diff options
author | Clay John <claynjohn@gmail.com> | 2021-10-26 08:18:39 -0700 |
---|---|---|
committer | Hugo Locurcio <hugo.locurcio@hugo.pro> | 2021-10-31 15:56:45 +0100 |
commit | 8a10bb7d0dd0cc03353bb751af25a0eca1357c9d (patch) | |
tree | ae63bd8b1d4bacd65673f7bc455994ed4d288a84 /drivers/gles3/rasterizer_canvas_batcher.h | |
parent | ce97ddbcb125228cc88fbfdcae932e110ee7daee (diff) |
Use OpenGL 3.3 core profile instead of compatibility profile
- Rename OpenGL to GLES3 in the source code per community feedback.
- The renderer is still exposed as "OpenGL 3" to the user.
- Hide renderer selection dropdown until OpenGL support is more mature.
- The renderer can still be changed in the Project Settings or using
the `--rendering-driver opengl` command line argument.
- Remove commented out exporter code.
- Remove some OpenGL/DisplayServer-related debugging prints.
Diffstat (limited to 'drivers/gles3/rasterizer_canvas_batcher.h')
-rw-r--r-- | drivers/gles3/rasterizer_canvas_batcher.h | 1560 |
1 files changed, 1560 insertions, 0 deletions
diff --git a/drivers/gles3/rasterizer_canvas_batcher.h b/drivers/gles3/rasterizer_canvas_batcher.h new file mode 100644 index 0000000000..c7345824ab --- /dev/null +++ b/drivers/gles3/rasterizer_canvas_batcher.h @@ -0,0 +1,1560 @@ +/*************************************************************************/ +/* rasterizer_canvas_batcher.h */ +/*************************************************************************/ +/* This file is part of: */ +/* GODOT ENGINE */ +/* https://godotengine.org */ +/*************************************************************************/ +/* Copyright (c) 2007-2021 Juan Linietsky, Ariel Manzur. */ +/* Copyright (c) 2014-2021 Godot Engine contributors (cf. AUTHORS.md). */ +/* */ +/* Permission is hereby granted, free of charge, to any person obtaining */ +/* a copy of this software and associated documentation files (the */ +/* "Software"), to deal in the Software without restriction, including */ +/* without limitation the rights to use, copy, modify, merge, publish, */ +/* distribute, sublicense, and/or sell copies of the Software, and to */ +/* permit persons to whom the Software is furnished to do so, subject to */ +/* the following conditions: */ +/* */ +/* The above copyright notice and this permission notice shall be */ +/* included in all copies or substantial portions of the Software. */ +/* */ +/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ +/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ +/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ +/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ +/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ +/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ +/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ +/*************************************************************************/ + +#ifndef RASTERIZER_CANVAS_BATCHER_H +#define RASTERIZER_CANVAS_BATCHER_H + +#include "core/os/os.h" +#include "core/templates/local_vector.h" +#include "rasterizer_array.h" +#include "rasterizer_asserts.h" +#include "rasterizer_storage_common.h" + +#include "core/config/project_settings.h" +#include "servers/rendering/renderer_compositor.h" + +// We are using the curiously recurring template pattern +// https://en.wikipedia.org/wiki/Curiously_recurring_template_pattern +// For static polymorphism. + +// This makes it super easy to access +// data / call funcs in the derived rasterizers from the base without writing and +// maintaining a boatload of virtual functions. +// In addition it assures that vtable will not be used and the function calls can be optimized, +// because it gives compile time static polymorphism. + +// These macros makes it simpler and less verbose to define (and redefine) the inline functions +// template preamble +#define T_PREAMBLE template <class T, typename T_STORAGE> +// class preamble +#define C_PREAMBLE RasterizerCanvasBatcher<T, T_STORAGE> +// generic preamble +#define PREAMBLE(RET_T) \ + T_PREAMBLE \ + RET_T C_PREAMBLE + +template <class T, typename T_STORAGE> +class RasterizerCanvasBatcher { +public: + // used to determine whether we use hardware transform (none) + // software transform all verts, or software transform just a translate + // (no rotate or scale) + enum TransformMode { + TM_NONE, + TM_ALL, + TM_TRANSLATE, + }; + + // pod versions of vector and color and RID, need to be 32 bit for vertex format + struct BatchVector2 { + float x, y; + void set(float xx, float yy) { + x = xx; + y = yy; + } + void set(const Vector2 &p_o) { + x = p_o.x; + y = p_o.y; + } + void to(Vector2 &r_o) const { + r_o.x = x; + r_o.y = y; + } + }; + + struct BatchColor { + float r, g, b, a; + void set_white() { + r = 1.0f; + g = 1.0f; + b = 1.0f; + a = 1.0f; + } + void set(const Color &p_c) { + r = p_c.r; + g = p_c.g; + b = p_c.b; + a = p_c.a; + } + void set(float rr, float gg, float bb, float aa) { + r = rr; + g = gg; + b = bb; + a = aa; + } + bool operator==(const BatchColor &p_c) const { + return (r == p_c.r) && (g == p_c.g) && (b == p_c.b) && (a == p_c.a); + } + bool operator!=(const BatchColor &p_c) const { return (*this == p_c) == false; } + bool equals(const Color &p_c) const { + return (r == p_c.r) && (g == p_c.g) && (b == p_c.b) && (a == p_c.a); + } + const float *get_data() const { return &r; } + String to_string() const { + String sz = "{"; + const float *data = get_data(); + for (int c = 0; c < 4; c++) { + float f = data[c]; + int val = ((f * 255.0f) + 0.5f); + sz += String(Variant(val)) + " "; + } + sz += "}"; + return sz; + } + }; + + // simplest FVF - local or baked position + struct BatchVertex { + // must be 32 bit pod + BatchVector2 pos; + BatchVector2 uv; + }; + + // simple FVF but also incorporating baked color + struct BatchVertexColored : public BatchVertex { + // must be 32 bit pod + BatchColor col; + }; + + // if we are using normal mapping, we need light angles to be sent + struct BatchVertexLightAngled : public BatchVertexColored { + // must be pod + float light_angle; + }; + + // CUSTOM SHADER vertex formats. These are larger but will probably + // be needed with custom shaders in order to have the data accessible in the shader. + + // if we are using COLOR in vertex shader but not position (VERTEX) + struct BatchVertexModulated : public BatchVertexLightAngled { + BatchColor modulate; + }; + + struct BatchTransform { + BatchVector2 translate; + BatchVector2 basis[2]; + }; + + // last resort, specially for custom shader, we put everything possible into a huge FVF + // not very efficient, but better than no batching at all. + struct BatchVertexLarge : public BatchVertexModulated { + // must be pod + BatchTransform transform; + }; + + // Batch should be as small as possible, and ideally nicely aligned (is 32 bytes at the moment) + struct Batch { + RasterizerStorageCommon::BatchType type; // should be 16 bit + uint16_t batch_texture_id; + + // also item reference number + uint32_t first_command; + + // in the case of DEFAULT, this is num commands. + // with rects, is number of command and rects. + // with lines, is number of lines + uint32_t num_commands; + + // first vertex of this batch in the vertex lists + uint32_t first_vert; + + BatchColor color; + }; + + struct BatchTex { + enum TileMode : uint32_t { + TILE_OFF, + TILE_NORMAL, + TILE_FORCE_REPEAT, + }; + RID RID_texture; + RID RID_normal; + TileMode