BIT_EXT";
- case VK_DEBUG_UTILS_MESSAGE_SEVERITY_WARNING_BIT_EXT:
- return "VK_DEBUG_UTILS_MESSAGE_SEVERITY_WARNING_BIT_EXT";
- case VK_DEBUG_UTILS_MESSAGE_SEVERITY_VERBOSE_BIT_EXT:
- return "VK_DEBUG_UTILS_MESSAGE_SEVERITY_VERBOSE_BIT_EXT";
- default:
- return "Unhandled VkDebugUtilsMessageSeverityFlagBitsEXT";
- }
-}
-
-static inline const char* string_VkDebugUtilsMessageTypeFlagBitsEXT(VkDebugUtilsMessageTypeFlagBitsEXT input_value)
-{
- switch ((VkDebugUtilsMessageTypeFlagBitsEXT)input_value)
- {
- case VK_DEBUG_UTILS_MESSAGE_TYPE_PERFORMANCE_BIT_EXT:
- return "VK_DEBUG_UTILS_MESSAGE_TYPE_PERFORMANCE_BIT_EXT";
- case VK_DEBUG_UTILS_MESSAGE_TYPE_VALIDATION_BIT_EXT:
- return "VK_DEBUG_UTILS_MESSAGE_TYPE_VALIDATION_BIT_EXT";
- case VK_DEBUG_UTILS_MESSAGE_TYPE_GENERAL_BIT_EXT:
- return "VK_DEBUG_UTILS_MESSAGE_TYPE_GENERAL_BIT_EXT";
- default:
- return "Unhandled VkDebugUtilsMessageTypeFlagBitsEXT";
- }
-}
-
-static inline const char* string_VkSamplerReductionModeEXT(VkSamplerReductionModeEXT input_value)
-{
- switch ((VkSamplerReductionModeEXT)input_value)
- {
- case VK_SAMPLER_REDUCTION_MODE_MAX_EXT:
- return "VK_SAMPLER_REDUCTION_MODE_MAX_EXT";
- case VK_SAMPLER_REDUCTION_MODE_MIN_EXT:
- return "VK_SAMPLER_REDUCTION_MODE_MIN_EXT";
- case VK_SAMPLER_REDUCTION_MODE_WEIGHTED_AVERAGE_EXT:
- return "VK_SAMPLER_REDUCTION_MODE_WEIGHTED_AVERAGE_EXT";
- default:
- return "Unhandled VkSamplerReductionModeEXT";
- }
-}
-
-static inline const char* string_VkBlendOverlapEXT(VkBlendOverlapEXT input_value)
-{
- switch ((VkBlendOverlapEXT)input_value)
- {
- case VK_BLEND_OVERLAP_DISJOINT_EXT:
- return "VK_BLEND_OVERLAP_DISJOINT_EXT";
- case VK_BLEND_OVERLAP_UNCORRELATED_EXT:
- return "VK_BLEND_OVERLAP_UNCORRELATED_EXT";
- case VK_BLEND_OVERLAP_CONJOINT_EXT:
- return "VK_BLEND_OVERLAP_CONJOINT_EXT";
- default:
- return "Unhandled VkBlendOverlapEXT";
- }
-}
-
-static inline const char* string_VkCoverageModulationModeNV(VkCoverageModulationModeNV input_value)
-{
- switch ((VkCoverageModulationModeNV)input_value)
- {
- case VK_COVERAGE_MODULATION_MODE_RGBA_NV:
- return "VK_COVERAGE_MODULATION_MODE_RGBA_NV";
- case VK_COVERAGE_MODULATION_MODE_ALPHA_NV:
- return "VK_COVERAGE_MODULATION_MODE_ALPHA_NV";
- case VK_COVERAGE_MODULATION_MODE_RGB_NV:
- return "VK_COVERAGE_MODULATION_MODE_RGB_NV";
- case VK_COVERAGE_MODULATION_MODE_NONE_NV:
- return "VK_COVERAGE_MODULATION_MODE_NONE_NV";
- default:
- return "Unhandled VkCoverageModulationModeNV";
- }
-}
-
-static inline const char* string_VkValidationCacheHeaderVersionEXT(VkValidationCacheHeaderVersionEXT input_value)
-{
- switch ((VkValidationCacheHeaderVersionEXT)input_value)
- {
- case VK_VALIDATION_CACHE_HEADER_VERSION_ONE_EXT:
- return "VK_VALIDATION_CACHE_HEADER_VERSION_ONE_EXT";
- default:
- return "Unhandled VkValidationCacheHeaderVersionEXT";
- }
-}
-
-static inline const char* string_VkDescriptorBindingFlagBitsEXT(VkDescriptorBindingFlagBitsEXT input_value)
-{
- switch ((VkDescriptorBindingFlagBitsEXT)input_value)
- {
- case VK_DESCRIPTOR_BINDING_VARIABLE_DESCRIPTOR_COUNT_BIT_EXT:
- return "VK_DESCRIPTOR_BINDING_VARIABLE_DESCRIPTOR_COUNT_BIT_EXT";
- case VK_DESCRIPTOR_BINDING_UPDATE_UNUSED_WHILE_PENDING_BIT_EXT:
- return "VK_DESCRIPTOR_BINDING_UPDATE_UNUSED_WHILE_PENDING_BIT_EXT";
- case VK_DESCRIPTOR_BINDING_PARTIALLY_BOUND_BIT_EXT:
- return "VK_DESCRIPTOR_BINDING_PARTIALLY_BOUND_BIT_EXT";
- case VK_DESCRIPTOR_BINDING_UPDATE_AFTER_BIND_BIT_EXT:
- return "VK_DESCRIPTOR_BINDING_UPDATE_AFTER_BIND_BIT_EXT";
- default:
- return "Unhandled VkDescriptorBindingFlagBitsEXT";
- }
-}
-
-static inline const char* string_VkQueueGlobalPriorityEXT(VkQueueGlobalPriorityEXT input_value)
-{
- switch ((VkQueueGlobalPriorityEXT)input_value)
- {
- case VK_QUEUE_GLOBAL_PRIORITY_LOW_EXT:
- return "VK_QUEUE_GLOBAL_PRIORITY_LOW_EXT";
- case VK_QUEUE_GLOBAL_PRIORITY_HIGH_EXT:
- return "VK_QUEUE_GLOBAL_PRIORITY_HIGH_EXT";
- case VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_EXT:
- return "VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_EXT";
- case VK_QUEUE_GLOBAL_PRIORITY_REALTIME_EXT:
- return "VK_QUEUE_GLOBAL_PRIORITY_REALTIME_EXT";
- default:
- return "Unhandled VkQueueGlobalPriorityEXT";
- }
-}
-
-static inline const char * GetPhysDevFeatureString(uint32_t index) {
- const char * IndexToPhysDevFeatureString[] = {
- "robustBufferAccess",
- "fullDrawIndexUint32",
- "imageCubeArray",
- "independentBlend",
- "geometryShader",
- "tessellationShader",
- "sampleRateShading",
- "dualSrcBlend",
- "logicOp",
- "multiDrawIndirect",
- "drawIndirectFirstInstance",
- "depthClamp",
- "depthBiasClamp",
- "fillModeNonSolid",
- "depthBounds",
- "wideLines",
- "largePoints",
- "alphaToOne",
- "multiViewport",
- "samplerAnisotropy",
- "textureCompressionETC2",
- "textureCompressionASTC_LDR",
- "textureCompressionBC",
- "occlusionQueryPrecise",
- "pipelineStatisticsQuery",
- "vertexPipelineStoresAndAtomics",
- "fragmentStoresAndAtomics",
- "shaderTessellationAndGeometryPointSize",
- "shaderImageGatherExtended",
- "shaderStorageImageExtendedFormats",
- "shaderStorageImageMultisample",
- "shaderStorageImageReadWithoutFormat",
- "shaderStorageImageWriteWithoutFormat",
- "shaderUniformBufferArrayDynamicIndexing",
- "shaderSampledImageArrayDynamicIndexing",
- "shaderStorageBufferArrayDynamicIndexing",
- "shaderStorageImageArrayDynamicIndexing",
- "shaderClipDistance",
- "shaderCullDistance",
- "shaderFloat64",
- "shaderInt64",
- "shaderInt16",
- "shaderResourceResidency",
- "shaderResourceMinLod",
- "sparseBinding",
- "sparseResidencyBuffer",
- "sparseResidencyImage2D",
- "sparseResidencyImage3D",
- "sparseResidency2Samples",
- "sparseResidency4Samples",
- "sparseResidency8Samples",
- "sparseResidency16Samples",
- "sparseResidencyAliased",
- "variableMultisampleRate",
- "inheritedQueries",
- };
-
- return IndexToPhysDevFeatureString[index];
-}
diff --git a/drivers/vulkan/vk_mem_alloc.cpp b/drivers/vulkan/vk_mem_alloc.cpp
deleted file mode 100644
index dcfc98bf63..0000000000
--- a/drivers/vulkan/vk_mem_alloc.cpp
+++ /dev/null
@@ -1,37 +0,0 @@
-/*************************************************************************/
-/* vk_mem_alloc.cpp */
-/*************************************************************************/
-/* This file is part of: */
-/* GODOT ENGINE */
-/* https://godotengine.org */
-/*************************************************************************/
-/* Copyright (c) 2007-2019 Juan Linietsky, Ariel Manzur. */
-/* Copyright (c) 2014-2019 Godot Engine contributors (cf. AUTHORS.md) */
-/* */
-/* Permission is hereby granted, free of charge, to any person obtaining */
-/* a copy of this software and associated documentation files (the */
-/* "Software"), to deal in the Software without restriction, including */
-/* without limitation the rights to use, copy, modify, merge, publish, */
-/* distribute, sublicense, and/or sell copies of the Software, and to */
-/* permit persons to whom the Software is furnished to do so, subject to */
-/* the following conditions: */
-/* */
-/* The above copyright notice and this permission notice shall be */
-/* included in all copies or substantial portions of the Software. */
-/* */
-/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
-/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
-/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
-/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
-/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
-/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
-/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
-/*************************************************************************/
-
-#define VMA_IMPLEMENTATION
-#ifdef DEBUG_ENABLED
-#ifndef _MSC_VER
-#define _DEBUG
-#endif
-#endif
-#include "vk_mem_alloc.h"
diff --git a/drivers/vulkan/vk_mem_alloc.h b/drivers/vulkan/vk_mem_alloc.h
deleted file mode 100644
index 862ea312a6..0000000000
--- a/drivers/vulkan/vk_mem_alloc.h
+++ /dev/null
@@ -1,15448 +0,0 @@
-//
-// Copyright (c) 2017-2019 Advanced Micro Devices, Inc. All rights reserved.
-//
-// Permission is hereby granted, free of charge, to any person obtaining a copy
-// of this software and associated documentation files (the "Software"), to deal
-// in the Software without restriction, including without limitation the rights
-// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
-// copies of the Software, and to permit persons to whom the Software is
-// furnished to do so, subject to the following conditions:
-//
-// The above copyright notice and this permission notice shall be included in
-// all copies or substantial portions of the Software.
-//
-// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
-// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
-// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
-// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
-// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
-// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
-// THE SOFTWARE.
-//
-
-#ifndef AMD_VULKAN_MEMORY_ALLOCATOR_H
-#define AMD_VULKAN_MEMORY_ALLOCATOR_H
-
-#ifdef __cplusplus
-extern "C" {
-#endif
-
-/** \mainpage Vulkan Memory Allocator
-
-<b>Version 2.3.0-development</b> (2019-03-05)
-
-Copyright (c) 2017-2018 Advanced Micro Devices, Inc. All rights reserved. \n
-License: MIT
-
-Documentation of all members: vk_mem_alloc.h
-
-\section main_table_of_contents Table of contents
-
-- <b>User guide</b>
- - \subpage quick_start
- - [Project setup](@ref quick_start_project_setup)
- - [Initialization](@ref quick_start_initialization)
- - [Resource allocation](@ref quick_start_resource_allocation)
- - \subpage choosing_memory_type
- - [Usage](@ref choosing_memory_type_usage)
- - [Required and preferred flags](@ref choosing_memory_type_required_preferred_flags)
- - [Explicit memory types](@ref choosing_memory_type_explicit_memory_types)
- - [Custom memory pools](@ref choosing_memory_type_custom_memory_pools)
- - [Dedicated allocations](@ref choosing_memory_type_dedicated_allocations)
- - \subpage memory_mapping
- - [Mapping functions](@ref memory_mapping_mapping_functions)
- - [Persistently mapped memory](@ref memory_mapping_persistently_mapped_memory)
- - [Cache control](@ref memory_mapping_cache_control)
- - [Finding out if memory is mappable](@ref memory_mapping_finding_if_memory_mappable)
- - \subpage custom_memory_pools
- - [Choosing memory type index](@ref custom_memory_pools_MemTypeIndex)
- - [Linear allocation algorithm](@ref linear_algorithm)
- - [Free-at-once](@ref linear_algorithm_free_at_once)
- - [Stack](@ref linear_algorithm_stack)
- - [Double stack](@ref linear_algorithm_double_stack)
- - [Ring buffer](@ref linear_algorithm_ring_buffer)
- - [Buddy allocation algorithm](@ref buddy_algorithm)
- - \subpage defragmentation
- - [Defragmenting CPU memory](@ref defragmentation_cpu)
- - [Defragmenting GPU memory](@ref defragmentation_gpu)
- - [Additional notes](@ref defragmentation_additional_notes)
- - [Writing custom allocation algorithm](@ref defragmentation_custom_algorithm)
- - \subpage lost_allocations
- - \subpage statistics
- - [Numeric statistics](@ref statistics_numeric_statistics)
- - [JSON dump](@ref statistics_json_dump)
- - \subpage allocation_annotation
- - [Allocation user data](@ref allocation_user_data)
- - [Allocation names](@ref allocation_names)
- - \subpage debugging_memory_usage
- - [Memory initialization](@ref debugging_memory_usage_initialization)
- - [Margins](@ref debugging_memory_usage_margins)
- - [Corruption detection](@ref debugging_memory_usage_corruption_detection)
- - \subpage record_and_replay
-- \subpage usage_patterns
- - [Simple patterns](@ref usage_patterns_simple)
- - [Advanced patterns](@ref usage_patterns_advanced)
-- \subpage configuration
- - [Pointers to Vulkan functions](@ref config_Vulkan_functions)
- - [Custom host memory allocator](@ref custom_memory_allocator)
- - [Device memory allocation callbacks](@ref allocation_callbacks)
- - [Device heap memory limit](@ref heap_memory_limit)
- - \subpage vk_khr_dedicated_allocation
-- \subpage general_considerations
- - [Thread safety](@ref general_considerations_thread_safety)
- - [Validation layer warnings](@ref general_considerations_validation_layer_warnings)
- - [Allocation algorithm](@ref general_considerations_allocation_algorithm)
- - [Features not supported](@ref general_considerations_features_not_supported)
-
-\section main_see_also See also
-
-- [Product page on GPUOpen](https://gpuopen.com/gaming-product/vulkan-memory-allocator/)
-- [Source repository on GitHub](https://github.com/GPUOpen-LibrariesAndSDKs/VulkanMemoryAllocator)
-
-
-
-
-\page quick_start Quick start
-
-\section quick_start_project_setup Project setup
-
-Vulkan Memory Allocator comes in form of a "stb-style" single header file.
-You don't need to build it as a separate library project.
-You can add this file directly to your project and submit it to code repository next to your other source files.
-
-"Single header" doesn't mean that everything is contained in C/C++ declarations,
-like it tends to be in case of inline functions or C++ templates.
-It means that implementation is bundled with interface in a single file and needs to be extracted using preprocessor macro.
-If you don't do it properly, you will get linker errors.
-
-To do it properly:
-
--# Include "vk_mem_alloc.h" file in each CPP file where you want to use the library.
- This includes declarations of all members of the library.
--# In exacly one CPP file define following macro before this include.
- It enables also internal definitions.
-
-\code
-#define VMA_IMPLEMENTATION
-#include "vk_mem_alloc.h"
-\endcode
-
-It may be a good idea to create dedicated CPP file just for this purpose.
-
-Note on language: This library is written in C++, but has C-compatible interface.
-Thus you can include and use vk_mem_alloc.h in C or C++ code, but full
-implementation with `VMA_IMPLEMENTATION` macro must be compiled as C++, NOT as C.
-
-Please note that this library includes header `<vulkan/vulkan.h>`, which in turn
-includes `<windows.h>` on Windows. If you need some specific macros defined
-before including these headers (like `WIN32_LEAN_AND_MEAN` or
-`WINVER` for Windows, `VK_USE_PLATFORM_WIN32_KHR` for Vulkan), you must define
-them before every `#include` of this library.
-
-
-\section quick_start_initialization Initialization
-
-At program startup:
-
--# Initialize Vulkan to have `VkPhysicalDevice` and `VkDevice` object.
--# Fill VmaAllocatorCreateInfo structure and create #VmaAllocator object by
- calling vmaCreateAllocator().
-
-\code
-VmaAllocatorCreateInfo allocatorInfo = {};
-allocatorInfo.physicalDevice = physicalDevice;
-allocatorInfo.device = device;
-
-VmaAllocator allocator;
-vmaCreateAllocator(&allocatorInfo, &allocator);
-\endcode
-
-\section quick_start_resource_allocation Resource allocation
-
-When you want to create a buffer or image:
-
--# Fill `VkBufferCreateInfo` / `VkImageCreateInfo` structure.
--# Fill VmaAllocationCreateInfo structure.
--# Call vmaCreateBuffer() / vmaCreateImage() to get `VkBuffer`/`VkImage` with memory
- already allocated and bound to it.
-
-\code
-VkBufferCreateInfo bufferInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO };
-bufferInfo.size = 65536;
-bufferInfo.usage = VK_BUFFER_USAGE_VERTEX_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT;
-
-VmaAllocationCreateInfo allocInfo = {};
-allocInfo.usage = VMA_MEMORY_USAGE_GPU_ONLY;
-
-VkBuffer buffer;
-VmaAllocation allocation;
-vmaCreateBuffer(allocator, &bufferInfo, &allocInfo, &buffer, &allocation, nullptr);
-\endcode
-
-Don't forget to destroy your objects when no longer needed:
-
-\code
-vmaDestroyBuffer(allocator, buffer, allocation);
-vmaDestroyAllocator(allocator);
-\endcode
-
-
-\page choosing_memory_type Choosing memory type
-
-Physical devices in Vulkan support various combinations of memory heaps and
-types. Help with choosing correct and optimal memory type for your specific
-resource is one of the key features of this library. You can use it by filling
-appropriate members of VmaAllocationCreateInfo structure, as described below.
-You can also combine multiple methods.
-
--# If you just want to find memory type index that meets your requirements, you
- can use function: vmaFindMemoryTypeIndex(), vmaFindMemoryTypeIndexForBufferInfo(),
- vmaFindMemoryTypeIndexForImageInfo().
--# If you want to allocate a region of device memory without association with any
- specific image or buffer, you can use function vmaAllocateMemory(). Usage of
- this function is not recommended and usually not needed.
- vmaAllocateMemoryPages() function is also provided for creating multiple allocations at once,
- which may be useful for sparse binding.
--# If you already have a buffer or an image created, you want to allocate memory
- for it and then you will bind it yourself, you can use function
- vmaAllocateMemoryForBuffer(), vmaAllocateMemoryForImage().
- For binding you should use functions: vmaBindBufferMemory(), vmaBindImageMemory().
--# If you want to create a buffer or an image, allocate memory for it and bind
- them together, all in one call, you can use function vmaCreateBuffer(),
- vmaCreateImage(). This is the easiest and recommended way to use this library.
-
-When using 3. or 4., the library internally queries Vulkan for memory types
-supported for that buffer or image (function `vkGetBufferMemoryRequirements()`)
-and uses only one of these types.
-
-If no memory type can be found that meets all the requirements, these functions
-return `VK_ERROR_FEATURE_NOT_PRESENT`.
-
-You can leave VmaAllocationCreateInfo structure completely filled with zeros.
-It means no requirements are specified for memory type.
-It is valid, although not very useful.
-
-\section choosing_memory_type_usage Usage
-
-The easiest way to specify memory requirements is to fill member
-VmaAllocationCreateInfo::usage using one of the values of enum #VmaMemoryUsage.
-It defines high level, common usage types.
-For more details, see description of this enum.
-
-For example, if you want to create a uniform buffer that will be filled using
-transfer only once or infrequently and used for rendering every frame, you can
-do it using following code:
-
-\code
-VkBufferCreateInfo bufferInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO };
-bufferInfo.size = 65536;
-bufferInfo.usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT;
-
-VmaAllocationCreateInfo allocInfo = {};
-allocInfo.usage = VMA_MEMORY_USAGE_GPU_ONLY;
-
-VkBuffer buffer;
-VmaAllocation allocation;
-vmaCreateBuffer(allocator, &bufferInfo, &allocInfo, &buffer, &allocation, nullptr);
-\endcode
-
-\section choosing_memory_type_required_preferred_flags Required and preferred flags
-
-You can specify more detailed requirements by filling members
-VmaAllocationCreateInfo::requiredFlags and VmaAllocationCreateInfo::preferredFlags
-with a combination of bits from enum `VkMemoryPropertyFlags`. For example,
-if you want to create a buffer that will be persistently mapped on host (so it
-must be `HOST_VISIBLE`) and preferably will also be `HOST_COHERENT` and `HOST_CACHED`,
-use following code:
-
-\code
-VmaAllocationCreateInfo allocInfo = {};
-allocInfo.requiredFlags = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT;
-allocInfo.preferredFlags = VK_MEMORY_PROPERTY_HOST_COHERENT_BIT | VK_MEMORY_PROPERTY_HOST_CACHED_BIT;
-allocInfo.flags = VMA_ALLOCATION_CREATE_MAPPED_BIT;
-
-VkBuffer buffer;
-VmaAllocation allocation;
-vmaCreateBuffer(allocator, &bufferInfo, &allocInfo, &buffer, &allocation, nullptr);
-\endcode
-
-A memory type is chosen that has all the required flags and as many preferred
-flags set as possible.
-
-If you use VmaAllocationCreateInfo::usage, it is just internally converted to
-a set of required and preferred flags.
-
-\section choosing_memory_type_explicit_memory_types Explicit memory types
-
-If you inspected memory types available on the physical device and you have
-a preference for memory types that you want to use, you can fill member
-VmaAllocationCreateInfo::memoryTypeBits. It is a bit mask, where each bit set
-means that a memory type with that index is allowed to be used for the
-allocation. Special value 0, just like `UINT32_MAX`, means there are no
-restrictions to memory type index.
-
-Please note that this member is NOT just a memory type index.
-Still you can use it to choose just one, specific memory type.
-For example, if you already determined that your buffer should be created in
-memory type 2, use following code:
-
-\code
-uint32_t memoryTypeIndex = 2;
-
-VmaAllocationCreateInfo allocInfo = {};
-allocInfo.memoryTypeBits = 1u << memoryTypeIndex;
-
-VkBuffer buffer;
-VmaAllocation allocation;
-vmaCreateBuffer(allocator, &bufferInfo, &allocInfo, &buffer, &allocation, nullptr);
-\endcode
-
-\section choosing_memory_type_custom_memory_pools Custom memory pools
-
-If you allocate from custom memory pool, all the ways of specifying memory
-requirements described above are not applicable and the aforementioned members
-of VmaAllocationCreateInfo structure are ignored. Memory type is selected
-explicitly when creating the pool and then used to make all the allocations from
-that pool. For further details, see \ref custom_memory_pools.
-
-\section choosing_memory_type_dedicated_allocations Dedicated allocations
-
-Memory for allocations is reserved out of larger block of `VkDeviceMemory`
-allocated from Vulkan internally. That's the main feature of this whole library.
-You can still request a separate memory block to be created for an allocation,
-just like you would do in a trivial solution without using any allocator.
-In that case, a buffer or image is always bound to that memory at offset 0.
-This is called a "dedicated allocation".
-You can explicitly request it by using flag #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT.
-The library can also internally decide to use dedicated allocation in some cases, e.g.:
-
-- When the size of the allocation is large.
-- When [VK_KHR_dedicated_allocation](@ref vk_khr_dedicated_allocation) extension is enabled
- and it reports that dedicated allocation is required or recommended for the resource.
-- When allocation of next big memory block fails due to not enough device memory,
- but allocation with the exact requested size succeeds.
-
-
-\page memory_mapping Memory mapping
-
-To "map memory" in Vulkan means to obtain a CPU pointer to `VkDeviceMemory`,
-to be able to read from it or write to it in CPU code.
-Mapping is possible only of memory allocated from a memory type that has
-`VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT` flag.
-Functions `vkMapMemory()`, `vkUnmapMemory()` are designed for this purpose.
-You can use them directly with memory allocated by this library,
-but it is not recommended because of following issue:
-Mapping the same `VkDeviceMemory` block multiple times is illegal - only one mapping at a time is allowed.
-This includes mapping disjoint regions. Mapping is not reference-counted internally by Vulkan.
-Because of this, Vulkan Memory Allocator provides following facilities:
-
-\section memory_mapping_mapping_functions Mapping functions
-
-The library provides following functions for mapping of a specific #VmaAllocation: vmaMapMemory(), vmaUnmapMemory().
-They are safer and more convenient to use than standard Vulkan functions.
-You can map an allocation multiple times simultaneously - mapping is reference-counted internally.
-You can also map different allocations simultaneously regardless of whether they use the same `VkDeviceMemory` block.
-The way it's implemented is that the library always maps entire memory block, not just region of the allocation.
-For further details, see description of vmaMapMemory() function.
-Example:
-
-\code
-// Having these objects initialized:
-
-struct ConstantBuffer
-{
- ...
-};
-ConstantBuffer constantBufferData;
-
-VmaAllocator allocator;
-VkBuffer constantBuffer;
-VmaAllocation constantBufferAllocation;
-
-// You can map and fill your buffer using following code:
-
-void* mappedData;
-vmaMapMemory(allocator, constantBufferAllocation, &mappedData);
-memcpy(mappedData, &constantBufferData, sizeof(constantBufferData));
-vmaUnmapMemory(allocator, constantBufferAllocation);
-\endcode
-
-When mapping, you may see a warning from Vulkan validation layer similar to this one:
-
-<i>Mapping an image with layout VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL can result in undefined behavior if this memory is used by the device. Only GENERAL or PREINITIALIZED should be used.</i>
-
-It happens because the library maps entire `VkDeviceMemory` block, where different
-types of images and buffers may end up together, especially on GPUs with unified memory like Intel.
-You can safely ignore it if you are sure you access only memory of the intended
-object that you wanted to map.
-
-
-\section memory_mapping_persistently_mapped_memory Persistently mapped memory
-
-Kepping your memory persistently mapped is generally OK in Vulkan.
-You don't need to unmap it before using its data on the GPU.
-The library provides a special feature designed for that:
-Allocations made with #VMA_ALLOCATION_CREATE_MAPPED_BIT flag set in
-VmaAllocationCreateInfo::flags stay mapped all the time,
-so you can just access CPU pointer to it any time
-without a need to call any "map" or "unmap" function.
-Example:
-
-\code
-VkBufferCreateInfo bufCreateInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO };
-bufCreateInfo.size = sizeof(ConstantBuffer);
-bufCreateInfo.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT;
-
-VmaAllocationCreateInfo allocCreateInfo = {};
-allocCreateInfo.usage = VMA_MEMORY_USAGE_CPU_ONLY;
-allocCreateInfo.flags = VMA_ALLOCATION_CREATE_MAPPED_BIT;
-
-VkBuffer buf;
-VmaAllocation alloc;
-VmaAllocationInfo allocInfo;
-vmaCreateBuffer(allocator, &bufCreateInfo, &allocCreateInfo, &buf, &alloc, &allocInfo);
-
-// Buffer is already mapped. You can access its memory.
-memcpy(allocInfo.pMappedData, &constantBufferData, sizeof(constantBufferData));
-\endcode
-
-There are some exceptions though, when you should consider mapping memory only for a short period of time:
-
-- When operating system is Windows 7 or 8.x (Windows 10 is not affected because it uses WDDM2),
- device is discrete AMD GPU,
- and memory type is the special 256 MiB pool of `DEVICE_LOCAL + HOST_VISIBLE` memory
- (selected when you use #VMA_MEMORY_USAGE_CPU_TO_GPU),
- then whenever a memory block allocated from this memory type stays mapped
- for the time of any call to `vkQueueSubmit()` or `vkQueuePresentKHR()`, this
- block is migrated by WDDM to system RAM, which degrades performance. It doesn't
- matter if that particular memory block is actually used by the command buffer
- being submitted.
-- On Mac/MoltenVK there is a known bug - [Issue #175](https://github.com/KhronosGroup/MoltenVK/issues/175)
- which requires unmapping before GPU can see updated texture.
-- Keeping many large memory blocks mapped may impact performance or stability of some debugging tools.
-
-\section memory_mapping_cache_control Cache control
-
-Memory in Vulkan doesn't need to be unmapped before using it on GPU,
-but unless a memory types has `VK_MEMORY_PROPERTY_HOST_COHERENT_BIT` flag set,
-you need to manually invalidate cache before reading of mapped pointer
-and flush cache after writing to mapped pointer.
-Vulkan provides following functions for this purpose `vkFlushMappedMemoryRanges()`,
-`vkInvalidateMappedMemoryRanges()`, but this library provides more convenient
-functions that refer to given allocation object: vmaFlushAllocation(),
-vmaInvalidateAllocation().
-
-Regions of memory specified for flush/invalidate must be aligned to
-`VkPhysicalDeviceLimits::nonCoherentAtomSize`. This is automatically ensured by the library.
-In any memory type that is `HOST_VISIBLE` but not `HOST_COHERENT`, all allocations
-within blocks are aligned to this value, so their offsets are always multiply of
-`nonCoherentAtomSize` and two different allocations never share same "line" of this size.
-
-Please note that memory allocated with #VMA_MEMORY_USAGE_CPU_ONLY is guaranteed to be `HOST_COHERENT`.
-
-Also, Windows drivers from all 3 PC GPU vendors (AMD, Intel, NVIDIA)
-currently provide `HOST_COHERENT` flag on all memory types that are
-`HOST_VISIBLE`, so on this platform you may not need to bother.
-
-\section memory_mapping_finding_if_memory_mappable Finding out if memory is mappable
-
-It may happen that your allocation ends up in memory that is `HOST_VISIBLE` (available for mapping)
-despite it wasn't explicitly requested.
-For example, application may work on integrated graphics with unified memory (like Intel) or
-allocation from video memory might have failed, so the library chose system memory as fallback.
-
-You can detect this case and map such allocation to access its memory on CPU directly,
-instead of launching a transfer operation.
-In order to do that: inspect `allocInfo.memoryType`, call vmaGetMemoryTypeProperties(),
-and look for `VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT` flag in properties of that memory type.
-
-\code
-VkBufferCreateInfo bufCreateInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO };
-bufCreateInfo.size = sizeof(ConstantBuffer);
-bufCreateInfo.usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT;
-
-VmaAllocationCreateInfo allocCreateInfo = {};
-allocCreateInfo.usage = VMA_MEMORY_USAGE_GPU_ONLY;
-allocCreateInfo.preferredFlags = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT;
-
-VkBuffer buf;
-VmaAllocation alloc;
-VmaAllocationInfo allocInfo;
-vmaCreateBuffer(allocator, &bufCreateInfo, &allocCreateInfo, &buf, &alloc, &allocInfo);
-
-VkMemoryPropertyFlags memFlags;
-vmaGetMemoryTypeProperties(allocator, allocInfo.memoryType, &memFlags);
-if((memFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) == 0)
-{
- // Allocation ended up in mappable memory. You can map it and access it directly.
- void* mappedData;
- vmaMapMemory(allocator, alloc, &mappedData);
- memcpy(mappedData, &constantBufferData, sizeof(constantBufferData));
- vmaUnmapMemory(allocator, alloc);
-}
-else
-{
- // Allocation ended up in non-mappable memory.
- // You need to create CPU-side buffer in VMA_MEMORY_USAGE_CPU_ONLY and make a transfer.
-}
-\endcode
-
-You can even use #VMA_ALLOCATION_CREATE_MAPPED_BIT flag while creating allocations
-that are not necessarily `HOST_VISIBLE` (e.g. using #VMA_MEMORY_USAGE_GPU_ONLY).
-If the allocation ends up in memory type that is `HOST_VISIBLE`, it will be persistently mapped and you can use it directly.
-If not, the flag is just ignored.
-Example:
-
-\code
-VkBufferCreateInfo bufCreateInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO };
-bufCreateInfo.size = sizeof(ConstantBuffer);
-bufCreateInfo.usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT;
-
-VmaAllocationCreateInfo allocCreateInfo = {};
-allocCreateInfo.usage = VMA_MEMORY_USAGE_GPU_ONLY;
-allocCreateInfo.flags = VMA_ALLOCATION_CREATE_MAPPED_BIT;
-
-VkBuffer buf;
-VmaAllocation alloc;
-VmaAllocationInfo allocInfo;
-vmaCreateBuffer(allocator, &bufCreateInfo, &allocCreateInfo, &buf, &alloc, &allocInfo);
-
-if(allocInfo.pUserData != nullptr)
-{
- // Allocation ended up in mappable memory.
- // It's persistently mapped. You can access it directly.
- memcpy(allocInfo.pMappedData, &constantBufferData, sizeof(constantBufferData));
-}
-else
-{
- // Allocation ended up in non-mappable memory.
- // You need to create CPU-side buffer in VMA_MEMORY_USAGE_CPU_ONLY and make a transfer.
-}
-\endcode
-
-
-\page custom_memory_pools Custom memory pools
-
-A memory pool contains a number of `VkDeviceMemory` blocks.
-The library automatically creates and manages default pool for each memory type available on the device.
-Default memory pool automatically grows in size.
-Size of allocated blocks is also variable and managed automatically.
-
-You can create custom pool and allocate memory out of it.
-It can be useful if you want to:
-
-- Keep certain kind of allocations separate from others.
-- Enforce particular, fixed size of Vulkan memory blocks.
-- Limit maximum amount of Vulkan memory allocated for that pool.
-- Reserve minimum or fixed amount of Vulkan memory always preallocated for that pool.
-
-To use custom memory pools:
-
--# Fill VmaPoolCreateInfo structure.
--# Call vmaCreatePool() to obtain #VmaPool handle.
--# When making an allocation, set VmaAllocationCreateInfo::pool to this handle.
- You don't need to specify any other parameters of this structure, like `usage`.
-
-Example:
-
-\code
-// Create a pool that can have at most 2 blocks, 128 MiB each.
-VmaPoolCreateInfo poolCreateInfo = {};
-poolCreateInfo.memoryTypeIndex = ...
-poolCreateInfo.blockSize = 128ull * 1024 * 1024;
-poolCreateInfo.maxBlockCount = 2;
-
-VmaPool pool;
-vmaCreatePool(allocator, &poolCreateInfo, &pool);
-
-// Allocate a buffer out of it.
-VkBufferCreateInfo bufCreateInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO };
-bufCreateInfo.size = 1024;
-bufCreateInfo.usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT;
-
-VmaAllocationCreateInfo allocCreateInfo = {};
-allocCreateInfo.pool = pool;
-
-VkBuffer buf;
-VmaAllocation alloc;
-VmaAllocationInfo allocInfo;
-vmaCreateBuffer(allocator, &bufCreateInfo, &allocCreateInfo, &buf, &alloc, &allocInfo);
-\endcode
-
-You have to free all allocations made from this pool before destroying it.
-
-\code
-vmaDestroyBuffer(allocator, buf, alloc);
-vmaDestroyPool(allocator, pool);
-\endcode
-
-\section custom_memory_pools_MemTypeIndex Choosing memory type index
-
-When creating a pool, you must explicitly specify memory type index.
-To find the one suitable for your buffers or images, you can use helper functions
-vmaFindMemoryTypeIndexForBufferInfo(), vmaFindMemoryTypeIndexForImageInfo().
-You need to provide structures with example parameters of buffers or images
-that you are going to create in that pool.
-
-\code
-VkBufferCreateInfo exampleBufCreateInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO };
-exampleBufCreateInfo.size = 1024; // Whatever.
-exampleBufCreateInfo.usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT; // Change if needed.
-
-VmaAllocationCreateInfo allocCreateInfo = {};
-allocCreateInfo.usage = VMA_MEMORY_USAGE_GPU_ONLY; // Change if needed.
-
-uint32_t memTypeIndex;
-vmaFindMemoryTypeIndexForBufferInfo(allocator, &exampleBufCreateInfo, &allocCreateInfo, &memTypeIndex);
-
-VmaPoolCreateInfo poolCreateInfo = {};
-poolCreateInfo.memoryTypeIndex = memTypeIndex;
-// ...
-\endcode
-
-When creating buffers/images allocated in that pool, provide following parameters:
-
-- `VkBufferCreateInfo`: Prefer to pass same parameters as above.
- Otherwise you risk creating resources in a memory type that is not suitable for them, which may result in undefined behavior.
- Using different `VK_BUFFER_USAGE_` flags may work, but you shouldn't create images in a pool intended for buffers
- or the other way around.
-- VmaAllocationCreateInfo: You don't need to pass same parameters. Fill only `pool` member.
- Other members are ignored anyway.
-
-\section linear_algorithm Linear allocation algorithm
-
-Each Vulkan memory block managed by this library has accompanying metadata that
-keeps track of used and unused regions. By default, the metadata structure and
-algorithm tries to find best place for new allocations among free regions to
-optimize memory usage. This way you can allocate and free objects in any order.
-
-![Default allocation algorithm](../gfx/Linear_allocator_1_algo_default.png)
-
-Sometimes there is a need to use simpler, linear allocation algorithm. You can
-create custom pool that uses such algorithm by adding flag
-#VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT to VmaPoolCreateInfo::flags while creating
-#VmaPool object. Then an alternative metadata management is used. It always
-creates new allocations after last one and doesn't reuse free regions after
-allocations freed in the middle. It results in better allocation performance and
-less memory consumed by metadata.
-
-![Linear allocation algorithm](../gfx/Linear_allocator_2_algo_linear.png)
-
-With this one flag, you can create a custom pool that can be used in many ways:
-free-at-once, stack, double stack, and ring buffer. See below for details.
-
-\subsection linear_algorithm_free_at_once Free-at-once
-
-In a pool that uses linear algorithm, you still need to free all the allocations
-individually, e.g. by using vmaFreeMemory() or vmaDestroyBuffer(). You can free
-them in any order. New allocations are always made after last one - free space
-in the middle is not reused. However, when you release all the allocation and
-the pool becomes empty, allocation starts from the beginning again. This way you
-can use linear algorithm to speed up creation of allocations that you are going
-to release all at once.
-
-![Free-at-once](../gfx/Linear_allocator_3_free_at_once.png)
-
-This mode is also available for pools created with VmaPoolCreateInfo::maxBlockCount
-value that allows multiple memory blocks.
-
-\subsection linear_algorithm_stack Stack
-
-When you free an allocation that was created last, its space can be reused.
-Thanks to this, if you always release allocations in the order opposite to their
-creation (LIFO - Last In First Out), you can achieve behavior of a stack.
-
-![Stack](../gfx/Linear_allocator_4_stack.png)
-
-This mode is also available for pools created with VmaPoolCreateInfo::maxBlockCount
-value that allows multiple memory blocks.
-
-\subsection linear_algorithm_double_stack Double stack
-
-The space reserved by a custom pool with linear algorithm may be used by two
-stacks:
-
-- First, default one, growing up from offset 0.
-- Second, "upper" one, growing down from the end towards lower offsets.
-
-To make allocation from upper stack, add flag #VMA_ALLOCATION_CREATE_UPPER_ADDRESS_BIT
-to VmaAllocationCreateInfo::flags.
-
-![Double stack](../gfx/Linear_allocator_7_double_stack.png)
-
-Double stack is available only in pools with one memory block -
-VmaPoolCreateInfo::maxBlockCount must be 1. Otherwise behavior is undefined.
-
-When the two stacks' ends meet so there is not enough space between them for a
-new allocation, such allocation fails with usual
-`VK_ERROR_OUT_OF_DEVICE_MEMORY` error.
-
-\subsection linear_algorithm_ring_buffer Ring buffer
-
-When you free some allocations from the beginning and there is not enough free space
-for a new one at the end of a pool, allocator's "cursor" wraps around to the
-beginning and starts allocation there. Thanks to this, if you always release
-allocations in the same order as you created them (FIFO - First In First Out),
-you can achieve behavior of a ring buffer / queue.
-
-![Ring buffer](../gfx/Linear_allocator_5_ring_buffer.png)
-
-Pools with linear algorithm support [lost allocations](@ref lost_allocations) when used as ring buffer.
-If there is not enough free space for a new allocation, but existing allocations
-from the front of the queue can become lost, they become lost and the allocation
-succeeds.
-
-![Ring buffer with lost allocations](../gfx/Linear_allocator_6_ring_buffer_lost.png)
-
-Ring buffer is available only in pools with one memory block -
-VmaPoolCreateInfo::maxBlockCount must be 1. Otherwise behavior is undefined.
-
-\section buddy_algorithm Buddy allocation algorithm
-
-There is another allocation algorithm that can be used with custom pools, called
-"buddy". Its internal data structure is based on a tree of blocks, each having
-size that is a power of two and a half of its parent's size. When you want to
-allocate memory of certain size, a free node in the tree is located. If it's too
-large, it is recursively split into two halves (called "buddies"). However, if
-requested allocation size is not a power of two, the size of a tree node is
-aligned up to the nearest power of two and the remaining space is wasted. When
-two buddy nodes become free, they are merged back into one larger node.
-
-![Buddy allocator](../gfx/Buddy_allocator.png)
-
-The advantage of buddy allocation algorithm over default algorithm is faster
-allocation and deallocation, as well as smaller external fragmentation. The
-disadvantage is more wasted space (internal fragmentation).
-
-For more information, please read ["Buddy memory allocation" on Wikipedia](https://en.wikipedia.org/wiki/Buddy_memory_allocation)
-or other sources that describe this concept in general.
-
-To use buddy allocation algorithm with a custom pool, add flag
-#VMA_POOL_CREATE_BUDDY_ALGORITHM_BIT to VmaPoolCreateInfo::flags while creating
-#VmaPool object.
-
-Several limitations apply to pools that use buddy algorithm:
-
-- It is recommended to use VmaPoolCreateInfo::blockSize that is a power of two.
- Otherwise, only largest power of two smaller than the size is used for
- allocations. The remaining space always stays unused.
-- [Margins](@ref debugging_memory_usage_margins) and
- [corruption detection](@ref debugging_memory_usage_corruption_detection)
- don't work in such pools.
-- [Lost allocations](@ref lost_allocations) don't work in such pools. You can
- use them, but they never become lost. Support may be added in the future.
-- [Defragmentation](@ref defragmentation) doesn't work with allocations made from
- such pool.
-
-\page defragmentation Defragmentation
-
-Interleaved allocations and deallocations of many objects of varying size can
-cause fragmentation over time, which can lead to a situation where the library is unable
-to find a continuous range of free memory for a new allocation despite there is
-enough free space, just scattered across many small free ranges between existing
-allocations.
-
-To mitigate this problem, you can use defragmentation feature:
-structure #VmaDefragmentationInfo2, function vmaDefragmentationBegin(), vmaDefragmentationEnd().
-Given set of allocations,
-this function can move them to compact used memory, ensure more continuous free
-space and possibly also free some `VkDeviceMemory` blocks.
-
-What the defragmentation does is:
-
-- Updates #VmaAllocation objects to point to new `VkDeviceMemory` and offset.
- After allocation has been moved, its VmaAllocationInfo::deviceMemory and/or
- VmaAllocationInfo::offset changes. You must query them again using
- vmaGetAllocationInfo() if you need them.
-- Moves actual data in memory.
-
-What it doesn't do, so you need to do it yourself:
-
-- Recreate buffers and images that were bound to allocations that were defragmented and
- bind them with their new places in memory.
- You must use `vkDestroyBuffer()`, `vkDestroyImage()`,
- `vkCreateBuffer()`, `vkCreateImage()` for that purpose and NOT vmaDestroyBuffer(),
- vmaDestroyImage(), vmaCreateBuffer(), vmaCreateImage(), because you don't need to
- destroy or create allocation objects!
-- Recreate views and update descriptors that point to these buffers and images.
-
-\section defragmentation_cpu Defragmenting CPU memory
-
-Following example demonstrates how you can run defragmentation on CPU.
-Only allocations created in memory types that are `HOST_VISIBLE` can be defragmented.
-Others are ignored.
-
-The way it works is:
-
-- It temporarily maps entire memory blocks when necessary.
-- It moves data using `memmove()` function.
-
-\code
-// Given following variables already initialized:
-VkDevice device;
-VmaAllocator allocator;
-std::vector<VkBuffer> buffers;
-std::vector<VmaAllocation> allocations;
-
-
-const uint32_t allocCount = (uint32_t)allocations.size();
-std::vector<VkBool32> allocationsChanged(allocCount);
-
-VmaDefragmentationInfo2 defragInfo = {};
-defragInfo.allocationCount = allocCount;
-defragInfo.pAllocations = allocations.data();
-defragInfo.pAllocationsChanged = allocationsChanged.data();
-defragInfo.maxCpuBytesToMove = VK_WHOLE_SIZE; // No limit.
-defragInfo.maxCpuAllocationsToMove = UINT32_MAX; // No limit.
-
-VmaDefragmentationContext defragCtx;
-vmaDefragmentationBegin(allocator, &defragInfo, nullptr, &defragCtx);
-vmaDefragmentationEnd(allocator, defragCtx);
-
-for(uint32_t i = 0; i < allocCount; ++i)
-{
- if(allocationsChanged[i])
- {
- // Destroy buffer that is immutably bound to memory region which is no longer valid.
- vkDestroyBuffer(device, buffers[i], nullptr);
-
- // Create new buffer with same parameters.
- VkBufferCreateInfo bufferInfo = ...;
- vkCreateBuffer(device, &bufferInfo, nullptr, &buffers[i]);
-
- // You can make dummy call to vkGetBufferMemoryRequirements here to silence validation layer warning.
-
- // Bind new buffer to new memory region. Data contained in it is already moved.
- VmaAllocationInfo allocInfo;
- vmaGetAllocationInfo(allocator, allocations[i], &allocInfo);
- vkBindBufferMemory(device, buffers[i], allocInfo.deviceMemory, allocInfo.offset);
- }
-}
-\endcode
-
-Setting VmaDefragmentationInfo2::pAllocationsChanged is optional.
-This output array tells whether particular allocation in VmaDefragmentationInfo2::pAllocations at the same index
-has been modified during defragmentation.
-You can pass null, but you then need to query every allocation passed to defragmentation
-for new parameters using vmaGetAllocationInfo() if you might need to recreate and rebind a buffer or image associated with it.
-
-If you use [Custom memory pools](@ref choosing_memory_type_custom_memory_pools),
-you can fill VmaDefragmentationInfo2::poolCount and VmaDefragmentationInfo2::pPools
-instead of VmaDefragmentationInfo2::allocationCount and VmaDefragmentationInfo2::pAllocations
-to defragment all allocations in given pools.
-You cannot use VmaDefragmentationInfo2::pAllocationsChanged in that case.
-You can also combine both methods.
-
-\section defragmentation_gpu Defragmenting GPU memory
-
-It is also possible to defragment allocations created in memory types that are not `HOST_VISIBLE`.
-To do that, you need to pass a command buffer that meets requirements as described in
-VmaDefragmentationInfo2::commandBuffer. The way it works is:
-
-- It creates temporary buffers and binds them to entire memory blocks when necessary.
-- It issues `vkCmdCopyBuffer()` to passed command buffer.
-
-Example:
-
-\code
-// Given following variables already initialized:
-VkDevice device;
-VmaAllocator allocator;
-VkCommandBuffer commandBuffer;
-std::vector<VkBuffer> buffers;
-std::vector<VmaAllocation> allocations;
-
-
-const uint32_t allocCount = (uint32_t)allocations.size();
-std::vector<VkBool32> allocationsChanged(allocCount);
-
-VkCommandBufferBeginInfo cmdBufBeginInfo = ...;
-vkBeginCommandBuffer(commandBuffer, &cmdBufBeginInfo);
-
-VmaDefragmentationInfo2 defragInfo = {};
-defragInfo.allocationCount = allocCount;
-defragInfo.pAllocations = allocations.data();
-defragInfo.pAllocationsChanged = allocationsChanged.data();
-defragInfo.maxGpuBytesToMove = VK_WHOLE_SIZE; // Notice it's "GPU" this time.
-defragInfo.maxGpuAllocationsToMove = UINT32_MAX; // Notice it's "GPU" this time.
-defragInfo.commandBuffer = commandBuffer;
-
-VmaDefragmentationContext defragCtx;
-vmaDefragmentationBegin(allocator, &defragInfo, nullptr, &defragCtx);
-
-vkEndCommandBuffer(commandBuffer);
-
-// Submit commandBuffer.
-// Wait for a fence that ensures commandBuffer execution finished.
-
-vmaDefragmentationEnd(allocator, defragCtx);
-
-for(uint32_t i = 0; i < allocCount; ++i)
-{
- if(allocationsChanged[i])
- {
- // Destroy buffer that is immutably bound to memory region which is no longer valid.
- vkDestroyBuffer(device, buffers[i], nullptr);
-
- // Create new buffer with same parameters.
- VkBufferCreateInfo bufferInfo = ...;
- vkCreateBuffer(device, &bufferInfo, nullptr, &buffers[i]);
-
- // You can make dummy call to vkGetBufferMemoryRequirements here to silence validation layer warning.
-
- // Bind new buffer to new memory region. Data contained in it is already moved.
- VmaAllocationInfo allocInfo;
- vmaGetAllocationInfo(allocator, allocations[i], &allocInfo);
- vkBindBufferMemory(device, buffers[i], allocInfo.deviceMemory, allocInfo.offset);
- }
-}
-\endcode
-
-You can combine these two methods by specifying non-zero `maxGpu*` as well as `maxCpu*` parameters.
-The library automatically chooses best method to defragment each memory pool.
-
-You may try not to block your entire program to wait until defragmentation finishes,
-but do it in the background, as long as you carefully fullfill requirements described
-in function vmaDefragmentationBegin().
-
-\section defragmentation_additional_notes Additional notes
-
-It is only legal to defragment allocations bound to:
-
-- buffers
-- images created with `VK_IMAGE_CREATE_ALIAS_BIT`, `VK_IMAGE_TILING_LINEAR`, and
- being currently in `VK_IMAGE_LAYOUT_GENERAL` or `VK_IMAGE_LAYOUT_PREINITIALIZED`.
-
-Defragmentation of images created with `VK_IMAGE_TILING_OPTIMAL` or in any other
-layout may give undefined results.
-
-If you defragment allocations bound to images, new images to be bound to new
-memory region after defragmentation should be created with `VK_IMAGE_LAYOUT_PREINITIALIZED`
-and then transitioned to their original layout from before defragmentation if
-needed using an image memory barrier.
-
-While using defragmentation, you may experience validation layer warnings, which you just need to ignore.
-See [Validation layer warnings](@ref general_considerations_validation_layer_warnings).
-
-Please don't expect memory to be fully compacted after defragmentation.
-Algorithms inside are based on some heuristics that try to maximize number of Vulkan
-memory blocks to make totally empty to release them, as well as to maximimze continuous
-empty space inside remaining blocks, while minimizing the number and size of allocations that
-need to be moved. Some fragmentation may still remain - this is normal.
-
-\section defragmentation_custom_algorithm Writing custom defragmentation algorithm
-
-If you want to implement your own, custom defragmentation algorithm,
-there is infrastructure prepared for that,
-but it is not exposed through the library API - you need to hack its source code.
-Here are steps needed to do this:
-
--# Main thing you need to do is to define your own class derived from base abstract
- class `VmaDefragmentationAlgorithm` and implement your version of its pure virtual methods.
- See definition and comments of this class for details.
--# Your code needs to interact with device memory block metadata.
- If you need more access to its data than it's provided by its public interface,
- declare your new class as a friend class e.g. in class `VmaBlockMetadata_Generic`.
--# If you want to create a flag that would enable your algorithm or pass some additional
- flags to configure it, add them to `VmaDefragmentationFlagBits` and use them in
- VmaDefragmentationInfo2::flags.
--# Modify function `VmaBlockVectorDefragmentationContext::Begin` to create object
- of your new class whenever needed.
-
-
-\page lost_allocations Lost allocations
-
-If your game oversubscribes video memory, if may work OK in previous-generation
-graphics APIs (DirectX 9, 10, 11, OpenGL) because resources are automatically
-paged to system RAM. In Vulkan you can't do it because when you run out of
-memory, an allocation just fails. If you have more data (e.g. textures) that can
-fit into VRAM and you don't need it all at once, you may want to upload them to
-GPU on demand and "push out" ones that are not used for a long time to make room
-for the new ones, effectively using VRAM (or a cartain memory pool) as a form of
-cache. Vulkan Memory Allocator can help you with that by supporting a concept of
-"lost allocations".
-
-To create an allocation that can become lost, include #VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT
-flag in VmaAllocationCreateInfo::flags. Before using a buffer or image bound to
-such allocation in every new frame, you need to query it if it's not lost.
-To check it, call vmaTouchAllocation().
-If the allocation is lost, you should not use it or buffer/image bound to it.
-You mustn't forget to destroy this allocation and this buffer/image.
-vmaGetAllocationInfo() can also be used for checking status of the allocation.
-Allocation is lost when returned VmaAllocationInfo::deviceMemory == `VK_NULL_HANDLE`.
-
-To create an allocation that can make some other allocations lost to make room
-for it, use #VMA_ALLOCATION_CREATE_CAN_MAKE_OTHER_LOST_BIT flag. You will
-usually use both flags #VMA_ALLOCATION_CREATE_CAN_MAKE_OTHER_LOST_BIT and
-#VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT at the same time.
-
-Warning! Current implementation uses quite naive, brute force algorithm,
-which can make allocation calls that use #VMA_ALLOCATION_CREATE_CAN_MAKE_OTHER_LOST_BIT
-flag quite slow. A new, more optimal algorithm and data structure to speed this
-up is planned for the future.
-
-<b>Q: When interleaving creation of new allocations with usage of existing ones,
-how do you make sure that an allocation won't become lost while it's used in the
-current frame?</b>
-
-It is ensured because vmaTouchAllocation() / vmaGetAllocationInfo() not only returns allocation
-status/parameters and checks whether it's not lost, but when it's not, it also
-atomically marks it as used in the current frame, which makes it impossible to
-become lost in that frame. It uses lockless algorithm, so it works fast and
-doesn't involve locking any internal mutex.
-
-<b>Q: What if my allocation may still be in use by the GPU when it's rendering a
-previous frame while I already submit new frame on the CPU?</b>
-
-You can make sure that allocations "touched" by vmaTouchAllocation() / vmaGetAllocationInfo() will not
-become lost for a number of additional frames back from the current one by
-specifying this number as VmaAllocatorCreateInfo::frameInUseCount (for default
-memory pool) and VmaPoolCreateInfo::frameInUseCount (for custom pool).
-
-<b>Q: How do you inform the library when new frame starts?</b>
-
-You need to call function vmaSetCurrentFrameIndex().
-
-Example code:
-
-\code
-struct MyBuffer
-{
- VkBuffer m_Buf = nullptr;
- VmaAllocation m_Alloc = nullptr;
-
- // Called when the buffer is really needed in the current frame.
- void EnsureBuffer();
-};
-
-void MyBuffer::EnsureBuffer()
-{
- // Buffer has been created.
- if(m_Buf != VK_NULL_HANDLE)
- {
- // Check if its allocation is not lost + mark it as used in current frame.
- if(vmaTouchAllocation(allocator, m_Alloc))
- {
- // It's all OK - safe to use m_Buf.
- return;
- }
- }
-
- // Buffer not yet exists or lost - destroy and recreate it.
-
- vmaDestroyBuffer(allocator, m_Buf, m_Alloc);
-
- VkBufferCreateInfo bufCreateInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO };
- bufCreateInfo.size = 1024;
- bufCreateInfo.usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT;
-
- VmaAllocationCreateInfo allocCreateInfo = {};
- allocCreateInfo.usage = VMA_MEMORY_USAGE_GPU_ONLY;
- allocCreateInfo.flags = VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT |
- VMA_ALLOCATION_CREATE_CAN_MAKE_OTHER_LOST_BIT;
-
- vmaCreateBuffer(allocator, &bufCreateInfo, &allocCreateInfo, &m_Buf, &m_Alloc, nullptr);
-}
-\endcode
-
-When using lost allocations, you may see some Vulkan validation layer warnings
-about overlapping regions of memory bound to different kinds of buffers and
-images. This is still valid as long as you implement proper handling of lost
-allocations (like in the example above) and don't use them.
-
-You can create an allocation that is already in lost state from the beginning using function
-vmaCreateLostAllocation(). It may be useful if you need a "dummy" allocation that is not null.
-
-You can call function vmaMakePoolAllocationsLost() to set all eligible allocations
-in a specified custom pool to lost state.
-Allocations that have been "touched" in current frame or VmaPoolCreateInfo::frameInUseCount frames back
-cannot become lost.
-
-<b>Q: Can I touch allocation that cannot become lost?</b>
-
-Yes, although it has no visible effect.
-Calls to vmaGetAllocationInfo() and vmaTouchAllocation() update last use frame index
-also for allocations that cannot become lost, but the only way to observe it is to dump
-internal allocator state using vmaBuildStatsString().
-You can use this feature for debugging purposes to explicitly mark allocations that you use
-in current frame and then analyze JSON dump to see for how long each allocation stays unused.
-
-
-\page statistics Statistics
-
-This library contains functions that return information about its internal state,
-especially the amount of memory allocated from Vulkan.
-Please keep in mind that these functions need to traverse all internal data structures
-to gather these information, so they may be quite time-consuming.
-Don't call them too often.
-
-\section statistics_numeric_statistics Numeric statistics
-
-You can query for overall statistics of the allocator using function vmaCalculateStats().
-Information are returned using structure #VmaStats.
-It contains #VmaStatInfo - number of allocated blocks, number of allocations
-(occupied ranges in these blocks), number of unused (free) ranges in these blocks,
-number of bytes used and unused (but still allocated from Vulkan) and other information.
-They are summed across memory heaps, memory types and total for whole allocator.
-
-You can query for statistics of a custom pool using function vmaGetPoolStats().
-Information are returned using structure #VmaPoolStats.
-
-You can query for information about specific allocation using function vmaGetAllocationInfo().
-It fill structure #VmaAllocationInfo.
-
-\section statistics_json_dump JSON dump
-
-You can dump internal state of the allocator to a string in JSON format using function vmaBuildStatsString().
-The result is guaranteed to be correct JSON.
-It uses ANSI encoding.
-Any strings provided by user (see [Allocation names](@ref allocation_names))
-are copied as-is and properly escaped for JSON, so if they use UTF-8, ISO-8859-2 or any other encoding,
-this JSON string can be treated as using this encoding.
-It must be freed using function vmaFreeStatsString().
-
-The format of this JSON string is not part of official documentation of the library,
-but it will not change in backward-incompatible way without increasing library major version number
-and appropriate mention in changelog.
-
-The JSON string contains all the data that can be obtained using vmaCalculateStats().
-It can also contain detailed map of allocated memory blocks and their regions -
-free and occupied by allocations.
-This allows e.g. to visualize the memory or assess fragmentation.
-
-
-\page allocation_annotation Allocation names and user data
-
-\section allocation_user_data Allocation user data
-
-You can annotate allocations with your own information, e.g. for debugging purposes.
-To do that, fill VmaAllocationCreateInfo::pUserData field when creating
-an allocation. It's an opaque `void*` pointer. You can use it e.g. as a pointer,
-some handle, index, key, ordinal number or any other value that would associate
-the allocation with your custom metadata.
-
-\code
-VkBufferCreateInfo bufferInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO };
-// Fill bufferInfo...
-
-MyBufferMetadata* pMetadata = CreateBufferMetadata();
-
-VmaAllocationCreateInfo allocCreateInfo = {};
-allocCreateInfo.usage = VMA_MEMORY_USAGE_GPU_ONLY;
-allocCreateInfo.pUserData = pMetadata;
-
-VkBuffer buffer;
-VmaAllocation allocation;
-vmaCreateBuffer(allocator, &bufferInfo, &allocCreateInfo, &buffer, &allocation, nullptr);
-\endcode
-
-The pointer may be later retrieved as VmaAllocationInfo::pUserData:
-
-\code
-VmaAllocationInfo allocInfo;
-vmaGetAllocationInfo(allocator, allocation, &allocInfo);
-MyBufferMetadata* pMetadata = (MyBufferMetadata*)allocInfo.pUserData;
-\endcode
-
-It can also be changed using function vmaSetAllocationUserData().
-
-Values of (non-zero) allocations' `pUserData` are printed in JSON report created by
-vmaBuildStatsString(), in hexadecimal form.
-
-\section allocation_names Allocation names
-
-There is alternative mode available where `pUserData` pointer is used to point to
-a null-terminated string, giving a name to the allocation. To use this mode,
-set #VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT flag in VmaAllocationCreateInfo::flags.
-Then `pUserData` passed as VmaAllocationCreateInfo::pUserData or argument to
-vmaSetAllocationUserData() must be either null or pointer to a null-terminated string.
-The library creates internal copy of the string, so the pointer you pass doesn't need
-to be valid for whole lifetime of the allocation. You can free it after the call.
-
-\code
-VkImageCreateInfo imageInfo = { VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO };
-// Fill imageInfo...
-
-std::string imageName = "Texture: ";
-imageName += fileName;
-
-VmaAllocationCreateInfo allocCreateInfo = {};
-allocCreateInfo.usage = VMA_MEMORY_USAGE_GPU_ONLY;
-allocCreateInfo.flags = VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT;
-allocCreateInfo.pUserData = imageName.c_str();
-
-VkImage image;
-VmaAllocation allocation;
-vmaCreateImage(allocator, &imageInfo, &allocCreateInfo, &image, &allocation, nullptr);
-\endcode
-
-The value of `pUserData` pointer of the allocation will be different than the one
-you passed when setting allocation's name - pointing to a buffer managed
-internally that holds copy of the string.
-
-\code
-VmaAllocationInfo allocInfo;
-vmaGetAllocationInfo(allocator, allocation, &allocInfo);
-const char* imageName = (const char*)allocInfo.pUserData;
-printf("Image name: %s\n", imageName);
-\endcode
-
-That string is also printed in JSON report created by vmaBuildStatsString().
-
-
-\page debugging_memory_usage Debugging incorrect memory usage
-
-If you suspect a bug with memory usage, like usage of uninitialized memory or
-memory being overwritten out of bounds of an allocation,
-you can use debug features of this library to verify this.
-
-\section debugging_memory_usage_initialization Memory initialization
-
-If you experience a bug with incorrect and nondeterministic data in your program and you suspect uninitialized memory to be used,
-you can enable automatic memory initialization to verify this.
-To do it, define macro `VMA_DEBUG_INITIALIZE_ALLOCATIONS` to 1.
-
-\code
-#define VMA_DEBUG_INITIALIZE_ALLOCATIONS 1
-#include "vk_mem_alloc.h"
-\endcode
-
-It makes memory of all new allocations initialized to bit pattern `0xDCDCDCDC`.
-Before an allocation is destroyed, its memory is filled with bit pattern `0xEFEFEFEF`.
-Memory is automatically mapped and unmapped if necessary.
-
-If you find these values while debugging your program, good chances are that you incorrectly
-read Vulkan memory that is allocated but not initialized, or already freed, respectively.
-
-Memory initialization works only with memory types that are `HOST_VISIBLE`.
-It works also with dedicated allocations.
-It doesn't work with allocations created with #VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT flag,
-as they cannot be mapped.
-
-\section debugging_memory_usage_margins Margins
-
-By default, allocations are laid out in memory blocks next to each other if possible
-(considering required alignment, `bufferImageGranularity`, and `nonCoherentAtomSize`).
-
-![Allocations without margin](../gfx/Margins_1.png)
-
-Define macro `VMA_DEBUG_MARGIN` to some non-zero value (e.g. 16) to enforce specified
-number of bytes as a margin before and after every allocation.
-
-\code
-#define VMA_DEBUG_MARGIN 16
-#include "vk_mem_alloc.h"
-\endcode
-
-![Allocations with margin](../gfx/Margins_2.png)
-
-If your bug goes away after enabling margins, it means it may be caused by memory
-being overwritten outside of allocation boundaries. It is not 100% certain though.
-Change in application behavior may also be caused by different order and distribution
-of allocations across memory blocks after margins are applied.
-
-The margin is applied also before first and after last allocation in a block.
-It may occur only once between two adjacent allocations.
-
-Margins work with all types of memory.
-
-Margin is applied only to allocations made out of memory blocks and not to dedicated
-allocations, which have their own memory block of specific size.
-It is thus not applied to allocations made using #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT flag
-or those automatically decided to put into dedicated allocations, e.g. due to its
-large size or recommended by VK_KHR_dedicated_allocation extension.
-Margins are also not active in custom pools created with #VMA_POOL_CREATE_BUDDY_ALGORITHM_BIT flag.
-
-Margins appear in [JSON dump](@ref statistics_json_dump) as part of free space.
-
-Note that enabling margins increases memory usage and fragmentation.
-
-\section debugging_memory_usage_corruption_detection Corruption detection
-
-You can additionally define macro `VMA_DEBUG_DETECT_CORRUPTION` to 1 to enable validation
-of contents of the margins.
-
-\code
-#define VMA_DEBUG_MARGIN 16
-#define VMA_DEBUG_DETECT_CORRUPTION 1
-#include "vk_mem_alloc.h"
-\endcode
-
-When this feature is enabled, number of bytes specified as `VMA_DEBUG_MARGIN`
-(it must be multiply of 4) before and after every allocation is filled with a magic number.
-This idea is also know as "canary".
-Memory is automatically mapped and unmapped if necessary.
-
-This number is validated automatically when the allocation is destroyed.
-If it's not equal to the expected value, `VMA_ASSERT()` is executed.
-It clearly means that either CPU or GPU overwritten the memory outside of boundaries of the allocation,
-which indicates a serious bug.
-
-You can also explicitly request checking margins of all allocations in all memory blocks
-that belong to specified memory types by using function vmaCheckCorruption(),
-or in memory blocks that belong to specified custom pool, by using function
-vmaCheckPoolCorruption().
-
-Margin validation (corruption detection) works only for memory types that are
-`HOST_VISIBLE` and `HOST_COHERENT`.
-
-
-\page record_and_replay Record and replay
-
-\section record_and_replay_introduction Introduction
-
-While using the library, sequence of calls to its functions together with their
-parameters can be recorded to a file and later replayed using standalone player
-application. It can be useful to:
-
-- Test correctness - check if same sequence of calls will not cause crash or
- failures on a target platform.
-- Gather statistics - see number of allocations, peak memory usage, number of
- calls etc.
-- Benchmark performance - see how much time it takes to replay the whole
- sequence.
-
-\section record_and_replay_usage Usage
-
-<b>To record sequence of calls to a file:</b> Fill in
-VmaAllocatorCreateInfo::pRecordSettings member while creating #VmaAllocator
-object. File is opened and written during whole lifetime of the allocator.
-
-<b>To replay file:</b> Use VmaReplay - standalone command-line program.
-Precompiled binary can be found in "bin" directory.
-Its source can be found in "src/VmaReplay" directory.
-Its project is generated by Premake.
-Command line syntax is printed when the program is launched without parameters.
-Basic usage:
-
- VmaReplay.exe MyRecording.csv
-
-<b>Documentation of file format</b> can be found in file: "docs/Recording file format.md".
-It's a human-readable, text file in CSV format (Comma Separated Values).
-
-\section record_and_replay_additional_considerations Additional considerations
-
-- Replaying file that was recorded on a different GPU (with different parameters
- like `bufferImageGranularity`, `nonCoherentAtomSize`, and especially different
- set of memory heaps and types) may give different performance and memory usage
- results, as well as issue some warnings and errors.
-- Current implementation of recording in VMA, as well as VmaReplay application, is
- coded and tested only on Windows. Inclusion of recording code is driven by
- `VMA_RECORDING_ENABLED` macro. Support for other platforms should be easy to
- add. Contributions are welcomed.
-- Currently calls to vmaDefragment() function are not recorded.
-
-
-\page usage_patterns Recommended usage patterns
-
-See also slides from talk:
-[Sawicki, Adam. Advanced Graphics Techniques Tutorial: Memory management in Vulkan and DX12. Game Developers Conference, 2018](https://www.gdcvault.com/play/1025458/Advanced-Graphics-Techniques-Tutorial-New)
-
-
-\section usage_patterns_simple Simple patterns
-
-\subsection usage_patterns_simple_render_targets Render targets
-
-<b>When:</b>
-Any resources that you frequently write and read on GPU,
-e.g. images used as color attachments (aka "render targets"), depth-stencil attachments,
-images/buffers used as storage image/buffer (aka "Unordered Access View (UAV)").
-
-<b>What to do:</b>
-Create them in video memory that is fastest to access from GPU using
-#VMA_MEMORY_USAGE_GPU_ONLY.
-
-Consider using [VK_KHR_dedicated_allocation](@ref vk_khr_dedicated_allocation) extension
-and/or manually creating them as dedicated allocations using #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT,
-especially if they are large or if you plan to destroy and recreate them e.g. when
-display resolution changes.
-Prefer to create such resources first and all other GPU resources (like textures and vertex buffers) later.
-
-\subsection usage_patterns_simple_immutable_resources Immutable resources
-
-<b>When:</b>
-Any resources that you fill on CPU only once (aka "immutable") or infrequently
-and then read frequently on GPU,
-e.g. textures, vertex and index buffers, constant buffers that don't change often.
-
-<b>What to do:</b>
-Create them in video memory that is fastest to access from GPU using
-#VMA_MEMORY_USAGE_GPU_ONLY.
-
-To initialize content of such resource, create a CPU-side (aka "staging") copy of it
-in system memory - #VMA_MEMORY_USAGE_CPU_ONLY, map it, fill it,
-and submit a transfer from it to the GPU resource.
-You can keep the staging copy if you need it for another upload transfer in the future.
-If you don't, you can destroy it or reuse this buffer for uploading different resource
-after the transfer finishes.
-
-Prefer to create just buffers in system memory rather than images, even for uploading textures.
-Use `vkCmdCopyBufferToImage()`.
-Dont use images with `VK_IMAGE_TILING_LINEAR`.
-
-\subsection usage_patterns_dynamic_resources Dynamic resources
-
-<b>When:</b>
-Any resources that change frequently (aka "dynamic"), e.g. every frame or every draw call,
-written on CPU, read on GPU.
-
-<b>What to do:</b>
-Create them using #VMA_MEMORY_USAGE_CPU_TO_GPU.
-You can map it and write to it directly on CPU, as well as read from it on GPU.
-
-This is a more complex situation. Different solutions are possible,
-and the best one depends on specific GPU type, but you can use this simple approach for the start.
-Prefer to write to such resource sequentially (e.g. using `memcpy`).
-Don't perform random access or any reads from it on CPU, as it may be very slow.
-
-\subsection usage_patterns_readback Readback
-
-<b>When:</b>
-Resources that contain data written by GPU that you want to read back on CPU,
-e.g. results of some computations.
-
-<b>What to do:</b>
-Create them using #VMA_MEMORY_USAGE_GPU_TO_CPU.
-You can write to them directly on GPU, as well as map and read them on CPU.
-
-\section usage_patterns_advanced Advanced patterns
-
-\subsection usage_patterns_integrated_graphics Detecting integrated graphics
-
-You can support integrated graphics (like Intel HD Graphics, AMD APU) better
-by detecting it in Vulkan.
-To do it, call `vkGetPhysicalDeviceProperties()`, inspect
-`VkPhysicalDeviceProperties::deviceType` and look for `VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU`.
-When you find it, you can assume that memory is unified and all memory types are comparably fast
-to access from GPU, regardless of `VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT`.
-
-You can then sum up sizes of all available memory heaps and treat them as useful for
-your GPU resources, instead of only `DEVICE_LOCAL` ones.
-You can also prefer to create your resources in memory types that are `HOST_VISIBLE` to map them
-directly instead of submitting explicit transfer (see below).
-
-\subsection usage_patterns_direct_vs_transfer Direct access versus transfer
-
-For resources that you frequently write on CPU and read on GPU, many solutions are possible:
-
--# Create one copy in video memory using #VMA_MEMORY_USAGE_GPU_ONLY,
- second copy in system memory using #VMA_MEMORY_USAGE_CPU_ONLY and submit explicit tranfer each time.
--# Create just single copy using #VMA_MEMORY_USAGE_CPU_TO_GPU, map it and fill it on CPU,
- read it directly on GPU.
--# Create just single copy using #VMA_MEMORY_USAGE_CPU_ONLY, map it and fill it on CPU,
- read it directly on GPU.
-
-Which solution is the most efficient depends on your resource and especially on the GPU.
-It is best to measure it and then make the decision.
-Some general recommendations:
-
-- On integrated graphics use (2) or (3) to avoid unnecesary time and memory overhead
- related to using a second copy and making transfer.
-- For small resources (e.g. constant buffers) use (2).
- Discrete AMD cards have special 256 MiB pool of video memory that is directly mappable.
- Even if the resource ends up in system memory, its data may be cached on GPU after first
- fetch over PCIe bus.
-- For larger resources (e.g. textures), decide between (1) and (2).
- You may want to differentiate NVIDIA and AMD, e.g. by looking for memory type that is
- both `DEVICE_LOCAL` and `HOST_VISIBLE`. When you find it, use (2), otherwise use (1).
-
-Similarly, for resources that you frequently write on GPU and read on CPU, multiple
-solutions are possible:
-
--# Create one copy in video memory using #VMA_MEMORY_USAGE_GPU_ONLY,
- second copy in system memory using #VMA_MEMORY_USAGE_GPU_TO_CPU and submit explicit tranfer each time.
--# Create just single copy using #VMA_MEMORY_USAGE_GPU_TO_CPU, write to it directly on GPU,
- map it and read it on CPU.
-
-You should take some measurements to decide which option is faster in case of your specific
-resource.
-
-If you don't want to specialize your code for specific types of GPUs, you can still make
-an simple optimization for cases when your resource ends up in mappable memory to use it
-directly in this case instead of creating CPU-side staging copy.
-For details see [Finding out if memory is mappable](@ref memory_mapping_finding_if_memory_mappable).
-
-
-\page configuration Configuration
-
-Please check "CONFIGURATION SECTION" in the code to find macros that you can define
-before each include of this file or change directly in this file to provide
-your own implementation of basic facilities like assert, `min()` and `max()` functions,
-mutex, atomic etc.
-The library uses its own implementation of containers by default, but you can switch to using
-STL containers instead.
-
-\section config_Vulkan_functions Pointers to Vulkan functions
-
-The library uses Vulkan functions straight from the `vulkan.h` header by default.
-If you want to provide your own pointers to these functions, e.g. fetched using
-`vkGetInstanceProcAddr()` and `vkGetDeviceProcAddr()`:
-
--# Define `VMA_STATIC_VULKAN_FUNCTIONS 0`.
--# Provide valid pointers through VmaAllocatorCreateInfo::pVulkanFunctions.
-
-\section custom_memory_allocator Custom host memory allocator
-
-If you use custom allocator for CPU memory rather than default operator `new`
-and `delete` from C++, you can make this library using your allocator as well
-by filling optional member VmaAllocatorCreateInfo::pAllocationCallbacks. These
-functions will be passed to Vulkan, as well as used by the library itself to
-make any CPU-side allocations.
-
-\section allocation_callbacks Device memory allocation callbacks
-
-The library makes calls to `vkAllocateMemory()` and `vkFreeMemory()` internally.
-You can setup callbacks to be informed about these calls, e.g. for the purpose
-of gathering some statistics. To do it, fill optional member
-VmaAllocatorCreateInfo::pDeviceMemoryCallbacks.
-
-\section heap_memory_limit Device heap memory limit
-
-When device memory of certain heap runs out of free space, new allocations may
-fail (returning error code) or they may succeed, silently pushing some existing
-memory blocks from GPU VRAM to system RAM (which degrades performance). This
-behavior is implementation-dependant - it depends on GPU vendor and graphics
-driver.
-
-On AMD cards it can be controlled while creating Vulkan device object by using
-VK_AMD_memory_allocation_behavior extension, if available.
-
-Alternatively, if you want to test how your program behaves with limited amount of Vulkan device
-memory available without switching your graphics card to one that really has
-smaller VRAM, you can use a feature of this library intended for this purpose.
-To do it, fill optional member VmaAllocatorCreateInfo::pHeapSizeLimit.
-
-
-
-\page vk_khr_dedicated_allocation VK_KHR_dedicated_allocation
-
-VK_KHR_dedicated_allocation is a Vulkan extension which can be used to improve
-performance on some GPUs. It augments Vulkan API with possibility to query
-driver whether it prefers particular buffer or image to have its own, dedicated
-allocation (separate `VkDeviceMemory` block) for better efficiency - to be able
-to do some internal optimizations.
-
-The extension is supported by this library. It will be used automatically when
-enabled. To enable it:
-
-1 . When creating Vulkan device, check if following 2 device extensions are
-supported (call `vkEnumerateDeviceExtensionProperties()`).
-If yes, enable them (fill `VkDeviceCreateInfo::ppEnabledExtensionNames`).
-
-- VK_KHR_get_memory_requirements2
-- VK_KHR_dedicated_allocation
-
-If you enabled these extensions:
-
-2 . Use #VMA_ALLOCATOR_CREATE_KHR_DEDICATED_ALLOCATION_BIT flag when creating
-your #VmaAllocator`to inform the library that you enabled required extensions
-and you want the library to use them.
-
-\code
-allocatorInfo.flags |= VMA_ALLOCATOR_CREATE_KHR_DEDICATED_ALLOCATION_BIT;
-
-vmaCreateAllocator(&allocatorInfo, &allocator);
-\endcode
-
-That's all. The extension will be automatically used whenever you create a
-buffer using vmaCreateBuffer() or image using vmaCreateImage().
-
-When using the extension together with Vulkan Validation Layer, you will receive
-warnings like this:
-
- vkBindBufferMemory(): Binding memory to buffer 0x33 but vkGetBufferMemoryRequirements() has not been called on that buffer.
-
-It is OK, you should just ignore it. It happens because you use function
-`vkGetBufferMemoryRequirements2KHR()` instead of standard
-`vkGetBufferMemoryRequirements()`, while the validation layer seems to be
-unaware of it.
-
-To learn more about this extension, see:
-
-- [VK_KHR_dedicated_allocation in Vulkan specification](https://www.khronos.org/registry/vulkan/specs/1.0-extensions/html/vkspec.html#VK_KHR_dedicated_allocation)
-- [VK_KHR_dedicated_allocation unofficial manual](http://asawicki.info/articles/VK_KHR_dedicated_allocation.php5)
-
-
-
-\page general_considerations General considerations
-
-\section general_considerations_thread_safety Thread safety
-
-- The library has no global state, so separate #VmaAllocator objects can be used
- independently.
- There should be no need to create multiple such objects though - one per `VkDevice` is enough.
-- By default, all calls to functions that take #VmaAllocator as first parameter
- are safe to call from multiple threads simultaneously because they are
- synchronized internally when needed.
-- When the allocator is created with #VMA_ALLOCATOR_CREATE_EXTERNALLY_SYNCHRONIZED_BIT
- flag, calls to functions that take such #VmaAllocator object must be
- synchronized externally.
-- Access to a #VmaAllocation object must be externally synchronized. For example,
- you must not call vmaGetAllocationInfo() and vmaMapMemory() from different
- threads at the same time if you pass the same #VmaAllocation object to these
- functions.
-
-\section general_considerations_validation_layer_warnings Validation layer warnings
-
-When using this library, you can meet following types of warnings issued by
-Vulkan validation layer. They don't necessarily indicate a bug, so you may need
-to just ignore them.
-
-- *vkBindBufferMemory(): Binding memory to buffer 0xeb8e4 but vkGetBufferMemoryRequirements() has not been called on that buffer.*
- - It happens when VK_KHR_dedicated_allocation extension is enabled.
- `vkGetBufferMemoryRequirements2KHR` function is used instead, while validation layer seems to be unaware of it.
-- *Mapping an image with layout VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL can result in undefined behavior if this memory is used by the device. Only GENERAL or PREINITIALIZED should be used.*
- - It happens when you map a buffer or image, because the library maps entire
- `VkDeviceMemory` block, where different types of images and buffers may end
- up together, especially on GPUs with unified memory like Intel.
-- *Non-linear image 0xebc91 is aliased with linear buffer 0xeb8e4 which may indicate a bug.*
- - It happens when you use lost allocations, and a new image or buffer is
- created in place of an existing object that bacame lost.
- - It may happen also when you use [defragmentation](@ref defragmentation).
-
-\section general_considerations_allocation_algorithm Allocation algorithm
-
-The library uses following algorithm for allocation, in order:
-
--# Try to find free range of memory in existing blocks.
--# If failed, try to create a new block of `VkDeviceMemory`, with preferred block size.
--# If failed, try to create such block with size/2, size/4, size/8.
--# If failed and #VMA_ALLOCATION_CREATE_CAN_MAKE_OTHER_LOST_BIT flag was
- specified, try to find space in existing blocks, possilby making some other
- allocations lost.
--# If failed, try to allocate separate `VkDeviceMemory` for this allocation,
- just like when you use #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT.
--# If failed, choose other memory type that meets the requirements specified in
- VmaAllocationCreateInfo and go to point 1.
--# If failed, return `VK_ERROR_OUT_OF_DEVICE_MEMORY`.
-
-\section general_considerations_features_not_supported Features not supported
-
-Features deliberately excluded from the scope of this library:
-
-- Data transfer. Uploading (straming) and downloading data of buffers and images
- between CPU and GPU memory and related synchronization is responsibility of the user.
- Defining some "texture" object that would automatically stream its data from a
- staging copy in CPU memory to GPU memory would rather be a feature of another,
- higher-level library implemented on top of VMA.
