summaryrefslogtreecommitdiff
path: root/drivers/squish/maths.cpp
diff options
context:
space:
mode:
authorJuan Linietsky <reduzio@gmail.com>2014-02-09 22:10:30 -0300
committerJuan Linietsky <reduzio@gmail.com>2014-02-09 22:10:30 -0300
commit0b806ee0fc9097fa7bda7ac0109191c9c5e0a1ac (patch)
tree276c4d099e178eb67fbd14f61d77b05e3808e9e3 /drivers/squish/maths.cpp
parent0e49da1687bc8192ed210947da52c9e5c5f301bb (diff)
GODOT IS OPEN SOURCE
Diffstat (limited to 'drivers/squish/maths.cpp')
-rw-r--r--drivers/squish/maths.cpp227
1 files changed, 227 insertions, 0 deletions
diff --git a/drivers/squish/maths.cpp b/drivers/squish/maths.cpp
new file mode 100644
index 0000000000..59818a4d2b
--- /dev/null
+++ b/drivers/squish/maths.cpp
@@ -0,0 +1,227 @@
+/* -----------------------------------------------------------------------------
+
+ Copyright (c) 2006 Simon Brown si@sjbrown.co.uk
+
+ Permission is hereby granted, free of charge, to any person obtaining
+ a copy of this software and associated documentation files (the
+ "Software"), to deal in the Software without restriction, including
+ without limitation the rights to use, copy, modify, merge, publish,
+ distribute, sublicense, and/or sell copies of the Software, and to
+ permit persons to whom the Software is furnished to do so, subject to
+ the following conditions:
+
+ The above copyright notice and this permission notice shall be included
+ in all copies or substantial portions of the Software.
+
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
+ OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
+ MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
+ IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
+ CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
+ TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
+ SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
+
+ -------------------------------------------------------------------------- */
+
+/*! @file
+
+ The symmetric eigensystem solver algorithm is from
+ http://www.geometrictools.com/Documentation/EigenSymmetric3x3.pdf
+*/
+
+#include "maths.h"
+#include <cfloat>
+
+namespace squish {
+
+Sym3x3 ComputeWeightedCovariance( int n, Vec3 const* points, float const* weights )
+{
+ // compute the centroid
+ float total = 0.0f;
+ Vec3 centroid( 0.0f );
+ for( int i = 0; i < n; ++i )
+ {
+ total += weights[i];
+ centroid += weights[i]*points[i];
+ }
+ centroid /= total;
+
+ // accumulate the covariance matrix
+ Sym3x3 covariance( 0.0f );
+ for( int i = 0; i < n; ++i )
+ {
+ Vec3 a = points[i] - centroid;
+ Vec3 b = weights[i]*a;
+
+ covariance[0] += a.X()*b.X();
+ covariance[1] += a.X()*b.Y();
+ covariance[2] += a.X()*b.Z();
+ covariance[3] += a.Y()*b.Y();
+ covariance[4] += a.Y()*b.Z();
+ covariance[5] += a.Z()*b.Z();
+ }
+
+ // return it
+ return covariance;
+}
+
+static Vec3 GetMultiplicity1Evector( Sym3x3 const& matrix, float evalue )
+{
+ // compute M
+ Sym3x3 m;
+ m[0] = matrix[0] - evalue;
+ m[1] = matrix[1];
+ m[2] = matrix[2];
+ m[3] = matrix[3] - evalue;
+ m[4] = matrix[4];
+ m[5] = matrix[5] - evalue;
+
+ // compute U
+ Sym3x3 u;
+ u[0] = m[3]*m[5] - m[4]*m[4];
+ u[1] = m[2]*m[4] - m[1]*m[5];
+ u[2] = m[1]*m[4] - m[2]*m[3];
+ u[3] = m[0]*m[5] - m[2]*m[2];
