summaryrefslogtreecommitdiff
path: root/drivers/gles2/shaders
diff options
context:
space:
mode:
authorRĂ©mi Verschelde <rverschelde@gmail.com>2018-03-01 16:04:11 +0100
committerGitHub <noreply@github.com>2018-03-01 16:04:11 +0100
commit29215b229bab093bd083af4099234cbffe4febfb (patch)
treebdd2fc1a9a678422b37513a83f9bd842de532145 /drivers/gles2/shaders
parent7f3024d343aa1b14641ad5a7b56efaa1501550cf (diff)
parenteac4c984dfe5eebb73b094aaf2ed5ab37b6e8fdf (diff)
Merge pull request #16687 from karroffel/gles2-2d-pr
add GLES 2 renderer for 2D
Diffstat (limited to 'drivers/gles2/shaders')
-rw-r--r--drivers/gles2/shaders/SCsub22
-rw-r--r--drivers/gles2/shaders/blend_shape.glsl197
-rw-r--r--drivers/gles2/shaders/canvas.glsl141
-rw-r--r--drivers/gles2/shaders/canvas_shadow.glsl49
-rw-r--r--drivers/gles2/shaders/copy.glsl72
-rw-r--r--drivers/gles2/shaders/cube_to_dp.glsl79
-rw-r--r--drivers/gles2/shaders/cubemap_filter.glsl294
-rw-r--r--drivers/gles2/shaders/effect_blur.glsl301
-rw-r--r--drivers/gles2/shaders/exposure.glsl98
-rw-r--r--drivers/gles2/shaders/particles.glsl260
-rw-r--r--drivers/gles2/shaders/resolve.glsl44
-rw-r--r--drivers/gles2/shaders/scene.glsl2113
-rw-r--r--drivers/gles2/shaders/screen_space_reflection.glsl318
-rw-r--r--drivers/gles2/shaders/ssao.glsl293
-rw-r--r--drivers/gles2/shaders/ssao_blur.glsl124
-rw-r--r--drivers/gles2/shaders/ssao_minify.glsl59
-rw-r--r--drivers/gles2/shaders/subsurf_scattering.glsl192
-rw-r--r--drivers/gles2/shaders/tonemap.glsl323
18 files changed, 4979 insertions, 0 deletions
diff --git a/drivers/gles2/shaders/SCsub b/drivers/gles2/shaders/SCsub
new file mode 100644
index 0000000000..5de3e1ac90
--- /dev/null
+++ b/drivers/gles2/shaders/SCsub
@@ -0,0 +1,22 @@
+#!/usr/bin/env python
+
+Import('env')
+
+if 'GLES2_GLSL' in env['BUILDERS']:
+ env.GLES2_GLSL('copy.glsl');
+# env.GLES2_GLSL('resolve.glsl');
+ env.GLES2_GLSL('canvas.glsl');
+# env.GLES2_GLSL('canvas_shadow.glsl');
+ env.GLES2_GLSL('scene.glsl');
+# env.GLES2_GLSL('cubemap_filter.glsl');
+# env.GLES2_GLSL('cube_to_dp.glsl');
+# env.GLES2_GLSL('blend_shape.glsl');
+# env.GLES2_GLSL('screen_space_reflection.glsl');
+# env.GLES2_GLSL('effect_blur.glsl');
+# env.GLES2_GLSL('subsurf_scattering.glsl');
+# env.GLES2_GLSL('ssao.glsl');
+# env.GLES2_GLSL('ssao_minify.glsl');
+# env.GLES2_GLSL('ssao_blur.glsl');
+# env.GLES2_GLSL('exposure.glsl');
+# env.GLES2_GLSL('tonemap.glsl');
+# env.GLES2_GLSL('particles.glsl');
diff --git a/drivers/gles2/shaders/blend_shape.glsl b/drivers/gles2/shaders/blend_shape.glsl
new file mode 100644
index 0000000000..4e0d066823
--- /dev/null
+++ b/drivers/gles2/shaders/blend_shape.glsl
@@ -0,0 +1,197 @@
+[vertex]
+
+
+/*
+from VisualServer:
+
+ARRAY_VERTEX=0,
+ARRAY_NORMAL=1,
+ARRAY_TANGENT=2,
+ARRAY_COLOR=3,
+ARRAY_TEX_UV=4,
+ARRAY_TEX_UV2=5,
+ARRAY_BONES=6,
+ARRAY_WEIGHTS=7,
+ARRAY_INDEX=8,
+*/
+
+#ifdef USE_2D_VERTEX
+#define VFORMAT vec2
+#else
+#define VFORMAT vec3
+#endif
+
+/* INPUT ATTRIBS */
+
+layout(location=0) in highp VFORMAT vertex_attrib;
+layout(location=1) in vec3 normal_attrib;
+
+#ifdef ENABLE_TANGENT
+layout(location=2) in vec4 tangent_attrib;
+#endif
+
+#ifdef ENABLE_COLOR
+layout(location=3) in vec4 color_attrib;
+#endif
+
+#ifdef ENABLE_UV
+layout(location=4) in vec2 uv_attrib;
+#endif
+
+#ifdef ENABLE_UV2
+layout(location=5) in vec2 uv2_attrib;
+#endif
+
+#ifdef ENABLE_SKELETON
+layout(location=6) in ivec4 bone_attrib;
+layout(location=7) in vec4 weight_attrib;
+#endif
+
+/* BLEND ATTRIBS */
+
+#ifdef ENABLE_BLEND
+
+layout(location=8) in highp VFORMAT vertex_attrib_blend;
+layout(location=9) in vec3 normal_attrib_blend;
+
+#ifdef ENABLE_TANGENT
+layout(location=10) in vec4 tangent_attrib_blend;
+#endif
+
+#ifdef ENABLE_COLOR
+layout(location=11) in vec4 color_attrib_blend;
+#endif
+
+#ifdef ENABLE_UV
+layout(location=12) in vec2 uv_attrib_blend;
+#endif
+
+#ifdef ENABLE_UV2
+layout(location=13) in vec2 uv2_attrib_blend;
+#endif
+
+#ifdef ENABLE_SKELETON
+layout(location=14) in ivec4 bone_attrib_blend;
+layout(location=15) in vec4 weight_attrib_blend;
+#endif
+
+#endif
+
+/* OUTPUTS */
+
+out VFORMAT vertex_out; //tfb:
+
+#ifdef ENABLE_NORMAL
+out vec3 normal_out; //tfb:ENABLE_NORMAL
+#endif
+
+#ifdef ENABLE_TANGENT
+out vec4 tangent_out; //tfb:ENABLE_TANGENT
+#endif
+
+#ifdef ENABLE_COLOR
+out vec4 color_out; //tfb:ENABLE_COLOR
+#endif
+
+#ifdef ENABLE_UV
+out vec2 uv_out; //tfb:ENABLE_UV
+#endif
+
+#ifdef ENABLE_UV2
+out vec2 uv2_out; //tfb:ENABLE_UV2
+#endif
+
+#ifdef ENABLE_SKELETON
+out ivec4 bone_out; //tfb:ENABLE_SKELETON
+out vec4 weight_out; //tfb:ENABLE_SKELETON
+#endif
+
+uniform float blend_amount;
+
+void main() {
+
+
+#ifdef ENABLE_BLEND
+
+ vertex_out = vertex_attrib_blend + vertex_attrib * blend_amount;
+
+#ifdef ENABLE_NORMAL
+ normal_out = normal_attrib_blend + normal_attrib * blend_amount;
+#endif
+
+#ifdef ENABLE_TANGENT
+
+ tangent_out.xyz = tangent_attrib_blend.xyz + tangent_attrib.xyz * blend_amount;
+ tangent_out.w = tangent_attrib_blend.w; //just copy, no point in blending his
+#endif
+
+#ifdef ENABLE_COLOR
+
+ color_out = color_attrib_blend + color_attrib * blend_amount;
+#endif
+
+#ifdef ENABLE_UV
+
+ uv_out = uv_attrib_blend + uv_attrib * blend_amount;
+#endif
+
+#ifdef ENABLE_UV2
+
+ uv2_out = uv2_attrib_blend + uv2_attrib * blend_amount;
+#endif
+
+
+#ifdef ENABLE_SKELETON
+
+ bone_out = bone_attrib_blend;
+ weight_out = weight_attrib_blend + weight_attrib * blend_amount;
+#endif
+
+#else //ENABLE_BLEND
+
+
+ vertex_out = vertex_attrib * blend_amount;
+
+#ifdef ENABLE_NORMAL
+ normal_out = normal_attrib * blend_amount;
+#endif
+
+#ifdef ENABLE_TANGENT
+
+ tangent_out.xyz = tangent_attrib.xyz * blend_amount;
+ tangent_out.w = tangent_attrib.w; //just copy, no point in blending his
+#endif
+
+#ifdef ENABLE_COLOR
+
+ color_out = color_attrib * blend_amount;
+#endif
+
+#ifdef ENABLE_UV
+
+ uv_out = uv_attrib * blend_amount;
+#endif
+
+#ifdef ENABLE_UV2
+
+ uv2_out = uv2_attrib * blend_amount;
+#endif
+
+
+#ifdef ENABLE_SKELETON
+
+ bone_out = bone_attrib;
+ weight_out = weight_attrib * blend_amount;
+#endif
+
+#endif
+ gl_Position = vec4(0.0);
+}
+
+[fragment]
+
+
+void main() {
+
+}
+
diff --git a/drivers/gles2/shaders/canvas.glsl b/drivers/gles2/shaders/canvas.glsl
new file mode 100644
index 0000000000..11c6ab9b76
--- /dev/null
+++ b/drivers/gles2/shaders/canvas.glsl
@@ -0,0 +1,141 @@
+[vertex]
+
+#ifdef USE_GLES_OVER_GL
+#define mediump
+#define highp
+#else
+precision mediump float;
+precision mediump int;
+#endif
+
+uniform highp mat4 projection_matrix;
+uniform highp mat4 modelview_matrix;
+uniform highp mat4 extra_matrix;
+attribute highp vec2 vertex; // attrib:0
+attribute vec4 color_attrib; // attrib:3
+attribute vec2 uv_attrib; // attrib:4
+
+varying vec2 uv_interp;
+varying vec4 color_interp;
+
+uniform highp vec2 color_texpixel_size;
+
+#ifdef USE_TEXTURE_RECT
+
+uniform vec4 dst_rect;
+uniform vec4 src_rect;
+
+#endif
+
+uniform bool blit_pass;
+
+VERTEX_SHADER_GLOBALS
+
+vec2 select(vec2 a, vec2 b, bvec2 c) {
+ vec2 ret;
+
+ ret.x = c.x ? b.x : a.x;
+ ret.y = c.y ? b.y : a.y;
+
+ return ret;
+}
+
+void main() {
+
+ vec4 color = color_attrib;
+
+#ifdef USE_TEXTURE_RECT
+
+ if (dst_rect.z < 0.0) { // Transpose is encoded as negative dst_rect.z
+ uv_interp = src_rect.xy + abs(src_rect.zw) * vertex.yx;
+ } else {
+ uv_interp = src_rect.xy + abs(src_rect.zw) * vertex;
+ }
+
+ vec4 outvec = vec4(0.0, 0.0, 0.0, 1.0);
+
+ // This is what is done in the GLES 3 bindings and should
+ // take care of flipped rects.
+ //
+ // But it doesn't.
+ // I don't know why, will need to investigate further.
+
+ outvec.xy = dst_rect.xy + abs(dst_rect.zw) * select(vertex, vec2(1.0, 1.0) - vertex, lessThan(src_rect.zw, vec2(0.0, 0.0)));
+
+ // outvec.xy = dst_rect.xy + abs(dst_rect.zw) * vertex;
+#else
+ vec4 outvec = vec4(vertex.xy, 0.0, 1.0);
+
+#ifdef USE_UV_ATTRIBUTE
+ uv_interp = uv_attrib;
+#else
+ uv_interp = vertex.xy;
+#endif
+
+#endif
+
+{
+ vec2 src_vtx=outvec.xy;
+VERTEX_SHADER_CODE
+
+}
+
+ color_interp = color;
+
+ gl_Position = projection_matrix * modelview_matrix * outvec;
+
+}
+
+[fragment]
+
+#ifdef USE_GLES_OVER_GL
+#define mediump
+#define highp
+#else
+precision mediump float;
+precision mediump int;
+#endif
+
+uniform sampler2D color_texture; // texunit:0
+uniform highp vec2 color_texpixel_size;
+uniform mediump sampler2D normal_texture; // texunit:1
+
+varying mediump vec2 uv_interp;
+varying mediump vec4 color_interp;
+
+uniform bool blit_pass;
+
+uniform vec4 final_modulate;
+
+#ifdef SCREEN_TEXTURE_USED
+
+uniform sampler2D screen_texture; // texunit:2
+
+#endif
+
+#ifdef SCREEN_UV_USED
+
+uniform vec2 screen_pixel_size;
+
+#endif
+
+FRAGMENT_SHADER_GLOBALS
+
+
+void main() {
+
+ vec4 color = color_interp;
+
+ color *= texture2D(color_texture, uv_interp);
+{
+
+FRAGMENT_SHADER_CODE
+
+
+}
+
+ color *= final_modulate;
+
+ gl_FragColor = color;
+
+}
diff --git a/drivers/gles2/shaders/canvas_shadow.glsl b/drivers/gles2/shaders/canvas_shadow.glsl
new file mode 100644
index 0000000000..c757990de0
--- /dev/null
+++ b/drivers/gles2/shaders/canvas_shadow.glsl
@@ -0,0 +1,49 @@
+[vertex]
+
+
+
+uniform highp mat4 projection_matrix;
+uniform highp mat4 light_matrix;
+uniform highp mat4 world_matrix;
+uniform highp float distance_norm;
+
+layout(location=0) in highp vec3 vertex;
+
+out highp vec4 position_interp;
+
+void main() {
+
+ gl_Position = projection_matrix * (light_matrix * (world_matrix * vec4(vertex,1.0)));
+ position_interp=gl_Position;
+}
+
+[fragment]
+
+in highp vec4 position_interp;
+
+#ifdef USE_RGBA_SHADOWS
+
+layout(location=0) out lowp vec4 distance_buf;
+
+#else
+
+layout(location=0) out highp float distance_buf;
+
+#endif
+
+void main() {
+
+ highp float depth = ((position_interp.z / position_interp.w) + 1.0) * 0.5 + 0.0;//bias;
+
+#ifdef USE_RGBA_SHADOWS
+
+ highp vec4 comp = fract(depth * vec4(256.0 * 256.0 * 256.0, 256.0 * 256.0, 256.0, 1.0));
+ comp -= comp.xxyz * vec4(0, 1.0 / 256.0, 1.0 / 256.0, 1.0 / 256.0);
+ distance_buf=comp;
+#else
+
+ distance_buf=depth;
+
+#endif
+}
+
diff --git a/drivers/gles2/shaders/copy.glsl b/drivers/gles2/shaders/copy.glsl
new file mode 100644
index 0000000000..a21da68525
--- /dev/null
+++ b/drivers/gles2/shaders/copy.glsl
@@ -0,0 +1,72 @@
+[vertex]
+
+#ifdef USE_GLES_OVER_GL
+#define mediump
+#define highp
+#else
+precision mediump float;
+precision mediump int;
+#endif
+
+attribute highp vec4 vertex_attrib; // attrib:0
+attribute vec2 uv_in; // attrib:4
+attribute vec2 uv2_in; // attrib:5
+
+varying vec2 uv_interp;
+
+varying vec2 uv2_interp;
+
+#ifdef USE_COPY_SECTION
+uniform vec4 copy_section;
+#endif
+
+void main() {
+
+ uv_interp = uv_in;
+ uv2_interp = uv2_in;
+ gl_Position = vertex_attrib;
+
+#ifdef USE_COPY_SECTION
+ uv_interp = copy_section.xy + uv_interp * copy_section.zw;
+ gl_Position.xy = (copy_section.xy + (gl_Position.xy * 0.5 + 0.5) * copy_section.zw) * 2.0 - 1.0;
+#endif
+}
+
+[fragment]
+
+#ifdef USE_GLES_OVER_GL
+#define mediump
+#define highp
+#else
+precision mediump float;
+precision mediump int;
+#endif
+
+
+varying vec2 uv_interp;
+uniform sampler2D source; // texunit:0
+
+varying vec2 uv2_interp;
+
+#ifdef USE_CUSTOM_ALPHA
+uniform float custom_alpha;
+#endif
+
+
+void main() {
+
+ //vec4 color = color_interp;
+ vec4 color = texture2D( source, uv_interp );
+
+
+#ifdef USE_NO_ALPHA
+ color.a=1.0;
+#endif
+
+#ifdef USE_CUSTOM_ALPHA
+ color.a=custom_alpha;
+#endif
+
+
+ gl_FragColor = color;
+}
diff --git a/drivers/gles2/shaders/cube_to_dp.glsl b/drivers/gles2/shaders/cube_to_dp.glsl
new file mode 100644
index 0000000000..5ffc78c0b9
--- /dev/null
+++ b/drivers/gles2/shaders/cube_to_dp.glsl
@@ -0,0 +1,79 @@
+[vertex]
+
+
+layout(location=0) in highp vec4 vertex_attrib;
+layout(location=4) in vec2 uv_in;
+
+out vec2 uv_interp;
+
+void main() {
+
+ uv_interp = uv_in;
+ gl_Position = vertex_attrib;
+}
+
+[fragment]
+
+
+uniform highp samplerCube source_cube; //texunit:0
+in vec2 uv_interp;
+
+uniform bool z_flip;
+uniform highp float z_far;
+uniform highp float z_near;
+uniform highp float bias;
+
+void main() {
+
+ highp vec3 normal = vec3( uv_interp * 2.0 - 1.0, 0.0 );
+/*
+ if(z_flip) {
+ normal.z = 0.5 - 0.5*((normal.x * normal.x) + (normal.y * normal.y));
+ } else {
+ normal.z = -0.5 + 0.5*((normal.x * normal.x) + (normal.y * normal.y));
+ }
+*/
+
+ //normal.z = sqrt(1.0-dot(normal.xy,normal.xy));
+ //normal.xy*=1.0+normal.z;
+
+ normal.z = 0.5 - 0.5*((normal.x * normal.x) + (normal.y * normal.y));
+ normal = normalize(normal);
+
+/*
+ normal.z=0.5;
+ normal=normalize(normal);
+*/
+ if (!z_flip) {
+ normal.z=-normal.z;
+ }
+
+ //normal = normalize(vec3( uv_interp * 2.0 - 1.0, 1.0 ));
+ float depth = texture(source_cube,normal).r;
+
+ // absolute values for direction cosines, bigger value equals closer to basis axis
+ vec3 unorm = abs(normal);
+
+ if ( (unorm.x >= unorm.y) && (unorm.x >= unorm.z) ) {
+ // x code
+ unorm = normal.x > 0.0 ? vec3( 1.0, 0.0, 0.0 ) : vec3( -1.0, 0.0, 0.0 ) ;
+ } else if ( (unorm.y > unorm.x) && (unorm.y >= unorm.z) ) {
+ // y code
+ unorm = normal.y > 0.0 ? vec3( 0.0, 1.0, 0.0 ) : vec3( 0.0, -1.0, 0.0 ) ;
+ } else if ( (unorm.z > unorm.x) && (unorm.z > unorm.y) ) {
+ // z code
+ unorm = normal.z > 0.0 ? vec3( 0.0, 0.0, 1.0 ) : vec3( 0.0, 0.0, -1.0 ) ;
+ } else {
+ // oh-no we messed up code
+ // has to be
+ unorm = vec3( 1.0, 0.0, 0.0 );
+ }
+
+ float depth_fix = 1.0 / dot(normal,unorm);
+
+
+ depth = 2.0 * depth - 1.0;
+ float linear_depth = 2.0 * z_near * z_far / (z_far + z_near - depth * (z_far - z_near));
+ gl_FragDepth = (linear_depth*depth_fix+bias) / z_far;
+}
+
diff --git a/drivers/gles2/shaders/cubemap_filter.glsl b/drivers/gles2/shaders/cubemap_filter.glsl
new file mode 100644
index 0000000000..485fbb6ee0
--- /dev/null
+++ b/drivers/gles2/shaders/cubemap_filter.glsl
@@ -0,0 +1,294 @@
+[vertex]
+
+
+layout(location=0) in highp vec2 vertex;
+
+layout(location=4) in highp vec2 uv;
+
+out highp vec2 uv_interp;
+
+void main() {
+
+ uv_interp=uv;
+ gl_Position=vec4(vertex,0,1);
+}
+
+[fragment]
+
+
+precision highp float;
+precision highp int;
+
+#ifdef USE_SOURCE_PANORAMA
+uniform sampler2D source_panorama; //texunit:0
+#endif
+
+#ifdef USE_SOURCE_DUAL_PARABOLOID_ARRAY
+uniform sampler2DArray source_dual_paraboloid_array; //texunit:0
+uniform int source_array_index;
+#endif
+
+#if !defined(USE_SOURCE_DUAL_PARABOLOID_ARRAY) && !defined(USE_SOURCE_PANORAMA)
+uniform samplerCube source_cube; //texunit:0
+#endif
+
+uniform int face_id;
+uniform float roughness;
+in highp vec2 uv_interp;
+
+
+layout(location = 0) out vec4 frag_color;
+
+
+#define M_PI 3.14159265359
+
+
+vec3 texelCoordToVec(vec2 uv, int faceID)
+{
+ mat3 faceUvVectors[6];
+/*
+ // -x
+ faceUvVectors[1][0] = vec3(0.0, 0.0, 1.0); // u -> +z
+ faceUvVectors[1][1] = vec3(0.0, -1.0, 0.0); // v -> -y
+ faceUvVectors[1][2] = vec3(-1.0, 0.0, 0.0); // -x face
+
+ // +x
+ faceUvVectors[0][0] = vec3(0.0, 0.0, -1.0); // u -> -z
+ faceUvVectors[0][1] = vec3(0.0, -1.0, 0.0); // v -> -y
+ faceUvVectors[0][2] = vec3(1.0, 0.0, 0.0); // +x face
+
+ // -y
+ faceUvVectors[3][0] = vec3(1.0, 0.0, 0.0); // u -> +x
+ faceUvVectors[3][1] = vec3(0.0, 0.0, -1.0); // v -> -z
+ faceUvVectors[3][2] = vec3(0.0, -1.0, 0.0); // -y face
+
+ // +y
+ faceUvVectors[2][0] = vec3(1.0, 0.0, 0.0); // u -> +x
+ faceUvVectors[2][1] = vec3(0.0, 0.0, 1.0); // v -> +z
+ faceUvVectors[2][2] = vec3(0.0, 1.0, 0.0); // +y face
+
+ // -z
+ faceUvVectors[5][0] = vec3(-1.0, 0.0, 0.0); // u -> -x
+ faceUvVectors[5][1] = vec3(0.0, -1.0, 0.0); // v -> -y
+ faceUvVectors[5][2] = vec3(0.0, 0.0, -1.0); // -z face
+
+ // +z
+ faceUvVectors[4][0] = vec3(1.0, 0.0, 0.0); // u -> +x
+ faceUvVectors[4][1] = vec3(0.0, -1.0, 0.0); // v -> -y
+ faceUvVectors[4][2] = vec3(0.0, 0.0, 1.0); // +z face
+*/
+
+ // -x
+ faceUvVectors[0][0] = vec3(0.0, 0.0, 1.0); // u -> +z
+ faceUvVectors[0][1] = vec3(0.0, -1.0, 0.0); // v -> -y
+ faceUvVectors[0][2] = vec3(-1.0, 0.0, 0.0); // -x face
+
+ // +x
+ faceUvVectors[1][0] = vec3(0.0, 0.0, -1.0); // u -> -z
+ faceUvVectors[1][1] = vec3(0.0, -1.0, 0.0); // v -> -y
+ faceUvVectors[1][2] = vec3(1.0, 0.0, 0.0); // +x face
+
+ // -y
+ faceUvVectors[2][0] = vec3(1.0, 0.0, 0.0); // u -> +x
+ faceUvVectors[2][1] = vec3(0.0, 0.0, -1.0); // v -> -z
+ faceUvVectors[2][2] = vec3(0.0, -1.0, 0.0); // -y face
+
+ // +y
+ faceUvVectors[3][0] = vec3(1.0, 0.0, 0.0); // u -> +x
+ faceUvVectors[3][1] = vec3(0.0, 0.0, 1.0); // v -> +z
+ faceUvVectors[3][2] = vec3(0.0, 1.0, 0.0); // +y face
+
+ // -z
+ faceUvVectors[4][0] = vec3(-1.0, 0.0, 0.0); // u -> -x
+ faceUvVectors[4][1] = vec3(0.0, -1.0, 0.0); // v -> -y
+ faceUvVectors[4][2] = vec3(0.0, 0.0, -1.0); // -z face
+
+ // +z
+ faceUvVectors[5][0] = vec3(1.0, 0.0, 0.0); // u -> +x
+ faceUvVectors[5][1] = vec3(0.0, -1.0, 0.0); // v -> -y
+ faceUvVectors[5][2] = vec3(0.0, 0.0, 1.0); // +z face
+
+ // out = u * s_faceUv[0] + v * s_faceUv[1] + s_faceUv[2].