-- Allocations for imported/exported external memory. They tend to require
- explicit memory type index and dedicated allocation anyway, so they don't
- interact with main features of this library. Such special purpose allocations
- should be made manually, using `vkCreateBuffer()` and `vkAllocateMemory()`.
-- Recreation of buffers and images. Although the library has functions for
- buffer and image creation (vmaCreateBuffer(), vmaCreateImage()), you need to
- recreate these objects yourself after defragmentation. That's because the big
- structures `VkBufferCreateInfo`, `VkImageCreateInfo` are not stored in
- #VmaAllocation object.
-- Handling CPU memory allocation failures. When dynamically creating small C++
- objects in CPU memory (not Vulkan memory), allocation failures are not checked
- and handled gracefully, because that would complicate code significantly and
- is usually not needed in desktop PC applications anyway.
-- Code free of any compiler warnings. Maintaining the library to compile and
- work correctly on so many different platforms is hard enough. Being free of
- any warnings, on any version of any compiler, is simply not feasible.
-- This is a C++ library with C interface.
- Bindings or ports to any other programming languages are welcomed as external projects and
- are not going to be included into this repository.
-
-*/
-
-/*
-Define this macro to 0/1 to disable/enable support for recording functionality,
-available through VmaAllocatorCreateInfo::pRecordSettings.
-*/
-#ifndef VMA_RECORDING_ENABLED
-#ifdef _WIN32
-#define VMA_RECORDING_ENABLED 1
-#else
-#define VMA_RECORDING_ENABLED 0
-#endif
-#endif
-
-#ifndef NOMINMAX
-#define NOMINMAX // For windows.h
-#endif
-
-#ifndef VULKAN_H_
-#include <vulkan/vulkan.h>
-#endif
-
-#if VMA_RECORDING_ENABLED
-#include <windows.h>
-#endif
-
-#if !defined(VMA_DEDICATED_ALLOCATION)
-#if VK_KHR_get_memory_requirements2 && VK_KHR_dedicated_allocation
-#define VMA_DEDICATED_ALLOCATION 1
-#else
-#define VMA_DEDICATED_ALLOCATION 0
-#endif
-#endif
-
-/** \struct VmaAllocator
-\brief Represents main object of this library initialized.
-
-Fill structure #VmaAllocatorCreateInfo and call function vmaCreateAllocator() to create it.
-Call function vmaDestroyAllocator() to destroy it.
-
-It is recommended to create just one object of this type per `VkDevice` object,
-right after Vulkan is initialized and keep it alive until before Vulkan device is destroyed.
-*/
-VK_DEFINE_HANDLE(VmaAllocator)
-
-/// Callback function called after successful vkAllocateMemory.
-typedef void(VKAPI_PTR *PFN_vmaAllocateDeviceMemoryFunction)(
- VmaAllocator allocator,
- uint32_t memoryType,
- VkDeviceMemory memory,
- VkDeviceSize size);
-/// Callback function called before vkFreeMemory.
-typedef void(VKAPI_PTR *PFN_vmaFreeDeviceMemoryFunction)(
- VmaAllocator allocator,
- uint32_t memoryType,
- VkDeviceMemory memory,
- VkDeviceSize size);
-
-/** \brief Set of callbacks that the library will call for `vkAllocateMemory` and `vkFreeMemory`.
-
-Provided for informative purpose, e.g. to gather statistics about number of
-allocations or total amount of memory allocated in Vulkan.
-
-Used in VmaAllocatorCreateInfo::pDeviceMemoryCallbacks.
-*/
-typedef struct VmaDeviceMemoryCallbacks {
- /// Optional, can be null.
- PFN_vmaAllocateDeviceMemoryFunction pfnAllocate;
- /// Optional, can be null.
- PFN_vmaFreeDeviceMemoryFunction pfnFree;
-} VmaDeviceMemoryCallbacks;
-
-/// Flags for created #VmaAllocator.
-typedef enum VmaAllocatorCreateFlagBits {
- /** \brief Allocator and all objects created from it will not be synchronized internally, so you must guarantee they are used from only one thread at a time or synchronized externally by you.
-
- Using this flag may increase performance because internal mutexes are not used.
- */
- VMA_ALLOCATOR_CREATE_EXTERNALLY_SYNCHRONIZED_BIT = 0x00000001,
- /** \brief Enables usage of VK_KHR_dedicated_allocation extension.
-
- Using this extenion will automatically allocate dedicated blocks of memory for
- some buffers and images instead of suballocating place for them out of bigger
- memory blocks (as if you explicitly used #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT
- flag) when it is recommended by the driver. It may improve performance on some
- GPUs.
-
- You may set this flag only if you found out that following device extensions are
- supported, you enabled them while creating Vulkan device passed as
- VmaAllocatorCreateInfo::device, and you want them to be used internally by this
- library:
-
- - VK_KHR_get_memory_requirements2
- - VK_KHR_dedicated_allocation
-
-When this flag is set, you can experience following warnings reported by Vulkan
-validation layer. You can ignore them.
-
-> vkBindBufferMemory(): Binding memory to buffer 0x2d but vkGetBufferMemoryRequirements() has not been called on that buffer.
- */
- VMA_ALLOCATOR_CREATE_KHR_DEDICATED_ALLOCATION_BIT = 0x00000002,
-
- VMA_ALLOCATOR_CREATE_FLAG_BITS_MAX_ENUM = 0x7FFFFFFF
-} VmaAllocatorCreateFlagBits;
-typedef VkFlags VmaAllocatorCreateFlags;
-
-/** \brief Pointers to some Vulkan functions - a subset used by the library.
-
-Used in VmaAllocatorCreateInfo::pVulkanFunctions.
-*/
-typedef struct VmaVulkanFunctions {
- PFN_vkGetPhysicalDeviceProperties vkGetPhysicalDeviceProperties;
- PFN_vkGetPhysicalDeviceMemoryProperties vkGetPhysicalDeviceMemoryProperties;
- PFN_vkAllocateMemory vkAllocateMemory;
- PFN_vkFreeMemory vkFreeMemory;
- PFN_vkMapMemory vkMapMemory;
- PFN_vkUnmapMemory vkUnmapMemory;
- PFN_vkFlushMappedMemoryRanges vkFlushMappedMemoryRanges;
- PFN_vkInvalidateMappedMemoryRanges vkInvalidateMappedMemoryRanges;
- PFN_vkBindBufferMemory vkBindBufferMemory;
- PFN_vkBindImageMemory vkBindImageMemory;
- PFN_vkGetBufferMemoryRequirements vkGetBufferMemoryRequirements;
- PFN_vkGetImageMemoryRequirements vkGetImageMemoryRequirements;
- PFN_vkCreateBuffer vkCreateBuffer;
- PFN_vkDestroyBuffer vkDestroyBuffer;
- PFN_vkCreateImage vkCreateImage;
- PFN_vkDestroyImage vkDestroyImage;
- PFN_vkCmdCopyBuffer vkCmdCopyBuffer;
-#if VMA_DEDICATED_ALLOCATION
- PFN_vkGetBufferMemoryRequirements2KHR vkGetBufferMemoryRequirements2KHR;
- PFN_vkGetImageMemoryRequirements2KHR vkGetImageMemoryRequirements2KHR;
-#endif
-} VmaVulkanFunctions;
-
-/// Flags to be used in VmaRecordSettings::flags.
-typedef enum VmaRecordFlagBits {
- /** \brief Enables flush after recording every function call.
-
- Enable it if you expect your application to crash, which may leave recording file truncated.
- It may degrade performance though.
- */
- VMA_RECORD_FLUSH_AFTER_CALL_BIT = 0x00000001,
-
- VMA_RECORD_FLAG_BITS_MAX_ENUM = 0x7FFFFFFF
-} VmaRecordFlagBits;
-typedef VkFlags VmaRecordFlags;
-
-/// Parameters for recording calls to VMA functions. To be used in VmaAllocatorCreateInfo::pRecordSettings.
-typedef struct VmaRecordSettings {
- /// Flags for recording. Use #VmaRecordFlagBits enum.
- VmaRecordFlags flags;
- /** \brief Path to the file that should be written by the recording.
-
- Suggested extension: "csv".
- If the file already exists, it will be overwritten.
- It will be opened for the whole time #VmaAllocator object is alive.
- If opening this file fails, creation of the whole allocator object fails.
- */
- const char *pFilePath;
-} VmaRecordSettings;
-
-/// Description of a Allocator to be created.
-typedef struct VmaAllocatorCreateInfo {
- /// Flags for created allocator. Use #VmaAllocatorCreateFlagBits enum.
- VmaAllocatorCreateFlags flags;
- /// Vulkan physical device.
- /** It must be valid throughout whole lifetime of created allocator. */
- VkPhysicalDevice physicalDevice;
- /// Vulkan device.
- /** It must be valid throughout whole lifetime of created allocator. */
- VkDevice device;
- /// Preferred size of a single `VkDeviceMemory` block to be allocated from large heaps > 1 GiB. Optional.
- /** Set to 0 to use default, which is currently 256 MiB. */
- VkDeviceSize preferredLargeHeapBlockSize;
- /// Custom CPU memory allocation callbacks. Optional.
- /** Optional, can be null. When specified, will also be used for all CPU-side memory allocations. */
- const VkAllocationCallbacks *pAllocationCallbacks;
- /// Informative callbacks for `vkAllocateMemory`, `vkFreeMemory`. Optional.
- /** Optional, can be null. */
- const VmaDeviceMemoryCallbacks *pDeviceMemoryCallbacks;
- /** \brief Maximum number of additional frames that are in use at the same time as current frame.
-
- This value is used only when you make allocations with
- VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT flag. Such allocation cannot become
- lost if allocation.lastUseFrameIndex >= allocator.currentFrameIndex - frameInUseCount.
-
- For example, if you double-buffer your command buffers, so resources used for
- rendering in previous frame may still be in use by the GPU at the moment you
- allocate resources needed for the current frame, set this value to 1.
-
- If you want to allow any allocations other than used in the current frame to
- become lost, set this value to 0.
- */
- uint32_t frameInUseCount;
- /** \brief Either null or a pointer to an array of limits on maximum number of bytes that can be allocated out of particular Vulkan memory heap.
-
- If not NULL, it must be a pointer to an array of
- `VkPhysicalDeviceMemoryProperties::memoryHeapCount` elements, defining limit on
- maximum number of bytes that can be allocated out of particular Vulkan memory
- heap.
-
- Any of the elements may be equal to `VK_WHOLE_SIZE`, which means no limit on that
- heap. This is also the default in case of `pHeapSizeLimit` = NULL.
-
- If there is a limit defined for a heap:
-
- - If user tries to allocate more memory from that heap using this allocator,
- the allocation fails with `VK_ERROR_OUT_OF_DEVICE_MEMORY`.
- - If the limit is smaller than heap size reported in `VkMemoryHeap::size`, the
- value of this limit will be reported instead when using vmaGetMemoryProperties().
-
- Warning! Using this feature may not be equivalent to installing a GPU with
- smaller amount of memory, because graphics driver doesn't necessary fail new
- allocations with `VK_ERROR_OUT_OF_DEVICE_MEMORY` result when memory capacity is
- exceeded. It may return success and just silently migrate some device memory
- blocks to system RAM. This driver behavior can also be controlled using
- VK_AMD_memory_overallocation_behavior extension.
- */
- const VkDeviceSize *pHeapSizeLimit;
- /** \brief Pointers to Vulkan functions. Can be null if you leave define `VMA_STATIC_VULKAN_FUNCTIONS 1`.
-
- If you leave define `VMA_STATIC_VULKAN_FUNCTIONS 1` in configuration section,
- you can pass null as this member, because the library will fetch pointers to
- Vulkan functions internally in a static way, like:
-
- vulkanFunctions.vkAllocateMemory = &vkAllocateMemory;
-
- Fill this member if you want to provide your own pointers to Vulkan functions,
- e.g. fetched using `vkGetInstanceProcAddr()` and `vkGetDeviceProcAddr()`.
- */
- const VmaVulkanFunctions *pVulkanFunctions;
- /** \brief Parameters for recording of VMA calls. Can be null.
-
- If not null, it enables recording of calls to VMA functions to a file.
- If support for recording is not enabled using `VMA_RECORDING_ENABLED` macro,
- creation of the allocator object fails with `VK_ERROR_FEATURE_NOT_PRESENT`.
- */
- const VmaRecordSettings *pRecordSettings;
-} VmaAllocatorCreateInfo;
-
-/// Creates Allocator object.
-VkResult vmaCreateAllocator(
- const VmaAllocatorCreateInfo *pCreateInfo,
- VmaAllocator *pAllocator);
-
-/// Destroys allocator object.
-void vmaDestroyAllocator(
- VmaAllocator allocator);
-
-/**
-PhysicalDeviceProperties are fetched from physicalDevice by the allocator.
-You can access it here, without fetching it again on your own.
-*/
-void vmaGetPhysicalDeviceProperties(
- VmaAllocator allocator,
- const VkPhysicalDeviceProperties **ppPhysicalDeviceProperties);
-
-/**
-PhysicalDeviceMemoryProperties are fetched from physicalDevice by the allocator.
-You can access it here, without fetching it again on your own.
-*/
-void vmaGetMemoryProperties(
- VmaAllocator allocator,
- const VkPhysicalDeviceMemoryProperties **ppPhysicalDeviceMemoryProperties);
-
-/**
-\brief Given Memory Type Index, returns Property Flags of this memory type.
-
-This is just a convenience function. Same information can be obtained using
-vmaGetMemoryProperties().
-*/
-void vmaGetMemoryTypeProperties(
- VmaAllocator allocator,
- uint32_t memoryTypeIndex,
- VkMemoryPropertyFlags *pFlags);
-
-/** \brief Sets index of the current frame.
-
-This function must be used if you make allocations with
-#VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT and
-#VMA_ALLOCATION_CREATE_CAN_MAKE_OTHER_LOST_BIT flags to inform the allocator
-when a new frame begins. Allocations queried using vmaGetAllocationInfo() cannot
-become lost in the current frame.
-*/
-void vmaSetCurrentFrameIndex(
- VmaAllocator allocator,
- uint32_t frameIndex);
-
-/** \brief Calculated statistics of memory usage in entire allocator.
-*/
-typedef struct VmaStatInfo {
- /// Number of `VkDeviceMemory` Vulkan memory blocks allocated.
- uint32_t blockCount;
- /// Number of #VmaAllocation allocation objects allocated.
- uint32_t allocationCount;
- /// Number of free ranges of memory between allocations.
- uint32_t unusedRangeCount;
- /// Total number of bytes occupied by all allocations.
- VkDeviceSize usedBytes;
- /// Total number of bytes occupied by unused ranges.
- VkDeviceSize unusedBytes;
- VkDeviceSize allocationSizeMin, allocationSizeAvg, allocationSizeMax;
- VkDeviceSize unusedRangeSizeMin, unusedRangeSizeAvg, unusedRangeSizeMax;
-} VmaStatInfo;
-
-/// General statistics from current state of Allocator.
-typedef struct VmaStats {
- VmaStatInfo memoryType[VK_MAX_MEMORY_TYPES];
- VmaStatInfo memoryHeap[VK_MAX_MEMORY_HEAPS];
- VmaStatInfo total;
-} VmaStats;
-
-/// Retrieves statistics from current state of the Allocator.
-void vmaCalculateStats(
- VmaAllocator allocator,
- VmaStats *pStats);
-
-#ifndef VMA_STATS_STRING_ENABLED
-#define VMA_STATS_STRING_ENABLED 1
-#endif
-
-#if VMA_STATS_STRING_ENABLED
-
-/// Builds and returns statistics as string in JSON format.
-/** @param[out] ppStatsString Must be freed using vmaFreeStatsString() function.
-*/
-void vmaBuildStatsString(
- VmaAllocator allocator,
- char **ppStatsString,
- VkBool32 detailedMap);
-
-void vmaFreeStatsString(
- VmaAllocator allocator,
- char *pStatsString);
-
-#endif // #if VMA_STATS_STRING_ENABLED
-
-/** \struct VmaPool
-\brief Represents custom memory pool
-
-Fill structure VmaPoolCreateInfo and call function vmaCreatePool() to create it.
-Call function vmaDestroyPool() to destroy it.
-
-For more information see [Custom memory pools](@ref choosing_memory_type_custom_memory_pools).
-*/
-VK_DEFINE_HANDLE(VmaPool)
-
-typedef enum VmaMemoryUsage {
- /** No intended memory usage specified.
- Use other members of VmaAllocationCreateInfo to specify your requirements.
- */
- VMA_MEMORY_USAGE_UNKNOWN = 0,
- /** Memory will be used on device only, so fast access from the device is preferred.
- It usually means device-local GPU (video) memory.
- No need to be mappable on host.
- It is roughly equivalent of `D3D12_HEAP_TYPE_DEFAULT`.
-
- Usage:
-
- - Resources written and read by device, e.g. images used as attachments.
- - Resources transferred from host once (immutable) or infrequently and read by
- device multiple times, e.g. textures to be sampled, vertex buffers, uniform
- (constant) buffers, and majority of other types of resources used on GPU.
-
- Allocation may still end up in `HOST_VISIBLE` memory on some implementations.
- In such case, you are free to map it.
- You can use #VMA_ALLOCATION_CREATE_MAPPED_BIT with this usage type.
- */
- VMA_MEMORY_USAGE_GPU_ONLY = 1,
- /** Memory will be mappable on host.
- It usually means CPU (system) memory.
- Guarantees to be `HOST_VISIBLE` and `HOST_COHERENT`.
- CPU access is typically uncached. Writes may be write-combined.
- Resources created in this pool may still be accessible to the device, but access to them can be slow.
- It is roughly equivalent of `D3D12_HEAP_TYPE_UPLOAD`.
-
- Usage: Staging copy of resources used as transfer source.
- */
- VMA_MEMORY_USAGE_CPU_ONLY = 2,
- /**
- Memory that is both mappable on host (guarantees to be `HOST_VISIBLE`) and preferably fast to access by GPU.
- CPU access is typically uncached. Writes may be write-combined.
-
- Usage: Resources written frequently by host (dynamic), read by device. E.g. textures, vertex buffers, uniform buffers updated every frame or every draw call.
- */
- VMA_MEMORY_USAGE_CPU_TO_GPU = 3,
- /** Memory mappable on host (guarantees to be `HOST_VISIBLE`) and cached.
- It is roughly equivalent of `D3D12_HEAP_TYPE_READBACK`.
-
- Usage:
-
- - Resources written by device, read by host - results of some computations, e.g. screen capture, average scene luminance for HDR tone mapping.
- - Any resources read or accessed randomly on host, e.g. CPU-side copy of vertex buffer used as source of transfer, but also used for collision detection.
- */
- VMA_MEMORY_USAGE_GPU_TO_CPU = 4,
- VMA_MEMORY_USAGE_MAX_ENUM = 0x7FFFFFFF
-} VmaMemoryUsage;
-
-/// Flags to be passed as VmaAllocationCreateInfo::flags.
-typedef enum VmaAllocationCreateFlagBits {
- /** \brief Set this flag if the allocation should have its own memory block.
-
- Use it for special, big resources, like fullscreen images used as attachments.
-
- You should not use this flag if VmaAllocationCreateInfo::pool is not null.
- */
- VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT = 0x00000001,
-
- /** \brief Set this flag to only try to allocate from existing `VkDeviceMemory` blocks and never create new such block.
-
- If new allocation cannot be placed in any of the existing blocks, allocation
- fails with `VK_ERROR_OUT_OF_DEVICE_MEMORY` error.
-
- You should not use #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT and
- #VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT at the same time. It makes no sense.
-
- If VmaAllocationCreateInfo::pool is not null, this flag is implied and ignored. */
- VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT = 0x00000002,
- /** \brief Set this flag to use a memory that will be persistently mapped and retrieve pointer to it.
-
- Pointer to mapped memory will be returned through VmaAllocationInfo::pMappedData.
-
- Is it valid to use this flag for allocation made from memory type that is not
- `HOST_VISIBLE`. This flag is then ignored and memory is not mapped. This is
- useful if you need an allocation that is efficient to use on GPU
- (`DEVICE_LOCAL`) and still want to map it directly if possible on platforms that
- support it (e.g. Intel GPU).
-
- You should not use this flag together with #VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT.
- */
- VMA_ALLOCATION_CREATE_MAPPED_BIT = 0x00000004,
- /** Allocation created with this flag can become lost as a result of another
- allocation with #VMA_ALLOCATION_CREATE_CAN_MAKE_OTHER_LOST_BIT flag, so you
- must check it before use.
-
- To check if allocation is not lost, call vmaGetAllocationInfo() and check if
- VmaAllocationInfo::deviceMemory is not `VK_NULL_HANDLE`.
-
- For details about supporting lost allocations, see Lost Allocations
- chapter of User Guide on Main Page.
-
- You should not use this flag together with #VMA_ALLOCATION_CREATE_MAPPED_BIT.
- */
- VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT = 0x00000008,
- /** While creating allocation using this flag, other allocations that were
- created with flag #VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT can become lost.
-
- For details about supporting lost allocations, see Lost Allocations
- chapter of User Guide on Main Page.
- */
- VMA_ALLOCATION_CREATE_CAN_MAKE_OTHER_LOST_BIT = 0x00000010,
- /** Set this flag to treat VmaAllocationCreateInfo::pUserData as pointer to a
- null-terminated string. Instead of copying pointer value, a local copy of the
- string is made and stored in allocation's `pUserData`. The string is automatically
- freed together with the allocation. It is also used in vmaBuildStatsString().
- */
- VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT = 0x00000020,
- /** Allocation will be created from upper stack in a double stack pool.
-
- This flag is only allowed for custom pools created with #VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT flag.
- */
- VMA_ALLOCATION_CREATE_UPPER_ADDRESS_BIT = 0x00000040,
- /** Create both buffer/image and allocation, but don't bind them together.
- It is useful when you want to bind yourself to do some more advanced binding, e.g. using some extensions.
- The flag is meaningful only with functions that bind by default: vmaCreateBuffer(), vmaCreateImage().
- Otherwise it is ignored.
- */
- VMA_ALLOCATION_CREATE_DONT_BIND_BIT = 0x00000080,
-
- /** Allocation strategy that chooses smallest possible free range for the
- allocation.
- */
- VMA_ALLOCATION_CREATE_STRATEGY_BEST_FIT_BIT = 0x00010000,
- /** Allocation strategy that chooses biggest possible free range for the
- allocation.
- */
- VMA_ALLOCATION_CREATE_STRATEGY_WORST_FIT_BIT = 0x00020000,
- /** Allocation strategy that chooses first suitable free range for the
- allocation.
-
- "First" doesn't necessarily means the one with smallest offset in memory,
- but rather the one that is easiest and fastest to find.
- */
- VMA_ALLOCATION_CREATE_STRATEGY_FIRST_FIT_BIT = 0x00040000,
-
- /** Allocation strategy that tries to minimize memory usage.
- */
- VMA_ALLOCATION_CREATE_STRATEGY_MIN_MEMORY_BIT = VMA_ALLOCATION_CREATE_STRATEGY_BEST_FIT_BIT,
- /** Allocation strategy that tries to minimize allocation time.
- */
- VMA_ALLOCATION_CREATE_STRATEGY_MIN_TIME_BIT = VMA_ALLOCATION_CREATE_STRATEGY_FIRST_FIT_BIT,
- /** Allocation strategy that tries to minimize memory fragmentation.
- */
- VMA_ALLOCATION_CREATE_STRATEGY_MIN_FRAGMENTATION_BIT = VMA_ALLOCATION_CREATE_STRATEGY_WORST_FIT_BIT,
-
- /** A bit mask to extract only `STRATEGY` bits from entire set of flags.
- */
- VMA_ALLOCATION_CREATE_STRATEGY_MASK =
- VMA_ALLOCATION_CREATE_STRATEGY_BEST_FIT_BIT |
- VMA_ALLOCATION_CREATE_STRATEGY_WORST_FIT_BIT |
- VMA_ALLOCATION_CREATE_STRATEGY_FIRST_FIT_BIT,
-
- VMA_ALLOCATION_CREATE_FLAG_BITS_MAX_ENUM = 0x7FFFFFFF
-} VmaAllocationCreateFlagBits;
-typedef VkFlags VmaAllocationCreateFlags;
-
-typedef struct VmaAllocationCreateInfo {
- /// Use #VmaAllocationCreateFlagBits enum.
- VmaAllocationCreateFlags flags;
- /** \brief Intended usage of memory.
-
- You can leave #VMA_MEMORY_USAGE_UNKNOWN if you specify memory requirements in other way. \n
- If `pool` is not null, this member is ignored.
- */
- VmaMemoryUsage usage;
- /** \brief Flags that must be set in a Memory Type chosen for an allocation.
-
- Leave 0 if you specify memory requirements in other way. \n
- If `pool` is not null, this member is ignored.*/
- VkMemoryPropertyFlags requiredFlags;
- /** \brief Flags that preferably should be set in a memory type chosen for an allocation.
-
- Set to 0 if no additional flags are prefered. \n
- If `pool` is not null, this member is ignored. */
- VkMemoryPropertyFlags preferredFlags;
- /** \brief Bitmask containing one bit set for every memory type acceptable for this allocation.
-
- Value 0 is equivalent to `UINT32_MAX` - it means any memory type is accepted if
- it meets other requirements specified by this structure, with no further
- restrictions on memory type index. \n
- If `pool` is not null, this member is ignored.
- */
- uint32_t memoryTypeBits;
- /** \brief Pool that this allocation should be created in.
-
- Leave `VK_NULL_HANDLE` to allocate from default pool. If not null, members:
- `usage`, `requiredFlags`, `preferredFlags`, `memoryTypeBits` are ignored.
- */
- VmaPool pool;
- /** \brief Custom general-purpose pointer that will be stored in #VmaAllocation, can be read as VmaAllocationInfo::pUserData and changed using vmaSetAllocationUserData().
-
- If #VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT is used, it must be either
- null or pointer to a null-terminated string. The string will be then copied to
- internal buffer, so it doesn't need to be valid after allocation call.
- */
- void *pUserData;
-} VmaAllocationCreateInfo;
-
-/**
-\brief Helps to find memoryTypeIndex, given memoryTypeBits and VmaAllocationCreateInfo.
-
-This algorithm tries to find a memory type that:
-
-- Is allowed by memoryTypeBits.
-- Contains all the flags from pAllocationCreateInfo->requiredFlags.
-- Matches intended usage.
-- Has as many flags from pAllocationCreateInfo->preferredFlags as possible.
-
-\return Returns VK_ERROR_FEATURE_NOT_PRESENT if not found. Receiving such result
-from this function or any other allocating function probably means that your
-device doesn't support any memory type with requested features for the specific
-type of resource you want to use it for. Please check parameters of your
-resource, like image layout (OPTIMAL versus LINEAR) or mip level count.
-*/
-VkResult vmaFindMemoryTypeIndex(
- VmaAllocator allocator,
- uint32_t memoryTypeBits,
- const VmaAllocationCreateInfo *pAllocationCreateInfo,
- uint32_t *pMemoryTypeIndex);
-
-/**
-\brief Helps to find memoryTypeIndex, given VkBufferCreateInfo and VmaAllocationCreateInfo.
-
-It can be useful e.g. to determine value to be used as VmaPoolCreateInfo::memoryTypeIndex.
-It internally creates a temporary, dummy buffer that never has memory bound.
-It is just a convenience function, equivalent to calling:
-
-- `vkCreateBuffer`
-- `vkGetBufferMemoryRequirements`
-- `vmaFindMemoryTypeIndex`
-- `vkDestroyBuffer`
-*/
-VkResult vmaFindMemoryTypeIndexForBufferInfo(
- VmaAllocator allocator,
- const VkBufferCreateInfo *pBufferCreateInfo,
- const VmaAllocationCreateInfo *pAllocationCreateInfo,
- uint32_t *pMemoryTypeIndex);
-
-/**
-\brief Helps to find memoryTypeIndex, given VkImageCreateInfo and VmaAllocationCreateInfo.
-
-It can be useful e.g. to determine value to be used as VmaPoolCreateInfo::memoryTypeIndex.
-It internally creates a temporary, dummy image that never has memory bound.
-It is just a convenience function, equivalent to calling:
-
-- `vkCreateImage`
-- `vkGetImageMemoryRequirements`
-- `vmaFindMemoryTypeIndex`
-- `vkDestroyImage`
-*/
-VkResult vmaFindMemoryTypeIndexForImageInfo(
- VmaAllocator allocator,
- const VkImageCreateInfo *pImageCreateInfo,
- const VmaAllocationCreateInfo *pAllocationCreateInfo,
- uint32_t *pMemoryTypeIndex);
-
-/// Flags to be passed as VmaPoolCreateInfo::flags.
-typedef enum VmaPoolCreateFlagBits {
- /** \brief Use this flag if you always allocate only buffers and linear images or only optimal images out of this pool and so Buffer-Image Granularity can be ignored.
-
- This is an optional optimization flag.
-
- If you always allocate using vmaCreateBuffer(), vmaCreateImage(),
- vmaAllocateMemoryForBuffer(), then you don't need to use it because allocator
- knows exact type of your allocations so it can handle Buffer-Image Granularity
- in the optimal way.
-
- If you also allocate using vmaAllocateMemoryForImage() or vmaAllocateMemory(),
- exact type of such allocations is not known, so allocator must be conservative
- in handling Buffer-Image Granularity, which can lead to suboptimal allocation
- (wasted memory). In that case, if you can make sure you always allocate only
- buffers and linear images or only optimal images out of this pool, use this flag
- to make allocator disregard Buffer-Image Granularity and so make allocations
- faster and more optimal.
- */
- VMA_POOL_CREATE_IGNORE_BUFFER_IMAGE_GRANULARITY_BIT = 0x00000002,
-
- /** \brief Enables alternative, linear allocation algorithm in this pool.
-
- Specify this flag to enable linear allocation algorithm, which always creates
- new allocations after last one and doesn't reuse space from allocations freed in
- between. It trades memory consumption for simplified algorithm and data
- structure, which has better performance and uses less memory for metadata.
-
- By using this flag, you can achieve behavior of free-at-once, stack,
- ring buffer, and double stack. For details, see documentation chapter
- \ref linear_algorithm.
-
- When using this flag, you must specify VmaPoolCreateInfo::maxBlockCount == 1 (or 0 for default).
-
- For more details, see [Linear allocation algorithm](@ref linear_algorithm).
- */
- VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT = 0x00000004,
-
- /** \brief Enables alternative, buddy allocation algorithm in this pool.
-
- It operates on a tree of blocks, each having size that is a power of two and
- a half of its parent's size. Comparing to default algorithm, this one provides
- faster allocation and deallocation and decreased external fragmentation,
- at the expense of more memory wasted (internal fragmentation).
-
- For more details, see [Buddy allocation algorithm](@ref buddy_algorithm).
- */
- VMA_POOL_CREATE_BUDDY_ALGORITHM_BIT = 0x00000008,
-
- /** Bit mask to extract only `ALGORITHM` bits from entire set of flags.
- */
- VMA_POOL_CREATE_ALGORITHM_MASK =
- VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT |
- VMA_POOL_CREATE_BUDDY_ALGORITHM_BIT,
-
- VMA_POOL_CREATE_FLAG_BITS_MAX_ENUM = 0x7FFFFFFF
-} VmaPoolCreateFlagBits;
-typedef VkFlags VmaPoolCreateFlags;
-
-/** \brief Describes parameter of created #VmaPool.
-*/
-typedef struct VmaPoolCreateInfo {
- /** \brief Vulkan memory type index to allocate this pool from.
- */
- uint32_t memoryTypeIndex;
- /** \brief Use combination of #VmaPoolCreateFlagBits.
- */
- VmaPoolCreateFlags flags;
- /** \brief Size of a single `VkDeviceMemory` block to be allocated as part of this pool, in bytes. Optional.
-
- Specify nonzero to set explicit, constant size of memory blocks used by this
- pool.
-
- Leave 0 to use default and let the library manage block sizes automatically.
- Sizes of particular blocks may vary.
- */
- VkDeviceSize blockSize;
- /** \brief Minimum number of blocks to be always allocated in this pool, even if they stay empty.
-
- Set to 0 to have no preallocated blocks and allow the pool be completely empty.
- */
- size_t minBlockCount;
- /** \brief Maximum number of blocks that can be allocated in this pool. Optional.
-
- Set to 0 to use default, which is `SIZE_MAX`, which means no limit.
-
- Set to same value as VmaPoolCreateInfo::minBlockCount to have fixed amount of memory allocated
- throughout whole lifetime of this pool.
- */
- size_t maxBlockCount;
- /** \brief Maximum number of additional frames that are in use at the same time as current frame.
-
- This value is used only when you make allocations with
- #VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT flag. Such allocation cannot become
- lost if allocation.lastUseFrameIndex >= allocator.currentFrameIndex - frameInUseCount.
-
- For example, if you double-buffer your command buffers, so resources used for
- rendering in previous frame may still be in use by the GPU at the moment you
- allocate resources needed for the current frame, set this value to 1.
-
- If you want to allow any allocations other than used in the current frame to
- become lost, set this value to 0.
- */
- uint32_t frameInUseCount;
-} VmaPoolCreateInfo;
-
-/** \brief Describes parameter of existing #VmaPool.
-*/
-typedef struct VmaPoolStats {
- /** \brief Total amount of `VkDeviceMemory` allocated from Vulkan for this pool, in bytes.
- */
- VkDeviceSize size;
- /** \brief Total number of bytes in the pool not used by any #VmaAllocation.
- */
- VkDeviceSize unusedSize;
- /** \brief Number of #VmaAllocation objects created from this pool that were not destroyed or lost.
- */
- size_t allocationCount;
- /** \brief Number of continuous memory ranges in the pool not used by any #VmaAllocation.
- */
- size_t unusedRangeCount;
- /** \brief Size of the largest continuous free memory region available for new allocation.
-
- Making a new allocation of that size is not guaranteed to succeed because of
- possible additional margin required to respect alignment and buffer/image
- granularity.
- */
- VkDeviceSize unusedRangeSizeMax;
- /** \brief Number of `VkDeviceMemory` blocks allocated for this pool.
- */
- size_t blockCount;
-} VmaPoolStats;
-
-/** \brief Allocates Vulkan device memory and creates #VmaPool object.
-
-@param allocator Allocator object.
-@param pCreateInfo Parameters of pool to create.
-@param[out] pPool Handle to created pool.
-*/
-VkResult vmaCreatePool(
- VmaAllocator allocator,
- const VmaPoolCreateInfo *pCreateInfo,
- VmaPool *pPool);
-
-/** \brief Destroys #VmaPool object and frees Vulkan device memory.
-*/
-void vmaDestroyPool(
- VmaAllocator allocator,
- VmaPool pool);
-
-/** \brief Retrieves statistics of existing #VmaPool object.
-
-@param allocator Allocator object.
-@param pool Pool object.
-@param[out] pPoolStats Statistics of specified pool.
-*/
-void vmaGetPoolStats(
- VmaAllocator allocator,
- VmaPool pool,
- VmaPoolStats *pPoolStats);
-
-/** \brief Marks all allocations in given pool as lost if they are not used in current frame or VmaPoolCreateInfo::frameInUseCount back from now.
-
-@param allocator Allocator object.
-@param pool Pool.
-@param[out] pLostAllocationCount Number of allocations marked as lost. Optional - pass null if you don't need this information.
-*/
-void vmaMakePoolAllocationsLost(
- VmaAllocator allocator,
- VmaPool pool,
- size_t *pLostAllocationCount);
-
-/** \brief Checks magic number in margins around all allocations in given memory pool in search for corruptions.
-
-Corruption detection is enabled only when `VMA_DEBUG_DETECT_CORRUPTION` macro is defined to nonzero,
-`VMA_DEBUG_MARGIN` is defined to nonzero and the pool is created in memory type that is
-`HOST_VISIBLE` and `HOST_COHERENT`. For more information, see [Corruption detection](@ref debugging_memory_usage_corruption_detection).
-
-Possible return values:
-
-- `VK_ERROR_FEATURE_NOT_PRESENT` - corruption detection is not enabled for specified pool.
-- `VK_SUCCESS` - corruption detection has been performed and succeeded.
-- `VK_ERROR_VALIDATION_FAILED_EXT` - corruption detection has been performed and found memory corruptions around one of the allocations.
- `VMA_ASSERT` is also fired in that case.
-- Other value: Error returned by Vulkan, e.g. memory mapping failure.
-*/
-VkResult vmaCheckPoolCorruption(VmaAllocator allocator, VmaPool pool);
-
-/** \struct VmaAllocation
-\brief Represents single memory allocation.
-
-It may be either dedicated block of `VkDeviceMemory` or a specific region of a bigger block of this type
-plus unique offset.
-
-There are multiple ways to create such object.
-You need to fill structure VmaAllocationCreateInfo.
-For more information see [Choosing memory type](@ref choosing_memory_type).
-
-Although the library provides convenience functions that create Vulkan buffer or image,
-allocate memory for it and bind them together,
-binding of the allocation to a buffer or an image is out of scope of the allocation itself.
-Allocation object can exist without buffer/image bound,
-binding can be done manually by the user, and destruction of it can be done
-independently of destruction of the allocation.
-
-The object also remembers its size and some other information.
-To retrieve this information, use function vmaGetAllocationInfo() and inspect
-returned structure VmaAllocationInfo.
-
-Some kinds allocations can be in lost state.
-For more information, see [Lost allocations](@ref lost_allocations).
-*/
-VK_DEFINE_HANDLE(VmaAllocation)
-
-/** \brief Parameters of #VmaAllocation objects, that can be retrieved using function vmaGetAllocationInfo().
-*/
-typedef struct VmaAllocationInfo {
- /** \brief Memory type index that this allocation was allocated from.
-
- It never changes.
- */
- uint32_t memoryType;
- /** \brief Handle to Vulkan memory object.
-
- Same memory object can be shared by multiple allocations.
-
- It can change after call to vmaDefragment() if this allocation is passed to the function, or if allocation is lost.
-
- If the allocation is lost, it is equal to `VK_NULL_HANDLE`.
- */
- VkDeviceMemory deviceMemory;
- /** \brief Offset into deviceMemory object to the beginning of this allocation, in bytes. (deviceMemory, offset) pair is unique to this allocation.
-
- It can change after call to vmaDefragment() if this allocation is passed to the function, or if allocation is lost.
- */
- VkDeviceSize offset;
- /** \brief Size of this allocation, in bytes.
-
- It never changes, unless allocation is lost.
- */
- VkDeviceSize size;
- /** \brief Pointer to the beginning of this allocation as mapped data.
-
- If the allocation hasn't been mapped using vmaMapMemory() and hasn't been
- created with #VMA_ALLOCATION_CREATE_MAPPED_BIT flag, this value null.
-
- It can change after call to vmaMapMemory(), vmaUnmapMemory().
- It can also change after call to vmaDefragment() if this allocation is passed to the function.
- */
- void *pMappedData;
- /** \brief Custom general-purpose pointer that was passed as VmaAllocationCreateInfo::pUserData or set using vmaSetAllocationUserData().
-
- It can change after call to vmaSetAllocationUserData() for this allocation.
- */
- void *pUserData;
-} VmaAllocationInfo;
-
-/** \brief General purpose memory allocation.
-
-@param[out] pAllocation Handle to allocated memory.
-@param[out] pAllocationInfo Optional. Information about allocated memory. It can be later fetched using function vmaGetAllocationInfo().
-
-You should free the memory using vmaFreeMemory() or vmaFreeMemoryPages().
-
-It is recommended to use vmaAllocateMemoryForBuffer(), vmaAllocateMemoryForImage(),
-vmaCreateBuffer(), vmaCreateImage() instead whenever possible.
-*/
-VkResult vmaAllocateMemory(
- VmaAllocator allocator,
- const VkMemoryRequirements *pVkMemoryRequirements,
- const VmaAllocationCreateInfo *pCreateInfo,
- VmaAllocation *pAllocation,
- VmaAllocationInfo *pAllocationInfo);
-
-/** \brief General purpose memory allocation for multiple allocation objects at once.
-
-@param allocator Allocator object.
-@param pVkMemoryRequirements Memory requirements for each allocation.
-@param pCreateInfo Creation parameters for each alloction.
-@param allocationCount Number of allocations to make.
-@param[out] pAllocations Pointer to array that will be filled with handles to created allocations.
-@param[out] pAllocationInfo Optional. Pointer to array that will be filled with parameters of created allocations.
-
-You should free the memory using vmaFreeMemory() or vmaFreeMemoryPages().
-
-Word "pages" is just a suggestion to use this function to allocate pieces of memory needed for sparse binding.
-It is just a general purpose allocation function able to make multiple allocations at once.
-It may be internally optimized to be more efficient than calling vmaAllocateMemory() `allocationCount` times.
-
-All allocations are made using same parameters. All of them are created out of the same memory pool and type.
-If any allocation fails, all allocations already made within this function call are also freed, so that when
-returned result is not `VK_SUCCESS`, `pAllocation` array is always entirely filled with `VK_NULL_HANDLE`.
-*/
-VkResult vmaAllocateMemoryPages(
- VmaAllocator allocator,
- const VkMemoryRequirements *pVkMemoryRequirements,
- const VmaAllocationCreateInfo *pCreateInfo,
- size_t allocationCount,
- VmaAllocation *pAllocations,
- VmaAllocationInfo *pAllocationInfo);
-
-/**
-@param[out] pAllocation Handle to allocated memory.
-@param[out] pAllocationInfo Optional. Information about allocated memory. It can be later fetched using function vmaGetAllocationInfo().
-
-You should free the memory using vmaFreeMemory().
-*/
-VkResult vmaAllocateMemoryForBuffer(
- VmaAllocator allocator,
- VkBuffer buffer,
- const VmaAllocationCreateInfo *pCreateInfo,
- VmaAllocation *pAllocation,
- VmaAllocationInfo *pAllocationInfo);
-
-/// Function similar to vmaAllocateMemoryForBuffer().
-VkResult vmaAllocateMemoryForImage(
- VmaAllocator allocator,
- VkImage image,
- const VmaAllocationCreateInfo *pCreateInfo,
- VmaAllocation *pAllocation,
- VmaAllocationInfo *pAllocationInfo);
-
-/** \brief Frees memory previously allocated using vmaAllocateMemory(), vmaAllocateMemoryForBuffer(), or vmaAllocateMemoryForImage().
-
-Passing `VK_NULL_HANDLE` as `allocation` is valid. Such function call is just skipped.
-*/
-void vmaFreeMemory(
- VmaAllocator allocator,
- VmaAllocation allocation);
-
-/** \brief Frees memory and destroys multiple allocations.
-
-Word "pages" is just a suggestion to use this function to free pieces of memory used for sparse binding.
-It is just a general purpose function to free memory and destroy allocations made using e.g. vmaAllocateMemory(),
-vmaAllocateMemoryPages() and other functions.
-It may be internally optimized to be more efficient than calling vmaFreeMemory() `allocationCount` times.
-
-Allocations in `pAllocations` array can come from any memory pools and types.
-Passing `VK_NULL_HANDLE` as elements of `pAllocations` array is valid. Such entries are just skipped.
-*/
-void vmaFreeMemoryPages(
- VmaAllocator allocator,
- size_t allocationCount,
- VmaAllocation *pAllocations);
-
-/** \brief Tries to resize an allocation in place, if there is enough free memory after it.
-
-Tries to change allocation's size without moving or reallocating it.
-You can both shrink and grow allocation size.
-When growing, it succeeds only when the allocation belongs to a memory block with enough
-free space after it.
-
-Returns `VK_SUCCESS` if allocation's size has been successfully changed.
-Returns `VK_ERROR_OUT_OF_POOL_MEMORY` if allocation's size could not be changed.
-
-After successful call to this function, VmaAllocationInfo::size of this allocation changes.
-All other parameters stay the same: memory pool and type, alignment, offset, mapped pointer.
-
-- Calling this function on allocation that is in lost state fails with result `VK_ERROR_VALIDATION_FAILED_EXT`.
-- Calling this function with `newSize` same as current allocation size does nothing and returns `VK_SUCCESS`.
-- Resizing dedicated allocations, as well as allocations created in pools that use linear
- or buddy algorithm, is not supported.
- The function returns `VK_ERROR_FEATURE_NOT_PRESENT` in such cases.
- Support may be added in the future.
-*/
-VkResult vmaResizeAllocation(
- VmaAllocator allocator,
- VmaAllocation allocation,
- VkDeviceSize newSize);
-
-/** \brief Returns current information about specified allocation and atomically marks it as used in current frame.
-
-Current paramters of given allocation are returned in `pAllocationInfo`.
-
-This function also atomically "touches" allocation - marks it as used in current frame,
-just like vmaTouchAllocation().
-If the allocation is in lost state, `pAllocationInfo->deviceMemory == VK_NULL_HANDLE`.
-
-Although this function uses atomics and doesn't lock any mutex, so it should be quite efficient,
-you can avoid calling it too often.
-
-- You can retrieve same VmaAllocationInfo structure while creating your resource, from function
- vmaCreateBuffer(), vmaCreateImage(). You can remember it if you are sure parameters don't change
- (e.g. due to defragmentation or allocation becoming lost).
-- If you just want to check if allocation is not lost, vmaTouchAllocation() will work faster.
-*/
-void vmaGetAllocationInfo(
- VmaAllocator allocator,
- VmaAllocation allocation,
- VmaAllocationInfo *pAllocationInfo);
-
-/** \brief Returns `VK_TRUE` if allocation is not lost and atomically marks it as used in current frame.
-
-If the allocation has been created with #VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT flag,
-this function returns `VK_TRUE` if it's not in lost state, so it can still be used.
-It then also atomically "touches" the allocation - marks it as used in current frame,
-so that you can be sure it won't become lost in current frame or next `frameInUseCount` frames.
-
-If the allocation is in lost state, the function returns `VK_FALSE`.
-Memory of such allocation, as well as buffer or image bound to it, should not be used.
-Lost allocation and the buffer/image still need to be destroyed.
-
-If the allocation has been created without #VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT flag,
-this function always returns `VK_TRUE`.
-*/
-VkBool32 vmaTouchAllocation(
- VmaAllocator allocator,
- VmaAllocation allocation);
-
-/** \brief Sets pUserData in given allocation to new value.
-
-If the allocation was created with VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT,
-pUserData must be either null, or pointer to a null-terminated string. The function
-makes local copy of the string and sets it as allocation's `pUserData`. String
-passed as pUserData doesn't need to be valid for whole lifetime of the allocation -
-you can free it after this call. String previously pointed by allocation's
-pUserData is freed from memory.
-
-If the flag was not used, the value of pointer `pUserData` is just copied to
-allocation's `pUserData`. It is opaque, so you can use it however you want - e.g.
-as a pointer, ordinal number or some handle to you own data.
-*/
-void vmaSetAllocationUserData(
- VmaAllocator allocator,
- VmaAllocation allocation,
- void *pUserData);
-
-/** \brief Creates new allocation that is in lost state from the beginning.
-
-It can be useful if you need a dummy, non-null allocation.
-
-You still need to destroy created object using vmaFreeMemory().
-
-Returned allocation is not tied to any specific memory pool or memory type and
-not bound to any image or buffer. It has size = 0. It cannot be turned into
-a real, non-empty allocation.
-*/
-void vmaCreateLostAllocation(
- VmaAllocator allocator,
- VmaAllocation *pAllocation);
-
-/** \brief Maps memory represented by given allocation and returns pointer to it.
-
-Maps memory represented by given allocation to make it accessible to CPU code.
-When succeeded, `*ppData` contains pointer to first byte of this memory.
-If the allocation is part of bigger `VkDeviceMemory` block, the pointer is
-correctly offseted to the beginning of region assigned to this particular
-allocation.
-
-Mapping is internally reference-counted and synchronized, so despite raw Vulkan
-function `vkMapMemory()` cannot be used to map same block of `VkDeviceMemory`
-multiple times simultaneously, it is safe to call this function on allocations
-assigned to the same memory block. Actual Vulkan memory will be mapped on first
-mapping and unmapped on last unmapping.
-
-If the function succeeded, you must call vmaUnmapMemory() to unmap the
-allocation when mapping is no longer needed or before freeing the allocation, at
-the latest.
-
-It also safe to call this function multiple times on the same allocation. You
-must call vmaUnmapMemory() same number of times as you called vmaMapMemory().
-
-It is also safe to call this function on allocation created with
-#VMA_ALLOCATION_CREATE_MAPPED_BIT flag. Its memory stays mapped all the time.
-You must still call vmaUnmapMemory() same number of times as you called
-vmaMapMemory(). You must not call vmaUnmapMemory() additional time to free the
-"0-th" mapping made automatically due to #VMA_ALLOCATION_CREATE_MAPPED_BIT flag.
-
-This function fails when used on allocation made in memory type that is not
-`HOST_VISIBLE`.
-
-This function always fails when called for allocation that was created with
-#VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT flag. Such allocations cannot be
-mapped.
-*/
-VkResult vmaMapMemory(
- VmaAllocator allocator,
- VmaAllocation allocation,
- void **ppData);
-
-/** \brief Unmaps memory represented by given allocation, mapped previously using vmaMapMemory().
-
-For details, see description of vmaMapMemory().
-*/
-void vmaUnmapMemory(
- VmaAllocator allocator,
- VmaAllocation allocation);
-
-/** \brief Flushes memory of given allocation.
-
-Calls `vkFlushMappedMemoryRanges()` for memory associated with given range of given allocation.
-
-- `offset` must be relative to the beginning of allocation.
-- `size` can be `VK_WHOLE_SIZE`. It means all memory from `offset` the the end of given allocation.
-- `offset` and `size` don't have to be aligned.
- They are internally rounded down/up to multiply of `nonCoherentAtomSize`.
-- If `size` is 0, this call is ignored.
-- If memory type that the `allocation` belongs to is not `HOST_VISIBLE` or it is `HOST_COHERENT`,
- this call is ignored.
-
-Warning! `offset` and `size` are relative to the contents of given `allocation`.
-If you mean whole allocation, you can pass 0 and `VK_WHOLE_SIZE`, respectively.
-Do not pass allocation's offset as `offset`!!!
-*/
-void vmaFlushAllocation(VmaAllocator allocator, VmaAllocation allocation, VkDeviceSize offset, VkDeviceSize size);
-
-/** \brief Invalidates memory of given allocation.
-
-Calls `vkInvalidateMappedMemoryRanges()` for memory associated with given range of given allocation.
-
-- `offset` must be relative to the beginning of allocation.
-- `size` can be `VK_WHOLE_SIZE`. It means all memory from `offset` the the end of given allocation.
-- `offset` and `size` don't have to be aligned.
- They are internally rounded down/up to multiply of `nonCoherentAtomSize`.
-- If `size` is 0, this call is ignored.
-- If memory type that the `allocation` belongs to is not `HOST_VISIBLE` or it is `HOST_COHERENT`,
- this call is ignored.
-
-Warning! `offset` and `size` are relative to the contents of given `allocation`.
-If you mean whole allocation, you can pass 0 and `VK_WHOLE_SIZE`, respectively.
-Do not pass allocation's offset as `offset`!!!
-*/
-void vmaInvalidateAllocation(VmaAllocator allocator, VmaAllocation allocation, VkDeviceSize offset, VkDeviceSize size);
-
-/** \brief Checks magic number in margins around all allocations in given memory types (in both default and custom pools) in search for corruptions.
-
-@param memoryTypeBits Bit mask, where each bit set means that a memory type with that index should be checked.
-
-Corruption detection is enabled only when `VMA_DEBUG_DETECT_CORRUPTION` macro is defined to nonzero,
-`VMA_DEBUG_MARGIN` is defined to nonzero and only for memory types that are
-`HOST_VISIBLE` and `HOST_COHERENT`. For more information, see [Corruption detection](@ref debugging_memory_usage_corruption_detection).
-
-Possible return values:
-
-- `VK_ERROR_FEATURE_NOT_PRESENT` - corruption detection is not enabled for any of specified memory types.
-- `VK_SUCCESS` - corruption detection has been performed and succeeded.
-- `VK_ERROR_VALIDATION_FAILED_EXT` - corruption detection has been performed and found memory corruptions around one of the allocations.
- `VMA_ASSERT` is also fired in that case.
-- Other value: Error returned by Vulkan, e.g. memory mapping failure.
-*/
-VkResult vmaCheckCorruption(VmaAllocator allocator, uint32_t memoryTypeBits);
-
-/** \struct VmaDefragmentationContext
-\brief Represents Opaque object that represents started defragmentation process.
-
-Fill structure #VmaDefragmentationInfo2 and call function vmaDefragmentationBegin() to create it.
-Call function vmaDefragmentationEnd() to destroy it.
-*/
-VK_DEFINE_HANDLE(VmaDefragmentationContext)
-
-/// Flags to be used in vmaDefragmentationBegin(). None at the moment. Reserved for future use.
-typedef enum VmaDefragmentationFlagBits {
- VMA_DEFRAGMENTATION_FLAG_BITS_MAX_ENUM = 0x7FFFFFFF
-} VmaDefragmentationFlagBits;
-typedef VkFlags VmaDefragmentationFlags;
-
-/** \brief Parameters for defragmentation.
-
-To be used with function vmaDefragmentationBegin().
-*/
-typedef struct VmaDefragmentationInfo2 {
- /** \brief Reserved for future use. Should be 0.
- */
- VmaDefragmentationFlags flags;
- /** \brief Number of allocations in `pAllocations` array.
- */
- uint32_t allocationCount;
- /** \brief Pointer to array of allocations that can be defragmented.
-
- The array should have `allocationCount` elements.
- The array should not contain nulls.
- Elements in the array should be unique - same allocation cannot occur twice.
- It is safe to pass allocations that are in the lost state - they are ignored.
- All allocations not present in this array are considered non-moveable during this defragmentation.
- */
- VmaAllocation *pAllocations;
- /** \brief Optional, output. Pointer to array that will be filled with information whether the allocation at certain index has been changed during defragmentation.
-
- The array should have `allocationCount` elements.
- You can pass null if you are not interested in this information.
- */
- VkBool32 *pAllocationsChanged;
- /** \brief Numer of pools in `pPools` array.
- */
- uint32_t poolCount;
- /** \brief Either null or pointer to array of pools to be defragmented.
-
- All the allocations in the specified pools can be moved during defragmentation
- and there is no way to check if they were really moved as in `pAllocationsChanged`,
- so you must query all the allocations in all these pools for new `VkDeviceMemory`
- and offset using vmaGetAllocationInfo() if you might need to recreate buffers
- and images bound to them.
-
- The array should have `poolCount` elements.
- The array should not contain nulls.
- Elements in the array should be unique - same pool cannot occur twice.
-
- Using this array is equivalent to specifying all allocations from the pools in `pAllocations`.
- It might be more efficient.
- */
- VmaPool *pPools;
- /** \brief Maximum total numbers of bytes that can be copied while moving allocations to different places using transfers on CPU side, like `memcpy()`, `memmove()`.
-
- `VK_WHOLE_SIZE` means no limit.
- */
- VkDeviceSize maxCpuBytesToMove;
- /** \brief Maximum number of allocations that can be moved to a different place using transfers on CPU side, like `memcpy()`, `memmove()`.
-
- `UINT32_MAX` means no limit.
- */
- uint32_t maxCpuAllocationsToMove;
- /** \brief Maximum total numbers of bytes that can be copied while moving allocations to different places using transfers on GPU side, posted to `commandBuffer`.
-
- `VK_WHOLE_SIZE` means no limit.
- */
- VkDeviceSize maxGpuBytesToMove;
- /** \brief Maximum number of allocations that can be moved to a different place using transfers on GPU side, posted to `commandBuffer`.
-
- `UINT32_MAX` means no limit.
- */
- uint32_t maxGpuAllocationsToMove;
- /** \brief Optional. Command buffer where GPU copy commands will be posted.
-
- If not null, it must be a valid command buffer handle that supports Transfer queue type.
- It must be in the recording state and outside of a render pass instance.
- You need to submit it and make sure it finished execution before calling vmaDefragmentationEnd().
-
- Passing null means that only CPU defragmentation will be performed.
- */
- VkCommandBuffer commandBuffer;
-} VmaDefragmentationInfo2;
-
-/** \brief Deprecated. Optional configuration parameters to be passed to function vmaDefragment().
-
-\deprecated This is a part of the old interface. It is recommended to use structure #VmaDefragmentationInfo2 and function vmaDefragmentationBegin() instead.
-*/
-typedef struct VmaDefragmentationInfo {
- /** \brief Maximum total numbers of bytes that can be copied while moving allocations to different places.
-
- Default is `VK_WHOLE_SIZE`, which means no limit.
- */
- VkDeviceSize maxBytesToMove;
- /** \brief Maximum number of allocations that can be moved to different place.
-
- Default is `UINT32_MAX`, which means no limit.
- */
- uint32_t maxAllocationsToMove;
-} VmaDefragmentationInfo;
-
-/** \brief Statistics returned by function vmaDefragment(). */
-typedef struct VmaDefragmentationStats {
- /// Total number of bytes that have been copied while moving allocations to different places.
- VkDeviceSize bytesMoved;
- /// Total number of bytes that have been released to the system by freeing empty `VkDeviceMemory` objects.
- VkDeviceSize bytesFreed;
- /// Number of allocations that have been moved to different places.
- uint32_t allocationsMoved;
- /// Number of empty `VkDeviceMemory` objects that have been released to the system.
- uint32_t deviceMemoryBlocksFreed;
-} VmaDefragmentationStats;
-
-/** \brief Begins defragmentation process.
-
-@param allocator Allocator object.
-@param pInfo Structure filled with parameters of defragmentation.
-@param[out] pStats Optional. Statistics of defragmentation. You can pass null if you are not interested in this information.
-@param[out] pContext Context object that must be passed to vmaDefragmentationEnd() to finish defragmentation.
-@return `VK_SUCCESS` and `*pContext == null` if defragmentation finished within this function call. `VK_NOT_READY` and `*pContext != null` if defragmentation has been started and you need to call vmaDefragmentationEnd() to finish it. Negative value in case of error.
-
-Use this function instead of old, deprecated vmaDefragment().
-
-Warning! Between the call to vmaDefragmentationBegin() and vmaDefragmentationEnd():
-
-- You should not use any of allocations passed as `pInfo->pAllocations` or
- any allocations that belong to pools passed as `pInfo->pPools`,
- including calling vmaGetAllocationInfo(), vmaTouchAllocation(), or access
- their data.
-- Some mutexes protecting internal data structures may be locked, so trying to
- make or free any allocations, bind buffers or images, map memory, or launch
- another simultaneous defragmentation in between may cause stall (when done on
- another thread) or deadlock (when done on the same thread), unless you are
- 100% sure that defragmented allocations are in different pools.
-- Information returned via `pStats` and `pInfo->pAllocationsChanged` are undefined.
- They become valid after call to vmaDefragmentationEnd().
-- If `pInfo->commandBuffer` is not null, you must submit that command buffer
- and make sure it finished execution before calling vmaDefragmentationEnd().
-
-For more information and important limitations regarding defragmentation, see documentation chapter:
-[Defragmentation](@ref defragmentation).
-*/
-VkResult vmaDefragmentationBegin(
- VmaAllocator allocator,
- const VmaDefragmentationInfo2 *pInfo,
- VmaDefragmentationStats *pStats,
- VmaDefragmentationContext *pContext);
-
-/** \brief Ends defragmentation process.
-
-Use this function to finish defragmentation started by vmaDefragmentationBegin().
-It is safe to pass `context == null`. The function then does nothing.
-*/
-VkResult vmaDefragmentationEnd(
- VmaAllocator allocator,
- VmaDefragmentationContext context);
-
-/** \brief Deprecated. Compacts memory by moving allocations.
-
-@param pAllocations Array of allocations that can be moved during this compation.
-@param allocationCount Number of elements in pAllocations and pAllocationsChanged arrays.
-@param[out] pAllocationsChanged Array of boolean values that will indicate whether matching allocation in pAllocations array has been moved. This parameter is optional. Pass null if you don't need this information.
-@param pDefragmentationInfo Configuration parameters. Optional - pass null to use default values.
-@param[out] pDefragmentationStats Statistics returned by the function. Optional - pass null if you don't need this information.
-@return `VK_SUCCESS` if completed, negative error code in case of error.
-
-\deprecated This is a part of the old interface. It is recommended to use structure #VmaDefragmentationInfo2 and function vmaDefragmentationBegin() instead.
-
-This function works by moving allocations to different places (different
-`VkDeviceMemory` objects and/or different offsets) in order to optimize memory
-usage. Only allocations that are in `pAllocations` array can be moved. All other
-allocations are considered nonmovable in this call. Basic rules:
-
-- Only allocations made in memory types that have
- `VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT` and `VK_MEMORY_PROPERTY_HOST_COHERENT_BIT`
- flags can be compacted. You may pass other allocations but it makes no sense -
- these will never be moved.
-- Custom pools created with #VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT or
- #VMA_POOL_CREATE_BUDDY_ALGORITHM_BIT flag are not defragmented. Allocations
- passed to this function that come from such pools are ignored.
-- Allocations created with #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT or
- created as dedicated allocations for any other reason are also ignored.
-- Both allocations made with or without #VMA_ALLOCATION_CREATE_MAPPED_BIT
- flag can be compacted. If not persistently mapped, memory will be mapped
- temporarily inside this function if needed.
-- You must not pass same #VmaAllocation object multiple times in `pAllocations` array.
-
-The function also frees empty `VkDeviceMemory` blocks.
-
-Warning: This function may be time-consuming, so you shouldn't call it too often
-(like after every resource creation/destruction).
-You can call it on special occasions (like when reloading a game level or
-when you just destroyed a lot of objects). Calling it every frame may be OK, but
-you should measure that on your platform.
-
-For more information, see [Defragmentation](@ref defragmentation) chapter.
-*/
-VkResult vmaDefragment(
- VmaAllocator allocator,
- VmaAllocation *pAllocations,
- size_t allocationCount,
- VkBool32 *pAllocationsChanged,
- const VmaDefragmentationInfo *pDefragmentationInfo,
- VmaDefragmentationStats *pDefragmentationStats);
-
-/** \brief Binds buffer to allocation.
-
-Binds specified buffer to region of memory represented by specified allocation.
-Gets `VkDeviceMemory` handle and offset from the allocation.
-If you want to create a buffer, allocate memory for it and bind them together separately,
-you should use this function for binding instead of standard `vkBindBufferMemory()`,
-because it ensures proper synchronization so that when a `VkDeviceMemory` object is used by multiple
-allocations, calls to `vkBind*Memory()` or `vkMapMemory()` won't happen from multiple threads simultaneously
-(which is illegal in Vulkan).
-
-It is recommended to use function vmaCreateBuffer() instead of this one.
-*/
-VkResult vmaBindBufferMemory(
- VmaAllocator allocator,
- VmaAllocation allocation,
- VkBuffer buffer);
-
-/** \brief Binds image to allocation.
-
-Binds specified image to region of memory represented by specified allocation.
-Gets `VkDeviceMemory` handle and offset from the allocation.
-If you want to create an image, allocate memory for it and bind them together separately,
-you should use this function for binding instead of standard `vkBindImageMemory()`,
-because it ensures proper synchronization so that when a `VkDeviceMemory` object is used by multiple
-allocations, calls to `vkBind*Memory()` or `vkMapMemory()` won't happen from multiple threads simultaneously
-(which is illegal in Vulkan).
-
-It is recommended to use function vmaCreateImage() instead of this one.
-*/
-VkResult vmaBindImageMemory(
- VmaAllocator allocator,
- VmaAllocation allocation,
- VkImage image);
-
-/**
-@param[out] pBuffer Buffer that was created.
-@param[out] pAllocation Allocation that was created.
-@param[out] pAllocationInfo Optional. Information about allocated memory. It can be later fetched using function vmaGetAllocationInfo().
-
-This function automatically:
-
--# Creates buffer.
--# Allocates appropriate memory for it.
--# Binds the buffer with the memory.
-
-If any of these operations fail, buffer and allocation are not created,
-returned value is negative error code, *pBuffer and *pAllocation are null.
-
-If the function succeeded, you must destroy both buffer and allocation when you
-no longer need them using either convenience function vmaDestroyBuffer() or
-separately, using `vkDestroyBuffer()` and vmaFreeMemory().
-
-If VMA_ALLOCATOR_CREATE_KHR_DEDICATED_ALLOCATION_BIT flag was used,
-VK_KHR_dedicated_allocation extension is used internally to query driver whether
-it requires or prefers the new buffer to have dedicated allocation. If yes,
-and if dedicated allocation is possible (VmaAllocationCreateInfo::pool is null
-and VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT is not used), it creates dedicated
-allocation for this buffer, just like when using
-VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT.
-*/
-VkResult vmaCreateBuffer(
- VmaAllocator allocator,
- const VkBufferCreateInfo *pBufferCreateInfo,
- const VmaAllocationCreateInfo *pAllocationCreateInfo,
- VkBuffer *pBuffer,
- VmaAllocation *pAllocation,
- VmaAllocationInfo *pAllocationInfo);
-
-/** \brief Destroys Vulkan buffer and frees allocated memory.
-
-This is just a convenience function equivalent to:
-
-\code
-vkDestroyBuffer(device, buffer, allocationCallbacks);
-vmaFreeMemory(allocator, allocation);
-\endcode
-
-It it safe to pass null as buffer and/or allocation.
-*/
-void vmaDestroyBuffer(
- VmaAllocator allocator,
- VkBuffer buffer,
- VmaAllocation allocation);
-
-/// Function similar to vmaCreateBuffer().
-VkResult vmaCreateImage(
- VmaAllocator allocator,
- const VkImageCreateInfo *pImageCreateInfo,
- const VmaAllocationCreateInfo *pAllocationCreateInfo,
- VkImage *pImage,
- VmaAllocation *pAllocation,
- VmaAllocationInfo *pAllocationInfo);
-
-/** \brief Destroys Vulkan image and frees allocated memory.
-
-This is just a convenience function equivalent to:
-
-\code
-vkDestroyImage(device, image, allocationCallbacks);
-vmaFreeMemory(allocator, allocation);
-\endcode
-
-It it safe to pass null as image and/or allocation.
-*/
-void vmaDestroyImage(
- VmaAllocator allocator,
- VkImage image,
- VmaAllocation allocation);
-
-#ifdef __cplusplus
-}
-#endif
-
-#endif // AMD_VULKAN_MEMORY_ALLOCATOR_H
-
-// For Visual Studio IntelliSense.
-#if defined(__cplusplus) && defined(__INTELLISENSE__)
-#define VMA_IMPLEMENTATION
-#endif
-
-#ifdef VMA_IMPLEMENTATION
-#undef VMA_IMPLEMENTATION
-
-#include <cstdint>
-#include <cstdlib>
-#include <cstring>
-
-/*******************************************************************************
-CONFIGURATION SECTION
-
-Define some of these macros before each #include of this header or change them
-here if you need other then default behavior depending on your environment.
-*/
-
-/*
-Define this macro to 1 to make the library fetch pointers to Vulkan functions
-internally, like:
-
- vulkanFunctions.vkAllocateMemory = &vkAllocateMemory;
-
-Define to 0 if you are going to provide you own pointers to Vulkan functions via
-VmaAllocatorCreateInfo::pVulkanFunctions.
-*/
-#if !defined(VMA_STATIC_VULKAN_FUNCTIONS) && !defined(VK_NO_PROTOTYPES)
-#define VMA_STATIC_VULKAN_FUNCTIONS 1
-#endif
-
-// Define this macro to 1 to make the library use STL containers instead of its own implementation.
-//#define VMA_USE_STL_CONTAINERS 1
-
-/* Set this macro to 1 to make the library including and using STL containers:
-std::pair, std::vector, std::list, std::unordered_map.
-
-Set it to 0 or undefined to make the library using its own implementation of
-the containers.
-*/
-#if VMA_USE_STL_CONTAINERS
-#define VMA_USE_STL_VECTOR 1
-#define VMA_USE_STL_UNORDERED_MAP 1
-#define VMA_USE_STL_LIST 1
-#endif
-
-#ifndef VMA_USE_STL_SHARED_MUTEX
-// Compiler conforms to C++17.
-#if __cplusplus >= 201703L
-#define VMA_USE_STL_SHARED_MUTEX 1
-// Visual studio defines __cplusplus properly only when passed additional parameter: /Zc:__cplusplus
-// Otherwise it's always 199711L, despite shared_mutex works since Visual Studio 2015 Update 2.
-// See: https://blogs.msdn.microsoft.com/vcblog/2018/04/09/msvc-now-correctly-reports-__cplusplus/
-#elif defined(_MSC_FULL_VER) && _MSC_FULL_VER >= 190023918 && __cplusplus == 199711L && _MSVC_LANG >= 201703L
-#define VMA_USE_STL_SHARED_MUTEX 1
-#else
-#define VMA_USE_STL_SHARED_MUTEX 0
-#endif
-#endif
-
-/*
-THESE INCLUDES ARE NOT ENABLED BY DEFAULT.
-Library has its own container implementation.
-*/
-#if VMA_USE_STL_VECTOR
-#include <vector>
-#endif
-
-#if VMA_USE_STL_UNORDERED_MAP
-#include <unordered_map>
-#endif
-
-#if VMA_USE_STL_LIST
-#include <list>
-#endif
-
-/*
-Following headers are used in this CONFIGURATION section only, so feel free to
-remove them if not needed.
-*/
-#include <algorithm> // for min, max
-#include <cassert> // for assert
-#include <mutex>
-
-#ifndef VMA_NULL
-// Value used as null pointer. Define it to e.g.: nullptr, NULL, 0, (void*)0.
-#define VMA_NULL nullptr
-#endif
-
-#if defined(__ANDROID_API__) && (__ANDROID_API__ < 16)
-#include <cstdlib>
-void *aligned_alloc(size_t alignment, size_t size) {
- // alignment must be >= sizeof(void*)
- if (alignment < sizeof(void *)) {
- alignment = sizeof(void *);
- }
-
- return memalign(alignment, size);
-}
-#elif defined(__APPLE__) || defined(__ANDROID__)
-#include <cstdlib>
-void *aligned_alloc(size_t alignment, size_t size) {
- // alignment must be >= sizeof(void*)
- if (alignment < sizeof(void *)) {
- alignment = sizeof(void *);
- }
-
- void *pointer;
- if (posix_memalign(&pointer, alignment, size) == 0)
- return pointer;
- return VMA_NULL;
-}
-#endif
-
-// If your compiler is not compatible with C++11 and definition of
-// aligned_alloc() function is missing, uncommeting following line may help:
-
-//#include <malloc.h>
-
-// Normal assert to check for programmer's errors, especially in Debug configuration.
-#ifndef VMA_ASSERT
-#ifdef _DEBUG
-#define VMA_ASSERT(expr) assert(expr)
-#else
-#define VMA_ASSERT(expr)
-#endif
-#endif
-
-// Assert that will be called very often, like inside data structures e.g. operator[].
-// Making it non-empty can make program slow.
-#ifndef VMA_HEAVY_ASSERT
-#ifdef _DEBUG
-#define VMA_HEAVY_ASSERT(expr) //VMA_ASSERT(expr)
-#else
-#define VMA_HEAVY_ASSERT(expr)
-#endif
-#endif
-
-#ifndef VMA_ALIGN_OF
-#define VMA_ALIGN_OF(type) (__alignof(type))
-#endif
-
-#ifndef VMA_SYSTEM_ALIGNED_MALLOC
-#if defined(_WIN32)
-#define VMA_SYSTEM_ALIGNED_MALLOC(size, alignment) (_aligned_malloc((size), (alignment)))
-#else
-#define VMA_SYSTEM_ALIGNED_MALLOC(size, alignment) (aligned_alloc((alignment), (size)))
-#endif
-#endif
-
-#ifndef VMA_SYSTEM_FREE
-#if defined(_WIN32)
-#define VMA_SYSTEM_FREE(ptr) _aligned_free(ptr)
-#else
-#define VMA_SYSTEM_FREE(ptr) free(ptr)
-#endif
-#endif
-
-#ifndef VMA_MIN
-#define VMA_MIN(v1, v2) (std::min((v1), (v2)))
-#endif
-
-#ifndef VMA_MAX
-#define VMA_MAX(v1, v2) (std::max((v1), (v2)))
-#endif
-
-#ifndef VMA_SWAP
-#define VMA_SWAP(v1, v2) std::swap((v1), (v2))
-#endif
-
-#ifndef VMA_SORT
-#define VMA_SORT(beg, end, cmp) std::sort(beg, end, cmp)
-#endif
-
-#ifndef VMA_DEBUG_LOG
-#define VMA_DEBUG_LOG(format, ...)
-/*
- #define VMA_DEBUG_LOG(format, ...) do { \
- printf(format, __VA_ARGS__); \
- printf("\n"); \
- } while(false)
- */
-#endif
-
-// Define this macro to 1 to enable functions: vmaBuildStatsString, vmaFreeStatsString.
-#if VMA_STATS_STRING_ENABLED
-static inline void VmaUint32ToStr(char *outStr, size_t strLen, uint32_t num) {
- snprintf(outStr, strLen, "%u", static_cast<unsigned int>(num));
-}
-static inline void VmaUint64ToStr(char *outStr, size_t strLen, uint64_t num) {
- snprintf(outStr, strLen, "%llu", static_cast<unsigned long long>(num));
-}
-static inline void VmaPtrToStr(char *outStr, size_t strLen, const void *ptr) {
- snprintf(outStr, strLen, "%p", ptr);
-}
-#endif
-
-#ifndef VMA_MUTEX
-class VmaMutex {
-public:
- void Lock() { m_Mutex.lock(); }
- void Unlock() { m_Mutex.unlock(); }
-
-private:
- std::mutex m_Mutex;
-};
-#define VMA_MUTEX VmaMutex
-#endif
-
-// Read-write mutex, where "read" is shared access, "write" is exclusive access.
-#ifndef VMA_RW_MUTEX
-#if VMA_USE_STL_SHARED_MUTEX
-// Use std::shared_mutex from C++17.
-#include <shared_mutex>
-class VmaRWMutex {
-public:
- void LockRead() { m_Mutex.lock_shared(); }
- void UnlockRead() { m_Mutex.unlock_shared(); }
- void LockWrite() { m_Mutex.lock(); }
- void UnlockWrite() { m_Mutex.unlock(); }
-
-private:
- std::shared_mutex m_Mutex;
-};
-#define VMA_RW_MUTEX VmaRWMutex
-#elif defined(_WIN32) && defined(WINVER) && WINVER >= 0x0600
-// Use SRWLOCK from WinAPI.
-// Minimum supported client = Windows Vista, server = Windows Server 2008.
-class VmaRWMutex {
-public:
- VmaRWMutex() { InitializeSRWLock(&m_Lock); }
- void LockRead() { AcquireSRWLockShared(&m_Lock); }
- void UnlockRead() { ReleaseSRWLockShared(&m_Lock); }
- void LockWrite() { AcquireSRWLockExclusive(&m_Lock); }
- void UnlockWrite() { ReleaseSRWLockExclusive(&m_Lock); }
-
-private:
- SRWLOCK m_Lock;
-};
-#define VMA_RW_MUTEX VmaRWMutex
-#else
-// Less efficient fallback: Use normal mutex.
-class VmaRWMutex {
-public:
- void LockRead() { m_Mutex.Lock(); }
- void UnlockRead() { m_Mutex.Unlock(); }
- void LockWrite() { m_Mutex.Lock(); }
- void UnlockWrite() { m_Mutex.Unlock(); }
-
-private:
- VMA_MUTEX m_Mutex;
-};
-#define VMA_RW_MUTEX VmaRWMutex
-#endif // #if VMA_USE_STL_SHARED_MUTEX
-#endif // #ifndef VMA_RW_MUTEX
-
-/*
-If providing your own implementation, you need to implement a subset of std::atomic:
-
-- Constructor(uint32_t desired)
-- uint32_t load() const
-- void store(uint32_t desired)
-- bool compare_exchange_weak(uint32_t& expected, uint32_t desired)
-*/
-#ifndef VMA_ATOMIC_UINT32
-#include <atomic>
-#define VMA_ATOMIC_UINT32 std::atomic<uint32_t>
-#endif
-
-#ifndef VMA_DEBUG_ALWAYS_DEDICATED_MEMORY
-/**
- Every allocation will have its own memory block.
- Define to 1 for debugging purposes only.
- */
-#define VMA_DEBUG_ALWAYS_DEDICATED_MEMORY (0)
-#endif
-
-#ifndef VMA_DEBUG_ALIGNMENT
-/**
- Minimum alignment of all allocations, in bytes.
- Set to more than 1 for debugging purposes only. Must be power of two.
- */
-#define VMA_DEBUG_ALIGNMENT (1)
-#endif
-
-#ifndef VMA_DEBUG_MARGIN
-/**
- Minimum margin before and after every allocation, in bytes.
- Set nonzero for debugging purposes only.
- */
-#define VMA_DEBUG_MARGIN (0)
-#endif
-
-#ifndef VMA_DEBUG_INITIALIZE_ALLOCATIONS
-/**
- Define this macro to 1 to automatically fill new allocations and destroyed
- allocations with some bit pattern.
- */
-#define VMA_DEBUG_INITIALIZE_ALLOCATIONS (0)
-#endif
-
-#ifndef VMA_DEBUG_DETECT_CORRUPTION
-/**
- Define this macro to 1 together with non-zero value of VMA_DEBUG_MARGIN to
- enable writing magic value to the margin before and after every allocation and
- validating it, so that memory corruptions (out-of-bounds writes) are detected.
- */
-#define VMA_DEBUG_DETECT_CORRUPTION (0)
-#endif
-
-#ifndef VMA_DEBUG_GLOBAL_MUTEX
-/**
- Set this to 1 for debugging purposes only, to enable single mutex protecting all
- entry calls to the library. Can be useful for debugging multithreading issues.
- */
-#define VMA_DEBUG_GLOBAL_MUTEX (0)
-#endif
-
-#ifndef VMA_DEBUG_MIN_BUFFER_IMAGE_GRANULARITY
-/**
- Minimum value for VkPhysicalDeviceLimits::bufferImageGranularity.
- Set to more than 1 for debugging purposes only. Must be power of two.
- */
-#define VMA_DEBUG_MIN_BUFFER_IMAGE_GRANULARITY (1)
-#endif
-
-#ifndef VMA_SMALL_HEAP_MAX_SIZE
-/// Maximum size of a memory heap in Vulkan to consider it "small".
-#define VMA_SMALL_HEAP_MAX_SIZE (1024ull * 1024 * 1024)
-#endif
-
-#ifndef VMA_DEFAULT_LARGE_HEAP_BLOCK_SIZE
-/// Default size of a block allocated as single VkDeviceMemory from a "large" heap.
-#define VMA_DEFAULT_LARGE_HEAP_BLOCK_SIZE (256ull * 1024 * 1024)
-#endif
-
-#ifndef VMA_CLASS_NO_COPY
-#define VMA_CLASS_NO_COPY(className) \
-private: \
- className(const className &) = delete; \
- className &operator=(const className &) = delete;
-#endif
-
-static const uint32_t VMA_FRAME_INDEX_LOST = UINT32_MAX;
-
-// Decimal 2139416166, float NaN, little-endian binary 66 E6 84 7F.
-static const uint32_t VMA_CORRUPTION_DETECTION_MAGIC_VALUE = 0x7F84E666;
-
-static const uint8_t VMA_ALLOCATION_FILL_PATTERN_CREATED = 0xDC;
-static const uint8_t VMA_ALLOCATION_FILL_PATTERN_DESTROYED = 0xEF;
-
-/*******************************************************************************
-END OF CONFIGURATION
-*/
-
-static const uint32_t VMA_ALLOCATION_INTERNAL_STRATEGY_MIN_OFFSET = 0x10000000u;
-
-static VkAllocationCallbacks VmaEmptyAllocationCallbacks = {
- VMA_NULL, VMA_NULL, VMA_NULL, VMA_NULL, VMA_NULL, VMA_NULL
-};
-
-// Returns number of bits set to 1 in (v).
-static inline uint32_t VmaCountBitsSet(uint32_t v) {
- uint32_t c = v - ((v >> 1) & 0x55555555);
- c = ((c >> 2) & 0x33333333) + (c & 0x33333333);
- c = ((c >> 4) + c) & 0x0F0F0F0F;
- c = ((c >> 8) + c) & 0x00FF00FF;
- c = ((c >> 16) + c) & 0x0000FFFF;
- return c;
-}
-
-// Aligns given value up to nearest multiply of align value. For example: VmaAlignUp(11, 8) = 16.
-// Use types like uint32_t, uint64_t as T.
-template <typename T>
-static inline T VmaAlignUp(T val, T align) {
- return (val + align - 1) / align * align;
-}
-// Aligns given value down to nearest multiply of align value. For example: VmaAlignUp(11, 8) = 8.
-// Use types like uint32_t, uint64_t as T.
-template <typename T>
-static inline T VmaAlignDown(T val, T align) {
- return val / align * align;
-}
-
-// Division with mathematical rounding to nearest number.
-template <typename T>
-static inline T VmaRoundDiv(T x, T y) {
- return (x + (y / (T)2)) / y;
-}
-
-/*
-Returns true if given number is a power of two.
-T must be unsigned integer number or signed integer but always nonnegative.
-For 0 returns true.
-*/
-template <typename T>
-inline bool VmaIsPow2(T x) {
- return (x & (x - 1)) == 0;
-}
-
-// Returns smallest power of 2 greater or equal to v.
-static inline uint32_t VmaNextPow2(uint32_t v) {
- v--;
- v |= v >> 1;
- v |= v >> 2;
- v |= v >> 4;
- v |= v >> 8;
- v |= v >> 16;
- v++;
- return v;
-}
-static inline uint64_t VmaNextPow2(uint64_t v) {
- v--;
- v |= v >> 1;
- v |= v >> 2;
- v |= v >> 4;
- v |= v >> 8;
- v |= v >> 16;
- v |= v >> 32;
- v++;
- return v;
-}
-
-// Returns largest power of 2 less or equal to v.