tile_mode; + BatchVector2 tex_pixel_size; + uint32_t flags; + }; + + // items in a list to be sorted prior to joining + struct BSortItem { + // have a function to keep as pod, rather than operator + void assign(const BSortItem &o) { + item = o.item; + z_index = o.z_index; + } + RendererCanvasRender::Item *item; + int z_index; + }; + + // batch item may represent 1 or more items + struct BItemJoined { + uint32_t first_item_ref; + uint32_t num_item_refs; + + Rect2 bounding_rect; + + // note the z_index may only be correct for the first of the joined item references + // this has implications for light culling with z ranged lights. + int16_t z_index; + + // these are defined in RasterizerStorageCommon::BatchFlags + uint16_t flags; + + // we are always splitting items with lots of commands, + // and items with unhandled primitives (default) + bool use_hardware_transform() const { return num_item_refs == 1; } + }; + + struct BItemRef { + RendererCanvasRender::Item *item; + Color final_modulate; + }; + + struct BLightRegion { + void reset() { + light_bitfield = 0; + shadow_bitfield = 0; + too_many_lights = false; + } + uint64_t light_bitfield; + uint64_t shadow_bitfield; + bool too_many_lights; // we can only do light region optimization if there are 64 or less lights + }; + + struct BatchData { + BatchData() { + reset_flush(); + reset_joined_item(); + + gl_vertex_buffer = 0; + gl_index_buffer = 0; + max_quads = 0; + vertex_buffer_size_units = 0; + vertex_buffer_size_bytes = 0; + index_buffer_size_units = 0; + index_buffer_size_bytes = 0; + + use_colored_vertices = false; + + settings_use_batching = false; + settings_max_join_item_commands = 0; + settings_colored_vertex_format_threshold = 0.0f; + settings_batch_buffer_num_verts = 0; + scissor_threshold_area = 0.0f; + joined_item_batch_flags = 0; + diagnose_frame = false; + next_diagnose_tick = 10000; + diagnose_frame_number = 9999999999; // some high number + join_across_z_indices = true; + settings_item_reordering_lookahead = 0; + + settings_use_batching_original_choice = false; + settings_flash_batching = false; + settings_diagnose_frame = false; + settings_scissor_lights = false; + settings_scissor_threshold = -1.0f; + settings_use_single_rect_fallback = false; + settings_use_software_skinning = true; + settings_ninepatch_mode = 0; // default + settings_light_max_join_items = 16; + + settings_uv_contract = false; + settings_uv_contract_amount = 0.0f; + + buffer_mode_batch_upload_send_null = true; + buffer_mode_batch_upload_flag_stream = false; + + stats_items_sorted = 0; + stats_light_items_joined = 0; + } + + // called for each joined item + void reset_joined_item() { + // noop but left in as a stub + } + + // called after each flush + void reset_flush() { + batches.reset(); + batch_textures.reset(); + + vertices.reset(); + light_angles.reset(); + vertex_colors.reset(); + vertex_modulates.reset(); + vertex_transforms.reset(); + + total_quads = 0; + total_verts = 0; + total_color_changes = 0; + + use_light_angles = false; + use_modulate = false; + use_large_verts = false; + fvf = RasterizerStorageCommon::FVF_REGULAR; + } + + unsigned int gl_vertex_buffer; + unsigned int gl_index_buffer; + + uint32_t max_quads; + uint32_t vertex_buffer_size_units; + uint32_t vertex_buffer_size_bytes; + uint32_t index_buffer_size_units; + uint32_t index_buffer_size_bytes; + + // small vertex FVF type - pos and UV. + // This will always be written to initially, but can be translated + // to larger FVFs if necessary. + RasterizerArray<BatchVertex> vertices; + + // extra data which can be stored during prefilling, for later translation to larger FVFs + RasterizerArray<float> light_angles; + RasterizerArray<BatchColor> vertex_colors; // these aren't usually used, but are for polys + RasterizerArray<BatchColor> vertex_modulates; + RasterizerArray<BatchTransform> vertex_transforms; + + // instead of having a different buffer for each vertex FVF type + // we have a special array big enough for the biggest FVF + // which can have a changeable unit size, and reuse it. + RasterizerUnitArray unit_vertices; + + RasterizerArray<Batch> batches; + RasterizerArray<Batch> batches_temp; // used for translating to colored vertex batches + RasterizerArray_non_pod<BatchTex> batch_textures; // the only reason this is non-POD is because of RIDs + + // SHOULD THESE BE IN FILLSTATE? + // flexible vertex format. + // all verts have pos and UV. + // some have color, some light angles etc. + RasterizerStorageCommon::FVF fvf; + bool use_colored_vertices; + bool use_light_angles; + bool use_modulate; + bool use_large_verts; + + // if the shader is using MODULATE, we prevent baking color so the final_modulate can + // be read in the shader. + // if the shader is reading VERTEX, we prevent baking vertex positions with extra matrices etc + // to prevent the read position being incorrect. + // These flags are defined in RasterizerStorageCommon::BatchFlags + uint32_t joined_item_batch_flags; + + RasterizerArray<BItemJoined> items_joined; + RasterizerArray<BItemRef> item_refs; + + // items are sorted prior to joining + RasterizerArray<BSortItem> sort_items; + + // new for Godot 4 .. the client outputs a linked list so we need to convert this + // to a linear array + LocalVector<RendererCanvasRender::Item::Command *> command_shortlist; + + // counts + int total_quads; + int total_verts; + + // we keep a record of how many color changes caused new batches + // if the colors are causing an excessive number of batches, we switch + // to alternate batching method and add color to the vertex format. + int total_color_changes; + + // measured in pixels, recalculated each frame + float scissor_threshold_area; + + // diagnose this frame, every nTh frame when settings_diagnose_frame is on + bool diagnose_frame; + String frame_string; + uint32_t next_diagnose_tick; + uint64_t diagnose_frame_number; + + // whether to join items across z_indices - this can interfere with z ranged lights, + // so has to be disabled in some circumstances + bool join_across_z_indices; + + // global settings + bool settings_use_batching; // the current use_batching (affected by flash) + bool settings_use_batching_original_choice; // the choice entered in project settings + bool settings_flash_batching; // for regression testing, flash between non-batched and batched renderer + bool settings_diagnose_frame; // print out batches to help optimize / regression test + int settings_max_join_item_commands; + float settings_colored_vertex_format_threshold; + int settings_batch_buffer_num_verts; + bool settings_scissor_lights; + float settings_scissor_threshold; // 0.0 to 1.0 + int settings_item_reordering_lookahead; + bool settings_use_single_rect_fallback; + bool settings_use_software_skinning; + int settings_light_max_join_items; + int settings_ninepatch_mode; + + // buffer orphaning modes + bool buffer_mode_batch_upload_send_null; + bool buffer_mode_batch_upload_flag_stream; + + // uv contraction + bool settings_uv_contract; + float settings_uv_contract_amount; + + // only done on diagnose frame + void reset_stats() { + stats_items_sorted = 0; + stats_light_items_joined = 0; + } + + // frame stats (just for monitoring and debugging) + int stats_items_sorted; + int stats_light_items_joined; + } bdata; + + struct FillState { + void reset_flush() { + // don't reset members that need to be preserved after flushing + // half way