diff options
author | Anton Yabchinskiy <arn@bestmx.ru> | 2015-11-02 20:25:01 +0300 |
---|---|---|
committer | Anton Yabchinskiy <arn@bestmx.ru> | 2015-11-02 20:25:01 +0300 |
commit | 3b9868d2e44740c03861c64020a8b5d4d6da031d (patch) | |
tree | 8ff5f9671122f946487848ce286d336c9b650c2c /drivers/nedmalloc | |
parent | dc8df8a91a995796f0f330bf6bb6b209f6dfce08 (diff) | |
parent | b2f9acb8c96aed0505cbac21661e21e4acef710f (diff) |
Merge branch 'master' of github.com:okamstudio/godot
Diffstat (limited to 'drivers/nedmalloc')
-rw-r--r-- | drivers/nedmalloc/malloc.c.h | 11628 | ||||
-rw-r--r-- | drivers/nedmalloc/nedmalloc.cpp | 2934 | ||||
-rw-r--r-- | drivers/nedmalloc/nedmalloc.h | 604 |
3 files changed, 7583 insertions, 7583 deletions
diff --git a/drivers/nedmalloc/malloc.c.h b/drivers/nedmalloc/malloc.c.h index b9e65637d5..4fec5cc9d4 100644 --- a/drivers/nedmalloc/malloc.c.h +++ b/drivers/nedmalloc/malloc.c.h @@ -1,5814 +1,5814 @@ -#ifdef NEDMALLOC_ENABLED
-/*
- This is a version (aka dlmalloc) of malloc/free/realloc written by
- Doug Lea and released to the public domain, as explained at
- http://creativecommons.org/licenses/publicdomain. Send questions,
- comments, complaints, performance data, etc to dl@cs.oswego.edu
-
-* Version 2.8.4 Wed May 27 09:56:23 2009 Doug Lea (dl at gee)
-
- Note: There may be an updated version of this malloc obtainable at
- ftp://gee.cs.oswego.edu/pub/misc/malloc.c
- Check before installing!
-
-* Quickstart
-
- This library is all in one file to simplify the most common usage:
- ftp it, compile it (-O3), and link it into another program. All of
- the compile-time options default to reasonable values for use on
- most platforms. You might later want to step through various
- compile-time and dynamic tuning options.
-
- For convenience, an include file for code using this malloc is at:
- ftp://gee.cs.oswego.edu/pub/misc/malloc-2.8.4.h
- You don't really need this .h file unless you call functions not
- defined in your system include files. The .h file contains only the
- excerpts from this file needed for using this malloc on ANSI C/C++
- systems, so long as you haven't changed compile-time options about
- naming and tuning parameters. If you do, then you can create your
- own malloc.h that does include all settings by cutting at the point
- indicated below. Note that you may already by default be using a C
- library containing a malloc that is based on some version of this
- malloc (for example in linux). You might still want to use the one
- in this file to customize settings or to avoid overheads associated
- with library versions.
-
-* Vital statistics:
-
- Supported pointer/size_t representation: 4 or 8 bytes
- size_t MUST be an unsigned type of the same width as
- pointers. (If you are using an ancient system that declares
- size_t as a signed type, or need it to be a different width
- than pointers, you can use a previous release of this malloc
- (e.g. 2.7.2) supporting these.)
-
- Alignment: 8 bytes (default)
- This suffices for nearly all current machines and C compilers.
- However, you can define MALLOC_ALIGNMENT to be wider than this
- if necessary (up to 128bytes), at the expense of using more space.
-
- Minimum overhead per allocated chunk: 4 or 8 bytes (if 4byte sizes)
- 8 or 16 bytes (if 8byte sizes)
- Each malloced chunk has a hidden word of overhead holding size
- and status information, and additional cross-check word
- if FOOTERS is defined.
-
- Minimum allocated size: 4-byte ptrs: 16 bytes (including overhead)
- 8-byte ptrs: 32 bytes (including overhead)
-
- Even a request for zero bytes (i.e., malloc(0)) returns a
- pointer to something of the minimum allocatable size.
- The maximum overhead wastage (i.e., number of extra bytes
- allocated than were requested in malloc) is less than or equal
- to the minimum size, except for requests >= mmap_threshold that
- are serviced via mmap(), where the worst case wastage is about
- 32 bytes plus the remainder from a system page (the minimal
- mmap unit); typically 4096 or 8192 bytes.
-
- Security: static-safe; optionally more or less
- The "security" of malloc refers to the ability of malicious
- code to accentuate the effects of errors (for example, freeing
- space that is not currently malloc'ed or overwriting past the
- ends of chunks) in code that calls malloc. This malloc
- guarantees not to modify any memory locations below the base of
- heap, i.e., static variables, even in the presence of usage
- errors. The routines additionally detect most improper frees
- and reallocs. All this holds as long as the static bookkeeping
- for malloc itself is not corrupted by some other means. This
- is only one aspect of security -- these checks do not, and
- cannot, detect all possible programming errors.
-
- If FOOTERS is defined nonzero, then each allocated chunk
- carries an additional check word to verify that it was malloced
- from its space. These check words are the same within each
- execution of a program using malloc, but differ across
- executions, so externally crafted fake chunks cannot be
- freed. This improves security by rejecting frees/reallocs that
- could corrupt heap memory, in addition to the checks preventing
- writes to statics that are always on. This may further improve
- security at the expense of time and space overhead. (Note that
- FOOTERS may also be worth using with MSPACES.)
-
- By default detected errors cause the program to abort (calling
- "abort()"). You can override this to instead proceed past
- errors by defining PROCEED_ON_ERROR. In this case, a bad free
- has no effect, and a malloc that encounters a bad address
- caused by user overwrites will ignore the bad address by
- dropping pointers and indices to all known memory. This may
- be appropriate for programs that should continue if at all
- possible in the face of programming errors, although they may
- run out of memory because dropped memory is never reclaimed.
-
- If you don't like either of these options, you can define
- CORRUPTION_ERROR_ACTION and USAGE_ERROR_ACTION to do anything
- else. And if if you are sure that your program using malloc has
- no errors or vulnerabilities, you can define INSECURE to 1,
- which might (or might not) provide a small performance improvement.
-
- Thread-safety: NOT thread-safe unless USE_LOCKS defined
- When USE_LOCKS is defined, each public call to malloc, free,
- etc is surrounded with either a pthread mutex or a win32
- spinlock (depending on WIN32). This is not especially fast, and
- can be a major bottleneck. It is designed only to provide
- minimal protection in concurrent environments, and to provide a
- basis for extensions. If you are using malloc in a concurrent
- program, consider instead using nedmalloc
- (http://www.nedprod.com/programs/portable/nedmalloc/) or
- ptmalloc (See http://www.malloc.de), which are derived
- from versions of this malloc.
-
- System requirements: Any combination of MORECORE and/or MMAP/MUNMAP
- This malloc can use unix sbrk or any emulation (invoked using
- the CALL_MORECORE macro) and/or mmap/munmap or any emulation
- (invoked using CALL_MMAP/CALL_MUNMAP) to get and release system
- memory. On most unix systems, it tends to work best if both
- MORECORE and MMAP are enabled. On Win32, it uses emulations
- based on VirtualAlloc. It also uses common C library functions
- like memset.
-
- Compliance: I believe it is compliant with the Single Unix Specification
- (See http://www.unix.org). Also SVID/XPG, ANSI C, and probably
- others as well.
-
-* Overview of algorithms
-
- This is not the fastest, most space-conserving, most portable, or
- most tunable malloc ever written. However it is among the fastest
- while also being among the most space-conserving, portable and
- tunable. Consistent balance across these factors results in a good
- general-purpose allocator for malloc-intensive programs.
-
- In most ways, this malloc is a best-fit allocator. Generally, it
- chooses the best-fitting existing chunk for a request, with ties
- broken in approximately least-recently-used order. (This strategy
- normally maintains low fragmentation.) However, for requests less
- than 256bytes, it deviates from best-fit when there is not an
- exactly fitting available chunk by preferring to use space adjacent
- to that used for the previous small request, as well as by breaking
- ties in approximately most-recently-used order. (These enhance
- locality of series of small allocations.) And for very large requests
- (>= 256Kb by default), it relies on system memory mapping
- facilities, if supported. (This helps avoid carrying around and
- possibly fragmenting memory used only for large chunks.)
-
- All operations (except malloc_stats and mallinfo) have execution
- times that are bounded by a constant factor of the number of bits in
- a size_t, not counting any clearing in calloc or copying in realloc,
- or actions surrounding MORECORE and MMAP that have times
- proportional to the number of non-contiguous regions returned by
- system allocation routines, which is often just 1. In real-time
- applications, you can optionally suppress segment traversals using
- NO_SEGMENT_TRAVERSAL, which assures bounded execution even when
- system allocators return non-contiguous spaces, at the typical
- expense of carrying around more memory and increased fragmentation.
-
- The implementation is not very modular and seriously overuses
- macros. Perhaps someday all C compilers will do as good a job
- inlining modular code as can now be done by brute-force expansion,
- but now, enough of them seem not to.
-
- Some compilers issue a lot of warnings about code that is
- dead/unreachable only on some platforms, and also about intentional
- uses of negation on unsigned types. All known cases of each can be
- ignored.
-
- For a longer but out of date high-level description, see
- http://gee.cs.oswego.edu/dl/html/malloc.html
-
-* MSPACES
- If MSPACES is defined, then in addition to malloc, free, etc.,
- this file also defines mspace_malloc, mspace_free, etc. These
- are versions of malloc routines that take an "mspace" argument
- obtained using create_mspace, to control all internal bookkeeping.
- If ONLY_MSPACES is defined, only these versions are compiled.
- So if you would like to use this allocator for only some allocations,
- and your system malloc for others, you can compile with
- ONLY_MSPACES and then do something like...
- static mspace mymspace = create_mspace(0,0); // for example
- #define mymalloc(bytes) mspace_malloc(mymspace, bytes)
-
- (Note: If you only need one instance of an mspace, you can instead
- use "USE_DL_PREFIX" to relabel the global malloc.)
-
- You can similarly create thread-local allocators by storing
- mspaces as thread-locals. For example:
- static __thread mspace tlms = 0;
- void* tlmalloc(size_t bytes) {
- if (tlms == 0) tlms = create_mspace(0, 0);
- return mspace_malloc(tlms, bytes);
- }
- void tlfree(void* mem) { mspace_free(tlms, mem); }
-
- Unless FOOTERS is defined, each mspace is completely independent.
- You cannot allocate from one and free to another (although
- conformance is only weakly checked, so usage errors are not always
- caught). If FOOTERS is defined, then each chunk carries around a tag
- indicating its originating mspace, and frees are directed to their
- originating spaces.
-
- ------------------------- Compile-time options ---------------------------
-
-Be careful in setting #define values for numerical constants of type
-size_t. On some systems, literal values are not automatically extended
-to size_t precision unless they are explicitly casted. You can also
-use the symbolic values MAX_SIZE_T, SIZE_T_ONE, etc below.
-
-WIN32 default: defined if _WIN32 defined
- Defining WIN32 sets up defaults for MS environment and compilers.
- Otherwise defaults are for unix. Beware that there seem to be some
- cases where this malloc might not be a pure drop-in replacement for
- Win32 malloc: Random-looking failures from Win32 GDI API's (eg;
- SetDIBits()) may be due to bugs in some video driver implementations
- when pixel buffers are malloc()ed, and the region spans more than
- one VirtualAlloc()ed region. Because dlmalloc uses a small (64Kb)
- default granularity, pixel buffers may straddle virtual allocation
- regions more often than when using the Microsoft allocator. You can
- avoid this by using VirtualAlloc() and VirtualFree() for all pixel
- buffers rather than using malloc(). If this is not possible,
- recompile this malloc with a larger DEFAULT_GRANULARITY.
-
-MALLOC_ALIGNMENT default: (size_t)8
- Controls the minimum alignment for malloc'ed chunks. It must be a
- power of two and at least 8, even on machines for which smaller
- alignments would suffice. It may be defined as larger than this
- though. Note however that code and data structures are optimized for
- the case of 8-byte alignment.
-
-MSPACES default: 0 (false)
- If true, compile in support for independent allocation spaces.
- This is only supported if HAVE_MMAP is true.
-
-ONLY_MSPACES default: 0 (false)
- If true, only compile in mspace versions, not regular versions.
-
-USE_LOCKS default: 0 (false)
- Causes each call to each public routine to be surrounded with
- pthread or WIN32 mutex lock/unlock. (If set true, this can be
- overridden on a per-mspace basis for mspace versions.) If set to a
- non-zero value other than 1, locks are used, but their
- implementation is left out, so lock functions must be supplied manually,
- as described below.
-
-USE_SPIN_LOCKS default: 1 iff USE_LOCKS and on x86 using gcc or MSC
- If true, uses custom spin locks for locking. This is currently
- supported only for x86 platforms using gcc or recent MS compilers.
- Otherwise, posix locks or win32 critical sections are used.
-
-FOOTERS default: 0
- If true, provide extra checking and dispatching by placing
- information in the footers of allocated chunks. This adds
- space and time overhead.
-
-INSECURE default: 0
- If true, omit checks for usage errors and heap space overwrites.
-
-USE_DL_PREFIX default: NOT defined
- Causes compiler to prefix all public routines with the string 'dl'.
- This can be useful when you only want to use this malloc in one part
- of a program, using your regular system malloc elsewhere.
-
-ABORT default: defined as abort()
- Defines how to abort on failed checks. On most systems, a failed
- check cannot die with an "assert" or even print an informative
- message, because the underlying print routines in turn call malloc,
- which will fail again. Generally, the best policy is to simply call
- abort(). It's not very useful to do more than this because many
- errors due to overwriting will show up as address faults (null, odd
- addresses etc) rather than malloc-triggered checks, so will also
- abort. Also, most compilers know that abort() does not return, so
- can better optimize code conditionally calling it.
-
-PROCEED_ON_ERROR default: defined as 0 (false)
- Controls whether detected bad addresses cause them to bypassed
- rather than aborting. If set, detected bad arguments to free and
- realloc are ignored. And all bookkeeping information is zeroed out
- upon a detected overwrite of freed heap space, thus losing the
- ability to ever return it from malloc again, but enabling the
- application to proceed. If PROCEED_ON_ERROR is defined, the
- static variable malloc_corruption_error_count is compiled in
- and can be examined to see if errors have occurred. This option
- generates slower code than the default abort policy.
-
-DEBUG default: NOT defined
- The DEBUG setting is mainly intended for people trying to modify
- this code or diagnose problems when porting to new platforms.
- However, it may also be able to better isolate user errors than just
- using runtime checks. The assertions in the check routines spell
- out in more detail the assumptions and invariants underlying the
- algorithms. The checking is fairly extensive, and will slow down
- execution noticeably. Calling malloc_stats or mallinfo with DEBUG
- set will attempt to check every non-mmapped allocated and free chunk
- in the course of computing the summaries.
-
-ABORT_ON_ASSERT_FAILURE default: defined as 1 (true)
- Debugging assertion failures can be nearly impossible if your
- version of the assert macro causes malloc to be called, which will
- lead to a cascade of further failures, blowing the runtime stack.
- ABORT_ON_ASSERT_FAILURE cause assertions failures to call abort(),
- which will usually make debugging easier.
-
-MALLOC_FAILURE_ACTION default: sets errno to ENOMEM, or no-op on win32
- The action to take before "return 0" when malloc fails to be able to
- return memory because there is none available.
-
-HAVE_MORECORE default: 1 (true) unless win32 or ONLY_MSPACES
- True if this system supports sbrk or an emulation of it.
-
-MORECORE default: sbrk
- The name of the sbrk-style system routine to call to obtain more
- memory. See below for guidance on writing custom MORECORE
- functions. The type of the argument to sbrk/MORECORE varies across
- systems. It cannot be size_t, because it supports negative
- arguments, so it is normally the signed type of the same width as
- size_t (sometimes declared as "intptr_t"). It doesn't much matter
- though. Internally, we only call it with arguments less than half
- the max value of a size_t, which should work across all reasonable
- possibilities, although sometimes generating compiler warnings.
-
-MORECORE_CONTIGUOUS default: 1 (true) if HAVE_MORECORE
- If true, take advantage of fact that consecutive calls to MORECORE
- with positive arguments always return contiguous increasing
- addresses. This is true of unix sbrk. It does not hurt too much to
- set it true anyway, since malloc copes with non-contiguities.
- Setting it false when definitely non-contiguous saves time
- and possibly wasted space it would take to discover this though.
-
-MORECORE_CANNOT_TRIM default: NOT defined
- True if MORECORE cannot release space back to the system when given
- negative arguments. This is generally necessary only if you are
- using a hand-crafted MORECORE function that cannot handle negative
- arguments.
-
-NO_SEGMENT_TRAVERSAL default: 0
- If non-zero, suppresses traversals of memory segments
- returned by either MORECORE or CALL_MMAP. This disables
- merging of segments that are contiguous, and selectively
- releasing them to the OS if unused, but bounds execution times.
-
-HAVE_MMAP default: 1 (true)
- True if this system supports mmap or an emulation of it. If so, and
- HAVE_MORECORE is not true, MMAP is used for all system
- allocation. If set and HAVE_MORECORE is true as well, MMAP is
- primarily used to directly allocate very large blocks. It is also
- used as a backup strategy in cases where MORECORE fails to provide
- space from system. Note: A single call to MUNMAP is assumed to be
- able to unmap memory that may have be allocated using multiple calls
- to MMAP, so long as they are adjacent.
-
-HAVE_MREMAP default: 1 on linux, else 0
- If true realloc() uses mremap() to re-allocate large blocks and
- extend or shrink allocation spaces.
-
-MMAP_CLEARS default: 1 except on WINCE.
- True if mmap clears memory so calloc doesn't need to. This is true
- for standard unix mmap using /dev/zero and on WIN32 except for WINCE.
-
-USE_BUILTIN_FFS default: 0 (i.e., not used)
- Causes malloc to use the builtin ffs() function to compute indices.
- Some compilers may recognize and intrinsify ffs to be faster than the
- supplied C version. Also, the case of x86 using gcc is special-cased
- to an asm instruction, so is already as fast as it can be, and so
- this setting has no effect. Similarly for Win32 under recent MS compilers.
- (On most x86s, the asm version is only slightly faster than the C version.)
-
-malloc_getpagesize default: derive from system includes, or 4096.
- The system page size. To the extent possible, this malloc manages
- memory from the system in page-size units. This may be (and
- usually is) a function rather than a constant. This is ignored
- if WIN32, where page size is determined using getSystemInfo during
- initialization. This may be several megabytes if ENABLE_LARGE_PAGES
- is enabled.
-
-ENABLE_LARGE_PAGES default: NOT defined
- Causes the system page size to be the value of GetLargePageMinimum()
- if that function is available (Windows Server 2003/Vista or later).
- This allows the use of large page entries in the MMU which can
- significantly improve performance in large working set applications
- as TLB cache load is reduced by a factor of three. Note that enabling
- this option is equal to locking the process' memory in current
- implementations of Windows and requires the SE_LOCK_MEMORY_PRIVILEGE
- to be held by the process in order to succeed.
-
-USE_DEV_RANDOM default: 0 (i.e., not used)
- Causes malloc to use /dev/random to initialize secure magic seed for
- stamping footers. Otherwise, the current time is used.
-
-NO_MALLINFO default: 0
- If defined, don't compile "mallinfo". This can be a simple way
- of dealing with mismatches between system declarations and
- those in this file.
-
-MALLINFO_FIELD_TYPE default: size_t
- The type of the fields in the mallinfo struct. This was originally
- defined as "int" in SVID etc, but is more usefully defined as
- size_t. The value is used only if HAVE_USR_INCLUDE_MALLOC_H is not set
-
-REALLOC_ZERO_BYTES_FREES default: not defined
- This should be set if a call to realloc with zero bytes should
- be the same as a call to free. Some people think it should. Otherwise,
- since this malloc returns a unique pointer for malloc(0), so does
- realloc(p, 0).
-
-LACKS_UNISTD_H, LACKS_FCNTL_H, LACKS_SYS_PARAM_H, LACKS_SYS_MMAN_H
-LACKS_STRINGS_H, LACKS_STRING_H, LACKS_SYS_TYPES_H, LACKS_ERRNO_H
-LACKS_STDLIB_H default: NOT defined unless on WIN32
- Define these if your system does not have these header files.
- You might need to manually insert some of the declarations they provide.
-
-DEFAULT_GRANULARITY default: page size if MORECORE_CONTIGUOUS,
- system_info.dwAllocationGranularity in WIN32,
- GetLargePageMinimum() if ENABLE_LARGE_PAGES,
- otherwise 64K.
- Also settable using mallopt(M_GRANULARITY, x)
- The unit for allocating and deallocating memory from the system. On
- most systems with contiguous MORECORE, there is no reason to
- make this more than a page. However, systems with MMAP tend to
- either require or encourage larger granularities. You can increase
- this value to prevent system allocation functions to be called so
- often, especially if they are slow. The value must be at least one
- page and must be a power of two. Setting to 0 causes initialization
- to either page size or win32 region size. (Note: In previous
- versions of malloc, the equivalent of this option was called
- "TOP_PAD")
-
-DEFAULT_GRANULARITY_ALIGNED default: undefined (which means page size)
- Whether to enforce alignment when allocating and deallocating memory
- from the system i.e. the base address of all allocations will be
- aligned to DEFAULT_GRANULARITY if it is set. Note that enabling this carries
- some overhead as multiple calls must now be made when probing for a valid
- aligned value, however it does greatly ease the checking for whether
- a given memory pointer was allocated by this allocator rather than
- some other.
-
-DEFAULT_TRIM_THRESHOLD default: 2MB
- Also settable using mallopt(M_TRIM_THRESHOLD, x)
- The maximum amount of unused top-most memory to keep before
- releasing via malloc_trim in free(). Automatic trimming is mainly
- useful in long-lived programs using contiguous MORECORE. Because
- trimming via sbrk can be slow on some systems, and can sometimes be
- wasteful (in cases where programs immediately afterward allocate
- more large chunks) the value should be high enough so that your
- overall system performance would improve by releasing this much
- memory. As a rough guide, you might set to a value close to the
- average size of a process (program) running on your system.
- Releasing this much memory would allow such a process to run in
- memory. Generally, it is worth tuning trim thresholds when a
- program undergoes phases where several large chunks are allocated
- and released in ways that can reuse each other's storage, perhaps
- mixed with phases where there are no such chunks at all. The trim
- value must be greater than page size to have any useful effect. To
- disable trimming completely, you can set to MAX_SIZE_T. Note that the trick
- some people use of mallocing a huge space and then freeing it at
- program startup, in an attempt to reserve system memory, doesn't
- have the intended effect under automatic trimming, since that memory
- will immediately be returned to the system.
-
-DEFAULT_MMAP_THRESHOLD default: 256K
- Also settable using mallopt(M_MMAP_THRESHOLD, x)
- The request size threshold for using MMAP to directly service a
- request. Requests of at least this size that cannot be allocated
- using already-existing space will be serviced via mmap. (If enough
- normal freed space already exists it is used instead.) Using mmap
- segregates relatively large chunks of memory so that they can be
- individually obtained and released from the host system. A request
- serviced through mmap is never reused by any other request (at least
- not directly; the system may just so happen to remap successive
- requests to the same locations). Segregating space in this way has
- the benefits that: Mmapped space can always be individually released
- back to the system, which helps keep the system level memory demands
- of a long-lived program low. Also, mapped memory doesn't become
- `locked' between other chunks, as can happen with normally allocated
- chunks, which means that even trimming via malloc_trim would not
- release them. However, it has the disadvantage that the space
- cannot be reclaimed, consolidated, and then used to service later
- requests, as happens with normal chunks. The advantages of mmap
- nearly always outweigh disadvantages for "large" chunks, but the
- value of "large" may vary across systems. The default is an
- empirically derived value that works well in most systems. You can
- disable mmap by setting to MAX_SIZE_T.
-
-MAX_RELEASE_CHECK_RATE default: 4095 unless not HAVE_MMAP
- The number of consolidated frees between checks to release
- unused segments when freeing. When using non-contiguous segments,
- especially with multiple mspaces, checking only for topmost space
- doesn't always suffice to trigger trimming. To compensate for this,
- free() will, with a period of MAX_RELEASE_CHECK_RATE (or the
- current number of segments, if greater) try to release unused
- segments to the OS when freeing chunks that result in
- consolidation. The best value for this parameter is a compromise
- between slowing down frees with relatively costly checks that
- rarely trigger versus holding on to unused memory. To effectively
- disable, set to MAX_SIZE_T. This may lead to a very slight speed
- improvement at the expense of carrying around more memory.
-*/
-
-/* Version identifier to allow people to support multiple versions */
-#ifndef DLMALLOC_VERSION
-#define DLMALLOC_VERSION 20804
-#endif /* DLMALLOC_VERSION */
-
-#ifndef WIN32
-#ifdef _WIN32
-#define WIN32 1
-#endif /* _WIN32 */
-#ifdef _WIN32_WCE
-#define LACKS_FCNTL_H
-#define WIN32 1
-#endif /* _WIN32_WCE */
-#endif /* WIN32 */
-#ifdef WIN32
-#define WIN32_LEAN_AND_MEAN
-#include <windows.h>
-#include <tchar.h>
-#define HAVE_MMAP 1
-#define HAVE_MORECORE 0
-#define LACKS_UNISTD_H
-#define LACKS_SYS_PARAM_H
-#define LACKS_SYS_MMAN_H
-#define LACKS_STRING_H
-#define LACKS_STRINGS_H
-#define LACKS_SYS_TYPES_H
-#define LACKS_ERRNO_H
-#ifndef MALLOC_FAILURE_ACTION
-#define MALLOC_FAILURE_ACTION
-#endif /* MALLOC_FAILURE_ACTION */
-#ifdef _WIN32_WCE /* WINCE reportedly does not clear */
-#define MMAP_CLEARS 0
-#else
-#define MMAP_CLEARS 1
-#endif /* _WIN32_WCE */
-#endif /* WIN32 */
-
-#if defined(DARWIN) || defined(_DARWIN)
-/* Mac OSX docs advise not to use sbrk; it seems better to use mmap */
-#ifndef HAVE_MORECORE
-#define HAVE_MORECORE 0
-#define HAVE_MMAP 1
-/* OSX allocators provide 16 byte alignment */
-#ifndef MALLOC_ALIGNMENT
-#define MALLOC_ALIGNMENT ((size_t)16U)
-#endif
-#endif /* HAVE_MORECORE */
-#endif /* DARWIN */
-
-#ifndef LACKS_SYS_TYPES_H
-#include <sys/types.h> /* For size_t */
-#endif /* LACKS_SYS_TYPES_H */
-
-#if (defined(__GNUC__) && ((defined(__i386__) || defined(__x86_64__)))) || (defined(_MSC_VER) && _MSC_VER>=1310)
-#define SPIN_LOCKS_AVAILABLE 1
-#else
-#define SPIN_LOCKS_AVAILABLE 0
-#endif
-
-/* The maximum possible size_t value has all bits set */
-#define MAX_SIZE_T (~(size_t)0)
-
-#ifndef ONLY_MSPACES
-#define ONLY_MSPACES 0 /* define to a value */
-#else
-#define ONLY_MSPACES 1
-#endif /* ONLY_MSPACES */
-#ifndef MSPACES
-#if ONLY_MSPACES
-#define MSPACES 1
-#else /* ONLY_MSPACES */
-#define MSPACES 0
-#endif /* ONLY_MSPACES */
-#endif /* MSPACES */
-#ifndef MALLOC_ALIGNMENT
-#define MALLOC_ALIGNMENT ((size_t)8U)
-#endif /* MALLOC_ALIGNMENT */
-#ifndef FOOTERS
-#define FOOTERS 0
-#endif /* FOOTERS */
-#ifndef ABORT
-#define ABORT abort()
-#endif /* ABORT */
-#ifndef ABORT_ON_ASSERT_FAILURE
-#define ABORT_ON_ASSERT_FAILURE 1
-#endif /* ABORT_ON_ASSERT_FAILURE */
-#ifndef PROCEED_ON_ERROR
-#define PROCEED_ON_ERROR 0
-#endif /* PROCEED_ON_ERROR */
-#ifndef USE_LOCKS
-#define USE_LOCKS 0
-#endif /* USE_LOCKS */
-#ifndef USE_SPIN_LOCKS
-#if USE_LOCKS && SPIN_LOCKS_AVAILABLE
-#define USE_SPIN_LOCKS 1
-#else
-#define USE_SPIN_LOCKS 0
-#endif /* USE_LOCKS && SPIN_LOCKS_AVAILABLE. */
-#endif /* USE_SPIN_LOCKS */
-#ifndef INSECURE
-#define INSECURE 0
-#endif /* INSECURE */
-#ifndef HAVE_MMAP
-#define HAVE_MMAP 1
-#endif /* HAVE_MMAP */
-#ifndef MMAP_CLEARS
-#define MMAP_CLEARS 1
-#endif /* MMAP_CLEARS */
-#ifndef HAVE_MREMAP
-#ifdef linux
-#define HAVE_MREMAP 1
-#else /* linux */
-#define HAVE_MREMAP 0
-#endif /* linux */
-#endif /* HAVE_MREMAP */
-#ifndef MALLOC_FAILURE_ACTION
-#define MALLOC_FAILURE_ACTION errno = ENOMEM;
-#endif /* MALLOC_FAILURE_ACTION */
-#ifndef HAVE_MORECORE
-#if ONLY_MSPACES
-#define HAVE_MORECORE 0
-#else /* ONLY_MSPACES */
-#define HAVE_MORECORE 1
-#endif /* ONLY_MSPACES */
-#endif /* HAVE_MORECORE */
-#if !HAVE_MORECORE
-#define MORECORE_CONTIGUOUS 0
-#else /* !HAVE_MORECORE */
-#define MORECORE_DEFAULT sbrk
-#ifndef MORECORE_CONTIGUOUS
-#define MORECORE_CONTIGUOUS 1
-#endif /* MORECORE_CONTIGUOUS */
-#endif /* HAVE_MORECORE */
-#ifndef DEFAULT_GRANULARITY
-#if (MORECORE_CONTIGUOUS || defined(WIN32))
-#define DEFAULT_GRANULARITY (0) /* 0 means to compute in init_mparams */
-#else /* MORECORE_CONTIGUOUS */
-#define DEFAULT_GRANULARITY ((size_t)64U * (size_t)1024U)
-#endif /* MORECORE_CONTIGUOUS */
-#endif /* DEFAULT_GRANULARITY */
-#ifndef DEFAULT_TRIM_THRESHOLD
-#ifndef MORECORE_CANNOT_TRIM
-#define DEFAULT_TRIM_THRESHOLD ((size_t)2U * (size_t)1024U * (size_t)1024U)
-#else /* MORECORE_CANNOT_TRIM */
-#define DEFAULT_TRIM_THRESHOLD MAX_SIZE_T
-#endif /* MORECORE_CANNOT_TRIM */
-#endif /* DEFAULT_TRIM_THRESHOLD */
-#ifndef DEFAULT_MMAP_THRESHOLD
-#if HAVE_MMAP
-#define DEFAULT_MMAP_THRESHOLD ((size_t)256U * (size_t)1024U)
-#else /* HAVE_MMAP */
-#define DEFAULT_MMAP_THRESHOLD MAX_SIZE_T
-#endif /* HAVE_MMAP */
-#endif /* DEFAULT_MMAP_THRESHOLD */
-#ifndef MAX_RELEASE_CHECK_RATE
-#if HAVE_MMAP
-#define MAX_RELEASE_CHECK_RATE 4095
-#else
-#define MAX_RELEASE_CHECK_RATE MAX_SIZE_T
-#endif /* HAVE_MMAP */
-#endif /* MAX_RELEASE_CHECK_RATE */
-#ifndef USE_BUILTIN_FFS
-#define USE_BUILTIN_FFS 0
-#endif /* USE_BUILTIN_FFS */
-#ifndef USE_DEV_RANDOM
-#define USE_DEV_RANDOM 0
-#endif /* USE_DEV_RANDOM */
-#ifndef NO_MALLINFO
-#define NO_MALLINFO 0
-#endif /* NO_MALLINFO */
-#ifndef MALLINFO_FIELD_TYPE
-#define MALLINFO_FIELD_TYPE size_t
-#endif /* MALLINFO_FIELD_TYPE */
-#ifndef NO_SEGMENT_TRAVERSAL
-#define NO_SEGMENT_TRAVERSAL 0
-#endif /* NO_SEGMENT_TRAVERSAL */
-
-/*
- mallopt tuning options. SVID/XPG defines four standard parameter
- numbers for mallopt, normally defined in malloc.h. None of these
- are used in this malloc, so setting them has no effect. But this
- malloc does support the following options.
-*/
-
-#define M_TRIM_THRESHOLD (-1)
-#define M_GRANULARITY (-2)
-#define M_MMAP_THRESHOLD (-3)
-
-/* ------------------------ Mallinfo declarations ------------------------ */
-
-#if !NO_MALLINFO
-/*
- This version of malloc supports the standard SVID/XPG mallinfo
- routine that returns a struct containing usage properties and
- statistics. It should work on any system that has a
- /usr/include/malloc.h defining struct mallinfo. The main
- declaration needed is the mallinfo struct that is returned (by-copy)
- by mallinfo(). The malloinfo struct contains a bunch of fields that
- are not even meaningful in this version of malloc. These fields are
- are instead filled by mallinfo() with other numbers that might be of
- interest.
-
- HAVE_USR_INCLUDE_MALLOC_H should be set if you have a
- /usr/include/malloc.h file that includes a declaration of struct
- mallinfo. If so, it is included; else a compliant version is
- declared below. These must be precisely the same for mallinfo() to
- work. The original SVID version of this struct, defined on most
- systems with mallinfo, declares all fields as ints. But some others
- define as unsigned long. If your system defines the fields using a
- type of different width than listed here, you MUST #include your
- system version and #define HAVE_USR_INCLUDE_MALLOC_H.
-*/
-
-/* #define HAVE_USR_INCLUDE_MALLOC_H */
-
-#ifdef HAVE_USR_INCLUDE_MALLOC_H
-#include "/usr/include/malloc.h"
-#else /* HAVE_USR_INCLUDE_MALLOC_H */
-#ifndef STRUCT_MALLINFO_DECLARED
-#define STRUCT_MALLINFO_DECLARED 1
-struct mallinfo {
- MALLINFO_FIELD_TYPE arena; /* non-mmapped space allocated from system */
- MALLINFO_FIELD_TYPE ordblks; /* number of free chunks */
- MALLINFO_FIELD_TYPE smblks; /* always 0 */
- MALLINFO_FIELD_TYPE hblks; /* always 0 */
- MALLINFO_FIELD_TYPE hblkhd; /* space in mmapped regions */
- MALLINFO_FIELD_TYPE usmblks; /* maximum total allocated space */
- MALLINFO_FIELD_TYPE fsmblks; /* always 0 */
- MALLINFO_FIELD_TYPE uordblks; /* total allocated space */
- MALLINFO_FIELD_TYPE fordblks; /* total free space */
- MALLINFO_FIELD_TYPE keepcost; /* releasable (via malloc_trim) space */
-};
-#endif /* STRUCT_MALLINFO_DECLARED */
-#endif /* HAVE_USR_INCLUDE_MALLOC_H */
-#endif /* NO_MALLINFO */
-
-/*
- Try to persuade compilers to inline. The most critical functions for
- inlining are defined as macros, so these aren't used for them.
-*/
-
-#ifndef FORCEINLINE
- #if defined(__GNUC__)
-#define FORCEINLINE __inline __attribute__ ((always_inline))
- #elif defined(_MSC_VER)
- #define FORCEINLINE __forceinline
- #endif
-#endif
-#ifndef NOINLINE
- #if defined(__GNUC__)
- #define NOINLINE __attribute__ ((noinline))
- #elif defined(_MSC_VER)
- #define NOINLINE __declspec(noinline)
- #else
- #define NOINLINE
- #endif
-#endif
-
-#ifdef __cplusplus
-extern "C" {
-#ifndef FORCEINLINE
- #define FORCEINLINE inline
-#endif
-#endif /* __cplusplus */
-#ifndef FORCEINLINE
- #define FORCEINLINE
-#endif
-
-#if !ONLY_MSPACES
-
-/* ------------------- Declarations of public routines ------------------- */
-
-#ifndef USE_DL_PREFIX
-#define dlcalloc calloc
-#define dlfree free
-#define dlmalloc malloc
-#define dlmemalign memalign
-#define dlrealloc realloc
-#define dlvalloc valloc
-#define dlpvalloc pvalloc
-#define dlmallinfo mallinfo
-#define dlmallopt mallopt
-#define dlmalloc_trim malloc_trim
-#define dlmalloc_stats malloc_stats
-#define dlmalloc_usable_size malloc_usable_size
-#define dlmalloc_footprint malloc_footprint
-#define dlmalloc_max_footprint malloc_max_footprint
-#define dlindependent_calloc independent_calloc
-#define dlindependent_comalloc independent_comalloc
-#endif /* USE_DL_PREFIX */
-
-
-/*
- malloc(size_t n)
- Returns a pointer to a newly allocated chunk of at least n bytes, or
- null if no space is available, in which case errno is set to ENOMEM
- on ANSI C systems.
-
- If n is zero, malloc returns a minimum-sized chunk. (The minimum
- size is 16 bytes on most 32bit systems, and 32 bytes on 64bit
- systems.) Note that size_t is an unsigned type, so calls with
- arguments that would be negative if signed are interpreted as
- requests for huge amounts of space, which will often fail. The
- maximum supported value of n differs across systems, but is in all
- cases less than the maximum representable value of a size_t.
-*/
-void* dlmalloc(size_t);
-
-/*
- free(void* p)
- Releases the chunk of memory pointed to by p, that had been previously
- allocated using malloc or a related routine such as realloc.
- It has no effect if p is null. If p was not malloced or already
- freed, free(p) will by default cause the current program to abort.
-*/
-void dlfree(void*);
-
-/*
- calloc(size_t n_elements, size_t element_size);
- Returns a pointer to n_elements * element_size bytes, with all locations
- set to zero.
-*/
-void* dlcalloc(size_t, size_t);
-
-/*
- realloc(void* p, size_t n)
- Returns a pointer to a chunk of size n that contains the same data
- as does chunk p up to the minimum of (n, p's size) bytes, or null
- if no space is available.
-
- The returned pointer may or may not be the same as p. The algorithm
- prefers extending p in most cases when possible, otherwise it
- employs the equivalent of a malloc-copy-free sequence.
-
- If p is null, realloc is equivalent to malloc.
-
- If space is not available, realloc returns null, errno is set (if on
- ANSI) and p is NOT freed.
-
- if n is for fewer bytes than already held by p, the newly unused
- space is lopped off and freed if possible. realloc with a size
- argument of zero (re)allocates a minimum-sized chunk.
-
- The old unix realloc convention of allowing the last-free'd chunk
- to be used as an argument to realloc is not supported.
-*/
-
-void* dlrealloc(void*, size_t);
-
-/*
- memalign(size_t alignment, size_t n);
- Returns a pointer to a newly allocated chunk of n bytes, aligned
- in accord with the alignment argument.
-
- The alignment argument should be a power of two. If the argument is
- not a power of two, the nearest greater power is used.
- 8-byte alignment is guaranteed by normal malloc calls, so don't
- bother calling memalign with an argument of 8 or less.
-
- Overreliance on memalign is a sure way to fragment space.
-*/
-void* dlmemalign(size_t, size_t);
-
-/*
- valloc(size_t n);
- Equivalent to memalign(pagesize, n), where pagesize is the page
- size of the system. If the pagesize is unknown, 4096 is used.
-*/
-void* dlvalloc(size_t);
-
-/*
- mallopt(int parameter_number, int parameter_value)
- Sets tunable parameters The format is to provide a
- (parameter-number, parameter-value) pair. mallopt then sets the
- corresponding parameter to the argument value if it can (i.e., so
- long as the value is meaningful), and returns 1 if successful else
- 0. To workaround the fact that mallopt is specified to use int,
- not size_t parameters, the value -1 is specially treated as the
- maximum unsigned size_t value.
-
- SVID/XPG/ANSI defines four standard param numbers for mallopt,
- normally defined in malloc.h. None of these are use in this malloc,
- so setting them has no effect. But this malloc also supports other
- options in mallopt. See below for details. Briefly, supported
- parameters are as follows (listed defaults are for "typical"
- configurations).
-
- Symbol param # default allowed param values
- M_TRIM_THRESHOLD -1 2*1024*1024 any (-1 disables)
- M_GRANULARITY -2 page size any power of 2 >= page size
- M_MMAP_THRESHOLD -3 256*1024 any (or 0 if no MMAP support)
-*/
-int dlmallopt(int, int);
-
-/*
- malloc_footprint();
- Returns the number of bytes obtained from the system. The total
- number of bytes allocated by malloc, realloc etc., is less than this
- value. Unlike mallinfo, this function returns only a precomputed
- result, so can be called frequently to monitor memory consumption.
- Even if locks are otherwise defined, this function does not use them,
- so results might not be up to date.
-*/
-size_t dlmalloc_footprint(void);
-
-/*
- malloc_max_footprint();
- Returns the maximum number of bytes obtained from the system. This
- value will be greater than current footprint if deallocated space
- has been reclaimed by the system. The peak number of bytes allocated
- by malloc, realloc etc., is less than this value. Unlike mallinfo,
- this function returns only a precomputed result, so can be called
- frequently to monitor memory consumption. Even if locks are
- otherwise defined, this function does not use them, so results might
- not be up to date.
-*/
-size_t dlmalloc_max_footprint(void);
-
-#if !NO_MALLINFO
-/*
- mallinfo()
- Returns (by copy) a struct containing various summary statistics:
-
- arena: current total non-mmapped bytes allocated from system
- ordblks: the number of free chunks
- smblks: always zero.
- hblks: current number of mmapped regions
- hblkhd: total bytes held in mmapped regions
- usmblks: the maximum total allocated space. This will be greater
- than current total if trimming has occurred.
- fsmblks: always zero
- uordblks: current total allocated space (normal or mmapped)
- fordblks: total free space
- keepcost: the maximum number of bytes that could ideally be released
- back to system via malloc_trim. ("ideally" means that
- it ignores page restrictions etc.)
-
- Because these fields are ints, but internal bookkeeping may
- be kept as longs, the reported values may wrap around zero and
- thus be inaccurate.
-*/
-struct mallinfo dlmallinfo(void);
-#endif /* NO_MALLINFO */
-
-/*
- independent_calloc(size_t n_elements, size_t element_size, void* chunks[]);
-
- independent_calloc is similar to calloc, but instead of returning a
- single cleared space, it returns an array of pointers to n_elements
- independent elements that can hold contents of size elem_size, each
- of which starts out cleared, and can be independently freed,
- realloc'ed etc. The elements are guaranteed to be adjacently
- allocated (this is not guaranteed to occur with multiple callocs or
- mallocs), which may also improve cache locality in some
- applications.
-
- The "chunks" argument is optional (i.e., may be null, which is
- probably the most typical usage). If it is null, the returned array
- is itself dynamically allocated and should also be freed when it is
- no longer needed. Otherwise, the chunks array must be of at least
- n_elements in length. It is filled in with the pointers to the
- chunks.
-
- In either case, independent_calloc returns this pointer array, or
- null if the allocation failed. If n_elements is zero and "chunks"
- is null, it returns a chunk representing an array with zero elements
- (which should be freed if not wanted).
-
- Each element must be individually freed when it is no longer
- needed. If you'd like to instead be able to free all at once, you
- should instead use regular calloc and assign pointers into this
- space to represent elements. (In this case though, you cannot
- independently free elements.)
-
- independent_calloc simplifies and speeds up implementations of many
- kinds of pools. It may also be useful when constructing large data
- structures that initially have a fixed number of fixed-sized nodes,
- but the number is not known at compile time, and some of the nodes
- may later need to be freed. For example:
-
- struct Node { int item; struct Node* next; };
-
- struct Node* build_list() {
- struct Node** pool;
- int n = read_number_of_nodes_needed();
- if (n <= 0) return 0;
- pool = (struct Node**)(independent_calloc(n, sizeof(struct Node), 0);
- if (pool == 0) die();
- // organize into a linked list...
- struct Node* first = pool[0];
- for (i = 0; i < n-1; ++i)
- pool[i]->next = pool[i+1];
- free(pool); // Can now free the array (or not, if it is needed later)
- return first;
- }
-*/
-void** dlindependent_calloc(size_t, size_t, void**);
-
-/*
- independent_comalloc(size_t n_elements, size_t sizes[], void* chunks[]);
-
- independent_comalloc allocates, all at once, a set of n_elements
- chunks with sizes indicated in the "sizes" array. It returns
- an array of pointers to these elements, each of which can be
- independently freed, realloc'ed etc. The elements are guaranteed to
- be adjacently allocated (this is not guaranteed to occur with
- multiple callocs or mallocs), which may also improve cache locality
- in some applications.
-
- The "chunks" argument is optional (i.e., may be null). If it is null
- the returned array is itself dynamically allocated and should also
- be freed when it is no longer needed. Otherwise, the chunks array
- must be of at least n_elements in length. It is filled in with the
- pointers to the chunks.
-
- In either case, independent_comalloc returns this pointer array, or
- null if the allocation failed. If n_elements is zero and chunks is
- null, it returns a chunk representing an array with zero elements
- (which should be freed if not wanted).
-
- Each element must be individually freed when it is no longer
- needed. If you'd like to instead be able to free all at once, you
- should instead use a single regular malloc, and assign pointers at
- particular offsets in the aggregate space. (In this case though, you
- cannot independently free elements.)
-
- independent_comallac differs from independent_calloc in that each
- element may have a different size, and also that it does not
- automatically clear elements.
-
- independent_comalloc can be used to speed up allocation in cases
- where several structs or objects must always be allocated at the
- same time. For example:
-
- struct Head { ... }
- struct Foot { ... }
-
- void send_message(char* msg) {
- int msglen = strlen(msg);
- size_t sizes[3] = { sizeof(struct Head), msglen, sizeof(struct Foot) };
- void* chunks[3];
- if (independent_comalloc(3, sizes, chunks) == 0)
- die();
- struct Head* head = (struct Head*)(chunks[0]);
- char* body = (char*)(chunks[1]);
- struct Foot* foot = (struct Foot*)(chunks[2]);
- // ...
- }
-
- In general though, independent_comalloc is worth using only for
- larger values of n_elements. For small values, you probably won't
- detect enough difference from series of malloc calls to bother.
-
- Overuse of independent_comalloc can increase overall memory usage,
- since it cannot reuse existing noncontiguous small chunks that
- might be available for some of the elements.
-*/
-void** dlindependent_comalloc(size_t, size_t*, void**);
-
-
-/*
- pvalloc(size_t n);
- Equivalent to valloc(minimum-page-that-holds(n)), that is,
- round up n to nearest pagesize.
- */
-void* dlpvalloc(size_t);
-
-/*
- malloc_trim(size_t pad);
-
- If possible, gives memory back to the system (via negative arguments
- to sbrk) if there is unused memory at the `high' end of the malloc
- pool or in unused MMAP segments. You can call this after freeing
- large blocks of memory to potentially reduce the system-level memory
- requirements of a program. However, it cannot guarantee to reduce
- memory. Under some allocation patterns, some large free blocks of
- memory will be locked between two used chunks, so they cannot be
- given back to the system.
-
- The `pad' argument to malloc_trim represents the amount of free
- trailing space to leave untrimmed. If this argument is zero, only
- the minimum amount of memory to maintain internal data structures
- will be left. Non-zero arguments can be supplied to maintain enough
- trailing space to service future expected allocations without having
- to re-obtain memory from the system.
-
- Malloc_trim returns 1 if it actually released any memory, else 0.
-*/
-int dlmalloc_trim(size_t);
-
-/*
- malloc_stats();
- Prints on stderr the amount of space obtained from the system (both
- via sbrk and mmap), the maximum amount (which may be more than
- current if malloc_trim and/or munmap got called), and the current
- number of bytes allocated via malloc (or realloc, etc) but not yet
- freed. Note that this is the number of bytes allocated, not the
- number requested. It will be larger than the number requested
- because of alignment and bookkeeping overhead. Because it includes
- alignment wastage as being in use, this figure may be greater than
- zero even when no user-level chunks are allocated.
-
- The reported current and maximum system memory can be inaccurate if
- a program makes other calls to system memory allocation functions
- (normally sbrk) outside of malloc.
-
- malloc_stats prints only the most commonly interesting statistics.
- More information can be obtained by calling mallinfo.
-*/
-void dlmalloc_stats(void);
-
-#endif /* ONLY_MSPACES */
-
-/*
- malloc_usable_size(void* p);
-
- Returns the number of bytes you can actually use in
- an allocated chunk, which may be more than you requested (although
- often not) due to alignment and minimum size constraints.
- You can use this many bytes without worrying about
- overwriting other allocated objects. This is not a particularly great
- programming practice. malloc_usable_size can be more useful in
- debugging and assertions, for example:
-
- p = malloc(n);
- assert(malloc_usable_size(p) >= 256);
-*/
-size_t dlmalloc_usable_size(void*);
-
-
-#if MSPACES
-
-/*
- mspace is an opaque type representing an independent
- region of space that supports mspace_malloc, etc.
-*/
-typedef void* mspace;
-
-/*
- create_mspace creates and returns a new independent space with the
- given initial capacity, or, if 0, the default granularity size. It
- returns null if there is no system memory available to create the
- space. If argument locked is non-zero, the space uses a separate
- lock to control access. The capacity of the space will grow
- dynamically as needed to service mspace_malloc requests. You can
- control the sizes of incremental increases of this space by
- compiling with a different DEFAULT_GRANULARITY or dynamically
- setting with mallopt(M_GRANULARITY, value).
-*/
-mspace create_mspace(size_t capacity, int locked);
-
-/*
- destroy_mspace destroys the given space, and attempts to return all
- of its memory back to the system, returning the total number of
- bytes freed. After destruction, the results of access to all memory
- used by the space become undefined.
-*/
-size_t destroy_mspace(mspace msp);
-
-/*
- create_mspace_with_base uses the memory supplied as the initial base
- of a new mspace. Part (less than 128*sizeof(size_t) bytes) of this
- space is used for bookkeeping, so the capacity must be at least this
- large. (Otherwise 0 is returned.) When this initial space is
- exhausted, additional memory will be obtained from the system.
- Destroying this space will deallocate all additionally allocated
- space (if possible) but not the initial base.
-*/
-mspace create_mspace_with_base(void* base, size_t capacity, int locked);
-
-/*
- mspace_track_large_chunks controls whether requests for large chunks
- are allocated in their own untracked mmapped regions, separate from
- others in this mspace. By default large chunks are not tracked,
- which reduces fragmentation. However, such chunks are not
- necessarily released to the system upon destroy_mspace. Enabling
- tracking by setting to true may increase fragmentation, but avoids
- leakage when relying on destroy_mspace to release all memory
- allocated using this space. The function returns the previous
- setting.
-*/
-int mspace_track_large_chunks(mspace msp, int enable);
-
-
-/*
- mspace_malloc behaves as malloc, but operates within
- the given space.
-*/
-void* mspace_malloc(mspace msp, size_t bytes);
-
-/*
- mspace_free behaves as free, but operates within
- the given space.
-
- If compiled with FOOTERS==1, mspace_free is not actually needed.
- free may be called instead of mspace_free because freed chunks from
- any space are handled by their originating spaces.
-*/
-void mspace_free(mspace msp, void* mem);
-
-/*
- mspace_realloc behaves as realloc, but operates within
- the given space.
-
- If compiled with FOOTERS==1, mspace_realloc is not actually
- needed. realloc may be called instead of mspace_realloc because
- realloced chunks from any space are handled by their originating
- spaces.
-*/
-void* mspace_realloc(mspace msp, void* mem, size_t newsize);
-
-/*
- mspace_calloc behaves as calloc, but operates within
- the given space.
-*/
-void* mspace_calloc(mspace msp, size_t n_elements, size_t elem_size);
-
-/*
- mspace_memalign behaves as memalign, but operates within
- the given space.
-*/
-void* mspace_memalign(mspace msp, size_t alignment, size_t bytes);
-
-/*
- mspace_independent_calloc behaves as independent_calloc, but
- operates within the given space.
-*/
-void** mspace_independent_calloc(mspace msp, size_t n_elements,
- size_t elem_size, void* chunks[]);
-
-/*
- mspace_independent_comalloc behaves as independent_comalloc, but
- operates within the given space.
-*/
-void** mspace_independent_comalloc(mspace msp, size_t n_elements,
- size_t sizes[], void* chunks[]);
-
-/*
- mspace_footprint() returns the number of bytes obtained from the
- system for this space.
-*/
-size_t mspace_footprint(mspace msp);
-
-/*
- mspace_max_footprint() returns the peak number of bytes obtained from the
- system for this space.
-*/
-size_t mspace_max_footprint(mspace msp);
-
-
-#if !NO_MALLINFO
-/*
- mspace_mallinfo behaves as mallinfo, but reports properties of
- the given space.
-*/
-struct mallinfo mspace_mallinfo(mspace msp);
-#endif /* NO_MALLINFO */
-
-/*
- malloc_usable_size(void* p) behaves the same as malloc_usable_size;
-*/
- size_t mspace_usable_size(void* mem);
-
-/*
- mspace_malloc_stats behaves as malloc_stats, but reports
- properties of the given space.
-*/
-void mspace_malloc_stats(mspace msp);
-
-/*
- mspace_trim behaves as malloc_trim, but
- operates within the given space.
-*/
-int mspace_trim(mspace msp, size_t pad);
-
-/*
- An alias for mallopt.
-*/
-int mspace_mallopt(int, int);
-
-#endif /* MSPACES */
-
-#ifdef __cplusplus
-} /* end of extern "C" */
-#endif /* __cplusplus */
-
-/*
- ========================================================================
- To make a fully customizable malloc.h header file, cut everything
- above this line, put into file malloc.h, edit to suit, and #include it
- on the next line, as well as in programs that use this malloc.
- ========================================================================
-*/
-
-/* #include "malloc.h" */
-
-/*------------------------------ internal #includes ---------------------- */
-
-#ifdef WIN32
-#pragma warning( disable : 4146 ) /* no "unsigned" warnings */
-#endif /* WIN32 */
-
-#include <stdio.h> /* for printing in malloc_stats */
-
-#ifndef LACKS_ERRNO_H
-#include <errno.h> /* for MALLOC_FAILURE_ACTION */
-#endif /* LACKS_ERRNO_H */
-#if FOOTERS || DEBUG
-#include <time.h> /* for magic initialization */
-#endif /* FOOTERS */
-#ifndef LACKS_STDLIB_H
-#include <stdlib.h> /* for abort() */
-#endif /* LACKS_STDLIB_H */
-#ifdef DEBUG
-#if ABORT_ON_ASSERT_FAILURE
-#undef assert
-#define assert(x) if(!(x)) ABORT
-#else /* ABORT_ON_ASSERT_FAILURE */
-#include <assert.h>
-#endif /* ABORT_ON_ASSERT_FAILURE */
-#else /* DEBUG */
-#ifndef assert
-#define assert(x)
-#endif
-#define DEBUG 0
-#endif /* DEBUG */
-#ifndef LACKS_STRING_H
-#include <string.h> /* for memset etc */
-#endif /* LACKS_STRING_H */
-#if USE_BUILTIN_FFS
-#ifndef LACKS_STRINGS_H
-#include <strings.h> /* for ffs */
-#endif /* LACKS_STRINGS_H */
-#endif /* USE_BUILTIN_FFS */
-#if HAVE_MMAP
-#ifndef LACKS_SYS_MMAN_H
-/* On some versions of linux, mremap decl in mman.h needs __USE_GNU set */
-#if (defined(linux) && !defined(__USE_GNU))
-#define __USE_GNU 1
-#include <sys/mman.h> /* for mmap */
-#undef __USE_GNU
-#else
-#include <sys/mman.h> /* for mmap */
-#endif /* linux */
-#endif /* LACKS_SYS_MMAN_H */
-#ifndef LACKS_FCNTL_H
-#include <fcntl.h>
-#endif /* LACKS_FCNTL_H */
-#endif /* HAVE_MMAP */
-#ifndef LACKS_UNISTD_H
-#include <unistd.h> /* for sbrk, sysconf */
-#else /* LACKS_UNISTD_H */
-#if !defined(__FreeBSD__) && !defined(__OpenBSD__) && !defined(__NetBSD__)
-extern void* sbrk(ptrdiff_t);
-#endif /* FreeBSD etc */
-#endif /* LACKS_UNISTD_H */
-
-/* Declarations for locking */
-#if USE_LOCKS
-#ifndef WIN32
-#include <pthread.h>
-#if defined (__SVR4) && defined (__sun) /* solaris */
-#include <thread.h>
-#endif /* solaris */
-#else
-#ifndef _M_AMD64
-/* These are already defined on AMD64 builds */
-#ifdef __cplusplus
-extern "C" {
-#endif /* __cplusplus */
-LONG __cdecl _InterlockedCompareExchange(LONG volatile *Dest, LONG Exchange, LONG Comp);
-LONG __cdecl _InterlockedExchange(LONG volatile *Target, LONG Value);
-#ifdef __cplusplus
-}
-#endif /* __cplusplus */
-#endif /* _M_AMD64 */
-#pragma intrinsic (_InterlockedCompareExchange)
-#pragma intrinsic (_InterlockedExchange)
-#define interlockedcompareexchange _InterlockedCompareExchange
-#define interlockedexchange _InterlockedExchange
-#endif /* Win32 */
-#endif /* USE_LOCKS */
-
-/* Declarations for bit scanning on win32 */
-#if defined(_MSC_VER) && _MSC_VER>=1300
-#ifndef BitScanForward /* Try to avoid pulling in WinNT.h */
-#ifdef __cplusplus
-extern "C" {
-#endif /* __cplusplus */
-unsigned char _BitScanForward(unsigned long *index, unsigned long mask);
-unsigned char _BitScanReverse(unsigned long *index, unsigned long mask);
-#ifdef __cplusplus
-}
-#endif /* __cplusplus */
-
-#define BitScanForward _BitScanForward
-#define BitScanReverse _BitScanReverse
-#pragma intrinsic(_BitScanForward)
-#pragma intrinsic(_BitScanReverse)
-#endif /* BitScanForward */
-#endif /* defined(_MSC_VER) && _MSC_VER>=1300 */
-
-#ifndef WIN32
-#ifndef malloc_getpagesize
-# ifdef _SC_PAGESIZE /* some SVR4 systems omit an underscore */
-# ifndef _SC_PAGE_SIZE
-# define _SC_PAGE_SIZE _SC_PAGESIZE
-# endif
-# endif
-# ifdef _SC_PAGE_SIZE
-# define malloc_getpagesize sysconf(_SC_PAGE_SIZE)
-# else
-# if defined(BSD) || defined(DGUX) || defined(HAVE_GETPAGESIZE)
- extern size_t getpagesize();
-# define malloc_getpagesize getpagesize()
-# else
-# ifdef WIN32 /* use supplied emulation of getpagesize */
-# define malloc_getpagesize getpagesize()
-# else
-# ifndef LACKS_SYS_PARAM_H
-# include <sys/param.h>
-# endif
-# ifdef EXEC_PAGESIZE
-# define malloc_getpagesize EXEC_PAGESIZE
-# else
-# ifdef NBPG
-# ifndef CLSIZE
-# define malloc_getpagesize NBPG
-# else
-# define malloc_getpagesize (NBPG * CLSIZE)
-# endif
-# else
-# ifdef NBPC
-# define malloc_getpagesize NBPC
-# else
-# ifdef PAGESIZE
-# define malloc_getpagesize PAGESIZE
-# else /* just guess */
-# define malloc_getpagesize ((size_t)4096U)
-# endif
-# endif
-# endif
-# endif
-# endif
-# endif
-# endif
-#endif
-#endif
-
-
-
-/* ------------------- size_t and alignment properties -------------------- */
-
-/* The byte and bit size of a size_t */
-#define SIZE_T_SIZE (sizeof(size_t))
-#define SIZE_T_BITSIZE (sizeof(size_t) << 3)
-
-/* Some constants coerced to size_t */
-/* Annoying but necessary to avoid errors on some platforms */
-#define SIZE_T_ZERO ((size_t)0)
-#define SIZE_T_ONE ((size_t)1)
-#define SIZE_T_TWO ((size_t)2)
-#define SIZE_T_FOUR ((size_t)4)
-#define TWO_SIZE_T_SIZES (SIZE_T_SIZE<<1)
-#define FOUR_SIZE_T_SIZES (SIZE_T_SIZE<<2)
-#define SIX_SIZE_T_SIZES (FOUR_SIZE_T_SIZES+TWO_SIZE_T_SIZES)
-#define HALF_MAX_SIZE_T (MAX_SIZE_T / 2U)
-
-/* The bit mask value corresponding to MALLOC_ALIGNMENT */
-#define CHUNK_ALIGN_MASK (MALLOC_ALIGNMENT - SIZE_T_ONE)
-
-/* True if address a has acceptable alignment */
-#define is_aligned(A) (((size_t)((A)) & (CHUNK_ALIGN_MASK)) == 0)
-
-/* the number of bytes to offset an address to align it */
-#define align_offset(A)\
- ((((size_t)(A) & CHUNK_ALIGN_MASK) == 0)? 0 :\
- ((MALLOC_ALIGNMENT - ((size_t)(A) & CHUNK_ALIGN_MASK)) & CHUNK_ALIGN_MASK))
-
-/*
- malloc_params holds global properties, including those that can be
- dynamically set using mallopt. There is a single instance, mparams,
- initialized in init_mparams. Note that the non-zeroness of "magic"
- also serves as an initialization flag.
-*/
-typedef unsigned int flag_t;
-struct malloc_params {
- volatile size_t magic;
- size_t page_size;
- size_t granularity;
- size_t mmap_threshold;
- size_t trim_threshold;
- flag_t default_mflags;
-};
-
-static struct malloc_params mparams;
-
-/* Ensure mparams initialized */
-#define ensure_initialization() (void)(mparams.magic != 0 || init_mparams())
-
-/* -------------------------- MMAP preliminaries ------------------------- */
-
-/*
- If HAVE_MORECORE or HAVE_MMAP are false, we just define calls and
- checks to fail so compiler optimizer can delete code rather than
- using so many "#if"s.
-*/
-
-
-/* MORECORE and MMAP must return MFAIL on failure */
-#define MFAIL ((void*)(MAX_SIZE_T))
-#define CMFAIL ((char*)(MFAIL)) /* defined for convenience */
-
-#if HAVE_MMAP
-
-#ifndef WIN32
-#if !defined(MAP_ANONYMOUS) && defined(MAP_ANON)
-#define MAP_ANONYMOUS MAP_ANON
-#endif /* MAP_ANON */
-#ifdef DEFAULT_GRANULARITY_ALIGNED
-#define MMAP_IMPL mmap_aligned
-static void* lastAlignedmmap; /* Used as a hint */
-static void* mmap_aligned(void *start, size_t length, int prot, int flags, int fd, off_t offset) {
- void* baseaddress = 0;
- void* ptr = 0;
- if(!start) {
- baseaddress = lastAlignedmmap;
- for(;;) {
- if(baseaddress) flags|=MAP_FIXED;
- ptr = mmap(baseaddress, length, prot, flags, fd, offset);
- if(!ptr)
- baseaddress = (void*)((size_t)baseaddress + mparams.granularity);
- else if((size_t)ptr & (mparams.granularity - SIZE_T_ONE)) {
- munmap(ptr, length);
- baseaddress = (void*)(((size_t)ptr + mparams.granularity) & ~(mparams.granularity - SIZE_T_ONE));
- }
- else break;
- }
- }
- else ptr = mmap(start, length, prot, flags, fd, offset);
- if(ptr) lastAlignedmmap = (void*)((size_t) ptr + mparams.granularity);
- return ptr;
-}
-#else
-#define MMAP_IMPL mmap
-#endif /* DEFAULT_GRANULARITY_ALIGNED */
-#define MUNMAP_DEFAULT(a, s) munmap((a), (s))
-#define MMAP_PROT (PROT_READ|PROT_WRITE)
-#ifdef MAP_ANONYMOUS
-#define MMAP_FLAGS (MAP_PRIVATE|MAP_ANONYMOUS)
-#define MMAP_DEFAULT(s) MMAP_IMPL(0, (s), MMAP_PROT, MMAP_FLAGS, -1, 0)
-#else /* MAP_ANONYMOUS */
-/*
- Nearly all versions of mmap support MAP_ANONYMOUS, so the following
- is unlikely to be needed, but is supplied just in case.
-*/
-#define MMAP_FLAGS (MAP_PRIVATE)
-static int dev_zero_fd = -1; /* Cached file descriptor for /dev/zero. */
-#define MMAP_DEFAULT(s) ((dev_zero_fd < 0) ? \
- (dev_zero_fd = open("/dev/zero", O_RDWR), \
- MMAP_IMPL(0, (s), MMAP_PROT, MMAP_FLAGS, dev_zero_fd, 0)) : \
- MMAP_IMPL(0, (s), MMAP_PROT, MMAP_FLAGS, dev_zero_fd, 0))
-#endif /* MAP_ANONYMOUS */
-
-#define DIRECT_MMAP_DEFAULT(s) MMAP_DEFAULT(s)
-
-#else /* WIN32 */
-
-/* Win32 MMAP via VirtualAlloc */
-#ifdef DEFAULT_GRANULARITY_ALIGNED
-static void* lastWin32mmap; /* Used as a hint */
-#endif /* DEFAULT_GRANULARITY_ALIGNED */
-#ifdef ENABLE_LARGE_PAGES
-static int largepagesavailable = 1;
-#endif /* ENABLE_LARGE_PAGES */
-static FORCEINLINE void* win32mmap(size_t size) {
- void* baseaddress = 0;
- void* ptr = 0;
-#ifdef ENABLE_LARGE_PAGES
- /* Note that large pages are *always* allocated on a large page boundary.
- If however granularity is small then don't waste a kernel call if size
- isn't around the size of a large page */
- if(largepagesavailable && size >= 1*1024*1024) {
- ptr = VirtualAlloc(baseaddress, size, MEM_RESERVE|MEM_COMMIT|MEM_LARGE_PAGES, PAGE_READWRITE);
- if(!ptr && ERROR_PRIVILEGE_NOT_HELD==GetLastError()) largepagesavailable=0;
- }
-#endif
- if(!ptr) {
-#ifdef DEFAULT_GRANULARITY_ALIGNED
- /* We try to avoid overhead by speculatively reserving at aligned
- addresses until we succeed */
- baseaddress = lastWin32mmap;
- for(;;) {
- void* reserveaddr = VirtualAlloc(baseaddress, size, MEM_RESERVE, PAGE_READWRITE);
- if(!reserveaddr)
- baseaddress = (void*)((size_t)baseaddress + mparams.granularity);
- else if((size_t)reserveaddr & (mparams.granularity - SIZE_T_ONE)) {
- VirtualFree(reserveaddr, 0, MEM_RELEASE);
- baseaddress = (void*)(((size_t)reserveaddr + mparams.granularity) & ~(mparams.granularity - SIZE_T_ONE));
- }
- else break;
- }
-#endif
- if(!ptr) ptr = VirtualAlloc(baseaddress, size, baseaddress ? MEM_COMMIT : MEM_RESERVE|MEM_COMMIT, PAGE_READWRITE);
-#if DEBUG
- if(lastWin32mmap && ptr!=lastWin32mmap) printf("Non-contiguous VirtualAlloc between %p and %p\n", ptr, lastWin32mmap);
-#endif
-#ifdef DEFAULT_GRANULARITY_ALIGNED
- if(ptr) lastWin32mmap = (void*)((size_t) ptr + mparams.granularity);
-#endif
- }
-#if DEBUG
-#ifdef ENABLE_LARGE_PAGES
- printf("VirtualAlloc returns %p size %u. LargePagesAvailable=%d\n", ptr, size, largepagesavailable);
-#else
- printf("VirtualAlloc returns %p size %u\n", ptr, size);
-#endif
-#endif
- return (ptr != 0)? ptr: MFAIL;
-}
-
-/* For direct MMAP, use MEM_TOP_DOWN to minimize interference */
-static FORCEINLINE void* win32direct_mmap(size_t size) {
- void* ptr = VirtualAlloc(0, size, MEM_RESERVE|MEM_COMMIT|MEM_TOP_DOWN,
- PAGE_READWRITE);
- return (ptr != 0)? ptr: MFAIL;
-}
-
-/* This function supports releasing coalesed segments */
-static FORCEINLINE int win32munmap(void* ptr, size_t size) {
- MEMORY_BASIC_INFORMATION minfo;
- char* cptr = (char*)ptr;
- while (size) {
- if (VirtualQuery(cptr, &minfo, sizeof(minfo)) == 0)
- return -1;
- if (minfo.BaseAddress != cptr || minfo.AllocationBase != cptr ||
- minfo.State != MEM_COMMIT || minfo.RegionSize > size)
- return -1;
- if (VirtualFree(cptr, 0, MEM_RELEASE) == 0)
- return -1;
- cptr += minfo.RegionSize;
- size -= minfo.RegionSize;
- }
- return 0;
-}
-
-#define MMAP_DEFAULT(s) win32mmap(s)
-#define MUNMAP_DEFAULT(a, s) win32munmap((a), (s))
-#define DIRECT_MMAP_DEFAULT(s) win32direct_mmap(s)
-#endif /* WIN32 */
-#endif /* HAVE_MMAP */
-
-#if HAVE_MREMAP
-#ifndef WIN32
-#define MREMAP_DEFAULT(addr, osz, nsz, mv) mremap((addr), (osz), (nsz), (mv))
-#endif /* WIN32 */
-#endif /* HAVE_MREMAP */
-
-
-/**
- * Define CALL_MORECORE
- */
-#if HAVE_MORECORE
- #ifdef MORECORE
- #define CALL_MORECORE(S) MORECORE(S)
- #else /* MORECORE */
- #define CALL_MORECORE(S) MORECORE_DEFAULT(S)
- #endif /* MORECORE */
-#else /* HAVE_MORECORE */
- #define CALL_MORECORE(S) MFAIL
-#endif /* HAVE_MORECORE */
-
-/**
- * Define CALL_MMAP/CALL_MUNMAP/CALL_DIRECT_MMAP
- */
-#if HAVE_MMAP
- #define USE_MMAP_BIT (SIZE_T_ONE)
-
- #ifdef MMAP
- #define CALL_MMAP(s) MMAP(s)
- #else /* MMAP */
- #define CALL_MMAP(s) MMAP_DEFAULT(s)
- #endif /* MMAP */
- #ifdef MUNMAP
- #define CALL_MUNMAP(a, s) MUNMAP((a), (s))
- #else /* MUNMAP */
- #define CALL_MUNMAP(a, s) MUNMAP_DEFAULT((a), (s))
- #endif /* MUNMAP */
- #ifdef DIRECT_MMAP
- #define CALL_DIRECT_MMAP(s) DIRECT_MMAP(s)
- #else /* DIRECT_MMAP */
- #define CALL_DIRECT_MMAP(s) DIRECT_MMAP_DEFAULT(s)
- #endif /* DIRECT_MMAP */
-#else /* HAVE_MMAP */
- #define USE_MMAP_BIT (SIZE_T_ZERO)
-
- #define MMAP(s) MFAIL
- #define MUNMAP(a, s) (-1)
- #define DIRECT_MMAP(s) MFAIL
- #define CALL_DIRECT_MMAP(s) DIRECT_MMAP(s)
- #define CALL_MMAP(s) MMAP(s)
- #define CALL_MUNMAP(a, s) MUNMAP((a), (s))
-#endif /* HAVE_MMAP */
-
-/**
- * Define CALL_MREMAP
- */
-#if HAVE_MMAP && HAVE_MREMAP
- #ifdef MREMAP
- #define CALL_MREMAP(addr, osz, nsz, mv) MREMAP((addr), (osz), (nsz), (mv))
- #else /* MREMAP */
- #define CALL_MREMAP(addr, osz, nsz, mv) MREMAP_DEFAULT((addr), (osz), (nsz), (mv))
- #endif /* MREMAP */
-#else /* HAVE_MMAP && HAVE_MREMAP */
- #define CALL_MREMAP(addr, osz, nsz, mv) MFAIL
-#endif /* HAVE_MMAP && HAVE_MREMAP */
-
-/* mstate bit set if continguous morecore disabled or failed */
-#define USE_NONCONTIGUOUS_BIT (4U)
-
-/* segment bit set in create_mspace_with_base */
-#define EXTERN_BIT (8U)
-
-
-/* --------------------------- Lock preliminaries ------------------------ */
-
-/*
- When locks are defined, there is one global lock, plus
- one per-mspace lock.