-static inline uint32_t VmaPrevPow2(uint32_t v) {
- v |= v >> 1;
- v |= v >> 2;
- v |= v >> 4;
- v |= v >> 8;
- v |= v >> 16;
- v = v ^ (v >> 1);
- return v;
-}
-static inline uint64_t VmaPrevPow2(uint64_t v) {
- v |= v >> 1;
- v |= v >> 2;
- v |= v >> 4;
- v |= v >> 8;
- v |= v >> 16;
- v |= v >> 32;
- v = v ^ (v >> 1);
- return v;
-}
-
-static inline bool VmaStrIsEmpty(const char *pStr) {
- return pStr == VMA_NULL || *pStr == '\0';
-}
-
-#if VMA_STATS_STRING_ENABLED
-
-static const char *VmaAlgorithmToStr(uint32_t algorithm) {
- switch (algorithm) {
- case VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT:
- return "Linear";
- case VMA_POOL_CREATE_BUDDY_ALGORITHM_BIT:
- return "Buddy";
- case 0:
- return "Default";
- default:
- VMA_ASSERT(0);
- return "";
- }
-}
-
-#endif // #if VMA_STATS_STRING_ENABLED
-
-#ifndef VMA_SORT
-
-template <typename Iterator, typename Compare>
-Iterator VmaQuickSortPartition(Iterator beg, Iterator end, Compare cmp) {
- Iterator centerValue = end;
- --centerValue;
- Iterator insertIndex = beg;
- for (Iterator memTypeIndex = beg; memTypeIndex < centerValue; ++memTypeIndex) {
- if (cmp(*memTypeIndex, *centerValue)) {
- if (insertIndex != memTypeIndex) {
- VMA_SWAP(*memTypeIndex, *insertIndex);
- }
- ++insertIndex;
- }
- }
- if (insertIndex != centerValue) {
- VMA_SWAP(*insertIndex, *centerValue);
- }
- return insertIndex;
-}
-
-template <typename Iterator, typename Compare>
-void VmaQuickSort(Iterator beg, Iterator end, Compare cmp) {
- if (beg < end) {
- Iterator it = VmaQuickSortPartition<Iterator, Compare>(beg, end, cmp);
- VmaQuickSort<Iterator, Compare>(beg, it, cmp);
- VmaQuickSort<Iterator, Compare>(it + 1, end, cmp);
- }
-}
-
-#define VMA_SORT(beg, end, cmp) VmaQuickSort(beg, end, cmp)
-
-#endif // #ifndef VMA_SORT
-
-/*
-Returns true if two memory blocks occupy overlapping pages.
-ResourceA must be in less memory offset than ResourceB.
-
-Algorithm is based on "Vulkan 1.0.39 - A Specification (with all registered Vulkan extensions)"
-chapter 11.6 "Resource Memory Association", paragraph "Buffer-Image Granularity".
-*/
-static inline bool VmaBlocksOnSamePage(
- VkDeviceSize resourceAOffset,
- VkDeviceSize resourceASize,
- VkDeviceSize resourceBOffset,
- VkDeviceSize pageSize) {
- VMA_ASSERT(resourceAOffset + resourceASize <= resourceBOffset && resourceASize > 0 && pageSize > 0);
- VkDeviceSize resourceAEnd = resourceAOffset + resourceASize - 1;
- VkDeviceSize resourceAEndPage = resourceAEnd & ~(pageSize - 1);
- VkDeviceSize resourceBStart = resourceBOffset;
- VkDeviceSize resourceBStartPage = resourceBStart & ~(pageSize - 1);
- return resourceAEndPage == resourceBStartPage;
-}
-
-enum VmaSuballocationType {
- VMA_SUBALLOCATION_TYPE_FREE = 0,
- VMA_SUBALLOCATION_TYPE_UNKNOWN = 1,
- VMA_SUBALLOCATION_TYPE_BUFFER = 2,
- VMA_SUBALLOCATION_TYPE_IMAGE_UNKNOWN = 3,
- VMA_SUBALLOCATION_TYPE_IMAGE_LINEAR = 4,
- VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL = 5,
- VMA_SUBALLOCATION_TYPE_MAX_ENUM = 0x7FFFFFFF
-};
-
-/*
-Returns true if given suballocation types could conflict and must respect
-VkPhysicalDeviceLimits::bufferImageGranularity. They conflict if one is buffer
-or linear image and another one is optimal image. If type is unknown, behave
-conservatively.
-*/
-static inline bool VmaIsBufferImageGranularityConflict(
- VmaSuballocationType suballocType1,
- VmaSuballocationType suballocType2) {
- if (suballocType1 > suballocType2) {
- VMA_SWAP(suballocType1, suballocType2);
- }
-
- switch (suballocType1) {
- case VMA_SUBALLOCATION_TYPE_FREE:
- return false;
- case VMA_SUBALLOCATION_TYPE_UNKNOWN:
- return true;
- case VMA_SUBALLOCATION_TYPE_BUFFER:
- return suballocType2 == VMA_SUBALLOCATION_TYPE_IMAGE_UNKNOWN ||
- suballocType2 == VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL;
- case VMA_SUBALLOCATION_TYPE_IMAGE_UNKNOWN:
- return suballocType2 == VMA_SUBALLOCATION_TYPE_IMAGE_UNKNOWN ||
- suballocType2 == VMA_SUBALLOCATION_TYPE_IMAGE_LINEAR ||
- suballocType2 == VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL;
- case VMA_SUBALLOCATION_TYPE_IMAGE_LINEAR:
- return suballocType2 == VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL;
- case VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL:
- return false;
- default:
- VMA_ASSERT(0);
- return true;
- }
-}
-
-static void VmaWriteMagicValue(void *pData, VkDeviceSize offset) {
- uint32_t *pDst = (uint32_t *)((char *)pData + offset);
- const size_t numberCount = VMA_DEBUG_MARGIN / sizeof(uint32_t);
- for (size_t i = 0; i < numberCount; ++i, ++pDst) {
- *pDst = VMA_CORRUPTION_DETECTION_MAGIC_VALUE;
- }
-}
-
-static bool VmaValidateMagicValue(const void *pData, VkDeviceSize offset) {
- const uint32_t *pSrc = (const uint32_t *)((const char *)pData + offset);
- const size_t numberCount = VMA_DEBUG_MARGIN / sizeof(uint32_t);
- for (size_t i = 0; i < numberCount; ++i, ++pSrc) {
- if (*pSrc != VMA_CORRUPTION_DETECTION_MAGIC_VALUE) {
- return false;
- }
- }
- return true;
-}
-
-/*
-Fills structure with parameters of an example buffer to be used for transfers
-during GPU memory defragmentation.
-*/
-static void VmaFillGpuDefragmentationBufferCreateInfo(VkBufferCreateInfo &outBufCreateInfo) {
- memset(&outBufCreateInfo, 0, sizeof(outBufCreateInfo));
- outBufCreateInfo.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
- outBufCreateInfo.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT;
- outBufCreateInfo.size = (VkDeviceSize)VMA_DEFAULT_LARGE_HEAP_BLOCK_SIZE; // Example size.
-}
-
-// Helper RAII class to lock a mutex in constructor and unlock it in destructor (at the end of scope).
-struct VmaMutexLock {
- VMA_CLASS_NO_COPY(VmaMutexLock)
-public:
- VmaMutexLock(VMA_MUTEX &mutex, bool useMutex = true) :
- m_pMutex(useMutex ? &mutex : VMA_NULL) {
- if (m_pMutex) {
- m_pMutex->Lock();
- }
- }
- ~VmaMutexLock() {
- if (m_pMutex) {
- m_pMutex->Unlock();
- }
- }
-
-private:
- VMA_MUTEX *m_pMutex;
-};
-
-// Helper RAII class to lock a RW mutex in constructor and unlock it in destructor (at the end of scope), for reading.
-struct VmaMutexLockRead {
- VMA_CLASS_NO_COPY(VmaMutexLockRead)
-public:
- VmaMutexLockRead(VMA_RW_MUTEX &mutex, bool useMutex) :
- m_pMutex(useMutex ? &mutex : VMA_NULL) {
- if (m_pMutex) {
- m_pMutex->LockRead();
- }
- }
- ~VmaMutexLockRead() {
- if (m_pMutex) {
- m_pMutex->UnlockRead();
- }
- }
-
-private:
- VMA_RW_MUTEX *m_pMutex;
-};
-
-// Helper RAII class to lock a RW mutex in constructor and unlock it in destructor (at the end of scope), for writing.
-struct VmaMutexLockWrite {
- VMA_CLASS_NO_COPY(VmaMutexLockWrite)
-public:
- VmaMutexLockWrite(VMA_RW_MUTEX &mutex, bool useMutex) :
- m_pMutex(useMutex ? &mutex : VMA_NULL) {
- if (m_pMutex) {
- m_pMutex->LockWrite();
- }
- }
- ~VmaMutexLockWrite() {
- if (m_pMutex) {
- m_pMutex->UnlockWrite();
- }
- }
-
-private:
- VMA_RW_MUTEX *m_pMutex;
-};
-
-#if VMA_DEBUG_GLOBAL_MUTEX
-static VMA_MUTEX gDebugGlobalMutex;
-#define VMA_DEBUG_GLOBAL_MUTEX_LOCK VmaMutexLock debugGlobalMutexLock(gDebugGlobalMutex, true);
-#else
-#define VMA_DEBUG_GLOBAL_MUTEX_LOCK
-#endif
-
-// Minimum size of a free suballocation to register it in the free suballocation collection.
-static const VkDeviceSize VMA_MIN_FREE_SUBALLOCATION_SIZE_TO_REGISTER = 16;
-
-/*
-Performs binary search and returns iterator to first element that is greater or
-equal to (key), according to comparison (cmp).
-
-Cmp should return true if first argument is less than second argument.
-
-Returned value is the found element, if present in the collection or place where
-new element with value (key) should be inserted.
-*/
-template <typename CmpLess, typename IterT, typename KeyT>
-static IterT VmaBinaryFindFirstNotLess(IterT beg, IterT end, const KeyT &key, CmpLess cmp) {
- size_t down = 0, up = (end - beg);
- while (down < up) {
- const size_t mid = (down + up) / 2;
- if (cmp(*(beg + mid), key)) {
- down = mid + 1;
- } else {
- up = mid;
- }
- }
- return beg + down;
-}
-
-/*
-Returns true if all pointers in the array are not-null and unique.
-Warning! O(n^2) complexity. Use only inside VMA_HEAVY_ASSERT.
-T must be pointer type, e.g. VmaAllocation, VmaPool.
-*/
-template <typename T>
-static bool VmaValidatePointerArray(uint32_t count, const T *arr) {
- for (uint32_t i = 0; i < count; ++i) {
- const T iPtr = arr[i];
- if (iPtr == VMA_NULL) {
- return false;
- }
- for (uint32_t j = i + 1; j < count; ++j) {
- if (iPtr == arr[j]) {
- return false;
- }
- }
- }
- return true;
-}
-
-////////////////////////////////////////////////////////////////////////////////
-// Memory allocation
-
-static void *VmaMalloc(const VkAllocationCallbacks *pAllocationCallbacks, size_t size, size_t alignment) {
- if ((pAllocationCallbacks != VMA_NULL) &&
- (pAllocationCallbacks->pfnAllocation != VMA_NULL)) {
- return (*pAllocationCallbacks->pfnAllocation)(
- pAllocationCallbacks->pUserData,
- size,
- alignment,
- VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
- } else {
- return VMA_SYSTEM_ALIGNED_MALLOC(size, alignment);
- }
-}
-
-static void VmaFree(const VkAllocationCallbacks *pAllocationCallbacks, void *ptr) {
- if ((pAllocationCallbacks != VMA_NULL) &&
- (pAllocationCallbacks->pfnFree != VMA_NULL)) {
- (*pAllocationCallbacks->pfnFree)(pAllocationCallbacks->pUserData, ptr);
- } else {
- VMA_SYSTEM_FREE(ptr);
- }
-}
-
-template <typename T>
-static T *VmaAllocate(const VkAllocationCallbacks *pAllocationCallbacks) {
- return (T *)VmaMalloc(pAllocationCallbacks, sizeof(T), VMA_ALIGN_OF(T));
-}
-
-template <typename T>
-static T *VmaAllocateArray(const VkAllocationCallbacks *pAllocationCallbacks, size_t count) {
- return (T *)VmaMalloc(pAllocationCallbacks, sizeof(T) * count, VMA_ALIGN_OF(T));
-}
-
-#define vma_new(allocator, type) new (VmaAllocate<type>(allocator))(type)
-
-#define vma_new_array(allocator, type, count) new (VmaAllocateArray<type>((allocator), (count)))(type)
-
-template <typename T>
-static void vma_delete(const VkAllocationCallbacks *pAllocationCallbacks, T *ptr) {
- ptr->~T();
- VmaFree(pAllocationCallbacks, ptr);
-}
-
-template <typename T>
-static void vma_delete_array(const VkAllocationCallbacks *pAllocationCallbacks, T *ptr, size_t count) {
- if (ptr != VMA_NULL) {
- for (size_t i = count; i--;) {
- ptr[i].~T();
- }
- VmaFree(pAllocationCallbacks, ptr);
- }
-}
-
-// STL-compatible allocator.
-template <typename T>
-class VmaStlAllocator {
-public:
- const VkAllocationCallbacks *const m_pCallbacks;
- typedef T value_type;
-
- VmaStlAllocator(const VkAllocationCallbacks *pCallbacks) :
- m_pCallbacks(pCallbacks) {}
- template <typename U>
- VmaStlAllocator(const VmaStlAllocator<U> &src) :
- m_pCallbacks(src.m_pCallbacks) {}
-
- T *allocate(size_t n) { return VmaAllocateArray<T>(m_pCallbacks, n); }
- void deallocate(T *p, size_t n) { VmaFree(m_pCallbacks, p); }
-
- template <typename U>
- bool operator==(const VmaStlAllocator<U> &rhs) const {
- return m_pCallbacks == rhs.m_pCallbacks;
- }
- template <typename U>
- bool operator!=(const VmaStlAllocator<U> &rhs) const {
- return m_pCallbacks != rhs.m_pCallbacks;
- }
-
- VmaStlAllocator &operator=(const VmaStlAllocator &x) = delete;
-};
-
-#if VMA_USE_STL_VECTOR
-
-#define VmaVector std::vector
-
-template <typename T, typename allocatorT>
-static void VmaVectorInsert(std::vector<T, allocatorT> &vec, size_t index, const T &item) {
- vec.insert(vec.begin() + index, item);
-}
-
-template <typename T, typename allocatorT>
-static void VmaVectorRemove(std::vector<T, allocatorT> &vec, size_t index) {
- vec.erase(vec.begin() + index);
-}
-
-#else // #if VMA_USE_STL_VECTOR
-
-/* Class with interface compatible with subset of std::vector.
-T must be POD because constructors and destructors are not called and memcpy is
-used for these objects. */
-template <typename T, typename AllocatorT>
-class VmaVector {
-public:
- typedef T value_type;
-
- VmaVector(const AllocatorT &allocator) :
- m_Allocator(allocator),
- m_pArray(VMA_NULL),
- m_Count(0),
- m_Capacity(0) {
- }
-
- VmaVector(size_t count, const AllocatorT &allocator) :
- m_Allocator(allocator),
- m_pArray(count ? (T *)VmaAllocateArray<T>(allocator.m_pCallbacks, count) : VMA_NULL),
- m_Count(count),
- m_Capacity(count) {
- }
-
- VmaVector(const VmaVector<T, AllocatorT> &src) :
- m_Allocator(src.m_Allocator),
- m_pArray(src.m_Count ? (T *)VmaAllocateArray<T>(src.m_Allocator.m_pCallbacks, src.m_Count) : VMA_NULL),
- m_Count(src.m_Count),
- m_Capacity(src.m_Count) {
- if (m_Count != 0) {
- memcpy(m_pArray, src.m_pArray, m_Count * sizeof(T));
- }
- }
-
- ~VmaVector() {
- VmaFree(m_Allocator.m_pCallbacks, m_pArray);
- }
-
- VmaVector &operator=(const VmaVector<T, AllocatorT> &rhs) {
- if (&rhs != this) {
- resize(rhs.m_Count);
- if (m_Count != 0) {
- memcpy(m_pArray, rhs.m_pArray, m_Count * sizeof(T));
- }
- }
- return *this;
- }
-
- bool empty() const { return m_Count == 0; }
- size_t size() const { return m_Count; }
- T *data() { return m_pArray; }
- const T *data() const { return m_pArray; }
-
- T &operator[](size_t index) {
- VMA_HEAVY_ASSERT(index < m_Count);
- return m_pArray[index];
- }
- const T &operator[](size_t index) const {
- VMA_HEAVY_ASSERT(index < m_Count);
- return m_pArray[index];
- }
-
- T &front() {
- VMA_HEAVY_ASSERT(m_Count > 0);
- return m_pArray[0];
- }
- const T &front() const {
- VMA_HEAVY_ASSERT(m_Count > 0);
- return m_pArray[0];
- }
- T &back() {
- VMA_HEAVY_ASSERT(m_Count > 0);
- return m_pArray[m_Count - 1];
- }
- const T &back() const {
- VMA_HEAVY_ASSERT(m_Count > 0);
- return m_pArray[m_Count - 1];
- }
-
- void reserve(size_t newCapacity, bool freeMemory = false) {
- newCapacity = VMA_MAX(newCapacity, m_Count);
-
- if ((newCapacity < m_Capacity) && !freeMemory) {
- newCapacity = m_Capacity;
- }
-
- if (newCapacity != m_Capacity) {
- T *const newArray = newCapacity ? VmaAllocateArray<T>(m_Allocator, newCapacity) : VMA_NULL;
- if (m_Count != 0) {
- memcpy(newArray, m_pArray, m_Count * sizeof(T));
- }
- VmaFree(m_Allocator.m_pCallbacks, m_pArray);
- m_Capacity = newCapacity;
- m_pArray = newArray;
- }
- }
-
- void resize(size_t newCount, bool freeMemory = false) {
- size_t newCapacity = m_Capacity;
- if (newCount > m_Capacity) {
- newCapacity = VMA_MAX(newCount, VMA_MAX(m_Capacity * 3 / 2, (size_t)8));
- } else if (freeMemory) {
- newCapacity = newCount;
- }
-
- if (newCapacity != m_Capacity) {
- T *const newArray = newCapacity ? VmaAllocateArray<T>(m_Allocator.m_pCallbacks, newCapacity) : VMA_NULL;
- const size_t elementsToCopy = VMA_MIN(m_Count, newCount);
- if (elementsToCopy != 0) {
- memcpy(newArray, m_pArray, elementsToCopy * sizeof(T));
- }
- VmaFree(m_Allocator.m_pCallbacks, m_pArray);
- m_Capacity = newCapacity;
- m_pArray = newArray;
- }
-
- m_Count = newCount;
- }
-
- void clear(bool freeMemory = false) {
- resize(0, freeMemory);
- }
-
- void insert(size_t index, const T &src) {
- VMA_HEAVY_ASSERT(index <= m_Count);
- const size_t oldCount = size();
- resize(oldCount + 1);
- if (index < oldCount) {
- memmove(m_pArray + (index + 1), m_pArray + index, (oldCount - index) * sizeof(T));
- }
- m_pArray[index] = src;
- }
-
- void remove(size_t index) {
- VMA_HEAVY_ASSERT(index < m_Count);
- const size_t oldCount = size();
- if (index < oldCount - 1) {
- memmove(m_pArray + index, m_pArray + (index + 1), (oldCount - index - 1) * sizeof(T));
- }
- resize(oldCount - 1);
- }
-
- void push_back(const T &src) {
- const size_t newIndex = size();
- resize(newIndex + 1);
- m_pArray[newIndex] = src;
- }
-
- void pop_back() {
- VMA_HEAVY_ASSERT(m_Count > 0);
- resize(size() - 1);
- }
-
- void push_front(const T &src) {
- insert(0, src);
- }
-
- void pop_front() {
- VMA_HEAVY_ASSERT(m_Count > 0);
- remove(0);
- }
-
- typedef T *iterator;
-
- iterator begin() { return m_pArray; }
- iterator end() { return m_pArray + m_Count; }
-
-private:
- AllocatorT m_Allocator;
- T *m_pArray;
- size_t m_Count;
- size_t m_Capacity;
-};
-
-template <typename T, typename allocatorT>
-static void VmaVectorInsert(VmaVector<T, allocatorT> &vec, size_t index, const T &item) {
- vec.insert(index, item);
-}
-
-template <typename T, typename allocatorT>
-static void VmaVectorRemove(VmaVector<T, allocatorT> &vec, size_t index) {
- vec.remove(index);
-}
-
-#endif // #if VMA_USE_STL_VECTOR
-
-template <typename CmpLess, typename VectorT>
-size_t VmaVectorInsertSorted(VectorT &vector, const typename VectorT::value_type &value) {
- const size_t indexToInsert = VmaBinaryFindFirstNotLess(
- vector.data(),
- vector.data() + vector.size(),
- value,
- CmpLess()) -
- vector.data();
- VmaVectorInsert(vector, indexToInsert, value);
- return indexToInsert;
-}
-
-template <typename CmpLess, typename VectorT>
-bool VmaVectorRemoveSorted(VectorT &vector, const typename VectorT::value_type &value) {
- CmpLess comparator;
- typename VectorT::iterator it = VmaBinaryFindFirstNotLess(
- vector.begin(),
- vector.end(),
- value,
- comparator);
- if ((it != vector.end()) && !comparator(*it, value) && !comparator(value, *it)) {
- size_t indexToRemove = it - vector.begin();
- VmaVectorRemove(vector, indexToRemove);
- return true;
- }
- return false;
-}
-
-template <typename CmpLess, typename IterT, typename KeyT>
-IterT VmaVectorFindSorted(const IterT &beg, const IterT &end, const KeyT &value) {
- CmpLess comparator;
- IterT it = VmaBinaryFindFirstNotLess<CmpLess, IterT, KeyT>(
- beg, end, value, comparator);
- if (it == end ||
- (!comparator(*it, value) && !comparator(value, *it))) {
- return it;
- }
- return end;
-}
-
-////////////////////////////////////////////////////////////////////////////////
-// class VmaPoolAllocator
-
-/*
-Allocator for objects of type T using a list of arrays (pools) to speed up
-allocation. Number of elements that can be allocated is not bounded because
-allocator can create multiple blocks.
-*/
-template <typename T>
-class VmaPoolAllocator {
- VMA_CLASS_NO_COPY(VmaPoolAllocator)
-public:
- VmaPoolAllocator(const VkAllocationCallbacks *pAllocationCallbacks, uint32_t firstBlockCapacity);
- ~VmaPoolAllocator();
- void Clear();
- T *Alloc();
- void Free(T *ptr);
-
-private:
- union Item {
- uint32_t NextFreeIndex;
- T Value;
- };
-
- struct ItemBlock {
- Item *pItems;
- uint32_t Capacity;
- uint32_t FirstFreeIndex;
- };
-
- const VkAllocationCallbacks *m_pAllocationCallbacks;
- const uint32_t m_FirstBlockCapacity;
- VmaVector<ItemBlock, VmaStlAllocator<ItemBlock> > m_ItemBlocks;
-
- ItemBlock &CreateNewBlock();
-};
-
-template <typename T>
-VmaPoolAllocator<T>::VmaPoolAllocator(const VkAllocationCallbacks *pAllocationCallbacks, uint32_t firstBlockCapacity) :
- m_pAllocationCallbacks(pAllocationCallbacks),
- m_FirstBlockCapacity(firstBlockCapacity),
- m_ItemBlocks(VmaStlAllocator<ItemBlock>(pAllocationCallbacks)) {
- VMA_ASSERT(m_FirstBlockCapacity > 1);
-}
-
-template <typename T>
-VmaPoolAllocator<T>::~VmaPoolAllocator() {
- Clear();
-}
-
-template <typename T>
-void VmaPoolAllocator<T>::Clear() {
- for (size_t i = m_ItemBlocks.size(); i--;)
- vma_delete_array(m_pAllocationCallbacks, m_ItemBlocks[i].pItems, m_ItemBlocks[i].Capacity);
- m_ItemBlocks.clear();
-}
-
-template <typename T>
-T *VmaPoolAllocator<T>::Alloc() {
- for (size_t i = m_ItemBlocks.size(); i--;) {
- ItemBlock &block = m_ItemBlocks[i];
- // This block has some free items: Use first one.
- if (block.FirstFreeIndex != UINT32_MAX) {
- Item *const pItem = &block.pItems[block.FirstFreeIndex];
- block.FirstFreeIndex = pItem->NextFreeIndex;
- return &pItem->Value;
- }
- }
-
- // No block has free item: Create new one and use it.
- ItemBlock &newBlock = CreateNewBlock();
- Item *const pItem = &newBlock.pItems[0];
- newBlock.FirstFreeIndex = pItem->NextFreeIndex;
- return &pItem->Value;
-}
-
-template <typename T>
-void VmaPoolAllocator<T>::Free(T *ptr) {
- // Search all memory blocks to find ptr.
- for (size_t i = m_ItemBlocks.size(); i--;) {
- ItemBlock &block = m_ItemBlocks[i];
-
- // Casting to union.
- Item *pItemPtr;
- memcpy(&pItemPtr, &ptr, sizeof(pItemPtr));
-
- // Check if pItemPtr is in address range of this block.
- if ((pItemPtr >= block.pItems) && (pItemPtr < block.pItems + block.Capacity)) {
- const uint32_t index = static_cast<uint32_t>(pItemPtr - block.pItems);
- pItemPtr->NextFreeIndex = block.FirstFreeIndex;
- block.FirstFreeIndex = index;
- return;
- }
- }
- VMA_ASSERT(0 && "Pointer doesn't belong to this memory pool.");
-}
-
-template <typename T>
-typename VmaPoolAllocator<T>::ItemBlock &VmaPoolAllocator<T>::CreateNewBlock() {
- const uint32_t newBlockCapacity = m_ItemBlocks.empty() ?
- m_FirstBlockCapacity :
- m_ItemBlocks.back().Capacity * 3 / 2;
-
- const ItemBlock newBlock = {
- vma_new_array(m_pAllocationCallbacks, Item, newBlockCapacity),
- newBlockCapacity,
- 0
- };
-
- m_ItemBlocks.push_back(newBlock);
-
- // Setup singly-linked list of all free items in this block.
- for (uint32_t i = 0; i < newBlockCapacity - 1; ++i)
- newBlock.pItems[i].NextFreeIndex = i + 1;
- newBlock.pItems[newBlockCapacity - 1].NextFreeIndex = UINT32_MAX;
- return m_ItemBlocks.back();
-}
-
-////////////////////////////////////////////////////////////////////////////////
-// class VmaRawList, VmaList
-
-#if VMA_USE_STL_LIST
-
-#define VmaList std::list
-
-#else // #if VMA_USE_STL_LIST
-
-template <typename T>
-struct VmaListItem {
- VmaListItem *pPrev;
- VmaListItem *pNext;
- T Value;
-};
-
-// Doubly linked list.
-template <typename T>
-class VmaRawList {
- VMA_CLASS_NO_COPY(VmaRawList)
-public:
- typedef VmaListItem<T> ItemType;
-
- VmaRawList(const VkAllocationCallbacks *pAllocationCallbacks);
- ~VmaRawList();
- void Clear();
-
- size_t GetCount() const { return m_Count; }
- bool IsEmpty() const { return m_Count == 0; }
-
- ItemType *Front() { return m_pFront; }
- const ItemType *Front() const { return m_pFront; }
- ItemType *Back() { return m_pBack; }
- const ItemType *Back() const { return m_pBack; }
-
- ItemType *PushBack();
- ItemType *PushFront();
- ItemType *PushBack(const T &value);
- ItemType *PushFront(const T &value);
- void PopBack();
- void PopFront();
-
- // Item can be null - it means PushBack.
- ItemType *InsertBefore(ItemType *pItem);
- // Item can be null - it means PushFront.
- ItemType *InsertAfter(ItemType *pItem);
-
- ItemType *InsertBefore(ItemType *pItem, const T &value);
- ItemType *InsertAfter(ItemType *pItem, const T &value);
-
- void Remove(ItemType *pItem);
-
-private:
- const VkAllocationCallbacks *const m_pAllocationCallbacks;
- VmaPoolAllocator<ItemType> m_ItemAllocator;
- ItemType *m_pFront;
- ItemType *m_pBack;
- size_t m_Count;
-};
-
-template <typename T>
-VmaRawList<T>::VmaRawList(const VkAllocationCallbacks *pAllocationCallbacks) :
- m_pAllocationCallbacks(pAllocationCallbacks),
- m_ItemAllocator(pAllocationCallbacks, 128),
- m_pFront(VMA_NULL),
- m_pBack(VMA_NULL),
- m_Count(0) {
-}
-
-template <typename T>
-VmaRawList<T>::~VmaRawList() {
- // Intentionally not calling Clear, because that would be unnecessary
- // computations to return all items to m_ItemAllocator as free.
-}
-
-template <typename T>
-void VmaRawList<T>::Clear() {
- if (IsEmpty() == false) {
- ItemType *pItem = m_pBack;
- while (pItem != VMA_NULL) {
- ItemType *const pPrevItem = pItem->pPrev;
- m_ItemAllocator.Free(pItem);
- pItem = pPrevItem;
- }
- m_pFront = VMA_NULL;
- m_pBack = VMA_NULL;
- m_Count = 0;
- }
-}
-
-template <typename T>
-VmaListItem<T> *VmaRawList<T>::PushBack() {
- ItemType *const pNewItem = m_ItemAllocator.Alloc();
- pNewItem->pNext = VMA_NULL;
- if (IsEmpty()) {
- pNewItem->pPrev = VMA_NULL;
- m_pFront = pNewItem;
- m_pBack = pNewItem;
- m_Count = 1;
- } else {
- pNewItem->pPrev = m_pBack;
- m_pBack->pNext = pNewItem;
- m_pBack = pNewItem;
- ++m_Count;
- }
- return pNewItem;
-}
-
-template <typename T>
-VmaListItem<T> *VmaRawList<T>::PushFront() {
- ItemType *const pNewItem = m_ItemAllocator.Alloc();
- pNewItem->pPrev = VMA_NULL;
- if (IsEmpty()) {
- pNewItem->pNext = VMA_NULL;
- m_pFront = pNewItem;
- m_pBack = pNewItem;
- m_Count = 1;
- } else {
- pNewItem->pNext = m_pFront;
- m_pFront->pPrev = pNewItem;
- m_pFront = pNewItem;
- ++m_Count;
- }
- return pNewItem;
-}
-
-template <typename T>
-VmaListItem<T> *VmaRawList<T>::PushBack(const T &value) {
- ItemType *const pNewItem = PushBack();
- pNewItem->Value = value;
- return pNewItem;
-}
-
-template <typename T>
-VmaListItem<T> *VmaRawList<T>::PushFront(const T &value) {
- ItemType *const pNewItem = PushFront();
- pNewItem->Value = value;
- return pNewItem;
-}
-
-template <typename T>
-void VmaRawList<T>::PopBack() {
- VMA_HEAVY_ASSERT(m_Count > 0);
- ItemType *const pBackItem = m_pBack;
- ItemType *const pPrevItem = pBackItem->pPrev;
- if (pPrevItem != VMA_NULL) {
- pPrevItem->pNext = VMA_NULL;
- }
- m_pBack = pPrevItem;
- m_ItemAllocator.Free(pBackItem);
- --m_Count;
-}
-
-template <typename T>
-void VmaRawList<T>::PopFront() {
- VMA_HEAVY_ASSERT(m_Count > 0);
- ItemType *const pFrontItem = m_pFront;
- ItemType *const pNextItem = pFrontItem->pNext;
- if (pNextItem != VMA_NULL) {
- pNextItem->pPrev = VMA_NULL;
- }
- m_pFront = pNextItem;
- m_ItemAllocator.Free(pFrontItem);
- --m_Count;
-}
-
-template <typename T>
-void VmaRawList<T>::Remove(ItemType *pItem) {
- VMA_HEAVY_ASSERT(pItem != VMA_NULL);
- VMA_HEAVY_ASSERT(m_Count > 0);
-
- if (pItem->pPrev != VMA_NULL) {
- pItem->pPrev->pNext = pItem->pNext;
- } else {
- VMA_HEAVY_ASSERT(m_pFront == pItem);
- m_pFront = pItem->pNext;
- }
-
- if (pItem->pNext != VMA_NULL) {
- pItem->pNext->pPrev = pItem->pPrev;
- } else {
- VMA_HEAVY_ASSERT(m_pBack == pItem);
- m_pBack = pItem->pPrev;
- }
-
- m_ItemAllocator.Free(pItem);
- --m_Count;
-}
-
-template <typename T>
-VmaListItem<T> *VmaRawList<T>::InsertBefore(ItemType *pItem) {
- if (pItem != VMA_NULL) {
- ItemType *const prevItem = pItem->pPrev;
- ItemType *const newItem = m_ItemAllocator.Alloc();
- newItem->pPrev = prevItem;
- newItem->pNext = pItem;
- pItem->pPrev = newItem;
- if (prevItem != VMA_NULL) {
- prevItem->pNext = newItem;
- } else {
- VMA_HEAVY_ASSERT(m_pFront == pItem);
- m_pFront = newItem;
- }
- ++m_Count;
- return newItem;
- } else
- return PushBack();
-}
-
-template <typename T>
-VmaListItem<T> *VmaRawList<T>::InsertAfter(ItemType *pItem) {
- if (pItem != VMA_NULL) {
- ItemType *const nextItem = pItem->pNext;
- ItemType *const newItem = m_ItemAllocator.Alloc();
- newItem->pNext = nextItem;
- newItem->pPrev = pItem;
- pItem->pNext = newItem;
- if (nextItem != VMA_NULL) {
- nextItem->pPrev = newItem;
- } else {
- VMA_HEAVY_ASSERT(m_pBack == pItem);
- m_pBack = newItem;
- }
- ++m_Count;
- return newItem;
- } else
- return PushFront();
-}
-
-template <typename T>
-VmaListItem<T> *VmaRawList<T>::InsertBefore(ItemType *pItem, const T &value) {
- ItemType *const newItem = InsertBefore(pItem);
- newItem->Value = value;
- return newItem;
-}
-
-template <typename T>
-VmaListItem<T> *VmaRawList<T>::InsertAfter(ItemType *pItem, const T &value) {
- ItemType *const newItem = InsertAfter(pItem);
- newItem->Value = value;
- return newItem;
-}
-
-template <typename T, typename AllocatorT>
-class VmaList {
- VMA_CLASS_NO_COPY(VmaList)
-public:
- class iterator {
- public:
- iterator() :
- m_pList(VMA_NULL),
- m_pItem(VMA_NULL) {
- }
-
- T &operator*() const {
- VMA_HEAVY_ASSERT(m_pItem != VMA_NULL);
- return m_pItem->Value;
- }
- T *operator->() const {
- VMA_HEAVY_ASSERT(m_pItem != VMA_NULL);
- return &m_pItem->Value;
- }
-
- iterator &operator++() {
- VMA_HEAVY_ASSERT(m_pItem != VMA_NULL);
- m_pItem = m_pItem->pNext;
- return *this;
- }
- iterator &operator--() {
- if (m_pItem != VMA_NULL) {
- m_pItem = m_pItem->pPrev;
- } else {
- VMA_HEAVY_ASSERT(!m_pList->IsEmpty());
- m_pItem = m_pList->Back();
- }
- return *this;
- }
-
- iterator operator++(int) {
- iterator result = *this;
- ++*this;
- return result;
- }
- iterator operator--(int) {
- iterator result = *this;
- --*this;
- return result;
- }
-
- bool operator==(const iterator &rhs) const {
- VMA_HEAVY_ASSERT(m_pList == rhs.m_pList);
- return m_pItem == rhs.m_pItem;
- }
- bool operator!=(const iterator &rhs) const {
- VMA_HEAVY_ASSERT(m_pList == rhs.m_pList);
- return m_pItem != rhs.m_pItem;
- }
-
- private:
- VmaRawList<T> *m_pList;
- VmaListItem<T> *m_pItem;
-
- iterator(VmaRawList<T> *pList, VmaListItem<T> *pItem) :
- m_pList(pList),
- m_pItem(pItem) {
- }
-
- friend class VmaList<T, AllocatorT>;
- };
-
- class const_iterator {
- public:
- const_iterator() :
- m_pList(VMA_NULL),
- m_pItem(VMA_NULL) {
- }
-
- const_iterator(const iterator &src) :
- m_pList(src.m_pList),
- m_pItem(src.m_pItem) {
- }
-
- const T &operator*() const {
- VMA_HEAVY_ASSERT(m_pItem != VMA_NULL);
- return m_pItem->Value;
- }
- const T *operator->() const {
- VMA_HEAVY_ASSERT(m_pItem != VMA_NULL);
- return &m_pItem->Value;
- }
-
- const_iterator &operator++() {
- VMA_HEAVY_ASSERT(m_pItem != VMA_NULL);
- m_pItem = m_pItem->pNext;
- return *this;
- }
- const_iterator &operator--() {
- if (m_pItem != VMA_NULL) {
- m_pItem = m_pItem->pPrev;
- } else {
- VMA_HEAVY_ASSERT(!m_pList->IsEmpty());
- m_pItem = m_pList->Back();
- }
- return *this;
- }
-
- const_iterator operator++(int) {
- const_iterator result = *this;
- ++*this;
- return result;
- }
- const_iterator operator--(int) {
- const_iterator result = *this;
- --*this;
- return result;
- }
-
- bool operator==(const const_iterator &rhs) const {
- VMA_HEAVY_ASSERT(m_pList == rhs.m_pList);
- return m_pItem == rhs.m_pItem;
- }
- bool operator!=(const const_iterator &rhs) const {
- VMA_HEAVY_ASSERT(m_pList == rhs.m_pList);
- return m_pItem != rhs.m_pItem;
- }
-
- private:
- const_iterator(const VmaRawList<T> *pList, const VmaListItem<T> *pItem) :
- m_pList(pList),
- m_pItem(pItem) {
- }
-
- const VmaRawList<T> *m_pList;
- const VmaListItem<T> *m_pItem;
-
- friend class VmaList<T, AllocatorT>;
- };
-
- VmaList(const AllocatorT &allocator) :
- m_RawList(allocator.m_pCallbacks) {}
-
- bool empty() const { return m_RawList.IsEmpty(); }
- size_t size() const { return m_RawList.GetCount(); }
-
- iterator begin() { return iterator(&m_RawList, m_RawList.Front()); }
- iterator end() { return iterator(&m_RawList, VMA_NULL); }
-
- const_iterator cbegin() const { return const_iterator(&m_RawList, m_RawList.Front()); }
- const_iterator cend() const { return const_iterator(&m_RawList, VMA_NULL); }
-
- void clear() { m_RawList.Clear(); }
- void push_back(const T &value) { m_RawList.PushBack(value); }
- void erase(iterator it) { m_RawList.Remove(it.m_pItem); }
- iterator insert(iterator it, const T &value) { return iterator(&m_RawList, m_RawList.InsertBefore(it.m_pItem, value)); }
-
-private:
- VmaRawList<T> m_RawList;
-};
-
-#endif // #if VMA_USE_STL_LIST
-
-////////////////////////////////////////////////////////////////////////////////
-// class VmaMap
-
-// Unused in this version.
-#if 0
-
-#if VMA_USE_STL_UNORDERED_MAP
-
-#define VmaPair std::pair
-
-#define VMA_MAP_TYPE(KeyT, ValueT) \
- std::unordered_map<KeyT, ValueT, std::hash<KeyT>, std::equal_to<KeyT>, VmaStlAllocator<std::pair<KeyT, ValueT> > >
-
-#else // #if VMA_USE_STL_UNORDERED_MAP
-
-template<typename T1, typename T2>
-struct VmaPair
-{
- T1 first;
- T2 second;
-
- VmaPair() : first(), second() { }
- VmaPair(const T1& firstSrc, const T2& secondSrc) : first(firstSrc), second(secondSrc) { }
-};
-
-/* Class compatible with subset of interface of std::unordered_map.
-KeyT, ValueT must be POD because they will be stored in VmaVector.
-*/
-template<typename KeyT, typename ValueT>
-class VmaMap
-{
-public:
- typedef VmaPair<KeyT, ValueT> PairType;
- typedef PairType* iterator;
-
- VmaMap(const VmaStlAllocator<PairType>& allocator) : m_Vector(allocator) { }
-
- iterator begin() { return m_Vector.begin(); }
- iterator end() { return m_Vector.end(); }
-
- void insert(const PairType& pair);
- iterator find(const KeyT& key);
- void erase(iterator it);
-
-private:
- VmaVector< PairType, VmaStlAllocator<PairType> > m_Vector;
-};
-
-#define VMA_MAP_TYPE(KeyT, ValueT) VmaMap<KeyT, ValueT>
-
-template<typename FirstT, typename SecondT>
-struct VmaPairFirstLess
-{
- bool operator()(const VmaPair<FirstT, SecondT>& lhs, const VmaPair<FirstT, SecondT>& rhs) const
- {
- return lhs.first < rhs.first;
- }
- bool operator()(const VmaPair<FirstT, SecondT>& lhs, const FirstT& rhsFirst) const
- {
- return lhs.first < rhsFirst;
- }
-};
-
-template<typename KeyT, typename ValueT>
-void VmaMap<KeyT, ValueT>::insert(const PairType& pair)
-{
- const size_t indexToInsert = VmaBinaryFindFirstNotLess(
- m_Vector.data(),
- m_Vector.data() + m_Vector.size(),
- pair,
- VmaPairFirstLess<KeyT, ValueT>()) - m_Vector.data();
- VmaVectorInsert(m_Vector, indexToInsert, pair);
-}
-
-template<typename KeyT, typename ValueT>
-VmaPair<KeyT, ValueT>* VmaMap<KeyT, ValueT>::find(const KeyT& key)
-{
- PairType* it = VmaBinaryFindFirstNotLess(
- m_Vector.data(),
- m_Vector.data() + m_Vector.size(),
- key,
- VmaPairFirstLess<KeyT, ValueT>());
- if((it != m_Vector.end()) && (it->first == key))
- {
- return it;
- }
- else
- {
- return m_Vector.end();
- }
-}
-
-template<typename KeyT, typename ValueT>
-void VmaMap<KeyT, ValueT>::erase(iterator it)
-{
- VmaVectorRemove(m_Vector, it - m_Vector.begin());
-}
-
-#endif // #if VMA_USE_STL_UNORDERED_MAP
-
-#endif // #if 0
-
-////////////////////////////////////////////////////////////////////////////////
-
-class VmaDeviceMemoryBlock;
-
-enum VMA_CACHE_OPERATION { VMA_CACHE_FLUSH,
- VMA_CACHE_INVALIDATE };
-
-struct VmaAllocation_T {
-private:
- static const uint8_t MAP_COUNT_FLAG_PERSISTENT_MAP = 0x80;
-
- enum FLAGS {
- FLAG_USER_DATA_STRING = 0x01,
- };
-
-public:
- enum ALLOCATION_TYPE {
- ALLOCATION_TYPE_NONE,
- ALLOCATION_TYPE_BLOCK,
- ALLOCATION_TYPE_DEDICATED,
- };
-
- /*
- This struct cannot have constructor or destructor. It must be POD because it is
- allocated using VmaPoolAllocator.
- */
-
- void Ctor(uint32_t currentFrameIndex, bool userDataString) {
- m_Alignment = 1;
- m_Size = 0;
- m_pUserData = VMA_NULL;
- m_LastUseFrameIndex = currentFrameIndex;
- m_Type = (uint8_t)ALLOCATION_TYPE_NONE;
- m_SuballocationType = (uint8_t)VMA_SUBALLOCATION_TYPE_UNKNOWN;
- m_MapCount = 0;
- m_Flags = userDataString ? (uint8_t)FLAG_USER_DATA_STRING : 0;
-
-#if VMA_STATS_STRING_ENABLED
- m_CreationFrameIndex = currentFrameIndex;
- m_BufferImageUsage = 0;
-#endif
- }
-
- void Dtor() {
- VMA_ASSERT((m_MapCount & ~MAP_COUNT_FLAG_PERSISTENT_MAP) == 0 && "Allocation was not unmapped before destruction.");
-
- // Check if owned string was freed.
- VMA_ASSERT(m_pUserData == VMA_NULL);
- }
-
- void InitBlockAllocation(
- VmaDeviceMemoryBlock *block,
- VkDeviceSize offset,
- VkDeviceSize alignment,
- VkDeviceSize size,
- VmaSuballocationType suballocationType,
- bool mapped,
- bool canBecomeLost) {
- VMA_ASSERT(m_Type == ALLOCATION_TYPE_NONE);
- VMA_ASSERT(block != VMA_NULL);
- m_Type = (uint8_t)ALLOCATION_TYPE_BLOCK;
- m_Alignment = alignment;
- m_Size = size;
- m_MapCount = mapped ? MAP_COUNT_FLAG_PERSISTENT_MAP : 0;
- m_SuballocationType = (uint8_t)suballocationType;
- m_BlockAllocation.m_Block = block;
- m_BlockAllocation.m_Offset = offset;
- m_BlockAllocation.m_CanBecomeLost = canBecomeLost;
- }
-
- void InitLost() {
- VMA_ASSERT(m_Type == ALLOCATION_TYPE_NONE);
- VMA_ASSERT(m_LastUseFrameIndex.load() == VMA_FRAME_INDEX_LOST);
- m_Type = (uint8_t)ALLOCATION_TYPE_BLOCK;
- m_BlockAllocation.m_Block = VMA_NULL;
- m_BlockAllocation.m_Offset = 0;
- m_BlockAllocation.m_CanBecomeLost = true;
- }
-
- void ChangeBlockAllocation(
- VmaAllocator hAllocator,
- VmaDeviceMemoryBlock *block,
- VkDeviceSize offset);
-
- void ChangeSize(VkDeviceSize newSize);
- void ChangeOffset(VkDeviceSize newOffset);
-
- // pMappedData not null means allocation is created with MAPPED flag.
- void InitDedicatedAllocation(
- uint32_t memoryTypeIndex,
- VkDeviceMemory hMemory,
- VmaSuballocationType suballocationType,
- void *pMappedData,
- VkDeviceSize size) {
- VMA_ASSERT(m_Type == ALLOCATION_TYPE_NONE);
- VMA_ASSERT(hMemory != VK_NULL_HANDLE);
- m_Type = (uint8_t)ALLOCATION_TYPE_DEDICATED;
- m_Alignment = 0;
- m_Size = size;
- m_SuballocationType = (uint8_t)suballocationType;
- m_MapCount = (pMappedData != VMA_NULL) ? MAP_COUNT_FLAG_PERSISTENT_MAP : 0;
- m_DedicatedAllocation.m_MemoryTypeIndex = memoryTypeIndex;
- m_DedicatedAllocation.m_hMemory = hMemory;
- m_DedicatedAllocation.m_pMappedData = pMappedData;
- }
-
- ALLOCATION_TYPE GetType() const { return (ALLOCATION_TYPE)m_Type; }
- VkDeviceSize GetAlignment() const { return m_Alignment; }
- VkDeviceSize GetSize() const { return m_Size; }
- bool IsUserDataString() const { return (m_Flags & FLAG_USER_DATA_STRING) != 0; }
- void *GetUserData() const { return m_pUserData; }
- void SetUserData(VmaAllocator hAllocator, void *pUserData);
- VmaSuballocationType GetSuballocationType() const { return (VmaSuballocationType)m_SuballocationType; }
-
- VmaDeviceMemoryBlock *GetBlock() const {
- VMA_ASSERT(m_Type == ALLOCATION_TYPE_BLOCK);
- return m_BlockAllocation.m_Block;
- }
- VkDeviceSize GetOffset() const;
- VkDeviceMemory GetMemory() const;
- uint32_t GetMemoryTypeIndex() const;
- bool IsPersistentMap() const { return (m_MapCount & MAP_COUNT_FLAG_PERSISTENT_MAP) != 0; }
- void *GetMappedData() const;
- bool CanBecomeLost() const;
-
- uint32_t GetLastUseFrameIndex() const {
- return m_LastUseFrameIndex.load();
- }
- bool CompareExchangeLastUseFrameIndex(uint32_t &expected, uint32_t desired) {
- return m_LastUseFrameIndex.compare_exchange_weak(expected, desired);
- }
- /*
- - If hAllocation.LastUseFrameIndex + frameInUseCount < allocator.CurrentFrameIndex,
- makes it lost by setting LastUseFrameIndex = VMA_FRAME_INDEX_LOST and returns true.
- - Else, returns false.
-
- If hAllocation is already lost, assert - you should not call it then.
- If hAllocation was not created with CAN_BECOME_LOST_BIT, assert.
- */
- bool MakeLost(uint32_t currentFrameIndex, uint32_t frameInUseCount);
-
- void DedicatedAllocCalcStatsInfo(VmaStatInfo &outInfo) {
- VMA_ASSERT(m_Type == ALLOCATION_TYPE_DEDICATED);
- outInfo.blockCount = 1;
- outInfo.allocationCount = 1;
- outInfo.unusedRangeCount = 0;
- outInfo.usedBytes = m_Size;
- outInfo.unusedBytes = 0;
- outInfo.allocationSizeMin = outInfo.allocationSizeMax = m_Size;
- outInfo.unusedRangeSizeMin = UINT64_MAX;
- outInfo.unusedRangeSizeMax = 0;
- }
-
- void BlockAllocMap();
- void BlockAllocUnmap();
- VkResult DedicatedAllocMap(VmaAllocator hAllocator, void **ppData);
- void DedicatedAllocUnmap(VmaAllocator hAllocator);
-
-#if VMA_STATS_STRING_ENABLED
- uint32_t GetCreationFrameIndex() const { return m_CreationFrameIndex; }
- uint32_t GetBufferImageUsage() const { return m_BufferImageUsage; }
-
- void InitBufferImageUsage(uint32_t bufferImageUsage) {
- VMA_ASSERT(m_BufferImageUsage == 0);
- m_BufferImageUsage = bufferImageUsage;
- }
-
- void PrintParameters(class VmaJsonWriter &json) const;
-#endif
-
-private:
- VkDeviceSize m_Alignment;
- VkDeviceSize m_Size;
- void *m_pUserData;
- VMA_ATOMIC_UINT32 m_LastUseFrameIndex;
- uint8_t m_Type; // ALLOCATION_TYPE
- uint8_t m_SuballocationType; // VmaSuballocationType
- // Bit 0x80 is set when allocation was created with VMA_ALLOCATION_CREATE_MAPPED_BIT.
- // Bits with mask 0x7F are reference counter for vmaMapMemory()/vmaUnmapMemory().
- uint8_t m_MapCount;
- uint8_t m_Flags; // enum FLAGS
-
- // Allocation out of VmaDeviceMemoryBlock.
- struct BlockAllocation {
- VmaDeviceMemoryBlock *m_Block;
- VkDeviceSize m_Offset;
- bool m_CanBecomeLost;
- };
-
- // Allocation for an object that has its own private VkDeviceMemory.
- struct DedicatedAllocation {
- uint32_t m_MemoryTypeIndex;
- VkDeviceMemory m_hMemory;
- void *m_pMappedData; // Not null means memory is mapped.
- };
-
- union {
- // Allocation out of VmaDeviceMemoryBlock.
- BlockAllocation m_BlockAllocation;
- // Allocation for an object that has its own private VkDeviceMemory.
- DedicatedAllocation m_DedicatedAllocation;
- };
-
-#if VMA_STATS_STRING_ENABLED
- uint32_t m_CreationFrameIndex;
- uint32_t m_BufferImageUsage; // 0 if unknown.
-#endif
-
- void FreeUserDataString(VmaAllocator hAllocator);
-};
-
-/*
-Represents a region of VmaDeviceMemoryBlock that is either assigned and returned as
-allocated memory block or free.
-*/
-struct VmaSuballocation {
- VkDeviceSize offset;
- VkDeviceSize size;
- VmaAllocation hAllocation;
- VmaSuballocationType type;
-};
-
-// Comparator for offsets.
-struct VmaSuballocationOffsetLess {
- bool operator()(const VmaSuballocation &lhs, const VmaSuballocation &rhs) const {
- return lhs.offset < rhs.offset;
- }
-};
-struct VmaSuballocationOffsetGreater {
- bool operator()(const VmaSuballocation &lhs, const VmaSuballocation &rhs) const {
- return lhs.offset > rhs.offset;
- }
-};
-
-typedef VmaList<VmaSuballocation, VmaStlAllocator<VmaSuballocation> > VmaSuballocationList;
-
-// Cost of one additional allocation lost, as equivalent in bytes.
-static const VkDeviceSize VMA_LOST_ALLOCATION_COST = 1048576;
-
-enum class VmaAllocationRequestType {
- Normal,
- // Used by "Linear" algorithm.
- UpperAddress,
- EndOf1st,
- EndOf2nd,
-};
-
-/*
-Parameters of planned allocation inside a VmaDeviceMemoryBlock.
-
-If canMakeOtherLost was false:
-- item points to a FREE suballocation.
-- itemsToMakeLostCount is 0.
-
-If canMakeOtherLost was true:
-- item points to first of sequence of suballocations, which are either FREE,
- or point to VmaAllocations that can become lost.
-- itemsToMakeLostCount is the number of VmaAllocations that need to be made lost for
- the requested allocation to succeed.
-*/
-struct VmaAllocationRequest {
- VkDeviceSize offset;
- VkDeviceSize sumFreeSize; // Sum size of free items that overlap with proposed allocation.
- VkDeviceSize sumItemSize; // Sum size of items to make lost that overlap with proposed allocation.
- VmaSuballocationList::iterator item;
- size_t itemsToMakeLostCount;
- void *customData;
- VmaAllocationRequestType type;
-
- VkDeviceSize CalcCost() const {
- return sumItemSize + itemsToMakeLostCount * VMA_LOST_ALLOCATION_COST;
- }
-};
-
-/*
-Data structure used for bookkeeping of allocations and unused ranges of memory
-in a single VkDeviceMemory block.
-*/
-class VmaBlockMetadata {
-public:
- VmaBlockMetadata(VmaAllocator hAllocator);
- virtual ~VmaBlockMetadata() {}
- virtual void Init(VkDeviceSize size) { m_Size = size; }
-
- // Validates all data structures inside this object. If not valid, returns false.
- virtual bool Validate() const = 0;
- VkDeviceSize GetSize() const { return m_Size; }
- virtual size_t GetAllocationCount() const = 0;
- virtual VkDeviceSize GetSumFreeSize() const = 0;
- virtual VkDeviceSize GetUnusedRangeSizeMax() const = 0;
- // Returns true if this block is empty - contains only single free suballocation.
- virtual bool IsEmpty() const = 0;
-
- virtual void CalcAllocationStatInfo(VmaStatInfo &outInfo) const = 0;
- // Shouldn't modify blockCount.
- virtual void AddPoolStats(VmaPoolStats &inoutStats) const = 0;
-
-#if VMA_STATS_STRING_ENABLED
- virtual void PrintDetailedMap(class VmaJsonWriter &json) const = 0;
-#endif
-
- // Tries to find a place for suballocation with given parameters inside this block.
- // If succeeded, fills pAllocationRequest and returns true.
- // If failed, returns false.
- virtual bool CreateAllocationRequest(
- uint32_t currentFrameIndex,
- uint32_t frameInUseCount,
- VkDeviceSize bufferImageGranularity,
- VkDeviceSize allocSize,
- VkDeviceSize allocAlignment,
- bool upperAddress,
- VmaSuballocationType allocType,
- bool canMakeOtherLost,
- // Always one of VMA_ALLOCATION_CREATE_STRATEGY_* or VMA_ALLOCATION_INTERNAL_STRATEGY_* flags.
- uint32_t strategy,
- VmaAllocationRequest *pAllocationRequest) = 0;
-
- virtual bool MakeRequestedAllocationsLost(
- uint32_t currentFrameIndex,
- uint32_t frameInUseCount,
- VmaAllocationRequest *pAllocationRequest) = 0;
-
- virtual uint32_t MakeAllocationsLost(uint32_t currentFrameIndex, uint32_t frameInUseCount) = 0;
-
- virtual VkResult CheckCorruption(const void *pBlockData) = 0;
-
- // Makes actual allocation based on request. Request must already be checked and valid.
- virtual void Alloc(
- const VmaAllocationRequest &request,
- VmaSuballocationType type,
- VkDeviceSize allocSize,
- VmaAllocation hAllocation) = 0;
-
- // Frees suballocation assigned to given memory region.
- virtual void Free(const VmaAllocation allocation) = 0;
- virtual void FreeAtOffset(VkDeviceSize offset) = 0;
-
- // Tries to resize (grow or shrink) space for given allocation, in place.
- virtual bool ResizeAllocation(const VmaAllocation alloc, VkDeviceSize newSize) { return false; }
-
-protected:
- const VkAllocationCallbacks *GetAllocationCallbacks() const { return m_pAllocationCallbacks; }
-
-#if VMA_STATS_STRING_ENABLED
- void PrintDetailedMap_Begin(class VmaJsonWriter &json,
- VkDeviceSize unusedBytes,
- size_t allocationCount,
- size_t unusedRangeCount) const;
- void PrintDetailedMap_Allocation(class VmaJsonWriter &json,
- VkDeviceSize offset,
- VmaAllocation hAllocation) const;
- void PrintDetailedMap_UnusedRange(class VmaJsonWriter &json,
- VkDeviceSize offset,
- VkDeviceSize size) const;
- void PrintDetailedMap_End(class VmaJsonWriter &json) const;
-#endif
-
-private:
- VkDeviceSize m_Size;
- const VkAllocationCallbacks *m_pAllocationCallbacks;
-};
-
-#define VMA_VALIDATE(cond) \
- do { \
- if (!(cond)) { \
- VMA_ASSERT(0 && "Validation failed: " #cond); \
- return false; \
- } \
- } while (false)
-
-class VmaBlockMetadata_Generic : public VmaBlockMetadata {
- VMA_CLASS_NO_COPY(VmaBlockMetadata_Generic)
-public:
- VmaBlockMetadata_Generic(VmaAllocator hAllocator);
- virtual ~VmaBlockMetadata_Generic();
- virtual void Init(VkDeviceSize size);
-
- virtual bool Validate() const;
- virtual size_t GetAllocationCount() const { return m_Suballocations.size() - m_FreeCount; }
- virtual VkDeviceSize GetSumFreeSize() const { return m_SumFreeSize; }
- virtual VkDeviceSize GetUnusedRangeSizeMax() const;
- virtual bool IsEmpty() const;
-
- virtual void CalcAllocationStatInfo(VmaStatInfo &outInfo) const;
- virtual void AddPoolStats(VmaPoolStats &inoutStats) const;
-
-#if VMA_STATS_STRING_ENABLED
- virtual void PrintDetailedMap(class VmaJsonWriter &json) const;
-#endif
-
- virtual bool CreateAllocationRequest(
- uint32_t currentFrameIndex,
- uint32_t frameInUseCount,
- VkDeviceSize bufferImageGranularity,
- VkDeviceSize allocSize,
- VkDeviceSize allocAlignment,
- bool upperAddress,
- VmaSuballocationType allocType,
- bool canMakeOtherLost,
- uint32_t strategy,
- VmaAllocationRequest *pAllocationRequest);
-
- virtual bool MakeRequestedAllocationsLost(
- uint32_t currentFrameIndex,
- uint32_t frameInUseCount,
- VmaAllocationRequest *pAllocationRequest);
-
- virtual uint32_t MakeAllocationsLost(uint32_t currentFrameIndex, uint32_t frameInUseCount);
-
- virtual VkResult CheckCorruption(const void *pBlockData);
-
- virtual void Alloc(
- const VmaAllocationRequest &request,
- VmaSuballocationType type,
- VkDeviceSize allocSize,
- VmaAllocation hAllocation);
-
- virtual void Free(const VmaAllocation allocation);
- virtual void FreeAtOffset(VkDeviceSize offset);
-
- virtual bool ResizeAllocation(const VmaAllocation alloc, VkDeviceSize newSize);
-
- ////////////////////////////////////////////////////////////////////////////////
- // For defragmentation
-
- bool IsBufferImageGranularityConflictPossible(
- VkDeviceSize bufferImageGranularity,
- VmaSuballocationType &inOutPrevSuballocType) const;
-
-private:
- friend class VmaDefragmentationAlgorithm_Generic;
- friend class VmaDefragmentationAlgorithm_Fast;
-
- uint32_t m_FreeCount;
- VkDeviceSize m_SumFreeSize;
- VmaSuballocationList m_Suballocations;
- // Suballocations that are free and have size greater than certain threshold.
- // Sorted by size, ascending.
- VmaVector<VmaSuballocationList::iterator, VmaStlAllocator<VmaSuballocationList::iterator> > m_FreeSuballocationsBySize;
-
- bool ValidateFreeSuballocationList() const;
-
- // Checks if requested suballocation with given parameters can be placed in given pFreeSuballocItem.
- // If yes, fills pOffset and returns true. If no, returns false.
- bool CheckAllocation(
- uint32_t currentFrameIndex,
- uint32_t frameInUseCount,
- VkDeviceSize bufferImageGranularity,
- VkDeviceSize allocSize,
- VkDeviceSize allocAlignment,
- VmaSuballocationType allocType,
- VmaSuballocationList::const_iterator suballocItem,
- bool canMakeOtherLost,
- VkDeviceSize *pOffset,
- size_t *itemsToMakeLostCount,
- VkDeviceSize *pSumFreeSize,
- VkDeviceSize *pSumItemSize) const;
- // Given free suballocation, it merges it with following one, which must also be free.
- void MergeFreeWithNext(VmaSuballocationList::iterator item);
- // Releases given suballocation, making it free.
- // Merges it with adjacent free suballocations if applicable.
- // Returns iterator to new free suballocation at this place.
- VmaSuballocationList::iterator FreeSuballocation(VmaSuballocationList::iterator suballocItem);
- // Given free suballocation, it inserts it into sorted list of
- // m_FreeSuballocationsBySize if it's suitable.
- void RegisterFreeSuballocation(VmaSuballocationList::iterator item);
- // Given free suballocation, it removes it from sorted list of
- // m_FreeSuballocationsBySize if it's suitable.
- void UnregisterFreeSuballocation(VmaSuballocationList::iterator item);
-};
-
-/*
-Allocations and their references in internal data structure look like this:
-
-if(m_2ndVectorMode == SECOND_VECTOR_EMPTY):
-
- 0 +-------+
- | |
- | |
- | |
- +-------+
- | Alloc | 1st[m_1stNullItemsBeginCount]
- +-------+
- | Alloc | 1st[m_1stNullItemsBeginCount + 1]
- +-------+
- | ... |
- +-------+
- | Alloc | 1st[1st.size() - 1]
- +-------+
- | |
- | |
- | |
-GetSize() +-------+
-
-if(m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER):
-
- 0 +-------+
- | Alloc | 2nd[0]
- +-------+
- | Alloc | 2nd[1]
- +-------+
- | ... |
- +-------+
- | Alloc | 2nd[2nd.size() - 1]
- +-------+
- | |
- | |
- | |
- +-------+
- | Alloc | 1st[m_1stNullItemsBeginCount]
- +-------+
- | Alloc | 1st[m_1stNullItemsBeginCount + 1]
- +-------+
- | ... |
- +-------+
- | Alloc | 1st[1st.size() - 1]
- +-------+
- | |
-GetSize() +-------+
-
-if(m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK):
-
- 0 +-------+
- | |
- | |
- | |
- +-------+
- | Alloc | 1st[m_1stNullItemsBeginCount]
- +-------+
- | Alloc | 1st[m_1stNullItemsBeginCount + 1]
- +-------+
- | ... |
- +-------+
- | Alloc | 1st[1st.size() - 1]
- +-------+
- | |
- | |
- | |
- +-------+
- | Alloc | 2nd[2nd.size() - 1]
- +-------+
- | ... |
- +-------+
- | Alloc | 2nd[1]
- +-------+
- | Alloc | 2nd[0]
-GetSize() +-------+
-
-*/
-class VmaBlockMetadata_Linear : public VmaBlockMetadata {
- VMA_CLASS_NO_COPY(VmaBlockMetadata_Linear)
-public:
- VmaBlockMetadata_Linear(VmaAllocator hAllocator);
- virtual ~VmaBlockMetadata_Linear();
- virtual void Init(VkDeviceSize size);
-
- virtual bool Validate() const;
- virtual size_t GetAllocationCount() const;
- virtual VkDeviceSize GetSumFreeSize() const { return m_SumFreeSize; }
- virtual VkDeviceSize GetUnusedRangeSizeMax() const;
- virtual bool IsEmpty() const { return GetAllocationCount() == 0; }
-
- virtual void CalcAllocationStatInfo(VmaStatInfo &outInfo) const;
- virtual void AddPoolStats(VmaPoolStats &inoutStats) const;
-
-#if VMA_STATS_STRING_ENABLED
- virtual void PrintDetailedMap(class VmaJsonWriter &json) const;
-#endif
-
- virtual bool CreateAllocationRequest(
- uint32_t currentFrameIndex,
- uint32_t frameInUseCount,
- VkDeviceSize bufferImageGranularity,
- VkDeviceSize allocSize,
- VkDeviceSize allocAlignment,
- bool upperAddress,
- VmaSuballocationType allocType,
- bool canMakeOtherLost,
- uint32_t strategy,
- VmaAllocationRequest *pAllocationRequest);
-
- virtual bool MakeRequestedAllocationsLost(
- uint32_t currentFrameIndex,
- uint32_t frameInUseCount,
- VmaAllocationRequest *pAllocationRequest);
-
- virtual uint32_t MakeAllocationsLost(uint32_t currentFrameIndex, uint32_t frameInUseCount);
-
- virtual VkResult CheckCorruption(const void *pBlockData);
-
- virtual void Alloc(
- const VmaAllocationRequest &request,
- VmaSuballocationType type,
- VkDeviceSize allocSize,
- VmaAllocation hAllocation);
-
- virtual void Free(const VmaAllocation allocation);
- virtual void FreeAtOffset(VkDeviceSize offset);
-
-private:
- /*
- There are two suballocation vectors, used in ping-pong way.
- The one with index m_1stVectorIndex is called 1st.
- The one with index (m_1stVectorIndex ^ 1) is called 2nd.
- 2nd can be non-empty only when 1st is not empty.
- When 2nd is not empty, m_2ndVectorMode indicates its mode of operation.
- */
- typedef VmaVector<VmaSuballocation, VmaStlAllocator<VmaSuballocation> > SuballocationVectorType;
-
- enum SECOND_VECTOR_MODE {
- SECOND_VECTOR_EMPTY,
- /*
- Suballocations in 2nd vector are created later than the ones in 1st, but they
- all have smaller offset.
- */
- SECOND_VECTOR_RING_BUFFER,
- /*
- Suballocations in 2nd vector are upper side of double stack.
- They all have offsets higher than those in 1st vector.
- Top of this stack means smaller offsets, but higher indices in this vector.
- */
- SECOND_VECTOR_DOUBLE_STACK,
- };
-
- VkDeviceSize m_SumFreeSize;
- SuballocationVectorType m_Suballocations0, m_Suballocations1;
- uint32_t m_1stVectorIndex;
- SECOND_VECTOR_MODE m_2ndVectorMode;
-
- SuballocationVectorType &AccessSuballocations1st() { return m_1stVectorIndex ? m_Suballocations1 : m_Suballocations0; }
- SuballocationVectorType &AccessSuballocations2nd() { return m_1stVectorIndex ? m_Suballocations0 : m_Suballocations1; }
- const SuballocationVectorType &AccessSuballocations1st() const { return m_1stVectorIndex ? m_Suballocations1 : m_Suballocations0; }
- const SuballocationVectorType &AccessSuballocations2nd() const { return m_1stVectorIndex ? m_Suballocations0 : m_Suballocations1; }
-
- // Number of items in 1st vector with hAllocation = null at the beginning.
- size_t m_1stNullItemsBeginCount;
- // Number of other items in 1st vector with hAllocation = null somewhere in the middle.
- size_t m_1stNullItemsMiddleCount;
- // Number of items in 2nd vector with hAllocation = null.
- size_t m_2ndNullItemsCount;
-
- bool ShouldCompact1st() const;
- void CleanupAfterFree();
-
- bool CreateAllocationRequest_LowerAddress(
- uint32_t currentFrameIndex,
- uint32_t frameInUseCount,
- VkDeviceSize bufferImageGranularity,
- VkDeviceSize allocSize,
- VkDeviceSize allocAlignment,
- VmaSuballocationType allocType,
- bool canMakeOtherLost,
- uint32_t strategy,
- VmaAllocationRequest *pAllocationRequest);
- bool CreateAllocationRequest_UpperAddress(
- uint32_t currentFrameIndex,
- uint32_t frameInUseCount,
- VkDeviceSize bufferImageGranularity,
- VkDeviceSize allocSize,
- VkDeviceSize allocAlignment,
- VmaSuballocationType allocType,
- bool canMakeOtherLost,
- uint32_t strategy,
- VmaAllocationRequest *pAllocationRequest);
-};
-
-/*
-- GetSize() is the original size of allocated memory block.
-- m_UsableSize is this size aligned down to a power of two.
- All allocations and calculations happen relative to m_UsableSize.
-- GetUnusableSize() is the difference between them.
- It is repoted as separate, unused range, not available for allocations.
-
-Node at level 0 has size = m_UsableSize.
-Each next level contains nodes with size 2 times smaller than current level.
-m_LevelCount is the maximum number of levels to use in the current object.
-*/
-class VmaBlockMetadata_Buddy : public VmaBlockMetadata {
- VMA_CLASS_NO_COPY(VmaBlockMetadata_Buddy)
-public:
- VmaBlockMetadata_Buddy(VmaAllocator hAllocator);
- virtual ~VmaBlockMetadata_Buddy();
- virtual void Init(VkDeviceSize size);
-
- virtual bool Validate() const;
- virtual size_t GetAllocationCount() const { return m_AllocationCount; }
- virtual VkDeviceSize GetSumFreeSize() const { return m_SumFreeSize + GetUnusableSize(); }
- virtual VkDeviceSize GetUnusedRangeSizeMax() const;
- virtual bool IsEmpty() const { return m_Root->type == Node::TYPE_FREE; }
-
- virtual void CalcAllocationStatInfo(VmaStatInfo &outInfo) const;
- virtual void AddPoolStats(VmaPoolStats &inoutStats) const;
-
-#if VMA_STATS_STRING_ENABLED
- virtual void PrintDetailedMap(class VmaJsonWriter &json) const;
-#endif
-
- virtual bool CreateAllocationRequest(
- uint32_t currentFrameIndex,
- uint32_t frameInUseCount,
- VkDeviceSize bufferImageGranularity,
- VkDeviceSize allocSize,
- VkDeviceSize allocAlignment,
- bool upperAddress,
- VmaSuballocationType allocType,
- bool canMakeOtherLost,
- uint32_t strategy,
- VmaAllocationRequest *pAllocationRequest);
-
- virtual bool MakeRequestedAllocationsLost(
- uint32_t currentFrameIndex,
- uint32_t frameInUseCount,
- VmaAllocationRequest *pAllocationRequest);
-
- virtual uint32_t MakeAllocationsLost(uint32_t currentFrameIndex, uint32_t frameInUseCount);
-
- virtual VkResult CheckCorruption(const void *pBlockData) { return VK_ERROR_FEATURE_NOT_PRESENT; }
-
- virtual void Alloc(
- const VmaAllocationRequest &request,
- VmaSuballocationType type,
- VkDeviceSize allocSize,
- VmaAllocation hAllocation);
-
- virtual void Free(const VmaAllocation allocation) { FreeAtOffset(allocation, allocation->GetOffset()); }
- virtual void FreeAtOffset(VkDeviceSize offset) { FreeAtOffset(VMA_NULL, offset); }
-
-private:
- static const VkDeviceSize MIN_NODE_SIZE = 32;
- static const size_t MAX_LEVELS = 30;
-
- struct ValidationContext {
- size_t calculatedAllocationCount;
- size_t calculatedFreeCount;
- VkDeviceSize calculatedSumFreeSize;
-
- ValidationContext() :
- calculatedAllocationCount(0),
- calculatedFreeCount(0),
- calculatedSumFreeSize(0) {}
- };
-
- struct Node {
- VkDeviceSize offset;
- enum TYPE {
- TYPE_FREE,
- TYPE_ALLOCATION,
- TYPE_SPLIT,
- TYPE_COUNT
- } type;
- Node *parent;
- Node *buddy;
-
- union {
- struct
- {
- Node *prev;
- Node *next;
- } free;
- struct
- {
- VmaAllocation alloc;
- } allocation;
- struct
- {
- Node *leftChild;
- } split;
- };
- };
-
- // Size of the memory block aligned down to a power of two.
- VkDeviceSize m_UsableSize;
- uint32_t m_LevelCount;
-
- Node *m_Root;
- struct {
- Node *front;
- Node *back;
- } m_FreeList[MAX_LEVELS];
- // Number of nodes in the tree with type == TYPE_ALLOCATION.
- size_t m_AllocationCount;
- // Number of nodes in the tree with type == TYPE_FREE.
- size_t m_FreeCount;
- // This includes space wasted due to internal fragmentation. Doesn't include unusable size.
- VkDeviceSize m_SumFreeSize;
-
- VkDeviceSize GetUnusableSize() const { return GetSize() - m_UsableSize; }
- void DeleteNode(Node *node);
- bool ValidateNode(ValidationContext &ctx, const Node *parent, const Node *curr, uint32_t level, VkDeviceSize levelNodeSize) const;
- uint32_t AllocSizeToLevel(VkDeviceSize allocSize) const;
- inline VkDeviceSize LevelToNodeSize(uint32_t level) const { return m_UsableSize >> level; }
- // Alloc passed just for validation. Can be null.
- void FreeAtOffset(VmaAllocation alloc, VkDeviceSize offset);
- void CalcAllocationStatInfoNode(VmaStatInfo &outInfo, const Node *node, VkDeviceSize levelNodeSize) const;
- // Adds node to the front of FreeList at given level.
- // node->type must be FREE.
- // node->free.prev, next can be undefined.
- void AddToFreeListFront(uint32_t level, Node *node);
- // Removes node from FreeList at given level.
- // node->type must be FREE.
- // node->free.prev, next stay untouched.
- void RemoveFromFreeList(uint32_t level, Node *node);
-
-#if VMA_STATS_STRING_ENABLED
- void PrintDetailedMapNode(class VmaJsonWriter &json, const Node *node, VkDeviceSize levelNodeSize) const;
-#endif
-};
-
-/*
-Represents a single block of device memory (`VkDeviceMemory`) with all the
-data about its regions (aka suballocations, #VmaAllocation), assigned and free.
-
-Thread-safety: This class must be externally synchronized.
-*/
-class VmaDeviceMemoryBlock {
- VMA_CLASS_NO_COPY(VmaDeviceMemoryBlock)
-public:
- VmaBlockMetadata *m_pMetadata;
-
- VmaDeviceMemoryBlock(VmaAllocator hAllocator);
-
- ~VmaDeviceMemoryBlock() {
- VMA_ASSERT(m_MapCount == 0 && "VkDeviceMemory block is being destroyed while it is still mapped.");
- VMA_ASSERT(m_hMemory == VK_NULL_HANDLE);
- }
-
- // Always call after construction.
- void Init(
- VmaAllocator hAllocator,
- VmaPool hParentPool,
- uint32_t newMemoryTypeIndex,
- VkDeviceMemory newMemory,
- VkDeviceSize newSize,
- uint32_t id,
- uint32_t algorithm);
- // Always call before destruction.
- void Destroy(VmaAllocator allocator);
-
- VmaPool GetParentPool() const { return m_hParentPool; }
- VkDeviceMemory GetDeviceMemory() const { return m_hMemory; }
- uint32_t GetMemoryTypeIndex() const { return m_MemoryTypeIndex; }
- uint32_t GetId() const { return m_Id; }
- void *GetMappedData() const { return m_pMappedData; }
-
- // Validates all data structures inside this object. If not valid, returns false.
- bool Validate() const;
-
- VkResult CheckCorruption(VmaAllocator hAllocator);
-
- // ppData can be null.
- VkResult Map(VmaAllocator hAllocator, uint32_t count, void **ppData);
- void Unmap(VmaAllocator hAllocator, uint32_t count);
-
- VkResult WriteMagicValueAroundAllocation(VmaAllocator hAllocator, VkDeviceSize allocOffset, VkDeviceSize allocSize);
- VkResult ValidateMagicValueAroundAllocation(VmaAllocator hAllocator, VkDeviceSize allocOffset, VkDeviceSize allocSize);
-
- VkResult BindBufferMemory(
- const VmaAllocator hAllocator,
- const VmaAllocation hAllocation,
- VkBuffer hBuffer);
- VkResult BindImageMemory(
- const VmaAllocator hAllocator,
- const VmaAllocation hAllocation,
- VkImage hImage);
-
-private:
- VmaPool m_hParentPool; // VK_NULL_HANDLE if not belongs to custom pool.
- uint32_t m_MemoryTypeIndex;
- uint32_t m_Id;
- VkDeviceMemory m_hMemory;
-
- /*
- Protects access to m_hMemory so it's not used by multiple threads simultaneously, e.g. vkMapMemory, vkBindBufferMemory.
- Also protects m_MapCount, m_pMappedData.
- Allocations, deallocations, any change in m_pMetadata is protected by parent's VmaBlockVector::m_Mutex.
- */
- VMA_MUTEX m_Mutex;
- uint32_t m_MapCount;
- void *m_pMappedData;
-};
-
-struct VmaPointerLess {
- bool operator()(const void *lhs, const void *rhs) const {
- return lhs < rhs;
- }
-};
-
-struct VmaDefragmentationMove {
- size_t srcBlockIndex;
- size_t dstBlockIndex;
- VkDeviceSize srcOffset;
- VkDeviceSize dstOffset;
- VkDeviceSize size;
-};
-
-class VmaDefragmentationAlgorithm;
-
-/*
-Sequence of VmaDeviceMemoryBlock. Represents memory blocks allocated for a specific
-Vulkan memory type.
-
-Synchronized internally with a mutex.
-*/
-struct VmaBlockVector {
- VMA_CLASS_NO_COPY(VmaBlockVector)
-public:
- VmaBlockVector(
- VmaAllocator hAllocator,
- VmaPool hParentPool,
- uint32_t memoryTypeIndex,
- VkDeviceSize preferredBlockSize,
- size_t minBlockCount,
- size_t maxBlockCount,
- VkDeviceSize bufferImageGranularity,
- uint32_t frameInUseCount,
- bool isCustomPool,
- bool explicitBlockSize,
- uint32_t algorithm);
- ~VmaBlockVector();
-
- VkResult CreateMinBlocks();
-
- VmaPool GetParentPool() const { return m_hParentPool; }
- uint32_t GetMemoryTypeIndex() const { return m_MemoryTypeIndex; }
- VkDeviceSize GetPreferredBlockSize() const { return m_PreferredBlockSize; }
- VkDeviceSize GetBufferImageGranularity() const { return m_BufferImageGranularity; }
- uint32_t GetFrameInUseCount() const { return m_FrameInUseCount; }
- uint32_t GetAlgorithm() const { return m_Algorithm; }
-
- void GetPoolStats(VmaPoolStats *pStats);
-
- bool IsEmpty() const { return m_Blocks.empty(); }
- bool IsCorruptionDetectionEnabled() const;
-
- VkResult Allocate(
- uint32_t currentFrameIndex,
- VkDeviceSize size,
- VkDeviceSize alignment,
- const VmaAllocationCreateInfo &createInfo,
- VmaSuballocationType suballocType,
- size_t allocationCount,
- VmaAllocation *pAllocations);
-
- void Free(
- VmaAllocation hAllocation);
-
- // Adds statistics of this BlockVector to pStats.
- void AddStats(VmaStats *pStats);
-
-#if VMA_STATS_STRING_ENABLED
- void PrintDetailedMap(class VmaJsonWriter &json);
-#endif
-
- void MakePoolAllocationsLost(
- uint32_t currentFrameIndex,
- size_t *pLostAllocationCount);
- VkResult CheckCorruption();
-
- // Saves results in pCtx->res.
- void Defragment(
- class VmaBlockVectorDefragmentationContext *pCtx,
- VmaDefragmentationStats *pStats,
- VkDeviceSize &maxCpuBytesToMove, uint32_t &maxCpuAllocationsToMove,
- VkDeviceSize &maxGpuBytesToMove, uint32_t &maxGpuAllocationsToMove,
- VkCommandBuffer commandBuffer);
- void DefragmentationEnd(
- class VmaBlockVectorDefragmentationContext *pCtx,
- VmaDefragmentationStats *pStats);
-
- ////////////////////////////////////////////////////////////////////////////////
- // To be used only while the m_Mutex is locked. Used during defragmentation.
-
- size_t GetBlockCount() const { return m_Blocks.size(); }
- VmaDeviceMemoryBlock *GetBlock(size_t index) const { return m_Blocks[index]; }
- size_t CalcAllocationCount() const;
- bool IsBufferImageGranularityConflictPossible() const;
-
-private:
- friend class VmaDefragmentationAlgorithm_Generic;
-
- const VmaAllocator m_hAllocator;
- const VmaPool m_hParentPool;
- const uint32_t m_MemoryTypeIndex;
- const VkDeviceSize m_PreferredBlockSize;
- const size_t m_MinBlockCount;
- const size_t m_MaxBlockCount;
- const VkDeviceSize m_BufferImageGranularity;
- const uint32_t m_FrameInUseCount;
- const bool m_IsCustomPool;
- const bool m_ExplicitBlockSize;
- const uint32_t m_Algorithm;
- /* There can be at most one allocation that is completely empty - a
- hysteresis to avoid pessimistic case of alternating creation and destruction
- of a VkDeviceMemory. */
- bool m_HasEmptyBlock;
- VMA_RW_MUTEX m_Mutex;
- // Incrementally sorted by sumFreeSize, ascending.