through a list of commands + curr_batch = 0; + batch_tex_id = -1; + texpixel_size = Vector2(1, 1); + contract_uvs = false; + + sequence_batch_type_flags = 0; + } + + void reset_joined_item(bool p_use_hardware_transform) { + reset_flush(); + use_hardware_transform = p_use_hardware_transform; + extra_matrix_sent = false; + } + + // for batching multiple types, we don't allow mixing RECTs / LINEs etc. + // using flags allows quicker rejection of sequences with different batch types + uint32_t sequence_batch_type_flags; + + Batch *curr_batch; + int batch_tex_id; + bool use_hardware_transform; + bool contract_uvs; + Vector2 texpixel_size; + Color final_modulate; + TransformMode transform_mode; + TransformMode orig_transform_mode; + + // support for extra matrices + bool extra_matrix_sent; // whether sent on this item (in which case sofware transform can't be used untl end of item) + int transform_extra_command_number_p1; // plus one to allow fast checking against zero + Transform2D transform_combined; // final * extra + }; + + // used during try_join + struct RenderItemState { + RenderItemState() { reset(); } + void reset() { + current_clip = nullptr; + shader_cache = nullptr; + rebind_shader = true; + prev_use_skeleton = false; + last_blend_mode = -1; + canvas_last_material = RID(); + item_group_z = 0; + item_group_light = nullptr; + final_modulate = Color(-1.0, -1.0, -1.0, -1.0); // just something unlikely + + joined_item_batch_type_flags_curr = 0; + joined_item_batch_type_flags_prev = 0; + + joined_item = nullptr; + } + + RendererCanvasRender::Item *current_clip; + typename T_STORAGE::Shader *shader_cache; + bool rebind_shader; + bool prev_use_skeleton; + bool prev_distance_field; + int last_blend_mode; + RID canvas_last_material; + Color final_modulate; + + // used for joining items only + BItemJoined *joined_item; + bool join_batch_break; + BLightRegion light_region; + + // we need some logic to prevent joining items that have vastly different batch types + // these are defined in RasterizerStorageCommon::BatchTypeFlags + uint32_t joined_item_batch_type_flags_curr; + uint32_t joined_item_batch_type_flags_prev; + + // 'item group' is data over a single call to canvas_render_items + int item_group_z; + Color item_group_modulate; + RendererCanvasRender::Light *item_group_light; + Transform2D item_group_base_transform; + } _render_item_state; + + bool use_nvidia_rect_workaround; + + ////////////////////////////////////////////////////////////////////////////// + // End of structs used by the batcher. Beginning of funcs. +private: + // curiously recurring template pattern - allows access to functions in the DERIVED class + // this is kind of like using virtual functions but more efficient as they are resolved at compile time + T_STORAGE *get_storage() { return static_cast<const T *>(this)->storage; } + const T_STORAGE *get_storage() const { return static_cast<const T *>(this)->storage; } + T *get_this() { return static_cast<T *>(this); } + const T *get_this() const { return static_cast<const T *>(this); } + +protected: + // main functions called from the rasterizer canvas + void batch_constructor(); + void batch_initialize(); + + void batch_canvas_begin(); + void batch_canvas_end(); + void batch_canvas_render_items_begin(const Color &p_modulate, RendererCanvasRender::Light *p_light, const Transform2D &p_base_transform); + void batch_canvas_render_items_end(); + void batch_canvas_render_items(RendererCanvasRender::Item *p_item_list, int p_z, const Color &p_modulate, RendererCanvasRender::Light *p_light, const Transform2D &p_base_transform); + + // recording and sorting items from the initial pass + void record_items(RendererCanvasRender::Item *p_item_list, int p_z); + void join_sorted_items(); + void sort_items(); + bool _sort_items_match(const BSortItem &p_a, const BSortItem &p_b) const; + bool sort_items_from(int p_start); + + // joining logic + bool _disallow_item_join_if_batch_types_too_different(RenderItemState &r_ris, uint32_t btf_allowed); + bool _detect_item_batch_break(RenderItemState &r_ris, RendererCanvasRender::Item *p_ci, bool &r_batch_break); + + // drives the loop filling batches and flushing + void render_joined_item_commands(const BItemJoined &p_bij, RendererCanvasRender::Item *p_current_clip, bool &r_reclip, typename T_STORAGE::Material *p_material, bool p_lit); + +private: + // flush once full or end of joined item + void flush_render_batches(RendererCanvasRender::Item *p_first_item, RendererCanvasRender::Item *p_current_clip, bool &r_reclip, typename T_STORAGE::Material *p_material, uint32_t p_sequence_batch_type_flags); + + // a single joined item can contain multiple itemrefs, and thus create lots of batches + // command start given a separate name to make easier to tell apart godot 3 and 4 + bool prefill_joined_item(FillState &r_fill_state, RendererCanvasRender::Item::Command **r_first_command, RendererCanvasRender::Item *p_item, RendererCanvasRender::Item *p_current_clip, bool &r_reclip, typename T_STORAGE::Material *p_material); + + // prefilling different types of batch + + // default batch is an 'unhandled' legacy type batch that will be drawn with the legacy path, + // all other batches are accelerated. + void _prefill_default_batch(FillState &r_fill_state, int p_command_num, const RendererCanvasRender::Item &p_item); + + // accelerated batches + bool _prefill_rect(RendererCanvasRender::Item::CommandRect *rect, FillState &r_fill_state, int &r_command_start, int command_num, int command_count, RendererCanvasRender::Item::Command *const *commands, RendererCanvasRender::Item *p_item, bool multiply_final_modulate); + + // dealing with textures + int _batch_find_or_create_tex(const RID &p_texture, const RID &p_normal, bool p_tile, int p_previous_match); + +protected: + // legacy support for non batched mode + void _legacy_canvas_item_render_commands(RendererCanvasRender::Item *p_item, RendererCanvasRender::Item *p_current_clip, bool &r_reclip, typename T_STORAGE::Material *p_material); + + // light scissoring + bool _light_scissor_begin(const Rect2 &p_item_rect, const Transform2D &p_light_xform, const Rect2 &p_light_rect) const; + bool _light_find_intersection(const Rect2 &p_item_rect, const Transform2D &p_light_xform, const Rect2 &p_light_rect, Rect2 &r_cliprect) const; + void _calculate_scissor_threshold_area(); + +private: + // translating vertex formats prior to rendering + void _translate_batches_to_vertex_colored_FVF(); + template <class BATCH_VERTEX_TYPE, bool INCLUDE_LIGHT_ANGLES, bool INCLUDE_MODULATE, bool INCLUDE_LARGE> + void _translate_batches_to_larger_FVF(uint32_t p_sequence_batch_type_flags); + +protected: + // accessory funcs + void _software_transform_vertex(BatchVector2 &r_v, const Transform2D &p_tr) const; + void _software_transform_vertex(Vector2 &r_v, const Transform2D &p_tr) const; + TransformMode _find_transform_mode(const Transform2D &p_tr) const { + // decided whether to do translate only for software transform + if ((p_tr.elements[0].x == 1.0f) && + (p_tr.elements[0].y == 0.0f) && + (p_tr.elements[1].x == 0.0f) && + (p_tr.elements[1].y == 1.0f)) { + return TM_TRANSLATE; + } + + return TM_ALL; + } + + typename T_STORAGE::Texture *_get_canvas_texture(const RID &p_texture) const { + if (p_texture.is_valid()) { + typename T_STORAGE::Texture *texture = get_storage()->texture_owner.get_or_null(p_texture); + + if (texture) { + return