-
- The global lock_ensures that mparams.magic and other unique
- mparams values are initialized only once. It also protects
- sequences of calls to MORECORE. In many cases sys_alloc requires
- two calls, that should not be interleaved with calls by other
- threads. This does not protect against direct calls to MORECORE
- by other threads not using this lock, so there is still code to
- cope the best we can on interference.
-
- Per-mspace locks surround calls to malloc, free, etc. To enable use
- in layered extensions, per-mspace locks are reentrant.
-
- Because lock-protected regions generally have bounded times, it is
- OK to use the supplied simple spinlocks in the custom versions for
- x86. Spinlocks are likely to improve performance for lightly
- contended applications, but worsen performance under heavy
- contention.
-
- If USE_LOCKS is > 1, the definitions of lock routines here are
- bypassed, in which case you will need to define the type MLOCK_T,
- and at least INITIAL_LOCK, ACQUIRE_LOCK, RELEASE_LOCK and possibly
- TRY_LOCK (which is not used in this malloc, but commonly needed in
- extensions.) You must also declare a
- static MLOCK_T malloc_global_mutex = { initialization values };.
-
-*/
-
-#if USE_LOCKS == 1
-
-#if USE_SPIN_LOCKS && SPIN_LOCKS_AVAILABLE
-#ifndef WIN32
-
-/* Custom pthread-style spin locks on x86 and x64 for gcc */
-struct pthread_mlock_t {
- volatile unsigned int l;
- char cachelinepadding[64];
- unsigned int c;
- pthread_t threadid;
-};
-#define MLOCK_T struct pthread_mlock_t
-#define CURRENT_THREAD pthread_self()
-#define INITIAL_LOCK(sl) ((sl)->threadid = 0, (sl)->l = (sl)->c = 0, 0)
-#define ACQUIRE_LOCK(sl) pthread_acquire_lock(sl)
-#define RELEASE_LOCK(sl) pthread_release_lock(sl)
-#define TRY_LOCK(sl) pthread_try_lock(sl)
-#define SPINS_PER_YIELD 63
-
-static MLOCK_T malloc_global_mutex = { 0, "", 0, 0};
-
-static FORCEINLINE int pthread_acquire_lock (MLOCK_T *sl) {
- int spins = 0;
- volatile unsigned int* lp = &sl->l;
- for (;;) {
- if (*lp != 0) {
- if (sl->threadid == CURRENT_THREAD) {
- ++sl->c;
- return 0;
- }
- }
- else {
- /* place args to cmpxchgl in locals to evade oddities in some gccs */
- int cmp = 0;
- int val = 1;
- int ret;
- __asm__ __volatile__ ("lock; cmpxchgl %1, %2"
- : "=a" (ret)
- : "r" (val), "m" (*(lp)), "0"(cmp)
- : "memory", "cc");
- if (!ret) {
- assert(!sl->threadid);
- sl->threadid = CURRENT_THREAD;
- sl->c = 1;
- return 0;
- }
- }
- if ((++spins & SPINS_PER_YIELD) == 0) {
-#if defined (__SVR4) && defined (__sun) /* solaris */
- thr_yield();
-#else
-#if defined(__linux__) || defined(__FreeBSD__) || defined(__APPLE__)
- sched_yield();
-#else /* no-op yield on unknown systems */
- ;
-#endif /* __linux__ || __FreeBSD__ || __APPLE__ */
-#endif /* solaris */
- }
- }
-}
-
-static FORCEINLINE void pthread_release_lock (MLOCK_T *sl) {
- volatile unsigned int* lp = &sl->l;
- assert(*lp != 0);
- assert(sl->threadid == CURRENT_THREAD);
- if (--sl->c == 0) {
- sl->threadid = 0;
- int prev = 0;
- int ret;
- __asm__ __volatile__ ("lock; xchgl %0, %1"
- : "=r" (ret)
- : "m" (*(lp)), "0"(prev)
- : "memory");
- }
-}
-
-static FORCEINLINE int pthread_try_lock (MLOCK_T *sl) {
- volatile unsigned int* lp = &sl->l;
- if (*lp != 0) {
- if (sl->threadid == CURRENT_THREAD) {
- ++sl->c;
- return 1;
- }
- }
- else {
- int cmp = 0;
- int val = 1;
- int ret;
- __asm__ __volatile__ ("lock; cmpxchgl %1, %2"
- : "=a" (ret)
- : "r" (val), "m" (*(lp)), "0"(cmp)
- : "memory", "cc");
- if (!ret) {
- assert(!sl->threadid);
- sl->threadid = CURRENT_THREAD;
- sl->c = 1;
- return 1;
- }
- }
- return 0;
-}
-
-
-#else /* WIN32 */
-/* Custom win32-style spin locks on x86 and x64 for MSC */
-struct win32_mlock_t {
- volatile long l;
- char cachelinepadding[64];
- unsigned int c;
- long threadid;
-};
-
-#define MLOCK_T struct win32_mlock_t
-#define CURRENT_THREAD ((long)GetCurrentThreadId())
-#define INITIAL_LOCK(sl) ((sl)->threadid = 0, (sl)->l = (sl)->c = 0, 0)
-#define ACQUIRE_LOCK(sl) win32_acquire_lock(sl)
-#define RELEASE_LOCK(sl) win32_release_lock(sl)
-#define TRY_LOCK(sl) win32_try_lock(sl)
-#define SPINS_PER_YIELD 63
-
-static MLOCK_T malloc_global_mutex = { 0, 0, 0};
-
-static FORCEINLINE int win32_acquire_lock (MLOCK_T *sl) {
- int spins = 0;
- for (;;) {
- if (sl->l != 0) {
- if (sl->threadid == CURRENT_THREAD) {
- ++sl->c;
- return 0;
- }
- }
- else {
- if (!interlockedexchange(&sl->l, 1)) {
- assert(!sl->threadid);
- sl->threadid = CURRENT_THREAD;
- sl->c = 1;
- return 0;
- }
- }
- if ((++spins & SPINS_PER_YIELD) == 0)
- SleepEx(0, FALSE);
- }
-}
-
-static FORCEINLINE void win32_release_lock (MLOCK_T *sl) {
- assert(sl->threadid == CURRENT_THREAD);
- assert(sl->l != 0);
- if (--sl->c == 0) {
- sl->threadid = 0;
- interlockedexchange (&sl->l, 0);
- }
-}
-
-static FORCEINLINE int win32_try_lock (MLOCK_T *sl) {
- if (sl->l != 0) {
- if (sl->threadid == CURRENT_THREAD) {
- ++sl->c;
- return 1;
- }
- }
- else {
- if (!interlockedexchange(&sl->l, 1)){
- assert(!sl->threadid);
- sl->threadid = CURRENT_THREAD;
- sl->c = 1;
- return 1;
- }
- }
- return 0;
-}
-
-#endif /* WIN32 */
-#else /* USE_SPIN_LOCKS */
-
-#ifndef WIN32
-/* pthreads-based locks */
-
-#define MLOCK_T pthread_mutex_t
-#define CURRENT_THREAD pthread_self()
-#define INITIAL_LOCK(sl) pthread_init_lock(sl)
-#define ACQUIRE_LOCK(sl) pthread_mutex_lock(sl)
-#define RELEASE_LOCK(sl) pthread_mutex_unlock(sl)
-#define TRY_LOCK(sl) (!pthread_mutex_trylock(sl))
-
-static MLOCK_T malloc_global_mutex = PTHREAD_MUTEX_INITIALIZER;
-
-/* Cope with old-style linux recursive lock initialization by adding */
-/* skipped internal declaration from pthread.h */
-#ifdef linux
-#ifndef PTHREAD_MUTEX_RECURSIVE
-extern int pthread_mutexattr_setkind_np __P ((pthread_mutexattr_t *__attr,
- int __kind));
-#define PTHREAD_MUTEX_RECURSIVE PTHREAD_MUTEX_RECURSIVE_NP
-#define pthread_mutexattr_settype(x,y) pthread_mutexattr_setkind_np(x,y)
-#endif
-#endif
-
-static int pthread_init_lock (MLOCK_T *sl) {
- pthread_mutexattr_t attr;
- if (pthread_mutexattr_init(&attr)) return 1;
- if (pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_RECURSIVE)) return 1;
- if (pthread_mutex_init(sl, &attr)) return 1;
- if (pthread_mutexattr_destroy(&attr)) return 1;
- return 0;
-}
-
-#else /* WIN32 */
-/* Win32 critical sections */
-#define MLOCK_T CRITICAL_SECTION
-#define CURRENT_THREAD GetCurrentThreadId()
-#define INITIAL_LOCK(s) (!InitializeCriticalSectionAndSpinCount((s), 0x80000000|4000))
-#define ACQUIRE_LOCK(s) (EnterCriticalSection(sl), 0)
-#define RELEASE_LOCK(s) LeaveCriticalSection(sl)
-#define TRY_LOCK(s) TryEnterCriticalSection(sl)
-#define NEED_GLOBAL_LOCK_INIT
-
-static MLOCK_T malloc_global_mutex;
-static volatile long malloc_global_mutex_status;
-
-/* Use spin loop to initialize global lock */
-static void init_malloc_global_mutex() {
- for (;;) {
- long stat = malloc_global_mutex_status;
- if (stat > 0)
- return;
- /* transition to < 0 while initializing, then to > 0) */
- if (stat == 0 &&
- interlockedcompareexchange(&malloc_global_mutex_status, -1, 0) == 0) {
- InitializeCriticalSection(&malloc_global_mutex);
- interlockedexchange(&malloc_global_mutex_status,1);
- return;
- }
- SleepEx(0, FALSE);
- }
-}
-
-#endif /* WIN32 */
-#endif /* USE_SPIN_LOCKS */
-#endif /* USE_LOCKS == 1 */
-
-/* ----------------------- User-defined locks ------------------------ */
-
-#if USE_LOCKS > 1
-/* Define your own lock implementation here */
-/* #define INITIAL_LOCK(sl) ... */
-/* #define ACQUIRE_LOCK(sl) ... */
-/* #define RELEASE_LOCK(sl) ... */
-/* #define TRY_LOCK(sl) ... */
-/* static MLOCK_T malloc_global_mutex = ... */
-#endif /* USE_LOCKS > 1 */
-
-/* ----------------------- Lock-based state ------------------------ */
-
-#if USE_LOCKS
-#define USE_LOCK_BIT (2U)
-#else /* USE_LOCKS */
-#define USE_LOCK_BIT (0U)
-#define INITIAL_LOCK(l)
-#endif /* USE_LOCKS */
-
-#if USE_LOCKS
-#ifndef ACQUIRE_MALLOC_GLOBAL_LOCK
-#define ACQUIRE_MALLOC_GLOBAL_LOCK() ACQUIRE_LOCK(&malloc_global_mutex);
-#endif
-#ifndef RELEASE_MALLOC_GLOBAL_LOCK
-#define RELEASE_MALLOC_GLOBAL_LOCK() RELEASE_LOCK(&malloc_global_mutex);
-#endif
-#else /* USE_LOCKS */
-#define ACQUIRE_MALLOC_GLOBAL_LOCK()
-#define RELEASE_MALLOC_GLOBAL_LOCK()
-#endif /* USE_LOCKS */
-
-
-/* ----------------------- Chunk representations ------------------------ */
-
-/*
- (The following includes lightly edited explanations by Colin Plumb.)
-
- The malloc_chunk declaration below is misleading (but accurate and
- necessary). It declares a "view" into memory allowing access to
- necessary fields at known offsets from a given base.
-
- Chunks of memory are maintained using a `boundary tag' method as
- originally described by Knuth. (See the paper by Paul Wilson
- ftp://ftp.cs.utexas.edu/pub/garbage/allocsrv.ps for a survey of such
- techniques.) Sizes of free chunks are stored both in the front of
- each chunk and at the end. This makes consolidating fragmented
- chunks into bigger chunks fast. The head fields also hold bits
- representing whether chunks are free or in use.
-
- Here are some pictures to make it clearer. They are "exploded" to
- show that the state of a chunk can be thought of as extending from
- the high 31 bits of the head field of its header through the
- prev_foot and PINUSE_BIT bit of the following chunk header.
-
- A chunk that's in use looks like:
-
- chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
- | Size of previous chunk (if P = 0) |
- +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
- +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |P|
- | Size of this chunk 1| +-+
- mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
- | |
- +- -+
- | |
- +- -+
- | :
- +- size - sizeof(size_t) available payload bytes -+
- : |
- chunk-> +- -+
- | |
- +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
- +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |1|
- | Size of next chunk (may or may not be in use) | +-+
- mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
-
- And if it's free, it looks like this:
-
- chunk-> +- -+
- | User payload (must be in use, or we would have merged!) |
- +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
- +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |P|
- | Size of this chunk 0| +-+
- mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
- | Next pointer |
- +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
- | Prev pointer |
- +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
- | :
- +- size - sizeof(struct chunk) unused bytes -+
- : |
- chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
- | Size of this chunk |
- +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
- +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |0|
- | Size of next chunk (must be in use, or we would have merged)| +-+
- mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
- | :
- +- User payload -+
- : |
- +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
- |0|
- +-+
- Note that since we always merge adjacent free chunks, the chunks
- adjacent to a free chunk must be in use.
-
- Given a pointer to a chunk (which can be derived trivially from the
- payload pointer) we can, in O(1) time, find out whether the adjacent
- chunks are free, and if so, unlink them from the lists that they
- are on and merge them with the current chunk.
-
- Chunks always begin on even word boundaries, so the mem portion
- (which is returned to the user) is also on an even word boundary, and
- thus at least double-word aligned.
-
- The P (PINUSE_BIT) bit, stored in the unused low-order bit of the
- chunk size (which is always a multiple of two words), is an in-use
- bit for the *previous* chunk. If that bit is *clear*, then the
- word before the current chunk size contains the previous chunk
- size, and can be used to find the front of the previous chunk.
- The very first chunk allocated always has this bit set, preventing
- access to non-existent (or non-owned) memory. If pinuse is set for
- any given chunk, then you CANNOT determine the size of the
- previous chunk, and might even get a memory addressing fault when
- trying to do so.
-
- The C (CINUSE_BIT) bit, stored in the unused second-lowest bit of
- the chunk size redundantly records whether the current chunk is
- inuse (unless the chunk is mmapped). This redundancy enables usage
- checks within free and realloc, and reduces indirection when freeing
- and consolidating chunks.
-
- Each freshly allocated chunk must have both cinuse and pinuse set.
- That is, each allocated chunk borders either a previously allocated
- and still in-use chunk, or the base of its memory arena. This is
- ensured by making all allocations from the the `lowest' part of any
- found chunk. Further, no free chunk physically borders another one,
- so each free chunk is known to be preceded and followed by either
- inuse chunks or the ends of memory.
-
- Note that the `foot' of the current chunk is actually represented
- as the prev_foot of the NEXT chunk. This makes it easier to
- deal with alignments etc but can be very confusing when trying
- to extend or adapt this code.
-
- The exceptions to all this are
-
- 1. The special chunk `top' is the top-most available chunk (i.e.,
- the one bordering the end of available memory). It is treated
- specially. Top is never included in any bin, is used only if
- no other chunk is available, and is released back to the
- system if it is very large (see M_TRIM_THRESHOLD). In effect,
- the top chunk is treated as larger (and thus less well
- fitting) than any other available chunk. The top chunk
- doesn't update its trailing size field since there is no next
- contiguous chunk that would have to index off it. However,
- space is still allocated for it (TOP_FOOT_SIZE) to enable
- separation or merging when space is extended.
-
- 3. Chunks allocated via mmap, have both cinuse and pinuse bits
- cleared in their head fields. Because they are allocated
- one-by-one, each must carry its own prev_foot field, which is
- also used to hold the offset this chunk has within its mmapped
- region, which is needed to preserve alignment. Each mmapped
- chunk is trailed by the first two fields of a fake next-chunk
- for sake of usage checks.
-
-*/
-
-struct malloc_chunk {
- size_t prev_foot; /* Size of previous chunk (if free). */
- size_t head; /* Size and inuse bits. */
- struct malloc_chunk* fd; /* double links -- used only if free. */
- struct malloc_chunk* bk;
-};
-
-typedef struct malloc_chunk mchunk;
-typedef struct malloc_chunk* mchunkptr;
-typedef struct malloc_chunk* sbinptr; /* The type of bins of chunks */
-typedef unsigned int bindex_t; /* Described below */
-typedef unsigned int binmap_t; /* Described below */
-
-/* ------------------- Chunks sizes and alignments ----------------------- */
-
-#define MCHUNK_SIZE (sizeof(mchunk))
-
-#if FOOTERS
-#define CHUNK_OVERHEAD (TWO_SIZE_T_SIZES)
-#else /* FOOTERS */
-#define CHUNK_OVERHEAD (SIZE_T_SIZE)
-#endif /* FOOTERS */
-
-/* MMapped chunks need a second word of overhead ... */
-#define MMAP_CHUNK_OVERHEAD (TWO_SIZE_T_SIZES)
-/* ... and additional padding for fake next-chunk at foot */
-#define MMAP_FOOT_PAD (FOUR_SIZE_T_SIZES)
-
-/* The smallest size we can malloc is an aligned minimal chunk */
-#define MIN_CHUNK_SIZE\
- ((MCHUNK_SIZE + CHUNK_ALIGN_MASK) & ~CHUNK_ALIGN_MASK)
-
-/* conversion from malloc headers to user pointers, and back */
-#define chunk2mem(p) ((void*)((char*)(p) + TWO_SIZE_T_SIZES))
-#define mem2chunk(mem) ((mchunkptr)((char*)(mem) - TWO_SIZE_T_SIZES))
-/* chunk associated with aligned address A */
-#define align_as_chunk(A) (mchunkptr)((A) + align_offset(chunk2mem(A)))
-
-/* Bounds on request (not chunk) sizes. */
-#define MAX_REQUEST ((-MIN_CHUNK_SIZE) << 2)
-#define MIN_REQUEST (MIN_CHUNK_SIZE - CHUNK_OVERHEAD - SIZE_T_ONE)
-
-/* pad request bytes into a usable size */
-#define pad_request(req) \
- (((req) + CHUNK_OVERHEAD + CHUNK_ALIGN_MASK) & ~CHUNK_ALIGN_MASK)
-
-/* pad request, checking for minimum (but not maximum) */
-#define request2size(req) \
- (((req) < MIN_REQUEST)? MIN_CHUNK_SIZE : pad_request(req))
-
-
-/* ------------------ Operations on head and foot fields ----------------- */
-
-/*
- The head field of a chunk is or'ed with PINUSE_BIT when previous
- adjacent chunk in use, and or'ed with CINUSE_BIT if this chunk is in
- use, unless mmapped, in which case both bits are cleared.
-
- FLAG4_BIT is not used by this malloc, but might be useful in extensions.
-*/
-
-#define PINUSE_BIT (SIZE_T_ONE)
-#define CINUSE_BIT (SIZE_T_TWO)
-#define FLAG4_BIT (SIZE_T_FOUR)
-#define INUSE_BITS (PINUSE_BIT|CINUSE_BIT)
-#define FLAG_BITS (PINUSE_BIT|CINUSE_BIT|FLAG4_BIT)
-
-/* Head value for fenceposts */
-#define FENCEPOST_HEAD (INUSE_BITS|SIZE_T_SIZE)
-
-/* extraction of fields from head words */
-#define cinuse(p) ((p)->head & CINUSE_BIT)
-#define pinuse(p) ((p)->head & PINUSE_BIT)
-#define is_inuse(p) (((p)->head & INUSE_BITS) != PINUSE_BIT)
-#define is_mmapped(p) (((p)->head & INUSE_BITS) == 0)
-
-#define chunksize(p) ((p)->head & ~(FLAG_BITS))
-
-#define clear_pinuse(p) ((p)->head &= ~PINUSE_BIT)
-
-/* Treat space at ptr +/- offset as a chunk */
-#define chunk_plus_offset(p, s) ((mchunkptr)(((char*)(p)) + (s)))
-#define chunk_minus_offset(p, s) ((mchunkptr)(((char*)(p)) - (s)))
-
-/* Ptr to next or previous physical malloc_chunk. */
-#define next_chunk(p) ((mchunkptr)( ((char*)(p)) + ((p)->head & ~FLAG_BITS)))
-#define prev_chunk(p) ((mchunkptr)( ((char*)(p)) - ((p)->prev_foot) ))
-
-/* extract next chunk's pinuse bit */
-#define next_pinuse(p) ((next_chunk(p)->head) & PINUSE_BIT)
-
-/* Get/set size at footer */
-#define get_foot(p, s) (((mchunkptr)((char*)(p) + (s)))->prev_foot)
-#define set_foot(p, s) (((mchunkptr)((char*)(p) + (s)))->prev_foot = (s))
-
-/* Set size, pinuse bit, and foot */
-#define set_size_and_pinuse_of_free_chunk(p, s)\
- ((p)->head = (s|PINUSE_BIT), set_foot(p, s))
-
-/* Set size, pinuse bit, foot, and clear next pinuse */
-#define set_free_with_pinuse(p, s, n)\
- (clear_pinuse(n), set_size_and_pinuse_of_free_chunk(p, s))
-
-/* Get the internal overhead associated with chunk p */
-#define overhead_for(p)\
- (is_mmapped(p)? MMAP_CHUNK_OVERHEAD : CHUNK_OVERHEAD)
-
-/* Return true if malloced space is not necessarily cleared */
-#if MMAP_CLEARS
-#define calloc_must_clear(p) (!is_mmapped(p))
-#else /* MMAP_CLEARS */
-#define calloc_must_clear(p) (1)
-#endif /* MMAP_CLEARS */
-
-/* ---------------------- Overlaid data structures ----------------------- */
-
-/*
- When chunks are not in use, they are treated as nodes of either
- lists or trees.
-
- "Small" chunks are stored in circular doubly-linked lists, and look
- like this:
-
- chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
- | Size of previous chunk |
- +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
- `head:' | Size of chunk, in bytes |P|
- mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
- | Forward pointer to next chunk in list |
- +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
- | Back pointer to previous chunk in list |
- +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
- | Unused space (may be 0 bytes long) .
- . .
- . |
-nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
- `foot:' | Size of chunk, in bytes |
- +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
-
- Larger chunks are kept in a form of bitwise digital trees (aka
- tries) keyed on chunksizes. Because malloc_tree_chunks are only for
- free chunks greater than 256 bytes, their size doesn't impose any
- constraints on user chunk sizes. Each node looks like:
-
- chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
- | Size of previous chunk |
- +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
- `head:' | Size of chunk, in bytes |P|
- mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
- | Forward pointer to next chunk of same size |
- +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
- | Back pointer to previous chunk of same size |
- +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
- | Pointer to left child (child[0]) |
- +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
- | Pointer to right child (child[1]) |
- +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
- | Pointer to parent |
- +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
- | bin index of this chunk |
- +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
- | Unused space .
- . |
-nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
- `foot:' | Size of chunk, in bytes |
- +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
-
- Each tree holding treenodes is a tree of unique chunk sizes. Chunks
- of the same size are arranged in a circularly-linked list, with only
- the oldest chunk (the next to be used, in our FIFO ordering)
- actually in the tree. (Tree members are distinguished by a non-null
- parent pointer.) If a chunk with the same size an an existing node
- is inserted, it is linked off the existing node using pointers that
- work in the same way as fd/bk pointers of small chunks.
-
- Each tree contains a power of 2 sized range of chunk sizes (the
- smallest is 0x100 <= x < 0x180), which is is divided in half at each
- tree level, with the chunks in the smaller half of the range (0x100
- <= x < 0x140 for the top nose) in the left subtree and the larger
- half (0x140 <= x < 0x180) in the right subtree. This is, of course,
- done by inspecting individual bits.
-
- Using these rules, each node's left subtree contains all smaller
- sizes than its right subtree. However, the node at the root of each
- subtree has no particular ordering relationship to either. (The
- dividing line between the subtree sizes is based on trie relation.)
- If we remove the last chunk of a given size from the interior of the
- tree, we need to replace it with a leaf node. The tree ordering
- rules permit a node to be replaced by any leaf below it.
-
- The smallest chunk in a tree (a common operation in a best-fit
- allocator) can be found by walking a path to the leftmost leaf in
- the tree. Unlike a usual binary tree, where we follow left child
- pointers until we reach a null, here we follow the right child
- pointer any time the left one is null, until we reach a leaf with
- both child pointers null. The smallest chunk in the tree will be
- somewhere along that path.
-
- The worst case number of steps to add, find, or remove a node is
- bounded by the number of bits differentiating chunks within
- bins. Under current bin calculations, this ranges from 6 up to 21
- (for 32 bit sizes) or up to 53 (for 64 bit sizes). The typical case
- is of course much better.
-*/
-
-struct malloc_tree_chunk {
- /* The first four fields must be compatible with malloc_chunk */
- size_t prev_foot;
- size_t head;
- struct malloc_tree_chunk* fd;
- struct malloc_tree_chunk* bk;
-
- struct malloc_tree_chunk* child[2];
- struct malloc_tree_chunk* parent;
- bindex_t index;
-};
-
-typedef struct malloc_tree_chunk tchunk;
-typedef struct malloc_tree_chunk* tchunkptr;
-typedef struct malloc_tree_chunk* tbinptr; /* The type of bins of trees */
-
-/* A little helper macro for trees */
-#define leftmost_child(t) ((t)->child[0] != 0? (t)->child[0] : (t)->child[1])
-
-/* ----------------------------- Segments -------------------------------- */
-
-/*
- Each malloc space may include non-contiguous segments, held in a
- list headed by an embedded malloc_segment record representing the
- top-most space. Segments also include flags holding properties of
- the space. Large chunks that are directly allocated by mmap are not
- included in this list. They are instead independently created and
- destroyed without otherwise keeping track of them.
-
- Segment management mainly comes into play for spaces allocated by
- MMAP. Any call to MMAP might or might not return memory that is
- adjacent to an existing segment. MORECORE normally contiguously
- extends the current space, so this space is almost always adjacent,
- which is simpler and faster to deal with. (This is why MORECORE is
- used preferentially to MMAP when both are available -- see
- sys_alloc.) When allocating using MMAP, we don't use any of the
- hinting mechanisms (inconsistently) supported in various
- implementations of unix mmap, or distinguish reserving from
- committing memory. Instead, we just ask for space, and exploit
- contiguity when we get it. It is probably possible to do
- better than this on some systems, but no general scheme seems
- to be significantly better.
-
- Management entails a simpler variant of the consolidation scheme
- used for chunks to reduce fragmentation -- new adjacent memory is
- normally prepended or appended to an existing segment. However,
- there are limitations compared to chunk consolidation that mostly
- reflect the fact that segment processing is relatively infrequent
- (occurring only when getting memory from system) and that we
- don't expect to have huge numbers of segments:
-
- * Segments are not indexed, so traversal requires linear scans. (It
- would be possible to index these, but is not worth the extra
- overhead and complexity for most programs on most platforms.)
- * New segments are only appended to old ones when holding top-most
- memory; if they cannot be prepended to others, they are held in
- different segments.
-
- Except for the top-most segment of an mstate, each segment record
- is kept at the tail of its segment. Segments are added by pushing
- segment records onto the list headed by &mstate.seg for the
- containing mstate.
-
- Segment flags control allocation/merge/deallocation policies:
- * If EXTERN_BIT set, then we did not allocate this segment,
- and so should not try to deallocate or merge with others.
- (This currently holds only for the initial segment passed
- into create_mspace_with_base.)
- * If USE_MMAP_BIT set, the segment may be merged with
- other surrounding mmapped segments and trimmed/de-allocated
- using munmap.
- * If neither bit is set, then the segment was obtained using
- MORECORE so can be merged with surrounding MORECORE'd segments
- and deallocated/trimmed using MORECORE with negative arguments.
-*/
-
-struct malloc_segment {
- char* base; /* base address */
- size_t size; /* allocated size */
- struct malloc_segment* next; /* ptr to next segment */
- flag_t sflags; /* mmap and extern flag */
-};
-
-#define is_mmapped_segment(S) ((S)->sflags & USE_MMAP_BIT)
-#define is_extern_segment(S) ((S)->sflags & EXTERN_BIT)
-
-typedef struct malloc_segment msegment;
-typedef struct malloc_segment* msegmentptr;
-
-/* ---------------------------- malloc_state ----------------------------- */
-
-/*
- A malloc_state holds all of the bookkeeping for a space.
- The main fields are:
-
- Top
- The topmost chunk of the currently active segment. Its size is
- cached in topsize. The actual size of topmost space is
- topsize+TOP_FOOT_SIZE, which includes space reserved for adding
- fenceposts and segment records if necessary when getting more
- space from the system. The size at which to autotrim top is
- cached from mparams in trim_check, except that it is disabled if
- an autotrim fails.
-
- Designated victim (dv)
- This is the preferred chunk for servicing small requests that
- don't have exact fits. It is normally the chunk split off most
- recently to service another small request. Its size is cached in
- dvsize. The link fields of this chunk are not maintained since it
- is not kept in a bin.
-
- SmallBins
- An array of bin headers for free chunks. These bins hold chunks
- with sizes less than MIN_LARGE_SIZE bytes. Each bin contains
- chunks of all the same size, spaced 8 bytes apart. To simplify
- use in double-linked lists, each bin header acts as a malloc_chunk
- pointing to the real first node, if it exists (else pointing to
- itself). This avoids special-casing for headers. But to avoid
- waste, we allocate only the fd/bk pointers of bins, and then use
- repositioning tricks to treat these as the fields of a chunk.
-
- TreeBins
- Treebins are pointers to the roots of trees holding a range of
- sizes. There are 2 equally spaced treebins for each power of two
- from TREE_SHIFT to TREE_SHIFT+16. The last bin holds anything
- larger.
-
- Bin maps
- There is one bit map for small bins ("smallmap") and one for
- treebins ("treemap). Each bin sets its bit when non-empty, and
- clears the bit when empty. Bit operations are then used to avoid
- bin-by-bin searching -- nearly all "search" is done without ever
- looking at bins that won't be selected. The bit maps
- conservatively use 32 bits per map word, even if on 64bit system.
- For a good description of some of the bit-based techniques used
- here, see Henry S. Warren Jr's book "Hacker's Delight" (and
- supplement at http://hackersdelight.org/). Many of these are
- intended to reduce the branchiness of paths through malloc etc, as
- well as to reduce the number of memory locations read or written.
-
- Segments
- A list of segments headed by an embedded malloc_segment record
- representing the initial space.
-
- Address check support
- The least_addr field is the least address ever obtained from
- MORECORE or MMAP. Attempted frees and reallocs of any address less
- than this are trapped (unless INSECURE is defined).
-
- Magic tag
- A cross-check field that should always hold same value as mparams.magic.
-
- Flags
- Bits recording whether to use MMAP, locks, or contiguous MORECORE
-
- Statistics
- Each space keeps track of current and maximum system memory
- obtained via MORECORE or MMAP.
-
- Trim support
- Fields holding the amount of unused topmost memory that should trigger
- timming, and a counter to force periodic scanning to release unused
- non-topmost segments.
-
- Locking
- If USE_LOCKS is defined, the "mutex" lock is acquired and released
- around every public call using this mspace.
-
- Extension support
- A void* pointer and a size_t field that can be used to help implement
- extensions to this malloc.
-*/
-
-/* Bin types, widths and sizes */
-#define NSMALLBINS (32U)
-#define NTREEBINS (32U)
-#define SMALLBIN_SHIFT (3U)
-#define SMALLBIN_WIDTH (SIZE_T_ONE << SMALLBIN_SHIFT)
-#define TREEBIN_SHIFT (8U)
-#define MIN_LARGE_SIZE (SIZE_T_ONE << TREEBIN_SHIFT)
-#define MAX_SMALL_SIZE (MIN_LARGE_SIZE - SIZE_T_ONE)
-#define MAX_SMALL_REQUEST (MAX_SMALL_SIZE - CHUNK_ALIGN_MASK - CHUNK_OVERHEAD)
-
-struct malloc_state {
- binmap_t smallmap;
- binmap_t treemap;
- size_t dvsize;
- size_t topsize;
- char* least_addr;
- mchunkptr dv;
- mchunkptr top;
- size_t trim_check;
- size_t release_checks;
- size_t magic;
- mchunkptr smallbins[(NSMALLBINS+1)*2];
- tbinptr treebins[NTREEBINS];
- size_t footprint;
- size_t max_footprint;
- flag_t mflags;
- msegment seg;
-#if USE_LOCKS
- MLOCK_T mutex; /* locate lock among fields that rarely change */
-#endif /* USE_LOCKS */
- void* extp; /* Unused but available for extensions */
- size_t exts;
-};
-
-typedef struct malloc_state* mstate;
-
-/* ------------- Global malloc_state and malloc_params ------------------- */
-
-#if !ONLY_MSPACES
-
-/* The global malloc_state used for all non-"mspace" calls */
-static struct malloc_state _gm_;
-#define gm (&_gm_)
-#define is_global(M) ((M) == &_gm_)
-
-#endif /* !ONLY_MSPACES */
-
-#define is_initialized(M) ((M)->top != 0)
-
-/* -------------------------- system alloc setup ------------------------- */
-
-/* Operations on mflags */
-
-#define use_lock(M) ((M)->mflags & USE_LOCK_BIT)
-#define enable_lock(M) ((M)->mflags |= USE_LOCK_BIT)
-#define disable_lock(M) ((M)->mflags &= ~USE_LOCK_BIT)
-
-#define use_mmap(M) ((M)->mflags & USE_MMAP_BIT)
-#define enable_mmap(M) ((M)->mflags |= USE_MMAP_BIT)
-#define disable_mmap(M) ((M)->mflags &= ~USE_MMAP_BIT)
-
-#define use_noncontiguous(M) ((M)->mflags & USE_NONCONTIGUOUS_BIT)
-#define disable_contiguous(M) ((M)->mflags |= USE_NONCONTIGUOUS_BIT)
-
-#define set_lock(M,L)\
- ((M)->mflags = (L)?\
- ((M)->mflags | USE_LOCK_BIT) :\
- ((M)->mflags & ~USE_LOCK_BIT))
-
-/* page-align a size */
-#define page_align(S)\
- (((S) + (mparams.page_size - SIZE_T_ONE)) & ~(mparams.page_size - SIZE_T_ONE))
-
-/* granularity-align a size */
-#define granularity_align(S)\
- (((S) + (mparams.granularity - SIZE_T_ONE))\
- & ~(mparams.granularity - SIZE_T_ONE))
-
-
-/* For mmap, use granularity alignment on windows, else page-align */
-#ifdef WIN32
-#define mmap_align(S) granularity_align(S)
-#else
-#define mmap_align(S) page_align(S)
-#endif
-
-/* For sys_alloc, enough padding to ensure can malloc request on success */
-#define SYS_ALLOC_PADDING (TOP_FOOT_SIZE + MALLOC_ALIGNMENT)
-
-#define is_page_aligned(S)\
- (((size_t)(S) & (mparams.page_size - SIZE_T_ONE)) == 0)
-#define is_granularity_aligned(S)\
- (((size_t)(S) & (mparams.granularity - SIZE_T_ONE)) == 0)
-
-/* True if segment S holds address A */
-#define segment_holds(S, A)\
- ((char*)(A) >= S->base && (char*)(A) < S->base + S->size)
-
-/* Return segment holding given address */
-static msegmentptr segment_holding(mstate m, char* addr) {
- msegmentptr sp = &m->seg;
- for (;;) {
- if (addr >= sp->base && addr < sp->base + sp->size)
- return sp;
- if ((sp = sp->next) == 0)
- return 0;
- }
-}
-
-/* Return true if segment contains a segment link */
-static int has_segment_link(mstate m, msegmentptr ss) {
- msegmentptr sp = &m->seg;
- for (;;) {
- if ((char*)sp >= ss->base && (char*)sp < ss->base + ss->size)
- return 1;
- if ((sp = sp->next) == 0)
- return 0;
- }
-}
-
-#ifndef MORECORE_CANNOT_TRIM
-#define should_trim(M,s) ((s) > (M)->trim_check)
-#else /* MORECORE_CANNOT_TRIM */
-#define should_trim(M,s) (0)
-#endif /* MORECORE_CANNOT_TRIM */
-
-/*
- TOP_FOOT_SIZE is padding at the end of a segment, including space
- that may be needed to place segment records and fenceposts when new
- noncontiguous segments are added.
-*/
-#define TOP_FOOT_SIZE\
- (align_offset(chunk2mem(0))+pad_request(sizeof(struct malloc_segment))+MIN_CHUNK_SIZE)
-
-
-/* ------------------------------- Hooks -------------------------------- */
-
-/*
- PREACTION should be defined to return 0 on success, and nonzero on
- failure. If you are not using locking, you can redefine these to do
- anything you like.
-*/
-
-#if USE_LOCKS
-
-#define PREACTION(M) ((use_lock(M))? ACQUIRE_LOCK(&(M)->mutex) : 0)
-#define POSTACTION(M) { if (use_lock(M)) RELEASE_LOCK(&(M)->mutex); }
-#else /* USE_LOCKS */
-
-#ifndef PREACTION
-#define PREACTION(M) (0)
-#endif /* PREACTION */
-
-#ifndef POSTACTION
-#define POSTACTION(M)
-#endif /* POSTACTION */
-
-#endif /* USE_LOCKS */
-
-/*
- CORRUPTION_ERROR_ACTION is triggered upon detected bad addresses.
- USAGE_ERROR_ACTION is triggered on detected bad frees and
- reallocs. The argument p is an address that might have triggered the
- fault. It is ignored by the two predefined actions, but might be
- useful in custom actions that try to help diagnose errors.
-*/
-
-#if PROCEED_ON_ERROR
-
-/* A count of the number of corruption errors causing resets */
-int malloc_corruption_error_count;
-
-/* default corruption action */
-static void reset_on_error(mstate m);
-
-#define CORRUPTION_ERROR_ACTION(m) reset_on_error(m)
-#define USAGE_ERROR_ACTION(m, p)
-
-#else /* PROCEED_ON_ERROR */
-
-#ifndef CORRUPTION_ERROR_ACTION
-#define CORRUPTION_ERROR_ACTION(m) ABORT
-#endif /* CORRUPTION_ERROR_ACTION */
-
-#ifndef USAGE_ERROR_ACTION
-#define USAGE_ERROR_ACTION(m,p) ABORT
-#endif /* USAGE_ERROR_ACTION */
-
-#endif /* PROCEED_ON_ERROR */
-
-/* -------------------------- Debugging setup ---------------------------- */
-
-#if ! DEBUG
-
-#define check_free_chunk(M,P)
-#define check_inuse_chunk(M,P)
-#define check_malloced_chunk(M,P,N)
-#define check_mmapped_chunk(M,P)
-#define check_malloc_state(M)
-#define check_top_chunk(M,P)
-
-#else /* DEBUG */
-#define check_free_chunk(M,P) do_check_free_chunk(M,P)
-#define check_inuse_chunk(M,P) do_check_inuse_chunk(M,P)
-#define check_top_chunk(M,P) do_check_top_chunk(M,P)
-#define check_malloced_chunk(M,P,N) do_check_malloced_chunk(M,P,N)
-#define check_mmapped_chunk(M,P) do_check_mmapped_chunk(M,P)
-#define check_malloc_state(M) do_check_malloc_state(M)
-
-static void do_check_any_chunk(mstate m, mchunkptr p);
-static void do_check_top_chunk(mstate m, mchunkptr p);
-static void do_check_mmapped_chunk(mstate m, mchunkptr p);
-static void do_check_inuse_chunk(mstate m, mchunkptr p);
-static void do_check_free_chunk(mstate m, mchunkptr p);
-static void do_check_malloced_chunk(mstate m, void* mem, size_t s);
-static void do_check_tree(mstate m, tchunkptr t);
-static void do_check_treebin(mstate m, bindex_t i);
-static void do_check_smallbin(mstate m, bindex_t i);
-static void do_check_malloc_state(mstate m);
-static int bin_find(mstate m, mchunkptr x);
-static size_t traverse_and_check(mstate m);
-#endif /* DEBUG */
-
-/* ---------------------------- Indexing Bins ---------------------------- */
-
-#define is_small(s) (((s) >> SMALLBIN_SHIFT) < NSMALLBINS)
-#define small_index(s) (bindex_t)((s) >> SMALLBIN_SHIFT)
-#define small_index2size(i) ((i) << SMALLBIN_SHIFT)
-#define MIN_SMALL_INDEX (small_index(MIN_CHUNK_SIZE))
-
-/* addressing by index. See above about smallbin repositioning */
-#define smallbin_at(M, i) ((sbinptr)((char*)&((M)->smallbins[(i)<<1])))
-#define treebin_at(M,i) (&((M)->treebins[i]))
-
-/* assign tree index for size S to variable I. Use x86 asm if possible */
-#if defined(__GNUC__) && (defined(__i386__) || defined(__x86_64__))
-#define compute_tree_index(S, I)\
-{\
- unsigned int X = S >> TREEBIN_SHIFT;\
- if (X == 0)\
- I = 0;\
- else if (X > 0xFFFF)\
- I = NTREEBINS-1;\
- else {\
- unsigned int K;\
- __asm__("bsrl\t%1, %0\n\t" : "=r" (K) : "g" (X));\
- I = (bindex_t)((K << 1) + ((S >> (K + (TREEBIN_SHIFT-1)) & 1)));\
- }\
-}
-
-#elif defined (__INTEL_COMPILER)
-#define compute_tree_index(S, I)\
-{\
- size_t X = S >> TREEBIN_SHIFT;\
- if (X == 0)\
- I = 0;\
- else if (X > 0xFFFF)\
- I = NTREEBINS-1;\
- else {\
- unsigned int K = _bit_scan_reverse (X); \
- I = (bindex_t)((K << 1) + ((S >> (K + (TREEBIN_SHIFT-1)) & 1)));\
- }\
-}
-
-#elif defined(_MSC_VER) && _MSC_VER>=1300
-#define compute_tree_index(S, I)\
-{\
- size_t X = S >> TREEBIN_SHIFT;\
- if (X == 0)\
- I = 0;\
- else if (X > 0xFFFF)\
- I = NTREEBINS-1;\
- else {\
- unsigned int K;\
- _BitScanReverse((DWORD *) &K, (DWORD) X);\
- I = (bindex_t)((K << 1) + ((S >> (K + (TREEBIN_SHIFT-1)) & 1)));\
- }\
-}
-
-#else /* GNUC */
-#define compute_tree_index(S, I)\
-{\
- size_t X = S >> TREEBIN_SHIFT;\
- if (X == 0)\
- I = 0;\
- else if (X > 0xFFFF)\
- I = NTREEBINS-1;\
- else {\
- unsigned int Y = (unsigned int)X;\
- unsigned int N = ((Y - 0x100) >> 16) & 8;\
- unsigned int K = (((Y <<= N) - 0x1000) >> 16) & 4;\
- N += K;\
- N += K = (((Y <<= K) - 0x4000) >> 16) & 2;\
- K = 14 - N + ((Y <<= K) >> 15);\
- I = (K << 1) + ((S >> (K + (TREEBIN_SHIFT-1)) & 1));\
- }\
-}
-#endif /* GNUC */
-
-/* Bit representing maximum resolved size in a treebin at i */
-#define bit_for_tree_index(i) \
- (i == NTREEBINS-1)? (SIZE_T_BITSIZE-1) : (((i) >> 1) + TREEBIN_SHIFT - 2)
-
-/* Shift placing maximum resolved bit in a treebin at i as sign bit */
-#define leftshift_for_tree_index(i) \
- ((i == NTREEBINS-1)? 0 : \
- ((SIZE_T_BITSIZE-SIZE_T_ONE) - (((i) >> 1) + TREEBIN_SHIFT - 2)))
-
-/* The size of the smallest chunk held in bin with index i */
-#define minsize_for_tree_index(i) \
- ((SIZE_T_ONE << (((i) >> 1) + TREEBIN_SHIFT)) | \
- (((size_t)((i) & SIZE_T_ONE)) << (((i) >> 1) + TREEBIN_SHIFT - 1)))
-
-
-/* ------------------------ Operations on bin maps ----------------------- */
-
-/* bit corresponding to given index */
-#define idx2bit(i) ((binmap_t)(1) << (i))
-
-/* Mark/Clear bits with given index */
-#define mark_smallmap(M,i) ((M)->smallmap |= idx2bit(i))
-#define clear_smallmap(M,i) ((M)->smallmap &= ~idx2bit(i))
-#define smallmap_is_marked(M,i) ((M)->smallmap & idx2bit(i))
-
-#define mark_treemap(M,i) ((M)->treemap |= idx2bit(i))
-#define clear_treemap(M,i) ((M)->treemap &= ~idx2bit(i))
-#define treemap_is_marked(M,i) ((M)->treemap & idx2bit(i))
-
-/* isolate the least set bit of a bitmap */
-#define least_bit(x) ((x) & -(x))
-
-/* mask with all bits to left of least bit of x on */
-#define left_bits(x) ((x<<1) | -(x<<1))
-
-/* mask with all bits to left of or equal to least bit of x on */
-#define same_or_left_bits(x) ((x) | -(x))
-
-/* index corresponding to given bit. Use x86 asm if possible */
-
-#if defined(__GNUC__) && (defined(__i386__) || defined(__x86_64__))
-#define compute_bit2idx(X, I)\
-{\
- unsigned int J;\
- __asm__("bsfl\t%1, %0\n\t" : "=r" (J) : "g" (X));\
- I = (bindex_t)J;\
-}
-
-#elif defined (__INTEL_COMPILER)
-#define compute_bit2idx(X, I)\
-{\
- unsigned int J;\
- J = _bit_scan_forward (X); \
- I = (bindex_t)J;\
-}
-
-#elif defined(_MSC_VER) && _MSC_VER>=1300
-#define compute_bit2idx(X, I)\
-{\
- unsigned int J;\
- _BitScanForward((DWORD *) &J, X);\
- I = (bindex_t)J;\
-}
-
-#elif USE_BUILTIN_FFS
-#define compute_bit2idx(X, I) I = ffs(X)-1
-
-#else
-#define compute_bit2idx(X, I)\
-{\
- unsigned int Y = X - 1;\
- unsigned int K = Y >> (16-4) & 16;\
- unsigned int N = K; Y >>= K;\
- N += K = Y >> (8-3) & 8; Y >>= K;\
- N += K = Y >> (4-2) & 4; Y >>= K;\
- N += K = Y >> (2-1) & 2; Y >>= K;\
- N += K = Y >> (1-0) & 1; Y >>= K;\
- I = (bindex_t)(N + Y);\
-}
-#endif /* GNUC */
-
-
-/* ----------------------- Runtime Check Support ------------------------- */
-
-/*
- For security, the main invariant is that malloc/free/etc never
- writes to a static address other than malloc_state, unless static
- malloc_state itself has been corrupted, which cannot occur via
- malloc (because of these checks). In essence this means that we
- believe all pointers, sizes, maps etc held in malloc_state, but
- check all of those linked or offsetted from other embedded data
- structures. These checks are interspersed with main code in a way
- that tends to minimize their run-time cost.
-
- When FOOTERS is defined, in addition to range checking, we also
- verify footer fields of inuse chunks, which can be used guarantee
- that the mstate controlling malloc/free is intact. This is a
- streamlined version of the approach described by William Robertson
- et al in "Run-time Detection of Heap-based Overflows" LISA'03
- http://www.usenix.org/events/lisa03/tech/robertson.html The footer
- of an inuse chunk holds the xor of its mstate and a random seed,
- that is checked upon calls to free() and realloc(). This is
- (probablistically) unguessable from outside the program, but can be
- computed by any code successfully malloc'ing any chunk, so does not
- itself provide protection against code that has already broken
- security through some other means. Unlike Robertson et al, we
- always dynamically check addresses of all offset chunks (previous,
- next, etc). This turns out to be cheaper than relying on hashes.
-*/
-
-#if !INSECURE
-/* Check if address a is at least as high as any from MORECORE or MMAP */
-#define ok_address(M, a) ((char*)(a) >= (M)->least_addr)
-/* Check if address of next chunk n is higher than base chunk p */
-#define ok_next(p, n) ((char*)(p) < (char*)(n))
-/* Check if p has inuse status */
-#define ok_inuse(p) is_inuse(p)
-/* Check if p has its pinuse bit on */
-#define ok_pinuse(p) pinuse(p)
-
-#else /* !INSECURE */
-#define ok_address(M, a) (1)
-#define ok_next(b, n) (1)
-#define ok_inuse(p) (1)
-#define ok_pinuse(p) (1)
-#endif /* !INSECURE */
-
-#if (FOOTERS && !INSECURE)
-/* Check if (alleged) mstate m has expected magic field */
-#define ok_magic(M) ((M)->magic == mparams.magic)
-#else /* (FOOTERS && !INSECURE) */
-#define ok_magic(M) (1)
-#endif /* (FOOTERS && !INSECURE) */
-
-
-/* In gcc, use __builtin_expect to minimize impact of checks */
-#if !INSECURE
-#if defined(__GNUC__) && __GNUC__ >= 3
-#define RTCHECK(e) __builtin_expect(e, 1)
-#else /* GNUC */
-#define RTCHECK(e) (e)
-#endif /* GNUC */
-#else /* !INSECURE */
-#define RTCHECK(e) (1)
-#endif /* !INSECURE */
-
-/* macros to set up inuse chunks with or without footers */
-
-#if !FOOTERS
-
-#define mark_inuse_foot(M,p,s)
-
-/* Macros for setting head/foot of non-mmapped chunks */
-
-/* Set cinuse bit and pinuse bit of next chunk */
-#define set_inuse(M,p,s)\
- ((p)->head = (((p)->head & PINUSE_BIT)|s|CINUSE_BIT),\
- ((mchunkptr)(((char*)(p)) + (s)))->head |= PINUSE_BIT)
-
-/* Set cinuse and pinuse of this chunk and pinuse of next chunk */
-#define set_inuse_and_pinuse(M,p,s)\
- ((p)->head = (s|PINUSE_BIT|CINUSE_BIT),\
- ((mchunkptr)(((char*)(p)) + (s)))->head |= PINUSE_BIT)
-
-/* Set size, cinuse and pinuse bit of this chunk */
-#define set_size_and_pinuse_of_inuse_chunk(M, p, s)\
- ((p)->head = (s|PINUSE_BIT|CINUSE_BIT))
-
-#else /* FOOTERS */
-
-/* Set foot of inuse chunk to be xor of mstate and seed */
-#define mark_inuse_foot(M,p,s)\
- (((mchunkptr)((char*)(p) + (s)))->prev_foot = ((size_t)(M) ^ mparams.magic))
-
-#define get_mstate_for(p)\
- ((mstate)(((mchunkptr)((char*)(p) +\
- (chunksize(p))))->prev_foot ^ mparams.magic))
-
-#define set_inuse(M,p,s)\
- ((p)->head = (((p)->head & PINUSE_BIT)|s|CINUSE_BIT),\
- (((mchunkptr)(((char*)(p)) + (s)))->head |= PINUSE_BIT), \
- mark_inuse_foot(M,p,s))
-
-#define set_inuse_and_pinuse(M,p,s)\
- ((p)->head = (s|PINUSE_BIT|CINUSE_BIT),\
- (((mchunkptr)(((char*)(p)) + (s)))->head |= PINUSE_BIT),\
- mark_inuse_foot(M,p,s))
-
-#define set_size_and_pinuse_of_inuse_chunk(M, p, s)\
- ((p)->head = (s|PINUSE_BIT|CINUSE_BIT),\
- mark_inuse_foot(M, p, s))
-
-#endif /* !FOOTERS */
-
-/* ---------------------------- setting mparams -------------------------- */
-
-#ifdef ENABLE_LARGE_PAGES
-typedef size_t (WINAPI *GetLargePageMinimum_t)(void);
-#endif
-
-/* Initialize mparams */
-static int init_mparams(void) {
-#ifdef NEED_GLOBAL_LOCK_INIT
- if (malloc_global_mutex_status <= 0)
- init_malloc_global_mutex();
-#endif
-
- ACQUIRE_MALLOC_GLOBAL_LOCK();
- if (mparams.magic == 0) {
- size_t magic;
- size_t psize;
- size_t gsize;
-
-#ifndef WIN32
- psize = malloc_getpagesize;
- gsize = ((DEFAULT_GRANULARITY != 0)? DEFAULT_GRANULARITY : psize);
-#else /* WIN32 */
- {
- SYSTEM_INFO system_info;
- GetSystemInfo(&system_info);
- psize = system_info.dwPageSize;
- gsize = ((DEFAULT_GRANULARITY != 0)?
- DEFAULT_GRANULARITY : system_info.dwAllocationGranularity);
-#ifdef ENABLE_LARGE_PAGES
- {
- GetLargePageMinimum_t GetLargePageMinimum_ = (GetLargePageMinimum_t) GetProcAddress(GetModuleHandle(__T("kernel32.dll")), "GetLargePageMinimum");
- if(GetLargePageMinimum_) {
- size_t largepagesize = GetLargePageMinimum_();
- if(largepagesize) {
- psize = largepagesize;
- gsize = ((DEFAULT_GRANULARITY != 0)?
- DEFAULT_GRANULARITY : largepagesize);
- if(gsize < largepagesize) gsize = largepagesize;
- }
- }
- }
-#endif
- }
-#endif /* WIN32 */
-
- /* Sanity-check configuration:
- size_t must be unsigned and as wide as pointer type.
- ints must be at least 4 bytes.
- alignment must be at least 8.
- Alignment, min chunk size, and page size must all be powers of 2.
- */
- if ((sizeof(size_t) != sizeof(char*)) ||
- (MAX_SIZE_T < MIN_CHUNK_SIZE) ||
- (sizeof(int) < 4) ||
- (MALLOC_ALIGNMENT < (size_t)8U) ||
- ((MALLOC_ALIGNMENT & (MALLOC_ALIGNMENT-SIZE_T_ONE)) != 0) ||
- ((MCHUNK_SIZE & (MCHUNK_SIZE-SIZE_T_ONE)) != 0) ||
- ((gsize & (gsize-SIZE_T_ONE)) != 0) ||
- ((psize & (psize-SIZE_T_ONE)) != 0))
- ABORT;
-
- mparams.granularity = gsize;
- mparams.page_size = psize;
- mparams.mmap_threshold = DEFAULT_MMAP_THRESHOLD;
- mparams.trim_threshold = DEFAULT_TRIM_THRESHOLD;
-#if MORECORE_CONTIGUOUS
- mparams.default_mflags = USE_LOCK_BIT|USE_MMAP_BIT;
-#else /* MORECORE_CONTIGUOUS */
- mparams.default_mflags = USE_LOCK_BIT|USE_MMAP_BIT|USE_NONCONTIGUOUS_BIT;
-#endif /* MORECORE_CONTIGUOUS */
-
-#if !ONLY_MSPACES
- /* Set up lock for main malloc area */
- gm->mflags = mparams.default_mflags;
- INITIAL_LOCK(&gm->mutex);
-#endif
-
- {
-#if USE_DEV_RANDOM
- int fd;
- unsigned char buf[sizeof(size_t)];
- /* Try to use /dev/urandom, else fall back on using time */
- if ((fd = open("/dev/urandom", O_RDONLY)) >= 0 &&
- read(fd, buf, sizeof(buf)) == sizeof(buf)) {
- magic = *((size_t *) buf);
- close(fd);
- }
- else
-#endif /* USE_DEV_RANDOM */
-#ifdef WIN32
- magic = (size_t)(GetTickCount() ^ (size_t)0x55555555U);
-#else
- magic = (size_t)(time(0) ^ (size_t)0x55555555U);
-#endif
- magic |= (size_t)8U; /* ensure nonzero */
- magic &= ~(size_t)7U; /* improve chances of fault for bad values */
- mparams.magic = magic;
- }
- }
-
- RELEASE_MALLOC_GLOBAL_LOCK();
- return 1;
-}
-
-/* support for mallopt */
-static int change_mparam(int param_number, int value) {
- size_t val;
- ensure_initialization();
- val = (value == -1)? MAX_SIZE_T : (size_t)value;
- switch(param_number) {
- case M_TRIM_THRESHOLD:
- mparams.trim_threshold = val;
- return 1;
- case M_GRANULARITY:
- if (val >= mparams.page_size && ((val & (val-1)) == 0)) {
- mparams.granularity = val;
- return 1;
- }
- else
- return 0;
- case M_MMAP_THRESHOLD:
- mparams.mmap_threshold = val;
- return 1;
- default:
- return 0;
- }
-}
-
-#if DEBUG
-/* ------------------------- Debugging Support --------------------------- */
-
-/* Check properties of any chunk, whether free, inuse, mmapped etc */
-static void do_check_any_chunk(mstate m, mchunkptr p) {
- assert((is_aligned(chunk2mem(p))) || (p->head == FENCEPOST_HEAD));
- assert(ok_address(m, p));
-}
-
-/* Check properties of top chunk */
-static void do_check_top_chunk(mstate m, mchunkptr p) {
- msegmentptr sp = segment_holding(m, (char*)p);
- size_t sz = p->head & ~INUSE_BITS; /* third-lowest bit can be set! */
- assert(sp != 0);
- assert((is_aligned(chunk2mem(p))) || (p->head == FENCEPOST_HEAD));
- assert(ok_address(m, p));
- assert(sz == m->topsize);
- assert(sz > 0);
- assert(sz == ((sp->base + sp->size) - (char*)p) - TOP_FOOT_SIZE);
- assert(pinuse(p));
- assert(!pinuse(chunk_plus_offset(p, sz)));
-}
-
-/* Check properties of (inuse) mmapped chunks */
-static void do_check_mmapped_chunk(mstate m, mchunkptr p) {
- size_t sz = chunksize(p);
- size_t len = (sz + (p->prev_foot) + MMAP_FOOT_PAD);
- assert(is_mmapped(p));
- assert(use_mmap(m));
- assert((is_aligned(chunk2mem(p))) || (p->head == FENCEPOST_HEAD));
- assert(ok_address(m, p));
- assert(!is_small(sz));
- assert((len & (mparams.page_size-SIZE_T_ONE)) == 0);
- assert(chunk_plus_offset(p, sz)->head == FENCEPOST_HEAD);
- assert(chunk_plus_offset(p, sz+SIZE_T_SIZE)->head == 0);
-}
-
-/* Check properties of inuse chunks */
-static void do_check_inuse_chunk(mstate m, mchunkptr p) {
- do_check_any_chunk(m, p);
- assert(is_inuse(p));
- assert(next_pinuse(p));
- /* If not pinuse and not mmapped, previous chunk has OK offset */
- assert(is_mmapped(p) || pinuse(p) || next_chunk(prev_chunk(p)) == p);
- if (is_mmapped(p))
- do_check_mmapped_chunk(m, p);
-}
-
-/* Check properties of free chunks */
-static void do_check_free_chunk(mstate m, mchunkptr p) {
- size_t sz = chunksize(p);
- mchunkptr next = chunk_plus_offset(p, sz);
- do_check_any_chunk(m, p);
- assert(!is_inuse(p));
- assert(!next_pinuse(p));
- assert (!is_mmapped(p));
- if (p != m->dv && p != m->top) {
- if (sz >= MIN_CHUNK_SIZE) {
- assert((sz & CHUNK_ALIGN_MASK) == 0);
- assert(is_aligned(chunk2mem(p)));
- assert(next->prev_foot == sz);
- assert(pinuse(p));
- assert (next == m->top || is_inuse(next));
- assert(p->fd->bk == p);
- assert(p->bk->fd == p);
- }
- else /* markers are always of size SIZE_T_SIZE */
- assert(sz == SIZE_T_SIZE);
- }
-}
-
-/* Check properties of malloced chunks at the point they are malloced */
-static void do_check_malloced_chunk(mstate m, void* mem, size_t s) {
- if (mem != 0) {
- mchunkptr p = mem2chunk(mem);
- size_t sz = p->head & ~INUSE_BITS;
- do_check_inuse_chunk(m, p);
- assert((sz & CHUNK_ALIGN_MASK) == 0);
- assert(sz >= MIN_CHUNK_SIZE);
- assert(sz >= s);
- /* unless mmapped, size is less than MIN_CHUNK_SIZE more than request */
- assert(is_mmapped(p) || sz < (s + MIN_CHUNK_SIZE));
- }
-}
-
-/* Check a tree and its subtrees. */
-static void do_check_tree(mstate m, tchunkptr t) {
- tchunkptr head = 0;
- tchunkptr u = t;
- bindex_t tindex = t->index;
- size_t tsize = chunksize(t);
- bindex_t idx;
- compute_tree_index(tsize, idx);
- assert(tindex == idx);
- assert(tsize >= MIN_LARGE_SIZE);
- assert(tsize >= minsize_for_tree_index(idx));
- assert((idx == NTREEBINS-1) || (tsize < minsize_for_tree_index((idx+1))));
-
- do { /* traverse through chain of same-sized nodes */
- do_check_any_chunk(m, ((mchunkptr)u));
- assert(u->index == tindex);
- assert(chunksize(u) == tsize);
- assert(!is_inuse(u));
- assert(!next_pinuse(u));
- assert(u->fd->bk == u);
- assert(u->bk->fd == u);
- if (u->parent == 0) {
- assert(u->child[0] == 0);
- assert(u->child[1] == 0);
- }
- else {
- assert(head == 0); /* only one node on chain has parent */
- head = u;
- assert(u->parent != u);
- assert (u->parent->child[0] == u ||
- u->parent->child[1] == u ||
- *((tbinptr*)(u->parent)) == u);
- if (u->child[0] != 0) {
- assert(u->child[0]->parent == u);
- assert(u->child[0] != u);
- do_check_tree(m, u->child[0]);
- }
- if (u->child[1] != 0) {
- assert(u->child[1]->parent == u);
- assert(u->child[1] != u);
- do_check_tree(m, u->child[1]);
- }
- if (u->child[0] != 0 && u->child[1] != 0) {
- assert(chunksize(u->child[0]) < chunksize(u->child[1]));
- }
- }
- u = u->fd;
- } while (u != t);
- assert(head != 0);
-}
-
-/* Check all the chunks in a treebin. */
-static void do_check_treebin(mstate m, bindex_t i) {
- tbinptr* tb = treebin_at(m, i);
- tchunkptr t = *tb;
- int empty = (m->treemap & (1U << i)) == 0;
- if (t == 0)
- assert(empty);
- if (!empty)
- do_check_tree(m, t);
-}
-
-/* Check all the chunks in a smallbin. */
-static void do_check_smallbin(mstate m, bindex_t i) {
- sbinptr b = smallbin_at(m, i);
- mchunkptr p = b->bk;
- unsigned int empty = (m->smallmap & (1U << i)) == 0;
- if (p == b)
- assert(empty);
- if (!empty) {
- for (; p != b; p = p->bk) {
- size_t size = chunksize(p);
- mchunkptr q;
- /* each chunk claims to be free */
- do_check_free_chunk(m, p);
- /* chunk belongs in bin */
- assert(small_index(size) == i);
- assert(p->bk == b || chunksize(p->bk) == chunksize(p));
- /* chunk is followed by an inuse chunk */
- q = next_chunk(p);
- if (q->head != FENCEPOST_HEAD)
- do_check_inuse_chunk(m, q);
- }
- }
-}
-
-/* Find x in a bin. Used in other check functions. */
-static int bin_find(mstate m, mchunkptr x) {
- size_t size = chunksize(x);
- if (is_small(size)) {
- bindex_t sidx = small_index(size);
- sbinptr b = smallbin_at(m, sidx);
- if (smallmap_is_marked(m, sidx)) {
- mchunkptr p = b;
- do {
- if (p == x)
- return 1;
- } while ((p = p->fd) != b);
- }
- }
- else {
- bindex_t tidx;
- compute_tree_index(size, tidx);
- if (treemap_is_marked(m, tidx)) {
- tchunkptr t = *treebin_at(m, tidx);
- size_t sizebits = size << leftshift_for_tree_index(tidx);
- while (t != 0 && chunksize(t) != size) {
- t = t->child[(sizebits >> (SIZE_T_BITSIZE-SIZE_T_ONE)) & 1];
- sizebits <<= 1;
- }
- if (t != 0) {
- tchunkptr u = t;
- do {
- if (u == (tchunkptr)x)
- return 1;
- } while ((u = u->fd) != t);
- }
- }
- }
- return 0;
-}
-
-/* Traverse each chunk and check it; return total */
-static size_t traverse_and_check(mstate m) {
- size_t sum = 0;
- if (is_initialized(m)) {
- msegmentptr s = &m->seg;
- sum += m->topsize + TOP_FOOT_SIZE;
- while (s != 0) {
- mchunkptr q = align_as_chunk(s->base);
- mchunkptr lastq = 0;
- assert(pinuse(q));
- while (segment_holds(s, q) &&
- q != m->top && q->head != FENCEPOST_HEAD) {
- sum += chunksize(q);
- if (is_inuse(q)) {
- assert(!bin_find(m, q));
- do_check_inuse_chunk(m, q);
- }
- else {
- assert(q == m->dv || bin_find(m, q));
- assert(lastq == 0 || is_inuse(lastq)); /* Not 2 consecutive free */
- do_check_free_chunk(m, q);
- }
- lastq = q;
- q = next_chunk(q);
- }
- s = s->next;
- }
- }
- return sum;
-}
-
-/* Check all properties of malloc_state. */
-static void do_check_malloc_state(mstate m) {
- bindex_t i;
- size_t total;
- /* check bins */
- for (i = 0; i < NSMALLBINS; ++i)
- do_check_smallbin(m, i);
- for (i = 0; i < NTREEBINS; ++i)
- do_check_treebin(m, i);
-
- if (m->dvsize != 0) { /* check dv chunk */
- do_check_any_chunk(m, m->dv);
- assert(m->dvsize == chunksize(m->dv));
- assert(m->dvsize >= MIN_CHUNK_SIZE);
- assert(bin_find(m, m->dv) == 0);
- }
-
- if (m->top != 0) { /* check top chunk */
- do_check_top_chunk(m, m->top);
- /*assert(m->topsize == chunksize(m->top)); redundant */
- assert(m->topsize > 0);
- assert(bin_find(m, m->top) == 0);
- }
-
- total = traverse_and_check(m);
- assert(total <= m->footprint);
- assert(m->footprint <= m->max_footprint);
-}
-#endif /* DEBUG */
-
-/* ----------------------------- statistics ------------------------------ */
-
-#if !NO_MALLINFO
-static struct mallinfo internal_mallinfo(mstate m) {
- struct mallinfo nm = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
- ensure_initialization();
- if (!PREACTION(m)) {
- check_malloc_state(m);
- if (is_initialized(m)) {
- size_t nfree = SIZE_T_ONE; /* top always free */
- size_t mfree = m->topsize + TOP_FOOT_SIZE;
- size_t sum = mfree;
- msegmentptr s = &m->seg;
- while (s != 0) {
- mchunkptr q = align_as_chunk(s->base);
- while (segment_holds(s, q) &&
- q != m->top && q->head != FENCEPOST_HEAD) {
- size_t sz = chunksize(q);
- sum += sz;
- if (!is_inuse(q)) {
- mfree += sz;
- ++nfree;
- }
- q = next_chunk(q);
- }
- s = s->next;
- }
-
- nm.arena = sum;
- nm.ordblks = nfree;
- nm.hblkhd = m->footprint - sum;
- nm.usmblks = m->max_footprint;
- nm.uordblks = m->footprint - mfree;
- nm.fordblks = mfree;
- nm.keepcost = m->topsize;
- }
-
- POSTACTION(m);
- }
- return nm;
-}
-#endif /* !NO_MALLINFO */
-
-static void internal_malloc_stats(mstate m) {
- ensure_initialization();
- if (!PREACTION(m)) {
- size_t maxfp = 0;
- size_t fp = 0;
- size_t used = 0;
- check_malloc_state(m);
- if (is_initialized(m)) {
- msegmentptr s = &m->seg;
- maxfp = m->max_footprint;
- fp = m->footprint;
- used = fp - (m->topsize + TOP_FOOT_SIZE);
-
- while (s != 0) {
- mchunkptr q = align_as_chunk(s->base);
- while (segment_holds(s, q) &&
- q != m->top && q->head != FENCEPOST_HEAD) {
- if (!is_inuse(q))
- used -= chunksize(q);
- q = next_chunk(q);
- }
- s = s->next;
- }
- }
-
- fprintf(stderr, "max system bytes = %10lu\n", (unsigned long)(maxfp));
- fprintf(stderr, "system bytes = %10lu\n", (unsigned long)(fp));
- fprintf(stderr, "in use bytes = %10lu\n", (unsigned long)(used));
-
- POSTACTION(m);
- }
-}
-
-/* ----------------------- Operations on smallbins ----------------------- */
-
-/*
- Various forms of linking and unlinking are defined as macros. Even
- the ones for trees, which are very long but have very short typical
- paths. This is ugly but reduces reliance on inlining support of
- compilers.
-*/
-
-/* Link a free chunk into a smallbin */
-#define insert_small_chunk(M, P, S) {\
- bindex_t I = small_index(S);\
- mchunkptr B = smallbin_at(M, I);\
- mchunkptr F = B;\
- assert(S >= MIN_CHUNK_SIZE);\
- if (!smallmap_is_marked(M, I))\
- mark_smallmap(M, I);\
- else if (RTCHECK(ok_address(M, B->fd)))\
- F = B->fd;\
- else {\
- CORRUPTION_ERROR_ACTION(M);\
- }\
- B->fd = P;\
- F->bk = P;\
- P->fd = F;\
- P->bk = B;\
-}
-
-/* Unlink a chunk from a smallbin */
-#define unlink_small_chunk(M, P, S) {\
- mchunkptr F = P->fd;\
- mchunkptr B = P->bk;\
- bindex_t I = small_index(S);\
- assert(P != B);\
- assert(P != F);\
- assert(chunksize(P) == small_index2size(I));\
- if (F == B)\
- clear_smallmap(M, I);\
- else if (RTCHECK((F == smallbin_at(M,I) || ok_address(M, F)) &&\
- (B == smallbin_at(M,I) || ok_address(M, B)))) {\
- F->bk = B;\
- B->fd = F;\
- }\
- else {\
- CORRUPTION_ERROR_ACTION(M);\
- }\
-}
-
-/* Unlink the first chunk from a smallbin */
-#define unlink_first_small_chunk(M, B, P, I) {\
- mchunkptr F = P->fd;\
- assert(P != B);\
- assert(P != F);\
- assert(chunksize(P) == small_index2size(I));\
- if (B == F)\
- clear_smallmap(M, I);\
- else if (RTCHECK(ok_address(M, F))) {\
- B->fd = F;\
- F->bk = B;\
- }\
- else {\
- CORRUPTION_ERROR_ACTION(M);\
- }\
-}
-
-
-
-/* Replace dv node, binning the old one */
-/* Used only when dvsize known to be small */
-#define replace_dv(M, P, S) {\
- size_t DVS = M->dvsize;\
- if (DVS != 0) {\
- mchunkptr DV = M->dv;\
- assert(is_small(DVS));\
- insert_small_chunk(M, DV, DVS);\
- }\
- M->dvsize = S;\
- M->dv = P;\
-}
-
-/* ------------------------- Operations on trees ------------------------- */
-
-/* Insert chunk into tree */
-#define insert_large_chunk(M, X, S) {\
- tbinptr* H;\
- bindex_t I;\
- compute_tree_index(S, I);\
- H = treebin_at(M, I);\
- X->index = I;\
- X->child[0] = X->child[1] = 0;\
- if (!treemap_is_marked(M, I)) {\
- mark_treemap(M, I);\
- *H = X;\
- X->parent = (tchunkptr)H;\
- X->fd = X->bk = X;\
- }\
- else {\
- tchunkptr T = *H;\
- size_t K = S << leftshift_for_tree_index(I);\
- for (;;) {\
- if (chunksize(T) != S) {\
- tchunkptr* C = &(T->child[(K >> (SIZE_T_BITSIZE-SIZE_T_ONE)) & 1]);\
- K <<= 1;\
- if (*C != 0)\
- T = *C;\
- else if (RTCHECK(ok_address(M, C))) {\
- *C = X;\
- X->parent = T;\
- X->fd = X->bk = X;\
- break;\
- }\
- else {\
- CORRUPTION_ERROR_ACTION(M);\
- break;\
- }\
- }\
- else {\
- tchunkptr F = T->fd;\
- if (RTCHECK(ok_address(M, T) && ok_address(M, F))) {\
- T->fd = F->bk = X;\
- X->fd = F;\
- X->bk = T;\
- X->parent = 0;\
- break;\
- }\
- else {\
- CORRUPTION_ERROR_ACTION(M);\
- break;\
- }\
- }\
- }\
- }\
-}
-
-/*
- Unlink steps:
-
- 1. If x is a chained node, unlink it from its same-sized fd/bk links
- and choose its bk node as its replacement.