- VmaVector<VmaDeviceMemoryBlock *, VmaStlAllocator<VmaDeviceMemoryBlock *> > m_Blocks;
- uint32_t m_NextBlockId;
-
- VkDeviceSize CalcMaxBlockSize() const;
-
- // Finds and removes given block from vector.
- void Remove(VmaDeviceMemoryBlock *pBlock);
-
- // Performs single step in sorting m_Blocks. They may not be fully sorted
- // after this call.
- void IncrementallySortBlocks();
-
- VkResult AllocatePage(
- uint32_t currentFrameIndex,
- VkDeviceSize size,
- VkDeviceSize alignment,
- const VmaAllocationCreateInfo &createInfo,
- VmaSuballocationType suballocType,
- VmaAllocation *pAllocation);
-
- // To be used only without CAN_MAKE_OTHER_LOST flag.
- VkResult AllocateFromBlock(
- VmaDeviceMemoryBlock *pBlock,
- uint32_t currentFrameIndex,
- VkDeviceSize size,
- VkDeviceSize alignment,
- VmaAllocationCreateFlags allocFlags,
- void *pUserData,
- VmaSuballocationType suballocType,
- uint32_t strategy,
- VmaAllocation *pAllocation);
-
- VkResult CreateBlock(VkDeviceSize blockSize, size_t *pNewBlockIndex);
-
- // Saves result to pCtx->res.
- void ApplyDefragmentationMovesCpu(
- class VmaBlockVectorDefragmentationContext *pDefragCtx,
- const VmaVector<VmaDefragmentationMove, VmaStlAllocator<VmaDefragmentationMove> > &moves);
- // Saves result to pCtx->res.
- void ApplyDefragmentationMovesGpu(
- class VmaBlockVectorDefragmentationContext *pDefragCtx,
- const VmaVector<VmaDefragmentationMove, VmaStlAllocator<VmaDefragmentationMove> > &moves,
- VkCommandBuffer commandBuffer);
-
- /*
- Used during defragmentation. pDefragmentationStats is optional. It's in/out
- - updated with new data.
- */
- void FreeEmptyBlocks(VmaDefragmentationStats *pDefragmentationStats);
-};
-
-struct VmaPool_T {
- VMA_CLASS_NO_COPY(VmaPool_T)
-public:
- VmaBlockVector m_BlockVector;
-
- VmaPool_T(
- VmaAllocator hAllocator,
- const VmaPoolCreateInfo &createInfo,
- VkDeviceSize preferredBlockSize);
- ~VmaPool_T();
-
- uint32_t GetId() const { return m_Id; }
- void SetId(uint32_t id) {
- VMA_ASSERT(m_Id == 0);
- m_Id = id;
- }
-
-#if VMA_STATS_STRING_ENABLED
- //void PrintDetailedMap(class VmaStringBuilder& sb);
-#endif
-
-private:
- uint32_t m_Id;
-};
-
-/*
-Performs defragmentation:
-
-- Updates `pBlockVector->m_pMetadata`.
-- Updates allocations by calling ChangeBlockAllocation() or ChangeOffset().
-- Does not move actual data, only returns requested moves as `moves`.
-*/
-class VmaDefragmentationAlgorithm {
- VMA_CLASS_NO_COPY(VmaDefragmentationAlgorithm)
-public:
- VmaDefragmentationAlgorithm(
- VmaAllocator hAllocator,
- VmaBlockVector *pBlockVector,
- uint32_t currentFrameIndex) :
- m_hAllocator(hAllocator),
- m_pBlockVector(pBlockVector),
- m_CurrentFrameIndex(currentFrameIndex) {
- }
- virtual ~VmaDefragmentationAlgorithm() {
- }
-
- virtual void AddAllocation(VmaAllocation hAlloc, VkBool32 *pChanged) = 0;
- virtual void AddAll() = 0;
-
- virtual VkResult Defragment(
- VmaVector<VmaDefragmentationMove, VmaStlAllocator<VmaDefragmentationMove> > &moves,
- VkDeviceSize maxBytesToMove,
- uint32_t maxAllocationsToMove) = 0;
-
- virtual VkDeviceSize GetBytesMoved() const = 0;
- virtual uint32_t GetAllocationsMoved() const = 0;
-
-protected:
- VmaAllocator const m_hAllocator;
- VmaBlockVector *const m_pBlockVector;
- const uint32_t m_CurrentFrameIndex;
-
- struct AllocationInfo {
- VmaAllocation m_hAllocation;
- VkBool32 *m_pChanged;
-
- AllocationInfo() :
- m_hAllocation(VK_NULL_HANDLE),
- m_pChanged(VMA_NULL) {
- }
- AllocationInfo(VmaAllocation hAlloc, VkBool32 *pChanged) :
- m_hAllocation(hAlloc),
- m_pChanged(pChanged) {
- }
- };
-};
-
-class VmaDefragmentationAlgorithm_Generic : public VmaDefragmentationAlgorithm {
- VMA_CLASS_NO_COPY(VmaDefragmentationAlgorithm_Generic)
-public:
- VmaDefragmentationAlgorithm_Generic(
- VmaAllocator hAllocator,
- VmaBlockVector *pBlockVector,
- uint32_t currentFrameIndex,
- bool overlappingMoveSupported);
- virtual ~VmaDefragmentationAlgorithm_Generic();
-
- virtual void AddAllocation(VmaAllocation hAlloc, VkBool32 *pChanged);
- virtual void AddAll() { m_AllAllocations = true; }
-
- virtual VkResult Defragment(
- VmaVector<VmaDefragmentationMove, VmaStlAllocator<VmaDefragmentationMove> > &moves,
- VkDeviceSize maxBytesToMove,
- uint32_t maxAllocationsToMove);
-
- virtual VkDeviceSize GetBytesMoved() const { return m_BytesMoved; }
- virtual uint32_t GetAllocationsMoved() const { return m_AllocationsMoved; }
-
-private:
- uint32_t m_AllocationCount;
- bool m_AllAllocations;
-
- VkDeviceSize m_BytesMoved;
- uint32_t m_AllocationsMoved;
-
- struct AllocationInfoSizeGreater {
- bool operator()(const AllocationInfo &lhs, const AllocationInfo &rhs) const {
- return lhs.m_hAllocation->GetSize() > rhs.m_hAllocation->GetSize();
- }
- };
-
- struct AllocationInfoOffsetGreater {
- bool operator()(const AllocationInfo &lhs, const AllocationInfo &rhs) const {
- return lhs.m_hAllocation->GetOffset() > rhs.m_hAllocation->GetOffset();
- }
- };
-
- struct BlockInfo {
- size_t m_OriginalBlockIndex;
- VmaDeviceMemoryBlock *m_pBlock;
- bool m_HasNonMovableAllocations;
- VmaVector<AllocationInfo, VmaStlAllocator<AllocationInfo> > m_Allocations;
-
- BlockInfo(const VkAllocationCallbacks *pAllocationCallbacks) :
- m_OriginalBlockIndex(SIZE_MAX),
- m_pBlock(VMA_NULL),
- m_HasNonMovableAllocations(true),
- m_Allocations(pAllocationCallbacks) {
- }
-
- void CalcHasNonMovableAllocations() {
- const size_t blockAllocCount = m_pBlock->m_pMetadata->GetAllocationCount();
- const size_t defragmentAllocCount = m_Allocations.size();
- m_HasNonMovableAllocations = blockAllocCount != defragmentAllocCount;
- }
-
- void SortAllocationsBySizeDescending() {
- VMA_SORT(m_Allocations.begin(), m_Allocations.end(), AllocationInfoSizeGreater());
- }
-
- void SortAllocationsByOffsetDescending() {
- VMA_SORT(m_Allocations.begin(), m_Allocations.end(), AllocationInfoOffsetGreater());
- }
- };
-
- struct BlockPointerLess {
- bool operator()(const BlockInfo *pLhsBlockInfo, const VmaDeviceMemoryBlock *pRhsBlock) const {
- return pLhsBlockInfo->m_pBlock < pRhsBlock;
- }
- bool operator()(const BlockInfo *pLhsBlockInfo, const BlockInfo *pRhsBlockInfo) const {
- return pLhsBlockInfo->m_pBlock < pRhsBlockInfo->m_pBlock;
- }
- };
-
- // 1. Blocks with some non-movable allocations go first.
- // 2. Blocks with smaller sumFreeSize go first.
- struct BlockInfoCompareMoveDestination {
- bool operator()(const BlockInfo *pLhsBlockInfo, const BlockInfo *pRhsBlockInfo) const {
- if (pLhsBlockInfo->m_HasNonMovableAllocations && !pRhsBlockInfo->m_HasNonMovableAllocations) {
- return true;
- }
- if (!pLhsBlockInfo->m_HasNonMovableAllocations && pRhsBlockInfo->m_HasNonMovableAllocations) {
- return false;
- }
- if (pLhsBlockInfo->m_pBlock->m_pMetadata->GetSumFreeSize() < pRhsBlockInfo->m_pBlock->m_pMetadata->GetSumFreeSize()) {
- return true;
- }
- return false;
- }
- };
-
- typedef VmaVector<BlockInfo *, VmaStlAllocator<BlockInfo *> > BlockInfoVector;
- BlockInfoVector m_Blocks;
-
- VkResult DefragmentRound(
- VmaVector<VmaDefragmentationMove, VmaStlAllocator<VmaDefragmentationMove> > &moves,
- VkDeviceSize maxBytesToMove,
- uint32_t maxAllocationsToMove);
-
- size_t CalcBlocksWithNonMovableCount() const;
-
- static bool MoveMakesSense(
- size_t dstBlockIndex, VkDeviceSize dstOffset,
- size_t srcBlockIndex, VkDeviceSize srcOffset);
-};
-
-class VmaDefragmentationAlgorithm_Fast : public VmaDefragmentationAlgorithm {
- VMA_CLASS_NO_COPY(VmaDefragmentationAlgorithm_Fast)
-public:
- VmaDefragmentationAlgorithm_Fast(
- VmaAllocator hAllocator,
- VmaBlockVector *pBlockVector,
- uint32_t currentFrameIndex,
- bool overlappingMoveSupported);
- virtual ~VmaDefragmentationAlgorithm_Fast();
-
- virtual void AddAllocation(VmaAllocation hAlloc, VkBool32 *pChanged) { ++m_AllocationCount; }
- virtual void AddAll() { m_AllAllocations = true; }
-
- virtual VkResult Defragment(
- VmaVector<VmaDefragmentationMove, VmaStlAllocator<VmaDefragmentationMove> > &moves,
- VkDeviceSize maxBytesToMove,
- uint32_t maxAllocationsToMove);
-
- virtual VkDeviceSize GetBytesMoved() const { return m_BytesMoved; }
- virtual uint32_t GetAllocationsMoved() const { return m_AllocationsMoved; }
-
-private:
- struct BlockInfo {
- size_t origBlockIndex;
- };
-
- class FreeSpaceDatabase {
- public:
- FreeSpaceDatabase() {
- FreeSpace s = {};
- s.blockInfoIndex = SIZE_MAX;
- for (size_t i = 0; i < MAX_COUNT; ++i) {
- m_FreeSpaces[i] = s;
- }
- }
-
- void Register(size_t blockInfoIndex, VkDeviceSize offset, VkDeviceSize size) {
- if (size < VMA_MIN_FREE_SUBALLOCATION_SIZE_TO_REGISTER) {
- return;
- }
-
- // Find first invalid or the smallest structure.
- size_t bestIndex = SIZE_MAX;
- for (size_t i = 0; i < MAX_COUNT; ++i) {
- // Empty structure.
- if (m_FreeSpaces[i].blockInfoIndex == SIZE_MAX) {
- bestIndex = i;
- break;
- }
- if (m_FreeSpaces[i].size < size &&
- (bestIndex == SIZE_MAX || m_FreeSpaces[bestIndex].size > m_FreeSpaces[i].size)) {
- bestIndex = i;
- }
- }
-
- if (bestIndex != SIZE_MAX) {
- m_FreeSpaces[bestIndex].blockInfoIndex = blockInfoIndex;
- m_FreeSpaces[bestIndex].offset = offset;
- m_FreeSpaces[bestIndex].size = size;
- }
- }
-
- bool Fetch(VkDeviceSize alignment, VkDeviceSize size,
- size_t &outBlockInfoIndex, VkDeviceSize &outDstOffset) {
- size_t bestIndex = SIZE_MAX;
- VkDeviceSize bestFreeSpaceAfter = 0;
- for (size_t i = 0; i < MAX_COUNT; ++i) {
- // Structure is valid.
- if (m_FreeSpaces[i].blockInfoIndex != SIZE_MAX) {
- const VkDeviceSize dstOffset = VmaAlignUp(m_FreeSpaces[i].offset, alignment);
- // Allocation fits into this structure.
- if (dstOffset + size <= m_FreeSpaces[i].offset + m_FreeSpaces[i].size) {
- const VkDeviceSize freeSpaceAfter = (m_FreeSpaces[i].offset + m_FreeSpaces[i].size) -
- (dstOffset + size);
- if (bestIndex == SIZE_MAX || freeSpaceAfter > bestFreeSpaceAfter) {
- bestIndex = i;
- bestFreeSpaceAfter = freeSpaceAfter;
- }
- }
- }
- }
-
- if (bestIndex != SIZE_MAX) {
- outBlockInfoIndex = m_FreeSpaces[bestIndex].blockInfoIndex;
- outDstOffset = VmaAlignUp(m_FreeSpaces[bestIndex].offset, alignment);
-
- if (bestFreeSpaceAfter >= VMA_MIN_FREE_SUBALLOCATION_SIZE_TO_REGISTER) {
- // Leave this structure for remaining empty space.
- const VkDeviceSize alignmentPlusSize = (outDstOffset - m_FreeSpaces[bestIndex].offset) + size;
- m_FreeSpaces[bestIndex].offset += alignmentPlusSize;
- m_FreeSpaces[bestIndex].size -= alignmentPlusSize;
- } else {
- // This structure becomes invalid.
- m_FreeSpaces[bestIndex].blockInfoIndex = SIZE_MAX;
- }
-
- return true;
- }
-
- return false;
- }
-
- private:
- static const size_t MAX_COUNT = 4;
-
- struct FreeSpace {
- size_t blockInfoIndex; // SIZE_MAX means this structure is invalid.
- VkDeviceSize offset;
- VkDeviceSize size;
- } m_FreeSpaces[MAX_COUNT];
- };
-
- const bool m_OverlappingMoveSupported;
-
- uint32_t m_AllocationCount;
- bool m_AllAllocations;
-
- VkDeviceSize m_BytesMoved;
- uint32_t m_AllocationsMoved;
-
- VmaVector<BlockInfo, VmaStlAllocator<BlockInfo> > m_BlockInfos;
-
- void PreprocessMetadata();
- void PostprocessMetadata();
- void InsertSuballoc(VmaBlockMetadata_Generic *pMetadata, const VmaSuballocation &suballoc);
-};
-
-struct VmaBlockDefragmentationContext {
- enum BLOCK_FLAG {
- BLOCK_FLAG_USED = 0x00000001,
- };
- uint32_t flags;
- VkBuffer hBuffer;
-
- VmaBlockDefragmentationContext() :
- flags(0),
- hBuffer(VK_NULL_HANDLE) {
- }
-};
-
-class VmaBlockVectorDefragmentationContext {
- VMA_CLASS_NO_COPY(VmaBlockVectorDefragmentationContext)
-public:
- VkResult res;
- bool mutexLocked;
- VmaVector<VmaBlockDefragmentationContext, VmaStlAllocator<VmaBlockDefragmentationContext> > blockContexts;
-
- VmaBlockVectorDefragmentationContext(
- VmaAllocator hAllocator,
- VmaPool hCustomPool, // Optional.
- VmaBlockVector *pBlockVector,
- uint32_t currFrameIndex,
- uint32_t flags);
- ~VmaBlockVectorDefragmentationContext();
-
- VmaPool GetCustomPool() const { return m_hCustomPool; }
- VmaBlockVector *GetBlockVector() const { return m_pBlockVector; }
- VmaDefragmentationAlgorithm *GetAlgorithm() const { return m_pAlgorithm; }
-
- void AddAllocation(VmaAllocation hAlloc, VkBool32 *pChanged);
- void AddAll() { m_AllAllocations = true; }
-
- void Begin(bool overlappingMoveSupported);
-
-private:
- const VmaAllocator m_hAllocator;
- // Null if not from custom pool.
- const VmaPool m_hCustomPool;
- // Redundant, for convenience not to fetch from m_hCustomPool->m_BlockVector or m_hAllocator->m_pBlockVectors.
- VmaBlockVector *const m_pBlockVector;
- const uint32_t m_CurrFrameIndex;
- const uint32_t m_AlgorithmFlags;
- // Owner of this object.
- VmaDefragmentationAlgorithm *m_pAlgorithm;
-
- struct AllocInfo {
- VmaAllocation hAlloc;
- VkBool32 *pChanged;
- };
- // Used between constructor and Begin.
- VmaVector<AllocInfo, VmaStlAllocator<AllocInfo> > m_Allocations;
- bool m_AllAllocations;
-};
-
-struct VmaDefragmentationContext_T {
-private:
- VMA_CLASS_NO_COPY(VmaDefragmentationContext_T)
-public:
- VmaDefragmentationContext_T(
- VmaAllocator hAllocator,
- uint32_t currFrameIndex,
- uint32_t flags,
- VmaDefragmentationStats *pStats);
- ~VmaDefragmentationContext_T();
-
- void AddPools(uint32_t poolCount, VmaPool *pPools);
- void AddAllocations(
- uint32_t allocationCount,
- VmaAllocation *pAllocations,
- VkBool32 *pAllocationsChanged);
-
- /*
- Returns:
- - `VK_SUCCESS` if succeeded and object can be destroyed immediately.
- - `VK_NOT_READY` if succeeded but the object must remain alive until vmaDefragmentationEnd().
- - Negative value if error occured and object can be destroyed immediately.
- */
- VkResult Defragment(
- VkDeviceSize maxCpuBytesToMove, uint32_t maxCpuAllocationsToMove,
- VkDeviceSize maxGpuBytesToMove, uint32_t maxGpuAllocationsToMove,
- VkCommandBuffer commandBuffer, VmaDefragmentationStats *pStats);
-
-private:
- const VmaAllocator m_hAllocator;
- const uint32_t m_CurrFrameIndex;
- const uint32_t m_Flags;
- VmaDefragmentationStats *const m_pStats;
- // Owner of these objects.
- VmaBlockVectorDefragmentationContext *m_DefaultPoolContexts[VK_MAX_MEMORY_TYPES];
- // Owner of these objects.
- VmaVector<VmaBlockVectorDefragmentationContext *, VmaStlAllocator<VmaBlockVectorDefragmentationContext *> > m_CustomPoolContexts;
-};
-
-#if VMA_RECORDING_ENABLED
-
-class VmaRecorder {
-public:
- VmaRecorder();
- VkResult Init(const VmaRecordSettings &settings, bool useMutex);
- void WriteConfiguration(
- const VkPhysicalDeviceProperties &devProps,
- const VkPhysicalDeviceMemoryProperties &memProps,
- bool dedicatedAllocationExtensionEnabled);
- ~VmaRecorder();
-
- void RecordCreateAllocator(uint32_t frameIndex);
- void RecordDestroyAllocator(uint32_t frameIndex);
- void RecordCreatePool(uint32_t frameIndex,
- const VmaPoolCreateInfo &createInfo,
- VmaPool pool);
- void RecordDestroyPool(uint32_t frameIndex, VmaPool pool);
- void RecordAllocateMemory(uint32_t frameIndex,
- const VkMemoryRequirements &vkMemReq,
- const VmaAllocationCreateInfo &createInfo,
- VmaAllocation allocation);
- void RecordAllocateMemoryPages(uint32_t frameIndex,
- const VkMemoryRequirements &vkMemReq,
- const VmaAllocationCreateInfo &createInfo,
- uint64_t allocationCount,
- const VmaAllocation *pAllocations);
- void RecordAllocateMemoryForBuffer(uint32_t frameIndex,
- const VkMemoryRequirements &vkMemReq,
- bool requiresDedicatedAllocation,
- bool prefersDedicatedAllocation,
- const VmaAllocationCreateInfo &createInfo,
- VmaAllocation allocation);
- void RecordAllocateMemoryForImage(uint32_t frameIndex,
- const VkMemoryRequirements &vkMemReq,
- bool requiresDedicatedAllocation,
- bool prefersDedicatedAllocation,
- const VmaAllocationCreateInfo &createInfo,
- VmaAllocation allocation);
- void RecordFreeMemory(uint32_t frameIndex,
- VmaAllocation allocation);
- void RecordFreeMemoryPages(uint32_t frameIndex,
- uint64_t allocationCount,
- const VmaAllocation *pAllocations);
- void RecordResizeAllocation(
- uint32_t frameIndex,
- VmaAllocation allocation,
- VkDeviceSize newSize);
- void RecordSetAllocationUserData(uint32_t frameIndex,
- VmaAllocation allocation,
- const void *pUserData);
- void RecordCreateLostAllocation(uint32_t frameIndex,
- VmaAllocation allocation);
- void RecordMapMemory(uint32_t frameIndex,
- VmaAllocation allocation);
- void RecordUnmapMemory(uint32_t frameIndex,
- VmaAllocation allocation);
- void RecordFlushAllocation(uint32_t frameIndex,
- VmaAllocation allocation, VkDeviceSize offset, VkDeviceSize size);
- void RecordInvalidateAllocation(uint32_t frameIndex,
- VmaAllocation allocation, VkDeviceSize offset, VkDeviceSize size);
- void RecordCreateBuffer(uint32_t frameIndex,
- const VkBufferCreateInfo &bufCreateInfo,
- const VmaAllocationCreateInfo &allocCreateInfo,
- VmaAllocation allocation);
- void RecordCreateImage(uint32_t frameIndex,
- const VkImageCreateInfo &imageCreateInfo,
- const VmaAllocationCreateInfo &allocCreateInfo,
- VmaAllocation allocation);
- void RecordDestroyBuffer(uint32_t frameIndex,
- VmaAllocation allocation);
- void RecordDestroyImage(uint32_t frameIndex,
- VmaAllocation allocation);
- void RecordTouchAllocation(uint32_t frameIndex,
- VmaAllocation allocation);
- void RecordGetAllocationInfo(uint32_t frameIndex,
- VmaAllocation allocation);
- void RecordMakePoolAllocationsLost(uint32_t frameIndex,
- VmaPool pool);
- void RecordDefragmentationBegin(uint32_t frameIndex,
- const VmaDefragmentationInfo2 &info,
- VmaDefragmentationContext ctx);
- void RecordDefragmentationEnd(uint32_t frameIndex,
- VmaDefragmentationContext ctx);
-
-private:
- struct CallParams {
- uint32_t threadId;
- double time;
- };
-
- class UserDataString {
- public:
- UserDataString(VmaAllocationCreateFlags allocFlags, const void *pUserData);
- const char *GetString() const { return m_Str; }
-
- private:
- char m_PtrStr[17];
- const char *m_Str;
- };
-
- bool m_UseMutex;
- VmaRecordFlags m_Flags;
- FILE *m_File;
- VMA_MUTEX m_FileMutex;
- int64_t m_Freq;
- int64_t m_StartCounter;
-
- void GetBasicParams(CallParams &outParams);
-
- // T must be a pointer type, e.g. VmaAllocation, VmaPool.
- template <typename T>
- void PrintPointerList(uint64_t count, const T *pItems) {
- if (count) {
- fprintf(m_File, "%p", pItems[0]);
- for (uint64_t i = 1; i < count; ++i) {
- fprintf(m_File, " %p", pItems[i]);
- }
- }
- }
-
- void PrintPointerList(uint64_t count, const VmaAllocation *pItems);
- void Flush();
-};
-
-#endif // #if VMA_RECORDING_ENABLED
-
-/*
-Thread-safe wrapper over VmaPoolAllocator free list, for allocation of VmaAllocation_T objects.
-*/
-class VmaAllocationObjectAllocator {
- VMA_CLASS_NO_COPY(VmaAllocationObjectAllocator)
-public:
- VmaAllocationObjectAllocator(const VkAllocationCallbacks *pAllocationCallbacks);
-
- VmaAllocation Allocate();
- void Free(VmaAllocation hAlloc);
-
-private:
- VMA_MUTEX m_Mutex;
- VmaPoolAllocator<VmaAllocation_T> m_Allocator;
-};
-
-// Main allocator object.
-struct VmaAllocator_T {
- VMA_CLASS_NO_COPY(VmaAllocator_T)
-public:
- bool m_UseMutex;
- bool m_UseKhrDedicatedAllocation;
- VkDevice m_hDevice;
- bool m_AllocationCallbacksSpecified;
- VkAllocationCallbacks m_AllocationCallbacks;
- VmaDeviceMemoryCallbacks m_DeviceMemoryCallbacks;
- VmaAllocationObjectAllocator m_AllocationObjectAllocator;
-
- // Number of bytes free out of limit, or VK_WHOLE_SIZE if no limit for that heap.
- VkDeviceSize m_HeapSizeLimit[VK_MAX_MEMORY_HEAPS];
- VMA_MUTEX m_HeapSizeLimitMutex;
-
- VkPhysicalDeviceProperties m_PhysicalDeviceProperties;
- VkPhysicalDeviceMemoryProperties m_MemProps;
-
- // Default pools.
- VmaBlockVector *m_pBlockVectors[VK_MAX_MEMORY_TYPES];
-
- // Each vector is sorted by memory (handle value).
- typedef VmaVector<VmaAllocation, VmaStlAllocator<VmaAllocation> > AllocationVectorType;
- AllocationVectorType *m_pDedicatedAllocations[VK_MAX_MEMORY_TYPES];
- VMA_RW_MUTEX m_DedicatedAllocationsMutex[VK_MAX_MEMORY_TYPES];
-
- VmaAllocator_T(const VmaAllocatorCreateInfo *pCreateInfo);
- VkResult Init(const VmaAllocatorCreateInfo *pCreateInfo);
- ~VmaAllocator_T();
-
- const VkAllocationCallbacks *GetAllocationCallbacks() const {
- return m_AllocationCallbacksSpecified ? &m_AllocationCallbacks : 0;
- }
- const VmaVulkanFunctions &GetVulkanFunctions() const {
- return m_VulkanFunctions;
- }
-
- VkDeviceSize GetBufferImageGranularity() const {
- return VMA_MAX(
- static_cast<VkDeviceSize>(VMA_DEBUG_MIN_BUFFER_IMAGE_GRANULARITY),
- m_PhysicalDeviceProperties.limits.bufferImageGranularity);
- }
-
- uint32_t GetMemoryHeapCount() const { return m_MemProps.memoryHeapCount; }
- uint32_t GetMemoryTypeCount() const { return m_MemProps.memoryTypeCount; }
-
- uint32_t MemoryTypeIndexToHeapIndex(uint32_t memTypeIndex) const {
- VMA_ASSERT(memTypeIndex < m_MemProps.memoryTypeCount);
- return m_MemProps.memoryTypes[memTypeIndex].heapIndex;
- }
- // True when specific memory type is HOST_VISIBLE but not HOST_COHERENT.
- bool IsMemoryTypeNonCoherent(uint32_t memTypeIndex) const {
- return (m_MemProps.memoryTypes[memTypeIndex].propertyFlags & (VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT)) ==
- VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT;
- }
- // Minimum alignment for all allocations in specific memory type.
- VkDeviceSize GetMemoryTypeMinAlignment(uint32_t memTypeIndex) const {
- return IsMemoryTypeNonCoherent(memTypeIndex) ?
- VMA_MAX((VkDeviceSize)VMA_DEBUG_ALIGNMENT, m_PhysicalDeviceProperties.limits.nonCoherentAtomSize) :
- (VkDeviceSize)VMA_DEBUG_ALIGNMENT;
- }
-
- bool IsIntegratedGpu() const {
- return m_PhysicalDeviceProperties.deviceType == VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU;
- }
-
-#if VMA_RECORDING_ENABLED
- VmaRecorder *GetRecorder() const { return m_pRecorder; }
-#endif
-
- void GetBufferMemoryRequirements(
- VkBuffer hBuffer,
- VkMemoryRequirements &memReq,
- bool &requiresDedicatedAllocation,
- bool &prefersDedicatedAllocation) const;
- void GetImageMemoryRequirements(
- VkImage hImage,
- VkMemoryRequirements &memReq,
- bool &requiresDedicatedAllocation,
- bool &prefersDedicatedAllocation) const;
-
- // Main allocation function.
- VkResult AllocateMemory(
- const VkMemoryRequirements &vkMemReq,
- bool requiresDedicatedAllocation,
- bool prefersDedicatedAllocation,
- VkBuffer dedicatedBuffer,
- VkImage dedicatedImage,
- const VmaAllocationCreateInfo &createInfo,
- VmaSuballocationType suballocType,
- size_t allocationCount,
- VmaAllocation *pAllocations);
-
- // Main deallocation function.
- void FreeMemory(
- size_t allocationCount,
- const VmaAllocation *pAllocations);
-
- VkResult ResizeAllocation(
- const VmaAllocation alloc,
- VkDeviceSize newSize);
-
- void CalculateStats(VmaStats *pStats);
-
-#if VMA_STATS_STRING_ENABLED
- void PrintDetailedMap(class VmaJsonWriter &json);
-#endif
-
- VkResult DefragmentationBegin(
- const VmaDefragmentationInfo2 &info,
- VmaDefragmentationStats *pStats,
- VmaDefragmentationContext *pContext);
- VkResult DefragmentationEnd(
- VmaDefragmentationContext context);
-
- void GetAllocationInfo(VmaAllocation hAllocation, VmaAllocationInfo *pAllocationInfo);
- bool TouchAllocation(VmaAllocation hAllocation);
-
- VkResult CreatePool(const VmaPoolCreateInfo *pCreateInfo, VmaPool *pPool);
- void DestroyPool(VmaPool pool);
- void GetPoolStats(VmaPool pool, VmaPoolStats *pPoolStats);
-
- void SetCurrentFrameIndex(uint32_t frameIndex);
- uint32_t GetCurrentFrameIndex() const { return m_CurrentFrameIndex.load(); }
-
- void MakePoolAllocationsLost(
- VmaPool hPool,
- size_t *pLostAllocationCount);
- VkResult CheckPoolCorruption(VmaPool hPool);
- VkResult CheckCorruption(uint32_t memoryTypeBits);
-
- void CreateLostAllocation(VmaAllocation *pAllocation);
-
- VkResult AllocateVulkanMemory(const VkMemoryAllocateInfo *pAllocateInfo, VkDeviceMemory *pMemory);
- void FreeVulkanMemory(uint32_t memoryType, VkDeviceSize size, VkDeviceMemory hMemory);
-
- VkResult Map(VmaAllocation hAllocation, void **ppData);
- void Unmap(VmaAllocation hAllocation);
-
- VkResult BindBufferMemory(VmaAllocation hAllocation, VkBuffer hBuffer);
- VkResult BindImageMemory(VmaAllocation hAllocation, VkImage hImage);
-
- void FlushOrInvalidateAllocation(
- VmaAllocation hAllocation,
- VkDeviceSize offset, VkDeviceSize size,
- VMA_CACHE_OPERATION op);
-
- void FillAllocation(const VmaAllocation hAllocation, uint8_t pattern);
-
- /*
- Returns bit mask of memory types that can support defragmentation on GPU as
- they support creation of required buffer for copy operations.
- */
- uint32_t GetGpuDefragmentationMemoryTypeBits();
-
-private:
- VkDeviceSize m_PreferredLargeHeapBlockSize;
-
- VkPhysicalDevice m_PhysicalDevice;
- VMA_ATOMIC_UINT32 m_CurrentFrameIndex;
- VMA_ATOMIC_UINT32 m_GpuDefragmentationMemoryTypeBits; // UINT32_MAX means uninitialized.
-
- VMA_RW_MUTEX m_PoolsMutex;
- // Protected by m_PoolsMutex. Sorted by pointer value.
- VmaVector<VmaPool, VmaStlAllocator<VmaPool> > m_Pools;
- uint32_t m_NextPoolId;
-
- VmaVulkanFunctions m_VulkanFunctions;
-
-#if VMA_RECORDING_ENABLED
- VmaRecorder *m_pRecorder;
-#endif
-
- void ImportVulkanFunctions(const VmaVulkanFunctions *pVulkanFunctions);
-
- VkDeviceSize CalcPreferredBlockSize(uint32_t memTypeIndex);
-
- VkResult AllocateMemoryOfType(
- VkDeviceSize size,
- VkDeviceSize alignment,
- bool dedicatedAllocation,
- VkBuffer dedicatedBuffer,
- VkImage dedicatedImage,
- const VmaAllocationCreateInfo &createInfo,
- uint32_t memTypeIndex,
- VmaSuballocationType suballocType,
- size_t allocationCount,
- VmaAllocation *pAllocations);
-
- // Helper function only to be used inside AllocateDedicatedMemory.
- VkResult AllocateDedicatedMemoryPage(
- VkDeviceSize size,
- VmaSuballocationType suballocType,
- uint32_t memTypeIndex,
- const VkMemoryAllocateInfo &allocInfo,
- bool map,
- bool isUserDataString,
- void *pUserData,
- VmaAllocation *pAllocation);
-
- // Allocates and registers new VkDeviceMemory specifically for dedicated allocations.
- VkResult AllocateDedicatedMemory(
- VkDeviceSize size,
- VmaSuballocationType suballocType,
- uint32_t memTypeIndex,
- bool map,
- bool isUserDataString,
- void *pUserData,
- VkBuffer dedicatedBuffer,
- VkImage dedicatedImage,
- size_t allocationCount,
- VmaAllocation *pAllocations);
-
- // Tries to free pMemory as Dedicated Memory. Returns true if found and freed.
- void FreeDedicatedMemory(VmaAllocation allocation);
-
- /*
- Calculates and returns bit mask of memory types that can support defragmentation
- on GPU as they support creation of required buffer for copy operations.
- */
- uint32_t CalculateGpuDefragmentationMemoryTypeBits() const;
-};
-
-////////////////////////////////////////////////////////////////////////////////
-// Memory allocation #2 after VmaAllocator_T definition
-
-static void *VmaMalloc(VmaAllocator hAllocator, size_t size, size_t alignment) {
- return VmaMalloc(&hAllocator->m_AllocationCallbacks, size, alignment);
-}
-
-static void VmaFree(VmaAllocator hAllocator, void *ptr) {
- VmaFree(&hAllocator->m_AllocationCallbacks, ptr);
-}
-
-template <typename T>
-static T *VmaAllocate(VmaAllocator hAllocator) {
- return (T *)VmaMalloc(hAllocator, sizeof(T), VMA_ALIGN_OF(T));
-}
-
-template <typename T>
-static T *VmaAllocateArray(VmaAllocator hAllocator, size_t count) {
- return (T *)VmaMalloc(hAllocator, sizeof(T) * count, VMA_ALIGN_OF(T));
-}
-
-template <typename T>
-static void vma_delete(VmaAllocator hAllocator, T *ptr) {
- if (ptr != VMA_NULL) {
- ptr->~T();
- VmaFree(hAllocator, ptr);
- }
-}
-
-template <typename T>
-static void vma_delete_array(VmaAllocator hAllocator, T *ptr, size_t count) {
- if (ptr != VMA_NULL) {
- for (size_t i = count; i--;)
- ptr[i].~T();
- VmaFree(hAllocator, ptr);
- }
-}
-
-////////////////////////////////////////////////////////////////////////////////
-// VmaStringBuilder
-
-#if VMA_STATS_STRING_ENABLED
-
-class VmaStringBuilder {
-public:
- VmaStringBuilder(VmaAllocator alloc) :
- m_Data(VmaStlAllocator<char>(alloc->GetAllocationCallbacks())) {}
- size_t GetLength() const { return m_Data.size(); }
- const char *GetData() const { return m_Data.data(); }
-
- void Add(char ch) { m_Data.push_back(ch); }
- void Add(const char *pStr);
- void AddNewLine() { Add('\n'); }
- void AddNumber(uint32_t num);
- void AddNumber(uint64_t num);
- void AddPointer(const void *ptr);
-
-private:
- VmaVector<char, VmaStlAllocator<char> > m_Data;
-};
-
-void VmaStringBuilder::Add(const char *pStr) {
- const size_t strLen = strlen(pStr);
- if (strLen > 0) {
- const size_t oldCount = m_Data.size();
- m_Data.resize(oldCount + strLen);
- memcpy(m_Data.data() + oldCount, pStr, strLen);
- }
-}
-
-void VmaStringBuilder::AddNumber(uint32_t num) {
- char buf[11];
- VmaUint32ToStr(buf, sizeof(buf), num);
- Add(buf);
-}
-
-void VmaStringBuilder::AddNumber(uint64_t num) {
- char buf[21];
- VmaUint64ToStr(buf, sizeof(buf), num);
- Add(buf);
-}
-
-void VmaStringBuilder::AddPointer(const void *ptr) {
- char buf[21];
- VmaPtrToStr(buf, sizeof(buf), ptr);
- Add(buf);
-}
-
-#endif // #if VMA_STATS_STRING_ENABLED
-
-////////////////////////////////////////////////////////////////////////////////
-// VmaJsonWriter
-
-#if VMA_STATS_STRING_ENABLED
-
-class VmaJsonWriter {
- VMA_CLASS_NO_COPY(VmaJsonWriter)
-public:
- VmaJsonWriter(const VkAllocationCallbacks *pAllocationCallbacks, VmaStringBuilder &sb);
- ~VmaJsonWriter();
-
- void BeginObject(bool singleLine = false);
- void EndObject();
-
- void BeginArray(bool singleLine = false);
- void EndArray();
-
- void WriteString(const char *pStr);
- void BeginString(const char *pStr = VMA_NULL);
- void ContinueString(const char *pStr);
- void ContinueString(uint32_t n);
- void ContinueString(uint64_t n);
- void ContinueString_Pointer(const void *ptr);
- void EndString(const char *pStr = VMA_NULL);
-
- void WriteNumber(uint32_t n);
- void WriteNumber(uint64_t n);
- void WriteBool(bool b);
- void WriteNull();
-
-private:
- static const char *const INDENT;
-
- enum COLLECTION_TYPE {
- COLLECTION_TYPE_OBJECT,
- COLLECTION_TYPE_ARRAY,
- };
- struct StackItem {
- COLLECTION_TYPE type;
- uint32_t valueCount;
- bool singleLineMode;
- };
-
- VmaStringBuilder &m_SB;
- VmaVector<StackItem, VmaStlAllocator<StackItem> > m_Stack;
- bool m_InsideString;
-
- void BeginValue(bool isString);
- void WriteIndent(bool oneLess = false);
-};
-
-const char *const VmaJsonWriter::INDENT = " ";
-
-VmaJsonWriter::VmaJsonWriter(const VkAllocationCallbacks *pAllocationCallbacks, VmaStringBuilder &sb) :
- m_SB(sb),
- m_Stack(VmaStlAllocator<StackItem>(pAllocationCallbacks)),
- m_InsideString(false) {
-}
-
-VmaJsonWriter::~VmaJsonWriter() {
- VMA_ASSERT(!m_InsideString);
- VMA_ASSERT(m_Stack.empty());
-}
-
-void VmaJsonWriter::BeginObject(bool singleLine) {
- VMA_ASSERT(!m_InsideString);
-
- BeginValue(false);
- m_SB.Add('{');
-
- StackItem item;
- item.type = COLLECTION_TYPE_OBJECT;
- item.valueCount = 0;
- item.singleLineMode = singleLine;
- m_Stack.push_back(item);
-}
-
-void VmaJsonWriter::EndObject() {
- VMA_ASSERT(!m_InsideString);
-
- WriteIndent(true);
- m_SB.Add('}');
-
- VMA_ASSERT(!m_Stack.empty() && m_Stack.back().type == COLLECTION_TYPE_OBJECT);
- m_Stack.pop_back();
-}
-
-void VmaJsonWriter::BeginArray(bool singleLine) {
- VMA_ASSERT(!m_InsideString);
-
- BeginValue(false);
- m_SB.Add('[');
-
- StackItem item;
- item.type = COLLECTION_TYPE_ARRAY;
- item.valueCount = 0;
- item.singleLineMode = singleLine;
- m_Stack.push_back(item);
-}
-
-void VmaJsonWriter::EndArray() {
- VMA_ASSERT(!m_InsideString);
-
- WriteIndent(true);
- m_SB.Add(']');
-
- VMA_ASSERT(!m_Stack.empty() && m_Stack.back().type == COLLECTION_TYPE_ARRAY);
- m_Stack.pop_back();
-}
-
-void VmaJsonWriter::WriteString(const char *pStr) {
- BeginString(pStr);
- EndString();
-}
-
-void VmaJsonWriter::BeginString(const char *pStr) {
- VMA_ASSERT(!m_InsideString);
-
- BeginValue(true);
- m_SB.Add('"');
- m_InsideString = true;
- if (pStr != VMA_NULL && pStr[0] != '\0') {
- ContinueString(pStr);
- }
-}
-
-void VmaJsonWriter::ContinueString(const char *pStr) {
- VMA_ASSERT(m_InsideString);
-
- const size_t strLen = strlen(pStr);
- for (size_t i = 0; i < strLen; ++i) {
- char ch = pStr[i];
- if (ch == '\\') {
- m_SB.Add("\\\\");
- } else if (ch == '"') {
- m_SB.Add("\\\"");
- } else if (ch >= 32) {
- m_SB.Add(ch);
- } else
- switch (ch) {
- case '\b':
- m_SB.Add("\\b");
- break;
- case '\f':
- m_SB.Add("\\f");
- break;
- case '\n':
- m_SB.Add("\\n");
- break;
- case '\r':
- m_SB.Add("\\r");
- break;
- case '\t':
- m_SB.Add("\\t");
- break;
- default:
- VMA_ASSERT(0 && "Character not currently supported.");
- break;
- }
- }
-}
-
-void VmaJsonWriter::ContinueString(uint32_t n) {
- VMA_ASSERT(m_InsideString);
- m_SB.AddNumber(n);
-}
-
-void VmaJsonWriter::ContinueString(uint64_t n) {
- VMA_ASSERT(m_InsideString);
- m_SB.AddNumber(n);
-}
-
-void VmaJsonWriter::ContinueString_Pointer(const void *ptr) {
- VMA_ASSERT(m_InsideString);
- m_SB.AddPointer(ptr);
-}
-
-void VmaJsonWriter::EndString(const char *pStr) {
- VMA_ASSERT(m_InsideString);
- if (pStr != VMA_NULL && pStr[0] != '\0') {
- ContinueString(pStr);
- }
- m_SB.Add('"');
- m_InsideString = false;
-}
-
-void VmaJsonWriter::WriteNumber(uint32_t n) {
- VMA_ASSERT(!m_InsideString);
- BeginValue(false);
- m_SB.AddNumber(n);
-}
-
-void VmaJsonWriter::WriteNumber(uint64_t n) {
- VMA_ASSERT(!m_InsideString);
- BeginValue(false);
- m_SB.AddNumber(n);
-}
-
-void VmaJsonWriter::WriteBool(bool b) {
- VMA_ASSERT(!m_InsideString);
- BeginValue(false);
- m_SB.Add(b ? "true" : "false");
-}
-
-void VmaJsonWriter::WriteNull() {
- VMA_ASSERT(!m_InsideString);
- BeginValue(false);
- m_SB.Add("null");
-}
-
-void VmaJsonWriter::BeginValue(bool isString) {
- if (!m_Stack.empty()) {
- StackItem &currItem = m_Stack.back();
- if (currItem.type == COLLECTION_TYPE_OBJECT &&
- currItem.valueCount % 2 == 0) {
- VMA_ASSERT(isString);
- }
-
- if (currItem.type == COLLECTION_TYPE_OBJECT &&
- currItem.valueCount % 2 != 0) {
- m_SB.Add(": ");
- } else if (currItem.valueCount > 0) {
- m_SB.Add(", ");
- WriteIndent();
- } else {
- WriteIndent();
- }
- ++currItem.valueCount;
- }
-}
-
-void VmaJsonWriter::WriteIndent(bool oneLess) {
- if (!m_Stack.empty() && !m_Stack.back().singleLineMode) {
- m_SB.AddNewLine();
-
- size_t count = m_Stack.size();
- if (count > 0 && oneLess) {
- --count;
- }
- for (size_t i = 0; i < count; ++i) {
- m_SB.Add(INDENT);
- }
- }
-}
-
-#endif // #if VMA_STATS_STRING_ENABLED
-
-////////////////////////////////////////////////////////////////////////////////
-
-void VmaAllocation_T::SetUserData(VmaAllocator hAllocator, void *pUserData) {
- if (IsUserDataString()) {
- VMA_ASSERT(pUserData == VMA_NULL || pUserData != m_pUserData);
-
- FreeUserDataString(hAllocator);
-
- if (pUserData != VMA_NULL) {
- const char *const newStrSrc = (char *)pUserData;
- const size_t newStrLen = strlen(newStrSrc);
- char *const newStrDst = vma_new_array(hAllocator, char, newStrLen + 1);
- memcpy(newStrDst, newStrSrc, newStrLen + 1);
- m_pUserData = newStrDst;
- }
- } else {
- m_pUserData = pUserData;
- }
-}
-
-void VmaAllocation_T::ChangeBlockAllocation(
- VmaAllocator hAllocator,
- VmaDeviceMemoryBlock *block,
- VkDeviceSize offset) {
- VMA_ASSERT(block != VMA_NULL);
- VMA_ASSERT(m_Type == ALLOCATION_TYPE_BLOCK);
-
- // Move mapping reference counter from old block to new block.
- if (block != m_BlockAllocation.m_Block) {
- uint32_t mapRefCount = m_MapCount & ~MAP_COUNT_FLAG_PERSISTENT_MAP;
- if (IsPersistentMap())
- ++mapRefCount;
- m_BlockAllocation.m_Block->Unmap(hAllocator, mapRefCount);
- block->Map(hAllocator, mapRefCount, VMA_NULL);
- }
-
- m_BlockAllocation.m_Block = block;
- m_BlockAllocation.m_Offset = offset;
-}
-
-void VmaAllocation_T::ChangeSize(VkDeviceSize newSize) {
- VMA_ASSERT(newSize > 0);
- m_Size = newSize;
-}
-
-void VmaAllocation_T::ChangeOffset(VkDeviceSize newOffset) {
- VMA_ASSERT(m_Type == ALLOCATION_TYPE_BLOCK);
- m_BlockAllocation.m_Offset = newOffset;
-}
-
-VkDeviceSize VmaAllocation_T::GetOffset() const {
- switch (m_Type) {
- case ALLOCATION_TYPE_BLOCK:
- return m_BlockAllocation.m_Offset;
- case ALLOCATION_TYPE_DEDICATED:
- return 0;
- default:
- VMA_ASSERT(0);
- return 0;
- }
-}
-
-VkDeviceMemory VmaAllocation_T::GetMemory() const {
- switch (m_Type) {
- case ALLOCATION_TYPE_BLOCK:
- return m_BlockAllocation.m_Block->GetDeviceMemory();
- case ALLOCATION_TYPE_DEDICATED:
- return m_DedicatedAllocation.m_hMemory;
- default:
- VMA_ASSERT(0);
- return VK_NULL_HANDLE;
- }
-}
-
-uint32_t VmaAllocation_T::GetMemoryTypeIndex() const {
- switch (m_Type) {
- case ALLOCATION_TYPE_BLOCK:
- return m_BlockAllocation.m_Block->GetMemoryTypeIndex();
- case ALLOCATION_TYPE_DEDICATED:
- return m_DedicatedAllocation.m_MemoryTypeIndex;
- default:
- VMA_ASSERT(0);
- return UINT32_MAX;
- }
-}
-
-void *VmaAllocation_T::GetMappedData() const {
- switch (m_Type) {
- case ALLOCATION_TYPE_BLOCK:
- if (m_MapCount != 0) {
- void *pBlockData = m_BlockAllocation.m_Block->GetMappedData();
- VMA_ASSERT(pBlockData != VMA_NULL);
- return (char *)pBlockData + m_BlockAllocation.m_Offset;
- } else {
- return VMA_NULL;
- }
- break;
- case ALLOCATION_TYPE_DEDICATED:
- VMA_ASSERT((m_DedicatedAllocation.m_pMappedData != VMA_NULL) == (m_MapCount != 0));
- return m_DedicatedAllocation.m_pMappedData;
- default:
- VMA_ASSERT(0);
- return VMA_NULL;
- }
-}
-
-bool VmaAllocation_T::CanBecomeLost() const {
- switch (m_Type) {
- case ALLOCATION_TYPE_BLOCK:
- return m_BlockAllocation.m_CanBecomeLost;
- case ALLOCATION_TYPE_DEDICATED:
- return false;
- default:
- VMA_ASSERT(0);
- return false;
- }
-}
-
-bool VmaAllocation_T::MakeLost(uint32_t currentFrameIndex, uint32_t frameInUseCount) {
- VMA_ASSERT(CanBecomeLost());
-
- /*
- Warning: This is a carefully designed algorithm.
- Do not modify unless you really know what you're doing :)
- */
- uint32_t localLastUseFrameIndex = GetLastUseFrameIndex();
- for (;;) {
- if (localLastUseFrameIndex == VMA_FRAME_INDEX_LOST) {
- VMA_ASSERT(0);
- return false;
- } else if (localLastUseFrameIndex + frameInUseCount >= currentFrameIndex) {
- return false;
- } else // Last use time earlier than current time.
- {
- if (CompareExchangeLastUseFrameIndex(localLastUseFrameIndex, VMA_FRAME_INDEX_LOST)) {
- // Setting hAllocation.LastUseFrameIndex atomic to VMA_FRAME_INDEX_LOST is enough to mark it as LOST.
- // Calling code just needs to unregister this allocation in owning VmaDeviceMemoryBlock.
- return true;
- }
- }
- }
-}
-
-#if VMA_STATS_STRING_ENABLED
-
-// Correspond to values of enum VmaSuballocationType.
-static const char *VMA_SUBALLOCATION_TYPE_NAMES[] = {
- "FREE",
- "UNKNOWN",
- "BUFFER",
- "IMAGE_UNKNOWN",
- "IMAGE_LINEAR",
- "IMAGE_OPTIMAL",
-};
-
-void VmaAllocation_T::PrintParameters(class VmaJsonWriter &json) const {
- json.WriteString("Type");
- json.WriteString(VMA_SUBALLOCATION_TYPE_NAMES[m_SuballocationType]);
-
- json.WriteString("Size");
- json.WriteNumber(m_Size);
-
- if (m_pUserData != VMA_NULL) {
- json.WriteString("UserData");
- if (IsUserDataString()) {
- json.WriteString((const char *)m_pUserData);
- } else {
- json.BeginString();
- json.ContinueString_Pointer(m_pUserData);
- json.EndString();
- }
- }
-
- json.WriteString("CreationFrameIndex");
- json.WriteNumber(m_CreationFrameIndex);
-
- json.WriteString("LastUseFrameIndex");
- json.WriteNumber(GetLastUseFrameIndex());
-
- if (m_BufferImageUsage != 0) {
- json.WriteString("Usage");
- json.WriteNumber(m_BufferImageUsage);
- }
-}
-
-#endif
-
-void VmaAllocation_T::FreeUserDataString(VmaAllocator hAllocator) {
- VMA_ASSERT(IsUserDataString());
- if (m_pUserData != VMA_NULL) {
- char *const oldStr = (char *)m_pUserData;
- const size_t oldStrLen = strlen(oldStr);
- vma_delete_array(hAllocator, oldStr, oldStrLen + 1);
- m_pUserData = VMA_NULL;
- }
-}
-
-void VmaAllocation_T::BlockAllocMap() {
- VMA_ASSERT(GetType() == ALLOCATION_TYPE_BLOCK);
-
- if ((m_MapCount & ~MAP_COUNT_FLAG_PERSISTENT_MAP) < 0x7F) {
- ++m_MapCount;
- } else {
- VMA_ASSERT(0 && "Allocation mapped too many times simultaneously.");
- }
-}
-
-void VmaAllocation_T::BlockAllocUnmap() {
- VMA_ASSERT(GetType() == ALLOCATION_TYPE_BLOCK);
-
- if ((m_MapCount & ~MAP_COUNT_FLAG_PERSISTENT_MAP) != 0) {
- --m_MapCount;
- } else {
- VMA_ASSERT(0 && "Unmapping allocation not previously mapped.");
- }
-}
-
-VkResult VmaAllocation_T::DedicatedAllocMap(VmaAllocator hAllocator, void **ppData) {
- VMA_ASSERT(GetType() == ALLOCATION_TYPE_DEDICATED);
-
- if (m_MapCount != 0) {
- if ((m_MapCount & ~MAP_COUNT_FLAG_PERSISTENT_MAP) < 0x7F) {
- VMA_ASSERT(m_DedicatedAllocation.m_pMappedData != VMA_NULL);
- *ppData = m_DedicatedAllocation.m_pMappedData;
- ++m_MapCount;
- return VK_SUCCESS;
- } else {
- VMA_ASSERT(0 && "Dedicated allocation mapped too many times simultaneously.");
- return VK_ERROR_MEMORY_MAP_FAILED;
- }
- } else {
- VkResult result = (*hAllocator->GetVulkanFunctions().vkMapMemory)(
- hAllocator->m_hDevice,
- m_DedicatedAllocation.m_hMemory,
- 0, // offset
- VK_WHOLE_SIZE,
- 0, // flags
- ppData);
- if (result == VK_SUCCESS) {
- m_DedicatedAllocation.m_pMappedData = *ppData;
- m_MapCount = 1;
- }
- return result;
- }
-}
-
-void VmaAllocation_T::DedicatedAllocUnmap(VmaAllocator hAllocator) {
- VMA_ASSERT(GetType() == ALLOCATION_TYPE_DEDICATED);
-
- if ((m_MapCount & ~MAP_COUNT_FLAG_PERSISTENT_MAP) != 0) {
- --m_MapCount;
- if (m_MapCount == 0) {
- m_DedicatedAllocation.m_pMappedData = VMA_NULL;
- (*hAllocator->GetVulkanFunctions().vkUnmapMemory)(
- hAllocator->m_hDevice,
- m_DedicatedAllocation.m_hMemory);
- }
- } else {
- VMA_ASSERT(0 && "Unmapping dedicated allocation not previously mapped.");
- }
-}
-
-#if VMA_STATS_STRING_ENABLED
-
-static void VmaPrintStatInfo(VmaJsonWriter &json, const VmaStatInfo &stat) {
- json.BeginObject();
-
- json.WriteString("Blocks");
- json.WriteNumber(stat.blockCount);
-
- json.WriteString("Allocations");
- json.WriteNumber(stat.allocationCount);
-
- json.WriteString("UnusedRanges");
- json.WriteNumber(stat.unusedRangeCount);
-
- json.WriteString("UsedBytes");
- json.WriteNumber(stat.usedBytes);
-
- json.WriteString("UnusedBytes");
- json.WriteNumber(stat.unusedBytes);
-
- if (stat.allocationCount > 1) {
- json.WriteString("AllocationSize");
- json.BeginObject(true);
- json.WriteString("Min");
- json.WriteNumber(stat.allocationSizeMin);
- json.WriteString("Avg");
- json.WriteNumber(stat.allocationSizeAvg);
- json.WriteString("Max");
- json.WriteNumber(stat.allocationSizeMax);
- json.EndObject();
- }
-
- if (stat.unusedRangeCount > 1) {
- json.WriteString("UnusedRangeSize");
- json.BeginObject(true);
- json.WriteString("Min");
- json.WriteNumber(stat.unusedRangeSizeMin);
- json.WriteString("Avg");
- json.WriteNumber(stat.unusedRangeSizeAvg);
- json.WriteString("Max");
- json.WriteNumber(stat.unusedRangeSizeMax);
- json.EndObject();
- }
-
- json.EndObject();
-}
-
-#endif // #if VMA_STATS_STRING_ENABLED
-
-struct VmaSuballocationItemSizeLess {
- bool operator()(
- const VmaSuballocationList::iterator lhs,
- const VmaSuballocationList::iterator rhs) const {
- return lhs->size < rhs->size;
- }
- bool operator()(
- const VmaSuballocationList::iterator lhs,
- VkDeviceSize rhsSize) const {
- return lhs->size < rhsSize;
- }
-};
-
-////////////////////////////////////////////////////////////////////////////////
-// class VmaBlockMetadata
-
-VmaBlockMetadata::VmaBlockMetadata(VmaAllocator hAllocator) :
- m_Size(0),
- m_pAllocationCallbacks(hAllocator->GetAllocationCallbacks()) {
-}
-
-#if VMA_STATS_STRING_ENABLED
-
-void VmaBlockMetadata::PrintDetailedMap_Begin(class VmaJsonWriter &json,
- VkDeviceSize unusedBytes,
- size_t allocationCount,
- size_t unusedRangeCount) const {
- json.BeginObject();
-
- json.WriteString("TotalBytes");
- json.WriteNumber(GetSize());
-
- json.WriteString("UnusedBytes");
- json.WriteNumber(unusedBytes);
-
- json.WriteString("Allocations");
- json.WriteNumber((uint64_t)allocationCount);
-
- json.WriteString("UnusedRanges");
- json.WriteNumber((uint64_t)unusedRangeCount);
-
- json.WriteString("Suballocations");
- json.BeginArray();
-}
-
-void VmaBlockMetadata::PrintDetailedMap_Allocation(class VmaJsonWriter &json,
- VkDeviceSize offset,
- VmaAllocation hAllocation) const {
- json.BeginObject(true);
-
- json.WriteString("Offset");
- json.WriteNumber(offset);
-
- hAllocation->PrintParameters(json);
-
- json.EndObject();
-}
-
-void VmaBlockMetadata::PrintDetailedMap_UnusedRange(class VmaJsonWriter &json,
- VkDeviceSize offset,
- VkDeviceSize size) const {
- json.BeginObject(true);
-
- json.WriteString("Offset");
- json.WriteNumber(offset);
-
- json.WriteString("Type");
- json.WriteString(VMA_SUBALLOCATION_TYPE_NAMES[VMA_SUBALLOCATION_TYPE_FREE]);
-
- json.WriteString("Size");
- json.WriteNumber(size);
-
- json.EndObject();
-}
-
-void VmaBlockMetadata::PrintDetailedMap_End(class VmaJsonWriter &json) const {
- json.EndArray();
- json.EndObject();
-}
-
-#endif // #if VMA_STATS_STRING_ENABLED
-
-////////////////////////////////////////////////////////////////////////////////
-// class VmaBlockMetadata_Generic
-
-VmaBlockMetadata_Generic::VmaBlockMetadata_Generic(VmaAllocator hAllocator) :
- VmaBlockMetadata(hAllocator),
- m_FreeCount(0),
- m_SumFreeSize(0),
- m_Suballocations(VmaStlAllocator<VmaSuballocation>(hAllocator->GetAllocationCallbacks())),
- m_FreeSuballocationsBySize(VmaStlAllocator<VmaSuballocationList::iterator>(hAllocator->GetAllocationCallbacks())) {
-}
-
-VmaBlockMetadata_Generic::~VmaBlockMetadata_Generic() {
-}
-
-void VmaBlockMetadata_Generic::Init(VkDeviceSize size) {
- VmaBlockMetadata::Init(size);
-
- m_FreeCount = 1;
- m_SumFreeSize = size;
-
- VmaSuballocation suballoc = {};
- suballoc.offset = 0;
- suballoc.size = size;
- suballoc.type = VMA_SUBALLOCATION_TYPE_FREE;
- suballoc.hAllocation = VK_NULL_HANDLE;
-
- VMA_ASSERT(size > VMA_MIN_FREE_SUBALLOCATION_SIZE_TO_REGISTER);
- m_Suballocations.push_back(suballoc);
- VmaSuballocationList::iterator suballocItem = m_Suballocations.end();
- --suballocItem;
- m_FreeSuballocationsBySize.push_back(suballocItem);
-}
-
-bool VmaBlockMetadata_Generic::Validate() const {
- VMA_VALIDATE(!m_Suballocations.empty());
-
- // Expected offset of new suballocation as calculated from previous ones.
- VkDeviceSize calculatedOffset = 0;
- // Expected number of free suballocations as calculated from traversing their list.
- uint32_t calculatedFreeCount = 0;
- // Expected sum size of free suballocations as calculated from traversing their list.
- VkDeviceSize calculatedSumFreeSize = 0;
- // Expected number of free suballocations that should be registered in
- // m_FreeSuballocationsBySize calculated from traversing their list.
- size_t freeSuballocationsToRegister = 0;
- // True if previous visited suballocation was free.
- bool prevFree = false;
-
- for (VmaSuballocationList::const_iterator suballocItem = m_Suballocations.cbegin();
- suballocItem != m_Suballocations.cend();
- ++suballocItem) {
- const VmaSuballocation &subAlloc = *suballocItem;
-
- // Actual offset of this suballocation doesn't match expected one.
- VMA_VALIDATE(subAlloc.offset == calculatedOffset);
-
- const bool currFree = (subAlloc.type == VMA_SUBALLOCATION_TYPE_FREE);
- // Two adjacent free suballocations are invalid. They should be merged.
- VMA_VALIDATE(!prevFree || !currFree);
-
- VMA_VALIDATE(currFree == (subAlloc.hAllocation == VK_NULL_HANDLE));
-
- if (currFree) {
- calculatedSumFreeSize += subAlloc.size;
- ++calculatedFreeCount;
- if (subAlloc.size >= VMA_MIN_FREE_SUBALLOCATION_SIZE_TO_REGISTER) {
- ++freeSuballocationsToRegister;
- }
-
- // Margin required between allocations - every free space must be at least that large.
- VMA_VALIDATE(subAlloc.size >= VMA_DEBUG_MARGIN);
- } else {
- VMA_VALIDATE(subAlloc.hAllocation->GetOffset() == subAlloc.offset);
- VMA_VALIDATE(subAlloc.hAllocation->GetSize() == subAlloc.size);
-
- // Margin required between allocations - previous allocation must be free.
- VMA_VALIDATE(VMA_DEBUG_MARGIN == 0 || prevFree);
- }
-
- calculatedOffset += subAlloc.size;
- prevFree = currFree;
- }
-
- // Number of free suballocations registered in m_FreeSuballocationsBySize doesn't
- // match expected one.
- VMA_VALIDATE(m_FreeSuballocationsBySize.size() == freeSuballocationsToRegister);
-
- VkDeviceSize lastSize = 0;
- for (size_t i = 0; i < m_FreeSuballocationsBySize.size(); ++i) {
- VmaSuballocationList::iterator suballocItem = m_FreeSuballocationsBySize[i];
-
- // Only free suballocations can be registered in m_FreeSuballocationsBySize.
- VMA_VALIDATE(suballocItem->type == VMA_SUBALLOCATION_TYPE_FREE);
- // They must be sorted by size ascending.
- VMA_VALIDATE(suballocItem->size >= lastSize);
-
- lastSize = suballocItem->size;
- }
-
- // Check if totals match calculacted values.
- VMA_VALIDATE(ValidateFreeSuballocationList());
- VMA_VALIDATE(calculatedOffset == GetSize());
- VMA_VALIDATE(calculatedSumFreeSize == m_SumFreeSize);
- VMA_VALIDATE(calculatedFreeCount == m_FreeCount);
-
- return true;
-}
-
-VkDeviceSize VmaBlockMetadata_Generic::GetUnusedRangeSizeMax() const {
- if (!m_FreeSuballocationsBySize.empty()) {
- return m_FreeSuballocationsBySize.back()->size;
- } else {
- return 0;
- }
-}
-
-bool VmaBlockMetadata_Generic::IsEmpty() const {
- return (m_Suballocations.size() == 1) && (m_FreeCount == 1);
-}
-
-void VmaBlockMetadata_Generic::CalcAllocationStatInfo(VmaStatInfo &outInfo) const {
- outInfo.blockCount = 1;
-
- const uint32_t rangeCount = (uint32_t)m_Suballocations.size();
- outInfo.allocationCount = rangeCount - m_FreeCount;
- outInfo.unusedRangeCount = m_FreeCount;
-
- outInfo.unusedBytes = m_SumFreeSize;
- outInfo.usedBytes = GetSize() - outInfo.unusedBytes;
-
- outInfo.allocationSizeMin = UINT64_MAX;
- outInfo.allocationSizeMax = 0;
- outInfo.unusedRangeSizeMin = UINT64_MAX;
- outInfo.unusedRangeSizeMax = 0;
-
- for (VmaSuballocationList::const_iterator suballocItem = m_Suballocations.cbegin();
- suballocItem != m_Suballocations.cend();
- ++suballocItem) {
- const VmaSuballocation &suballoc = *suballocItem;
- if (suballoc.type != VMA_SUBALLOCATION_TYPE_FREE) {
- outInfo.allocationSizeMin = VMA_MIN(outInfo.allocationSizeMin, suballoc.size);
- outInfo.allocationSizeMax = VMA_MAX(outInfo.allocationSizeMax, suballoc.size);
- } else {
- outInfo.unusedRangeSizeMin = VMA_MIN(outInfo.unusedRangeSizeMin, suballoc.size);
- outInfo.unusedRangeSizeMax = VMA_MAX(outInfo.unusedRangeSizeMax, suballoc.size);
- }
- }
-}
-
-void VmaBlockMetadata_Generic::AddPoolStats(VmaPoolStats &inoutStats) const {
- const uint32_t rangeCount = (uint32_t)m_Suballocations.size();
-
- inoutStats.size += GetSize();
- inoutStats.unusedSize += m_SumFreeSize;
- inoutStats.allocationCount += rangeCount - m_FreeCount;
- inoutStats.unusedRangeCount += m_FreeCount;
- inoutStats.unusedRangeSizeMax = VMA_MAX(inoutStats.unusedRangeSizeMax, GetUnusedRangeSizeMax());
-}
-
-#if VMA_STATS_STRING_ENABLED
-
-void VmaBlockMetadata_Generic::PrintDetailedMap(class VmaJsonWriter &json) const {
- PrintDetailedMap_Begin(json,
- m_SumFreeSize, // unusedBytes
- m_Suballocations.size() - (size_t)m_FreeCount, // allocationCount
- m_FreeCount); // unusedRangeCount
-
- size_t i = 0;
- for (VmaSuballocationList::const_iterator suballocItem = m_Suballocations.cbegin();
- suballocItem != m_Suballocations.cend();
- ++suballocItem, ++i) {
- if (suballocItem->type == VMA_SUBALLOCATION_TYPE_FREE) {
- PrintDetailedMap_UnusedRange(json, suballocItem->offset, suballocItem->size);
- } else {
- PrintDetailedMap_Allocation(json, suballocItem->offset, suballocItem->hAllocation);
- }
- }
-
- PrintDetailedMap_End(json);
-}
-
-#endif // #if VMA_STATS_STRING_ENABLED
-
-bool VmaBlockMetadata_Generic::CreateAllocationRequest(
- uint32_t currentFrameIndex,
- uint32_t frameInUseCount,
- VkDeviceSize bufferImageGranularity,
- VkDeviceSize allocSize,
- VkDeviceSize allocAlignment,
- bool upperAddress,
- VmaSuballocationType allocType,
- bool canMakeOtherLost,
- uint32_t strategy,
- VmaAllocationRequest *pAllocationRequest) {
- VMA_ASSERT(allocSize > 0);
- VMA_ASSERT(!upperAddress);
- VMA_ASSERT(allocType != VMA_SUBALLOCATION_TYPE_FREE);
- VMA_ASSERT(pAllocationRequest != VMA_NULL);
- VMA_HEAVY_ASSERT(Validate());
-
- pAllocationRequest->type = VmaAllocationRequestType::Normal;
-
- // There is not enough total free space in this block to fullfill the request: Early return.
- if (canMakeOtherLost == false &&
- m_SumFreeSize < allocSize + 2 * VMA_DEBUG_MARGIN) {
- return false;
- }
-
- // New algorithm, efficiently searching freeSuballocationsBySize.
- const size_t freeSuballocCount = m_FreeSuballocationsBySize.size();
- if (freeSuballocCount > 0) {
- if (strategy == VMA_ALLOCATION_CREATE_STRATEGY_BEST_FIT_BIT) {
- // Find first free suballocation with size not less than allocSize + 2 * VMA_DEBUG_MARGIN.
- VmaSuballocationList::iterator *const it = VmaBinaryFindFirstNotLess(
- m_FreeSuballocationsBySize.data(),
- m_FreeSuballocationsBySize.data() + freeSuballocCount,
- allocSize + 2 * VMA_DEBUG_MARGIN,
- VmaSuballocationItemSizeLess());
- size_t index = it - m_FreeSuballocationsBySize.data();
- for (; index < freeSuballocCount; ++index) {
- if (CheckAllocation(
- currentFrameIndex,
- frameInUseCount,
- bufferImageGranularity,
- allocSize,
- allocAlignment,
- allocType,
- m_FreeSuballocationsBySize[index],
- false, // canMakeOtherLost
- &pAllocationRequest->offset,
- &pAllocationRequest->itemsToMakeLostCount,
- &pAllocationRequest->sumFreeSize,
- &pAllocationRequest->sumItemSize)) {
- pAllocationRequest->item = m_FreeSuballocationsBySize[index];
- return true;
- }
- }
- } else if (strategy == VMA_ALLOCATION_INTERNAL_STRATEGY_MIN_OFFSET) {
- for (VmaSuballocationList::iterator it = m_Suballocations.begin();
- it != m_Suballocations.end();
- ++it) {
- if (it->type == VMA_SUBALLOCATION_TYPE_FREE && CheckAllocation(
- currentFrameIndex,
- frameInUseCount,
- bufferImageGranularity,
- allocSize,
- allocAlignment,
- allocType,
- it,
- false, // canMakeOtherLost
- &pAllocationRequest->offset,
- &pAllocationRequest->itemsToMakeLostCount,
- &pAllocationRequest->sumFreeSize,
- &pAllocationRequest->sumItemSize)) {
- pAllocationRequest->item = it;
- return true;
- }
- }
- } else // WORST_FIT, FIRST_FIT
- {
- // Search staring from biggest suballocations.
- for (size_t index = freeSuballocCount; index--;) {
- if (CheckAllocation(
- currentFrameIndex,
- frameInUseCount,
- bufferImageGranularity,
- allocSize,
- allocAlignment,
- allocType,
- m_FreeSuballocationsBySize[index],
- false, // canMakeOtherLost
- &pAllocationRequest->offset,
- &pAllocationRequest->itemsToMakeLostCount,
- &pAllocationRequest->sumFreeSize,
- &pAllocationRequest->sumItemSize)) {
- pAllocationRequest->item = m_FreeSuballocationsBySize[index];
- return true;
- }
- }
- }
- }
-
- if (canMakeOtherLost) {
- // Brute-force algorithm. TODO: Come up with something better.
-
- bool found = false;
- VmaAllocationRequest tmpAllocRequest = {};
- tmpAllocRequest.type = VmaAllocationRequestType::Normal;
- for (VmaSuballocationList::iterator suballocIt = m_Suballocations.begin();
- suballocIt != m_Suballocations.end();
- ++suballocIt) {
- if (suballocIt->type == VMA_SUBALLOCATION_TYPE_FREE ||
- suballocIt->hAllocation->CanBecomeLost()) {
- if (CheckAllocation(
- currentFrameIndex,
- frameInUseCount,
- bufferImageGranularity,
- allocSize,
- allocAlignment,
- allocType,
- suballocIt,
- canMakeOtherLost,
- &tmpAllocRequest.offset,
- &tmpAllocRequest.itemsToMakeLostCount,
- &tmpAllocRequest.sumFreeSize,
- &tmpAllocRequest.sumItemSize)) {
- if (strategy == VMA_ALLOCATION_CREATE_STRATEGY_FIRST_FIT_BIT) {
- *pAllocationRequest = tmpAllocRequest;
- pAllocationRequest->item = suballocIt;
- break;
- }
- if (!found || tmpAllocRequest.CalcCost() < pAllocationRequest->CalcCost()) {
- *pAllocationRequest = tmpAllocRequest;
- pAllocationRequest->item = suballocIt;
- found = true;
- }
- }
- }
- }
-
- return found;
- }
-
- return false;
-}
-
-bool VmaBlockMetadata_Generic::MakeRequestedAllocationsLost(
- uint32_t currentFrameIndex,
- uint32_t frameInUseCount,
- VmaAllocationRequest *pAllocationRequest) {
- VMA_ASSERT(pAllocationRequest && pAllocationRequest->type == VmaAllocationRequestType::Normal);
-
- while (pAllocationRequest->itemsToMakeLostCount > 0) {
- if (pAllocationRequest->item->type == VMA_SUBALLOCATION_TYPE_FREE) {
- ++pAllocationRequest->item;
- }
- VMA_ASSERT(pAllocationRequest->item != m_Suballocations.end());
- VMA_ASSERT(pAllocationRequest->item->hAllocation != VK_NULL_HANDLE);
- VMA_ASSERT(pAllocationRequest->item->hAllocation->CanBecomeLost());
- if (pAllocationRequest->item->hAllocation->MakeLost(currentFrameIndex, frameInUseCount)) {
- pAllocationRequest->item = FreeSuballocation(pAllocationRequest->item);
- --pAllocationRequest->itemsToMakeLostCount;
- } else {
- return false;
- }
- }
-
- VMA_HEAVY_ASSERT(Validate());
- VMA_ASSERT(pAllocationRequest->item != m_Suballocations.end());
- VMA_ASSERT(pAllocationRequest->item->type == VMA_SUBALLOCATION_TYPE_FREE);
-
- return true;
-}
-
-uint32_t VmaBlockMetadata_Generic::MakeAllocationsLost(uint32_t currentFrameIndex, uint32_t frameInUseCount) {
- uint32_t lostAllocationCount = 0;
- for (VmaSuballocationList::iterator it = m_Suballocations.begin();
- it != m_Suballocations.end();
- ++it) {
- if (it->type != VMA_SUBALLOCATION_TYPE_FREE &&
- it->hAllocation->CanBecomeLost() &&
- it->hAllocation->MakeLost(currentFrameIndex, frameInUseCount)) {
- it = FreeSuballocation(it);
- ++lostAllocationCount;
- }
- }
- return lostAllocationCount;
-}
-
-VkResult VmaBlockMetadata_Generic::CheckCorruption(const void *pBlockData) {
- for (VmaSuballocationList::iterator it = m_Suballocations.begin();
- it != m_Suballocations.end();
- ++it) {
- if (it->type != VMA_SUBALLOCATION_TYPE_FREE) {
- if (!VmaValidateMagicValue(pBlockData, it->offset - VMA_DEBUG_MARGIN)) {
- VMA_ASSERT(0 && "MEMORY CORRUPTION DETECTED BEFORE VALIDATED ALLOCATION!");
- return VK_ERROR_VALIDATION_FAILED_EXT;
- }
- if (!VmaValidateMagicValue(pBlockData, it->offset + it->size)) {
- VMA_ASSERT(0 && "MEMORY CORRUPTION DETECTED AFTER VALIDATED ALLOCATION!");
- return VK_ERROR_VALIDATION_FAILED_EXT;
- }
- }
- }
-
- return VK_SUCCESS;
-}
-
-void VmaBlockMetadata_Generic::Alloc(
- const VmaAllocationRequest &request,
- VmaSuballocationType type,
- VkDeviceSize allocSize,
- VmaAllocation hAllocation) {
- VMA_ASSERT(request.type == VmaAllocationRequestType::Normal);
- VMA_ASSERT(request.item != m_Suballocations.end());
- VmaSuballocation &suballoc = *request.item;
- // Given suballocation is a free block.
- VMA_ASSERT(suballoc.type == VMA_SUBALLOCATION_TYPE_FREE);
- // Given offset is inside this suballocation.
- VMA_ASSERT(request.offset >= suballoc.offset);
- const VkDeviceSize paddingBegin = request.offset - suballoc.offset;
- VMA_ASSERT(suballoc.size >= paddingBegin + allocSize);
- const VkDeviceSize paddingEnd = suballoc.size - paddingBegin - allocSize;
-
- // Unregister this free suballocation from m_FreeSuballocationsBySize and update
- // it to become used.
- UnregisterFreeSuballocation(request.item);
-
- suballoc.offset = request.offset;
- suballoc.size = allocSize;
- suballoc.type = type;
- suballoc.hAllocation = hAllocation;
-
- // If there are any free bytes remaining at the end, insert new free suballocation after current one.
- if (paddingEnd) {
- VmaSuballocation paddingSuballoc = {};
- paddingSuballoc.offset = request.offset + allocSize;
- paddingSuballoc.size = paddingEnd;
- paddingSuballoc.type = VMA_SUBALLOCATION_TYPE_FREE;
- VmaSuballocationList::iterator next = request.item;
- ++next;
- const VmaSuballocationList::iterator paddingEndItem =
- m_Suballocations.insert(next, paddingSuballoc);
- RegisterFreeSuballocation(paddingEndItem);
- }
-
- // If there are any free bytes remaining at the beginning, insert new free suballocation before current one.
- if (paddingBegin) {
- VmaSuballocation paddingSuballoc = {};
- paddingSuballoc.offset = request.offset - paddingBegin;
- paddingSuballoc.size = paddingBegin;
- paddingSuballoc.type = VMA_SUBALLOCATION_TYPE_FREE;
- const VmaSuballocationList::iterator paddingBeginItem =
- m_Suballocations.insert(request.item, paddingSuballoc);
- RegisterFreeSuballocation(paddingBeginItem);
- }
-
- // Update totals.
- m_FreeCount = m_FreeCount - 1;
- if (paddingBegin > 0) {
- ++m_FreeCount;
- }
- if (paddingEnd > 0) {
- ++m_FreeCount;
- }
- m_SumFreeSize -= allocSize;
-}
-
-void VmaBlockMetadata_Generic::Free(const VmaAllocation allocation) {
- for (VmaSuballocationList::iterator suballocItem = m_Suballocations.begin();
- suballocItem != m_Suballocations.end();
- ++suballocItem) {
- VmaSuballocation &suballoc = *suballocItem;
- if (suballoc.hAllocation == allocation) {
- FreeSuballocation(suballocItem);
- VMA_HEAVY_ASSERT(Validate());
- return;
- }
- }
- VMA_ASSERT(0 && "Not found!");
-}
-
-void VmaBlockMetadata_Generic::FreeAtOffset(VkDeviceSize offset) {
- for (VmaSuballocationList::iterator suballocItem = m_Suballocations.begin();
- suballocItem != m_Suballocations.end();
- ++suballocItem) {
- VmaSuballocation &suballoc = *suballocItem;
- if (suballoc.offset == offset) {
- FreeSuballocation(suballocItem);
- return;
- }
- }
- VMA_ASSERT(0 && "Not found!");
-}
-
-bool VmaBlockMetadata_Generic::ResizeAllocation(const VmaAllocation alloc, VkDeviceSize newSize) {
- typedef VmaSuballocationList::iterator iter_type;
- for (iter_type suballocItem = m_Suballocations.begin();
- suballocItem != m_Suballocations.end();
- ++suballocItem) {
- VmaSuballocation &suballoc = *suballocItem;
- if (suballoc.hAllocation == alloc) {
- iter_type nextItem = suballocItem;
- ++nextItem;
-
- // Should have been ensured on higher level.
- VMA_ASSERT(newSize != alloc->GetSize() && newSize > 0);
-
- // Shrinking.
- if (newSize < alloc->GetSize()) {
- const VkDeviceSize sizeDiff = suballoc.size - newSize;
-
- // There is next item.
- if (nextItem != m_Suballocations.end()) {
- // Next item is free.
- if (nextItem->type == VMA_SUBALLOCATION_TYPE_FREE) {
- // Grow this next item backward.
- UnregisterFreeSuballocation(nextItem);
- nextItem->offset -= sizeDiff;
- nextItem->size += sizeDiff;
- RegisterFreeSuballocation(nextItem);
- }
- // Next item is not free.
- else {
- // Create free item after current one.
- VmaSuballocation newFreeSuballoc;
- newFreeSuballoc.hAllocation = VK_NULL_HANDLE;
- newFreeSuballoc.offset = suballoc.offset + newSize;
- newFreeSuballoc.size = sizeDiff;
- newFreeSuballoc.type = VMA_SUBALLOCATION_TYPE_FREE;
- iter_type newFreeSuballocIt = m_Suballocations.insert(nextItem, newFreeSuballoc);
- RegisterFreeSuballocation(newFreeSuballocIt);
-
- ++m_FreeCount;
- }
- }
- // This is the last item.
- else {
- // Create free item at the end.
- VmaSuballocation newFreeSuballoc;
- newFreeSuballoc.hAllocation = VK_NULL_HANDLE;
- newFreeSuballoc.offset = suballoc.offset + newSize;
- newFreeSuballoc.size = sizeDiff;
- newFreeSuballoc.type = VMA_SUBALLOCATION_TYPE_FREE;
- m_Suballocations.push_back(newFreeSuballoc);
-
- iter_type newFreeSuballocIt = m_Suballocations.end();
- RegisterFreeSuballocation(--newFreeSuballocIt);
-
- ++m_FreeCount;
- }
-
- suballoc.size = newSize;
- m_SumFreeSize += sizeDiff;
- }
- // Growing.
- else {
- const VkDeviceSize sizeDiff = newSize - suballoc.size;
-
- // There is next item.
- if (nextItem != m_Suballocations.end()) {
- // Next item is free.
- if (nextItem->type == VMA_SUBALLOCATION_TYPE_FREE) {
- // There is not enough free space, including margin.
- if (nextItem->size < sizeDiff + VMA_DEBUG_MARGIN) {
- return false;
- }
-
- // There is more free space than required.
- if (nextItem->size > sizeDiff) {
- // Move and shrink this next item.
- UnregisterFreeSuballocation(nextItem);
- nextItem->offset += sizeDiff;
- nextItem->size -= sizeDiff;
- RegisterFreeSuballocation(nextItem);
- }
- // There is exactly the amount of free space required.
- else {
- // Remove this next free item.
- UnregisterFreeSuballocation(nextItem);
- m_Suballocations.erase(nextItem);
- --m_FreeCount;
- }
- }
- // Next item is not free - there is no space to grow.