+ vec3 result = (faceUvVectors[faceID][0] * uv.x) + (faceUvVectors[faceID][1] * uv.y) + faceUvVectors[faceID][2];
+ return normalize(result);
+}
+
+vec3 ImportanceSampleGGX(vec2 Xi, float Roughness, vec3 N)
+{
+ float a = Roughness * Roughness; // DISNEY'S ROUGHNESS [see Burley'12 siggraph]
+
+ // Compute distribution direction
+ float Phi = 2.0 * M_PI * Xi.x;
+ float CosTheta = sqrt((1.0 - Xi.y) / (1.0 + (a*a - 1.0) * Xi.y));
+ float SinTheta = sqrt(1.0 - CosTheta * CosTheta);
+
+ // Convert to spherical direction
+ vec3 H;
+ H.x = SinTheta * cos(Phi);
+ H.y = SinTheta * sin(Phi);
+ H.z = CosTheta;
+
+ vec3 UpVector = abs(N.z) < 0.999 ? vec3(0.0, 0.0, 1.0) : vec3(1.0, 0.0, 0.0);
+ vec3 TangentX = normalize(cross(UpVector, N));
+ vec3 TangentY = cross(N, TangentX);
+
+ // Tangent to world space
+ return TangentX * H.x + TangentY * H.y + N * H.z;
+}
+
+// http://graphicrants.blogspot.com.au/2013/08/specular-brdf-reference.html
+float GGX(float NdotV, float a)
+{
+ float k = a / 2.0;
+ return NdotV / (NdotV * (1.0 - k) + k);
+}
+
+// http://graphicrants.blogspot.com.au/2013/08/specular-brdf-reference.html
+float G_Smith(float a, float nDotV, float nDotL)
+{
+ return GGX(nDotL, a * a) * GGX(nDotV, a * a);
+}
+
+float radicalInverse_VdC(uint bits) {
+ bits = (bits << 16u) | (bits >> 16u);
+ bits = ((bits & 0x55555555u) << 1u) | ((bits & 0xAAAAAAAAu) >> 1u);
+ bits = ((bits & 0x33333333u) << 2u) | ((bits & 0xCCCCCCCCu) >> 2u);
+ bits = ((bits & 0x0F0F0F0Fu) << 4u) | ((bits & 0xF0F0F0F0u) >> 4u);
+ bits = ((bits & 0x00FF00FFu) << 8u) | ((bits & 0xFF00FF00u) >> 8u);
+ return float(bits) * 2.3283064365386963e-10; // / 0x100000000
+}
+
+vec2 Hammersley(uint i, uint N) {
+ return vec2(float(i)/float(N), radicalInverse_VdC(i));
+}
+
+
+
+#ifdef LOW_QUALITY
+
+#define SAMPLE_COUNT 64u
+
+#else
+
+#define SAMPLE_COUNT 512u
+
+#endif
+
+uniform bool z_flip;
+
+#ifdef USE_SOURCE_PANORAMA
+
+vec4 texturePanorama(vec3 normal,sampler2D pano ) {
+
+ vec2 st = vec2(
+ atan(normal.x, normal.z),
+ acos(normal.y)
+ );
+
+ if(st.x < 0.0)
+ st.x += M_PI*2.0;
+
+ st/=vec2(M_PI*2.0,M_PI);
+
+ return textureLod(pano,st,0.0);
+
+}
+
+#endif
+
+#ifdef USE_SOURCE_DUAL_PARABOLOID_ARRAY
+
+
+vec4 textureDualParaboloidArray(vec3 normal) {
+
+ vec3 norm = normalize(normal);
+ norm.xy/=1.0+abs(norm.z);
+ norm.xy=norm.xy * vec2(0.5,0.25) + vec2(0.5,0.25);
+ if (norm.z<0.0) {
+ norm.y=0.5-norm.y+0.5;
+ }
+ return textureLod(source_dual_paraboloid_array, vec3(norm.xy, float(source_array_index) ), 0.0);
+
+}
+
+#endif
+
+void main() {
+
+#ifdef USE_DUAL_PARABOLOID
+
+ vec3 N = vec3( uv_interp * 2.0 - 1.0, 0.0 );
+ N.z = 0.5 - 0.5*((N.x * N.x) + (N.y * N.y));
+ N = normalize(N);
+
+ if (z_flip) {
+ N.y=-N.y; //y is flipped to improve blending between both sides
+ N.z=-N.z;
+ }
+
+
+#else
+ vec2 uv = (uv_interp * 2.0) - 1.0;
+ vec3 N = texelCoordToVec(uv, face_id);
+#endif
+ //vec4 color = color_interp;
+
+#ifdef USE_DIRECT_WRITE
+
+#ifdef USE_SOURCE_PANORAMA
+
+ frag_color=vec4(texturePanorama(N,source_panorama).rgb,1.0);
+#endif
+
+#ifdef USE_SOURCE_DUAL_PARABOLOID_ARRAY
+
+ frag_color=vec4(textureDualParaboloidArray(N).rgb,1.0);
+#endif
+
+#if !defined(USE_SOURCE_DUAL_PARABOLOID_ARRAY) && !defined(USE_SOURCE_PANORAMA)
+
+ N.y=-N.y;
+ frag_color=vec4(texture(N,source_cube).rgb,1.0);
+#endif
+
+
+
+
+#else
+
+ vec4 sum = vec4(0.0, 0.0, 0.0, 0.0);
+
+ for(uint sampleNum = 0u; sampleNum < SAMPLE_COUNT; sampleNum++) {
+ vec2 xi = Hammersley(sampleNum, SAMPLE_COUNT);
+
+ vec3 H = ImportanceSampleGGX( xi, roughness, N );
+ vec3 V = N;
+ vec3 L = normalize(2.0 * dot( V, H ) * H - V);
+
+ float ndotl = clamp(dot(N, L),0.0,1.0);
+
+ if (ndotl>0.0) {
+#ifdef USE_SOURCE_PANORAMA
+ sum.rgb += texturePanorama(H,source_panorama).rgb *ndotl;
+#endif
+
+#ifdef USE_SOURCE_DUAL_PARABOLOID_ARRAY
+
+ sum.rgb += textureDualParaboloidArray(H).rgb *ndotl;
+#endif
+
+#if !defined(USE_SOURCE_DUAL_PARABOLOID_ARRAY) && !defined(USE_SOURCE_PANORAMA)
+ H.y=-H.y;
+ sum.rgb += textureLod(source_cube, H, 0.0).rgb *ndotl;
+#endif
+ sum.a += ndotl;
+ }
+ }
+ sum /= sum.a;
+
+ frag_color = vec4(sum.rgb, 1.0);
+
+#endif
+
+}
+
diff --git a/drivers/gles2/shaders/effect_blur.glsl b/drivers/gles2/shaders/effect_blur.glsl
new file mode 100644
index 0000000000..b5f98a1244
--- /dev/null
+++ b/drivers/gles2/shaders/effect_blur.glsl
@@ -0,0 +1,301 @@
+[vertex]
+
+
+layout(location=0) in highp vec4 vertex_attrib;
+layout(location=4) in vec2 uv_in;
+
+out vec2 uv_interp;
+
+#ifdef USE_BLUR_SECTION
+
+uniform vec4 blur_section;
+
+#endif
+
+void main() {
+
+ uv_interp = uv_in;
+ gl_Position = vertex_attrib;
+#ifdef USE_BLUR_SECTION
+
+ uv_interp = blur_section.xy + uv_interp * blur_section.zw;
+ gl_Position.xy = (blur_section.xy + (gl_Position.xy * 0.5 + 0.5) * blur_section.zw) * 2.0 - 1.0;
+#endif
+}
+
+[fragment]
+
+#if !defined(GLES_OVER_GL)
+precision mediump float;
+#endif
+
+in vec2 uv_interp;
+uniform sampler2D source_color; //texunit:0
+
+#ifdef SSAO_MERGE
+uniform sampler2D source_ssao; //texunit:1
+#endif
+
+uniform float lod;
+uniform vec2 pixel_size;
+
+
+layout(location = 0) out vec4 frag_color;
+
+#ifdef SSAO_MERGE
+
+uniform vec4 ssao_color;
+
+#endif
+
+#if defined (GLOW_GAUSSIAN_HORIZONTAL) || defined(GLOW_GAUSSIAN_VERTICAL)
+
+uniform float glow_strength;
+
+#endif
+
+#if defined(DOF_FAR_BLUR) || defined (DOF_NEAR_BLUR)
+
+#ifdef DOF_QUALITY_LOW
+const int dof_kernel_size=5;
+const int dof_kernel_from=2;
+const float dof_kernel[5] = float[] (0.153388,0.221461,0.250301,0.221461,0.153388);
+#endif
+
+#ifdef DOF_QUALITY_MEDIUM
+const int dof_kernel_size=11;
+const int dof_kernel_from=5;
+const float dof_kernel[11] = float[] (0.055037,0.072806,0.090506,0.105726,0.116061,0.119726,0.116061,0.105726,0.090506,0.072806,0.055037);
+
+#endif
+
+#ifdef DOF_QUALITY_HIGH
+const int dof_kernel_size=21;
+const int dof_kernel_from=10;
+const float dof_kernel[21] = float[] (0.028174,0.032676,0.037311,0.041944,0.046421,0.050582,0.054261,0.057307,0.059587,0.060998,0.061476,0.060998,0.059587,0.057307,0.054261,0.050582,0.046421,0.041944,0.037311,0.032676,0.028174);
+#endif
+
+uniform sampler2D dof_source_depth; //texunit:1
+uniform float dof_begin;
+uniform float dof_end;
+uniform vec2 dof_dir;
+uniform float dof_radius;
+
+#ifdef DOF_NEAR_BLUR_MERGE
+
+uniform sampler2D source_dof_original; //texunit:2
+#endif
+
+#endif
+
+
+#ifdef GLOW_FIRST_PASS
+
+uniform float exposure;
+uniform float white;
+
+#ifdef GLOW_USE_AUTO_EXPOSURE
+
+uniform highp sampler2D source_auto_exposure; //texunit:1
+uniform highp float auto_exposure_grey;
+
+#endif
+
+uniform float glow_bloom;
+uniform float glow_hdr_threshold;
+uniform float glow_hdr_scale;
+
+#endif
+
+uniform float camera_z_far;
+uniform float camera_z_near;
+
+void main() {
+
+
+
+#ifdef GAUSSIAN_HORIZONTAL
+ vec2 pix_size = pixel_size;
+ pix_size*=0.5; //reading from larger buffer, so use more samples
+ vec4 color =textureLod( source_color, uv_interp+vec2( 0.0, 0.0)*pix_size,lod )*0.214607;
+ color+=textureLod( source_color, uv_interp+vec2( 1.0, 0.0)*pix_size,lod )*0.189879;
+ color+=textureLod( source_color, uv_interp+vec2( 2.0, 0.0)*pix_size,lod )*0.157305;
+ color+=textureLod( source_color, uv_interp+vec2( 3.0, 0.0)*pix_size,lod )*0.071303;
+ color+=textureLod( source_color, uv_interp+vec2(-1.0, 0.0)*pix_size,lod )*0.189879;
+ color+=textureLod( source_color, uv_interp+vec2(-2.0, 0.0)*pix_size,lod )*0.157305;
+ color+=textureLod( source_color, uv_interp+vec2(-3.0, 0.0)*pix_size,lod )*0.071303;
+ frag_color = color;
+#endif
+
+#ifdef GAUSSIAN_VERTICAL
+ vec4 color =textureLod( source_color, uv_interp+vec2( 0.0, 0.0)*pixel_size,lod )*0.38774;
+ color+=textureLod( source_color, uv_interp+vec2( 0.0, 1.0)*pixel_size,lod )*0.24477;
+ color+=textureLod( source_color, uv_interp+vec2( 0.0, 2.0)*pixel_size,lod )*0.06136;
+ color+=textureLod( source_color, uv_interp+vec2( 0.0,-1.0)*pixel_size,lod )*0.24477;
+ color+=textureLod( source_color, uv_interp+vec2( 0.0,-2.0)*pixel_size,lod )*0.06136;
+ frag_color = color;
+#endif
+
+//glow uses larger sigma for a more rounded blur effect
+
+#ifdef GLOW_GAUSSIAN_HORIZONTAL
+ vec2 pix_size = pixel_size;
+ pix_size*=0.5; //reading from larger buffer, so use more samples
+ vec4 color =textureLod( source_color, uv_interp+vec2( 0.0, 0.0)*pix_size,lod )*0.174938;
+ color+=textureLod( source_color, uv_interp+vec2( 1.0, 0.0)*pix_size,lod )*0.165569;
+ color+=textureLod( source_color, uv_interp+vec2( 2.0, 0.0)*pix_size,lod )*0.140367;
+ color+=textureLod( source_color, uv_interp+vec2( 3.0, 0.0)*pix_size,lod )*0.106595;
+ color+=textureLod( source_color, uv_interp+vec2(-1.0, 0.0)*pix_size,lod )*0.165569;
+ color+=textureLod( source_color, uv_interp+vec2(-2.0, 0.0)*pix_size,lod )*0.140367;
+ color+=textureLod( source_color, uv_interp+vec2(-3.0, 0.0)*pix_size,lod )*0.106595;
+ color*=glow_strength;
+ frag_color = color;
+#endif
+
+#ifdef GLOW_GAUSSIAN_VERTICAL
+ vec4 color =textureLod( source_color, uv_interp+vec2(0.0, 0.0)*pixel_size,lod )*0.288713;
+ color+=textureLod( source_color, uv_interp+vec2(0.0, 1.0)*pixel_size,lod )*0.233062;
+ color+=textureLod( source_color, uv_interp+vec2(0.0, 2.0)*pixel_size,lod )*0.122581;
+ color+=textureLod( source_color, uv_interp+vec2(0.0,-1.0)*pixel_size,lod )*0.233062;
+ color+=textureLod( source_color, uv_interp+vec2(0.0,-2.0)*pixel_size,lod )*0.122581;
+ color*=glow_strength;
+ frag_color = color;
+#endif
+
+#ifdef DOF_FAR_BLUR
+
+ vec4 color_accum = vec4(0.0);
+
+ float depth = textureLod( dof_source_depth, uv_interp, 0.0).r;
+ depth = depth * 2.0 - 1.0;
+#ifdef USE_ORTHOGONAL_PROJECTION
+ depth = ((depth + (camera_z_far + camera_z_near)/(camera_z_far - camera_z_near)) * (camera_z_far - camera_z_near))/2.0;
+#else
+ depth = 2.0 * camera_z_near * camera_z_far / (camera_z_far + camera_z_near - depth * (camera_z_far - camera_z_near));
+#endif
+
+ float amount = smoothstep(dof_begin,dof_end,depth);
+ float k_accum=0.0;
+
+ for(int i=0;i<dof_kernel_size;i++) {
+
+ int int_ofs = i-dof_kernel_from;
+ vec2 tap_uv = uv_interp + dof_dir * float(int_ofs) * amount * dof_radius;
+
+ float tap_k = dof_kernel[i];
+
+ float tap_depth = texture( dof_source_depth, tap_uv, 0.0).r;
+ tap_depth = tap_depth * 2.0 - 1.0;
+#ifdef USE_ORTHOGONAL_PROJECTION
+ tap_depth = ((tap_depth + (camera_z_far + camera_z_near)/(camera_z_far - camera_z_near)) * (camera_z_far - camera_z_near))/2.0;
+#else
+ tap_depth = 2.0 * camera_z_near * camera_z_far / (camera_z_far + camera_z_near - tap_depth * (camera_z_far - camera_z_near));
+#endif
+ float tap_amount = mix(smoothstep(dof_begin,dof_end,tap_depth),1.0,int_ofs==0);
+ tap_amount*=tap_amount*tap_amount; //prevent undesired glow effect
+
+ vec4 tap_color = textureLod( source_color, tap_uv, 0.0) * tap_k;
+
+ k_accum+=tap_k*tap_amount;
+ color_accum+=tap_color*tap_amount;
+
+
+ }
+
+ if (k_accum>0.0) {
+ color_accum/=k_accum;
+ }
+
+ frag_color = color_accum;///k_accum;
+
+#endif
+
+#ifdef DOF_NEAR_BLUR
+
+ vec4 color_accum = vec4(0.0);
+
+ float max_accum=0;
+
+ for(int i=0;i<dof_kernel_size;i++) {
+
+ int int_ofs = i-dof_kernel_from;
+ vec2 tap_uv = uv_interp + dof_dir * float(int_ofs) * dof_radius;
+ float ofs_influence = max(0.0,1.0-float(abs(int_ofs))/float(dof_kernel_from));
+
+ float tap_k = dof_kernel[i];
+
+ vec4 tap_color = textureLod( source_color, tap_uv, 0.0);
+
+ float tap_depth = texture( dof_source_depth, tap_uv, 0.0).r;
+ tap_depth = tap_depth * 2.0 - 1.0;
+#ifdef USE_ORTHOGONAL_PROJECTION
+ tap_depth = ((tap_depth + (camera_z_far + camera_z_near)/(camera_z_far - camera_z_near)) * (camera_z_far - camera_z_near))/2.0;
+#else
+ tap_depth = 2.0 * camera_z_near * camera_z_far / (camera_z_far + camera_z_near - tap_depth * (camera_z_far - camera_z_near));
+#endif
+ float tap_amount = 1.0-smoothstep(dof_end,dof_begin,tap_depth);
+ tap_amount*=tap_amount*tap_amount; //prevent undesired glow effect
+
+#ifdef DOF_NEAR_FIRST_TAP
+
+ tap_color.a= 1.0-smoothstep(dof_end,dof_begin,tap_depth);
+
+#endif
+
+ max_accum=max(max_accum,tap_amount*ofs_influence);
+
+ color_accum+=tap_color*tap_k;
+
+ }
+
+ color_accum.a=max(color_accum.a,sqrt(max_accum));
+
+
+#ifdef DOF_NEAR_BLUR_MERGE
+
+ vec4 original = textureLod( source_dof_original, uv_interp, 0.0);
+ color_accum = mix(original,color_accum,color_accum.a);
+
+#endif
+
+#ifndef DOF_NEAR_FIRST_TAP
+ //color_accum=vec4(vec3(color_accum.a),1.0);
+#endif
+ frag_color = color_accum;
+
+#endif
+
+
+
+#ifdef GLOW_FIRST_PASS
+
+#ifdef GLOW_USE_AUTO_EXPOSURE
+
+ frag_color/=texelFetch(source_auto_exposure,ivec2(0,0),0).r/auto_exposure_grey;
+#endif
+ frag_color*=exposure;
+
+ float luminance = max(frag_color.r,max(frag_color.g,frag_color.b));
+ float feedback = max( smoothstep(glow_hdr_threshold,glow_hdr_threshold+glow_hdr_scale,luminance), glow_bloom );
+
+ frag_color *= feedback;
+
+#endif
+
+
+#ifdef SIMPLE_COPY
+ vec4 color =textureLod( source_color, uv_interp,0.0);
+ frag_color = color;
+#endif
+
+#ifdef SSAO_MERGE
+
+ vec4 color =textureLod( source_color, uv_interp,0.0);
+ float ssao =textureLod( source_ssao, uv_interp,0.0).r;
+
+ frag_color = vec4( mix(color.rgb,color.rgb*mix(ssao_color.rgb,vec3(1.0),ssao),color.a), 1.0 );
+
+#endif
+
+
+}
diff --git a/drivers/gles2/shaders/exposure.glsl b/drivers/gles2/shaders/exposure.glsl
new file mode 100644
index 0000000000..001b90a0f1
--- /dev/null
+++ b/drivers/gles2/shaders/exposure.glsl
@@ -0,0 +1,98 @@
+[vertex]
+
+
+layout(location=0) in highp vec4 vertex_attrib;
+
+
+void main() {
+
+ gl_Position = vertex_attrib;
+
+}
+
+[fragment]
+
+
+uniform highp sampler2D source_exposure; //texunit:0
+
+#ifdef EXPOSURE_BEGIN
+
+uniform highp ivec2 source_render_size;
+uniform highp ivec2 target_size;
+
+#endif
+
+#ifdef EXPOSURE_END
+
+uniform highp sampler2D prev_exposure; //texunit:1
+uniform highp float exposure_adjust;
+uniform highp float min_luminance;
+uniform highp float max_luminance;
+
+#endif
+
+layout(location = 0) out highp float exposure;
+
+
+
+void main() {
+
+
+
+#ifdef EXPOSURE_BEGIN
+
+
+ ivec2 src_pos = ivec2(gl_FragCoord.xy)*source_render_size/target_size;
+
+#if 1
+ //more precise and expensive, but less jittery
+ ivec2 next_pos = ivec2(gl_FragCoord.xy+ivec2(1))*source_render_size/target_size;
+ next_pos = max(next_pos,src_pos+ivec2(1)); //so it at least reads one pixel
+ highp vec3 source_color=vec3(0.0);
+ for(int i=src_pos.x;i<next_pos.x;i++) {
+ for(int j=src_pos.y;j<next_pos.y;j++) {
+ source_color += texelFetch(source_exposure,ivec2(i,j),0).rgb;
+ }
+ }
+
+ source_color/=float( (next_pos.x-src_pos.x)*(next_pos.y-src_pos.y) );
+#else
+ highp vec3 source_color = texelFetch(source_exposure,src_pos,0).rgb;
+
+#endif
+
+ exposure = max(source_color.r,max(source_color.g,source_color.b));
+
+#else
+
+ ivec2 coord = ivec2(gl_FragCoord.xy);
+ exposure = texelFetch(source_exposure,coord*3+ivec2(0,0),0).r;
+ exposure += texelFetch(source_exposure,coord*3+ivec2(1,0),0).r;
+ exposure += texelFetch(source_exposure,coord*3+ivec2(2,0),0).r;
+ exposure += texelFetch(source_exposure,coord*3+ivec2(0,1),0).r;
+ exposure += texelFetch(source_exposure,coord*3+ivec2(1,1),0).r;
+ exposure += texelFetch(source_exposure,coord*3+ivec2(2,1),0).r;
+ exposure += texelFetch(source_exposure,coord*3+ivec2(0,2),0).r;
+ exposure += texelFetch(source_exposure,coord*3+ivec2(1,2),0).r;
+ exposure += texelFetch(source_exposure,coord*3+ivec2(2,2),0).r;
+ exposure *= (1.0/9.0);
+
+#ifdef EXPOSURE_END
+
+#ifdef EXPOSURE_FORCE_SET
+ //will stay as is
+#else
+ highp float prev_lum = texelFetch(prev_exposure,ivec2(0,0),0).r; //1 pixel previous exposure
+ exposure = clamp( prev_lum + (exposure-prev_lum)*exposure_adjust,min_luminance,max_luminance);
+
+#endif //EXPOSURE_FORCE_SET
+
+
+#endif //EXPOSURE_END
+
+#endif //EXPOSURE_BEGIN
+
+
+}
+
+
diff --git a/drivers/gles2/shaders/particles.glsl b/drivers/gles2/shaders/particles.glsl
new file mode 100644
index 0000000000..a62c124dfe
--- /dev/null
+++ b/drivers/gles2/shaders/particles.glsl
@@ -0,0 +1,260 @@
+[vertex]
+
+
+
+layout(location=0) in highp vec4 color;
+layout(location=1) in highp vec4 velocity_active;
+layout(location=2) in highp vec4 custom;
+layout(location=3) in highp vec4 xform_1;
+layout(location=4) in highp vec4 xform_2;
+layout(location=5) in highp vec4 xform_3;
+
+
+struct Attractor {
+
+ vec3 pos;
+ vec3 dir;
+ float radius;
+ float eat_radius;
+ float strength;
+ float attenuation;
+};
+
+#define MAX_ATTRACTORS 64
+
+uniform bool emitting;
+uniform float system_phase;
+uniform float prev_system_phase;
+uniform int total_particles;
+uniform float explosiveness;
+uniform float randomness;
+uniform float time;
+uniform float delta;
+
+uniform int attractor_count;
+uniform Attractor attractors[MAX_ATTRACTORS];
+uniform bool clear;
+uniform uint cycle;
+uniform float lifetime;
+uniform mat4 emission_transform;
+uniform uint random_seed;
+
+
+out highp vec4 out_color; //tfb:
+out highp vec4 out_velocity_active; //tfb:
+out highp vec4 out_custom; //tfb:
+out highp vec4 out_xform_1; //tfb:
+out highp vec4 out_xform_2; //tfb:
+out highp vec4 out_xform_3; //tfb:
+
+
+#if defined(USE_MATERIAL)
+
+layout(std140) uniform UniformData { //ubo:0
+
+MATERIAL_UNIFORMS
+
+};
+
+#endif
+
+
+VERTEX_SHADER_GLOBALS
+
+uint hash(uint x) {
+
+ x = ((x >> uint(16)) ^ x) * uint(0x45d9f3b);
+ x = ((x >> uint(16)) ^ x) * uint(0x45d9f3b);
+ x = (x >> uint(16)) ^ x;
+ return x;
+}
+
+
+void main() {
+
+#ifdef PARTICLES_COPY
+
+ out_color=color;
+ out_velocity_active=velocity_active;
+ out_custom = custom;
+ out_xform_1 = xform_1;
+ out_xform_2 = xform_2;
+ out_xform_3 = xform_3;
+
+#else
+
+ bool apply_forces=true;
+ bool apply_velocity=true;
+ float local_delta=delta;
+
+ float mass = 1.0;
+
+ float restart_phase = float(gl_VertexID)/float(total_particles);
+
+ if (randomness>0.0) {
+ uint seed = cycle;
+ if (restart_phase >= system_phase) {
+ seed-=uint(1);
+ }
+ seed*=uint(total_particles);
+ seed+=uint(gl_VertexID);
+ float random = float(hash(seed) % uint(65536)) / 65536.0;
+ restart_phase+=randomness * random * 1.0 / float(total_particles);
+ }
+
+ restart_phase*= (1.0-explosiveness);
+ bool restart=false;
+ bool shader_active = velocity_active.a > 0.5;
+
+ if (system_phase > prev_system_phase) {
+ // restart_phase >= prev_system_phase is used so particles emit in the first frame they are processed
+
+ if (restart_phase >= prev_system_phase && restart_phase < system_phase ) {
+ restart=true;
+#ifdef USE_FRACTIONAL_DELTA
+ local_delta = (system_phase - restart_phase) * lifetime;
+#endif
+ }
+
+ } else {
+ if (restart_phase >= prev_system_phase) {
+ restart=true;
+#ifdef USE_FRACTIONAL_DELTA
+ local_delta = (1.0 - restart_phase + system_phase) * lifetime;
+#endif
+ } else if (restart_phase < system_phase ) {
+ restart=true;
+#ifdef USE_FRACTIONAL_DELTA
+ local_delta = (system_phase - restart_phase) * lifetime;
+#endif
+ }
+ }
+
+ uint current_cycle = cycle;
+
+ if (system_phase < restart_phase) {
+ current_cycle-=uint(1);
+ }
+
+ uint particle_number = current_cycle * uint(total_particles) + uint(gl_VertexID);
+ int index = int(gl_VertexID);
+
+ if (restart) {
+ shader_active=emitting;
+ }
+
+ mat4 xform;
+
+#if defined(ENABLE_KEEP_DATA)
+ if (clear) {
+#else
+ if (clear || restart) {
+#endif
+ out_color=vec4(1.0);
+ out_velocity_active=vec4(0.0);
+ out_custom=vec4(0.0);
+ if (!restart)
+ shader_active=false;
+
+ xform = mat4(
+ vec4(1.0,0.0,0.0,0.0),
+ vec4(0.0,1.0,0.0,0.0),
+ vec4(0.0,0.0,1.0,0.0),
+ vec4(0.0,0.0,0.0,1.0)
+ );
+ } else {
+ out_color=color;
+ out_velocity_active=velocity_active;
+ out_custom=custom;
+ xform = transpose(mat4(xform_1,xform_2,xform_3,vec4(vec3(0.0),1.0)));
+ }
+
+ if (shader_active) {
+ //execute shader
+
+ {
+VERTEX_SHADER_CODE
+ }
+
+#if !defined(DISABLE_FORCE)
+
+ if (false) {
+
+ vec3 force = vec3(0.0);
+ for(int i=0;i<attractor_count;i++) {
+
+ vec3 rel_vec = xform[3].xyz - attractors[i].pos;
+ float dist = length(rel_vec);
+ if (attractors[i].radius < dist)
+ continue;
+ if (attractors[i].eat_radius>0.0 && attractors[i].eat_radius > dist) {
+ out_velocity_active.a=0.0;
+ }
+
+ rel_vec = normalize(rel_vec);
+
+ float attenuation = pow(dist / attractors[i].radius,attractors[i].attenuation);
+
+ if (attractors[i].dir==vec3(0.0)) {
+ //towards center
+ force+=attractors[i].strength * rel_vec * attenuation * mass;
+ } else {
+ force+=attractors[i].strength * attractors[i].dir * attenuation *mass;
+
+ }
+ }
+
+ out_velocity_active.xyz += force * local_delta;
+ }
+#endif
+
+#if !defined(DISABLE_VELOCITY)
+
+ if (true) {
+
+ xform[3].xyz += out_velocity_active.xyz * local_delta;
+ }
+#endif
+ } else {
+ xform=mat4(0.0);
+ }
+
+ xform = transpose(xform);
+
+ out_velocity_active.a = mix(0.0,1.0,shader_active);
+
+ out_xform_1 = xform[0];
+ out_xform_2 = xform[1];
+ out_xform_3 = xform[2];
+
+#endif //PARTICLES_COPY
+
+}
+
+[fragment]
+
+//any code here is never executed, stuff is filled just so it works
+
+
+#if defined(USE_MATERIAL)
+
+layout(std140) uniform UniformData {
+
+MATERIAL_UNIFORMS
+
+};
+
+#endif
+
+FRAGMENT_SHADER_GLOBALS
+
+void main() {
+
+ {
+LIGHT_SHADER_CODE
+ }
+
+ {
+FRAGMENT_SHADER_CODE
+ }
+}
diff --git a/drivers/gles2/shaders/resolve.glsl b/drivers/gles2/shaders/resolve.glsl
new file mode 100644
index 0000000000..0b50a9c57b
--- /dev/null
+++ b/drivers/gles2/shaders/resolve.glsl
@@ -0,0 +1,44 @@
+[vertex]
+
+
+layout(location=0) in highp vec4 vertex_attrib;
+layout(location=4) in vec2 uv_in;
+
+out vec2 uv_interp;
+
+
+void main() {
+
+ uv_interp = uv_in;
+ gl_Position = vertex_attrib;
+}
+
+[fragment]
+
+#if !defined(GLES_OVER_GL)
+precision mediump float;
+#endif
+
+in vec2 uv_interp;
+uniform sampler2D source_specular; //texunit:0
+uniform sampler2D source_ssr; //texunit:1
+
+uniform vec2 pixel_size;
+
+in vec2 uv2_interp;
+
+layout(location = 0) out vec4 frag_color;
+
+void main() {
+
+ vec4 specular = texture( source_specular, uv_interp );
+
+#ifdef USE_SSR
+
+ vec4 ssr = textureLod(source_ssr,uv_interp,0.0);
+ specular.rgb = mix(specular.rgb,ssr.rgb*specular.a,ssr.a);
+#endif
+
+ frag_color = vec4(specular.rgb,1.0);
+}
+
diff --git a/drivers/gles2/shaders/scene.glsl b/drivers/gles2/shaders/scene.glsl
new file mode 100644
index 0000000000..79b989be4a
--- /dev/null
+++ b/drivers/gles2/shaders/scene.glsl
@@ -0,0 +1,2113 @@
+[vertex]
+
+#define M_PI 3.14159265359
+
+/*
+from VisualServer:
+
+ARRAY_VERTEX=0,
+ARRAY_NORMAL=1,
+ARRAY_TANGENT=2,
+ARRAY_COLOR=3,
+ARRAY_TEX_UV=4,
+ARRAY_TEX_UV2=5,
+ARRAY_BONES=6,
+ARRAY_WEIGHTS=7,
+ARRAY_INDEX=8,
+*/
+
+//hack to use uv if no uv present so it works with lightmap
+
+
+/* INPUT ATTRIBS */
+
+layout(location=0) in highp vec4 vertex_attrib;
+layout(location=1) in vec3 normal_attrib;
+#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) || defined(LIGHT_USE_ANISOTROPY)
+layout(location=2) in vec4 tangent_attrib;
+#endif
+
+#if defined(ENABLE_COLOR_INTERP)
+layout(location=3) in vec4 color_attrib;
+#endif
+
+#if defined(ENABLE_UV_INTERP)
+layout(location=4) in vec2 uv_attrib;
+#endif
+
+#if defined(ENABLE_UV2_INTERP)
+layout(location=5) in vec2 uv2_attrib;
+#endif
+
+uniform float normal_mult;
+
+#ifdef USE_SKELETON
+layout(location=6) in ivec4 bone_indices; // attrib:6
+layout(location=7) in vec4 bone_weights; // attrib:7
+#endif
+
+#ifdef USE_INSTANCING
+
+layout(location=8) in highp vec4 instance_xform0;
+layout(location=9) in highp vec4 instance_xform1;
+layout(location=10) in highp vec4 instance_xform2;
+layout(location=11) in lowp vec4 instance_color;
+
+#if defined(ENABLE_INSTANCE_CUSTOM)
+layout(location=12) in highp vec4 instance_custom_data;
+#endif
+
+#endif
+
+layout(std140) uniform SceneData { //ubo:0
+
+ highp mat4 projection_matrix;
+ highp mat4 inv_projection_matrix;
+ highp mat4 camera_inverse_matrix;
+ highp mat4 camera_matrix;
+
+ mediump vec4 ambient_light_color;
+ mediump vec4 bg_color;
+
+ mediump vec4 fog_color_enabled;
+ mediump vec4 fog_sun_color_amount;
+
+ mediump float ambient_energy;
+ mediump float bg_energy;
+
+ mediump float z_offset;
+ mediump float z_slope_scale;
+ highp float shadow_dual_paraboloid_render_zfar;
+ highp float shadow_dual_paraboloid_render_side;
+
+ highp vec2 viewport_size;
+ highp vec2 screen_pixel_size;
+ highp vec2 shadow_atlas_pixel_size;
+ highp vec2 directional_shadow_pixel_size;
+
+ highp float time;
+ highp float z_far;
+ mediump float reflection_multiplier;
+ mediump float subsurface_scatter_width;
+ mediump float ambient_occlusion_affect_light;
+
+ bool fog_depth_enabled;
+ highp float fog_depth_begin;
+ highp float fog_depth_curve;
+ bool fog_transmit_enabled;
+ highp float fog_transmit_curve;
+ bool fog_height_enabled;
+ highp float fog_height_min;
+ highp float fog_height_max;
+ highp float fog_height_curve;
+
+};
+
+uniform highp mat4 world_transform;
+
+
+#ifdef USE_LIGHT_DIRECTIONAL
+
+layout(std140) uniform DirectionalLightData { //ubo:3
+
+ highp vec4 light_pos_inv_radius;
+ mediump vec4 light_direction_attenuation;
+ mediump vec4 light_color_energy;
+ mediump vec4 light_params; //cone attenuation, angle, specular, shadow enabled,
+ mediump vec4 light_clamp;
+ mediump vec4 shadow_color_contact;
+ highp mat4 shadow_matrix1;
+ highp mat4 shadow_matrix2;
+ highp mat4 shadow_matrix3;
+ highp mat4 shadow_matrix4;
+ mediump vec4 shadow_split_offsets;
+};
+
+#endif
+
+#ifdef USE_VERTEX_LIGHTING
+//omni and spot
+
+struct LightData {
+
+ highp vec4 light_pos_inv_radius;
+ mediump vec4 light_direction_attenuation;
+ mediump vec4 light_color_energy;
+ mediump vec4 light_params; //cone attenuation, angle, specular, shadow enabled,
+ mediump vec4 light_clamp;
+ mediump vec4 shadow_color_contact;
+ highp mat4 shadow_matrix;
+
+};
+
+
+layout(std140) uniform OmniLightData { //ubo:4
+
+ LightData omni_lights[MAX_LIGHT_DATA_STRUCTS];
+};
+
+layout(std140) uniform SpotLightData { //ubo:5
+
+ LightData spot_lights[MAX_LIGHT_DATA_STRUCTS];
+};
+
+#ifdef USE_FORWARD_LIGHTING
+
+
+uniform int omni_light_indices[MAX_FORWARD_LIGHTS];
+uniform int omni_light_count;
+
+uniform int spot_light_indices[MAX_FORWARD_LIGHTS];
+uniform int spot_light_count;
+
+#endif
+
+out vec4 diffuse_light_interp;
+out vec4 specular_light_interp;
+
+void light_compute(vec3 N, vec3 L,vec3 V, vec3 light_color, float roughness, inout vec3 diffuse, inout vec3 specular) {
+
+ float dotNL = max(dot(N,L), 0.0 );
+ diffuse += dotNL * light_color / M_PI;
+
+ if (roughness > 0.0) {
+
+ vec3 H = normalize(V + L);
+ float dotNH = max(dot(N,H), 0.0 );
+ float intensity = pow( dotNH, (1.0-roughness) * 256.0);
+ specular += light_color * intensity;
+
+ }
+}
+
+void light_process_omni(int idx, vec3 vertex, vec3 eye_vec,vec3 normal, float roughness,inout vec3 diffuse, inout vec3 specular) {
+
+ vec3 light_rel_vec = omni_lights[idx].light_pos_inv_radius.xyz-vertex;
+ float light_length = length( light_rel_vec );
+ float normalized_distance = light_length*omni_lights[idx].light_pos_inv_radius.w;
+ vec3 light_attenuation = vec3(pow( max(1.0 - normalized_distance, 0.0), omni_lights[idx].light_direction_attenuation.w ));
+
+ light_compute(normal,normalize(light_rel_vec),eye_vec,omni_lights[idx].light_color_energy.rgb * light_attenuation,roughness,diffuse,specular);
+
+}
+
+void light_process_spot(int idx, vec3 vertex, vec3 eye_vec, vec3 normal, float roughness, inout vec3 diffuse, inout vec3 specular) {
+
+ vec3 light_rel_vec = spot_lights[idx].light_pos_inv_radius.xyz-vertex;
+ float light_length = length( light_rel_vec );
+ float normalized_distance = light_length*spot_lights[idx].light_pos_inv_radius.w;
+ vec3 light_attenuation = vec3(pow( max(1.0 - normalized_distance, 0.001), spot_lights[idx].light_direction_attenuation.w ));
+ vec3 spot_dir = spot_lights[idx].light_direction_attenuation.xyz;
+ float spot_cutoff=spot_lights[idx].light_params.y;
+ float scos = max(dot(-normalize(light_rel_vec), spot_dir),spot_cutoff);
+ float spot_rim = (1.0 - scos) / (1.0 - spot_cutoff);
+ light_attenuation *= 1.0 - pow( max(spot_rim,0.001), spot_lights[idx].light_params.x);
+
+
+ light_compute(normal,normalize(light_rel_vec),eye_vec,spot_lights[idx].light_color_energy.rgb*light_attenuation,roughness,diffuse,specular);
+}
+
+
+#endif
+
+/* Varyings */
+
+out highp vec3 vertex_interp;
+out vec3 normal_interp;
+
+#if defined(ENABLE_COLOR_INTERP)
+out vec4 color_interp;
+#endif
+
+#if defined(ENABLE_UV_INTERP)
+out vec2 uv_interp;
+#endif
+
+#if defined(ENABLE_UV2_INTERP)
+out vec2 uv2_interp;
+#endif
+
+
+#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) || defined(LIGHT_USE_ANISOTROPY)
+out vec3 tangent_interp;
+out vec3 binormal_interp;
+#endif
+
+
+
+
+
+#if defined(USE_MATERIAL)
+
+layout(std140) uniform UniformData { //ubo:1
+
+MATERIAL_UNIFORMS
+
+};
+
+#endif
+
+VERTEX_SHADER_GLOBALS
+
+#ifdef RENDER_DEPTH_DUAL_PARABOLOID
+
+out highp float dp_clip;
+
+#endif
+
+#define SKELETON_TEXTURE_WIDTH 256
+
+#ifdef USE_SKELETON
+uniform highp sampler2D skeleton_texture; //texunit:-1
+#endif
+
+out highp vec4 position_interp;
+
+// FIXME: This triggers a Mesa bug that breaks rendering, so disabled for now.
+// See GH-13450 and https://bugs.freedesktop.org/show_bug.cgi?id=100316
+//invariant gl_Position;
+
+void main() {
+
+ highp vec4 vertex = vertex_attrib; // vec4(vertex_attrib.xyz * data_attrib.x,1.0);
+
+ mat4 world_matrix = world_transform;
+
+
+#ifdef USE_INSTANCING
+
+ {
+ highp mat4 m=mat4(instance_xform0,instance_xform1,instance_xform2,vec4(0.0,0.0,0.0,1.0));
+ world_matrix = world_matrix * transpose(m);
+ }
+#endif
+
+ vec3 normal = normal_attrib * normal_mult;
+
+
+#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) || defined(LIGHT_USE_ANISOTROPY)
+ vec3 tangent = tangent_attrib.xyz;
+ tangent*=normal_mult;
+ float binormalf = tangent_attrib.a;
+#endif
+
+#if defined(ENABLE_COLOR_INTERP)
+ color_interp = color_attrib;
+#if defined(USE_INSTANCING)
+ color_interp *= instance_color;
+#endif
+
+#endif
+
+#ifdef USE_SKELETON
+ {
+ //skeleton transform
+ ivec2 tex_ofs = ivec2( bone_indices.x%256, (bone_indices.x/256)*3 );
+ highp mat3x4 m = mat3x4(
+ texelFetch(skeleton_texture,tex_ofs,0),
+ texelFetch(skeleton_texture,tex_ofs+ivec2(0,1),0),
+ texelFetch(skeleton_texture,tex_ofs+ivec2(0,2),0)
+ ) * bone_weights.x;
+
+ tex_ofs = ivec2( bone_indices.y%256, (bone_indices.y/256)*3 );
+
+ m+= mat3x4(
+ texelFetch(skeleton_texture,tex_ofs,0),
+ texelFetch(skeleton_texture,tex_ofs+ivec2(0,1),0),
+ texelFetch(skeleton_texture,tex_ofs+ivec2(0,2),0)
+ ) * bone_weights.y;
+
+ tex_ofs = ivec2( bone_indices.z%256, (bone_indices.z/256)*3 );
+
+ m+= mat3x4(
+ texelFetch(skeleton_texture,tex_ofs,0),
+ texelFetch(skeleton_texture,tex_ofs+ivec2(0,1),0),
+ texelFetch(skeleton_texture,tex_ofs+ivec2(0,2),0)
+ ) * bone_weights.z;
+
+
+ tex_ofs = ivec2( bone_indices.w%256, (bone_indices.w/256)*3 );
+
+ m+= mat3x4(
+ texelFetch(skeleton_texture,tex_ofs,0),
+ texelFetch(skeleton_texture,tex_ofs+ivec2(0,1),0),
+ texelFetch(skeleton_texture,tex_ofs+ivec2(0,2),0)
+ ) * bone_weights.w;
+
+
+ vertex.xyz = vertex * m;
+
+ normal = vec4(normal,0.0) * m;
+#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) || defined(LIGHT_USE_ANISOTROPY)
+ tangent.xyz = vec4(tangent.xyz,0.0) * m;
+#endif
+ }
+#endif
+
+
+#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) || defined(LIGHT_USE_ANISOTROPY)
+
+ vec3 binormal = normalize( cross(normal,tangent) * binormalf );
+#endif
+
+#if defined(ENABLE_UV_INTERP)
+ uv_interp = uv_attrib;
+#endif
+
+#if defined(ENABLE_UV2_INTERP)
+ uv2_interp = uv2_attrib;
+#endif
+
+#if defined(USE_INSTANCING) && defined(ENABLE_INSTANCE_CUSTOM)
+ vec4 instance_custom = instance_custom_data;
+#else
+ vec4 instance_custom = vec4(0.0);
+#endif
+
+ highp mat4 modelview = camera_inverse_matrix * world_matrix;
+ highp mat4 local_projection = projection_matrix;
+
+//using world coordinates
+#if !defined(SKIP_TRANSFORM_USED) && defined(VERTEX_WORLD_COORDS_USED)
+
+ vertex = world_matrix * vertex;
+ normal = normalize((world_matrix * vec4(normal,0.0)).xyz);
+
+#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) || defined(LIGHT_USE_ANISOTROPY)
+
+ tangent = normalize((world_matrix * vec4(tangent,0.0)).xyz);
+ binormal = normalize((world_matrix * vec4(binormal,0.0)).xyz);
+#endif
+#endif
+
+ float roughness=0.0;
+
+//defines that make writing custom shaders easier
+#define projection_matrix local_projection
+#define world_transform world_matrix
+{
+
+VERTEX_SHADER_CODE
+
+}
+
+
+
+//using local coordinates (default)
+#if !defined(SKIP_TRANSFORM_USED) && !defined(VERTEX_WORLD_COORDS_USED)
+
+ vertex = modelview * vertex;
+ normal = normalize((modelview * vec4(normal,0.0)).xyz);
+
+#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) || defined(LIGHT_USE_ANISOTROPY)
+
+ tangent = normalize((modelview * vec4(tangent,0.0)).xyz);
+ binormal = normalize((modelview * vec4(binormal,0.0)).xyz);
+#endif
+#endif
+
+//using world coordinates
+#if !defined(SKIP_TRANSFORM_USED) && defined(VERTEX_WORLD_COORDS_USED)
+
+ vertex = camera_inverse_matrix * vertex;
+ normal = normalize((camera_inverse_matrix * vec4(normal,0.0)).xyz);
+
+#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) || defined(LIGHT_USE_ANISOTROPY)
+
+ tangent = normalize((camera_inverse_matrix * vec4(tangent,0.0)).xyz);
+ binormal = normalize((camera_inverse_matrix * vec4(binormal,0.0)).xyz);
+#endif
+#endif
+
+ vertex_interp = vertex.xyz;
+ normal_interp = normal;
+
+
+#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) || defined(LIGHT_USE_ANISOTROPY)
+ tangent_interp = tangent;
+ binormal_interp = binormal;
+#endif
+
+
+#ifdef RENDER_DEPTH
+
+
+#ifdef RENDER_DEPTH_DUAL_PARABOLOID
+
+ vertex_interp.z*= shadow_dual_paraboloid_render_side;
+ normal_interp.z*= shadow_dual_paraboloid_render_side;
+
+ dp_clip=vertex_interp.z; //this attempts to avoid noise caused by objects sent to the other parabolloid side due to bias
+
+ //for dual paraboloid shadow mapping, this is the fastest but least correct way, as it curves straight edges
+
+ highp vec3 vtx = vertex_interp+normalize(vertex_interp)*z_offset;
+ highp float distance = length(vtx);
+ vtx = normalize(vtx);
+ vtx.xy/=1.0-vtx.z;
+ vtx.z=(distance/shadow_dual_paraboloid_render_zfar);
+ vtx.z=vtx.z * 2.0 - 1.0;
+
+ vertex.xyz=vtx;
+ vertex.w=1.0;
+
+
+#else
+
+ float z_ofs = z_offset;
+ z_ofs += (1.0-abs(normal_interp.z))*z_slope_scale;
+ vertex_interp.z-=z_ofs;
+
+#endif //RENDER_DEPTH_DUAL_PARABOLOID
+
+#endif //RENDER_DEPTH
+
+ gl_Position = projection_matrix * vec4(vertex_interp,1.0);
+
+ position_interp=gl_Position;
+
+#ifdef USE_VERTEX_LIGHTING
+
+ diffuse_light_interp=vec4(0.0);
+ specular_light_interp=vec4(0.0);
+
+#ifdef USE_FORWARD_LIGHTING
+
+ for(int i=0;i<omni_light_count;i++) {
+ light_process_omni(omni_light_indices[i],vertex_interp,-normalize( vertex_interp ),normal_interp,roughness,diffuse_light_interp.rgb,specular_light_interp.rgb);
+ }
+
+ for(int i=0;i<spot_light_count;i++) {
+ light_process_spot(spot_light_indices[i],vertex_interp,-normalize( vertex_interp ),normal_interp,roughness,diffuse_light_interp.rgb,specular_light_interp.rgb);
+ }
+#endif
+
+#ifdef USE_LIGHT_DIRECTIONAL
+
+ vec3 directional_diffuse = vec3(0.0);
+ vec3 directional_specular = vec3(0.0);
+ light_compute(normal_interp,-light_direction_attenuation.xyz,-normalize( vertex_interp ),light_color_energy.rgb,roughness,directional_diffuse,directional_specular);
+
+ float diff_avg = dot(diffuse_light_interp.rgb,vec3(0.33333));
+ float diff_dir_avg = dot(directional_diffuse,vec3(0.33333));
+ if (diff_avg>0.0) {
+ diffuse_light_interp.a=diff_dir_avg/(diff_avg+diff_dir_avg);
+ } else {
+ diffuse_light_interp.a=1.0;
+ }
+
+ diffuse_light_interp.rgb+=directional_diffuse;
+
+ float spec_avg = dot(specular_light_interp.rgb,vec3(0.33333));
+ float spec_dir_avg = dot(directional_specular,vec3(0.33333));
+ if (spec_avg>0.0) {
+ specular_light_interp.a=spec_dir_avg/(spec_avg+spec_dir_avg);
+ } else {
+ specular_light_interp.a=1.0;
+ }
+
+ specular_light_interp.rgb+=directional_specular;
+
+#endif //USE_LIGHT_DIRECTIONAL
+
+
+#endif // USE_VERTEX_LIGHTING
+
+}
+
+
+[fragment]
+
+/* texture unit usage, N is max_texture_unity-N
+
+1-skeleton
+2-radiance
+3-reflection_atlas
+4-directional_shadow
+5-shadow_atlas
+6-decal_atlas
+7-screen
+8-depth
+9-probe1
+10-probe2
+
+*/
+
+uniform highp mat4 world_transform;
+
+#define M_PI 3.14159265359
+
+/* Varyings */
+
+#if defined(ENABLE_COLOR_INTERP)
+in vec4 color_interp;
+#endif
+
+#if defined(ENABLE_UV_INTERP)
+in vec2 uv_interp;
+#endif
+
+#if defined(ENABLE_UV2_INTERP)
+in vec2 uv2_interp;
+#endif
+
+#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) || defined(LIGHT_USE_ANISOTROPY)
+in vec3 tangent_interp;
+in vec3 binormal_interp;
+#endif
+
+in highp vec3 vertex_interp;
+in vec3 normal_interp;
+
+
+/* PBR CHANNELS */
+
+//used on forward mainly
+uniform bool no_ambient_light;
+
+
+
+#ifdef USE_RADIANCE_MAP
+
+
+
+layout(std140) uniform Radiance { //ubo:2
+
+ mat4 radiance_inverse_xform;
+ float radiance_ambient_contribution;
+
+};
+
+#define RADIANCE_MAX_LOD 5.0
+
+#ifdef USE_RADIANCE_MAP_ARRAY
+
+uniform sampler2DArray radiance_map; //texunit:-2
+
+vec3 textureDualParaboloid(sampler2DArray p_tex, vec3 p_vec,float p_roughness) {
+
+ vec3 norm = normalize(p_vec);
+ norm.xy/=1.0+abs(norm.z);
+ norm.xy=norm.xy * vec2(0.5,0.25) + vec2(0.5,0.25);
+
+ // we need to lie the derivatives (normg) and assume that DP side is always the same
+ // to get proper texture filtering
+ vec2 normg=norm.xy;
+ if (norm.z>0.0) {
+ norm.y=0.5-norm.y+0.5;
+ }
+
+ // thanks to OpenGL spec using floor(layer + 0.5) for texture arrays,
+ // it's easy to have precision errors using fract() to interpolate layers
+ // as such, using fixed point to ensure it works.
+
+ float index = p_roughness * RADIANCE_MAX_LOD;
+ int indexi = int(index * 256.0);
+ vec3 base = textureGrad(p_tex, vec3(norm.xy, float(indexi/256)),dFdx(normg),dFdy(normg)).xyz;
+ vec3 next = textureGrad(p_tex, vec3(norm.xy, float(indexi/256+1)),dFdx(normg),dFdy(normg)).xyz;
+ return mix(base,next,float(indexi%256)/256.0);
+}
+
+#else
+
+uniform sampler2D radiance_map; //texunit:-2
+
+vec3 textureDualParaboloid(sampler2D p_tex, vec3 p_vec,float p_roughness) {
+
+ vec3 norm = normalize(p_vec);
+ norm.xy/=1.0+abs(norm.z);
+ norm.xy=norm.xy * vec2(0.5,0.25) + vec2(0.5,0.25);
+ if (norm.z>0.0) {
+ norm.y=0.5-norm.y+0.5;
+ }
+ return textureLod(p_tex, norm.xy, p_roughness * RADIANCE_MAX_LOD).xyz;
+}
+
+#endif
+
+#endif
+
+/* Material Uniforms */
+
+
+
+#if defined(USE_MATERIAL)
+
+layout(std140) uniform UniformData {
+
+MATERIAL_UNIFORMS
+
+};
+
+#endif
+
+FRAGMENT_SHADER_GLOBALS
+
+layout(std140) uniform SceneData {
+
+ highp mat4 projection_matrix;
+ highp mat4 inv_projection_matrix;
+ highp mat4 camera_inverse_matrix;
+ highp mat4 camera_matrix;
+
+ mediump vec4 ambient_light_color;
+ mediump vec4 bg_color;
+
+ mediump vec4 fog_color_enabled;
+ mediump vec4 fog_sun_color_amount;
+
+ mediump float ambient_energy;
+ mediump float bg_energy;
+
+ mediump float z_offset;
+ mediump float z_slope_scale;
+ highp float shadow_dual_paraboloid_render_zfar;
+ highp float shadow_dual_paraboloid_render_side;
+
+ highp vec2 viewport_size;
+ highp vec2 screen_pixel_size;
+ highp vec2 shadow_atlas_pixel_size;
+ highp vec2 directional_shadow_pixel_size;
+
+ highp float time;
+ highp float z_far;
+ mediump float reflection_multiplier;
+ mediump float subsurface_scatter_width;
+ mediump float ambient_occlusion_affect_light;
+
+ bool fog_depth_enabled;
+ highp float fog_depth_begin;
+ highp float fog_depth_curve;
+ bool fog_transmit_enabled;
+ highp float fog_transmit_curve;
+ bool fog_height_enabled;
+ highp float fog_height_min;
+ highp float fog_height_max;
+ highp float fog_height_curve;
+};
+
+//directional light data
+
+#ifdef USE_LIGHT_DIRECTIONAL
+
+layout(std140) uniform DirectionalLightData {
+
+ highp vec4 light_pos_inv_radius;
+ mediump vec4 light_direction_attenuation;
+ mediump vec4 light_color_energy;
+ mediump vec4 light_params; //cone attenuation, angle, specular, shadow enabled,
+ mediump vec4 light_clamp;
+ mediump vec4 shadow_color_contact;
+ highp mat4 shadow_matrix1;
+ highp mat4 shadow_matrix2;
+ highp mat4 shadow_matrix3;
+ highp mat4 shadow_matrix4;
+ mediump vec4 shadow_split_offsets;
+};
+
+
+uniform highp sampler2DShadow directional_shadow; //texunit:-4
+
+#endif
+
+#ifdef USE_VERTEX_LIGHTING
+in vec4 diffuse_light_interp;
+in vec4 specular_light_interp;
+#endif
+//omni and spot
+
+struct LightData {
+
+ highp vec4 light_pos_inv_radius;
+ mediump vec4 light_direction_attenuation;
+ mediump vec4 light_color_energy;
+ mediump vec4 light_params; //cone attenuation, angle, specular, shadow enabled,
+ mediump vec4 light_clamp;
+ mediump vec4 shadow_color_contact;
+ highp mat4 shadow_matrix;
+
+};
+
+
+layout(std140) uniform OmniLightData { //ubo:4
+
+ LightData omni_lights[MAX_LIGHT_DATA_STRUCTS];
+};
+
+layout(std140) uniform SpotLightData { //ubo:5
+
+ LightData spot_lights[MAX_LIGHT_DATA_STRUCTS];
+};
+
+
+uniform highp sampler2DShadow shadow_atlas; //texunit:-5
+
+
+struct ReflectionData {
+
+ mediump vec4 box_extents;
+ mediump vec4 box_offset;
+ mediump vec4 params; // intensity, 0, interior , boxproject
+ mediump vec4 ambient; //ambient color, energy
+ mediump vec4 atlas_clamp;
+ highp mat4 local_matrix; //up to here for spot and omni, rest is for directional
+ //notes: for ambientblend, use distance to edge to blend between already existing global environment
+};
+
+layout(std140) uniform ReflectionProbeData { //ubo:6
+
+ ReflectionData reflections[MAX_REFLECTION_DATA_STRUCTS];
+};
+uniform mediump sampler2D reflection_atlas; //texunit:-3
+
+
+#ifdef USE_FORWARD_LIGHTING
+
+uniform int omni_light_indices[MAX_FORWARD_LIGHTS];
+uniform int omni_light_count;
+
+uniform int spot_light_indices[MAX_FORWARD_LIGHTS];
+uniform int spot_light_count;
+
+uniform int reflection_indices[MAX_FORWARD_LIGHTS];
+uniform int reflection_count;
+
+#endif
+
+
+#if defined(SCREEN_TEXTURE_USED)
+
+uniform highp sampler2D screen_texture; //texunit:-7
+
+#endif
+
+#ifdef USE_MULTIPLE_RENDER_TARGETS
+
+layout(location=0) out vec4 diffuse_buffer;
+layout(location=1) out vec4 specular_buffer;
+layout(location=2) out vec4 normal_mr_buffer;
+#if defined(ENABLE_SSS)
+layout(location=3) out float sss_buffer;
+#endif
+
+#else
+
+layout(location=0) out vec4 frag_color;
+
+#endif
+
+in highp vec4 position_interp;
+uniform highp sampler2D depth_buffer; //texunit:-8
+
+#ifdef USE_CONTACT_SHADOWS
+
+float contact_shadow_compute(vec3 pos, vec3 dir, float max_distance) {
+
+ if (abs(dir.z)>0.99)
+ return 1.0;
+
+ vec3 endpoint = pos+dir*max_distance;
+ vec4 source = position_interp;
+ vec4 dest = projection_matrix * vec4(endpoint, 1.0);
+
+ vec2 from_screen = (source.xy / source.w) * 0.5 + 0.5;
+ vec2 to_screen = (dest.xy / dest.w) * 0.5 + 0.5;
+
+ vec2 screen_rel = to_screen - from_screen;
+
+ if (length(screen_rel)<0.00001)
+ return 1.0; //too small, don't do anything
+
+ /*float pixel_size; //approximate pixel size
+
+ if (screen_rel.x > screen_rel.y) {
+
+ pixel_size = abs((pos.x-endpoint.x)/(screen_rel.x/screen_pixel_size.x));
+ } else {
+ pixel_size = abs((pos.y-endpoint.y)/(screen_rel.y/screen_pixel_size.y));
+
+ }*/
+ vec4 bias = projection_matrix * vec4(pos+vec3(0.0,0.0,0.04), 1.0); //todo un-harcode the 0.04
+
+
+
+ vec2 pixel_incr = normalize(screen_rel)*screen_pixel_size;
+
+
+ float steps = length(screen_rel) / length(pixel_incr);
+ steps = min(2000.0,steps); //put a limit to avoid freezing in some strange situation
+ //steps=10.0;
+
+ vec4 incr = (dest - source)/steps;
+ float ratio=0.0;
+ float ratio_incr = 1.0/steps;
+
+ while(steps>0.0) {
+ source += incr*2.0;
+ bias+=incr*2.0;
+
+ vec3 uv_depth = (source.xyz / source.w) * 0.5 + 0.5;
+ float depth = texture(depth_buffer,uv_depth.xy).r;
+
+ if (depth < uv_depth.z) {
+ if (depth > (bias.z/bias.w) * 0.5 + 0.5) {
+ return min(pow(ratio,4.0),1.0);
+ } else {
+ return 1.0;
+ }
+ }
+
+
+ ratio+=ratio_incr;
+ steps-=1.0;
+ }
+
+ return 1.0;
+}
+
+#endif
+
+
+// This returns the G_GGX function divided by 2 cos_theta_m, where in practice cos_theta_m is either N.L or N.V.
+// We're dividing this factor off because the overall term we'll end up looks like
+// (see, for example, the first unnumbered equation in B. Burley, "Physically Based Shading at Disney", SIGGRAPH 2012):
+//
+// F(L.V) D(N.H) G(N.L) G(N.V) / (4 N.L N.V)
+//
+// We're basically regouping this as
+//
+// F(L.V) D(N.H) [G(N.L)/(2 N.L)] [G(N.V) / (2 N.V)]
+//
+// and thus, this function implements the [G(N.m)/(2 N.m)] part with m = L or V.
+//
+// The contents of the D and G (G1) functions (GGX) are taken from
+// E. Heitz, "Understanding the Masking-Shadowing Function in Microfacet-Based BRDFs", J. Comp. Graph. Tech. 3 (2) (2014).
+// Eqns 71-72 and 85-86 (see also Eqns 43 and 80).
+
+float G_GGX_2cos(float cos_theta_m, float alpha) {
+ // Schlick's approximation
+ // C. Schlick, "An Inexpensive BRDF Model for Physically-based Rendering", Computer Graphics Forum. 13 (3): 233 (1994)
+ // Eq. (19), although see Heitz (2014) the about the problems with his derivation.
+ // It nevertheless approximates GGX well with k = alpha/2.
+ float k = 0.5*alpha;
+ return 0.5 / (cos_theta_m * (1.0 - k) + k);
+
+ // float cos2 = cos_theta_m*cos_theta_m;
+ // float sin2 = (1.0-cos2);
+ // return 1.0 /( cos_theta_m + sqrt(cos2 + alpha*alpha*sin2) );
+}
+
+float D_GGX(float cos_theta_m, float alpha) {
+ float alpha2 = alpha*alpha;
+ float d = 1.0 + (alpha2-1.0)*cos_theta_m*cos_theta_m;
+ return alpha2/(M_PI * d * d);
+}
+
+float G_GGX_anisotropic_2cos(float cos_theta_m, float alpha_x, float alpha_y, float cos_phi, float sin_phi) {
+ float cos2 = cos_theta_m * cos_theta_m;
+ float sin2 = (1.0-cos2);
+ float s_x = alpha_x * cos_phi;
+ float s_y = alpha_y * sin_phi;
+ return 1.0 / (cos_theta_m + sqrt(cos2 + (s_x*s_x + s_y*s_y)*sin2 ));
+}
+
+float D_GGX_anisotropic(float cos_theta_m, float alpha_x, float alpha_y, float cos_phi, float sin_phi) {
+ float cos2 = cos_theta_m * cos_theta_m;
+ float sin2 = (1.0-cos2);
+ float r_x = cos_phi/alpha_x;
+ float r_y = sin_phi/alpha_y;
+ float d = cos2 + sin2*(r_x * r_x + r_y * r_y);
+ return 1.0 / (M_PI * alpha_x * alpha_y * d * d );
+}
+
+
+float SchlickFresnel(float u)
+{
+ float m = 1.0-u;
+ float m2 = m*m;
+ return m2*m2*m; // pow(m,5)
+}
+
+float GTR1(float NdotH, float a)
+{
+ if (a >= 1.0) return 1.0/M_PI;
+ float a2 = a*a;
+ float t = 1.0 + (a2-1.0)*NdotH*NdotH;
+ return (a2-1.0) / (M_PI*log(a2)*t);
+}
+
+vec3 metallic_to_specular_color(float metallic, float specular, vec3 albedo) {
+ float dielectric = (0.034 * 2.0) * specular;
+ // energy conservation
+ return mix(vec3(dielectric), albedo, metallic); // TODO: reference?
+}
+
+void light_compute(vec3 N, vec3 L, vec3 V, vec3 B, vec3 T, vec3 light_color, vec3 attenuation, vec3 diffuse_color, vec3 transmission, float specular_blob_intensity, float roughness, float metallic, float rim, float rim_tint, float clearcoat, float clearcoat_gloss, float anisotropy, inout vec3 diffuse_light, inout vec3 specular_light) {
+
+#if defined(USE_LIGHT_SHADER_CODE)
+//light is written by the light shader
+
+ vec3 normal = N;
+ vec3 albedo = diffuse_color;
+ vec3 light = L;
+ vec3 view = V;
+
+LIGHT_SHADER_CODE
+
+
+#else
+ float NdotL = dot(N,L);
+ float cNdotL = max(NdotL, 0.0); // clamped NdotL
+ float NdotV = dot(N, V);
+ float cNdotV = max(NdotV, 0.0);
+
+ if (metallic < 1.0) {
+#if defined(DIFFUSE_OREN_NAYAR)
+ vec3 diffuse_brdf_NL;
+#else
+ float diffuse_brdf_NL; // BRDF times N.L for calculating diffuse radiance
+#endif
+
+
+#if defined(DIFFUSE_LAMBERT_WRAP)
+ //energy conserving lambert wrap shader
+ diffuse_brdf_NL = max(0.0,(NdotL + roughness) / ((1.0 + roughness) * (1.0 + roughness)));
+
+#elif defined(DIFFUSE_OREN_NAYAR)
+
+ {
+ // see http://mimosa-pudica.net/improved-oren-nayar.html
+ float LdotV = dot(L, V);
+
+
+ float s = LdotV - NdotL * NdotV;
+ float t = mix(1.0, max(NdotL, NdotV), step(0.0, s));
+
+ float sigma2 = roughness * roughness; // TODO: this needs checking
+ vec3 A = 1.0 + sigma2 * (- 0.5 / (sigma2 + 0.33) + 0.17*diffuse_color / (sigma2 + 0.13) );
+ float B = 0.45 * sigma2 / (sigma2 + 0.09);
+
+ diffuse_brdf_NL = cNdotL * (A + vec3(B) * s / t) * (1.0 / M_PI);
+ }
+
+#elif defined(DIFFUSE_TOON)
+
+ diffuse_brdf_NL = smoothstep(-roughness,max(roughness,0.01),NdotL);
+
+#elif defined(DIFFUSE_BURLEY)
+
+ {
+
+
+ vec3 H = normalize(V + L);
+ float cLdotH = max(0.0,dot(L, H));
+
+ float FD90 = 0.5 + 2.0 * cLdotH * cLdotH * roughness;
+ float FdV = 1.0 + (FD90 - 1.0) * SchlickFresnel(cNdotV);
+ float FdL = 1.0 + (FD90 - 1.0) * SchlickFresnel(cNdotL);
+ diffuse_brdf_NL = (1.0 / M_PI) * FdV * FdL * cNdotL;
+ /*
+ float energyBias = mix(roughness, 0.0, 0.5);
+ float energyFactor = mix(roughness, 1.0, 1.0 / 1.51);
+ float fd90 = energyBias + 2.0 * VoH * VoH * roughness;
+ float f0 = 1.0;
+ float lightScatter = f0 + (fd90 - f0) * pow(1.0 - cNdotL, 5.0);
+ float viewScatter = f0 + (fd90 - f0) * pow(1.0 - cNdotV, 5.0);
+
+ diffuse_brdf_NL = lightScatter * viewScatter * energyFactor;*/
+ }
+#else
+ //lambert
+ diffuse_brdf_NL = cNdotL * (1.0 / M_PI);
+#endif
+
+#if defined(TRANSMISSION_USED)
+ diffuse_light += light_color * diffuse_color * mix(vec3(diffuse_brdf_NL), vec3(M_PI), transmission) * attenuation;
+#else
+ diffuse_light += light_color * diffuse_color * diffuse_brdf_NL * attenuation;
+#endif
+
+
+
+#if defined(LIGHT_USE_RIM)
+ float rim_light = pow(1.0-cNdotV, (1.0-roughness)*16.0);
+ diffuse_light += rim_light * rim * mix(vec3(1.0),diffuse_color,rim_tint) * light_color;
+#endif
+ }
+
+
+ if (roughness > 0.0) { // FIXME: roughness == 0 should not disable specular light entirely
+
+
+ // D
+
+#if defined(SPECULAR_BLINN)
+
+ vec3 H = normalize(V + L);
+ float cNdotH = max(dot(N,H), 0.0 );
+ float intensity = pow( cNdotH, (1.0-roughness) * 256.0);
+ specular_light += light_color * intensity * specular_blob_intensity * attenuation;
+
+#elif defined(SPECULAR_PHONG)
+
+ vec3 R = normalize(-reflect(L,N));
+ float cRdotV = max(0.0,dot(R,V));
+ float intensity = pow( cRdotV, (1.0-roughness) * 256.0);
+ specular_light += light_color * intensity * specular_blob_intensity * attenuation;
+
+#elif defined(SPECULAR_TOON)
+
+ vec3 R = normalize(-reflect(L,N));
+ float RdotV = dot(R,V);
+ float mid = 1.0-roughness;
+ mid*=mid;
+ float intensity = smoothstep(mid-roughness*0.5, mid+roughness*0.5, RdotV) * mid;
+ diffuse_light += light_color * intensity * specular_blob_intensity * attenuation; // write to diffuse_light, as in toon shading you generally want no reflection
+
+#elif defined(SPECULAR_DISABLED)
+ //none..
+
+#elif defined(SPECULAR_SCHLICK_GGX)
+ // shlick+ggx as default
+
+ vec3 H = normalize(V + L);
+
+ float cNdotH = max(dot(N,H), 0.0);
+ float cLdotH = max(dot(L,H), 0.0);
+
+# if defined(LIGHT_USE_ANISOTROPY)
+
+ float aspect = sqrt(1.0-anisotropy*0.9);
+ float rx = roughness/aspect;
+ float ry = roughness*aspect;
+ float ax = rx*rx;
+ float ay = ry*ry;
+ float XdotH = dot( T, H );
+ float YdotH = dot( B, H );
+ float D = D_GGX_anisotropic(cNdotH, ax, ay, XdotH, YdotH);
+ float G = G_GGX_anisotropic_2cos(cNdotL, ax, ay, XdotH, YdotH) * G_GGX_anisotropic_2cos(cNdotV, ax, ay, XdotH, YdotH);
+
+# else
+ float alpha = roughness * roughness;
+ float D = D_GGX(cNdotH, alpha);
+ float G = G_GGX_2cos(cNdotL, alpha) * G_GGX_2cos(cNdotV, alpha);
+# endif
+ // F
+ float F0 = 1.0; // FIXME
+ float cLdotH5 = SchlickFresnel(cLdotH);
+ float F = mix(cLdotH5, 1.0, F0);
+
+ float specular_brdf_NL = cNdotL * D * F * G;
+
+ specular_light += specular_brdf_NL * light_color * specular_blob_intensity * attenuation;
+#endif
+
+#if defined(LIGHT_USE_CLEARCOAT)
+ if (clearcoat_gloss > 0.0) {
+# if !defined(SPECULAR_SCHLICK_GGX) && !defined(SPECULAR_BLINN)
+ vec3 H = normalize(V + L);
+# endif
+# if !defined(SPECULAR_SCHLICK_GGX)
+ float cNdotH = max(dot(N,H), 0.0);
+ float cLdotH = max(dot(L,H), 0.0);
+ float cLdotH5 = SchlickFresnel(cLdotH);
+#endif
+ float Dr = GTR1(cNdotH, mix(.1, .001, clearcoat_gloss));
+ float Fr = mix(.04, 1.0, cLdotH5);
+ float Gr = G_GGX_2cos(cNdotL, .25) * G_GGX_2cos(cNdotV, .25);
+
+
+ float specular_brdf_NL = 0.25 * clearcoat * Gr * Fr * Dr * cNdotL;
+
+ specular_light += specular_brdf_NL * light_color * specular_blob_intensity * attenuation;
+ }
+#endif
+ }
+
+
+#endif //defined(USE_LIGHT_SHADER_CODE)
+}
+
+
+float sample_shadow(highp sampler2DShadow shadow, vec2 shadow_pixel_size, vec2 pos, float depth, vec4 clamp_rect) {
+
+#ifdef SHADOW_MODE_PCF_13
+
+ float avg=textureProj(shadow,vec4(pos,depth,1.0));
+ avg+=textureProj(shadow,vec4(pos+vec2(shadow_pixel_size.x,0.0),depth,1.0));
+ avg+=textureProj(shadow,vec4(pos+vec2(-shadow_pixel_size.x,0.0),depth,1.0));
+ avg+=textureProj(shadow,vec4(pos+vec2(0.0,shadow_pixel_size.y),depth,1.0));
+ avg+=textureProj(shadow,vec4(pos+vec2(0.0,-shadow_pixel_size.y),depth,1.0));
+ avg+=textureProj(shadow,vec4(pos+vec2(shadow_pixel_size.x,shadow_pixel_size.y),depth,1.0));
+ avg+=textureProj(shadow,vec4(pos+vec2(-shadow_pixel_size.x,shadow_pixel_size.y),depth,1.0));
+ avg+=textureProj(shadow,vec4(pos+vec2(shadow_pixel_size.x,-shadow_pixel_size.y),depth,1.0));
+ avg+=textureProj(shadow,vec4(pos+vec2(-shadow_pixel_size.x,-shadow_pixel_size.y),depth,1.0));
+ avg+=textureProj(shadow,vec4(pos+vec2(shadow_pixel_size.x*2.0,0.0),depth,1.0));
+ avg+=textureProj(shadow,vec4(pos+vec2(-shadow_pixel_size.x*2.0,0.0),depth,1.0));
+ avg+=textureProj(shadow,vec4(pos+vec2(0.0,shadow_pixel_size.y*2.0),depth,1.0));
+ avg+=textureProj(shadow,vec4(pos+vec2(0.0,-shadow_pixel_size.y*2.0),depth,1.0));
+ return avg*(1.0/13.0);
+
+#elif defined(SHADOW_MODE_PCF_5)
+
+ float avg=textureProj(shadow,vec4(pos,depth,1.0));
+ avg+=textureProj(shadow,vec4(pos+vec2(shadow_pixel_size.x,0.0),depth,1.0));
+ avg+=textureProj(shadow,vec4(pos+vec2(-shadow_pixel_size.x,0.0),depth,1.0));
+ avg+=textureProj(shadow,vec4(pos+vec2(0.0,shadow_pixel_size.y),depth,1.0));
+ avg+=textureProj(shadow,vec4(pos+vec2(0.0,-shadow_pixel_size.y),depth,1.0));
+ return avg*(1.0/5.0);
+
+#else
+
+ return textureProj(shadow,vec4(pos,depth,1.0));
+
+#endif
+
+}
+
+#ifdef RENDER_DEPTH_DUAL_PARABOLOID
+
+in highp float dp_clip;
+
+#endif
+
+
+
+#if 0
+//need to save texture depth for this
+
+vec3 light_transmittance(float translucency,vec3 light_vec, vec3 normal, vec3 pos, float distance) {
+
+ float scale = 8.25 * (1.0 - translucency) / subsurface_scatter_width;
+ float d = scale * distance;
+
+ /**
+ * Armed with the thickness, we can now calculate the color by means of the
+ * precalculated transmittance profile.
+ * (It can be precomputed into a texture, for maximum performance):
+ */
+ float dd = -d * d;
+ vec3 profile = vec3(0.233, 0.455, 0.649) * exp(dd / 0.0064) +
+ vec3(0.1, 0.336, 0.344) * exp(dd / 0.0484) +
+ vec3(0.118, 0.198, 0.0) * exp(dd / 0.187) +
+ vec3(0.113, 0.007, 0.007) * exp(dd / 0.567) +
+ vec3(0.358, 0.004, 0.0) * exp(dd / 1.99) +
+ vec3(0.078, 0.0, 0.0) * exp(dd / 7.41);
+
+ /**
+ * Using the profile, we finally approximate the transmitted lighting from
+ * the back of the object:
+ */
+ return profile * clamp(0.3 + dot(light_vec, normal),0.0,1.0);
+}
+#endif
+
+void light_process_omni(int idx, vec3 vertex, vec3 eye_vec,vec3 normal,vec3 binormal, vec3 tangent, vec3 albedo, vec3 transmission, float roughness, float metallic, float rim, float rim_tint, float clearcoat, float clearcoat_gloss, float anisotropy, float p_blob_intensity, inout vec3 diffuse_light, inout vec3 specular_light) {
+
+ vec3 light_rel_vec = omni_lights[idx].light_pos_inv_radius.xyz-vertex;
+ float light_length = length( light_rel_vec );
+ float normalized_distance = light_length*omni_lights[idx].light_pos_inv_radius.w;
+ vec3 light_attenuation = vec3(pow( max(1.0 - normalized_distance, 0.0), omni_lights[idx].light_direction_attenuation.w ));
+
+ if (omni_lights[idx].light_params.w>0.5) {
+ //there is a shadowmap
+
+ highp vec3 splane=(omni_lights[idx].shadow_matrix * vec4(vertex,1.0)).xyz;
+ float shadow_len=length(splane);
+ splane=normalize(splane);
+ vec4 clamp_rect=omni_lights[idx].light_clamp;
+
+ if (splane.z>=0.0) {
+
+ splane.z+=1.0;
+
+ clamp_rect.y+=clamp_rect.w;
+
+ } else {
+
+ splane.z=1.0 - splane.z;
+
+ /*
+ if (clamp_rect.z<clamp_rect.w) {
+ clamp_rect.x+=clamp_rect.z;
+ } else {
+ clamp_rect.y+=clamp_rect.w;
+ }
+ */
+
+ }
+
+ splane.xy/=splane.z;
+ splane.xy=splane.xy * 0.5 + 0.5;
+ splane.z = shadow_len * omni_lights[idx].light_pos_inv_radius.w;
+
+ splane.xy = clamp_rect.xy+splane.xy*clamp_rect.zw;
+ float shadow = sample_shadow(shadow_atlas,shadow_atlas_pixel_size,splane.xy,splane.z,clamp_rect);
+
+#ifdef USE_CONTACT_SHADOWS
+
+ if (shadow>0.01 && omni_lights[idx].shadow_color_contact.a>0.0) {
+
+ float contact_shadow = contact_shadow_compute(vertex,normalize(light_rel_vec),min(light_length,omni_lights[idx].shadow_color_contact.a));
+ shadow=min(shadow,contact_shadow);
+
+ }
+#endif
+ light_attenuation*=mix(omni_lights[idx].shadow_color_contact.rgb,vec3(1.0),shadow);
+ }
+
+ light_compute(normal,normalize(light_rel_vec),eye_vec,binormal,tangent,omni_lights[idx].light_color_energy.rgb,light_attenuation,albedo,transmission,omni_lights[idx].light_params.z*p_blob_intensity,roughness,metallic,rim,rim_tint,clearcoat,clearcoat_gloss,anisotropy,diffuse_light,specular_light);
+
+}
+
+void light_process_spot(int idx, vec3 vertex, vec3 eye_vec, vec3 normal, vec3 binormal, vec3 tangent,vec3 albedo, vec3 transmission,float roughness, float metallic, float rim, float rim_tint, float clearcoat, float clearcoat_gloss,float anisotropy,float p_blob_intensity, inout vec3 diffuse_light, inout vec3 specular_light) {
+
+ vec3 light_rel_vec = spot_lights[idx].light_pos_inv_radius.xyz-vertex;
+ float light_length = length( light_rel_vec );
+ float normalized_distance = light_length*spot_lights[idx].light_pos_inv_radius.w;
+ vec3 light_attenuation = vec3(pow( max(1.0 - normalized_distance, 0.001), spot_lights[idx].light_direction_attenuation.w ));
+ vec3 spot_dir = spot_lights[idx].light_direction_attenuation.xyz;
+ float spot_cutoff=spot_lights[idx].light_params.y;
+ float scos = max(dot(-normalize(light_rel_vec), spot_dir),spot_cutoff);
+ float spot_rim = (1.0 - scos) / (1.0 - spot_cutoff);
+ light_attenuation *= 1.0 - pow( max(spot_rim,0.001), spot_lights[idx].light_params.x);
+
+ if (spot_lights[idx].light_params.w>0.5) {
+ //there is a shadowmap
+ highp vec4 splane=(spot_lights[idx].shadow_matrix * vec4(vertex,1.0));
+ splane.xyz/=splane.w;
+
+ float shadow = sample_shadow(shadow_atlas,shadow_atlas_pixel_size,splane.xy,splane.z,spot_lights[idx].light_clamp);
+
+#ifdef USE_CONTACT_SHADOWS
+ if (shadow>0.01 && spot_lights[idx].shadow_color_contact.a>0.0) {
+
+ float contact_shadow = contact_shadow_compute(vertex,normalize(light_rel_vec),min(light_length,spot_lights[idx].shadow_color_contact.a));
+ shadow=min(shadow,contact_shadow);
+
+ }
+#endif
+ light_attenuation*=mix(spot_lights[idx].shadow_color_contact.rgb,vec3(1.0),shadow);
+ }
+
+ light_compute(normal,normalize(light_rel_vec),eye_vec,binormal,tangent,spot_lights[idx].light_color_energy.rgb,light_attenuation,albedo,transmission,spot_lights[idx].light_params.z*p_blob_intensity,roughness,metallic,rim,rim_tint,clearcoat,clearcoat_gloss,anisotropy,diffuse_light,specular_light);
+
+}
+
+void reflection_process(int idx, vec3 vertex, vec3 normal,vec3 binormal, vec3 tangent,float roughness,float anisotropy,vec3 ambient,vec3 skybox, inout highp vec4 reflection_accum,inout highp vec4 ambient_accum) {
+
+ vec3 ref_vec = normalize(reflect(vertex,normal));
+ vec3 local_pos = (reflections[idx].local_matrix * vec4(vertex,1.0)).xyz;
+ vec3 box_extents = reflections[idx].box_extents.xyz;
+
+ if (any(greaterThan(abs(local_pos),box_extents))) { //out of the reflection box
+ return;
+ }
+
+ vec3 inner_pos = abs(local_pos / box_extents);
+ float blend = max(inner_pos.x,max(inner_pos.y,inner_pos.z));
+ //make blend more rounded
+ blend=mix(length(inner_pos),blend,blend);
+ blend*=blend;
+ blend=1.001-blend;
+
+ if (reflections[idx].params.x>0.0){// compute reflection
+
+ vec3 local_ref_vec = (reflections[idx].local_matrix * vec4(ref_vec,0.0)).xyz;
+
+ if (reflections[idx].params.w > 0.5) { //box project
+
+ vec3 nrdir = normalize(local_ref_vec);
+ vec3 rbmax = (box_extents - local_pos)/nrdir;
+ vec3 rbmin = (-box_extents - local_pos)/nrdir;
+
+
+ vec3 rbminmax = mix(rbmin,rbmax,greaterThan(nrdir,vec3(0.0,0.0,0.0)));
+
+ float fa = min(min(rbminmax.x, rbminmax.y), rbminmax.z);
+ vec3 posonbox = local_pos + nrdir * fa;
+ local_ref_vec = posonbox - reflections[idx].box_offset.xyz;
+ }
+
+
+ vec4 clamp_rect=reflections[idx].atlas_clamp;
+ vec3 norm = normalize(local_ref_vec);
+ norm.xy/=1.0+abs(norm.z);
+ norm.xy=norm.xy * vec2(0.5,0.25) + vec2(0.5,0.25);
+ if (norm.z>0.0) {
+ norm.y=0.5-norm.y+0.5;
+ }
+
+ vec2 atlas_uv = norm.xy * clamp_rect.zw + clamp_rect.xy;
+ atlas_uv = clamp(atlas_uv,clamp_rect.xy,clamp_rect.xy+clamp_rect.zw);
+
+ highp vec4 reflection;
+ reflection.rgb = textureLod(reflection_atlas,atlas_uv,roughness*5.0).rgb;
+
+ if (reflections[idx].params.z < 0.5) {
+ reflection.rgb = mix(skybox,reflection.rgb,blend);
+ }
+ reflection.rgb*=reflections[idx].params.x;
+ reflection.a = blend;
+ reflection.rgb*=reflection.a;
+
+ reflection_accum+=reflection;
+ }
+
+ if (reflections[idx].ambient.a>0.0) { //compute ambient using skybox
+
+
+ vec3 local_amb_vec = (reflections[idx].local_matrix * vec4(normal,0.0)).xyz;
+
+ vec3 splane=normalize(local_amb_vec);
+ vec4 clamp_rect=reflections[idx].atlas_clamp;
+
+ splane.z*=-1.0;
+ if (splane.z>=0.0) {
+ splane.z+=1.0;
+ clamp_rect.y+=clamp_rect.w;
+ } else {
+ splane.z=1.0 - splane.z;
+ splane.y=-splane.y;
+ }
+
+ splane.xy/=splane.z;
+ splane.xy=splane.xy * 0.5 + 0.5;
+
+ splane.xy = splane.xy * clamp_rect.zw + clamp_rect.xy;
+ splane.xy = clamp(splane.xy,clamp_rect.xy,clamp_rect.xy+clamp_rect.zw);
+
+ highp vec4 ambient_out;
+ ambient_out.a=blend;
+ ambient_out.rgb = textureLod(reflection_atlas,splane.xy,5.0).rgb;
+ ambient_out.rgb=mix(reflections[idx].ambient.rgb,ambient_out.rgb,reflections[idx].ambient.a);
+ if (reflections[idx].params.z < 0.5) {
+ ambient_out.rgb = mix(ambient,ambient_out.rgb,blend);
+ }
+
+ ambient_out.rgb *= ambient_out.a;
+ ambient_accum+=ambient_out;
+ } else {
+
+ highp vec4 ambient_out;
+ ambient_out.a=blend;
+ ambient_out.rgb=reflections[idx].ambient.rgb;
+ if (reflections[idx].params.z < 0.5) {
+ ambient_out.rgb = mix(ambient,ambient_out.rgb,blend);
+ }
+ ambient_out.rgb *= ambient_out.a;
+ ambient_accum+=ambient_out;
+
+ }
+}
+
+#ifdef USE_GI_PROBES
+
+uniform mediump sampler3D gi_probe1; //texunit:-9
+uniform highp mat4 gi_probe_xform1;
+uniform highp vec3 gi_probe_bounds1;
+uniform highp vec3 gi_probe_cell_size1;
+uniform highp float gi_probe_multiplier1;
+uniform highp float gi_probe_bias1;
+uniform highp float gi_probe_normal_bias1;
+uniform bool gi_probe_blend_ambient1;
+
+uniform mediump sampler3D gi_probe2; //texunit:-10
+uniform highp mat4 gi_probe_xform2;
+uniform highp vec3 gi_probe_bounds2;
+uniform highp vec3 gi_probe_cell_size2;
+uniform highp float gi_probe_multiplier2;
+uniform highp float gi_probe_bias2;
+uniform highp float gi_probe_normal_bias2;
+uniform bool gi_probe2_enabled;
+uniform bool gi_probe_blend_ambient2;
+
+vec3 voxel_cone_trace(mediump sampler3D probe, vec3 cell_size, vec3 pos, vec3 ambient, bool blend_ambient, vec3 direction, float tan_half_angle, float max_distance, float p_bias) {
+
+ float dist = p_bias;//1.0; //dot(direction,mix(vec3(-1.0),vec3(1.0),greaterThan(direction,vec3(0.0))))*2.0;
+ float alpha=0.0;
+ vec3 color = vec3(0.0);
+
+ while(dist < max_distance && alpha < 0.95) {
+ float diameter = max(1.0, 2.0 * tan_half_angle * dist);
+ vec4 scolor = textureLod(probe, (pos + dist * direction) * cell_size, log2(diameter) );
+ float a = (1.0 - alpha);
+ color += scolor.rgb * a;
+ alpha += a * scolor.a;
+ dist += diameter * 0.5;
+ }
+
+ if (blend_ambient) {
+ color.rgb = mix(ambient,color.rgb,min(1.0,alpha/0.95));
+ }
+
+ return color;
+}
+
+void gi_probe_compute(mediump sampler3D probe, mat4 probe_xform, vec3 bounds,vec3 cell_size,vec3 pos, vec3 ambient, vec3 environment, bool blend_ambient,float multiplier, mat3 normal_mtx,vec3 ref_vec, float roughness,float p_bias,float p_normal_bias, inout vec4 out_spec, inout vec4 out_diff) {
+
+
+
+ vec3 probe_pos = (probe_xform * vec4(pos,1.0)).xyz;
+ vec3 ref_pos = (probe_xform * vec4(pos+ref_vec,1.0)).xyz;
+ ref_vec = normalize(ref_pos - probe_pos);
+
+ probe_pos+=(probe_xform * vec4(normal_mtx[2],0.0)).xyz*p_normal_bias;
+
+/* out_diff.rgb = voxel_cone_trace(probe,cell_size,probe_pos,normalize((probe_xform * vec4(ref_vec,0.0)).xyz),0.0 ,100.0);
+ out_diff.a = 1.0;
+ return;*/
+ //out_diff = vec4(textureLod(probe,probe_pos*cell_size,3.0).rgb,1.0);
+ //return;
+
+ //this causes corrupted pixels, i have no idea why..
+ if (any(bvec2(any(lessThan(probe_pos,vec3(0.0))),any(greaterThan(probe_pos,bounds))))) {
+ return;
+ }
+
+ //vec3 blendv = probe_pos/bounds * 2.0 - 1.0;
+ //float blend = 1.001-max(blendv.x,max(blendv.y,blendv.z));
+ float blend=1.0;
+
+ float max_distance = length(bounds);
+
+ //radiance
+#ifdef VCT_QUALITY_HIGH
+
+#define MAX_CONE_DIRS 6
+ vec3 cone_dirs[MAX_CONE_DIRS] = vec3[] (
+ vec3(0, 0, 1),
+ vec3(0.866025, 0, 0.5),
+ vec3(0.267617, 0.823639, 0.5),
+ vec3(-0.700629, 0.509037, 0.5),
+ vec3(-0.700629, -0.509037, 0.5),
+ vec3(0.267617, -0.823639, 0.5)
+ );
+
+ float cone_weights[MAX_CONE_DIRS] = float[](0.25, 0.15, 0.15, 0.15, 0.15, 0.15);
+ float cone_angle_tan = 0.577;
+ float min_ref_tan = 0.0;
+#else
+
+#define MAX_CONE_DIRS 4
+
+ vec3 cone_dirs[MAX_CONE_DIRS] = vec3[] (
+ vec3(0.707107, 0, 0.707107),
+ vec3(0, 0.707107, 0.707107),
+ vec3(-0.707107, 0, 0.707107),
+ vec3(0, -0.707107, 0.707107)
+ );
+
+ float cone_weights[MAX_CONE_DIRS] = float[](0.25, 0.25, 0.25, 0.25);
+ float cone_angle_tan = 0.98269;
+ max_distance*=0.5;
+ float min_ref_tan = 0.2;
+
+#endif
+ vec3 light=vec3(0.0);
+ for(int i=0;i<MAX_CONE_DIRS;i++) {
+
+ vec3 dir = normalize( (probe_xform * vec4(pos + normal_mtx * cone_dirs[i],1.0)).xyz - probe_pos);
+ light+=cone_weights[i] * voxel_cone_trace(probe,cell_size,probe_pos,ambient,blend_ambient,dir,cone_angle_tan,max_distance,p_bias);
+
+ }
+
+ light*=multiplier;
+
+ out_diff += vec4(light*blend,blend);
+
+ //irradiance
+
+ vec3 irr_light = voxel_cone_trace(probe,cell_size,probe_pos,environment,blend_ambient,ref_vec,max(min_ref_tan,tan(roughness * 0.5 * M_PI)) ,max_distance,p_bias);
+
+ irr_light *= multiplier;
+ //irr_light=vec3(0.0);
+
+ out_spec += vec4(irr_light*blend,blend);
+
+}
+
+
+void gi_probes_compute(vec3 pos, vec3 normal, float roughness, inout vec3 out_specular, inout vec3 out_ambient) {
+
+ roughness = roughness * roughness;
+
+ vec3 ref_vec = normalize(reflect(normalize(pos),normal));
+
+ //find arbitrary tangent and bitangent, then build a matrix
+ vec3 v0 = abs(normal.z) < 0.999 ? vec3(0, 0, 1) : vec3(0, 1, 0);
+ vec3 tangent = normalize(cross(v0, normal));
+ vec3 bitangent = normalize(cross(tangent, normal));
+ mat3 normal_mat = mat3(tangent,bitangent,normal);
+
+ vec4 diff_accum = vec4(0.0);
+ vec4 spec_accum = vec4(0.0);
+
+ vec3 ambient = out_ambient;
+ out_ambient = vec3(0.0);
+
+ vec3 environment = out_specular;
+
+ out_specular = vec3(0.0);
+
+ gi_probe_compute(gi_probe1,gi_probe_xform1,gi_probe_bounds1,gi_probe_cell_size1,pos,ambient,environment,gi_probe_blend_ambient1,gi_probe_multiplier1,normal_mat,ref_vec,roughness,gi_probe_bias1,gi_probe_normal_bias1,spec_accum,diff_accum);
+
+ if (gi_probe2_enabled) {
+
+ gi_probe_compute(gi_probe2,gi_probe_xform2,gi_probe_bounds2,gi_probe_cell_size2,pos,ambient,environment,gi_probe_blend_ambient2,gi_probe_multiplier2,normal_mat,ref_vec,roughness,gi_probe_bias2,gi_probe_normal_bias2,spec_accum,diff_accum);
+ }
+
+ if (diff_accum.a>0.0) {
+ diff_accum.rgb/=diff_accum.a;
+ }
+
+ if (spec_accum.a>0.0) {
+ spec_accum.rgb/=spec_accum.a;
+ }
+
+ out_specular+=spec_accum.rgb;
+ out_ambient+=diff_accum.rgb;
+
+}
+
+#endif
+
+
+
+void main() {
+
+#ifdef RENDER_DEPTH_DUAL_PARABOLOID
+
+ if (dp_clip>0.0)
+ discard;
+#endif
+
+ //lay out everything, whathever is unused is optimized away anyway
+ highp vec3 vertex = vertex_interp;
+ vec3 albedo = vec3(0.8,0.8,0.8);
+ vec3 transmission = vec3(0.0);
+ float metallic = 0.0;
+ float specular = 0.5;
+ vec3 emission = vec3(0.0,0.0,0.0);
+ float roughness = 1.0;
+ float rim = 0.0;
+ float rim_tint = 0.0;
+ float clearcoat=0.0;
+ float clearcoat_gloss=0.0;
+ float anisotropy = 1.0;
+ vec2 anisotropy_flow = vec2(1.0,0.0);
+
+#if defined(ENABLE_AO)
+ float ao=1.0;
+ float ao_light_affect=0.0;
+#endif
+
+ float alpha = 1.0;
+
+#ifdef METERIAL_DOUBLESIDED
+ float side=float(gl_FrontFacing)*2.0-1.0;
+#else
+ float side=1.0;
+#endif
+
+
+#if defined(ALPHA_SCISSOR_USED)
+ float alpha_scissor = 0.5;
+#endif
+
+#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) || defined(LIGHT_USE_ANISOTROPY)
+ vec3 binormal = normalize(binormal_interp)*side;
+ vec3 tangent = normalize(tangent_interp)*side;
+#else
+ vec3 binormal = vec3(0.0);
+ vec3 tangent = vec3(0.0);
+#endif
+ vec3 normal = normalize(normal_interp)*side;
+
+#if defined(ENABLE_UV_INTERP)
+ vec2 uv = uv_interp;
+#endif
+
+#if defined(ENABLE_UV2_INTERP)
+ vec2 uv2 = uv2_interp;
+#endif
+
+#if defined(ENABLE_COLOR_INTERP)
+ vec4 color = color_interp;
+#endif
+
+#if defined(ENABLE_NORMALMAP)
+
+ vec3 normalmap = vec3(0.0);
+#endif
+
+ float normaldepth=1.0;
+
+#if defined(SCREEN_UV_USED)
+ vec2 screen_uv = gl_FragCoord.xy*screen_pixel_size;
+#endif
+
+#if defined (ENABLE_SSS)
+ float sss_strength=0.0;
+#endif
+
+{
+
+
+FRAGMENT_SHADER_CODE
+
+}
+
+
+#if defined(ALPHA_SCISSOR_USED)
+ if (alpha<alpha_scissor) {
+ discard;
+ }
+#endif
+
+#ifdef USE_OPAQUE_PREPASS
+
+ if (alpha<0.99) {
+ discard;
+ }
+#endif
+
+#if defined(ENABLE_NORMALMAP)
+
+ normalmap.xy=normalmap.xy*2.0-1.0;
+ normalmap.z=sqrt(1.0-dot(normalmap.xy,normalmap.xy)); //always ignore Z, as it can be RG packed, Z may be pos/neg, etc.
+
+ normal = normalize( mix(normal_interp,tangent * normalmap.x + binormal * normalmap.y + normal * normalmap.z,normaldepth) ) * side;
+
+#endif
+
+#if defined(LIGHT_USE_ANISOTROPY)
+
+ if (anisotropy>0.01) {
+ //rotation matrix
+ mat3 rot = mat3( tangent, binormal, normal );
+ //make local to space
+ tangent = normalize(rot * vec3(anisotropy_flow.x,anisotropy_flow.y,0.0));
+ binormal = normalize(rot * vec3(-anisotropy_flow.y,anisotropy_flow.x,0.0));
+ }
+
+#endif
+
+#ifdef ENABLE_CLIP_ALPHA
+ if (albedo.a<0.99) {
+ //used for doublepass and shadowmapping
+ discard;
+ }
+#endif
+
+/////////////////////// LIGHTING //////////////////////////////
+
+ //apply energy conservation
+
+#ifdef USE_VERTEX_LIGHTING
+
+ vec3 specular_light = specular_light_interp.rgb;
+ vec3 diffuse_light = diffuse_light_interp.rgb;
+#else
+
+ vec3 specular_light = vec3(0.0,0.0,0.0);
+ vec3 diffuse_light = vec3(0.0,0.0,0.0);
+
+#endif
+
+ vec3 ambient_light;
+ vec3 env_reflection_light = vec3(0.0,0.0,0.0);
+
+ vec3 eye_vec = -normalize( vertex_interp );
+
+
+
+#ifdef USE_RADIANCE_MAP
+
+ if (no_ambient_light) {
+ ambient_light=vec3(0.0,0.0,0.0);
+ } else {
+ {
+
+ { //read radiance from dual paraboloid
+
+ vec3 ref_vec = reflect(-eye_vec,normal); //2.0 * ndotv * normal - view; // reflect(v, n);
+ ref_vec=normalize((radiance_inverse_xform * vec4(ref_vec,0.0)).xyz);
+ vec3 radiance = textureDualParaboloid(radiance_map,ref_vec,roughness) * bg_energy;
+ env_reflection_light = radiance;
+
+ }
+ //no longer a cubemap
+ //vec3 radiance = textureLod(radiance_cube, r, lod).xyz * ( brdf.x + brdf.y);
+
+ }
+
+ {
+
+ vec3 ambient_dir=normalize((radiance_inverse_xform * vec4(normal,0.0)).xyz);
+ vec3 env_ambient=textureDualParaboloid(radiance_map,ambient_dir,1.0) * bg_energy;
+
+ ambient_light=mix(ambient_light_color.rgb,env_ambient,radiance_ambient_contribution);
+ //ambient_light=vec3(0.0,0.0,0.0);
+ }
+ }
+
+#else
+
+ if (no_ambient_light){
+ ambient_light=vec3(0.0,0.0,0.0);
+ } else {
+ ambient_light=ambient_light_color.rgb;
+ }
+#endif
+
+ ambient_light*=ambient_energy;
+
+ float specular_blob_intensity=1.0;
+#if defined(SPECULAR_TOON)
+ specular_blob_intensity*=specular * 2.0;
+#endif
+
+#if defined(USE_LIGHT_DIRECTIONAL)
+
+ vec3 light_attenuation=vec3(1.0);
+
+ float depth_z = -vertex.z;
+#ifdef LIGHT_DIRECTIONAL_SHADOW
+
+#ifdef LIGHT_USE_PSSM4
+ if (depth_z < shadow_split_offsets.w) {
+#elif defined(LIGHT_USE_PSSM2)
+ if (depth_z < shadow_split_offsets.y) {
+#else
+ if (depth_z < shadow_split_offsets.x) {
+#endif //LIGHT_USE_PSSM4
+
+ vec3 pssm_coord;
+ float pssm_fade=0.0;
+
+#ifdef LIGHT_USE_PSSM_BLEND
+ float pssm_blend;
+ vec3 pssm_coord2;
+ bool use_blend=true;
+#endif
+
+
+#ifdef LIGHT_USE_PSSM4
+
+
+ if (depth_z < shadow_split_offsets.y) {
+
+ if (depth_z < shadow_split_offsets.x) {
+
+ highp vec4 splane=(shadow_matrix1 * vec4(vertex,1.0));
+ pssm_coord=splane.xyz/splane.w;
+
+
+#if defined(LIGHT_USE_PSSM_BLEND)
+
+ splane=(shadow_matrix2 * vec4(vertex,1.0));
+ pssm_coord2=splane.xyz/splane.w;
+ pssm_blend=smoothstep(0.0,shadow_split_offsets.x,depth_z);
+#endif
+
+ } else {
+
+ highp vec4 splane=(shadow_matrix2 * vec4(vertex,1.0));
+ pssm_coord=splane.xyz/splane.w;
+
+#if defined(LIGHT_USE_PSSM_BLEND)
+ splane=(shadow_matrix3 * vec4(vertex,1.0));
+ pssm_coord2=splane.xyz/splane.w;
+ pssm_blend=smoothstep(shadow_split_offsets.x,shadow_split_offsets.y,depth_z);
+#endif
+
+ }
+ } else {
+
+
+ if (depth_z < shadow_split_offsets.z) {
+
+ highp vec4 splane=(shadow_matrix3 * vec4(vertex,1.0));
+ pssm_coord=splane.xyz/splane.w;
+
+#if defined(LIGHT_USE_PSSM_BLEND)
+ splane=(shadow_matrix4 * vec4(vertex,1.0));
+ pssm_coord2=splane.xyz/splane.w;
+ pssm_blend=smoothstep(shadow_split_offsets.y,shadow_split_offsets.z,depth_z);
+#endif
+
+ } else {
+
+ highp vec4 splane=(shadow_matrix4 * vec4(vertex,1.0));
+ pssm_coord=splane.xyz/splane.w;
+ pssm_fade = smoothstep(shadow_split_offsets.z,shadow_split_offsets.w,depth_z);
+
+#if defined(LIGHT_USE_PSSM_BLEND)
+ use_blend=false;
+
+#endif
+
+ }
+ }
+
+
+
+#endif //LIGHT_USE_PSSM4
+
+#ifdef LIGHT_USE_PSSM2
+
+ if (depth_z < shadow_split_offsets.x) {
+
+ highp vec4 splane=(shadow_matrix1 * vec4(vertex,1.0));
+ pssm_coord=splane.xyz/splane.w;
+
+
+#if defined(LIGHT_USE_PSSM_BLEND)
+
+ splane=(shadow_matrix2 * vec4(vertex,1.0));
+ pssm_coord2=splane.xyz/splane.w;
+ pssm_blend=smoothstep(0.0,shadow_split_offsets.x,depth_z);
+#endif
+
+ } else {
+ highp vec4 splane=(shadow_matrix2 * vec4(vertex,1.0));
+ pssm_coord=splane.xyz/splane.w;
+ pssm_fade = smoothstep(shadow_split_offsets.x,shadow_split_offsets.y,depth_z);
+#if defined(LIGHT_USE_PSSM_BLEND)
+ use_blend=false;
+
+#endif
+
+ }
+
+#endif //LIGHT_USE_PSSM2
+
+#if !defined(LIGHT_USE_PSSM4) && !defined(LIGHT_USE_PSSM2)
+ { //regular orthogonal
+ highp vec4 splane=(shadow_matrix1 * vec4(vertex,1.0));
+ pssm_coord=splane.xyz/splane.w;
+ }
+#endif
+
+
+ //one one sample
+
+ float shadow = sample_shadow(directional_shadow,directional_shadow_pixel_size,pssm_coord.xy,pssm_coord.z,light_clamp);
+
+#if defined(LIGHT_USE_PSSM_BLEND)
+
+ if (use_blend) {
+ shadow=mix(shadow, sample_shadow(directional_shadow,directional_shadow_pixel_size,pssm_coord2.xy,pssm_coord2.z,light_clamp),pssm_blend);
+ }
+#endif
+
+#ifdef USE_CONTACT_SHADOWS
+ if (shadow>0.01 && shadow_color_contact.a>0.0) {
+
+ float contact_shadow = contact_shadow_compute(vertex,-light_direction_attenuation.xyz,shadow_color_contact.a);
+ shadow=min(shadow,contact_shadow);
+
+ }
+#endif
+ light_attenuation=mix(mix(shadow_color_contact.rgb,vec3(1.0),shadow),vec3(1.0),pssm_fade);
+
+
+ }
+
+
+#endif //LIGHT_DIRECTIONAL_SHADOW
+
+#ifdef USE_VERTEX_LIGHTING
+ diffuse_light*=mix(vec3(1.0),light_attenuation,diffuse_light_interp.a);
+ specular_light*=mix(vec3(1.0),light_attenuation,specular_light_interp.a);
+
+#else
+ light_compute(normal,-light_direction_attenuation.xyz,eye_vec,binormal,tangent,light_color_energy.rgb,light_attenuation,albedo,transmission,light_params.z*specular_blob_intensity,roughness,metallic,rim,rim_tint,clearcoat,clearcoat_gloss,anisotropy,diffuse_light,specular_light);
+#endif
+
+
+#endif //#USE_LIGHT_DIRECTIONAL
+
+#ifdef USE_GI_PROBES
+ gi_probes_compute(vertex,normal,roughness,env_reflection_light,ambient_light);
+
+#endif
+
+#ifdef USE_FORWARD_LIGHTING
+
+
+ highp vec4 reflection_accum = vec4(0.0,0.0,0.0,0.0);
+ highp vec4 ambient_accum = vec4(0.0,0.0,0.0,0.0);
+ for(int i=0;i<reflection_count;i++) {
+ reflection_process(reflection_indices[i],vertex,normal,binormal,tangent,roughness,anisotropy,ambient_light,env_reflection_light,reflection_accum,ambient_accum);
+ }
+
+ if (reflection_accum.a>0.0) {
+ specular_light+=reflection_accum.rgb/reflection_accum.a;
+ } else {
+ specular_light+=env_reflection_light;
+ }
+
+ if (ambient_accum.a>0.0) {
+ ambient_light+=ambient_accum.rgb/ambient_accum.a;
+ }
+
+
+
+#ifdef USE_VERTEX_LIGHTING
+
+ diffuse_light*=albedo;
+#else
+
+ for(int i=0;i<omni_light_count;i++) {
+ light_process_omni(omni_light_indices[i],vertex,eye_vec,normal,binormal,tangent,albedo,transmission,roughness,metallic,rim,rim_tint,clearcoat,clearcoat_gloss,anisotropy,specular_blob_intensity,diffuse_light,specular_light);
+ }
+
+ for(int i=0;i<spot_light_count;i++) {
+ light_process_spot(spot_light_indices[i],vertex,eye_vec,normal,binormal,tangent,albedo,transmission,roughness,metallic,rim,rim_tint,clearcoat,clearcoat_gloss,anisotropy,specular_blob_intensity,diffuse_light,specular_light);
+ }
+
+#endif //USE_VERTEX_LIGHTING
+
+#endif
+
+
+
+
+#ifdef RENDER_DEPTH
+//nothing happens, so a tree-ssa optimizer will result in no fragment shader :)
+#else
+
+ specular_light*=reflection_multiplier;
+ ambient_light*=albedo; //ambient must be multiplied by albedo at the end
+
+#if defined(ENABLE_AO)
+ ambient_light*=ao;
+ ao_light_affect = mix(1.0,ao,ao_light_affect);
+ specular_light*=ao_light_affect;
+ diffuse_light*=ao_light_affect;
+#endif
+
+
+
+ //energy conservation
+ diffuse_light *= 1.0-metallic; // TODO: avoid all diffuse and ambient light calculations when metallic == 1 up to this point
+ ambient_light *= 1.0-metallic;
+
+
+ {
+
+#if defined(DIFFUSE_TOON)
+ //simplify for toon, as
+ specular_light *= specular * metallic * albedo * 2.0;
+#else
+ // Environment brdf approximation (Lazarov 2013)
+ // see https://www.unrealengine.com/en-US/blog/physically-based-shading-on-mobile
+ const vec4 c0 = vec4(-1.0, -0.0275, -0.572, 0.022);
+ const vec4 c1 = vec4( 1.0, 0.0425, 1.04, -0.04);
+ vec4 r = roughness * c0 + c1;
+ float ndotv = clamp(dot(normal,eye_vec),0.0,1.0);
+ float a004 = min( r.x * r.x, exp2( -9.28 * ndotv ) ) * r.x + r.y;
+ vec2 AB = vec2( -1.04, 1.04 ) * a004 + r.zw;
+
+ vec3 specular_color = metallic_to_specular_color(metallic, specular, albedo);
+ specular_light *= AB.x * specular_color + AB.y;
+#endif
+
+ }
+
+ if (fog_color_enabled.a > 0.5) {
+
+ float fog_amount=0.0;
+
+
+
+#ifdef USE_LIGHT_DIRECTIONAL
+
+ vec3 fog_color = mix( fog_color_enabled.rgb, fog_sun_color_amount.rgb,fog_sun_color_amount.a * pow(max( dot(normalize(vertex),-light_direction_attenuation.xyz), 0.0),8.0) );
+#else
+
+ vec3 fog_color = fog_color_enabled.rgb;
+#endif
+
+ //apply fog
+
+ if (fog_depth_enabled) {
+
+ float fog_z = smoothstep(fog_depth_begin,z_far,length(vertex));
+
+ fog_amount = pow(fog_z,fog_depth_curve);
+ if (fog_transmit_enabled) {
+ vec3 total_light = emission + ambient_light + specular_light + diffuse_light;
+ float transmit = pow(fog_z,fog_transmit_curve);
+ fog_color = mix(max(total_light,fog_color),fog_color,transmit);
+ }
+ }
+
+ if (fog_height_enabled) {
+ float y = (camera_matrix * vec4(vertex,1.0)).y;
+ fog_amount = max(fog_amount,pow(smoothstep(fog_height_min,fog_height_max,y),fog_height_curve));
+ }
+
+ float rev_amount = 1.0 - fog_amount;
+
+
+ emission = emission * rev_amount + fog_color * fog_amount;
+ ambient_light*=rev_amount;
+ specular_light*rev_amount;
+ diffuse_light*=rev_amount;
+
+ }
+
+#ifdef USE_MULTIPLE_RENDER_TARGETS
+
+
+#ifdef SHADELESS
+ diffuse_buffer=vec4(albedo.rgb,0.0);
+ specular_buffer=vec4(0.0);
+
+#else
+
+#if defined(ENABLE_AO)
+
+ float ambient_scale=0.0; // AO is supplied by material
+#else
+ //approximate ambient scale for SSAO, since we will lack full ambient
+ float max_emission=max(emission.r,max(emission.g,emission.b));
+ float max_ambient=max(ambient_light.r,max(ambient_light.g,ambient_light.b));
+ float max_diffuse=max(diffuse_light.r,max(diffuse_light.g,diffuse_light.b));
+ float total_ambient = max_ambient+max_diffuse+max_emission;
+ float ambient_scale = (total_ambient>0.0) ? (max_ambient+ambient_occlusion_affect_light*max_diffuse)/total_ambient : 0.0;
+#endif //ENABLE_AO
+
+ diffuse_buffer=vec4(emission+diffuse_light+ambient_light,ambient_scale);
+ specular_buffer=vec4(specular_light,metallic);
+
+#endif //SHADELESS
+
+ normal_mr_buffer=vec4(normalize(normal)*0.5+0.5,roughness);
+
+#if defined (ENABLE_SSS)
+ sss_buffer = sss_strength;
+#endif
+
+
+#else //USE_MULTIPLE_RENDER_TARGETS
+
+
+#ifdef SHADELESS
+ frag_color=vec4(albedo,alpha);
+#else
+ frag_color=vec4(emission+ambient_light+diffuse_light+specular_light,alpha);
+#endif //SHADELESS
+
+
+#endif //USE_MULTIPLE_RENDER_TARGETS
+
+
+
+#endif //RENDER_DEPTH
+
+
+}
diff --git a/drivers/gles2/shaders/screen_space_reflection.glsl b/drivers/gles2/shaders/screen_space_reflection.glsl
new file mode 100644
index 0000000000..b2e6f7a736
--- /dev/null
+++ b/drivers/gles2/shaders/screen_space_reflection.glsl
@@ -0,0 +1,318 @@
+[vertex]
+
+
+layout(location=0) in highp vec4 vertex_attrib;
+layout(location=4) in vec2 uv_in;
+
+out vec2 uv_interp;
+out vec2 pos_interp;
+
+void main() {
+
+ uv_interp = uv_in;
+ gl_Position = vertex_attrib;
+ pos_interp.xy=gl_Position.xy;
+}
+
+[fragment]
+
+
+in vec2 uv_interp;
+in vec2 pos_interp;
+
+uniform sampler2D source_diffuse; //texunit:0
+uniform sampler2D source_normal_roughness; //texunit:1
+uniform sampler2D source_depth; //texunit:2
+
+uniform float camera_z_near;
+uniform float camera_z_far;
+
+uniform vec2 viewport_size;
+uniform vec2 pixel_size;
+
+uniform float filter_mipmap_levels;
+
+uniform mat4 inverse_projection;
+uniform mat4 projection;
+
+uniform int num_steps;
+uniform float depth_tolerance;
+uniform float distance_fade;
+uniform float curve_fade_in;
+
+
+layout(location = 0) out vec4 frag_color;
+
+
+vec2 view_to_screen(vec3 view_pos,out float w) {
+ vec4 projected = projection * vec4(view_pos, 1.0);
+ projected.xyz /= projected.w;
+ projected.xy = projected.xy * 0.5 + 0.5;
+ w=projected.w;
+ return projected.xy;
+}
+
+
+
+#define M_PI 3.14159265359
+
+void main() {
+
+
+ ////
+
+ vec4 diffuse = texture( source_diffuse, uv_interp );
+ vec4 normal_roughness = texture( source_normal_roughness, uv_interp);
+
+ vec3 normal;
+
+ normal = normal_roughness.xyz*2.0-1.0;
+
+ float roughness = normal_roughness.w;
+
+ float depth_tex = texture(source_depth,uv_interp).r;
+
+ vec4 world_pos = inverse_projection * vec4( uv_interp*2.0-1.0, depth_tex*2.0-1.0, 1.0 );
+ vec3 vertex = world_pos.xyz/world_pos.w;
+
+ vec3 view_dir = normalize(vertex);
+ vec3 ray_dir = normalize(reflect(view_dir, normal));
+
+ if (dot(ray_dir,normal)<0.001) {
+ frag_color=vec4(0.0);
+ return;
+ }
+ //ray_dir = normalize(view_dir - normal * dot(normal,view_dir) * 2.0);
+
+ //ray_dir = normalize(vec3(1,1,-1));
+
+
+ ////////////////
+
+
+ //make ray length and clip it against the near plane (don't want to trace beyond visible)
+ float ray_len = (vertex.z + ray_dir.z * camera_z_far) > -camera_z_near ? (-camera_z_near - vertex.z) / ray_dir.z : camera_z_far;
+ vec3 ray_end = vertex + ray_dir*ray_len;
+
+ float w_begin;
+ vec2 vp_line_begin = view_to_screen(vertex,w_begin);
+ float w_end;
+ vec2 vp_line_end = view_to_screen( ray_end, w_end);
+ vec2 vp_line_dir = vp_line_end-vp_line_begin;
+
+ //we need to interpolate w along the ray, to generate perspective correct reflections
+
+ w_begin = 1.0/w_begin;
+ w_end = 1.0/w_end;
+
+
+ float z_begin = vertex.z*w_begin;
+ float z_end = ray_end.z*w_end;
+
+ vec2 line_begin = vp_line_begin/pixel_size;
+ vec2 line_dir = vp_line_dir/pixel_size;
+ float z_dir = z_end - z_begin;
+ float w_dir = w_end - w_begin;
+
+
+ // clip the line to the viewport edges
+
+ float scale_max_x = min(1.0, 0.99 * (1.0 - vp_line_begin.x) / max(1e-5, vp_line_dir.x));
+ float scale_max_y = min(1.0, 0.99 * (1.0 - vp_line_begin.y) / max(1e-5, vp_line_dir.y));
+ float scale_min_x = min(1.0, 0.99 * vp_line_begin.x / max(1e-5, -vp_line_dir.x));
+ float scale_min_y = min(1.0, 0.99 * vp_line_begin.y / max(1e-5, -vp_line_dir.y));
+ float line_clip = min(scale_max_x, scale_max_y) * min(scale_min_x, scale_min_y);
+ line_dir *= line_clip;
+ z_dir *= line_clip;
+ w_dir *=line_clip;
+
+ //clip z and w advance to line advance
+ vec2 line_advance = normalize(line_dir); //down to pixel
+ float step_size = length(line_advance)/length(line_dir);
+ float z_advance = z_dir*step_size; // adapt z advance to line advance
+ float w_advance = w_dir*step_size; // adapt w advance to line advance
+
+ //make line advance faster if direction is closer to pixel edges (this avoids sampling the same pixel twice)
+ float advance_angle_adj = 1.0/max(abs(line_advance.x),abs(line_advance.y));
+ line_advance*=advance_angle_adj; // adapt z advance to line advance
+ z_advance*=advance_angle_adj;
+ w_advance*=advance_angle_adj;
+
+ vec2 pos = line_begin;
+ float z = z_begin;
+ float w = w_begin;
+ float z_from=z/w;
+ float z_to=z_from;
+ float depth;
+ vec2 prev_pos=pos;
+
+ bool found=false;
+
+ float steps_taken=0.0;
+
+ for(int i=0;i<num_steps;i++) {
+
+ pos+=line_advance;
+ z+=z_advance;
+ w+=w_advance;
+
+ //convert to linear depth
+
+ depth = texture(source_depth, pos*pixel_size).r * 2.0 - 1.0;
+#ifdef USE_ORTHOGONAL_PROJECTION
+ depth = ((depth + (camera_z_far + camera_z_near)/(camera_z_far - camera_z_near)) * (camera_z_far - camera_z_near))/2.0;
+#else
+ depth = 2.0 * camera_z_near * camera_z_far / (camera_z_far + camera_z_near - depth * (camera_z_far - camera_z_near));
+#endif
+ depth=-depth;
+
+ z_from = z_to;
+ z_to = z/w;
+
+ if (depth>z_to) {
+ //if depth was surpassed
+ if (depth<=max(z_to,z_from)+depth_tolerance) {
+ //check the depth tolerance
+ found=true;
+ }
+ break;
+ }
+
+ steps_taken+=1.0;
+ prev_pos=pos;
+ }
+
+
+
+
+ if (found) {
+
+ float margin_blend=1.0;
+
+
+ vec2 margin = vec2((viewport_size.x+viewport_size.y)*0.5*0.05); //make a uniform margin
+ if (any(bvec4(lessThan(pos,-margin),greaterThan(pos,viewport_size+margin)))) {
+ //clip outside screen + margin
+ frag_color=vec4(0.0);
+ return;
+ }
+
+ {
+ //blend fading out towards external margin
+ vec2 margin_grad = mix(pos-viewport_size,-pos,lessThan(pos,vec2(0.0)));
+ margin_blend = 1.0-smoothstep(0.0,margin.x,max(margin_grad.x,margin_grad.y));
+ //margin_blend=1.0;
+
+ }
+
+ vec2 final_pos;
+ float grad;
+ grad=steps_taken/float(num_steps);
+ float initial_fade = curve_fade_in==0.0 ? 1.0 : pow(clamp(grad,0.0,1.0),curve_fade_in);
+ float fade = pow(clamp(1.0-grad,0.0,1.0),distance_fade)*initial_fade;
+ final_pos=pos;
+
+
+
+
+
+
+
+#ifdef REFLECT_ROUGHNESS
+
+
+ vec4 final_color;
+ //if roughness is enabled, do screen space cone tracing
+ if (roughness > 0.001) {
+ ///////////////////////////////////////////////////////////////////////////////////////
+ //use a blurred version (in consecutive mipmaps) of the screen to simulate roughness
+
+ float gloss = 1.0-roughness;
+ float cone_angle = roughness * M_PI * 0.5;
+ vec2 cone_dir = final_pos - line_begin;
+ float cone_len = length(cone_dir);
+ cone_dir = normalize(cone_dir); //will be used normalized from now on
+ float max_mipmap = filter_mipmap_levels - 1.0;
+ float gloss_mult=gloss;
+
+ float rem_alpha=1.0;
+ final_color = vec4(0.0);
+
+ for(int i=0;i<7;i++) {
+
+ float op_len = 2.0 * tan(cone_angle) * cone_len; //opposite side of iso triangle
+ float radius;
+ {
+ //fit to sphere inside cone (sphere ends at end of cone), something like this:
+ // ___
+ // \O/
+ // V
+ //
+ // as it avoids bleeding from beyond the reflection as much as possible. As a plus
+ // it also makes the rough reflection more elongated.
+ float a = op_len;
+ float h = cone_len;
+ float a2 = a * a;
+ float fh2 = 4.0f * h * h;
+ radius = (a * (sqrt(a2 + fh2) - a)) / (4.0f * h);
+ }
+
+ //find the place where screen must be sampled
+ vec2 sample_pos = ( line_begin + cone_dir * (cone_len - radius) ) * pixel_size;
+ //radius is in pixels, so it's natural that log2(radius) maps to the right mipmap for the amount of pixels
+ float mipmap = clamp( log2( radius ), 0.0, max_mipmap );
+
+ //mipmap = max(mipmap-1.0,0.0);
+ //do sampling
+
+ vec4 sample_color;
+ {
+ sample_color = textureLod(source_diffuse,sample_pos,mipmap);
+ }
+
+ //multiply by gloss
+ sample_color.rgb*=gloss_mult;
+ sample_color.a=gloss_mult;
+
+ rem_alpha -= sample_color.a;
+ if(rem_alpha < 0.0) {
+ sample_color.rgb *= (1.0 - abs(rem_alpha));
+ }
+
+ final_color+=sample_color;
+
+ if (final_color.a>=0.95) {
+ // This code of accumulating gloss and aborting on near one
+ // makes sense when you think of cone tracing.
+ // Think of it as if roughness was 0, then we could abort on the first
+ // iteration. For lesser roughness values, we need more iterations, but
+ // each needs to have less influence given the sphere is smaller
+ break;
+ }
+
+ cone_len-=radius*2.0; //go to next (smaller) circle.
+
+ gloss_mult*=gloss;
+
+
+ }
+ } else {
+ final_color = textureLod(source_diffuse,final_pos*pixel_size,0.0);
+ }
+
+ frag_color = vec4(final_color.rgb,fade*margin_blend);
+
+#else
+ frag_color = vec4(textureLod(source_diffuse,final_pos*pixel_size,0.0).rgb,fade*margin_blend);
+#endif
+
+
+
+ } else {
+ frag_color = vec4(0.0,0.0,0.0,0.0);
+ }
+
+
+
+}
+
diff --git a/drivers/gles2/shaders/ssao.glsl b/drivers/gles2/shaders/ssao.glsl
new file mode 100644
index 0000000000..219f0957e0
--- /dev/null
+++ b/drivers/gles2/shaders/ssao.glsl
@@ -0,0 +1,293 @@
+[vertex]
+
+
+layout(location=0) in highp vec4 vertex_attrib;
+
+void main() {
+
+ gl_Position = vertex_attrib;
+ gl_Position.z=1.0;
+}
+
+[fragment]
+
+#define TWO_PI 6.283185307179586476925286766559
+
+#ifdef SSAO_QUALITY_HIGH
+
+#define NUM_SAMPLES (80)
+
+#endif
+
+#ifdef SSAO_QUALITY_LOW
+
+#define NUM_SAMPLES (15)
+
+#endif
+
+#if !defined(SSAO_QUALITY_LOW) && !defined(SSAO_QUALITY_HIGH)
+
+#define NUM_SAMPLES (40)
+
+#endif
+
+// If using depth mip levels, the log of the maximum pixel offset before we need to switch to a lower
+// miplevel to maintain reasonable spatial locality in the cache
+// If this number is too small (< 3), too many taps will land in the same pixel, and we'll get bad variance that manifests as flashing.
+// If it is too high (> 5), we'll get bad performance because we're not using the MIP levels effectively
+#define LOG_MAX_OFFSET (3)
+
+// This must be less than or equal to the MAX_MIP_LEVEL defined in SSAO.cpp
+#define MAX_MIP_LEVEL (4)
+
+// This is the number of turns around the circle that the spiral pattern makes. This should be prime to prevent
+// taps from lining up. This particular choice was tuned for NUM_SAMPLES == 9
+
+const int ROTATIONS[] = int[]( 1, 1, 2, 3, 2, 5, 2, 3, 2,
+3, 3, 5, 5, 3, 4, 7, 5, 5, 7,
+9, 8, 5, 5, 7, 7, 7, 8, 5, 8,
+11, 12, 7, 10, 13, 8, 11, 8, 7, 14,
+11, 11, 13, 12, 13, 19, 17, 13, 11, 18,
+19, 11, 11, 14, 17, 21, 15, 16, 17, 18,
+13, 17, 11, 17, 19, 18, 25, 18, 19, 19,
+29, 21, 19, 27, 31, 29, 21, 18, 17, 29,
+31, 31, 23, 18, 25, 26, 25, 23, 19, 34,
+19, 27, 21, 25, 39, 29, 17, 21, 27 );
+
+//#define NUM_SPIRAL_TURNS (7)
+const int NUM_SPIRAL_TURNS = ROTATIONS[NUM_SAMPLES-1];
+
+uniform sampler2D source_depth; //texunit:0
+uniform highp usampler2D source_depth_mipmaps; //texunit:1
+uniform sampler2D source_normal; //texunit:2
+
+uniform ivec2 screen_size;
+uniform float camera_z_far;
+uniform float camera_z_near;
+
+uniform float intensity_div_r6;
+uniform float radius;
+
+#ifdef ENABLE_RADIUS2
+uniform float intensity_div_r62;
+uniform float radius2;
+#endif
+
+uniform float bias;
+uniform float proj_scale;
+
+layout(location = 0) out float visibility;
+
+uniform vec4 proj_info;
+
+vec3 reconstructCSPosition(vec2 S, float z) {
+#ifdef USE_ORTHOGONAL_PROJECTION
+ return vec3((S.xy * proj_info.xy + proj_info.zw), z);
+#else
+ return vec3((S.xy * proj_info.xy + proj_info.zw) * z, z);
+
+#endif
+}
+
+vec3 getPosition(ivec2 ssP) {
+ vec3 P;
+ P.z = texelFetch(source_depth, ssP, 0).r;
+
+ P.z = P.z * 2.0 - 1.0;
+#ifdef USE_ORTHOGONAL_PROJECTION
+ P.z = ((P.z + (camera_z_far + camera_z_near)/(camera_z_far - camera_z_near)) * (camera_z_far - camera_z_near))/2.0;
+#else
+ P.z = 2.0 * camera_z_near * camera_z_far / (camera_z_far + camera_z_near - P.z * (camera_z_far - camera_z_near));
+#endif
+ P.z = -P.z;
+
+ // Offset to pixel center
+ P = reconstructCSPosition(vec2(ssP) + vec2(0.5), P.z);
+ return P;
+}
+
+/** Reconstructs screen-space unit normal from screen-space position */
+vec3 reconstructCSFaceNormal(vec3 C) {
+ return normalize(cross(dFdy(C), dFdx(C)));
+}
+
+
+
+/** Returns a unit vector and a screen-space radius for the tap on a unit disk (the caller should scale by the actual disk radius) */
+vec2 tapLocation(int sampleNumber, float spinAngle, out float ssR){
+ // Radius relative to ssR
+ float alpha = (float(sampleNumber) + 0.5) * (1.0 / float(NUM_SAMPLES));
+ float angle = alpha * (float(NUM_SPIRAL_TURNS) * 6.28) + spinAngle;
+
+ ssR = alpha;
+ return vec2(cos(angle), sin(angle));
+}
+
+
+/** Read the camera-space position of the point at screen-space pixel ssP + unitOffset * ssR. Assumes length(unitOffset) == 1 */
+vec3 getOffsetPosition(ivec2 ssC, vec2 unitOffset, float ssR) {
+ // Derivation:
+ // mipLevel = floor(log(ssR / MAX_OFFSET));
+ int mipLevel = clamp(int(floor(log2(ssR))) - LOG_MAX_OFFSET, 0, MAX_MIP_LEVEL);
+
+ ivec2 ssP = ivec2(ssR * unitOffset) + ssC;
+
+ vec3 P;
+
+ // We need to divide by 2^mipLevel to read the appropriately scaled coordinate from a MIP-map.
+ // Manually clamp to the texture size because texelFetch bypasses the texture unit
+ ivec2 mipP = clamp(ssP >> mipLevel, ivec2(0), (screen_size >> mipLevel) - ivec2(1));
+
+
+ if (mipLevel < 1) {
+ //read from depth buffer
+ P.z = texelFetch(source_depth, mipP, 0).r;
+ P.z = P.z * 2.0 - 1.0;
+#ifdef USE_ORTHOGONAL_PROJECTION
+ P.z = ((P.z + (camera_z_far + camera_z_near)/(camera_z_far - camera_z_near)) * (camera_z_far - camera_z_near))/2.0;
+#else
+ P.z = 2.0 * camera_z_near * camera_z_far / (camera_z_far + camera_z_near - P.z * (camera_z_far - camera_z_near));
+
+#endif
+ P.z = -P.z;
+
+ } else {
+ //read from mipmaps
+ uint d = texelFetch(source_depth_mipmaps, mipP, mipLevel-1).r;
+ P.z = -(float(d)/65535.0)*camera_z_far;
+ }
+
+
+ // Offset to pixel center
+ P = reconstructCSPosition(vec2(ssP) + vec2(0.5), P.z);
+
+ return P;
+}
+
+
+
+/** Compute the occlusion due to sample with index \a i about the pixel at \a ssC that corresponds
+ to camera-space point \a C with unit normal \a n_C, using maximum screen-space sampling radius \a ssDiskRadius
+
+ Note that units of H() in the HPG12 paper are meters, not
+ unitless. The whole falloff/sampling function is therefore
+ unitless. In this implementation, we factor out (9 / radius).
+
+ Four versions of the falloff function are implemented below
+*/
+float sampleAO(in ivec2 ssC, in vec3 C, in vec3 n_C, in float ssDiskRadius,in float p_radius, in int tapIndex, in float randomPatternRotationAngle) {
+ // Offset on the unit disk, spun for this pixel
+ float ssR;
+ vec2 unitOffset = tapLocation(tapIndex, randomPatternRotationAngle, ssR);
+ ssR *= ssDiskRadius;
+
+ // The occluding point in camera space
+ vec3 Q = getOffsetPosition(ssC, unitOffset, ssR);
+
+ vec3 v = Q - C;
+
+ float vv = dot(v, v);
+ float vn = dot(v, n_C);
+
+ const float epsilon = 0.01;
+ float radius2 = p_radius*p_radius;
+
+ // A: From the HPG12 paper
+ // Note large epsilon to avoid overdarkening within cracks
+ //return float(vv < radius2) * max((vn - bias) / (epsilon + vv), 0.0) * radius2 * 0.6;
+
+ // B: Smoother transition to zero (lowers contrast, smoothing out corners). [Recommended]
+ float f=max(radius2 - vv, 0.0);
+ return f * f * f * max((vn - bias) / (epsilon + vv), 0.0);
+
+ // C: Medium contrast (which looks better at high radii), no division. Note that the
+ // contribution still falls off with radius^2, but we've adjusted the rate in a way that is
+ // more computationally efficient and happens to be aesthetically pleasing.
+ // return 4.0 * max(1.0 - vv * invRadius2, 0.0) * max(vn - bias, 0.0);
+
+ // D: Low contrast, no division operation
+ // return 2.0 * float(vv < radius * radius) * max(vn - bias, 0.0);
+}
+
+
+
+void main() {
+
+
+ // Pixel being shaded
+ ivec2 ssC = ivec2(gl_FragCoord.xy);
+
+ // World space point being shaded
+ vec3 C = getPosition(ssC);
+
+/* if (C.z <= -camera_z_far*0.999) {
+ // We're on the skybox
+ visibility=1.0;
+ return;
+ }*/
+
+ //visibility=-C.z/camera_z_far;
+ //return;
+#if 0
+ vec3 n_C = texelFetch(source_normal,ssC,0).rgb * 2.0 - 1.0;
+#else
+ vec3 n_C = reconstructCSFaceNormal(C);
+ n_C = -n_C;
+#endif
+
+ // Hash function used in the HPG12 AlchemyAO paper
+ float randomPatternRotationAngle = mod(float((3 * ssC.x ^ ssC.y + ssC.x * ssC.y) * 10), TWO_PI);
+
+ // Reconstruct normals from positions. These will lead to 1-pixel black lines
+ // at depth discontinuities, however the blur will wipe those out so they are not visible
+ // in the final image.
+
+ // Choose the screen-space sample radius
+ // proportional to the projected area of the sphere
+#ifdef USE_ORTHOGONAL_PROJECTION
+ float ssDiskRadius = -proj_scale * radius;
+#else
+ float ssDiskRadius = -proj_scale * radius / C.z;
+#endif
+ float sum = 0.0;
+ for (int i = 0; i < NUM_SAMPLES; ++i) {
+ sum += sampleAO(ssC, C, n_C, ssDiskRadius, radius,i, randomPatternRotationAngle);
+ }
+
+ float A = max(0.0, 1.0 - sum * intensity_div_r6 * (5.0 / float(NUM_SAMPLES)));
+
+#ifdef ENABLE_RADIUS2
+
+ //go again for radius2
+ randomPatternRotationAngle = mod(float((5 * ssC.x ^ ssC.y + ssC.x * ssC.y) * 11), TWO_PI);
+
+ // Reconstruct normals from positions. These will lead to 1-pixel black lines
+ // at depth discontinuities, however the blur will wipe those out so they are not visible
+ // in the final image.
+
+ // Choose the screen-space sample radius
+ // proportional to the projected area of the sphere
+ ssDiskRadius = -proj_scale * radius2 / C.z;
+
+ sum = 0.0;
+ for (int i = 0; i < NUM_SAMPLES; ++i) {
+ sum += sampleAO(ssC, C, n_C, ssDiskRadius,radius2, i, randomPatternRotationAngle);
+ }
+
+ A= min(A,max(0.0, 1.0 - sum * intensity_div_r62 * (5.0 / float(NUM_SAMPLES))));
+#endif
+ // Bilateral box-filter over a quad for free, respecting depth edges
+ // (the difference that this makes is subtle)
+ if (abs(dFdx(C.z)) < 0.02) {
+ A -= dFdx(A) * (float(ssC.x & 1) - 0.5);
+ }
+ if (abs(dFdy(C.z)) < 0.02) {
+ A -= dFdy(A) * (float(ssC.y & 1) - 0.5);
+ }
+
+ visibility = A;
+
+}
+
+
+
diff --git a/drivers/gles2/shaders/ssao_blur.glsl b/drivers/gles2/shaders/ssao_blur.glsl
new file mode 100644
index 0000000000..472dc21acf
--- /dev/null
+++ b/drivers/gles2/shaders/ssao_blur.glsl
@@ -0,0 +1,124 @@
+[vertex]
+
+
+layout(location=0) in highp vec4 vertex_attrib;
+
+
+void main() {
+
+ gl_Position = vertex_attrib;
+ gl_Position.z=1.0;
+}
+
+[fragment]
+
+
+uniform sampler2D source_ssao; //texunit:0
+uniform sampler2D source_depth; //texunit:1
+uniform sampler2D source_normal; //texunit:3
+
+
+layout(location = 0) out float visibility;
+
+
+//////////////////////////////////////////////////////////////////////////////////////////////
+// Tunable Parameters:
+
+/** Increase to make depth edges crisper. Decrease to reduce flicker. */
+uniform float edge_sharpness;
+
+/** Step in 2-pixel intervals since we already blurred against neighbors in the
+ first AO pass. This constant can be increased while R decreases to improve
+ performance at the expense of some dithering artifacts.
+
+ Morgan found that a scale of 3 left a 1-pixel checkerboard grid that was
+ unobjectionable after shading was applied but eliminated most temporal incoherence
+ from using small numbers of sample taps.
+ */
+
+uniform int filter_scale;
+
+/** Filter radius in pixels. This will be multiplied by SCALE. */
+#define R (4)
+
+
+//////////////////////////////////////////////////////////////////////////////////////////////
+
+
+// Gaussian coefficients
+const float gaussian[R + 1] =
+// float[](0.356642, 0.239400, 0.072410, 0.009869);
+// float[](0.398943, 0.241971, 0.053991, 0.004432, 0.000134); // stddev = 1.0
+ float[](0.153170, 0.144893, 0.122649, 0.092902, 0.062970); // stddev = 2.0
+// float[](0.111220, 0.107798, 0.098151, 0.083953, 0.067458, 0.050920, 0.036108); // stddev = 3.0
+
+/** (1, 0) or (0, 1)*/
+uniform ivec2 axis;
+
+uniform float camera_z_far;
+uniform float camera_z_near;
+
+uniform ivec2 screen_size;
+
+void main() {
+
+ ivec2 ssC = ivec2(gl_FragCoord.xy);
+
+ float depth = texelFetch(source_depth, ssC, 0).r;
+ //vec3 normal = texelFetch(source_normal,ssC,0).rgb * 2.0 - 1.0;
+
+ depth = depth * 2.0 - 1.0;
+ depth = 2.0 * camera_z_near * camera_z_far / (camera_z_far + camera_z_near - depth * (camera_z_far - camera_z_near));
+
+ float depth_divide = 1.0 / camera_z_far;
+
+// depth*=depth_divide;
+
+ /*
+ if (depth > camera_z_far*0.999) {
+ discard;//skybox
+ }
+ */
+
+ float sum = texelFetch(source_ssao, ssC, 0).r;
+
+ // Base weight for depth falloff. Increase this for more blurriness,
+ // decrease it for better edge discrimination
+ float BASE = gaussian[0];
+ float totalWeight = BASE;
+ sum *= totalWeight;
+
+ ivec2 clamp_limit = screen_size - ivec2(1);
+
+ for (int r = -R; r <= R; ++r) {
+ // We already handled the zero case above. This loop should be unrolled and the static branch optimized out,
+ // so the IF statement has no runtime cost
+ if (r != 0) {
+
+ ivec2 ppos = ssC + axis * (r * filter_scale);
+ float value = texelFetch(source_ssao, clamp(ppos,ivec2(0),clamp_limit), 0).r;
+ ivec2 rpos = clamp(ppos,ivec2(0),clamp_limit);
+ float temp_depth = texelFetch(source_depth, rpos, 0).r;
+ //vec3 temp_normal = texelFetch(source_normal, rpos, 0).rgb * 2.0 - 1.0;
+
+ temp_depth = temp_depth * 2.0 - 1.0;
+ temp_depth = 2.0 * camera_z_near * camera_z_far / (camera_z_far + camera_z_near - temp_depth * (camera_z_far - camera_z_near));
+// temp_depth *= depth_divide;
+
+ // spatial domain: offset gaussian tap
+ float weight = 0.3 + gaussian[abs(r)];
+ //weight *= max(0.0,dot(temp_normal,normal));
+
+ // range domain (the "bilateral" weight). As depth difference increases, decrease weight.
+ weight *= max(0.0, 1.0
+ - edge_sharpness * abs(temp_depth - depth)
+ );
+
+ sum += value * weight;
+ totalWeight += weight;
+ }
+ }
+
+ const float epsilon = 0.0001;
+ visibility = sum / (totalWeight + epsilon);
+}
diff --git a/drivers/gles2/shaders/ssao_minify.glsl b/drivers/gles2/shaders/ssao_minify.glsl
new file mode 100644
index 0000000000..647c762438
--- /dev/null
+++ b/drivers/gles2/shaders/ssao_minify.glsl
@@ -0,0 +1,59 @@
+[vertex]
+
+
+layout(location=0) in highp vec4 vertex_attrib;
+
+void main() {
+
+ gl_Position = vertex_attrib;
+}
+
+[fragment]
+
+
+#ifdef MINIFY_START
+
+#define SDEPTH_TYPE highp sampler2D
+uniform float camera_z_far;
+uniform float camera_z_near;
+
+#else
+
+#define SDEPTH_TYPE mediump usampler2D
+
+#endif
+
+uniform SDEPTH_TYPE source_depth; //texunit:0
+
+uniform ivec2 from_size;
+uniform int source_mipmap;
+
+layout(location = 0) out mediump uint depth;
+
+void main() {
+
+
+ ivec2 ssP = ivec2(gl_FragCoord.xy);
+
+ // Rotated grid subsampling to avoid XY directional bias or Z precision bias while downsampling.
+ // On DX9, the bit-and can be implemented with floating-point modulo
+
+#ifdef MINIFY_START
+ float fdepth = texelFetch(source_depth, clamp(ssP * 2 + ivec2(ssP.y & 1, ssP.x & 1), ivec2(0), from_size - ivec2(1)), source_mipmap).r;
+ fdepth = fdepth * 2.0 - 1.0;
+#ifdef USE_ORTHOGONAL_PROJECTION
+ fdepth = ((fdepth + (camera_z_far + camera_z_near)/(camera_z_far - camera_z_near)) * (camera_z_far - camera_z_near))/2.0;
+#else
+ fdepth = 2.0 * camera_z_near * camera_z_far / (camera_z_far + camera_z_near - fdepth * (camera_z_far - camera_z_near));
+#endif
+ fdepth /= camera_z_far;
+ depth = uint(clamp(fdepth*65535.0,0.0,65535.0));
+
+#else
+ depth = texelFetch(source_depth, clamp(ssP * 2 + ivec2(ssP.y & 1, ssP.x & 1), ivec2(0), from_size - ivec2(1)), source_mipmap).r;
+#endif
+
+
+}
+
+
diff --git a/drivers/gles2/shaders/subsurf_scattering.glsl b/drivers/gles2/shaders/subsurf_scattering.glsl
new file mode 100644
index 0000000000..fc66d66198
--- /dev/null
+++ b/drivers/gles2/shaders/subsurf_scattering.glsl
@@ -0,0 +1,192 @@
+[vertex]
+
+
+layout(location=0) in highp vec4 vertex_attrib;
+layout(location=4) in vec2 uv_in;
+
+out vec2 uv_interp;
+
+
+void main() {
+
+ uv_interp = uv_in;
+ gl_Position = vertex_attrib;
+}
+
+[fragment]
+
+//#define QUALIFIER uniform // some guy on the interweb says it may be faster with this
+#define QUALIFIER const
+
+#ifdef USE_25_SAMPLES
+
+const int kernel_size=25;
+QUALIFIER vec2 kernel[25] = vec2[] (
+ vec2(0.530605, 0.0),
+ vec2(0.000973794, -3.0),
+ vec2(0.00333804, -2.52083),
+ vec2(0.00500364, -2.08333),
+ vec2(0.00700976, -1.6875),
+ vec2(0.0094389, -1.33333),
+ vec2(0.0128496, -1.02083),
+ vec2(0.017924, -0.75),
+ vec2(0.0263642, -0.520833),
+ vec2(0.0410172, -0.333333),
+ vec2(0.0493588, -0.1875),
+ vec2(0.0402784, -0.0833333),
+ vec2(0.0211412, -0.0208333),
+ vec2(0.0211412, 0.0208333),
+ vec2(0.0402784, 0.0833333),
+ vec2(0.0493588, 0.1875),
+ vec2(0.0410172, 0.333333),
+ vec2(0.0263642, 0.520833),
+ vec2(0.017924, 0.75),
+ vec2(0.0128496, 1.02083),
+ vec2(0.0094389, 1.33333),
+ vec2(0.00700976, 1.6875),
+ vec2(0.00500364, 2.08333),
+ vec2(0.00333804, 2.52083),
+ vec2(0.000973794, 3.0)
+);
+
+#endif //USE_25_SAMPLES
+
+#ifdef USE_17_SAMPLES
+
+const int kernel_size=17;
+
+QUALIFIER vec2 kernel[17] = vec2[](
+ vec2(0.536343, 0.0),
+ vec2(0.00317394, -2.0),
+ vec2(0.0100386, -1.53125),
+ vec2(0.0144609, -1.125),
+ vec2(0.0216301, -0.78125),
+ vec2(0.0347317, -0.5),
+ vec2(0.0571056, -0.28125),
+ vec2(0.0582416, -0.125),
+ vec2(0.0324462, -0.03125),
+ vec2(0.0324462, 0.03125),
+ vec2(0.0582416, 0.125),
+ vec2(0.0571056, 0.28125),
+ vec2(0.0347317, 0.5),
+ vec2(0.0216301, 0.78125),
+ vec2(0.0144609, 1.125),
+ vec2(0.0100386, 1.53125),
+ vec2(0.00317394,2.0)
+);
+
+#endif //USE_17_SAMPLES
+
+
+#ifdef USE_11_SAMPLES
+
+const int kernel_size=11;
+
+QUALIFIER vec2 kernel[11] = vec2[](
+ vec2(0.560479, 0.0),
+ vec2(0.00471691, -2.0),
+ vec2(0.0192831, -1.28),
+ vec2(0.03639, -0.72),
+ vec2(0.0821904, -0.32),
+ vec2(0.0771802, -0.08),
+ vec2(0.0771802, 0.08),
+ vec2(0.0821904, 0.32),
+ vec2(0.03639, 0.72),
+ vec2(0.0192831, 1.28),
+ vec2(0.00471691,2.0)
+);
+
+#endif //USE_11_SAMPLES
+
+
+
+uniform float max_radius;
+uniform float camera_z_far;
+uniform float camera_z_near;
+uniform float unit_size;
+uniform vec2 dir;
+in vec2 uv_interp;
+
+uniform sampler2D source_diffuse; //texunit:0
+uniform sampler2D source_sss; //texunit:1
+uniform sampler2D source_depth; //texunit:2
+
+layout(location = 0) out vec4 frag_color;
+
+void main() {
+
+ float strength = texture(source_sss,uv_interp).r;
+ strength*=strength; //stored as sqrt
+
+ // Fetch color of current pixel:
+ vec4 base_color = texture(source_diffuse, uv_interp);
+
+
+ if (strength>0.0) {
+
+
+ // Fetch linear depth of current pixel:
+ float depth = texture(source_depth, uv_interp).r * 2.0 - 1.0;
+#ifdef USE_ORTHOGONAL_PROJECTION
+ depth = ((depth + (camera_z_far + camera_z_near)/(camera_z_far - camera_z_near)) * (camera_z_far - camera_z_near))/2.0;
+ float scale = unit_size; //remember depth is negative by default in OpenGL
+#else
+ depth = 2.0 * camera_z_near * camera_z_far / (camera_z_far + camera_z_near - depth * (camera_z_far - camera_z_near));
+ float scale = unit_size / depth; //remember depth is negative by default in OpenGL
+#endif
+
+
+
+ // Calculate the final step to fetch the surrounding pixels:
+ vec2 step = max_radius * scale * dir;
+ step *= strength; // Modulate it using the alpha channel.
+ step *= 1.0 / 3.0; // Divide by 3 as the kernels range from -3 to 3.
+
+ // Accumulate the center sample:
+ vec3 color_accum = base_color.rgb;
+ color_accum *= kernel[0].x;
+#ifdef ENABLE_STRENGTH_WEIGHTING
+ float color_weight = kernel[0].x;
+#endif
+
+ // Accumulate the other samples:
+ for (int i = 1; i < kernel_size; i++) {
+ // Fetch color and depth for current sample:
+ vec2 offset = uv_interp + kernel[i].y * step;
+ vec3 color = texture(source_diffuse, offset).rgb;
+
+#ifdef ENABLE_FOLLOW_SURFACE
+ // If the difference in depth is huge, we lerp color back to "colorM":
+ float depth_cmp = texture(source_depth, offset).r *2.0 - 1.0;
+
+#ifdef USE_ORTHOGONAL_PROJECTION
+ depth_cmp = ((depth_cmp + (camera_z_far + camera_z_near)/(camera_z_far - camera_z_near)) * (camera_z_far - camera_z_near))/2.0;
+#else
+ depth_cmp = 2.0 * camera_z_near * camera_z_far / (camera_z_far + camera_z_near - depth_cmp * (camera_z_far - camera_z_near));
+#endif
+
+ float s = clamp(300.0f * scale *
+ max_radius * abs(depth - depth_cmp),0.0,1.0);
+ color = mix(color, base_color.rgb, s);
+#endif
+
+ // Accumulate:
+ color*=kernel[i].x;
+
+#ifdef ENABLE_STRENGTH_WEIGHTING
+ float color_s = texture(source_sss, offset).r;
+ color_weight+=color_s * kernel[i].x;
+ color*=color_s;
+#endif
+ color_accum += color;
+
+ }
+
+#ifdef ENABLE_STRENGTH_WEIGHTING
+ color_accum/=color_weight;
+#endif
+ frag_color = vec4(color_accum,base_color.a); //keep alpha (used for SSAO)
+ } else {
+ frag_color = base_color;
+ }
+}
diff --git a/drivers/gles2/shaders/tonemap.glsl b/drivers/gles2/shaders/tonemap.glsl
new file mode 100644
index 0000000000..2f671158b2
--- /dev/null
+++ b/drivers/gles2/shaders/tonemap.glsl
@@ -0,0 +1,323 @@
+[vertex]
+
+
+layout(location=0) in highp vec4 vertex_attrib;
+layout(location=4) in vec2 uv_in;
+
+out vec2 uv_interp;
+
+void main() {
+
+ gl_Position = vertex_attrib;
+ uv_interp = uv_in;
+#ifdef V_FLIP
+ uv_interp.y = 1.0-uv_interp.y;
+#endif
+
+}
+
+[fragment]
+
+#if !defined(GLES_OVER_GL)
+precision mediump float;
+#endif
+
+
+in vec2 uv_interp;
+
+uniform highp sampler2D source; //texunit:0
+
+uniform float exposure;
+uniform float white;
+
+#ifdef USE_AUTO_EXPOSURE
+
+uniform highp sampler2D source_auto_exposure; //texunit:1
+uniform highp float auto_exposure_grey;
+
+#endif
+
+#if defined(USE_GLOW_LEVEL1) || defined(USE_GLOW_LEVEL2) || defined(USE_GLOW_LEVEL3) || defined(USE_GLOW_LEVEL4) || defined(USE_GLOW_LEVEL5) || defined(USE_GLOW_LEVEL6) || defined(USE_GLOW_LEVEL7)
+
+uniform highp sampler2D source_glow; //texunit:2
+uniform highp float glow_intensity;
+
+#endif
+
+#ifdef USE_BCS
+
+uniform vec3 bcs;
+
+#endif
+
+#ifdef USE_COLOR_CORRECTION
+
+uniform sampler2D color_correction; //texunit:3
+
+#endif
+
+
+layout(location = 0) out vec4 frag_color;
+
+#ifdef USE_GLOW_FILTER_BICUBIC
+
+// w0, w1, w2, and w3 are the four cubic B-spline basis functions
+float w0(float a)
+{
+ return (1.0/6.0)*(a*(a*(-a + 3.0) - 3.0) + 1.0);
+}
+
+float w1(float a)
+{
+ return (1.0/6.0)*(a*a*(3.0*a - 6.0) + 4.0);
+}
+
+float w2(float a)
+{
+ return (1.0/6.0)*(a*(a*(-3.0*a + 3.0) + 3.0) + 1.0);
+}
+
+float w3(float a)
+{
+ return (1.0/6.0)*(a*a*a);
+}
+
+// g0 and g1 are the two amplitude functions
+float g0(float a)
+{
+ return w0(a) + w1(a);
+}
+
+float g1(float a)
+{
+ return w2(a) + w3(a);
+}
+
+// h0 and h1 are the two offset functions
+float h0(float a)
+{
+ return -1.0 + w1(a) / (w0(a) + w1(a));
+}
+
+float h1(float a)
+{
+ return 1.0 + w3(a) / (w2(a) + w3(a));
+}
+
+uniform ivec2 glow_texture_size;
+
+vec4 texture2D_bicubic(sampler2D tex, vec2 uv,int p_lod)
+{
+ float lod=float(p_lod);
+ vec2 tex_size = vec2(glow_texture_size >> p_lod);
+ vec2 pixel_size =1.0/tex_size;
+ uv = uv*tex_size + 0.5;
+ vec2 iuv = floor( uv );
+ vec2 fuv = fract( uv );
+
+ float g0x = g0(fuv.x);
+ float g1x = g1(fuv.x);
+ float h0x = h0(fuv.x);
+ float h1x = h1(fuv.x);
+ float h0y = h0(fuv.y);
+ float h1y = h1(fuv.y);
+
+ vec2 p0 = (vec2(iuv.x + h0x, iuv.y + h0y) - 0.5) * pixel_size;
+ vec2 p1 = (vec2(iuv.x + h1x, iuv.y + h0y) - 0.5) * pixel_size;
+ vec2 p2 = (vec2(iuv.x + h0x, iuv.y + h1y) - 0.5) * pixel_size;
+ vec2 p3 = (vec2(iuv.x + h1x, iuv.y + h1y) - 0.5) * pixel_size;
+
+ return g0(fuv.y) * (g0x * textureLod(tex, p0,lod) +
+ g1x * textureLod(tex, p1,lod)) +
+ g1(fuv.y) * (g0x * textureLod(tex, p2,lod) +
+ g1x * textureLod(tex, p3,lod));
+}
+
+
+
+#define GLOW_TEXTURE_SAMPLE(m_tex,m_uv,m_lod) texture2D_bicubic(m_tex,m_uv,m_lod)
+
+#else
+
+#define GLOW_TEXTURE_SAMPLE(m_tex,m_uv,m_lod) textureLod(m_tex,m_uv,float(m_lod))
+
+#endif
+
+
+vec3 tonemap_filmic(vec3 color,float white) {
+
+ float A = 0.15;
+ float B = 0.50;
+ float C = 0.10;
+ float D = 0.20;
+ float E = 0.02;
+ float F = 0.30;
+ float W = 11.2;
+
+ vec3 coltn = ((color*(A*color+C*B)+D*E)/(color*(A*color+B)+D*F))-E/F;
+ float whitetn = ((white*(A*white+C*B)+D*E)/(white*(A*white+B)+D*F))-E/F;
+
+ return coltn/whitetn;
+
+}
+
+vec3 tonemap_aces(vec3 color) {
+ float a = 2.51f;
+ float b = 0.03f;
+ float c = 2.43f;
+ float d = 0.59f;
+ float e = 0.14f;
+ return color = clamp((color*(a*color+b))/(color*(c*color+d)+e),vec3(0.0),vec3(1.0));
+}
+
+vec3 tonemap_reindhart(vec3 color,float white) {
+
+ return ( color * ( 1.0 + ( color / ( white) ) ) ) / ( 1.0 + color );
+}
+
+void main() {
+
+ vec4 color = textureLod(source, uv_interp, 0.0);
+
+#ifdef USE_AUTO_EXPOSURE
+
+ color/=texelFetch(source_auto_exposure,ivec2(0,0),0).r/auto_exposure_grey;
+#endif
+
+ color*=exposure;
+
+#if defined(USE_GLOW_LEVEL1) || defined(USE_GLOW_LEVEL2) || defined(USE_GLOW_LEVEL3) || defined(USE_GLOW_LEVEL4) || defined(USE_GLOW_LEVEL5) || defined(USE_GLOW_LEVEL6) || defined(USE_GLOW_LEVEL7)
+#define USING_GLOW
+#endif
+
+#if defined(USING_GLOW)
+ vec3 glow = vec3(0.0);
+
+#ifdef USE_GLOW_LEVEL1
+
+ glow+=GLOW_TEXTURE_SAMPLE(source_glow,uv_interp,1).rgb;
+#endif
+
+#ifdef USE_GLOW_LEVEL2
+ glow+=GLOW_TEXTURE_SAMPLE(source_glow,uv_interp,2).rgb;
+#endif
+
+#ifdef USE_GLOW_LEVEL3
+ glow+=GLOW_TEXTURE_SAMPLE(source_glow,uv_interp,3).rgb;
+#endif
+
+#ifdef USE_GLOW_LEVEL4
+ glow+=GLOW_TEXTURE_SAMPLE(source_glow,uv_interp,4).rgb;
+#endif
+
+#ifdef USE_GLOW_LEVEL5
+ glow+=GLOW_TEXTURE_SAMPLE(source_glow,uv_interp,5).rgb;
+#endif
+
+#ifdef USE_GLOW_LEVEL6
+ glow+=GLOW_TEXTURE_SAMPLE(source_glow,uv_interp,6).rgb;
+#endif
+
+#ifdef USE_GLOW_LEVEL7
+ glow+=GLOW_TEXTURE_SAMPLE(source_glow,uv_interp,7).rgb;
+#endif
+
+
+ glow *= glow_intensity;
+
+#endif
+
+
+#ifdef USE_REINDHART_TONEMAPPER
+
+ color.rgb = tonemap_reindhart(color.rgb,white);
+
+# if defined(USING_GLOW)
+ glow = tonemap_reindhart(glow,white);
+# endif
+
+#endif
+
+#ifdef USE_FILMIC_TONEMAPPER
+
+ color.rgb = tonemap_filmic(color.rgb,white);
+
+# if defined(USING_GLOW)
+ glow = tonemap_filmic(glow,white);
+# endif
+
+#endif
+
+#ifdef USE_ACES_TONEMAPPER
+
+ color.rgb = tonemap_aces(color.rgb);
+
+# if defined(USING_GLOW)
+ glow = tonemap_aces(glow);
+# endif
+
+#endif
+
+ //regular Linear -> SRGB conversion
+ vec3 a = vec3(0.055);
+ color.rgb = mix( (vec3(1.0)+a)*pow(color.rgb,vec3(1.0/2.4))-a , 12.92*color.rgb , lessThan(color.rgb,vec3(0.0031308)));
+
+#if defined(USING_GLOW)
+ glow = mix( (vec3(1.0)+a)*pow(glow,vec3(1.0/2.4))-a , 12.92*glow , lessThan(glow,vec3(0.0031308)));
+#endif
+
+//glow needs to be added in SRGB space (together with image space effects)
+
+ color.rgb = clamp(color.rgb,0.0,1.0);
+
+#if defined(USING_GLOW)
+ glow = clamp(glow,0.0,1.0);
+#endif
+
+#ifdef USE_GLOW_REPLACE
+
+ color.rgb = glow;
+
+#endif
+
+#ifdef USE_GLOW_SCREEN
+
+ color.rgb = max((color.rgb + glow) - (color.rgb * glow), vec3(0.0));
+
+#endif
+
+#ifdef USE_GLOW_SOFTLIGHT
+
+ {
+
+ glow = (glow * 0.5) + 0.5;
+ color.r = (glow.r <= 0.5) ? (color.r - (1.0 - 2.0 * glow.r) * color.r * (1.0 - color.r)) : (((glow.r > 0.5) && (color.r <= 0.25)) ? (color.r + (2.0 * glow.r - 1.0) * (4.0 * color.r * (4.0 * color.r + 1.0) * (color.r - 1.0) + 7.0 * color.r)) : (color.r + (2.0 * glow.r - 1.0) * (sqrt(color.r) - color.r)));
+ color.g = (glow.g <= 0.5) ? (color.g - (1.0 - 2.0 * glow.g) * color.g * (1.0 - color.g)) : (((glow.g > 0.5) && (color.g <= 0.25)) ? (color.g + (2.0 * glow.g - 1.0) * (4.0 * color.g * (4.0 * color.g + 1.0) * (color.g - 1.0) + 7.0 * color.g)) : (color.g + (2.0 * glow.g - 1.0) * (sqrt(color.g) - color.g)));
+ color.b = (glow.b <= 0.5) ? (color.b - (1.0 - 2.0 * glow.b) * color.b * (1.0 - color.b)) : (((glow.b > 0.5) && (color.b <= 0.25)) ? (color.b + (2.0 * glow.b - 1.0) * (4.0 * color.b * (4.0 * color.b + 1.0) * (color.b - 1.0) + 7.0 * color.b)) : (color.b + (2.0 * glow.b - 1.0) * (sqrt(color.b) - color.b)));
+ }
+
+#endif
+
+#if defined(USING_GLOW) && !defined(USE_GLOW_SCREEN) && !defined(USE_GLOW_SOFTLIGHT) && !defined(USE_GLOW_REPLACE)
+ //additive
+ color.rgb+=glow;
+#endif
+
+#ifdef USE_BCS
+
+ color.rgb = mix(vec3(0.0),color.rgb,bcs.x);
+ color.rgb = mix(vec3(0.5),color.rgb,bcs.y);
+ color.rgb = mix(vec3(dot(vec3(1.0),color.rgb)*0.33333),color.rgb,bcs.z);
+
+#endif
+
+#ifdef USE_COLOR_CORRECTION
+
+ color.r = texture(color_correction,vec2(color.r,0.0)).r;
+ color.g = texture(color_correction,vec2(color.g,0.0)).g;
+ color.b = texture(color_correction,vec2(color.b,0.0)).b;
+#endif
+
+
+ frag_color=vec4(color.rgb,1.0);
+}