+ u[4] = m[1]*m[2] - m[4]*m[0];
+ u[5] = m[0]*m[3] - m[1]*m[1];
+
+ // find the largest component
+ float mc = std::fabs( u[0] );
+ int mi = 0;
+ for( int i = 1; i < 6; ++i )
+ {
+ float c = std::fabs( u[i] );
+ if( c > mc )
+ {
+ mc = c;
+ mi = i;
+ }
+ }
+
+ // pick the column with this component
+ switch( mi )
+ {
+ case 0:
+ return Vec3( u[0], u[1], u[2] );
+
+ case 1:
+ case 3:
+ return Vec3( u[1], u[3], u[4] );
+
+ default:
+ return Vec3( u[2], u[4], u[5] );
+ }
+}
+
+static Vec3 GetMultiplicity2Evector( Sym3x3 const& matrix, float evalue )
+{
+ // compute M
+ Sym3x3 m;
+ m[0] = matrix[0] - evalue;
+ m[1] = matrix[1];
+ m[2] = matrix[2];
+ m[3] = matrix[3] - evalue;
+ m[4] = matrix[4];
+ m[5] = matrix[5] - evalue;
+
+ // find the largest component
+ float mc = std::fabs( m[0] );
+ int mi = 0;
+ for( int i = 1; i < 6; ++i )
+ {
+ float c = std::fabs( m[i] );
+ if( c > mc )
+ {
+ mc = c;
+ mi = i;
+ }
+ }
+
+ // pick the first eigenvector based on this index
+ switch( mi )
+ {
+ case 0:
+ case 1:
+ return Vec3( -m[1], m[0], 0.0f );
+
+ case 2:
+ return Vec3( m[2], 0.0f, -m[0] );
+
+ case 3:
+ case 4:
+ return Vec3( 0.0f, -m[4], m[3] );
+
+ default:
+ return Vec3( 0.0f, -m[5], m[4] );
+ }
+}
+
+Vec3 ComputePrincipleComponent( Sym3x3 const& matrix )
+{
+ // compute the cubic coefficients
+ float c0 = matrix[0]*matrix[3]*matrix[5]
+ + 2.0f*matrix[1]*matrix[2]*matrix[4]
+ - matrix[0]*matrix[4]*matrix[4]
+ - matrix[3]*matrix[2]*matrix[2]
+ - matrix[5]*matrix[1]*matrix[1];
+ float c1 = matrix[0]*matrix[3] + matrix[0]*matrix[5] + matrix[3]*matrix[5]
+ - matrix[1]*matrix[1] - matrix[2]*matrix[2] - matrix[4]*matrix[4];
+ float c2 = matrix[0] + matrix[3] + matrix[5];
+
+ // compute the quadratic coefficients
+ float a = c1 - ( 1.0f/3.0f )*c2*c2;
+ float b = ( -2.0f/27.0f )*c2*c2*c2 + ( 1.0f/3.0f )*c1*c2 - c0;
+
+ // compute the root count check
+ float Q = 0.25f*b*b + ( 1.0f/27.0f )*a*a*a;
+
+ // test the multiplicity
+ if( FLT_EPSILON < Q )
+ {
+ // only one root, which implies we have a multiple of the identity
+ return Vec3( 1.0f );
+ }
+ else if( Q < -FLT_EPSILON )
+ {
+ // three distinct roots
+ float theta = std::atan2( std::sqrt( -Q ), -0.5f*b );
+ float rho = std::sqrt( 0.25f*b*b - Q );
+
+ float rt = std::pow( rho, 1.0f/3.0f );
+ float ct = std::cos( theta/3.0f );
+ float st = std::sin( theta/3.0f );
+
+ float l1 = ( 1.0f/3.0f )*c2 + 2.0f*rt*ct;
+ float l2 = ( 1.0f/3.0f )*c2 - rt*( ct + ( float )sqrt( 3.0f )*st );
+ float l3 = ( 1.0f/3.0f )*c2 - rt*( ct - ( float )sqrt( 3.0f )*st );
+
+ // pick the larger
+ if( std::fabs( l2 ) > std::fabs( l1 ) )
+ l1 = l2;
+ if( std::fabs( l3 ) > std::fabs( l1 ) )
+ l1 = l3;
+
+ // get the eigenvector
+ return GetMultiplicity1Evector( matrix, l1 );
+ }
+ else // if( -FLT_EPSILON <= Q && Q <= FLT_EPSILON )
+ {
+ // two roots
+ float rt;
+ if( b < 0.0f )
+ rt = -std::pow( -0.5f*b, 1.0f/3.0f );
+ else
+ rt = std::pow( 0.5f*b, 1.0f/3.0f );
+
+ float l1 = ( 1.0f/3.0f )*c2 + rt; // repeated
+ float l2 = ( 1.0f/3.0f )*c2 - 2.0f*rt;
+
+ // get the eigenvector
+ if( std::fabs( l1 ) > std::fabs( l2 ) )
+ return GetMultiplicity2Evector( matrix, l1 );
+ else
+ return GetMultiplicity1Evector( matrix, l2 );
+ }
+}
+
+} // namespace squish