- else {
- return false;
- }
- }
- // This is the last item - there is no space to grow.
- else {
- return false;
- }
-
- suballoc.size = newSize;
- m_SumFreeSize -= sizeDiff;
- }
-
- // We cannot call Validate() here because alloc object is updated to new size outside of this call.
- return true;
- }
- }
- VMA_ASSERT(0 && "Not found!");
- return false;
-}
-
-bool VmaBlockMetadata_Generic::ValidateFreeSuballocationList() const {
- VkDeviceSize lastSize = 0;
- for (size_t i = 0, count = m_FreeSuballocationsBySize.size(); i < count; ++i) {
- const VmaSuballocationList::iterator it = m_FreeSuballocationsBySize[i];
-
- VMA_VALIDATE(it->type == VMA_SUBALLOCATION_TYPE_FREE);
- VMA_VALIDATE(it->size >= VMA_MIN_FREE_SUBALLOCATION_SIZE_TO_REGISTER);
- VMA_VALIDATE(it->size >= lastSize);
- lastSize = it->size;
- }
- return true;
-}
-
-bool VmaBlockMetadata_Generic::CheckAllocation(
- uint32_t currentFrameIndex,
- uint32_t frameInUseCount,
- VkDeviceSize bufferImageGranularity,
- VkDeviceSize allocSize,
- VkDeviceSize allocAlignment,
- VmaSuballocationType allocType,
- VmaSuballocationList::const_iterator suballocItem,
- bool canMakeOtherLost,
- VkDeviceSize *pOffset,
- size_t *itemsToMakeLostCount,
- VkDeviceSize *pSumFreeSize,
- VkDeviceSize *pSumItemSize) const {
- VMA_ASSERT(allocSize > 0);
- VMA_ASSERT(allocType != VMA_SUBALLOCATION_TYPE_FREE);
- VMA_ASSERT(suballocItem != m_Suballocations.cend());
- VMA_ASSERT(pOffset != VMA_NULL);
-
- *itemsToMakeLostCount = 0;
- *pSumFreeSize = 0;
- *pSumItemSize = 0;
-
- if (canMakeOtherLost) {
- if (suballocItem->type == VMA_SUBALLOCATION_TYPE_FREE) {
- *pSumFreeSize = suballocItem->size;
- } else {
- if (suballocItem->hAllocation->CanBecomeLost() &&
- suballocItem->hAllocation->GetLastUseFrameIndex() + frameInUseCount < currentFrameIndex) {
- ++*itemsToMakeLostCount;
- *pSumItemSize = suballocItem->size;
- } else {
- return false;
- }
- }
-
- // Remaining size is too small for this request: Early return.
- if (GetSize() - suballocItem->offset < allocSize) {
- return false;
- }
-
- // Start from offset equal to beginning of this suballocation.
- *pOffset = suballocItem->offset;
-
- // Apply VMA_DEBUG_MARGIN at the beginning.
- if (VMA_DEBUG_MARGIN > 0) {
- *pOffset += VMA_DEBUG_MARGIN;
- }
-
- // Apply alignment.
- *pOffset = VmaAlignUp(*pOffset, allocAlignment);
-
- // Check previous suballocations for BufferImageGranularity conflicts.
- // Make bigger alignment if necessary.
- if (bufferImageGranularity > 1) {
- bool bufferImageGranularityConflict = false;
- VmaSuballocationList::const_iterator prevSuballocItem = suballocItem;
- while (prevSuballocItem != m_Suballocations.cbegin()) {
- --prevSuballocItem;
- const VmaSuballocation &prevSuballoc = *prevSuballocItem;
- if (VmaBlocksOnSamePage(prevSuballoc.offset, prevSuballoc.size, *pOffset, bufferImageGranularity)) {
- if (VmaIsBufferImageGranularityConflict(prevSuballoc.type, allocType)) {
- bufferImageGranularityConflict = true;
- break;
- }
- } else
- // Already on previous page.
- break;
- }
- if (bufferImageGranularityConflict) {
- *pOffset = VmaAlignUp(*pOffset, bufferImageGranularity);
- }
- }
-
- // Now that we have final *pOffset, check if we are past suballocItem.
- // If yes, return false - this function should be called for another suballocItem as starting point.
- if (*pOffset >= suballocItem->offset + suballocItem->size) {
- return false;
- }
-
- // Calculate padding at the beginning based on current offset.
- const VkDeviceSize paddingBegin = *pOffset - suballocItem->offset;
-
- // Calculate required margin at the end.
- const VkDeviceSize requiredEndMargin = VMA_DEBUG_MARGIN;
-
- const VkDeviceSize totalSize = paddingBegin + allocSize + requiredEndMargin;
- // Another early return check.
- if (suballocItem->offset + totalSize > GetSize()) {
- return false;
- }
-
- // Advance lastSuballocItem until desired size is reached.
- // Update itemsToMakeLostCount.
- VmaSuballocationList::const_iterator lastSuballocItem = suballocItem;
- if (totalSize > suballocItem->size) {
- VkDeviceSize remainingSize = totalSize - suballocItem->size;
- while (remainingSize > 0) {
- ++lastSuballocItem;
- if (lastSuballocItem == m_Suballocations.cend()) {
- return false;
- }
- if (lastSuballocItem->type == VMA_SUBALLOCATION_TYPE_FREE) {
- *pSumFreeSize += lastSuballocItem->size;
- } else {
- VMA_ASSERT(lastSuballocItem->hAllocation != VK_NULL_HANDLE);
- if (lastSuballocItem->hAllocation->CanBecomeLost() &&
- lastSuballocItem->hAllocation->GetLastUseFrameIndex() + frameInUseCount < currentFrameIndex) {
- ++*itemsToMakeLostCount;
- *pSumItemSize += lastSuballocItem->size;
- } else {
- return false;
- }
- }
- remainingSize = (lastSuballocItem->size < remainingSize) ?
- remainingSize - lastSuballocItem->size :
- 0;
- }
- }
-
- // Check next suballocations for BufferImageGranularity conflicts.
- // If conflict exists, we must mark more allocations lost or fail.
- if (bufferImageGranularity > 1) {
- VmaSuballocationList::const_iterator nextSuballocItem = lastSuballocItem;
- ++nextSuballocItem;
- while (nextSuballocItem != m_Suballocations.cend()) {
- const VmaSuballocation &nextSuballoc = *nextSuballocItem;
- if (VmaBlocksOnSamePage(*pOffset, allocSize, nextSuballoc.offset, bufferImageGranularity)) {
- if (VmaIsBufferImageGranularityConflict(allocType, nextSuballoc.type)) {
- VMA_ASSERT(nextSuballoc.hAllocation != VK_NULL_HANDLE);
- if (nextSuballoc.hAllocation->CanBecomeLost() &&
- nextSuballoc.hAllocation->GetLastUseFrameIndex() + frameInUseCount < currentFrameIndex) {
- ++*itemsToMakeLostCount;
- } else {
- return false;
- }
- }
- } else {
- // Already on next page.
- break;
- }
- ++nextSuballocItem;
- }
- }
- } else {
- const VmaSuballocation &suballoc = *suballocItem;
- VMA_ASSERT(suballoc.type == VMA_SUBALLOCATION_TYPE_FREE);
-
- *pSumFreeSize = suballoc.size;
-
- // Size of this suballocation is too small for this request: Early return.
- if (suballoc.size < allocSize) {
- return false;
- }
-
- // Start from offset equal to beginning of this suballocation.
- *pOffset = suballoc.offset;
-
- // Apply VMA_DEBUG_MARGIN at the beginning.
- if (VMA_DEBUG_MARGIN > 0) {
- *pOffset += VMA_DEBUG_MARGIN;
- }
-
- // Apply alignment.
- *pOffset = VmaAlignUp(*pOffset, allocAlignment);
-
- // Check previous suballocations for BufferImageGranularity conflicts.
- // Make bigger alignment if necessary.
- if (bufferImageGranularity > 1) {
- bool bufferImageGranularityConflict = false;
- VmaSuballocationList::const_iterator prevSuballocItem = suballocItem;
- while (prevSuballocItem != m_Suballocations.cbegin()) {
- --prevSuballocItem;
- const VmaSuballocation &prevSuballoc = *prevSuballocItem;
- if (VmaBlocksOnSamePage(prevSuballoc.offset, prevSuballoc.size, *pOffset, bufferImageGranularity)) {
- if (VmaIsBufferImageGranularityConflict(prevSuballoc.type, allocType)) {
- bufferImageGranularityConflict = true;
- break;
- }
- } else
- // Already on previous page.
- break;
- }
- if (bufferImageGranularityConflict) {
- *pOffset = VmaAlignUp(*pOffset, bufferImageGranularity);
- }
- }
-
- // Calculate padding at the beginning based on current offset.
- const VkDeviceSize paddingBegin = *pOffset - suballoc.offset;
-
- // Calculate required margin at the end.
- const VkDeviceSize requiredEndMargin = VMA_DEBUG_MARGIN;
-
- // Fail if requested size plus margin before and after is bigger than size of this suballocation.
- if (paddingBegin + allocSize + requiredEndMargin > suballoc.size) {
- return false;
- }
-
- // Check next suballocations for BufferImageGranularity conflicts.
- // If conflict exists, allocation cannot be made here.
- if (bufferImageGranularity > 1) {
- VmaSuballocationList::const_iterator nextSuballocItem = suballocItem;
- ++nextSuballocItem;
- while (nextSuballocItem != m_Suballocations.cend()) {
- const VmaSuballocation &nextSuballoc = *nextSuballocItem;
- if (VmaBlocksOnSamePage(*pOffset, allocSize, nextSuballoc.offset, bufferImageGranularity)) {
- if (VmaIsBufferImageGranularityConflict(allocType, nextSuballoc.type)) {
- return false;
- }
- } else {
- // Already on next page.
- break;
- }
- ++nextSuballocItem;
- }
- }
- }
-
- // All tests passed: Success. pOffset is already filled.
- return true;
-}
-
-void VmaBlockMetadata_Generic::MergeFreeWithNext(VmaSuballocationList::iterator item) {
- VMA_ASSERT(item != m_Suballocations.end());
- VMA_ASSERT(item->type == VMA_SUBALLOCATION_TYPE_FREE);
-
- VmaSuballocationList::iterator nextItem = item;
- ++nextItem;
- VMA_ASSERT(nextItem != m_Suballocations.end());
- VMA_ASSERT(nextItem->type == VMA_SUBALLOCATION_TYPE_FREE);
-
- item->size += nextItem->size;
- --m_FreeCount;
- m_Suballocations.erase(nextItem);
-}
-
-VmaSuballocationList::iterator VmaBlockMetadata_Generic::FreeSuballocation(VmaSuballocationList::iterator suballocItem) {
- // Change this suballocation to be marked as free.
- VmaSuballocation &suballoc = *suballocItem;
- suballoc.type = VMA_SUBALLOCATION_TYPE_FREE;
- suballoc.hAllocation = VK_NULL_HANDLE;
-
- // Update totals.
- ++m_FreeCount;
- m_SumFreeSize += suballoc.size;
-
- // Merge with previous and/or next suballocation if it's also free.
- bool mergeWithNext = false;
- bool mergeWithPrev = false;
-
- VmaSuballocationList::iterator nextItem = suballocItem;
- ++nextItem;
- if ((nextItem != m_Suballocations.end()) && (nextItem->type == VMA_SUBALLOCATION_TYPE_FREE)) {
- mergeWithNext = true;
- }
-
- VmaSuballocationList::iterator prevItem = suballocItem;
- if (suballocItem != m_Suballocations.begin()) {
- --prevItem;
- if (prevItem->type == VMA_SUBALLOCATION_TYPE_FREE) {
- mergeWithPrev = true;
- }
- }
-
- if (mergeWithNext) {
- UnregisterFreeSuballocation(nextItem);
- MergeFreeWithNext(suballocItem);
- }
-
- if (mergeWithPrev) {
- UnregisterFreeSuballocation(prevItem);
- MergeFreeWithNext(prevItem);
- RegisterFreeSuballocation(prevItem);
- return prevItem;
- } else {
- RegisterFreeSuballocation(suballocItem);
- return suballocItem;
- }
-}
-
-void VmaBlockMetadata_Generic::RegisterFreeSuballocation(VmaSuballocationList::iterator item) {
- VMA_ASSERT(item->type == VMA_SUBALLOCATION_TYPE_FREE);
- VMA_ASSERT(item->size > 0);
-
- // You may want to enable this validation at the beginning or at the end of
- // this function, depending on what do you want to check.
- VMA_HEAVY_ASSERT(ValidateFreeSuballocationList());
-
- if (item->size >= VMA_MIN_FREE_SUBALLOCATION_SIZE_TO_REGISTER) {
- if (m_FreeSuballocationsBySize.empty()) {
- m_FreeSuballocationsBySize.push_back(item);
- } else {
- VmaVectorInsertSorted<VmaSuballocationItemSizeLess>(m_FreeSuballocationsBySize, item);
- }
- }
-
- //VMA_HEAVY_ASSERT(ValidateFreeSuballocationList());
-}
-
-void VmaBlockMetadata_Generic::UnregisterFreeSuballocation(VmaSuballocationList::iterator item) {
- VMA_ASSERT(item->type == VMA_SUBALLOCATION_TYPE_FREE);
- VMA_ASSERT(item->size > 0);
-
- // You may want to enable this validation at the beginning or at the end of
- // this function, depending on what do you want to check.
- VMA_HEAVY_ASSERT(ValidateFreeSuballocationList());
-
- if (item->size >= VMA_MIN_FREE_SUBALLOCATION_SIZE_TO_REGISTER) {
- VmaSuballocationList::iterator *const it = VmaBinaryFindFirstNotLess(
- m_FreeSuballocationsBySize.data(),
- m_FreeSuballocationsBySize.data() + m_FreeSuballocationsBySize.size(),
- item,
- VmaSuballocationItemSizeLess());
- for (size_t index = it - m_FreeSuballocationsBySize.data();
- index < m_FreeSuballocationsBySize.size();
- ++index) {
- if (m_FreeSuballocationsBySize[index] == item) {
- VmaVectorRemove(m_FreeSuballocationsBySize, index);
- return;
- }
- VMA_ASSERT((m_FreeSuballocationsBySize[index]->size == item->size) && "Not found.");
- }
- VMA_ASSERT(0 && "Not found.");
- }
-
- //VMA_HEAVY_ASSERT(ValidateFreeSuballocationList());
-}
-
-bool VmaBlockMetadata_Generic::IsBufferImageGranularityConflictPossible(
- VkDeviceSize bufferImageGranularity,
- VmaSuballocationType &inOutPrevSuballocType) const {
- if (bufferImageGranularity == 1 || IsEmpty()) {
- return false;
- }
-
- VkDeviceSize minAlignment = VK_WHOLE_SIZE;
- bool typeConflictFound = false;
- for (VmaSuballocationList::const_iterator it = m_Suballocations.cbegin();
- it != m_Suballocations.cend();
- ++it) {
- const VmaSuballocationType suballocType = it->type;
- if (suballocType != VMA_SUBALLOCATION_TYPE_FREE) {
- minAlignment = VMA_MIN(minAlignment, it->hAllocation->GetAlignment());
- if (VmaIsBufferImageGranularityConflict(inOutPrevSuballocType, suballocType)) {
- typeConflictFound = true;
- }
- inOutPrevSuballocType = suballocType;
- }
- }
-
- return typeConflictFound || minAlignment >= bufferImageGranularity;
-}
-
-////////////////////////////////////////////////////////////////////////////////
-// class VmaBlockMetadata_Linear
-
-VmaBlockMetadata_Linear::VmaBlockMetadata_Linear(VmaAllocator hAllocator) :
- VmaBlockMetadata(hAllocator),
- m_SumFreeSize(0),
- m_Suballocations0(VmaStlAllocator<VmaSuballocation>(hAllocator->GetAllocationCallbacks())),
- m_Suballocations1(VmaStlAllocator<VmaSuballocation>(hAllocator->GetAllocationCallbacks())),
- m_1stVectorIndex(0),
- m_2ndVectorMode(SECOND_VECTOR_EMPTY),
- m_1stNullItemsBeginCount(0),
- m_1stNullItemsMiddleCount(0),
- m_2ndNullItemsCount(0) {
-}
-
-VmaBlockMetadata_Linear::~VmaBlockMetadata_Linear() {
-}
-
-void VmaBlockMetadata_Linear::Init(VkDeviceSize size) {
- VmaBlockMetadata::Init(size);
- m_SumFreeSize = size;
-}
-
-bool VmaBlockMetadata_Linear::Validate() const {
- const SuballocationVectorType &suballocations1st = AccessSuballocations1st();
- const SuballocationVectorType &suballocations2nd = AccessSuballocations2nd();
-
- VMA_VALIDATE(suballocations2nd.empty() == (m_2ndVectorMode == SECOND_VECTOR_EMPTY));
- VMA_VALIDATE(!suballocations1st.empty() ||
- suballocations2nd.empty() ||
- m_2ndVectorMode != SECOND_VECTOR_RING_BUFFER);
-
- if (!suballocations1st.empty()) {
- // Null item at the beginning should be accounted into m_1stNullItemsBeginCount.
- VMA_VALIDATE(suballocations1st[m_1stNullItemsBeginCount].hAllocation != VK_NULL_HANDLE);
- // Null item at the end should be just pop_back().
- VMA_VALIDATE(suballocations1st.back().hAllocation != VK_NULL_HANDLE);
- }
- if (!suballocations2nd.empty()) {
- // Null item at the end should be just pop_back().
- VMA_VALIDATE(suballocations2nd.back().hAllocation != VK_NULL_HANDLE);
- }
-
- VMA_VALIDATE(m_1stNullItemsBeginCount + m_1stNullItemsMiddleCount <= suballocations1st.size());
- VMA_VALIDATE(m_2ndNullItemsCount <= suballocations2nd.size());
-
- VkDeviceSize sumUsedSize = 0;
- const size_t suballoc1stCount = suballocations1st.size();
- VkDeviceSize offset = VMA_DEBUG_MARGIN;
-
- if (m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER) {
- const size_t suballoc2ndCount = suballocations2nd.size();
- size_t nullItem2ndCount = 0;
- for (size_t i = 0; i < suballoc2ndCount; ++i) {
- const VmaSuballocation &suballoc = suballocations2nd[i];
- const bool currFree = (suballoc.type == VMA_SUBALLOCATION_TYPE_FREE);
-
- VMA_VALIDATE(currFree == (suballoc.hAllocation == VK_NULL_HANDLE));
- VMA_VALIDATE(suballoc.offset >= offset);
-
- if (!currFree) {
- VMA_VALIDATE(suballoc.hAllocation->GetOffset() == suballoc.offset);
- VMA_VALIDATE(suballoc.hAllocation->GetSize() == suballoc.size);
- sumUsedSize += suballoc.size;
- } else {
- ++nullItem2ndCount;
- }
-
- offset = suballoc.offset + suballoc.size + VMA_DEBUG_MARGIN;
- }
-
- VMA_VALIDATE(nullItem2ndCount == m_2ndNullItemsCount);
- }
-
- for (size_t i = 0; i < m_1stNullItemsBeginCount; ++i) {
- const VmaSuballocation &suballoc = suballocations1st[i];
- VMA_VALIDATE(suballoc.type == VMA_SUBALLOCATION_TYPE_FREE &&
- suballoc.hAllocation == VK_NULL_HANDLE);
- }
-
- size_t nullItem1stCount = m_1stNullItemsBeginCount;
-
- for (size_t i = m_1stNullItemsBeginCount; i < suballoc1stCount; ++i) {
- const VmaSuballocation &suballoc = suballocations1st[i];
- const bool currFree = (suballoc.type == VMA_SUBALLOCATION_TYPE_FREE);
-
- VMA_VALIDATE(currFree == (suballoc.hAllocation == VK_NULL_HANDLE));
- VMA_VALIDATE(suballoc.offset >= offset);
- VMA_VALIDATE(i >= m_1stNullItemsBeginCount || currFree);
-
- if (!currFree) {
- VMA_VALIDATE(suballoc.hAllocation->GetOffset() == suballoc.offset);
- VMA_VALIDATE(suballoc.hAllocation->GetSize() == suballoc.size);
- sumUsedSize += suballoc.size;
- } else {
- ++nullItem1stCount;
- }
-
- offset = suballoc.offset + suballoc.size + VMA_DEBUG_MARGIN;
- }
- VMA_VALIDATE(nullItem1stCount == m_1stNullItemsBeginCount + m_1stNullItemsMiddleCount);
-
- if (m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK) {
- const size_t suballoc2ndCount = suballocations2nd.size();
- size_t nullItem2ndCount = 0;
- for (size_t i = suballoc2ndCount; i--;) {
- const VmaSuballocation &suballoc = suballocations2nd[i];
- const bool currFree = (suballoc.type == VMA_SUBALLOCATION_TYPE_FREE);
-
- VMA_VALIDATE(currFree == (suballoc.hAllocation == VK_NULL_HANDLE));
- VMA_VALIDATE(suballoc.offset >= offset);
-
- if (!currFree) {
- VMA_VALIDATE(suballoc.hAllocation->GetOffset() == suballoc.offset);
- VMA_VALIDATE(suballoc.hAllocation->GetSize() == suballoc.size);
- sumUsedSize += suballoc.size;
- } else {
- ++nullItem2ndCount;
- }
-
- offset = suballoc.offset + suballoc.size + VMA_DEBUG_MARGIN;
- }
-
- VMA_VALIDATE(nullItem2ndCount == m_2ndNullItemsCount);
- }
-
- VMA_VALIDATE(offset <= GetSize());
- VMA_VALIDATE(m_SumFreeSize == GetSize() - sumUsedSize);
-
- return true;
-}
-
-size_t VmaBlockMetadata_Linear::GetAllocationCount() const {
- return AccessSuballocations1st().size() - (m_1stNullItemsBeginCount + m_1stNullItemsMiddleCount) +
- AccessSuballocations2nd().size() - m_2ndNullItemsCount;
-}
-
-VkDeviceSize VmaBlockMetadata_Linear::GetUnusedRangeSizeMax() const {
- const VkDeviceSize size = GetSize();
-
- /*
- We don't consider gaps inside allocation vectors with freed allocations because
- they are not suitable for reuse in linear allocator. We consider only space that
- is available for new allocations.
- */
- if (IsEmpty()) {
- return size;
- }
-
- const SuballocationVectorType &suballocations1st = AccessSuballocations1st();
-
- switch (m_2ndVectorMode) {
- case SECOND_VECTOR_EMPTY:
- /*
- Available space is after end of 1st, as well as before beginning of 1st (which
- whould make it a ring buffer).
- */
- {
- const size_t suballocations1stCount = suballocations1st.size();
- VMA_ASSERT(suballocations1stCount > m_1stNullItemsBeginCount);
- const VmaSuballocation &firstSuballoc = suballocations1st[m_1stNullItemsBeginCount];
- const VmaSuballocation &lastSuballoc = suballocations1st[suballocations1stCount - 1];
- return VMA_MAX(
- firstSuballoc.offset,
- size - (lastSuballoc.offset + lastSuballoc.size));
- }
- break;
-
- case SECOND_VECTOR_RING_BUFFER:
- /*
- Available space is only between end of 2nd and beginning of 1st.
- */
- {
- const SuballocationVectorType &suballocations2nd = AccessSuballocations2nd();
- const VmaSuballocation &lastSuballoc2nd = suballocations2nd.back();
- const VmaSuballocation &firstSuballoc1st = suballocations1st[m_1stNullItemsBeginCount];
- return firstSuballoc1st.offset - (lastSuballoc2nd.offset + lastSuballoc2nd.size);
- }
- break;
-
- case SECOND_VECTOR_DOUBLE_STACK:
- /*
- Available space is only between end of 1st and top of 2nd.
- */
- {
- const SuballocationVectorType &suballocations2nd = AccessSuballocations2nd();
- const VmaSuballocation &topSuballoc2nd = suballocations2nd.back();
- const VmaSuballocation &lastSuballoc1st = suballocations1st.back();
- return topSuballoc2nd.offset - (lastSuballoc1st.offset + lastSuballoc1st.size);
- }
- break;
-
- default:
- VMA_ASSERT(0);
- return 0;
- }
-}
-
-void VmaBlockMetadata_Linear::CalcAllocationStatInfo(VmaStatInfo &outInfo) const {
- const VkDeviceSize size = GetSize();
- const SuballocationVectorType &suballocations1st = AccessSuballocations1st();
- const SuballocationVectorType &suballocations2nd = AccessSuballocations2nd();
- const size_t suballoc1stCount = suballocations1st.size();
- const size_t suballoc2ndCount = suballocations2nd.size();
-
- outInfo.blockCount = 1;
- outInfo.allocationCount = (uint32_t)GetAllocationCount();
- outInfo.unusedRangeCount = 0;
- outInfo.usedBytes = 0;
- outInfo.allocationSizeMin = UINT64_MAX;
- outInfo.allocationSizeMax = 0;
- outInfo.unusedRangeSizeMin = UINT64_MAX;
- outInfo.unusedRangeSizeMax = 0;
-
- VkDeviceSize lastOffset = 0;
-
- if (m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER) {
- const VkDeviceSize freeSpace2ndTo1stEnd = suballocations1st[m_1stNullItemsBeginCount].offset;
- size_t nextAlloc2ndIndex = 0;
- while (lastOffset < freeSpace2ndTo1stEnd) {
- // Find next non-null allocation or move nextAllocIndex to the end.
- while (nextAlloc2ndIndex < suballoc2ndCount &&
- suballocations2nd[nextAlloc2ndIndex].hAllocation == VK_NULL_HANDLE) {
- ++nextAlloc2ndIndex;
- }
-
- // Found non-null allocation.
- if (nextAlloc2ndIndex < suballoc2ndCount) {
- const VmaSuballocation &suballoc = suballocations2nd[nextAlloc2ndIndex];
-
- // 1. Process free space before this allocation.
- if (lastOffset < suballoc.offset) {
- // There is free space from lastOffset to suballoc.offset.
- const VkDeviceSize unusedRangeSize = suballoc.offset - lastOffset;
- ++outInfo.unusedRangeCount;
- outInfo.unusedBytes += unusedRangeSize;
- outInfo.unusedRangeSizeMin = VMA_MIN(outInfo.unusedRangeSizeMin, unusedRangeSize);
- outInfo.unusedRangeSizeMax = VMA_MIN(outInfo.unusedRangeSizeMax, unusedRangeSize);
- }
-
- // 2. Process this allocation.
- // There is allocation with suballoc.offset, suballoc.size.
- outInfo.usedBytes += suballoc.size;
- outInfo.allocationSizeMin = VMA_MIN(outInfo.allocationSizeMin, suballoc.size);
- outInfo.allocationSizeMax = VMA_MIN(outInfo.allocationSizeMax, suballoc.size);
-
- // 3. Prepare for next iteration.
- lastOffset = suballoc.offset + suballoc.size;
- ++nextAlloc2ndIndex;
- }
- // We are at the end.
- else {
- // There is free space from lastOffset to freeSpace2ndTo1stEnd.
- if (lastOffset < freeSpace2ndTo1stEnd) {
- const VkDeviceSize unusedRangeSize = freeSpace2ndTo1stEnd - lastOffset;
- ++outInfo.unusedRangeCount;
- outInfo.unusedBytes += unusedRangeSize;
- outInfo.unusedRangeSizeMin = VMA_MIN(outInfo.unusedRangeSizeMin, unusedRangeSize);
- outInfo.unusedRangeSizeMax = VMA_MIN(outInfo.unusedRangeSizeMax, unusedRangeSize);
- }
-
- // End of loop.
- lastOffset = freeSpace2ndTo1stEnd;
- }
- }
- }
-
- size_t nextAlloc1stIndex = m_1stNullItemsBeginCount;
- const VkDeviceSize freeSpace1stTo2ndEnd =
- m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK ? suballocations2nd.back().offset : size;
- while (lastOffset < freeSpace1stTo2ndEnd) {
- // Find next non-null allocation or move nextAllocIndex to the end.
- while (nextAlloc1stIndex < suballoc1stCount &&
- suballocations1st[nextAlloc1stIndex].hAllocation == VK_NULL_HANDLE) {
- ++nextAlloc1stIndex;
- }
-
- // Found non-null allocation.
- if (nextAlloc1stIndex < suballoc1stCount) {
- const VmaSuballocation &suballoc = suballocations1st[nextAlloc1stIndex];
-
- // 1. Process free space before this allocation.
- if (lastOffset < suballoc.offset) {
- // There is free space from lastOffset to suballoc.offset.
- const VkDeviceSize unusedRangeSize = suballoc.offset - lastOffset;
- ++outInfo.unusedRangeCount;
- outInfo.unusedBytes += unusedRangeSize;
- outInfo.unusedRangeSizeMin = VMA_MIN(outInfo.unusedRangeSizeMin, unusedRangeSize);
- outInfo.unusedRangeSizeMax = VMA_MIN(outInfo.unusedRangeSizeMax, unusedRangeSize);
- }
-
- // 2. Process this allocation.
- // There is allocation with suballoc.offset, suballoc.size.
- outInfo.usedBytes += suballoc.size;
- outInfo.allocationSizeMin = VMA_MIN(outInfo.allocationSizeMin, suballoc.size);
- outInfo.allocationSizeMax = VMA_MIN(outInfo.allocationSizeMax, suballoc.size);
-
- // 3. Prepare for next iteration.
- lastOffset = suballoc.offset + suballoc.size;
- ++nextAlloc1stIndex;
- }
- // We are at the end.
- else {
- // There is free space from lastOffset to freeSpace1stTo2ndEnd.
- if (lastOffset < freeSpace1stTo2ndEnd) {
- const VkDeviceSize unusedRangeSize = freeSpace1stTo2ndEnd - lastOffset;
- ++outInfo.unusedRangeCount;
- outInfo.unusedBytes += unusedRangeSize;
- outInfo.unusedRangeSizeMin = VMA_MIN(outInfo.unusedRangeSizeMin, unusedRangeSize);
- outInfo.unusedRangeSizeMax = VMA_MIN(outInfo.unusedRangeSizeMax, unusedRangeSize);
- }
-
- // End of loop.
- lastOffset = freeSpace1stTo2ndEnd;
- }
- }
-
- if (m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK) {
- size_t nextAlloc2ndIndex = suballocations2nd.size() - 1;
- while (lastOffset < size) {
- // Find next non-null allocation or move nextAllocIndex to the end.
- while (nextAlloc2ndIndex != SIZE_MAX &&
- suballocations2nd[nextAlloc2ndIndex].hAllocation == VK_NULL_HANDLE) {
- --nextAlloc2ndIndex;
- }
-
- // Found non-null allocation.
- if (nextAlloc2ndIndex != SIZE_MAX) {
- const VmaSuballocation &suballoc = suballocations2nd[nextAlloc2ndIndex];
-
- // 1. Process free space before this allocation.
- if (lastOffset < suballoc.offset) {
- // There is free space from lastOffset to suballoc.offset.
- const VkDeviceSize unusedRangeSize = suballoc.offset - lastOffset;
- ++outInfo.unusedRangeCount;
- outInfo.unusedBytes += unusedRangeSize;
- outInfo.unusedRangeSizeMin = VMA_MIN(outInfo.unusedRangeSizeMin, unusedRangeSize);
- outInfo.unusedRangeSizeMax = VMA_MIN(outInfo.unusedRangeSizeMax, unusedRangeSize);
- }
-
- // 2. Process this allocation.
- // There is allocation with suballoc.offset, suballoc.size.
- outInfo.usedBytes += suballoc.size;
- outInfo.allocationSizeMin = VMA_MIN(outInfo.allocationSizeMin, suballoc.size);
- outInfo.allocationSizeMax = VMA_MIN(outInfo.allocationSizeMax, suballoc.size);
-
- // 3. Prepare for next iteration.
- lastOffset = suballoc.offset + suballoc.size;
- --nextAlloc2ndIndex;
- }
- // We are at the end.
- else {
- // There is free space from lastOffset to size.
- if (lastOffset < size) {
- const VkDeviceSize unusedRangeSize = size - lastOffset;
- ++outInfo.unusedRangeCount;
- outInfo.unusedBytes += unusedRangeSize;
- outInfo.unusedRangeSizeMin = VMA_MIN(outInfo.unusedRangeSizeMin, unusedRangeSize);
- outInfo.unusedRangeSizeMax = VMA_MIN(outInfo.unusedRangeSizeMax, unusedRangeSize);
- }
-
- // End of loop.
- lastOffset = size;
- }
- }
- }
-
- outInfo.unusedBytes = size - outInfo.usedBytes;
-}
-
-void VmaBlockMetadata_Linear::AddPoolStats(VmaPoolStats &inoutStats) const {
- const SuballocationVectorType &suballocations1st = AccessSuballocations1st();
- const SuballocationVectorType &suballocations2nd = AccessSuballocations2nd();
- const VkDeviceSize size = GetSize();
- const size_t suballoc1stCount = suballocations1st.size();
- const size_t suballoc2ndCount = suballocations2nd.size();
-
- inoutStats.size += size;
-
- VkDeviceSize lastOffset = 0;
-
- if (m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER) {
- const VkDeviceSize freeSpace2ndTo1stEnd = suballocations1st[m_1stNullItemsBeginCount].offset;
- size_t nextAlloc2ndIndex = m_1stNullItemsBeginCount;
- while (lastOffset < freeSpace2ndTo1stEnd) {
- // Find next non-null allocation or move nextAlloc2ndIndex to the end.
- while (nextAlloc2ndIndex < suballoc2ndCount &&
- suballocations2nd[nextAlloc2ndIndex].hAllocation == VK_NULL_HANDLE) {
- ++nextAlloc2ndIndex;
- }
-
- // Found non-null allocation.
- if (nextAlloc2ndIndex < suballoc2ndCount) {
- const VmaSuballocation &suballoc = suballocations2nd[nextAlloc2ndIndex];
-
- // 1. Process free space before this allocation.
- if (lastOffset < suballoc.offset) {
- // There is free space from lastOffset to suballoc.offset.
- const VkDeviceSize unusedRangeSize = suballoc.offset - lastOffset;
- inoutStats.unusedSize += unusedRangeSize;
- ++inoutStats.unusedRangeCount;
- inoutStats.unusedRangeSizeMax = VMA_MAX(inoutStats.unusedRangeSizeMax, unusedRangeSize);
- }
-
- // 2. Process this allocation.
- // There is allocation with suballoc.offset, suballoc.size.
- ++inoutStats.allocationCount;
-
- // 3. Prepare for next iteration.
- lastOffset = suballoc.offset + suballoc.size;
- ++nextAlloc2ndIndex;
- }
- // We are at the end.
- else {
- if (lastOffset < freeSpace2ndTo1stEnd) {
- // There is free space from lastOffset to freeSpace2ndTo1stEnd.
- const VkDeviceSize unusedRangeSize = freeSpace2ndTo1stEnd - lastOffset;
- inoutStats.unusedSize += unusedRangeSize;
- ++inoutStats.unusedRangeCount;
- inoutStats.unusedRangeSizeMax = VMA_MAX(inoutStats.unusedRangeSizeMax, unusedRangeSize);
- }
-
- // End of loop.
- lastOffset = freeSpace2ndTo1stEnd;
- }
- }
- }
-
- size_t nextAlloc1stIndex = m_1stNullItemsBeginCount;
- const VkDeviceSize freeSpace1stTo2ndEnd =
- m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK ? suballocations2nd.back().offset : size;
- while (lastOffset < freeSpace1stTo2ndEnd) {
- // Find next non-null allocation or move nextAllocIndex to the end.
- while (nextAlloc1stIndex < suballoc1stCount &&
- suballocations1st[nextAlloc1stIndex].hAllocation == VK_NULL_HANDLE) {
- ++nextAlloc1stIndex;
- }
-
- // Found non-null allocation.
- if (nextAlloc1stIndex < suballoc1stCount) {
- const VmaSuballocation &suballoc = suballocations1st[nextAlloc1stIndex];
-
- // 1. Process free space before this allocation.
- if (lastOffset < suballoc.offset) {
- // There is free space from lastOffset to suballoc.offset.
- const VkDeviceSize unusedRangeSize = suballoc.offset - lastOffset;
- inoutStats.unusedSize += unusedRangeSize;
- ++inoutStats.unusedRangeCount;
- inoutStats.unusedRangeSizeMax = VMA_MAX(inoutStats.unusedRangeSizeMax, unusedRangeSize);
- }
-
- // 2. Process this allocation.
- // There is allocation with suballoc.offset, suballoc.size.
- ++inoutStats.allocationCount;
-
- // 3. Prepare for next iteration.
- lastOffset = suballoc.offset + suballoc.size;
- ++nextAlloc1stIndex;
- }
- // We are at the end.
- else {
- if (lastOffset < freeSpace1stTo2ndEnd) {
- // There is free space from lastOffset to freeSpace1stTo2ndEnd.
- const VkDeviceSize unusedRangeSize = freeSpace1stTo2ndEnd - lastOffset;
- inoutStats.unusedSize += unusedRangeSize;
- ++inoutStats.unusedRangeCount;
- inoutStats.unusedRangeSizeMax = VMA_MAX(inoutStats.unusedRangeSizeMax, unusedRangeSize);
- }
-
- // End of loop.
- lastOffset = freeSpace1stTo2ndEnd;
- }
- }
-
- if (m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK) {
- size_t nextAlloc2ndIndex = suballocations2nd.size() - 1;
- while (lastOffset < size) {
- // Find next non-null allocation or move nextAlloc2ndIndex to the end.
- while (nextAlloc2ndIndex != SIZE_MAX &&
- suballocations2nd[nextAlloc2ndIndex].hAllocation == VK_NULL_HANDLE) {
- --nextAlloc2ndIndex;
- }
-
- // Found non-null allocation.
- if (nextAlloc2ndIndex != SIZE_MAX) {
- const VmaSuballocation &suballoc = suballocations2nd[nextAlloc2ndIndex];
-
- // 1. Process free space before this allocation.
- if (lastOffset < suballoc.offset) {
- // There is free space from lastOffset to suballoc.offset.
- const VkDeviceSize unusedRangeSize = suballoc.offset - lastOffset;
- inoutStats.unusedSize += unusedRangeSize;
- ++inoutStats.unusedRangeCount;
- inoutStats.unusedRangeSizeMax = VMA_MAX(inoutStats.unusedRangeSizeMax, unusedRangeSize);
- }
-
- // 2. Process this allocation.
- // There is allocation with suballoc.offset, suballoc.size.
- ++inoutStats.allocationCount;
-
- // 3. Prepare for next iteration.
- lastOffset = suballoc.offset + suballoc.size;
- --nextAlloc2ndIndex;
- }
- // We are at the end.
- else {
- if (lastOffset < size) {
- // There is free space from lastOffset to size.
- const VkDeviceSize unusedRangeSize = size - lastOffset;
- inoutStats.unusedSize += unusedRangeSize;
- ++inoutStats.unusedRangeCount;
- inoutStats.unusedRangeSizeMax = VMA_MAX(inoutStats.unusedRangeSizeMax, unusedRangeSize);
- }
-
- // End of loop.
- lastOffset = size;
- }
- }
- }
-}
-
-#if VMA_STATS_STRING_ENABLED
-void VmaBlockMetadata_Linear::PrintDetailedMap(class VmaJsonWriter &json) const {
- const VkDeviceSize size = GetSize();
- const SuballocationVectorType &suballocations1st = AccessSuballocations1st();
- const SuballocationVectorType &suballocations2nd = AccessSuballocations2nd();
- const size_t suballoc1stCount = suballocations1st.size();
- const size_t suballoc2ndCount = suballocations2nd.size();
-
- // FIRST PASS
-
- size_t unusedRangeCount = 0;
- VkDeviceSize usedBytes = 0;
-
- VkDeviceSize lastOffset = 0;
-
- size_t alloc2ndCount = 0;
- if (m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER) {
- const VkDeviceSize freeSpace2ndTo1stEnd = suballocations1st[m_1stNullItemsBeginCount].offset;
- size_t nextAlloc2ndIndex = 0;
- while (lastOffset < freeSpace2ndTo1stEnd) {
- // Find next non-null allocation or move nextAlloc2ndIndex to the end.
- while (nextAlloc2ndIndex < suballoc2ndCount &&
- suballocations2nd[nextAlloc2ndIndex].hAllocation == VK_NULL_HANDLE) {
- ++nextAlloc2ndIndex;
- }
-
- // Found non-null allocation.
- if (nextAlloc2ndIndex < suballoc2ndCount) {
- const VmaSuballocation &suballoc = suballocations2nd[nextAlloc2ndIndex];
-
- // 1. Process free space before this allocation.
- if (lastOffset < suballoc.offset) {
- // There is free space from lastOffset to suballoc.offset.
- ++unusedRangeCount;
- }
-
- // 2. Process this allocation.
- // There is allocation with suballoc.offset, suballoc.size.
- ++alloc2ndCount;
- usedBytes += suballoc.size;
-
- // 3. Prepare for next iteration.
- lastOffset = suballoc.offset + suballoc.size;
- ++nextAlloc2ndIndex;
- }
- // We are at the end.
- else {
- if (lastOffset < freeSpace2ndTo1stEnd) {
- // There is free space from lastOffset to freeSpace2ndTo1stEnd.
- ++unusedRangeCount;
- }
-
- // End of loop.
- lastOffset = freeSpace2ndTo1stEnd;
- }
- }
- }
-
- size_t nextAlloc1stIndex = m_1stNullItemsBeginCount;
- size_t alloc1stCount = 0;
- const VkDeviceSize freeSpace1stTo2ndEnd =
- m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK ? suballocations2nd.back().offset : size;
- while (lastOffset < freeSpace1stTo2ndEnd) {
- // Find next non-null allocation or move nextAllocIndex to the end.
- while (nextAlloc1stIndex < suballoc1stCount &&
- suballocations1st[nextAlloc1stIndex].hAllocation == VK_NULL_HANDLE) {
- ++nextAlloc1stIndex;
- }
-
- // Found non-null allocation.
- if (nextAlloc1stIndex < suballoc1stCount) {
- const VmaSuballocation &suballoc = suballocations1st[nextAlloc1stIndex];
-
- // 1. Process free space before this allocation.
- if (lastOffset < suballoc.offset) {
- // There is free space from lastOffset to suballoc.offset.
- ++unusedRangeCount;
- }
-
- // 2. Process this allocation.
- // There is allocation with suballoc.offset, suballoc.size.
- ++alloc1stCount;
- usedBytes += suballoc.size;
-
- // 3. Prepare for next iteration.
- lastOffset = suballoc.offset + suballoc.size;
- ++nextAlloc1stIndex;
- }
- // We are at the end.
- else {
- if (lastOffset < size) {
- // There is free space from lastOffset to freeSpace1stTo2ndEnd.
- ++unusedRangeCount;
- }
-
- // End of loop.
- lastOffset = freeSpace1stTo2ndEnd;
- }
- }
-
- if (m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK) {
- size_t nextAlloc2ndIndex = suballocations2nd.size() - 1;
- while (lastOffset < size) {
- // Find next non-null allocation or move nextAlloc2ndIndex to the end.
- while (nextAlloc2ndIndex != SIZE_MAX &&
- suballocations2nd[nextAlloc2ndIndex].hAllocation == VK_NULL_HANDLE) {
- --nextAlloc2ndIndex;
- }
-
- // Found non-null allocation.
- if (nextAlloc2ndIndex != SIZE_MAX) {
- const VmaSuballocation &suballoc = suballocations2nd[nextAlloc2ndIndex];
-
- // 1. Process free space before this allocation.
- if (lastOffset < suballoc.offset) {
- // There is free space from lastOffset to suballoc.offset.
- ++unusedRangeCount;
- }
-
- // 2. Process this allocation.
- // There is allocation with suballoc.offset, suballoc.size.
- ++alloc2ndCount;
- usedBytes += suballoc.size;
-
- // 3. Prepare for next iteration.
- lastOffset = suballoc.offset + suballoc.size;
- --nextAlloc2ndIndex;
- }
- // We are at the end.
- else {
- if (lastOffset < size) {
- // There is free space from lastOffset to size.
- ++unusedRangeCount;
- }
-
- // End of loop.
- lastOffset = size;
- }
- }
- }
-
- const VkDeviceSize unusedBytes = size - usedBytes;
- PrintDetailedMap_Begin(json, unusedBytes, alloc1stCount + alloc2ndCount, unusedRangeCount);
-
- // SECOND PASS
- lastOffset = 0;
-
- if (m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER) {
- const VkDeviceSize freeSpace2ndTo1stEnd = suballocations1st[m_1stNullItemsBeginCount].offset;
- size_t nextAlloc2ndIndex = 0;
- while (lastOffset < freeSpace2ndTo1stEnd) {
- // Find next non-null allocation or move nextAlloc2ndIndex to the end.
- while (nextAlloc2ndIndex < suballoc2ndCount &&
- suballocations2nd[nextAlloc2ndIndex].hAllocation == VK_NULL_HANDLE) {
- ++nextAlloc2ndIndex;
- }
-
- // Found non-null allocation.
- if (nextAlloc2ndIndex < suballoc2ndCount) {
- const VmaSuballocation &suballoc = suballocations2nd[nextAlloc2ndIndex];
-
- // 1. Process free space before this allocation.
- if (lastOffset < suballoc.offset) {
- // There is free space from lastOffset to suballoc.offset.
- const VkDeviceSize unusedRangeSize = suballoc.offset - lastOffset;
- PrintDetailedMap_UnusedRange(json, lastOffset, unusedRangeSize);
- }
-
- // 2. Process this allocation.
- // There is allocation with suballoc.offset, suballoc.size.
- PrintDetailedMap_Allocation(json, suballoc.offset, suballoc.hAllocation);
-
- // 3. Prepare for next iteration.
- lastOffset = suballoc.offset + suballoc.size;
- ++nextAlloc2ndIndex;
- }
- // We are at the end.
- else {
- if (lastOffset < freeSpace2ndTo1stEnd) {
- // There is free space from lastOffset to freeSpace2ndTo1stEnd.
- const VkDeviceSize unusedRangeSize = freeSpace2ndTo1stEnd - lastOffset;
- PrintDetailedMap_UnusedRange(json, lastOffset, unusedRangeSize);
- }
-
- // End of loop.
- lastOffset = freeSpace2ndTo1stEnd;
- }
- }
- }
-
- nextAlloc1stIndex = m_1stNullItemsBeginCount;
- while (lastOffset < freeSpace1stTo2ndEnd) {
- // Find next non-null allocation or move nextAllocIndex to the end.
- while (nextAlloc1stIndex < suballoc1stCount &&
- suballocations1st[nextAlloc1stIndex].hAllocation == VK_NULL_HANDLE) {
- ++nextAlloc1stIndex;
- }
-
- // Found non-null allocation.
- if (nextAlloc1stIndex < suballoc1stCount) {
- const VmaSuballocation &suballoc = suballocations1st[nextAlloc1stIndex];
-
- // 1. Process free space before this allocation.
- if (lastOffset < suballoc.offset) {
- // There is free space from lastOffset to suballoc.offset.
- const VkDeviceSize unusedRangeSize = suballoc.offset - lastOffset;
- PrintDetailedMap_UnusedRange(json, lastOffset, unusedRangeSize);
- }
-
- // 2. Process this allocation.
- // There is allocation with suballoc.offset, suballoc.size.
- PrintDetailedMap_Allocation(json, suballoc.offset, suballoc.hAllocation);
-
- // 3. Prepare for next iteration.
- lastOffset = suballoc.offset + suballoc.size;
- ++nextAlloc1stIndex;
- }
- // We are at the end.
- else {
- if (lastOffset < freeSpace1stTo2ndEnd) {
- // There is free space from lastOffset to freeSpace1stTo2ndEnd.
- const VkDeviceSize unusedRangeSize = freeSpace1stTo2ndEnd - lastOffset;
- PrintDetailedMap_UnusedRange(json, lastOffset, unusedRangeSize);
- }
-
- // End of loop.
- lastOffset = freeSpace1stTo2ndEnd;
- }
- }
-
- if (m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK) {
- size_t nextAlloc2ndIndex = suballocations2nd.size() - 1;
- while (lastOffset < size) {
- // Find next non-null allocation or move nextAlloc2ndIndex to the end.
- while (nextAlloc2ndIndex != SIZE_MAX &&
- suballocations2nd[nextAlloc2ndIndex].hAllocation == VK_NULL_HANDLE) {
- --nextAlloc2ndIndex;
- }
-
- // Found non-null allocation.
- if (nextAlloc2ndIndex != SIZE_MAX) {
- const VmaSuballocation &suballoc = suballocations2nd[nextAlloc2ndIndex];
-
- // 1. Process free space before this allocation.
- if (lastOffset < suballoc.offset) {
- // There is free space from lastOffset to suballoc.offset.
- const VkDeviceSize unusedRangeSize = suballoc.offset - lastOffset;
- PrintDetailedMap_UnusedRange(json, lastOffset, unusedRangeSize);
- }
-
- // 2. Process this allocation.
- // There is allocation with suballoc.offset, suballoc.size.
- PrintDetailedMap_Allocation(json, suballoc.offset, suballoc.hAllocation);
-
- // 3. Prepare for next iteration.
- lastOffset = suballoc.offset + suballoc.size;
- --nextAlloc2ndIndex;
- }
- // We are at the end.
- else {
- if (lastOffset < size) {
- // There is free space from lastOffset to size.
- const VkDeviceSize unusedRangeSize = size - lastOffset;
- PrintDetailedMap_UnusedRange(json, lastOffset, unusedRangeSize);
- }
-
- // End of loop.
- lastOffset = size;
- }
- }
- }
-
- PrintDetailedMap_End(json);
-}
-#endif // #if VMA_STATS_STRING_ENABLED
-
-bool VmaBlockMetadata_Linear::CreateAllocationRequest(
- uint32_t currentFrameIndex,
- uint32_t frameInUseCount,
- VkDeviceSize bufferImageGranularity,
- VkDeviceSize allocSize,
- VkDeviceSize allocAlignment,
- bool upperAddress,
- VmaSuballocationType allocType,
- bool canMakeOtherLost,
- uint32_t strategy,
- VmaAllocationRequest *pAllocationRequest) {
- VMA_ASSERT(allocSize > 0);
- VMA_ASSERT(allocType != VMA_SUBALLOCATION_TYPE_FREE);
- VMA_ASSERT(pAllocationRequest != VMA_NULL);
- VMA_HEAVY_ASSERT(Validate());
- return upperAddress ?
- CreateAllocationRequest_UpperAddress(
- currentFrameIndex, frameInUseCount, bufferImageGranularity,
- allocSize, allocAlignment, allocType, canMakeOtherLost, strategy, pAllocationRequest) :
- CreateAllocationRequest_LowerAddress(
- currentFrameIndex, frameInUseCount, bufferImageGranularity,
- allocSize, allocAlignment, allocType, canMakeOtherLost, strategy, pAllocationRequest);
-}
-
-bool VmaBlockMetadata_Linear::CreateAllocationRequest_UpperAddress(
- uint32_t currentFrameIndex,
- uint32_t frameInUseCount,
- VkDeviceSize bufferImageGranularity,
- VkDeviceSize allocSize,
- VkDeviceSize allocAlignment,
- VmaSuballocationType allocType,
- bool canMakeOtherLost,
- uint32_t strategy,
- VmaAllocationRequest *pAllocationRequest) {
- const VkDeviceSize size = GetSize();
- SuballocationVectorType &suballocations1st = AccessSuballocations1st();
- SuballocationVectorType &suballocations2nd = AccessSuballocations2nd();
-
- if (m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER) {
- VMA_ASSERT(0 && "Trying to use pool with linear algorithm as double stack, while it is already being used as ring buffer.");
- return false;
- }
-
- // Try to allocate before 2nd.back(), or end of block if 2nd.empty().
- if (allocSize > size) {
- return false;
- }
- VkDeviceSize resultBaseOffset = size - allocSize;
- if (!suballocations2nd.empty()) {
- const VmaSuballocation &lastSuballoc = suballocations2nd.back();
- resultBaseOffset = lastSuballoc.offset - allocSize;
- if (allocSize > lastSuballoc.offset) {
- return false;
- }
- }
-
- // Start from offset equal to end of free space.
- VkDeviceSize resultOffset = resultBaseOffset;
-
- // Apply VMA_DEBUG_MARGIN at the end.
- if (VMA_DEBUG_MARGIN > 0) {
- if (resultOffset < VMA_DEBUG_MARGIN) {
- return false;
- }
- resultOffset -= VMA_DEBUG_MARGIN;
- }
-
- // Apply alignment.
- resultOffset = VmaAlignDown(resultOffset, allocAlignment);
-
- // Check next suballocations from 2nd for BufferImageGranularity conflicts.
- // Make bigger alignment if necessary.
- if (bufferImageGranularity > 1 && !suballocations2nd.empty()) {
- bool bufferImageGranularityConflict = false;
- for (size_t nextSuballocIndex = suballocations2nd.size(); nextSuballocIndex--;) {
- const VmaSuballocation &nextSuballoc = suballocations2nd[nextSuballocIndex];
- if (VmaBlocksOnSamePage(resultOffset, allocSize, nextSuballoc.offset, bufferImageGranularity)) {
- if (VmaIsBufferImageGranularityConflict(nextSuballoc.type, allocType)) {
- bufferImageGranularityConflict = true;
- break;
- }
- } else
- // Already on previous page.
- break;
- }
- if (bufferImageGranularityConflict) {
- resultOffset = VmaAlignDown(resultOffset, bufferImageGranularity);
- }
- }
-
- // There is enough free space.
- const VkDeviceSize endOf1st = !suballocations1st.empty() ?
- suballocations1st.back().offset + suballocations1st.back().size :
- 0;
- if (endOf1st + VMA_DEBUG_MARGIN <= resultOffset) {
- // Check previous suballocations for BufferImageGranularity conflicts.
- // If conflict exists, allocation cannot be made here.
- if (bufferImageGranularity > 1) {
- for (size_t prevSuballocIndex = suballocations1st.size(); prevSuballocIndex--;) {
- const VmaSuballocation &prevSuballoc = suballocations1st[prevSuballocIndex];
- if (VmaBlocksOnSamePage(prevSuballoc.offset, prevSuballoc.size, resultOffset, bufferImageGranularity)) {
- if (VmaIsBufferImageGranularityConflict(allocType, prevSuballoc.type)) {
- return false;
- }
- } else {
- // Already on next page.
- break;
- }
- }
- }
-
- // All tests passed: Success.
- pAllocationRequest->offset = resultOffset;
- pAllocationRequest->sumFreeSize = resultBaseOffset + allocSize - endOf1st;
- pAllocationRequest->sumItemSize = 0;
- // pAllocationRequest->item unused.
- pAllocationRequest->itemsToMakeLostCount = 0;
- pAllocationRequest->type = VmaAllocationRequestType::UpperAddress;
- return true;
- }
-
- return false;
-}
-
-bool VmaBlockMetadata_Linear::CreateAllocationRequest_LowerAddress(
- uint32_t currentFrameIndex,
- uint32_t frameInUseCount,
- VkDeviceSize bufferImageGranularity,
- VkDeviceSize allocSize,
- VkDeviceSize allocAlignment,
- VmaSuballocationType allocType,
- bool canMakeOtherLost,
- uint32_t strategy,
- VmaAllocationRequest *pAllocationRequest) {
- const VkDeviceSize size = GetSize();
- SuballocationVectorType &suballocations1st = AccessSuballocations1st();
- SuballocationVectorType &suballocations2nd = AccessSuballocations2nd();
-
- if (m_2ndVectorMode == SECOND_VECTOR_EMPTY || m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK) {
- // Try to allocate at the end of 1st vector.
-
- VkDeviceSize resultBaseOffset = 0;
- if (!suballocations1st.empty()) {
- const VmaSuballocation &lastSuballoc = suballocations1st.back();
- resultBaseOffset = lastSuballoc.offset + lastSuballoc.size;
- }
-
- // Start from offset equal to beginning of free space.
- VkDeviceSize resultOffset = resultBaseOffset;
-
- // Apply VMA_DEBUG_MARGIN at the beginning.
- if (VMA_DEBUG_MARGIN > 0) {
- resultOffset += VMA_DEBUG_MARGIN;
- }
-
- // Apply alignment.
- resultOffset = VmaAlignUp(resultOffset, allocAlignment);
-
- // Check previous suballocations for BufferImageGranularity conflicts.
- // Make bigger alignment if necessary.
- if (bufferImageGranularity > 1 && !suballocations1st.empty()) {
- bool bufferImageGranularityConflict = false;
- for (size_t prevSuballocIndex = suballocations1st.size(); prevSuballocIndex--;) {
- const VmaSuballocation &prevSuballoc = suballocations1st[prevSuballocIndex];
- if (VmaBlocksOnSamePage(prevSuballoc.offset, prevSuballoc.size, resultOffset, bufferImageGranularity)) {
- if (VmaIsBufferImageGranularityConflict(prevSuballoc.type, allocType)) {
- bufferImageGranularityConflict = true;
- break;
- }
- } else
- // Already on previous page.
- break;
- }
- if (bufferImageGranularityConflict) {
- resultOffset = VmaAlignUp(resultOffset, bufferImageGranularity);
- }
- }
-
- const VkDeviceSize freeSpaceEnd = m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK ?
- suballocations2nd.back().offset :
- size;
-
- // There is enough free space at the end after alignment.
- if (resultOffset + allocSize + VMA_DEBUG_MARGIN <= freeSpaceEnd) {
- // Check next suballocations for BufferImageGranularity conflicts.
- // If conflict exists, allocation cannot be made here.
- if (bufferImageGranularity > 1 && m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK) {
- for (size_t nextSuballocIndex = suballocations2nd.size(); nextSuballocIndex--;) {
- const VmaSuballocation &nextSuballoc = suballocations2nd[nextSuballocIndex];
- if (VmaBlocksOnSamePage(resultOffset, allocSize, nextSuballoc.offset, bufferImageGranularity)) {
- if (VmaIsBufferImageGranularityConflict(allocType, nextSuballoc.type)) {
- return false;
- }
- } else {
- // Already on previous page.
- break;
- }
- }
- }
-
- // All tests passed: Success.
- pAllocationRequest->offset = resultOffset;
- pAllocationRequest->sumFreeSize = freeSpaceEnd - resultBaseOffset;
- pAllocationRequest->sumItemSize = 0;
- // pAllocationRequest->item, customData unused.
- pAllocationRequest->type = VmaAllocationRequestType::EndOf1st;
- pAllocationRequest->itemsToMakeLostCount = 0;
- return true;
- }
- }
-
- // Wrap-around to end of 2nd vector. Try to allocate there, watching for the
- // beginning of 1st vector as the end of free space.
- if (m_2ndVectorMode == SECOND_VECTOR_EMPTY || m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER) {
- VMA_ASSERT(!suballocations1st.empty());
-
- VkDeviceSize resultBaseOffset = 0;
- if (!suballocations2nd.empty()) {
- const VmaSuballocation &lastSuballoc = suballocations2nd.back();
- resultBaseOffset = lastSuballoc.offset + lastSuballoc.size;
- }
-
- // Start from offset equal to beginning of free space.
- VkDeviceSize resultOffset = resultBaseOffset;
-
- // Apply VMA_DEBUG_MARGIN at the beginning.
- if (VMA_DEBUG_MARGIN > 0) {
- resultOffset += VMA_DEBUG_MARGIN;
- }
-
- // Apply alignment.
- resultOffset = VmaAlignUp(resultOffset, allocAlignment);
-
- // Check previous suballocations for BufferImageGranularity conflicts.
- // Make bigger alignment if necessary.
- if (bufferImageGranularity > 1 && !suballocations2nd.empty()) {
- bool bufferImageGranularityConflict = false;
- for (size_t prevSuballocIndex = suballocations2nd.size(); prevSuballocIndex--;) {
- const VmaSuballocation &prevSuballoc = suballocations2nd[prevSuballocIndex];
- if (VmaBlocksOnSamePage(prevSuballoc.offset, prevSuballoc.size, resultOffset, bufferImageGranularity)) {
- if (VmaIsBufferImageGranularityConflict(prevSuballoc.type, allocType)) {
- bufferImageGranularityConflict = true;
- break;
- }
- } else
- // Already on previous page.
- break;
- }
- if (bufferImageGranularityConflict) {
- resultOffset = VmaAlignUp(resultOffset, bufferImageGranularity);
- }
- }
-
- pAllocationRequest->itemsToMakeLostCount = 0;
- pAllocationRequest->sumItemSize = 0;
- size_t index1st = m_1stNullItemsBeginCount;
-
- if (canMakeOtherLost) {
- while (index1st < suballocations1st.size() &&
- resultOffset + allocSize + VMA_DEBUG_MARGIN > suballocations1st[index1st].offset) {
- // Next colliding allocation at the beginning of 1st vector found. Try to make it lost.
- const VmaSuballocation &suballoc = suballocations1st[index1st];
- if (suballoc.type == VMA_SUBALLOCATION_TYPE_FREE) {
- // No problem.
- } else {
- VMA_ASSERT(suballoc.hAllocation != VK_NULL_HANDLE);
- if (suballoc.hAllocation->CanBecomeLost() &&
- suballoc.hAllocation->GetLastUseFrameIndex() + frameInUseCount < currentFrameIndex) {
- ++pAllocationRequest->itemsToMakeLostCount;
- pAllocationRequest->sumItemSize += suballoc.size;
- } else {
- return false;
- }
- }
- ++index1st;
- }
-
- // Check next suballocations for BufferImageGranularity conflicts.
- // If conflict exists, we must mark more allocations lost or fail.
- if (bufferImageGranularity > 1) {
- while (index1st < suballocations1st.size()) {
- const VmaSuballocation &suballoc = suballocations1st[index1st];
- if (VmaBlocksOnSamePage(resultOffset, allocSize, suballoc.offset, bufferImageGranularity)) {
- if (suballoc.hAllocation != VK_NULL_HANDLE) {
- // Not checking actual VmaIsBufferImageGranularityConflict(allocType, suballoc.type).
- if (suballoc.hAllocation->CanBecomeLost() &&
- suballoc.hAllocation->GetLastUseFrameIndex() + frameInUseCount < currentFrameIndex) {
- ++pAllocationRequest->itemsToMakeLostCount;
- pAllocationRequest->sumItemSize += suballoc.size;
- } else {
- return false;
- }
- }
- } else {
- // Already on next page.
- break;
- }
- ++index1st;
- }
- }
-
- // Special case: There is not enough room at the end for this allocation, even after making all from the 1st lost.
- if (index1st == suballocations1st.size() &&
- resultOffset + allocSize + VMA_DEBUG_MARGIN > size) {
- // TODO: This is a known bug that it's not yet implemented and the allocation is failing.
- VMA_DEBUG_LOG("Unsupported special case in custom pool with linear allocation algorithm used as ring buffer with allocations that can be lost.");
- }
- }
-
- // There is enough free space at the end after alignment.
- if ((index1st == suballocations1st.size() && resultOffset + allocSize + VMA_DEBUG_MARGIN <= size) ||
- (index1st < suballocations1st.size() && resultOffset + allocSize + VMA_DEBUG_MARGIN <= suballocations1st[index1st].offset)) {
- // Check next suballocations for BufferImageGranularity conflicts.
- // If conflict exists, allocation cannot be made here.
- if (bufferImageGranularity > 1) {
- for (size_t nextSuballocIndex = index1st;
- nextSuballocIndex < suballocations1st.size();
- nextSuballocIndex++) {
- const VmaSuballocation &nextSuballoc = suballocations1st[nextSuballocIndex];
- if (VmaBlocksOnSamePage(resultOffset, allocSize, nextSuballoc.offset, bufferImageGranularity)) {
- if (VmaIsBufferImageGranularityConflict(allocType, nextSuballoc.type)) {
- return false;
- }
- } else {
- // Already on next page.
- break;
- }
- }
- }
-
- // All tests passed: Success.
- pAllocationRequest->offset = resultOffset;
- pAllocationRequest->sumFreeSize =
- (index1st < suballocations1st.size() ? suballocations1st[index1st].offset : size) - resultBaseOffset - pAllocationRequest->sumItemSize;
- pAllocationRequest->type = VmaAllocationRequestType::EndOf2nd;
- // pAllocationRequest->item, customData unused.
- return true;
- }
- }
-
- return false;
-}
-
-bool VmaBlockMetadata_Linear::MakeRequestedAllocationsLost(
- uint32_t currentFrameIndex,
- uint32_t frameInUseCount,
- VmaAllocationRequest *pAllocationRequest) {
- if (pAllocationRequest->itemsToMakeLostCount == 0) {
- return true;
- }
-
- VMA_ASSERT(m_2ndVectorMode == SECOND_VECTOR_EMPTY || m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER);
-
- // We always start from 1st.
- SuballocationVectorType *suballocations = &AccessSuballocations1st();
- size_t index = m_1stNullItemsBeginCount;
- size_t madeLostCount = 0;
- while (madeLostCount < pAllocationRequest->itemsToMakeLostCount) {
- if (index == suballocations->size()) {
- index = 0;
- // If we get to the end of 1st, we wrap around to beginning of 2nd of 1st.
- if (m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER) {
- suballocations = &AccessSuballocations2nd();
- }
- // else: m_2ndVectorMode == SECOND_VECTOR_EMPTY:
- // suballocations continues pointing at AccessSuballocations1st().
- VMA_ASSERT(!suballocations->empty());
- }
- VmaSuballocation &suballoc = (*suballocations)[index];
- if (suballoc.type != VMA_SUBALLOCATION_TYPE_FREE) {
- VMA_ASSERT(suballoc.hAllocation != VK_NULL_HANDLE);
- VMA_ASSERT(suballoc.hAllocation->CanBecomeLost());
- if (suballoc.hAllocation->MakeLost(currentFrameIndex, frameInUseCount)) {
- suballoc.type = VMA_SUBALLOCATION_TYPE_FREE;
- suballoc.hAllocation = VK_NULL_HANDLE;
- m_SumFreeSize += suballoc.size;
- if (suballocations == &AccessSuballocations1st()) {
- ++m_1stNullItemsMiddleCount;
- } else {
- ++m_2ndNullItemsCount;
- }
- ++madeLostCount;
- } else {
- return false;
- }
- }
- ++index;
- }
-
- CleanupAfterFree();
- //VMA_HEAVY_ASSERT(Validate()); // Already called by ClanupAfterFree().
-
- return true;
-}
-
-uint32_t VmaBlockMetadata_Linear::MakeAllocationsLost(uint32_t currentFrameIndex, uint32_t frameInUseCount) {
- uint32_t lostAllocationCount = 0;
-
- SuballocationVectorType &suballocations1st = AccessSuballocations1st();
- for (size_t i = m_1stNullItemsBeginCount, count = suballocations1st.size(); i < count; ++i) {
- VmaSuballocation &suballoc = suballocations1st[i];
- if (suballoc.type != VMA_SUBALLOCATION_TYPE_FREE &&
- suballoc.hAllocation->CanBecomeLost() &&
- suballoc.hAllocation->MakeLost(currentFrameIndex, frameInUseCount)) {
- suballoc.type = VMA_SUBALLOCATION_TYPE_FREE;
- suballoc.hAllocation = VK_NULL_HANDLE;
- ++m_1stNullItemsMiddleCount;
- m_SumFreeSize += suballoc.size;
- ++lostAllocationCount;
- }
- }
-
- SuballocationVectorType &suballocations2nd = AccessSuballocations2nd();
- for (size_t i = 0, count = suballocations2nd.size(); i < count; ++i) {
- VmaSuballocation &suballoc = suballocations2nd[i];
- if (suballoc.type != VMA_SUBALLOCATION_TYPE_FREE &&
- suballoc.hAllocation->CanBecomeLost() &&
- suballoc.hAllocation->MakeLost(currentFrameIndex, frameInUseCount)) {
- suballoc.type = VMA_SUBALLOCATION_TYPE_FREE;
- suballoc.hAllocation = VK_NULL_HANDLE;
- ++m_2ndNullItemsCount;
- m_SumFreeSize += suballoc.size;
- ++lostAllocationCount;
- }
- }
-
- if (lostAllocationCount) {
- CleanupAfterFree();
- }
-
- return lostAllocationCount;
-}
-
-VkResult VmaBlockMetadata_Linear::CheckCorruption(const void *pBlockData) {
- SuballocationVectorType &suballocations1st = AccessSuballocations1st();
- for (size_t i = m_1stNullItemsBeginCount, count = suballocations1st.size(); i < count; ++i) {
- const VmaSuballocation &suballoc = suballocations1st[i];
- if (suballoc.type != VMA_SUBALLOCATION_TYPE_FREE) {
- if (!VmaValidateMagicValue(pBlockData, suballoc.offset - VMA_DEBUG_MARGIN)) {
- VMA_ASSERT(0 && "MEMORY CORRUPTION DETECTED BEFORE VALIDATED ALLOCATION!");
- return VK_ERROR_VALIDATION_FAILED_EXT;
- }
- if (!VmaValidateMagicValue(pBlockData, suballoc.offset + suballoc.size)) {
- VMA_ASSERT(0 && "MEMORY CORRUPTION DETECTED AFTER VALIDATED ALLOCATION!");
- return VK_ERROR_VALIDATION_FAILED_EXT;
- }
- }
- }
-
- SuballocationVectorType &suballocations2nd = AccessSuballocations2nd();
- for (size_t i = 0, count = suballocations2nd.size(); i < count; ++i) {
- const VmaSuballocation &suballoc = suballocations2nd[i];
- if (suballoc.type != VMA_SUBALLOCATION_TYPE_FREE) {
- if (!VmaValidateMagicValue(pBlockData, suballoc.offset - VMA_DEBUG_MARGIN)) {
- VMA_ASSERT(0 && "MEMORY CORRUPTION DETECTED BEFORE VALIDATED ALLOCATION!");
- return VK_ERROR_VALIDATION_FAILED_EXT;
- }
- if (!VmaValidateMagicValue(pBlockData, suballoc.offset + suballoc.size)) {
- VMA_ASSERT(0 && "MEMORY CORRUPTION DETECTED AFTER VALIDATED ALLOCATION!");
- return VK_ERROR_VALIDATION_FAILED_EXT;
- }
- }
- }
-
- return VK_SUCCESS;
-}
-
-void VmaBlockMetadata_Linear::Alloc(
- const VmaAllocationRequest &request,
- VmaSuballocationType type,
- VkDeviceSize allocSize,
- VmaAllocation hAllocation) {
- const VmaSuballocation newSuballoc = { request.offset, allocSize, hAllocation, type };
-
- switch (request.type) {
- case VmaAllocationRequestType::UpperAddress: {
- VMA_ASSERT(m_2ndVectorMode != SECOND_VECTOR_RING_BUFFER &&
- "CRITICAL ERROR: Trying to use linear allocator as double stack while it was already used as ring buffer.");
- SuballocationVectorType &suballocations2nd = AccessSuballocations2nd();
- suballocations2nd.push_back(newSuballoc);
- m_2ndVectorMode = SECOND_VECTOR_DOUBLE_STACK;
- } break;
- case VmaAllocationRequestType::EndOf1st: {
- SuballocationVectorType &suballocations1st = AccessSuballocations1st();
-
- VMA_ASSERT(suballocations1st.empty() ||
- request.offset >= suballocations1st.back().offset + suballocations1st.back().size);
- // Check if it fits before the end of the block.
- VMA_ASSERT(request.offset + allocSize <= GetSize());
-
- suballocations1st.push_back(newSuballoc);
- } break;
- case VmaAllocationRequestType::EndOf2nd: {
- SuballocationVectorType &suballocations1st = AccessSuballocations1st();
- // New allocation at the end of 2-part ring buffer, so before first allocation from 1st vector.
- VMA_ASSERT(!suballocations1st.empty() &&
- request.offset + allocSize <= suballocations1st[m_1stNullItemsBeginCount].offset);
- SuballocationVectorType &suballocations2nd = AccessSuballocations2nd();
-
- switch (m_2ndVectorMode) {
- case SECOND_VECTOR_EMPTY:
- // First allocation from second part ring buffer.
- VMA_ASSERT(suballocations2nd.empty());
- m_2ndVectorMode = SECOND_VECTOR_RING_BUFFER;
- break;
- case SECOND_VECTOR_RING_BUFFER:
- // 2-part ring buffer is already started.
- VMA_ASSERT(!suballocations2nd.empty());
- break;
- case SECOND_VECTOR_DOUBLE_STACK:
- VMA_ASSERT(0 && "CRITICAL ERROR: Trying to use linear allocator as ring buffer while it was already used as double stack.");
- break;
- default:
- VMA_ASSERT(0);
- }
-
- suballocations2nd.push_back(newSuballoc);
- } break;
- default:
- VMA_ASSERT(0 && "CRITICAL INTERNAL ERROR.");
- }
-
- m_SumFreeSize -= newSuballoc.size;
-}
-
-void VmaBlockMetadata_Linear::Free(const VmaAllocation allocation) {
- FreeAtOffset(allocation->GetOffset());
-}
-
-void VmaBlockMetadata_Linear::FreeAtOffset(VkDeviceSize offset) {
- SuballocationVectorType &suballocations1st = AccessSuballocations1st();
- SuballocationVectorType &suballocations2nd = AccessSuballocations2nd();
-
- if (!suballocations1st.empty()) {
- // First allocation: Mark it as next empty at the beginning.
- VmaSuballocation &firstSuballoc = suballocations1st[m_1stNullItemsBeginCount];
- if (firstSuballoc.offset == offset) {
- firstSuballoc.type = VMA_SUBALLOCATION_TYPE_FREE;
- firstSuballoc.hAllocation = VK_NULL_HANDLE;
- m_SumFreeSize += firstSuballoc.size;
- ++m_1stNullItemsBeginCount;
- CleanupAfterFree();
- return;
- }
- }
-
- // Last allocation in 2-part ring buffer or top of upper stack (same logic).
- if (m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER ||
- m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK) {
- VmaSuballocation &lastSuballoc = suballocations2nd.back();
- if (lastSuballoc.offset == offset) {
- m_SumFreeSize += lastSuballoc.size;
- suballocations2nd.pop_back();
- CleanupAfterFree();
- return;
- }
- }
- // Last allocation in 1st vector.
- else if (m_2ndVectorMode == SECOND_VECTOR_EMPTY) {
- VmaSuballocation &lastSuballoc = suballocations1st.back();
- if (lastSuballoc.offset == offset) {
- m_SumFreeSize += lastSuballoc.size;
- suballocations1st.pop_back();
- CleanupAfterFree();
- return;
- }
- }
-
- // Item from the middle of 1st vector.
- {
- VmaSuballocation refSuballoc;
- refSuballoc.offset = offset;
- // Rest of members stays uninitialized intentionally for better performance.
- SuballocationVectorType::iterator it = VmaVectorFindSorted<VmaSuballocationOffsetLess>(
- suballocations1st.begin() + m_1stNullItemsBeginCount,
- suballocations1st.end(),
- refSuballoc);
- if (it != suballocations1st.end()) {
- it->type = VMA_SUBALLOCATION_TYPE_FREE;
- it->hAllocation = VK_NULL_HANDLE;
- ++m_1stNullItemsMiddleCount;
- m_SumFreeSize += it->size;
- CleanupAfterFree();
- return;
- }
- }
-
- if (m_2ndVectorMode != SECOND_VECTOR_EMPTY) {
- // Item from the middle of 2nd vector.
- VmaSuballocation refSuballoc;
- refSuballoc.offset = offset;
- // Rest of members stays uninitialized intentionally for better performance.
- SuballocationVectorType::iterator it = m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER ?
- VmaVectorFindSorted<VmaSuballocationOffsetLess>(suballocations2nd.begin(), suballocations2nd.end(), refSuballoc) :
- VmaVectorFindSorted<VmaSuballocationOffsetGreater>(suballocations2nd.begin(), suballocations2nd.end(), refSuballoc);
- if (it != suballocations2nd.end()) {
- it->type = VMA_SUBALLOCATION_TYPE_FREE;
- it->hAllocation = VK_NULL_HANDLE;
- ++m_2ndNullItemsCount;
- m_SumFreeSize += it->size;
- CleanupAfterFree();
- return;
- }
- }
-
- VMA_ASSERT(0 && "Allocation to free not found in linear allocator!");
-}
-
-bool VmaBlockMetadata_Linear::ShouldCompact1st() const {
- const size_t nullItemCount = m_1stNullItemsBeginCount + m_1stNullItemsMiddleCount;
- const size_t suballocCount = AccessSuballocations1st().size();
- return suballocCount > 32 && nullItemCount * 2 >= (suballocCount - nullItemCount) * 3;
-}
-
-void VmaBlockMetadata_Linear::CleanupAfterFree() {
- SuballocationVectorType &suballocations1st = AccessSuballocations1st();
- SuballocationVectorType &suballocations2nd = AccessSuballocations2nd();
-
- if (IsEmpty()) {
- suballocations1st.clear();
- suballocations2nd.clear();
- m_1stNullItemsBeginCount = 0;
- m_1stNullItemsMiddleCount = 0;
- m_2ndNullItemsCount = 0;
- m_2ndVectorMode = SECOND_VECTOR_EMPTY;
- } else {
- const size_t suballoc1stCount = suballocations1st.size();
- const size_t nullItem1stCount = m_1stNullItemsBeginCount + m_1stNullItemsMiddleCount;
- VMA_ASSERT(nullItem1stCount <= suballoc1stCount);
-
- // Find more null items at the beginning of 1st vector.
- while (m_1stNullItemsBeginCount < suballoc1stCount &&
- suballocations1st[m_1stNullItemsBeginCount].hAllocation == VK_NULL_HANDLE) {
- ++m_1stNullItemsBeginCount;
- --m_1stNullItemsMiddleCount;
- }
-
- // Find more null items at the end of 1st vector.
- while (m_1stNullItemsMiddleCount > 0 &&
- suballocations1st.back().hAllocation == VK_NULL_HANDLE) {
- --m_1stNullItemsMiddleCount;
- suballocations1st.pop_back();
- }
-
- // Find more null items at the end of 2nd vector.
- while (m_2ndNullItemsCount > 0 &&
- suballocations2nd.back().hAllocation == VK_NULL_HANDLE) {
- --m_2ndNullItemsCount;
- suballocations2nd.pop_back();
- }
-
- // Find more null items at the beginning of 2nd vector.
- while (m_2ndNullItemsCount > 0 &&
- suballocations2nd[0].hAllocation == VK_NULL_HANDLE) {
- --m_2ndNullItemsCount;
- VmaVectorRemove(suballocations2nd, 0);
- }
-
- if (ShouldCompact1st()) {
- const size_t nonNullItemCount = suballoc1stCount - nullItem1stCount;
- size_t srcIndex = m_1stNullItemsBeginCount;
- for (size_t dstIndex = 0; dstIndex < nonNullItemCount; ++dstIndex) {
- while (suballocations1st[srcIndex].hAllocation == VK_NULL_HANDLE) {
- ++srcIndex;
- }
- if (dstIndex != srcIndex) {
- suballocations1st[dstIndex] = suballocations1st[srcIndex];
- }
- ++srcIndex;
- }
- suballocations1st.resize(nonNullItemCount);
- m_1stNullItemsBeginCount = 0;
- m_1stNullItemsMiddleCount = 0;
- }
-
- // 2nd vector became empty.
- if (suballocations2nd.empty()) {
- m_2ndVectorMode = SECOND_VECTOR_EMPTY;
- }
-
- // 1st vector became empty.
- if (suballocations1st.size() - m_1stNullItemsBeginCount == 0) {
- suballocations1st.clear();
- m_1stNullItemsBeginCount = 0;
-
- if (!suballocations2nd.empty() && m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER) {
- // Swap 1st with 2nd. Now 2nd is empty.
- m_2ndVectorMode = SECOND_VECTOR_EMPTY;
- m_1stNullItemsMiddleCount = m_2ndNullItemsCount;
- while (m_1stNullItemsBeginCount < suballocations2nd.size() &&
- suballocations2nd[m_1stNullItemsBeginCount].hAllocation == VK_NULL_HANDLE) {
- ++m_1stNullItemsBeginCount;
- --m_1stNullItemsMiddleCount;
- }
- m_2ndNullItemsCount = 0;
- m_1stVectorIndex ^= 1;
- }
- }
- }
-
- VMA_HEAVY_ASSERT(Validate());
-}
-
-////////////////////////////////////////////////////////////////////////////////
-// class VmaBlockMetadata_Buddy
-
-VmaBlockMetadata_Buddy::VmaBlockMetadata_Buddy(VmaAllocator hAllocator) :
- VmaBlockMetadata(hAllocator),
- m_Root(VMA_NULL),
- m_AllocationCount(0),
- m_FreeCount(1),
- m_SumFreeSize(0) {
- memset(m_FreeList, 0, sizeof(m_FreeList));
-}
-
-VmaBlockMetadata_Buddy::~VmaBlockMetadata_Buddy() {
- DeleteNode(m_Root);
-}
-
-void VmaBlockMetadata_Buddy::Init(VkDeviceSize size) {
- VmaBlockMetadata::Init(size);
-
- m_UsableSize = VmaPrevPow2(size);
- m_SumFreeSize = m_UsableSize;
-
- // Calculate m_LevelCount.
- m_LevelCount = 1;
- while (m_LevelCount < MAX_LEVELS &&
- LevelToNodeSize(m_LevelCount) >= MIN_NODE_SIZE) {
- ++m_LevelCount;
- }
-
- Node *rootNode = vma_new(GetAllocationCallbacks(), Node)();
- rootNode->offset = 0;
- rootNode->type = Node::TYPE_FREE;
- rootNode->parent = VMA_NULL;
- rootNode->buddy = VMA_NULL;
-
- m_Root = rootNode;
- AddToFreeListFront(0, rootNode);
-}
-
-bool VmaBlockMetadata_Buddy::Validate() const {
- // Validate tree.
- ValidationContext ctx;
- if (!ValidateNode(ctx, VMA_NULL, m_Root, 0, LevelToNodeSize(0))) {
- VMA_VALIDATE(false && "ValidateNode failed.");
- }
- VMA_VALIDATE(m_AllocationCount == ctx.calculatedAllocationCount);
- VMA_VALIDATE(m_SumFreeSize == ctx.calculatedSumFreeSize);
-
- // Validate free node lists.