- 2. If x was the last node of its size, but not a leaf node, it must
- be replaced with a leaf node (not merely one with an open left or
- right), to make sure that lefts and rights of descendents
- correspond properly to bit masks. We use the rightmost descendent
- of x. We could use any other leaf, but this is easy to locate and
- tends to counteract removal of leftmosts elsewhere, and so keeps
- paths shorter than minimally guaranteed. This doesn't loop much
- because on average a node in a tree is near the bottom.
- 3. If x is the base of a chain (i.e., has parent links) relink
- x's parent and children to x's replacement (or null if none).
-*/
-
-#define unlink_large_chunk(M, X) {\
- tchunkptr XP = X->parent;\
- tchunkptr R;\
- if (X->bk != X) {\
- tchunkptr F = X->fd;\
- R = X->bk;\
- if (RTCHECK(ok_address(M, F))) {\
- F->bk = R;\
- R->fd = F;\
- }\
- else {\
- CORRUPTION_ERROR_ACTION(M);\
- }\
- }\
- else {\
- tchunkptr* RP;\
- if (((R = *(RP = &(X->child[1]))) != 0) ||\
- ((R = *(RP = &(X->child[0]))) != 0)) {\
- tchunkptr* CP;\
- while ((*(CP = &(R->child[1])) != 0) ||\
- (*(CP = &(R->child[0])) != 0)) {\
- R = *(RP = CP);\
- }\
- if (RTCHECK(ok_address(M, RP)))\
- *RP = 0;\
- else {\
- CORRUPTION_ERROR_ACTION(M);\
- }\
- }\
- }\
- if (XP != 0) {\
- tbinptr* H = treebin_at(M, X->index);\
- if (X == *H) {\
- if ((*H = R) == 0) \
- clear_treemap(M, X->index);\
- }\
- else if (RTCHECK(ok_address(M, XP))) {\
- if (XP->child[0] == X) \
- XP->child[0] = R;\
- else \
- XP->child[1] = R;\
- }\
- else\
- CORRUPTION_ERROR_ACTION(M);\
- if (R != 0) {\
- if (RTCHECK(ok_address(M, R))) {\
- tchunkptr C0, C1;\
- R->parent = XP;\
- if ((C0 = X->child[0]) != 0) {\
- if (RTCHECK(ok_address(M, C0))) {\
- R->child[0] = C0;\
- C0->parent = R;\
- }\
- else\
- CORRUPTION_ERROR_ACTION(M);\
- }\
- if ((C1 = X->child[1]) != 0) {\
- if (RTCHECK(ok_address(M, C1))) {\
- R->child[1] = C1;\
- C1->parent = R;\
- }\
- else\
- CORRUPTION_ERROR_ACTION(M);\
- }\
- }\
- else\
- CORRUPTION_ERROR_ACTION(M);\
- }\
- }\
-}
-
-/* Relays to large vs small bin operations */
-
-#define insert_chunk(M, P, S)\
- if (is_small(S)) insert_small_chunk(M, P, S)\
- else { tchunkptr TP = (tchunkptr)(P); insert_large_chunk(M, TP, S); }
-
-#define unlink_chunk(M, P, S)\
- if (is_small(S)) unlink_small_chunk(M, P, S)\
- else { tchunkptr TP = (tchunkptr)(P); unlink_large_chunk(M, TP); }
-
-
-/* Relays to internal calls to malloc/free from realloc, memalign etc */
-
-#if ONLY_MSPACES
-#define internal_malloc(m, b) mspace_malloc(m, b)
-#define internal_free(m, mem) mspace_free(m,mem);
-#else /* ONLY_MSPACES */
-#if MSPACES
-#define internal_malloc(m, b)\
- (m == gm)? dlmalloc(b) : mspace_malloc(m, b)
-#define internal_free(m, mem)\
- if (m == gm) dlfree(mem); else mspace_free(m,mem);
-#else /* MSPACES */
-#define internal_malloc(m, b) dlmalloc(b)
-#define internal_free(m, mem) dlfree(mem)
-#endif /* MSPACES */
-#endif /* ONLY_MSPACES */
-
-/* ----------------------- Direct-mmapping chunks ----------------------- */
-
-/*
- Directly mmapped chunks are set up with an offset to the start of
- the mmapped region stored in the prev_foot field of the chunk. This
- allows reconstruction of the required argument to MUNMAP when freed,
- and also allows adjustment of the returned chunk to meet alignment
- requirements (especially in memalign).
-*/
-
-/* Malloc using mmap */
-static void* mmap_alloc(mstate m, size_t nb) {
- size_t mmsize = mmap_align(nb + SIX_SIZE_T_SIZES + CHUNK_ALIGN_MASK);
- if (mmsize > nb) { /* Check for wrap around 0 */
- char* mm = (char*)(CALL_DIRECT_MMAP(mmsize));
- if (mm != CMFAIL) {
- size_t offset = align_offset(chunk2mem(mm));
- size_t psize = mmsize - offset - MMAP_FOOT_PAD;
- mchunkptr p = (mchunkptr)(mm + offset);
- p->prev_foot = offset;
- p->head = psize;
- mark_inuse_foot(m, p, psize);
- chunk_plus_offset(p, psize)->head = FENCEPOST_HEAD;
- chunk_plus_offset(p, psize+SIZE_T_SIZE)->head = 0;
-
- if (m->least_addr == 0 || mm < m->least_addr)
- m->least_addr = mm;
- if ((m->footprint += mmsize) > m->max_footprint)
- m->max_footprint = m->footprint;
- assert(is_aligned(chunk2mem(p)));
- check_mmapped_chunk(m, p);
- return chunk2mem(p);
- }
- }
- return 0;
-}
-
-/* Realloc using mmap */
-static mchunkptr mmap_resize(mstate m, mchunkptr oldp, size_t nb) {
- size_t oldsize = chunksize(oldp);
- if (is_small(nb)) /* Can't shrink mmap regions below small size */
- return 0;
- /* Keep old chunk if big enough but not too big */
- if (oldsize >= nb + SIZE_T_SIZE &&
- (oldsize - nb) <= (mparams.granularity << 1))
- return oldp;
- else {
- size_t offset = oldp->prev_foot;
- size_t oldmmsize = oldsize + offset + MMAP_FOOT_PAD;
- size_t newmmsize = mmap_align(nb + SIX_SIZE_T_SIZES + CHUNK_ALIGN_MASK);
- char* cp = (char*)CALL_MREMAP((char*)oldp - offset,
- oldmmsize, newmmsize, 1);
- if (cp != CMFAIL) {
- mchunkptr newp = (mchunkptr)(cp + offset);
- size_t psize = newmmsize - offset - MMAP_FOOT_PAD;
- newp->head = psize;
- mark_inuse_foot(m, newp, psize);
- chunk_plus_offset(newp, psize)->head = FENCEPOST_HEAD;
- chunk_plus_offset(newp, psize+SIZE_T_SIZE)->head = 0;
-
- if (cp < m->least_addr)
- m->least_addr = cp;
- if ((m->footprint += newmmsize - oldmmsize) > m->max_footprint)
- m->max_footprint = m->footprint;
- check_mmapped_chunk(m, newp);
- return newp;
- }
- }
- return 0;
-}
-
-/* -------------------------- mspace management -------------------------- */
-
-/* Initialize top chunk and its size */
-static void init_top(mstate m, mchunkptr p, size_t psize) {
- /* Ensure alignment */
- size_t offset = align_offset(chunk2mem(p));
- p = (mchunkptr)((char*)p + offset);
- psize -= offset;
-
- m->top = p;
- m->topsize = psize;
- p->head = psize | PINUSE_BIT;
- /* set size of fake trailing chunk holding overhead space only once */
- chunk_plus_offset(p, psize)->head = TOP_FOOT_SIZE;
- m->trim_check = mparams.trim_threshold; /* reset on each update */
-}
-
-/* Initialize bins for a new mstate that is otherwise zeroed out */
-static void init_bins(mstate m) {
- /* Establish circular links for smallbins */
- bindex_t i;
- for (i = 0; i < NSMALLBINS; ++i) {
- sbinptr bin = smallbin_at(m,i);
- bin->fd = bin->bk = bin;
- }
-}
-
-#if PROCEED_ON_ERROR
-
-/* default corruption action */
-static void reset_on_error(mstate m) {
- int i;
- ++malloc_corruption_error_count;
- /* Reinitialize fields to forget about all memory */
- m->smallbins = m->treebins = 0;
- m->dvsize = m->topsize = 0;
- m->seg.base = 0;
- m->seg.size = 0;
- m->seg.next = 0;
- m->top = m->dv = 0;
- for (i = 0; i < NTREEBINS; ++i)
- *treebin_at(m, i) = 0;
- init_bins(m);
-}
-#endif /* PROCEED_ON_ERROR */
-
-/* Allocate chunk and prepend remainder with chunk in successor base. */
-static void* prepend_alloc(mstate m, char* newbase, char* oldbase,
- size_t nb) {
- mchunkptr p = align_as_chunk(newbase);
- mchunkptr oldfirst = align_as_chunk(oldbase);
- size_t psize = (char*)oldfirst - (char*)p;
- mchunkptr q = chunk_plus_offset(p, nb);
- size_t qsize = psize - nb;
- set_size_and_pinuse_of_inuse_chunk(m, p, nb);
-
- assert((char*)oldfirst > (char*)q);
- assert(pinuse(oldfirst));
- assert(qsize >= MIN_CHUNK_SIZE);
-
- /* consolidate remainder with first chunk of old base */
- if (oldfirst == m->top) {
- size_t tsize = m->topsize += qsize;
- m->top = q;
- q->head = tsize | PINUSE_BIT;
- check_top_chunk(m, q);
- }
- else if (oldfirst == m->dv) {
- size_t dsize = m->dvsize += qsize;
- m->dv = q;
- set_size_and_pinuse_of_free_chunk(q, dsize);
- }
- else {
- if (!is_inuse(oldfirst)) {
- size_t nsize = chunksize(oldfirst);
- unlink_chunk(m, oldfirst, nsize);
- oldfirst = chunk_plus_offset(oldfirst, nsize);
- qsize += nsize;
- }
- set_free_with_pinuse(q, qsize, oldfirst);
- insert_chunk(m, q, qsize);
- check_free_chunk(m, q);
- }
-
- check_malloced_chunk(m, chunk2mem(p), nb);
- return chunk2mem(p);
-}
-
-/* Add a segment to hold a new noncontiguous region */
-static void add_segment(mstate m, char* tbase, size_t tsize, flag_t mmapped) {
- /* Determine locations and sizes of segment, fenceposts, old top */
- char* old_top = (char*)m->top;
- msegmentptr oldsp = segment_holding(m, old_top);
- char* old_end = oldsp->base + oldsp->size;
- size_t ssize = pad_request(sizeof(struct malloc_segment));
- char* rawsp = old_end - (ssize + FOUR_SIZE_T_SIZES + CHUNK_ALIGN_MASK);
- size_t offset = align_offset(chunk2mem(rawsp));
- char* asp = rawsp + offset;
- char* csp = (asp < (old_top + MIN_CHUNK_SIZE))? old_top : asp;
- mchunkptr sp = (mchunkptr)csp;
- msegmentptr ss = (msegmentptr)(chunk2mem(sp));
- mchunkptr tnext = chunk_plus_offset(sp, ssize);
- mchunkptr p = tnext;
- int nfences = 0;
-
- /* reset top to new space */
- init_top(m, (mchunkptr)tbase, tsize - TOP_FOOT_SIZE);
-
- /* Set up segment record */
- assert(is_aligned(ss));
- set_size_and_pinuse_of_inuse_chunk(m, sp, ssize);
- *ss = m->seg; /* Push current record */
- m->seg.base = tbase;
- m->seg.size = tsize;
- m->seg.sflags = mmapped;
- m->seg.next = ss;
-
- /* Insert trailing fenceposts */
- for (;;) {
- mchunkptr nextp = chunk_plus_offset(p, SIZE_T_SIZE);
- p->head = FENCEPOST_HEAD;
- ++nfences;
- if ((char*)(&(nextp->head)) < old_end)
- p = nextp;
- else
- break;
- }
- assert(nfences >= 2);
-
- /* Insert the rest of old top into a bin as an ordinary free chunk */
- if (csp != old_top) {
- mchunkptr q = (mchunkptr)old_top;
- size_t psize = csp - old_top;
- mchunkptr tn = chunk_plus_offset(q, psize);
- set_free_with_pinuse(q, psize, tn);
- insert_chunk(m, q, psize);
- }
-
- check_top_chunk(m, m->top);
-}
-
-/* -------------------------- System allocation -------------------------- */
-
-/* Get memory from system using MORECORE or MMAP */
-static void* sys_alloc(mstate m, size_t nb) {
- char* tbase = CMFAIL;
- size_t tsize = 0;
- flag_t mmap_flag = 0;
-
- ensure_initialization();
-
- /* Directly map large chunks, but only if already initialized */
- if (use_mmap(m) && nb >= mparams.mmap_threshold && m->topsize != 0) {
- void* mem = mmap_alloc(m, nb);
- if (mem != 0)
- return mem;
- }
-
- /*
- Try getting memory in any of three ways (in most-preferred to
- least-preferred order):
- 1. A call to MORECORE that can normally contiguously extend memory.
- (disabled if not MORECORE_CONTIGUOUS or not HAVE_MORECORE or
- or main space is mmapped or a previous contiguous call failed)
- 2. A call to MMAP new space (disabled if not HAVE_MMAP).
- Note that under the default settings, if MORECORE is unable to
- fulfill a request, and HAVE_MMAP is true, then mmap is
- used as a noncontiguous system allocator. This is a useful backup
- strategy for systems with holes in address spaces -- in this case
- sbrk cannot contiguously expand the heap, but mmap may be able to
- find space.
- 3. A call to MORECORE that cannot usually contiguously extend memory.
- (disabled if not HAVE_MORECORE)
-
- In all cases, we need to request enough bytes from system to ensure
- we can malloc nb bytes upon success, so pad with enough space for
- top_foot, plus alignment-pad to make sure we don't lose bytes if
- not on boundary, and round this up to a granularity unit.
- */
-
- if (MORECORE_CONTIGUOUS && !use_noncontiguous(m)) {
- char* br = CMFAIL;
- msegmentptr ss = (m->top == 0)? 0 : segment_holding(m, (char*)m->top);
- size_t asize = 0;
- ACQUIRE_MALLOC_GLOBAL_LOCK();
-
- if (ss == 0) { /* First time through or recovery */
- char* base = (char*)CALL_MORECORE(0);
- if (base != CMFAIL) {
- asize = granularity_align(nb + SYS_ALLOC_PADDING);
- /* Adjust to end on a page boundary */
- if (!is_page_aligned(base))
- asize += (page_align((size_t)base) - (size_t)base);
- /* Can't call MORECORE if size is negative when treated as signed */
- if (asize < HALF_MAX_SIZE_T &&
- (br = (char*)(CALL_MORECORE(asize))) == base) {
- tbase = base;
- tsize = asize;
- }
- }
- }
- else {
- /* Subtract out existing available top space from MORECORE request. */
- asize = granularity_align(nb - m->topsize + SYS_ALLOC_PADDING);
- /* Use mem here only if it did continuously extend old space */
- if (asize < HALF_MAX_SIZE_T &&
- (br = (char*)(CALL_MORECORE(asize))) == ss->base+ss->size) {
- tbase = br;
- tsize = asize;
- }
- }
-
- if (tbase == CMFAIL) { /* Cope with partial failure */
- if (br != CMFAIL) { /* Try to use/extend the space we did get */
- if (asize < HALF_MAX_SIZE_T &&
- asize < nb + SYS_ALLOC_PADDING) {
- size_t esize = granularity_align(nb + SYS_ALLOC_PADDING - asize);
- if (esize < HALF_MAX_SIZE_T) {
- char* end = (char*)CALL_MORECORE(esize);
- if (end != CMFAIL)
- asize += esize;
- else { /* Can't use; try to release */
- (void) CALL_MORECORE(-asize);
- br = CMFAIL;
- }
- }
- }
- }
- if (br != CMFAIL) { /* Use the space we did get */
- tbase = br;
- tsize = asize;
- }
- else
- disable_contiguous(m); /* Don't try contiguous path in the future */
- }
-
- RELEASE_MALLOC_GLOBAL_LOCK();
- }
-
- if (HAVE_MMAP && tbase == CMFAIL) { /* Try MMAP */
- size_t rsize = granularity_align(nb + SYS_ALLOC_PADDING);
- if (rsize > nb) { /* Fail if wraps around zero */
- char* mp = (char*)(CALL_MMAP(rsize));
- if (mp != CMFAIL) {
- tbase = mp;
- tsize = rsize;
- mmap_flag = USE_MMAP_BIT;
- }
- }
- }
-
- if (HAVE_MORECORE && tbase == CMFAIL) { /* Try noncontiguous MORECORE */
- size_t asize = granularity_align(nb + SYS_ALLOC_PADDING);
- if (asize < HALF_MAX_SIZE_T) {
- char* br = CMFAIL;
- char* end = CMFAIL;
- ACQUIRE_MALLOC_GLOBAL_LOCK();
- br = (char*)(CALL_MORECORE(asize));
- end = (char*)(CALL_MORECORE(0));
- RELEASE_MALLOC_GLOBAL_LOCK();
- if (br != CMFAIL && end != CMFAIL && br < end) {
- size_t ssize = end - br;
- if (ssize > nb + TOP_FOOT_SIZE) {
- tbase = br;
- tsize = ssize;
- }
- }
- }
- }
-
- if (tbase != CMFAIL) {
-
- if ((m->footprint += tsize) > m->max_footprint)
- m->max_footprint = m->footprint;
-
- if (!is_initialized(m)) { /* first-time initialization */
- if (m->least_addr == 0 || tbase < m->least_addr)
- m->least_addr = tbase;
- m->seg.base = tbase;
- m->seg.size = tsize;
- m->seg.sflags = mmap_flag;
- m->magic = mparams.magic;
- m->release_checks = MAX_RELEASE_CHECK_RATE;
- init_bins(m);
-#if !ONLY_MSPACES
- if (is_global(m))
- init_top(m, (mchunkptr)tbase, tsize - TOP_FOOT_SIZE);
- else
-#endif
- {
- /* Offset top by embedded malloc_state */
- mchunkptr mn = next_chunk(mem2chunk(m));
- init_top(m, mn, (size_t)((tbase + tsize) - (char*)mn) -TOP_FOOT_SIZE);
- }
- }
-
- else {
- /* Try to merge with an existing segment */
- msegmentptr sp = &m->seg;
- /* Only consider most recent segment if traversal suppressed */
- while (sp != 0 && tbase != sp->base + sp->size)
- sp = (NO_SEGMENT_TRAVERSAL) ? 0 : sp->next;
- if (sp != 0 &&
- !is_extern_segment(sp) &&
- (sp->sflags & USE_MMAP_BIT) == mmap_flag &&
- segment_holds(sp, m->top)) { /* append */
- sp->size += tsize;
- init_top(m, m->top, m->topsize + tsize);
- }
- else {
- if (tbase < m->least_addr)
- m->least_addr = tbase;
- sp = &m->seg;
- while (sp != 0 && sp->base != tbase + tsize)
- sp = (NO_SEGMENT_TRAVERSAL) ? 0 : sp->next;
- if (sp != 0 &&
- !is_extern_segment(sp) &&
- (sp->sflags & USE_MMAP_BIT) == mmap_flag) {
- char* oldbase = sp->base;
- sp->base = tbase;
- sp->size += tsize;
- return prepend_alloc(m, tbase, oldbase, nb);
- }
- else
- add_segment(m, tbase, tsize, mmap_flag);
- }
- }
-
- if (nb < m->topsize) { /* Allocate from new or extended top space */
- size_t rsize = m->topsize -= nb;
- mchunkptr p = m->top;
- mchunkptr r = m->top = chunk_plus_offset(p, nb);
- r->head = rsize | PINUSE_BIT;
- set_size_and_pinuse_of_inuse_chunk(m, p, nb);
- check_top_chunk(m, m->top);
- check_malloced_chunk(m, chunk2mem(p), nb);
- return chunk2mem(p);
- }
- }
-
- MALLOC_FAILURE_ACTION;
- return 0;
-}
-
-/* ----------------------- system deallocation -------------------------- */
-
-/* Unmap and unlink any mmapped segments that don't contain used chunks */
-static size_t release_unused_segments(mstate m) {
- size_t released = 0;
- int nsegs = 0;
- msegmentptr pred = &m->seg;
- msegmentptr sp = pred->next;
- while (sp != 0) {
- char* base = sp->base;
- size_t size = sp->size;
- msegmentptr next = sp->next;
- ++nsegs;
- if (is_mmapped_segment(sp) && !is_extern_segment(sp)) {
- mchunkptr p = align_as_chunk(base);
- size_t psize = chunksize(p);
- /* Can unmap if first chunk holds entire segment and not pinned */
- if (!is_inuse(p) && (char*)p + psize >= base + size - TOP_FOOT_SIZE) {
- tchunkptr tp = (tchunkptr)p;
- assert(segment_holds(sp, (char*)sp));
- if (p == m->dv) {
- m->dv = 0;
- m->dvsize = 0;
- }
- else {
- unlink_large_chunk(m, tp);
- }
- if (CALL_MUNMAP(base, size) == 0) {
- released += size;
- m->footprint -= size;
- /* unlink obsoleted record */
- sp = pred;
- sp->next = next;
- }
- else { /* back out if cannot unmap */
- insert_large_chunk(m, tp, psize);
- }
- }
- }
- if (NO_SEGMENT_TRAVERSAL) /* scan only first segment */
- break;
- pred = sp;
- sp = next;
- }
- /* Reset check counter */
- m->release_checks = ((nsegs > MAX_RELEASE_CHECK_RATE)?
- nsegs : MAX_RELEASE_CHECK_RATE);
- return released;
-}
-
-static int sys_trim(mstate m, size_t pad) {
- size_t released = 0;
- ensure_initialization();
- if (pad < MAX_REQUEST && is_initialized(m)) {
- pad += TOP_FOOT_SIZE; /* ensure enough room for segment overhead */
-
- if (m->topsize > pad) {
- /* Shrink top space in granularity-size units, keeping at least one */
- size_t unit = mparams.granularity;
- size_t extra = ((m->topsize - pad + (unit - SIZE_T_ONE)) / unit -
- SIZE_T_ONE) * unit;
- msegmentptr sp = segment_holding(m, (char*)m->top);
-
- if (!is_extern_segment(sp)) {
- if (is_mmapped_segment(sp)) {
- if (HAVE_MMAP &&
- sp->size >= extra &&
- !has_segment_link(m, sp)) { /* can't shrink if pinned */
- size_t newsize = sp->size - extra;
- /* Prefer mremap, fall back to munmap */
- if ((CALL_MREMAP(sp->base, sp->size, newsize, 0) != MFAIL) ||
- (CALL_MUNMAP(sp->base + newsize, extra) == 0)) {
- released = extra;
- }
- }
- }
- else if (HAVE_MORECORE) {
- if (extra >= HALF_MAX_SIZE_T) /* Avoid wrapping negative */
- extra = (HALF_MAX_SIZE_T) + SIZE_T_ONE - unit;
- ACQUIRE_MALLOC_GLOBAL_LOCK();
- {
- /* Make sure end of memory is where we last set it. */
- char* old_br = (char*)(CALL_MORECORE(0));
- if (old_br == sp->base + sp->size) {
- char* rel_br = (char*)(CALL_MORECORE(-extra));
- char* new_br = (char*)(CALL_MORECORE(0));
- if (rel_br != CMFAIL && new_br < old_br)
- released = old_br - new_br;
- }
- }
- RELEASE_MALLOC_GLOBAL_LOCK();
- }
- }
-
- if (released != 0) {
- sp->size -= released;
- m->footprint -= released;
- init_top(m, m->top, m->topsize - released);
- check_top_chunk(m, m->top);
- }
- }
-
- /* Unmap any unused mmapped segments */
- if (HAVE_MMAP)
- released += release_unused_segments(m);
-
- /* On failure, disable autotrim to avoid repeated failed future calls */
- if (released == 0 && m->topsize > m->trim_check)
- m->trim_check = MAX_SIZE_T;
- }
-
- return (released != 0)? 1 : 0;
-}
-
-
-/* ---------------------------- malloc support --------------------------- */
-
-/* allocate a large request from the best fitting chunk in a treebin */
-static void* tmalloc_large(mstate m, size_t nb) {
- tchunkptr v = 0;
- size_t rsize = -nb; /* Unsigned negation */
- tchunkptr t;
- bindex_t idx;
- compute_tree_index(nb, idx);
- if ((t = *treebin_at(m, idx)) != 0) {
- /* Traverse tree for this bin looking for node with size == nb */
- size_t sizebits = nb << leftshift_for_tree_index(idx);
- tchunkptr rst = 0; /* The deepest untaken right subtree */
- for (;;) {
- tchunkptr rt;
- size_t trem = chunksize(t) - nb;
- if (trem < rsize) {
- v = t;
- if ((rsize = trem) == 0)
- break;
- }
- rt = t->child[1];
- t = t->child[(sizebits >> (SIZE_T_BITSIZE-SIZE_T_ONE)) & 1];
- if (rt != 0 && rt != t)
- rst = rt;
- if (t == 0) {
- t = rst; /* set t to least subtree holding sizes > nb */
- break;
- }
- sizebits <<= 1;
- }
- }
- if (t == 0 && v == 0) { /* set t to root of next non-empty treebin */
- binmap_t leftbits = left_bits(idx2bit(idx)) & m->treemap;
- if (leftbits != 0) {
- bindex_t i;
- binmap_t leastbit = least_bit(leftbits);
- compute_bit2idx(leastbit, i);
- t = *treebin_at(m, i);
- }
- }
-
- while (t != 0) { /* find smallest of tree or subtree */
- size_t trem = chunksize(t) - nb;
- if (trem < rsize) {
- rsize = trem;
- v = t;
- }
- t = leftmost_child(t);
- }
-
- /* If dv is a better fit, return 0 so malloc will use it */
- if (v != 0 && rsize < (size_t)(m->dvsize - nb)) {
- if (RTCHECK(ok_address(m, v))) { /* split */
- mchunkptr r = chunk_plus_offset(v, nb);
- assert(chunksize(v) == rsize + nb);
- if (RTCHECK(ok_next(v, r))) {
- unlink_large_chunk(m, v);
- if (rsize < MIN_CHUNK_SIZE)
- set_inuse_and_pinuse(m, v, (rsize + nb));
- else {
- set_size_and_pinuse_of_inuse_chunk(m, v, nb);
- set_size_and_pinuse_of_free_chunk(r, rsize);
- insert_chunk(m, r, rsize);
- }
- return chunk2mem(v);
- }
- }
- CORRUPTION_ERROR_ACTION(m);
- }
- return 0;
-}
-
-/* allocate a small request from the best fitting chunk in a treebin */
-static void* tmalloc_small(mstate m, size_t nb) {
- tchunkptr t, v;
- size_t rsize;
- bindex_t i;
- binmap_t leastbit = least_bit(m->treemap);
- compute_bit2idx(leastbit, i);
- v = t = *treebin_at(m, i);
- rsize = chunksize(t) - nb;
-
- while ((t = leftmost_child(t)) != 0) {
- size_t trem = chunksize(t) - nb;
- if (trem < rsize) {
- rsize = trem;
- v = t;
- }
- }
-
- if (RTCHECK(ok_address(m, v))) {
- mchunkptr r = chunk_plus_offset(v, nb);
- assert(chunksize(v) == rsize + nb);
- if (RTCHECK(ok_next(v, r))) {
- unlink_large_chunk(m, v);
- if (rsize < MIN_CHUNK_SIZE)
- set_inuse_and_pinuse(m, v, (rsize + nb));
- else {
- set_size_and_pinuse_of_inuse_chunk(m, v, nb);
- set_size_and_pinuse_of_free_chunk(r, rsize);
- replace_dv(m, r, rsize);
- }
- return chunk2mem(v);
- }
- }
-
- CORRUPTION_ERROR_ACTION(m);
- return 0;
-}
-
-/* --------------------------- realloc support --------------------------- */
-
-static void* internal_realloc(mstate m, void* oldmem, size_t bytes) {
- if (bytes >= MAX_REQUEST) {
- MALLOC_FAILURE_ACTION;
- return 0;
- }
- if (!PREACTION(m)) {
- mchunkptr oldp = mem2chunk(oldmem);
- size_t oldsize = chunksize(oldp);
- mchunkptr next = chunk_plus_offset(oldp, oldsize);
- mchunkptr newp = 0;
- void* extra = 0;
-
- /* Try to either shrink or extend into top. Else malloc-copy-free */
-
- if (RTCHECK(ok_address(m, oldp) && ok_inuse(oldp) &&
- ok_next(oldp, next) && ok_pinuse(next))) {
- size_t nb = request2size(bytes);
- if (is_mmapped(oldp))
- newp = mmap_resize(m, oldp, nb);
- else if (oldsize >= nb) { /* already big enough */
- size_t rsize = oldsize - nb;
- newp = oldp;
- if (rsize >= MIN_CHUNK_SIZE) {
- mchunkptr remainder = chunk_plus_offset(newp, nb);
- set_inuse(m, newp, nb);
- set_inuse_and_pinuse(m, remainder, rsize);
- extra = chunk2mem(remainder);
- }
- }
- else if (next == m->top && oldsize + m->topsize > nb) {
- /* Expand into top */
- size_t newsize = oldsize + m->topsize;
- size_t newtopsize = newsize - nb;
- mchunkptr newtop = chunk_plus_offset(oldp, nb);
- set_inuse(m, oldp, nb);
- newtop->head = newtopsize |PINUSE_BIT;
- m->top = newtop;
- m->topsize = newtopsize;
- newp = oldp;
- }
- }
- else {
- USAGE_ERROR_ACTION(m, oldmem);
- POSTACTION(m);
- return 0;
- }
-#if DEBUG
- if (newp != 0) {
- check_inuse_chunk(m, newp); /* Check requires lock */
- }
-#endif
-
- POSTACTION(m);
-
- if (newp != 0) {
- if (extra != 0) {
- internal_free(m, extra);
- }
- return chunk2mem(newp);
- }
- else {
- void* newmem = internal_malloc(m, bytes);
- if (newmem != 0) {
- size_t oc = oldsize - overhead_for(oldp);
- memcpy(newmem, oldmem, (oc < bytes)? oc : bytes);
- internal_free(m, oldmem);
- }
- return newmem;
- }
- }
- return 0;
-}
-
-/* --------------------------- memalign support -------------------------- */
-
-static void* internal_memalign(mstate m, size_t alignment, size_t bytes) {
- if (alignment <= MALLOC_ALIGNMENT) /* Can just use malloc */
- return internal_malloc(m, bytes);
- if (alignment < MIN_CHUNK_SIZE) /* must be at least a minimum chunk size */
- alignment = MIN_CHUNK_SIZE;
- if ((alignment & (alignment-SIZE_T_ONE)) != 0) {/* Ensure a power of 2 */
- size_t a = MALLOC_ALIGNMENT << 1;
- while (a < alignment) a <<= 1;
- alignment = a;
- }
-
- if (bytes >= MAX_REQUEST - alignment) {
- if (m != 0) { /* Test isn't needed but avoids compiler warning */
- MALLOC_FAILURE_ACTION;
- }
- }
- else {
- size_t nb = request2size(bytes);
- size_t req = nb + alignment + MIN_CHUNK_SIZE - CHUNK_OVERHEAD;
- char* mem = (char*)internal_malloc(m, req);
- if (mem != 0) {
- void* leader = 0;
- void* trailer = 0;
- mchunkptr p = mem2chunk(mem);
-
- if (PREACTION(m)) return 0;
- if ((((size_t)(mem)) % alignment) != 0) { /* misaligned */
- /*
- Find an aligned spot inside chunk. Since we need to give
- back leading space in a chunk of at least MIN_CHUNK_SIZE, if
- the first calculation places us at a spot with less than
- MIN_CHUNK_SIZE leader, we can move to the next aligned spot.
- We've allocated enough total room so that this is always
- possible.
- */
- char* br = (char*)mem2chunk((size_t)(((size_t)(mem +
- alignment -
- SIZE_T_ONE)) &
- -alignment));
- char* pos = ((size_t)(br - (char*)(p)) >= MIN_CHUNK_SIZE)?
- br : br+alignment;
- mchunkptr newp = (mchunkptr)pos;
- size_t leadsize = pos - (char*)(p);
- size_t newsize = chunksize(p) - leadsize;
-
- if (is_mmapped(p)) { /* For mmapped chunks, just adjust offset */
- newp->prev_foot = p->prev_foot + leadsize;
- newp->head = newsize;
- }
- else { /* Otherwise, give back leader, use the rest */
- set_inuse(m, newp, newsize);
- set_inuse(m, p, leadsize);
- leader = chunk2mem(p);
- }
- p = newp;
- }
-
- /* Give back spare room at the end */
- if (!is_mmapped(p)) {
- size_t size = chunksize(p);
- if (size > nb + MIN_CHUNK_SIZE) {
- size_t remainder_size = size - nb;
- mchunkptr remainder = chunk_plus_offset(p, nb);
- set_inuse(m, p, nb);
- set_inuse(m, remainder, remainder_size);
- trailer = chunk2mem(remainder);
- }
- }
-
- assert (chunksize(p) >= nb);
- assert((((size_t)(chunk2mem(p))) % alignment) == 0);
- check_inuse_chunk(m, p);
- POSTACTION(m);
- if (leader != 0) {
- internal_free(m, leader);
- }
- if (trailer != 0) {
- internal_free(m, trailer);
- }
- return chunk2mem(p);
- }
- }
- return 0;
-}
-
-/* ------------------------ comalloc/coalloc support --------------------- */
-
-static void** ialloc(mstate m,
- size_t n_elements,
- size_t* sizes,
- int opts,
- void* chunks[]) {
- /*
- This provides common support for independent_X routines, handling
- all of the combinations that can result.
-
- The opts arg has:
- bit 0 set if all elements are same size (using sizes[0])
- bit 1 set if elements should be zeroed
- */
-
- size_t element_size; /* chunksize of each element, if all same */
- size_t contents_size; /* total size of elements */
- size_t array_size; /* request size of pointer array */
- void* mem; /* malloced aggregate space */
- mchunkptr p; /* corresponding chunk */
- size_t remainder_size; /* remaining bytes while splitting */
- void** marray; /* either "chunks" or malloced ptr array */
- mchunkptr array_chunk; /* chunk for malloced ptr array */
- flag_t was_enabled; /* to disable mmap */
- size_t size;
- size_t i;
-
- ensure_initialization();
- /* compute array length, if needed */
- if (chunks != 0) {
- if (n_elements == 0)
- return chunks; /* nothing to do */
- marray = chunks;
- array_size = 0;
- }
- else {
- /* if empty req, must still return chunk representing empty array */
- if (n_elements == 0)
- return (void**)internal_malloc(m, 0);
- marray = 0;
- array_size = request2size(n_elements * (sizeof(void*)));
- }
-
- /* compute total element size */
- if (opts & 0x1) { /* all-same-size */
- element_size = request2size(*sizes);
- contents_size = n_elements * element_size;
- }
- else { /* add up all the sizes */
- element_size = 0;
- contents_size = 0;
- for (i = 0; i != n_elements; ++i)
- contents_size += request2size(sizes[i]);
- }
-
- size = contents_size + array_size;
-
- /*
- Allocate the aggregate chunk. First disable direct-mmapping so
- malloc won't use it, since we would not be able to later
- free/realloc space internal to a segregated mmap region.
- */
- was_enabled = use_mmap(m);
- disable_mmap(m);
- mem = internal_malloc(m, size - CHUNK_OVERHEAD);
- if (was_enabled)
- enable_mmap(m);
- if (mem == 0)
- return 0;
-
- if (PREACTION(m)) return 0;
- p = mem2chunk(mem);
- remainder_size = chunksize(p);
-
- assert(!is_mmapped(p));
-
- if (opts & 0x2) { /* optionally clear the elements */
- memset((size_t*)mem, 0, remainder_size - SIZE_T_SIZE - array_size);
- }
-
- /* If not provided, allocate the pointer array as final part of chunk */
- if (marray == 0) {
- size_t array_chunk_size;
- array_chunk = chunk_plus_offset(p, contents_size);
- array_chunk_size = remainder_size - contents_size;
- marray = (void**) (chunk2mem(array_chunk));
- set_size_and_pinuse_of_inuse_chunk(m, array_chunk, array_chunk_size);
- remainder_size = contents_size;
- }
-
- /* split out elements */
- for (i = 0; ; ++i) {
- marray[i] = chunk2mem(p);
- if (i != n_elements-1) {
- if (element_size != 0)
- size = element_size;
- else
- size = request2size(sizes[i]);
- remainder_size -= size;
- set_size_and_pinuse_of_inuse_chunk(m, p, size);
- p = chunk_plus_offset(p, size);
- }
- else { /* the final element absorbs any overallocation slop */
- set_size_and_pinuse_of_inuse_chunk(m, p, remainder_size);
- break;
- }
- }
-
-#if DEBUG
- if (marray != chunks) {
- /* final element must have exactly exhausted chunk */
- if (element_size != 0) {
- assert(remainder_size == element_size);
- }
- else {
- assert(remainder_size == request2size(sizes[i]));
- }
- check_inuse_chunk(m, mem2chunk(marray));
- }
- for (i = 0; i != n_elements; ++i)
- check_inuse_chunk(m, mem2chunk(marray[i]));
-
-#endif /* DEBUG */
-
- POSTACTION(m);
- return marray;
-}
-
-
-/* -------------------------- public routines ---------------------------- */
-
-#if !ONLY_MSPACES
-
-void* dlmalloc(size_t bytes) {
- /*
- Basic algorithm:
- If a small request (< 256 bytes minus per-chunk overhead):
- 1. If one exists, use a remainderless chunk in associated smallbin.
- (Remainderless means that there are too few excess bytes to
- represent as a chunk.)
- 2. If it is big enough, use the dv chunk, which is normally the
- chunk adjacent to the one used for the most recent small request.
- 3. If one exists, split the smallest available chunk in a bin,
- saving remainder in dv.
- 4. If it is big enough, use the top chunk.
- 5. If available, get memory from system and use it
- Otherwise, for a large request:
- 1. Find the smallest available binned chunk that fits, and use it
- if it is better fitting than dv chunk, splitting if necessary.
- 2. If better fitting than any binned chunk, use the dv chunk.
- 3. If it is big enough, use the top chunk.
- 4. If request size >= mmap threshold, try to directly mmap this chunk.
- 5. If available, get memory from system and use it
-
- The ugly goto's here ensure that postaction occurs along all paths.
- */
-
-#if USE_LOCKS
- ensure_initialization(); /* initialize in sys_alloc if not using locks */
-#endif
-
- if (!PREACTION(gm)) {
- void* mem;
- size_t nb;
- if (bytes <= MAX_SMALL_REQUEST) {
- bindex_t idx;
- binmap_t smallbits;
- nb = (bytes < MIN_REQUEST)? MIN_CHUNK_SIZE : pad_request(bytes);
- idx = small_index(nb);
- smallbits = gm->smallmap >> idx;
-
- if ((smallbits & 0x3U) != 0) { /* Remainderless fit to a smallbin. */
- mchunkptr b, p;
- idx += ~smallbits & 1; /* Uses next bin if idx empty */
- b = smallbin_at(gm, idx);
- p = b->fd;
- assert(chunksize(p) == small_index2size(idx));
- unlink_first_small_chunk(gm, b, p, idx);
- set_inuse_and_pinuse(gm, p, small_index2size(idx));
- mem = chunk2mem(p);
- check_malloced_chunk(gm, mem, nb);
- goto postaction;
- }
-
- else if (nb > gm->dvsize) {
- if (smallbits != 0) { /* Use chunk in next nonempty smallbin */
- mchunkptr b, p, r;
- size_t rsize;
- bindex_t i;
- binmap_t leftbits = (smallbits << idx) & left_bits(idx2bit(idx));
- binmap_t leastbit = least_bit(leftbits);
- compute_bit2idx(leastbit, i);
- b = smallbin_at(gm, i);
- p = b->fd;
- assert(chunksize(p) == small_index2size(i));
- unlink_first_small_chunk(gm, b, p, i);
- rsize = small_index2size(i) - nb;
- /* Fit here cannot be remainderless if 4byte sizes */
- if (SIZE_T_SIZE != 4 && rsize < MIN_CHUNK_SIZE)
- set_inuse_and_pinuse(gm, p, small_index2size(i));
- else {
- set_size_and_pinuse_of_inuse_chunk(gm, p, nb);
- r = chunk_plus_offset(p, nb);
- set_size_and_pinuse_of_free_chunk(r, rsize);
- replace_dv(gm, r, rsize);
- }
- mem = chunk2mem(p);
- check_malloced_chunk(gm, mem, nb);
- goto postaction;
- }
-
- else if (gm->treemap != 0 && (mem = tmalloc_small(gm, nb)) != 0) {
- check_malloced_chunk(gm, mem, nb);
- goto postaction;
- }
- }
- }
- else if (bytes >= MAX_REQUEST)
- nb = MAX_SIZE_T; /* Too big to allocate. Force failure (in sys alloc) */
- else {
- nb = pad_request(bytes);
- if (gm->treemap != 0 && (mem = tmalloc_large(gm, nb)) != 0) {
- check_malloced_chunk(gm, mem, nb);
- goto postaction;
- }
- }
-
- if (nb <= gm->dvsize) {
- size_t rsize = gm->dvsize - nb;
- mchunkptr p = gm->dv;
- if (rsize >= MIN_CHUNK_SIZE) { /* split dv */
- mchunkptr r = gm->dv = chunk_plus_offset(p, nb);
- gm->dvsize = rsize;
- set_size_and_pinuse_of_free_chunk(r, rsize);
- set_size_and_pinuse_of_inuse_chunk(gm, p, nb);
- }
- else { /* exhaust dv */
- size_t dvs = gm->dvsize;
- gm->dvsize = 0;
- gm->dv = 0;
- set_inuse_and_pinuse(gm, p, dvs);
- }
- mem = chunk2mem(p);
- check_malloced_chunk(gm, mem, nb);
- goto postaction;
- }
-
- else if (nb < gm->topsize) { /* Split top */
- size_t rsize = gm->topsize -= nb;
- mchunkptr p = gm->top;
- mchunkptr r = gm->top = chunk_plus_offset(p, nb);
- r->head = rsize | PINUSE_BIT;
- set_size_and_pinuse_of_inuse_chunk(gm, p, nb);
- mem = chunk2mem(p);
- check_top_chunk(gm, gm->top);
- check_malloced_chunk(gm, mem, nb);
- goto postaction;
- }
-
- mem = sys_alloc(gm, nb);
-
- postaction:
- POSTACTION(gm);
- return mem;
- }
-
- return 0;
-}
-
-void dlfree(void* mem) {
- /*
- Consolidate freed chunks with preceeding or succeeding bordering
- free chunks, if they exist, and then place in a bin. Intermixed
- with special cases for top, dv, mmapped chunks, and usage errors.
- */
-
- if (mem != 0) {
- mchunkptr p = mem2chunk(mem);
-#if FOOTERS
- mstate fm = get_mstate_for(p);
- if (!ok_magic(fm)) {
- USAGE_ERROR_ACTION(fm, p);
- return;
- }
-#else /* FOOTERS */
-#define fm gm
-#endif /* FOOTERS */
- if (!PREACTION(fm)) {
- check_inuse_chunk(fm, p);
- if (RTCHECK(ok_address(fm, p) && ok_inuse(p))) {
- size_t psize = chunksize(p);
- mchunkptr next = chunk_plus_offset(p, psize);
- if (!pinuse(p)) {
- size_t prevsize = p->prev_foot;
- if (is_mmapped(p)) {
- psize += prevsize + MMAP_FOOT_PAD;
- if (CALL_MUNMAP((char*)p - prevsize, psize) == 0)
- fm->footprint -= psize;
- goto postaction;
- }
- else {
- mchunkptr prev = chunk_minus_offset(p, prevsize);
- psize += prevsize;
- p = prev;
- if (RTCHECK(ok_address(fm, prev))) { /* consolidate backward */
- if (p != fm->dv) {
- unlink_chunk(fm, p, prevsize);
- }
- else if ((next->head & INUSE_BITS) == INUSE_BITS) {
- fm->dvsize = psize;
- set_free_with_pinuse(p, psize, next);
- goto postaction;
- }
- }
- else
- goto erroraction;
- }
- }
-
- if (RTCHECK(ok_next(p, next) && ok_pinuse(next))) {
- if (!cinuse(next)) { /* consolidate forward */
- if (next == fm->top) {
- size_t tsize = fm->topsize += psize;
- fm->top = p;
- p->head = tsize | PINUSE_BIT;
- if (p == fm->dv) {
- fm->dv = 0;
- fm->dvsize = 0;
- }
- if (should_trim(fm, tsize))
- sys_trim(fm, 0);
- goto postaction;
- }
- else if (next == fm->dv) {
- size_t dsize = fm->dvsize += psize;
- fm->dv = p;
- set_size_and_pinuse_of_free_chunk(p, dsize);
- goto postaction;
- }
- else {
- size_t nsize = chunksize(next);
- psize += nsize;
- unlink_chunk(fm, next, nsize);
- set_size_and_pinuse_of_free_chunk(p, psize);
- if (p == fm->dv) {
- fm->dvsize = psize;
- goto postaction;
- }
- }
- }
- else
- set_free_with_pinuse(p, psize, next);
-
- if (is_small(psize)) {
- insert_small_chunk(fm, p, psize);
- check_free_chunk(fm, p);
- }
- else {
- tchunkptr tp = (tchunkptr)p;
- insert_large_chunk(fm, tp, psize);
- check_free_chunk(fm, p);
- if (--fm->release_checks == 0)
- release_unused_segments(fm);
- }
- goto postaction;
- }
- }
- erroraction:
- USAGE_ERROR_ACTION(fm, p);
- postaction:
- POSTACTION(fm);
- }
- }
-#if !FOOTERS
-#undef fm
-#endif /* FOOTERS */
-}
-
-void* dlcalloc(size_t n_elements, size_t elem_size) {
- void* mem;
- size_t req = 0;
- if (n_elements != 0) {
- req = n_elements * elem_size;
- if (((n_elements | elem_size) & ~(size_t)0xffff) &&
- (req / n_elements != elem_size))
- req = MAX_SIZE_T; /* force downstream failure on overflow */
- }
- mem = dlmalloc(req);
- if (mem != 0 && calloc_must_clear(mem2chunk(mem)))
- memset(mem, 0, req);
- return mem;
-}
-
-void* dlrealloc(void* oldmem, size_t bytes) {
- if (oldmem == 0)
- return dlmalloc(bytes);
-#ifdef REALLOC_ZERO_BYTES_FREES
- if (bytes == 0) {
- dlfree(oldmem);
- return 0;
- }
-#endif /* REALLOC_ZERO_BYTES_FREES */
- else {
-#if ! FOOTERS
- mstate m = gm;
-#else /* FOOTERS */
- mstate m = get_mstate_for(mem2chunk(oldmem));
- if (!ok_magic(m)) {
- USAGE_ERROR_ACTION(m, oldmem);
- return 0;
- }
-#endif /* FOOTERS */
- return internal_realloc(m, oldmem, bytes);
- }
-}
-
-void* dlmemalign(size_t alignment, size_t bytes) {
- return internal_memalign(gm, alignment, bytes);
-}
-
-void** dlindependent_calloc(size_t n_elements, size_t elem_size,
- void* chunks[]) {
- size_t sz = elem_size; /* serves as 1-element array */
- return ialloc(gm, n_elements, &sz, 3, chunks);
-}
-
-void** dlindependent_comalloc(size_t n_elements, size_t sizes[],
- void* chunks[]) {
- return ialloc(gm, n_elements, sizes, 0, chunks);
-}
-
-void* dlvalloc(size_t bytes) {
- size_t pagesz;
- ensure_initialization();
- pagesz = mparams.page_size;
- return dlmemalign(pagesz, bytes);
-}
-
-void* dlpvalloc(size_t bytes) {
- size_t pagesz;
- ensure_initialization();
- pagesz = mparams.page_size;
- return dlmemalign(pagesz, (bytes + pagesz - SIZE_T_ONE) & ~(pagesz - SIZE_T_ONE));
-}
-
-int dlmalloc_trim(size_t pad) {
- int result = 0;
- ensure_initialization();
- if (!PREACTION(gm)) {
- result = sys_trim(gm, pad);
- POSTACTION(gm);
- }
- return result;
-}
-
-size_t dlmalloc_footprint(void) {
- return gm->footprint;
-}
-
-size_t dlmalloc_max_footprint(void) {
- return gm->max_footprint;
-}
-
-#if !NO_MALLINFO
-struct mallinfo dlmallinfo(void) {
- return internal_mallinfo(gm);
-}
-#endif /* NO_MALLINFO */
-
-void dlmalloc_stats() {
- internal_malloc_stats(gm);
-}
-
-int dlmallopt(int param_number, int value) {
- return change_mparam(param_number, value);
-}
-
-#endif /* !ONLY_MSPACES */
-
-size_t dlmalloc_usable_size(void* mem) {
- if (mem != 0) {
- mchunkptr p = mem2chunk(mem);
- if (is_inuse(p))
- return chunksize(p) - overhead_for(p);
- }
- return 0;
-}
-
-/* ----------------------------- user mspaces ---------------------------- */
-
-#if MSPACES
-
-static mstate init_user_mstate(char* tbase, size_t tsize) {
- size_t msize = pad_request(sizeof(struct malloc_state));
- mchunkptr mn;
- mchunkptr msp = align_as_chunk(tbase);
- mstate m = (mstate)(chunk2mem(msp));
- memset(m, 0, msize);
- INITIAL_LOCK(&m->mutex);
- msp->head = (msize|INUSE_BITS);
- m->seg.base = m->least_addr = tbase;
- m->seg.size = m->footprint = m->max_footprint = tsize;
- m->magic = mparams.magic;
- m->release_checks = MAX_RELEASE_CHECK_RATE;
- m->mflags = mparams.default_mflags;
- m->extp = 0;
- m->exts = 0;
- disable_contiguous(m);
- init_bins(m);
- mn = next_chunk(mem2chunk(m));
- init_top(m, mn, (size_t)((tbase + tsize) - (char*)mn) - TOP_FOOT_SIZE);
- check_top_chunk(m, m->top);
- return m;
-}
-
-mspace create_mspace(size_t capacity, int locked) {
- mstate m = 0;
- size_t msize;
- ensure_initialization();
- msize = pad_request(sizeof(struct malloc_state));
- if (capacity < (size_t) -(msize + TOP_FOOT_SIZE + mparams.page_size)) {
- size_t rs = ((capacity == 0)? mparams.granularity :
- (capacity + TOP_FOOT_SIZE + msize));
- size_t tsize = granularity_align(rs);
- char* tbase = (char*)(CALL_MMAP(tsize));
- if (tbase != CMFAIL) {
- m = init_user_mstate(tbase, tsize);
- m->seg.sflags = USE_MMAP_BIT;
- set_lock(m, locked);
- }
- }
- return (mspace)m;
-}
-
-mspace create_mspace_with_base(void* base, size_t capacity, int locked) {
- mstate m = 0;
- size_t msize;
- ensure_initialization();
- msize = pad_request(sizeof(struct malloc_state));
- if (capacity > msize + TOP_FOOT_SIZE &&
- capacity < (size_t) -(msize + TOP_FOOT_SIZE + mparams.page_size)) {
- m = init_user_mstate((char*)base, capacity);
- m->seg.sflags = EXTERN_BIT;
- set_lock(m, locked);
- }
- return (mspace)m;
-}
-
-int mspace_track_large_chunks(mspace msp, int enable) {
- int ret = 0;
- mstate ms = (mstate)msp;
- if (!PREACTION(ms)) {
- if (!use_mmap(ms))
- ret = 1;
- if (!enable)
- enable_mmap(ms);
- else
- disable_mmap(ms);
- POSTACTION(ms);
- }
- return ret;
-}
-
-size_t destroy_mspace(mspace msp) {
- size_t freed = 0;
- mstate ms = (mstate)msp;
- if (ok_magic(ms)) {
- msegmentptr sp = &ms->seg;
- while (sp != 0) {
- char* base = sp->base;
- size_t size = sp->size;
- flag_t flag = sp->sflags;
- sp = sp->next;
- if ((flag & USE_MMAP_BIT) && !(flag & EXTERN_BIT) &&
- CALL_MUNMAP(base, size) == 0)
- freed += size;
- }
- }
- else {
- USAGE_ERROR_ACTION(ms,ms);
- }
- return freed;
-}
-
-/*
- mspace versions of routines are near-clones of the global
- versions. This is not so nice but better than the alternatives.
-*/
-
-
-void* mspace_malloc(mspace msp, size_t bytes) {
- mstate ms = (mstate)msp;
- if (!ok_magic(ms)) {
- USAGE_ERROR_ACTION(ms,ms);
- return 0;
- }
- if (!PREACTION(ms)) {
- void* mem;
- size_t nb;
- if (bytes <= MAX_SMALL_REQUEST) {
- bindex_t idx;
- binmap_t smallbits;
- nb = (bytes < MIN_REQUEST)? MIN_CHUNK_SIZE : pad_request(bytes);
- idx = small_index(nb);
- smallbits = ms->smallmap >> idx;
-
- if ((smallbits & 0x3U) != 0) { /* Remainderless fit to a smallbin. */
- mchunkptr b, p;
- idx += ~smallbits & 1; /* Uses next bin if idx empty */
- b = smallbin_at(ms, idx);
- p = b->fd;
- assert(chunksize(p) == small_index2size(idx));
- unlink_first_small_chunk(ms, b, p, idx);
- set_inuse_and_pinuse(ms, p, small_index2size(idx));
- mem = chunk2mem(p);
- check_malloced_chunk(ms, mem, nb);
- goto postaction;
- }
-
- else if (nb > ms->dvsize) {
- if (smallbits != 0) { /* Use chunk in next nonempty smallbin */
- mchunkptr b, p, r;
- size_t rsize;
- bindex_t i;
- binmap_t leftbits = (smallbits << idx) & left_bits(idx2bit(idx));
- binmap_t leastbit = least_bit(leftbits);
- compute_bit2idx(leastbit, i);
- b = smallbin_at(ms, i);
- p = b->fd;
- assert(chunksize(p) == small_index2size(i));
- unlink_first_small_chunk(ms, b, p, i);
- rsize = small_index2size(i) - nb;
- /* Fit here cannot be remainderless if 4byte sizes */
- if (SIZE_T_SIZE != 4 && rsize < MIN_CHUNK_SIZE)
- set_inuse_and_pinuse(ms, p, small_index2size(i));
- else {
- set_size_and_pinuse_of_inuse_chunk(ms, p, nb);
- r = chunk_plus_offset(p, nb);
- set_size_and_pinuse_of_free_chunk(r, rsize);
- replace_dv(ms, r, rsize);
- }
- mem = chunk2mem(p);
- check_malloced_chunk(ms, mem, nb);
- goto postaction;
- }
-
- else if (ms->treemap != 0 && (mem = tmalloc_small(ms, nb)) != 0) {
- check_malloced_chunk(ms, mem, nb);
- goto postaction;
- }
- }
- }
- else if (bytes >= MAX_REQUEST)
- nb = MAX_SIZE_T; /* Too big to allocate. Force failure (in sys alloc) */
- else {
- nb = pad_request(bytes);
- if (ms->treemap != 0 && (mem = tmalloc_large(ms, nb)) != 0) {
- check_malloced_chunk(ms, mem, nb);
- goto postaction;
- }
- }
-
- if (nb <= ms->dvsize) {
- size_t rsize = ms->dvsize - nb;
- mchunkptr p = ms->dv;
- if (rsize >= MIN_CHUNK_SIZE) { /* split dv */
- mchunkptr r = ms->dv = chunk_plus_offset(p, nb);
- ms->dvsize = rsize;
- set_size_and_pinuse_of_free_chunk(r, rsize);
- set_size_and_pinuse_of_inuse_chunk(ms, p, nb);
- }
- else { /* exhaust dv */
- size_t dvs = ms->dvsize;
- ms->dvsize = 0;
- ms->dv = 0;
- set_inuse_and_pinuse(ms, p, dvs);
- }
- mem = chunk2mem(p);
- check_malloced_chunk(ms, mem, nb);
- goto postaction;
- }
-
- else if (nb < ms->topsize) { /* Split top */
- size_t rsize = ms->topsize -= nb;
- mchunkptr p = ms->top;
- mchunkptr r = ms->top = chunk_plus_offset(p, nb);
- r->head = rsize | PINUSE_BIT;
- set_size_and_pinuse_of_inuse_chunk(ms, p, nb);
- mem = chunk2mem(p);
- check_top_chunk(ms, ms->top);
- check_malloced_chunk(ms, mem, nb);
- goto postaction;
- }
-
- mem = sys_alloc(ms, nb);
-
- postaction:
- POSTACTION(ms);
- return mem;
- }
-
- return 0;
-}
-
-void mspace_free(mspace msp, void* mem) {
- if (mem != 0) {
- mchunkptr p = mem2chunk(mem);
-#if FOOTERS
- mstate fm = get_mstate_for(p);
- msp = msp; /* placate people compiling -Wunused */
-#else /* FOOTERS */
- mstate fm = (mstate)msp;
-#endif /* FOOTERS */
- if (!ok_magic(fm)) {
- USAGE_ERROR_ACTION(fm, p);
- return;
- }
- if (!PREACTION(fm)) {
- check_inuse_chunk(fm, p);
- if (RTCHECK(ok_address(fm, p) && ok_inuse(p))) {
- size_t psize = chunksize(p);
- mchunkptr next = chunk_plus_offset(p, psize);
- if (!pinuse(p)) {
- size_t prevsize = p->prev_foot;
- if (is_mmapped(p)) {
- psize += prevsize + MMAP_FOOT_PAD;
- if (CALL_MUNMAP((char*)p - prevsize, psize) == 0)
- fm->footprint -= psize;
- goto postaction;
- }
- else {
- mchunkptr prev = chunk_minus_offset(p, prevsize);
- psize += prevsize;
- p = prev;
- if (RTCHECK(ok_address(fm, prev))) { /* consolidate backward */
- if (p != fm->dv) {
- unlink_chunk(fm, p, prevsize);
- }
- else if ((next->head & INUSE_BITS) == INUSE_BITS) {
- fm->dvsize = psize;
- set_free_with_pinuse(p, psize, next);
- goto postaction;
- }
- }
- else
- goto erroraction;
- }
- }
-
- if (RTCHECK(ok_next(p, next) && ok_pinuse(next))) {
- if (!cinuse(next)) { /* consolidate forward */
- if (next == fm->top) {
- size_t tsize = fm->topsize += psize;
- fm->top = p;
- p->head = tsize | PINUSE_BIT;
- if (p == fm->dv) {
- fm->dv = 0;
- fm->dvsize = 0;
- }
- if (should_trim(fm, tsize))
- sys_trim(fm, 0);
- goto postaction;
- }
- else if (next == fm->dv) {
- size_t dsize = fm->dvsize += psize;
- fm->dv = p;
- set_size_and_pinuse_of_free_chunk(p, dsize);
- goto postaction;
- }
- else {
- size_t nsize = chunksize(next);
- psize += nsize;
- unlink_chunk(fm, next, nsize);
- set_size_and_pinuse_of_free_chunk(p, psize);
- if (p == fm->dv) {
- fm->dvsize = psize;
- goto postaction;
- }
- }
- }
- else
- set_free_with_pinuse(p, psize, next);
-
- if (is_small(psize)) {
- insert_small_chunk(fm, p, psize);
- check_free_chunk(fm, p);
- }
- else {
- tchunkptr tp = (tchunkptr)p;
- insert_large_chunk(fm, tp, psize);
- check_free_chunk(fm, p);
- if (--fm->release_checks == 0)
- release_unused_segments(fm);
- }
- goto postaction;
- }
- }
- erroraction:
- USAGE_ERROR_ACTION(fm, p);
- postaction:
- POSTACTION(fm);
- }
- }
-}
-
-void* mspace_calloc(mspace msp, size_t n_elements, size_t elem_size) {
- void* mem;
- size_t req = 0;
- mstate ms = (mstate)msp;
- if (!ok_magic(ms)) {
- USAGE_ERROR_ACTION(ms,ms);
- return 0;
- }
- if (n_elements != 0) {
- req = n_elements * elem_size;
- if (((n_elements | elem_size) & ~(size_t)0xffff) &&
- (req / n_elements != elem_size))
- req = MAX_SIZE_T; /* force downstream failure on overflow */
- }
- mem = internal_malloc(ms, req);
- if (mem != 0 && calloc_must_clear(mem2chunk(mem)))
- memset(mem, 0, req);
- return mem;
-}
-
-void* mspace_realloc(mspace msp, void* oldmem, size_t bytes) {
- if (oldmem == 0)
- return mspace_malloc(msp, bytes);
-#ifdef REALLOC_ZERO_BYTES_FREES
- if (bytes == 0) {
- mspace_free(msp, oldmem);
- return 0;
- }
-#endif /* REALLOC_ZERO_BYTES_FREES */
- else {
-#if FOOTERS
- mchunkptr p = mem2chunk(oldmem);
- mstate ms = get_mstate_for(p);
-#else /* FOOTERS */
- mstate ms = (mstate)msp;
-#endif /* FOOTERS */
- if (!ok_magic(ms)) {
- USAGE_ERROR_ACTION(ms,ms);
- return 0;
- }
- return internal_realloc(ms, oldmem, bytes);
- }
-}
-
-void* mspace_memalign(mspace msp, size_t alignment, size_t bytes) {
- mstate ms = (mstate)msp;
- if (!ok_magic(ms)) {
- USAGE_ERROR_ACTION(ms,ms);
- return 0;
- }
- return internal_memalign(ms, alignment, bytes);
-}
-
-void** mspace_independent_calloc(mspace msp, size_t n_elements,
- size_t elem_size, void* chunks[]) {
- size_t sz = elem_size; /* serves as 1-element array */
- mstate ms = (mstate)msp;
- if (!ok_magic(ms)) {
- USAGE_ERROR_ACTION(ms,ms);
- return 0;
- }
- return ialloc(ms, n_elements, &sz, 3, chunks);
-}
-
-void** mspace_independent_comalloc(mspace msp, size_t n_elements,
- size_t sizes[], void* chunks[]) {
- mstate ms = (mstate)msp;
- if (!ok_magic(ms)) {
- USAGE_ERROR_ACTION(ms,ms);
- return 0;
- }
- return ialloc(ms, n_elements, sizes, 0, chunks);
-}
-
-int mspace_trim(mspace msp, size_t pad) {
- int result = 0;
- mstate ms = (mstate)msp;
- if (ok_magic(ms)) {
- if (!PREACTION(ms)) {
- result = sys_trim(ms, pad);
- POSTACTION(ms);
- }
- }
- else {
- USAGE_ERROR_ACTION(ms,ms);
- }
- return result;
-}
-
-void mspace_malloc_stats(mspace msp) {
- mstate ms = (mstate)msp;
- if (ok_magic(ms)) {
- internal_malloc_stats(ms);
- }
- else {
- USAGE_ERROR_ACTION(ms,ms);
- }
-}
-
-size_t mspace_footprint(mspace msp) {
- size_t result = 0;
- mstate ms = (mstate)msp;
- if (ok_magic(ms)) {
- result = ms->footprint;
- }
- else {
- USAGE_ERROR_ACTION(ms,ms);
- }
- return result;
-}
-
-
-size_t mspace_max_footprint(mspace msp) {
- size_t result = 0;
- mstate ms = (mstate)msp;
- if (ok_magic(ms)) {
- result = ms->max_footprint;
- }
- else {
- USAGE_ERROR_ACTION(ms,ms);
- }
- return result;
-}
-
-
-#if !NO_MALLINFO
-struct mallinfo mspace_mallinfo(mspace msp) {
- mstate ms = (mstate)msp;
- if (!ok_magic(ms)) {
- USAGE_ERROR_ACTION(ms,ms);
- }
- return internal_mallinfo(ms);
-}
-#endif /* NO_MALLINFO */
-
-size_t mspace_usable_size(void* mem) {
- if (mem != 0) {
- mchunkptr p = mem2chunk(mem);
- if (is_inuse(p))
- return chunksize(p) - overhead_for(p);
- }
- return 0;
-}
-
-int mspace_mallopt(int param_number, int value) {
- return change_mparam(param_number, value);
-}
-
-#endif /* MSPACES */
-
-
-/* -------------------- Alternative MORECORE functions ------------------- */
-
-/*
- Guidelines for creating a custom version of MORECORE:
-
- * For best performance, MORECORE should allocate in multiples of pagesize.
- * MORECORE may allocate more memory than requested. (Or even less,
- but this will usually result in a malloc failure.)
- * MORECORE must not allocate memory when given argument zero, but
- instead return one past the end address of memory from previous
- nonzero call.
- * For best performance, consecutive calls to MORECORE with positive
- arguments should return increasing addresses, indicating that
- space has been contiguously extended.
- * Even though consecutive calls to MORECORE need not return contiguous
- addresses, it must be OK for malloc'ed chunks to span multiple
- regions in those cases where they do happen to be contiguous.
- * MORECORE need not handle negative arguments -- it may instead
- just return MFAIL when given negative arguments.
- Negative arguments are always multiples of pagesize. MORECORE
- must not misinterpret negative args as large positive unsigned
- args. You can suppress all such calls from even occurring by defining
- MORECORE_CANNOT_TRIM,
-
- As an example alternative MORECORE, here is a custom allocator
- kindly contributed for pre-OSX macOS. It uses virtually but not
- necessarily physically contiguous non-paged memory (locked in,
- present and won't get swapped out). You can use it by uncommenting
- this section, adding some #includes, and setting up the appropriate
- defines above:
-
- #define MORECORE osMoreCore
-
- There is also a shutdown routine that should somehow be called for
- cleanup upon program exit.
-
- #define MAX_POOL_ENTRIES 100
- #define MINIMUM_MORECORE_SIZE (64 * 1024U)
- static int next_os_pool;
- void *our_os_pools[MAX_POOL_ENTRIES];
-
- void *osMoreCore(int size)
- {
- void *ptr = 0;
- static void *sbrk_top = 0;
-
- if (size > 0)
- {
- if (size < MINIMUM_MORECORE_SIZE)
- size = MINIMUM_MORECORE_SIZE;
- if (CurrentExecutionLevel() == kTaskLevel)
- ptr = PoolAllocateResident(size + RM_PAGE_SIZE, 0);
- if (ptr == 0)
- {
- return (void *) MFAIL;
- }
- // save ptrs so they can be freed during cleanup
- our_os_pools[next_os_pool] = ptr;
- next_os_pool++;
- ptr = (void *) ((((size_t) ptr) + RM_PAGE_MASK) & ~RM_PAGE_MASK);
- sbrk_top = (char *) ptr + size;
- return ptr;
- }
- else if (size < 0)
- {
- // we don't currently support shrink behavior
- return (void *) MFAIL;
- }
- else
- {
- return sbrk_top;
- }
- }
-
- // cleanup any allocated memory pools
- // called as last thing before shutting down driver
-
- void osCleanupMem(void)
- {
- void **ptr;
-
- for (ptr = our_os_pools; ptr < &our_os_pools[MAX_POOL_ENTRIES]; ptr++)
- if (*ptr)
- {
- PoolDeallocate(*ptr);
- *ptr = 0;
- }
- }
-
-*/
-
-
-/* -----------------------------------------------------------------------
-History:
- V2.8.4 Wed May 27 09:56:23 2009 Doug Lea (dl at gee)
- * Use zeros instead of prev foot for is_mmapped
- * Add mspace_track_large_chunks; thanks to Jean Brouwers
- * Fix set_inuse in internal_realloc; thanks to Jean Brouwers
- * Fix insufficient sys_alloc padding when using 16byte alignment
- * Fix bad error check in mspace_footprint
- * Adaptations for ptmalloc; thanks to Wolfram Gloger.
- * Reentrant spin locks; thanks to Earl Chew and others
- * Win32 improvements; thanks to Niall Douglas and Earl Chew
- * Add NO_SEGMENT_TRAVERSAL and MAX_RELEASE_CHECK_RATE options
- * Extension hook in malloc_state
- * Various small adjustments to reduce warnings on some compilers
- * Various configuration extensions/changes for more platforms. Thanks
- to all who contributed these.
-
- V2.8.3 Thu Sep 22 11:16:32 2005 Doug Lea (dl at gee)
- * Add max_footprint functions
- * Ensure all appropriate literals are size_t
- * Fix conditional compilation problem for some #define settings
- * Avoid concatenating segments with the one provided
- in create_mspace_with_base
- * Rename some variables to avoid compiler shadowing warnings
- * Use explicit lock initialization.
- * Better handling of sbrk interference.
- * Simplify and fix segment insertion, trimming and mspace_destroy
- * Reinstate REALLOC_ZERO_BYTES_FREES option from 2.7.x
- * Thanks especially to Dennis Flanagan for help on these.
-
- V2.8.2 Sun Jun 12 16:01:10 2005 Doug Lea (dl at gee)
- * Fix memalign brace error.
-
- V2.8.1 Wed Jun 8 16:11:46 2005 Doug Lea (dl at gee)
- * Fix improper #endif nesting in C++
- * Add explicit casts needed for C++
-
- V2.8.0 Mon May 30 14:09:02 2005 Doug Lea (dl at gee)
- * Use trees for large bins
- * Support mspaces
- * Use segments to unify sbrk-based and mmap-based system allocation,
- removing need for emulation on most platforms without sbrk.
- * Default safety checks
- * Optional footer checks. Thanks to William Robertson for the idea.
- * Internal code refactoring
- * Incorporate suggestions and platform-specific changes.
- Thanks to Dennis Flanagan, Colin Plumb, Niall Douglas,
- Aaron Bachmann, Emery Berger, and others.
- * Speed up non-fastbin processing enough to remove fastbins.
- * Remove useless cfree() to avoid conflicts with other apps.
- * Remove internal memcpy, memset. Compilers handle builtins better.
- * Remove some options that no one ever used and rename others.
-
- V2.7.2 Sat Aug 17 09:07:30 2002 Doug Lea (dl at gee)
- * Fix malloc_state bitmap array misdeclaration
-
- V2.7.1 Thu Jul 25 10:58:03 2002 Doug Lea (dl at gee)
- * Allow tuning of FIRST_SORTED_BIN_SIZE
- * Use PTR_UINT as type for all ptr->int casts. Thanks to John Belmonte.
- * Better detection and support for non-contiguousness of MORECORE.
- Thanks to Andreas Mueller, Conal Walsh, and Wolfram Gloger
- * Bypass most of malloc if no frees. Thanks To Emery Berger.
- * Fix freeing of old top non-contiguous chunk im sysmalloc.
- * Raised default trim and map thresholds to 256K.
- * Fix mmap-related #defines. Thanks to Lubos Lunak.