texture->get_ptr(); + } + } + + return 0; + } + +public: + Batch *_batch_request_new(bool p_blank = true) { + Batch *batch = bdata.batches.request(); + if (!batch) { + // grow the batches + bdata.batches.grow(); + + // and the temporary batches (used for color verts) + bdata.batches_temp.reset(); + bdata.batches_temp.grow(); + + // this should always succeed after growing + batch = bdata.batches.request(); + RAST_DEBUG_ASSERT(batch); + } + + if (p_blank) + memset(batch, 0, sizeof(Batch)); + + return batch; + } + + BatchVertex *_batch_vertex_request_new() { + return bdata.vertices.request(); + } + +protected: + int godot4_commands_count(RendererCanvasRender::Item::Command *p_comm) const { + int count = 0; + while (p_comm) { + count++; + p_comm = p_comm->next; + } + return count; + } + + unsigned int godot4_commands_to_vector(RendererCanvasRender::Item::Command *p_comm, LocalVector<RendererCanvasRender::Item::Command *> &p_list) { + p_list.clear(); + while (p_comm) { + p_list.push_back(p_comm); + p_comm = p_comm->next; + } + return p_list.size(); + } +}; + +PREAMBLE(void)::batch_canvas_begin() { + // diagnose_frame? + bdata.frame_string = ""; // just in case, always set this as we don't want a string leak in release... +#if defined(TOOLS_ENABLED) && defined(DEBUG_ENABLED) + if (bdata.settings_diagnose_frame) { + bdata.diagnose_frame = false; + + uint32_t tick = OS::get_singleton()->get_ticks_msec(); + uint64_t frame = Engine::get_singleton()->get_frames_drawn(); + + if (tick >= bdata.next_diagnose_tick) { + bdata.next_diagnose_tick = tick + 10000; + + // the plus one is prevent starting diagnosis half way through frame + bdata.diagnose_frame_number = frame + 1; + } + + if (frame == bdata.diagnose_frame_number) { + bdata.diagnose_frame = true; + bdata.reset_stats(); + } + + if (bdata.diagnose_frame) { + bdata.frame_string = "canvas_begin FRAME " + itos(frame) + "\n"; + } + } +#endif +} + +PREAMBLE(void)::batch_canvas_end() { +#if defined(TOOLS_ENABLED) && defined(DEBUG_ENABLED) + if (bdata.diagnose_frame) { + bdata.frame_string += "canvas_end\n"; + if (bdata.stats_items_sorted) { + bdata.frame_string += "\titems reordered: " + itos(bdata.stats_items_sorted) + "\n"; + } + if (bdata.stats_light_items_joined) { + bdata.frame_string += "\tlight items joined: " + itos(bdata.stats_light_items_joined) + "\n"; + } + + print_line(bdata.frame_string); + } +#endif +} + +PREAMBLE(void)::batch_canvas_render_items_begin(const Color &p_modulate, RendererCanvasRender::Light *p_light, const Transform2D &p_base_transform) { + // if we are debugging, flash each frame between batching renderer and old version to compare for regressions + if (bdata.settings_flash_batching) { + if ((Engine::get_singleton()->get_frames_drawn() % 2) == 0) + bdata.settings_use_batching = true; + else + bdata.settings_use_batching = false; + } + + if (!bdata.settings_use_batching) { + return; + } + + // this only needs to be done when screen size changes, but this should be + // infrequent enough + _calculate_scissor_threshold_area(); + + // set up render item state for all the z_indexes (this is common to all z_indexes) + _render_item_state.reset(); + _render_item_state.item_group_modulate = p_modulate; + _render_item_state.item_group_light = p_light; + _render_item_state.item_group_base_transform = p_base_transform; + _render_item_state.light_region.reset(); + + // batch break must be preserved over the different z indices, + // to prevent joining to an item on a previous index if not allowed + _render_item_state.join_batch_break = false; + + // whether to join across z indices depends on whether there are z ranged lights. + // joined z_index items can be wrongly classified with z ranged lights. + bdata.join_across_z_indices = true; + + int light_count = 0; + while (p_light) { + light_count++; + + if ((p_light->z_min != RS::CANVAS_ITEM_Z_MIN) || (p_light->z_max != RS::CANVAS_ITEM_Z_MAX)) { + // prevent joining across z indices. This would have caused visual regressions + bdata.join_across_z_indices = false; + } + + p_light = p_light->next_ptr; + } + + // can't use the light region bitfield if there are too many lights + // hopefully most games won't blow this limit.. + // if they do they will work but it won't batch join items just in case + if (light_count > 64) { + _render_item_state.light_region.too_many_lights = true; + } +} + +PREAMBLE(void)::batch_canvas_render_items_end() { + if (!bdata.settings_use_batching) { + return; + } + + join_sorted_items(); + +#if defined(TOOLS_ENABLED) && defined(DEBUG_ENABLED) + if (bdata.diagnose_frame) { + bdata.frame_string += "items\n"; + } +#endif + + // batching render is deferred until after going through all the z_indices, joining all the items + get_this()->canvas_render_items_implementation(0, 0, _render_item_state.item_group_modulate, + _render_item_state.item_group_light, + _render_item_state.item_group_base_transform); + + bdata.items_joined.reset(); + bdata.item_refs.reset(); + bdata.sort_items.reset(); +} + +PREAMBLE(void)::batch_canvas_render_items(RendererCanvasRender::Item *p_item_list, int p_z, const Color &p_modulate, RendererCanvasRender::Light *p_light, const Transform2D &p_base_transform) { + // stage 1 : join similar items, so that their state changes are not repeated, + // and commands from joined items can be batched together + if (bdata.settings_use_batching) { + record_items(p_item_list, p_z); + return; + } + + // only legacy renders at this stage, batched renderer doesn't render until canvas_render_items_end() + get_this()->canvas_render_items_implementation(p_item_list, p_z, p_modulate, p_light, p_base_transform); +} + +// Default batches will not occur in software transform only items +// EXCEPT IN THE CASE OF SINGLE RECTS (and this may well not occur, check the logic in prefill_join_item TYPE_RECT) +// but can occur where transform commands have been sent during hardware batch +PREAMBLE(void)::_prefill_default_batch(FillState &r_fill_state, int p_command_num, const RendererCanvasRender::Item &p_item) { + if (r_fill_state.curr_batch->type == RasterizerStorageCommon::BT_DEFAULT) { + // don't need to flush an extra transform command? + if (!r_fill_state.transform_extra_command_number_p1) { + // another default command, just add to the existing batch + r_fill_state.curr_batch->num_commands++; + } else { +#if defined(TOOLS_ENABLED) && defined(DEBUG_ENABLED) + if (r_fill_state.transform_extra_command_number_p1 != p_command_num) { + WARN_PRINT_ONCE("_prefill_default_batch : transform_extra_command_number_p1 != p_command_num"); + } +#endif + // if the first member of the batch is a transform we have to be careful + if (!r_fill_state.curr_batch->num_commands) { + // there can be leading useless extra transforms (sometimes happens with debug collision polys) + // we need to rejig the first_command for the first useful transform + r_fill_state.curr_batch->first_command += r_fill_state.transform_extra_command_number_p1 - 1; + } + + // we do have a pending extra transform command to flush + // either the extra transform is in the prior command, or not, in which case we need 2 batches + r_fill_state.curr_batch->num_commands += 2; + + r_fill_state.transform_extra_command_number_p1 = 0; // mark as sent + r_fill_state.extra_matrix_sent = true; + + // the original mode should always be hardware transform .. + // test this assumption + //CRASH_COND(r_fill_state.orig_transform_mode != TM_NONE); + r_fill_state.transform_mode = r_fill_state.orig_transform_mode; + + // do we need to restore anything else? + } + } else { + // end of previous different type batch, so start new default batch + + // first consider whether there is a dirty extra matrix to send + if (r_fill_state.transform_extra_command_number_p1) { + // get which command the extra is in, and blank all the records as it no longer is stored CPU side + int extra_command = r_fill_state.transform_extra_command_number_p1 - 1; // plus 1 based + r_fill_state.transform_extra_command_number_p1 = 0; + r_fill_state.extra_matrix_sent = true; + + // send the extra to the GPU in a batch + r_fill_state.curr_batch = _batch_request_new(); + r_fill_state.curr_batch->type = RasterizerStorageCommon::BT_DEFAULT; + r_fill_state.curr_batch->first_command = extra_command; + r_fill_state.curr_batch->num_commands = 1; + + // revert to the original transform mode + // e.g. go back to NONE if we were in hardware transform mode + r_fill_state.transform_mode = r_fill_state.orig_transform_mode; + + // reset the original transform if we are going back to software mode, + // because the extra is now done on the GPU... + // (any subsequent extras are sent directly to the GPU, no deferring) + if (r_fill_state.orig_transform_mode != TM_NONE) { + r_fill_state.transform_combined = p_item.final_transform; + } + + // can possibly combine batch with the next one in some cases + // this is more efficient than having an extra batch especially for the extra + if ((extra_command + 1) == p_command_num) { + r_fill_state.curr_batch->num_commands = 2; + return; + } + } + + // start default batch + r_fill_state.curr_batch = _batch_request_new(); + r_fill_state.curr_batch->type = RasterizerStorageCommon::BT_DEFAULT; + r_fill_state.curr_batch->first_command = p_command_num; + r_fill_state.curr_batch->num_commands = 1; + } +} + +PREAMBLE(int)::_batch_find_or_create_tex(const RID &p_texture, const RID &p_normal, bool p_tile, int p_previous_match) { + // optimization .. in 99% cases the last matched value will be the same, so no need to traverse the list + if (p_previous_match > 0) // if it is zero, it will get hit first in the linear search anyway + { + const BatchTex &batch_texture = bdata.batch_textures[p_previous_match]; + + // note for future reference, if RID implementation changes, this could become more expensive + if ((batch_texture.RID_texture == p_texture) && (batch_texture.RID_normal == p_normal)) { + // tiling mode must also match + bool tiles = batch_texture.tile_mode != BatchTex::TILE_OFF; + + if (tiles == p_tile) + // match! + return p_previous_match; + } + } + + // not the previous match .. we will do a linear search ... slower, but should happen + // not very often except with non-batchable runs, which are going to be slow anyway + // n.b. could possibly be replaced later by a fast hash table + for (int n = 0; n < bdata.batch_textures.size(); n++) { + const BatchTex &batch_texture = bdata.batch_textures[n]; + if ((batch_texture.RID_texture == p_texture) && (batch_texture.RID_normal == p_normal)) { + // tiling mode must also match + bool tiles = batch_texture.tile_mode != BatchTex::TILE_OFF; + + if (tiles == p_tile) + // match! + return n; + } + } + + // pushing back from local variable .. not ideal but has to use a Vector because non pod + // due to RIDs + BatchTex new_batch_tex; + new_batch_tex.RID_texture = p_texture; + new_batch_tex.RID_normal = p_normal; + + // get the texture + typename T_STORAGE::Texture *texture = _get_canvas_texture(p_texture); + + if (texture) { + // special case, there can be textures with no width or height + int w = texture->width; + int h = texture->height; + + if (!w || !h) { + w = 1; + h = 1; + } + + new_batch_tex.tex_pixel_size.x = 1.0 / w; + new_batch_tex.tex_pixel_size.y = 1.0 / h; + new_batch_tex.flags = texture->flags; + } else { + // maybe doesn't need doing... + new_batch_tex.tex_pixel_size.x = 1.0f; + new_batch_tex.tex_pixel_size.y = 1.0f; + new_batch_tex.flags = 0; + } + + if (p_tile) { + if (texture) { + // default + new_batch_tex.tile_mode = BatchTex::TILE_NORMAL; + + // no hardware support for non power of 2 tiling + if (!get_storage()->config.support_npot_repeat_mipmap) { + if (next_power_of_2(texture->alloc_width) != (unsigned int)texture->alloc_width && next_power_of_2(texture->alloc_height) != (unsigned int)texture->alloc_height) { + new_batch_tex.tile_mode = BatchTex::TILE_FORCE_REPEAT; + } + } + } else { + // this should not happen? + new_batch_tex.tile_mode = BatchTex::TILE_OFF; + } + } else { + new_batch_tex.tile_mode = BatchTex::TILE_OFF; + } + + // push back + bdata.batch_textures.push_back(new_batch_tex); + + return bdata.batch_textures.size() - 1; +} + +PREAMBLE(void)::batch_constructor() { + bdata.settings_use_batching = false; + +#ifdef GLES_OVER_GL + use_nvidia_rect_workaround = GLOBAL_GET("rendering/quality/2d/use_nvidia_rect_flicker_workaround"); +#else + // Not needed (a priori) on GLES devices + use_nvidia_rect_workaround = false; +#endif +} + +PREAMBLE(void)::batch_initialize() { +#define BATCHING_LOAD_PROJECT_SETTINGS + +#ifdef BATCHING_LOAD_PROJECT_SETTINGS + bdata.settings_use_batching = GLOBAL_GET("rendering/batching/options/use_batching"); + bdata.settings_max_join_item_commands = GLOBAL_GET("rendering/batching/parameters/max_join_item_commands"); + bdata.settings_colored_vertex_format_threshold = GLOBAL_GET("rendering/batching/parameters/colored_vertex_format_threshold"); + bdata.settings_item_reordering_lookahead = GLOBAL_GET("rendering/batching/parameters/item_reordering_lookahead"); + bdata.settings_light_max_join_items = GLOBAL_GET("rendering/batching/lights/max_join_items"); + bdata.settings_use_single_rect_fallback = GLOBAL_GET("rendering/batching/options/single_rect_fallback"); + bdata.settings_use_software_skinning = GLOBAL_GET("rendering/quality/2d/use_software_skinning"); + bdata.settings_ninepatch_mode = GLOBAL_GET("rendering/quality/2d/ninepatch_mode"); + + // alternatively only enable uv contract if pixel snap in use, + // but with this enable bool, it should not be necessary + bdata.settings_uv_contract = GLOBAL_GET("rendering/batching/precision/uv_contract"); + bdata.settings_uv_contract_amount = (float)GLOBAL_GET("rendering/batching/precision/uv_contract_amount") / 1000000.0f; + + // we can use the threshold to determine whether to turn scissoring off or on + bdata.settings_scissor_threshold = GLOBAL_GET("rendering/batching/lights/scissor_area_threshold"); +#endif + + if (bdata.settings_scissor_threshold > 0.999f) { + bdata.settings_scissor_lights = false; + } else { + bdata.settings_scissor_lights = true; + + // apply power of 4 relationship for the area, as most of the important changes + // will be happening at low values of scissor threshold + bdata.settings_scissor_threshold *= bdata.settings_scissor_threshold; + bdata.settings_scissor_threshold *= bdata.settings_scissor_threshold; + } + + // The sweet spot on my desktop for cache is actually smaller than the max, and this + // is the default. This saves memory too so we will use it for now, needs testing to see whether this varies according + // to device / platform. +#ifdef BATCHING_LOAD_PROJECT_SETTINGS + bdata.settings_batch_buffer_num_verts = GLOBAL_GET("rendering/batching/parameters/batch_buffer_size"); + + // override the use_batching setting in the editor + // (note