- for (uint32_t level = 0; level < m_LevelCount; ++level) {
- VMA_VALIDATE(m_FreeList[level].front == VMA_NULL ||
- m_FreeList[level].front->free.prev == VMA_NULL);
-
- for (Node *node = m_FreeList[level].front;
- node != VMA_NULL;
- node = node->free.next) {
- VMA_VALIDATE(node->type == Node::TYPE_FREE);
-
- if (node->free.next == VMA_NULL) {
- VMA_VALIDATE(m_FreeList[level].back == node);
- } else {
- VMA_VALIDATE(node->free.next->free.prev == node);
- }
- }
- }
-
- // Validate that free lists ar higher levels are empty.
- for (uint32_t level = m_LevelCount; level < MAX_LEVELS; ++level) {
- VMA_VALIDATE(m_FreeList[level].front == VMA_NULL && m_FreeList[level].back == VMA_NULL);
- }
-
- return true;
-}
-
-VkDeviceSize VmaBlockMetadata_Buddy::GetUnusedRangeSizeMax() const {
- for (uint32_t level = 0; level < m_LevelCount; ++level) {
- if (m_FreeList[level].front != VMA_NULL) {
- return LevelToNodeSize(level);
- }
- }
- return 0;
-}
-
-void VmaBlockMetadata_Buddy::CalcAllocationStatInfo(VmaStatInfo &outInfo) const {
- const VkDeviceSize unusableSize = GetUnusableSize();
-
- outInfo.blockCount = 1;
-
- outInfo.allocationCount = outInfo.unusedRangeCount = 0;
- outInfo.usedBytes = outInfo.unusedBytes = 0;
-
- outInfo.allocationSizeMax = outInfo.unusedRangeSizeMax = 0;
- outInfo.allocationSizeMin = outInfo.unusedRangeSizeMin = UINT64_MAX;
- outInfo.allocationSizeAvg = outInfo.unusedRangeSizeAvg = 0; // Unused.
-
- CalcAllocationStatInfoNode(outInfo, m_Root, LevelToNodeSize(0));
-
- if (unusableSize > 0) {
- ++outInfo.unusedRangeCount;
- outInfo.unusedBytes += unusableSize;
- outInfo.unusedRangeSizeMax = VMA_MAX(outInfo.unusedRangeSizeMax, unusableSize);
- outInfo.unusedRangeSizeMin = VMA_MIN(outInfo.unusedRangeSizeMin, unusableSize);
- }
-}
-
-void VmaBlockMetadata_Buddy::AddPoolStats(VmaPoolStats &inoutStats) const {
- const VkDeviceSize unusableSize = GetUnusableSize();
-
- inoutStats.size += GetSize();
- inoutStats.unusedSize += m_SumFreeSize + unusableSize;
- inoutStats.allocationCount += m_AllocationCount;
- inoutStats.unusedRangeCount += m_FreeCount;
- inoutStats.unusedRangeSizeMax = VMA_MAX(inoutStats.unusedRangeSizeMax, GetUnusedRangeSizeMax());
-
- if (unusableSize > 0) {
- ++inoutStats.unusedRangeCount;
- // Not updating inoutStats.unusedRangeSizeMax with unusableSize because this space is not available for allocations.
- }
-}
-
-#if VMA_STATS_STRING_ENABLED
-
-void VmaBlockMetadata_Buddy::PrintDetailedMap(class VmaJsonWriter &json) const {
- // TODO optimize
- VmaStatInfo stat;
- CalcAllocationStatInfo(stat);
-
- PrintDetailedMap_Begin(
- json,
- stat.unusedBytes,
- stat.allocationCount,
- stat.unusedRangeCount);
-
- PrintDetailedMapNode(json, m_Root, LevelToNodeSize(0));
-
- const VkDeviceSize unusableSize = GetUnusableSize();
- if (unusableSize > 0) {
- PrintDetailedMap_UnusedRange(json,
- m_UsableSize, // offset
- unusableSize); // size
- }
-
- PrintDetailedMap_End(json);
-}
-
-#endif // #if VMA_STATS_STRING_ENABLED
-
-bool VmaBlockMetadata_Buddy::CreateAllocationRequest(
- uint32_t currentFrameIndex,
- uint32_t frameInUseCount,
- VkDeviceSize bufferImageGranularity,
- VkDeviceSize allocSize,
- VkDeviceSize allocAlignment,
- bool upperAddress,
- VmaSuballocationType allocType,
- bool canMakeOtherLost,
- uint32_t strategy,
- VmaAllocationRequest *pAllocationRequest) {
- VMA_ASSERT(!upperAddress && "VMA_ALLOCATION_CREATE_UPPER_ADDRESS_BIT can be used only with linear algorithm.");
-
- // Simple way to respect bufferImageGranularity. May be optimized some day.
- // Whenever it might be an OPTIMAL image...
- if (allocType == VMA_SUBALLOCATION_TYPE_UNKNOWN ||
- allocType == VMA_SUBALLOCATION_TYPE_IMAGE_UNKNOWN ||
- allocType == VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL) {
- allocAlignment = VMA_MAX(allocAlignment, bufferImageGranularity);
- allocSize = VMA_MAX(allocSize, bufferImageGranularity);
- }
-
- if (allocSize > m_UsableSize) {
- return false;
- }
-
- const uint32_t targetLevel = AllocSizeToLevel(allocSize);
- for (uint32_t level = targetLevel + 1; level--;) {
- for (Node *freeNode = m_FreeList[level].front;
- freeNode != VMA_NULL;
- freeNode = freeNode->free.next) {
- if (freeNode->offset % allocAlignment == 0) {
- pAllocationRequest->type = VmaAllocationRequestType::Normal;
- pAllocationRequest->offset = freeNode->offset;
- pAllocationRequest->sumFreeSize = LevelToNodeSize(level);
- pAllocationRequest->sumItemSize = 0;
- pAllocationRequest->itemsToMakeLostCount = 0;
- pAllocationRequest->customData = (void *)(uintptr_t)level;
- return true;
- }
- }
- }
-
- return false;
-}
-
-bool VmaBlockMetadata_Buddy::MakeRequestedAllocationsLost(
- uint32_t currentFrameIndex,
- uint32_t frameInUseCount,
- VmaAllocationRequest *pAllocationRequest) {
- /*
- Lost allocations are not supported in buddy allocator at the moment.
- Support might be added in the future.
- */
- return pAllocationRequest->itemsToMakeLostCount == 0;
-}
-
-uint32_t VmaBlockMetadata_Buddy::MakeAllocationsLost(uint32_t currentFrameIndex, uint32_t frameInUseCount) {
- /*
- Lost allocations are not supported in buddy allocator at the moment.
- Support might be added in the future.
- */
- return 0;
-}
-
-void VmaBlockMetadata_Buddy::Alloc(
- const VmaAllocationRequest &request,
- VmaSuballocationType type,
- VkDeviceSize allocSize,
- VmaAllocation hAllocation) {
- VMA_ASSERT(request.type == VmaAllocationRequestType::Normal);
-
- const uint32_t targetLevel = AllocSizeToLevel(allocSize);
- uint32_t currLevel = (uint32_t)(uintptr_t)request.customData;
-
- Node *currNode = m_FreeList[currLevel].front;
- VMA_ASSERT(currNode != VMA_NULL && currNode->type == Node::TYPE_FREE);
- while (currNode->offset != request.offset) {
- currNode = currNode->free.next;
- VMA_ASSERT(currNode != VMA_NULL && currNode->type == Node::TYPE_FREE);
- }
-
- // Go down, splitting free nodes.
- while (currLevel < targetLevel) {
- // currNode is already first free node at currLevel.
- // Remove it from list of free nodes at this currLevel.
- RemoveFromFreeList(currLevel, currNode);
-
- const uint32_t childrenLevel = currLevel + 1;
-
- // Create two free sub-nodes.
- Node *leftChild = vma_new(GetAllocationCallbacks(), Node)();
- Node *rightChild = vma_new(GetAllocationCallbacks(), Node)();
-
- leftChild->offset = currNode->offset;
- leftChild->type = Node::TYPE_FREE;
- leftChild->parent = currNode;
- leftChild->buddy = rightChild;
-
- rightChild->offset = currNode->offset + LevelToNodeSize(childrenLevel);
- rightChild->type = Node::TYPE_FREE;
- rightChild->parent = currNode;
- rightChild->buddy = leftChild;
-
- // Convert current currNode to split type.
- currNode->type = Node::TYPE_SPLIT;
- currNode->split.leftChild = leftChild;
-
- // Add child nodes to free list. Order is important!
- AddToFreeListFront(childrenLevel, rightChild);
- AddToFreeListFront(childrenLevel, leftChild);
-
- ++m_FreeCount;
- //m_SumFreeSize -= LevelToNodeSize(currLevel) % 2; // Useful only when level node sizes can be non power of 2.
- ++currLevel;
- currNode = m_FreeList[currLevel].front;
-
- /*
- We can be sure that currNode, as left child of node previously split,
- also fullfills the alignment requirement.
- */
- }
-
- // Remove from free list.
- VMA_ASSERT(currLevel == targetLevel &&
- currNode != VMA_NULL &&
- currNode->type == Node::TYPE_FREE);
- RemoveFromFreeList(currLevel, currNode);
-
- // Convert to allocation node.
- currNode->type = Node::TYPE_ALLOCATION;
- currNode->allocation.alloc = hAllocation;
-
- ++m_AllocationCount;
- --m_FreeCount;
- m_SumFreeSize -= allocSize;
-}
-
-void VmaBlockMetadata_Buddy::DeleteNode(Node *node) {
- if (node->type == Node::TYPE_SPLIT) {
- DeleteNode(node->split.leftChild->buddy);
- DeleteNode(node->split.leftChild);
- }
-
- vma_delete(GetAllocationCallbacks(), node);
-}
-
-bool VmaBlockMetadata_Buddy::ValidateNode(ValidationContext &ctx, const Node *parent, const Node *curr, uint32_t level, VkDeviceSize levelNodeSize) const {
- VMA_VALIDATE(level < m_LevelCount);
- VMA_VALIDATE(curr->parent == parent);
- VMA_VALIDATE((curr->buddy == VMA_NULL) == (parent == VMA_NULL));
- VMA_VALIDATE(curr->buddy == VMA_NULL || curr->buddy->buddy == curr);
- switch (curr->type) {
- case Node::TYPE_FREE:
- // curr->free.prev, next are validated separately.
- ctx.calculatedSumFreeSize += levelNodeSize;
- ++ctx.calculatedFreeCount;
- break;
- case Node::TYPE_ALLOCATION:
- ++ctx.calculatedAllocationCount;
- ctx.calculatedSumFreeSize += levelNodeSize - curr->allocation.alloc->GetSize();
- VMA_VALIDATE(curr->allocation.alloc != VK_NULL_HANDLE);
- break;
- case Node::TYPE_SPLIT: {
- const uint32_t childrenLevel = level + 1;
- const VkDeviceSize childrenLevelNodeSize = levelNodeSize / 2;
- const Node *const leftChild = curr->split.leftChild;
- VMA_VALIDATE(leftChild != VMA_NULL);
- VMA_VALIDATE(leftChild->offset == curr->offset);
- if (!ValidateNode(ctx, curr, leftChild, childrenLevel, childrenLevelNodeSize)) {
- VMA_VALIDATE(false && "ValidateNode for left child failed.");
- }
- const Node *const rightChild = leftChild->buddy;
- VMA_VALIDATE(rightChild->offset == curr->offset + childrenLevelNodeSize);
- if (!ValidateNode(ctx, curr, rightChild, childrenLevel, childrenLevelNodeSize)) {
- VMA_VALIDATE(false && "ValidateNode for right child failed.");
- }
- } break;
- default:
- return false;
- }
-
- return true;
-}
-
-uint32_t VmaBlockMetadata_Buddy::AllocSizeToLevel(VkDeviceSize allocSize) const {
- // I know this could be optimized somehow e.g. by using std::log2p1 from C++20.
- uint32_t level = 0;
- VkDeviceSize currLevelNodeSize = m_UsableSize;
- VkDeviceSize nextLevelNodeSize = currLevelNodeSize >> 1;
- while (allocSize <= nextLevelNodeSize && level + 1 < m_LevelCount) {
- ++level;
- currLevelNodeSize = nextLevelNodeSize;
- nextLevelNodeSize = currLevelNodeSize >> 1;
- }
- return level;
-}
-
-void VmaBlockMetadata_Buddy::FreeAtOffset(VmaAllocation alloc, VkDeviceSize offset) {
- // Find node and level.
- Node *node = m_Root;
- VkDeviceSize nodeOffset = 0;
- uint32_t level = 0;
- VkDeviceSize levelNodeSize = LevelToNodeSize(0);
- while (node->type == Node::TYPE_SPLIT) {
- const VkDeviceSize nextLevelSize = levelNodeSize >> 1;
- if (offset < nodeOffset + nextLevelSize) {
- node = node->split.leftChild;
- } else {
- node = node->split.leftChild->buddy;
- nodeOffset += nextLevelSize;
- }
- ++level;
- levelNodeSize = nextLevelSize;
- }
-
- VMA_ASSERT(node != VMA_NULL && node->type == Node::TYPE_ALLOCATION);
- VMA_ASSERT(alloc == VK_NULL_HANDLE || node->allocation.alloc == alloc);
-
- ++m_FreeCount;
- --m_AllocationCount;
- m_SumFreeSize += alloc->GetSize();
-
- node->type = Node::TYPE_FREE;
-
- // Join free nodes if possible.
- while (level > 0 && node->buddy->type == Node::TYPE_FREE) {
- RemoveFromFreeList(level, node->buddy);
- Node *const parent = node->parent;
-
- vma_delete(GetAllocationCallbacks(), node->buddy);
- vma_delete(GetAllocationCallbacks(), node);
- parent->type = Node::TYPE_FREE;
-
- node = parent;
- --level;
- //m_SumFreeSize += LevelToNodeSize(level) % 2; // Useful only when level node sizes can be non power of 2.
- --m_FreeCount;
- }
-
- AddToFreeListFront(level, node);
-}
-
-void VmaBlockMetadata_Buddy::CalcAllocationStatInfoNode(VmaStatInfo &outInfo, const Node *node, VkDeviceSize levelNodeSize) const {
- switch (node->type) {
- case Node::TYPE_FREE:
- ++outInfo.unusedRangeCount;
- outInfo.unusedBytes += levelNodeSize;
- outInfo.unusedRangeSizeMax = VMA_MAX(outInfo.unusedRangeSizeMax, levelNodeSize);
- outInfo.unusedRangeSizeMin = VMA_MAX(outInfo.unusedRangeSizeMin, levelNodeSize);
- break;
- case Node::TYPE_ALLOCATION: {
- const VkDeviceSize allocSize = node->allocation.alloc->GetSize();
- ++outInfo.allocationCount;
- outInfo.usedBytes += allocSize;
- outInfo.allocationSizeMax = VMA_MAX(outInfo.allocationSizeMax, allocSize);
- outInfo.allocationSizeMin = VMA_MAX(outInfo.allocationSizeMin, allocSize);
-
- const VkDeviceSize unusedRangeSize = levelNodeSize - allocSize;
- if (unusedRangeSize > 0) {
- ++outInfo.unusedRangeCount;
- outInfo.unusedBytes += unusedRangeSize;
- outInfo.unusedRangeSizeMax = VMA_MAX(outInfo.unusedRangeSizeMax, unusedRangeSize);
- outInfo.unusedRangeSizeMin = VMA_MAX(outInfo.unusedRangeSizeMin, unusedRangeSize);
- }
- } break;
- case Node::TYPE_SPLIT: {
- const VkDeviceSize childrenNodeSize = levelNodeSize / 2;
- const Node *const leftChild = node->split.leftChild;
- CalcAllocationStatInfoNode(outInfo, leftChild, childrenNodeSize);
- const Node *const rightChild = leftChild->buddy;
- CalcAllocationStatInfoNode(outInfo, rightChild, childrenNodeSize);
- } break;
- default:
- VMA_ASSERT(0);
- }
-}
-
-void VmaBlockMetadata_Buddy::AddToFreeListFront(uint32_t level, Node *node) {
- VMA_ASSERT(node->type == Node::TYPE_FREE);
-
- // List is empty.
- Node *const frontNode = m_FreeList[level].front;
- if (frontNode == VMA_NULL) {
- VMA_ASSERT(m_FreeList[level].back == VMA_NULL);
- node->free.prev = node->free.next = VMA_NULL;
- m_FreeList[level].front = m_FreeList[level].back = node;
- } else {
- VMA_ASSERT(frontNode->free.prev == VMA_NULL);
- node->free.prev = VMA_NULL;
- node->free.next = frontNode;
- frontNode->free.prev = node;
- m_FreeList[level].front = node;
- }
-}
-
-void VmaBlockMetadata_Buddy::RemoveFromFreeList(uint32_t level, Node *node) {
- VMA_ASSERT(m_FreeList[level].front != VMA_NULL);
-
- // It is at the front.
- if (node->free.prev == VMA_NULL) {
- VMA_ASSERT(m_FreeList[level].front == node);
- m_FreeList[level].front = node->free.next;
- } else {
- Node *const prevFreeNode = node->free.prev;
- VMA_ASSERT(prevFreeNode->free.next == node);
- prevFreeNode->free.next = node->free.next;
- }
-
- // It is at the back.
- if (node->free.next == VMA_NULL) {
- VMA_ASSERT(m_FreeList[level].back == node);
- m_FreeList[level].back = node->free.prev;
- } else {
- Node *const nextFreeNode = node->free.next;
- VMA_ASSERT(nextFreeNode->free.prev == node);
- nextFreeNode->free.prev = node->free.prev;
- }
-}
-
-#if VMA_STATS_STRING_ENABLED
-void VmaBlockMetadata_Buddy::PrintDetailedMapNode(class VmaJsonWriter &json, const Node *node, VkDeviceSize levelNodeSize) const {
- switch (node->type) {
- case Node::TYPE_FREE:
- PrintDetailedMap_UnusedRange(json, node->offset, levelNodeSize);
- break;
- case Node::TYPE_ALLOCATION: {
- PrintDetailedMap_Allocation(json, node->offset, node->allocation.alloc);
- const VkDeviceSize allocSize = node->allocation.alloc->GetSize();
- if (allocSize < levelNodeSize) {
- PrintDetailedMap_UnusedRange(json, node->offset + allocSize, levelNodeSize - allocSize);
- }
- } break;
- case Node::TYPE_SPLIT: {
- const VkDeviceSize childrenNodeSize = levelNodeSize / 2;
- const Node *const leftChild = node->split.leftChild;
- PrintDetailedMapNode(json, leftChild, childrenNodeSize);
- const Node *const rightChild = leftChild->buddy;
- PrintDetailedMapNode(json, rightChild, childrenNodeSize);
- } break;
- default:
- VMA_ASSERT(0);
- }
-}
-#endif // #if VMA_STATS_STRING_ENABLED
-
-////////////////////////////////////////////////////////////////////////////////
-// class VmaDeviceMemoryBlock
-
-VmaDeviceMemoryBlock::VmaDeviceMemoryBlock(VmaAllocator hAllocator) :
- m_pMetadata(VMA_NULL),
- m_MemoryTypeIndex(UINT32_MAX),
- m_Id(0),
- m_hMemory(VK_NULL_HANDLE),
- m_MapCount(0),
- m_pMappedData(VMA_NULL) {
-}
-
-void VmaDeviceMemoryBlock::Init(
- VmaAllocator hAllocator,
- VmaPool hParentPool,
- uint32_t newMemoryTypeIndex,
- VkDeviceMemory newMemory,
- VkDeviceSize newSize,
- uint32_t id,
- uint32_t algorithm) {
- VMA_ASSERT(m_hMemory == VK_NULL_HANDLE);
-
- m_hParentPool = hParentPool;
- m_MemoryTypeIndex = newMemoryTypeIndex;
- m_Id = id;
- m_hMemory = newMemory;
-
- switch (algorithm) {
- case VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT:
- m_pMetadata = vma_new(hAllocator, VmaBlockMetadata_Linear)(hAllocator);
- break;
- case VMA_POOL_CREATE_BUDDY_ALGORITHM_BIT:
- m_pMetadata = vma_new(hAllocator, VmaBlockMetadata_Buddy)(hAllocator);
- break;
- default:
- VMA_ASSERT(0);
- // Fall-through.
- case 0:
- m_pMetadata = vma_new(hAllocator, VmaBlockMetadata_Generic)(hAllocator);
- }
- m_pMetadata->Init(newSize);
-}
-
-void VmaDeviceMemoryBlock::Destroy(VmaAllocator allocator) {
- // This is the most important assert in the entire library.
- // Hitting it means you have some memory leak - unreleased VmaAllocation objects.
- VMA_ASSERT(m_pMetadata->IsEmpty() && "Some allocations were not freed before destruction of this memory block!");
-
- VMA_ASSERT(m_hMemory != VK_NULL_HANDLE);
- allocator->FreeVulkanMemory(m_MemoryTypeIndex, m_pMetadata->GetSize(), m_hMemory);
- m_hMemory = VK_NULL_HANDLE;
-
- vma_delete(allocator, m_pMetadata);
- m_pMetadata = VMA_NULL;
-}
-
-bool VmaDeviceMemoryBlock::Validate() const {
- VMA_VALIDATE((m_hMemory != VK_NULL_HANDLE) &&
- (m_pMetadata->GetSize() != 0));
-
- return m_pMetadata->Validate();
-}
-
-VkResult VmaDeviceMemoryBlock::CheckCorruption(VmaAllocator hAllocator) {
- void *pData = nullptr;
- VkResult res = Map(hAllocator, 1, &pData);
- if (res != VK_SUCCESS) {
- return res;
- }
-
- res = m_pMetadata->CheckCorruption(pData);
-
- Unmap(hAllocator, 1);
-
- return res;
-}
-
-VkResult VmaDeviceMemoryBlock::Map(VmaAllocator hAllocator, uint32_t count, void **ppData) {
- if (count == 0) {
- return VK_SUCCESS;
- }
-
- VmaMutexLock lock(m_Mutex, hAllocator->m_UseMutex);
- if (m_MapCount != 0) {
- m_MapCount += count;
- VMA_ASSERT(m_pMappedData != VMA_NULL);
- if (ppData != VMA_NULL) {
- *ppData = m_pMappedData;
- }
- return VK_SUCCESS;
- } else {
- VkResult result = (*hAllocator->GetVulkanFunctions().vkMapMemory)(
- hAllocator->m_hDevice,
- m_hMemory,
- 0, // offset
- VK_WHOLE_SIZE,
- 0, // flags
- &m_pMappedData);
- if (result == VK_SUCCESS) {
- if (ppData != VMA_NULL) {
- *ppData = m_pMappedData;
- }
- m_MapCount = count;
- }
- return result;
- }
-}
-
-void VmaDeviceMemoryBlock::Unmap(VmaAllocator hAllocator, uint32_t count) {
- if (count == 0) {
- return;
- }
-
- VmaMutexLock lock(m_Mutex, hAllocator->m_UseMutex);
- if (m_MapCount >= count) {
- m_MapCount -= count;
- if (m_MapCount == 0) {
- m_pMappedData = VMA_NULL;
- (*hAllocator->GetVulkanFunctions().vkUnmapMemory)(hAllocator->m_hDevice, m_hMemory);
- }
- } else {
- VMA_ASSERT(0 && "VkDeviceMemory block is being unmapped while it was not previously mapped.");
- }
-}
-
-VkResult VmaDeviceMemoryBlock::WriteMagicValueAroundAllocation(VmaAllocator hAllocator, VkDeviceSize allocOffset, VkDeviceSize allocSize) {
- VMA_ASSERT(VMA_DEBUG_MARGIN > 0 && VMA_DEBUG_MARGIN % 4 == 0 && VMA_DEBUG_DETECT_CORRUPTION);
- VMA_ASSERT(allocOffset >= VMA_DEBUG_MARGIN);
-
- void *pData;
- VkResult res = Map(hAllocator, 1, &pData);
- if (res != VK_SUCCESS) {
- return res;
- }
-
- VmaWriteMagicValue(pData, allocOffset - VMA_DEBUG_MARGIN);
- VmaWriteMagicValue(pData, allocOffset + allocSize);
-
- Unmap(hAllocator, 1);
-
- return VK_SUCCESS;
-}
-
-VkResult VmaDeviceMemoryBlock::ValidateMagicValueAroundAllocation(VmaAllocator hAllocator, VkDeviceSize allocOffset, VkDeviceSize allocSize) {
- VMA_ASSERT(VMA_DEBUG_MARGIN > 0 && VMA_DEBUG_MARGIN % 4 == 0 && VMA_DEBUG_DETECT_CORRUPTION);
- VMA_ASSERT(allocOffset >= VMA_DEBUG_MARGIN);
-
- void *pData;
- VkResult res = Map(hAllocator, 1, &pData);
- if (res != VK_SUCCESS) {
- return res;
- }
-
- if (!VmaValidateMagicValue(pData, allocOffset - VMA_DEBUG_MARGIN)) {
- VMA_ASSERT(0 && "MEMORY CORRUPTION DETECTED BEFORE FREED ALLOCATION!");
- } else if (!VmaValidateMagicValue(pData, allocOffset + allocSize)) {
- VMA_ASSERT(0 && "MEMORY CORRUPTION DETECTED AFTER FREED ALLOCATION!");
- }
-
- Unmap(hAllocator, 1);
-
- return VK_SUCCESS;
-}
-
-VkResult VmaDeviceMemoryBlock::BindBufferMemory(
- const VmaAllocator hAllocator,
- const VmaAllocation hAllocation,
- VkBuffer hBuffer) {
- VMA_ASSERT(hAllocation->GetType() == VmaAllocation_T::ALLOCATION_TYPE_BLOCK &&
- hAllocation->GetBlock() == this);
- // This lock is important so that we don't call vkBind... and/or vkMap... simultaneously on the same VkDeviceMemory from multiple threads.
- VmaMutexLock lock(m_Mutex, hAllocator->m_UseMutex);
- return hAllocator->GetVulkanFunctions().vkBindBufferMemory(
- hAllocator->m_hDevice,
- hBuffer,
- m_hMemory,
- hAllocation->GetOffset());
-}
-
-VkResult VmaDeviceMemoryBlock::BindImageMemory(
- const VmaAllocator hAllocator,
- const VmaAllocation hAllocation,
- VkImage hImage) {
- VMA_ASSERT(hAllocation->GetType() == VmaAllocation_T::ALLOCATION_TYPE_BLOCK &&
- hAllocation->GetBlock() == this);
- // This lock is important so that we don't call vkBind... and/or vkMap... simultaneously on the same VkDeviceMemory from multiple threads.
- VmaMutexLock lock(m_Mutex, hAllocator->m_UseMutex);
- return hAllocator->GetVulkanFunctions().vkBindImageMemory(
- hAllocator->m_hDevice,
- hImage,
- m_hMemory,
- hAllocation->GetOffset());
-}
-
-static void InitStatInfo(VmaStatInfo &outInfo) {
- memset(&outInfo, 0, sizeof(outInfo));
- outInfo.allocationSizeMin = UINT64_MAX;
- outInfo.unusedRangeSizeMin = UINT64_MAX;
-}
-
-// Adds statistics srcInfo into inoutInfo, like: inoutInfo += srcInfo.
-static void VmaAddStatInfo(VmaStatInfo &inoutInfo, const VmaStatInfo &srcInfo) {
- inoutInfo.blockCount += srcInfo.blockCount;
- inoutInfo.allocationCount += srcInfo.allocationCount;
- inoutInfo.unusedRangeCount += srcInfo.unusedRangeCount;
- inoutInfo.usedBytes += srcInfo.usedBytes;
- inoutInfo.unusedBytes += srcInfo.unusedBytes;
- inoutInfo.allocationSizeMin = VMA_MIN(inoutInfo.allocationSizeMin, srcInfo.allocationSizeMin);
- inoutInfo.allocationSizeMax = VMA_MAX(inoutInfo.allocationSizeMax, srcInfo.allocationSizeMax);
- inoutInfo.unusedRangeSizeMin = VMA_MIN(inoutInfo.unusedRangeSizeMin, srcInfo.unusedRangeSizeMin);
- inoutInfo.unusedRangeSizeMax = VMA_MAX(inoutInfo.unusedRangeSizeMax, srcInfo.unusedRangeSizeMax);
-}
-
-static void VmaPostprocessCalcStatInfo(VmaStatInfo &inoutInfo) {
- inoutInfo.allocationSizeAvg = (inoutInfo.allocationCount > 0) ?
- VmaRoundDiv<VkDeviceSize>(inoutInfo.usedBytes, inoutInfo.allocationCount) :
- 0;
- inoutInfo.unusedRangeSizeAvg = (inoutInfo.unusedRangeCount > 0) ?
- VmaRoundDiv<VkDeviceSize>(inoutInfo.unusedBytes, inoutInfo.unusedRangeCount) :
- 0;
-}
-
-VmaPool_T::VmaPool_T(
- VmaAllocator hAllocator,
- const VmaPoolCreateInfo &createInfo,
- VkDeviceSize preferredBlockSize) :
- m_BlockVector(
- hAllocator,
- this, // hParentPool
- createInfo.memoryTypeIndex,
- createInfo.blockSize != 0 ? createInfo.blockSize : preferredBlockSize,
- createInfo.minBlockCount,
- createInfo.maxBlockCount,
- (createInfo.flags & VMA_POOL_CREATE_IGNORE_BUFFER_IMAGE_GRANULARITY_BIT) != 0 ? 1 : hAllocator->GetBufferImageGranularity(),
- createInfo.frameInUseCount,
- true, // isCustomPool
- createInfo.blockSize != 0, // explicitBlockSize
- createInfo.flags & VMA_POOL_CREATE_ALGORITHM_MASK), // algorithm
- m_Id(0) {
-}
-
-VmaPool_T::~VmaPool_T() {
-}
-
-#if VMA_STATS_STRING_ENABLED
-
-#endif // #if VMA_STATS_STRING_ENABLED
-
-VmaBlockVector::VmaBlockVector(
- VmaAllocator hAllocator,
- VmaPool hParentPool,
- uint32_t memoryTypeIndex,
- VkDeviceSize preferredBlockSize,
- size_t minBlockCount,
- size_t maxBlockCount,
- VkDeviceSize bufferImageGranularity,
- uint32_t frameInUseCount,
- bool isCustomPool,
- bool explicitBlockSize,
- uint32_t algorithm) :
- m_hAllocator(hAllocator),
- m_hParentPool(hParentPool),
- m_MemoryTypeIndex(memoryTypeIndex),
- m_PreferredBlockSize(preferredBlockSize),
- m_MinBlockCount(minBlockCount),
- m_MaxBlockCount(maxBlockCount),
- m_BufferImageGranularity(bufferImageGranularity),
- m_FrameInUseCount(frameInUseCount),
- m_IsCustomPool(isCustomPool),
- m_ExplicitBlockSize(explicitBlockSize),
- m_Algorithm(algorithm),
- m_HasEmptyBlock(false),
- m_Blocks(VmaStlAllocator<VmaDeviceMemoryBlock *>(hAllocator->GetAllocationCallbacks())),
- m_NextBlockId(0) {
-}
-
-VmaBlockVector::~VmaBlockVector() {
- for (size_t i = m_Blocks.size(); i--;) {
- m_Blocks[i]->Destroy(m_hAllocator);
- vma_delete(m_hAllocator, m_Blocks[i]);
- }
-}
-
-VkResult VmaBlockVector::CreateMinBlocks() {
- for (size_t i = 0; i < m_MinBlockCount; ++i) {
- VkResult res = CreateBlock(m_PreferredBlockSize, VMA_NULL);
- if (res != VK_SUCCESS) {
- return res;
- }
- }
- return VK_SUCCESS;
-}
-
-void VmaBlockVector::GetPoolStats(VmaPoolStats *pStats) {
- VmaMutexLockRead lock(m_Mutex, m_hAllocator->m_UseMutex);
-
- const size_t blockCount = m_Blocks.size();
-
- pStats->size = 0;
- pStats->unusedSize = 0;
- pStats->allocationCount = 0;
- pStats->unusedRangeCount = 0;
- pStats->unusedRangeSizeMax = 0;
- pStats->blockCount = blockCount;
-
- for (uint32_t blockIndex = 0; blockIndex < blockCount; ++blockIndex) {
- const VmaDeviceMemoryBlock *const pBlock = m_Blocks[blockIndex];
- VMA_ASSERT(pBlock);
- VMA_HEAVY_ASSERT(pBlock->Validate());
- pBlock->m_pMetadata->AddPoolStats(*pStats);
- }
-}
-
-bool VmaBlockVector::IsCorruptionDetectionEnabled() const {
- const uint32_t requiredMemFlags = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT;
- return (VMA_DEBUG_DETECT_CORRUPTION != 0) &&
- (VMA_DEBUG_MARGIN > 0) &&
- (m_Algorithm == 0 || m_Algorithm == VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT) &&
- (m_hAllocator->m_MemProps.memoryTypes[m_MemoryTypeIndex].propertyFlags & requiredMemFlags) == requiredMemFlags;
-}
-
-static const uint32_t VMA_ALLOCATION_TRY_COUNT = 32;
-
-VkResult VmaBlockVector::Allocate(
- uint32_t currentFrameIndex,
- VkDeviceSize size,
- VkDeviceSize alignment,
- const VmaAllocationCreateInfo &createInfo,
- VmaSuballocationType suballocType,
- size_t allocationCount,
- VmaAllocation *pAllocations) {
- size_t allocIndex;
- VkResult res = VK_SUCCESS;
-
- if (IsCorruptionDetectionEnabled()) {
- size = VmaAlignUp<VkDeviceSize>(size, sizeof(VMA_CORRUPTION_DETECTION_MAGIC_VALUE));
- alignment = VmaAlignUp<VkDeviceSize>(alignment, sizeof(VMA_CORRUPTION_DETECTION_MAGIC_VALUE));
- }
-
- {
- VmaMutexLockWrite lock(m_Mutex, m_hAllocator->m_UseMutex);
- for (allocIndex = 0; allocIndex < allocationCount; ++allocIndex) {
- res = AllocatePage(
- currentFrameIndex,
- size,
- alignment,
- createInfo,
- suballocType,
- pAllocations + allocIndex);
- if (res != VK_SUCCESS) {
- break;
- }
- }
- }
-
- if (res != VK_SUCCESS) {
- // Free all already created allocations.
- while (allocIndex--) {
- Free(pAllocations[allocIndex]);
- }
- memset(pAllocations, 0, sizeof(VmaAllocation) * allocationCount);
- }
-
- return res;
-}
-
-VkResult VmaBlockVector::AllocatePage(
- uint32_t currentFrameIndex,
- VkDeviceSize size,
- VkDeviceSize alignment,
- const VmaAllocationCreateInfo &createInfo,
- VmaSuballocationType suballocType,
- VmaAllocation *pAllocation) {
- const bool isUpperAddress = (createInfo.flags & VMA_ALLOCATION_CREATE_UPPER_ADDRESS_BIT) != 0;
- bool canMakeOtherLost = (createInfo.flags & VMA_ALLOCATION_CREATE_CAN_MAKE_OTHER_LOST_BIT) != 0;
- const bool mapped = (createInfo.flags & VMA_ALLOCATION_CREATE_MAPPED_BIT) != 0;
- const bool isUserDataString = (createInfo.flags & VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT) != 0;
- const bool canCreateNewBlock =
- ((createInfo.flags & VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT) == 0) &&
- (m_Blocks.size() < m_MaxBlockCount);
- uint32_t strategy = createInfo.flags & VMA_ALLOCATION_CREATE_STRATEGY_MASK;
-
- // If linearAlgorithm is used, canMakeOtherLost is available only when used as ring buffer.
- // Which in turn is available only when maxBlockCount = 1.
- if (m_Algorithm == VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT && m_MaxBlockCount > 1) {
- canMakeOtherLost = false;
- }
-
- // Upper address can only be used with linear allocator and within single memory block.
- if (isUpperAddress &&
- (m_Algorithm != VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT || m_MaxBlockCount > 1)) {
- return VK_ERROR_FEATURE_NOT_PRESENT;
- }
-
- // Validate strategy.
- switch (strategy) {
- case 0:
- strategy = VMA_ALLOCATION_CREATE_STRATEGY_BEST_FIT_BIT;
- break;
- case VMA_ALLOCATION_CREATE_STRATEGY_BEST_FIT_BIT:
- case VMA_ALLOCATION_CREATE_STRATEGY_WORST_FIT_BIT:
- case VMA_ALLOCATION_CREATE_STRATEGY_FIRST_FIT_BIT:
- break;
- default:
- return VK_ERROR_FEATURE_NOT_PRESENT;
- }
-
- // Early reject: requested allocation size is larger that maximum block size for this block vector.
- if (size + 2 * VMA_DEBUG_MARGIN > m_PreferredBlockSize) {
- return VK_ERROR_OUT_OF_DEVICE_MEMORY;
- }
-
- /*
- Under certain condition, this whole section can be skipped for optimization, so
- we move on directly to trying to allocate with canMakeOtherLost. That's the case
- e.g. for custom pools with linear algorithm.
- */
- if (!canMakeOtherLost || canCreateNewBlock) {
- // 1. Search existing allocations. Try to allocate without making other allocations lost.
- VmaAllocationCreateFlags allocFlagsCopy = createInfo.flags;
- allocFlagsCopy &= ~VMA_ALLOCATION_CREATE_CAN_MAKE_OTHER_LOST_BIT;
-
- if (m_Algorithm == VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT) {
- // Use only last block.
- if (!m_Blocks.empty()) {
- VmaDeviceMemoryBlock *const pCurrBlock = m_Blocks.back();
- VMA_ASSERT(pCurrBlock);
- VkResult res = AllocateFromBlock(
- pCurrBlock,
- currentFrameIndex,
- size,
- alignment,
- allocFlagsCopy,
- createInfo.pUserData,
- suballocType,
- strategy,
- pAllocation);
- if (res == VK_SUCCESS) {
- VMA_DEBUG_LOG(" Returned from last block #%u", (uint32_t)(m_Blocks.size() - 1));
- return VK_SUCCESS;
- }
- }
- } else {
- if (strategy == VMA_ALLOCATION_CREATE_STRATEGY_BEST_FIT_BIT) {
- // Forward order in m_Blocks - prefer blocks with smallest amount of free space.
- for (size_t blockIndex = 0; blockIndex < m_Blocks.size(); ++blockIndex) {
- VmaDeviceMemoryBlock *const pCurrBlock = m_Blocks[blockIndex];
- VMA_ASSERT(pCurrBlock);
- VkResult res = AllocateFromBlock(
- pCurrBlock,
- currentFrameIndex,
- size,
- alignment,
- allocFlagsCopy,
- createInfo.pUserData,
- suballocType,
- strategy,
- pAllocation);
- if (res == VK_SUCCESS) {
- VMA_DEBUG_LOG(" Returned from existing block #%u", (uint32_t)blockIndex);
- return VK_SUCCESS;
- }
- }
- } else // WORST_FIT, FIRST_FIT
- {
- // Backward order in m_Blocks - prefer blocks with largest amount of free space.
- for (size_t blockIndex = m_Blocks.size(); blockIndex--;) {
- VmaDeviceMemoryBlock *const pCurrBlock = m_Blocks[blockIndex];
- VMA_ASSERT(pCurrBlock);
- VkResult res = AllocateFromBlock(
- pCurrBlock,
- currentFrameIndex,
- size,
- alignment,
- allocFlagsCopy,
- createInfo.pUserData,
- suballocType,
- strategy,
- pAllocation);
- if (res == VK_SUCCESS) {
- VMA_DEBUG_LOG(" Returned from existing block #%u", (uint32_t)blockIndex);
- return VK_SUCCESS;
- }
- }
- }
- }
-
- // 2. Try to create new block.
- if (canCreateNewBlock) {
- // Calculate optimal size for new block.
- VkDeviceSize newBlockSize = m_PreferredBlockSize;
- uint32_t newBlockSizeShift = 0;
- const uint32_t NEW_BLOCK_SIZE_SHIFT_MAX = 3;
-
- if (!m_ExplicitBlockSize) {
- // Allocate 1/8, 1/4, 1/2 as first blocks.
- const VkDeviceSize maxExistingBlockSize = CalcMaxBlockSize();
- for (uint32_t i = 0; i < NEW_BLOCK_SIZE_SHIFT_MAX; ++i) {
- const VkDeviceSize smallerNewBlockSize = newBlockSize / 2;
- if (smallerNewBlockSize > maxExistingBlockSize && smallerNewBlockSize >= size * 2) {
- newBlockSize = smallerNewBlockSize;
- ++newBlockSizeShift;
- } else {
- break;
- }
- }
- }
-
- size_t newBlockIndex = 0;
- VkResult res = CreateBlock(newBlockSize, &newBlockIndex);
- // Allocation of this size failed? Try 1/2, 1/4, 1/8 of m_PreferredBlockSize.
- if (!m_ExplicitBlockSize) {
- while (res < 0 && newBlockSizeShift < NEW_BLOCK_SIZE_SHIFT_MAX) {
- const VkDeviceSize smallerNewBlockSize = newBlockSize / 2;
- if (smallerNewBlockSize >= size) {
- newBlockSize = smallerNewBlockSize;
- ++newBlockSizeShift;
- res = CreateBlock(newBlockSize, &newBlockIndex);
- } else {
- break;
- }
- }
- }
-
- if (res == VK_SUCCESS) {
- VmaDeviceMemoryBlock *const pBlock = m_Blocks[newBlockIndex];
- VMA_ASSERT(pBlock->m_pMetadata->GetSize() >= size);
-
- res = AllocateFromBlock(
- pBlock,
- currentFrameIndex,
- size,
- alignment,
- allocFlagsCopy,
- createInfo.pUserData,
- suballocType,
- strategy,
- pAllocation);
- if (res == VK_SUCCESS) {
- VMA_DEBUG_LOG(" Created new block Size=%llu", newBlockSize);
- return VK_SUCCESS;
- } else {
- // Allocation from new block failed, possibly due to VMA_DEBUG_MARGIN or alignment.
- return VK_ERROR_OUT_OF_DEVICE_MEMORY;
- }
- }
- }
- }
-
- // 3. Try to allocate from existing blocks with making other allocations lost.
- if (canMakeOtherLost) {
- uint32_t tryIndex = 0;
- for (; tryIndex < VMA_ALLOCATION_TRY_COUNT; ++tryIndex) {
- VmaDeviceMemoryBlock *pBestRequestBlock = VMA_NULL;
- VmaAllocationRequest bestRequest = {};
- VkDeviceSize bestRequestCost = VK_WHOLE_SIZE;
-
- // 1. Search existing allocations.
- if (strategy == VMA_ALLOCATION_CREATE_STRATEGY_BEST_FIT_BIT) {
- // Forward order in m_Blocks - prefer blocks with smallest amount of free space.
- for (size_t blockIndex = 0; blockIndex < m_Blocks.size(); ++blockIndex) {
- VmaDeviceMemoryBlock *const pCurrBlock = m_Blocks[blockIndex];
- VMA_ASSERT(pCurrBlock);
- VmaAllocationRequest currRequest = {};
- if (pCurrBlock->m_pMetadata->CreateAllocationRequest(
- currentFrameIndex,
- m_FrameInUseCount,
- m_BufferImageGranularity,
- size,
- alignment,
- (createInfo.flags & VMA_ALLOCATION_CREATE_UPPER_ADDRESS_BIT) != 0,
- suballocType,
- canMakeOtherLost,
- strategy,
- &currRequest)) {
- const VkDeviceSize currRequestCost = currRequest.CalcCost();
- if (pBestRequestBlock == VMA_NULL ||
- currRequestCost < bestRequestCost) {
- pBestRequestBlock = pCurrBlock;
- bestRequest = currRequest;
- bestRequestCost = currRequestCost;
-
- if (bestRequestCost == 0) {
- break;
- }
- }
- }
- }
- } else // WORST_FIT, FIRST_FIT
- {
- // Backward order in m_Blocks - prefer blocks with largest amount of free space.
- for (size_t blockIndex = m_Blocks.size(); blockIndex--;) {
- VmaDeviceMemoryBlock *const pCurrBlock = m_Blocks[blockIndex];
- VMA_ASSERT(pCurrBlock);
- VmaAllocationRequest currRequest = {};
- if (pCurrBlock->m_pMetadata->CreateAllocationRequest(
- currentFrameIndex,
- m_FrameInUseCount,
- m_BufferImageGranularity,
- size,
- alignment,
- (createInfo.flags & VMA_ALLOCATION_CREATE_UPPER_ADDRESS_BIT) != 0,
- suballocType,
- canMakeOtherLost,
- strategy,
- &currRequest)) {
- const VkDeviceSize currRequestCost = currRequest.CalcCost();
- if (pBestRequestBlock == VMA_NULL ||
- currRequestCost < bestRequestCost ||
- strategy == VMA_ALLOCATION_CREATE_STRATEGY_FIRST_FIT_BIT) {
- pBestRequestBlock = pCurrBlock;
- bestRequest = currRequest;
- bestRequestCost = currRequestCost;
-
- if (bestRequestCost == 0 ||
- strategy == VMA_ALLOCATION_CREATE_STRATEGY_FIRST_FIT_BIT) {
- break;
- }
- }
- }
- }
- }
-
- if (pBestRequestBlock != VMA_NULL) {
- if (mapped) {
- VkResult res = pBestRequestBlock->Map(m_hAllocator, 1, VMA_NULL);
- if (res != VK_SUCCESS) {
- return res;
- }
- }
-
- if (pBestRequestBlock->m_pMetadata->MakeRequestedAllocationsLost(
- currentFrameIndex,
- m_FrameInUseCount,
- &bestRequest)) {
- // We no longer have an empty Allocation.
- if (pBestRequestBlock->m_pMetadata->IsEmpty()) {
- m_HasEmptyBlock = false;
- }
- // Allocate from this pBlock.
- *pAllocation = m_hAllocator->m_AllocationObjectAllocator.Allocate();
- (*pAllocation)->Ctor(currentFrameIndex, isUserDataString);
- pBestRequestBlock->m_pMetadata->Alloc(bestRequest, suballocType, size, *pAllocation);
- (*pAllocation)->InitBlockAllocation(pBestRequestBlock, bestRequest.offset, alignment, size, suballocType, mapped, (createInfo.flags & VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT) != 0);
- VMA_HEAVY_ASSERT(pBestRequestBlock->Validate());
- VMA_DEBUG_LOG(" Returned from existing block");
- (*pAllocation)->SetUserData(m_hAllocator, createInfo.pUserData);
- if (VMA_DEBUG_INITIALIZE_ALLOCATIONS) {
- m_hAllocator->FillAllocation(*pAllocation, VMA_ALLOCATION_FILL_PATTERN_CREATED);
- }
- if (IsCorruptionDetectionEnabled()) {
- VkResult res = pBestRequestBlock->WriteMagicValueAroundAllocation(m_hAllocator, bestRequest.offset, size);
- VMA_ASSERT(res == VK_SUCCESS && "Couldn't map block memory to write magic value.");
- }
- return VK_SUCCESS;
- }
- // else: Some allocations must have been touched while we are here. Next try.
- } else {
- // Could not find place in any of the blocks - break outer loop.
- break;
- }
- }
- /* Maximum number of tries exceeded - a very unlike event when many other
- threads are simultaneously touching allocations making it impossible to make
- lost at the same time as we try to allocate. */
- if (tryIndex == VMA_ALLOCATION_TRY_COUNT) {
- return VK_ERROR_TOO_MANY_OBJECTS;
- }
- }
-
- return VK_ERROR_OUT_OF_DEVICE_MEMORY;
-}
-
-void VmaBlockVector::Free(
- VmaAllocation hAllocation) {
- VmaDeviceMemoryBlock *pBlockToDelete = VMA_NULL;
-
- // Scope for lock.
- {
- VmaMutexLockWrite lock(m_Mutex, m_hAllocator->m_UseMutex);
-
- VmaDeviceMemoryBlock *pBlock = hAllocation->GetBlock();
-
- if (IsCorruptionDetectionEnabled()) {
- VkResult res = pBlock->ValidateMagicValueAroundAllocation(m_hAllocator, hAllocation->GetOffset(), hAllocation->GetSize());
- VMA_ASSERT(res == VK_SUCCESS && "Couldn't map block memory to validate magic value.");
- }
-
- if (hAllocation->IsPersistentMap()) {
- pBlock->Unmap(m_hAllocator, 1);
- }
-
- pBlock->m_pMetadata->Free(hAllocation);
- VMA_HEAVY_ASSERT(pBlock->Validate());
-
- VMA_DEBUG_LOG(" Freed from MemoryTypeIndex=%u", m_MemoryTypeIndex);
-
- // pBlock became empty after this deallocation.
- if (pBlock->m_pMetadata->IsEmpty()) {
- // Already has empty Allocation. We don't want to have two, so delete this one.
- if (m_HasEmptyBlock && m_Blocks.size() > m_MinBlockCount) {
- pBlockToDelete = pBlock;
- Remove(pBlock);
- }
- // We now have first empty block.
- else {
- m_HasEmptyBlock = true;
- }
- }
- // pBlock didn't become empty, but we have another empty block - find and free that one.
- // (This is optional, heuristics.)
- else if (m_HasEmptyBlock) {
- VmaDeviceMemoryBlock *pLastBlock = m_Blocks.back();
- if (pLastBlock->m_pMetadata->IsEmpty() && m_Blocks.size() > m_MinBlockCount) {
- pBlockToDelete = pLastBlock;
- m_Blocks.pop_back();
- m_HasEmptyBlock = false;
- }
- }
-
- IncrementallySortBlocks();
- }
-
- // Destruction of a free Allocation. Deferred until this point, outside of mutex
- // lock, for performance reason.
- if (pBlockToDelete != VMA_NULL) {
- VMA_DEBUG_LOG(" Deleted empty allocation");
- pBlockToDelete->Destroy(m_hAllocator);
- vma_delete(m_hAllocator, pBlockToDelete);
- }
-}
-
-VkDeviceSize VmaBlockVector::CalcMaxBlockSize() const {
- VkDeviceSize result = 0;
- for (size_t i = m_Blocks.size(); i--;) {
- result = VMA_MAX(result, m_Blocks[i]->m_pMetadata->GetSize());
- if (result >= m_PreferredBlockSize) {
- break;
- }
- }
- return result;
-}
-
-void VmaBlockVector::Remove(VmaDeviceMemoryBlock *pBlock) {
- for (uint32_t blockIndex = 0; blockIndex < m_Blocks.size(); ++blockIndex) {
- if (m_Blocks[blockIndex] == pBlock) {
- VmaVectorRemove(m_Blocks, blockIndex);
- return;
- }
- }
- VMA_ASSERT(0);
-}
-
-void VmaBlockVector::IncrementallySortBlocks() {
- if (m_Algorithm != VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT) {
- // Bubble sort only until first swap.
- for (size_t i = 1; i < m_Blocks.size(); ++i) {
- if (m_Blocks[i - 1]->m_pMetadata->GetSumFreeSize() > m_Blocks[i]->m_pMetadata->GetSumFreeSize()) {
- VMA_SWAP(m_Blocks[i - 1], m_Blocks[i]);
- return;
- }
- }
- }
-}
-
-VkResult VmaBlockVector::AllocateFromBlock(
- VmaDeviceMemoryBlock *pBlock,
- uint32_t currentFrameIndex,
- VkDeviceSize size,
- VkDeviceSize alignment,
- VmaAllocationCreateFlags allocFlags,
- void *pUserData,
- VmaSuballocationType suballocType,
- uint32_t strategy,
- VmaAllocation *pAllocation) {
- VMA_ASSERT((allocFlags & VMA_ALLOCATION_CREATE_CAN_MAKE_OTHER_LOST_BIT) == 0);
- const bool isUpperAddress = (allocFlags & VMA_ALLOCATION_CREATE_UPPER_ADDRESS_BIT) != 0;
- const bool mapped = (allocFlags & VMA_ALLOCATION_CREATE_MAPPED_BIT) != 0;
- const bool isUserDataString = (allocFlags & VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT) != 0;
-
- VmaAllocationRequest currRequest = {};
- if (pBlock->m_pMetadata->CreateAllocationRequest(
- currentFrameIndex,
- m_FrameInUseCount,
- m_BufferImageGranularity,
- size,
- alignment,
- isUpperAddress,
- suballocType,
- false, // canMakeOtherLost
- strategy,
- &currRequest)) {
- // Allocate from pCurrBlock.
- VMA_ASSERT(currRequest.itemsToMakeLostCount == 0);
-
- if (mapped) {
- VkResult res = pBlock->Map(m_hAllocator, 1, VMA_NULL);
- if (res != VK_SUCCESS) {
- return res;
- }
- }
-
- // We no longer have an empty Allocation.
- if (pBlock->m_pMetadata->IsEmpty()) {
- m_HasEmptyBlock = false;
- }
-
- *pAllocation = m_hAllocator->m_AllocationObjectAllocator.Allocate();
- (*pAllocation)->Ctor(currentFrameIndex, isUserDataString);
- pBlock->m_pMetadata->Alloc(currRequest, suballocType, size, *pAllocation);
- (*pAllocation)->InitBlockAllocation(pBlock, currRequest.offset, alignment, size, suballocType, mapped, (allocFlags & VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT) != 0);
- VMA_HEAVY_ASSERT(pBlock->Validate());
- (*pAllocation)->SetUserData(m_hAllocator, pUserData);
- if (VMA_DEBUG_INITIALIZE_ALLOCATIONS) {
- m_hAllocator->FillAllocation(*pAllocation, VMA_ALLOCATION_FILL_PATTERN_CREATED);
- }
- if (IsCorruptionDetectionEnabled()) {
- VkResult res = pBlock->WriteMagicValueAroundAllocation(m_hAllocator, currRequest.offset, size);
- VMA_ASSERT(res == VK_SUCCESS && "Couldn't map block memory to write magic value.");
- }
- return VK_SUCCESS;
- }
- return VK_ERROR_OUT_OF_DEVICE_MEMORY;
-}
-
-VkResult VmaBlockVector::CreateBlock(VkDeviceSize blockSize, size_t *pNewBlockIndex) {
- VkMemoryAllocateInfo allocInfo = { VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO };
- allocInfo.memoryTypeIndex = m_MemoryTypeIndex;
- allocInfo.allocationSize = blockSize;
- VkDeviceMemory mem = VK_NULL_HANDLE;
- VkResult res = m_hAllocator->AllocateVulkanMemory(&allocInfo, &mem);
- if (res < 0) {
- return res;
- }
-
- // New VkDeviceMemory successfully created.
-
- // Create new Allocation for it.
- VmaDeviceMemoryBlock *const pBlock = vma_new(m_hAllocator, VmaDeviceMemoryBlock)(m_hAllocator);
- pBlock->Init(
- m_hAllocator,
- m_hParentPool,
- m_MemoryTypeIndex,
- mem,
- allocInfo.allocationSize,
- m_NextBlockId++,
- m_Algorithm);
-
- m_Blocks.push_back(pBlock);
- if (pNewBlockIndex != VMA_NULL) {
- *pNewBlockIndex = m_Blocks.size() - 1;
- }
-
- return VK_SUCCESS;
-}
-
-void VmaBlockVector::ApplyDefragmentationMovesCpu(
- class VmaBlockVectorDefragmentationContext *pDefragCtx,
- const VmaVector<VmaDefragmentationMove, VmaStlAllocator<VmaDefragmentationMove> > &moves) {
- const size_t blockCount = m_Blocks.size();
- const bool isNonCoherent = m_hAllocator->IsMemoryTypeNonCoherent(m_MemoryTypeIndex);
-
- enum BLOCK_FLAG {
- BLOCK_FLAG_USED = 0x00000001,
- BLOCK_FLAG_MAPPED_FOR_DEFRAGMENTATION = 0x00000002,
- };
-
- struct BlockInfo {
- uint32_t flags;
- void *pMappedData;
- };
- VmaVector<BlockInfo, VmaStlAllocator<BlockInfo> >
- blockInfo(blockCount, VmaStlAllocator<BlockInfo>(m_hAllocator->GetAllocationCallbacks()));
- memset(blockInfo.data(), 0, blockCount * sizeof(BlockInfo));
-
- // Go over all moves. Mark blocks that are used with BLOCK_FLAG_USED.
- const size_t moveCount = moves.size();
- for (size_t moveIndex = 0; moveIndex < moveCount; ++moveIndex) {
- const VmaDefragmentationMove &move = moves[moveIndex];
- blockInfo[move.srcBlockIndex].flags |= BLOCK_FLAG_USED;
- blockInfo[move.dstBlockIndex].flags |= BLOCK_FLAG_USED;
- }
-
- VMA_ASSERT(pDefragCtx->res == VK_SUCCESS);
-
- // Go over all blocks. Get mapped pointer or map if necessary.
- for (size_t blockIndex = 0; pDefragCtx->res == VK_SUCCESS && blockIndex < blockCount; ++blockIndex) {
- BlockInfo &currBlockInfo = blockInfo[blockIndex];
- VmaDeviceMemoryBlock *pBlock = m_Blocks[blockIndex];
- if ((currBlockInfo.flags & BLOCK_FLAG_USED) != 0) {
- currBlockInfo.pMappedData = pBlock->GetMappedData();
- // It is not originally mapped - map it.
- if (currBlockInfo.pMappedData == VMA_NULL) {
- pDefragCtx->res = pBlock->Map(m_hAllocator, 1, &currBlockInfo.pMappedData);
- if (pDefragCtx->res == VK_SUCCESS) {
- currBlockInfo.flags |= BLOCK_FLAG_MAPPED_FOR_DEFRAGMENTATION;
- }
- }
- }
- }
-
- // Go over all moves. Do actual data transfer.
- if (pDefragCtx->res == VK_SUCCESS) {
- const VkDeviceSize nonCoherentAtomSize = m_hAllocator->m_PhysicalDeviceProperties.limits.nonCoherentAtomSize;
- VkMappedMemoryRange memRange = { VK_STRUCTURE_TYPE_MAPPED_MEMORY_RANGE };
-
- for (size_t moveIndex = 0; moveIndex < moveCount; ++moveIndex) {
- const VmaDefragmentationMove &move = moves[moveIndex];
-
- const BlockInfo &srcBlockInfo = blockInfo[move.srcBlockIndex];
- const BlockInfo &dstBlockInfo = blockInfo[move.dstBlockIndex];
-
- VMA_ASSERT(srcBlockInfo.pMappedData && dstBlockInfo.pMappedData);
-
- // Invalidate source.
- if (isNonCoherent) {
- VmaDeviceMemoryBlock *const pSrcBlock = m_Blocks[move.srcBlockIndex];
- memRange.memory = pSrcBlock->GetDeviceMemory();
- memRange.offset = VmaAlignDown(move.srcOffset, nonCoherentAtomSize);
- memRange.size = VMA_MIN(
- VmaAlignUp(move.size + (move.srcOffset - memRange.offset), nonCoherentAtomSize),
- pSrcBlock->m_pMetadata->GetSize() - memRange.offset);
- (*m_hAllocator->GetVulkanFunctions().vkInvalidateMappedMemoryRanges)(m_hAllocator->m_hDevice, 1, &memRange);
- }
-
- // THE PLACE WHERE ACTUAL DATA COPY HAPPENS.
- memmove(
- reinterpret_cast<char *>(dstBlockInfo.pMappedData) + move.dstOffset,
- reinterpret_cast<char *>(srcBlockInfo.pMappedData) + move.srcOffset,
- static_cast<size_t>(move.size));
-
- if (IsCorruptionDetectionEnabled()) {
- VmaWriteMagicValue(dstBlockInfo.pMappedData, move.dstOffset - VMA_DEBUG_MARGIN);
- VmaWriteMagicValue(dstBlockInfo.pMappedData, move.dstOffset + move.size);
- }
-
- // Flush destination.
- if (isNonCoherent) {
- VmaDeviceMemoryBlock *const pDstBlock = m_Blocks[move.dstBlockIndex];
- memRange.memory = pDstBlock->GetDeviceMemory();
- memRange.offset = VmaAlignDown(move.dstOffset, nonCoherentAtomSize);
- memRange.size = VMA_MIN(
- VmaAlignUp(move.size + (move.dstOffset - memRange.offset), nonCoherentAtomSize),
- pDstBlock->m_pMetadata->GetSize() - memRange.offset);
- (*m_hAllocator->GetVulkanFunctions().vkFlushMappedMemoryRanges)(m_hAllocator->m_hDevice, 1, &memRange);
- }
- }
- }
-
- // Go over all blocks in reverse order. Unmap those that were mapped just for defragmentation.
- // Regardless of pCtx->res == VK_SUCCESS.
- for (size_t blockIndex = blockCount; blockIndex--;) {
- const BlockInfo &currBlockInfo = blockInfo[blockIndex];
- if ((currBlockInfo.flags & BLOCK_FLAG_MAPPED_FOR_DEFRAGMENTATION) != 0) {
- VmaDeviceMemoryBlock *pBlock = m_Blocks[blockIndex];
- pBlock->Unmap(m_hAllocator, 1);
- }
- }
-}
-
-void VmaBlockVector::ApplyDefragmentationMovesGpu(
- class VmaBlockVectorDefragmentationContext *pDefragCtx,
- const VmaVector<VmaDefragmentationMove, VmaStlAllocator<VmaDefragmentationMove> > &moves,
- VkCommandBuffer commandBuffer) {
- const size_t blockCount = m_Blocks.size();
-
- pDefragCtx->blockContexts.resize(blockCount);
- memset(pDefragCtx->blockContexts.data(), 0, blockCount * sizeof(VmaBlockDefragmentationContext));
-
- // Go over all moves. Mark blocks that are used with BLOCK_FLAG_USED.
- const size_t moveCount = moves.size();
- for (size_t moveIndex = 0; moveIndex < moveCount; ++moveIndex) {
- const VmaDefragmentationMove &move = moves[moveIndex];
- pDefragCtx->blockContexts[move.srcBlockIndex].flags |= VmaBlockDefragmentationContext::BLOCK_FLAG_USED;
- pDefragCtx->blockContexts[move.dstBlockIndex].flags |= VmaBlockDefragmentationContext::BLOCK_FLAG_USED;
- }
-
- VMA_ASSERT(pDefragCtx->res == VK_SUCCESS);
-
- // Go over all blocks. Create and bind buffer for whole block if necessary.
- {
- VkBufferCreateInfo bufCreateInfo;
- VmaFillGpuDefragmentationBufferCreateInfo(bufCreateInfo);
-
- for (size_t blockIndex = 0; pDefragCtx->res == VK_SUCCESS && blockIndex < blockCount; ++blockIndex) {
- VmaBlockDefragmentationContext &currBlockCtx = pDefragCtx->blockContexts[blockIndex];
- VmaDeviceMemoryBlock *pBlock = m_Blocks[blockIndex];
- if ((currBlockCtx.flags & VmaBlockDefragmentationContext::BLOCK_FLAG_USED) != 0) {
- bufCreateInfo.size = pBlock->m_pMetadata->GetSize();
- pDefragCtx->res = (*m_hAllocator->GetVulkanFunctions().vkCreateBuffer)(
- m_hAllocator->m_hDevice, &bufCreateInfo, m_hAllocator->GetAllocationCallbacks(), &currBlockCtx.hBuffer);
- if (pDefragCtx->res == VK_SUCCESS) {
- pDefragCtx->res = (*m_hAllocator->GetVulkanFunctions().vkBindBufferMemory)(
- m_hAllocator->m_hDevice, currBlockCtx.hBuffer, pBlock->GetDeviceMemory(), 0);
- }
- }
- }
- }
-
- // Go over all moves. Post data transfer commands to command buffer.
- if (pDefragCtx->res == VK_SUCCESS) {
- for (size_t moveIndex = 0; moveIndex < moveCount; ++moveIndex) {
- const VmaDefragmentationMove &move = moves[moveIndex];
-
- const VmaBlockDefragmentationContext &srcBlockCtx = pDefragCtx->blockContexts[move.srcBlockIndex];
- const VmaBlockDefragmentationContext &dstBlockCtx = pDefragCtx->blockContexts[move.dstBlockIndex];
-
- VMA_ASSERT(srcBlockCtx.hBuffer && dstBlockCtx.hBuffer);
-
- VkBufferCopy region = {
- move.srcOffset,
- move.dstOffset,
- move.size
- };
- (*m_hAllocator->GetVulkanFunctions().vkCmdCopyBuffer)(
- commandBuffer, srcBlockCtx.hBuffer, dstBlockCtx.hBuffer, 1, &region);
- }
- }
-
- // Save buffers to defrag context for later destruction.
- if (pDefragCtx->res == VK_SUCCESS && moveCount > 0) {
- pDefragCtx->res = VK_NOT_READY;
- }
-}
-
-void VmaBlockVector::FreeEmptyBlocks(VmaDefragmentationStats *pDefragmentationStats) {
- m_HasEmptyBlock = false;
- for (size_t blockIndex = m_Blocks.size(); blockIndex--;) {
- VmaDeviceMemoryBlock *pBlock = m_Blocks[blockIndex];
- if (pBlock->m_pMetadata->IsEmpty()) {
- if (m_Blocks.size() > m_MinBlockCount) {
- if (pDefragmentationStats != VMA_NULL) {
- ++pDefragmentationStats->deviceMemoryBlocksFreed;
- pDefragmentationStats->bytesFreed += pBlock->m_pMetadata->GetSize();
- }
-
- VmaVectorRemove(m_Blocks, blockIndex);
- pBlock->Destroy(m_hAllocator);
- vma_delete(m_hAllocator, pBlock);
- } else {
- m_HasEmptyBlock = true;
- }
- }
- }
-}
-
-#if VMA_STATS_STRING_ENABLED
-
-void VmaBlockVector::PrintDetailedMap(class VmaJsonWriter &json) {
- VmaMutexLockRead lock(m_Mutex, m_hAllocator->m_UseMutex);
-
- json.BeginObject();
-
- if (m_IsCustomPool) {
- json.WriteString("MemoryTypeIndex");
- json.WriteNumber(m_MemoryTypeIndex);
-
- json.WriteString("BlockSize");
- json.WriteNumber(m_PreferredBlockSize);
-
- json.WriteString("BlockCount");
- json.BeginObject(true);
- if (m_MinBlockCount > 0) {
- json.WriteString("Min");
- json.WriteNumber((uint64_t)m_MinBlockCount);
- }
- if (m_MaxBlockCount < SIZE_MAX) {
- json.WriteString("Max");
- json.WriteNumber((uint64_t)m_MaxBlockCount);
- }
- json.WriteString("Cur");
- json.WriteNumber((uint64_t)m_Blocks.size());
- json.EndObject();
-
- if (m_FrameInUseCount > 0) {
- json.WriteString("FrameInUseCount");
- json.WriteNumber(m_FrameInUseCount);
- }
-
- if (m_Algorithm != 0) {
- json.WriteString("Algorithm");
- json.WriteString(VmaAlgorithmToStr(m_Algorithm));
- }
- } else {
- json.WriteString("PreferredBlockSize");
- json.WriteNumber(m_PreferredBlockSize);
- }
-
- json.WriteString("Blocks");
- json.BeginObject();
- for (size_t i = 0; i < m_Blocks.size(); ++i) {
- json.BeginString();
- json.ContinueString(m_Blocks[i]->GetId());
- json.EndString();
-
- m_Blocks[i]->m_pMetadata->PrintDetailedMap(json);
- }
- json.EndObject();
-
- json.EndObject();
-}
-
-#endif // #if VMA_STATS_STRING_ENABLED
-
-void VmaBlockVector::Defragment(
- class VmaBlockVectorDefragmentationContext *pCtx,
- VmaDefragmentationStats *pStats,
- VkDeviceSize &maxCpuBytesToMove, uint32_t &maxCpuAllocationsToMove,
- VkDeviceSize &maxGpuBytesToMove, uint32_t &maxGpuAllocationsToMove,
- VkCommandBuffer commandBuffer) {
- pCtx->res = VK_SUCCESS;
-
- const VkMemoryPropertyFlags memPropFlags =
- m_hAllocator->m_MemProps.memoryTypes[m_MemoryTypeIndex].propertyFlags;
- const bool isHostVisible = (memPropFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) != 0;
- const bool isHostCoherent = (memPropFlags & VK_MEMORY_PROPERTY_HOST_COHERENT_BIT) != 0;
-
- const bool canDefragmentOnCpu = maxCpuBytesToMove > 0 && maxCpuAllocationsToMove > 0 &&
- isHostVisible;
- const bool canDefragmentOnGpu = maxGpuBytesToMove > 0 && maxGpuAllocationsToMove > 0 &&
- !IsCorruptionDetectionEnabled() &&
- ((1u << m_MemoryTypeIndex) & m_hAllocator->GetGpuDefragmentationMemoryTypeBits()) != 0;
-
- // There are options to defragment this memory type.
- if (canDefragmentOnCpu || canDefragmentOnGpu) {
- bool defragmentOnGpu;
- // There is only one option to defragment this memory type.
- if (canDefragmentOnGpu != canDefragmentOnCpu) {
- defragmentOnGpu = canDefragmentOnGpu;
- }
- // Both options are available: Heuristics to choose the best one.
- else {
- defragmentOnGpu = (memPropFlags & VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT) != 0 ||
- m_hAllocator->IsIntegratedGpu();
- }
-
- bool overlappingMoveSupported = !defragmentOnGpu;
-
- if (m_hAllocator->m_UseMutex) {
- m_Mutex.LockWrite();
- pCtx->mutexLocked = true;
- }
-
- pCtx->Begin(overlappingMoveSupported);
-
- // Defragment.
-
- const VkDeviceSize maxBytesToMove = defragmentOnGpu ? maxGpuBytesToMove : maxCpuBytesToMove;
- const uint32_t maxAllocationsToMove = defragmentOnGpu ? maxGpuAllocationsToMove : maxCpuAllocationsToMove;
- VmaVector<VmaDefragmentationMove, VmaStlAllocator<VmaDefragmentationMove> > moves =
- VmaVector<VmaDefragmentationMove, VmaStlAllocator<VmaDefragmentationMove> >(VmaStlAllocator<VmaDefragmentationMove>(m_hAllocator->GetAllocationCallbacks()));
- pCtx->res = pCtx->GetAlgorithm()->Defragment(moves, maxBytesToMove, maxAllocationsToMove);
-
- // Accumulate statistics.
- if (pStats != VMA_NULL) {
- const VkDeviceSize bytesMoved = pCtx->GetAlgorithm()->GetBytesMoved();
- const uint32_t allocationsMoved = pCtx->GetAlgorithm()->GetAllocationsMoved();
- pStats->bytesMoved += bytesMoved;
- pStats->allocationsMoved += allocationsMoved;
- VMA_ASSERT(bytesMoved <= maxBytesToMove);
- VMA_ASSERT(allocationsMoved <= maxAllocationsToMove);
- if (defragmentOnGpu) {
- maxGpuBytesToMove -= bytesMoved;
- maxGpuAllocationsToMove -= allocationsMoved;
- } else {
- maxCpuBytesToMove -= bytesMoved;
- maxCpuAllocationsToMove -= allocationsMoved;
- }
- }
-
- if (pCtx->res >= VK_SUCCESS) {
- if (defragmentOnGpu) {
- ApplyDefragmentationMovesGpu(pCtx, moves, commandBuffer);
- } else {
- ApplyDefragmentationMovesCpu(pCtx, moves);
- }
- }
- }
-}
-
-void VmaBlockVector::DefragmentationEnd(
- class VmaBlockVectorDefragmentationContext *pCtx,
- VmaDefragmentationStats *pStats) {
- // Destroy buffers.
- for (size_t blockIndex = pCtx->blockContexts.size(); blockIndex--;) {
- VmaBlockDefragmentationContext &blockCtx = pCtx->blockContexts[blockIndex];
- if (blockCtx.hBuffer) {
- (*m_hAllocator->GetVulkanFunctions().vkDestroyBuffer)(
- m_hAllocator->m_hDevice, blockCtx.hBuffer, m_hAllocator->GetAllocationCallbacks());
- }
- }
-
- if (pCtx->res >= VK_SUCCESS) {
- FreeEmptyBlocks(pStats);
- }
-
- if (pCtx->mutexLocked) {
- VMA_ASSERT(m_hAllocator->m_UseMutex);
- m_Mutex.UnlockWrite();
- }
-}
-
-size_t VmaBlockVector::CalcAllocationCount() const {
- size_t result = 0;
- for (size_t i = 0; i < m_Blocks.size(); ++i) {
- result += m_Blocks[i]->m_pMetadata->GetAllocationCount();
- }
- return result;
-}
-
-bool VmaBlockVector::IsBufferImageGranularityConflictPossible() const {
- if (m_BufferImageGranularity == 1) {
- return false;
- }
- VmaSuballocationType lastSuballocType = VMA_SUBALLOCATION_TYPE_FREE;
- for (size_t i = 0, count = m_Blocks.size(); i < count; ++i) {
- VmaDeviceMemoryBlock *const pBlock = m_Blocks[i];
- VMA_ASSERT(m_Algorithm == 0);
- VmaBlockMetadata_Generic *const pMetadata = (VmaBlockMetadata_Generic *)pBlock->m_pMetadata;
- if (pMetadata->IsBufferImageGranularityConflictPossible(m_BufferImageGranularity, lastSuballocType)) {
- return true;
- }
- }
- return false;
-}
-
-void VmaBlockVector::MakePoolAllocationsLost(
- uint32_t currentFrameIndex,
- size_t *pLostAllocationCount) {
- VmaMutexLockWrite lock(m_Mutex, m_hAllocator->m_UseMutex);
- size_t lostAllocationCount = 0;
- for (uint32_t blockIndex = 0; blockIndex < m_Blocks.size(); ++blockIndex) {
- VmaDeviceMemoryBlock *const pBlock = m_Blocks[blockIndex];
- VMA_ASSERT(pBlock);
- lostAllocationCount += pBlock->m_pMetadata->MakeAllocationsLost(currentFrameIndex, m_FrameInUseCount);
- }
- if (pLostAllocationCount != VMA_NULL) {
- *pLostAllocationCount = lostAllocationCount;
- }
-}
-
-VkResult VmaBlockVector::CheckCorruption() {
- if (!IsCorruptionDetectionEnabled()) {
- return VK_ERROR_FEATURE_NOT_PRESENT;
- }
-
- VmaMutexLockRead lock(m_Mutex, m_hAllocator->m_UseMutex);
- for (uint32_t blockIndex = 0; blockIndex < m_Blocks.size(); ++blockIndex) {
- VmaDeviceMemoryBlock *const pBlock = m_Blocks[blockIndex];
- VMA_ASSERT(pBlock);
- VkResult res = pBlock->CheckCorruption(m_hAllocator);
- if (res != VK_SUCCESS) {
- return res;
- }
- }
- return VK_SUCCESS;
-}
-
-void VmaBlockVector::AddStats(VmaStats *pStats) {
- const uint32_t memTypeIndex = m_MemoryTypeIndex;
- const uint32_t memHeapIndex = m_hAllocator->MemoryTypeIndexToHeapIndex(memTypeIndex);
-
- VmaMutexLockRead lock(m_Mutex, m_hAllocator->m_UseMutex);
-
- for (uint32_t blockIndex = 0; blockIndex < m_Blocks.size(); ++blockIndex) {
- const VmaDeviceMemoryBlock *const pBlock = m_Blocks[blockIndex];
- VMA_ASSERT(pBlock);
- VMA_HEAVY_ASSERT(pBlock->Validate());
- VmaStatInfo allocationStatInfo;
- pBlock->m_pMetadata->CalcAllocationStatInfo(allocationStatInfo);
- VmaAddStatInfo(pStats->total, allocationStatInfo);
- VmaAddStatInfo(pStats->memoryType[memTypeIndex], allocationStatInfo);
- VmaAddStatInfo(pStats->memoryHeap[memHeapIndex], allocationStatInfo);
- }
-}
-
-////////////////////////////////////////////////////////////////////////////////
-// VmaDefragmentationAlgorithm_Generic members definition
-
-VmaDefragmentationAlgorithm_Generic::VmaDefragmentationAlgorithm_Generic(
- VmaAllocator hAllocator,
- VmaBlockVector *pBlockVector,
- uint32_t currentFrameIndex,
- bool overlappingMoveSupported) :
- VmaDefragmentationAlgorithm(hAllocator, pBlockVector, currentFrameIndex),
- m_AllocationCount(0),
- m_AllAllocations(false),
- m_BytesMoved(0),
- m_AllocationsMoved(0),
- m_Blocks(VmaStlAllocator<BlockInfo *>(hAllocator->GetAllocationCallbacks())) {
- // Create block info for each block.
- const size_t blockCount = m_pBlockVector->m_Blocks.size();
- for (size_t blockIndex = 0; blockIndex < blockCount; ++blockIndex) {
- BlockInfo *pBlockInfo = vma_new(m_hAllocator, BlockInfo)(m_hAllocator->GetAllocationCallbacks());
- pBlockInfo->m_OriginalBlockIndex = blockIndex;
- pBlockInfo->m_pBlock = m_pBlockVector->m_Blocks[blockIndex];
- m_Blocks.push_back(pBlockInfo);
- }
-
- // Sort them by m_pBlock pointer value.
- VMA_SORT(m_Blocks.begin(), m_Blocks.end(), BlockPointerLess());
-}
-
-VmaDefragmentationAlgorithm_Generic::~VmaDefragmentationAlgorithm_Generic() {
- for (size_t i = m_Blocks.size(); i--;) {
- vma_delete(m_hAllocator, m_Blocks[i]);
- }
-}
-
-void VmaDefragmentationAlgorithm_Generic::AddAllocation(VmaAllocation hAlloc, VkBool32 *pChanged) {
- // Now as we are inside VmaBlockVector::m_Mutex, we can make final check if this allocation was not lost.
- if (hAlloc->GetLastUseFrameIndex() != VMA_FRAME_INDEX_LOST) {
- VmaDeviceMemoryBlock *pBlock = hAlloc->GetBlock();
- BlockInfoVector::iterator it = VmaBinaryFindFirstNotLess(m_Blocks.begin(), m_Blocks.end(), pBlock, BlockPointerLess());
- if (it != m_Blocks.end() && (*it)->m_pBlock == pBlock) {
- AllocationInfo allocInfo = AllocationInfo(hAlloc, pChanged);
- (*it)->m_Allocations.push_back(allocInfo);
- } else {
- VMA_ASSERT(0);
- }
-
- ++m_AllocationCount;
- }
-}
-
-VkResult VmaDefragmentationAlgorithm_Generic::DefragmentRound(
- VmaVector<VmaDefragmentationMove, VmaStlAllocator<VmaDefragmentationMove> > &moves,
- VkDeviceSize maxBytesToMove,
- uint32_t maxAllocationsToMove) {
- if (m_Blocks.empty()) {
- return VK_SUCCESS;
- }
-
- // This is a choice based on research.
- // Option 1:
- uint32_t strategy = VMA_ALLOCATION_CREATE_STRATEGY_MIN_TIME_BIT;
- // Option 2:
- //uint32_t strategy = VMA_ALLOCATION_CREATE_STRATEGY_MIN_MEMORY_BIT;
- // Option 3:
- //uint32_t strategy = VMA_ALLOCATION_CREATE_STRATEGY_MIN_FRAGMENTATION_BIT;
-
- size_t srcBlockMinIndex = 0;
- // When FAST_ALGORITHM, move allocations from only last out of blocks that contain non-movable allocations.
- /*
- if(m_AlgorithmFlags & VMA_DEFRAGMENTATION_FAST_ALGORITHM_BIT)
- {
- const size_t blocksWithNonMovableCount = CalcBlocksWithNonMovableCount();
- if(blocksWithNonMovableCount > 0)
- {
- srcBlockMinIndex = blocksWithNonMovableCount - 1;
- }
- }
- */
-
- size_t srcBlockIndex = m_Blocks.size() - 1;
- size_t srcAllocIndex = SIZE_MAX;
- for (;;) {
- // 1. Find next allocation to move.
- // 1.1. Start from last to first m_Blocks - they are sorted from most "destination" to most "source".
- // 1.2. Then start from last to first m_Allocations.
- while (srcAllocIndex >= m_Blocks[srcBlockIndex]->m_Allocations.size()) {
- if (m_Blocks[srcBlockIndex]->m_Allocations.empty()) {
- // Finished: no more allocations to process.
- if (srcBlockIndex == srcBlockMinIndex) {
- return VK_SUCCESS;
- } else {
- --srcBlockIndex;
- srcAllocIndex = SIZE_MAX;
- }
- } else {
- srcAllocIndex = m_Blocks[srcBlockIndex]->m_Allocations.size() - 1;
- }
- }
-
- BlockInfo *pSrcBlockInfo = m_Blocks[srcBlockIndex];
- AllocationInfo &allocInfo = pSrcBlockInfo->m_Allocations[srcAllocIndex];
-
- const VkDeviceSize size = allocInfo.m_hAllocation->GetSize();
- const VkDeviceSize srcOffset = allocInfo.m_hAllocation->GetOffset();
- const VkDeviceSize alignment = allocInfo.m_hAllocation->GetAlignment();
- const VmaSuballocationType suballocType = allocInfo.m_hAllocation->GetSuballocationType();
-
- // 2. Try to find new place for this allocation in preceding or current block.
- for (size_t dstBlockIndex = 0; dstBlockIndex <= srcBlockIndex; ++dstBlockIndex) {
- BlockInfo *pDstBlockInfo = m_Blocks[dstBlockIndex];
- VmaAllocationRequest dstAllocRequest;
- if (pDstBlockInfo->m_pBlock->m_pMetadata->CreateAllocationRequest(
- m_CurrentFrameIndex,
- m_pBlockVector->GetFrameInUseCount(),
- m_pBlockVector->GetBufferImageGranularity(),
- size,
- alignment,
- false, // upperAddress
- suballocType,
- false, // canMakeOtherLost
- strategy,
- &dstAllocRequest) &&
- MoveMakesSense(
- dstBlockIndex, dstAllocRequest.offset, srcBlockIndex, srcOffset)) {
- VMA_ASSERT(dstAllocRequest.itemsToMakeLostCount == 0);
-
- // Reached limit on number of allocations or bytes to move.