- * Fix copy macros; added LACKS_FCNTL_H. Thanks to Neal Walfield.
- * Branch-free bin calculation
- * Default trim and mmap thresholds now 256K.
-
- V2.7.0 Sun Mar 11 14:14:06 2001 Doug Lea (dl at gee)
- * Introduce independent_comalloc and independent_calloc.
- Thanks to Michael Pachos for motivation and help.
- * Make optional .h file available
- * Allow > 2GB requests on 32bit systems.
- * new WIN32 sbrk, mmap, munmap, lock code from <Walter@GeNeSys-e.de>.
- Thanks also to Andreas Mueller <a.mueller at paradatec.de>,
- and Anonymous.
- * Allow override of MALLOC_ALIGNMENT (Thanks to Ruud Waij for
- helping test this.)
- * memalign: check alignment arg
- * realloc: don't try to shift chunks backwards, since this
- leads to more fragmentation in some programs and doesn't
- seem to help in any others.
- * Collect all cases in malloc requiring system memory into sysmalloc
- * Use mmap as backup to sbrk
- * Place all internal state in malloc_state
- * Introduce fastbins (although similar to 2.5.1)
- * Many minor tunings and cosmetic improvements
- * Introduce USE_PUBLIC_MALLOC_WRAPPERS, USE_MALLOC_LOCK
- * Introduce MALLOC_FAILURE_ACTION, MORECORE_CONTIGUOUS
- Thanks to Tony E. Bennett <tbennett@nvidia.com> and others.
- * Include errno.h to support default failure action.
-
- V2.6.6 Sun Dec 5 07:42:19 1999 Doug Lea (dl at gee)
- * return null for negative arguments
- * Added Several WIN32 cleanups from Martin C. Fong <mcfong at yahoo.com>
- * Add 'LACKS_SYS_PARAM_H' for those systems without 'sys/param.h'
- (e.g. WIN32 platforms)
- * Cleanup header file inclusion for WIN32 platforms
- * Cleanup code to avoid Microsoft Visual C++ compiler complaints
- * Add 'USE_DL_PREFIX' to quickly allow co-existence with existing
- memory allocation routines
- * Set 'malloc_getpagesize' for WIN32 platforms (needs more work)
- * Use 'assert' rather than 'ASSERT' in WIN32 code to conform to
- usage of 'assert' in non-WIN32 code
- * Improve WIN32 'sbrk()' emulation's 'findRegion()' routine to
- avoid infinite loop
- * Always call 'fREe()' rather than 'free()'
-
- V2.6.5 Wed Jun 17 15:57:31 1998 Doug Lea (dl at gee)
- * Fixed ordering problem with boundary-stamping
-
- V2.6.3 Sun May 19 08:17:58 1996 Doug Lea (dl at gee)
- * Added pvalloc, as recommended by H.J. Liu
- * Added 64bit pointer support mainly from Wolfram Gloger
- * Added anonymously donated WIN32 sbrk emulation
- * Malloc, calloc, getpagesize: add optimizations from Raymond Nijssen
- * malloc_extend_top: fix mask error that caused wastage after
- foreign sbrks
- * Add linux mremap support code from HJ Liu
-
- V2.6.2 Tue Dec 5 06:52:55 1995 Doug Lea (dl at gee)
- * Integrated most documentation with the code.
- * Add support for mmap, with help from
- Wolfram Gloger (Gloger@lrz.uni-muenchen.de).
- * Use last_remainder in more cases.
- * Pack bins using idea from colin@nyx10.cs.du.edu
- * Use ordered bins instead of best-fit threshhold
- * Eliminate block-local decls to simplify tracing and debugging.
- * Support another case of realloc via move into top
- * Fix error occuring when initial sbrk_base not word-aligned.
- * Rely on page size for units instead of SBRK_UNIT to
- avoid surprises about sbrk alignment conventions.
- * Add mallinfo, mallopt. Thanks to Raymond Nijssen
- (raymond@es.ele.tue.nl) for the suggestion.
- * Add `pad' argument to malloc_trim and top_pad mallopt parameter.
- * More precautions for cases where other routines call sbrk,
- courtesy of Wolfram Gloger (Gloger@lrz.uni-muenchen.de).
- * Added macros etc., allowing use in linux libc from
- H.J. Lu (hjl@gnu.ai.mit.edu)
- * Inverted this history list
-
- V2.6.1 Sat Dec 2 14:10:57 1995 Doug Lea (dl at gee)
- * Re-tuned and fixed to behave more nicely with V2.6.0 changes.
- * Removed all preallocation code since under current scheme
- the work required to undo bad preallocations exceeds
- the work saved in good cases for most test programs.
- * No longer use return list or unconsolidated bins since
- no scheme using them consistently outperforms those that don't
- given above changes.
- * Use best fit for very large chunks to prevent some worst-cases.
- * Added some support for debugging
-
- V2.6.0 Sat Nov 4 07:05:23 1995 Doug Lea (dl at gee)
- * Removed footers when chunks are in use. Thanks to
- Paul Wilson (wilson@cs.texas.edu) for the suggestion.
-
- V2.5.4 Wed Nov 1 07:54:51 1995 Doug Lea (dl at gee)
- * Added malloc_trim, with help from Wolfram Gloger
- (wmglo@Dent.MED.Uni-Muenchen.DE).
-
- V2.5.3 Tue Apr 26 10:16:01 1994 Doug Lea (dl at g)
-
- V2.5.2 Tue Apr 5 16:20:40 1994 Doug Lea (dl at g)
- * realloc: try to expand in both directions
- * malloc: swap order of clean-bin strategy;
- * realloc: only conditionally expand backwards
- * Try not to scavenge used bins
- * Use bin counts as a guide to preallocation
- * Occasionally bin return list chunks in first scan
- * Add a few optimizations from colin@nyx10.cs.du.edu
-
- V2.5.1 Sat Aug 14 15:40:43 1993 Doug Lea (dl at g)
- * faster bin computation & slightly different binning
- * merged all consolidations to one part of malloc proper
- (eliminating old malloc_find_space & malloc_clean_bin)
- * Scan 2 returns chunks (not just 1)
- * Propagate failure in realloc if malloc returns 0
- * Add stuff to allow compilation on non-ANSI compilers
- from kpv@research.att.com
-
- V2.5 Sat Aug 7 07:41:59 1993 Doug Lea (dl at g.oswego.edu)
- * removed potential for odd address access in prev_chunk
- * removed dependency on getpagesize.h
- * misc cosmetics and a bit more internal documentation
- * anticosmetics: mangled names in macros to evade debugger strangeness
- * tested on sparc, hp-700, dec-mips, rs6000
- with gcc & native cc (hp, dec only) allowing
- Detlefs & Zorn comparison study (in SIGPLAN Notices.)
-
- Trial version Fri Aug 28 13:14:29 1992 Doug Lea (dl at g.oswego.edu)
- * Based loosely on libg++-1.2X malloc. (It retains some of the overall
- structure of old version, but most details differ.)
-
-*/
-
-#endif
+#ifdef NEDMALLOC_ENABLED +/* + This is a version (aka dlmalloc) of malloc/free/realloc written by + Doug Lea and released to the public domain, as explained at + http://creativecommons.org/licenses/publicdomain. Send questions, + comments, complaints, performance data, etc to dl@cs.oswego.edu + +* Version 2.8.4 Wed May 27 09:56:23 2009 Doug Lea (dl at gee) + + Note: There may be an updated version of this malloc obtainable at + ftp://gee.cs.oswego.edu/pub/misc/malloc.c + Check before installing! + +* Quickstart + + This library is all in one file to simplify the most common usage: + ftp it, compile it (-O3), and link it into another program. All of + the compile-time options default to reasonable values for use on + most platforms. You might later want to step through various + compile-time and dynamic tuning options. + + For convenience, an include file for code using this malloc is at: + ftp://gee.cs.oswego.edu/pub/misc/malloc-2.8.4.h + You don't really need this .h file unless you call functions not + defined in your system include files. The .h file contains only the + excerpts from this file needed for using this malloc on ANSI C/C++ + systems, so long as you haven't changed compile-time options about + naming and tuning parameters. If you do, then you can create your + own malloc.h that does include all settings by cutting at the point + indicated below. Note that you may already by default be using a C + library containing a malloc that is based on some version of this + malloc (for example in linux). You might still want to use the one + in this file to customize settings or to avoid overheads associated + with library versions. + +* Vital statistics: + + Supported pointer/size_t representation: 4 or 8 bytes + size_t MUST be an unsigned type of the same width as + pointers. (If you are using an ancient system that declares + size_t as a signed type, or need it to be a different width + than pointers, you can use a previous release of this malloc + (e.g. 2.7.2) supporting these.) + + Alignment: 8 bytes (default) + This suffices for nearly all current machines and C compilers. + However, you can define MALLOC_ALIGNMENT to be wider than this + if necessary (up to 128bytes), at the expense of using more space. + + Minimum overhead per allocated chunk: 4 or 8 bytes (if 4byte sizes) + 8 or 16 bytes (if 8byte sizes) + Each malloced chunk has a hidden word of overhead holding size + and status information, and additional cross-check word + if FOOTERS is defined. + + Minimum allocated size: 4-byte ptrs: 16 bytes (including overhead) + 8-byte ptrs: 32 bytes (including overhead) + + Even a request for zero bytes (i.e., malloc(0)) returns a + pointer to something of the minimum allocatable size. + The maximum overhead wastage (i.e., number of extra bytes + allocated than were requested in malloc) is less than or equal + to the minimum size, except for requests >= mmap_threshold that + are serviced via mmap(), where the worst case wastage is about + 32 bytes plus the remainder from a system page (the minimal + mmap unit); typically 4096 or 8192 bytes. + + Security: static-safe; optionally more or less + The "security" of malloc refers to the ability of malicious + code to accentuate the effects of errors (for example, freeing + space that is not currently malloc'ed or overwriting past the + ends of chunks) in code that calls malloc. This malloc + guarantees not to modify any memory locations below the base of + heap, i.e., static variables, even in the presence of usage + errors. The routines additionally detect most improper frees + and reallocs. All this holds as long as the static bookkeeping + for malloc itself is not corrupted by some other means. This + is only one aspect of security -- these checks do not, and + cannot, detect all possible programming errors. + + If FOOTERS is defined nonzero, then each allocated chunk + carries an additional check word to verify that it was malloced + from its space. These check words are the same within each + execution of a program using malloc, but differ across + executions, so externally crafted fake chunks cannot be + freed. This improves security by rejecting frees/reallocs that + could corrupt heap memory, in addition to the checks preventing + writes to statics that are always on. This may further improve + security at the expense of time and space overhead. (Note that + FOOTERS may also be worth using with MSPACES.) + + By default detected errors cause the program to abort (calling + "abort()"). You can override this to instead proceed past + errors by defining PROCEED_ON_ERROR. In this case, a bad free + has no effect, and a malloc that encounters a bad address + caused by user overwrites will ignore the bad address by + dropping pointers and indices to all known memory. This may + be appropriate for programs that should continue if at all + possible in the face of programming errors, although they may + run out of memory because dropped memory is never reclaimed. + + If you don't like either of these options, you can define + CORRUPTION_ERROR_ACTION and USAGE_ERROR_ACTION to do anything + else. And if if you are sure that your program using malloc has + no errors or vulnerabilities, you can define INSECURE to 1, + which might (or might not) provide a small performance improvement. + + Thread-safety: NOT thread-safe unless USE_LOCKS defined + When USE_LOCKS is defined, each public call to malloc, free, + etc is surrounded with either a pthread mutex or a win32 + spinlock (depending on WIN32). This is not especially fast, and + can be a major bottleneck. It is designed only to provide + minimal protection in concurrent environments, and to provide a + basis for extensions. If you are using malloc in a concurrent + program, consider instead using nedmalloc + (http://www.nedprod.com/programs/portable/nedmalloc/) or + ptmalloc (See http://www.malloc.de), which are derived + from versions of this malloc. + + System requirements: Any combination of MORECORE and/or MMAP/MUNMAP + This malloc can use unix sbrk or any emulation (invoked using + the CALL_MORECORE macro) and/or mmap/munmap or any emulation + (invoked using CALL_MMAP/CALL_MUNMAP) to get and release system + memory. On most unix systems, it tends to work best if both + MORECORE and MMAP are enabled. On Win32, it uses emulations + based on VirtualAlloc. It also uses common C library functions + like memset. + + Compliance: I believe it is compliant with the Single Unix Specification + (See http://www.unix.org). Also SVID/XPG, ANSI C, and probably + others as well. + +* Overview of algorithms + + This is not the fastest, most space-conserving, most portable, or + most tunable malloc ever written. However it is among the fastest + while also being among the most space-conserving, portable and + tunable. Consistent balance across these factors results in a good + general-purpose allocator for malloc-intensive programs. + + In most ways, this malloc is a best-fit allocator. Generally, it + chooses the best-fitting existing chunk for a request, with ties + broken in approximately least-recently-used order. (This strategy + normally maintains low fragmentation.) However, for requests less + than 256bytes, it deviates from best-fit when there is not an + exactly fitting available chunk by preferring to use space adjacent + to that used for the previous small request, as well as by breaking + ties in approximately most-recently-used order. (These enhance + locality of series of small allocations.) And for very large requests + (>= 256Kb by default), it relies on system memory mapping + facilities, if supported. (This helps avoid carrying around and + possibly fragmenting memory used only for large chunks.) + + All operations (except malloc_stats and mallinfo) have execution + times that are bounded by a constant factor of the number of bits in + a size_t, not counting any clearing in calloc or copying in realloc, + or actions surrounding MORECORE and MMAP that have times + proportional to the number of non-contiguous regions returned by + system allocation routines, which is often just 1. In real-time + applications, you can optionally suppress segment traversals using + NO_SEGMENT_TRAVERSAL, which assures bounded execution even when + system allocators return non-contiguous spaces, at the typical + expense of carrying around more memory and increased fragmentation. + + The implementation is not very modular and seriously overuses + macros. Perhaps someday all C compilers will do as good a job + inlining modular code as can now be done by brute-force expansion, + but now, enough of them seem not to. + + Some compilers issue a lot of warnings about code that is + dead/unreachable only on some platforms, and also about intentional + uses of negation on unsigned types. All known cases of each can be + ignored. + + For a longer but out of date high-level description, see + http://gee.cs.oswego.edu/dl/html/malloc.html + +* MSPACES + If MSPACES is defined, then in addition to malloc, free, etc., + this file also defines mspace_malloc, mspace_free, etc. These + are versions of malloc routines that take an "mspace" argument + obtained using create_mspace, to control all internal bookkeeping. + If ONLY_MSPACES is defined, only these versions are compiled. + So if you would like to use this allocator for only some allocations, + and your system malloc for others, you can compile with + ONLY_MSPACES and then do something like... + static mspace mymspace = create_mspace(0,0); // for example + #define mymalloc(bytes) mspace_malloc(mymspace, bytes) + + (Note: If you only need one instance of an mspace, you can instead + use "USE_DL_PREFIX" to relabel the global malloc.) + + You can similarly create thread-local allocators by storing + mspaces as thread-locals. For example: + static __thread mspace tlms = 0; + void* tlmalloc(size_t bytes) { + if (tlms == 0) tlms = create_mspace(0, 0); + return mspace_malloc(tlms, bytes); + } + void tlfree(void* mem) { mspace_free(tlms, mem); } + + Unless FOOTERS is defined, each mspace is completely independent. + You cannot allocate from one and free to another (although + conformance is only weakly checked, so usage errors are not always + caught). If FOOTERS is defined, then each chunk carries around a tag + indicating its originating mspace, and frees are directed to their + originating spaces. + + ------------------------- Compile-time options --------------------------- + +Be careful in setting #define values for numerical constants of type +size_t. On some systems, literal values are not automatically extended +to size_t precision unless they are explicitly casted. You can also +use the symbolic values MAX_SIZE_T, SIZE_T_ONE, etc below. + +WIN32 default: defined if _WIN32 defined + Defining WIN32 sets up defaults for MS environment and compilers. + Otherwise defaults are for unix. Beware that there seem to be some + cases where this malloc might not be a pure drop-in replacement for + Win32 malloc: Random-looking failures from Win32 GDI API's (eg; + SetDIBits()) may be due to bugs in some video driver implementations + when pixel buffers are malloc()ed, and the region spans more than + one VirtualAlloc()ed region. Because dlmalloc uses a small (64Kb) + default granularity, pixel buffers may straddle virtual allocation + regions more often than when using the Microsoft allocator. You can + avoid this by using VirtualAlloc() and VirtualFree() for all pixel + buffers rather than using malloc(). If this is not possible, + recompile this malloc with a larger DEFAULT_GRANULARITY. + +MALLOC_ALIGNMENT default: (size_t)8 + Controls the minimum alignment for malloc'ed chunks. It must be a + power of two and at least 8, even on machines for which smaller + alignments would suffice. It may be defined as larger than this + though. Note however that code and data structures are optimized for + the case of 8-byte alignment. + +MSPACES default: 0 (false) + If true, compile in support for independent allocation spaces. + This is only supported if HAVE_MMAP is true. + +ONLY_MSPACES default: 0 (false) + If true, only compile in mspace versions, not regular versions. + +USE_LOCKS default: 0 (false) + Causes each call to each public routine to be surrounded with + pthread or WIN32 mutex lock/unlock. (If set true, this can be + overridden on a per-mspace basis for mspace versions.) If set to a + non-zero value other than 1, locks are used, but their + implementation is left out, so lock functions must be supplied manually, + as described below. + +USE_SPIN_LOCKS default: 1 iff USE_LOCKS and on x86 using gcc or MSC + If true, uses custom spin locks for locking. This is currently + supported only for x86 platforms using gcc or recent MS compilers. + Otherwise, posix locks or win32 critical sections are used. + +FOOTERS default: 0 + If true, provide extra checking and dispatching by placing + information in the footers of allocated chunks. This adds + space and time overhead. + +INSECURE default: 0 + If true, omit checks for usage errors and heap space overwrites. + +USE_DL_PREFIX default: NOT defined + Causes compiler to prefix all public routines with the string 'dl'. + This can be useful when you only want to use this malloc in one part + of a program, using your regular system malloc elsewhere. + +ABORT default: defined as abort() + Defines how to abort on failed checks. On most systems, a failed + check cannot die with an "assert" or even print an informative + message, because the underlying print routines in turn call malloc, + which will fail again. Generally, the best policy is to simply call + abort(). It's not very useful to do more than this because many + errors due to overwriting will show up as address faults (null, odd + addresses etc) rather than malloc-triggered checks, so will also + abort. Also, most compilers know that abort() does not return, so + can better optimize code conditionally calling it. + +PROCEED_ON_ERROR default: defined as 0 (false) + Controls whether detected bad addresses cause them to bypassed + rather than aborting. If set, detected bad arguments to free and + realloc are ignored. And all bookkeeping information is zeroed out + upon a detected overwrite of freed heap space, thus losing the + ability to ever return it from malloc again, but enabling the + application to proceed. If PROCEED_ON_ERROR is defined, the + static variable malloc_corruption_error_count is compiled in + and can be examined to see if errors have occurred. This option + generates slower code than the default abort policy. + +DEBUG default: NOT defined + The DEBUG setting is mainly intended for people trying to modify + this code or diagnose problems when porting to new platforms. + However, it may also be able to better isolate user errors than just + using runtime checks. The assertions in the check routines spell + out in more detail the assumptions and invariants underlying the + algorithms. The checking is fairly extensive, and will slow down + execution noticeably. Calling malloc_stats or mallinfo with DEBUG + set will attempt to check every non-mmapped allocated and free chunk + in the course of computing the summaries. + +ABORT_ON_ASSERT_FAILURE default: defined as 1 (true) + Debugging assertion failures can be nearly impossible if your + version of the assert macro causes malloc to be called, which will + lead to a cascade of further failures, blowing the runtime stack. + ABORT_ON_ASSERT_FAILURE cause assertions failures to call abort(), + which will usually make debugging easier. + +MALLOC_FAILURE_ACTION default: sets errno to ENOMEM, or no-op on win32 + The action to take before "return 0" when malloc fails to be able to + return memory because there is none available. + +HAVE_MORECORE default: 1 (true) unless win32 or ONLY_MSPACES + True if this system supports sbrk or an emulation of it. + +MORECORE default: sbrk + The name of the sbrk-style system routine to call to obtain more + memory. See below for guidance on writing custom MORECORE + functions. The type of the argument to sbrk/MORECORE varies across + systems. It cannot be size_t, because it supports negative + arguments, so it is normally the signed type of the same width as + size_t (sometimes declared as "intptr_t"). It doesn't much matter + though. Internally, we only call it with arguments less than half + the max value of a size_t, which should work across all reasonable + possibilities, although sometimes generating compiler warnings. + +MORECORE_CONTIGUOUS default: 1 (true) if HAVE_MORECORE + If true, take advantage of fact that consecutive calls to MORECORE + with positive arguments always return contiguous increasing + addresses. This is true of unix sbrk. It does not hurt too much to + set it true anyway, since malloc copes with non-contiguities. + Setting it false when definitely non-contiguous saves time + and possibly wasted space it would take to discover this though. + +MORECORE_CANNOT_TRIM default: NOT defined + True if MORECORE cannot release space back to the system when given + negative arguments. This is generally necessary only if you are + using a hand-crafted MORECORE function that cannot handle negative + arguments. + +NO_SEGMENT_TRAVERSAL default: 0 + If non-zero, suppresses traversals of memory segments + returned by either MORECORE or CALL_MMAP. This disables + merging of segments that are contiguous, and selectively + releasing them to the OS if unused, but bounds execution times. + +HAVE_MMAP default: 1 (true) + True if this system supports mmap or an emulation of it. If so, and + HAVE_MORECORE is not true, MMAP is used for all system + allocation. If set and HAVE_MORECORE is true as well, MMAP is + primarily used to directly allocate very large blocks. It is also + used as a backup strategy in cases where MORECORE fails to provide + space from system. Note: A single call to MUNMAP is assumed to be + able to unmap memory that may have be allocated using multiple calls + to MMAP, so long as they are adjacent. + +HAVE_MREMAP default: 1 on linux, else 0 + If true realloc() uses mremap() to re-allocate large blocks and + extend or shrink allocation spaces. + +MMAP_CLEARS default: 1 except on WINCE. + True if mmap clears memory so calloc doesn't need to. This is true + for standard unix mmap using /dev/zero and on WIN32 except for WINCE. + +USE_BUILTIN_FFS default: 0 (i.e., not used) + Causes malloc to use the builtin ffs() function to compute indices. + Some compilers may recognize and intrinsify ffs to be faster than the + supplied C version. Also, the case of x86 using gcc is special-cased + to an asm instruction, so is already as fast as it can be, and so + this setting has no effect. Similarly for Win32 under recent MS compilers. + (On most x86s, the asm version is only slightly faster than the C version.) + +malloc_getpagesize default: derive from system includes, or 4096. + The system page size. To the extent possible, this malloc manages + memory from the system in page-size units. This may be (and + usually is) a function rather than a constant. This is ignored + if WIN32, where page size is determined using getSystemInfo during + initialization. This may be several megabytes if ENABLE_LARGE_PAGES + is enabled. + +ENABLE_LARGE_PAGES default: NOT defined + Causes the system page size to be the value of GetLargePageMinimum() + if that function is available (Windows Server 2003/Vista or later). + This allows the use of large page entries in the MMU which can + significantly improve performance in large working set applications + as TLB cache load is reduced by a factor of three. Note that enabling + this option is equal to locking the process' memory in current + implementations of Windows and requires the SE_LOCK_MEMORY_PRIVILEGE + to be held by the process in order to succeed. + +USE_DEV_RANDOM default: 0 (i.e., not used) + Causes malloc to use /dev/random to initialize secure magic seed for + stamping footers. Otherwise, the current time is used. + +NO_MALLINFO default: 0 + If defined, don't compile "mallinfo". This can be a simple way + of dealing with mismatches between system declarations and + those in this file. + +MALLINFO_FIELD_TYPE default: size_t + The type of the fields in the mallinfo struct. This was originally + defined as "int" in SVID etc, but is more usefully defined as + size_t. The value is used only if HAVE_USR_INCLUDE_MALLOC_H is not set + +REALLOC_ZERO_BYTES_FREES default: not defined + This should be set if a call to realloc with zero bytes should + be the same as a call to free. Some people think it should. Otherwise, + since this malloc returns a unique pointer for malloc(0), so does + realloc(p, 0). + +LACKS_UNISTD_H, LACKS_FCNTL_H, LACKS_SYS_PARAM_H, LACKS_SYS_MMAN_H +LACKS_STRINGS_H, LACKS_STRING_H, LACKS_SYS_TYPES_H, LACKS_ERRNO_H +LACKS_STDLIB_H default: NOT defined unless on WIN32 + Define these if your system does not have these header files. + You might need to manually insert some of the declarations they provide. + +DEFAULT_GRANULARITY default: page size if MORECORE_CONTIGUOUS, + system_info.dwAllocationGranularity in WIN32, + GetLargePageMinimum() if ENABLE_LARGE_PAGES, + otherwise 64K. + Also settable using mallopt(M_GRANULARITY, x) + The unit for allocating and deallocating memory from the system. On + most systems with contiguous MORECORE, there is no reason to + make this more than a page. However, systems with MMAP tend to + either require or encourage larger granularities. You can increase + this value to prevent system allocation functions to be called so + often, especially if they are slow. The value must be at least one + page and must be a power of two. Setting to 0 causes initialization + to either page size or win32 region size. (Note: In previous + versions of malloc, the equivalent of this option was called + "TOP_PAD") + +DEFAULT_GRANULARITY_ALIGNED default: undefined (which means page size) + Whether to enforce alignment when allocating and deallocating memory + from the system i.e. the base address of all allocations will be + aligned to DEFAULT_GRANULARITY if it is set. Note that enabling this carries + some overhead as multiple calls must now be made when probing for a valid + aligned value, however it does greatly ease the checking for whether + a given memory pointer was allocated by this allocator rather than + some other. + +DEFAULT_TRIM_THRESHOLD default: 2MB + Also settable using mallopt(M_TRIM_THRESHOLD, x) + The maximum amount of unused top-most memory to keep before + releasing via malloc_trim in free(). Automatic trimming is mainly + useful in long-lived programs using contiguous MORECORE. Because + trimming via sbrk can be slow on some systems, and can sometimes be + wasteful (in cases where programs immediately afterward allocate + more large chunks) the value should be high enough so that your + overall system performance would improve by releasing this much + memory. As a rough guide, you might set to a value close to the + average size of a process (program) running on your system. + Releasing this much memory would allow such a process to run in + memory. Generally, it is worth tuning trim thresholds when a + program undergoes phases where several large chunks are allocated + and released in ways that can reuse each other's storage, perhaps + mixed with phases where there are no such chunks at all. The trim + value must be greater than page size to have any useful effect. To + disable trimming completely, you can set to MAX_SIZE_T. Note that the trick + some people use of mallocing a huge space and then freeing it at + program startup, in an attempt to reserve system memory, doesn't + have the intended effect under automatic trimming, since that memory + will immediately be returned to the system. + +DEFAULT_MMAP_THRESHOLD default: 256K + Also settable using mallopt(M_MMAP_THRESHOLD, x) + The request size threshold for using MMAP to directly service a + request. Requests of at least this size that cannot be allocated + using already-existing space will be serviced via mmap. (If enough + normal freed space already exists it is used instead.) Using mmap + segregates relatively large chunks of memory so that they can be + individually obtained and released from the host system. A request + serviced through mmap is never reused by any other request (at least + not directly; the system may just so happen to remap successive + requests to the same locations). Segregating space in this way has + the benefits that: Mmapped space can always be individually released + back to the system, which helps keep the system level memory demands + of a long-lived program low. Also, mapped memory doesn't become + `locked' between other chunks, as can happen with normally allocated + chunks, which means that even trimming via malloc_trim would not + release them. However, it has the disadvantage that the space + cannot be reclaimed, consolidated, and then used to service later + requests, as happens with normal chunks. The advantages of mmap + nearly always outweigh disadvantages for "large" chunks, but the + value of "large" may vary across systems. The default is an + empirically derived value that works well in most systems. You can + disable mmap by setting to MAX_SIZE_T. + +MAX_RELEASE_CHECK_RATE default: 4095 unless not HAVE_MMAP + The number of consolidated frees between checks to release + unused segments when freeing. When using non-contiguous segments, + especially with multiple mspaces, checking only for topmost space + doesn't always suffice to trigger trimming. To compensate for this, + free() will, with a period of MAX_RELEASE_CHECK_RATE (or the + current number of segments, if greater) try to release unused + segments to the OS when freeing chunks that result in + consolidation. The best value for this parameter is a compromise + between slowing down frees with relatively costly checks that + rarely trigger versus holding on to unused memory. To effectively + disable, set to MAX_SIZE_T. This may lead to a very slight speed + improvement at the expense of carrying around more memory. +*/ + +/* Version identifier to allow people to support multiple versions */ +#ifndef DLMALLOC_VERSION +#define DLMALLOC_VERSION 20804 +#endif /* DLMALLOC_VERSION */ + +#ifndef WIN32 +#ifdef _WIN32 +#define WIN32 1 +#endif /* _WIN32 */ +#ifdef _WIN32_WCE +#define LACKS_FCNTL_H +#define WIN32 1 +#endif /* _WIN32_WCE */ +#endif /* WIN32 */ +#ifdef WIN32 +#define WIN32_LEAN_AND_MEAN +#include <windows.h> +#include <tchar.h> +#define HAVE_MMAP 1 +#define HAVE_MORECORE 0 +#define LACKS_UNISTD_H +#define LACKS_SYS_PARAM_H +#define LACKS_SYS_MMAN_H +#define LACKS_STRING_H +#define LACKS_STRINGS_H +#define LACKS_SYS_TYPES_H +#define LACKS_ERRNO_H +#ifndef MALLOC_FAILURE_ACTION +#define MALLOC_FAILURE_ACTION +#endif /* MALLOC_FAILURE_ACTION */ +#ifdef _WIN32_WCE /* WINCE reportedly does not clear */ +#define MMAP_CLEARS 0 +#else +#define MMAP_CLEARS 1 +#endif /* _WIN32_WCE */ +#endif /* WIN32 */ + +#if defined(DARWIN) || defined(_DARWIN) +/* Mac OSX docs advise not to use sbrk; it seems better to use mmap */ +#ifndef HAVE_MORECORE +#define HAVE_MORECORE 0 +#define HAVE_MMAP 1 +/* OSX allocators provide 16 byte alignment */ +#ifndef MALLOC_ALIGNMENT +#define MALLOC_ALIGNMENT ((size_t)16U) +#endif +#endif /* HAVE_MORECORE */ +#endif /* DARWIN */ + +#ifndef LACKS_SYS_TYPES_H +#include <sys/types.h> /* For size_t */ +#endif /* LACKS_SYS_TYPES_H */ + +#if (defined(__GNUC__) && ((defined(__i386__) || defined(__x86_64__)))) || (defined(_MSC_VER) && _MSC_VER>=1310) +#define SPIN_LOCKS_AVAILABLE 1 +#else +#define SPIN_LOCKS_AVAILABLE 0 +#endif + +/* The maximum possible size_t value has all bits set */ +#define MAX_SIZE_T (~(size_t)0) + +#ifndef ONLY_MSPACES +#define ONLY_MSPACES 0 /* define to a value */ +#else +#define ONLY_MSPACES 1 +#endif /* ONLY_MSPACES */ +#ifndef MSPACES +#if ONLY_MSPACES +#define MSPACES 1 +#else /* ONLY_MSPACES */ +#define MSPACES 0 +#endif /* ONLY_MSPACES */ +#endif /* MSPACES */ +#ifndef MALLOC_ALIGNMENT +#define MALLOC_ALIGNMENT ((size_t)8U) +#endif /* MALLOC_ALIGNMENT */ +#ifndef FOOTERS +#define FOOTERS 0 +#endif /* FOOTERS */ +#ifndef ABORT +#define ABORT abort() +#endif /* ABORT */ +#ifndef ABORT_ON_ASSERT_FAILURE +#define ABORT_ON_ASSERT_FAILURE 1 +#endif /* ABORT_ON_ASSERT_FAILURE */ +#ifndef PROCEED_ON_ERROR +#define PROCEED_ON_ERROR 0 +#endif /* PROCEED_ON_ERROR */ +#ifndef USE_LOCKS +#define USE_LOCKS 0 +#endif /* USE_LOCKS */ +#ifndef USE_SPIN_LOCKS +#if USE_LOCKS && SPIN_LOCKS_AVAILABLE +#define USE_SPIN_LOCKS 1 +#else +#define USE_SPIN_LOCKS 0 +#endif /* USE_LOCKS && SPIN_LOCKS_AVAILABLE. */ +#endif /* USE_SPIN_LOCKS */ +#ifndef INSECURE +#define INSECURE 0 +#endif /* INSECURE */ +#ifndef HAVE_MMAP +#define HAVE_MMAP 1 +#endif /* HAVE_MMAP */ +#ifndef MMAP_CLEARS +#define MMAP_CLEARS 1 +#endif /* MMAP_CLEARS */ +#ifndef HAVE_MREMAP +#ifdef linux +#define HAVE_MREMAP 1 +#else /* linux */ +#define HAVE_MREMAP 0 +#endif /* linux */ +#endif /* HAVE_MREMAP */ +#ifndef MALLOC_FAILURE_ACTION +#define MALLOC_FAILURE_ACTION errno = ENOMEM; +#endif /* MALLOC_FAILURE_ACTION */ +#ifndef HAVE_MORECORE +#if ONLY_MSPACES +#define HAVE_MORECORE 0 +#else /* ONLY_MSPACES */ +#define HAVE_MORECORE 1 +#endif /* ONLY_MSPACES */ +#endif /* HAVE_MORECORE */ +#if !HAVE_MORECORE +#define MORECORE_CONTIGUOUS 0 +#else /* !HAVE_MORECORE */ +#define MORECORE_DEFAULT sbrk +#ifndef MORECORE_CONTIGUOUS +#define MORECORE_CONTIGUOUS 1 +#endif /* MORECORE_CONTIGUOUS */ +#endif /* HAVE_MORECORE */ +#ifndef DEFAULT_GRANULARITY +#if (MORECORE_CONTIGUOUS || defined(WIN32)) +#define DEFAULT_GRANULARITY (0) /* 0 means to compute in init_mparams */ +#else /* MORECORE_CONTIGUOUS */ +#define DEFAULT_GRANULARITY ((size_t)64U * (size_t)1024U) +#endif /* MORECORE_CONTIGUOUS */ +#endif /* DEFAULT_GRANULARITY */ +#ifndef DEFAULT_TRIM_THRESHOLD +#ifndef MORECORE_CANNOT_TRIM +#define DEFAULT_TRIM_THRESHOLD ((size_t)2U * (size_t)1024U * (size_t)1024U) +#else /* MORECORE_CANNOT_TRIM */ +#define DEFAULT_TRIM_THRESHOLD MAX_SIZE_T +#endif /* MORECORE_CANNOT_TRIM */ +#endif /* DEFAULT_TRIM_THRESHOLD */ +#ifndef DEFAULT_MMAP_THRESHOLD +#if HAVE_MMAP +#define DEFAULT_MMAP_THRESHOLD ((size_t)256U * (size_t)1024U) +#else /* HAVE_MMAP */ +#define DEFAULT_MMAP_THRESHOLD MAX_SIZE_T +#endif /* HAVE_MMAP */ +#endif /* DEFAULT_MMAP_THRESHOLD */ +#ifndef MAX_RELEASE_CHECK_RATE +#if HAVE_MMAP +#define MAX_RELEASE_CHECK_RATE 4095 +#else +#define MAX_RELEASE_CHECK_RATE MAX_SIZE_T +#endif /* HAVE_MMAP */ +#endif /* MAX_RELEASE_CHECK_RATE */ +#ifndef USE_BUILTIN_FFS +#define USE_BUILTIN_FFS 0 +#endif /* USE_BUILTIN_FFS */ +#ifndef USE_DEV_RANDOM +#define USE_DEV_RANDOM 0 +#endif /* USE_DEV_RANDOM */ +#ifndef NO_MALLINFO +#define NO_MALLINFO 0 +#endif /* NO_MALLINFO */ +#ifndef MALLINFO_FIELD_TYPE +#define MALLINFO_FIELD_TYPE size_t +#endif /* MALLINFO_FIELD_TYPE */ +#ifndef NO_SEGMENT_TRAVERSAL +#define NO_SEGMENT_TRAVERSAL 0 +#endif /* NO_SEGMENT_TRAVERSAL */ + +/* + mallopt tuning options. SVID/XPG defines four standard parameter + numbers for mallopt, normally defined in malloc.h. None of these + are used in this malloc, so setting them has no effect. But this + malloc does support the following options. +*/ + +#define M_TRIM_THRESHOLD (-1) +#define M_GRANULARITY (-2) +#define M_MMAP_THRESHOLD (-3) + +/* ------------------------ Mallinfo declarations ------------------------ */ + +#if !NO_MALLINFO +/* + This version of malloc supports the standard SVID/XPG mallinfo + routine that returns a struct containing usage properties and + statistics. It should work on any system that has a + /usr/include/malloc.h defining struct mallinfo. The main + declaration needed is the mallinfo struct that is returned (by-copy) + by mallinfo(). The malloinfo struct contains a bunch of fields that + are not even meaningful in this version of malloc. These fields are + are instead filled by mallinfo() with other numbers that might be of + interest. + + HAVE_USR_INCLUDE_MALLOC_H should be set if you have a + /usr/include/malloc.h file that includes a declaration of struct + mallinfo. If so, it is included; else a compliant version is + declared below. These must be precisely the same for mallinfo() to + work. The original SVID version of this struct, defined on most + systems with mallinfo, declares all fields as ints. But some others + define as unsigned long. If your system defines the fields using a + type of different width than listed here, you MUST #include your + system version and #define HAVE_USR_INCLUDE_MALLOC_H. +*/ + +/* #define HAVE_USR_INCLUDE_MALLOC_H */ + +#ifdef HAVE_USR_INCLUDE_MALLOC_H +#include "/usr/include/malloc.h" +#else /* HAVE_USR_INCLUDE_MALLOC_H */ +#ifndef STRUCT_MALLINFO_DECLARED +#define STRUCT_MALLINFO_DECLARED 1 +struct mallinfo { + MALLINFO_FIELD_TYPE arena; /* non-mmapped space allocated from system */ + MALLINFO_FIELD_TYPE ordblks; /* number of free chunks */ + MALLINFO_FIELD_TYPE smblks; /* always 0 */ + MALLINFO_FIELD_TYPE hblks; /* always 0 */ + MALLINFO_FIELD_TYPE hblkhd; /* space in mmapped regions */ + MALLINFO_FIELD_TYPE usmblks; /* maximum total allocated space */ + MALLINFO_FIELD_TYPE fsmblks; /* always 0 */ + MALLINFO_FIELD_TYPE uordblks; /* total allocated space */ + MALLINFO_FIELD_TYPE fordblks; /* total free space */ + MALLINFO_FIELD_TYPE keepcost; /* releasable (via malloc_trim) space */ +}; +#endif /* STRUCT_MALLINFO_DECLARED */ +#endif /* HAVE_USR_INCLUDE_MALLOC_H */ +#endif /* NO_MALLINFO */ + +/* + Try to persuade compilers to inline. The most critical functions for + inlining are defined as macros, so these aren't used for them. +*/ + +#ifndef FORCEINLINE + #if defined(__GNUC__) +#define FORCEINLINE __inline __attribute__ ((always_inline)) + #elif defined(_MSC_VER) + #define FORCEINLINE __forceinline + #endif +#endif +#ifndef NOINLINE + #if defined(__GNUC__) + #define NOINLINE __attribute__ ((noinline)) + #elif defined(_MSC_VER) + #define NOINLINE __declspec(noinline) + #else + #define NOINLINE + #endif +#endif + +#ifdef __cplusplus +extern "C" { +#ifndef FORCEINLINE + #define FORCEINLINE inline +#endif +#endif /* __cplusplus */ +#ifndef FORCEINLINE + #define FORCEINLINE +#endif + +#if !ONLY_MSPACES + +/* ------------------- Declarations of public routines ------------------- */ + +#ifndef USE_DL_PREFIX +#define dlcalloc calloc +#define dlfree free +#define dlmalloc malloc +#define dlmemalign memalign +#define dlrealloc realloc +#define dlvalloc valloc +#define dlpvalloc pvalloc +#define dlmallinfo mallinfo +#define dlmallopt mallopt +#define dlmalloc_trim malloc_trim +#define dlmalloc_stats malloc_stats +#define dlmalloc_usable_size malloc_usable_size +#define dlmalloc_footprint malloc_footprint +#define dlmalloc_max_footprint malloc_max_footprint +#define dlindependent_calloc independent_calloc +#define dlindependent_comalloc independent_comalloc +#endif /* USE_DL_PREFIX */ + + +/* + malloc(size_t n) + Returns a pointer to a newly allocated chunk of at least n bytes, or + null if no space is available, in which case errno is set to ENOMEM + on ANSI C systems. + + If n is zero, malloc returns a minimum-sized chunk. (The minimum + size is 16 bytes on most 32bit systems, and 32 bytes on 64bit + systems.) Note that size_t is an unsigned type, so calls with + arguments that would be negative if signed are interpreted as + requests for huge amounts of space, which will often fail. The + maximum supported value of n differs across systems, but is in all + cases less than the maximum representable value of a size_t. +*/ +void* dlmalloc(size_t); + +/* + free(void* p) + Releases the chunk of memory pointed to by p, that had been previously + allocated using malloc or a related routine such as realloc. + It has no effect if p is null. If p was not malloced or already + freed, free(p) will by default cause the current program to abort. +*/ +void dlfree(void*); + +/* + calloc(size_t n_elements, size_t element_size); + Returns a pointer to n_elements * element_size bytes, with all locations + set to zero. +*/ +void* dlcalloc(size_t, size_t); + +/* + realloc(void* p, size_t n) + Returns a pointer to a chunk of size n that contains the same data + as does chunk p up to the minimum of (n, p's size) bytes, or null + if no space is available. + + The returned pointer may or may not be the same as p. The algorithm + prefers extending p in most cases when possible, otherwise it + employs the equivalent of a malloc-copy-free sequence. + + If p is null, realloc is equivalent to malloc. + + If space is not available, realloc returns null, errno is set (if on + ANSI) and p is NOT freed. + + if n is for fewer bytes than already held by p, the newly unused + space is lopped off and freed if possible. realloc with a size + argument of zero (re)allocates a minimum-sized chunk. + + The old unix realloc convention of allowing the last-free'd chunk + to be used as an argument to realloc is not supported. +*/ + +void* dlrealloc(void*, size_t); + +/* + memalign(size_t alignment, size_t n); + Returns a pointer to a newly allocated chunk of n bytes, aligned + in accord with the alignment argument. + + The alignment argument should be a power of two. If the argument is + not a power of two, the nearest greater power is used. + 8-byte alignment is guaranteed by normal malloc calls, so don't + bother calling memalign with an argument of 8 or less. + + Overreliance on memalign is a sure way to fragment space. +*/ +void* dlmemalign(size_t, size_t); + +/* + valloc(size_t n); + Equivalent to memalign(pagesize, n), where pagesize is the page + size of the system. If the pagesize is unknown, 4096 is used. +*/ +void* dlvalloc(size_t); + +/* + mallopt(int parameter_number, int parameter_value) + Sets tunable parameters The format is to provide a + (parameter-number, parameter-value) pair. mallopt then sets the + corresponding parameter to the argument value if it can (i.e., so + long as the value is meaningful), and returns 1 if successful else + 0. To workaround the fact that mallopt is specified to use int, + not size_t parameters, the value -1 is specially treated as the + maximum unsigned size_t value. + + SVID/XPG/ANSI defines four standard param numbers for mallopt, + normally defined in malloc.h. None of these are use in this malloc, + so setting them has no effect. But this malloc also supports other + options in mallopt. See below for details. Briefly, supported + parameters are as follows (listed defaults are for "typical" + configurations). + + Symbol param # default allowed param values + M_TRIM_THRESHOLD -1 2*1024*1024 any (-1 disables) + M_GRANULARITY -2 page size any power of 2 >= page size + M_MMAP_THRESHOLD -3 256*1024 any (or 0 if no MMAP support) +*/ +int dlmallopt(int, int); + +/* + malloc_footprint(); + Returns the number of bytes obtained from the system. The total + number of bytes allocated by malloc, realloc etc., is less than this + value. Unlike mallinfo, this function returns only a precomputed + result, so can be called frequently to monitor memory consumption. + Even if locks are otherwise defined, this function does not use them, + so results might not be up to date. +*/ +size_t dlmalloc_footprint(void); + +/* + malloc_max_footprint(); + Returns the maximum number of bytes obtained from the system. This + value will be greater than current footprint if deallocated space + has been reclaimed by the system. The peak number of bytes allocated + by malloc, realloc etc., is less than this value. Unlike mallinfo, + this function returns only a precomputed result, so can be called + frequently to monitor memory consumption. Even if locks are + otherwise defined, this function does not use them, so results might + not be up to date. +*/ +size_t dlmalloc_max_footprint(void); + +#if !NO_MALLINFO +/* + mallinfo() + Returns (by copy) a struct containing various summary statistics: + + arena: current total non-mmapped bytes allocated from system + ordblks: the number of free chunks + smblks: always zero. + hblks: current number of mmapped regions + hblkhd: total bytes held in mmapped regions + usmblks: the maximum total allocated space. This will be greater + than current total if trimming has occurred. + fsmblks: always zero + uordblks: current total allocated space (normal or mmapped) + fordblks: total free space + keepcost: the maximum number of bytes that could ideally be released + back to system via malloc_trim. ("ideally" means that + it ignores page restrictions etc.) + + Because these fields are ints, but internal bookkeeping may + be kept as longs, the reported values may wrap around zero and + thus be inaccurate. +*/ +struct mallinfo dlmallinfo(void); +#endif /* NO_MALLINFO */ + +/* + independent_calloc(size_t n_elements, size_t element_size, void* chunks[]); + + independent_calloc is similar to calloc, but instead of returning a + single cleared space, it returns an array of pointers to n_elements + independent elements that can hold contents of size elem_size, each + of which starts out cleared, and can be independently freed, + realloc'ed etc. The elements are guaranteed to be adjacently + allocated (this is not guaranteed to occur with multiple callocs or + mallocs), which may also improve cache locality in some + applications. + + The "chunks" argument is optional (i.e., may be null, which is + probably the most typical usage). If it is null, the returned array + is itself dynamically allocated and should also be freed when it is + no longer needed. Otherwise, the chunks array must be of at least + n_elements in length. It is filled in with the pointers to the + chunks. + + In either case, independent_calloc returns this pointer array, or + null if the allocation failed. If n_elements is zero and "chunks" + is null, it returns a chunk representing an array with zero elements + (which should be freed if not wanted). + + Each element must be individually freed when it is no longer + needed. If you'd like to instead be able to free all at once, you + should instead use regular calloc and assign pointers into this + space to represent elements. (In this case though, you cannot + independently free elements.) + + independent_calloc simplifies and speeds up implementations of many + kinds of pools. It may also be useful when constructing large data + structures that initially have a fixed number of fixed-sized nodes, + but the number is not known at compile time, and some of the nodes + may later need to be freed. For example: + + struct Node { int item; struct Node* next; }; + + struct Node* build_list() { + struct Node** pool; + int n = read_number_of_nodes_needed(); + if (n <= 0) return 0; + pool = (struct Node**)(independent_calloc(n, sizeof(struct Node), 0); + if (pool == 0) die(); + // organize into a linked list... + struct Node* first = pool[0]; + for (i = 0; i < n-1; ++i) + pool[i]->next = pool[i+1]; + free(pool); // Can now free the array (or not, if it is needed later) + return first; + } +*/ +void** dlindependent_calloc(size_t, size_t, void**); + +/* + independent_comalloc(size_t n_elements, size_t sizes[], void* chunks[]); + + independent_comalloc allocates, all at once, a set of n_elements + chunks with sizes indicated in the "sizes" array. It returns + an array of pointers to these elements, each of which can be + independently freed, realloc'ed etc. The elements are guaranteed to + be adjacently allocated (this is not guaranteed to occur with + multiple callocs or mallocs), which may also improve cache locality + in some applications. + + The "chunks" argument is optional (i.e., may be null). If it is null + the returned array is itself dynamically allocated and should also + be freed when it is no longer needed. Otherwise, the chunks array + must be of at least n_elements in length. It is filled in with the + pointers to the chunks. + + In either case, independent_comalloc returns this pointer array, or + null if the allocation failed. If n_elements is zero and chunks is + null, it returns a chunk representing an array with zero elements + (which should be freed if not wanted). + + Each element must be individually freed when it is no longer + needed. If you'd like to instead be able to free all at once, you + should instead use a single regular malloc, and assign pointers at + particular offsets in the aggregate space. (In this case though, you + cannot independently free elements.) + + independent_comallac differs from independent_calloc in that each + element may have a different size, and also that it does not + automatically clear elements. + + independent_comalloc can be used to speed up allocation in cases + where several structs or objects must always be allocated at the + same time. For example: + + struct Head { ... } + struct Foot { ... } + + void send_message(char* msg) { + int msglen = strlen(msg); + size_t sizes[3] = { sizeof(struct Head), msglen, sizeof(struct Foot) }; + void* chunks[3]; + if (independent_comalloc(3, sizes, chunks) == 0) + die(); + struct Head* head = (struct Head*)(chunks[0]); + char* body = (char*)(chunks[1]); + struct Foot* foot = (struct Foot*)(chunks[2]); + // ... + } + + In general though, independent_comalloc is worth using only for + larger values of n_elements. For small values, you probably won't + detect enough difference from series of malloc calls to bother. + + Overuse of independent_comalloc can increase overall memory usage, + since it cannot reuse existing noncontiguous small chunks that + might be available for some of the elements. +*/ +void** dlindependent_comalloc(size_t, size_t*, void**); + + +/* + pvalloc(size_t n); + Equivalent to valloc(minimum-page-that-holds(n)), that is, + round up n to nearest pagesize. + */ +void* dlpvalloc(size_t); + +/* + malloc_trim(size_t pad); + + If possible, gives memory back to the system (via negative arguments + to sbrk) if there is unused memory at the `high' end of the malloc + pool or in unused MMAP segments. You can call this after freeing + large blocks of memory to potentially reduce the system-level memory + requirements of a program. However, it cannot guarantee to reduce + memory. Under some allocation patterns, some large free blocks of + memory will be locked between two used chunks, so they cannot be + given back to the system. + + The `pad' argument to malloc_trim represents the amount of free + trailing space to leave untrimmed. If this argument is zero, only + the minimum amount of memory to maintain internal data structures + will be left. Non-zero arguments can be supplied to maintain enough + trailing space to service future expected allocations without having + to re-obtain memory from the system. + + Malloc_trim returns 1 if it actually released any memory, else 0. +*/ +int dlmalloc_trim(size_t); + +/* + malloc_stats(); + Prints on stderr the amount of space obtained from the system (both + via sbrk and mmap), the maximum amount (which may be more than + current if malloc_trim and/or munmap got called), and the current + number of bytes allocated via malloc (or realloc, etc) but not yet + freed. Note that this is the number of bytes allocated, not the + number requested. It will be larger than the number requested + because of alignment and bookkeeping overhead. Because it includes + alignment wastage as being in use, this figure may be greater than + zero even when no user-level chunks are allocated. + + The reported current and maximum system memory can be inaccurate if + a program makes other calls to system memory allocation functions + (normally sbrk) outside of malloc. + + malloc_stats prints only the most commonly interesting statistics. + More information can be obtained by calling mallinfo. +*/ +void dlmalloc_stats(void); + +#endif /* ONLY_MSPACES */ + +/* + malloc_usable_size(void* p); + + Returns the number of bytes you can actually use in + an allocated chunk, which may be more than you requested (although + often not) due to alignment and minimum size constraints. + You can use this many bytes without worrying about + overwriting other allocated objects. This is not a particularly great + programming practice. malloc_usable_size can be more useful in + debugging and assertions, for example: + + p = malloc(n); + assert(malloc_usable_size(p) >= 256); +*/ +size_t dlmalloc_usable_size(void*); + + +#if MSPACES + +/* + mspace is an opaque type representing an independent + region of space that supports mspace_malloc, etc. +*/ +typedef void* mspace; + +/* + create_mspace creates and returns a new independent space with the + given initial capacity, or, if 0, the default granularity size. It + returns null if there is no system memory available to create the + space. If argument locked is non-zero, the space uses a separate + lock to control access. The capacity of the space will grow + dynamically as needed to service mspace_malloc requests. You can + control the sizes of incremental increases of this space by + compiling with a different DEFAULT_GRANULARITY or dynamically + setting with mallopt(M_GRANULARITY, value). +*/ +mspace create_mspace(size_t capacity, int locked); + +/* + destroy_mspace destroys the given space, and attempts to return all + of its memory back to the system, returning the total number of + bytes freed. After destruction, the results of access to all memory + used by the space become undefined. +*/ +size_t destroy_mspace(mspace msp); + +/* + create_mspace_with_base uses the memory supplied as the initial base + of a new mspace. Part (less than 128*sizeof(size_t) bytes) of this + space is used for bookkeeping, so the capacity must be at least this + large. (Otherwise 0 is returned.) When this initial space is + exhausted, additional memory will be obtained from the system. + Destroying this space will deallocate all additionally allocated + space (if possible) but not the initial base. +*/ +mspace create_mspace_with_base(void* base, size_t capacity, int locked); + +/* + mspace_track_large_chunks controls whether requests for large chunks + are allocated in their own untracked mmapped regions, separate from + others in this mspace. By default large chunks are not tracked, + which reduces fragmentation. However, such chunks are not + necessarily released to the system upon destroy_mspace. Enabling + tracking by setting to true may increase fragmentation, but avoids + leakage when relying on destroy_mspace to release all memory + allocated using this space. The function returns the previous + setting. +*/ +int mspace_track_large_chunks(mspace msp, int enable); + + +/* + mspace_malloc behaves as malloc, but operates within + the given space. +*/ +void* mspace_malloc(mspace msp, size_t bytes); + +/* + mspace_free behaves as free, but operates within + the given space. + + If compiled with FOOTERS==1, mspace_free is not actually needed. + free may be called instead of mspace_free because freed chunks from + any space are handled by their originating spaces. +*/ +void mspace_free(mspace msp, void* mem); + +/* + mspace_realloc behaves as realloc, but operates within + the given space. + + If compiled with FOOTERS==1, mspace_realloc is not actually + needed. realloc may be called instead of mspace_realloc because + realloced chunks from any space are handled by their originating + spaces. +*/ +void* mspace_realloc(mspace msp, void* mem, size_t newsize); + +/* + mspace_calloc behaves as calloc, but operates within + the given space. +*/ +void* mspace_calloc(mspace msp, size_t n_elements, size_t elem_size); + +/* + mspace_memalign behaves as memalign, but operates within + the given space. +*/ +void* mspace_memalign(mspace msp, size_t alignment, size_t bytes); + +/* + mspace_independent_calloc behaves as independent_calloc, but + operates within the given space. +*/ +void** mspace_independent_calloc(mspace msp, size_t n_elements, + size_t elem_size, void* chunks[]); + +/* + mspace_independent_comalloc behaves as independent_comalloc, but + operates within the given space. +*/ +void** mspace_independent_comalloc(mspace msp, size_t n_elements, + size_t sizes[], void* chunks[]); + +/* + mspace_footprint() returns the number of bytes obtained from the + system for this space. +*/ +size_t mspace_footprint(mspace msp); + +/* + mspace_max_footprint() returns the peak number of bytes obtained from the + system for this space. +*/ +size_t mspace_max_footprint(mspace msp); + + +#if !NO_MALLINFO +/* + mspace_mallinfo behaves as mallinfo, but reports properties of + the given space. +*/ +struct mallinfo mspace_mallinfo(mspace msp); +#endif /* NO_MALLINFO */ + +/* + malloc_usable_size(void* p) behaves the same as malloc_usable_size; +*/ + size_t mspace_usable_size(void* mem); + +/* + mspace_malloc_stats behaves as malloc_stats, but reports + properties of the given space. +*/ +void mspace_malloc_stats(mspace msp); + +/* + mspace_trim behaves as malloc_trim, but + operates within the given space. +*/ +int mspace_trim(mspace msp, size_t pad); + +/* + An alias for mallopt. +*/ +int mspace_mallopt(int, int); + +#endif /* MSPACES */ + +#ifdef __cplusplus +} /* end of extern "C" */ +#endif /* __cplusplus */ + +/* + ======================================================================== + To make a fully customizable malloc.h header file, cut everything + above this line, put into file malloc.h, edit to suit, and #include it + on the next line, as well as in programs that use this malloc. + ======================================================================== +*/ + +/* #include "malloc.h" */ + +/*------------------------------ internal #includes ---------------------- */ + +#ifdef WIN32 +#pragma warning( disable : 4146 ) /* no "unsigned" warnings */ +#endif /* WIN32 */ + +#include <stdio.h> /* for printing in malloc_stats */ + +#ifndef LACKS_ERRNO_H +#include <errno.h> /* for MALLOC_FAILURE_ACTION */ +#endif /* LACKS_ERRNO_H */ +#if FOOTERS || DEBUG +#include <time.h> /* for magic initialization */ +#endif /* FOOTERS */ +#ifndef LACKS_STDLIB_H +#include <stdlib.h> /* for abort() */ +#endif /* LACKS_STDLIB_H */ +#ifdef DEBUG +#if ABORT_ON_ASSERT_FAILURE +#undef assert +#define assert(x) if(!(x)) ABORT +#else /* ABORT_ON_ASSERT_FAILURE */ +#include <assert.h> +#endif /* ABORT_ON_ASSERT_FAILURE */ +#else /* DEBUG */ +#ifndef assert +#define assert(x) +#endif +#define DEBUG 0 +#endif /* DEBUG */ +#ifndef LACKS_STRING_H +#include <string.h> /* for memset etc */ +#endif /* LACKS_STRING_H */ +#if USE_BUILTIN_FFS +#ifndef LACKS_STRINGS_H +#include <strings.h> /* for ffs */ +#endif /* LACKS_STRINGS_H */ +#endif /* USE_BUILTIN_FFS */ +#if HAVE_MMAP +#ifndef LACKS_SYS_MMAN_H +/* On some versions of linux, mremap decl in mman.h needs __USE_GNU set */ +#if (defined(linux) && !defined(__USE_GNU)) +#define __USE_GNU 1 +#include <sys/mman.h> /* for mmap */ +#undef __USE_GNU +#else +#include <sys/mman.h> /* for mmap */ +#endif /* linux */ +#endif /* LACKS_SYS_MMAN_H */ +#ifndef LACKS_FCNTL_H +#include <fcntl.h> +#endif /* LACKS_FCNTL_H */ +#endif /* HAVE_MMAP */ +#ifndef LACKS_UNISTD_H +#include <unistd.h> /* for sbrk, sysconf */ +#else /* LACKS_UNISTD_H */ +#if !defined(__FreeBSD__) && !defined(__OpenBSD__) && !defined(__NetBSD__) +extern void* sbrk(ptrdiff_t); +#endif /* FreeBSD etc */ +#endif /* LACKS_UNISTD_H */ + +/* Declarations for locking */ +#if USE_LOCKS +#ifndef WIN32 +#include <pthread.h> +#if defined (__SVR4) && defined (__sun) /* solaris */ +#include <thread.h> +#endif /* solaris */ +#else +#ifndef _M_AMD64 +/* These are already defined on AMD64 builds */ +#ifdef __cplusplus +extern "C" { +#endif /* __cplusplus */ +LONG __cdecl _InterlockedCompareExchange(LONG volatile *Dest, LONG Exchange, LONG Comp); +LONG __cdecl _InterlockedExchange(LONG volatile *Target, LONG Value); +#ifdef __cplusplus +} +#endif /* __cplusplus */ +#endif /* _M_AMD64 */ +#pragma intrinsic (_InterlockedCompareExchange) +#pragma intrinsic (_InterlockedExchange) +#define interlockedcompareexchange _InterlockedCompareExchange +#define interlockedexchange _InterlockedExchange +#endif /* Win32 */ +#endif /* USE_LOCKS */ + +/* Declarations for bit scanning on win32 */ +#if defined(_MSC_VER) && _MSC_VER>=1300 +#ifndef BitScanForward /* Try to avoid pulling in WinNT.h */ +#ifdef __cplusplus +extern "C" { +#endif /* __cplusplus */ +unsigned char _BitScanForward(unsigned long *index, unsigned long mask); +unsigned char _BitScanReverse(unsigned long *index, unsigned long mask); +#ifdef __cplusplus +} +#endif /* __cplusplus */ + +#define BitScanForward _BitScanForward +#define BitScanReverse _BitScanReverse +#pragma intrinsic(_BitScanForward) +#pragma intrinsic(_BitScanReverse) +#endif /* BitScanForward */ +#endif /* defined(_MSC_VER) && _MSC_VER>=1300 */ + +#ifndef WIN32 +#ifndef malloc_getpagesize +# ifdef _SC_PAGESIZE /* some SVR4 systems omit an underscore */ +# ifndef _SC_PAGE_SIZE +# define _SC_PAGE_SIZE _SC_PAGESIZE +# endif +# endif +# ifdef _SC_PAGE_SIZE +# define malloc_getpagesize sysconf(_SC_PAGE_SIZE) +# else +# if defined(BSD) || defined(DGUX) || defined(HAVE_GETPAGESIZE) + extern size_t getpagesize(); +# define malloc_getpagesize getpagesize() +# else +# ifdef WIN32 /* use supplied emulation of getpagesize */ +# define malloc_getpagesize getpagesize() +# else +# ifndef LACKS_SYS_PARAM_H +# include <sys/param.h> +# endif +# ifdef EXEC_PAGESIZE +# define malloc_getpagesize EXEC_PAGESIZE +# else +# ifdef NBPG +# ifndef CLSIZE +# define malloc_getpagesize NBPG +# else +# define malloc_getpagesize (NBPG * CLSIZE) +# endif +# else +# ifdef NBPC +# define malloc_getpagesize NBPC +# else +# ifdef PAGESIZE +# define malloc_getpagesize PAGESIZE +# else /* just guess */ +# define malloc_getpagesize ((size_t)4096U) +# endif +# endif +# endif +# endif +# endif +# endif +# endif +#endif +#endif + + + +/* ------------------- size_t and alignment properties -------------------- */ + +/* The byte and bit size of a size_t */ +#define SIZE_T_SIZE (sizeof(size_t)) +#define SIZE_T_BITSIZE (sizeof(size_t) << 3) + +/* Some constants coerced to size_t */ +/* Annoying but necessary to avoid errors on some platforms */ +#define SIZE_T_ZERO ((size_t)0) +#define SIZE_T_ONE ((size_t)1) +#define SIZE_T_TWO ((size_t)2) +#define SIZE_T_FOUR ((size_t)4) +#define TWO_SIZE_T_SIZES (SIZE_T_SIZE<<1) +#define FOUR_SIZE_T_SIZES (SIZE_T_SIZE<<2) +#define SIX_SIZE_T_SIZES (FOUR_SIZE_T_SIZES+TWO_SIZE_T_SIZES) +#define HALF_MAX_SIZE_T (MAX_SIZE_T / 2U) + +/* The bit mask value corresponding to MALLOC_ALIGNMENT */ +#define CHUNK_ALIGN_MASK (MALLOC_ALIGNMENT - SIZE_T_ONE) + +/* True if address a has acceptable alignment */ +#define is_aligned(A) (((size_t)((A)) & (CHUNK_ALIGN_MASK)) == 0) + +/* the number of bytes to offset an address to align it */ +#define align_offset(A)\ + ((((size_t)(A) & CHUNK_ALIGN_MASK) == 0)? 0 :\ + ((MALLOC_ALIGNMENT - ((size_t)(A) & CHUNK_ALIGN_MASK)) & CHUNK_ALIGN_MASK)) + +/* + malloc_params holds global properties, including those that can be + dynamically set using mallopt. There is a single instance, mparams, + initialized in init_mparams. Note that the non-zeroness of "magic" + also serves as an initialization flag. +*/ +typedef unsigned int flag_t; +struct malloc_params { + volatile size_t magic; + size_t page_size; + size_t granularity; + size_t mmap_threshold; + size_t trim_threshold; + flag_t default_mflags; +}; + +static struct malloc_params mparams; + +/* Ensure mparams initialized */ +#define ensure_initialization() (void)(mparams.magic != 0 || init_mparams()) + +/* -------------------------- MMAP preliminaries ------------------------- */ + +/* + If HAVE_MORECORE or HAVE_MMAP are false, we just define calls and + checks to fail so compiler optimizer can delete code rather than + using so many "#if"s. +*/ + + +/* MORECORE and MMAP must return MFAIL on failure */ +#define MFAIL ((void*)(MAX_SIZE_T)) +#define CMFAIL ((char*)(MFAIL)) /* defined for convenience */ + +#if HAVE_MMAP + +#ifndef WIN32 +#if !defined(MAP_ANONYMOUS) && defined(MAP_ANON) +#define MAP_ANONYMOUS MAP_ANON +#endif /* MAP_ANON */ +#ifdef DEFAULT_GRANULARITY_ALIGNED +#define MMAP_IMPL mmap_aligned +static void* lastAlignedmmap; /* Used as a hint */ +static void* mmap_aligned(void *start, size_t length, int prot, int flags, int fd, off_t offset) { + void* baseaddress = 0; + void* ptr = 0; + if(!start) { + baseaddress = lastAlignedmmap; + for(;;) { + if(baseaddress) flags|=MAP_FIXED; + ptr = mmap(baseaddress, length, prot, flags, fd, offset); + if(!ptr) + baseaddress = (void*)((size_t)baseaddress + mparams.granularity); + else if((size_t)ptr & (mparams.granularity - SIZE_T_ONE)) { + munmap(ptr, length); + baseaddress = (void*)(((size_t)ptr + mparams.granularity) & ~(mparams.granularity - SIZE_T_ONE)); + } + else break; + } + } + else ptr = mmap(start, length, prot, flags, fd, offset); + if(ptr) lastAlignedmmap = (void*)((size_t) ptr + mparams.granularity); + return ptr; +} +#else +#define MMAP_IMPL mmap +#endif /* DEFAULT_GRANULARITY_ALIGNED */ +#define MUNMAP_DEFAULT(a, s) munmap((a), (s)) +#define MMAP_PROT (PROT_READ|PROT_WRITE) +#ifdef MAP_ANONYMOUS +#define MMAP_FLAGS (MAP_PRIVATE|MAP_ANONYMOUS) +#define MMAP_DEFAULT(s) MMAP_IMPL(0, (s), MMAP_PROT, MMAP_FLAGS, -1, 0) +#else /* MAP_ANONYMOUS */ +/* + Nearly all versions of mmap support MAP_ANONYMOUS, so the following + is unlikely to be needed, but is supplied just in case. +*/ +#define MMAP_FLAGS (MAP_PRIVATE) +static int dev_zero_fd = -1; /* Cached file descriptor for /dev/zero. */ +#define MMAP_DEFAULT(s) ((dev_zero_fd < 0) ? \ + (dev_zero_fd = open("/dev/zero", O_RDWR), \ + MMAP_IMPL(0, (s), MMAP_PROT, MMAP_FLAGS, dev_zero_fd, 0)) : \ + MMAP_IMPL(0, (s), MMAP_PROT, MMAP_FLAGS, dev_zero_fd, 0)) +#endif /* MAP_ANONYMOUS */ + +#define DIRECT_MMAP_DEFAULT(s) MMAP_DEFAULT(s) + +#else /* WIN32 */ + +/* Win32 MMAP via VirtualAlloc */ +#ifdef DEFAULT_GRANULARITY_ALIGNED +static void* lastWin32mmap; /* Used as a hint */ +#endif /* DEFAULT_GRANULARITY_ALIGNED */ +#ifdef ENABLE_LARGE_PAGES +static int largepagesavailable = 1; +#endif /* ENABLE_LARGE_PAGES */ +static FORCEINLINE void* win32mmap(size_t size) { + void* baseaddress = 0; + void* ptr = 0; +#ifdef ENABLE_LARGE_PAGES + /* Note that large pages are *always* allocated on a large page boundary. + If however granularity is small then don't waste a kernel call if size + isn't around the size of a large page */ + if(largepagesavailable && size >= 1*1024*1024) { + ptr = VirtualAlloc(baseaddress, size, MEM_RESERVE|MEM_COMMIT|MEM_LARGE_PAGES, PAGE_READWRITE); + if(!ptr && ERROR_PRIVILEGE_NOT_HELD==GetLastError()) largepagesavailable=0; + } +#endif + if(!ptr) { +#ifdef DEFAULT_GRANULARITY_ALIGNED + /* We try to avoid overhead by speculatively reserving at aligned + addresses until we succeed */ + baseaddress = lastWin32mmap; + for(;;) { + void* reserveaddr = VirtualAlloc(baseaddress, size, MEM_RESERVE, PAGE_READWRITE); + if(!reserveaddr) + baseaddress = (void*)((size_t)baseaddress + mparams.granularity); + else if((size_t)reserveaddr & (mparams.granularity - SIZE_T_ONE)) { + VirtualFree(reserveaddr, 0, MEM_RELEASE); + baseaddress = (void*)(((size_t)reserveaddr + mparams.granularity) & ~(mparams.granularity - SIZE_T_ONE)); + } + else break; + } +#endif + if(!ptr) ptr = VirtualAlloc(baseaddress, size, baseaddress ? MEM_COMMIT : MEM_RESERVE|MEM_COMMIT, PAGE_READWRITE); +#if DEBUG + if(lastWin32mmap && ptr!=lastWin32mmap) printf("Non-contiguous VirtualAlloc between %p and %p\n", ptr, lastWin32mmap); +#endif +#ifdef DEFAULT_GRANULARITY_ALIGNED + if(ptr) lastWin32mmap = (void*)((size_t) ptr + mparams.granularity); +#endif + } +#if DEBUG +#ifdef ENABLE_LARGE_PAGES + printf("VirtualAlloc returns %p size %u. LargePagesAvailable=%d\n", ptr, size, largepagesavailable); +#else + printf("VirtualAlloc returns %p size %u\n", ptr, size); +#endif +#endif + return (ptr != 0)? ptr: MFAIL; +} + +/* For direct MMAP, use MEM_TOP_DOWN to minimize interference */ +static FORCEINLINE void* win32direct_mmap(size_t size) { + void* ptr = VirtualAlloc(0, size, MEM_RESERVE|MEM_COMMIT|MEM_TOP_DOWN, + PAGE_READWRITE); + return (ptr != 0)? ptr: MFAIL; +} + +/* This function supports releasing coalesed segments */ +static FORCEINLINE int win32munmap(void* ptr, size_t size) { + MEMORY_BASIC_INFORMATION minfo; + char* cptr = (char*)ptr; + while (size) { + if (VirtualQuery(cptr, &minfo, sizeof(minfo)) == 0) + return -1; + if (minfo.BaseAddress != cptr || minfo.AllocationBase != cptr || + minfo.State != MEM_COMMIT || minfo.RegionSize > size) + return -1; + if (VirtualFree(cptr, 0, MEM_RELEASE) == 0) + return -1; + cptr += minfo.RegionSize; + size -= minfo.RegionSize; + } + return 0; +} + +#define MMAP_DEFAULT(s) win32mmap(s) +#define MUNMAP_DEFAULT(a, s) win32munmap((a), (s)) +#define DIRECT_MMAP_DEFAULT(s) win32direct_mmap(s) +#endif /* WIN32 */ +#endif /* HAVE_MMAP */ + +#if HAVE_MREMAP +#ifndef WIN32 +#define MREMAP_DEFAULT(addr, osz, nsz, mv) mremap((addr), (osz), (nsz), (mv)) +#endif /* WIN32 */ +#endif /* HAVE_MREMAP */ + + +/** + * Define CALL_MORECORE + */ +#if HAVE_MORECORE + #ifdef MORECORE + #define CALL_MORECORE(S) MORECORE(S) + #else /* MORECORE */ + #define CALL_MORECORE(S) MORECORE_DEFAULT(S) + #endif /* MORECORE */ +#else /* HAVE_MORECORE */ + #define CALL_MORECORE(S) MFAIL +#endif /* HAVE_MORECORE */ + +/** + * Define CALL_MMAP/CALL_MUNMAP/CALL_DIRECT_MMAP + */ +#if HAVE_MMAP + #define USE_MMAP_BIT (SIZE_T_ONE) + + #ifdef MMAP + #define CALL_MMAP(s) MMAP(s) + #else /* MMAP */ + #define CALL_MMAP(s) MMAP_DEFAULT(s) + #endif /* MMAP */ + #ifdef MUNMAP + #define CALL_MUNMAP(a, s) MUNMAP((a), (s)) + #else /* MUNMAP */ + #define CALL_MUNMAP(a, s) MUNMAP_DEFAULT((a), (s)) + #endif /* MUNMAP */ + #ifdef DIRECT_MMAP + #define CALL_DIRECT_MMAP(s) DIRECT_MMAP(s) + #else /* DIRECT_MMAP */ + #define CALL_DIRECT_MMAP(s) DIRECT_MMAP_DEFAULT(s) + #endif /* DIRECT_MMAP */ +#else /* HAVE_MMAP */ + #define USE_MMAP_BIT (SIZE_T_ZERO) + + #define MMAP(s) MFAIL + #define MUNMAP(a, s) (-1) + #define DIRECT_MMAP(s) MFAIL + #define CALL_DIRECT_MMAP(s) DIRECT_MMAP(s) + #define CALL_MMAP(s) MMAP(s) + #define CALL_MUNMAP(a, s) MUNMAP((a), (s)) +#endif /* HAVE_MMAP */ + +/** + * Define CALL_MREMAP + */ +#if HAVE_MMAP && HAVE_MREMAP + #ifdef MREMAP + #define CALL_MREMAP(addr, osz, nsz, mv) MREMAP((addr), (osz), (nsz), (mv)) + #else /* MREMAP */ + #define CALL_MREMAP(addr, osz, nsz, mv) MREMAP_DEFAULT((addr), (osz), (nsz), (mv)) + #endif /* MREMAP */ +#else /* HAVE_MMAP && HAVE_MREMAP */ + #define CALL_MREMAP(addr, osz, nsz, mv) MFAIL +#endif /* HAVE_MMAP && HAVE_MREMAP */ + +/* mstate bit set if continguous morecore disabled or failed */ +#define USE_NONCONTIGUOUS_BIT (4U) + +/* segment bit set in create_mspace_with_base */ +#define EXTERN_BIT (8U) + + +/* --------------------------- Lock preliminaries ------------------------ */ + +/* + When locks are defined, there is one global lock, plus + one per-mspace lock. + + The global lock_ensures that mparams.magic and other unique + mparams values are initialized only once. It also protects + sequences of calls to MORECORE. In many cases sys_alloc requires + two calls, that should not be interleaved with calls by other + threads. This does not protect against direct calls to MORECORE + by other threads not using this lock, so there is still code to + cope the best we can on interference. + + Per-mspace locks surround calls to malloc, free, etc. To enable use + in layered extensions, per-mspace locks are reentrant. + + Because lock-protected regions generally have bounded times, it is + OK to use the supplied simple spinlocks in the custom versions for + x86. Spinlocks are likely to improve performance for lightly + contended applications, but worsen performance under heavy + contention. + + If USE_LOCKS is > 1, the definitions of lock routines here are + bypassed, in which case you will need to define the type MLOCK_T, + and at least INITIAL_LOCK, ACQUIRE_LOCK, RELEASE_LOCK and possibly + TRY_LOCK (which is not used in this malloc, but commonly needed in + extensions.) You must also declare a + static MLOCK_T malloc_global_mutex = { initialization values };. + +*/ + +#if USE_LOCKS == 1 + +#if USE_SPIN_LOCKS && SPIN_LOCKS_AVAILABLE +#ifndef WIN32 + +/* Custom pthread-style spin locks on x86 and x64 for gcc */ +struct pthread_mlock_t { + volatile unsigned int l; + char cachelinepadding[64]; + unsigned int c; + pthread_t threadid; +}; +#define MLOCK_T struct pthread_mlock_t +#define CURRENT_THREAD pthread_self() +#define INITIAL_LOCK(sl) ((sl)->threadid = 0, (sl)->l = (sl)->c = 0, 0) +#define ACQUIRE_LOCK(sl) pthread_acquire_lock(sl) +#define RELEASE_LOCK(sl) pthread_release_lock(sl) +#define TRY_LOCK(sl) pthread_try_lock(sl) +#define SPINS_PER_YIELD 63 + +static MLOCK_T malloc_global_mutex = { 0, "", 0, 0}; + +static FORCEINLINE int pthread_acquire_lock (MLOCK_T *sl) { + int spins = 0; + volatile unsigned int* lp = &sl->l; + for (;;) { + if (*lp != 0) { + if (sl->threadid == CURRENT_THREAD) { + ++sl->c; + return 0; + } + } + else { + /* place args to cmpxchgl in locals to evade oddities in some gccs */ + int cmp = 0; + int val = 1; + int ret; + __asm__ __volatile__ ("lock; cmpxchgl %1, %2" + : "=a" (ret) + : "r" (val), "m" (*(lp)), "0"(cmp) + : "memory", "cc"); + if (!ret) { + assert(!sl->threadid); + sl->threadid = CURRENT_THREAD; + sl->c = 1; + return 0; + } + } + if ((++spins & SPINS_PER_YIELD) == 0) { +#if defined (__SVR4) && defined (__sun) /* solaris */ + thr_yield(); +#else +#if defined(__linux__) || defined(__FreeBSD__) || defined(__APPLE__) + sched_yield(); +#else /* no-op yield on unknown systems */ + ; +#endif /* __linux__ || __FreeBSD__ || __APPLE__ */ +#endif /* solaris */ + } + } +} + +static FORCEINLINE void pthread_release_lock (MLOCK_T *sl) { + volatile unsigned int* lp = &sl->l; + assert(*lp != 0); + assert(sl->threadid == CURRENT_THREAD); + if (--sl->c == 0) { + sl->threadid = 0; + int prev = 0; + int ret; + __asm__ __volatile__ ("lock; xchgl %0, %1" + : "=r" (ret) + : "m" (*(lp)), "0"(prev) + : "memory"); + } +} + +static FORCEINLINE int pthread_try_lock (MLOCK_T *sl) { + volatile unsigned int* lp = &sl->l; + if (*lp != 0) { + if (sl->threadid == CURRENT_THREAD) { + ++sl->c; + return 1; + } + } + else { + int cmp = 0; + int val = 1; + int ret; + __asm__ __volatile__ ("lock; cmpxchgl %1, %2" + : "=a" (ret) + : "r" (val), "m" (*(lp)), "0"(cmp) + : "memory", "cc"); + if (!ret) { + assert(!sl->threadid); + sl->threadid = CURRENT_THREAD; + sl->c = 1; + return 1; + } + } + return 0; +} + + +#else /* WIN32 */ +/* Custom win32-style spin locks on x86 and x64 for MSC */ +struct win32_mlock_t { + volatile long l; + char cachelinepadding[64]; + unsigned int c; + long threadid; +}; + +#define MLOCK_T struct win32_mlock_t +#define CURRENT_THREAD ((long)GetCurrentThreadId()) +#define INITIAL_LOCK(sl) ((sl)->threadid = 0, (sl)->l = (sl)->c = 0, 0) +#define ACQUIRE_LOCK(sl) win32_acquire_lock(sl) +#define RELEASE_LOCK(sl) win32_release_lock(sl) +#define TRY_LOCK(sl) win32_try_lock(sl) +#define SPINS_PER_YIELD 63 + +static MLOCK_T malloc_global_mutex = { 0, 0, 0}; + +static FORCEINLINE int win32_acquire_lock (MLOCK_T *sl) { + int spins = 0; + for (;;) { + if (sl->l != 0) { + if (sl->threadid == CURRENT_THREAD) { + ++sl->c; + return 0; + } + } + else { + if (!interlockedexchange(&sl->l, 1)) { + assert(!sl->threadid); + sl->threadid = CURRENT_THREAD; + sl->c = 1; + return 0; + } + } + if ((++spins & SPINS_PER_YIELD) == 0) + SleepEx(0, FALSE); + } +} + +static FORCEINLINE void win32_release_lock (MLOCK_T *sl) { + assert(sl->threadid == CURRENT_THREAD); + assert(sl->l != 0); + if (--sl->c == 0) { + sl->threadid = 0; + interlockedexchange (&sl->l, 0); + } +} + +static FORCEINLINE int win32_try_lock (MLOCK_T *sl) { + if (sl->l != 0) { + if (sl->threadid == CURRENT_THREAD) { + ++sl->c; + return 1; + } + } + else { + if (!interlockedexchange(&sl->l, 1)){ + assert(!sl->threadid); + sl->threadid = CURRENT_THREAD; + sl->c = 1; + return 1; + } + } + return 0; +} + +#endif /* WIN32 */ +#else /* USE_SPIN_LOCKS */ + +#ifndef WIN32 +/* pthreads-based locks */ + +#define MLOCK_T pthread_mutex_t +#define CURRENT_THREAD pthread_self() +#define INITIAL_LOCK(sl) pthread_init_lock(sl) +#define ACQUIRE_LOCK(sl) pthread_mutex_lock(sl) +#define RELEASE_LOCK(sl) pthread_mutex_unlock(sl) +#define TRY_LOCK(sl) (!pthread_mutex_trylock(sl)) + +static MLOCK_T malloc_global_mutex = PTHREAD_MUTEX_INITIALIZER; + +/* Cope with old-style linux recursive lock initialization by adding */ +/* skipped internal declaration from pthread.h */ +#ifdef linux +#ifndef PTHREAD_MUTEX_RECURSIVE +extern int pthread_mutexattr_setkind_np __P ((pthread_mutexattr_t *__attr, + int __kind)); +#define PTHREAD_MUTEX_RECURSIVE PTHREAD_MUTEX_RECURSIVE_NP +#define pthread_mutexattr_settype(x,y) pthread_mutexattr_setkind_np(x,y) +#endif +#endif + +static int pthread_init_lock (MLOCK_T *sl) { + pthread_mutexattr_t attr; + if (pthread_mutexattr_init(&attr)) return 1; + if (pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_RECURSIVE)) return 1; + if (pthread_mutex_init(sl, &attr)) return 1; + if (pthread_mutexattr_destroy(&attr)) return 1; + return 0; +} + +#else /* WIN32 */ +/* Win32 critical sections */ +#define MLOCK_T CRITICAL_SECTION +#define CURRENT_THREAD GetCurrentThreadId() +#define INITIAL_LOCK(s) (!InitializeCriticalSectionAndSpinCount((s), 0x80000000|4000)) +#define ACQUIRE_LOCK(s) (EnterCriticalSection(sl), 0) +#define RELEASE_LOCK(s) LeaveCriticalSection(sl) +#define TRY_LOCK(s) TryEnterCriticalSection(sl) +#define NEED_GLOBAL_LOCK_INIT + +static MLOCK_T malloc_global_mutex; +static volatile long malloc_global_mutex_status; + +/* Use spin loop to initialize global lock */ +static void init_malloc_global_mutex() { + for (;;) { + long stat = malloc_global_mutex_status; + if (stat > 0) + return; + /* transition to < 0 while initializing, then to > 0) */ + if (stat == 0 && + interlockedcompareexchange(&malloc_global_mutex_status, -1, 0) == 0) { + InitializeCriticalSection(&malloc_global_mutex); + interlockedexchange(&malloc_global_mutex_status,1); + return; + } + SleepEx(0, FALSE); + } +} + +#endif /* WIN32 */ +#endif /* USE_SPIN_LOCKS */ +#endif /* USE_LOCKS == 1 */ + +/* ----------------------- User-defined locks ------------------------ */ + +#if USE_LOCKS > 1 +/* Define your own lock implementation here */ +/* #define INITIAL_LOCK(sl) ... */ +/* #define ACQUIRE_LOCK(sl) ... */ +/* #define RELEASE_LOCK(sl) ... */ +/* #define TRY_LOCK(sl) ... */ +/* static MLOCK_T malloc_global_mutex = ... */ +#endif /* USE_LOCKS > 1 */ + +/* ----------------------- Lock-based state ------------------------ */ + +#if USE_LOCKS +#define USE_LOCK_BIT (2U) +#else /* USE_LOCKS */ +#define USE_LOCK_BIT (0U) +#define INITIAL_LOCK(l) +#endif /* USE_LOCKS */ + +#if USE_LOCKS +#ifndef ACQUIRE_MALLOC_GLOBAL_LOCK +#define ACQUIRE_MALLOC_GLOBAL_LOCK() ACQUIRE_LOCK(&malloc_global_mutex); +#endif +#ifndef RELEASE_MALLOC_GLOBAL_LOCK +#define RELEASE_MALLOC_GLOBAL_LOCK() RELEASE_LOCK(&malloc_global_mutex); +#endif +#else /* USE_LOCKS */ +#define ACQUIRE_MALLOC_GLOBAL_LOCK() +#define RELEASE_MALLOC_GLOBAL_LOCK() +#endif /* USE_LOCKS */ + + +/* ----------------------- Chunk representations ------------------------ */ + +/* + (The following includes lightly edited explanations by Colin Plumb.) + + The malloc_chunk declaration below is misleading (but accurate and + necessary). It declares a "view" into memory allowing access to + necessary fields at known offsets from a given base. + + Chunks of memory are maintained using a `boundary tag' method as + originally described by Knuth. (See the paper by Paul Wilson + ftp://ftp.cs.utexas.edu/pub/garbage/allocsrv.ps for a survey of such + techniques.) Sizes of free chunks are stored both in the front of + each chunk and at the end. This makes consolidating fragmented + chunks into bigger chunks fast. The head fields also hold bits + representing whether chunks are free or in use. + + Here are some pictures to make it clearer. They are "exploded" to + show that the state of a chunk can be thought of as extending from + the high 31 bits of the head field of its header through the + prev_foot and PINUSE_BIT bit of the following chunk header. + + A chunk that's in use looks like: + + chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + | Size of previous chunk (if P = 0) | + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |P| + | Size of this chunk 1| +-+ + mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + | | + +- -+ + | | + +- -+ + | : + +- size - sizeof(size_t) available payload bytes -+ + : | + chunk-> +- -+ + | | + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |1| + | Size of next chunk (may or may not be in use) | +-+ + mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + + And if it's free, it looks like this: + + chunk-> +- -+ + | User payload (must be in use, or we would have merged!) | + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |P| + | Size of this chunk 0| +-+ + mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + | Next pointer | + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + | Prev pointer | + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + | : + +- size - sizeof(struct chunk) unused bytes -+ + : | + chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + | Size of this chunk | + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |0| + | Size of next chunk (must be in use, or we would have merged)| +-+ + mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + | : + +- User payload -+ + : | + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + |0| + +-+ + Note that since we always merge adjacent free chunks, the chunks + adjacent to a free chunk must be in use. + + Given a pointer to a chunk (which can be derived trivially from the + payload pointer) we can, in O(1) time, find out whether the adjacent + chunks are free, and if so, unlink them from the lists that they + are on and merge them with the current chunk. + + Chunks always begin on even word boundaries, so the mem portion + (which is returned to the user) is also on an even word boundary, and + thus at least double-word aligned. + + The P (PINUSE_BIT) bit, stored in the unused low-order bit of the + chunk size (which is always a multiple of two words), is an in-use + bit for the *previous* chunk. If that bit is *clear*, then the + word before the current chunk size contains the previous chunk + size, and can be used to find the front of the previous chunk. + The very first chunk allocated always has this bit set, preventing + access to non-existent (or non-owned) memory. If pinuse is set for + any given chunk, then you CANNOT determine the size of the + previous chunk, and might even get a memory addressing fault when + trying to do so. + + The C (CINUSE_BIT) bit, stored in the unused second-lowest bit of + the chunk size redundantly records whether the current chunk is + inuse (unless the chunk is mmapped). This redundancy enables usage + checks within free and realloc, and reduces indirection when freeing + and consolidating chunks. + + Each freshly allocated chunk must have both cinuse and pinuse set. + That is, each allocated chunk borders either a previously allocated + and still in-use chunk, or the base of its memory arena. This is + ensured by making all allocations from the the `lowest' part of any + found chunk. Further, no free chunk physically borders another one, + so each free chunk is known to be preceded and followed by either + inuse chunks or the ends of memory. + + Note that the `foot' of the current chunk is actually represented + as the prev_foot of the NEXT chunk. This makes it easier to + deal with alignments etc but can be very confusing when trying + to extend or adapt this code. + + The exceptions to all this are + + 1. The special chunk `top' is the top-most available chunk (i.e., + the one bordering the end of available memory). It is treated + specially. Top is never included in any bin, is used only if + no other chunk is available, and is released back to the + system if it is very large (see M_TRIM_THRESHOLD). In effect, + the top chunk is treated as larger (and thus less well + fitting) than any other available chunk. The top chunk + doesn't update its trailing size field since there is no next + contiguous chunk that would have to index off it. However, + space is still allocated for it (TOP_FOOT_SIZE) to enable + separation or merging when space is extended. + + 3. Chunks allocated via mmap, have both cinuse and pinuse bits + cleared in their head fields. Because they are allocated + one-by-one, each must carry its own prev_foot field, which is + also used to hold the offset this chunk has within its mmapped + region, which is needed to preserve alignment. Each mmapped + chunk is trailed by the first two fields of a fake next-chunk + for sake of usage checks. + +*/ + +struct malloc_chunk { + size_t prev_foot; /* Size of previous chunk (if free). */ + size_t head; /* Size and inuse bits. */ + struct malloc_chunk* fd; /* double links -- used only if free. */ + struct malloc_chunk* bk; +}; + +typedef struct malloc_chunk mchunk; +typedef struct malloc_chunk* mchunkptr; +typedef struct malloc_chunk* sbinptr; /* The type of bins of chunks */ +typedef unsigned int bindex_t; /* Described below */ +typedef unsigned int binmap_t; /* Described below */ + +/* ------------------- Chunks sizes and alignments ----------------------- */ + +#define MCHUNK_SIZE (sizeof(mchunk)) + +#if FOOTERS +#define CHUNK_OVERHEAD (TWO_SIZE_T_SIZES) +#else /* FOOTERS */ +#define CHUNK_OVERHEAD (SIZE_T_SIZE) +#endif /* FOOTERS */ + +/* MMapped chunks need a second word of overhead ... */ +#define MMAP_CHUNK_OVERHEAD (TWO_SIZE_T_SIZES) +/* ... and additional padding for fake next-chunk at foot */ +#define MMAP_FOOT_PAD (FOUR_SIZE_T_SIZES) + +/* The smallest size we can malloc is an aligned minimal chunk */ +#define MIN_CHUNK_SIZE\ + ((MCHUNK_SIZE + CHUNK_ALIGN_MASK) & ~CHUNK_ALIGN_MASK) + +/* conversion from malloc headers to user pointers, and back */ +#define chunk2mem(p) ((void*)((char*)(p) + TWO_SIZE_T_SIZES)) +#define mem2chunk(mem) ((mchunkptr)((char*)(mem) - TWO_SIZE_T_SIZES)) +/* chunk associated with aligned address A */ +#define align_as_chunk(A) (mchunkptr)((A) + align_offset(chunk2mem(A))) + +/* Bounds on request (not chunk) sizes. */ +#define MAX_REQUEST ((-MIN_CHUNK_SIZE) << 2) +#define MIN_REQUEST (MIN_CHUNK_SIZE - CHUNK_OVERHEAD - SIZE_T_ONE) + +/* pad request bytes into a usable size */ +#define pad_request(req) \ + (((req) + CHUNK_OVERHEAD + CHUNK_ALIGN_MASK) & ~CHUNK_ALIGN_MASK) + +/* pad request, checking for minimum (but not maximum) */ +#define request2size(req) \ + (((req) < MIN_REQUEST)? MIN_CHUNK_SIZE : pad_request(req)) + + +/* ------------------ Operations on head and foot fields ----------------- */ + +/* + The head field of a chunk is or'ed with PINUSE_BIT when previous + adjacent chunk in use, and or'ed with CINUSE_BIT if this chunk is in + use, unless mmapped, in which case both bits are cleared. + + FLAG4_BIT is not used by this malloc, but might be useful in extensions. +*/ + +#define PINUSE_BIT (SIZE_T_ONE) +#define CINUSE_BIT (SIZE_T_TWO) +#define FLAG4_BIT (SIZE_T_FOUR) +#define INUSE_BITS (PINUSE_BIT|CINUSE_BIT) +#define FLAG_BITS (PINUSE_BIT|CINUSE_BIT|FLAG4_BIT) + +/* Head value for fenceposts */ +#define FENCEPOST_HEAD (INUSE_BITS|SIZE_T_SIZE) + +/* extraction of fields from head words */ +#define cinuse(p) ((p)->head & CINUSE_BIT) +#define pinuse(p) ((p)->head & PINUSE_BIT) +#define is_inuse(p) (((p)->head & INUSE_BITS) != PINUSE_BIT) +#define is_mmapped(p) (((p)->head & INUSE_BITS) == 0) + +#define chunksize(p) ((p)->head & ~(FLAG_BITS)) + +#define clear_pinuse(p) ((p)->head &= ~PINUSE_BIT) + +/* Treat space at ptr +/- offset as a chunk */ +#define chunk_plus_offset(p, s) ((mchunkptr)(((char*)(p)) + (s))) +#define chunk_minus_offset(p, s) ((mchunkptr)(((char*)(p)) - (s))) + +/* Ptr to next or previous physical malloc_chunk. */ +#define next_chunk(p) ((mchunkptr)( ((char*)(p)) + ((p)->head & ~FLAG_BITS))) +#define prev_chunk(p) ((mchunkptr)( ((char*)(p)) - ((p)->prev_foot) )) + +/* extract next chunk's pinuse bit */ +#define next_pinuse(p) ((next_chunk(p)->head) & PINUSE_BIT) + +/* Get/set size at footer */ +#define get_foot(p, s) (((mchunkptr)((char*)(p) + (s)))->prev_foot) +#define set_foot(p, s) (((mchunkptr)((char*)(p) + (s)))->prev_foot = (s)) + +/* Set size, pinuse bit, and foot */ +#define set_size_and_pinuse_of_free_chunk(p, s)\ + ((p)->head = (s|PINUSE_BIT), set_foot(p, s)) + +/* Set size, pinuse bit, foot, and clear next pinuse */ +#define set_free_with_pinuse(p, s, n)\ + (clear_pinuse(n), set_size_and_pinuse_of_free_chunk(p, s)) + +/* Get the internal overhead associated with chunk p */ +#define overhead_for(p)\ + (is_mmapped(p)? MMAP_CHUNK_OVERHEAD : CHUNK_OVERHEAD) + +/* Return true if malloced space is not necessarily cleared */ +#if MMAP_CLEARS +#define calloc_must_clear(p) (!is_mmapped(p)) +#else /* MMAP_CLEARS */ +#define calloc_must_clear(p) (1) +#endif /* MMAP_CLEARS */ + +/* ---------------------- Overlaid data structures ----------------------- */ + +/* + When chunks are not in use, they are treated as nodes of either + lists or trees. + + "Small" chunks are stored in circular doubly-linked lists, and look + like this: + + chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + | Size of previous chunk | + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + `head:' | Size of chunk, in bytes |P| + mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + | Forward pointer to next chunk in list | + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + | Back pointer to previous chunk in list | + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + | Unused space (may be 0 bytes long) . + . . + . | +nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + `foot:' | Size of chunk, in bytes | + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + + Larger chunks are kept in a form of bitwise digital trees (aka + tries) keyed on chunksizes. Because malloc_tree_chunks are only for + free chunks greater than 256 bytes, their size doesn't impose any + constraints on user chunk sizes. Each node looks like: + + chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + | Size of previous chunk | + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + `head:' | Size of chunk, in bytes |P| + mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + | Forward pointer to next chunk of same size | + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + | Back pointer to previous chunk of same size | + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + | Pointer to left child (child[0]) | + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + | Pointer to right child (child[1]) | + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + | Pointer to parent | + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + | bin index of this chunk | + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + | Unused space . + . | +nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + `foot:' | Size of chunk, in bytes | + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + + Each tree holding treenodes is a tree of unique chunk sizes. Chunks + of the same size are arranged in a circularly-linked list, with only + the oldest chunk (the next to be used, in our FIFO ordering) + actually in the tree. (Tree members are distinguished by a non-null + parent pointer.) If a chunk with the same size an an existing node + is inserted, it is linked off the existing node using pointers that + work in the same way as fd/bk pointers of small chunks. + + Each tree contains a power of 2 sized range of chunk sizes (the + smallest is 0x100 <= x < 0x180), which is is divided in half at each + tree level, with the chunks in the smaller half of the range (0x100 + <= x < 0x140 for the top nose) in the left subtree and the larger + half (0x140 <= x < 0x180) in the right subtree. This is, of course, + done by inspecting individual bits. + + Using these rules, each node's left subtree contains all smaller + sizes than its right subtree. However, the node at the root of each + subtree has no particular ordering relationship to either. (The + dividing line between the subtree sizes is based on trie relation.) + If we remove the last chunk of a given size from the interior of the + tree, we need to replace it with a leaf node. The tree ordering + rules permit a node to be replaced by any leaf below it. + + The smallest chunk in a tree (a common operation in a best-fit + allocator) can be found by walking a path to the leftmost leaf in + the tree. Unlike a usual binary tree, where we follow left child + pointers until we reach a null, here we follow the right child + pointer any time the left one is null, until we reach a leaf with + both child pointers null. The smallest chunk in the tree will be + somewhere along that path. + + The worst case number of steps to add, find, or remove a node is + bounded by the number of bits differentiating chunks within + bins. Under current bin calculations, this ranges from 6 up to 21 + (for 32 bit sizes) or up to 53 (for 64 bit sizes). The typical case + is of course much better. +*/ + +struct malloc_tree_chunk { + /* The first four fields must be compatible with malloc_chunk */ + size_t prev_foot; + size_t head; + struct malloc_tree_chunk* fd; + struct malloc_tree_chunk* bk; + + struct malloc_tree_chunk* child[2]; + struct malloc_tree_chunk* parent; + bindex_t index; +}; + +typedef struct malloc_tree_chunk tchunk; +typedef struct malloc_tree_chunk* tchunkptr; +typedef struct malloc_tree_chunk* tbinptr; /* The type of bins of trees */ + +/* A little helper macro for trees */ +#define leftmost_child(t) ((t)->child[0] != 0? (t)->child[0] : (t)->child[1]) + +/* ----------------------------- Segments -------------------------------- */ + +/* + Each malloc space may include non-contiguous segments, held in a + list headed by an embedded malloc_segment record representing the + top-most space. Segments also include flags holding properties of + the space. Large chunks that are directly allocated by mmap are not + included in this list. They are instead independently created and + destroyed without otherwise keeping track of them. + + Segment management mainly comes into play for spaces allocated by + MMAP. Any call to MMAP might or might not return memory that is + adjacent to an existing segment. MORECORE normally contiguously + extends the current space, so this space is almost always adjacent, + which is simpler and faster to deal with. (This is why MORECORE is + used preferentially to MMAP when both are available -- see + sys_alloc.) When allocating using MMAP, we don't use any of the + hinting mechanisms (inconsistently) supported in various + implementations of unix mmap, or distinguish reserving from + committing memory. Instead, we just ask for space, and exploit + contiguity when we get it. It is probably possible to do + better than this on some systems, but no general scheme seems + to be significantly better. + + Management entails a simpler variant of the consolidation scheme + used for chunks to reduce fragmentation -- new adjacent memory is + normally prepended or appended to an existing segment. However, + there are limitations compared to chunk consolidation that mostly + reflect the fact that segment processing is relatively infrequent + (occurring only when getting memory from system) and that we + don't expect to have huge numbers of segments: + + * Segments are not indexed, so traversal requires linear scans. (It + would be possible to index these, but is not worth the extra + overhead and complexity for most programs on most platforms.) + * New segments are only appended to old ones when holding top-most + memory; if they cannot be prepended to others, they are held in + different segments. + + Except for the top-most segment of an mstate, each segment record + is kept at the tail of its segment. Segments are added by pushing + segment records onto the list headed by &mstate.seg for the + containing mstate. + + Segment flags control allocation/merge/deallocation policies: + * If EXTERN_BIT set, then we did not allocate this segment, + and so should not try to deallocate or merge with others. + (This currently holds only for the initial segment passed + into create_mspace_with_base.) + * If USE_MMAP_BIT set, the segment may be merged with + other surrounding mmapped segments and trimmed/de-allocated + using munmap. + * If neither bit is set, then the segment was obtained using + MORECORE so can be merged with surrounding MORECORE'd segments + and deallocated/trimmed using MORECORE with negative arguments. +*/ + +struct malloc_segment { + char* base; /* base address */ + size_t size; /* allocated size */ + struct malloc_segment* next; /* ptr to next segment */ + flag_t sflags; /* mmap and extern flag */ +}; + +#define is_mmapped_segment(S) ((S)->sflags & USE_MMAP_BIT) +#define is_extern_segment(S) ((S)->sflags & EXTERN_BIT) + +typedef struct malloc_segment msegment; +typedef struct malloc_segment* msegmentptr; + +/* ---------------------------- malloc_state ----------------------------- */ + +/* + A malloc_state holds all of the bookkeeping for a space. + The main fields are: + + Top + The topmost chunk of the currently active segment. Its size is + cached in topsize. The actual size of topmost space is + topsize+TOP_FOOT_SIZE, which includes space reserved for adding + fenceposts and segment records if necessary when getting more + space from the system. The size at which to autotrim top is + cached from mparams in trim_check, except that it is disabled if + an autotrim fails. + + Designated victim (dv) + This is the preferred chunk for servicing small requests that + don't have exact fits. It is normally the chunk split off most + recently to service another small request. Its size is cached in + dvsize. The link fields of this chunk are not maintained since it + is not kept in a bin. + + SmallBins + An array of bin headers for free chunks. These bins hold chunks + with sizes less than MIN_LARGE_SIZE bytes. Each bin contains + chunks of all the same size, spaced 8 bytes apart. To simplify + use in double-linked lists, each bin header acts as a malloc_chunk + pointing to the real first node, if it exists (else pointing to + itself). This avoids special-casing for headers. But to avoid + waste, we allocate only the fd/bk pointers of bins, and then use + repositioning tricks to treat these as the fields of a chunk. + + TreeBins + Treebins are pointers to the roots of trees holding a range of + sizes. There are 2 equally spaced treebins for each power of two + from TREE_SHIFT to TREE_SHIFT+16. The last bin holds anything + larger. + + Bin maps + There is one bit map for small bins ("smallmap") and one for + treebins ("treemap). Each bin sets its bit when non-empty, and + clears the bit when empty. Bit operations are then used to avoid + bin-by-bin searching -- nearly all "search" is done without ever + looking at bins that won't be selected. The bit maps + conservatively use 32 bits per map word, even if on 64bit system. + For a good description of some of the bit-based techniques used + here, see Henry S. Warren Jr's book "Hacker's Delight" (and + supplement at http://hackersdelight.org/). Many of these are + intended to reduce the branchiness of paths through malloc etc, as + well as to reduce the number of memory locations read or written. + + Segments + A list of segments headed by an embedded malloc_segment record + representing the initial space. + + Address check support + The least_addr field is the least address ever obtained from + MORECORE or MMAP. Attempted frees and reallocs of any address less + than this are trapped (unless INSECURE is defined). + + Magic tag + A cross-check field that should always hold same value as mparams.magic. + + Flags + Bits recording whether to use MMAP, locks, or contiguous MORECORE + + Statistics + Each space keeps track of current and maximum system memory + obtained via MORECORE or MMAP. + + Trim support + Fields holding the amount of unused topmost memory that should trigger + timming, and a counter to force periodic scanning to release unused + non-topmost segments. + + Locking + If USE_LOCKS is defined, the "mutex" lock is acquired and released + around every public call using this mspace. + + Extension support + A void* pointer and a size_t field that can be used to help implement + extensions to this malloc. +*/ + +/* Bin types, widths and sizes */ +#define NSMALLBINS (32U) +#define NTREEBINS (32U) +#define SMALLBIN_SHIFT (3U) +#define SMALLBIN_WIDTH (SIZE_T_ONE << SMALLBIN_SHIFT) +#define TREEBIN_SHIFT (8U) +#define MIN_LARGE_SIZE (SIZE_T_ONE << TREEBIN_SHIFT) +#define MAX_SMALL_SIZE (MIN_LARGE_SIZE - SIZE_T_ONE) +#define MAX_SMALL_REQUEST (MAX_SMALL_SIZE - CHUNK_ALIGN_MASK - CHUNK_OVERHEAD) + +struct malloc_state { + binmap_t smallmap; + binmap_t treemap; + size_t dvsize; + size_t topsize; + char* least_addr; + mchunkptr dv; + mchunkptr top; + size_t trim_check; + size_t release_checks; + size_t magic; + mchunkptr smallbins[(NSMALLBINS+1)*2]; + tbinptr treebins[NTREEBINS]; + size_t footprint; + size_t max_footprint; + flag_t mflags; + msegment seg; +#if USE_LOCKS + MLOCK_T mutex; /* locate lock among fields that rarely change */ +#endif /* USE_LOCKS */ + void* extp; /* Unused but available for extensions */ + size_t exts; +}; + +typedef struct malloc_state* mstate; + +/* ------------- Global malloc_state and malloc_params ------------------- */ + +#if !ONLY_MSPACES + +/* The global malloc_state used for all non-"mspace" calls */ +static struct malloc_state _gm_; +#define gm (&_gm_) +#define is_global(M) ((M) == &_gm_) + +#endif /* !ONLY_MSPACES */ + +#define is_initialized(M) ((M)->top != 0) + +/* -------------------------- system alloc setup ------------------------- */ + +/* Operations on mflags */ + +#define use_lock(M) ((M)->mflags & USE_LOCK_BIT) +#define enable_lock(M) ((M)->mflags |= USE_LOCK_BIT) +#define disable_lock(M) ((M)->mflags &= ~USE_LOCK_BIT) + +#define use_mmap(M) ((M)->mflags & USE_MMAP_BIT) +#define enable_mmap(M) ((M)->mflags |= USE_MMAP_BIT) +#define disable_mmap(M) ((M)->mflags &= ~USE_MMAP_BIT) + +#define use_noncontiguous(M) ((M)->mflags & USE_NONCONTIGUOUS_BIT) +#define disable_contiguous(M) ((M)->mflags |= USE_NONCONTIGUOUS_BIT) + +#define set_lock(M,L)\ + ((M)->mflags = (L)?\ + ((M)->mflags | USE_LOCK_BIT) :\ + ((M)->mflags & ~USE_LOCK_BIT)) + +/* page-align a size */ +#define page_align(S)\ + (((S) + (mparams.page_size - SIZE_T_ONE)) & ~(mparams.page_size - SIZE_T_ONE)) + +/* granularity-align a size */ +#define granularity_align(S)\ + (((S) + (mparams.granularity - SIZE_T_ONE))\ + & ~(mparams.granularity - SIZE_T_ONE)) + + +/* For mmap, use granularity alignment on windows, else page-align */ +#ifdef WIN32 +#define mmap_align(S) granularity_align(S) +#else +#define mmap_align(S) page_align(S) +#endif + +/* For sys_alloc, enough padding to ensure can malloc request on success */ +#define SYS_ALLOC_PADDING (TOP_FOOT_SIZE + MALLOC_ALIGNMENT) + +#define is_page_aligned(S)\ + (((size_t)(S) & (mparams.page_size - SIZE_T_ONE)) == 0) +#define is_granularity_aligned(S)\ + (((size_t)(S) & (mparams.granularity - SIZE_T_ONE)) == 0) + +/* True if segment S holds address A */ +#define segment_holds(S, A)\ + ((char*)(A) >= S->base && (char*)(A) < S->base + S->size) + +/* Return segment holding given address */ +static msegmentptr segment_holding(mstate m, char* addr) { + msegmentptr sp = &m->seg; + for (;;) { + if (addr >= sp->base && addr < sp->base + sp->size) + return sp; + if ((sp = sp->next) == 0) + return 0; + } +} + +/* Return true if segment contains a segment link */ +static int has_segment_link(mstate m, msegmentptr ss) { + msegmentptr sp = &m->seg; + for (;;) { + if ((char*)sp >= ss->base && (char*)sp < ss->base + ss->size) + return 1; + if ((sp = sp->next) == 0) + return 0; + } +} + +#ifndef MORECORE_CANNOT_TRIM +#define should_trim(M,s) ((s) > (M)->trim_check) +#else /* MORECORE_CANNOT_TRIM */ +#define should_trim(M,s) (0) +#endif /* MORECORE_CANNOT_TRIM */ + +/* + TOP_FOOT_SIZE is padding at the end of a segment, including space + that may be needed to place segment records and fenceposts when new + noncontiguous segments are added. +*/ +#define TOP_FOOT_SIZE\ + (align_offset(chunk2mem(0))+pad_request(sizeof(struct malloc_segment))+MIN_CHUNK_SIZE) + + +/* ------------------------------- Hooks -------------------------------- */ + +/* + PREACTION should be defined to return 0 on success, and nonzero on + failure. If you are not using locking, you can redefine these to do + anything you like. +*/ + +#if USE_LOCKS + +#define PREACTION(M) ((use_lock(M))? ACQUIRE_LOCK(&(M)->mutex) : 0) +#define POSTACTION(M) { if (use_lock(M)) RELEASE_LOCK(&(M)->mutex); } +#else /* USE_LOCKS */ + +#ifndef PREACTION +#define PREACTION(M) (0) +#endif /* PREACTION */ + +#ifndef POSTACTION +#define POSTACTION(M) +#endif /* POSTACTION */ + +#endif /* USE_LOCKS */ + +/* + CORRUPTION_ERROR_ACTION is triggered upon detected bad addresses. + USAGE_ERROR_ACTION is triggered on detected bad frees and + reallocs. The argument p is an address that might have triggered the + fault. It is ignored by the two predefined actions, but might be + useful in custom actions that try to help diagnose errors. +*/ + +#if PROCEED_ON_ERROR + +/* A count of the number of corruption errors causing resets */ +int malloc_corruption_error_count; + +/* default corruption action */ +static void reset_on_error(mstate m); + +#define CORRUPTION_ERROR_ACTION(m) reset_on_error(m) +#define USAGE_ERROR_ACTION(m, p) + +#else /* PROCEED_ON_ERROR */ + +#ifndef CORRUPTION_ERROR_ACTION +#define CORRUPTION_ERROR_ACTION(m) ABORT +#endif /* CORRUPTION_ERROR_ACTION */ + +#ifndef USAGE_ERROR_ACTION +#define USAGE_ERROR_ACTION(m,p) ABORT +#endif /* USAGE_ERROR_ACTION */ + +#endif /* PROCEED_ON_ERROR */ + +/* -------------------------- Debugging setup ---------------------------- */ + +#if ! DEBUG + +#define check_free_chunk(M,P) +#define check_inuse_chunk(M,P) +#define check_malloced_chunk(M,P,N) +#define check_mmapped_chunk(M,P) +#define check_malloc_state(M) +#define check_top_chunk(M,P) + +#else /* DEBUG */ +#define check_free_chunk(M,P) do_check_free_chunk(M,P) +#define check_inuse_chunk(M,P) do_check_inuse_chunk(M,P) +#define check_top_chunk(M,P) do_check_top_chunk(M,P) +#define check_malloced_chunk(M,P,N) do_check_malloced_chunk(M,P,N) +#define check_mmapped_chunk(M,P) do_check_mmapped_chunk(M,P) +#define check_malloc_state(M) do_check_malloc_state(M) + +static void do_check_any_chunk(mstate m, mchunkptr p); +static void do_check_top_chunk(mstate m, mchunkptr p); +static void do_check_mmapped_chunk(mstate m, mchunkptr p); +static void do_check_inuse_chunk(mstate m, mchunkptr p); +static void do_check_free_chunk(mstate m, mchunkptr p); +static void do_check_malloced_chunk(mstate m, void* mem, size_t s); +static void do_check_tree(mstate m, tchunkptr t); +static void do_check_treebin(mstate m, bindex_t i); +static void do_check_smallbin(mstate m, bindex_t i); +static void do_check_malloc_state(mstate m); +static int bin_find(mstate m, mchunkptr x); +static size_t traverse_and_check(mstate m); +#endif /* DEBUG */ + +/* ---------------------------- Indexing Bins ---------------------------- */ + +#define is_small(s) (((s) >> SMALLBIN_SHIFT) < NSMALLBINS) +#define small_index(s) (bindex_t)((s) >> SMALLBIN_SHIFT) +#define small_index2size(i) ((i) << SMALLBIN_SHIFT) +#define MIN_SMALL_INDEX (small_index(MIN_CHUNK_SIZE)) + +/* addressing by index. See above about smallbin repositioning */ +#define smallbin_at(M, i) ((sbinptr)((char*)&((M)->smallbins[(i)<<1]))) +#define treebin_at(M,i) (&((M)->treebins[i])) + +/* assign tree index for size S to variable I. Use x86 asm if possible */ +#if defined(__GNUC__) && (defined(__i386__) || defined(__x86_64__)) +#define compute_tree_index(S, I)\ +{\ + unsigned int X = S >> TREEBIN_SHIFT;\ + if (X == 0)\ + I = 0;\ + else if (X > 0xFFFF)\ + I = NTREEBINS-1;\ + else {\ + unsigned int K;\ + __asm__("bsrl\t%1, %0\n\t" : "=r" (K) : "g" (X));\ + I = (bindex_t)((K << 1) + ((S >> (K + (TREEBIN_SHIFT-1)) & 1)));\ + }\ +} + +#elif defined (__INTEL_COMPILER) +#define compute_tree_index(S, I)\ +{\ + size_t X = S >> TREEBIN_SHIFT;\ + if (X == 0)\ + I = 0;\ + else if (X > 0xFFFF)\ + I = NTREEBINS-1;\ + else {\ + unsigned int K = _bit_scan_reverse (X); \ + I = (bindex_t)((K << 1) + ((S >> (K + (TREEBIN_SHIFT-1)) & 1)));\ + }\ +} + +#elif defined(_MSC_VER) && _MSC_VER>=1300 +#define compute_tree_index(S, I)\ +{\ + size_t X = S >> TREEBIN_SHIFT;\ + if (X == 0)\ + I = 0;\ + else if (X > 0xFFFF)\ + I = NTREEBINS-1;\ + else {\ + unsigned int K;\ + _BitScanReverse((DWORD *) &K, (DWORD) X);\ + I = (bindex_t)((K << 1) + ((S >> (K + (TREEBIN_SHIFT-1)) & 1)));\ + }\ +} + +#else /* GNUC */ +#define compute_tree_index(S, I)\ +{\ + size_t X = S >> TREEBIN_SHIFT;\ + if (X == 0)\ + I = 0;\ + else if (X > 0xFFFF)\ + I = NTREEBINS-1;\ + else {\ + unsigned int Y = (unsigned int)X;\ + unsigned int N = ((Y - 0x100) >> 16) & 8;\ + unsigned int K = (((Y <<= N) - 0x1000) >> 16) & 4;\ + N += K;\ + N += K = (((Y <<= K) - 0x4000) >> 16) & 2;\ + K = 14 - N + ((Y <<= K) >> 15);\ + I = (K << 1) + ((S >> (K + (TREEBIN_SHIFT-1)) & 1));\ + }\ +} +#endif /* GNUC */ + +/* Bit representing maximum resolved size in a treebin at i */ +#define bit_for_tree_index(i) \ + (i == NTREEBINS-1)? (SIZE_T_BITSIZE-1) : (((i) >> 1) + TREEBIN_SHIFT - 2) + +/* Shift placing maximum resolved bit in a treebin at i as sign bit */ +#define leftshift_for_tree_index(i) \ + ((i == NTREEBINS-1)? 0 : \ + ((SIZE_T_BITSIZE-SIZE_T_ONE) - (((i) >> 1) + TREEBIN_SHIFT - 2))) + +/* The size of the smallest chunk held in bin with index i */ +#define minsize_for_tree_index(i) \ + ((SIZE_T_ONE << (((i) >> 1) + TREEBIN_SHIFT)) | \ + (((size_t)((i) & SIZE_T_ONE)) << (((i) >> 1) + TREEBIN_SHIFT - 1))) + + +/* ------------------------ Operations on bin maps ----------------------- */ + +/* bit corresponding to given index */ +#define idx2bit(i) ((binmap_t)(1) << (i)) + +/* Mark/Clear bits with given index */ +#define mark_smallmap(M,i) ((M)->smallmap |= idx2bit(i)) +#define clear_smallmap(M,i) ((M)->smallmap &= ~idx2bit(i)) +#define smallmap_is_marked(M,i) ((M)->smallmap & idx2bit(i)) + +#define mark_treemap(M,i) ((M)->treemap |= idx2bit(i)) +#define clear_treemap(M,i) ((M)->treemap &= ~idx2bit(i)) +#define treemap_is_marked(M,i) ((M)->treemap & idx2bit(i)) + +/* isolate the least set bit of a bitmap */ +#define least_bit(x) ((x) & -(x)) + +/* mask with all bits to left of least bit of x on */ +#define left_bits(x) ((x<<1) | -(x<<1)) + +/* mask with all bits to left of or equal to least bit of x on */ +#define same_or_left_bits(x) ((x) | -(x)) + +/* index corresponding to given bit. Use x86 asm if possible */ + +#if defined(__GNUC__) && (defined(__i386__) || defined(__x86_64__)) +#define compute_bit2idx(X, I)\ +{\ + unsigned int J;\ + __asm__("bsfl\t%1, %0\n\t" : "=r" (J) : "g" (X));\ + I = (bindex_t)J;\ +} + +#elif defined (__INTEL_COMPILER) +#define compute_bit2idx(X, I)\ +{\ + unsigned int J;\ + J = _bit_scan_forward (X); \ + I = (bindex_t)J;\ +} + +#elif defined(_MSC_VER) && _MSC_VER>=1300 +#define compute_bit2idx(X, I)\ +{\ + unsigned int J;\ + _BitScanForward((DWORD *) &J, X);\ + I = (bindex_t)J;\ +} + +#elif USE_BUILTIN_FFS +#define compute_bit2idx(X, I) I = ffs(X)-1 + +#else +#define compute_bit2idx(X, I)\ +{\ + unsigned int Y = X - 1;\ + unsigned int K = Y >> (16-4) & 16;\ + unsigned int N = K; Y >>= K;\ + N += K = Y >> (8-3) & 8; Y >>= K;\ + N += K = Y >> (4-2) & 4; Y >>= K;\ + N += K = Y >> (2-1) & 2; Y >>= K;\ + N += K = Y >> (1-0) & 1; Y >>= K;\ + I = (bindex_t)(N + Y);\ +} +#endif /* GNUC */ + + +/* ----------------------- Runtime Check Support ------------------------- */ + +/* + For security, the main invariant is that malloc/free/etc never + writes to a static address other than malloc_state, unless static + malloc_state itself has been corrupted, which cannot occur via + malloc (because of these checks). In essence this means that we + believe all pointers, sizes, maps etc held in malloc_state, but + check all of those linked or offsetted from other embedded data + structures. These checks are interspersed with main code in a way + that tends to minimize their run-time cost. + + When FOOTERS is defined, in addition to range checking, we also + verify footer fields of inuse chunks, which can be used guarantee + that the mstate controlling malloc/free is intact. This is a + streamlined version of the approach described by William Robertson + et al in "Run-time Detection of Heap-based Overflows" LISA'03 + http://www.usenix.org/events/lisa03/tech/robertson.html The footer + of an inuse chunk holds the xor of its mstate and a random seed, + that is checked upon calls to free() and realloc(). This is + (probablistically) unguessable from outside the program, but can be + computed by any code successfully malloc'ing any chunk, so does not + itself provide protection against code that has already broken + security through some other means. Unlike Robertson et al, we + always dynamically check addresses of all offset chunks (previous, + next, etc). This turns out to be cheaper than relying on hashes. +*/ + +#if !INSECURE +/* Check if address a is at least as high as any from MORECORE or MMAP */ +#define ok_address(M, a) ((char*)(a) >= (M)->least_addr) +/* Check if address of next chunk n is higher than base chunk p */ +#define ok_next(p, n) ((char*)(p) < (char*)(n)) +/* Check if p has inuse status */ +#define ok_inuse(p) is_inuse(p) +/* Check if p has its pinuse bit on */ +#define ok_pinuse(p) pinuse(p) + +#else /* !INSECURE */ +#define ok_address(M, a) (1) +#define ok_next(b, n) (1) +#define ok_inuse(p) (1) +#define ok_pinuse(p) (1) +#endif /* !INSECURE */ + +#if (FOOTERS && !INSECURE) +/* Check if (alleged) mstate m has expected magic field */ +#define ok_magic(M) ((M)->magic == mparams.magic) +#else /* (FOOTERS && !INSECURE) */ +#define ok_magic(M) (1) +#endif /* (FOOTERS && !INSECURE) */ + + +/* In gcc, use __builtin_expect to minimize impact of checks */ +#if !INSECURE +#if defined(__GNUC__) && __GNUC__ >= 3 +#define RTCHECK(e) __builtin_expect(e, 1) +#else /* GNUC */ +#define RTCHECK(e) (e) +#endif /* GNUC */ +#else /* !INSECURE */ +#define RTCHECK(e) (1) +#endif /* !INSECURE */ + +/* macros to set up inuse chunks with or without footers */ + +#if !FOOTERS + +#define mark_inuse_foot(M,p,s) + +/* Macros for setting head/foot of non-mmapped chunks */ + +/* Set cinuse bit and pinuse bit of next chunk */ +#define set_inuse(M,p,s)\ + ((p)->head = (((p)->head & PINUSE_BIT)|s|CINUSE_BIT),\ + ((mchunkptr)(((char*)(p)) + (s)))->head |= PINUSE_BIT) + +/* Set cinuse and pinuse of this chunk and pinuse of next chunk */ +#define set_inuse_and_pinuse(M,p,s)\ + ((p)->head = (s|PINUSE_BIT|CINUSE_BIT),\ + ((mchunkptr)(((char*)(p)) + (s)))->head |= PINUSE_BIT) + +/* Set size, cinuse and pinuse bit of this chunk */ +#define set_size_and_pinuse_of_inuse_chunk(M, p, s)\ + ((p)->head = (s|PINUSE_BIT|CINUSE_BIT)) + +#else /* FOOTERS */ + +/* Set foot of inuse chunk to be xor of mstate and seed */ +#define mark_inuse_foot(M,p,s)\ + (((mchunkptr)((char*)(p) + (s)))->prev_foot = ((size_t)(M) ^ mparams.magic)) + +#define get_mstate_for(p)\ + ((mstate)(((mchunkptr)((char*)(p) +\ + (chunksize(p))))->prev_foot ^ mparams.magic)) + +#define set_inuse(M,p,s)\ + ((p)->head = (((p)->head & PINUSE_BIT)|s|CINUSE_BIT),\ + (((mchunkptr)(((char*)(p)) + (s)))->head |= PINUSE_BIT), \ + mark_inuse_foot(M,p,s)) + +#define set_inuse_and_pinuse(M,p,s)\ + ((p)->head = (s|PINUSE_BIT|CINUSE_BIT),\ + (((mchunkptr)(((char*)(p)) + (s)))->head |= PINUSE_BIT),\ + mark_inuse_foot(M,p,s)) + +#define set_size_and_pinuse_of_inuse_chunk(M, p, s)\ + ((p)->head = (s|PINUSE_BIT|CINUSE_BIT),\ + mark_inuse_foot(M, p, s)) + +#endif /* !FOOTERS */ + +/* ---------------------------- setting mparams -------------------------- */ + +#ifdef ENABLE_LARGE_PAGES +typedef size_t (WINAPI *GetLargePageMinimum_t)(void); +#endif + +/* Initialize mparams */ +static int init_mparams(void) { +#ifdef NEED_GLOBAL_LOCK_INIT + if (malloc_global_mutex_status <= 0) + init_malloc_global_mutex(); +#endif + + ACQUIRE_MALLOC_GLOBAL_LOCK(); + if (mparams.magic == 0) { + size_t magic; + size_t psize; + size_t gsize; + +#ifndef WIN32 + psize = malloc_getpagesize; + gsize = ((DEFAULT_GRANULARITY != 0)? DEFAULT_GRANULARITY : psize); +#else /* WIN32 */ + { + SYSTEM_INFO system_info; + GetSystemInfo(&system_info); + psize = system_info.dwPageSize; + gsize = ((DEFAULT_GRANULARITY != 0)? + DEFAULT_GRANULARITY : system_info.dwAllocationGranularity); +#ifdef ENABLE_LARGE_PAGES + { + GetLargePageMinimum_t GetLargePageMinimum_ = (GetLargePageMinimum_t) GetProcAddress(GetModuleHandle(__T("kernel32.dll")), "GetLargePageMinimum"); + if(GetLargePageMinimum_) { + size_t largepagesize = GetLargePageMinimum_(); + if(largepagesize) { + psize = largepagesize; + gsize = ((DEFAULT_GRANULARITY != 0)? + DEFAULT_GRANULARITY : largepagesize); + if(gsize < largepagesize) gsize = largepagesize; + } + } + } +#endif + } +#endif /* WIN32 */ + + /* Sanity-check configuration: + size_t must be unsigned and as wide as pointer type. + ints must be at least 4 bytes. + alignment must be at least 8. + Alignment, min chunk size, and page size must all be powers of 2. + */ + if ((sizeof(size_t) != sizeof(char*)) || + (MAX_SIZE_T < MIN_CHUNK_SIZE) || + (sizeof(int) < 4) || + (MALLOC_ALIGNMENT < (size_t)8U) || + ((MALLOC_ALIGNMENT & (MALLOC_ALIGNMENT-SIZE_T_ONE)) != 0) || + ((MCHUNK_SIZE & (MCHUNK_SIZE-SIZE_T_ONE)) != 0) || + ((gsize & (gsize-SIZE_T_ONE)) != 0) || + ((psize & (psize-SIZE_T_ONE)) != 0)) + ABORT; + + mparams.granularity = gsize; + mparams.page_size = psize; + mparams.mmap_threshold = DEFAULT_MMAP_THRESHOLD; + mparams.trim_threshold = DEFAULT_TRIM_THRESHOLD; +#if MORECORE_CONTIGUOUS + mparams.default_mflags = USE_LOCK_BIT|USE_MMAP_BIT; +#else /* MORECORE_CONTIGUOUS */ + mparams.default_mflags = USE_LOCK_BIT|USE_MMAP_BIT|USE_NONCONTIGUOUS_BIT; +#endif /* MORECORE_CONTIGUOUS */ + +#if !ONLY_MSPACES + /* Set up lock for main malloc area */ + gm->mflags = mparams.default_mflags; + INITIAL_LOCK(&gm->mutex); +#endif + + { +#if USE_DEV_RANDOM + int fd; + unsigned char buf[sizeof(size_t)]; + /* Try to use /dev/urandom, else fall back on using time */ + if ((fd = open("/dev/urandom", O_RDONLY)) >= 0 && + read(fd, buf, sizeof(buf)) == sizeof(buf)) { + magic = *((size_t *) buf); + close(fd); + } + else +#endif /* USE_DEV_RANDOM */ +#ifdef WIN32 + magic = (size_t)(GetTickCount() ^ (size_t)0x55555555U); +#else + magic = (size_t)(time(0) ^ (size_t)0x55555555U); +#endif + magic |= (size_t)8U; /* ensure nonzero */ + magic &= ~(size_t)7U; /* improve chances of fault for bad values */ + mparams.magic = magic; + } + } + + RELEASE_MALLOC_GLOBAL_LOCK(); + return 1; +} + +/* support for mallopt */ +static int change_mparam(int param_number, int value) { + size_t val; + ensure_initialization(); + val = (value == -1)? MAX_SIZE_T : (size_t)value; + switch(param_number) { + case M_TRIM_THRESHOLD: + mparams.trim_threshold = val; + return 1; + case M_GRANULARITY: + if (val >= mparams.page_size && ((val & (val-1)) == 0)) { + mparams.granularity = val; + return 1; + } + else + return 0; + case M_MMAP_THRESHOLD: + mparams.mmap_threshold = val; + return 1; + default: + return 0; + } +} + +#if DEBUG +/* ------------------------- Debugging Support --------------------------- */ + +/* Check properties of any chunk, whether free, inuse, mmapped etc */ +static void do_check_any_chunk(mstate m, mchunkptr p) { + assert((is_aligned(chunk2mem(p))) || (p->head == FENCEPOST_HEAD)); + assert(ok_address(m, p)); +} + +/* Check properties of top chunk */ +static void do_check_top_chunk(mstate m, mchunkptr p) { + msegmentptr sp = segment_holding(m, (char*)p); + size_t sz = p->head & ~INUSE_BITS; /* third-lowest bit can be set! */ + assert(sp != 0); + assert((is_aligned(chunk2mem(p))) || (p->head == FENCEPOST_HEAD)); + assert(ok_address(m, p)); + assert(sz == m->topsize); + assert(sz > 0); + assert(sz == ((sp->base + sp->size) - (char*)p) - TOP_FOOT_SIZE); + assert(pinuse(p)); + assert(!pinuse(chunk_plus_offset(p, sz))); +} + +/* Check properties of (inuse) mmapped chunks */ +static void do_check_mmapped_chunk(mstate m, mchunkptr p) { + size_t sz = chunksize(p); + size_t len = (sz + (p->prev_foot) + MMAP_FOOT_PAD); + assert(is_mmapped(p)); + assert(use_mmap(m)); + assert((is_aligned(chunk2mem(p))) || (p->head == FENCEPOST_HEAD)); + assert(ok_address(m, p)); + assert(!is_small(sz)); + assert((len & (mparams.page_size-SIZE_T_ONE)) == 0); + assert(chunk_plus_offset(p, sz)->head == FENCEPOST_HEAD); + assert(chunk_plus_offset(p, sz+SIZE_T_SIZE)->head == 0); +} + +/* Check properties of inuse chunks */ +static void do_check_inuse_chunk(mstate m, mchunkptr p) { + do_check_any_chunk(m, p); + assert(is_inuse(p)); + assert(next_pinuse(p)); + /* If not pinuse and not mmapped, previous chunk has OK offset */ + assert(is_mmapped(p) || pinuse(p) || next_chunk(prev_chunk(p)) == p); + if (is_mmapped(p)) + do_check_mmapped_chunk(m, p); +} + +/* Check properties of free chunks */ +static void do_check_free_chunk(mstate m, mchunkptr p) { + size_t sz = chunksize(p); + mchunkptr next = chunk_plus_offset(p, sz); + do_check_any_chunk(m, p); + assert(!is_inuse(p)); + assert(!next_pinuse(p)); + assert (!is_mmapped(p)); + if (p != m->dv && p != m->top) { + if (sz >= MIN_CHUNK_SIZE) { + assert((sz & CHUNK_ALIGN_MASK) == 0); + assert(is_aligned(chunk2mem(p))); + assert(next->prev_foot == sz); + assert(pinuse(p)); + assert (next == m->top || is_inuse(next)); + assert(p->fd->bk == p); + assert(p->bk->fd == p); + } + else /* markers are always of size SIZE_T_SIZE */ + assert(sz == SIZE_T_SIZE); + } +} + +/* Check properties of malloced chunks at the point they are malloced */ +static void do_check_malloced_chunk(mstate m, void* mem, size_t s) { + if (mem != 0) { + mchunkptr p = mem2chunk(mem); + size_t sz = p->head & ~INUSE_BITS; + do_check_inuse_chunk(m, p); + assert((sz & CHUNK_ALIGN_MASK) == 0); + assert(sz >= MIN_CHUNK_SIZE); + assert(sz >= s); + /* unless mmapped, size is less than MIN_CHUNK_SIZE more than request */ + assert(is_mmapped(p) || sz < (s + MIN_CHUNK_SIZE)); + } +} + +/* Check a tree and its subtrees. */ +static void do_check_tree(mstate m, tchunkptr t) { + tchunkptr head = 0; + tchunkptr u = t; + bindex_t tindex = t->index; + size_t tsize = chunksize(t); + bindex_t idx; + compute_tree_index(tsize, idx); + assert(tindex == idx); + assert(tsize >= MIN_LARGE_SIZE); + assert(tsize >= minsize_for_tree_index(idx)); + assert((idx == NTREEBINS-1) || (tsize < minsize_for_tree_index((idx+1)))); + + do { /* traverse through chain of same-sized nodes */ + do_check_any_chunk(m, ((mchunkptr)u)); + assert(u->index == tindex); + assert(chunksize(u) == tsize); + assert(!is_inuse(u)); + assert(!next_pinuse(u)); + assert(u->fd->bk == u); + assert(u->bk->fd == u); + if (u->parent == 0) { + assert(u->child[0] == 0); + assert(u->child[1] == 0); + } + else { + assert(head == 0); /* only one node on chain has parent */ + head = u; + assert(u->parent != u); + assert (u->parent->child[0] == u || + u->parent->child[1] == u || + *((tbinptr*)(u->parent)) == u); + if (u->child[0] != 0) { + assert(u->child[0]->parent == u); + assert(u->child[0] != u); + do_check_tree(m, u->child[0]); + } + if (u->child[1] != 0) { + assert(u->child[1]->parent == u); + assert(u->child[1] != u); + do_check_tree(m, u->child[1]); + } + if (u->child[0] != 0 && u->child[1] != 0) { + assert(chunksize(u->child[0]) < chunksize(u->child[1])); + } + } + u = u->fd; + } while (u != t); + assert(head != 0); +} + +/* Check all the chunks in a treebin. */ +static void do_check_treebin(mstate m, bindex_t i) { + tbinptr* tb = treebin_at(m, i); + tchunkptr t = *tb; + int empty = (m->treemap & (1U << i)) == 0; + if (t == 0) + assert(empty); + if (!empty) + do_check_tree(m, t); +} + +/* Check all the chunks in a smallbin. */ +static void do_check_smallbin(mstate m, bindex_t i) { + sbinptr b = smallbin_at(m, i); + mchunkptr p = b->bk; + unsigned int empty = (m->smallmap & (1U << i)) == 0; + if (p == b) + assert(empty); + if (!empty) { + for (; p != b; p = p->bk) { + size_t size = chunksize(p); + mchunkptr q; + /* each chunk claims to be free */ + do_check_free_chunk(m, p); + /* chunk belongs in bin */ + assert(small_index(size) == i); + assert(p->bk == b || chunksize(p->bk) == chunksize(p)); + /* chunk is followed by an inuse chunk */ + q = next_chunk(p); + if (q->head != FENCEPOST_HEAD) + do_check_inuse_chunk(m, q); + } + } +} + +/* Find x in a bin. Used in other check functions. */ +static int bin_find(mstate m, mchunkptr x) { + size_t size = chunksize(x); + if (is_small(size)) { + bindex_t sidx = small_index(size); + sbinptr b = smallbin_at(m, sidx); + if (smallmap_is_marked(m, sidx)) { + mchunkptr p = b; + do { + if (p == x) + return 1; + } while ((p = p->fd) != b); + } + } + else { + bindex_t tidx; + compute_tree_index(size, tidx); + if (treemap_is_marked(m, tidx)) { + tchunkptr t = *treebin_at(m, tidx); + size_t sizebits = size << leftshift_for_tree_index(tidx); + while (t != 0 && chunksize(t) != size) { + t = t->child[(sizebits >> (SIZE_T_BITSIZE-SIZE_T_ONE)) & 1]; + sizebits <<= 1; + } + if (t != 0) { + tchunkptr u = t; + do { + if (u == (tchunkptr)x) + return 1; + } while ((u = u->fd) != t); + } + } + } + return 0; +} + +/* Traverse each chunk and check it; return total */ +static size_t traverse_and_check(mstate m) { + size_t sum = 0; + if (is_initialized(m)) { + msegmentptr s = &m->seg; + sum += m->topsize + TOP_FOOT_SIZE; + while (s != 0) { + mchunkptr q = align_as_chunk(s->base); + mchunkptr lastq = 0; + assert(pinuse(q)); + while (segment_holds(s, q) && + q != m->top && q->head != FENCEPOST_HEAD) { + sum += chunksize(q); + if (is_inuse(q)) { + assert(!bin_find(m, q)); + do_check_inuse_chunk(m, q); + } + else { + assert(q == m->dv || bin_find(m, q)); + assert(lastq == 0 || is_inuse(lastq)); /* Not 2 consecutive free */ + do_check_free_chunk(m, q); + } + lastq = q; + q = next_chunk(q); + } + s = s->next; + } + } + return sum; +} + +/* Check all properties of malloc_state. */ +static void do_check_malloc_state(mstate m) { + bindex_t i; + size_t total; + /* check bins */ + for (i = 0; i < NSMALLBINS; ++i) + do_check_smallbin(m, i); + for (i = 0; i < NTREEBINS; ++i) + do_check_treebin(m, i); + + if (m->dvsize != 0) { /* check dv chunk */ + do_check_any_chunk(m, m->dv); + assert(m->dvsize == chunksize(m->dv)); + assert(m->dvsize >= MIN_CHUNK_SIZE); + assert(bin_find(m, m->dv) == 0); + } + + if (m->top != 0) { /* check top chunk */ + do_check_top_chunk(m, m->top); + /*assert(m->topsize == chunksize(m->top)); redundant */ + assert(m->topsize > 0); + assert(bin_find(m, m->top) == 0); + } + + total = traverse_and_check(m); + assert(total <= m->footprint); + assert(m->footprint <= m->max_footprint); +} +#endif /* DEBUG */ + +/* ----------------------------- statistics ------------------------------ */ + +#if !NO_MALLINFO +static struct mallinfo internal_mallinfo(mstate m) { + struct mallinfo nm = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; + ensure_initialization(); + if (!PREACTION(m)) { + check_malloc_state(m); + if (is_initialized(m)) { + size_t nfree = SIZE_T_ONE; /* top always free */ + size_t mfree = m->topsize + TOP_FOOT_SIZE; + size_t sum = mfree; + msegmentptr s = &m->seg; + while (s != 0) { + mchunkptr q = align_as_chunk(s->base); + while (segment_holds(s, q) && + q != m->top && q->head != FENCEPOST_HEAD) { + size_t sz = chunksize(q); + sum += sz; + if (!is_inuse(q)) { + mfree += sz; + ++nfree; + } + q = next_chunk(q); + } + s = s->next; + } + + nm.arena = sum; + nm.ordblks = nfree; + nm.hblkhd = m->footprint - sum; + nm.usmblks = m->max_footprint; + nm.uordblks = m->footprint - mfree; + nm.fordblks = mfree; + nm.keepcost = m->topsize; + } + + POSTACTION(m); + } + return nm; +} +#endif /* !NO_MALLINFO */ + +static void internal_malloc_stats(mstate m) { + ensure_initialization(); + if (!PREACTION(m)) { + size_t maxfp = 0; + size_t fp = 0; + size_t used = 0; + check_malloc_state(m); + if (is_initialized(m)) { + msegmentptr s = &m->seg; + maxfp = m->max_footprint; + fp = m->footprint; + used = fp - (m->topsize + TOP_FOOT_SIZE); + + while (s != 0) { + mchunkptr q = align_as_chunk(s->base); + while (segment_holds(s, q) && + q != m->top && q->head != FENCEPOST_HEAD) { + if (!is_inuse(q)) + used -= chunksize(q); + q = next_chunk(q); + } + s = s->next; + } + } + + fprintf(stderr, "max system bytes = %10lu\n", (unsigned long)(maxfp)); + fprintf(stderr, "system bytes = %10lu\n", (unsigned long)(fp)); + fprintf(stderr, "in use bytes = %10lu\n", (unsigned long)(used)); + + POSTACTION(m); + } +} + +/* ----------------------- Operations on smallbins ----------------------- */ + +/* + Various forms of linking and unlinking are defined as macros. Even + the ones for trees, which are very long but have very short typical + paths. This is ugly but reduces reliance on inlining support of + compilers. +*/ + +/* Link a free chunk into a smallbin */ +#define insert_small_chunk(M, P, S) {\ + bindex_t I = small_index(S);\ + mchunkptr B = smallbin_at(M, I);\ + mchunkptr F = B;\ + assert(S >= MIN_CHUNK_SIZE);\ + if (!smallmap_is_marked(M, I))\ + mark_smallmap(M, I);\ + else if (RTCHECK(ok_address(M, B->fd)))\ + F = B->fd;\ + else {\ + CORRUPTION_ERROR_ACTION(M);\ + }\ + B->fd = P;\ + F->bk = P;\ + P->fd = F;\ + P->bk = B;\ +} + +/* Unlink a chunk from a smallbin */ +#define unlink_small_chunk(M, P, S) {\ + mchunkptr F = P->fd;\ + mchunkptr B = P->bk;\ + bindex_t I = small_index(S);\ + assert(P != B);\ + assert(P != F);\ + assert(chunksize(P) == small_index2size(I));\ + if (F == B)\ + clear_smallmap(M, I);\ + else if (RTCHECK((F == smallbin_at(M,I) || ok_address(M, F)) &&\ + (B == smallbin_at(M,I) || ok_address(M, B)))) {\ + F->bk = B;\ + B->fd = F;\ + }\ + else {\ + CORRUPTION_ERROR_ACTION(M);\ + }\ +} + +/* Unlink the first chunk from a smallbin */ +#define unlink_first_small_chunk(M, B, P, I) {\ + mchunkptr F = P->fd;\ + assert(P != B);\ + assert(P != F);\ + assert(chunksize(P) == small_index2size(I));\ + if (B == F)\ + clear_smallmap(M, I);\ + else if (RTCHECK(ok_address(M, F))) {\ + B->fd = F;\ + F->bk = B;\ + }\ + else {\ + CORRUPTION_ERROR_ACTION(M);\ + }\ +} + + + +/* Replace dv node, binning the old one */ +/* Used only when dvsize known to be small */ +#define replace_dv(M, P, S) {\ + size_t DVS = M->dvsize;\ + if (DVS != 0) {\ + mchunkptr DV = M->dv;\ + assert(is_small(DVS));\ + insert_small_chunk(M, DV, DVS);\ + }\ + M->dvsize = S;\ + M->dv = P;\ +} + +/* ------------------------- Operations on trees ------------------------- */ + +/* Insert chunk into tree */ +#define insert_large_chunk(M, X, S) {\ + tbinptr* H;\ + bindex_t I;\ + compute_tree_index(S, I);\ + H = treebin_at(M, I);\ + X->index = I;\ + X->child[0] = X->child[1] = 0;\ + if (!treemap_is_marked(M, I)) {\ + mark_treemap(M, I);\ + *H = X;\ + X->parent = (tchunkptr)H;\ + X->fd = X->bk = X;\ + }\ + else {\ + tchunkptr T = *H;\ + size_t K = S << leftshift_for_tree_index(I);\ + for (;;) {\ + if (chunksize(T) != S) {\ + tchunkptr* C = &(T->child[(K >> (SIZE_T_BITSIZE-SIZE_T_ONE)) & 1]);\ + K <<= 1;\ + if (*C != 0)\ + T = *C;\ + else if (RTCHECK(ok_address(M, C))) {\ + *C = X;\ + X->parent = T;\ + X->fd = X->bk = X;\ + break;\ + }\ + else {\ + CORRUPTION_ERROR_ACTION(M);\ + break;\ + }\ + }\ + else {\ + tchunkptr F = T->fd;\ + if (RTCHECK(ok_address(M, T) && ok_address(M, F))) {\ + T->fd = F->bk = X;\ + X->fd = F;\ + X->bk = T;\ + X->parent = 0;\ + break;\ + }\ + else {\ + CORRUPTION_ERROR_ACTION(M);\ + break;\ + }\ + }\ + }\ + }\ +} + +/* + Unlink steps: + + 1. If x is a chained node, unlink it from its same-sized fd/bk links + and choose its bk node as its replacement. + 2. If x was the last node of its size, but not a leaf node, it must + be replaced with a leaf node (not merely one with an open left or + right), to make sure that lefts and rights of descendents + correspond properly to bit masks. We use the rightmost descendent + of x. We could use any other leaf, but this is easy to locate and + tends to counteract removal of leftmosts elsewhere, and so keeps + paths shorter than minimally guaranteed. This doesn't loop much + because on average a node in a tree is near the bottom. + 3. If x is the base of a chain (i.e., has parent links) relink + x's parent and children to x's replacement (or null if none). +*/ + +#define unlink_large_chunk(M, X) {\ + tchunkptr XP = X->parent;\ + tchunkptr R;\ + if (X->bk != X) {\ + tchunkptr F = X->fd;\ + R = X->bk;\ + if (RTCHECK(ok_address(M, F))) {\ + F->bk = R;\ + R->fd = F;\ + }\ + else {\ + CORRUPTION_ERROR_ACTION(M);\ + }\ + }\ + else {\ + tchunkptr* RP;\ + if (((R = *(RP = &(X->child[1]))) != 0) ||\ + ((R = *(RP = &(X->child[0]))) != 0)) {\ + tchunkptr* CP;\ + while ((*(CP = &(R->child[1])) != 0) ||\ + (*(CP = &(R->child[0])) != 0)) {\ + R = *(RP = CP);\ + }\ + if (RTCHECK(ok_address(M, RP)))\ + *RP = 0;\ + else {\ + CORRUPTION_ERROR_ACTION(M);\ + }\ + }\ + }\ + if (XP != 0) {\ + tbinptr* H = treebin_at(M, X->index);\ + if (X == *H) {\ + if ((*H = R) == 0) \ + clear_treemap(M, X->index);\ + }\ + else if (RTCHECK(ok_address(M, XP))) {\ + if (XP->child[0] == X) \ + XP->child[0] = R;\ + else \ + XP->child[1] = R;\ + }\ + else\ + CORRUPTION_ERROR_ACTION(M);\ + if (R != 0) {\ + if (RTCHECK(ok_address(M, R))) {\ + tchunkptr C0, C1;\ + R->parent = XP;\ + if ((C0 = X->child[0]) != 0) {\ + if (RTCHECK(ok_address(M, C0))) {\ + R->child[0] = C0;\ + C0->parent = R;\ + }\ + else\ + CORRUPTION_ERROR_ACTION(M);\ + }\ + if ((C1 = X->child[1]) != 0) {\ + if (RTCHECK(ok_address(M, C1))) {\ + R->child[1] = C1;\ + C1->parent = R;\ + }\ + else\ + CORRUPTION_ERROR_ACTION(M);\ + }\ + }\ + else\ + CORRUPTION_ERROR_ACTION(M);\ + }\ + }\ +} + +/* Relays to large vs small bin operations */ + +#define insert_chunk(M, P, S)\ + if (is_small(S)) insert_small_chunk(M, P, S)\ + else { tchunkptr TP = (tchunkptr)(P); insert_large_chunk(M, TP, S); } + +#define unlink_chunk(M, P, S)\ + if (is_small(S)) unlink_small_chunk(M, P, S)\ + else { tchunkptr TP = (tchunkptr)(P); unlink_large_chunk(M, TP); } + + +/* Relays to internal calls to malloc/free from realloc, memalign etc */ + +#if ONLY_MSPACES +#define internal_malloc(m, b) mspace_malloc(m, b) +#define internal_free(m, mem) mspace_free(m,mem); +#else /* ONLY_MSPACES */ +#if MSPACES +#define internal_malloc(m, b)\ + (m == gm)? dlmalloc(b) : mspace_malloc(m, b) +#define internal_free(m, mem)\ + if (m == gm) dlfree(mem); else mspace_free(m,mem); +#else /* MSPACES */ +#define internal_malloc(m, b) dlmalloc(b) +#define internal_free(m, mem) dlfree(mem) +#endif /* MSPACES */ +#endif /* ONLY_MSPACES */ + +/* ----------------------- Direct-mmapping chunks ----------------------- */ + +/* + Directly mmapped chunks are set up with an offset to the start of + the mmapped region stored in the prev_foot field of the chunk. This + allows reconstruction of the required argument to MUNMAP when freed, + and also allows adjustment of the returned chunk to meet alignment + requirements (especially in memalign). +*/ + +/* Malloc using mmap */ +static void* mmap_alloc(mstate m, size_t nb) { + size_t mmsize = mmap_align(nb + SIX_SIZE_T_SIZES + CHUNK_ALIGN_MASK); + if (mmsize > nb) { /* Check for wrap around 0 */ + char* mm = (char*)(CALL_DIRECT_MMAP(mmsize)); + if (mm != CMFAIL) { + size_t offset = align_offset(chunk2mem(mm)); + size_t psize = mmsize - offset - MMAP_FOOT_PAD; + mchunkptr p = (mchunkptr)(mm + offset); + p->prev_foot = offset; + p->head = psize; + mark_inuse_foot(m, p, psize); + chunk_plus_offset(p, psize)->head = FENCEPOST_HEAD; + chunk_plus_offset(p, psize+SIZE_T_SIZE)->head = 0; + + if (m->least_addr == 0 || mm < m->least_addr) + m->least_addr = mm; + if ((m->footprint += mmsize) > m->max_footprint) + m->max_footprint = m->footprint; + assert(is_aligned(chunk2mem(p))); + check_mmapped_chunk(m, p); + return chunk2mem(p); + } + } + return 0; +} + +/* Realloc using mmap */ +static mchunkptr mmap_resize(mstate m, mchunkptr oldp, size_t nb) { + size_t oldsize = chunksize(oldp); + if (is_small(nb)) /* Can't shrink mmap regions below small size */ + return 0; + /* Keep old chunk if big enough but not too big */ + if (oldsize >= nb + SIZE_T_SIZE && + (oldsize - nb) <= (mparams.granularity << 1)) + return oldp; + else { + size_t offset = oldp->prev_foot; + size_t oldmmsize = oldsize + offset + MMAP_FOOT_PAD; + size_t newmmsize = mmap_align(nb + SIX_SIZE_T_SIZES + CHUNK_ALIGN_MASK); + char* cp = (char*)CALL_MREMAP((char*)oldp - offset, + oldmmsize, newmmsize, 1); + if (cp != CMFAIL) { + mchunkptr newp = (mchunkptr)(cp + offset); + size_t psize = newmmsize - offset - MMAP_FOOT_PAD; + newp->head = psize; + mark_inuse_foot(m, newp, psize); + chunk_plus_offset(newp, psize)->head = FENCEPOST_HEAD; + chunk_plus_offset(newp, psize+SIZE_T_SIZE)->head = 0; + + if (cp < m->least_addr) + m->least_addr = cp; + if ((m->footprint += newmmsize - oldmmsize) > m->max_footprint) + m->max_footprint = m->footprint; + check_mmapped_chunk(m, newp); + return newp; + } + } + return 0; +} + +/* -------------------------- mspace management -------------------------- */ + +/* Initialize top chunk and its size */ +static void init_top(mstate m, mchunkptr p, size_t psize) { + /* Ensure alignment */ + size_t offset = align_offset(chunk2mem(p)); + p = (mchunkptr)((char*)p + offset); + psize -= offset; + + m->top = p; + m->topsize = psize; + p->head = psize | PINUSE_BIT; + /* set size of fake trailing chunk holding overhead space only once */ + chunk_plus_offset(p, psize)->head = TOP_FOOT_SIZE; + m->trim_check = mparams.trim_threshold; /* reset on each update */ +} + +/* Initialize bins for a new mstate that is otherwise zeroed out */ +static void init_bins(mstate m) { + /* Establish circular links for smallbins */ + bindex_t i; + for (i = 0; i < NSMALLBINS; ++i) { + sbinptr bin = smallbin_at(m,i); + bin->fd = bin->bk = bin; + } +} + +#if PROCEED_ON_ERROR + +/* default corruption action */ +static void reset_on_error(mstate m) { + int i; + ++malloc_corruption_error_count; + /* Reinitialize fields to forget about all memory */ + m->smallbins = m->treebins = 0; + m->dvsize = m->topsize = 0; + m->seg.base = 0; + m->seg.size = 0; + m->seg.next = 0; + m->top = m->dv = 0; + for (i = 0; i < NTREEBINS; ++i) + *treebin_at(m, i) = 0; + init_bins(m); +} +#endif /* PROCEED_ON_ERROR */ + +/* Allocate chunk and prepend remainder with chunk in successor base. */ +static void* prepend_alloc(mstate m, char* newbase, char* oldbase, + size_t nb) { + mchunkptr p = align_as_chunk(newbase); + mchunkptr oldfirst = align_as_chunk(oldbase); + size_t psize = (char*)oldfirst - (char*)p; + mchunkptr q = chunk_plus_offset(p, nb); + size_t qsize = psize - nb; + set_size_and_pinuse_of_inuse_chunk(m, p, nb); + + assert((char*)oldfirst > (char*)q); + assert(pinuse(oldfirst)); + assert(qsize >= MIN_CHUNK_SIZE); + + /* consolidate remainder with first chunk of old base */ + if (oldfirst == m->top) { + size_t tsize = m->topsize += qsize; + m->top = q; + q->head = tsize | PINUSE_BIT; + check_top_chunk(m, q); + } + else if (oldfirst == m->dv) { + size_t dsize = m->dvsize += qsize; + m->dv = q; + set_size_and_pinuse_of_free_chunk(q, dsize); + } + else { + if (!is_inuse(oldfirst)) { + size_t nsize = chunksize(oldfirst); + unlink_chunk(m, oldfirst, nsize); + oldfirst = chunk_plus_offset(oldfirst, nsize); + qsize += nsize; + } + set_free_with_pinuse(q, qsize, oldfirst); + insert_chunk(m, q, qsize); + check_free_chunk(m, q); + } + + check_malloced_chunk(m, chunk2mem(p), nb); + return chunk2mem(p); +} + +/* Add a segment to hold a new noncontiguous region */ +static void add_segment(mstate m, char* tbase, size_t tsize, flag_t mmapped) { + /* Determine locations and sizes of segment, fenceposts, old top */ + char* old_top = (char*)m->top; + msegmentptr oldsp = segment_holding(m, old_top); + char* old_end = oldsp->base + oldsp->size; + size_t ssize = pad_request(sizeof(struct malloc_segment)); + char* rawsp = old_end - (ssize + FOUR_SIZE_T_SIZES + CHUNK_ALIGN_MASK); + size_t offset = align_offset(chunk2mem(rawsp)); + char* asp = rawsp + offset; + char* csp = (asp < (old_top + MIN_CHUNK_SIZE))? old_top : asp; + mchunkptr sp = (mchunkptr)csp; + msegmentptr ss = (msegmentptr)(chunk2mem(sp)); + mchunkptr tnext = chunk_plus_offset(sp, ssize); + mchunkptr p = tnext; + int nfences = 0; + + /* reset top to new space */ + init_top(m, (mchunkptr)tbase, tsize - TOP_FOOT_SIZE); + + /* Set up segment record */ + assert(is_aligned(ss)); + set_size_and_pinuse_of_inuse_chunk(m, sp, ssize); + *ss = m->seg; /* Push current record */ + m->seg.base = tbase; + m->seg.size = tsize; + m->seg.sflags = mmapped; + m->seg.next = ss; + + /* Insert trailing fenceposts */ + for (;;) { + mchunkptr nextp = chunk_plus_offset(p, SIZE_T_SIZE); + p->head = FENCEPOST_HEAD; + ++nfences; + if ((char*)(&(nextp->head)) < old_end) + p = nextp; + else + break; + } + assert(nfences >= 2); + + /* Insert the rest of old top into a bin as an ordinary free chunk */ + if (csp != old_top) { + mchunkptr q = (mchunkptr)old_top; + size_t psize = csp - old_top; + mchunkptr tn = chunk_plus_offset(q, psize); + set_free_with_pinuse(q, psize, tn); + insert_chunk(m, q, psize); + } + + check_top_chunk(m, m->top); +} + +/* -------------------------- System allocation -------------------------- */ + +/* Get memory from system using MORECORE or MMAP */ +static void* sys_alloc(mstate m, size_t nb) { + char* tbase = CMFAIL; + size_t tsize = 0; + flag_t mmap_flag = 0; + + ensure_initialization(); + + /* Directly map large chunks, but only if already initialized */ + if (use_mmap(m) && nb >= mparams.mmap_threshold && m->topsize != 0) { + void* mem = mmap_alloc(m, nb); + if (mem != 0) + return mem; + } + + /* + Try getting memory in any of three ways (in most-preferred to + least-preferred order): + 1. A call to MORECORE that can normally contiguously extend memory. + (disabled if not MORECORE_CONTIGUOUS or not HAVE_MORECORE or + or main space is mmapped or a previous contiguous call failed) + 2. A call to MMAP new space (disabled if not HAVE_MMAP). + Note that under the default settings, if MORECORE is unable to + fulfill a request, and HAVE_MMAP is true, then mmap is + used as a noncontiguous system allocator. This is a useful backup + strategy for systems with holes in address spaces -- in this case + sbrk cannot contiguously expand the heap, but mmap may be able to + find space. + 3. A call to MORECORE that cannot usually contiguously extend memory. + (disabled if not HAVE_MORECORE) + + In all cases, we need to request enough bytes from system to ensure + we can malloc nb bytes upon success, so pad with enough space for + top_foot, plus alignment-pad to make sure we don't lose bytes if + not on boundary, and round this up to a granularity unit. + */ + + if (MORECORE_CONTIGUOUS && !use_noncontiguous(m)) { + char* br = CMFAIL; + msegmentptr ss = (m->top == 0)? 0 : segment_holding(m, (char*)m->top); + size_t asize = 0; + ACQUIRE_MALLOC_GLOBAL_LOCK(); + + if (ss == 0) { /* First time through or recovery */ + char* base = (char*)CALL_MORECORE(0); + if (base != CMFAIL) { + asize = granularity_align(nb + SYS_ALLOC_PADDING); + /* Adjust to end on a page boundary */ + if (!is_page_aligned(base)) + asize += (page_align((size_t)base) - (size_t)base); + /* Can't call MORECORE if size is negative when treated as signed */ + if (asize < HALF_MAX_SIZE_T && + (br = (char*)(CALL_MORECORE(asize))) == base) { + tbase = base; + tsize = asize; + } + } + } + else { + /* Subtract out existing available top space from MORECORE request. */ + asize = granularity_align(nb - m->topsize + SYS_ALLOC_PADDING); + /* Use mem here only if it did continuously extend old space */ + if (asize < HALF_MAX_SIZE_T && + (br = (char*)(CALL_MORECORE(asize))) == ss->base+ss->size) { + tbase = br; + tsize = asize; + } + } + + if (tbase == CMFAIL) { /* Cope with partial failure */ + if (br != CMFAIL) { /* Try to use/extend the space we did get */ + if (asize < HALF_MAX_SIZE_T && + asize < nb + SYS_ALLOC_PADDING) { + size_t esize = granularity_align(nb + SYS_ALLOC_PADDING - asize); + if (esize < HALF_MAX_SIZE_T) { + char* end = (char*)CALL_MORECORE(esize); + if (end != CMFAIL) + asize += esize; + else { /* Can't use; try to release */ + (void) CALL_MORECORE(-asize); + br = CMFAIL; + } + } + } + } + if (br != CMFAIL) { /* Use the space we did get */ + tbase = br; + tsize = asize; + } + else + disable_contiguous(m); /* Don't try contiguous path in the future */ + } + + RELEASE_MALLOC_GLOBAL_LOCK(); + } + + if (HAVE_MMAP && tbase == CMFAIL) { /* Try MMAP */ + size_t rsize = granularity_align(nb + SYS_ALLOC_PADDING); + if (rsize > nb) { /* Fail if wraps around zero */ + char* mp = (char*)(CALL_MMAP(rsize)); + if (mp != CMFAIL) { + tbase = mp; + tsize = rsize; + mmap_flag = USE_MMAP_BIT; + } + } + } + + if (HAVE_MORECORE && tbase == CMFAIL) { /* Try noncontiguous MORECORE */ + size_t asize = granularity_align(nb + SYS_ALLOC_PADDING); + if (asize < HALF_MAX_SIZE_T) { + char* br = CMFAIL; + char* end = CMFAIL; + ACQUIRE_MALLOC_GLOBAL_LOCK(); + br = (char*)(CALL_MORECORE(asize)); + end = (char*)(CALL_MORECORE(0)); + RELEASE_MALLOC_GLOBAL_LOCK(); + if (br != CMFAIL && end != CMFAIL && br < end) { + size_t ssize = end - br; + if (ssize > nb + TOP_FOOT_SIZE) { + tbase = br; + tsize = ssize; + } + } + } + } + + if (tbase != CMFAIL) { + + if ((m->footprint += tsize) > m->max_footprint) + m->max_footprint = m->footprint; + + if (!is_initialized(m)) { /* first-time initialization */ + if (m->least_addr == 0 || tbase < m->least_addr) + m->least_addr = tbase; + m->seg.base = tbase; + m->seg.size = tsize; + m->seg.sflags = mmap_flag; + m->magic = mparams.magic; + m->release_checks = MAX_RELEASE_CHECK_RATE; + init_bins(m); +#if !ONLY_MSPACES + if (is_global(m)) + init_top(m, (mchunkptr)tbase, tsize - TOP_FOOT_SIZE); + else +#endif + { + /* Offset top by embedded malloc_state */ + mchunkptr mn = next_chunk(mem2chunk(m)); + init_top(m, mn, (size_t)((tbase + tsize) - (char*)mn) -TOP_FOOT_SIZE); + } + } + + else { + /* Try to merge with an existing segment */ + msegmentptr sp = &m->seg; + /* Only consider most recent segment if traversal suppressed */ + while (sp != 0 && tbase != sp->base + sp->size) + sp = (NO_SEGMENT_TRAVERSAL) ? 0 : sp->next; + if (sp != 0 && + !is_extern_segment(sp) && + (sp->sflags & USE_MMAP_BIT) == mmap_flag && + segment_holds(sp, m->top)) { /* append */ + sp->size += tsize; + init_top(m, m->top, m->topsize + tsize); + } + else { + if (tbase < m->least_addr) + m->least_addr = tbase; + sp = &m->seg; + while (sp != 0 && sp->base != tbase + tsize) + sp = (NO_SEGMENT_TRAVERSAL) ? 0 : sp->next; + if (sp != 0 && + !is_extern_segment(sp) && + (sp->sflags & USE_MMAP_BIT) == mmap_flag) { + char* oldbase = sp->base; + sp->base = tbase; + sp->size += tsize; + return prepend_alloc(m, tbase, oldbase, nb); + } + else + add_segment(m, tbase, tsize, mmap_flag); + } + } + + if (nb < m->topsize) { /* Allocate from new or extended top space */ + size_t rsize = m->topsize -= nb; + mchunkptr p = m->top; + mchunkptr r = m->top = chunk_plus_offset(p, nb); + r->head = rsize | PINUSE_BIT; + set_size_and_pinuse_of_inuse_chunk(m, p, nb); + check_top_chunk(m, m->top); + check_malloced_chunk(m, chunk2mem(p), nb); + return chunk2mem(p); + } + } + + MALLOC_FAILURE_ACTION; + return 0; +} + +/* ----------------------- system deallocation -------------------------- */ + +/* Unmap and unlink any mmapped segments that don't contain used chunks */ +static size_t release_unused_segments(mstate m) { + size_t released = 0; + int nsegs = 0; + msegmentptr pred = &m->seg; + msegmentptr sp = pred->next; + while (sp != 0) { + char* base = sp->base; + size_t size = sp->size; + msegmentptr next = sp->next; + ++nsegs; + if (is_mmapped_segment(sp) && !is_extern_segment(sp)) { + mchunkptr p = align_as_chunk(base); + size_t psize = chunksize(p); + /* Can unmap if first chunk holds entire segment and not pinned */ + if (!is_inuse(p) && (char*)p + psize >= base + size - TOP_FOOT_SIZE) { + tchunkptr tp = (tchunkptr)p; + assert(segment_holds(sp, (char*)sp)); + if (p == m->dv) { + m->dv = 0; + m->dvsize = 0; + } + else { + unlink_large_chunk(m, tp); + } + if (CALL_MUNMAP(base, size) == 0) { + released += size; + m->footprint -= size; + /* unlink obsoleted record */ + sp = pred; + sp->next = next; + } + else { /* back out if cannot unmap */ + insert_large_chunk(m, tp, psize); + } + } + } + if (NO_SEGMENT_TRAVERSAL) /* scan only first segment */ + break; + pred = sp; + sp = next; + } + /* Reset check counter */ + m->release_checks = ((nsegs > MAX_RELEASE_CHECK_RATE)? + nsegs : MAX_RELEASE_CHECK_RATE); + return released; +} + +static int sys_trim(mstate m, size_t pad) { + size_t released = 0; + ensure_initialization(); + if (pad < MAX_REQUEST && is_initialized(m)) { + pad += TOP_FOOT_SIZE; /* ensure enough room for segment overhead */ + + if (m->topsize > pad) { + /* Shrink top space in granularity-size units, keeping at least one */ + size_t unit = mparams.granularity; + size_t extra = ((m->topsize - pad + (unit - SIZE_T_ONE)) / unit - + SIZE_T_ONE) * unit; + msegmentptr sp = segment_holding(m, (char*)m->top); + + if (!is_extern_segment(sp)) { + if (is_mmapped_segment(sp)) { + if (HAVE_MMAP && + sp->size >= extra && + !has_segment_link(m, sp)) { /* can't shrink if pinned */ + size_t newsize = sp->size - extra; + /* Prefer mremap, fall back to munmap */ + if ((CALL_MREMAP(sp->base, sp->size, newsize, 0) != MFAIL) || + (CALL_MUNMAP(sp->base + newsize, extra) == 0)) { + released = extra; + } + } + } + else if (HAVE_MORECORE) { + if (extra >= HALF_MAX_SIZE_T) /* Avoid wrapping negative */ + extra = (HALF_MAX_SIZE_T) + SIZE_T_ONE - unit; + ACQUIRE_MALLOC_GLOBAL_LOCK(); + { + /* Make sure end of memory is where we last set it. */ + char* old_br = (char*)(CALL_MORECORE(0)); + if (old_br == sp->base + sp->size) { + char* rel_br = (char*)(CALL_MORECORE(-extra)); + char* new_br = (char*)(CALL_MORECORE(0)); + if (rel_br != CMFAIL && new_br < old_br) + released = old_br - new_br; + } + } + RELEASE_MALLOC_GLOBAL_LOCK(); + } + } + + if (released != 0) { + sp->size -= released; + m->footprint -= released; + init_top(m, m->top, m->topsize - released); + check_top_chunk(m, m->top); + } + } + + /* Unmap any unused mmapped segments */ + if (HAVE_MMAP) + released += release_unused_segments(m); + + /* On failure, disable autotrim to avoid repeated failed future calls */ + if (released == 0 && m->topsize > m->trim_check) + m->trim_check = MAX_SIZE_T; + } + + return (released != 0)? 1 : 0; +} + + +/* ---------------------------- malloc support --------------------------- */ + +/* allocate a large request from the best fitting chunk in a treebin */ +static void* tmalloc_large(mstate m, size_t nb) { + tchunkptr v = 0; + size_t rsize = -nb; /* Unsigned negation */ + tchunkptr t; + bindex_t idx; + compute_tree_index(nb, idx); + if ((t = *treebin_at(m, idx)) != 0) { + /* Traverse tree for this bin looking for node with size == nb */ + size_t sizebits = nb << leftshift_for_tree_index(idx); + tchunkptr rst = 0; /* The deepest untaken right subtree */ + for (;;) { + tchunkptr rt; + size_t trem = chunksize(t) - nb; + if (trem < rsize) { + v = t; + if ((rsize = trem) == 0) + break; + } + rt = t->child[1]; + t = t->child[(sizebits >> (SIZE_T_BITSIZE-SIZE_T_ONE)) & 1]; + if (rt != 0 && rt != t) + rst = rt; + if (t == 0) { + t = rst; /* set t to least subtree holding sizes > nb */ + break; + } + sizebits <<= 1; + } + } + if (t == 0 && v == 0) { /* set t to root of next non-empty treebin */ + binmap_t leftbits = left_bits(idx2bit(idx)) & m->treemap; + if (leftbits != 0) { + bindex_t i; + binmap_t leastbit = least_bit(leftbits); + compute_bit2idx(leastbit, i); + t = *treebin_at(m, i); + } + } + + while (t != 0) { /* find smallest of tree or subtree */ + size_t trem = chunksize(t) - nb; + if (trem < rsize) { + rsize = trem; + v = t; + } + t = leftmost_child(t); + } + + /* If dv is a better fit, return 0 so malloc will use it */ + if (v != 0 && rsize < (size_t)(m->dvsize - nb)) { + if (RTCHECK(ok_address(m, v))) { /* split */ + mchunkptr r = chunk_plus_offset(v, nb); + assert(chunksize(v) == rsize + nb); + if (RTCHECK(ok_next(v, r))) { + unlink_large_chunk(m, v); + if (rsize < MIN_CHUNK_SIZE) + set_inuse_and_pinuse(m, v, (rsize + nb)); + else { + set_size_and_pinuse_of_inuse_chunk(m, v, nb); + set_size_and_pinuse_of_free_chunk(r, rsize); + insert_chunk(m, r, rsize); + } + return chunk2mem(v); + } + } + CORRUPTION_ERROR_ACTION(m); + } + return 0; +} + +/* allocate a small request from the best fitting chunk in a treebin */ +static void* tmalloc_small(mstate m, size_t nb) { + tchunkptr t, v; + size_t rsize; + bindex_t i; + binmap_t leastbit = least_bit(m->treemap); + compute_bit2idx(leastbit, i); + v = t = *treebin_at(m, i); + rsize = chunksize(t) - nb; + + while ((t = leftmost_child(t)) != 0) { + size_t trem = chunksize(t) - nb; + if (trem < rsize) { + rsize = trem; + v = t; + } + } + + if (RTCHECK(ok_address(m, v))) { + mchunkptr r = chunk_plus_offset(v, nb); + assert(chunksize(v) == rsize + nb); + if (RTCHECK(ok_next(v, r))) { + unlink_large_chunk(m, v); + if (rsize < MIN_CHUNK_SIZE) + set_inuse_and_pinuse(m, v, (rsize + nb)); + else { + set_size_and_pinuse_of_inuse_chunk(m, v, nb); + set_size_and_pinuse_of_free_chunk(r, rsize); + replace_dv(m, r, rsize); + } + return chunk2mem(v); + } + } + + CORRUPTION_ERROR_ACTION(m); + return 0; +} + +/* --------------------------- realloc support --------------------------- */ + +static void* internal_realloc(mstate m, void* oldmem, size_t bytes) { + if (bytes >= MAX_REQUEST) { + MALLOC_FAILURE_ACTION; + return 0; + } + if (!PREACTION(m)) { + mchunkptr oldp = mem2chunk(oldmem); + size_t oldsize = chunksize(oldp); + mchunkptr next = chunk_plus_offset(oldp, oldsize); + mchunkptr newp = 0; + void* extra = 0; + + /* Try to either shrink or extend into top. Else malloc-copy-free */ + + if (RTCHECK(ok_address(m, oldp) && ok_inuse(oldp) && + ok_next(oldp, next) && ok_pinuse(next))) { + size_t nb = request2size(bytes); + if (is_mmapped(oldp)) + newp = mmap_resize(m, oldp, nb); + else if (oldsize >= nb) { /* already big enough */ + size_t rsize = oldsize - nb; + newp = oldp; + if (rsize >= MIN_CHUNK_SIZE) { + mchunkptr remainder = chunk_plus_offset(newp, nb); + set_inuse(m, newp, nb); + set_inuse_and_pinuse(m, remainder, rsize); + extra = chunk2mem(remainder); + } + } + else if (next == m->top && oldsize + m->topsize > nb) { + /* Expand into top */ + size_t newsize = oldsize + m->topsize; + size_t newtopsize = newsize - nb; + mchunkptr newtop = chunk_plus_offset(oldp, nb); + set_inuse(m, oldp, nb); + newtop->head = newtopsize |PINUSE_BIT; + m->top = newtop; + m->topsize = newtopsize; + newp = oldp; + } + } + else { + USAGE_ERROR_ACTION(m, oldmem); + POSTACTION(m); + return 0; + } +#if DEBUG + if (newp != 0) { + check_inuse_chunk(m, newp); /* Check requires lock */ + } +#endif + + POSTACTION(m); + + if (newp != 0) { + if (extra != 0) { + internal_free(m, extra); + } + return chunk2mem(newp); + } + else { + void* newmem = internal_malloc(m, bytes); + if (newmem != 0) { + size_t oc = oldsize - overhead_for(oldp); + memcpy(newmem, oldmem, (oc < bytes)? oc : bytes); + internal_free(m, oldmem); + } + return newmem; + } + } + return 0; +} + +/* --------------------------- memalign support -------------------------- */ + +static void* internal_memalign(mstate m, size_t alignment, size_t bytes) { + if (alignment <= MALLOC_ALIGNMENT) /* Can just use malloc */ + return internal_malloc(m, bytes); + if (alignment < MIN_CHUNK_SIZE) /* must be at least a minimum chunk size */ + alignment = MIN_CHUNK_SIZE; + if ((alignment & (alignment-SIZE_T_ONE)) != 0) {/* Ensure a power of 2 */ + size_t a = MALLOC_ALIGNMENT << 1; + while (a < alignment) a <<= 1; + alignment = a; + } + + if (bytes >= MAX_REQUEST - alignment) { + if (m != 0) { /* Test isn't needed but avoids compiler warning */ + MALLOC_FAILURE_ACTION; + } + } + else { + size_t nb = request2size(bytes); + size_t req = nb + alignment + MIN_CHUNK_SIZE - CHUNK_OVERHEAD; + char* mem = (char*)internal_malloc(m, req); + if (mem != 0) { + void* leader = 0; + void* trailer = 0; + mchunkptr p = mem2chunk(mem); + + if (PREACTION(m)) return 0; + if ((((size_t)(mem)) % alignment) != 0) { /* misaligned */ + /* + Find an aligned spot inside chunk. Since we need to give + back leading space in a chunk of at least MIN_CHUNK_SIZE, if + the first calculation places us at a spot with less than + MIN_CHUNK_SIZE leader, we can move to the next aligned spot. + We've allocated enough total room so that this is always + possible. + */ + char* br = (char*)mem2chunk((size_t)(((size_t)(mem + + alignment - + SIZE_T_ONE)) & + -alignment)); + char* pos = ((size_t)(br - (char*)(p)) >= MIN_CHUNK_SIZE)? + br : br+alignment; + mchunkptr newp = (mchunkptr)pos; + size_t leadsize = pos - (char*)(p); + size_t newsize = chunksize(p) - leadsize; + + if (is_mmapped(p)) { /* For mmapped chunks, just adjust offset */ + newp->prev_foot = p->prev_foot + leadsize; + newp->head = newsize; + } + else { /* Otherwise, give back leader, use the rest */ + set_inuse(m, newp, newsize); + set_inuse(m, p, leadsize); + leader = chunk2mem(p); + } + p = newp; + } + + /* Give back spare room at the end */ + if (!is_mmapped(p)) { + size_t size = chunksize(p); + if (size > nb + MIN_CHUNK_SIZE) { + size_t remainder_size = size - nb; + mchunkptr remainder = chunk_plus_offset(p, nb); + set_inuse(m, p, nb); + set_inuse(m, remainder, remainder_size); + trailer = chunk2mem(remainder); + } + } + + assert (chunksize(p) >= nb); + assert((((size_t)(chunk2mem(p))) % alignment) == 0); + check_inuse_chunk(m, p); + POSTACTION(m); + if (leader != 0) { + internal_free(m, leader); + } + if (trailer != 0) { + internal_free(m, trailer); + } + return chunk2mem(p); + } + } + return 0; +} + +/* ------------------------ comalloc/coalloc support --------------------- */ + +static void** ialloc(mstate m, + size_t n_elements, + size_t* sizes, + int opts, + void* chunks[]) { + /* + This provides common support for independent_X routines, handling + all of the combinations that can result. + + The opts arg has: + bit 0 set if all elements are same size (using sizes[0]) + bit 1 set if elements should be zeroed + */ + + size_t element_size; /* chunksize of each element, if all same */ + size_t contents_size; /* total size of elements */ + size_t array_size; /* request size of pointer array */ + void* mem; /* malloced aggregate space */ + mchunkptr p; /* corresponding chunk */ + size_t remainder_size; /* remaining bytes while splitting */ + void** marray; /* either "chunks" or malloced ptr array */ + mchunkptr array_chunk; /* chunk for malloced ptr array */ + flag_t was_enabled; /* to disable mmap */ + size_t size; + size_t i; + + ensure_initialization(); + /* compute array length, if needed */ + if (chunks != 0) { + if (n_elements == 0) + return chunks; /* nothing to do */ + marray = chunks; + array_size = 0; + } + else { + /* if empty req, must still return chunk representing empty array */ + if (n_elements == 0) + return (void**)internal_malloc(m, 0); + marray = 0; + array_size = request2size(n_elements * (sizeof(void*))); + } + + /* compute total element size */ + if (opts & 0x1) { /* all-same-size */ + element_size = request2size(*sizes); + contents_size = n_elements * element_size; + } + else { /* add up all the sizes */ + element_size = 0; + contents_size = 0; + for (i = 0; i != n_elements; ++i) + contents_size += request2size(sizes[i]); + } + + size = contents_size + array_size; + + /* + Allocate the aggregate chunk. First disable direct-mmapping so + malloc won't use it, since we would not be able to later + free/realloc space internal to a segregated mmap region. + */ + was_enabled = use_mmap(m); + disable_mmap(m); + mem = internal_malloc(m, size - CHUNK_OVERHEAD); + if (was_enabled) + enable_mmap(m); + if (mem == 0) + return 0; + + if (PREACTION(m)) return 0; + p = mem2chunk(mem); + remainder_size = chunksize(p); + + assert(!is_mmapped(p)); + + if (opts & 0x2) { /* optionally clear the elements */ + memset((size_t*)mem, 0, remainder_size - SIZE_T_SIZE - array_size); + } + + /* If not provided, allocate the pointer array as final part of chunk */ + if (marray == 0) { + size_t array_chunk_size; + array_chunk = chunk_plus_offset(p, contents_size); + array_chunk_size = remainder_size - contents_size; + marray = (void**) (chunk2mem(array_chunk)); + set_size_and_pinuse_of_inuse_chunk(m, array_chunk, array_chunk_size); + remainder_size = contents_size; + } + + /* split out elements */ + for (i = 0; ; ++i) { + marray[i] = chunk2mem(p); + if (i != n_elements-1) { + if (element_size != 0) + size = element_size; + else + size = request2size(sizes[i]); + remainder_size -= size; + set_size_and_pinuse_of_inuse_chunk(m, p, size); + p = chunk_plus_offset(p, size); + } + else { /* the final element absorbs any overallocation slop */ + set_size_and_pinuse_of_inuse_chunk(m, p, remainder_size); + break; + } + } + +#if DEBUG + if (marray != chunks) { + /* final element must have exactly exhausted chunk */ + if (element_size != 0) { + assert(remainder_size == element_size); + } + else { + assert(remainder_size == request2size(sizes[i])); + } + check_inuse_chunk(m, mem2chunk(marray)); + } + for (i = 0; i != n_elements; ++i) + check_inuse_chunk(m, mem2chunk(marray[i])); + +#endif /* DEBUG */ + + POSTACTION(m); + return marray; +} + + +/* -------------------------- public routines ---------------------------- */ + +#if !ONLY_MSPACES + +void* dlmalloc(size_t bytes) { + /* + Basic algorithm: + If a small request (< 256 bytes minus per-chunk overhead): + 1. If one exists, use a remainderless chunk in associated smallbin. + (Remainderless means that there are too few excess bytes to + represent as a chunk.) + 2. If it is big enough, use the dv chunk, which is normally the + chunk adjacent to the one used for the most recent small request. + 3. If one exists, split the smallest available chunk in a bin, + saving remainder in dv. + 4. If it is big enough, use the top chunk. + 5. If available, get memory from system and use it + Otherwise, for a large request: + 1. Find the smallest available binned chunk that fits, and use it + if it is better fitting than dv chunk, splitting if necessary. + 2. If better fitting than any binned chunk, use the dv chunk. + 3. If it is big enough, use the top chunk. + 4. If request size >= mmap threshold, try to directly mmap this chunk. + 5. If available, get memory from system and use it + + The ugly goto's here ensure that postaction occurs along all paths. + */ + +#if USE_LOCKS + ensure_initialization(); /* initialize in sys_alloc if not using locks */ +#endif + + if (!PREACTION(gm)) { + void* mem; + size_t nb; + if (bytes <= MAX_SMALL_REQUEST) { + bindex_t idx; + binmap_t smallbits; + nb = (bytes < MIN_REQUEST)? MIN_CHUNK_SIZE : pad_request(bytes); + idx = small_index(nb); + smallbits = gm->smallmap >> idx; + + if ((smallbits & 0x3U) != 0) { /* Remainderless fit to a smallbin. */ + mchunkptr b, p; + idx += ~smallbits & 1; /* Uses next bin if idx empty */ + b = smallbin_at(gm, idx); + p = b->fd; + assert(chunksize(p) == small_index2size(idx)); + unlink_first_small_chunk(gm, b, p, idx); + set_inuse_and_pinuse(gm, p, small_index2size(idx)); + mem = chunk2mem(p); + check_malloced_chunk(gm, mem, nb); + goto postaction; + } + + else if (nb > gm->dvsize) { + if (smallbits != 0) { /* Use chunk in next nonempty smallbin */ + mchunkptr b, p, r; + size_t rsize; + bindex_t i; + binmap_t leftbits = (smallbits << idx) & left_bits(idx2bit(idx)); + binmap_t leastbit = least_bit(leftbits); + compute_bit2idx(leastbit, i); + b = smallbin_at(gm, i); + p = b->fd; + assert(chunksize(p) == small_index2size(i)); + unlink_first_small_chunk(gm, b, p, i); + rsize = small_index2size(i) - nb; + /* Fit here cannot be remainderless if 4byte sizes */ + if (SIZE_T_SIZE != 4 && rsize < MIN_CHUNK_SIZE) + set_inuse_and_pinuse(gm, p, small_index2size(i)); + else { + set_size_and_pinuse_of_inuse_chunk(gm, p, nb); + r = chunk_plus_offset(p, nb); + set_size_and_pinuse_of_free_chunk(r, rsize); + replace_dv(gm, r, rsize); + } + mem = chunk2mem(p); + check_malloced_chunk(gm, mem, nb); + goto postaction; + } + + else if (gm->treemap != 0 && (mem = tmalloc_small(gm, nb)) != 0) { + check_malloced_chunk(gm, mem, nb); + goto postaction; + } + } + } + else if (bytes >= MAX_REQUEST) + nb = MAX_SIZE_T; /* Too big to allocate. Force failure (in sys alloc) */ + else { + nb = pad_request(bytes); + if (gm->treemap != 0 && (mem = tmalloc_large(gm, nb)) != 0) { + check_malloced_chunk(gm, mem, nb); + goto postaction; + } + } + + if (nb <= gm->dvsize) { + size_t rsize = gm->dvsize - nb; + mchunkptr p = gm->dv; + if (rsize >= MIN_CHUNK_SIZE) { /* split dv */ + mchunkptr r = gm->dv = chunk_plus_offset(p, nb); + gm->dvsize = rsize; + set_size_and_pinuse_of_free_chunk(r, rsize); + set_size_and_pinuse_of_inuse_chunk(gm, p, nb); + } + else { /* exhaust dv */ + size_t dvs = gm->dvsize; + gm->dvsize = 0; + gm->dv = 0; + set_inuse_and_pinuse(gm, p, dvs); + } + mem = chunk2mem(p); + check_malloced_chunk(gm, mem, nb); + goto postaction; + } + + else if (nb < gm->topsize) { /* Split top */ + size_t rsize = gm->topsize -= nb; + mchunkptr p = gm->top; + mchunkptr r = gm->top = chunk_plus_offset(p, nb); + r->head = rsize | PINUSE_BIT; + set_size_and_pinuse_of_inuse_chunk(gm, p, nb); + mem = chunk2mem(p); + check_top_chunk(gm, gm->top); + check_malloced_chunk(gm, mem, nb); + goto postaction; + } + + mem = sys_alloc(gm, nb); + + postaction: + POSTACTION(gm); + return mem; + } + + return 0; +} + +void dlfree(void* mem) { + /* + Consolidate freed chunks with preceeding or succeeding bordering + free chunks, if they exist, and then place in a bin. Intermixed + with special cases for top, dv, mmapped chunks, and usage errors. + */ + + if (mem != 0) { + mchunkptr p = mem2chunk(mem); +#if FOOTERS + mstate fm = get_mstate_for(p); + if (!ok_magic(fm)) { + USAGE_ERROR_ACTION(fm, p); + return; + } +#else /* FOOTERS */ +#define fm gm +#endif /* FOOTERS */ + if (!PREACTION(fm)) { + check_inuse_chunk(fm, p); + if (RTCHECK(ok_address(fm, p) && ok_inuse(p))) { + size_t psize = chunksize(p); + mchunkptr next = chunk_plus_offset(p, psize); + if (!pinuse(p)) { + size_t prevsize = p->prev_foot; + if (is_mmapped(p)) { + psize += prevsize + MMAP_FOOT_PAD; + if (CALL_MUNMAP((char*)p - prevsize, psize) == 0) + fm->footprint -= psize; + goto postaction; + } + else { + mchunkptr prev = chunk_minus_offset(p, prevsize); + psize += prevsize; + p = prev; + if (RTCHECK(ok_address(fm, prev))) { /* consolidate backward */ + if (p != fm->dv) { + unlink_chunk(fm, p, prevsize); + } + else if ((next->head & INUSE_BITS) == INUSE_BITS) { + fm->dvsize = psize; + set_free_with_pinuse(p, psize, next); + goto postaction; + } + } + else + goto erroraction; + } + } + + if (RTCHECK(ok_next(p, next) && ok_pinuse(next))) { + if (!cinuse(next)) { /* consolidate forward */ + if (next == fm->top) { + size_t tsize = fm->topsize += psize; + fm->top = p; + p->head = tsize | PINUSE_BIT; + if (p == fm->dv) { + fm->dv = 0; + fm->dvsize = 0; + } + if (should_trim(fm, tsize)) + sys_trim(fm, 0); + goto postaction; + } + else if (next == fm->dv) { + size_t dsize = fm->dvsize += psize; + fm->dv = p; + set_size_and_pinuse_of_free_chunk(p, dsize); + goto postaction; + } + else { + size_t nsize = chunksize(next); + psize += nsize; + unlink_chunk(fm, next, nsize); + set_size_and_pinuse_of_free_chunk(p, psize); + if (p == fm->dv) { + fm->dvsize = psize; + goto postaction; + } + } + } + else + set_free_with_pinuse(p, psize, next); + + if (is_small(psize)) { + insert_small_chunk(fm, p, psize); + check_free_chunk(fm, p); + } + else { + tchunkptr tp = (tchunkptr)p; + insert_large_chunk(fm, tp, psize); + check_free_chunk(fm, p); + if (--fm->release_checks == 0) + release_unused_segments(fm); + } + goto postaction; + } + } + erroraction: + USAGE_ERROR_ACTION(fm, p); + postaction: + POSTACTION(fm); + } + } +#if !FOOTERS +#undef fm +#endif /* FOOTERS */ +} + +void* dlcalloc(size_t n_elements, size_t elem_size) { + void* mem; + size_t req = 0; + if (n_elements != 0) { + req = n_elements * elem_size; + if (((n_elements | elem_size) & ~(size_t)0xffff) && + (req / n_elements != elem_size)) + req = MAX_SIZE_T; /* force downstream failure on overflow */ + } + mem = dlmalloc(req); + if (mem != 0 && calloc_must_clear(mem2chunk(mem))) + memset(mem, 0, req); + return mem; +} + +void* dlrealloc(void* oldmem, size_t bytes) { + if (oldmem == 0) + return dlmalloc(bytes); +#ifdef REALLOC_ZERO_BYTES_FREES + if (bytes == 0) { + dlfree(oldmem); + return 0; + } +#endif /* REALLOC_ZERO_BYTES_FREES */ + else { +#if ! FOOTERS + mstate m = gm; +#else /* FOOTERS */ + mstate m = get_mstate_for(mem2chunk(oldmem)); + if (!ok_magic(m)) { + USAGE_ERROR_ACTION(m, oldmem); + return 0; + } +#endif /* FOOTERS */ + return internal_realloc(m, oldmem, bytes); + } +} + +void* dlmemalign(size_t alignment, size_t bytes) { + return internal_memalign(gm, alignment, bytes); +} + +void** dlindependent_calloc(size_t n_elements, size_t elem_size, + void* chunks[]) { + size_t sz = elem_size; /* serves as 1-element array */ + return ialloc(gm, n_elements, &sz, 3, chunks); +} + +void** dlindependent_comalloc(size_t n_elements, size_t sizes[], + void* chunks[]) { + return ialloc(gm, n_elements, sizes, 0, chunks); +} + +void* dlvalloc(size_t bytes) { + size_t pagesz; + ensure_initialization(); + pagesz = mparams.page_size; + return dlmemalign(pagesz, bytes); +} + +void* dlpvalloc(size_t bytes) { + size_t pagesz; + ensure_initialization(); + pagesz = mparams.page_size; + return dlmemalign(pagesz, (bytes + pagesz - SIZE_T_ONE) & ~(pagesz - SIZE_T_ONE)); +} + +int dlmalloc_trim(size_t pad) { + int result = 0; + ensure_initialization(); + if (!PREACTION(gm)) { + result = sys_trim(gm, pad); + POSTACTION(gm); + } + return result; +} + +size_t dlmalloc_footprint(void) { + return gm->footprint; +} + +size_t dlmalloc_max_footprint(void) { + return gm->max_footprint; +} + +#if !NO_MALLINFO +struct mallinfo dlmallinfo(void) { + return internal_mallinfo(gm); +} +#endif /* NO_MALLINFO */ + +void dlmalloc_stats() { + internal_malloc_stats(gm); +} + +int dlmallopt(int param_number, int value) { + return change_mparam(param_number, value); +} + +#endif /* !ONLY_MSPACES */ + +size_t dlmalloc_usable_size(void* mem) { + if (mem != 0) { + mchunkptr p = mem2chunk(mem); + if (is_inuse(p)) + return chunksize(p) - overhead_for(p); + } + return 0; +} + +/* ----------------------------- user mspaces ---------------------------- */ + +#if MSPACES + +static mstate init_user_mstate(char* tbase, size_t tsize) { + size_t msize = pad_request(sizeof(struct malloc_state)); + mchunkptr mn; + mchunkptr msp = align_as_chunk(tbase); + mstate m = (mstate)(chunk2mem(msp)); + memset(m, 0, msize); + INITIAL_LOCK(&m->mutex); + msp->head = (msize|INUSE_BITS); + m->seg.base = m->least_addr = tbase; + m->seg.size = m->footprint = m->max_footprint = tsize; + m->magic = mparams.magic; + m->release_checks = MAX_RELEASE_CHECK_RATE; + m->mflags = mparams.default_mflags; + m->extp = 0; + m->exts = 0; + disable_contiguous(m); + init_bins(m); + mn = next_chunk(mem2chunk(m)); + init_top(m, mn, (size_t)((tbase + tsize) - (char*)mn) - TOP_FOOT_SIZE); + check_top_chunk(m, m->top); + return m; +} + +mspace create_mspace(size_t capacity, int locked) { + mstate m = 0; + size_t msize; + ensure_initialization(); + msize = pad_request(sizeof(struct malloc_state)); + if (capacity < (size_t) -(msize + TOP_FOOT_SIZE + mparams.page_size)) { + size_t rs = ((capacity == 0)? mparams.granularity : + (capacity + TOP_FOOT_SIZE + msize)); + size_t tsize = granularity_align(rs); + char* tbase = (char*)(CALL_MMAP(tsize)); + if (tbase != CMFAIL) { + m = init_user_mstate(tbase, tsize); + m->seg.sflags = USE_MMAP_BIT; + set_lock(m, locked); + } + } + return (mspace)m; +} + +mspace create_mspace_with_base(void* base, size_t capacity, int locked) { + mstate m = 0; + size_t msize; + ensure_initialization(); + msize = pad_request(sizeof(struct malloc_state)); + if (capacity > msize + TOP_FOOT_SIZE && + capacity < (size_t) -(msize + TOP_FOOT_SIZE + mparams.page_size)) { + m = init_user_mstate((char*)base, capacity); + m->seg.sflags = EXTERN_BIT; + set_lock(m, locked); + } + return (mspace)m; +} + +int mspace_track_large_chunks(mspace msp, int enable) { + int ret = 0; + mstate ms = (mstate)msp; + if (!PREACTION(ms)) { + if (!use_mmap(ms)) + ret = 1; + if (!enable) + enable_mmap(ms); + else + disable_mmap(ms); + POSTACTION(ms); + } + return ret; +} + +size_t destroy_mspace(mspace msp) { + size_t freed = 0; + mstate ms = (mstate)msp; + if (ok_magic(ms)) { + msegmentptr sp = &ms->seg; + while (sp != 0) { + char* base = sp->base; + size_t size = sp->size; + flag_t flag = sp->sflags; + sp = sp->next; + if ((flag & USE_MMAP_BIT) && !(flag & EXTERN_BIT) && + CALL_MUNMAP(base, size) == 0) + freed += size; + } + } + else { + USAGE_ERROR_ACTION(ms,ms); + } + return freed; +} + +/* + mspace versions of routines are near-clones of the global + versions. This is not so nice but better than the alternatives. +*/ + + +void* mspace_malloc(mspace msp, size_t bytes) { + mstate ms = (mstate)msp; + if (!ok_magic(ms)) { + USAGE_ERROR_ACTION(ms,ms); + return 0; + } + if (!PREACTION(ms)) { + void* mem; + size_t nb; + if (bytes <= MAX_SMALL_REQUEST) { + bindex_t idx; + binmap_t smallbits; + nb = (bytes < MIN_REQUEST)? MIN_CHUNK_SIZE : pad_request(bytes); + idx = small_index(nb); + smallbits = ms->smallmap >> idx; + + if ((smallbits & 0x3U) != 0) { /* Remainderless fit to a smallbin. */ + mchunkptr b, p; + idx += ~smallbits & 1; /* Uses next bin if idx empty */ + b = smallbin_at(ms, idx); + p = b->fd; + assert(chunksize(p) == small_index2size(idx)); + unlink_first_small_chunk(ms, b, p, idx); + set_inuse_and_pinuse(ms, p, small_index2size(idx)); + mem = chunk2mem(p); + check_malloced_chunk(ms, mem, nb); + goto postaction; + } + + else if (nb > ms->dvsize) { + if (smallbits != 0) { /* Use chunk in next nonempty smallbin */ + mchunkptr b, p, r; + size_t rsize; + bindex_t i; + binmap_t leftbits = (smallbits << idx) & left_bits(idx2bit(idx)); + binmap_t leastbit = least_bit(leftbits); + compute_bit2idx(leastbit, i); + b = smallbin_at(ms, i); + p = b->fd; + assert(chunksize(p) == small_index2size(i)); + unlink_first_small_chunk(ms, b, p, i); + rsize = small_index2size(i) - nb; + /* Fit here cannot be remainderless if 4byte sizes */ + if (SIZE_T_SIZE != 4 && rsize < MIN_CHUNK_SIZE) + set_inuse_and_pinuse(ms, p, small_index2size(i)); + else { + set_size_and_pinuse_of_inuse_chunk(ms, p, nb); + r = chunk_plus_offset(p, nb); + set_size_and_pinuse_of_free_chunk(r, rsize); + replace_dv(ms, r, rsize); + } + mem = chunk2mem(p); + check_malloced_chunk(ms, mem, nb); + goto postaction; + } + + else if (ms->treemap != 0 && (mem = tmalloc_small(ms, nb)) != 0) { + check_malloced_chunk(ms, mem, nb); + goto postaction; + } + } + } + else if (bytes >= MAX_REQUEST) + nb = MAX_SIZE_T; /* Too big to allocate. Force failure (in sys alloc) */ + else { + nb = pad_request(bytes); + if (ms->treemap != 0 && (mem = tmalloc_large(ms, nb)) != 0) { + check_malloced_chunk(ms, mem, nb); + goto postaction; + } + } + + if (nb <= ms->dvsize) { + size_t rsize = ms->dvsize - nb; + mchunkptr p = ms->dv; + if (rsize >= MIN_CHUNK_SIZE) { /* split dv */ + mchunkptr r = ms->dv = chunk_plus_offset(p, nb); + ms->dvsize = rsize; + set_size_and_pinuse_of_free_chunk(r, rsize); + set_size_and_pinuse_of_inuse_chunk(ms, p, nb); + } + else { /* exhaust dv */ + size_t dvs = ms->dvsize; + ms->dvsize = 0; + ms->dv = 0; + set_inuse_and_pinuse(ms, p, dvs); + } + mem = chunk2mem(p); + check_malloced_chunk(ms, mem, nb); + goto postaction; + } + + else if (nb < ms->topsize) { /* Split top */ + size_t rsize = ms->topsize -= nb; + mchunkptr p = ms->top; + mchunkptr r = ms->top = chunk_plus_offset(p, nb); + r->head = rsize | PINUSE_BIT; + set_size_and_pinuse_of_inuse_chunk(ms, p, nb); + mem = chunk2mem(p); + check_top_chunk(ms, ms->top); + check_malloced_chunk(ms, mem, nb); + goto postaction; + } + + mem = sys_alloc(ms, nb); + + postaction: + POSTACTION(ms); + return mem; + } + + return 0; +} + +void mspace_free(mspace msp, void* mem) { + if (mem != 0) { + mchunkptr p = mem2chunk(mem); +#if FOOTERS + mstate fm = get_mstate_for(p); + msp = msp; /* placate people compiling -Wunused */ +#else /* FOOTERS */ + mstate fm = (mstate)msp; +#endif /* FOOTERS */ + if (!ok_magic(fm)) { + USAGE_ERROR_ACTION(fm, p); + return; + } + if (!PREACTION(fm)) { + check_inuse_chunk(fm, p); + if (RTCHECK(ok_address(fm, p) && ok_inuse(p))) { + size_t psize = chunksize(p); + mchunkptr next = chunk_plus_offset(p, psize); + if (!pinuse(p)) { + size_t prevsize = p->prev_foot; + if (is_mmapped(p)) { + psize += prevsize + MMAP_FOOT_PAD; + if (CALL_MUNMAP((char*)p - prevsize, psize) == 0) + fm->footprint -= psize; + goto postaction; + } + else { + mchunkptr prev = chunk_minus_offset(p, prevsize); + psize += prevsize; + p = prev; + if (RTCHECK(ok_address(fm, prev))) { /* consolidate backward */ + if (p != fm->dv) { + unlink_chunk(fm, p, prevsize); + } + else if ((next->head & INUSE_BITS) == INUSE_BITS) { + fm->dvsize = psize; + set_free_with_pinuse(p, psize, next); + goto postaction; + } + } + else + goto erroraction; + } + } + + if (RTCHECK(ok_next(p, next) && ok_pinuse(next))) { + if (!cinuse(next)) { /* consolidate forward */ + if (next == fm->top) { + size_t tsize = fm->topsize += psize; + fm->top = p; + p->head = tsize | PINUSE_BIT; + if (p == fm->dv) { + fm->dv = 0; + fm->dvsize = 0; + } + if (should_trim(fm, tsize)) + sys_trim(fm, 0); + goto postaction; + } + else if (next == fm->dv) { + size_t dsize = fm->dvsize += psize; + fm->dv = p; + set_size_and_pinuse_of_free_chunk(p, dsize); + goto postaction; + } + else { + size_t nsize = chunksize(next); + psize += nsize; + unlink_chunk(fm, next, nsize); + set_size_and_pinuse_of_free_chunk(p, psize); + if (p == fm->dv) { + fm->dvsize = psize; + goto postaction; + } + } + } + else + set_free_with_pinuse(p, psize, next); + + if (is_small(psize)) { + insert_small_chunk(fm, p, psize); + check_free_chunk(fm, p); + } + else { + tchunkptr tp = (tchunkptr)p; + insert_large_chunk(fm, tp, psize); + check_free_chunk(fm, p); + if (--fm->release_checks == 0) + release_unused_segments(fm); + } + goto postaction; + } + } + erroraction: + USAGE_ERROR_ACTION(fm, p); + postaction: + POSTACTION(fm); + } + } +} + +void* mspace_calloc(mspace msp, size_t n_elements, size_t elem_size) { + void* mem; + size_t req = 0; + mstate ms = (mstate)msp; + if (!ok_magic(ms)) { + USAGE_ERROR_ACTION(ms,ms); + return 0; + } + if (n_elements != 0) { + req = n_elements * elem_size; + if (((n_elements | elem_size) & ~(size_t)0xffff) && + (req / n_elements != elem_size)) + req = MAX_SIZE_T; /* force downstream failure on overflow */ + } + mem = internal_malloc(ms, req); + if (mem != 0 && calloc_must_clear(mem2chunk(mem))) + memset(mem, 0, req); + return mem; +} + +void* mspace_realloc(mspace msp, void* oldmem, size_t bytes) { + if (oldmem == 0) + return mspace_malloc(msp, bytes); +#ifdef REALLOC_ZERO_BYTES_FREES + if (bytes == 0) { + mspace_free(msp, oldmem); + return 0; + } +#endif /* REALLOC_ZERO_BYTES_FREES */ + else { +#if FOOTERS + mchunkptr p = mem2chunk(oldmem); + mstate ms = get_mstate_for(p); +#else /* FOOTERS */ + mstate ms = (mstate)msp; +#endif /* FOOTERS */ + if (!ok_magic(ms)) { + USAGE_ERROR_ACTION(ms,ms); + return 0; + } + return internal_realloc(ms, oldmem, bytes); + } +} + +void* mspace_memalign(mspace msp, size_t alignment, size_t bytes) { + mstate ms = (mstate)msp; + if (!ok_magic(ms)) { + USAGE_ERROR_ACTION(ms,ms); + return 0; + } + return internal_memalign(ms, alignment, bytes); +} + +void** mspace_independent_calloc(mspace msp, size_t n_elements, + size_t elem_size, void* chunks[]) { + size_t sz = elem_size; /* serves as 1-element array */ + mstate ms = (mstate)msp; + if (!ok_magic(ms)) { + USAGE_ERROR_ACTION(ms,ms); + return 0; + } + return ialloc(ms, n_elements, &sz, 3, chunks); +} + +void** mspace_independent_comalloc(mspace msp, size_t n_elements, + size_t sizes[], void* chunks[]) { + mstate ms = (mstate)msp; + if (!ok_magic(ms)) { + USAGE_ERROR_ACTION(ms,ms); + return 0; + } + return ialloc(ms, n_elements, sizes, 0, chunks); +} + +int mspace_trim(mspace msp, size_t pad) { + int result = 0; + mstate ms = (mstate)msp; + if (ok_magic(ms)) { + if (!PREACTION(ms)) { + result = sys_trim(ms, pad); + POSTACTION(ms); + } + } + else { + USAGE_ERROR_ACTION(ms,ms); + } + return result; +} + +void mspace_malloc_stats(mspace msp) { + mstate ms = (mstate)msp; + if (ok_magic(ms)) { + internal_malloc_stats(ms); + } + else { + USAGE_ERROR_ACTION(ms,ms); + } +} + +size_t mspace_footprint(mspace msp) { + size_t result = 0; + mstate ms = (mstate)msp; + if (ok_magic(ms)) { + result = ms->footprint; + } + else { + USAGE_ERROR_ACTION(ms,ms); + } + return result; +} + + +size_t mspace_max_footprint(mspace msp) { + size_t result = 0; + mstate ms = (mstate)msp; + if (ok_magic(ms)) { + result = ms->max_footprint; + } + else { + USAGE_ERROR_ACTION(ms,ms); + } + return result; +} + + +#if !NO_MALLINFO +struct mallinfo mspace_mallinfo(mspace msp) { + mstate ms = (mstate)msp; + if (!ok_magic(ms)) { + USAGE_ERROR_ACTION(ms,ms); + } + return internal_mallinfo(ms); +} +#endif /* NO_MALLINFO */ + +size_t mspace_usable_size(void* mem) { + if (mem != 0) { + mchunkptr p = mem2chunk(mem); + if (is_inuse(p)) + return chunksize(p) - overhead_for(p); + } + return 0; +} + +int mspace_mallopt(int param_number, int value) { + return change_mparam(param_number, value); +} + +#endif /* MSPACES */ + + +/* -------------------- Alternative MORECORE functions ------------------- */ + +/* + Guidelines for creating a custom version of MORECORE: + + * For best performance, MORECORE should allocate in multiples of pagesize. + * MORECORE may allocate more memory than requested. (Or even less, + but this will usually result in a malloc failure.) + * MORECORE must not allocate memory when given argument zero, but + instead return one past the end address of memory from previous + nonzero call. + * For best performance, consecutive calls to MORECORE with positive + arguments should return increasing addresses, indicating that + space has been contiguously extended. + * Even though consecutive calls to MORECORE need not return contiguous + addresses, it must be OK for malloc'ed chunks to span multiple + regions in those cases where they do happen to be contiguous. + * MORECORE need not handle negative arguments -- it may instead + just return MFAIL when given negative arguments. + Negative arguments are always multiples of pagesize. MORECORE + must not misinterpret negative args as large positive unsigned + args. You can suppress all such calls from even occurring by defining + MORECORE_CANNOT_TRIM, + + As an example alternative MORECORE, here is a custom allocator + kindly contributed for pre-OSX macOS. It uses virtually but not + necessarily physically contiguous non-paged memory (locked in, + present and won't get swapped out). You can use it by uncommenting + this section, adding some #includes, and setting up the appropriate + defines above: + + #define MORECORE osMoreCore + + There is also a shutdown routine that should somehow be called for + cleanup upon program exit. + + #define MAX_POOL_ENTRIES 100 + #define MINIMUM_MORECORE_SIZE (64 * 1024U) + static int next_os_pool; + void *our_os_pools[MAX_POOL_ENTRIES]; + + void *osMoreCore(int size) + { + void *ptr = 0; + static void *sbrk_top = 0; + + if (size > 0) + { + if (size < MINIMUM_MORECORE_SIZE) + size = MINIMUM_MORECORE_SIZE; + if (CurrentExecutionLevel() == kTaskLevel) + ptr = PoolAllocateResident(size + RM_PAGE_SIZE, 0); + if (ptr == 0) + { + return (void *) MFAIL; + } + // save ptrs so they can be freed during cleanup + our_os_pools[next_os_pool] = ptr; + next_os_pool++; + ptr = (void *) ((((size_t) ptr) + RM_PAGE_MASK) & ~RM_PAGE_MASK); + sbrk_top = (char *) ptr + size; + return ptr; + } + else if (size < 0) + { + // we don't currently support shrink behavior + return (void *) MFAIL; + } + else + { + return sbrk_top; + } + } + + // cleanup any allocated memory pools + // called as last thing before shutting down driver + + void osCleanupMem(void) + { + void **ptr; + + for (ptr = our_os_pools; ptr < &our_os_pools[MAX_POOL_ENTRIES]; ptr++) + if (*ptr) + { + PoolDeallocate(*ptr); + *ptr = 0; + } + } + +*/ + + +/* ----------------------------------------------------------------------- +History: + V2.8.4 Wed May 27 09:56:23 2009 Doug Lea (dl at gee) + * Use zeros instead of prev foot for is_mmapped + * Add mspace_track_large_chunks; thanks to Jean Brouwers + * Fix set_inuse in internal_realloc; thanks to Jean Brouwers + * Fix insufficient sys_alloc padding when using 16byte alignment + * Fix bad error check in mspace_footprint + * Adaptations for ptmalloc; thanks to Wolfram Gloger. + * Reentrant spin locks; thanks to Earl Chew and others + * Win32 improvements; thanks to Niall Douglas and Earl Chew + * Add NO_SEGMENT_TRAVERSAL and MAX_RELEASE_CHECK_RATE options + * Extension hook in malloc_state + * Various small adjustments to reduce warnings on some compilers + * Various configuration extensions/changes for more platforms. Thanks + to all who contributed these. + + V2.8.3 Thu Sep 22 11:16:32 2005 Doug Lea (dl at gee) + * Add max_footprint functions + * Ensure all appropriate literals are size_t + * Fix conditional compilation problem for some #define settings + * Avoid concatenating segments with the one provided + in create_mspace_with_base + * Rename some variables to avoid compiler shadowing warnings + * Use explicit lock initialization. + * Better handling of sbrk interference. + * Simplify and fix segment insertion, trimming and mspace_destroy + * Reinstate REALLOC_ZERO_BYTES_FREES option from 2.7.x + * Thanks especially to Dennis Flanagan for help on these. + + V2.8.2 Sun Jun 12 16:01:10 2005 Doug Lea (dl at gee) + * Fix memalign brace error. + + V2.8.1 Wed Jun 8 16:11:46 2005 Doug Lea (dl at gee) + * Fix improper #endif nesting in C++ + * Add explicit casts needed for C++ + + V2.8.0 Mon May 30 14:09:02 2005 Doug Lea (dl at gee) + * Use trees for large bins + * Support mspaces + * Use segments to unify sbrk-based and mmap-based system allocation, + removing need for emulation on most platforms without sbrk. + * Default safety checks + * Optional footer checks. Thanks to William Robertson for the idea. + * Internal code refactoring + * Incorporate suggestions and platform-specific changes. + Thanks to Dennis Flanagan, Colin Plumb, Niall Douglas, + Aaron Bachmann, Emery Berger, and others. + * Speed up non-fastbin processing enough to remove fastbins. + * Remove useless cfree() to avoid conflicts with other apps. + * Remove internal memcpy, memset. Compilers handle builtins better. + * Remove some options that no one ever used and rename others. + + V2.7.2 Sat Aug 17 09:07:30 2002 Doug Lea (dl at gee) + * Fix malloc_state bitmap array misdeclaration + + V2.7.1 Thu Jul 25 10:58:03 2002 Doug Lea (dl at gee) + * Allow tuning of FIRST_SORTED_BIN_SIZE + * Use PTR_UINT as type for all ptr->int casts. Thanks to John Belmonte. + * Better detection and support for non-contiguousness of MORECORE. + Thanks to Andreas Mueller, Conal Walsh, and Wolfram Gloger + * Bypass most of malloc if no frees. Thanks To Emery Berger. + * Fix freeing of old top non-contiguous chunk im sysmalloc. + * Raised default trim and map thresholds to 256K. + * Fix mmap-related #defines. Thanks to Lubos Lunak. + * Fix copy macros; added LACKS_FCNTL_H. Thanks to Neal Walfield. + * Branch-free bin calculation + * Default trim and mmap thresholds now 256K. + + V2.7.0 Sun Mar 11 14:14:06 2001 Doug Lea (dl at gee) + * Introduce independent_comalloc and independent_calloc. + Thanks to Michael Pachos for motivation and help. + * Make optional .h file available + * Allow > 2GB requests on 32bit systems. + * new WIN32 sbrk, mmap, munmap, lock code from <Walter@GeNeSys-e.de>. + Thanks also to Andreas Mueller <a.mueller at paradatec.de>, + and Anonymous. + * Allow override of MALLOC_ALIGNMENT (Thanks to Ruud Waij for + helping test this.) + * memalign: check alignment arg + * realloc: don't try to shift chunks backwards, since this + leads to more fragmentation in some programs and doesn't + seem to help in any others. + * Collect all cases in malloc requiring system memory into sysmalloc + * Use mmap as backup to sbrk + * Place all internal state in malloc_state + * Introduce fastbins (although similar to 2.5.1) + * Many minor tunings and cosmetic improvements + * Introduce USE_PUBLIC_MALLOC_WRAPPERS, USE_MALLOC_LOCK + * Introduce MALLOC_FAILURE_ACTION, MORECORE_CONTIGUOUS + Thanks to Tony E. Bennett <tbennett@nvidia.com> and others. + * Include errno.h to support default failure action. + + V2.6.6 Sun Dec 5 07:42:19 1999 Doug Lea (dl at gee) + * return null for negative arguments + * Added Several WIN32 cleanups from Martin C. Fong <mcfong at yahoo.com> + * Add 'LACKS_SYS_PARAM_H' for those systems without 'sys/param.h' + (e.g. WIN32 platforms) + * Cleanup header file inclusion for WIN32 platforms + * Cleanup code to avoid Microsoft Visual C++ compiler complaints + * Add 'USE_DL_PREFIX' to quickly allow co-existence with existing + memory allocation routines + * Set 'malloc_getpagesize' for WIN32 platforms (needs more work) + * Use 'assert' rather than 'ASSERT' in WIN32 code to conform to + usage of 'assert' in non-WIN32 code + * Improve WIN32 'sbrk()' emulation's 'findRegion()' routine to + avoid infinite loop + * Always call 'fREe()' rather than 'free()' + + V2.6.5 Wed Jun 17 15:57:31 1998 Doug Lea (dl at gee) + * Fixed ordering problem with boundary-stamping + + V2.6.3 Sun May 19 08:17:58 1996 Doug Lea (dl at gee) + * Added pvalloc, as recommended by H.J. Liu + * Added 64bit pointer support mainly from Wolfram Gloger + * Added anonymously donated WIN32 sbrk emulation + * Malloc, calloc, getpagesize: add optimizations from Raymond Nijssen + * malloc_extend_top: fix mask error that caused wastage after + foreign sbrks + * Add linux mremap support code from HJ Liu + + V2.6.2 Tue Dec 5 06:52:55 1995 Doug Lea (dl at gee) + * Integrated most documentation with the code. + * Add support for mmap, with help from + Wolfram Gloger (Gloger@lrz.uni-muenchen.de). + * Use last_remainder in more cases. + * Pack bins using idea from colin@nyx10.cs.du.edu + * Use ordered bins instead of best-fit threshhold + * Eliminate block-local decls to simplify tracing and debugging. + * Support another case of realloc via move into top + * Fix error occuring when initial sbrk_base not word-aligned. + * Rely on page size for units instead of SBRK_UNIT to + avoid surprises about sbrk alignment conventions. + * Add mallinfo, mallopt. Thanks to Raymond Nijssen + (raymond@es.ele.tue.nl) for the suggestion. + * Add `pad' argument to malloc_trim and top_pad mallopt parameter. + * More precautions for cases where other routines call sbrk, + courtesy of Wolfram Gloger (Gloger@lrz.uni-muenchen.de). + * Added macros etc., allowing use in linux libc from + H.J. Lu (hjl@gnu.ai.mit.edu) + * Inverted this history list + + V2.6.1 Sat Dec 2 14:10:57 1995 Doug Lea (dl at gee) + * Re-tuned and fixed to behave more nicely with V2.6.0 changes. + * Removed all preallocation code since under current scheme + the work required to undo bad preallocations exceeds + the work saved in good cases for most test programs. + * No longer use return list or unconsolidated bins since + no scheme using them consistently outperforms those that don't + given above changes. + * Use best fit for very large chunks to prevent some worst-cases. + * Added some support for debugging + + V2.6.0 Sat Nov 4 07:05:23 1995 Doug Lea (dl at gee) + * Removed footers when chunks are in use. Thanks to + Paul Wilson (wilson@cs.texas.edu) for the suggestion. + + V2.5.4 Wed Nov 1 07:54:51 1995 Doug Lea (dl at gee) + * Added malloc_trim, with help from Wolfram Gloger + (wmglo@Dent.MED.Uni-Muenchen.DE). + + V2.5.3 Tue Apr 26 10:16:01 1994 Doug Lea (dl at g) + + V2.5.2 Tue Apr 5 16:20:40 1994 Doug Lea (dl at g) + * realloc: try to expand in both directions + * malloc: swap order of clean-bin strategy; + * realloc: only conditionally expand backwards + * Try not to scavenge used bins + * Use bin counts as a guide to preallocation + * Occasionally bin return list chunks in first scan + * Add a few optimizations from colin@nyx10.cs.du.edu + + V2.5.1 Sat Aug 14 15:40:43 1993 Doug Lea (dl at g) + * faster bin computation & slightly different binning + * merged all consolidations to one part of malloc proper + (eliminating old malloc_find_space & malloc_clean_bin) + * Scan 2 returns chunks (not just 1) + * Propagate failure in realloc if malloc returns 0 + * Add stuff to allow compilation on non-ANSI compilers + from kpv@research.att.com + + V2.5 Sat Aug 7 07:41:59 1993 Doug Lea (dl at g.oswego.edu) + * removed potential for odd address access in prev_chunk + * removed dependency on getpagesize.h + * misc cosmetics and a bit more internal documentation + * anticosmetics: mangled names in macros to evade debugger strangeness + * tested on sparc, hp-700, dec-mips, rs6000 + with gcc & native cc (hp, dec only) allowing + Detlefs & Zorn comparison study (in SIGPLAN Notices.) + + Trial version Fri Aug 28 13:14:29 1992 Doug Lea (dl at g.oswego.edu) + * Based loosely on libg++-1.2X malloc. (It retains some of the overall + structure of old version, but most details differ.) + +*/ + +#endif diff --git a/drivers/nedmalloc/nedmalloc.cpp b/drivers/nedmalloc/nedmalloc.cpp index 8845d96549..9aac277a2a 100644 --- a/drivers/nedmalloc/nedmalloc.cpp +++ b/drivers/nedmalloc/nedmalloc.cpp @@ -1,1467 +1,1467 @@ -#ifdef NEDMALLOC_ENABLED
-/* Alternative malloc implementation for multiple threads without
-lock contention based on dlmalloc. (C) 2005-2009 Niall Douglas
-
-Boost Software License - Version 1.0 - August 17th, 2003
-
-Permission is hereby granted, free of charge, to any person or organization
-obtaining a copy of the software and accompanying documentation covered by
-this license (the "Software") to use, reproduce, display, distribute,
-execute, and transmit the Software, and to prepare derivative works of the
-Software, and to permit third-parties to whom the Software is furnished to
-do so, all subject to the following:
-
-The copyright notices in the Software and this entire statement, including
-the above license grant, this restriction and the following disclaimer,
-must be included in all copies of the Software, in whole or in part, and
-all derivative works of the Software, unless such copies or derivative
-works are solely in the form of machine-executable object code generated by
-a source language processor.
-
-THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
-IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
-FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT
-SHALL THE COPYRIGHT HOLDERS OR ANYONE DISTRIBUTING THE SOFTWARE BE LIABLE
-FOR ANY DAMAGES OR OTHER LIABILITY, WHETHER IN CONTRACT, TORT OR OTHERWISE,
-ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
-DEALINGS IN THE SOFTWARE.
-*/
-
-#ifdef _MSC_VER
-/* Enable full aliasing on MSVC */
-/*#pragma optimize("a", on)*/
-#pragma warning(push)
-#pragma warning(disable:4100) /* unreferenced formal parameter */
-#pragma warning(disable:4127) /* conditional expression is constant */
-#pragma warning(disable:4706) /* assignment within conditional expression */
-#endif
-
-/*#define ENABLE_TOLERANT_NEDMALLOC 1*/
-/*#define ENABLE_FAST_HEAP_DETECTION 1*/
-/*#define NEDMALLOC_DEBUG 1*/
-
-/*#define FULLSANITYCHECKS*/
-/* If link time code generation is on, don't force or prevent inlining */
-#if defined(_MSC_VER) && defined(NEDMALLOC_DLL_EXPORTS)
-#define FORCEINLINE
-#define NOINLINE
-#endif
-
-
-#include "nedmalloc.h"
-#ifdef WIN32
- #include <malloc.h>
- #include <stddef.h>
-#endif
-#if USE_ALLOCATOR==1
- #define MSPACES 1
- #define ONLY_MSPACES 1
-#endif
-#define USE_DL_PREFIX 1
-#ifndef USE_LOCKS
- #define USE_LOCKS 1
-#endif
-#define FOOTERS 1 /* Need to enable footers so frees lock the right mspace */
-#ifndef NEDMALLOC_DEBUG
- #if defined(DEBUG) || defined(_DEBUG)
- #define NEDMALLOC_DEBUG 1
- #else
- #define NEDMALLOC_DEBUG 0
- #endif
-#endif
-/* We need to consistently define DEBUG=0|1, _DEBUG and NDEBUG for dlmalloc */
-#undef DEBUG
-#undef _DEBUG
-#if NEDMALLOC_DEBUG
- #define _DEBUG
- #define DEBUG 1
-#else
- #define DEBUG 0
-#endif
-#ifdef NDEBUG /* Disable assert checking on release builds */
- #undef DEBUG
- #undef _DEBUG
-#endif
-/* The default of 64Kb means we spend too much time kernel-side */
-#ifndef DEFAULT_GRANULARITY
-#define DEFAULT_GRANULARITY (1*1024*1024)
-#if DEBUG
-#define DEFAULT_GRANULARITY_ALIGNED
-#endif
-#endif
-/*#define USE_SPIN_LOCKS 0*/
-
-
-#include "malloc.c.h"
-#ifdef NDEBUG /* Disable assert checking on release builds */
- #undef DEBUG
-#elif !NEDMALLOC_DEBUG
- #ifdef __GNUC__
- #warning DEBUG is defined so allocator will run with assert checking! Define NDEBUG to run at full speed.
- #elif defined(_MSC_VER)
- #pragma message(__FILE__ ": WARNING: DEBUG is defined so allocator will run with assert checking! Define NDEBUG to run at full speed.")
- #endif
-#endif
-
-/* The maximum concurrent threads in a pool possible */
-#ifndef MAXTHREADSINPOOL
-#define MAXTHREADSINPOOL 16
-#endif
-/* The maximum number of threadcaches which can be allocated */
-#ifndef THREADCACHEMAXCACHES
-#define THREADCACHEMAXCACHES 256
-#endif
-/* The maximum size to be allocated from the thread cache */
-#ifndef THREADCACHEMAX
-#define THREADCACHEMAX 8192
-#endif
-#if 0
-/* The number of cache entries for finer grained bins. This is (topbitpos(THREADCACHEMAX)-4)*2 */
-#define THREADCACHEMAXBINS ((13-4)*2)
-#else
-/* The number of cache entries. This is (topbitpos(THREADCACHEMAX)-4) */
-#define THREADCACHEMAXBINS (13-4)
-#endif
-/* Point at which the free space in a thread cache is garbage collected */
-#ifndef THREADCACHEMAXFREESPACE
-#define THREADCACHEMAXFREESPACE (512*1024)
-#endif
-
-
-#ifdef WIN32
- #define TLSVAR DWORD
- #define TLSALLOC(k) (*(k)=TlsAlloc(), TLS_OUT_OF_INDEXES==*(k))
- #define TLSFREE(k) (!TlsFree(k))
- #define TLSGET(k) TlsGetValue(k)
- #define TLSSET(k, a) (!TlsSetValue(k, a))
- #ifdef DEBUG
-static LPVOID ChkedTlsGetValue(DWORD idx)
-{
- LPVOID ret=TlsGetValue(idx);
- assert(S_OK==GetLastError());
- return ret;
-}
- #undef TLSGET
- #define TLSGET(k) ChkedTlsGetValue(k)
- #endif
-#else
- #define TLSVAR pthread_key_t
- #define TLSALLOC(k) pthread_key_create(k, 0)
- #define TLSFREE(k) pthread_key_delete(k)
- #define TLSGET(k) pthread_getspecific(k)
- #define TLSSET(k, a) pthread_setspecific(k, a)
-#endif
-
-#if defined(__cplusplus)
-#if !defined(NO_NED_NAMESPACE)
-namespace nedalloc {
-#else
-extern "C" {
-#endif
-#endif
-
-#if USE_ALLOCATOR==0
-static void *unsupported_operation(const char *opname) THROWSPEC
-{
- fprintf(stderr, "nedmalloc: The operation %s is not supported under this build configuration\n", opname);
- abort();
- return 0;
-}
-static size_t mspacecounter=(size_t) 0xdeadbeef;
-#endif
-#ifndef ENABLE_FAST_HEAP_DETECTION
-static void *RESTRICT leastusedaddress;
-static size_t largestusedblock;
-#endif
-
-static FORCEINLINE void *CallMalloc(void *RESTRICT mspace, size_t size, size_t alignment) THROWSPEC
-{
- void *RESTRICT ret=0;
- size_t _alignment=alignment;
-#if USE_MAGIC_HEADERS
- size_t *_ret=0;
- size+=alignment+3*sizeof(size_t);
- _alignment=0;
-#endif
-#if USE_ALLOCATOR==0
- ret=_alignment ?
-#ifdef _MSC_VER
- /* This is the MSVCRT equivalent */
- _aligned_malloc(size, _alignment)
-#elif defined(__linux__) || defined(__FreeBSD__) || defined(__APPLE__)
- /* This is the glibc/ptmalloc2/dlmalloc/BSD libc equivalent. */
- memalign(_alignment, size)
-#else
-#error Cannot aligned allocate with the memory allocator of an unknown system!
-#endif
- : malloc(size);
-#elif USE_ALLOCATOR==1
- ret=_alignment ? mspace_memalign((mstate) mspace, _alignment, size) : mspace_malloc((mstate) mspace, size);
-#ifndef ENABLE_FAST_HEAP_DETECTION
- if(ret)
- {
- size_t truesize=chunksize(mem2chunk(ret));
- if(!leastusedaddress || (void *)((mstate) mspace)->least_addr<leastusedaddress) leastusedaddress=(void *)((mstate) mspace)->least_addr;
- if(!largestusedblock || truesize>largestusedblock) largestusedblock=(truesize+mparams.page_size) & ~(mparams.page_size-1);
- }
-#endif
-#endif
- if(!ret) return 0;
-#if USE_MAGIC_HEADERS
- _ret=(size_t *) ret;
- ret=(void *)(_ret+3);
- if(alignment) ret=(void *)(((size_t) ret+alignment-1)&~(alignment-1));
- for(; _ret<(size_t *)ret-2; _ret++) *_ret=*(size_t *)"NEDMALOC";
- _ret[0]=(size_t) mspace;
- _ret[1]=size-3*sizeof(size_t);
-#endif
- return ret;
-}
-
-static FORCEINLINE void *CallCalloc(void *RESTRICT mspace, size_t size, size_t alignment) THROWSPEC
-{
- void *RESTRICT ret=0;
-#if USE_MAGIC_HEADERS
- size_t *_ret=0;
- size+=alignment+3*sizeof(size_t);
-#endif
-#if USE_ALLOCATOR==0
- ret=calloc(1, size);
-#elif USE_ALLOCATOR==1
- ret=mspace_calloc((mstate) mspace, 1, size);
-#ifndef ENABLE_FAST_HEAP_DETECTION
- if(ret)
- {
- size_t truesize=chunksize(mem2chunk(ret));
- if(!leastusedaddress || (void *)((mstate) mspace)->least_addr<leastusedaddress) leastusedaddress=(void *)((mstate) mspace)->least_addr;
- if(!largestusedblock || truesize>largestusedblock) largestusedblock=(truesize+mparams.page_size) & ~(mparams.page_size-1);
- }
-#endif
-#endif
- if(!ret) return 0;
-#if USE_MAGIC_HEADERS
- _ret=(size_t *) ret;
- ret=(void *)(_ret+3);
- if(alignment) ret=(void *)(((size_t) ret+alignment-1)&~(alignment-1));
- for(; _ret<(size_t *)ret-2; _ret++) *_ret=*(size_t *) "NEDMALOC";
- _ret[0]=(size_t) mspace;
- _ret[1]=size-3*sizeof(size_t);
-#endif
- return ret;
-}
-
-static FORCEINLINE void *CallRealloc(void *RESTRICT mspace, void *RESTRICT mem, int isforeign, size_t oldsize, size_t newsize) THROWSPEC
-{
- void *RESTRICT ret=0;
-#if USE_MAGIC_HEADERS
- mstate oldmspace=0;
- size_t *_ret=0, *_mem=(size_t *) mem-3;
-#endif
- if(isforeign)
- { /* Transfer */
-#if USE_MAGIC_HEADERS
- assert(_mem[0]!=*(size_t *) "NEDMALOC");
-#endif
- if((ret=CallMalloc(mspace, newsize, 0)))
- {
-#if defined(DEBUG)
- printf("*** nedmalloc frees system allocated block %p\n", mem);
-#endif
- memcpy(ret, mem, oldsize<newsize ? oldsize : newsize);
- free(mem);
- }
- return ret;
- }
-#if USE_MAGIC_HEADERS
- assert(_mem[0]==*(size_t *) "NEDMALOC");
- newsize+=3*sizeof(size_t);
- oldmspace=(mstate) _mem[1];
- assert(oldsize>=_mem[2]);
- for(; *_mem==*(size_t *) "NEDMALOC"; *_mem--=*(size_t *) "nedmaloc");
- mem=(void *)(++_mem);
-#endif
-#if USE_ALLOCATOR==0
- ret=realloc(mem, newsize);
-#elif USE_ALLOCATOR==1
- ret=mspace_realloc((mstate) mspace, mem, newsize);
-#ifndef ENABLE_FAST_HEAP_DETECTION
- if(ret)
- {
- size_t truesize=chunksize(mem2chunk(ret));
- if(!largestusedblock || truesize>largestusedblock) largestusedblock=(truesize+mparams.page_size) & ~(mparams.page_size-1);
- }
-#endif
-#endif
- if(!ret)
- { /* Put it back the way it was */
-#if USE_MAGIC_HEADERS
- for(; *_mem==0; *_mem++=*(size_t *) "NEDMALOC");
-#endif
- return 0;
- }
-#if USE_MAGIC_HEADERS
- _ret=(size_t *) ret;
- ret=(void *)(_ret+3);
- for(; _ret<(size_t *)ret-2; _ret++) *_ret=*(size_t *) "NEDMALOC";
- _ret[0]=(size_t) mspace;
- _ret[1]=newsize-3*sizeof(size_t);
-#endif
- return ret;
-}
-
-static FORCEINLINE void CallFree(void *RESTRICT mspace, void *RESTRICT mem, int isforeign) THROWSPEC
-{
-#if USE_MAGIC_HEADERS
- mstate oldmspace=0;
- size_t *_mem=(size_t *) mem-3, oldsize=0;
-#endif
- if(isforeign)
- {
-#if USE_MAGIC_HEADERS
- assert(_mem[0]!=*(size_t *) "NEDMALOC");
-#endif
-#if defined(DEBUG)
- printf("*** nedmalloc frees system allocated block %p\n", mem);
-#endif
- free(mem);
- return;
- }
-#if USE_MAGIC_HEADERS
- assert(_mem[0]==*(size_t *) "NEDMALOC");
- oldmspace=(mstate) _mem[1];
- oldsize=_mem[2];
- for(; *_mem==*(size_t *) "NEDMALOC"; *_mem--=*(size_t *) "nedmaloc");
- mem=(void *)(++_mem);
-#endif
-#if USE_ALLOCATOR==0
- free(mem);
-#elif USE_ALLOCATOR==1
- mspace_free((mstate) mspace, mem);
-#endif
-}
-
-static NEDMALLOCNOALIASATTR mstate nedblkmstate(void *RESTRICT mem) THROWSPEC
-{
- if(mem)
- {
-#if USE_MAGIC_HEADERS
- size_t *_mem=(size_t *) mem-3;
- if(_mem[0]==*(size_t *) "NEDMALOC")
- {
- return (mstate) _mem[1];
- }
- else return 0;
-#else
-#if USE_ALLOCATOR==0
- /* Fail everything */
- return 0;
-#elif USE_ALLOCATOR==1
-#ifdef ENABLE_FAST_HEAP_DETECTION
-#ifdef WIN32
- /* On Windows for RELEASE both x86 and x64 the NT heap precedes each block with an eight byte header
- which looks like:
- normal: 4 bytes of size, 4 bytes of [char < 64, char < 64, char < 64 bit 0 always set, char random ]
- mmaped: 4 bytes of size 4 bytes of [zero, zero, 0xb, zero ]
-
- On Windows for DEBUG both x86 and x64 the preceding four bytes is always 0xfdfdfdfd (no man's land).
- */
-#pragma pack(push, 1)
- struct _HEAP_ENTRY
- {
- USHORT Size;
- USHORT PreviousSize;
- UCHAR Cookie; /* SegmentIndex */
- UCHAR Flags; /* always bit 0 (HEAP_ENTRY_BUSY). bit 1=(HEAP_ENTRY_EXTRA_PRESENT), bit 2=normal block (HEAP_ENTRY_FILL_PATTERN), bit 3=mmap block (HEAP_ENTRY_VIRTUAL_ALLOC). Bit 4 (HEAP_ENTRY_LAST_ENTRY) could be set */
- UCHAR UnusedBytes;
- UCHAR SmallTagIndex; /* fastbin index. Always one of 0x02, 0x03, 0x04 < 0x80 */
- } *RESTRICT he=((struct _HEAP_ENTRY *) mem)-1;
-#pragma pack(pop)
- unsigned int header=((unsigned int *)mem)[-1], mask1=0x8080E100, result1, mask2=0xFFFFFF06, result2;
- result1=header & mask1; /* Positive testing for NT heap */
- result2=header & mask2; /* Positive testing for dlmalloc */
- if(result1==0x00000100 && result2!=0x00000102)
- { /* This is likely a NT heap block */
- return 0;
- }
-#endif
-#ifdef __linux__
- /* On Linux glibc uses ptmalloc2 (really dlmalloc) just as we do, but prev_foot contains rubbish
- when the preceding block is allocated because ptmalloc2 finds the local mstate by rounding the ptr
- down to the nearest megabyte. It's like dlmalloc with FOOTERS disabled. */
- mchunkptr p=mem2chunk(mem);
- mstate fm=get_mstate_for(p);
- /* If it's a ptmalloc2 block, fm is likely to be some crazy value */
- if(!is_aligned(fm)) return 0;
- if((size_t)mem-(size_t)fm>=(size_t)1<<(SIZE_T_BITSIZE-1)) return 0;
- if(ok_magic(fm))
- return fm;
- else
- return 0;
- if(1) { }
-#endif
- else
- {
- mchunkptr p=mem2chunk(mem);
- mstate fm=get_mstate_for(p);
- assert(ok_magic(fm)); /* If this fails, someone tried to free a block twice */
- if(ok_magic(fm))
- return fm;
- }
-#else
-//#ifdef WIN32
-// __try
-//#endif
- {
- /* We try to return zero here if it isn't one of our own blocks, however
- the current block annotation scheme used by dlmalloc makes it impossible
- to be absolutely sure of avoiding a segfault.
-
- mchunkptr->prev_foot = mem-(2*size_t) = mstate ^ mparams.magic for PRECEDING block;
- mchunkptr->head = mem-(1*size_t) = 8 multiple size of this block with bottom three bits = FLAG_BITS
- FLAG_BITS = bit 0 is CINUSE (currently in use unless is mmap), bit 1 is PINUSE (previous block currently
- in use unless mmap), bit 2 is UNUSED and currently is always zero.
- */
- register void *RESTRICT leastusedaddress_=leastusedaddress; /* Cache these to avoid register reloading */
- register size_t largestusedblock_=largestusedblock;
- if(!is_aligned(mem)) return 0; /* Would fail very rarely as all allocators return aligned blocks */
- if(mem<leastusedaddress_) return 0; /* Simple but effective */
- {
- mchunkptr p=mem2chunk(mem);
- mstate fm=0;
- int ismmapped=is_mmapped(p);
- if((!ismmapped && !is_inuse(p)) || (p->head & FLAG4_BIT)) return 0;
- /* Reduced uncertainty by 0.5^2 = 25.0% */
- /* size should never exceed largestusedblock */
- if(chunksize(p)>largestusedblock_) return 0;
- /* Reduced uncertainty by a minimum of 0.5^3 = 12.5%, maximum 0.5^16 = 0.0015% */
- /* Having sanity checked prev_foot and head, check next block */
- if(!ismmapped && (!next_pinuse(p) || (next_chunk(p)->head & FLAG4_BIT))) return 0;
- /* Reduced uncertainty by 0.5^5 = 3.13% or 0.5^18 = 0.00038% */
- #if 0
- /* If previous block is free, check that its next block pointer equals us */
- if(!ismmapped && !pinuse(p))
- if(next_chunk(prev_chunk(p))!=p) return 0;
- /* We could start comparing prev_foot's for similarity but it starts getting slow. */
- #endif
- fm = get_mstate_for(p);
- if(!is_aligned(fm) || (void *)fm<leastusedaddress_) return 0;
- if((size_t)mem-(size_t)fm>=(size_t)1<<(SIZE_T_BITSIZE-1)) return 0;
- assert(ok_magic(fm)); /* If this fails, someone tried to free a block twice */
- if(ok_magic(fm))
- return fm;
- }
- }
-//#ifdef WIN32
-// __except(1) { }
-//#endif
-#endif
-#endif
-#endif
- }
- return 0;
-}
-NEDMALLOCNOALIASATTR size_t nedblksize(int *RESTRICT isforeign, void *RESTRICT mem) THROWSPEC
-{
- if(mem)
- {
- if(isforeign) *isforeign=1;
-#if USE_MAGIC_HEADERS
- {
- size_t *_mem=(size_t *) mem-3;
- if(_mem[0]==*(size_t *) "NEDMALOC")
- {
- mstate mspace=(mstate) _mem[1];
- size_t size=_mem[2];
- if(isforeign) *isforeign=0;
- return size;
- }
- }
-#elif USE_ALLOCATOR==1
- if(nedblkmstate(mem))
- {
- mchunkptr p=mem2chunk(mem);
- if(isforeign) *isforeign=0;
- return chunksize(p)-overhead_for(p);
- }
-#ifdef DEBUG
- else
- {
- int a=1; /* Set breakpoints here if needed */
- }
-#endif
-#endif
-#if defined(ENABLE_TOLERANT_NEDMALLOC) || USE_ALLOCATOR==0
-#ifdef _MSC_VER
- /* This is the MSVCRT equivalent */
- return _msize(mem);
-#elif defined(__linux__)
- /* This is the glibc/ptmalloc2/dlmalloc equivalent. */
- return malloc_usable_size(mem);
-#elif defined(__FreeBSD__) || defined(__APPLE__)
- /* This is the BSD libc equivalent. */
- return malloc_size(mem);
-#else
-#error Cannot tolerate the memory allocator of an unknown system!
-#endif
-#endif
- }
- return 0;
-}
-
-NEDMALLOCNOALIASATTR void nedsetvalue(void *v) THROWSPEC { nedpsetvalue((nedpool *) 0, v); }
-NEDMALLOCNOALIASATTR NEDMALLOCPTRATTR void * nedmalloc(size_t size) THROWSPEC { return nedpmalloc((nedpool *) 0, size); }
-NEDMALLOCNOALIASATTR NEDMALLOCPTRATTR void * nedcalloc(size_t no, size_t size) THROWSPEC { return nedpcalloc((nedpool *) 0, no, size); }
-NEDMALLOCNOALIASATTR NEDMALLOCPTRATTR void * nedrealloc(void *mem, size_t size) THROWSPEC { return nedprealloc((nedpool *) 0, mem, size); }
-NEDMALLOCNOALIASATTR void nedfree(void *mem) THROWSPEC { nedpfree((nedpool *) 0, mem); }
-NEDMALLOCNOALIASATTR NEDMALLOCPTRATTR void * nedmemalign(size_t alignment, size_t bytes) THROWSPEC { return nedpmemalign((nedpool *) 0, alignment, bytes); }
-NEDMALLOCNOALIASATTR struct nedmallinfo nedmallinfo(void) THROWSPEC { return nedpmallinfo((nedpool *) 0); }
-NEDMALLOCNOALIASATTR int nedmallopt(int parno, int value) THROWSPEC { return nedpmallopt((nedpool *) 0, parno, value); }
-NEDMALLOCNOALIASATTR int nedmalloc_trim(size_t pad) THROWSPEC { return nedpmalloc_trim((nedpool *) 0, pad); }
-void nedmalloc_stats() THROWSPEC { nedpmalloc_stats((nedpool *) 0); }
-NEDMALLOCNOALIASATTR size_t nedmalloc_footprint() THROWSPEC { return nedpmalloc_footprint((nedpool *) 0); }
-NEDMALLOCNOALIASATTR NEDMALLOCPTRATTR void **nedindependent_calloc(size_t elemsno, size_t elemsize, void **chunks) THROWSPEC { return nedpindependent_calloc((nedpool *) 0, elemsno, elemsize, chunks); }
-NEDMALLOCNOALIASATTR NEDMALLOCPTRATTR void **nedindependent_comalloc(size_t elems, size_t *sizes, void **chunks) THROWSPEC { return nedpindependent_comalloc((nedpool *) 0, elems, sizes, chunks); }
-
-struct threadcacheblk_t;
-typedef struct threadcacheblk_t threadcacheblk;
-struct threadcacheblk_t
-{ /* Keep less than 16 bytes on 32 bit systems and 32 bytes on 64 bit systems */
-#ifdef FULLSANITYCHECKS
- unsigned int magic;
-#endif
- unsigned int lastUsed, size;
- threadcacheblk *next, *prev;
-};
-typedef struct threadcache_t
-{
-#ifdef FULLSANITYCHECKS
- unsigned int magic1;
-#endif
- int mymspace; /* Last mspace entry this thread used */
- long threadid;
- unsigned int mallocs, frees, successes;
- size_t freeInCache; /* How much free space is stored in this cache */
- threadcacheblk *bins[(THREADCACHEMAXBINS+1)*2];
-#ifdef FULLSANITYCHECKS
- unsigned int magic2;
-#endif
-} threadcache;
-struct nedpool_t
-{
- MLOCK_T mutex;
- void *uservalue;
- int threads; /* Max entries in m to use */
- threadcache *caches[THREADCACHEMAXCACHES];
- TLSVAR mycache; /* Thread cache for this thread. 0 for unset, negative for use mspace-1 directly, otherwise is cache-1 */
- mstate m[MAXTHREADSINPOOL+1]; /* mspace entries for this pool */
-};
-static nedpool syspool;
-
-static FORCEINLINE NEDMALLOCNOALIASATTR unsigned int size2binidx(size_t _size) THROWSPEC
-{ /* 8=1000 16=10000 20=10100 24=11000 32=100000 48=110000 4096=1000000000000 */
- unsigned int topbit, size=(unsigned int)(_size>>4);
- /* 16=1 20=1 24=1 32=10 48=11 64=100 96=110 128=1000 4096=100000000 */
-
-#if defined(__GNUC__)
- topbit = sizeof(size)*__CHAR_BIT__ - 1 - __builtin_clz(size);
-#elif defined(_MSC_VER) && _MSC_VER>=1300
- {
- unsigned long bsrTopBit;
-
- _BitScanReverse(&bsrTopBit, size);
-
- topbit = bsrTopBit;
- }
-#else
-#if 0
- union {
- unsigned asInt[2];
- double asDouble;
- };
- int n;
-
- asDouble = (double)size + 0.5;
- topbit = (asInt[!FOX_BIGENDIAN] >> 20) - 1023;
-#else
- {
- unsigned int x=size;
- x = x | (x >> 1);
- x = x | (x >> 2);
- x = x | (x >> 4);
- x = x | (x >> 8);
- x = x | (x >>16);
- x = ~x;
- x = x - ((x >> 1) & 0x55555555);
- x = (x & 0x33333333) + ((x >> 2) & 0x33333333);
- x = (x + (x >> 4)) & 0x0F0F0F0F;
- x = x + (x << 8);
- x = x + (x << 16);
- topbit=31 - (x >> 24);
- }
-#endif
-#endif
- return topbit;
-}
-
-
-#ifdef FULLSANITYCHECKS
-static void tcsanitycheck(threadcacheblk **ptr) THROWSPEC
-{
- assert((ptr[0] && ptr[1]) || (!ptr[0] && !ptr[1]));
- if(ptr[0] && ptr[1])
- {
- assert(nedblksize(ptr[0])>=sizeof(threadcacheblk));
- assert(nedblksize(ptr[1])>=sizeof(threadcacheblk));
- assert(*(unsigned int *) "NEDN"==ptr[0]->magic);
- assert(*(unsigned int *) "NEDN"==ptr[1]->magic);
- assert(!ptr[0]->prev);
- assert(!ptr[1]->next);
- if(ptr[0]==ptr[1])
- {
- assert(!ptr[0]->next);
- assert(!ptr[1]->prev);
- }
- }
-}
-static void tcfullsanitycheck(threadcache *tc) THROWSPEC
-{
- threadcacheblk **tcbptr=tc->bins;
- int n;
- for(n=0; n<=THREADCACHEMAXBINS; n++, tcbptr+=2)
- {
- threadcacheblk *b, *ob=0;
- tcsanitycheck(tcbptr);
- for(b=tcbptr[0]; b; ob=b, b=b->next)
- {
- assert(*(unsigned int *) "NEDN"==b->magic);
- assert(!ob || ob->next==b);
- assert(!ob || b->prev==ob);
- }
- }
-}
-#endif
-
-static NOINLINE void RemoveCacheEntries(nedpool *RESTRICT p, threadcache *RESTRICT tc, unsigned int age) THROWSPEC
-{
-#ifdef FULLSANITYCHECKS
- tcfullsanitycheck(tc);
-#endif
- if(tc->freeInCache)
- {
- threadcacheblk **tcbptr=tc->bins;
- int n;
- for(n=0; n<=THREADCACHEMAXBINS; n++, tcbptr+=2)
- {
- threadcacheblk **tcb=tcbptr+1; /* come from oldest end of list */
- /*tcsanitycheck(tcbptr);*/
- for(; *tcb && tc->frees-(*tcb)->lastUsed>=age; )
- {
- threadcacheblk *f=*tcb;
- size_t blksize=f->size; /*nedblksize(f);*/
- assert(blksize<=nedblksize(0, f));
- assert(blksize);
-#ifdef FULLSANITYCHECKS
- assert(*(unsigned int *) "NEDN"==(*tcb)->magic);
-#endif
- *tcb=(*tcb)->prev;
- if(*tcb)
- (*tcb)->next=0;
- else
- *tcbptr=0;
- tc->freeInCache-=blksize;
- assert((long) tc->freeInCache>=0);
- CallFree(0, f, 0);
- /*tcsanitycheck(tcbptr);*/
- }
- }
- }
-#ifdef FULLSANITYCHECKS
- tcfullsanitycheck(tc);
-#endif
-}
-static void DestroyCaches(nedpool *RESTRICT p) THROWSPEC
-{
- if(p->caches)
- {
- threadcache *tc;
- int n;
- for(n=0; n<THREADCACHEMAXCACHES; n++)
- {
- if((tc=p->caches[n]))
- {
- tc->frees++;
- RemoveCacheEntries(p, tc, 0);
- assert(!tc->freeInCache);
- tc->mymspace=-1;
- tc->threadid=0;
- CallFree(0, tc, 0);
- p->caches[n]=0;
- }
- }
- }
-}
-
-static NOINLINE threadcache *AllocCache(nedpool *RESTRICT p) THROWSPEC
-{
- threadcache *tc=0;
- int n, end;
- ACQUIRE_LOCK(&p->mutex);
- for(n=0; n<THREADCACHEMAXCACHES && p->caches[n]; n++);
- if(THREADCACHEMAXCACHES==n)
- { /* List exhausted, so disable for this thread */
- RELEASE_LOCK(&p->mutex);
- return 0;
- }
- tc=p->caches[n]=(threadcache *) CallCalloc(p->m[0], sizeof(threadcache), 0);
- if(!tc)
- {
- RELEASE_LOCK(&p->mutex);
- return 0;
- }
-#ifdef FULLSANITYCHECKS
- tc->magic1=*(unsigned int *)"NEDMALC1";
- tc->magic2=*(unsigned int *)"NEDMALC2";
-#endif
- tc->threadid=(long)(size_t)CURRENT_THREAD;
- for(end=0; p->m[end]; end++);
- tc->mymspace=abs(tc->threadid) % end;
- RELEASE_LOCK(&p->mutex);
- if(TLSSET(p->mycache, (void *)(size_t)(n+1))) abort();
- return tc;
-}
-
-static void *threadcache_malloc(nedpool *RESTRICT p, threadcache *RESTRICT tc, size_t *RESTRICT _size) THROWSPEC
-{
- void *RESTRICT ret=0;
- size_t size=*_size, blksize=0;
- unsigned int bestsize;
- unsigned int idx=size2binidx(size);
- threadcacheblk *RESTRICT blk, **RESTRICT binsptr;
-#ifdef FULLSANITYCHECKS
- tcfullsanitycheck(tc);
-#endif
- /* Calculate best fit bin size */
- bestsize=1<<(idx+4);
-#if 0
- /* Finer grained bin fit */
- idx<<=1;
- if(size>bestsize)
- {
- idx++;
- bestsize+=bestsize>>1;
- }
- if(size>bestsize)
- {
- idx++;
- bestsize=1<<(4+(idx>>1));
- }
-#else
- if(size>bestsize)
- {
- idx++;
- bestsize<<=1;
- }
-#endif
- assert(bestsize>=size);
- if(size<bestsize) size=bestsize;
- assert(size<=THREADCACHEMAX);
- assert(idx<=THREADCACHEMAXBINS);
- binsptr=&tc->bins[idx*2];
- /* Try to match close, but move up a bin if necessary */
- blk=*binsptr;
- if(!blk || blk->size<size)
- { /* Bump it up a bin */
- if(idx<THREADCACHEMAXBINS)
- {
- idx++;
- binsptr+=2;
- blk=*binsptr;
- }
- }
- if(blk)
- {
- blksize=blk->size; /*nedblksize(blk);*/
- assert(nedblksize(0, blk)>=blksize);
- assert(blksize>=size);
- if(blk->next)
- blk->next->prev=0;
- *binsptr=blk->next;
- if(!*binsptr)
- binsptr[1]=0;
-#ifdef FULLSANITYCHECKS
- blk->magic=0;
-#endif
- assert(binsptr[0]!=blk && binsptr[1]!=blk);
- assert(nedblksize(0, blk)>=sizeof(threadcacheblk) && nedblksize(0, blk)<=THREADCACHEMAX+CHUNK_OVERHEAD);
- /*printf("malloc: %p, %p, %p, %lu\n", p, tc, blk, (long) _size);*/
- ret=(void *) blk;
- }
- ++tc->mallocs;
- if(ret)
- {
- assert(blksize>=size);
- ++tc->successes;
- tc->freeInCache-=blksize;
- assert((long) tc->freeInCache>=0);
- }
-#if defined(DEBUG) && 0
- if(!(tc->mallocs & 0xfff))
- {
- printf("*** threadcache=%u, mallocs=%u (%f), free=%u (%f), freeInCache=%u\n", (unsigned int) tc->threadid, tc->mallocs,
- (float) tc->successes/tc->mallocs, tc->frees, (float) tc->successes/tc->frees, (unsigned int) tc->freeInCache);
- }
-#endif
-#ifdef FULLSANITYCHECKS
- tcfullsanitycheck(tc);
-#endif
- *_size=size;
- return ret;
-}
-static NOINLINE void ReleaseFreeInCache(nedpool *RESTRICT p, threadcache *RESTRICT tc, int mymspace) THROWSPEC
-{
- unsigned int age=THREADCACHEMAXFREESPACE/8192;
- /*ACQUIRE_LOCK(&p->m[mymspace]->mutex);*/
- while(age && tc->freeInCache>=THREADCACHEMAXFREESPACE)
- {
- RemoveCacheEntries(p, tc, age);
- /*printf("*** Removing cache entries older than %u (%u)\n", age, (unsigned int) tc->freeInCache);*/
- age>>=1;
- }
- /*RELEASE_LOCK(&p->m[mymspace]->mutex);*/
-}
-static void threadcache_free(nedpool *RESTRICT p, threadcache *RESTRICT tc, int mymspace, void *RESTRICT mem, size_t size) THROWSPEC
-{
- unsigned int bestsize;
- unsigned int idx=size2binidx(size);
- threadcacheblk **RESTRICT binsptr, *RESTRICT tck=(threadcacheblk *) mem;
- assert(size>=sizeof(threadcacheblk) && size<=THREADCACHEMAX+CHUNK_OVERHEAD);
-#ifdef DEBUG
- /* Make sure this is a valid memory block */
- assert(nedblksize(0, mem));
-#endif
-#ifdef FULLSANITYCHECKS
- tcfullsanitycheck(tc);
-#endif
- /* Calculate best fit bin size */
- bestsize=1<<(idx+4);
-#if 0
- /* Finer grained bin fit */
- idx<<=1;
- if(size>bestsize)
- {
- unsigned int biggerbestsize=bestsize+bestsize<<1;
- if(size>=biggerbestsize)
- {
- idx++;
- bestsize=biggerbestsize;
- }
- }
-#endif
- if(bestsize!=size) /* dlmalloc can round up, so we round down to preserve indexing */
- size=bestsize;
- binsptr=&tc->bins[idx*2];
- assert(idx<=THREADCACHEMAXBINS);
- if(tck==*binsptr)
- {
- fprintf(stderr, "nedmalloc: Attempt to free already freed memory block %p - aborting!\n", tck);
- abort();
- }
-#ifdef FULLSANITYCHECKS
- tck->magic=*(unsigned int *) "NEDN";
-#endif
- tck->lastUsed=++tc->frees;
- tck->size=(unsigned int) size;
- tck->next=*binsptr;
- tck->prev=0;
- if(tck->next)
- tck->next->prev=tck;
- else
- binsptr[1]=tck;
- assert(!*binsptr || (*binsptr)->size==tck->size);
- *binsptr=tck;
- assert(tck==tc->bins[idx*2]);
- assert(tc->bins[idx*2+1]==tck || binsptr[0]->next->prev==tck);
- /*printf("free: %p, %p, %p, %lu\n", p, tc, mem, (long) size);*/
- tc->freeInCache+=size;
-#ifdef FULLSANITYCHECKS
- tcfullsanitycheck(tc);
-#endif
-#if 1
- if(tc->freeInCache>=THREADCACHEMAXFREESPACE)
- ReleaseFreeInCache(p, tc, mymspace);
-#endif
-}
-
-
-
-
-static NOINLINE int InitPool(nedpool *RESTRICT p, size_t capacity, int threads) THROWSPEC
-{ /* threads is -1 for system pool */
- ensure_initialization();
- ACQUIRE_MALLOC_GLOBAL_LOCK();
- if(p->threads) goto done;
- if(INITIAL_LOCK(&p->mutex)) goto err;
- if(TLSALLOC(&p->mycache)) goto err;
-#if USE_ALLOCATOR==0
- p->m[0]=(mstate) mspacecounter++;
-#elif USE_ALLOCATOR==1
- if(!(p->m[0]=(mstate) create_mspace(capacity, 1))) goto err;
- p->m[0]->extp=p;
-#endif
- p->threads=(threads<1 || threads>MAXTHREADSINPOOL) ? MAXTHREADSINPOOL : threads;
-done:
- RELEASE_MALLOC_GLOBAL_LOCK();
- return 1;
-err:
- if(threads<0)
- abort(); /* If you can't allocate for system pool, we're screwed */
- DestroyCaches(p);
- if(p->m[0])
- {
-#if USE_ALLOCATOR==1
- destroy_mspace(p->m[0]);
-#endif
- p->m[0]=0;
- }
- if(p->mycache)
- {
- if(TLSFREE(p->mycache)) abort();
- p->mycache=0;
- }
- RELEASE_MALLOC_GLOBAL_LOCK();
- return 0;
-}
-static NOINLINE mstate FindMSpace(nedpool *RESTRICT p, threadcache *RESTRICT tc, int *RESTRICT lastUsed, size_t size) THROWSPEC
-{ /* Gets called when thread's last used mspace is in use. The strategy
- is to run through the list of all available mspaces looking for an
- unlocked one and if we fail, we create a new one so long as we don't
- exceed p->threads */
- int n, end;
- for(n=end=*lastUsed+1; p->m[n]; end=++n)
- {
- if(TRY_LOCK(&p->m[n]->mutex)) goto found;
- }
- for(n=0; n<*lastUsed && p->m[n]; n++)
- {
- if(TRY_LOCK(&p->m[n]->mutex)) goto found;
- }
- if(end<p->threads)
- {
- mstate temp;
-#if USE_ALLOCATOR==0
- temp=(mstate) mspacecounter++;
-#elif USE_ALLOCATOR==1
- if(!(temp=(mstate) create_mspace(size, 1)))
- goto badexit;
-#endif
- /* Now we're ready to modify the lists, we lock */
- ACQUIRE_LOCK(&p->mutex);
- while(p->m[end] && end<p->threads)
- end++;
- if(end>=p->threads)
- { /* Drat, must destroy it now */
- RELEASE_LOCK(&p->mutex);
-#if USE_ALLOCATOR==1
- destroy_mspace((mstate) temp);
-#endif
- goto badexit;
- }
- /* We really want to make sure this goes into memory now but we
- have to be careful of breaking aliasing rules, so write it twice */
- *((volatile struct malloc_state **) &p->m[end])=p->m[end]=temp;
- ACQUIRE_LOCK(&p->m[end]->mutex);
- /*printf("Created mspace idx %d\n", end);*/
- RELEASE_LOCK(&p->mutex);
- n=end;
- goto found;
- }
- /* Let it lock on the last one it used */
-badexit:
- ACQUIRE_LOCK(&p->m[*lastUsed]->mutex);
- return p->m[*lastUsed];
-found:
- *lastUsed=n;
- if(tc)
- tc->mymspace=n;
- else
- {
- if(TLSSET(p->mycache, (void *)(size_t)(-(n+1)))) abort();
- }
- return p->m[n];
-}
-
-typedef struct PoolList_t
-{
- size_t size; /* Size of list */
- size_t length; /* Actual entries in list */
-#ifdef DEBUG
- nedpool *list[1]; /* Force testing of list expansion */
-#else
- nedpool *list[16];
-#endif
-} PoolList;
-static MLOCK_T poollistlock;
-static PoolList *poollist;
-NEDMALLOCPTRATTR nedpool *nedcreatepool(size_t capacity, int threads) THROWSPEC
-{
- nedpool *ret=0;
- if(!poollist)
- {
- PoolList *newpoollist=0;
- if(!(newpoollist=(PoolList *) nedpcalloc(0, 1, sizeof(PoolList)+sizeof(nedpool *)))) return 0;
- INITIAL_LOCK(&poollistlock);
- ACQUIRE_LOCK(&poollistlock);
- poollist=newpoollist;
- poollist->size=sizeof(poollist->list)/sizeof(nedpool *);
- }
- else
- ACQUIRE_LOCK(&poollistlock);
- if(poollist->length==poollist->size)
- {
- PoolList *newpoollist=0;
- size_t newsize=0;
- newsize=sizeof(PoolList)+(poollist->size+1)*sizeof(nedpool *);
- if(!(newpoollist=(PoolList *) nedprealloc(0, poollist, newsize))) goto badexit;
- poollist=newpoollist;
- memset(&poollist->list[poollist->size], 0, newsize-((size_t)&poollist->list[poollist->size]-(size_t)&poollist->list[0]));
- poollist->size=((newsize-((char *)&poollist->list[0]-(char *)poollist))/sizeof(nedpool *))-1;
- assert(poollist->size>poollist->length);
- }
- if(!(ret=(nedpool *) nedpcalloc(0, 1, sizeof(nedpool)))) goto badexit;
- if(!InitPool(ret, capacity, threads))
- {
- nedpfree(0, ret);
- goto badexit;
- }
- poollist->list[poollist->length++]=ret;
-badexit:
- RELEASE_LOCK(&poollistlock);
- return ret;
-}
-void neddestroypool(nedpool *p) THROWSPEC
-{
- unsigned int n;
- ACQUIRE_LOCK(&p->mutex);
- DestroyCaches(p);
- for(n=0; p->m[n]; n++)
- {
-#if USE_ALLOCATOR==1
- destroy_mspace(p->m[n]);
-#endif
- p->m[n]=0;
- }
- RELEASE_LOCK(&p->mutex);
- if(TLSFREE(p->mycache)) abort();
- nedpfree(0, p);
- ACQUIRE_LOCK(&poollistlock);
- assert(poollist);
- for(n=0; n<poollist->length && poollist->list[n]!=p; n++);
- assert(n!=poollist->length);
- memmove(&poollist->list[n], &poollist->list[n+1], (size_t)&poollist->list[poollist->length]-(size_t)&poollist->list[n]);
- if(!--poollist->length)
- {
- assert(!poollist->list[0]);
- nedpfree(0, poollist);
- poollist=0;
- }
- RELEASE_LOCK(&poollistlock);
-}
-void neddestroysyspool() THROWSPEC
-{
- nedpool *p=&syspool;
- int n;
- ACQUIRE_LOCK(&p->mutex);
- DestroyCaches(p);
- for(n=0; p->m[n]; n++)
- {
-#if USE_ALLOCATOR==1
- destroy_mspace(p->m[n]);
-#endif
- p->m[n]=0;
- }
- /* Render syspool unusable */
- for(n=0; n<THREADCACHEMAXCACHES; n++)
- p->caches[n]=(threadcache *)(size_t)(sizeof(size_t)>4 ? 0xdeadbeefdeadbeefULL : 0xdeadbeefUL);
- for(n=0; n<MAXTHREADSINPOOL+1; n++)
- p->m[n]=(mstate)(size_t)(sizeof(size_t)>4 ? 0xdeadbeefdeadbeefULL : 0xdeadbeefUL);
- if(TLSFREE(p->mycache)) abort();
- RELEASE_LOCK(&p->mutex);
-}
-nedpool **nedpoollist() THROWSPEC
-{
- nedpool **ret=0;
- if(poollist)
- {
- ACQUIRE_LOCK(&poollistlock);
- if(!(ret=(nedpool **) nedmalloc((poollist->length+1)*sizeof(nedpool *)))) goto badexit;
- memcpy(ret, poollist->list, (poollist->length+1)*sizeof(nedpool *));
-badexit:
- RELEASE_LOCK(&poollistlock);
- }
- return ret;
-}
-
-void nedpsetvalue(nedpool *p, void *v) THROWSPEC
-{
- if(!p) { p=&syspool; if(!syspool.threads) InitPool(&syspool, 0, -1); }
- p->uservalue=v;
-}
-void *nedgetvalue(nedpool **p, void *mem) THROWSPEC
-{
- nedpool *np=0;
- mstate fm=nedblkmstate(mem);
- if(!fm || !fm->extp) return 0;
- np=(nedpool *) fm->extp;
- if(p) *p=np;
- return np->uservalue;
-}
-
-void nedtrimthreadcache(nedpool *p, int disable) THROWSPEC
-{
- int mycache;
- if(!p)
- {
- p=&syspool;
- if(!syspool.threads) InitPool(&syspool, 0, -1);
- }
- mycache=(int)(size_t) TLSGET(p->mycache);
- if(!mycache)
- { /* Set to mspace 0 */
- if(disable && TLSSET(p->mycache, (void *)(size_t)-1)) abort();
- }
- else if(mycache>0)
- { /* Set to last used mspace */
- threadcache *tc=p->caches[mycache-1];
-#if defined(DEBUG)
- printf("Threadcache utilisation: %lf%% in cache with %lf%% lost to other threads\n",
- 100.0*tc->successes/tc->mallocs, 100.0*((double) tc->mallocs-tc->frees)/tc->mallocs);
-#endif
- if(disable && TLSSET(p->mycache, (void *)(size_t)(-tc->mymspace))) abort();
- tc->frees++;
- RemoveCacheEntries(p, tc, 0);
- assert(!tc->freeInCache);
- if(disable)
- {
- tc->mymspace=-1;
- tc->threadid=0;
- CallFree(0, p->caches[mycache-1], 0);
- p->caches[mycache-1]=0;
- }
- }
-}
-void neddisablethreadcache(nedpool *p) THROWSPEC
-{
- nedtrimthreadcache(p, 1);
-}
-
-#define GETMSPACE(m,p,tc,ms,s,action) \
- do \
- { \
- mstate m = GetMSpace((p),(tc),(ms),(s)); \
- action; \
- if(USE_ALLOCATOR==1) { RELEASE_LOCK(&m->mutex); } \
- } while (0)
-
-static FORCEINLINE mstate GetMSpace(nedpool *RESTRICT p, threadcache *RESTRICT tc, int mymspace, size_t size) THROWSPEC
-{ /* Returns a locked and ready for use mspace */
- mstate m=p->m[mymspace];
- assert(m);
-#if USE_ALLOCATOR==1
- if(!TRY_LOCK(&p->m[mymspace]->mutex)) m=FindMSpace(p, tc, &mymspace, size);
- /*assert(IS_LOCKED(&p->m[mymspace]->mutex));*/
-#endif
- return m;
-}
-static NOINLINE void GetThreadCache_cold1(nedpool *RESTRICT *RESTRICT p) THROWSPEC
-{
- *p=&syspool;
- if(!syspool.threads) InitPool(&syspool, 0, -1);
-}
-static NOINLINE void GetThreadCache_cold2(nedpool *RESTRICT *RESTRICT p, threadcache *RESTRICT *RESTRICT tc, int *RESTRICT mymspace, int mycache) THROWSPEC
-{
- if(!mycache)
- { /* Need to allocate a new cache */
- *tc=AllocCache(*p);
- if(!*tc)
- { /* Disable */
- if(TLSSET((*p)->mycache, (void *)(size_t)-1)) abort();
- *mymspace=0;
- }
- else
- *mymspace=(*tc)->mymspace;
- }
- else
- { /* Cache disabled, but we do have an assigned thread pool */
- *tc=0;
- *mymspace=-mycache-1;
- }
-}
-static FORCEINLINE void GetThreadCache(nedpool *RESTRICT *RESTRICT p, threadcache *RESTRICT *RESTRICT tc, int *RESTRICT mymspace, size_t *RESTRICT size) THROWSPEC
-{
- int mycache;
- if(size && *size<sizeof(threadcacheblk)) *size=sizeof(threadcacheblk);
- if(!*p)
- GetThreadCache_cold1(p);
- mycache=(int)(size_t) TLSGET((*p)->mycache);
- if(mycache>0)
- { /* Already have a cache */
- *tc=(*p)->caches[mycache-1];
- *mymspace=(*tc)->mymspace;
- }
- else GetThreadCache_cold2(p, tc, mymspace, mycache);
- assert(*mymspace>=0);
- assert(!(*tc) || (long)(size_t)CURRENT_THREAD==(*tc)->threadid);
-#ifdef FULLSANITYCHECKS
- if(*tc)
- {
- if(*(unsigned int *)"NEDMALC1"!=(*tc)->magic1 || *(unsigned int *)"NEDMALC2"!=(*tc)->magic2)
- {
- abort();
- }
- }
-#endif
-}
-
-NEDMALLOCPTRATTR void * nedpmalloc(nedpool *p, size_t size) THROWSPEC
-{
- void *ret=0;
- threadcache *tc;
- int mymspace;
- GetThreadCache(&p, &tc, &mymspace, &size);
-#if THREADCACHEMAX
- if(tc && size<=THREADCACHEMAX)
- { /* Use the thread cache */
- ret=threadcache_malloc(p, tc, &size);
- }
-#endif
- if(!ret)
- { /* Use this thread's mspace */
- GETMSPACE(m, p, tc, mymspace, size,
- ret=CallMalloc(m, size, 0));
- }
- return ret;
-}
-NEDMALLOCPTRATTR void * nedpcalloc(nedpool *p, size_t no, size_t size) THROWSPEC
-{
- size_t rsize=size*no;
- void *ret=0;
- threadcache *tc;
- int mymspace;
- GetThreadCache(&p, &tc, &mymspace, &rsize);
-#if THREADCACHEMAX
- if(tc && rsize<=THREADCACHEMAX)
- { /* Use the thread cache */
- if((ret=threadcache_malloc(p, tc, &rsize)))
- memset(ret, 0, rsize);
- }
-#endif
- if(!ret)
- { /* Use this thread's mspace */
- GETMSPACE(m, p, tc, mymspace, rsize,
- ret=CallCalloc(m, rsize, 0));
- }
- return ret;
-}
-NEDMALLOCPTRATTR void * nedprealloc(nedpool *p, void *mem, size_t size) THROWSPEC
-{
- void *ret=0;
- threadcache *tc;
- int mymspace, isforeign=1;
- size_t memsize;
- if(!mem) return nedpmalloc(p, size);
- memsize=nedblksize(&isforeign, mem);
- assert(memsize);
- if(!memsize)
- {
- fprintf(stderr, "nedmalloc: nedprealloc() called with a block not created by nedmalloc!\n");
- abort();
- }
- else if(size<=memsize && memsize-size<
-#ifdef DEBUG
- 32
-#else
- 1024
-#endif
- ) /* If realloc size is within 1Kb smaller than existing, noop it */
- return mem;
- GetThreadCache(&p, &tc, &mymspace, &size);
-#if THREADCACHEMAX
- if(tc && size && size<=THREADCACHEMAX)
- { /* Use the thread cache */
- if((ret=threadcache_malloc(p, tc, &size)))
- {
- memcpy(ret, mem, memsize<size ? memsize : size);
- if(memsize>=sizeof(threadcacheblk) && memsize<=(THREADCACHEMAX+CHUNK_OVERHEAD))
- threadcache_free(p, tc, mymspace, mem, memsize);
- else
- CallFree(0, mem, isforeign);
- }
- }
-#endif
- if(!ret)
- { /* Reallocs always happen in the mspace they happened in, so skip
- locking the preferred mspace for this thread */
- ret=CallRealloc(p->m[mymspace], mem, isforeign, memsize, size);
- }
- return ret;
-}
-void nedpfree(nedpool *p, void *mem) THROWSPEC
-{ /* Frees always happen in the mspace they happened in, so skip
- locking the preferred mspace for this thread */
- threadcache *tc;
- int mymspace, isforeign=1;
- size_t memsize;
- if(!mem)
- { /* If you tried this on FreeBSD you'd be sorry! */
-#ifdef DEBUG
- fprintf(stderr, "nedmalloc: WARNING nedpfree() called with zero. This is not portable behaviour!\n");
-#endif
- return;
- }
- memsize=nedblksize(&isforeign, mem);
- assert(memsize);
- if(!memsize)
- {
- fprintf(stderr, "nedmalloc: nedpfree() called with a block not created by nedmalloc!\n");
- abort();
- }
- GetThreadCache(&p, &tc, &mymspace, 0);
-#if THREADCACHEMAX
- if(mem && tc && memsize>=sizeof(threadcacheblk) && memsize<=(THREADCACHEMAX+CHUNK_OVERHEAD))
- threadcache_free(p, tc, mymspace, mem, memsize);
- else
-#endif
- CallFree(0, mem, isforeign);
-}
-NEDMALLOCPTRATTR void * nedpmemalign(nedpool *p, size_t alignment, size_t bytes) THROWSPEC
-{
- void *ret;
- threadcache *tc;
- int mymspace;
- GetThreadCache(&p, &tc, &mymspace, &bytes);
- { /* Use this thread's mspace */
- GETMSPACE(m, p, tc, mymspace, bytes,
- ret=CallMalloc(m, bytes, alignment));
- }
- return ret;
-}
-struct nedmallinfo nedpmallinfo(nedpool *p) THROWSPEC
-{
- int n;
- struct nedmallinfo ret={0};
- if(!p) { p=&syspool; if(!syspool.threads) InitPool(&syspool, 0, -1); }
- for(n=0; p->m[n]; n++)
- {
-#if USE_ALLOCATOR==1 && !NO_MALLINFO
- struct mallinfo t=mspace_mallinfo(p->m[n]);
- ret.arena+=t.arena;
- ret.ordblks+=t.ordblks;
- ret.hblkhd+=t.hblkhd;
- ret.usmblks+=t.usmblks;
- ret.uordblks+=t.uordblks;
- ret.fordblks+=t.fordblks;
- ret.keepcost+=t.keepcost;
-#endif
- }
- return ret;
-}
-int nedpmallopt(nedpool *p, int parno, int value) THROWSPEC
-{
-#if USE_ALLOCATOR==1
- return mspace_mallopt(parno, value);
-#else
- return 0;
-#endif
-}
-NEDMALLOCNOALIASATTR void* nedmalloc_internals(size_t *granularity, size_t *magic) THROWSPEC
-{
-#if USE_ALLOCATOR==1
- if(granularity) *granularity=mparams.granularity;
- if(magic) *magic=mparams.magic;
- return (void *) &syspool;
-#else
- if(granularity) *granularity=0;
- if(magic) *magic=0;
- return 0;
-#endif
-}
-int nedpmalloc_trim(nedpool *p, size_t pad) THROWSPEC
-{
- int n, ret=0;
- if(!p) { p=&syspool; if(!syspool.threads) InitPool(&syspool, 0, -1); }
- for(n=0; p->m[n]; n++)
- {
-#if USE_ALLOCATOR==1
- ret+=mspace_trim(p->m[n], pad);
-#endif
- }
- return ret;
-}
-void nedpmalloc_stats(nedpool *p) THROWSPEC
-{
- int n;
- if(!p) { p=&syspool; if(!syspool.threads) InitPool(&syspool, 0, -1); }
- for(n=0; p->m[n]; n++)
- {
-#if USE_ALLOCATOR==1
- mspace_malloc_stats(p->m[n]);
-#endif
- }
-}
-size_t nedpmalloc_footprint(nedpool *p) THROWSPEC
-{
- size_t ret=0;
- int n;
- if(!p) { p=&syspool; if(!syspool.threads) InitPool(&syspool, 0, -1); }
- for(n=0; p->m[n]; n++)
- {
-#if USE_ALLOCATOR==1
- ret+=mspace_footprint(p->m[n]);
-#endif
- }
- return ret;
-}
-NEDMALLOCPTRATTR void **nedpindependent_calloc(nedpool *p, size_t elemsno, size_t elemsize, void **chunks) THROWSPEC
-{
- void **ret;
- threadcache *tc;
- int mymspace;
- GetThreadCache(&p, &tc, &mymspace, &elemsize);
-#if USE_ALLOCATOR==0
- GETMSPACE(m, p, tc, mymspace, elemsno*elemsize,
- ret=unsupported_operation("independent_calloc"));
-#elif USE_ALLOCATOR==1
- GETMSPACE(m, p, tc, mymspace, elemsno*elemsize,
- ret=mspace_independent_calloc(m, elemsno, elemsize, chunks));
-#endif
- return ret;
-}
-NEDMALLOCPTRATTR void **nedpindependent_comalloc(nedpool *p, size_t elems, size_t *sizes, void **chunks) THROWSPEC
-{
- void **ret;
- threadcache *tc;
- int mymspace;
- size_t i, *adjustedsizes=(size_t *) alloca(elems*sizeof(size_t));
- if(!adjustedsizes) return 0;
- for(i=0; i<elems; i++)
- adjustedsizes[i]=sizes[i]<sizeof(threadcacheblk) ? sizeof(threadcacheblk) : sizes[i];
- GetThreadCache(&p, &tc, &mymspace, 0);
-#if USE_ALLOCATOR==0
- GETMSPACE(m, p, tc, mymspace, 0,
- ret=unsupported_operation("independent_comalloc"));
-#elif USE_ALLOCATOR==1
- GETMSPACE(m, p, tc, mymspace, 0,
- ret=mspace_independent_comalloc(m, elems, adjustedsizes, chunks));
-#endif
- return ret;
-}
-
-#if defined(__cplusplus)
-}
-#endif
-
-#ifdef _MSC_VER
-#pragma warning(pop)
-#endif
-
-#endif
+#ifdef NEDMALLOC_ENABLED +/* Alternative malloc implementation for multiple threads without +lock contention based on dlmalloc. (C) 2005-2009 Niall Douglas + +Boost Software License - Version 1.0 - August 17th, 2003 + +Permission is hereby granted, free of charge, to any person or organization +obtaining a copy of the software and accompanying documentation covered by +this license (the "Software") to use, reproduce, display, distribute, +execute, and transmit the Software, and to prepare derivative works of the +Software, and to permit third-parties to whom the Software is furnished to +do so, all subject to the following: + +The copyright notices in the Software and this entire statement, including +the above license grant, this restriction and the following disclaimer, +must be included in all copies of the Software, in whole or in part, and +all derivative works of the Software, unless such copies or derivative +works are solely in the form of machine-executable object code generated by +a source language processor. + +THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT +SHALL THE COPYRIGHT HOLDERS OR ANYONE DISTRIBUTING THE SOFTWARE BE LIABLE +FOR ANY DAMAGES OR OTHER LIABILITY, WHETHER IN CONTRACT, TORT OR OTHERWISE, +ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER +DEALINGS IN THE SOFTWARE. +*/ + +#ifdef _MSC_VER +/* Enable full aliasing on MSVC */ +/*#pragma optimize("a", on)*/ +#pragma warning(push) +#pragma warning(disable:4100) /* unreferenced formal parameter */ +#pragma warning(disable:4127) /* conditional expression is constant */ +#pragma warning(disable:4706) /* assignment within conditional expression */ +#endif + +/*#define ENABLE_TOLERANT_NEDMALLOC 1*/ +/*#define ENABLE_FAST_HEAP_DETECTION 1*/ +/*#define NEDMALLOC_DEBUG 1*/ + +/*#define FULLSANITYCHECKS*/ +/* If link time code generation is on, don't force or prevent inlining */ +#if defined(_MSC_VER) && defined(NEDMALLOC_DLL_EXPORTS) +#define FORCEINLINE +#define NOINLINE +#endif + + +#include "nedmalloc.h" +#ifdef WIN32 + #include <malloc.h> + #include <stddef.h> +#endif +#if USE_ALLOCATOR==1 + #define MSPACES 1 + #define ONLY_MSPACES 1 +#endif +#define USE_DL_PREFIX 1 +#ifndef USE_LOCKS + #define USE_LOCKS 1 +#endif +#define FOOTERS 1 /* Need to enable footers so frees lock the right mspace */ +#ifndef NEDMALLOC_DEBUG + #if defined(DEBUG) || defined(_DEBUG) + #define NEDMALLOC_DEBUG 1 + #else + #define NEDMALLOC_DEBUG 0 + #endif +#endif +/* We need to consistently define DEBUG=0|1, _DEBUG and NDEBUG for dlmalloc */ +#undef DEBUG +#undef _DEBUG +#if NEDMALLOC_DEBUG + #define _DEBUG + #define DEBUG 1 +#else + #define DEBUG 0 +#endif +#ifdef NDEBUG /* Disable assert checking on release builds */ + #undef DEBUG + #undef _DEBUG +#endif +/* The default of 64Kb means we spend too much time kernel-side */ +#ifndef DEFAULT_GRANULARITY +#define DEFAULT_GRANULARITY (1*1024*1024) +#if DEBUG +#define DEFAULT_GRANULARITY_ALIGNED +#endif +#endif +/*#define USE_SPIN_LOCKS 0*/ + + +#include "malloc.c.h" +#ifdef NDEBUG /* Disable assert checking on release builds */ + #undef DEBUG +#elif !NEDMALLOC_DEBUG + #ifdef __GNUC__ + #warning DEBUG is defined so allocator will run with assert checking! Define NDEBUG to run at full speed. + #elif defined(_MSC_VER) + #pragma message(__FILE__ ": WARNING: DEBUG is defined so allocator will run with assert checking! Define NDEBUG to run at full speed.") + #endif +#endif + +/* The maximum concurrent threads in a pool possible */ +#ifndef MAXTHREADSINPOOL +#define MAXTHREADSINPOOL 16 +#endif +/* The maximum number of threadcaches which can be allocated */ +#ifndef THREADCACHEMAXCACHES +#define THREADCACHEMAXCACHES 256 +#endif +/* The maximum size to be allocated from the thread cache */ +#ifndef THREADCACHEMAX +#define THREADCACHEMAX 8192 +#endif +#if 0 +/* The number of cache entries for finer grained bins. This is (topbitpos(THREADCACHEMAX)-4)*2 */ +#define THREADCACHEMAXBINS ((13-4)*2) +#else +/* The number of cache entries. This is (topbitpos(THREADCACHEMAX)-4) */ +#define THREADCACHEMAXBINS (13-4) +#endif +/* Point at which the free space in a thread cache is garbage collected */ +#ifndef THREADCACHEMAXFREESPACE +#define THREADCACHEMAXFREESPACE (512*1024) +#endif + + +#ifdef WIN32 + #define TLSVAR DWORD + #define TLSALLOC(k) (*(k)=TlsAlloc(), TLS_OUT_OF_INDEXES==*(k)) + #define TLSFREE(k) (!TlsFree(k)) + #define TLSGET(k) TlsGetValue(k) + #define TLSSET(k, a) (!TlsSetValue(k, a)) + #ifdef DEBUG +static LPVOID ChkedTlsGetValue(DWORD idx) +{ + LPVOID ret=TlsGetValue(idx); + assert(S_OK==GetLastError()); + return ret; +} + #undef TLSGET + #define TLSGET(k) ChkedTlsGetValue(k) + #endif +#else + #define TLSVAR pthread_key_t + #define TLSALLOC(k) pthread_key_create(k, 0) + #define TLSFREE(k) pthread_key_delete(k) + #define TLSGET(k) pthread_getspecific(k) + #define TLSSET(k, a) pthread_setspecific(k, a) +#endif + +#if defined(__cplusplus) +#if !defined(NO_NED_NAMESPACE) +namespace nedalloc { +#else +extern "C" { +#endif +#endif + +#if USE_ALLOCATOR==0 +static void *unsupported_operation(const char *opname) THROWSPEC +{ + fprintf(stderr, "nedmalloc: The operation %s is not supported under this build configuration\n", opname); + abort(); + return 0; +} +static size_t mspacecounter=(size_t) 0xdeadbeef; +#endif +#ifndef ENABLE_FAST_HEAP_DETECTION +static void *RESTRICT leastusedaddress; +static size_t largestusedblock; +#endif + +static FORCEINLINE void *CallMalloc(void *RESTRICT mspace, size_t size, size_t alignment) THROWSPEC +{ + void *RESTRICT ret=0; + size_t _alignment=alignment; +#if USE_MAGIC_HEADERS + size_t *_ret=0; + size+=alignment+3*sizeof(size_t); + _alignment=0; +#endif +#if USE_ALLOCATOR==0 + ret=_alignment ? +#ifdef _MSC_VER + /* This is the MSVCRT equivalent */ + _aligned_malloc(size, _alignment) +#elif defined(__linux__) || defined(__FreeBSD__) || defined(__APPLE__) + /* This is the glibc/ptmalloc2/dlmalloc/BSD libc equivalent. */ + memalign(_alignment, size) +#else +#error Cannot aligned allocate with the memory allocator of an unknown system! +#endif + : malloc(size); +#elif USE_ALLOCATOR==1 + ret=_alignment ? mspace_memalign((mstate) mspace, _alignment, size) : mspace_malloc((mstate) mspace, size); +#ifndef ENABLE_FAST_HEAP_DETECTION + if(ret) + { + size_t truesize=chunksize(mem2chunk(ret)); + if(!leastusedaddress || (void *)((mstate) mspace)->least_addr<leastusedaddress) leastusedaddress=(void *)((mstate) mspace)->least_addr; + if(!largestusedblock || truesize>largestusedblock) largestusedblock=(truesize+mparams.page_size) & ~(mparams.page_size-1); + } +#endif +#endif + if(!ret) return 0; +#if USE_MAGIC_HEADERS + _ret=(size_t *) ret; + ret=(void *)(_ret+3); + if(alignment) ret=(void *)(((size_t) ret+alignment-1)&~(alignment-1)); + for(; _ret<(size_t *)ret-2; _ret++) *_ret=*(size_t *)"NEDMALOC"; + _ret[0]=(size_t) mspace; + _ret[1]=size-3*sizeof(size_t); +#endif + return ret; +} + +static FORCEINLINE void *CallCalloc(void *RESTRICT mspace, size_t size, size_t alignment) THROWSPEC +{ + void *RESTRICT ret=0; +#if USE_MAGIC_HEADERS + size_t *_ret=0; + size+=alignment+3*sizeof(size_t); +#endif +#if USE_ALLOCATOR==0 + ret=calloc(1, size); +#elif USE_ALLOCATOR==1 + ret=mspace_calloc((mstate) mspace, 1, size); +#ifndef ENABLE_FAST_HEAP_DETECTION + if(ret) + { + size_t truesize=chunksize(mem2chunk(ret)); + if(!leastusedaddress || (void *)((mstate) mspace)->least_addr<leastusedaddress) leastusedaddress=(void *)((mstate) mspace)->least_addr; + if(!largestusedblock || truesize>largestusedblock) largestusedblock=(truesize+mparams.page_size) & ~(mparams.page_size-1); + } +#endif +#endif + if(!ret) return 0; +#if USE_MAGIC_HEADERS + _ret=(size_t *) ret; + ret=(void *)(_ret+3); + if(alignment) ret=(void *)(((size_t) ret+alignment-1)&~(alignment-1)); + for(; _ret<(size_t *)ret-2; _ret++) *_ret=*(size_t *) "NEDMALOC"; + _ret[0]=(size_t) mspace; + _ret[1]=size-3*sizeof(size_t); +#endif + return ret; +} + +static FORCEINLINE void *CallRealloc(void *RESTRICT mspace, void *RESTRICT mem, int isforeign, size_t oldsize, size_t newsize) THROWSPEC +{ + void *RESTRICT ret=0; +#if USE_MAGIC_HEADERS + mstate oldmspace=0; + size_t *_ret=0, *_mem=(size_t *) mem-3; +#endif + if(isforeign) + { /* Transfer */ +#if USE_MAGIC_HEADERS + assert(_mem[0]!=*(size_t *) "NEDMALOC"); +#endif + if((ret=CallMalloc(mspace, newsize, 0))) + { +#if defined(DEBUG) + printf("*** nedmalloc frees system allocated block %p\n", mem); +#endif + memcpy(ret, mem, oldsize<newsize ? oldsize : newsize); + free(mem); + } + return ret; + } +#if USE_MAGIC_HEADERS + assert(_mem[0]==*(size_t *) "NEDMALOC"); + newsize+=3*sizeof(size_t); + oldmspace=(mstate) _mem[1]; + assert(oldsize>=_mem[2]); + for(; *_mem==*(size_t *) "NEDMALOC"; *_mem--=*(size_t *) "nedmaloc"); + mem=(void *)(++_mem); +#endif +#if USE_ALLOCATOR==0 + ret=realloc(mem, newsize); +#elif USE_ALLOCATOR==1 + ret=mspace_realloc((mstate) mspace, mem, newsize); +#ifndef ENABLE_FAST_HEAP_DETECTION + if(ret) + { + size_t truesize=chunksize(mem2chunk(ret)); + if(!largestusedblock || truesize>largestusedblock) largestusedblock=(truesize+mparams.page_size) & ~(mparams.page_size-1); + } +#endif +#endif + if(!ret) + { /* Put it back the way it was */ +#if USE_MAGIC_HEADERS + for(; *_mem==0; *_mem++=*(size_t *) "NEDMALOC"); +#endif + return 0; + } +#if USE_MAGIC_HEADERS + _ret=(size_t *) ret; + ret=(void *)(_ret+3); + for(; _ret<(size_t *)ret-2; _ret++) *_ret=*(size_t *) "NEDMALOC"; + _ret[0]=(size_t) mspace; + _ret[1]=newsize-3*sizeof(size_t); +#endif + return ret; +} + +static FORCEINLINE void CallFree(void *RESTRICT mspace, void *RESTRICT mem, int isforeign) THROWSPEC +{ +#if USE_MAGIC_HEADERS + mstate oldmspace=0; + size_t *_mem=(size_t *) mem-3, oldsize=0; +#endif + if(isforeign) + { +#if USE_MAGIC_HEADERS + assert(_mem[0]!=*(size_t *) "NEDMALOC"); +#endif +#if defined(DEBUG) + printf("*** nedmalloc frees system allocated block %p\n", mem); +#endif + free(mem); + return; + } +#if USE_MAGIC_HEADERS + assert(_mem[0]==*(size_t *) "NEDMALOC"); + oldmspace=(mstate) _mem[1]; + oldsize=_mem[2]; + for(; *_mem==*(size_t *) "NEDMALOC"; *_mem--=*(size_t *) "nedmaloc"); + mem=(void *)(++_mem); +#endif +#if USE_ALLOCATOR==0 + free(mem); +#elif USE_ALLOCATOR==1 + mspace_free((mstate) mspace, mem); +#endif +} + +static NEDMALLOCNOALIASATTR mstate nedblkmstate(void *RESTRICT mem) THROWSPEC +{ + if(mem) + { +#if USE_MAGIC_HEADERS + size_t *_mem=(size_t *) mem-3; + if(_mem[0]==*(size_t *) "NEDMALOC") + { + return (mstate) _mem[1]; + } + else return 0; +#else +#if USE_ALLOCATOR==0 + /* Fail everything */ + return 0; +#elif USE_ALLOCATOR==1 +#ifdef ENABLE_FAST_HEAP_DETECTION +#ifdef WIN32 + /* On Windows for RELEASE both x86 and x64 the NT heap precedes each block with an eight byte header + which looks like: + normal: 4 bytes of size, 4 bytes of [char < 64, char < 64, char < 64 bit 0 always set, char random ] + mmaped: 4 bytes of size 4 bytes of [zero, zero, 0xb, zero ] + + On Windows for DEBUG both x86 and x64 the preceding four bytes is always 0xfdfdfdfd (no man's land). + */ +#pragma pack(push, 1) + struct _HEAP_ENTRY + { + USHORT Size; + USHORT PreviousSize; + UCHAR Cookie; /* SegmentIndex */ + UCHAR Flags; /* always bit 0 (HEAP_ENTRY_BUSY). bit 1=(HEAP_ENTRY_EXTRA_PRESENT), bit 2=normal block (HEAP_ENTRY_FILL_PATTERN), bit 3=mmap block (HEAP_ENTRY_VIRTUAL_ALLOC). Bit 4 (HEAP_ENTRY_LAST_ENTRY) could be set */ + UCHAR UnusedBytes; + UCHAR SmallTagIndex; /* fastbin index. Always one of 0x02, 0x03, 0x04 < 0x80 */ + } *RESTRICT he=((struct _HEAP_ENTRY *) mem)-1; +#pragma pack(pop) + unsigned int header=((unsigned int *)mem)[-1], mask1=0x8080E100, result1, mask2=0xFFFFFF06, result2; + result1=header & mask1; /* Positive testing for NT heap */ + result2=header & mask2; /* Positive testing for dlmalloc */ + if(result1==0x00000100 && result2!=0x00000102) + { /* This is likely a NT heap block */ + return 0; + } +#endif +#ifdef __linux__ + /* On Linux glibc uses ptmalloc2 (really dlmalloc) just as we do, but prev_foot contains rubbish + when the preceding block is allocated because ptmalloc2 finds the local mstate by rounding the ptr + down to the nearest megabyte. It's like dlmalloc with FOOTERS disabled. */ + mchunkptr p=mem2chunk(mem); + mstate fm=get_mstate_for(p); + /* If it's a ptmalloc2 block, fm is likely to be some crazy value */ + if(!is_aligned(fm)) return 0; + if((size_t)mem-(size_t)fm>=(size_t)1<<(SIZE_T_BITSIZE-1)) return 0; + if(ok_magic(fm)) + return fm; + else + return 0; + if(1) { } +#endif + else + { + mchunkptr p=mem2chunk(mem); + mstate fm=get_mstate_for(p); + assert(ok_magic(fm)); /* If this fails, someone tried to free a block twice */ + if(ok_magic(fm)) + return fm; + } +#else +//#ifdef WIN32 +// __try +//#endif + { + /* We try to return zero here if it isn't one of our own blocks, however + the current block annotation scheme used by dlmalloc makes it impossible + to be absolutely sure of avoiding a segfault. + + mchunkptr->prev_foot = mem-(2*size_t) = mstate ^ mparams.magic for PRECEDING block; + mchunkptr->head = mem-(1*size_t) = 8 multiple size of this block with bottom three bits = FLAG_BITS + FLAG_BITS = bit 0 is CINUSE (currently in use unless is mmap), bit 1 is PINUSE (previous block currently + in use unless mmap), bit 2 is UNUSED and currently is always zero. + */ + register void *RESTRICT leastusedaddress_=leastusedaddress; /* Cache these to avoid register reloading */ + register size_t largestusedblock_=largestusedblock; + if(!is_aligned(mem)) return 0; /* Would fail very rarely as all allocators return aligned blocks */ + if(mem<leastusedaddress_) return 0; /* Simple but effective */ + { + mchunkptr p=mem2chunk(mem); + mstate fm=0; + int ismmapped=is_mmapped(p); + if((!ismmapped && !is_inuse(p)) || (p->head & FLAG4_BIT)) return 0; + /* Reduced uncertainty by 0.5^2 = 25.0% */ + /* size should never exceed largestusedblock */ + if(chunksize(p)>largestusedblock_) return 0; + /* Reduced uncertainty by a minimum of 0.5^3 = 12.5%, maximum 0.5^16 = 0.0015% */ + /* Having sanity checked prev_foot and head, check next block */ + if(!ismmapped && (!next_pinuse(p) || (next_chunk(p)->head & FLAG4_BIT))) return 0; + /* Reduced uncertainty by 0.5^5 = 3.13% or 0.5^18 = 0.00038% */ + #if 0 + /* If previous block is free, check that its next block pointer equals us */ + if(!ismmapped && !pinuse(p)) + if(next_chunk(prev_chunk(p))!=p) return 0; + /* We could start comparing prev_foot's for similarity but it starts getting slow. */ + #endif + fm = get_mstate_for(p); + if(!is_aligned(fm) || (void *)fm<leastusedaddress_) return 0; + if((size_t)mem-(size_t)fm>=(size_t)1<<(SIZE_T_BITSIZE-1)) return 0; + assert(ok_magic(fm)); /* If this fails, someone tried to free a block twice */ + if(ok_magic(fm)) + return fm; + } + } +//#ifdef WIN32 +// __except(1) { } +//#endif +#endif +#endif +#endif + } + return 0; +} +NEDMALLOCNOALIASATTR size_t nedblksize(int *RESTRICT isforeign, void *RESTRICT mem) THROWSPEC +{ + if(mem) + { + if(isforeign) *isforeign=1; +#if USE_MAGIC_HEADERS + { + size_t *_mem=(size_t *) mem-3; + if(_mem[0]==*(size_t *) "NEDMALOC") + { + mstate mspace=(mstate) _mem[1]; + size_t size=_mem[2]; + if(isforeign) *isforeign=0; + return size; + } + } +#elif USE_ALLOCATOR==1 + if(nedblkmstate(mem)) + { + mchunkptr p=mem2chunk(mem); + if(isforeign) *isforeign=0; + return chunksize(p)-overhead_for(p); + } +#ifdef DEBUG + else + { + int a=1; /* Set breakpoints here if needed */ + } +#endif +#endif +#if defined(ENABLE_TOLERANT_NEDMALLOC) || USE_ALLOCATOR==0 +#ifdef _MSC_VER + /* This is the MSVCRT equivalent */ + return _msize(mem); +#elif defined(__linux__) + /* This is the glibc/ptmalloc2/dlmalloc equivalent. */ + return malloc_usable_size(mem); +#elif defined(__FreeBSD__) || defined(__APPLE__) + /* This is the BSD libc equivalent. */ + return malloc_size(mem); +#else +#error Cannot tolerate the memory allocator of an unknown system! +#endif +#endif + } + return 0; +} + +NEDMALLOCNOALIASATTR void nedsetvalue(void *v) THROWSPEC { nedpsetvalue((nedpool *) 0, v); } +NEDMALLOCNOALIASATTR NEDMALLOCPTRATTR void * nedmalloc(size_t size) THROWSPEC { return nedpmalloc((nedpool *) 0, size); } +NEDMALLOCNOALIASATTR NEDMALLOCPTRATTR void * nedcalloc(size_t no, size_t size) THROWSPEC { return nedpcalloc((nedpool *) 0, no, size); } +NEDMALLOCNOALIASATTR NEDMALLOCPTRATTR void * nedrealloc(void *mem, size_t size) THROWSPEC { return nedprealloc((nedpool *) 0, mem, size); } +NEDMALLOCNOALIASATTR void nedfree(void *mem) THROWSPEC { nedpfree((nedpool *) 0, mem); } +NEDMALLOCNOALIASATTR NEDMALLOCPTRATTR void * nedmemalign(size_t alignment, size_t bytes) THROWSPEC { return nedpmemalign((nedpool *) 0, alignment, bytes); } +NEDMALLOCNOALIASATTR struct nedmallinfo nedmallinfo(void) THROWSPEC { return nedpmallinfo((nedpool *) 0); } +NEDMALLOCNOALIASATTR int nedmallopt(int parno, int value) THROWSPEC { return nedpmallopt((nedpool *) 0, parno, value); } +NEDMALLOCNOALIASATTR int nedmalloc_trim(size_t pad) THROWSPEC { return nedpmalloc_trim((nedpool *) 0, pad); } +void nedmalloc_stats() THROWSPEC { nedpmalloc_stats((nedpool *) 0); } +NEDMALLOCNOALIASATTR size_t nedmalloc_footprint() THROWSPEC { return nedpmalloc_footprint((nedpool *) 0); } +NEDMALLOCNOALIASATTR NEDMALLOCPTRATTR void **nedindependent_calloc(size_t elemsno, size_t elemsize, void **chunks) THROWSPEC { return nedpindependent_calloc((nedpool *) 0, elemsno, elemsize, chunks); } +NEDMALLOCNOALIASATTR NEDMALLOCPTRATTR void **nedindependent_comalloc(size_t elems, size_t *sizes, void **chunks) THROWSPEC { return nedpindependent_comalloc((nedpool *) 0, elems, sizes, chunks); } + +struct threadcacheblk_t; +typedef struct threadcacheblk_t threadcacheblk; +struct threadcacheblk_t +{ /* Keep less than 16 bytes on 32 bit systems and 32 bytes on 64 bit systems */ +#ifdef FULLSANITYCHECKS + unsigned int magic; +#endif + unsigned int lastUsed, size; + threadcacheblk *next, *prev; +}; +typedef struct threadcache_t +{ +#ifdef FULLSANITYCHECKS + unsigned int magic1; +#endif + int mymspace; /* Last mspace entry this thread used */ + long threadid; + unsigned int mallocs, frees, successes; + size_t freeInCache; /* How much free space is stored in this cache */ + threadcacheblk *bins[(THREADCACHEMAXBINS+1)*2]; +#ifdef FULLSANITYCHECKS + unsigned int magic2; +#endif +} threadcache; +struct nedpool_t +{ + MLOCK_T mutex; + void *uservalue; + int threads; /* Max entries in m to use */ + threadcache *caches[THREADCACHEMAXCACHES]; + TLSVAR mycache; /* Thread cache for this thread. 0 for unset, negative for use mspace-1 directly, otherwise is cache-1 */ + mstate m[MAXTHREADSINPOOL+1]; /* mspace entries for this pool */ +}; +static nedpool syspool; + +static FORCEINLINE NEDMALLOCNOALIASATTR unsigned int size2binidx(size_t _size) THROWSPEC +{ /* 8=1000 16=10000 20=10100 24=11000 32=100000 48=110000 4096=1000000000000 */ + unsigned int topbit, size=(unsigned int)(_size>>4); + /* 16=1 20=1 24=1 32=10 48=11 64=100 96=110 128=1000 4096=100000000 */ + +#if defined(__GNUC__) + topbit = sizeof(size)*__CHAR_BIT__ - 1 - __builtin_clz(size); +#elif defined(_MSC_VER) && _MSC_VER>=1300 + { + unsigned long bsrTopBit; + + _BitScanReverse(&bsrTopBit, size); + + topbit = bsrTopBit; + } +#else +#if 0 + union { + unsigned asInt[2]; + double asDouble; + }; + int n; + + asDouble = (double)size + 0.5; + topbit = (asInt[!FOX_BIGENDIAN] >> 20) - 1023; +#else + { + unsigned int x=size; + x = x | (x >> 1); + x = x | (x >> 2); + x = x | (x >> 4); + x = x | (x >> 8); + x = x | (x >>16); + x = ~x; + x = x - ((x >> 1) & 0x55555555); + x = (x & 0x33333333) + ((x >> 2) & 0x33333333); + x = (x + (x >> 4)) & 0x0F0F0F0F; + x = x + (x << 8); + x = x + (x << 16); + topbit=31 - (x >> 24); + } +#endif +#endif + return topbit; +} + + +#ifdef FULLSANITYCHECKS +static void tcsanitycheck(threadcacheblk **ptr) THROWSPEC +{ + assert((ptr[0] && ptr[1]) || (!ptr[0] && !ptr[1])); + if(ptr[0] && ptr[1]) + { + assert(nedblksize(ptr[0])>=sizeof(threadcacheblk)); + assert(nedblksize(ptr[1])>=sizeof(threadcacheblk)); + assert(*(unsigned int *) "NEDN"==ptr[0]->magic); + assert(*(unsigned int *) "NEDN"==ptr[1]->magic); + assert(!ptr[0]->prev); + assert(!ptr[1]->next); + if(ptr[0]==ptr[1]) + { + assert(!ptr[0]->next); + assert(!ptr[1]->prev); + } + } +} +static void tcfullsanitycheck(threadcache *tc) THROWSPEC +{ + threadcacheblk **tcbptr=tc->bins; + int n; + for(n=0; n<=THREADCACHEMAXBINS; n++, tcbptr+=2) + { + threadcacheblk *b, *ob=0; + tcsanitycheck(tcbptr); + for(b=tcbptr[0]; b; ob=b, b=b->next) + { + assert(*(unsigned int *) "NEDN"==b->magic); + assert(!ob || ob->next==b); + assert(!ob || b->prev==ob); + } + } +} +#endif + +static NOINLINE void RemoveCacheEntries(nedpool *RESTRICT p, threadcache *RESTRICT tc, unsigned int age) THROWSPEC +{ +#ifdef FULLSANITYCHECKS + tcfullsanitycheck(tc); +#endif + if(tc->freeInCache) + { + threadcacheblk **tcbptr=tc->bins; + int n; + for(n=0; n<=THREADCACHEMAXBINS; n++, tcbptr+=2) + { + threadcacheblk **tcb=tcbptr+1; /* come from oldest end of list */ + /*tcsanitycheck(tcbptr);*/ + for(; *tcb && tc->frees-(*tcb)->lastUsed>=age; ) + { + threadcacheblk *f=*tcb; + size_t blksize=f->size; /*nedblksize(f);*/ + assert(blksize<=nedblksize(0, f)); + assert(blksize); +#ifdef FULLSANITYCHECKS + assert(*(unsigned int *) "NEDN"==(*tcb)->magic); +#endif + *tcb=(*tcb)->prev; + if(*tcb) + (*tcb)->next=0; + else + *tcbptr=0; + tc->freeInCache-=blksize; + assert((long) tc->freeInCache>=0); + CallFree(0, f, 0); + /*tcsanitycheck(tcbptr);*/ + } + } + } +#ifdef FULLSANITYCHECKS + tcfullsanitycheck(tc); +#endif +} +static void DestroyCaches(nedpool *RESTRICT p) THROWSPEC +{ + if(p->caches) + { + threadcache *tc; + int n; + for(n=0; n<THREADCACHEMAXCACHES; n++) + { + if((tc=p->caches[n])) + { + tc->frees++; + RemoveCacheEntries(p, tc, 0); + assert(!tc->freeInCache); + tc->mymspace=-1; + tc->threadid=0; + CallFree(0, tc, 0); + p->caches[n]=0; + } + } + } +} + +static NOINLINE threadcache *AllocCache(nedpool *RESTRICT p) THROWSPEC +{ + threadcache *tc=0; + int n, end; + ACQUIRE_LOCK(&p->mutex); + for(n=0; n<THREADCACHEMAXCACHES && p->caches[n]; n++); + if(THREADCACHEMAXCACHES==n) + { /* List exhausted, so disable for this thread */ + RELEASE_LOCK(&p->mutex); + return 0; + } + tc=p->caches[n]=(threadcache *) CallCalloc(p->m[0], sizeof(threadcache), 0); + if(!tc) + { + RELEASE_LOCK(&p->mutex); + return 0; + } +#ifdef FULLSANITYCHECKS + tc->magic1=*(unsigned int *)"NEDMALC1"; + tc->magic2=*(unsigned int *)"NEDMALC2"; +#endif + tc->threadid=(long)(size_t)CURRENT_THREAD; + for(end=0; p->m[end]; end++); + tc->mymspace=abs(tc->threadid) % end; + RELEASE_LOCK(&p->mutex); + if(TLSSET(p->mycache, (void *)(size_t)(n+1))) abort(); + return tc; +} + +static void *threadcache_malloc(nedpool *RESTRICT p, threadcache *RESTRICT tc, size_t *RESTRICT _size) THROWSPEC +{ + void *RESTRICT ret=0; + size_t size=*_size, blksize=0; + unsigned int bestsize; + unsigned int idx=size2binidx(size); + threadcacheblk *RESTRICT blk, **RESTRICT binsptr; +#ifdef FULLSANITYCHECKS + tcfullsanitycheck(tc); +#endif + /* Calculate best fit bin size */ + bestsize=1<<(idx+4); +#if 0 + /* Finer grained bin fit */ + idx<<=1; + if(size>bestsize) + { + idx++; + bestsize+=bestsize>>1; + } + if(size>bestsize) + { + idx++; + bestsize=1<<(4+(idx>>1)); + } +#else + if(size>bestsize) + { + idx++; + bestsize<<=1; + } +#endif + assert(bestsize>=size); + if(size<bestsize) size=bestsize; + assert(size<=THREADCACHEMAX); + assert(idx<=THREADCACHEMAXBINS); + binsptr=&tc->bins[idx*2]; + /* Try to match close, but move up a bin if necessary */ + blk=*binsptr; + if(!blk || blk->size<size) + { /* Bump it up a bin */ + if(idx<THREADCACHEMAXBINS) + { + idx++; + binsptr+=2; + blk=*binsptr; + } + } + if(blk) + { + blksize=blk->size; /*nedblksize(blk);*/ + assert(nedblksize(0, blk)>=blksize); + assert(blksize>=size); + if(blk->next) + blk->next->prev=0; + *binsptr=blk->next; + if(!*binsptr) + binsptr[1]=0; +#ifdef FULLSANITYCHECKS + blk->magic=0; +#endif + assert(binsptr[0]!=blk && binsptr[1]!=blk); + assert(nedblksize(0, blk)>=sizeof(threadcacheblk) && nedblksize(0, blk)<=THREADCACHEMAX+CHUNK_OVERHEAD); + /*printf("malloc: %p, %p, %p, %lu\n", p, tc, blk, (long) _size);*/ + ret=(void *) blk; + } + ++tc->mallocs; + if(ret) + { + assert(blksize>=size); + ++tc->successes; + tc->freeInCache-=blksize; + assert((long) tc->freeInCache>=0); + } +#if defined(DEBUG) && 0 + if(!(tc->mallocs & 0xfff)) + { + printf("*** threadcache=%u, mallocs=%u (%f), free=%u (%f), freeInCache=%u\n", (unsigned int) tc->threadid, tc->mallocs, + (float) tc->successes/tc->mallocs, tc->frees, (float) tc->successes/tc->frees, (unsigned int) tc->freeInCache); + } +#endif +#ifdef FULLSANITYCHECKS + tcfullsanitycheck(tc); +#endif + *_size=size; + return ret; +} +static NOINLINE void ReleaseFreeInCache(nedpool *RESTRICT p, threadcache *RESTRICT tc, int mymspace) THROWSPEC +{ + unsigned int age=THREADCACHEMAXFREESPACE/8192; + /*ACQUIRE_LOCK(&p->m[mymspace]->mutex);*/ + while(age && tc->freeInCache>=THREADCACHEMAXFREESPACE) + { + RemoveCacheEntries(p, tc, age); + /*printf("*** Removing cache entries older than %u (%u)\n", age, (unsigned int) tc->freeInCache);*/ + age>>=1; + } + /*RELEASE_LOCK(&p->m[mymspace]->mutex);*/ +} +static void threadcache_free(nedpool *RESTRICT p, threadcache *RESTRICT tc, int mymspace, void *RESTRICT mem, size_t size) THROWSPEC +{ + unsigned int bestsize; + unsigned int idx=size2binidx(size); + threadcacheblk **RESTRICT binsptr, *RESTRICT tck=(threadcacheblk *) mem; + assert(size>=sizeof(threadcacheblk) && size<=THREADCACHEMAX+CHUNK_OVERHEAD); +#ifdef DEBUG + /* Make sure this is a valid memory block */ + assert(nedblksize(0, mem)); +#endif +#ifdef FULLSANITYCHECKS + tcfullsanitycheck(tc); +#endif + /* Calculate best fit bin size */ + bestsize=1<<(idx+4); +#if 0 + /* Finer grained bin fit */ + idx<<=1; + if(size>bestsize) + { + unsigned int biggerbestsize=bestsize+bestsize<<1; + if(size>=biggerbestsize) + { + idx++; + bestsize=biggerbestsize; + } + } +#endif + if(bestsize!=size) /* dlmalloc can round up, so we round down to preserve indexing */ + size=bestsize; + binsptr=&tc->bins[idx*2]; + assert(idx<=THREADCACHEMAXBINS); + if(tck==*binsptr) + { + fprintf(stderr, "nedmalloc: Attempt to free already freed memory block %p - aborting!\n", tck); + abort(); + } +#ifdef FULLSANITYCHECKS + tck->magic=*(unsigned int *) "NEDN"; +#endif + tck->lastUsed=++tc->frees; + tck->size=(unsigned int) size; + tck->next=*binsptr; + tck->prev=0; + if(tck->next) + tck->next->prev=tck; + else + binsptr[1]=tck; + assert(!*binsptr || (*binsptr)->size==tck->size); + *binsptr=tck; + assert(tck==tc->bins[idx*2]); + assert(tc->bins[idx*2+1]==tck || binsptr[0]->next->prev==tck); + /*printf("free: %p, %p, %p, %lu\n", p, tc, mem, (long) size);*/ + tc->freeInCache+=size; +#ifdef FULLSANITYCHECKS + tcfullsanitycheck(tc); +#endif +#if 1 + if(tc->freeInCache>=THREADCACHEMAXFREESPACE) + ReleaseFreeInCache(p, tc, mymspace); +#endif +} + + + + +static NOINLINE int InitPool(nedpool *RESTRICT p, size_t capacity, int threads) THROWSPEC +{ /* threads is -1 for system pool */ + ensure_initialization(); + ACQUIRE_MALLOC_GLOBAL_LOCK(); + if(p->threads) goto done; + if(INITIAL_LOCK(&p->mutex)) goto err; + if(TLSALLOC(&p->mycache)) goto err; +#if USE_ALLOCATOR==0 + p->m[0]=(mstate) mspacecounter++; +#elif USE_ALLOCATOR==1 + if(!(p->m[0]=(mstate) create_mspace(capacity, 1))) goto err; + p->m[0]->extp=p; +#endif + p->threads=(threads<1 || threads>MAXTHREADSINPOOL) ? MAXTHREADSINPOOL : threads; +done: + RELEASE_MALLOC_GLOBAL_LOCK(); + return 1; +err: + if(threads<0) + abort(); /* If you can't allocate for system pool, we're screwed */ + DestroyCaches(p); + if(p->m[0]) + { +#if USE_ALLOCATOR==1 + destroy_mspace(p->m[0]); +#endif + p->m[0]=0; + } + if(p->mycache) + { + if(TLSFREE(p->mycache)) abort(); + p->mycache=0; + } + RELEASE_MALLOC_GLOBAL_LOCK(); + return 0; +} +static NOINLINE mstate FindMSpace(nedpool *RESTRICT p, threadcache *RESTRICT tc, int *RESTRICT lastUsed, size_t size) THROWSPEC +{ /* Gets called when thread's last used mspace is in use. The strategy + is to run through the list of all available mspaces looking for an + unlocked one and if we fail, we create a new one so long as we don't + exceed p->threads */ + int n, end; + for(n=end=*lastUsed+1; p->m[n]; end=++n) + { + if(TRY_LOCK(&p->m[n]->mutex)) goto found; + } + for(n=0; n<*lastUsed && p->m[n]; n++) + { + if(TRY_LOCK(&p->m[n]->mutex)) goto found; + } + if(end<p->threads) + { + mstate temp; +#if USE_ALLOCATOR==0 + temp=(mstate) mspacecounter++; +#elif USE_ALLOCATOR==1 + if(!(temp=(mstate) create_mspace(size, 1))) + goto badexit; +#endif + /* Now we're ready to modify the lists, we lock */ + ACQUIRE_LOCK(&p->mutex); + while(p->m[end] && end<p->threads) + end++; + if(end>=p->threads) + { /* Drat, must destroy it now */ + RELEASE_LOCK(&p->mutex); +#if USE_ALLOCATOR==1 + destroy_mspace((mstate) temp); +#endif + goto badexit; + } + /* We really want to make sure this goes into memory now but we + have to be careful of breaking aliasing rules, so write it twice */ + *((volatile struct malloc_state **) &p->m[end])=p->m[end]=temp; + ACQUIRE_LOCK(&p->m[end]->mutex); + /*printf("Created mspace idx %d\n", end);*/ + RELEASE_LOCK(&p->mutex); + n=end; + goto found; + } + /* Let it lock on the last one it used */ +badexit: + ACQUIRE_LOCK(&p->m[*lastUsed]->mutex); + return p->m[*lastUsed]; +found: + *lastUsed=n; + if(tc) + tc->mymspace=n; + else + { + if(TLSSET(p->mycache, (void *)(size_t)(-(n+1)))) abort(); + } + return p->m[n]; +} + +typedef struct PoolList_t +{ + size_t size; /* Size of list */ + size_t length; /* Actual entries in list */ +#ifdef DEBUG + nedpool *list[1]; /* Force testing of list expansion */ +#else + nedpool *list[16]; +#endif +} PoolList; +static MLOCK_T poollistlock; +static PoolList *poollist; +NEDMALLOCPTRATTR nedpool *nedcreatepool(size_t capacity, int threads) THROWSPEC +{ + nedpool *ret=0; + if(!poollist) + { + PoolList *newpoollist=0; + if(!(newpoollist=(PoolList *) nedpcalloc(0, 1, sizeof(PoolList)+sizeof(nedpool *)))) return 0; + INITIAL_LOCK(&poollistlock); + ACQUIRE_LOCK(&poollistlock); + poollist=newpoollist; + poollist->size=sizeof(poollist->list)/sizeof(nedpool *); + } + else + ACQUIRE_LOCK(&poollistlock); + if(poollist->length==poollist->size) + { + PoolList *newpoollist=0; + size_t newsize=0; + newsize=sizeof(PoolList)+(poollist->size+1)*sizeof(nedpool *); + if(!(newpoollist=(PoolList *) nedprealloc(0, poollist, newsize))) goto badexit; + poollist=newpoollist; + memset(&poollist->list[poollist->size], 0, newsize-((size_t)&poollist->list[poollist->size]-(size_t)&poollist->list[0])); + poollist->size=((newsize-((char *)&poollist->list[0]-(char *)poollist))/sizeof(nedpool *))-1; + assert(poollist->size>poollist->length); + } + if(!(ret=(nedpool *) nedpcalloc(0, 1, sizeof(nedpool)))) goto badexit; + if(!InitPool(ret, capacity, threads)) + { + nedpfree(0, ret); + goto badexit; + } + poollist->list[poollist->length++]=ret; +badexit: + RELEASE_LOCK(&poollistlock); + return ret; +} +void neddestroypool(nedpool *p) THROWSPEC +{ + unsigned int n; + ACQUIRE_LOCK(&p->mutex); + DestroyCaches(p); + for(n=0; p->m[n]; n++) + { +#if USE_ALLOCATOR==1 + destroy_mspace(p->m[n]); +#endif + p->m[n]=0; + } + RELEASE_LOCK(&p->mutex); + if(TLSFREE(p->mycache)) abort(); + nedpfree(0, p); + ACQUIRE_LOCK(&poollistlock); + assert(poollist); + for(n=0; n<poollist->length && poollist->list[n]!=p; n++); + assert(n!=poollist->length); + memmove(&poollist->list[n], &poollist->list[n+1], (size_t)&poollist->list[poollist->length]-(size_t)&poollist->list[n]); + if(!--poollist->length) + { + assert(!poollist->list[0]); + nedpfree(0, poollist); + poollist=0; + } + RELEASE_LOCK(&poollistlock); +} +void neddestroysyspool() THROWSPEC +{ + nedpool *p=&syspool; + int n; + ACQUIRE_LOCK(&p->mutex); + DestroyCaches(p); + for(n=0; p->m[n]; n++) + { +#if USE_ALLOCATOR==1 + destroy_mspace(p->m[n]); +#endif + p->m[n]=0; + } + /* Render syspool unusable */ + for(n=0; n<THREADCACHEMAXCACHES; n++) + p->caches[n]=(threadcache *)(size_t)(sizeof(size_t)>4 ? 0xdeadbeefdeadbeefULL : 0xdeadbeefUL); + for(n=0; n<MAXTHREADSINPOOL+1; n++) + p->m[n]=(mstate)(size_t)(sizeof(size_t)>4 ? 0xdeadbeefdeadbeefULL : 0xdeadbeefUL); + if(TLSFREE(p->mycache)) abort(); + RELEASE_LOCK(&p->mutex); +} +nedpool **nedpoollist() THROWSPEC +{ + nedpool **ret=0; + if(poollist) + { + ACQUIRE_LOCK(&poollistlock); + if(!(ret=(nedpool **) nedmalloc((poollist->length+1)*sizeof(nedpool *)))) goto badexit; + memcpy(ret, poollist->list, (poollist->length+1)*sizeof(nedpool *)); +badexit: + RELEASE_LOCK(&poollistlock); + } + return ret; +} + +void nedpsetvalue(nedpool *p, void *v) THROWSPEC +{ + if(!p) { p=&syspool; if(!syspool.threads) InitPool(&syspool, 0, -1); } + p->uservalue=v; +} +void *nedgetvalue(nedpool **p, void *mem) THROWSPEC +{ + nedpool *np=0; + mstate fm=nedblkmstate(mem); + if(!fm || !fm->extp) return 0; + np=(nedpool *) fm->extp; + if(p) *p=np; + return np->uservalue; +} + +void nedtrimthreadcache(nedpool *p, int disable) THROWSPEC +{ + int mycache; + if(!p) + { + p=&syspool; + if(!syspool.threads) InitPool(&syspool, 0, -1); + } + mycache=(int)(size_t) TLSGET(p->mycache); + if(!mycache) + { /* Set to mspace 0 */ + if(disable && TLSSET(p->mycache, (void *)(size_t)-1)) abort(); + } + else if(mycache>0) + { /* Set to last used mspace */ + threadcache *tc=p->caches[mycache-1]; +#if defined(DEBUG) + printf("Threadcache utilisation: %lf%% in cache with %lf%% lost to other threads\n", + 100.0*tc->successes/tc->mallocs, 100.0*((double) tc->mallocs-tc->frees)/tc->mallocs); +#endif + if(disable && TLSSET(p->mycache, (void *)(size_t)(-tc->mymspace))) abort(); + tc->frees++; + RemoveCacheEntries(p, tc, 0); + assert(!tc->freeInCache); + if(disable) + { + tc->mymspace=-1; + tc->threadid=0; + CallFree(0, p->caches[mycache-1], 0); + p->caches[mycache-1]=0; + } + } +} +void neddisablethreadcache(nedpool *p) THROWSPEC +{ + nedtrimthreadcache(p, 1); +} + +#define GETMSPACE(m,p,tc,ms,s,action) \ + do \ + { \ + mstate m = GetMSpace((p),(tc),(ms),(s)); \ + action; \ + if(USE_ALLOCATOR==1) { RELEASE_LOCK(&m->mutex); } \ + } while (0) + +static FORCEINLINE mstate GetMSpace(nedpool *RESTRICT p, threadcache *RESTRICT tc, int mymspace, size_t size) THROWSPEC +{ /* Returns a locked and ready for use mspace */ + mstate m=p->m[mymspace]; + assert(m); +#if USE_ALLOCATOR==1 + if(!TRY_LOCK(&p->m[mymspace]->mutex)) m=FindMSpace(p, tc, &mymspace, size); + /*assert(IS_LOCKED(&p->m[mymspace]->mutex));*/ +#endif + return m; +} +static NOINLINE void GetThreadCache_cold1(nedpool *RESTRICT *RESTRICT p) THROWSPEC +{ + *p=&syspool; + if(!syspool.threads) InitPool(&syspool, 0, -1); +} +static NOINLINE void GetThreadCache_cold2(nedpool *RESTRICT *RESTRICT p, threadcache *RESTRICT *RESTRICT tc, int *RESTRICT mymspace, int mycache) THROWSPEC +{ + if(!mycache) + { /* Need to allocate a new cache */ + *tc=AllocCache(*p); + if(!*tc) + { /* Disable */ + if(TLSSET((*p)->mycache, (void *)(size_t)-1)) abort(); + *mymspace=0; + } + else + *mymspace=(*tc)->mymspace; + } + else + { /* Cache disabled, but we do have an assigned thread pool */ + *tc=0; + *mymspace=-mycache-1; + } +} +static FORCEINLINE void GetThreadCache(nedpool *RESTRICT *RESTRICT p, threadcache *RESTRICT *RESTRICT tc, int *RESTRICT mymspace, size_t *RESTRICT size) THROWSPEC +{ + int mycache; + if(size && *size<sizeof(threadcacheblk)) *size=sizeof(threadcacheblk); + if(!*p) + GetThreadCache_cold1(p); + mycache=(int)(size_t) TLSGET((*p)->mycache); + if(mycache>0) + { /* Already have a cache */ + *tc=(*p)->caches[mycache-1]; + *mymspace=(*tc)->mymspace; + } + else GetThreadCache_cold2(p, tc, mymspace, mycache); + assert(*mymspace>=0); + assert(!(*tc) || (long)(size_t)CURRENT_THREAD==(*tc)->threadid); +#ifdef FULLSANITYCHECKS + if(*tc) + { + if(*(unsigned int *)"NEDMALC1"!=(*tc)->magic1 || *(unsigned int *)"NEDMALC2"!=(*tc)->magic2) + { + abort(); + } + } +#endif +} + +NEDMALLOCPTRATTR void * nedpmalloc(nedpool *p, size_t size) THROWSPEC +{ + void *ret=0; + threadcache *tc; + int mymspace; + GetThreadCache(&p, &tc, &mymspace, &size); +#if THREADCACHEMAX + if(tc && size<=THREADCACHEMAX) + { /* Use the thread cache */ + ret=threadcache_malloc(p, tc, &size); + } +#endif + if(!ret) + { /* Use this thread's mspace */ + GETMSPACE(m, p, tc, mymspace, size, + ret=CallMalloc(m, size, 0)); + } + return ret; +} +NEDMALLOCPTRATTR void * nedpcalloc(nedpool *p, size_t no, size_t size) THROWSPEC +{ + size_t rsize=size*no; + void *ret=0; + threadcache *tc; + int mymspace; + GetThreadCache(&p, &tc, &mymspace, &rsize); +#if THREADCACHEMAX + if(tc && rsize<=THREADCACHEMAX) + { /* Use the thread cache */ + if((ret=threadcache_malloc(p, tc, &rsize))) + memset(ret, 0, rsize); + } +#endif + if(!ret) + { /* Use this thread's mspace */ + GETMSPACE(m, p, tc, mymspace, rsize, + ret=CallCalloc(m, rsize, 0)); + } + return ret; +} +NEDMALLOCPTRATTR void * nedprealloc(nedpool *p, void *mem, size_t size) THROWSPEC +{ + void *ret=0; + threadcache *tc; + int mymspace, isforeign=1; + size_t memsize; + if(!mem) return nedpmalloc(p, size); + memsize=nedblksize(&isforeign, mem); + assert(memsize); + if(!memsize) + { + fprintf(stderr, "nedmalloc: nedprealloc() called with a block not created by nedmalloc!\n"); + abort(); + } + else if(size<=memsize && memsize-size< +#ifdef DEBUG + 32 +#else + 1024 +#endif + ) /* If realloc size is within 1Kb smaller than existing, noop it */ + return mem; + GetThreadCache(&p, &tc, &mymspace, &size); +#if THREADCACHEMAX + if(tc && size && size<=THREADCACHEMAX) + { /* Use the thread cache */ + if((ret=threadcache_malloc(p, tc, &size))) + { + memcpy(ret, mem, memsize<size ? memsize : size); + if(memsize>=sizeof(threadcacheblk) && memsize<=(THREADCACHEMAX+CHUNK_OVERHEAD)) + threadcache_free(p, tc, mymspace, mem, memsize); + else + CallFree(0, mem, isforeign); + } + } +#endif + if(!ret) + { /* Reallocs always happen in the mspace they happened in, so skip + locking the preferred mspace for this thread */ + ret=CallRealloc(p->m[mymspace], mem, isforeign, memsize, size); + } + return ret; +} +void nedpfree(nedpool *p, void *mem) THROWSPEC +{ /* Frees always happen in the mspace they happened in, so skip + locking the preferred mspace for this thread */ + threadcache *tc; + int mymspace, isforeign=1; + size_t memsize; + if(!mem) + { /* If you tried this on FreeBSD you'd be sorry! */ +#ifdef DEBUG + fprintf(stderr, "nedmalloc: WARNING nedpfree() called with zero. This is not portable behaviour!\n"); +#endif + return; + } + memsize=nedblksize(&isforeign, mem); + assert(memsize); + if(!memsize) + { + fprintf(stderr, "nedmalloc: nedpfree() called with a block not created by nedmalloc!\n"); + abort(); + } + GetThreadCache(&p, &tc, &mymspace, 0); +#if THREADCACHEMAX + if(mem && tc && memsize>=sizeof(threadcacheblk) && memsize<=(THREADCACHEMAX+CHUNK_OVERHEAD)) + threadcache_free(p, tc, mymspace, mem, memsize); + else +#endif + CallFree(0, mem, isforeign); +} +NEDMALLOCPTRATTR void * nedpmemalign(nedpool *p, size_t alignment, size_t bytes) THROWSPEC +{ + void *ret; + threadcache *tc; + int mymspace; + GetThreadCache(&p, &tc, &mymspace, &bytes); + { /* Use this thread's mspace */ + GETMSPACE(m, p, tc, mymspace, bytes, + ret=CallMalloc(m, bytes, alignment)); + } + return ret; +} +struct nedmallinfo nedpmallinfo(nedpool *p) THROWSPEC +{ + int n; + struct nedmallinfo ret={0}; + if(!p) { p=&syspool; if(!syspool.threads) InitPool(&syspool, 0, -1); } + for(n=0; p->m[n]; n++) + { +#if USE_ALLOCATOR==1 && !NO_MALLINFO + struct mallinfo t=mspace_mallinfo(p->m[n]); + ret.arena+=t.arena; + ret.ordblks+=t.ordblks; + ret.hblkhd+=t.hblkhd; + ret.usmblks+=t.usmblks; + ret.uordblks+=t.uordblks; + ret.fordblks+=t.fordblks; + ret.keepcost+=t.keepcost; +#endif + } + return ret; +} +int nedpmallopt(nedpool *p, int parno, int value) THROWSPEC +{ +#if USE_ALLOCATOR==1 + return mspace_mallopt(parno, value); +#else + return 0; +#endif +} +NEDMALLOCNOALIASATTR void* nedmalloc_internals(size_t *granularity, size_t *magic) THROWSPEC +{ +#if USE_ALLOCATOR==1 + if(granularity) *granularity=mparams.granularity; + if(magic) *magic=mparams.magic; + return (void *) &syspool; +#else + if(granularity) *granularity=0; + if(magic) *magic=0; + return 0; +#endif +} +int nedpmalloc_trim(nedpool *p, size_t pad) THROWSPEC +{ + int n, ret=0; + if(!p) { p=&syspool; if(!syspool.threads) InitPool(&syspool, 0, -1); } + for(n=0; p->m[n]; n++) + { +#if USE_ALLOCATOR==1 + ret+=mspace_trim(p->m[n], pad); +#endif + } + return ret; +} +void nedpmalloc_stats(nedpool *p) THROWSPEC +{ + int n; + if(!p) { p=&syspool; if(!syspool.threads) InitPool(&syspool, 0, -1); } + for(n=0; p->m[n]; n++) + { +#if USE_ALLOCATOR==1 + mspace_malloc_stats(p->m[n]); +#endif + } +} +size_t nedpmalloc_footprint(nedpool *p) THROWSPEC +{ + size_t ret=0; + int n; + if(!p) { p=&syspool; if(!syspool.threads) InitPool(&syspool, 0, -1); } + for(n=0; p->m[n]; n++) + { +#if USE_ALLOCATOR==1 + ret+=mspace_footprint(p->m[n]); +#endif + } + return ret; +} +NEDMALLOCPTRATTR void **nedpindependent_calloc(nedpool *p, size_t elemsno, size_t elemsize, void **chunks) THROWSPEC +{ + void **ret; + threadcache *tc; + int mymspace; + GetThreadCache(&p, &tc, &mymspace, &elemsize); +#if USE_ALLOCATOR==0 + GETMSPACE(m, p, tc, mymspace, elemsno*elemsize, + ret=unsupported_operation("independent_calloc")); +#elif USE_ALLOCATOR==1 + GETMSPACE(m, p, tc, mymspace, elemsno*elemsize, + ret=mspace_independent_calloc(m, elemsno, elemsize, chunks)); +#endif + return ret; +} +NEDMALLOCPTRATTR void **nedpindependent_comalloc(nedpool *p, size_t elems, size_t *sizes, void **chunks) THROWSPEC +{ + void **ret; + threadcache *tc; + int mymspace; + size_t i, *adjustedsizes=(size_t *) alloca(elems*sizeof(size_t)); + if(!adjustedsizes) return 0; + for(i=0; i<elems; i++) + adjustedsizes[i]=sizes[i]<sizeof(threadcacheblk) ? sizeof(threadcacheblk) : sizes[i]; + GetThreadCache(&p, &tc, &mymspace, 0); +#if USE_ALLOCATOR==0 + GETMSPACE(m, p, tc, mymspace, 0, + ret=unsupported_operation("independent_comalloc")); +#elif USE_ALLOCATOR==1 + GETMSPACE(m, p, tc, mymspace, 0, + ret=mspace_independent_comalloc(m, elems, adjustedsizes, chunks)); +#endif + return ret; +} + +#if defined(__cplusplus) +} +#endif + +#ifdef _MSC_VER +#pragma warning(pop) +#endif + +#endif diff --git a/drivers/nedmalloc/nedmalloc.h b/drivers/nedmalloc/nedmalloc.h index b9add1683a..7ec65849fc 100644 --- a/drivers/nedmalloc/nedmalloc.h +++ b/drivers/nedmalloc/nedmalloc.h @@ -1,302 +1,302 @@ -#ifdef NEDMALLOC_ENABLED
-
-/* nedalloc, an alternative malloc implementation for multiple threads without
-lock contention based on dlmalloc v2.8.3. (C) 2005-2009 Niall Douglas
-
-Boost Software License - Version 1.0 - August 17th, 2003
-
-Permission is hereby granted, free of charge, to any person or organization
-obtaining a copy of the software and accompanying documentation covered by
-this license (the "Software") to use, reproduce, display, distribute,
-execute, and transmit the Software, and to prepare derivative works of the
-Software, and to permit third-parties to whom the Software is furnished to
-do so, all subject to the following:
-
-The copyright notices in the Software and this entire statement, including
-the above license grant, this restriction and the following disclaimer,
-must be included in all copies of the Software, in whole or in part, and
-all derivative works of the Software, unless such copies or derivative
-works are solely in the form of machine-executable object code generated by
-a source language processor.
-
-THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
-IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
-FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT
-SHALL THE COPYRIGHT HOLDERS OR ANYONE DISTRIBUTING THE SOFTWARE BE LIABLE
-FOR ANY DAMAGES OR OTHER LIABILITY, WHETHER IN CONTRACT, TORT OR OTHERWISE,
-ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
-DEALINGS IN THE SOFTWARE.
-*/
-
-#ifndef NEDMALLOC_H
-#define NEDMALLOC_H
-
-#include "typedefs.h"
-#define MALLOC_ALIGNMENT DEFAULT_ALIGNMENT
-
-#ifdef PSP_ENABLED
-#define USE_LOCKS 0
-#define HAVE_MMAP 0
-#endif
-
-/* See malloc.c.h for what each function does.
-
-REPLACE_SYSTEM_ALLOCATOR on POSIX causes nedalloc's functions to be called
-malloc, free etc. instead of nedmalloc, nedfree etc. You may or may not want
-this. On Windows it causes nedmalloc to patch all loaded DLLs and binaries
-to replace usage of the system allocator.
-
-NO_NED_NAMESPACE prevents the functions from being defined in the nedalloc
-namespace when in C++ (uses the global namespace instead).
-
-NEDMALLOCEXTSPEC can be defined to be __declspec(dllexport) or
-__attribute__ ((visibility("default"))) or whatever you like. It defaults
-to extern unless NEDMALLOC_DLL_EXPORTS is set as it would be when building
-nedmalloc.dll.
-
-USE_LOCKS can be 2 if you want to define your own MLOCK_T, INITIAL_LOCK,
-ACQUIRE_LOCK, RELEASE_LOCK, TRY_LOCK, IS_LOCKED and NULL_LOCK_INITIALIZER.
-
-NEDMALLOC_DEBUG can be defined to cause DEBUG to be set differently for nedmalloc
-than for the rest of the build. Remember to set NDEBUG to disable all assertion
-checking too.
-
-USE_MAGIC_HEADERS causes nedalloc to allocate an extra three sizeof(size_t)
-to each block. nedpfree() and nedprealloc() can then automagically know when
-to free a system allocated block. Enabling this typically adds 20-50% to
-application memory usage.
-
-ENABLE_TOLERANT_NEDMALLOC is automatically turned on if REPLACE_SYSTEM_ALLOCATOR
-is set or the Windows DLL is being built. This causes nedmalloc to detect when a
-system allocator block is passed to it and to handle it appropriately. Note that
-without USE_MAGIC_HEADERS there is a very tiny chance that nedmalloc will segfault
-on non-Windows builds (it uses Win32 SEH to trap segfaults on Windows and there
-is no comparable system on POSIX).
-
-USE_ALLOCATOR can be one of these settings (it defaults to 1):
- 0: System allocator (nedmalloc now simply acts as a threadcache).
- WARNING: Intended for DEBUG USE ONLY - not all functions work correctly.
- 1: dlmalloc
-
-ENABLE_LARGE_PAGES enables support for requesting memory from the system in large
-(typically >=2Mb) pages if the host OS supports this. These occupy just a single
-TLB entry and can significantly improve performance in large working set applications.
-
-ENABLE_FAST_HEAP_DETECTION enables special logic to detect blocks allocated
-by the system heap. This avoids 1.5%-2% overhead when checking for non-nedmalloc
-blocks, but it assumes that the NT and glibc heaps function in a very specific
-fashion which may not hold true across OS upgrades.
-*/
-
-#include <stddef.h> /* for size_t */
-
-#ifndef NEDMALLOCEXTSPEC
- #ifdef NEDMALLOC_DLL_EXPORTS
- #ifdef WIN32
- #define NEDMALLOCEXTSPEC extern __declspec(dllexport)
- #elif defined(__GNUC__)
- #define NEDMALLOCEXTSPEC extern __attribute__ ((visibility("default")))
- #endif
- #ifndef ENABLE_TOLERANT_NEDMALLOC
- #define ENABLE_TOLERANT_NEDMALLOC 1
- #endif
- #else
- #define NEDMALLOCEXTSPEC extern
- #endif
-#endif
-
-#if __STDC_VERSION__ >= 199901L /* C99 or better */
- #define RESTRICT restrict
-#else
- #if defined(_MSC_VER) && _MSC_VER>=1400
- #define RESTRICT __restrict
- #endif
- #ifdef __GNUC__
- #define RESTRICT __restrict
- #endif
-#endif
-#ifndef RESTRICT
- #define RESTRICT
-#endif
-
-#if defined(_MSC_VER) && _MSC_VER>=1400
- #define NEDMALLOCPTRATTR __declspec(restrict)
- #define NEDMALLOCNOALIASATTR __declspec(noalias)
-#endif
-#ifdef __GNUC__
- #define NEDMALLOCPTRATTR __attribute__ ((malloc))
-#endif
-#ifndef NEDMALLOCPTRATTR
- #define NEDMALLOCPTRATTR
-#endif
-#ifndef NEDMALLOCNOALIASATTR
- #define NEDMALLOCNOALIASATTR
-#endif
-
-#ifndef USE_MAGIC_HEADERS
- #define USE_MAGIC_HEADERS 0
-#endif
-
-#ifndef USE_ALLOCATOR
- #define USE_ALLOCATOR 1 /* dlmalloc */
-#endif
-
-#if !USE_ALLOCATOR && !USE_MAGIC_HEADERS
-#error If you are using the system allocator then you MUST use magic headers
-#endif
-
-#ifdef REPLACE_SYSTEM_ALLOCATOR
- #if USE_ALLOCATOR==0
- #error Cannot combine using the system allocator with replacing the system allocator
- #endif
- #ifndef ENABLE_TOLERANT_NEDMALLOC
- #define ENABLE_TOLERANT_NEDMALLOC 1
- #endif
- #ifndef WIN32 /* We have a dedicated patcher for Windows */
- #define nedmalloc malloc
- #define nedcalloc calloc
- #define nedrealloc realloc
- #define nedfree free
- #define nedmemalign memalign
- #define nedmallinfo mallinfo
- #define nedmallopt mallopt
- #define nedmalloc_trim malloc_trim
- #define nedmalloc_stats malloc_stats
- #define nedmalloc_footprint malloc_footprint
- #define nedindependent_calloc independent_calloc
- #define nedindependent_comalloc independent_comalloc
- #ifdef _MSC_VER
- #define nedblksize _msize
- #endif
- #endif
-#endif
-
-#if defined(__cplusplus)
-extern "C" {
-#endif
-struct nedmallinfo {
- size_t arena; /* non-mmapped space allocated from system */
- size_t ordblks; /* number of free chunks */
- size_t smblks; /* always 0 */
- size_t hblks; /* always 0 */
- size_t hblkhd; /* space in mmapped regions */
- size_t usmblks; /* maximum total allocated space */
- size_t fsmblks; /* always 0 */
- size_t uordblks; /* total allocated space */
- size_t fordblks; /* total free space */
- size_t keepcost; /* releasable (via malloc_trim) space */
-};
-#if defined(__cplusplus)
-}
-#endif
-
-#if defined(__cplusplus)
- #if !defined(NO_NED_NAMESPACE)
-namespace nedalloc {
- #else
-extern "C" {
- #endif
- #define THROWSPEC throw()
-#else
- #define THROWSPEC
-#endif
-
-/* These are the global functions */
-
-/* Gets the usable size of an allocated block. Note this will always be bigger than what was
-asked for due to rounding etc. Optionally returns 1 in isforeign if the block came from the
-system allocator - note that there is a small (>0.01%) but real chance of segfault on non-Windows
-systems when passing non-nedmalloc blocks if you don't use USE_MAGIC_HEADERS.
-*/
-NEDMALLOCEXTSPEC NEDMALLOCNOALIASATTR size_t nedblksize(int *RESTRICT isforeign, void *RESTRICT mem) THROWSPEC;
-
-NEDMALLOCEXTSPEC NEDMALLOCNOALIASATTR void nedsetvalue(void *v) THROWSPEC;
-
-NEDMALLOCEXTSPEC NEDMALLOCNOALIASATTR NEDMALLOCPTRATTR void * nedmalloc(size_t size) THROWSPEC;
-NEDMALLOCEXTSPEC NEDMALLOCNOALIASATTR NEDMALLOCPTRATTR void * nedcalloc(size_t no, size_t size) THROWSPEC;
-NEDMALLOCEXTSPEC NEDMALLOCNOALIASATTR NEDMALLOCPTRATTR void * nedrealloc(void *mem, size_t size) THROWSPEC;
-NEDMALLOCEXTSPEC NEDMALLOCNOALIASATTR void nedfree(void *mem) THROWSPEC;
-NEDMALLOCEXTSPEC NEDMALLOCNOALIASATTR NEDMALLOCPTRATTR void * nedmemalign(size_t alignment, size_t bytes) THROWSPEC;
-NEDMALLOCEXTSPEC NEDMALLOCNOALIASATTR struct nedmallinfo nedmallinfo(void) THROWSPEC;
-NEDMALLOCEXTSPEC NEDMALLOCNOALIASATTR int nedmallopt(int parno, int value) THROWSPEC;
-NEDMALLOCEXTSPEC NEDMALLOCNOALIASATTR void* nedmalloc_internals(size_t *granularity, size_t *magic) THROWSPEC;
-NEDMALLOCEXTSPEC NEDMALLOCNOALIASATTR int nedmalloc_trim(size_t pad) THROWSPEC;
-NEDMALLOCEXTSPEC void nedmalloc_stats(void) THROWSPEC;
-NEDMALLOCEXTSPEC NEDMALLOCNOALIASATTR size_t nedmalloc_footprint(void) THROWSPEC;
-NEDMALLOCEXTSPEC NEDMALLOCNOALIASATTR NEDMALLOCPTRATTR void **nedindependent_calloc(size_t elemsno, size_t elemsize, void **chunks) THROWSPEC;
-NEDMALLOCEXTSPEC NEDMALLOCNOALIASATTR NEDMALLOCPTRATTR void **nedindependent_comalloc(size_t elems, size_t *sizes, void **chunks) THROWSPEC;
-
-/* Destroys the system memory pool used by the functions above.
-Useful for when you have nedmalloc in a DLL you're about to unload.
-If you call ANY nedmalloc functions after calling this you will
-get a fatal exception!
-*/
-NEDMALLOCEXTSPEC void neddestroysyspool() THROWSPEC;
-
-/* These are the pool functions */
-struct nedpool_t;
-typedef struct nedpool_t nedpool;
-
-/* Creates a memory pool for use with the nedp* functions below.
-Capacity is how much to allocate immediately (if you know you'll be allocating a lot
-of memory very soon) which you can leave at zero. Threads specifies how many threads
-will *normally* be accessing the pool concurrently. Setting this to zero means it
-extends on demand, but be careful of this as it can rapidly consume system resources
-where bursts of concurrent threads use a pool at once.
-*/
-NEDMALLOCEXTSPEC NEDMALLOCPTRATTR nedpool *nedcreatepool(size_t capacity, int threads) THROWSPEC;
-
-/* Destroys a memory pool previously created by nedcreatepool().
-*/
-NEDMALLOCEXTSPEC void neddestroypool(nedpool *p) THROWSPEC;
-
-/* Returns a zero terminated snapshot of threadpools existing at the time of call. Call
-nedfree() on the returned list when you are done. Returns zero if there is only the
-system pool in existence.
-*/
-NEDMALLOCEXTSPEC nedpool **nedpoollist() THROWSPEC;
-
-/* Sets a value to be associated with a pool. You can retrieve this value by passing
-any memory block allocated from that pool.
-*/
-NEDMALLOCEXTSPEC void nedpsetvalue(nedpool *p, void *v) THROWSPEC;
-
-/* Gets a previously set value using nedpsetvalue() or zero if memory is unknown.
-Optionally can also retrieve pool. You can detect an unknown block by the return
-being zero and *p being unmodifed.
-*/
-NEDMALLOCEXTSPEC void *nedgetvalue(nedpool **p, void *mem) THROWSPEC;
-
-/* Trims the thread cache for the calling thread, returning any existing cache
-data to the central pool. Remember to ALWAYS call with zero if you used the
-system pool. Setting disable to non-zero replicates neddisablethreadcache().
-*/
-NEDMALLOCEXTSPEC void nedtrimthreadcache(nedpool *p, int disable) THROWSPEC;
-
-/* Disables the thread cache for the calling thread, returning any existing cache
-data to the central pool. Remember to ALWAYS call with zero if you used the
-system pool.
-*/
-NEDMALLOCEXTSPEC void neddisablethreadcache(nedpool *p) THROWSPEC;
-
-
-NEDMALLOCEXTSPEC NEDMALLOCPTRATTR void * nedpmalloc(nedpool *p, size_t size) THROWSPEC;
-NEDMALLOCEXTSPEC NEDMALLOCPTRATTR void * nedpcalloc(nedpool *p, size_t no, size_t size) THROWSPEC;
-NEDMALLOCEXTSPEC NEDMALLOCPTRATTR void * nedprealloc(nedpool *p, void *mem, size_t size) THROWSPEC;
-NEDMALLOCEXTSPEC void nedpfree(nedpool *p, void *mem) THROWSPEC;
-NEDMALLOCEXTSPEC NEDMALLOCPTRATTR void * nedpmemalign(nedpool *p, size_t alignment, size_t bytes) THROWSPEC;
-NEDMALLOCEXTSPEC struct nedmallinfo nedpmallinfo(nedpool *p) THROWSPEC;
-NEDMALLOCEXTSPEC int nedpmallopt(nedpool *p, int parno, int value) THROWSPEC;
-NEDMALLOCEXTSPEC int nedpmalloc_trim(nedpool *p, size_t pad) THROWSPEC;
-NEDMALLOCEXTSPEC void nedpmalloc_stats(nedpool *p) THROWSPEC;
-NEDMALLOCEXTSPEC size_t nedpmalloc_footprint(nedpool *p) THROWSPEC;
-NEDMALLOCEXTSPEC NEDMALLOCPTRATTR void **nedpindependent_calloc(nedpool *p, size_t elemsno, size_t elemsize, void **chunks) THROWSPEC;
-NEDMALLOCEXTSPEC NEDMALLOCPTRATTR void **nedpindependent_comalloc(nedpool *p, size_t elems, size_t *sizes, void **chunks) THROWSPEC;
-
-#if defined(__cplusplus)
-}
-#endif
-
-#endif
-
-#endif
+#ifdef NEDMALLOC_ENABLED + +/* nedalloc, an alternative malloc implementation for multiple threads without +lock contention based on dlmalloc v2.8.3. (C) 2005-2009 Niall Douglas + +Boost Software License - Version 1.0 - August 17th, 2003 + +Permission is hereby granted, free of charge, to any person or organization +obtaining a copy of the software and accompanying documentation covered by +this license (the "Software") to use, reproduce, display, distribute, +execute, and transmit the Software, and to prepare derivative works of the +Software, and to permit third-parties to whom the Software is furnished to +do so, all subject to the following: + +The copyright notices in the Software and this entire statement, including +the above license grant, this restriction and the following disclaimer, +must be included in all copies of the Software, in whole or in part, and +all derivative works of the Software, unless such copies or derivative +works are solely in the form of machine-executable object code generated by +a source language processor. + +THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT +SHALL THE COPYRIGHT HOLDERS OR ANYONE DISTRIBUTING THE SOFTWARE BE LIABLE +FOR ANY DAMAGES OR OTHER LIABILITY, WHETHER IN CONTRACT, TORT OR OTHERWISE, +ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER +DEALINGS IN THE SOFTWARE. +*/ + +#ifndef NEDMALLOC_H +#define NEDMALLOC_H + +#include "typedefs.h" +#define MALLOC_ALIGNMENT DEFAULT_ALIGNMENT + +#ifdef PSP_ENABLED +#define USE_LOCKS 0 +#define HAVE_MMAP 0 +#endif + +/* See malloc.c.h for what each function does. + +REPLACE_SYSTEM_ALLOCATOR on POSIX causes nedalloc's functions to be called +malloc, free etc. instead of nedmalloc, nedfree etc. You may or may not want +this. On Windows it causes nedmalloc to patch all loaded DLLs and binaries +to replace usage of the system allocator. + +NO_NED_NAMESPACE prevents the functions from being defined in the nedalloc +namespace when in C++ (uses the global namespace instead). + +NEDMALLOCEXTSPEC can be defined to be __declspec(dllexport) or +__attribute__ ((visibility("default"))) or whatever you like. It defaults +to extern unless NEDMALLOC_DLL_EXPORTS is set as it would be when building +nedmalloc.dll. + +USE_LOCKS can be 2 if you want to define your own MLOCK_T, INITIAL_LOCK, +ACQUIRE_LOCK, RELEASE_LOCK, TRY_LOCK, IS_LOCKED and NULL_LOCK_INITIALIZER. + +NEDMALLOC_DEBUG can be defined to cause DEBUG to be set differently for nedmalloc +than for the rest of the build. Remember to set NDEBUG to disable all assertion +checking too. + +USE_MAGIC_HEADERS causes nedalloc to allocate an extra three sizeof(size_t) +to each block. nedpfree() and nedprealloc() can then automagically know when +to free a system allocated block. Enabling this typically adds 20-50% to +application memory usage. + +ENABLE_TOLERANT_NEDMALLOC is automatically turned on if REPLACE_SYSTEM_ALLOCATOR +is set or the Windows DLL is being built. This causes nedmalloc to detect when a +system allocator block is passed to it and to handle it appropriately. Note that +without USE_MAGIC_HEADERS there is a very tiny chance that nedmalloc will segfault +on non-Windows builds (it uses Win32 SEH to trap segfaults on Windows and there +is no comparable system on POSIX). + +USE_ALLOCATOR can be one of these settings (it defaults to 1): + 0: System allocator (nedmalloc now simply acts as a threadcache). + WARNING: Intended for DEBUG USE ONLY - not all functions work correctly. + 1: dlmalloc + +ENABLE_LARGE_PAGES enables support for requesting memory from the system in large +(typically >=2Mb) pages if the host OS supports this. These occupy just a single +TLB entry and can significantly improve performance in large working set applications. + +ENABLE_FAST_HEAP_DETECTION enables special logic to detect blocks allocated +by the system heap. This avoids 1.5%-2% overhead when checking for non-nedmalloc +blocks, but it assumes that the NT and glibc heaps function in a very specific +fashion which may not hold true across OS upgrades. +*/ + +#include <stddef.h> /* for size_t */ + +#ifndef NEDMALLOCEXTSPEC + #ifdef NEDMALLOC_DLL_EXPORTS + #ifdef WIN32 + #define NEDMALLOCEXTSPEC extern __declspec(dllexport) + #elif defined(__GNUC__) + #define NEDMALLOCEXTSPEC extern __attribute__ ((visibility("default"))) + #endif + #ifndef ENABLE_TOLERANT_NEDMALLOC + #define ENABLE_TOLERANT_NEDMALLOC 1 + #endif + #else + #define NEDMALLOCEXTSPEC extern + #endif +#endif + +#if __STDC_VERSION__ >= 199901L /* C99 or better */ + #define RESTRICT restrict +#else + #if defined(_MSC_VER) && _MSC_VER>=1400 + #define RESTRICT __restrict + #endif + #ifdef __GNUC__ + #define RESTRICT __restrict + #endif +#endif +#ifndef RESTRICT + #define RESTRICT +#endif + +#if defined(_MSC_VER) && _MSC_VER>=1400 + #define NEDMALLOCPTRATTR __declspec(restrict) + #define NEDMALLOCNOALIASATTR __declspec(noalias) +#endif +#ifdef __GNUC__ + #define NEDMALLOCPTRATTR __attribute__ ((malloc)) +#endif +#ifndef NEDMALLOCPTRATTR + #define NEDMALLOCPTRATTR +#endif +#ifndef NEDMALLOCNOALIASATTR + #define NEDMALLOCNOALIASATTR +#endif + +#ifndef USE_MAGIC_HEADERS + #define USE_MAGIC_HEADERS 0 +#endif + +#ifndef USE_ALLOCATOR + #define USE_ALLOCATOR 1 /* dlmalloc */ +#endif + +#if !USE_ALLOCATOR && !USE_MAGIC_HEADERS +#error If you are using the system allocator then you MUST use magic headers +#endif + +#ifdef REPLACE_SYSTEM_ALLOCATOR + #if USE_ALLOCATOR==0 + #error Cannot combine using the system allocator with replacing the system allocator + #endif + #ifndef ENABLE_TOLERANT_NEDMALLOC + #define ENABLE_TOLERANT_NEDMALLOC 1 + #endif + #ifndef WIN32 /* We have a dedicated patcher for Windows */ + #define nedmalloc malloc + #define nedcalloc calloc + #define nedrealloc realloc + #define nedfree free + #define nedmemalign memalign + #define nedmallinfo mallinfo + #define nedmallopt mallopt + #define nedmalloc_trim malloc_trim + #define nedmalloc_stats malloc_stats + #define nedmalloc_footprint malloc_footprint + #define nedindependent_calloc independent_calloc + #define nedindependent_comalloc independent_comalloc + #ifdef _MSC_VER + #define nedblksize _msize + #endif + #endif +#endif + +#if defined(__cplusplus) +extern "C" { +#endif +struct nedmallinfo { + size_t arena; /* non-mmapped space allocated from system */ + size_t ordblks; /* number of free chunks */ + size_t smblks; /* always 0 */ + size_t hblks; /* always 0 */ + size_t hblkhd; /* space in mmapped regions */ + size_t usmblks; /* maximum total allocated space */ + size_t fsmblks; /* always 0 */ + size_t uordblks; /* total allocated space */ + size_t fordblks; /* total free space */ + size_t keepcost; /* releasable (via malloc_trim) space */ +}; +#if defined(__cplusplus) +} +#endif + +#if defined(__cplusplus) + #if !defined(NO_NED_NAMESPACE) +namespace nedalloc { + #else +extern "C" { + #endif + #define THROWSPEC throw() +#else + #define THROWSPEC +#endif + +/* These are the global functions */ + +/* Gets the usable size of an allocated block. Note this will always be bigger than what was +asked for due to rounding etc. Optionally returns 1 in isforeign if the block came from the +system allocator - note that there is a small (>0.01%) but real chance of segfault on non-Windows +systems when passing non-nedmalloc blocks if you don't use USE_MAGIC_HEADERS. +*/ +NEDMALLOCEXTSPEC NEDMALLOCNOALIASATTR size_t nedblksize(int *RESTRICT isforeign, void *RESTRICT mem) THROWSPEC; + +NEDMALLOCEXTSPEC NEDMALLOCNOALIASATTR void nedsetvalue(void *v) THROWSPEC; + +NEDMALLOCEXTSPEC NEDMALLOCNOALIASATTR NEDMALLOCPTRATTR void * nedmalloc(size_t size) THROWSPEC; +NEDMALLOCEXTSPEC NEDMALLOCNOALIASATTR NEDMALLOCPTRATTR void * nedcalloc(size_t no, size_t size) THROWSPEC; +NEDMALLOCEXTSPEC NEDMALLOCNOALIASATTR NEDMALLOCPTRATTR void * nedrealloc(void *mem, size_t size) THROWSPEC; +NEDMALLOCEXTSPEC NEDMALLOCNOALIASATTR void nedfree(void *mem) THROWSPEC; +NEDMALLOCEXTSPEC NEDMALLOCNOALIASATTR NEDMALLOCPTRATTR void * nedmemalign(size_t alignment, size_t bytes) THROWSPEC; +NEDMALLOCEXTSPEC NEDMALLOCNOALIASATTR struct nedmallinfo nedmallinfo(void) THROWSPEC; +NEDMALLOCEXTSPEC NEDMALLOCNOALIASATTR int nedmallopt(int parno, int value) THROWSPEC; +NEDMALLOCEXTSPEC NEDMALLOCNOALIASATTR void* nedmalloc_internals(size_t *granularity, size_t *magic) THROWSPEC; +NEDMALLOCEXTSPEC NEDMALLOCNOALIASATTR int nedmalloc_trim(size_t pad) THROWSPEC; +NEDMALLOCEXTSPEC void nedmalloc_stats(void) THROWSPEC; +NEDMALLOCEXTSPEC NEDMALLOCNOALIASATTR size_t nedmalloc_footprint(void) THROWSPEC; +NEDMALLOCEXTSPEC NEDMALLOCNOALIASATTR NEDMALLOCPTRATTR void **nedindependent_calloc(size_t elemsno, size_t elemsize, void **chunks) THROWSPEC; +NEDMALLOCEXTSPEC NEDMALLOCNOALIASATTR NEDMALLOCPTRATTR void **nedindependent_comalloc(size_t elems, size_t *sizes, void **chunks) THROWSPEC; + +/* Destroys the system memory pool used by the functions above. +Useful for when you have nedmalloc in a DLL you're about to unload. +If you call ANY nedmalloc functions after calling this you will +get a fatal exception! +*/ +NEDMALLOCEXTSPEC void neddestroysyspool() THROWSPEC; + +/* These are the pool functions */ +struct nedpool_t; +typedef struct nedpool_t nedpool; + +/* Creates a memory pool for use with the nedp* functions below. +Capacity is how much to allocate immediately (if you know you'll be allocating a lot +of memory very soon) which you can leave at zero. Threads specifies how many threads +will *normally* be accessing the pool concurrently. Setting this to zero means it +extends on demand, but be careful of this as it can rapidly consume system resources +where bursts of concurrent threads use a pool at once. +*/ +NEDMALLOCEXTSPEC NEDMALLOCPTRATTR nedpool *nedcreatepool(size_t capacity, int threads) THROWSPEC; + +/* Destroys a memory pool previously created by nedcreatepool(). +*/ +NEDMALLOCEXTSPEC void neddestroypool(nedpool *p) THROWSPEC; + +/* Returns a zero terminated snapshot of threadpools existing at the time of call. Call +nedfree() on the returned list when you are done. Returns zero if there is only the +system pool in existence. +*/ +NEDMALLOCEXTSPEC nedpool **nedpoollist() THROWSPEC; + +/* Sets a value to be associated with a pool. You can retrieve this value by passing +any memory block allocated from that pool. +*/ +NEDMALLOCEXTSPEC void nedpsetvalue(nedpool *p, void *v) THROWSPEC; + +/* Gets a previously set value using nedpsetvalue() or zero if memory is unknown. +Optionally can also retrieve pool. You can detect an unknown block by the return +being zero and *p being unmodifed. +*/ +NEDMALLOCEXTSPEC void *nedgetvalue(nedpool **p, void *mem) THROWSPEC; + +/* Trims the thread cache for the calling thread, returning any existing cache +data to the central pool. Remember to ALWAYS call with zero if you used the +system pool. Setting disable to non-zero replicates neddisablethreadcache(). +*/ +NEDMALLOCEXTSPEC void nedtrimthreadcache(nedpool *p, int disable) THROWSPEC; + +/* Disables the thread cache for the calling thread, returning any existing cache +data to the central pool. Remember to ALWAYS call with zero if you used the +system pool. +*/ +NEDMALLOCEXTSPEC void neddisablethreadcache(nedpool *p) THROWSPEC; + + +NEDMALLOCEXTSPEC NEDMALLOCPTRATTR void * nedpmalloc(nedpool *p, size_t size) THROWSPEC; +NEDMALLOCEXTSPEC NEDMALLOCPTRATTR void * nedpcalloc(nedpool *p, size_t no, size_t size) THROWSPEC; +NEDMALLOCEXTSPEC NEDMALLOCPTRATTR void * nedprealloc(nedpool *p, void *mem, size_t size) THROWSPEC; +NEDMALLOCEXTSPEC void nedpfree(nedpool *p, void *mem) THROWSPEC; +NEDMALLOCEXTSPEC NEDMALLOCPTRATTR void * nedpmemalign(nedpool *p, size_t alignment, size_t bytes) THROWSPEC; +NEDMALLOCEXTSPEC struct nedmallinfo nedpmallinfo(nedpool *p) THROWSPEC; +NEDMALLOCEXTSPEC int nedpmallopt(nedpool *p, int parno, int value) THROWSPEC; +NEDMALLOCEXTSPEC int nedpmalloc_trim(nedpool *p, size_t pad) THROWSPEC; +NEDMALLOCEXTSPEC void nedpmalloc_stats(nedpool *p) THROWSPEC; +NEDMALLOCEXTSPEC size_t nedpmalloc_footprint(nedpool *p) THROWSPEC; +NEDMALLOCEXTSPEC NEDMALLOCPTRATTR void **nedpindependent_calloc(nedpool *p, size_t elemsno, size_t elemsize, void **chunks) THROWSPEC; +NEDMALLOCEXTSPEC NEDMALLOCPTRATTR void **nedpindependent_comalloc(nedpool *p, size_t elems, size_t *sizes, void **chunks) THROWSPEC; + +#if defined(__cplusplus) +} +#endif + +#endif + +#endif |