that if the editor can't start, you can't change the use_batching project setting!) + if (Engine::get_singleton()->is_editor_hint()) { + bool use_in_editor = GLOBAL_GET("rendering/batching/options/use_batching_in_editor"); + bdata.settings_use_batching = use_in_editor; + + // fix some settings in the editor, as the performance not worth the risk + bdata.settings_use_single_rect_fallback = false; + } +#endif + + // if we are using batching, we will purposefully disable the nvidia workaround. + // This is because the only reason to use the single rect fallback is the approx 2x speed + // of the uniform drawing technique. If we used nvidia workaround, speed would be + // approx equal to the batcher drawing technique (indexed primitive + VB). + if (bdata.settings_use_batching) { + use_nvidia_rect_workaround = false; + } + + // For debugging, if flash is set in project settings, it will flash on alternate frames + // between the non-batched renderer and the batched renderer, + // in order to find regressions. + // This should not be used except during development. + // make a note of the original choice in case we are flashing on and off the batching + bdata.settings_use_batching_original_choice = bdata.settings_use_batching; + +#ifdef BATCHING_LOAD_PROJECT_SETTINGS + bdata.settings_flash_batching = GLOBAL_GET("rendering/batching/debug/flash_batching"); +#endif + if (!bdata.settings_use_batching) { + // no flash when batching turned off + bdata.settings_flash_batching = false; + } + + // frame diagnosis. print out the batches every nth frame + bdata.settings_diagnose_frame = false; + if (!Engine::get_singleton()->is_editor_hint() && bdata.settings_use_batching) { +#ifdef BATCHING_LOAD_PROJECT_SETTINGS + bdata.settings_diagnose_frame = GLOBAL_GET("rendering/batching/debug/diagnose_frame"); +#endif + } + + // the maximum num quads in a batch is limited by GLES2. We can have only 16 bit indices, + // which means we can address a vertex buffer of max size 65535. 4 vertices are needed per quad. + + // Note this determines the memory use by the vertex buffer vector. max quads (65536/4)-1 + // but can be reduced to save memory if really required (will result in more batches though) + const int max_possible_quads = (65536 / 4) - 1; + const int min_possible_quads = 8; // some reasonable small value + + // value from project settings + int max_quads = bdata.settings_batch_buffer_num_verts / 4; + + // sanity checks + max_quads = CLAMP(max_quads, min_possible_quads, max_possible_quads); + bdata.settings_max_join_item_commands = CLAMP(bdata.settings_max_join_item_commands, 0, 65535); + bdata.settings_colored_vertex_format_threshold = CLAMP(bdata.settings_colored_vertex_format_threshold, 0.0f, 1.0f); + bdata.settings_scissor_threshold = CLAMP(bdata.settings_scissor_threshold, 0.0f, 1.0f); + bdata.settings_light_max_join_items = CLAMP(bdata.settings_light_max_join_items, 0, 65535); + bdata.settings_item_reordering_lookahead = CLAMP(bdata.settings_item_reordering_lookahead, 0, 65535); + + // allow user to override the api usage techniques using project settings + // bdata.buffer_mode_batch_upload_send_null = GLOBAL_GET("rendering/options/api_usage_batching/send_null"); + // bdata.buffer_mode_batch_upload_flag_stream = GLOBAL_GET("rendering/options/api_usage_batching/flag_stream"); + + // for debug purposes, output a string with the batching options + String batching_options_string = "OpenGL ES Batching: "; + if (bdata.settings_use_batching) { + batching_options_string += "ON"; + + if (OS::get_singleton()->is_stdout_verbose()) { + batching_options_string += "\n\tOPTIONS\n"; + batching_options_string += "\tmax_join_item_commands " + itos(bdata.settings_max_join_item_commands) + "\n"; + batching_options_string += "\tcolored_vertex_format_threshold " + String(Variant(bdata.settings_colored_vertex_format_threshold)) + "\n"; + batching_options_string += "\tbatch_buffer_size " + itos(bdata.settings_batch_buffer_num_verts) + "\n"; + batching_options_string += "\tlight_scissor_area_threshold " + String(Variant(bdata.settings_scissor_threshold)) + "\n"; + + batching_options_string += "\titem_reordering_lookahead " + itos(bdata.settings_item_reordering_lookahead) + "\n"; + batching_options_string += "\tlight_max_join_items " + itos(bdata.settings_light_max_join_items) + "\n"; + batching_options_string += "\tsingle_rect_fallback " + String(Variant(bdata.settings_use_single_rect_fallback)) + "\n"; + + batching_options_string += "\tdebug_flash " + String(Variant(bdata.settings_flash_batching)) + "\n"; + batching_options_string += "\tdiagnose_frame " + String(Variant(bdata.settings_diagnose_frame)); + } + + print_line(batching_options_string); + } + + // special case, for colored vertex format threshold. + // as the comparison is >=, we want to be able to totally turn on or off + // conversion to colored vertex format at the extremes, so we will force + // 1.0 to be just above 1.0 + if (bdata.settings_colored_vertex_format_threshold > 0.995f) { + bdata.settings_colored_vertex_format_threshold = 1.01f; + } + + // save memory when batching off + if (!bdata.settings_use_batching) { + max_quads = 0; + } + + uint32_t sizeof_batch_vert = sizeof(BatchVertex); + + bdata.max_quads = max_quads; + + // 4 verts per quad + bdata.vertex_buffer_size_units = max_quads * 4; + + // the index buffer can be longer than 65535, only the indices need to be within this range + bdata.index_buffer_size_units = max_quads * 6; + + const int max_verts = bdata.vertex_buffer_size_units; + + // this comes out at approx 64K for non-colored vertex buffer, and 128K for colored vertex buffer + bdata.vertex_buffer_size_bytes = max_verts * sizeof_batch_vert; + bdata.index_buffer_size_bytes = bdata.index_buffer_size_units * 2; // 16 bit inds + + // create equal number of normal and (max) unit sized verts (as the normal may need to be translated to a larger FVF) + bdata.vertices.create(max_verts); // 512k + bdata.unit_vertices.create(max_verts, sizeof(BatchVertexLarge)); + + // extra data per vert needed for larger FVFs + bdata.light_angles.create(max_verts); + bdata.vertex_colors.create(max_verts); + bdata.vertex_modulates.create(max_verts); + bdata.vertex_transforms.create(max_verts); + + // num batches will be auto increased dynamically if required + bdata.batches.create(1024); + bdata.batches_temp.create(bdata.batches.max_size()); + + // batch textures can also be increased dynamically + bdata.batch_textures.create(32); +} + +PREAMBLE(bool)::_light_scissor_begin(const Rect2 &p_item_rect, const Transform2D &p_light_xform, const Rect2 &p_light_rect) const { + float area_item = p_item_rect.size.x * p_item_rect.size.y; // double check these are always positive + + // quick reject .. the area of pixels saved can never be more than the area of the item + if (area_item < bdata.scissor_threshold_area) { + return false; + } + + Rect2 cliprect; + if (!_light_find_intersection(p_item_rect, p_light_xform, p_light_rect, cliprect)) { + // should not really occur .. but just in case + cliprect = Rect2(0, 0, 0, 0); + } else { + // some conditions not to scissor + // determine the area (fill rate) that will be saved + float area_cliprect = cliprect.size.x * cliprect.size.y; + float area_saved = area_item - area_cliprect; + + // if area saved is too small, don't scissor + if (area_saved < bdata.scissor_threshold_area) { + return false; + } + } + + int rh = get_storage()->frame.current_rt->height; + + int y = rh - (cliprect.position.y + cliprect.size.y); + get_this()->gl_enable_scissor(cliprect.position.x, y, cliprect.size.width, cliprect.size.height); + + return true; +} + +PREAMBLE(bool)::_light_find_intersection(const Rect2 &p_item_rect, const Transform2D &p_light_xform, const Rect2 &p_light_rect, Rect2 &r_cliprect) const { + // transform light to world space (note this is done in the earlier intersection test, so could + // be made more efficient) + Vector2 pts[4] = { + p_light_xform.xform(p_light_rect.position), + p_light_xform.xform(Vector2(p_light_rect.position.x + p_light_rect.size.x, p_light_rect.position.y)), + p_light_xform.xform(Vector2(p_light_rect.position.x, p_light_rect.position.y + p_light_rect.size.y)), + p_light_xform.xform(Vector2(p_light_rect.position.x + p_light_rect.size.x, p_light_rect.position.y + p_light_rect.size.y)), + }; + + // calculate the light bound rect in world space + Rect2 lrect(pts[0].x, pts[0].y, 0, 0); + for (int n = 1; n < 4; n++) { + lrect.expand_to(pts[n]); + } + + // intersection between the 2 rects + // they should probably always intersect, because of earlier check, but just in case... + if (!p_item_rect.intersects(lrect)) + return false; + + // note this does almost the same as Rect2.clip but slightly more efficient for our use case + r_cliprect.position.x = MAX(p_item_rect.position.x, lrect.position.x); + r_cliprect.position.y = MAX(p_item_rect.position.y, lrect.position.y); + + Point2 item_rect_end = p_item_rect.position + p_item_rect.size; + Point2 lrect_end = lrect.position + lrect.size; + + r_cliprect.size.x = MIN(item_rect_end.x, lrect_end.x) - r_cliprect.position.x; + r_cliprect.size.y = MIN(item_rect_end.y, lrect_end.y) - r_cliprect.position.y; + + return true; +} + +PREAMBLE(void)::_calculate_scissor_threshold_area() { + if (!bdata.settings_scissor_lights) { + return; + } + + // scissor area threshold is 0.0 to 1.0 in the settings for ease of use. + // we need to translate to an absolute area to determine quickly whether + // to scissor. + if (bdata.settings_scissor_threshold < 0.0001f) { + bdata.scissor_threshold_area = -1.0f; // will always pass + } else { + // in pixels + int w = get_storage()->frame.current_rt->width; + int h = get_storage()->frame.current_rt->height; + + int screen_area = w * h; + + bdata.scissor_threshold_area = bdata.settings_scissor_threshold * screen_area; + } +} + +PREAMBLE(void)::render_joined_item_commands(const BItemJoined &p_bij, RendererCanvasRender::Item *p_current_clip, bool &r_reclip, typename T_STORAGE::Material *p_material, bool p_lit) { + RendererCanvasRender::Item *item = 0; + RendererCanvasRender::Item *first_item = bdata.item_refs[p_bij.first_item_ref].item; + + // fill_state and bdata have once off setup per joined item, and a smaller reset on flush + FillState fill_state; + fill_state.reset_joined_item(p_bij.use_hardware_transform()); + + bdata.reset_joined_item(); + + // should this joined item be using large FVF? + if (p_bij.flags & RasterizerStorageCommon::USE_MODULATE_FVF) { + bdata.use_modulate = true; + bdata.fvf = RasterizerStorageCommon::FVF_MODULATED; + } + if (p_bij.flags & RasterizerStorageCommon::USE_LARGE_FVF) { + bdata.use_modulate = true; + bdata.use_large_verts = true; + bdata.fvf = RasterizerStorageCommon::FVF_LARGE; + } + + // in the special case of custom shaders that read from VERTEX (i.e. vertex position) + // we want to disable software transform of extra matrix + if (bdata.joined_item_batch_flags & RasterizerStorageCommon::PREVENT_VERTEX_BAKING) { + fill_state.extra_matrix_sent = true; + } + + for (unsigned int i = 0; i < p_bij.num_item_refs; i++) { + const BItemRef &ref = bdata.item_refs[p_bij.first_item_ref + i]; + item = ref.item; + + if (!p_lit) { + // if not lit we use the complex calculated final modulate + fill_state.final_modulate = ref.final_modulate; + } else { + // if lit we ignore canvas modulate and just use the item modulate + fill_state.final_modulate = item->final_modulate; + } + + // ONCE OFF fill state setup, that will be retained over multiple calls to + // prefill_joined_item() + fill_state.transform_combined = item->final_transform; + + // decide the initial transform mode, and make a backup + // in orig_transform_mode in case we need to switch back + if (!fill_state.use_hardware_transform) { + fill_state.transform_mode = _find_transform_mode(fill_state.transform_combined); + } else { + fill_state.transform_mode = TM_NONE; + } + fill_state.orig_transform_mode = fill_state.transform_mode; + + // keep track of when we added an extra matrix + // so we can defer sending until we see a default command + fill_state.transform_extra_command_number_p1 = 0; + + RendererCanvasRender::Item::Command *current_command = item->commands; + while (current_command) { + // fill as many batches as possible (until all done, or the vertex buffer is full) + bool bFull = get_this()->prefill_joined_item(fill_state, current_command, item, p_current_clip, r_reclip, p_material); + + if (bFull) { + // always pass first item (commands for default are always first item) + flush_render_batches(first_item, p_current_clip, r_reclip, p_material, fill_state.sequence_batch_type_flags); + + // zero all the batch data ready for a new run + bdata.reset_flush(); + + // don't zero all the fill state, some may need to be preserved + fill_state.reset_flush(); + } + } + } + + // flush if any left + flush_render_batches(first_item, p_current_clip, r_reclip, p_material, fill_state.sequence_batch_type_flags); + + // zero all the batch data ready for a new run + bdata.reset_flush(); +} + +PREAMBLE(void)::_legacy_canvas_item_render_commands(RendererCanvasRender::Item *p_item, RendererCanvasRender::Item *p_current_clip, bool &r_reclip, typename T_STORAGE::Material *p_material) { + // reuse the same list each time to prevent needless dynamic allocations + unsigned int command_count = godot4_commands_to_vector(p_item->commands, bdata.command_shortlist); + RendererCanvasRender::Item::Command *const *commands = nullptr; + if (command_count) { + commands = &bdata.command_shortlist[0]; + } + + // legacy .. just create one massive batch and render everything as before + bdata.batches.reset(); + Batch *batch = _batch_request_new(); + batch->type = RasterizerStorageCommon::BT_DEFAULT; + batch->num_commands = command_count; + + get_this()->render_batches(commands, p_current_clip, r_reclip, p_material); + bdata.reset_flush(); +} + +PREAMBLE(void)::record_items(RendererCanvasRender::Item *p_item_list, int p_z) { + while (p_item_list) { + BSortItem *s = bdata.sort_items.request_with_grow(); + + s->item = p_item_list; + s->z_index = p_z; + + p_item_list = p_item_list->next; + } +} + +PREAMBLE(void)::join_sorted_items() { +} + +PREAMBLE(void)::_software_transform_vertex(BatchVector2 &r_v, const Transform2D &p_tr) const { + Vector2 vc(r_v.x, r_v.y); + vc = p_tr.xform(vc); + r_v.set(vc); +} + +PREAMBLE(void)::_software_transform_vertex(Vector2 &r_v, const Transform2D &p_tr) const { + r_v = p_tr.xform(r_v); +} + +PREAMBLE(void)::_translate_batches_to_vertex_colored_FVF() { + // zeros the size and sets up how big each unit is + bdata.unit_vertices.prepare(sizeof(BatchVertexColored)); + + const BatchColor *source_vertex_colors = &bdata.vertex_colors[0]; + RAST_DEBUG_ASSERT(bdata.vertex_colors.size() == bdata.vertices.size()); + + int num_verts = bdata.vertices.size(); + + for (int n = 0; n < num_verts; n++) { + const BatchVertex &bv = bdata.vertices[n]; + + BatchVertexColored *cv = (BatchVertexColored *)bdata.unit_vertices.request(); + + cv->pos = bv.pos; + cv->uv = bv.uv; + cv->col = *source_vertex_colors++; + } +} + +// Translation always involved adding color to the FVF, which enables +// joining of batches that have different colors. +// There is a trade off. Non colored verts are smaller so work faster, but +// there comes a point where it is better to just use colored verts to avoid lots of +// batches. +// In addition this can optionally add light angles to the FVF, necessary for normal mapping. +T_PREAMBLE +template <class BATCH_VERTEX_TYPE, bool INCLUDE_LIGHT_ANGLES, bool INCLUDE_MODULATE, bool INCLUDE_LARGE> +void C_PREAMBLE::_translate_batches_to_larger_FVF(uint32_t p_sequence_batch_type_flags) { + bool include_poly_color = false; + + // we ONLY want to include the color verts in translation when using polys, + // as rects do not write vertex colors, only colors per batch. + if (p_sequence_batch_type_flags & RasterizerStorageCommon::BTF_POLY) { + include_poly_color = INCLUDE_LIGHT_ANGLES | INCLUDE_MODULATE | INCLUDE_LARGE; + } + + // zeros the size and sets up how big each unit is + bdata.unit_vertices.prepare(sizeof(BATCH_VERTEX_TYPE)); + bdata.batches_temp.reset(); + + // As the vertices_colored and batches_temp are 'mirrors' of the non-colored version, + // the sizes should be equal, and allocations should never fail. Hence the use of debug + // asserts to check program flow, these should not occur at runtime unless the allocation + // code has been altered. + RAST_DEBUG_ASSERT(bdata.unit_vertices.max_size() == bdata.vertices.max_size()); + RAST_DEBUG_ASSERT(bdata.batches_temp.max_size() == bdata.batches.max_size()); + + Color curr_col(-1.0f, -1.0f, -1.0f, -1.0f); + + Batch *dest_batch = nullptr; + + const BatchColor *source_vertex_colors = &bdata.vertex_colors[0]; + const float *source_light_angles = &bdata.light_angles[0]; + const BatchColor *source_vertex_modulates = &bdata.vertex_modulates[0]; + const BatchTransform *source_vertex_transforms = &bdata.vertex_transforms[0]; + + // translate the batches into vertex colored batches + for (int n = 0; n < bdata.batches.size(); n++) { + const Batch &source_batch = bdata.batches[n]; + + // does source batch use light angles? + const BatchTex &btex = bdata.batch_textures[source_batch.batch_texture_id]; + bool source_batch_uses_light_angles = btex.RID_normal != RID(); + + bool needs_new_batch = true; + + if (dest_batch) { + if (dest_batch->type == source_batch.type) { + if (source_batch.type == RasterizerStorageCommon::BT_RECT) { + if (dest_batch->batch_texture_id == source_batch.batch_texture_id) { + // add to previous batch + dest_batch->num_commands += source_batch.num_commands; + needs_new_batch = false; + + // create the colored verts (only if not default) + //int first_vert = source_batch.first_quad * 4; + //int end_vert = 4 * (source_batch.first_quad + source_batch.num_commands); + int first_vert = source_batch.first_vert; + int end_vert = first_vert + (4 * source_batch.num_commands); + + for (int v = first_vert; v < end_vert; v++) { + RAST_DEV_DEBUG_ASSERT(bdata.vertices.size()); + const BatchVertex &bv = bdata.vertices[v]; + BATCH_VERTEX_TYPE *cv = (BATCH_VERTEX_TYPE *)bdata.unit_vertices.request(); + RAST_DEBUG_ASSERT(cv); + cv->pos = bv.pos; + cv->uv = bv.uv; + cv->col = source_batch.color; + + if (INCLUDE_LIGHT_ANGLES) { + RAST_DEV_DEBUG_ASSERT(bdata.light_angles.size()); + // this is required to allow compilation with non light angle vertex. + // it should be compiled out. + BatchVertexLightAngled *lv = (BatchVertexLightAngled *)cv; + if (source_batch_uses_light_angles) + lv->light_angle = *source_light_angles++; + else + lv->light_angle = 0.0f; // dummy, unused in vertex shader (could possibly be left uninitialized, but probably bad idea) + } // if including light angles + + if (INCLUDE_MODULATE) { + RAST_DEV_DEBUG_ASSERT(bdata.vertex_modulates.size()); + BatchVertexModulated *mv = (BatchVertexModulated *)cv; + mv->modulate = *source_vertex_modulates++; + } // including modulate + + if (INCLUDE_LARGE) { + RAST_DEV_DEBUG_ASSERT(bdata.vertex_transforms.size()); + BatchVertexLarge *lv = (BatchVertexLarge *)cv; + lv->transform = *source_vertex_transforms++; + } // if including large + } + } // textures match + } else { + // default + // we can still join, but only under special circumstances + // does this ever happen? not sure at this stage, but left for future expansion + uint32_t source_last_command = source_batch.first_command + source_batch.num_commands; + if (source_last_command == dest_batch->first_command) { + dest_batch->num_commands += source_batch.num_commands; + needs_new_batch = false; + } // if the commands line up exactly + } + } // if both batches are the same type + + } // if dest batch is valid + + if (needs_new_batch) { + dest_batch = bdata.batches_temp.request(); + RAST_DEBUG_ASSERT(dest_batch); + + *dest_batch = source_batch; + + // create the colored verts (only if not default) + if (source_batch.type != RasterizerStorageCommon::BT_DEFAULT) { + // int first_vert = source_batch.first_quad * 4; + // int end_vert = 4 * (source_batch.first_quad + source_batch.num_commands); + int first_vert = source_batch.first_vert; + int end_vert = first_vert + (4 * source_batch.num_commands); + + for (int v = first_vert; v < end_vert; v++) { + RAST_DEV_DEBUG_ASSERT(bdata.vertices.size()); + const BatchVertex &bv = bdata.vertices[v]; + BATCH_VERTEX_TYPE *cv = (BATCH_VERTEX_TYPE *)bdata.unit_vertices.request(); + RAST_DEBUG_ASSERT(cv); + cv->pos = bv.pos; + cv->uv = bv.uv; + + // polys are special, they can have per vertex colors + if (!include_poly_color) { + cv->col = source_batch.color; + } else { + RAST_DEV_DEBUG_ASSERT(bdata.vertex_colors.size()); + cv->col = *source_vertex_colors++; + } + + if (INCLUDE_LIGHT_ANGLES) { + RAST_DEV_DEBUG_ASSERT(bdata.light_angles.size()); + // this is required to allow compilation with non light angle vertex. + // it should be compiled out. + BatchVertexLightAngled *lv = (BatchVertexLightAngled *)cv; + if (source_batch_uses_light_angles) + lv->light_angle = *source_light_angles++; + else + lv->light_angle = 0.0f; // dummy, unused in vertex shader (could possibly be left uninitialized, but probably bad idea) + } // if using light angles + + if (INCLUDE_MODULATE) { + RAST_DEV_DEBUG_ASSERT(bdata.vertex_modulates.size()); + BatchVertexModulated *mv = (BatchVertexModulated *)cv; + mv->modulate = *source_vertex_modulates++; + } // including modulate + + if (INCLUDE_LARGE) { + RAST_DEV_DEBUG_ASSERT(bdata.vertex_transforms.size()); + BatchVertexLarge *lv = (BatchVertexLarge *)cv; + lv->transform = *source_vertex_transforms++; + } // if including large + } + } + } + } + + // copy the temporary batches to the master batch list (this could be avoided but it makes the code cleaner) + bdata.batches.copy_from(bdata.batches_temp); +} + +PREAMBLE(bool)::_disallow_item_join_if_batch_types_too_different(RenderItemState &r_ris, uint32_t btf_allowed) { + r_ris.joined_item_batch_type_flags_curr |= btf_allowed; + + bool disallow = false; + + if (r_ris.joined_item_batch_type_flags_prev & (~btf_allowed)) + disallow = true; + + return disallow; +} + +#undef PREAMBLE +#undef T_PREAMBLE +#undef C_PREAMBLE + +#endif // RASTERIZER_CANVAS_BATCHER_H |