- if ((m_AllocationsMoved + 1 > maxAllocationsToMove) ||
- (m_BytesMoved + size > maxBytesToMove)) {
- return VK_SUCCESS;
- }
-
- VmaDefragmentationMove move;
- move.srcBlockIndex = pSrcBlockInfo->m_OriginalBlockIndex;
- move.dstBlockIndex = pDstBlockInfo->m_OriginalBlockIndex;
- move.srcOffset = srcOffset;
- move.dstOffset = dstAllocRequest.offset;
- move.size = size;
- moves.push_back(move);
-
- pDstBlockInfo->m_pBlock->m_pMetadata->Alloc(
- dstAllocRequest,
- suballocType,
- size,
- allocInfo.m_hAllocation);
- pSrcBlockInfo->m_pBlock->m_pMetadata->FreeAtOffset(srcOffset);
-
- allocInfo.m_hAllocation->ChangeBlockAllocation(m_hAllocator, pDstBlockInfo->m_pBlock, dstAllocRequest.offset);
-
- if (allocInfo.m_pChanged != VMA_NULL) {
- *allocInfo.m_pChanged = VK_TRUE;
- }
-
- ++m_AllocationsMoved;
- m_BytesMoved += size;
-
- VmaVectorRemove(pSrcBlockInfo->m_Allocations, srcAllocIndex);
-
- break;
- }
- }
-
- // If not processed, this allocInfo remains in pBlockInfo->m_Allocations for next round.
-
- if (srcAllocIndex > 0) {
- --srcAllocIndex;
- } else {
- if (srcBlockIndex > 0) {
- --srcBlockIndex;
- srcAllocIndex = SIZE_MAX;
- } else {
- return VK_SUCCESS;
- }
- }
- }
-}
-
-size_t VmaDefragmentationAlgorithm_Generic::CalcBlocksWithNonMovableCount() const {
- size_t result = 0;
- for (size_t i = 0; i < m_Blocks.size(); ++i) {
- if (m_Blocks[i]->m_HasNonMovableAllocations) {
- ++result;
- }
- }
- return result;
-}
-
-VkResult VmaDefragmentationAlgorithm_Generic::Defragment(
- VmaVector<VmaDefragmentationMove, VmaStlAllocator<VmaDefragmentationMove> > &moves,
- VkDeviceSize maxBytesToMove,
- uint32_t maxAllocationsToMove) {
- if (!m_AllAllocations && m_AllocationCount == 0) {
- return VK_SUCCESS;
- }
-
- const size_t blockCount = m_Blocks.size();
- for (size_t blockIndex = 0; blockIndex < blockCount; ++blockIndex) {
- BlockInfo *pBlockInfo = m_Blocks[blockIndex];
-
- if (m_AllAllocations) {
- VmaBlockMetadata_Generic *pMetadata = (VmaBlockMetadata_Generic *)pBlockInfo->m_pBlock->m_pMetadata;
- for (VmaSuballocationList::const_iterator it = pMetadata->m_Suballocations.begin();
- it != pMetadata->m_Suballocations.end();
- ++it) {
- if (it->type != VMA_SUBALLOCATION_TYPE_FREE) {
- AllocationInfo allocInfo = AllocationInfo(it->hAllocation, VMA_NULL);
- pBlockInfo->m_Allocations.push_back(allocInfo);
- }
- }
- }
-
- pBlockInfo->CalcHasNonMovableAllocations();
-
- // This is a choice based on research.
- // Option 1:
- pBlockInfo->SortAllocationsByOffsetDescending();
- // Option 2:
- //pBlockInfo->SortAllocationsBySizeDescending();
- }
-
- // Sort m_Blocks this time by the main criterium, from most "destination" to most "source" blocks.
- VMA_SORT(m_Blocks.begin(), m_Blocks.end(), BlockInfoCompareMoveDestination());
-
- // This is a choice based on research.
- const uint32_t roundCount = 2;
-
- // Execute defragmentation rounds (the main part).
- VkResult result = VK_SUCCESS;
- for (uint32_t round = 0; (round < roundCount) && (result == VK_SUCCESS); ++round) {
- result = DefragmentRound(moves, maxBytesToMove, maxAllocationsToMove);
- }
-
- return result;
-}
-
-bool VmaDefragmentationAlgorithm_Generic::MoveMakesSense(
- size_t dstBlockIndex, VkDeviceSize dstOffset,
- size_t srcBlockIndex, VkDeviceSize srcOffset) {
- if (dstBlockIndex < srcBlockIndex) {
- return true;
- }
- if (dstBlockIndex > srcBlockIndex) {
- return false;
- }
- if (dstOffset < srcOffset) {
- return true;
- }
- return false;
-}
-
-////////////////////////////////////////////////////////////////////////////////
-// VmaDefragmentationAlgorithm_Fast
-
-VmaDefragmentationAlgorithm_Fast::VmaDefragmentationAlgorithm_Fast(
- VmaAllocator hAllocator,
- VmaBlockVector *pBlockVector,
- uint32_t currentFrameIndex,
- bool overlappingMoveSupported) :
- VmaDefragmentationAlgorithm(hAllocator, pBlockVector, currentFrameIndex),
- m_OverlappingMoveSupported(overlappingMoveSupported),
- m_AllocationCount(0),
- m_AllAllocations(false),
- m_BytesMoved(0),
- m_AllocationsMoved(0),
- m_BlockInfos(VmaStlAllocator<BlockInfo>(hAllocator->GetAllocationCallbacks())) {
- VMA_ASSERT(VMA_DEBUG_MARGIN == 0);
-}
-
-VmaDefragmentationAlgorithm_Fast::~VmaDefragmentationAlgorithm_Fast() {
-}
-
-VkResult VmaDefragmentationAlgorithm_Fast::Defragment(
- VmaVector<VmaDefragmentationMove, VmaStlAllocator<VmaDefragmentationMove> > &moves,
- VkDeviceSize maxBytesToMove,
- uint32_t maxAllocationsToMove) {
- VMA_ASSERT(m_AllAllocations || m_pBlockVector->CalcAllocationCount() == m_AllocationCount);
-
- const size_t blockCount = m_pBlockVector->GetBlockCount();
- if (blockCount == 0 || maxBytesToMove == 0 || maxAllocationsToMove == 0) {
- return VK_SUCCESS;
- }
-
- PreprocessMetadata();
-
- // Sort blocks in order from most destination.
-
- m_BlockInfos.resize(blockCount);
- for (size_t i = 0; i < blockCount; ++i) {
- m_BlockInfos[i].origBlockIndex = i;
- }
-
- VMA_SORT(m_BlockInfos.begin(), m_BlockInfos.end(), [this](const BlockInfo &lhs, const BlockInfo &rhs) -> bool {
- return m_pBlockVector->GetBlock(lhs.origBlockIndex)->m_pMetadata->GetSumFreeSize() <
- m_pBlockVector->GetBlock(rhs.origBlockIndex)->m_pMetadata->GetSumFreeSize();
- });
-
- // THE MAIN ALGORITHM
-
- FreeSpaceDatabase freeSpaceDb;
-
- size_t dstBlockInfoIndex = 0;
- size_t dstOrigBlockIndex = m_BlockInfos[dstBlockInfoIndex].origBlockIndex;
- VmaDeviceMemoryBlock *pDstBlock = m_pBlockVector->GetBlock(dstOrigBlockIndex);
- VmaBlockMetadata_Generic *pDstMetadata = (VmaBlockMetadata_Generic *)pDstBlock->m_pMetadata;
- VkDeviceSize dstBlockSize = pDstMetadata->GetSize();
- VkDeviceSize dstOffset = 0;
-
- bool end = false;
- for (size_t srcBlockInfoIndex = 0; !end && srcBlockInfoIndex < blockCount; ++srcBlockInfoIndex) {
- const size_t srcOrigBlockIndex = m_BlockInfos[srcBlockInfoIndex].origBlockIndex;
- VmaDeviceMemoryBlock *const pSrcBlock = m_pBlockVector->GetBlock(srcOrigBlockIndex);
- VmaBlockMetadata_Generic *const pSrcMetadata = (VmaBlockMetadata_Generic *)pSrcBlock->m_pMetadata;
- for (VmaSuballocationList::iterator srcSuballocIt = pSrcMetadata->m_Suballocations.begin();
- !end && srcSuballocIt != pSrcMetadata->m_Suballocations.end();) {
- VmaAllocation_T *const pAlloc = srcSuballocIt->hAllocation;
- const VkDeviceSize srcAllocAlignment = pAlloc->GetAlignment();
- const VkDeviceSize srcAllocSize = srcSuballocIt->size;
- if (m_AllocationsMoved == maxAllocationsToMove ||
- m_BytesMoved + srcAllocSize > maxBytesToMove) {
- end = true;
- break;
- }
- const VkDeviceSize srcAllocOffset = srcSuballocIt->offset;
-
- // Try to place it in one of free spaces from the database.
- size_t freeSpaceInfoIndex;
- VkDeviceSize dstAllocOffset;
- if (freeSpaceDb.Fetch(srcAllocAlignment, srcAllocSize,
- freeSpaceInfoIndex, dstAllocOffset)) {
- size_t freeSpaceOrigBlockIndex = m_BlockInfos[freeSpaceInfoIndex].origBlockIndex;
- VmaDeviceMemoryBlock *pFreeSpaceBlock = m_pBlockVector->GetBlock(freeSpaceOrigBlockIndex);
- VmaBlockMetadata_Generic *pFreeSpaceMetadata = (VmaBlockMetadata_Generic *)pFreeSpaceBlock->m_pMetadata;
-
- // Same block
- if (freeSpaceInfoIndex == srcBlockInfoIndex) {
- VMA_ASSERT(dstAllocOffset <= srcAllocOffset);
-
- // MOVE OPTION 1: Move the allocation inside the same block by decreasing offset.
-
- VmaSuballocation suballoc = *srcSuballocIt;
- suballoc.offset = dstAllocOffset;
- suballoc.hAllocation->ChangeOffset(dstAllocOffset);
- m_BytesMoved += srcAllocSize;
- ++m_AllocationsMoved;
-
- VmaSuballocationList::iterator nextSuballocIt = srcSuballocIt;
- ++nextSuballocIt;
- pSrcMetadata->m_Suballocations.erase(srcSuballocIt);
- srcSuballocIt = nextSuballocIt;
-
- InsertSuballoc(pFreeSpaceMetadata, suballoc);
-
- VmaDefragmentationMove move = {
- srcOrigBlockIndex, freeSpaceOrigBlockIndex,
- srcAllocOffset, dstAllocOffset,
- srcAllocSize
- };
- moves.push_back(move);
- }
- // Different block
- else {
- // MOVE OPTION 2: Move the allocation to a different block.
-
- VMA_ASSERT(freeSpaceInfoIndex < srcBlockInfoIndex);
-
- VmaSuballocation suballoc = *srcSuballocIt;
- suballoc.offset = dstAllocOffset;
- suballoc.hAllocation->ChangeBlockAllocation(m_hAllocator, pFreeSpaceBlock, dstAllocOffset);
- m_BytesMoved += srcAllocSize;
- ++m_AllocationsMoved;
-
- VmaSuballocationList::iterator nextSuballocIt = srcSuballocIt;
- ++nextSuballocIt;
- pSrcMetadata->m_Suballocations.erase(srcSuballocIt);
- srcSuballocIt = nextSuballocIt;
-
- InsertSuballoc(pFreeSpaceMetadata, suballoc);
-
- VmaDefragmentationMove move = {
- srcOrigBlockIndex, freeSpaceOrigBlockIndex,
- srcAllocOffset, dstAllocOffset,
- srcAllocSize
- };
- moves.push_back(move);
- }
- } else {
- dstAllocOffset = VmaAlignUp(dstOffset, srcAllocAlignment);
-
- // If the allocation doesn't fit before the end of dstBlock, forward to next block.
- while (dstBlockInfoIndex < srcBlockInfoIndex &&
- dstAllocOffset + srcAllocSize > dstBlockSize) {
- // But before that, register remaining free space at the end of dst block.
- freeSpaceDb.Register(dstBlockInfoIndex, dstOffset, dstBlockSize - dstOffset);
-
- ++dstBlockInfoIndex;
- dstOrigBlockIndex = m_BlockInfos[dstBlockInfoIndex].origBlockIndex;
- pDstBlock = m_pBlockVector->GetBlock(dstOrigBlockIndex);
- pDstMetadata = (VmaBlockMetadata_Generic *)pDstBlock->m_pMetadata;
- dstBlockSize = pDstMetadata->GetSize();
- dstOffset = 0;
- dstAllocOffset = 0;
- }
-
- // Same block
- if (dstBlockInfoIndex == srcBlockInfoIndex) {
- VMA_ASSERT(dstAllocOffset <= srcAllocOffset);
-
- const bool overlap = dstAllocOffset + srcAllocSize > srcAllocOffset;
-
- bool skipOver = overlap;
- if (overlap && m_OverlappingMoveSupported && dstAllocOffset < srcAllocOffset) {
- // If destination and source place overlap, skip if it would move it
- // by only < 1/64 of its size.
- skipOver = (srcAllocOffset - dstAllocOffset) * 64 < srcAllocSize;
- }
-
- if (skipOver) {
- freeSpaceDb.Register(dstBlockInfoIndex, dstOffset, srcAllocOffset - dstOffset);
-
- dstOffset = srcAllocOffset + srcAllocSize;
- ++srcSuballocIt;
- }
- // MOVE OPTION 1: Move the allocation inside the same block by decreasing offset.
- else {
- srcSuballocIt->offset = dstAllocOffset;
- srcSuballocIt->hAllocation->ChangeOffset(dstAllocOffset);
- dstOffset = dstAllocOffset + srcAllocSize;
- m_BytesMoved += srcAllocSize;
- ++m_AllocationsMoved;
- ++srcSuballocIt;
- VmaDefragmentationMove move = {
- srcOrigBlockIndex, dstOrigBlockIndex,
- srcAllocOffset, dstAllocOffset,
- srcAllocSize
- };
- moves.push_back(move);
- }
- }
- // Different block
- else {
- // MOVE OPTION 2: Move the allocation to a different block.
-
- VMA_ASSERT(dstBlockInfoIndex < srcBlockInfoIndex);
- VMA_ASSERT(dstAllocOffset + srcAllocSize <= dstBlockSize);
-
- VmaSuballocation suballoc = *srcSuballocIt;
- suballoc.offset = dstAllocOffset;
- suballoc.hAllocation->ChangeBlockAllocation(m_hAllocator, pDstBlock, dstAllocOffset);
- dstOffset = dstAllocOffset + srcAllocSize;
- m_BytesMoved += srcAllocSize;
- ++m_AllocationsMoved;
-
- VmaSuballocationList::iterator nextSuballocIt = srcSuballocIt;
- ++nextSuballocIt;
- pSrcMetadata->m_Suballocations.erase(srcSuballocIt);
- srcSuballocIt = nextSuballocIt;
-
- pDstMetadata->m_Suballocations.push_back(suballoc);
-
- VmaDefragmentationMove move = {
- srcOrigBlockIndex, dstOrigBlockIndex,
- srcAllocOffset, dstAllocOffset,
- srcAllocSize
- };
- moves.push_back(move);
- }
- }
- }
- }
-
- m_BlockInfos.clear();
-
- PostprocessMetadata();
-
- return VK_SUCCESS;
-}
-
-void VmaDefragmentationAlgorithm_Fast::PreprocessMetadata() {
- const size_t blockCount = m_pBlockVector->GetBlockCount();
- for (size_t blockIndex = 0; blockIndex < blockCount; ++blockIndex) {
- VmaBlockMetadata_Generic *const pMetadata =
- (VmaBlockMetadata_Generic *)m_pBlockVector->GetBlock(blockIndex)->m_pMetadata;
- pMetadata->m_FreeCount = 0;
- pMetadata->m_SumFreeSize = pMetadata->GetSize();
- pMetadata->m_FreeSuballocationsBySize.clear();
- for (VmaSuballocationList::iterator it = pMetadata->m_Suballocations.begin();
- it != pMetadata->m_Suballocations.end();) {
- if (it->type == VMA_SUBALLOCATION_TYPE_FREE) {
- VmaSuballocationList::iterator nextIt = it;
- ++nextIt;
- pMetadata->m_Suballocations.erase(it);
- it = nextIt;
- } else {
- ++it;
- }
- }
- }
-}
-
-void VmaDefragmentationAlgorithm_Fast::PostprocessMetadata() {
- const size_t blockCount = m_pBlockVector->GetBlockCount();
- for (size_t blockIndex = 0; blockIndex < blockCount; ++blockIndex) {
- VmaBlockMetadata_Generic *const pMetadata =
- (VmaBlockMetadata_Generic *)m_pBlockVector->GetBlock(blockIndex)->m_pMetadata;
- const VkDeviceSize blockSize = pMetadata->GetSize();
-
- // No allocations in this block - entire area is free.
- if (pMetadata->m_Suballocations.empty()) {
- pMetadata->m_FreeCount = 1;
- //pMetadata->m_SumFreeSize is already set to blockSize.
- VmaSuballocation suballoc = {
- 0, // offset
- blockSize, // size
- VMA_NULL, // hAllocation
- VMA_SUBALLOCATION_TYPE_FREE
- };
- pMetadata->m_Suballocations.push_back(suballoc);
- pMetadata->RegisterFreeSuballocation(pMetadata->m_Suballocations.begin());
- }
- // There are some allocations in this block.
- else {
- VkDeviceSize offset = 0;
- VmaSuballocationList::iterator it;
- for (it = pMetadata->m_Suballocations.begin();
- it != pMetadata->m_Suballocations.end();
- ++it) {
- VMA_ASSERT(it->type != VMA_SUBALLOCATION_TYPE_FREE);
- VMA_ASSERT(it->offset >= offset);
-
- // Need to insert preceding free space.
- if (it->offset > offset) {
- ++pMetadata->m_FreeCount;
- const VkDeviceSize freeSize = it->offset - offset;
- VmaSuballocation suballoc = {
- offset, // offset
- freeSize, // size
- VMA_NULL, // hAllocation
- VMA_SUBALLOCATION_TYPE_FREE
- };
- VmaSuballocationList::iterator precedingFreeIt = pMetadata->m_Suballocations.insert(it, suballoc);
- if (freeSize >= VMA_MIN_FREE_SUBALLOCATION_SIZE_TO_REGISTER) {
- pMetadata->m_FreeSuballocationsBySize.push_back(precedingFreeIt);
- }
- }
-
- pMetadata->m_SumFreeSize -= it->size;
- offset = it->offset + it->size;
- }
-
- // Need to insert trailing free space.
- if (offset < blockSize) {
- ++pMetadata->m_FreeCount;
- const VkDeviceSize freeSize = blockSize - offset;
- VmaSuballocation suballoc = {
- offset, // offset
- freeSize, // size
- VMA_NULL, // hAllocation
- VMA_SUBALLOCATION_TYPE_FREE
- };
- VMA_ASSERT(it == pMetadata->m_Suballocations.end());
- VmaSuballocationList::iterator trailingFreeIt = pMetadata->m_Suballocations.insert(it, suballoc);
- if (freeSize > VMA_MIN_FREE_SUBALLOCATION_SIZE_TO_REGISTER) {
- pMetadata->m_FreeSuballocationsBySize.push_back(trailingFreeIt);
- }
- }
-
- VMA_SORT(
- pMetadata->m_FreeSuballocationsBySize.begin(),
- pMetadata->m_FreeSuballocationsBySize.end(),
- VmaSuballocationItemSizeLess());
- }
-
- VMA_HEAVY_ASSERT(pMetadata->Validate());
- }
-}
-
-void VmaDefragmentationAlgorithm_Fast::InsertSuballoc(VmaBlockMetadata_Generic *pMetadata, const VmaSuballocation &suballoc) {
- // TODO: Optimize somehow. Remember iterator instead of searching for it linearly.
- VmaSuballocationList::iterator it = pMetadata->m_Suballocations.begin();
- while (it != pMetadata->m_Suballocations.end()) {
- if (it->offset < suballoc.offset) {
- ++it;
- }
- }
- pMetadata->m_Suballocations.insert(it, suballoc);
-}
-
-////////////////////////////////////////////////////////////////////////////////
-// VmaBlockVectorDefragmentationContext
-
-VmaBlockVectorDefragmentationContext::VmaBlockVectorDefragmentationContext(
- VmaAllocator hAllocator,
- VmaPool hCustomPool,
- VmaBlockVector *pBlockVector,
- uint32_t currFrameIndex,
- uint32_t algorithmFlags) :
- res(VK_SUCCESS),
- mutexLocked(false),
- blockContexts(VmaStlAllocator<VmaBlockDefragmentationContext>(hAllocator->GetAllocationCallbacks())),
- m_hAllocator(hAllocator),
- m_hCustomPool(hCustomPool),
- m_pBlockVector(pBlockVector),
- m_CurrFrameIndex(currFrameIndex),
- m_AlgorithmFlags(algorithmFlags),
- m_pAlgorithm(VMA_NULL),
- m_Allocations(VmaStlAllocator<AllocInfo>(hAllocator->GetAllocationCallbacks())),
- m_AllAllocations(false) {
-}
-
-VmaBlockVectorDefragmentationContext::~VmaBlockVectorDefragmentationContext() {
- vma_delete(m_hAllocator, m_pAlgorithm);
-}
-
-void VmaBlockVectorDefragmentationContext::AddAllocation(VmaAllocation hAlloc, VkBool32 *pChanged) {
- AllocInfo info = { hAlloc, pChanged };
- m_Allocations.push_back(info);
-}
-
-void VmaBlockVectorDefragmentationContext::Begin(bool overlappingMoveSupported) {
- const bool allAllocations = m_AllAllocations ||
- m_Allocations.size() == m_pBlockVector->CalcAllocationCount();
-
- /********************************
- HERE IS THE CHOICE OF DEFRAGMENTATION ALGORITHM.
- ********************************/
-
- /*
- Fast algorithm is supported only when certain criteria are met:
- - VMA_DEBUG_MARGIN is 0.
- - All allocations in this block vector are moveable.
- - There is no possibility of image/buffer granularity conflict.
- */
- if (VMA_DEBUG_MARGIN == 0 &&
- allAllocations &&
- !m_pBlockVector->IsBufferImageGranularityConflictPossible()) {
- m_pAlgorithm = vma_new(m_hAllocator, VmaDefragmentationAlgorithm_Fast)(
- m_hAllocator, m_pBlockVector, m_CurrFrameIndex, overlappingMoveSupported);
- } else {
- m_pAlgorithm = vma_new(m_hAllocator, VmaDefragmentationAlgorithm_Generic)(
- m_hAllocator, m_pBlockVector, m_CurrFrameIndex, overlappingMoveSupported);
- }
-
- if (allAllocations) {
- m_pAlgorithm->AddAll();
- } else {
- for (size_t i = 0, count = m_Allocations.size(); i < count; ++i) {
- m_pAlgorithm->AddAllocation(m_Allocations[i].hAlloc, m_Allocations[i].pChanged);
- }
- }
-}
-
-////////////////////////////////////////////////////////////////////////////////
-// VmaDefragmentationContext
-
-VmaDefragmentationContext_T::VmaDefragmentationContext_T(
- VmaAllocator hAllocator,
- uint32_t currFrameIndex,
- uint32_t flags,
- VmaDefragmentationStats *pStats) :
- m_hAllocator(hAllocator),
- m_CurrFrameIndex(currFrameIndex),
- m_Flags(flags),
- m_pStats(pStats),
- m_CustomPoolContexts(VmaStlAllocator<VmaBlockVectorDefragmentationContext *>(hAllocator->GetAllocationCallbacks())) {
- memset(m_DefaultPoolContexts, 0, sizeof(m_DefaultPoolContexts));
-}
-
-VmaDefragmentationContext_T::~VmaDefragmentationContext_T() {
- for (size_t i = m_CustomPoolContexts.size(); i--;) {
- VmaBlockVectorDefragmentationContext *pBlockVectorCtx = m_CustomPoolContexts[i];
- pBlockVectorCtx->GetBlockVector()->DefragmentationEnd(pBlockVectorCtx, m_pStats);
- vma_delete(m_hAllocator, pBlockVectorCtx);
- }
- for (size_t i = m_hAllocator->m_MemProps.memoryTypeCount; i--;) {
- VmaBlockVectorDefragmentationContext *pBlockVectorCtx = m_DefaultPoolContexts[i];
- if (pBlockVectorCtx) {
- pBlockVectorCtx->GetBlockVector()->DefragmentationEnd(pBlockVectorCtx, m_pStats);
- vma_delete(m_hAllocator, pBlockVectorCtx);
- }
- }
-}
-
-void VmaDefragmentationContext_T::AddPools(uint32_t poolCount, VmaPool *pPools) {
- for (uint32_t poolIndex = 0; poolIndex < poolCount; ++poolIndex) {
- VmaPool pool = pPools[poolIndex];
- VMA_ASSERT(pool);
- // Pools with algorithm other than default are not defragmented.
- if (pool->m_BlockVector.GetAlgorithm() == 0) {
- VmaBlockVectorDefragmentationContext *pBlockVectorDefragCtx = VMA_NULL;
-
- for (size_t i = m_CustomPoolContexts.size(); i--;) {
- if (m_CustomPoolContexts[i]->GetCustomPool() == pool) {
- pBlockVectorDefragCtx = m_CustomPoolContexts[i];
- break;
- }
- }
-
- if (!pBlockVectorDefragCtx) {
- pBlockVectorDefragCtx = vma_new(m_hAllocator, VmaBlockVectorDefragmentationContext)(
- m_hAllocator,
- pool,
- &pool->m_BlockVector,
- m_CurrFrameIndex,
- m_Flags);
- m_CustomPoolContexts.push_back(pBlockVectorDefragCtx);
- }
-
- pBlockVectorDefragCtx->AddAll();
- }
- }
-}
-
-void VmaDefragmentationContext_T::AddAllocations(
- uint32_t allocationCount,
- VmaAllocation *pAllocations,
- VkBool32 *pAllocationsChanged) {
- // Dispatch pAllocations among defragmentators. Create them when necessary.
- for (uint32_t allocIndex = 0; allocIndex < allocationCount; ++allocIndex) {
- const VmaAllocation hAlloc = pAllocations[allocIndex];
- VMA_ASSERT(hAlloc);
- // DedicatedAlloc cannot be defragmented.
- if ((hAlloc->GetType() == VmaAllocation_T::ALLOCATION_TYPE_BLOCK) &&
- // Lost allocation cannot be defragmented.
- (hAlloc->GetLastUseFrameIndex() != VMA_FRAME_INDEX_LOST)) {
- VmaBlockVectorDefragmentationContext *pBlockVectorDefragCtx = VMA_NULL;
-
- const VmaPool hAllocPool = hAlloc->GetBlock()->GetParentPool();
- // This allocation belongs to custom pool.
- if (hAllocPool != VK_NULL_HANDLE) {
- // Pools with algorithm other than default are not defragmented.
- if (hAllocPool->m_BlockVector.GetAlgorithm() == 0) {
- for (size_t i = m_CustomPoolContexts.size(); i--;) {
- if (m_CustomPoolContexts[i]->GetCustomPool() == hAllocPool) {
- pBlockVectorDefragCtx = m_CustomPoolContexts[i];
- break;
- }
- }
- if (!pBlockVectorDefragCtx) {
- pBlockVectorDefragCtx = vma_new(m_hAllocator, VmaBlockVectorDefragmentationContext)(
- m_hAllocator,
- hAllocPool,
- &hAllocPool->m_BlockVector,
- m_CurrFrameIndex,
- m_Flags);
- m_CustomPoolContexts.push_back(pBlockVectorDefragCtx);
- }
- }
- }
- // This allocation belongs to default pool.
- else {
- const uint32_t memTypeIndex = hAlloc->GetMemoryTypeIndex();
- pBlockVectorDefragCtx = m_DefaultPoolContexts[memTypeIndex];
- if (!pBlockVectorDefragCtx) {
- pBlockVectorDefragCtx = vma_new(m_hAllocator, VmaBlockVectorDefragmentationContext)(
- m_hAllocator,
- VMA_NULL, // hCustomPool
- m_hAllocator->m_pBlockVectors[memTypeIndex],
- m_CurrFrameIndex,
- m_Flags);
- m_DefaultPoolContexts[memTypeIndex] = pBlockVectorDefragCtx;
- }
- }
-
- if (pBlockVectorDefragCtx) {
- VkBool32 *const pChanged = (pAllocationsChanged != VMA_NULL) ?
- &pAllocationsChanged[allocIndex] :
- VMA_NULL;
- pBlockVectorDefragCtx->AddAllocation(hAlloc, pChanged);
- }
- }
- }
-}
-
-VkResult VmaDefragmentationContext_T::Defragment(
- VkDeviceSize maxCpuBytesToMove, uint32_t maxCpuAllocationsToMove,
- VkDeviceSize maxGpuBytesToMove, uint32_t maxGpuAllocationsToMove,
- VkCommandBuffer commandBuffer, VmaDefragmentationStats *pStats) {
- if (pStats) {
- memset(pStats, 0, sizeof(VmaDefragmentationStats));
- }
-
- if (commandBuffer == VK_NULL_HANDLE) {
- maxGpuBytesToMove = 0;
- maxGpuAllocationsToMove = 0;
- }
-
- VkResult res = VK_SUCCESS;
-
- // Process default pools.
- for (uint32_t memTypeIndex = 0;
- memTypeIndex < m_hAllocator->GetMemoryTypeCount() && res >= VK_SUCCESS;
- ++memTypeIndex) {
- VmaBlockVectorDefragmentationContext *pBlockVectorCtx = m_DefaultPoolContexts[memTypeIndex];
- if (pBlockVectorCtx) {
- VMA_ASSERT(pBlockVectorCtx->GetBlockVector());
- pBlockVectorCtx->GetBlockVector()->Defragment(
- pBlockVectorCtx,
- pStats,
- maxCpuBytesToMove, maxCpuAllocationsToMove,
- maxGpuBytesToMove, maxGpuAllocationsToMove,
- commandBuffer);
- if (pBlockVectorCtx->res != VK_SUCCESS) {
- res = pBlockVectorCtx->res;
- }
- }
- }
-
- // Process custom pools.
- for (size_t customCtxIndex = 0, customCtxCount = m_CustomPoolContexts.size();
- customCtxIndex < customCtxCount && res >= VK_SUCCESS;
- ++customCtxIndex) {
- VmaBlockVectorDefragmentationContext *pBlockVectorCtx = m_CustomPoolContexts[customCtxIndex];
- VMA_ASSERT(pBlockVectorCtx && pBlockVectorCtx->GetBlockVector());
- pBlockVectorCtx->GetBlockVector()->Defragment(
- pBlockVectorCtx,
- pStats,
- maxCpuBytesToMove, maxCpuAllocationsToMove,
- maxGpuBytesToMove, maxGpuAllocationsToMove,
- commandBuffer);
- if (pBlockVectorCtx->res != VK_SUCCESS) {
- res = pBlockVectorCtx->res;
- }
- }
-
- return res;
-}
-
-////////////////////////////////////////////////////////////////////////////////
-// VmaRecorder
-
-#if VMA_RECORDING_ENABLED
-
-VmaRecorder::VmaRecorder() :
- m_UseMutex(true),
- m_Flags(0),
- m_File(VMA_NULL),
- m_Freq(INT64_MAX),
- m_StartCounter(INT64_MAX) {
-}
-
-VkResult VmaRecorder::Init(const VmaRecordSettings &settings, bool useMutex) {
- m_UseMutex = useMutex;
- m_Flags = settings.flags;
-
- QueryPerformanceFrequency((LARGE_INTEGER *)&m_Freq);
- QueryPerformanceCounter((LARGE_INTEGER *)&m_StartCounter);
-
- // Open file for writing.
- errno_t err = fopen_s(&m_File, settings.pFilePath, "wb");
- if (err != 0) {
- return VK_ERROR_INITIALIZATION_FAILED;
- }
-
- // Write header.
- fprintf(m_File, "%s\n", "Vulkan Memory Allocator,Calls recording");
- fprintf(m_File, "%s\n", "1,5");
-
- return VK_SUCCESS;
-}
-
-VmaRecorder::~VmaRecorder() {
- if (m_File != VMA_NULL) {
- fclose(m_File);
- }
-}
-
-void VmaRecorder::RecordCreateAllocator(uint32_t frameIndex) {
- CallParams callParams;
- GetBasicParams(callParams);
-
- VmaMutexLock lock(m_FileMutex, m_UseMutex);
- fprintf(m_File, "%u,%.3f,%u,vmaCreateAllocator\n", callParams.threadId, callParams.time, frameIndex);
- Flush();
-}
-
-void VmaRecorder::RecordDestroyAllocator(uint32_t frameIndex) {
- CallParams callParams;
- GetBasicParams(callParams);
-
- VmaMutexLock lock(m_FileMutex, m_UseMutex);
- fprintf(m_File, "%u,%.3f,%u,vmaDestroyAllocator\n", callParams.threadId, callParams.time, frameIndex);
- Flush();
-}
-
-void VmaRecorder::RecordCreatePool(uint32_t frameIndex, const VmaPoolCreateInfo &createInfo, VmaPool pool) {
- CallParams callParams;
- GetBasicParams(callParams);
-
- VmaMutexLock lock(m_FileMutex, m_UseMutex);
- fprintf(m_File, "%u,%.3f,%u,vmaCreatePool,%u,%u,%llu,%llu,%llu,%u,%p\n", callParams.threadId, callParams.time, frameIndex,
- createInfo.memoryTypeIndex,
- createInfo.flags,
- createInfo.blockSize,
- (uint64_t)createInfo.minBlockCount,
- (uint64_t)createInfo.maxBlockCount,
- createInfo.frameInUseCount,
- pool);
- Flush();
-}
-
-void VmaRecorder::RecordDestroyPool(uint32_t frameIndex, VmaPool pool) {
- CallParams callParams;
- GetBasicParams(callParams);
-
- VmaMutexLock lock(m_FileMutex, m_UseMutex);
- fprintf(m_File, "%u,%.3f,%u,vmaDestroyPool,%p\n", callParams.threadId, callParams.time, frameIndex,
- pool);
- Flush();
-}
-
-void VmaRecorder::RecordAllocateMemory(uint32_t frameIndex,
- const VkMemoryRequirements &vkMemReq,
- const VmaAllocationCreateInfo &createInfo,
- VmaAllocation allocation) {
- CallParams callParams;
- GetBasicParams(callParams);
-
- VmaMutexLock lock(m_FileMutex, m_UseMutex);
- UserDataString userDataStr(createInfo.flags, createInfo.pUserData);
- fprintf(m_File, "%u,%.3f,%u,vmaAllocateMemory,%llu,%llu,%u,%u,%u,%u,%u,%u,%p,%p,%s\n", callParams.threadId, callParams.time, frameIndex,
- vkMemReq.size,
- vkMemReq.alignment,
- vkMemReq.memoryTypeBits,
- createInfo.flags,
- createInfo.usage,
- createInfo.requiredFlags,
- createInfo.preferredFlags,
- createInfo.memoryTypeBits,
- createInfo.pool,
- allocation,
- userDataStr.GetString());
- Flush();
-}
-
-void VmaRecorder::RecordAllocateMemoryPages(uint32_t frameIndex,
- const VkMemoryRequirements &vkMemReq,
- const VmaAllocationCreateInfo &createInfo,
- uint64_t allocationCount,
- const VmaAllocation *pAllocations) {
- CallParams callParams;
- GetBasicParams(callParams);
-
- VmaMutexLock lock(m_FileMutex, m_UseMutex);
- UserDataString userDataStr(createInfo.flags, createInfo.pUserData);
- fprintf(m_File, "%u,%.3f,%u,vmaAllocateMemoryPages,%llu,%llu,%u,%u,%u,%u,%u,%u,%p,", callParams.threadId, callParams.time, frameIndex,
- vkMemReq.size,
- vkMemReq.alignment,
- vkMemReq.memoryTypeBits,
- createInfo.flags,
- createInfo.usage,
- createInfo.requiredFlags,
- createInfo.preferredFlags,
- createInfo.memoryTypeBits,
- createInfo.pool);
- PrintPointerList(allocationCount, pAllocations);
- fprintf(m_File, ",%s\n", userDataStr.GetString());
- Flush();
-}
-
-void VmaRecorder::RecordAllocateMemoryForBuffer(uint32_t frameIndex,
- const VkMemoryRequirements &vkMemReq,
- bool requiresDedicatedAllocation,
- bool prefersDedicatedAllocation,
- const VmaAllocationCreateInfo &createInfo,
- VmaAllocation allocation) {
- CallParams callParams;
- GetBasicParams(callParams);
-
- VmaMutexLock lock(m_FileMutex, m_UseMutex);
- UserDataString userDataStr(createInfo.flags, createInfo.pUserData);
- fprintf(m_File, "%u,%.3f,%u,vmaAllocateMemoryForBuffer,%llu,%llu,%u,%u,%u,%u,%u,%u,%u,%u,%p,%p,%s\n", callParams.threadId, callParams.time, frameIndex,
- vkMemReq.size,
- vkMemReq.alignment,
- vkMemReq.memoryTypeBits,
- requiresDedicatedAllocation ? 1 : 0,
- prefersDedicatedAllocation ? 1 : 0,
- createInfo.flags,
- createInfo.usage,
- createInfo.requiredFlags,
- createInfo.preferredFlags,
- createInfo.memoryTypeBits,
- createInfo.pool,
- allocation,
- userDataStr.GetString());
- Flush();
-}
-
-void VmaRecorder::RecordAllocateMemoryForImage(uint32_t frameIndex,
- const VkMemoryRequirements &vkMemReq,
- bool requiresDedicatedAllocation,
- bool prefersDedicatedAllocation,
- const VmaAllocationCreateInfo &createInfo,
- VmaAllocation allocation) {
- CallParams callParams;
- GetBasicParams(callParams);
-
- VmaMutexLock lock(m_FileMutex, m_UseMutex);
- UserDataString userDataStr(createInfo.flags, createInfo.pUserData);
- fprintf(m_File, "%u,%.3f,%u,vmaAllocateMemoryForImage,%llu,%llu,%u,%u,%u,%u,%u,%u,%u,%u,%p,%p,%s\n", callParams.threadId, callParams.time, frameIndex,
- vkMemReq.size,
- vkMemReq.alignment,
- vkMemReq.memoryTypeBits,
- requiresDedicatedAllocation ? 1 : 0,
- prefersDedicatedAllocation ? 1 : 0,
- createInfo.flags,
- createInfo.usage,
- createInfo.requiredFlags,
- createInfo.preferredFlags,
- createInfo.memoryTypeBits,
- createInfo.pool,
- allocation,
- userDataStr.GetString());
- Flush();
-}
-
-void VmaRecorder::RecordFreeMemory(uint32_t frameIndex,
- VmaAllocation allocation) {
- CallParams callParams;
- GetBasicParams(callParams);
-
- VmaMutexLock lock(m_FileMutex, m_UseMutex);
- fprintf(m_File, "%u,%.3f,%u,vmaFreeMemory,%p\n", callParams.threadId, callParams.time, frameIndex,
- allocation);
- Flush();
-}
-
-void VmaRecorder::RecordFreeMemoryPages(uint32_t frameIndex,
- uint64_t allocationCount,
- const VmaAllocation *pAllocations) {
- CallParams callParams;
- GetBasicParams(callParams);
-
- VmaMutexLock lock(m_FileMutex, m_UseMutex);
- fprintf(m_File, "%u,%.3f,%u,vmaFreeMemoryPages,", callParams.threadId, callParams.time, frameIndex);
- PrintPointerList(allocationCount, pAllocations);
- fprintf(m_File, "\n");
- Flush();
-}
-
-void VmaRecorder::RecordResizeAllocation(
- uint32_t frameIndex,
- VmaAllocation allocation,
- VkDeviceSize newSize) {
- CallParams callParams;
- GetBasicParams(callParams);
-
- VmaMutexLock lock(m_FileMutex, m_UseMutex);
- fprintf(m_File, "%u,%.3f,%u,vmaResizeAllocation,%p,%llu\n", callParams.threadId, callParams.time, frameIndex,
- allocation, newSize);
- Flush();
-}
-
-void VmaRecorder::RecordSetAllocationUserData(uint32_t frameIndex,
- VmaAllocation allocation,
- const void *pUserData) {
- CallParams callParams;
- GetBasicParams(callParams);
-
- VmaMutexLock lock(m_FileMutex, m_UseMutex);
- UserDataString userDataStr(
- allocation->IsUserDataString() ? VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT : 0,
- pUserData);
- fprintf(m_File, "%u,%.3f,%u,vmaSetAllocationUserData,%p,%s\n", callParams.threadId, callParams.time, frameIndex,
- allocation,
- userDataStr.GetString());
- Flush();
-}
-
-void VmaRecorder::RecordCreateLostAllocation(uint32_t frameIndex,
- VmaAllocation allocation) {
- CallParams callParams;
- GetBasicParams(callParams);
-
- VmaMutexLock lock(m_FileMutex, m_UseMutex);
- fprintf(m_File, "%u,%.3f,%u,vmaCreateLostAllocation,%p\n", callParams.threadId, callParams.time, frameIndex,
- allocation);
- Flush();
-}
-
-void VmaRecorder::RecordMapMemory(uint32_t frameIndex,
- VmaAllocation allocation) {
- CallParams callParams;
- GetBasicParams(callParams);
-
- VmaMutexLock lock(m_FileMutex, m_UseMutex);
- fprintf(m_File, "%u,%.3f,%u,vmaMapMemory,%p\n", callParams.threadId, callParams.time, frameIndex,
- allocation);
- Flush();
-}
-
-void VmaRecorder::RecordUnmapMemory(uint32_t frameIndex,
- VmaAllocation allocation) {
- CallParams callParams;
- GetBasicParams(callParams);
-
- VmaMutexLock lock(m_FileMutex, m_UseMutex);
- fprintf(m_File, "%u,%.3f,%u,vmaUnmapMemory,%p\n", callParams.threadId, callParams.time, frameIndex,
- allocation);
- Flush();
-}
-
-void VmaRecorder::RecordFlushAllocation(uint32_t frameIndex,
- VmaAllocation allocation, VkDeviceSize offset, VkDeviceSize size) {
- CallParams callParams;
- GetBasicParams(callParams);
-
- VmaMutexLock lock(m_FileMutex, m_UseMutex);
- fprintf(m_File, "%u,%.3f,%u,vmaFlushAllocation,%p,%llu,%llu\n", callParams.threadId, callParams.time, frameIndex,
- allocation,
- offset,
- size);
- Flush();
-}
-
-void VmaRecorder::RecordInvalidateAllocation(uint32_t frameIndex,
- VmaAllocation allocation, VkDeviceSize offset, VkDeviceSize size) {
- CallParams callParams;
- GetBasicParams(callParams);
-
- VmaMutexLock lock(m_FileMutex, m_UseMutex);
- fprintf(m_File, "%u,%.3f,%u,vmaInvalidateAllocation,%p,%llu,%llu\n", callParams.threadId, callParams.time, frameIndex,
- allocation,
- offset,
- size);
- Flush();
-}
-
-void VmaRecorder::RecordCreateBuffer(uint32_t frameIndex,
- const VkBufferCreateInfo &bufCreateInfo,
- const VmaAllocationCreateInfo &allocCreateInfo,
- VmaAllocation allocation) {
- CallParams callParams;
- GetBasicParams(callParams);
-
- VmaMutexLock lock(m_FileMutex, m_UseMutex);
- UserDataString userDataStr(allocCreateInfo.flags, allocCreateInfo.pUserData);
- fprintf(m_File, "%u,%.3f,%u,vmaCreateBuffer,%u,%llu,%u,%u,%u,%u,%u,%u,%u,%p,%p,%s\n", callParams.threadId, callParams.time, frameIndex,
- bufCreateInfo.flags,
- bufCreateInfo.size,
- bufCreateInfo.usage,
- bufCreateInfo.sharingMode,
- allocCreateInfo.flags,
- allocCreateInfo.usage,
- allocCreateInfo.requiredFlags,
- allocCreateInfo.preferredFlags,
- allocCreateInfo.memoryTypeBits,
- allocCreateInfo.pool,
- allocation,
- userDataStr.GetString());
- Flush();
-}
-
-void VmaRecorder::RecordCreateImage(uint32_t frameIndex,
- const VkImageCreateInfo &imageCreateInfo,
- const VmaAllocationCreateInfo &allocCreateInfo,
- VmaAllocation allocation) {
- CallParams callParams;
- GetBasicParams(callParams);
-
- VmaMutexLock lock(m_FileMutex, m_UseMutex);
- UserDataString userDataStr(allocCreateInfo.flags, allocCreateInfo.pUserData);
- fprintf(m_File, "%u,%.3f,%u,vmaCreateImage,%u,%u,%u,%u,%u,%u,%u,%u,%u,%u,%u,%u,%u,%u,%u,%u,%u,%u,%p,%p,%s\n", callParams.threadId, callParams.time, frameIndex,
- imageCreateInfo.flags,
- imageCreateInfo.imageType,
- imageCreateInfo.format,
- imageCreateInfo.extent.width,
- imageCreateInfo.extent.height,
- imageCreateInfo.extent.depth,
- imageCreateInfo.mipLevels,
- imageCreateInfo.arrayLayers,
- imageCreateInfo.samples,
- imageCreateInfo.tiling,
- imageCreateInfo.usage,
- imageCreateInfo.sharingMode,
- imageCreateInfo.initialLayout,
- allocCreateInfo.flags,
- allocCreateInfo.usage,
- allocCreateInfo.requiredFlags,
- allocCreateInfo.preferredFlags,
- allocCreateInfo.memoryTypeBits,
- allocCreateInfo.pool,
- allocation,
- userDataStr.GetString());
- Flush();
-}
-
-void VmaRecorder::RecordDestroyBuffer(uint32_t frameIndex,
- VmaAllocation allocation) {
- CallParams callParams;
- GetBasicParams(callParams);
-
- VmaMutexLock lock(m_FileMutex, m_UseMutex);
- fprintf(m_File, "%u,%.3f,%u,vmaDestroyBuffer,%p\n", callParams.threadId, callParams.time, frameIndex,
- allocation);
- Flush();
-}
-
-void VmaRecorder::RecordDestroyImage(uint32_t frameIndex,
- VmaAllocation allocation) {
- CallParams callParams;
- GetBasicParams(callParams);
-
- VmaMutexLock lock(m_FileMutex, m_UseMutex);
- fprintf(m_File, "%u,%.3f,%u,vmaDestroyImage,%p\n", callParams.threadId, callParams.time, frameIndex,
- allocation);
- Flush();
-}
-
-void VmaRecorder::RecordTouchAllocation(uint32_t frameIndex,
- VmaAllocation allocation) {
- CallParams callParams;
- GetBasicParams(callParams);
-
- VmaMutexLock lock(m_FileMutex, m_UseMutex);
- fprintf(m_File, "%u,%.3f,%u,vmaTouchAllocation,%p\n", callParams.threadId, callParams.time, frameIndex,
- allocation);
- Flush();
-}
-
-void VmaRecorder::RecordGetAllocationInfo(uint32_t frameIndex,
- VmaAllocation allocation) {
- CallParams callParams;
- GetBasicParams(callParams);
-
- VmaMutexLock lock(m_FileMutex, m_UseMutex);
- fprintf(m_File, "%u,%.3f,%u,vmaGetAllocationInfo,%p\n", callParams.threadId, callParams.time, frameIndex,
- allocation);
- Flush();
-}
-
-void VmaRecorder::RecordMakePoolAllocationsLost(uint32_t frameIndex,
- VmaPool pool) {
- CallParams callParams;
- GetBasicParams(callParams);
-
- VmaMutexLock lock(m_FileMutex, m_UseMutex);
- fprintf(m_File, "%u,%.3f,%u,vmaMakePoolAllocationsLost,%p\n", callParams.threadId, callParams.time, frameIndex,
- pool);
- Flush();
-}
-
-void VmaRecorder::RecordDefragmentationBegin(uint32_t frameIndex,
- const VmaDefragmentationInfo2 &info,
- VmaDefragmentationContext ctx) {
- CallParams callParams;
- GetBasicParams(callParams);
-
- VmaMutexLock lock(m_FileMutex, m_UseMutex);
- fprintf(m_File, "%u,%.3f,%u,vmaDefragmentationBegin,%u,", callParams.threadId, callParams.time, frameIndex,
- info.flags);
- PrintPointerList(info.allocationCount, info.pAllocations);
- fprintf(m_File, ",");
- PrintPointerList(info.poolCount, info.pPools);
- fprintf(m_File, ",%llu,%u,%llu,%u,%p,%p\n",
- info.maxCpuBytesToMove,
- info.maxCpuAllocationsToMove,
- info.maxGpuBytesToMove,
- info.maxGpuAllocationsToMove,
- info.commandBuffer,
- ctx);
- Flush();
-}
-
-void VmaRecorder::RecordDefragmentationEnd(uint32_t frameIndex,
- VmaDefragmentationContext ctx) {
- CallParams callParams;
- GetBasicParams(callParams);
-
- VmaMutexLock lock(m_FileMutex, m_UseMutex);
- fprintf(m_File, "%u,%.3f,%u,vmaDefragmentationEnd,%p\n", callParams.threadId, callParams.time, frameIndex,
- ctx);
- Flush();
-}
-
-VmaRecorder::UserDataString::UserDataString(VmaAllocationCreateFlags allocFlags, const void *pUserData) {
- if (pUserData != VMA_NULL) {
- if ((allocFlags & VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT) != 0) {
- m_Str = (const char *)pUserData;
- } else {
- sprintf_s(m_PtrStr, "%p", pUserData);
- m_Str = m_PtrStr;
- }
- } else {
- m_Str = "";
- }
-}
-
-void VmaRecorder::WriteConfiguration(
- const VkPhysicalDeviceProperties &devProps,
- const VkPhysicalDeviceMemoryProperties &memProps,
- bool dedicatedAllocationExtensionEnabled) {
- fprintf(m_File, "Config,Begin\n");
-
- fprintf(m_File, "PhysicalDevice,apiVersion,%u\n", devProps.apiVersion);
- fprintf(m_File, "PhysicalDevice,driverVersion,%u\n", devProps.driverVersion);
- fprintf(m_File, "PhysicalDevice,vendorID,%u\n", devProps.vendorID);
- fprintf(m_File, "PhysicalDevice,deviceID,%u\n", devProps.deviceID);
- fprintf(m_File, "PhysicalDevice,deviceType,%u\n", devProps.deviceType);
- fprintf(m_File, "PhysicalDevice,deviceName,%s\n", devProps.deviceName);
-
- fprintf(m_File, "PhysicalDeviceLimits,maxMemoryAllocationCount,%u\n", devProps.limits.maxMemoryAllocationCount);
- fprintf(m_File, "PhysicalDeviceLimits,bufferImageGranularity,%llu\n", devProps.limits.bufferImageGranularity);
- fprintf(m_File, "PhysicalDeviceLimits,nonCoherentAtomSize,%llu\n", devProps.limits.nonCoherentAtomSize);
-
- fprintf(m_File, "PhysicalDeviceMemory,HeapCount,%u\n", memProps.memoryHeapCount);
- for (uint32_t i = 0; i < memProps.memoryHeapCount; ++i) {
- fprintf(m_File, "PhysicalDeviceMemory,Heap,%u,size,%llu\n", i, memProps.memoryHeaps[i].size);
- fprintf(m_File, "PhysicalDeviceMemory,Heap,%u,flags,%u\n", i, memProps.memoryHeaps[i].flags);
- }
- fprintf(m_File, "PhysicalDeviceMemory,TypeCount,%u\n", memProps.memoryTypeCount);
- for (uint32_t i = 0; i < memProps.memoryTypeCount; ++i) {
- fprintf(m_File, "PhysicalDeviceMemory,Type,%u,heapIndex,%u\n", i, memProps.memoryTypes[i].heapIndex);
- fprintf(m_File, "PhysicalDeviceMemory,Type,%u,propertyFlags,%u\n", i, memProps.memoryTypes[i].propertyFlags);
- }
-
- fprintf(m_File, "Extension,VK_KHR_dedicated_allocation,%u\n", dedicatedAllocationExtensionEnabled ? 1 : 0);
-
- fprintf(m_File, "Macro,VMA_DEBUG_ALWAYS_DEDICATED_MEMORY,%u\n", VMA_DEBUG_ALWAYS_DEDICATED_MEMORY ? 1 : 0);
- fprintf(m_File, "Macro,VMA_DEBUG_ALIGNMENT,%llu\n", (VkDeviceSize)VMA_DEBUG_ALIGNMENT);
- fprintf(m_File, "Macro,VMA_DEBUG_MARGIN,%llu\n", (VkDeviceSize)VMA_DEBUG_MARGIN);
- fprintf(m_File, "Macro,VMA_DEBUG_INITIALIZE_ALLOCATIONS,%u\n", VMA_DEBUG_INITIALIZE_ALLOCATIONS ? 1 : 0);
- fprintf(m_File, "Macro,VMA_DEBUG_DETECT_CORRUPTION,%u\n", VMA_DEBUG_DETECT_CORRUPTION ? 1 : 0);
- fprintf(m_File, "Macro,VMA_DEBUG_GLOBAL_MUTEX,%u\n", VMA_DEBUG_GLOBAL_MUTEX ? 1 : 0);
- fprintf(m_File, "Macro,VMA_DEBUG_MIN_BUFFER_IMAGE_GRANULARITY,%llu\n", (VkDeviceSize)VMA_DEBUG_MIN_BUFFER_IMAGE_GRANULARITY);
- fprintf(m_File, "Macro,VMA_SMALL_HEAP_MAX_SIZE,%llu\n", (VkDeviceSize)VMA_SMALL_HEAP_MAX_SIZE);
- fprintf(m_File, "Macro,VMA_DEFAULT_LARGE_HEAP_BLOCK_SIZE,%llu\n", (VkDeviceSize)VMA_DEFAULT_LARGE_HEAP_BLOCK_SIZE);
-
- fprintf(m_File, "Config,End\n");
-}
-
-void VmaRecorder::GetBasicParams(CallParams &outParams) {
- outParams.threadId = GetCurrentThreadId();
-
- LARGE_INTEGER counter;
- QueryPerformanceCounter(&counter);
- outParams.time = (double)(counter.QuadPart - m_StartCounter) / (double)m_Freq;
-}
-
-void VmaRecorder::PrintPointerList(uint64_t count, const VmaAllocation *pItems) {
- if (count) {
- fprintf(m_File, "%p", pItems[0]);
- for (uint64_t i = 1; i < count; ++i) {
- fprintf(m_File, " %p", pItems[i]);
- }
- }
-}
-
-void VmaRecorder::Flush() {
- if ((m_Flags & VMA_RECORD_FLUSH_AFTER_CALL_BIT) != 0) {
- fflush(m_File);
- }
-}
-
-#endif // #if VMA_RECORDING_ENABLED
-
-////////////////////////////////////////////////////////////////////////////////
-// VmaAllocationObjectAllocator
-
-VmaAllocationObjectAllocator::VmaAllocationObjectAllocator(const VkAllocationCallbacks *pAllocationCallbacks) :
- m_Allocator(pAllocationCallbacks, 1024) {
-}
-
-VmaAllocation VmaAllocationObjectAllocator::Allocate() {
- VmaMutexLock mutexLock(m_Mutex);
- return m_Allocator.Alloc();
-}
-
-void VmaAllocationObjectAllocator::Free(VmaAllocation hAlloc) {
- VmaMutexLock mutexLock(m_Mutex);
- m_Allocator.Free(hAlloc);
-}
-
-////////////////////////////////////////////////////////////////////////////////
-// VmaAllocator_T
-
-VmaAllocator_T::VmaAllocator_T(const VmaAllocatorCreateInfo *pCreateInfo) :
- m_UseMutex((pCreateInfo->flags & VMA_ALLOCATOR_CREATE_EXTERNALLY_SYNCHRONIZED_BIT) == 0),
- m_UseKhrDedicatedAllocation((pCreateInfo->flags & VMA_ALLOCATOR_CREATE_KHR_DEDICATED_ALLOCATION_BIT) != 0),
- m_hDevice(pCreateInfo->device),
- m_AllocationCallbacksSpecified(pCreateInfo->pAllocationCallbacks != VMA_NULL),
- m_AllocationCallbacks(pCreateInfo->pAllocationCallbacks ?
- *pCreateInfo->pAllocationCallbacks :
- VmaEmptyAllocationCallbacks),
- m_AllocationObjectAllocator(&m_AllocationCallbacks),
- m_PreferredLargeHeapBlockSize(0),
- m_PhysicalDevice(pCreateInfo->physicalDevice),
- m_CurrentFrameIndex(0),
- m_GpuDefragmentationMemoryTypeBits(UINT32_MAX),
- m_Pools(VmaStlAllocator<VmaPool>(GetAllocationCallbacks())),
- m_NextPoolId(0)
-#if VMA_RECORDING_ENABLED
- ,
- m_pRecorder(VMA_NULL)
-#endif
-{
- if (VMA_DEBUG_DETECT_CORRUPTION) {
- // Needs to be multiply of uint32_t size because we are going to write VMA_CORRUPTION_DETECTION_MAGIC_VALUE to it.
- VMA_ASSERT(VMA_DEBUG_MARGIN % sizeof(uint32_t) == 0);
- }
-
- VMA_ASSERT(pCreateInfo->physicalDevice && pCreateInfo->device);
-
-#if !(VMA_DEDICATED_ALLOCATION)
- if ((pCreateInfo->flags & VMA_ALLOCATOR_CREATE_KHR_DEDICATED_ALLOCATION_BIT) != 0) {
- VMA_ASSERT(0 && "VMA_ALLOCATOR_CREATE_KHR_DEDICATED_ALLOCATION_BIT set but required extensions are disabled by preprocessor macros.");
- }
-#endif
-
- memset(&m_DeviceMemoryCallbacks, 0, sizeof(m_DeviceMemoryCallbacks));
- memset(&m_PhysicalDeviceProperties, 0, sizeof(m_PhysicalDeviceProperties));
- memset(&m_MemProps, 0, sizeof(m_MemProps));
-
- memset(&m_pBlockVectors, 0, sizeof(m_pBlockVectors));
- memset(&m_pDedicatedAllocations, 0, sizeof(m_pDedicatedAllocations));
-
- for (uint32_t i = 0; i < VK_MAX_MEMORY_HEAPS; ++i) {
- m_HeapSizeLimit[i] = VK_WHOLE_SIZE;
- }
-
- if (pCreateInfo->pDeviceMemoryCallbacks != VMA_NULL) {
- m_DeviceMemoryCallbacks.pfnAllocate = pCreateInfo->pDeviceMemoryCallbacks->pfnAllocate;
- m_DeviceMemoryCallbacks.pfnFree = pCreateInfo->pDeviceMemoryCallbacks->pfnFree;
- }
-
- ImportVulkanFunctions(pCreateInfo->pVulkanFunctions);
-
- (*m_VulkanFunctions.vkGetPhysicalDeviceProperties)(m_PhysicalDevice, &m_PhysicalDeviceProperties);
- (*m_VulkanFunctions.vkGetPhysicalDeviceMemoryProperties)(m_PhysicalDevice, &m_MemProps);
-
- VMA_ASSERT(VmaIsPow2(VMA_DEBUG_ALIGNMENT));
- VMA_ASSERT(VmaIsPow2(VMA_DEBUG_MIN_BUFFER_IMAGE_GRANULARITY));
- VMA_ASSERT(VmaIsPow2(m_PhysicalDeviceProperties.limits.bufferImageGranularity));
- VMA_ASSERT(VmaIsPow2(m_PhysicalDeviceProperties.limits.nonCoherentAtomSize));
-
- m_PreferredLargeHeapBlockSize = (pCreateInfo->preferredLargeHeapBlockSize != 0) ?
- pCreateInfo->preferredLargeHeapBlockSize :
- static_cast<VkDeviceSize>(VMA_DEFAULT_LARGE_HEAP_BLOCK_SIZE);
-
- if (pCreateInfo->pHeapSizeLimit != VMA_NULL) {
- for (uint32_t heapIndex = 0; heapIndex < GetMemoryHeapCount(); ++heapIndex) {
- const VkDeviceSize limit = pCreateInfo->pHeapSizeLimit[heapIndex];
- if (limit != VK_WHOLE_SIZE) {
- m_HeapSizeLimit[heapIndex] = limit;
- if (limit < m_MemProps.memoryHeaps[heapIndex].size) {
- m_MemProps.memoryHeaps[heapIndex].size = limit;
- }
- }
- }
- }
-
- for (uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex) {
- const VkDeviceSize preferredBlockSize = CalcPreferredBlockSize(memTypeIndex);
-
- m_pBlockVectors[memTypeIndex] = vma_new(this, VmaBlockVector)(
- this,
- VK_NULL_HANDLE, // hParentPool
- memTypeIndex,
- preferredBlockSize,
- 0,
- SIZE_MAX,
- GetBufferImageGranularity(),
- pCreateInfo->frameInUseCount,
- false, // isCustomPool
- false, // explicitBlockSize
- false); // linearAlgorithm
- // No need to call m_pBlockVectors[memTypeIndex][blockVectorTypeIndex]->CreateMinBlocks here,
- // becase minBlockCount is 0.
- m_pDedicatedAllocations[memTypeIndex] = vma_new(this, AllocationVectorType)(VmaStlAllocator<VmaAllocation>(GetAllocationCallbacks()));
- }
-}
-
-VkResult VmaAllocator_T::Init(const VmaAllocatorCreateInfo *pCreateInfo) {
- VkResult res = VK_SUCCESS;
-
- if (pCreateInfo->pRecordSettings != VMA_NULL &&
- !VmaStrIsEmpty(pCreateInfo->pRecordSettings->pFilePath)) {
-#if VMA_RECORDING_ENABLED
- m_pRecorder = vma_new(this, VmaRecorder)();
- res = m_pRecorder->Init(*pCreateInfo->pRecordSettings, m_UseMutex);
- if (res != VK_SUCCESS) {
- return res;
- }
- m_pRecorder->WriteConfiguration(
- m_PhysicalDeviceProperties,
- m_MemProps,
- m_UseKhrDedicatedAllocation);
- m_pRecorder->RecordCreateAllocator(GetCurrentFrameIndex());
-#else
- VMA_ASSERT(0 && "VmaAllocatorCreateInfo::pRecordSettings used, but not supported due to VMA_RECORDING_ENABLED not defined to 1.");
- return VK_ERROR_FEATURE_NOT_PRESENT;
-#endif
- }
-
- return res;
-}
-
-VmaAllocator_T::~VmaAllocator_T() {
-#if VMA_RECORDING_ENABLED
- if (m_pRecorder != VMA_NULL) {
- m_pRecorder->RecordDestroyAllocator(GetCurrentFrameIndex());
- vma_delete(this, m_pRecorder);
- }
-#endif
-
- VMA_ASSERT(m_Pools.empty());
-
- for (size_t i = GetMemoryTypeCount(); i--;) {
- if (m_pDedicatedAllocations[i] != VMA_NULL && !m_pDedicatedAllocations[i]->empty()) {
- VMA_ASSERT(0 && "Unfreed dedicated allocations found.");
- }
-
- vma_delete(this, m_pDedicatedAllocations[i]);
- vma_delete(this, m_pBlockVectors[i]);
- }
-}
-
-void VmaAllocator_T::ImportVulkanFunctions(const VmaVulkanFunctions *pVulkanFunctions) {
-#if VMA_STATIC_VULKAN_FUNCTIONS == 1
- m_VulkanFunctions.vkGetPhysicalDeviceProperties = (PFN_vkGetPhysicalDeviceProperties)vkGetPhysicalDeviceProperties;
- m_VulkanFunctions.vkGetPhysicalDeviceMemoryProperties = (PFN_vkGetPhysicalDeviceMemoryProperties)vkGetPhysicalDeviceMemoryProperties;
- m_VulkanFunctions.vkAllocateMemory = (PFN_vkAllocateMemory)vkAllocateMemory;
- m_VulkanFunctions.vkFreeMemory = (PFN_vkFreeMemory)vkFreeMemory;
- m_VulkanFunctions.vkMapMemory = (PFN_vkMapMemory)vkMapMemory;
- m_VulkanFunctions.vkUnmapMemory = (PFN_vkUnmapMemory)vkUnmapMemory;
- m_VulkanFunctions.vkFlushMappedMemoryRanges = (PFN_vkFlushMappedMemoryRanges)vkFlushMappedMemoryRanges;
- m_VulkanFunctions.vkInvalidateMappedMemoryRanges = (PFN_vkInvalidateMappedMemoryRanges)vkInvalidateMappedMemoryRanges;
- m_VulkanFunctions.vkBindBufferMemory = (PFN_vkBindBufferMemory)vkBindBufferMemory;
- m_VulkanFunctions.vkBindImageMemory = (PFN_vkBindImageMemory)vkBindImageMemory;
- m_VulkanFunctions.vkGetBufferMemoryRequirements = (PFN_vkGetBufferMemoryRequirements)vkGetBufferMemoryRequirements;
- m_VulkanFunctions.vkGetImageMemoryRequirements = (PFN_vkGetImageMemoryRequirements)vkGetImageMemoryRequirements;
- m_VulkanFunctions.vkCreateBuffer = (PFN_vkCreateBuffer)vkCreateBuffer;
- m_VulkanFunctions.vkDestroyBuffer = (PFN_vkDestroyBuffer)vkDestroyBuffer;
- m_VulkanFunctions.vkCreateImage = (PFN_vkCreateImage)vkCreateImage;
- m_VulkanFunctions.vkDestroyImage = (PFN_vkDestroyImage)vkDestroyImage;
- m_VulkanFunctions.vkCmdCopyBuffer = (PFN_vkCmdCopyBuffer)vkCmdCopyBuffer;
-#if VMA_DEDICATED_ALLOCATION
- if (m_UseKhrDedicatedAllocation) {
- m_VulkanFunctions.vkGetBufferMemoryRequirements2KHR =
- (PFN_vkGetBufferMemoryRequirements2KHR)vkGetDeviceProcAddr(m_hDevice, "vkGetBufferMemoryRequirements2KHR");
- m_VulkanFunctions.vkGetImageMemoryRequirements2KHR =
- (PFN_vkGetImageMemoryRequirements2KHR)vkGetDeviceProcAddr(m_hDevice, "vkGetImageMemoryRequirements2KHR");
- }
-#endif // #if VMA_DEDICATED_ALLOCATION
-#endif // #if VMA_STATIC_VULKAN_FUNCTIONS == 1
-
-#define VMA_COPY_IF_NOT_NULL(funcName) \
- if (pVulkanFunctions->funcName != VMA_NULL) m_VulkanFunctions.funcName = pVulkanFunctions->funcName;
-
- if (pVulkanFunctions != VMA_NULL) {
- VMA_COPY_IF_NOT_NULL(vkGetPhysicalDeviceProperties);
- VMA_COPY_IF_NOT_NULL(vkGetPhysicalDeviceMemoryProperties);
- VMA_COPY_IF_NOT_NULL(vkAllocateMemory);
- VMA_COPY_IF_NOT_NULL(vkFreeMemory);
- VMA_COPY_IF_NOT_NULL(vkMapMemory);
- VMA_COPY_IF_NOT_NULL(vkUnmapMemory);
- VMA_COPY_IF_NOT_NULL(vkFlushMappedMemoryRanges);
- VMA_COPY_IF_NOT_NULL(vkInvalidateMappedMemoryRanges);
- VMA_COPY_IF_NOT_NULL(vkBindBufferMemory);
- VMA_COPY_IF_NOT_NULL(vkBindImageMemory);
- VMA_COPY_IF_NOT_NULL(vkGetBufferMemoryRequirements);
- VMA_COPY_IF_NOT_NULL(vkGetImageMemoryRequirements);
- VMA_COPY_IF_NOT_NULL(vkCreateBuffer);
- VMA_COPY_IF_NOT_NULL(vkDestroyBuffer);
- VMA_COPY_IF_NOT_NULL(vkCreateImage);
- VMA_COPY_IF_NOT_NULL(vkDestroyImage);
- VMA_COPY_IF_NOT_NULL(vkCmdCopyBuffer);
-#if VMA_DEDICATED_ALLOCATION
- VMA_COPY_IF_NOT_NULL(vkGetBufferMemoryRequirements2KHR);
- VMA_COPY_IF_NOT_NULL(vkGetImageMemoryRequirements2KHR);
-#endif
- }
-
-#undef VMA_COPY_IF_NOT_NULL
-
- // If these asserts are hit, you must either #define VMA_STATIC_VULKAN_FUNCTIONS 1
- // or pass valid pointers as VmaAllocatorCreateInfo::pVulkanFunctions.
- VMA_ASSERT(m_VulkanFunctions.vkGetPhysicalDeviceProperties != VMA_NULL);
- VMA_ASSERT(m_VulkanFunctions.vkGetPhysicalDeviceMemoryProperties != VMA_NULL);
- VMA_ASSERT(m_VulkanFunctions.vkAllocateMemory != VMA_NULL);
- VMA_ASSERT(m_VulkanFunctions.vkFreeMemory != VMA_NULL);
- VMA_ASSERT(m_VulkanFunctions.vkMapMemory != VMA_NULL);
- VMA_ASSERT(m_VulkanFunctions.vkUnmapMemory != VMA_NULL);
- VMA_ASSERT(m_VulkanFunctions.vkFlushMappedMemoryRanges != VMA_NULL);
- VMA_ASSERT(m_VulkanFunctions.vkInvalidateMappedMemoryRanges != VMA_NULL);
- VMA_ASSERT(m_VulkanFunctions.vkBindBufferMemory != VMA_NULL);
- VMA_ASSERT(m_VulkanFunctions.vkBindImageMemory != VMA_NULL);
- VMA_ASSERT(m_VulkanFunctions.vkGetBufferMemoryRequirements != VMA_NULL);
- VMA_ASSERT(m_VulkanFunctions.vkGetImageMemoryRequirements != VMA_NULL);
- VMA_ASSERT(m_VulkanFunctions.vkCreateBuffer != VMA_NULL);
- VMA_ASSERT(m_VulkanFunctions.vkDestroyBuffer != VMA_NULL);
- VMA_ASSERT(m_VulkanFunctions.vkCreateImage != VMA_NULL);
- VMA_ASSERT(m_VulkanFunctions.vkDestroyImage != VMA_NULL);
- VMA_ASSERT(m_VulkanFunctions.vkCmdCopyBuffer != VMA_NULL);
-#if VMA_DEDICATED_ALLOCATION
- if (m_UseKhrDedicatedAllocation) {
- VMA_ASSERT(m_VulkanFunctions.vkGetBufferMemoryRequirements2KHR != VMA_NULL);
- VMA_ASSERT(m_VulkanFunctions.vkGetImageMemoryRequirements2KHR != VMA_NULL);
- }
-#endif
-}
-
-VkDeviceSize VmaAllocator_T::CalcPreferredBlockSize(uint32_t memTypeIndex) {
- const uint32_t heapIndex = MemoryTypeIndexToHeapIndex(memTypeIndex);
- const VkDeviceSize heapSize = m_MemProps.memoryHeaps[heapIndex].size;
- const bool isSmallHeap = heapSize <= VMA_SMALL_HEAP_MAX_SIZE;
- return isSmallHeap ? (heapSize / 8) : m_PreferredLargeHeapBlockSize;
-}
-
-VkResult VmaAllocator_T::AllocateMemoryOfType(
- VkDeviceSize size,
- VkDeviceSize alignment,
- bool dedicatedAllocation,
- VkBuffer dedicatedBuffer,
- VkImage dedicatedImage,
- const VmaAllocationCreateInfo &createInfo,
- uint32_t memTypeIndex,
- VmaSuballocationType suballocType,
- size_t allocationCount,
- VmaAllocation *pAllocations) {
- VMA_ASSERT(pAllocations != VMA_NULL);
- VMA_DEBUG_LOG(" AllocateMemory: MemoryTypeIndex=%u, AllocationCount=%zu, Size=%llu", memTypeIndex, allocationCount, size);
-
- VmaAllocationCreateInfo finalCreateInfo = createInfo;
-
- // If memory type is not HOST_VISIBLE, disable MAPPED.
- if ((finalCreateInfo.flags & VMA_ALLOCATION_CREATE_MAPPED_BIT) != 0 &&
- (m_MemProps.memoryTypes[memTypeIndex].propertyFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) == 0) {
- finalCreateInfo.flags &= ~VMA_ALLOCATION_CREATE_MAPPED_BIT;
- }
-
- VmaBlockVector *const blockVector = m_pBlockVectors[memTypeIndex];
- VMA_ASSERT(blockVector);
-
- const VkDeviceSize preferredBlockSize = blockVector->GetPreferredBlockSize();
- bool preferDedicatedMemory =
- VMA_DEBUG_ALWAYS_DEDICATED_MEMORY ||
- dedicatedAllocation ||
- // Heuristics: Allocate dedicated memory if requested size if greater than half of preferred block size.
- size > preferredBlockSize / 2;
-
- if (preferDedicatedMemory &&
- (finalCreateInfo.flags & VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT) == 0 &&
- finalCreateInfo.pool == VK_NULL_HANDLE) {
- finalCreateInfo.flags |= VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT;
- }
-
- if ((finalCreateInfo.flags & VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT) != 0) {
- if ((finalCreateInfo.flags & VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT) != 0) {
- return VK_ERROR_OUT_OF_DEVICE_MEMORY;
- } else {
- return AllocateDedicatedMemory(
- size,
- suballocType,
- memTypeIndex,
- (finalCreateInfo.flags & VMA_ALLOCATION_CREATE_MAPPED_BIT) != 0,
- (finalCreateInfo.flags & VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT) != 0,
- finalCreateInfo.pUserData,
- dedicatedBuffer,
- dedicatedImage,
- allocationCount,
- pAllocations);
- }
- } else {
- VkResult res = blockVector->Allocate(
- m_CurrentFrameIndex.load(),
- size,
- alignment,
- finalCreateInfo,
- suballocType,
- allocationCount,
- pAllocations);
- if (res == VK_SUCCESS) {
- return res;
- }
-
- // 5. Try dedicated memory.
- if ((finalCreateInfo.flags & VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT) != 0) {
- return VK_ERROR_OUT_OF_DEVICE_MEMORY;
- } else {
- res = AllocateDedicatedMemory(
- size,
- suballocType,
- memTypeIndex,
- (finalCreateInfo.flags & VMA_ALLOCATION_CREATE_MAPPED_BIT) != 0,
- (finalCreateInfo.flags & VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT) != 0,
- finalCreateInfo.pUserData,
- dedicatedBuffer,
- dedicatedImage,
- allocationCount,
- pAllocations);
- if (res == VK_SUCCESS) {
- // Succeeded: AllocateDedicatedMemory function already filld pMemory, nothing more to do here.
- VMA_DEBUG_LOG(" Allocated as DedicatedMemory");
- return VK_SUCCESS;
- } else {
- // Everything failed: Return error code.
- VMA_DEBUG_LOG(" vkAllocateMemory FAILED");
- return res;
- }
- }
- }
-}
-
-VkResult VmaAllocator_T::AllocateDedicatedMemory(
- VkDeviceSize size,
- VmaSuballocationType suballocType,
- uint32_t memTypeIndex,
- bool map,
- bool isUserDataString,
- void *pUserData,
- VkBuffer dedicatedBuffer,
- VkImage dedicatedImage,
- size_t allocationCount,
- VmaAllocation *pAllocations) {
- VMA_ASSERT(allocationCount > 0 && pAllocations);
-
- VkMemoryAllocateInfo allocInfo = { VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO };
- allocInfo.memoryTypeIndex = memTypeIndex;
- allocInfo.allocationSize = size;
-
-#if VMA_DEDICATED_ALLOCATION
- VkMemoryDedicatedAllocateInfoKHR dedicatedAllocInfo = { VK_STRUCTURE_TYPE_MEMORY_DEDICATED_ALLOCATE_INFO_KHR };
- if (m_UseKhrDedicatedAllocation) {
- if (dedicatedBuffer != VK_NULL_HANDLE) {
- VMA_ASSERT(dedicatedImage == VK_NULL_HANDLE);
- dedicatedAllocInfo.buffer = dedicatedBuffer;
- allocInfo.pNext = &dedicatedAllocInfo;
- } else if (dedicatedImage != VK_NULL_HANDLE) {
- dedicatedAllocInfo.image = dedicatedImage;
- allocInfo.pNext = &dedicatedAllocInfo;
- }
- }
-#endif // #if VMA_DEDICATED_ALLOCATION
-
- size_t allocIndex;
- VkResult res = VK_SUCCESS;
- for (allocIndex = 0; allocIndex < allocationCount; ++allocIndex) {
- res = AllocateDedicatedMemoryPage(
- size,
- suballocType,
- memTypeIndex,
- allocInfo,
- map,
- isUserDataString,
- pUserData,
- pAllocations + allocIndex);
- if (res != VK_SUCCESS) {
- break;
- }
- }
-
- if (res == VK_SUCCESS) {
- // Register them in m_pDedicatedAllocations.
- {
- VmaMutexLockWrite lock(m_DedicatedAllocationsMutex[memTypeIndex], m_UseMutex);
- AllocationVectorType *pDedicatedAllocations = m_pDedicatedAllocations[memTypeIndex];
- VMA_ASSERT(pDedicatedAllocations);
- for (allocIndex = 0; allocIndex < allocationCount; ++allocIndex) {
- VmaVectorInsertSorted<VmaPointerLess>(*pDedicatedAllocations, pAllocations[allocIndex]);
- }
- }
-
- VMA_DEBUG_LOG(" Allocated DedicatedMemory Count=%zu, MemoryTypeIndex=#%u", allocationCount, memTypeIndex);
- } else {
- // Free all already created allocations.
- while (allocIndex--) {
- VmaAllocation currAlloc = pAllocations[allocIndex];
- VkDeviceMemory hMemory = currAlloc->GetMemory();
-
- /*
- There is no need to call this, because Vulkan spec allows to skip vkUnmapMemory
- before vkFreeMemory.
-
- if(currAlloc->GetMappedData() != VMA_NULL)
- {
- (*m_VulkanFunctions.vkUnmapMemory)(m_hDevice, hMemory);
- }
- */
-
- FreeVulkanMemory(memTypeIndex, currAlloc->GetSize(), hMemory);
-
- currAlloc->SetUserData(this, VMA_NULL);
- currAlloc->Dtor();
- m_AllocationObjectAllocator.Free(currAlloc);
- }
-
- memset(pAllocations, 0, sizeof(VmaAllocation) * allocationCount);
- }
-
- return res;
-}
-
-VkResult VmaAllocator_T::AllocateDedicatedMemoryPage(
- VkDeviceSize size,
- VmaSuballocationType suballocType,
- uint32_t memTypeIndex,
- const VkMemoryAllocateInfo &allocInfo,
- bool map,
- bool isUserDataString,
- void *pUserData,
- VmaAllocation *pAllocation) {
- VkDeviceMemory hMemory = VK_NULL_HANDLE;
- VkResult res = AllocateVulkanMemory(&allocInfo, &hMemory);
- if (res < 0) {
- VMA_DEBUG_LOG(" vkAllocateMemory FAILED");
- return res;
- }
-
- void *pMappedData = VMA_NULL;
- if (map) {
- res = (*m_VulkanFunctions.vkMapMemory)(
- m_hDevice,
- hMemory,
- 0,
- VK_WHOLE_SIZE,
- 0,
- &pMappedData);
- if (res < 0) {
- VMA_DEBUG_LOG(" vkMapMemory FAILED");
- FreeVulkanMemory(memTypeIndex, size, hMemory);
- return res;
- }
- }
-
- *pAllocation = m_AllocationObjectAllocator.Allocate();
- (*pAllocation)->Ctor(m_CurrentFrameIndex.load(), isUserDataString);
- (*pAllocation)->InitDedicatedAllocation(memTypeIndex, hMemory, suballocType, pMappedData, size);
- (*pAllocation)->SetUserData(this, pUserData);
- if (VMA_DEBUG_INITIALIZE_ALLOCATIONS) {
- FillAllocation(*pAllocation, VMA_ALLOCATION_FILL_PATTERN_CREATED);
- }
-
- return VK_SUCCESS;
-}
-
-void VmaAllocator_T::GetBufferMemoryRequirements(
- VkBuffer hBuffer,
- VkMemoryRequirements &memReq,
- bool &requiresDedicatedAllocation,
- bool &prefersDedicatedAllocation) const {
-#if VMA_DEDICATED_ALLOCATION
- if (m_UseKhrDedicatedAllocation) {
- VkBufferMemoryRequirementsInfo2KHR memReqInfo = { VK_STRUCTURE_TYPE_BUFFER_MEMORY_REQUIREMENTS_INFO_2_KHR };
- memReqInfo.buffer = hBuffer;
-
- VkMemoryDedicatedRequirementsKHR memDedicatedReq = { VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS_KHR };
-
- VkMemoryRequirements2KHR memReq2 = { VK_STRUCTURE_TYPE_MEMORY_REQUIREMENTS_2_KHR };
- memReq2.pNext = &memDedicatedReq;
-
- (*m_VulkanFunctions.vkGetBufferMemoryRequirements2KHR)(m_hDevice, &memReqInfo, &memReq2);
-
- memReq = memReq2.memoryRequirements;
- requiresDedicatedAllocation = (memDedicatedReq.requiresDedicatedAllocation != VK_FALSE);
- prefersDedicatedAllocation = (memDedicatedReq.prefersDedicatedAllocation != VK_FALSE);
- } else
-#endif // #if VMA_DEDICATED_ALLOCATION
- {
- (*m_VulkanFunctions.vkGetBufferMemoryRequirements)(m_hDevice, hBuffer, &memReq);
- requiresDedicatedAllocation = false;
- prefersDedicatedAllocation = false;
- }
-}
-
-void VmaAllocator_T::GetImageMemoryRequirements(
- VkImage hImage,
- VkMemoryRequirements &memReq,
- bool &requiresDedicatedAllocation,
- bool &prefersDedicatedAllocation) const {
-#if VMA_DEDICATED_ALLOCATION
- if (m_UseKhrDedicatedAllocation) {
- VkImageMemoryRequirementsInfo2KHR memReqInfo = { VK_STRUCTURE_TYPE_IMAGE_MEMORY_REQUIREMENTS_INFO_2_KHR };
- memReqInfo.image = hImage;
-
- VkMemoryDedicatedRequirementsKHR memDedicatedReq = { VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS_KHR };
-
- VkMemoryRequirements2KHR memReq2 = { VK_STRUCTURE_TYPE_MEMORY_REQUIREMENTS_2_KHR };
- memReq2.pNext = &memDedicatedReq;
-
- (*m_VulkanFunctions.vkGetImageMemoryRequirements2KHR)(m_hDevice, &memReqInfo, &memReq2);
-
- memReq = memReq2.memoryRequirements;
- requiresDedicatedAllocation = (memDedicatedReq.requiresDedicatedAllocation != VK_FALSE);
- prefersDedicatedAllocation = (memDedicatedReq.prefersDedicatedAllocation != VK_FALSE);
- } else
-#endif // #if VMA_DEDICATED_ALLOCATION
- {
- (*m_VulkanFunctions.vkGetImageMemoryRequirements)(m_hDevice, hImage, &memReq);
- requiresDedicatedAllocation = false;
- prefersDedicatedAllocation = false;
- }
-}
-
-VkResult VmaAllocator_T::AllocateMemory(
- const VkMemoryRequirements &vkMemReq,
- bool requiresDedicatedAllocation,
- bool prefersDedicatedAllocation,
- VkBuffer dedicatedBuffer,
- VkImage dedicatedImage,
- const VmaAllocationCreateInfo &createInfo,
- VmaSuballocationType suballocType,
- size_t allocationCount,
- VmaAllocation *pAllocations) {
- memset(pAllocations, 0, sizeof(VmaAllocation) * allocationCount);
-
- VMA_ASSERT(VmaIsPow2(vkMemReq.alignment));
-
- if (vkMemReq.size == 0) {
- return VK_ERROR_VALIDATION_FAILED_EXT;
- }
- if ((createInfo.flags & VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT) != 0 &&
- (createInfo.flags & VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT) != 0) {
- VMA_ASSERT(0 && "Specifying VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT together with VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT makes no sense.");
- return VK_ERROR_OUT_OF_DEVICE_MEMORY;
- }
- if ((createInfo.flags & VMA_ALLOCATION_CREATE_MAPPED_BIT) != 0 &&
- (createInfo.flags & VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT) != 0) {
- VMA_ASSERT(0 && "Specifying VMA_ALLOCATION_CREATE_MAPPED_BIT together with VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT is invalid.");
- return VK_ERROR_OUT_OF_DEVICE_MEMORY;
- }
- if (requiresDedicatedAllocation) {
- if ((createInfo.flags & VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT) != 0) {
- VMA_ASSERT(0 && "VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT specified while dedicated allocation is required.");
- return VK_ERROR_OUT_OF_DEVICE_MEMORY;
- }
- if (createInfo.pool != VK_NULL_HANDLE) {
- VMA_ASSERT(0 && "Pool specified while dedicated allocation is required.");
- return VK_ERROR_OUT_OF_DEVICE_MEMORY;
- }
- }
- if ((createInfo.pool != VK_NULL_HANDLE) &&
- ((createInfo.flags & (VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT)) != 0)) {
- VMA_ASSERT(0 && "Specifying VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT when pool != null is invalid.");
- return VK_ERROR_OUT_OF_DEVICE_MEMORY;
- }
-
- if (createInfo.pool != VK_NULL_HANDLE) {
- const VkDeviceSize alignmentForPool = VMA_MAX(
- vkMemReq.alignment,
- GetMemoryTypeMinAlignment(createInfo.pool->m_BlockVector.GetMemoryTypeIndex()));
- return createInfo.pool->m_BlockVector.Allocate(
- m_CurrentFrameIndex.load(),
- vkMemReq.size,
- alignmentForPool,
- createInfo,
- suballocType,
- allocationCount,
- pAllocations);
- } else {
- // Bit mask of memory Vulkan types acceptable for this allocation.
- uint32_t memoryTypeBits = vkMemReq.memoryTypeBits;
- uint32_t memTypeIndex = UINT32_MAX;
- VkResult res = vmaFindMemoryTypeIndex(this, memoryTypeBits, &createInfo, &memTypeIndex);
- if (res == VK_SUCCESS) {
- VkDeviceSize alignmentForMemType = VMA_MAX(
- vkMemReq.alignment,
- GetMemoryTypeMinAlignment(memTypeIndex));
-
- res = AllocateMemoryOfType(
- vkMemReq.size,
- alignmentForMemType,
- requiresDedicatedAllocation || prefersDedicatedAllocation,
- dedicatedBuffer,
- dedicatedImage,
- createInfo,
- memTypeIndex,
- suballocType,
- allocationCount,
- pAllocations);
- // Succeeded on first try.
- if (res == VK_SUCCESS) {
- return res;
- }
- // Allocation from this memory type failed. Try other compatible memory types.
- else {
- for (;;) {
- // Remove old memTypeIndex from list of possibilities.
- memoryTypeBits &= ~(1u << memTypeIndex);
- // Find alternative memTypeIndex.
- res = vmaFindMemoryTypeIndex(this, memoryTypeBits, &createInfo, &memTypeIndex);
- if (res == VK_SUCCESS) {
- alignmentForMemType = VMA_MAX(
- vkMemReq.alignment,
- GetMemoryTypeMinAlignment(memTypeIndex));
-
- res = AllocateMemoryOfType(
- vkMemReq.size,
- alignmentForMemType,
- requiresDedicatedAllocation || prefersDedicatedAllocation,
- dedicatedBuffer,
- dedicatedImage,
- createInfo,
- memTypeIndex,
- suballocType,
- allocationCount,
- pAllocations);
- // Allocation from this alternative memory type succeeded.
- if (res == VK_SUCCESS) {
- return res;
- }
- // else: Allocation from this memory type failed. Try next one - next loop iteration.
- }
- // No other matching memory type index could be found.
- else {
- // Not returning res, which is VK_ERROR_FEATURE_NOT_PRESENT, because we already failed to allocate once.
- return VK_ERROR_OUT_OF_DEVICE_MEMORY;
- }
- }
- }
- }
- // Can't find any single memory type maching requirements. res is VK_ERROR_FEATURE_NOT_PRESENT.
- else
- return res;
- }
-}
-
-void VmaAllocator_T::FreeMemory(
- size_t allocationCount,
- const VmaAllocation *pAllocations) {
- VMA_ASSERT(pAllocations);
-
- for (size_t allocIndex = allocationCount; allocIndex--;) {
- VmaAllocation allocation = pAllocations[allocIndex];
-
- if (allocation != VK_NULL_HANDLE) {
- if (TouchAllocation(allocation)) {
- if (VMA_DEBUG_INITIALIZE_ALLOCATIONS) {
- FillAllocation(allocation, VMA_ALLOCATION_FILL_PATTERN_DESTROYED);
- }
-
- switch (allocation->GetType()) {
- case VmaAllocation_T::ALLOCATION_TYPE_BLOCK: {
- VmaBlockVector *pBlockVector = VMA_NULL;
- VmaPool hPool = allocation->GetBlock()->GetParentPool();
- if (hPool != VK_NULL_HANDLE) {
- pBlockVector = &hPool->m_BlockVector;
- } else {
- const uint32_t memTypeIndex = allocation->GetMemoryTypeIndex();
- pBlockVector = m_pBlockVectors[memTypeIndex];
- }
- pBlockVector->Free(allocation);
- } break;
- case VmaAllocation_T::ALLOCATION_TYPE_DEDICATED:
- FreeDedicatedMemory(allocation);
- break;
- default:
- VMA_ASSERT(0);
- }
- }
-
- allocation->SetUserData(this, VMA_NULL);
- allocation->Dtor();
- m_AllocationObjectAllocator.Free(allocation);
- }
- }
-}
-
-VkResult VmaAllocator_T::ResizeAllocation(
- const VmaAllocation alloc,
- VkDeviceSize newSize) {
- if (newSize == 0 || alloc->GetLastUseFrameIndex() == VMA_FRAME_INDEX_LOST) {
- return VK_ERROR_VALIDATION_FAILED_EXT;
- }
- if (newSize == alloc->GetSize()) {
- return VK_SUCCESS;
- }
-
- switch (alloc->GetType()) {
- case VmaAllocation_T::ALLOCATION_TYPE_DEDICATED:
- return VK_ERROR_FEATURE_NOT_PRESENT;
- case VmaAllocation_T::ALLOCATION_TYPE_BLOCK:
- if (alloc->GetBlock()->m_pMetadata->ResizeAllocation(alloc, newSize)) {
- alloc->ChangeSize(newSize);
- VMA_HEAVY_ASSERT(alloc->GetBlock()->m_pMetadata->Validate());
- return VK_SUCCESS;
- } else {
- return VK_ERROR_OUT_OF_POOL_MEMORY;
- }
- default:
- VMA_ASSERT(0);
- return VK_ERROR_VALIDATION_FAILED_EXT;
- }
-}
-
-void VmaAllocator_T::CalculateStats(VmaStats *pStats) {
- // Initialize.
- InitStatInfo(pStats->total);
- for (size_t i = 0; i < VK_MAX_MEMORY_TYPES; ++i)
- InitStatInfo(pStats->memoryType[i]);
- for (size_t i = 0; i < VK_MAX_MEMORY_HEAPS; ++i)
- InitStatInfo(pStats->memoryHeap[i]);
-
- // Process default pools.
- for (uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex) {
- VmaBlockVector *const pBlockVector = m_pBlockVectors[memTypeIndex];
- VMA_ASSERT(pBlockVector);
- pBlockVector->AddStats(pStats);
- }
-
- // Process custom pools.
- {
- VmaMutexLockRead lock(m_PoolsMutex, m_UseMutex);
- for (size_t poolIndex = 0, poolCount = m_Pools.size(); poolIndex < poolCount; ++poolIndex) {
- m_Pools[poolIndex]->m_BlockVector.AddStats(pStats);
- }
- }
-
- // Process dedicated allocations.
- for (uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex) {
- const uint32_t memHeapIndex = MemoryTypeIndexToHeapIndex(memTypeIndex);
- VmaMutexLockRead dedicatedAllocationsLock(m_DedicatedAllocationsMutex[memTypeIndex], m_UseMutex);
- AllocationVectorType *const pDedicatedAllocVector = m_pDedicatedAllocations[memTypeIndex];
- VMA_ASSERT(pDedicatedAllocVector);
- for (size_t allocIndex = 0, allocCount = pDedicatedAllocVector->size(); allocIndex < allocCount; ++allocIndex) {
- VmaStatInfo allocationStatInfo;
- (*pDedicatedAllocVector)[allocIndex]->DedicatedAllocCalcStatsInfo(allocationStatInfo);
- VmaAddStatInfo(pStats->total, allocationStatInfo);
- VmaAddStatInfo(pStats->memoryType[memTypeIndex], allocationStatInfo);
- VmaAddStatInfo(pStats->memoryHeap[memHeapIndex], allocationStatInfo);
- }
- }
-
- // Postprocess.
- VmaPostprocessCalcStatInfo(pStats->total);
- for (size_t i = 0; i < GetMemoryTypeCount(); ++i)
- VmaPostprocessCalcStatInfo(pStats->memoryType[i]);
- for (size_t i = 0; i < GetMemoryHeapCount(); ++i)
- VmaPostprocessCalcStatInfo(pStats->memoryHeap[i]);
-}
-
-static const uint32_t VMA_VENDOR_ID_AMD = 4098;
-
-VkResult VmaAllocator_T::DefragmentationBegin(
- const VmaDefragmentationInfo2 &info,
- VmaDefragmentationStats *pStats,
- VmaDefragmentationContext *pContext) {
- if (info.pAllocationsChanged != VMA_NULL) {
- memset(info.pAllocationsChanged, 0, info.allocationCount * sizeof(VkBool32));
- }
-
- *pContext = vma_new(this, VmaDefragmentationContext_T)(
- this, m_CurrentFrameIndex.load(), info.flags, pStats);
-
- (*pContext)->AddPools(info.poolCount, info.pPools);
- (*pContext)->AddAllocations(
- info.allocationCount, info.pAllocations, info.pAllocationsChanged);
-
- VkResult res = (*pContext)->Defragment(
- info.maxCpuBytesToMove, info.maxCpuAllocationsToMove,
- info.maxGpuBytesToMove, info.maxGpuAllocationsToMove,
- info.commandBuffer, pStats);
-
- if (res != VK_NOT_READY) {
- vma_delete(this, *pContext);
- *pContext = VMA_NULL;
- }
-
- return res;
-}
-
-VkResult VmaAllocator_T::DefragmentationEnd(
- VmaDefragmentationContext context) {
- vma_delete(this, context);
- return VK_SUCCESS;
-}
-
-void VmaAllocator_T::GetAllocationInfo(VmaAllocation hAllocation, VmaAllocationInfo *pAllocationInfo) {
- if (hAllocation->CanBecomeLost()) {
- /*
- Warning: This is a carefully designed algorithm.
- Do not modify unless you really know what you're doing :)
- */
- const uint32_t localCurrFrameIndex = m_CurrentFrameIndex.load();
- uint32_t localLastUseFrameIndex = hAllocation->GetLastUseFrameIndex();
- for (;;) {
- if (localLastUseFrameIndex == VMA_FRAME_INDEX_LOST) {
- pAllocationInfo->memoryType = UINT32_MAX;
- pAllocationInfo->deviceMemory = VK_NULL_HANDLE;
- pAllocationInfo->offset = 0;
- pAllocationInfo->size = hAllocation->GetSize();
- pAllocationInfo->pMappedData = VMA_NULL;
- pAllocationInfo->pUserData = hAllocation->GetUserData();
- return;
- } else if (localLastUseFrameIndex == localCurrFrameIndex) {
- pAllocationInfo->memoryType = hAllocation->GetMemoryTypeIndex();
- pAllocationInfo->deviceMemory = hAllocation->GetMemory();
- pAllocationInfo->offset = hAllocation->GetOffset();
- pAllocationInfo->size = hAllocation->GetSize();
- pAllocationInfo->pMappedData = VMA_NULL;
- pAllocationInfo->pUserData = hAllocation->GetUserData();
- return;
- } else // Last use time earlier than current time.
- {
- if (hAllocation->CompareExchangeLastUseFrameIndex(localLastUseFrameIndex, localCurrFrameIndex)) {
- localLastUseFrameIndex = localCurrFrameIndex;
- }
- }
- }
- } else {
-#if VMA_STATS_STRING_ENABLED
- uint32_t localCurrFrameIndex = m_CurrentFrameIndex.load();
- uint32_t localLastUseFrameIndex = hAllocation->GetLastUseFrameIndex();
- for (;;) {
- VMA_ASSERT(localLastUseFrameIndex != VMA_FRAME_INDEX_LOST);
- if (localLastUseFrameIndex == localCurrFrameIndex) {
- break;
- } else // Last use time earlier than current time.
- {
- if (hAllocation->CompareExchangeLastUseFrameIndex(localLastUseFrameIndex, localCurrFrameIndex)) {
- localLastUseFrameIndex = localCurrFrameIndex;
- }
- }
- }
-#endif
-
- pAllocationInfo->memoryType = hAllocation->GetMemoryTypeIndex();
- pAllocationInfo->deviceMemory = hAllocation->GetMemory();
- pAllocationInfo->offset = hAllocation->GetOffset();
- pAllocationInfo->size = hAllocation->GetSize();
- pAllocationInfo->pMappedData = hAllocation->GetMappedData();
- pAllocationInfo->pUserData = hAllocation->GetUserData();
- }
-}
-
-bool VmaAllocator_T::TouchAllocation(VmaAllocation hAllocation) {
- // This is a stripped-down version of VmaAllocator_T::GetAllocationInfo.
- if (hAllocation->CanBecomeLost()) {
- uint32_t localCurrFrameIndex = m_CurrentFrameIndex.load();
- uint32_t localLastUseFrameIndex = hAllocation->GetLastUseFrameIndex();
- for (;;) {
- if (localLastUseFrameIndex == VMA_FRAME_INDEX_LOST) {
- return false;
- } else if (localLastUseFrameIndex == localCurrFrameIndex) {
- return true;
- } else // Last use time earlier than current time.
- {
- if (hAllocation->CompareExchangeLastUseFrameIndex(localLastUseFrameIndex, localCurrFrameIndex)) {
- localLastUseFrameIndex = localCurrFrameIndex;
- }
- }
- }
- } else {
-#if VMA_STATS_STRING_ENABLED
- uint32_t localCurrFrameIndex = m_CurrentFrameIndex.load();
- uint32_t localLastUseFrameIndex = hAllocation->GetLastUseFrameIndex();
- for (;;) {
- VMA_ASSERT(localLastUseFrameIndex != VMA_FRAME_INDEX_LOST);
- if (localLastUseFrameIndex == localCurrFrameIndex) {
- break;
- } else // Last use time earlier than current time.
- {
- if (hAllocation->CompareExchangeLastUseFrameIndex(localLastUseFrameIndex, localCurrFrameIndex)) {
- localLastUseFrameIndex = localCurrFrameIndex;
- }
- }
- }
-#endif
-
- return true;
- }
-}
-
-VkResult VmaAllocator_T::CreatePool(const VmaPoolCreateInfo *pCreateInfo, VmaPool *pPool) {
- VMA_DEBUG_LOG(" CreatePool: MemoryTypeIndex=%u, flags=%u", pCreateInfo->memoryTypeIndex, pCreateInfo->flags);
-
- VmaPoolCreateInfo newCreateInfo = *pCreateInfo;
-
- if (newCreateInfo.maxBlockCount == 0) {
- newCreateInfo.maxBlockCount = SIZE_MAX;
- }
- if (newCreateInfo.minBlockCount > newCreateInfo.maxBlockCount) {
- return VK_ERROR_INITIALIZATION_FAILED;
- }
-
- const VkDeviceSize preferredBlockSize = CalcPreferredBlockSize(newCreateInfo.memoryTypeIndex);
-
- *pPool = vma_new(this, VmaPool_T)(this, newCreateInfo, preferredBlockSize);
-
- VkResult res = (*pPool)->m_BlockVector.CreateMinBlocks();
- if (res != VK_SUCCESS) {
- vma_delete(this, *pPool);
- *pPool = VMA_NULL;
- return res;
- }
-
- // Add to m_Pools.
- {
- VmaMutexLockWrite lock(m_PoolsMutex, m_UseMutex);
- (*pPool)->SetId(m_NextPoolId++);
- VmaVectorInsertSorted<VmaPointerLess>(m_Pools, *pPool);
- }
-
- return VK_SUCCESS;
-}
-
-void VmaAllocator_T::DestroyPool(VmaPool pool) {
- // Remove from m_Pools.
- {
- VmaMutexLockWrite lock(m_PoolsMutex, m_UseMutex);
- bool success = VmaVectorRemoveSorted<VmaPointerLess>(m_Pools, pool);
- VMA_ASSERT(success && "Pool not found in Allocator.");
- }
-
- vma_delete(this, pool);
-}
-
-void VmaAllocator_T::GetPoolStats(VmaPool pool, VmaPoolStats *pPoolStats) {
- pool->m_BlockVector.GetPoolStats(pPoolStats);
-}
-
-void VmaAllocator_T::SetCurrentFrameIndex(uint32_t frameIndex) {
- m_CurrentFrameIndex.store(frameIndex);
-}
-
-void VmaAllocator_T::MakePoolAllocationsLost(
- VmaPool hPool,
- size_t *pLostAllocationCount) {
- hPool->m_BlockVector.MakePoolAllocationsLost(
- m_CurrentFrameIndex.load(),
- pLostAllocationCount);
-}
-
-VkResult VmaAllocator_T::CheckPoolCorruption(VmaPool hPool) {
- return hPool->m_BlockVector.CheckCorruption();
-}
-
-VkResult VmaAllocator_T::CheckCorruption(uint32_t memoryTypeBits) {
- VkResult finalRes = VK_ERROR_FEATURE_NOT_PRESENT;
-
- // Process default pools.
- for (uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex) {
- if (((1u << memTypeIndex) & memoryTypeBits) != 0) {
- VmaBlockVector *const pBlockVector = m_pBlockVectors[memTypeIndex];
- VMA_ASSERT(pBlockVector);
- VkResult localRes = pBlockVector->CheckCorruption();
- switch (localRes) {
- case VK_ERROR_FEATURE_NOT_PRESENT:
- break;
- case VK_SUCCESS:
- finalRes = VK_SUCCESS;
- break;
- default:
- return localRes;
- }
- }
- }
-
- // Process custom pools.
- {
- VmaMutexLockRead lock(m_PoolsMutex, m_UseMutex);
- for (size_t poolIndex = 0, poolCount = m_Pools.size(); poolIndex < poolCount; ++poolIndex) {
- if (((1u << m_Pools[poolIndex]->m_BlockVector.GetMemoryTypeIndex()) & memoryTypeBits) != 0) {
- VkResult localRes = m_Pools[poolIndex]->m_BlockVector.CheckCorruption();
- switch (localRes) {
- case VK_ERROR_FEATURE_NOT_PRESENT:
- break;
- case VK_SUCCESS:
- finalRes = VK_SUCCESS;
- break;
- default:
- return localRes;
- }
- }
- }
- }
-
- return finalRes;
-}
-
-void VmaAllocator_T::CreateLostAllocation(VmaAllocation *pAllocation) {
- *pAllocation = m_AllocationObjectAllocator.Allocate();
- (*pAllocation)->Ctor(VMA_FRAME_INDEX_LOST, false);
- (*pAllocation)->InitLost();
-}
-
-VkResult VmaAllocator_T::AllocateVulkanMemory(const VkMemoryAllocateInfo *pAllocateInfo, VkDeviceMemory *pMemory) {
- const uint32_t heapIndex = MemoryTypeIndexToHeapIndex(pAllocateInfo->memoryTypeIndex);
-
- VkResult res;
- if (m_HeapSizeLimit[heapIndex] != VK_WHOLE_SIZE) {
- VmaMutexLock lock(m_HeapSizeLimitMutex, m_UseMutex);
- if (m_HeapSizeLimit[heapIndex] >= pAllocateInfo->allocationSize) {
- res = (*m_VulkanFunctions.vkAllocateMemory)(m_hDevice, pAllocateInfo, GetAllocationCallbacks(), pMemory);
- if (res == VK_SUCCESS) {
- m_HeapSizeLimit[heapIndex] -= pAllocateInfo->allocationSize;
- }
- } else {
- res = VK_ERROR_OUT_OF_DEVICE_MEMORY;
- }
- } else {
- res = (*m_VulkanFunctions.vkAllocateMemory)(m_hDevice, pAllocateInfo, GetAllocationCallbacks(), pMemory);
- }
-
- if (res == VK_SUCCESS && m_DeviceMemoryCallbacks.pfnAllocate != VMA_NULL) {
- (*m_DeviceMemoryCallbacks.pfnAllocate)(this, pAllocateInfo->memoryTypeIndex, *pMemory, pAllocateInfo->allocationSize);
- }
-
- return res;
-}
-
-void VmaAllocator_T::FreeVulkanMemory(uint32_t memoryType, VkDeviceSize size, VkDeviceMemory hMemory) {
- if (m_DeviceMemoryCallbacks.pfnFree != VMA_NULL) {
- (*m_DeviceMemoryCallbacks.pfnFree)(this, memoryType, hMemory, size);
- }
-
- (*m_VulkanFunctions.vkFreeMemory)(m_hDevice, hMemory, GetAllocationCallbacks());
-
- const uint32_t heapIndex = MemoryTypeIndexToHeapIndex(memoryType);
- if (m_HeapSizeLimit[heapIndex] != VK_WHOLE_SIZE) {
- VmaMutexLock lock(m_HeapSizeLimitMutex, m_UseMutex);
- m_HeapSizeLimit[heapIndex] += size;
- }
-}
-
-VkResult VmaAllocator_T::Map(VmaAllocation hAllocation, void **ppData) {
- if (hAllocation->CanBecomeLost()) {
- return VK_ERROR_MEMORY_MAP_FAILED;
- }
-
- switch (hAllocation->GetType()) {
- case VmaAllocation_T::ALLOCATION_TYPE_BLOCK: {
- VmaDeviceMemoryBlock *const pBlock = hAllocation->GetBlock();
- char *pBytes = VMA_NULL;
- VkResult res = pBlock->Map(this, 1, (void **)&pBytes);
- if (res == VK_SUCCESS) {
- *ppData = pBytes + (ptrdiff_t)hAllocation->GetOffset();
- hAllocation->BlockAllocMap();
- }
- return res;
- }
- case VmaAllocation_T::ALLOCATION_TYPE_DEDICATED:
- return hAllocation->DedicatedAllocMap(this, ppData);
- default:
- VMA_ASSERT(0);
- return VK_ERROR_MEMORY_MAP_FAILED;
- }
-}
-
-void VmaAllocator_T::Unmap(VmaAllocation hAllocation) {
- switch (hAllocation->GetType()) {
- case VmaAllocation_T::ALLOCATION_TYPE_BLOCK: {
- VmaDeviceMemoryBlock *const pBlock = hAllocation->GetBlock();
- hAllocation->BlockAllocUnmap();
- pBlock->Unmap(this, 1);
- } break;
- case VmaAllocation_T::ALLOCATION_TYPE_DEDICATED:
- hAllocation->DedicatedAllocUnmap(this);
- break;
- default:
- VMA_ASSERT(0);
- }
-}
-
-VkResult VmaAllocator_T::BindBufferMemory(VmaAllocation hAllocation, VkBuffer hBuffer) {
- VkResult res = VK_SUCCESS;
- switch (hAllocation->GetType()) {
- case VmaAllocation_T::ALLOCATION_TYPE_DEDICATED:
- res = GetVulkanFunctions().vkBindBufferMemory(
- m_hDevice,
- hBuffer,
- hAllocation->GetMemory(),
- 0); //memoryOffset
- break;
- case VmaAllocation_T::ALLOCATION_TYPE_BLOCK: {
- VmaDeviceMemoryBlock *pBlock = hAllocation->GetBlock();
- VMA_ASSERT(pBlock && "Binding buffer to allocation that doesn't belong to any block. Is the allocation lost?");
- res = pBlock->BindBufferMemory(this, hAllocation, hBuffer);
- break;
- }
- default:
- VMA_ASSERT(0);
- }
- return res;
-}
-
-VkResult VmaAllocator_T::BindImageMemory(VmaAllocation hAllocation, VkImage hImage) {
- VkResult res = VK_SUCCESS;
- switch (hAllocation->GetType()) {
- case VmaAllocation_T::ALLOCATION_TYPE_DEDICATED:
- res = GetVulkanFunctions().vkBindImageMemory(
- m_hDevice,
- hImage,
- hAllocation->GetMemory(),
- 0); //memoryOffset
- break;
- case VmaAllocation_T::ALLOCATION_TYPE_BLOCK: {
- VmaDeviceMemoryBlock *pBlock = hAllocation->GetBlock();
- VMA_ASSERT(pBlock && "Binding image to allocation that doesn't belong to any block. Is the allocation lost?");
- res = pBlock->BindImageMemory(this, hAllocation, hImage);
- break;
- }
- default:
- VMA_ASSERT(0);
- }
- return res;
-}
-
-void VmaAllocator_T::FlushOrInvalidateAllocation(
- VmaAllocation hAllocation,
- VkDeviceSize offset, VkDeviceSize size,
- VMA_CACHE_OPERATION op) {
- const uint32_t memTypeIndex = hAllocation->GetMemoryTypeIndex();
- if (size > 0 && IsMemoryTypeNonCoherent(memTypeIndex)) {
- const VkDeviceSize allocationSize = hAllocation->GetSize();
- VMA_ASSERT(offset <= allocationSize);
-
- const VkDeviceSize nonCoherentAtomSize = m_PhysicalDeviceProperties.limits.nonCoherentAtomSize;
-
- VkMappedMemoryRange memRange = { VK_STRUCTURE_TYPE_MAPPED_MEMORY_RANGE };
- memRange.memory = hAllocation->GetMemory();
-
- switch (hAllocation->GetType()) {
- case VmaAllocation_T::ALLOCATION_TYPE_DEDICATED:
- memRange.offset = VmaAlignDown(offset, nonCoherentAtomSize);
- if (size == VK_WHOLE_SIZE) {
- memRange.size = allocationSize - memRange.offset;
- } else {
- VMA_ASSERT(offset + size <= allocationSize);
- memRange.size = VMA_MIN(
- VmaAlignUp(size + (offset - memRange.offset), nonCoherentAtomSize),
- allocationSize - memRange.offset);
- }
- break;
-
- case VmaAllocation_T::ALLOCATION_TYPE_BLOCK: {
- // 1. Still within this allocation.
- memRange.offset = VmaAlignDown(offset, nonCoherentAtomSize);
- if (size == VK_WHOLE_SIZE) {
- size = allocationSize - offset;
- } else {
- VMA_ASSERT(offset + size <= allocationSize);
- }
- memRange.size = VmaAlignUp(size + (offset - memRange.offset), nonCoherentAtomSize);
-
- // 2. Adjust to whole block.
- const VkDeviceSize allocationOffset = hAllocation->GetOffset();
- VMA_ASSERT(allocationOffset % nonCoherentAtomSize == 0);
- const VkDeviceSize blockSize = hAllocation->GetBlock()->m_pMetadata->GetSize();
- memRange.offset += allocationOffset;
- memRange.size = VMA_MIN(memRange.size, blockSize - memRange.offset);
-
- break;
- }
-
- default:
- VMA_ASSERT(0);
- }
-
- switch (op) {
- case VMA_CACHE_FLUSH:
- (*GetVulkanFunctions().vkFlushMappedMemoryRanges)(m_hDevice, 1, &memRange);
- break;
- case VMA_CACHE_INVALIDATE:
- (*GetVulkanFunctions().vkInvalidateMappedMemoryRanges)(m_hDevice, 1, &memRange);
- break;
- default:
- VMA_ASSERT(0);
- }
- }
- // else: Just ignore this call.
-}
-
-void VmaAllocator_T::FreeDedicatedMemory(VmaAllocation allocation) {
- VMA_ASSERT(allocation && allocation->GetType() == VmaAllocation_T::ALLOCATION_TYPE_DEDICATED);
-
- const uint32_t memTypeIndex = allocation->GetMemoryTypeIndex();
- {
- VmaMutexLockWrite lock(m_DedicatedAllocationsMutex[memTypeIndex], m_UseMutex);
- AllocationVectorType *const pDedicatedAllocations = m_pDedicatedAllocations[memTypeIndex];
- VMA_ASSERT(pDedicatedAllocations);
- bool success = VmaVectorRemoveSorted<VmaPointerLess>(*pDedicatedAllocations, allocation);
- VMA_ASSERT(success);
- }
-
- VkDeviceMemory hMemory = allocation->GetMemory();
-
- /*
- There is no need to call this, because Vulkan spec allows to skip vkUnmapMemory
- before vkFreeMemory.
-
- if(allocation->GetMappedData() != VMA_NULL)
- {
- (*m_VulkanFunctions.vkUnmapMemory)(m_hDevice, hMemory);
- }
- */
-
- FreeVulkanMemory(memTypeIndex, allocation->GetSize(), hMemory);
-
- VMA_DEBUG_LOG(" Freed DedicatedMemory MemoryTypeIndex=%u", memTypeIndex);
-}
-
-uint32_t VmaAllocator_T::CalculateGpuDefragmentationMemoryTypeBits() const {
- VkBufferCreateInfo dummyBufCreateInfo;
- VmaFillGpuDefragmentationBufferCreateInfo(dummyBufCreateInfo);
-
- uint32_t memoryTypeBits = 0;
-
- // Create buffer.
- VkBuffer buf = VMA_NULL;
- VkResult res = (*GetVulkanFunctions().vkCreateBuffer)(
- m_hDevice, &dummyBufCreateInfo, GetAllocationCallbacks(), &buf);
- if (res == VK_SUCCESS) {
- // Query for supported memory types.
- VkMemoryRequirements memReq;
- (*GetVulkanFunctions().vkGetBufferMemoryRequirements)(m_hDevice, buf, &memReq);
- memoryTypeBits = memReq.memoryTypeBits;
-
- // Destroy buffer.
- (*GetVulkanFunctions().vkDestroyBuffer)(m_hDevice, buf, GetAllocationCallbacks());
- }
-
- return memoryTypeBits;
-}
-
-void VmaAllocator_T::FillAllocation(const VmaAllocation hAllocation, uint8_t pattern) {
- if (VMA_DEBUG_INITIALIZE_ALLOCATIONS &&
- !hAllocation->CanBecomeLost() &&
- (m_MemProps.memoryTypes[hAllocation->GetMemoryTypeIndex()].propertyFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) != 0) {
- void *pData = VMA_NULL;
- VkResult res = Map(hAllocation, &pData);
- if (res == VK_SUCCESS) {
- memset(pData, (int)pattern, (size_t)hAllocation->GetSize());
- FlushOrInvalidateAllocation(hAllocation, 0, VK_WHOLE_SIZE, VMA_CACHE_FLUSH);
- Unmap(hAllocation);
- } else {
- VMA_ASSERT(0 && "VMA_DEBUG_INITIALIZE_ALLOCATIONS is enabled, but couldn't map memory to fill allocation.");
- }
- }
-}
-
-uint32_t VmaAllocator_T::GetGpuDefragmentationMemoryTypeBits() {
- uint32_t memoryTypeBits = m_GpuDefragmentationMemoryTypeBits.load();
- if (memoryTypeBits == UINT32_MAX) {
- memoryTypeBits = CalculateGpuDefragmentationMemoryTypeBits();
- m_GpuDefragmentationMemoryTypeBits.store(memoryTypeBits);
- }
- return memoryTypeBits;
-}
-
-#if VMA_STATS_STRING_ENABLED
-
-void VmaAllocator_T::PrintDetailedMap(VmaJsonWriter &json) {
- bool dedicatedAllocationsStarted = false;
- for (uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex) {
- VmaMutexLockRead dedicatedAllocationsLock(m_DedicatedAllocationsMutex[memTypeIndex], m_UseMutex);
- AllocationVectorType *const pDedicatedAllocVector = m_pDedicatedAllocations[memTypeIndex];
- VMA_ASSERT(pDedicatedAllocVector);
- if (pDedicatedAllocVector->empty() == false) {
- if (dedicatedAllocationsStarted == false) {
- dedicatedAllocationsStarted = true;
- json.WriteString("DedicatedAllocations");
- json.BeginObject();
- }
-
- json.BeginString("Type ");
- json.ContinueString(memTypeIndex);
- json.EndString();
-
- json.BeginArray();
-
- for (size_t i = 0; i < pDedicatedAllocVector->size(); ++i) {
- json.BeginObject(true);
- const VmaAllocation hAlloc = (*pDedicatedAllocVector)[i];
- hAlloc->PrintParameters(json);
- json.EndObject();
- }
-
- json.EndArray();
- }
- }
- if (dedicatedAllocationsStarted) {
- json.EndObject();
- }
-
- {
- bool allocationsStarted = false;
- for (uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex) {
- if (m_pBlockVectors[memTypeIndex]->IsEmpty() == false) {
- if (allocationsStarted == false) {
- allocationsStarted = true;
- json.WriteString("DefaultPools");
- json.BeginObject();
- }
-
- json.BeginString("Type ");
- json.ContinueString(memTypeIndex);
- json.EndString();
-
- m_pBlockVectors[memTypeIndex]->PrintDetailedMap(json);
- }
- }
- if (allocationsStarted) {
- json.EndObject();
- }
- }
-
- // Custom pools
- {
- VmaMutexLockRead lock(m_PoolsMutex, m_UseMutex);
- const size_t poolCount = m_Pools.size();
- if (poolCount > 0) {
- json.WriteString("Pools");
- json.BeginObject();
- for (size_t poolIndex = 0; poolIndex < poolCount; ++poolIndex) {
- json.BeginString();
- json.ContinueString(m_Pools[poolIndex]->GetId());
- json.EndString();
-
- m_Pools[poolIndex]->m_BlockVector.PrintDetailedMap(json);
- }
- json.EndObject();
- }
- }
-}
-
-#endif // #if VMA_STATS_STRING_ENABLED
-
-////////////////////////////////////////////////////////////////////////////////
-// Public interface
-
-VkResult vmaCreateAllocator(
- const VmaAllocatorCreateInfo *pCreateInfo,
- VmaAllocator *pAllocator) {
- VMA_ASSERT(pCreateInfo && pAllocator);
- VMA_DEBUG_LOG("vmaCreateAllocator");
- *pAllocator = vma_new(pCreateInfo->pAllocationCallbacks, VmaAllocator_T)(pCreateInfo);
- return (*pAllocator)->Init(pCreateInfo);
-}
-
-void vmaDestroyAllocator(
- VmaAllocator allocator) {
- if (allocator != VK_NULL_HANDLE) {
- VMA_DEBUG_LOG("vmaDestroyAllocator");
- VkAllocationCallbacks allocationCallbacks = allocator->m_AllocationCallbacks;
- vma_delete(&allocationCallbacks, allocator);
- }
-}
-
-void vmaGetPhysicalDeviceProperties(
- VmaAllocator allocator,
- const VkPhysicalDeviceProperties **ppPhysicalDeviceProperties) {
- VMA_ASSERT(allocator && ppPhysicalDeviceProperties);
- *ppPhysicalDeviceProperties = &allocator->m_PhysicalDeviceProperties;
-}
-
-void vmaGetMemoryProperties(
- VmaAllocator allocator,
- const VkPhysicalDeviceMemoryProperties **ppPhysicalDeviceMemoryProperties) {
- VMA_ASSERT(allocator && ppPhysicalDeviceMemoryProperties);
- *ppPhysicalDeviceMemoryProperties = &allocator->m_MemProps;
-}
-
-void vmaGetMemoryTypeProperties(
- VmaAllocator allocator,
- uint32_t memoryTypeIndex,
- VkMemoryPropertyFlags *pFlags) {
- VMA_ASSERT(allocator && pFlags);
- VMA_ASSERT(memoryTypeIndex < allocator->GetMemoryTypeCount());
- *pFlags = allocator->m_MemProps.memoryTypes[memoryTypeIndex].propertyFlags;
-}
-
-void vmaSetCurrentFrameIndex(
- VmaAllocator allocator,
- uint32_t frameIndex) {
- VMA_ASSERT(allocator);
- VMA_ASSERT(frameIndex != VMA_FRAME_INDEX_LOST);
-
- VMA_DEBUG_GLOBAL_MUTEX_LOCK
-
- allocator->SetCurrentFrameIndex(frameIndex);
-}
-
-void vmaCalculateStats(
- VmaAllocator allocator,
- VmaStats *pStats) {
- VMA_ASSERT(allocator && pStats);
- VMA_DEBUG_GLOBAL_MUTEX_LOCK
- allocator->CalculateStats(pStats);
-}
-
-#if VMA_STATS_STRING_ENABLED
-
-void vmaBuildStatsString(
- VmaAllocator allocator,
- char **ppStatsString,
- VkBool32 detailedMap) {
- VMA_ASSERT(allocator && ppStatsString);
- VMA_DEBUG_GLOBAL_MUTEX_LOCK
-
- VmaStringBuilder sb(allocator);
- {
- VmaJsonWriter json(allocator->GetAllocationCallbacks(), sb);
- json.BeginObject();
-
- VmaStats stats;
- allocator->CalculateStats(&stats);
-
- json.WriteString("Total");
- VmaPrintStatInfo(json, stats.total);
-
- for (uint32_t heapIndex = 0; heapIndex < allocator->GetMemoryHeapCount(); ++heapIndex) {
- json.BeginString("Heap ");
- json.ContinueString(heapIndex);
- json.EndString();
- json.BeginObject();
-
- json.WriteString("Size");
- json.WriteNumber(allocator->m_MemProps.memoryHeaps[heapIndex].size);
-
- json.WriteString("Flags");
- json.BeginArray(true);
- if ((allocator->m_MemProps.memoryHeaps[heapIndex].flags & VK_MEMORY_HEAP_DEVICE_LOCAL_BIT) != 0) {
- json.WriteString("DEVICE_LOCAL");
- }
- json.EndArray();
-
- if (stats.memoryHeap[heapIndex].blockCount > 0) {
- json.WriteString("Stats");
- VmaPrintStatInfo(json, stats.memoryHeap[heapIndex]);
- }
-
- for (uint32_t typeIndex = 0; typeIndex < allocator->GetMemoryTypeCount(); ++typeIndex) {
- if (allocator->MemoryTypeIndexToHeapIndex(typeIndex) == heapIndex) {
- json.BeginString("Type ");
- json.ContinueString(typeIndex);
- json.EndString();
-
- json.BeginObject();
-
- json.WriteString("Flags");
- json.BeginArray(true);
- VkMemoryPropertyFlags flags = allocator->m_MemProps.memoryTypes[typeIndex].propertyFlags;
- if ((flags & VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT) != 0) {
- json.WriteString("DEVICE_LOCAL");
- }
- if ((flags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) != 0) {
- json.WriteString("HOST_VISIBLE");
- }
- if ((flags & VK_MEMORY_PROPERTY_HOST_COHERENT_BIT) != 0) {
- json.WriteString("HOST_COHERENT");
- }
- if ((flags & VK_MEMORY_PROPERTY_HOST_CACHED_BIT) != 0) {
- json.WriteString("HOST_CACHED");
- }
- if ((flags & VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT) != 0) {
- json.WriteString("LAZILY_ALLOCATED");
- }
- json.EndArray();
-
- if (stats.memoryType[typeIndex].blockCount > 0) {
- json.WriteString("Stats");
- VmaPrintStatInfo(json, stats.memoryType[typeIndex]);
- }
-
- json.EndObject();
- }
- }
-
- json.EndObject();
- }
- if (detailedMap == VK_TRUE) {
- allocator->PrintDetailedMap(json);
- }
-
- json.EndObject();
- }
-
- const size_t len = sb.GetLength();
- char *const pChars = vma_new_array(allocator, char, len + 1);
- if (len > 0) {
- memcpy(pChars, sb.GetData(), len);
- }
- pChars[len] = '\0';
- *ppStatsString = pChars;
-}
-
-void vmaFreeStatsString(
- VmaAllocator allocator,
- char *pStatsString) {
- if (pStatsString != VMA_NULL) {
- VMA_ASSERT(allocator);
- size_t len = strlen(pStatsString);
- vma_delete_array(allocator, pStatsString, len + 1);
- }
-}
-
-#endif // #if VMA_STATS_STRING_ENABLED
-
-/*
-This function is not protected by any mutex because it just reads immutable data.
-*/
-VkResult vmaFindMemoryTypeIndex(
- VmaAllocator allocator,
- uint32_t memoryTypeBits,
- const VmaAllocationCreateInfo *pAllocationCreateInfo,
- uint32_t *pMemoryTypeIndex) {
- VMA_ASSERT(allocator != VK_NULL_HANDLE);
- VMA_ASSERT(pAllocationCreateInfo != VMA_NULL);
- VMA_ASSERT(pMemoryTypeIndex != VMA_NULL);
-
- if (pAllocationCreateInfo->memoryTypeBits != 0) {
- memoryTypeBits &= pAllocationCreateInfo->memoryTypeBits;
- }
-
- uint32_t requiredFlags = pAllocationCreateInfo->requiredFlags;
- uint32_t preferredFlags = pAllocationCreateInfo->preferredFlags;
-
- // Convert usage to requiredFlags and preferredFlags.
- switch (pAllocationCreateInfo->usage) {
- case VMA_MEMORY_USAGE_UNKNOWN:
- break;
- case VMA_MEMORY_USAGE_GPU_ONLY:
- if (!allocator->IsIntegratedGpu() || (preferredFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) == 0) {
- preferredFlags |= VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT;
- }
- break;
- case VMA_MEMORY_USAGE_CPU_ONLY:
- requiredFlags |= VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT;
- break;
- case VMA_MEMORY_USAGE_CPU_TO_GPU:
- requiredFlags |= VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT;
- if (!allocator->IsIntegratedGpu() || (preferredFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) == 0) {
- preferredFlags |= VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT;
- }
- break;
- case VMA_MEMORY_USAGE_GPU_TO_CPU:
- requiredFlags |= VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT;
- preferredFlags |= VK_MEMORY_PROPERTY_HOST_COHERENT_BIT | VK_MEMORY_PROPERTY_HOST_CACHED_BIT;
- break;
- default:
- break;
- }
-
- *pMemoryTypeIndex = UINT32_MAX;
- uint32_t minCost = UINT32_MAX;
- for (uint32_t memTypeIndex = 0, memTypeBit = 1;
- memTypeIndex < allocator->GetMemoryTypeCount();
- ++memTypeIndex, memTypeBit <<= 1) {
- // This memory type is acceptable according to memoryTypeBits bitmask.
- if ((memTypeBit & memoryTypeBits) != 0) {
- const VkMemoryPropertyFlags currFlags =
- allocator->m_MemProps.memoryTypes[memTypeIndex].propertyFlags;
- // This memory type contains requiredFlags.
- if ((requiredFlags & ~currFlags) == 0) {
- // Calculate cost as number of bits from preferredFlags not present in this memory type.
- uint32_t currCost = VmaCountBitsSet(preferredFlags & ~currFlags);
- // Remember memory type with lowest cost.
- if (currCost < minCost) {
- *pMemoryTypeIndex = memTypeIndex;
- if (currCost == 0) {
- return VK_SUCCESS;
- }
- minCost = currCost;
- }
- }
- }
- }
- return (*pMemoryTypeIndex != UINT32_MAX) ? VK_SUCCESS : VK_ERROR_FEATURE_NOT_PRESENT;
-}
-
-VkResult vmaFindMemoryTypeIndexForBufferInfo(
- VmaAllocator allocator,
- const VkBufferCreateInfo *pBufferCreateInfo,
- const VmaAllocationCreateInfo *pAllocationCreateInfo,
- uint32_t *pMemoryTypeIndex) {
- VMA_ASSERT(allocator != VK_NULL_HANDLE);
- VMA_ASSERT(pBufferCreateInfo != VMA_NULL);
- VMA_ASSERT(pAllocationCreateInfo != VMA_NULL);
- VMA_ASSERT(pMemoryTypeIndex != VMA_NULL);
-
- const VkDevice hDev = allocator->m_hDevice;
- VkBuffer hBuffer = VK_NULL_HANDLE;
- VkResult res = allocator->GetVulkanFunctions().vkCreateBuffer(
- hDev, pBufferCreateInfo, allocator->GetAllocationCallbacks(), &hBuffer);
- if (res == VK_SUCCESS) {
- VkMemoryRequirements memReq = {};
- allocator->GetVulkanFunctions().vkGetBufferMemoryRequirements(
- hDev, hBuffer, &memReq);
-
- res = vmaFindMemoryTypeIndex(
- allocator,
- memReq.memoryTypeBits,
- pAllocationCreateInfo,
- pMemoryTypeIndex);
-
- allocator->GetVulkanFunctions().vkDestroyBuffer(
- hDev, hBuffer, allocator->GetAllocationCallbacks());
- }
- return res;
-}
-
-VkResult vmaFindMemoryTypeIndexForImageInfo(
- VmaAllocator allocator,
- const VkImageCreateInfo *pImageCreateInfo,
- const VmaAllocationCreateInfo *pAllocationCreateInfo,
- uint32_t *pMemoryTypeIndex) {
- VMA_ASSERT(allocator != VK_NULL_HANDLE);
- VMA_ASSERT(pImageCreateInfo != VMA_NULL);
- VMA_ASSERT(pAllocationCreateInfo != VMA_NULL);
- VMA_ASSERT(pMemoryTypeIndex != VMA_NULL);
-
- const VkDevice hDev = allocator->m_hDevice;
- VkImage hImage = VK_NULL_HANDLE;
- VkResult res = allocator->GetVulkanFunctions().vkCreateImage(
- hDev, pImageCreateInfo, allocator->GetAllocationCallbacks(), &hImage);
- if (res == VK_SUCCESS) {
- VkMemoryRequirements memReq = {};
- allocator->GetVulkanFunctions().vkGetImageMemoryRequirements(
- hDev, hImage, &memReq);
-
- res = vmaFindMemoryTypeIndex(
- allocator,
- memReq.memoryTypeBits,
- pAllocationCreateInfo,
- pMemoryTypeIndex);
-
- allocator->GetVulkanFunctions().vkDestroyImage(
- hDev, hImage, allocator->GetAllocationCallbacks());
- }
- return res;
-}
-
-VkResult vmaCreatePool(
- VmaAllocator allocator,
- const VmaPoolCreateInfo *pCreateInfo,
- VmaPool *pPool) {
- VMA_ASSERT(allocator && pCreateInfo && pPool);
-
- VMA_DEBUG_LOG("vmaCreatePool");
-
- VMA_DEBUG_GLOBAL_MUTEX_LOCK
-
- VkResult res = allocator->CreatePool(pCreateInfo, pPool);
-
-#if VMA_RECORDING_ENABLED
- if (allocator->GetRecorder() != VMA_NULL) {
- allocator->GetRecorder()->RecordCreatePool(allocator->GetCurrentFrameIndex(), *pCreateInfo, *pPool);
- }
-#endif
-
- return res;
-}
-
-void vmaDestroyPool(
- VmaAllocator allocator,
- VmaPool pool) {
- VMA_ASSERT(allocator);
-
- if (pool == VK_NULL_HANDLE) {
- return;
- }
-
- VMA_DEBUG_LOG("vmaDestroyPool");
-
- VMA_DEBUG_GLOBAL_MUTEX_LOCK
-
-#if VMA_RECORDING_ENABLED
- if (allocator->GetRecorder() != VMA_NULL) {
- allocator->GetRecorder()->RecordDestroyPool(allocator->GetCurrentFrameIndex(), pool);
- }
-#endif
-
- allocator->DestroyPool(pool);
-}
-
-void vmaGetPoolStats(
- VmaAllocator allocator,
- VmaPool pool,
- VmaPoolStats *pPoolStats) {
- VMA_ASSERT(allocator && pool && pPoolStats);
-
- VMA_DEBUG_GLOBAL_MUTEX_LOCK
-
- allocator->GetPoolStats(pool, pPoolStats);
-}
-
-void vmaMakePoolAllocationsLost(
- VmaAllocator allocator,
- VmaPool pool,
- size_t *pLostAllocationCount) {
- VMA_ASSERT(allocator && pool);
-
- VMA_DEBUG_GLOBAL_MUTEX_LOCK
-
-#if VMA_RECORDING_ENABLED
- if (allocator->GetRecorder() != VMA_NULL) {
- allocator->GetRecorder()->RecordMakePoolAllocationsLost(allocator->GetCurrentFrameIndex(), pool);
- }
-#endif
-
- allocator->MakePoolAllocationsLost(pool, pLostAllocationCount);
-}
-
-VkResult vmaCheckPoolCorruption(VmaAllocator allocator, VmaPool pool) {
- VMA_ASSERT(allocator && pool);
-
- VMA_DEBUG_GLOBAL_MUTEX_LOCK
-
- VMA_DEBUG_LOG("vmaCheckPoolCorruption");
-
- return allocator->CheckPoolCorruption(pool);
-}
-
-VkResult vmaAllocateMemory(
- VmaAllocator allocator,
- const VkMemoryRequirements *pVkMemoryRequirements,
- const VmaAllocationCreateInfo *pCreateInfo,
- VmaAllocation *pAllocation,
- VmaAllocationInfo *pAllocationInfo) {
- VMA_ASSERT(allocator && pVkMemoryRequirements && pCreateInfo && pAllocation);
-
- VMA_DEBUG_LOG("vmaAllocateMemory");
-
- VMA_DEBUG_GLOBAL_MUTEX_LOCK
-
- VkResult result = allocator->AllocateMemory(
- *pVkMemoryRequirements,
- false, // requiresDedicatedAllocation
- false, // prefersDedicatedAllocation
- VK_NULL_HANDLE, // dedicatedBuffer
- VK_NULL_HANDLE, // dedicatedImage
- *pCreateInfo,
- VMA_SUBALLOCATION_TYPE_UNKNOWN,
- 1, // allocationCount
- pAllocation);
-
-#if VMA_RECORDING_ENABLED
- if (allocator->GetRecorder() != VMA_NULL) {
- allocator->GetRecorder()->RecordAllocateMemory(
- allocator->GetCurrentFrameIndex(),
- *pVkMemoryRequirements,
- *pCreateInfo,
- *pAllocation);
- }
-#endif
-
- if (pAllocationInfo != VMA_NULL && result == VK_SUCCESS) {
- allocator->GetAllocationInfo(*pAllocation, pAllocationInfo);
- }
-
- return result;
-}
-
-VkResult vmaAllocateMemoryPages(
- VmaAllocator allocator,
- const VkMemoryRequirements *pVkMemoryRequirements,
- const VmaAllocationCreateInfo *pCreateInfo,
- size_t allocationCount,
- VmaAllocation *pAllocations,
- VmaAllocationInfo *pAllocationInfo) {
- if (allocationCount == 0) {
- return VK_SUCCESS;
- }
-
- VMA_ASSERT(allocator && pVkMemoryRequirements && pCreateInfo && pAllocations);
-
- VMA_DEBUG_LOG("vmaAllocateMemoryPages");
-
- VMA_DEBUG_GLOBAL_MUTEX_LOCK
-
- VkResult result = allocator->AllocateMemory(
- *pVkMemoryRequirements,
- false, // requiresDedicatedAllocation
- false, // prefersDedicatedAllocation
- VK_NULL_HANDLE, // dedicatedBuffer
- VK_NULL_HANDLE, // dedicatedImage
- *pCreateInfo,
- VMA_SUBALLOCATION_TYPE_UNKNOWN,
- allocationCount,
- pAllocations);
-
-#if VMA_RECORDING_ENABLED
- if (allocator->GetRecorder() != VMA_NULL) {
- allocator->GetRecorder()->RecordAllocateMemoryPages(
- allocator->GetCurrentFrameIndex(),
- *pVkMemoryRequirements,
- *pCreateInfo,
- (uint64_t)allocationCount,
- pAllocations);
- }
-#endif
-
- if (pAllocationInfo != VMA_NULL && result == VK_SUCCESS) {
- for (size_t i = 0; i < allocationCount; ++i) {
- allocator->GetAllocationInfo(pAllocations[i], pAllocationInfo + i);
- }
- }
-
- return result;
-}
-
-VkResult vmaAllocateMemoryForBuffer(
- VmaAllocator allocator,
- VkBuffer buffer,
- const VmaAllocationCreateInfo *pCreateInfo,
- VmaAllocation *pAllocation,
- VmaAllocationInfo *pAllocationInfo) {
- VMA_ASSERT(allocator && buffer != VK_NULL_HANDLE && pCreateInfo && pAllocation);
-
- VMA_DEBUG_LOG("vmaAllocateMemoryForBuffer");
-
- VMA_DEBUG_GLOBAL_MUTEX_LOCK
-
- VkMemoryRequirements vkMemReq = {};
- bool requiresDedicatedAllocation = false;
- bool prefersDedicatedAllocation = false;
- allocator->GetBufferMemoryRequirements(buffer, vkMemReq,
- requiresDedicatedAllocation,
- prefersDedicatedAllocation);
-
- VkResult result = allocator->AllocateMemory(
- vkMemReq,
- requiresDedicatedAllocation,
- prefersDedicatedAllocation,
- buffer, // dedicatedBuffer
- VK_NULL_HANDLE, // dedicatedImage
- *pCreateInfo,
- VMA_SUBALLOCATION_TYPE_BUFFER,
- 1, // allocationCount
- pAllocation);
-
-#if VMA_RECORDING_ENABLED
- if (allocator->GetRecorder() != VMA_NULL) {
- allocator->GetRecorder()->RecordAllocateMemoryForBuffer(
- allocator->GetCurrentFrameIndex(),
- vkMemReq,
- requiresDedicatedAllocation,
- prefersDedicatedAllocation,
- *pCreateInfo,
- *pAllocation);
- }
-#endif
-
- if (pAllocationInfo && result == VK_SUCCESS) {
- allocator->GetAllocationInfo(*pAllocation, pAllocationInfo);
- }
-
- return result;
-}
-
-VkResult vmaAllocateMemoryForImage(
- VmaAllocator allocator,
- VkImage image,
- const VmaAllocationCreateInfo *pCreateInfo,
- VmaAllocation *pAllocation,
- VmaAllocationInfo *pAllocationInfo) {
- VMA_ASSERT(allocator && image != VK_NULL_HANDLE && pCreateInfo && pAllocation);
-
- VMA_DEBUG_LOG("vmaAllocateMemoryForImage");
-
- VMA_DEBUG_GLOBAL_MUTEX_LOCK
-
- VkMemoryRequirements vkMemReq = {};
- bool requiresDedicatedAllocation = false;
- bool prefersDedicatedAllocation = false;
- allocator->GetImageMemoryRequirements(image, vkMemReq,
- requiresDedicatedAllocation, prefersDedicatedAllocation);
-
- VkResult result = allocator->AllocateMemory(
- vkMemReq,
- requiresDedicatedAllocation,
- prefersDedicatedAllocation,
- VK_NULL_HANDLE, // dedicatedBuffer
- image, // dedicatedImage
- *pCreateInfo,
- VMA_SUBALLOCATION_TYPE_IMAGE_UNKNOWN,
- 1, // allocationCount
- pAllocation);
-
-#if VMA_RECORDING_ENABLED
- if (allocator->GetRecorder() != VMA_NULL) {
- allocator->GetRecorder()->RecordAllocateMemoryForImage(
- allocator->GetCurrentFrameIndex(),
- vkMemReq,
- requiresDedicatedAllocation,
- prefersDedicatedAllocation,
- *pCreateInfo,
- *pAllocation);
- }
-#endif
-
- if (pAllocationInfo && result == VK_SUCCESS) {
- allocator->GetAllocationInfo(*pAllocation, pAllocationInfo);
- }
-
- return result;
-}
-
-void vmaFreeMemory(
- VmaAllocator allocator,
- VmaAllocation allocation) {
- VMA_ASSERT(allocator);
-
- if (allocation == VK_NULL_HANDLE) {
- return;
- }
-
- VMA_DEBUG_LOG("vmaFreeMemory");
-
- VMA_DEBUG_GLOBAL_MUTEX_LOCK
-
-#if VMA_RECORDING_ENABLED
- if (allocator->GetRecorder() != VMA_NULL) {
- allocator->GetRecorder()->RecordFreeMemory(
- allocator->GetCurrentFrameIndex(),
- allocation);
- }
-#endif
-
- allocator->FreeMemory(
- 1, // allocationCount
- &allocation);
-}
-
-void vmaFreeMemoryPages(
- VmaAllocator allocator,
- size_t allocationCount,
- VmaAllocation *pAllocations) {
- if (allocationCount == 0) {
- return;
- }
-
- VMA_ASSERT(allocator);
-
- VMA_DEBUG_LOG("vmaFreeMemoryPages");
-
- VMA_DEBUG_GLOBAL_MUTEX_LOCK
-
-#if VMA_RECORDING_ENABLED
- if (allocator->GetRecorder() != VMA_NULL) {
- allocator->GetRecorder()->RecordFreeMemoryPages(
- allocator->GetCurrentFrameIndex(),
- (uint64_t)allocationCount,
- pAllocations);
- }
-#endif
-
- allocator->FreeMemory(allocationCount, pAllocations);
-}
-
-VkResult vmaResizeAllocation(
- VmaAllocator allocator,
- VmaAllocation allocation,
- VkDeviceSize newSize) {
- VMA_ASSERT(allocator && allocation);
-
- VMA_DEBUG_LOG("vmaResizeAllocation");
-
- VMA_DEBUG_GLOBAL_MUTEX_LOCK
-
-#if VMA_RECORDING_ENABLED
- if (allocator->GetRecorder() != VMA_NULL) {
- allocator->GetRecorder()->RecordResizeAllocation(
- allocator->GetCurrentFrameIndex(),
- allocation,
- newSize);
- }
-#endif
-
- return allocator->ResizeAllocation(allocation, newSize);
-}
-
-void vmaGetAllocationInfo(
- VmaAllocator allocator,
- VmaAllocation allocation,
- VmaAllocationInfo *pAllocationInfo) {
- VMA_ASSERT(allocator && allocation && pAllocationInfo);
-
- VMA_DEBUG_GLOBAL_MUTEX_LOCK
-
-#if VMA_RECORDING_ENABLED
- if (allocator->GetRecorder() != VMA_NULL) {
- allocator->GetRecorder()->RecordGetAllocationInfo(
- allocator->GetCurrentFrameIndex(),
- allocation);
- }
-#endif
-
- allocator->GetAllocationInfo(allocation, pAllocationInfo);
-}
-
-VkBool32 vmaTouchAllocation(
- VmaAllocator allocator,
- VmaAllocation allocation) {
- VMA_ASSERT(allocator && allocation);
-
- VMA_DEBUG_GLOBAL_MUTEX_LOCK
-
-#if VMA_RECORDING_ENABLED
- if (allocator->GetRecorder() != VMA_NULL) {
- allocator->GetRecorder()->RecordTouchAllocation(
- allocator->GetCurrentFrameIndex(),
- allocation);
- }
-#endif
-
- return allocator->TouchAllocation(allocation);
-}
-
-void vmaSetAllocationUserData(
- VmaAllocator allocator,
- VmaAllocation allocation,
- void *pUserData) {
- VMA_ASSERT(allocator && allocation);
-
- VMA_DEBUG_GLOBAL_MUTEX_LOCK
-
- allocation->SetUserData(allocator, pUserData);
-
-#if VMA_RECORDING_ENABLED
- if (allocator->GetRecorder() != VMA_NULL) {
- allocator->GetRecorder()->RecordSetAllocationUserData(
- allocator->GetCurrentFrameIndex(),
- allocation,
- pUserData);
- }
-#endif
-}
-
-void vmaCreateLostAllocation(
- VmaAllocator allocator,
- VmaAllocation *pAllocation) {
- VMA_ASSERT(allocator && pAllocation);
-
- VMA_DEBUG_GLOBAL_MUTEX_LOCK;
-
- allocator->CreateLostAllocation(pAllocation);
-
-#if VMA_RECORDING_ENABLED
- if (allocator->GetRecorder() != VMA_NULL) {
- allocator->GetRecorder()->RecordCreateLostAllocation(
- allocator->GetCurrentFrameIndex(),
- *pAllocation);
- }
-#endif
-}
-
-VkResult vmaMapMemory(
- VmaAllocator allocator,
- VmaAllocation allocation,
- void **ppData) {
- VMA_ASSERT(allocator && allocation && ppData);
-
- VMA_DEBUG_GLOBAL_MUTEX_LOCK
-
- VkResult res = allocator->Map(allocation, ppData);
-
-#if VMA_RECORDING_ENABLED
- if (allocator->GetRecorder() != VMA_NULL) {
- allocator->GetRecorder()->RecordMapMemory(
- allocator->GetCurrentFrameIndex(),
- allocation);
- }
-#endif
-
- return res;
-}
-
-void vmaUnmapMemory(
- VmaAllocator allocator,
- VmaAllocation allocation) {
- VMA_ASSERT(allocator && allocation);
-
- VMA_DEBUG_GLOBAL_MUTEX_LOCK
-
-#if VMA_RECORDING_ENABLED
- if (allocator->GetRecorder() != VMA_NULL) {
- allocator->GetRecorder()->RecordUnmapMemory(
- allocator->GetCurrentFrameIndex(),
- allocation);
- }
-#endif
-
- allocator->Unmap(allocation);
-}
-
-void vmaFlushAllocation(VmaAllocator allocator, VmaAllocation allocation, VkDeviceSize offset, VkDeviceSize size) {
- VMA_ASSERT(allocator && allocation);
-
- VMA_DEBUG_LOG("vmaFlushAllocation");
-
- VMA_DEBUG_GLOBAL_MUTEX_LOCK
-
- allocator->FlushOrInvalidateAllocation(allocation, offset, size, VMA_CACHE_FLUSH);
-
-#if VMA_RECORDING_ENABLED
- if (allocator->GetRecorder() != VMA_NULL) {
- allocator->GetRecorder()->RecordFlushAllocation(
- allocator->GetCurrentFrameIndex(),
- allocation, offset, size);
- }
-#endif
-}
-
-void vmaInvalidateAllocation(VmaAllocator allocator, VmaAllocation allocation, VkDeviceSize offset, VkDeviceSize size) {
- VMA_ASSERT(allocator && allocation);
-
- VMA_DEBUG_LOG("vmaInvalidateAllocation");
-
- VMA_DEBUG_GLOBAL_MUTEX_LOCK
-
- allocator->FlushOrInvalidateAllocation(allocation, offset, size, VMA_CACHE_INVALIDATE);
-
-#if VMA_RECORDING_ENABLED
- if (allocator->GetRecorder() != VMA_NULL) {
- allocator->GetRecorder()->RecordInvalidateAllocation(
- allocator->GetCurrentFrameIndex(),
- allocation, offset, size);
- }
-#endif
-}
-
-VkResult vmaCheckCorruption(VmaAllocator allocator, uint32_t memoryTypeBits) {
- VMA_ASSERT(allocator);
-
- VMA_DEBUG_LOG("vmaCheckCorruption");
-
- VMA_DEBUG_GLOBAL_MUTEX_LOCK
-
- return allocator->CheckCorruption(memoryTypeBits);
-}
-
-VkResult vmaDefragment(
- VmaAllocator allocator,
- VmaAllocation *pAllocations,
- size_t allocationCount,
- VkBool32 *pAllocationsChanged,
- const VmaDefragmentationInfo *pDefragmentationInfo,
- VmaDefragmentationStats *pDefragmentationStats) {
- // Deprecated interface, reimplemented using new one.
-
- VmaDefragmentationInfo2 info2 = {};
- info2.allocationCount = (uint32_t)allocationCount;
- info2.pAllocations = pAllocations;
- info2.pAllocationsChanged = pAllocationsChanged;
- if (pDefragmentationInfo != VMA_NULL) {
- info2.maxCpuAllocationsToMove = pDefragmentationInfo->maxAllocationsToMove;
- info2.maxCpuBytesToMove = pDefragmentationInfo->maxBytesToMove;
- } else {
- info2.maxCpuAllocationsToMove = UINT32_MAX;
- info2.maxCpuBytesToMove = VK_WHOLE_SIZE;
- }
- // info2.flags, maxGpuAllocationsToMove, maxGpuBytesToMove, commandBuffer deliberately left zero.
-
- VmaDefragmentationContext ctx;
- VkResult res = vmaDefragmentationBegin(allocator, &info2, pDefragmentationStats, &ctx);
- if (res == VK_NOT_READY) {
- res = vmaDefragmentationEnd(allocator, ctx);
- }
- return res;
-}
-
-VkResult vmaDefragmentationBegin(
- VmaAllocator allocator,
- const VmaDefragmentationInfo2 *pInfo,
- VmaDefragmentationStats *pStats,
- VmaDefragmentationContext *pContext) {
- VMA_ASSERT(allocator && pInfo && pContext);
-
- // Degenerate case: Nothing to defragment.
- if (pInfo->allocationCount == 0 && pInfo->poolCount == 0) {
- return VK_SUCCESS;
- }
-
- VMA_ASSERT(pInfo->allocationCount == 0 || pInfo->pAllocations != VMA_NULL);
- VMA_ASSERT(pInfo->poolCount == 0 || pInfo->pPools != VMA_NULL);
- VMA_HEAVY_ASSERT(VmaValidatePointerArray(pInfo->allocationCount, pInfo->pAllocations));
- VMA_HEAVY_ASSERT(VmaValidatePointerArray(pInfo->poolCount, pInfo->pPools));
-
- VMA_DEBUG_LOG("vmaDefragmentationBegin");
-
- VMA_DEBUG_GLOBAL_MUTEX_LOCK
-
- VkResult res = allocator->DefragmentationBegin(*pInfo, pStats, pContext);
-
-#if VMA_RECORDING_ENABLED
- if (allocator->GetRecorder() != VMA_NULL) {
- allocator->GetRecorder()->RecordDefragmentationBegin(
- allocator->GetCurrentFrameIndex(), *pInfo, *pContext);
- }
-#endif
-
- return res;
-}
-
-VkResult vmaDefragmentationEnd(
- VmaAllocator allocator,
- VmaDefragmentationContext context) {
- VMA_ASSERT(allocator);
-
- VMA_DEBUG_LOG("vmaDefragmentationEnd");
-
- if (context != VK_NULL_HANDLE) {
- VMA_DEBUG_GLOBAL_MUTEX_LOCK
-
-#if VMA_RECORDING_ENABLED
- if (allocator->GetRecorder() != VMA_NULL) {
- allocator->GetRecorder()->RecordDefragmentationEnd(
- allocator->GetCurrentFrameIndex(), context);
- }
-#endif
-
- return allocator->DefragmentationEnd(context);
- } else {
- return VK_SUCCESS;
- }
-}
-
-VkResult vmaBindBufferMemory(
- VmaAllocator allocator,
- VmaAllocation allocation,
- VkBuffer buffer) {
- VMA_ASSERT(allocator && allocation && buffer);
-
- VMA_DEBUG_LOG("vmaBindBufferMemory");
-
- VMA_DEBUG_GLOBAL_MUTEX_LOCK
-
- return allocator->BindBufferMemory(allocation, buffer);
-}
-
-VkResult vmaBindImageMemory(
- VmaAllocator allocator,
- VmaAllocation allocation,
- VkImage image) {
- VMA_ASSERT(allocator && allocation && image);
-
- VMA_DEBUG_LOG("vmaBindImageMemory");
-
- VMA_DEBUG_GLOBAL_MUTEX_LOCK
-
- return allocator->BindImageMemory(allocation, image);
-}
-
-VkResult vmaCreateBuffer(
- VmaAllocator allocator,
- const VkBufferCreateInfo *pBufferCreateInfo,
- const VmaAllocationCreateInfo *pAllocationCreateInfo,
- VkBuffer *pBuffer,
- VmaAllocation *pAllocation,
- VmaAllocationInfo *pAllocationInfo) {
- VMA_ASSERT(allocator && pBufferCreateInfo && pAllocationCreateInfo && pBuffer && pAllocation);
-
- if (pBufferCreateInfo->size == 0) {
- return VK_ERROR_VALIDATION_FAILED_EXT;
- }
-
- VMA_DEBUG_LOG("vmaCreateBuffer");
-
- VMA_DEBUG_GLOBAL_MUTEX_LOCK
-
- *pBuffer = VK_NULL_HANDLE;
- *pAllocation = VK_NULL_HANDLE;
-
- // 1. Create VkBuffer.
- VkResult res = (*allocator->GetVulkanFunctions().vkCreateBuffer)(
- allocator->m_hDevice,
- pBufferCreateInfo,
- allocator->GetAllocationCallbacks(),
- pBuffer);
- if (res >= 0) {
- // 2. vkGetBufferMemoryRequirements.
- VkMemoryRequirements vkMemReq = {};
- bool requiresDedicatedAllocation = false;
- bool prefersDedicatedAllocation = false;
- allocator->GetBufferMemoryRequirements(*pBuffer, vkMemReq,
- requiresDedicatedAllocation, prefersDedicatedAllocation);
-
- // Make sure alignment requirements for specific buffer usages reported
- // in Physical Device Properties are included in alignment reported by memory requirements.
- if ((pBufferCreateInfo->usage & VK_BUFFER_USAGE_UNIFORM_TEXEL_BUFFER_BIT) != 0) {
- VMA_ASSERT(vkMemReq.alignment %
- allocator->m_PhysicalDeviceProperties.limits.minTexelBufferOffsetAlignment ==
- 0);
- }
- if ((pBufferCreateInfo->usage & VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT) != 0) {
- VMA_ASSERT(vkMemReq.alignment %
- allocator->m_PhysicalDeviceProperties.limits.minUniformBufferOffsetAlignment ==
- 0);
- }
- if ((pBufferCreateInfo->usage & VK_BUFFER_USAGE_STORAGE_BUFFER_BIT) != 0) {
- VMA_ASSERT(vkMemReq.alignment %
- allocator->m_PhysicalDeviceProperties.limits.minStorageBufferOffsetAlignment ==
- 0);
- }
-
- // 3. Allocate memory using allocator.
- res = allocator->AllocateMemory(
- vkMemReq,
- requiresDedicatedAllocation,
- prefersDedicatedAllocation,
- *pBuffer, // dedicatedBuffer
- VK_NULL_HANDLE, // dedicatedImage
- *pAllocationCreateInfo,
- VMA_SUBALLOCATION_TYPE_BUFFER,
- 1, // allocationCount
- pAllocation);
-
-#if VMA_RECORDING_ENABLED
- if (allocator->GetRecorder() != VMA_NULL) {
- allocator->GetRecorder()->RecordCreateBuffer(
- allocator->GetCurrentFrameIndex(),
- *pBufferCreateInfo,
- *pAllocationCreateInfo,
- *pAllocation);
- }
-#endif
-
- if (res >= 0) {
- // 3. Bind buffer with memory.
- if ((pAllocationCreateInfo->flags & VMA_ALLOCATION_CREATE_DONT_BIND_BIT) == 0) {
- res = allocator->BindBufferMemory(*pAllocation, *pBuffer);
- }
- if (res >= 0) {
-// All steps succeeded.
-#if VMA_STATS_STRING_ENABLED
- (*pAllocation)->InitBufferImageUsage(pBufferCreateInfo->usage);
-#endif
- if (pAllocationInfo != VMA_NULL) {
- allocator->GetAllocationInfo(*pAllocation, pAllocationInfo);
- }
-
- return VK_SUCCESS;
- }
- allocator->FreeMemory(
- 1, // allocationCount
- pAllocation);
- *pAllocation = VK_NULL_HANDLE;
- (*allocator->GetVulkanFunctions().vkDestroyBuffer)(allocator->m_hDevice, *pBuffer, allocator->GetAllocationCallbacks());
- *pBuffer = VK_NULL_HANDLE;
- return res;
- }
- (*allocator->GetVulkanFunctions().vkDestroyBuffer)(allocator->m_hDevice, *pBuffer, allocator->GetAllocationCallbacks());
- *pBuffer = VK_NULL_HANDLE;
- return res;
- }
- return res;
-}
-
-void vmaDestroyBuffer(
- VmaAllocator allocator,
- VkBuffer buffer,
- VmaAllocation allocation) {
- VMA_ASSERT(allocator);
-
- if (buffer == VK_NULL_HANDLE && allocation == VK_NULL_HANDLE) {
- return;
- }
-
- VMA_DEBUG_LOG("vmaDestroyBuffer");
-
- VMA_DEBUG_GLOBAL_MUTEX_LOCK
-
-#if VMA_RECORDING_ENABLED
- if (allocator->GetRecorder() != VMA_NULL) {
- allocator->GetRecorder()->RecordDestroyBuffer(
- allocator->GetCurrentFrameIndex(),
- allocation);
- }
-#endif
-
- if (buffer != VK_NULL_HANDLE) {
- (*allocator->GetVulkanFunctions().vkDestroyBuffer)(allocator->m_hDevice, buffer, allocator->GetAllocationCallbacks());
- }
-
- if (allocation != VK_NULL_HANDLE) {
- allocator->FreeMemory(
- 1, // allocationCount
- &allocation);
- }
-}
-
-VkResult vmaCreateImage(
- VmaAllocator allocator,
- const VkImageCreateInfo *pImageCreateInfo,
- const VmaAllocationCreateInfo *pAllocationCreateInfo,
- VkImage *pImage,
- VmaAllocation *pAllocation,
- VmaAllocationInfo *pAllocationInfo) {
- VMA_ASSERT(allocator && pImageCreateInfo && pAllocationCreateInfo && pImage && pAllocation);
-
- if (pImageCreateInfo->extent.width == 0 ||
- pImageCreateInfo->extent.height == 0 ||
- pImageCreateInfo->extent.depth == 0 ||
- pImageCreateInfo->mipLevels == 0 ||
- pImageCreateInfo->arrayLayers == 0) {
- return VK_ERROR_VALIDATION_FAILED_EXT;
- }
-
- VMA_DEBUG_LOG("vmaCreateImage");
-
- VMA_DEBUG_GLOBAL_MUTEX_LOCK
-
- *pImage = VK_NULL_HANDLE;
- *pAllocation = VK_NULL_HANDLE;
-
- // 1. Create VkImage.
- VkResult res = (*allocator->GetVulkanFunctions().vkCreateImage)(
- allocator->m_hDevice,
- pImageCreateInfo,
- allocator->GetAllocationCallbacks(),
- pImage);
- if (res >= 0) {
- VmaSuballocationType suballocType = pImageCreateInfo->tiling == VK_IMAGE_TILING_OPTIMAL ?
- VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL :
- VMA_SUBALLOCATION_TYPE_IMAGE_LINEAR;
-
- // 2. Allocate memory using allocator.
- VkMemoryRequirements vkMemReq = {};
- bool requiresDedicatedAllocation = false;
- bool prefersDedicatedAllocation = false;
- allocator->GetImageMemoryRequirements(*pImage, vkMemReq,
- requiresDedicatedAllocation, prefersDedicatedAllocation);
-
- res = allocator->AllocateMemory(
- vkMemReq,
- requiresDedicatedAllocation,
- prefersDedicatedAllocation,
- VK_NULL_HANDLE, // dedicatedBuffer
- *pImage, // dedicatedImage
- *pAllocationCreateInfo,
- suballocType,
- 1, // allocationCount
- pAllocation);
-
-#if VMA_RECORDING_ENABLED
- if (allocator->GetRecorder() != VMA_NULL) {
- allocator->GetRecorder()->RecordCreateImage(
- allocator->GetCurrentFrameIndex(),
- *pImageCreateInfo,
- *pAllocationCreateInfo,
- *pAllocation);
- }
-#endif
-
- if (res >= 0) {
- // 3. Bind image with memory.
- if ((pAllocationCreateInfo->flags & VMA_ALLOCATION_CREATE_DONT_BIND_BIT) == 0) {
- res = allocator->BindImageMemory(*pAllocation, *pImage);
- }
- if (res >= 0) {
-// All steps succeeded.
-#if VMA_STATS_STRING_ENABLED
- (*pAllocation)->InitBufferImageUsage(pImageCreateInfo->usage);
-#endif
- if (pAllocationInfo != VMA_NULL) {
- allocator->GetAllocationInfo(*pAllocation, pAllocationInfo);
- }
-
- return VK_SUCCESS;
- }
- allocator->FreeMemory(
- 1, // allocationCount
- pAllocation);
- *pAllocation = VK_NULL_HANDLE;
- (*allocator->GetVulkanFunctions().vkDestroyImage)(allocator->m_hDevice, *pImage, allocator->GetAllocationCallbacks());
- *pImage = VK_NULL_HANDLE;
- return res;
- }
- (*allocator->GetVulkanFunctions().vkDestroyImage)(allocator->m_hDevice, *pImage, allocator->GetAllocationCallbacks());
- *pImage = VK_NULL_HANDLE;
- return res;
- }
- return res;
-}
-
-void vmaDestroyImage(
- VmaAllocator allocator,
- VkImage image,
- VmaAllocation allocation) {
- VMA_ASSERT(allocator);
-
- if (image == VK_NULL_HANDLE && allocation == VK_NULL_HANDLE) {
- return;
- }
-
- VMA_DEBUG_LOG("vmaDestroyImage");
-
- VMA_DEBUG_GLOBAL_MUTEX_LOCK
-
-#if VMA_RECORDING_ENABLED
- if (allocator->GetRecorder() != VMA_NULL) {
- allocator->GetRecorder()->RecordDestroyImage(
- allocator->GetCurrentFrameIndex(),
- allocation);
- }
-#endif
-
- if (image != VK_NULL_HANDLE) {
- (*allocator->GetVulkanFunctions().vkDestroyImage)(allocator->m_hDevice, image, allocator->GetAllocationCallbacks());
- }
- if (allocation != VK_NULL_HANDLE) {
- allocator->FreeMemory(
- 1, // allocationCount
- &allocation);
- }
-}
-
-#endif // #ifdef VMA_IMPLEMENTATION
diff --git a/drivers/vulkan/vulkan_context.cpp b/drivers/vulkan/vulkan_context.cpp
index c2b3e693d4..234aacbffe 100644
--- a/drivers/vulkan/vulkan_context.cpp
+++ b/drivers/vulkan/vulkan_context.cpp
@@ -5,8 +5,8 @@
/* GODOT ENGINE */
/* https://godotengine.org */
/*************************************************************************/
-/* Copyright (c) 2007-2019 Juan Linietsky, Ariel Manzur. */
-/* Copyright (c) 2014-2019 Godot Engine contributors (cf. AUTHORS.md) */
+/* Copyright (c) 2007-2020 Juan Linietsky, Ariel Manzur. */
+/* Copyright (c) 2014-2020 Godot Engine contributors (cf. AUTHORS.md). */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
diff --git a/drivers/vulkan/vulkan_context.h b/drivers/vulkan/vulkan_context.h
index 90368f270b..458cb6d793 100644
--- a/drivers/vulkan/vulkan_context.h
+++ b/drivers/vulkan/vulkan_context.h
@@ -5,8 +5,8 @@
/* GODOT ENGINE */
/* https://godotengine.org */
/*************************************************************************/
-/* Copyright (c) 2007-2019 Juan Linietsky, Ariel Manzur. */
-/* Copyright (c) 2014-2019 Godot Engine contributors (cf. AUTHORS.md) */
+/* Copyright (c) 2007-2020 Juan Linietsky, Ariel Manzur. */
+/* Copyright (c) 2014-2020 Godot Engine contributors (cf. AUTHORS.md). */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */