summaryrefslogtreecommitdiff
path: root/drivers/builtin_openssl2/crypto/rand/md_rand.c
diff options
context:
space:
mode:
authormrezai <mhd.rezai@gmail.com>2016-04-10 17:48:59 +0430
committermrezai <mhd.rezai@gmail.com>2016-04-10 17:48:59 +0430
commitc860574d8ba246b5e2c59578f24accd2ace5e9bc (patch)
tree5c8f90fc94bc49da9b35c2f532f186aa0817e6bc /drivers/builtin_openssl2/crypto/rand/md_rand.c
parentd454e64f429affb89de036eed6daa5c6e5278492 (diff)
Update OpenSSL to version 1.0.1s
Diffstat (limited to 'drivers/builtin_openssl2/crypto/rand/md_rand.c')
-rw-r--r--drivers/builtin_openssl2/crypto/rand/md_rand.c853
1 files changed, 419 insertions, 434 deletions
diff --git a/drivers/builtin_openssl2/crypto/rand/md_rand.c b/drivers/builtin_openssl2/crypto/rand/md_rand.c
index aee1c30b0a..5c13d57765 100644
--- a/drivers/builtin_openssl2/crypto/rand/md_rand.c
+++ b/drivers/builtin_openssl2/crypto/rand/md_rand.c
@@ -5,21 +5,21 @@
* This package is an SSL implementation written
* by Eric Young (eay@cryptsoft.com).
* The implementation was written so as to conform with Netscapes SSL.
- *
+ *
* This library is free for commercial and non-commercial use as long as
* the following conditions are aheared to. The following conditions
* apply to all code found in this distribution, be it the RC4, RSA,
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
* included with this distribution is covered by the same copyright terms
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
- *
+ *
* Copyright remains Eric Young's, and as such any Copyright notices in
* the code are not to be removed.
* If this package is used in a product, Eric Young should be given attribution
* as the author of the parts of the library used.
* This can be in the form of a textual message at program startup or
* in documentation (online or textual) provided with the package.
- *
+ *
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
@@ -34,10 +34,10 @@
* Eric Young (eay@cryptsoft.com)"
* The word 'cryptographic' can be left out if the rouines from the library
* being used are not cryptographic related :-).
- * 4. If you include any Windows specific code (or a derivative thereof) from
+ * 4. If you include any Windows specific code (or a derivative thereof) from
* the apps directory (application code) you must include an acknowledgement:
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
- *
+ *
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
@@ -49,7 +49,7 @@
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
- *
+ *
* The licence and distribution terms for any publically available version or
* derivative of this code cannot be changed. i.e. this code cannot simply be
* copied and put under another distribution licence
@@ -63,7 +63,7 @@
* are met:
*
* 1. Redistributions of source code must retain the above copyright
- * notice, this list of conditions and the following disclaimer.
+ * notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
@@ -113,7 +113,7 @@
#ifdef MD_RAND_DEBUG
# ifndef NDEBUG
-# define NDEBUG
+# define NDEBUG
# endif
#endif
@@ -133,475 +133,460 @@
# define PREDICT
#endif
-/* #define PREDICT 1 */
+/* #define PREDICT 1 */
-#define STATE_SIZE 1023
-static int state_num=0,state_index=0;
-static unsigned char state[STATE_SIZE+MD_DIGEST_LENGTH];
+#define STATE_SIZE 1023
+static int state_num = 0, state_index = 0;
+static unsigned char state[STATE_SIZE + MD_DIGEST_LENGTH];
static unsigned char md[MD_DIGEST_LENGTH];
-static long md_count[2]={0,0};
-static double entropy=0;
-static int initialized=0;
+static long md_count[2] = { 0, 0 };
+
+static double entropy = 0;
+static int initialized = 0;
static unsigned int crypto_lock_rand = 0; /* may be set only when a thread
- * holds CRYPTO_LOCK_RAND
- * (to prevent double locking) */
+ * holds CRYPTO_LOCK_RAND (to
+ * prevent double locking) */
/* access to lockin_thread is synchronized by CRYPTO_LOCK_RAND2 */
-static CRYPTO_THREADID locking_threadid; /* valid iff crypto_lock_rand is set */
-
+/* valid iff crypto_lock_rand is set */
+static CRYPTO_THREADID locking_threadid;
#ifdef PREDICT
-int rand_predictable=0;
+int rand_predictable = 0;
#endif
-const char RAND_version[]="RAND" OPENSSL_VERSION_PTEXT;
+const char RAND_version[] = "RAND" OPENSSL_VERSION_PTEXT;
static void ssleay_rand_cleanup(void);
static void ssleay_rand_seed(const void *buf, int num);
static void ssleay_rand_add(const void *buf, int num, double add_entropy);
-static int ssleay_rand_bytes(unsigned char *buf, int num, int pseudo);
static int ssleay_rand_nopseudo_bytes(unsigned char *buf, int num);
static int ssleay_rand_pseudo_bytes(unsigned char *buf, int num);
static int ssleay_rand_status(void);
-RAND_METHOD rand_ssleay_meth={
- ssleay_rand_seed,
- ssleay_rand_nopseudo_bytes,
- ssleay_rand_cleanup,
- ssleay_rand_add,
- ssleay_rand_pseudo_bytes,
- ssleay_rand_status
- };
+RAND_METHOD rand_ssleay_meth = {
+ ssleay_rand_seed,
+ ssleay_rand_nopseudo_bytes,
+ ssleay_rand_cleanup,
+ ssleay_rand_add,
+ ssleay_rand_pseudo_bytes,
+ ssleay_rand_status
+};
RAND_METHOD *RAND_SSLeay(void)
- {
- return(&rand_ssleay_meth);
- }
+{
+ return (&rand_ssleay_meth);
+}
static void ssleay_rand_cleanup(void)
- {
- OPENSSL_cleanse(state,sizeof(state));
- state_num=0;
- state_index=0;
- OPENSSL_cleanse(md,MD_DIGEST_LENGTH);
- md_count[0]=0;
- md_count[1]=0;
- entropy=0;
- initialized=0;
- }
+{
+ OPENSSL_cleanse(state, sizeof(state));
+ state_num = 0;
+ state_index = 0;
+ OPENSSL_cleanse(md, MD_DIGEST_LENGTH);
+ md_count[0] = 0;
+ md_count[1] = 0;
+ entropy = 0;
+ initialized = 0;
+}
static void ssleay_rand_add(const void *buf, int num, double add)
- {
- int i,j,k,st_idx;
- long md_c[2];
- unsigned char local_md[MD_DIGEST_LENGTH];
- EVP_MD_CTX m;
- int do_not_lock;
-
- if (!num)
- return;
-
- /*
- * (Based on the rand(3) manpage)
- *
- * The input is chopped up into units of 20 bytes (or less for
- * the last block). Each of these blocks is run through the hash
- * function as follows: The data passed to the hash function
- * is the current 'md', the same number of bytes from the 'state'
- * (the location determined by in incremented looping index) as
- * the current 'block', the new key data 'block', and 'count'
- * (which is incremented after each use).
- * The result of this is kept in 'md' and also xored into the
- * 'state' at the same locations that were used as input into the
- * hash function.
- */
-
- /* check if we already have the lock */
- if (crypto_lock_rand)
- {
- CRYPTO_THREADID cur;
- CRYPTO_THREADID_current(&cur);
- CRYPTO_r_lock(CRYPTO_LOCK_RAND2);
- do_not_lock = !CRYPTO_THREADID_cmp(&locking_threadid, &cur);
- CRYPTO_r_unlock(CRYPTO_LOCK_RAND2);
- }
- else
- do_not_lock = 0;
-
- if (!do_not_lock) CRYPTO_w_lock(CRYPTO_LOCK_RAND);
- st_idx=state_index;
-
- /* use our own copies of the counters so that even
- * if a concurrent thread seeds with exactly the
- * same data and uses the same subarray there's _some_
- * difference */
- md_c[0] = md_count[0];
- md_c[1] = md_count[1];
-
- memcpy(local_md, md, sizeof md);
-
- /* state_index <= state_num <= STATE_SIZE */
- state_index += num;
- if (state_index >= STATE_SIZE)
- {
- state_index%=STATE_SIZE;
- state_num=STATE_SIZE;
- }
- else if (state_num < STATE_SIZE)
- {
- if (state_index > state_num)
- state_num=state_index;
- }
- /* state_index <= state_num <= STATE_SIZE */
-
- /* state[st_idx], ..., state[(st_idx + num - 1) % STATE_SIZE]
- * are what we will use now, but other threads may use them
- * as well */
-
- md_count[1] += (num / MD_DIGEST_LENGTH) + (num % MD_DIGEST_LENGTH > 0);
-
- if (!do_not_lock) CRYPTO_w_unlock(CRYPTO_LOCK_RAND);
-
- EVP_MD_CTX_init(&m);
- for (i=0; i<num; i+=MD_DIGEST_LENGTH)
- {
- j=(num-i);
- j=(j > MD_DIGEST_LENGTH)?MD_DIGEST_LENGTH:j;
-
- MD_Init(&m);
- MD_Update(&m,local_md,MD_DIGEST_LENGTH);
- k=(st_idx+j)-STATE_SIZE;
- if (k > 0)
- {
- MD_Update(&m,&(state[st_idx]),j-k);
- MD_Update(&m,&(state[0]),k);
- }
- else
- MD_Update(&m,&(state[st_idx]),j);
-
- /* DO NOT REMOVE THE FOLLOWING CALL TO MD_Update()! */
- MD_Update(&m,buf,j);
- /* We know that line may cause programs such as
- purify and valgrind to complain about use of
- uninitialized data. The problem is not, it's
- with the caller. Removing that line will make
- sure you get really bad randomness and thereby
- other problems such as very insecure keys. */
-
- MD_Update(&m,(unsigned char *)&(md_c[0]),sizeof(md_c));
- MD_Final(&m,local_md);
- md_c[1]++;
-
- buf=(const char *)buf + j;
-
- for (k=0; k<j; k++)
- {
- /* Parallel threads may interfere with this,
- * but always each byte of the new state is
- * the XOR of some previous value of its
- * and local_md (itermediate values may be lost).
- * Alway using locking could hurt performance more
- * than necessary given that conflicts occur only
- * when the total seeding is longer than the random
- * state. */
- state[st_idx++]^=local_md[k];
- if (st_idx >= STATE_SIZE)
- st_idx=0;
- }
- }
- EVP_MD_CTX_cleanup(&m);
-
- if (!do_not_lock) CRYPTO_w_lock(CRYPTO_LOCK_RAND);
- /* Don't just copy back local_md into md -- this could mean that
- * other thread's seeding remains without effect (except for
- * the incremented counter). By XORing it we keep at least as
- * much entropy as fits into md. */
- for (k = 0; k < (int)sizeof(md); k++)
- {
- md[k] ^= local_md[k];
- }
- if (entropy < ENTROPY_NEEDED) /* stop counting when we have enough */
- entropy += add;
- if (!do_not_lock) CRYPTO_w_unlock(CRYPTO_LOCK_RAND);
-
+{
+ int i, j, k, st_idx;
+ long md_c[2];
+ unsigned char local_md[MD_DIGEST_LENGTH];
+ EVP_MD_CTX m;
+ int do_not_lock;
+
+ if (!num)
+ return;
+
+ /*
+ * (Based on the rand(3) manpage)
+ *
+ * The input is chopped up into units of 20 bytes (or less for
+ * the last block). Each of these blocks is run through the hash
+ * function as follows: The data passed to the hash function
+ * is the current 'md', the same number of bytes from the 'state'
+ * (the location determined by in incremented looping index) as
+ * the current 'block', the new key data 'block', and 'count'
+ * (which is incremented after each use).
+ * The result of this is kept in 'md' and also xored into the
+ * 'state' at the same locations that were used as input into the
+ * hash function.
+ */
+
+ /* check if we already have the lock */
+ if (crypto_lock_rand) {
+ CRYPTO_THREADID cur;
+ CRYPTO_THREADID_current(&cur);
+ CRYPTO_r_lock(CRYPTO_LOCK_RAND2);
+ do_not_lock = !CRYPTO_THREADID_cmp(&locking_threadid, &cur);
+ CRYPTO_r_unlock(CRYPTO_LOCK_RAND2);
+ } else
+ do_not_lock = 0;
+
+ if (!do_not_lock)
+ CRYPTO_w_lock(CRYPTO_LOCK_RAND);
+ st_idx = state_index;
+
+ /*
+ * use our own copies of the counters so that even if a concurrent thread
+ * seeds with exactly the same data and uses the same subarray there's
+ * _some_ difference
+ */
+ md_c[0] = md_count[0];
+ md_c[1] = md_count[1];
+
+ memcpy(local_md, md, sizeof md);
+
+ /* state_index <= state_num <= STATE_SIZE */
+ state_index += num;
+ if (state_index >= STATE_SIZE) {
+ state_index %= STATE_SIZE;
+ state_num = STATE_SIZE;
+ } else if (state_num < STATE_SIZE) {
+ if (state_index > state_num)
+ state_num = state_index;
+ }
+ /* state_index <= state_num <= STATE_SIZE */
+
+ /*
+ * state[st_idx], ..., state[(st_idx + num - 1) % STATE_SIZE] are what we
+ * will use now, but other threads may use them as well
+ */
+
+ md_count[1] += (num / MD_DIGEST_LENGTH) + (num % MD_DIGEST_LENGTH > 0);
+
+ if (!do_not_lock)
+ CRYPTO_w_unlock(CRYPTO_LOCK_RAND);
+
+ EVP_MD_CTX_init(&m);
+ for (i = 0; i < num; i += MD_DIGEST_LENGTH) {
+ j = (num - i);
+ j = (j > MD_DIGEST_LENGTH) ? MD_DIGEST_LENGTH : j;
+
+ MD_Init(&m);
+ MD_Update(&m, local_md, MD_DIGEST_LENGTH);
+ k = (st_idx + j) - STATE_SIZE;
+ if (k > 0) {
+ MD_Update(&m, &(state[st_idx]), j - k);
+ MD_Update(&m, &(state[0]), k);
+ } else
+ MD_Update(&m, &(state[st_idx]), j);
+
+ /* DO NOT REMOVE THE FOLLOWING CALL TO MD_Update()! */
+ MD_Update(&m, buf, j);
+ /*
+ * We know that line may cause programs such as purify and valgrind
+ * to complain about use of uninitialized data. The problem is not,
+ * it's with the caller. Removing that line will make sure you get
+ * really bad randomness and thereby other problems such as very
+ * insecure keys.
+ */
+
+ MD_Update(&m, (unsigned char *)&(md_c[0]), sizeof(md_c));
+ MD_Final(&m, local_md);
+ md_c[1]++;
+
+ buf = (const char *)buf + j;
+
+ for (k = 0; k < j; k++) {
+ /*
+ * Parallel threads may interfere with this, but always each byte
+ * of the new state is the XOR of some previous value of its and
+ * local_md (itermediate values may be lost). Alway using locking
+ * could hurt performance more than necessary given that
+ * conflicts occur only when the total seeding is longer than the
+ * random state.
+ */
+ state[st_idx++] ^= local_md[k];
+ if (st_idx >= STATE_SIZE)
+ st_idx = 0;
+ }
+ }
+ EVP_MD_CTX_cleanup(&m);
+
+ if (!do_not_lock)
+ CRYPTO_w_lock(CRYPTO_LOCK_RAND);
+ /*
+ * Don't just copy back local_md into md -- this could mean that other
+ * thread's seeding remains without effect (except for the incremented
+ * counter). By XORing it we keep at least as much entropy as fits into
+ * md.
+ */
+ for (k = 0; k < (int)sizeof(md); k++) {
+ md[k] ^= local_md[k];
+ }
+ if (entropy < ENTROPY_NEEDED) /* stop counting when we have enough */
+ entropy += add;
+ if (!do_not_lock)
+ CRYPTO_w_unlock(CRYPTO_LOCK_RAND);
+
#if !defined(OPENSSL_THREADS) && !defined(OPENSSL_SYS_WIN32)
- assert(md_c[1] == md_count[1]);
+ assert(md_c[1] == md_count[1]);
#endif
- }
+}
static void ssleay_rand_seed(const void *buf, int num)
- {
- ssleay_rand_add(buf, num, (double)num);
- }
-
-static int ssleay_rand_bytes(unsigned char *buf, int num, int pseudo)
- {
- static volatile int stirred_pool = 0;
- int i,j,k,st_num,st_idx;
- int num_ceil;
- int ok;
- long md_c[2];
- unsigned char local_md[MD_DIGEST_LENGTH];
- EVP_MD_CTX m;
+{
+ ssleay_rand_add(buf, num, (double)num);
+}
+
+int ssleay_rand_bytes(unsigned char *buf, int num, int pseudo, int lock)
+{
+ static volatile int stirred_pool = 0;
+ int i, j, k, st_num, st_idx;
+ int num_ceil;
+ int ok;
+ long md_c[2];
+ unsigned char local_md[MD_DIGEST_LENGTH];
+ EVP_MD_CTX m;
#ifndef GETPID_IS_MEANINGLESS
- pid_t curr_pid = getpid();
+ pid_t curr_pid = getpid();
#endif
- int do_stir_pool = 0;
+ int do_stir_pool = 0;
#ifdef PREDICT
- if (rand_predictable)
- {
- static unsigned char val=0;
-
- for (i=0; i<num; i++)
- buf[i]=val++;
- return(1);
- }
-#endif
+ if (rand_predictable) {
+ static unsigned char val = 0;
- if (num <= 0)
- return 1;
-
- EVP_MD_CTX_init(&m);
- /* round upwards to multiple of MD_DIGEST_LENGTH/2 */
- num_ceil = (1 + (num-1)/(MD_DIGEST_LENGTH/2)) * (MD_DIGEST_LENGTH/2);
-
- /*
- * (Based on the rand(3) manpage:)
- *
- * For each group of 10 bytes (or less), we do the following:
- *
- * Input into the hash function the local 'md' (which is initialized from
- * the global 'md' before any bytes are generated), the bytes that are to
- * be overwritten by the random bytes, and bytes from the 'state'
- * (incrementing looping index). From this digest output (which is kept
- * in 'md'), the top (up to) 10 bytes are returned to the caller and the
- * bottom 10 bytes are xored into the 'state'.
- *
- * Finally, after we have finished 'num' random bytes for the
- * caller, 'count' (which is incremented) and the local and global 'md'
- * are fed into the hash function and the results are kept in the
- * global 'md'.
- */
-#ifdef OPENSSL_FIPS
- /* NB: in FIPS mode we are already under a lock */
- if (!FIPS_mode())
+ for (i = 0; i < num; i++)
+ buf[i] = val++;
+ return (1);
+ }
#endif
- CRYPTO_w_lock(CRYPTO_LOCK_RAND);
-
- /* prevent ssleay_rand_bytes() from trying to obtain the lock again */
- CRYPTO_w_lock(CRYPTO_LOCK_RAND2);
- CRYPTO_THREADID_current(&locking_threadid);
- CRYPTO_w_unlock(CRYPTO_LOCK_RAND2);
- crypto_lock_rand = 1;
-
- if (!initialized)
- {
- RAND_poll();
- initialized = 1;
- }
-
- if (!stirred_pool)
- do_stir_pool = 1;
-
- ok = (entropy >= ENTROPY_NEEDED);
- if (!ok)
- {
- /* If the PRNG state is not yet unpredictable, then seeing
- * the PRNG output may help attackers to determine the new
- * state; thus we have to decrease the entropy estimate.
- * Once we've had enough initial seeding we don't bother to
- * adjust the entropy count, though, because we're not ambitious
- * to provide *information-theoretic* randomness.
- *
- * NOTE: This approach fails if the program forks before
- * we have enough entropy. Entropy should be collected
- * in a separate input pool and be transferred to the
- * output pool only when the entropy limit has been reached.
- */
- entropy -= num;
- if (entropy < 0)
- entropy = 0;
- }
-
- if (do_stir_pool)
- {
- /* In the output function only half of 'md' remains secret,
- * so we better make sure that the required entropy gets
- * 'evenly distributed' through 'state', our randomness pool.
- * The input function (ssleay_rand_add) chains all of 'md',
- * which makes it more suitable for this purpose.
- */
-
- int n = STATE_SIZE; /* so that the complete pool gets accessed */
- while (n > 0)
- {
+
+ if (num <= 0)
+ return 1;
+
+ EVP_MD_CTX_init(&m);
+ /* round upwards to multiple of MD_DIGEST_LENGTH/2 */
+ num_ceil =
+ (1 + (num - 1) / (MD_DIGEST_LENGTH / 2)) * (MD_DIGEST_LENGTH / 2);
+
+ /*
+ * (Based on the rand(3) manpage:)
+ *
+ * For each group of 10 bytes (or less), we do the following:
+ *
+ * Input into the hash function the local 'md' (which is initialized from
+ * the global 'md' before any bytes are generated), the bytes that are to
+ * be overwritten by the random bytes, and bytes from the 'state'
+ * (incrementing looping index). From this digest output (which is kept
+ * in 'md'), the top (up to) 10 bytes are returned to the caller and the
+ * bottom 10 bytes are xored into the 'state'.
+ *
+ * Finally, after we have finished 'num' random bytes for the
+ * caller, 'count' (which is incremented) and the local and global 'md'
+ * are fed into the hash function and the results are kept in the
+ * global 'md'.
+ */
+ if (lock)
+ CRYPTO_w_lock(CRYPTO_LOCK_RAND);
+
+ /* prevent ssleay_rand_bytes() from trying to obtain the lock again */
+ CRYPTO_w_lock(CRYPTO_LOCK_RAND2);
+ CRYPTO_THREADID_current(&locking_threadid);
+ CRYPTO_w_unlock(CRYPTO_LOCK_RAND2);
+ crypto_lock_rand = 1;
+
+ if (!initialized) {
+ RAND_poll();
+ initialized = 1;
+ }
+
+ if (!stirred_pool)
+ do_stir_pool = 1;
+
+ ok = (entropy >= ENTROPY_NEEDED);
+ if (!ok) {
+ /*
+ * If the PRNG state is not yet unpredictable, then seeing the PRNG
+ * output may help attackers to determine the new state; thus we have
+ * to decrease the entropy estimate. Once we've had enough initial
+ * seeding we don't bother to adjust the entropy count, though,
+ * because we're not ambitious to provide *information-theoretic*
+ * randomness. NOTE: This approach fails if the program forks before
+ * we have enough entropy. Entropy should be collected in a separate
+ * input pool and be transferred to the output pool only when the
+ * entropy limit has been reached.
+ */
+ entropy -= num;
+ if (entropy < 0)
+ entropy = 0;
+ }
+
+ if (do_stir_pool) {
+ /*
+ * In the output function only half of 'md' remains secret, so we
+ * better make sure that the required entropy gets 'evenly
+ * distributed' through 'state', our randomness pool. The input
+ * function (ssleay_rand_add) chains all of 'md', which makes it more
+ * suitable for this purpose.
+ */
+
+ int n = STATE_SIZE; /* so that the complete pool gets accessed */
+ while (n > 0) {
#if MD_DIGEST_LENGTH > 20
# error "Please adjust DUMMY_SEED."
#endif
#define DUMMY_SEED "...................." /* at least MD_DIGEST_LENGTH */
- /* Note that the seed does not matter, it's just that
- * ssleay_rand_add expects to have something to hash. */
- ssleay_rand_add(DUMMY_SEED, MD_DIGEST_LENGTH, 0.0);
- n -= MD_DIGEST_LENGTH;
- }
- if (ok)
- stirred_pool = 1;
- }
-
- st_idx=state_index;
- st_num=state_num;
- md_c[0] = md_count[0];
- md_c[1] = md_count[1];
- memcpy(local_md, md, sizeof md);
-
- state_index+=num_ceil;
- if (state_index > state_num)
- state_index %= state_num;
-
- /* state[st_idx], ..., state[(st_idx + num_ceil - 1) % st_num]
- * are now ours (but other threads may use them too) */
-
- md_count[0] += 1;
-
- /* before unlocking, we must clear 'crypto_lock_rand' */
- crypto_lock_rand = 0;
-#ifdef OPENSSL_FIPS
- if (!FIPS_mode())
-#endif
- CRYPTO_w_unlock(CRYPTO_LOCK_RAND);
-
- while (num > 0)
- {
- /* num_ceil -= MD_DIGEST_LENGTH/2 */
- j=(num >= MD_DIGEST_LENGTH/2)?MD_DIGEST_LENGTH/2:num;
- num-=j;
- MD_Init(&m);
+ /*
+ * Note that the seed does not matter, it's just that
+ * ssleay_rand_add expects to have something to hash.
+ */
+ ssleay_rand_add(DUMMY_SEED, MD_DIGEST_LENGTH, 0.0);
+ n -= MD_DIGEST_LENGTH;
+ }
+ if (ok)
+ stirred_pool = 1;
+ }
+
+ st_idx = state_index;
+ st_num = state_num;
+ md_c[0] = md_count[0];
+ md_c[1] = md_count[1];
+ memcpy(local_md, md, sizeof md);
+
+ state_index += num_ceil;
+ if (state_index > state_num)
+ state_index %= state_num;
+
+ /*
+ * state[st_idx], ..., state[(st_idx + num_ceil - 1) % st_num] are now
+ * ours (but other threads may use them too)
+ */
+
+ md_count[0] += 1;
+
+ /* before unlocking, we must clear 'crypto_lock_rand' */
+ crypto_lock_rand = 0;
+ if (lock)
+ CRYPTO_w_unlock(CRYPTO_LOCK_RAND);
+
+ while (num > 0) {
+ /* num_ceil -= MD_DIGEST_LENGTH/2 */
+ j = (num >= MD_DIGEST_LENGTH / 2) ? MD_DIGEST_LENGTH / 2 : num;
+ num -= j;
+ MD_Init(&m);
#ifndef GETPID_IS_MEANINGLESS
- if (curr_pid) /* just in the first iteration to save time */
- {
- MD_Update(&m,(unsigned char*)&curr_pid,sizeof curr_pid);
- curr_pid = 0;
- }
+ if (curr_pid) { /* just in the first iteration to save time */
+ MD_Update(&m, (unsigned char *)&curr_pid, sizeof curr_pid);
+ curr_pid = 0;
+ }
#endif
- MD_Update(&m,local_md,MD_DIGEST_LENGTH);
- MD_Update(&m,(unsigned char *)&(md_c[0]),sizeof(md_c));
-
-#ifndef PURIFY /* purify complains */
- /* The following line uses the supplied buffer as a small
- * source of entropy: since this buffer is often uninitialised
- * it may cause programs such as purify or valgrind to
- * complain. So for those builds it is not used: the removal
- * of such a small source of entropy has negligible impact on
- * security.
- */
- MD_Update(&m,buf,j);
+ MD_Update(&m, local_md, MD_DIGEST_LENGTH);
+ MD_Update(&m, (unsigned char *)&(md_c[0]), sizeof(md_c));
+
+#ifndef PURIFY /* purify complains */
+ /*
+ * The following line uses the supplied buffer as a small source of
+ * entropy: since this buffer is often uninitialised it may cause
+ * programs such as purify or valgrind to complain. So for those
+ * builds it is not used: the removal of such a small source of
+ * entropy has negligible impact on security.
+ */
+ MD_Update(&m, buf, j);
#endif
- k=(st_idx+MD_DIGEST_LENGTH/2)-st_num;
- if (k > 0)
- {
- MD_Update(&m,&(state[st_idx]),MD_DIGEST_LENGTH/2-k);
- MD_Update(&m,&(state[0]),k);
- }
- else
- MD_Update(&m,&(state[st_idx]),MD_DIGEST_LENGTH/2);
- MD_Final(&m,local_md);
-
- for (i=0; i<MD_DIGEST_LENGTH/2; i++)
- {
- state[st_idx++]^=local_md[i]; /* may compete with other threads */
- if (st_idx >= st_num)
- st_idx=0;
- if (i < j)
- *(buf++)=local_md[i+MD_DIGEST_LENGTH/2];
- }
- }
-
- MD_Init(&m);
- MD_Update(&m,(unsigned char *)&(md_c[0]),sizeof(md_c));
- MD_Update(&m,local_md,MD_DIGEST_LENGTH);
-#ifdef OPENSSL_FIPS
- if (!FIPS_mode())
-#endif
- CRYPTO_w_lock(CRYPTO_LOCK_RAND);
- MD_Update(&m,md,MD_DIGEST_LENGTH);
- MD_Final(&m,md);
-#ifdef OPENSSL_FIPS
- if (!FIPS_mode())
-#endif
- CRYPTO_w_unlock(CRYPTO_LOCK_RAND);
-
- EVP_MD_CTX_cleanup(&m);
- if (ok)
- return(1);
- else if (pseudo)
- return 0;
- else
- {
- RANDerr(RAND_F_SSLEAY_RAND_BYTES,RAND_R_PRNG_NOT_SEEDED);
- ERR_add_error_data(1, "You need to read the OpenSSL FAQ, "
- "http://www.openssl.org/support/faq.html");
- return(0);
- }
- }
+ k = (st_idx + MD_DIGEST_LENGTH / 2) - st_num;
+ if (k > 0) {
+ MD_Update(&m, &(state[st_idx]), MD_DIGEST_LENGTH / 2 - k);
+ MD_Update(&m, &(state[0]), k);
+ } else
+ MD_Update(&m, &(state[st_idx]), MD_DIGEST_LENGTH / 2);
+ MD_Final(&m, local_md);
+
+ for (i = 0; i < MD_DIGEST_LENGTH / 2; i++) {
+ /* may compete with other threads */
+ state[st_idx++] ^= local_md[i];
+ if (st_idx >= st_num)
+ st_idx = 0;
+ if (i < j)
+ *(buf++) = local_md[i + MD_DIGEST_LENGTH / 2];
+ }
+ }
+
+ MD_Init(&m);
+ MD_Update(&m, (unsigned char *)&(md_c[0]), sizeof(md_c));
+ MD_Update(&m, local_md, MD_DIGEST_LENGTH);
+ if (lock)
+ CRYPTO_w_lock(CRYPTO_LOCK_RAND);
+ MD_Update(&m, md, MD_DIGEST_LENGTH);
+ MD_Final(&m, md);
+ if (lock)
+ CRYPTO_w_unlock(CRYPTO_LOCK_RAND);
+
+ EVP_MD_CTX_cleanup(&m);
+ if (ok)
+ return (1);
+ else if (pseudo)
+ return 0;
+ else {
+ RANDerr(RAND_F_SSLEAY_RAND_BYTES, RAND_R_PRNG_NOT_SEEDED);
+ ERR_add_error_data(1, "You need to read the OpenSSL FAQ, "
+ "http://www.openssl.org/support/faq.html");
+ return (0);
+ }
+}
static int ssleay_rand_nopseudo_bytes(unsigned char *buf, int num)
- {
- return ssleay_rand_bytes(buf, num, 0);
- }
+{
+ return ssleay_rand_bytes(buf, num, 0, 1);
+}
-/* pseudo-random bytes that are guaranteed to be unique but not
- unpredictable */
-static int ssleay_rand_pseudo_bytes(unsigned char *buf, int num)
- {
- return ssleay_rand_bytes(buf, num, 1);
- }
+/*
+ * pseudo-random bytes that are guaranteed to be unique but not unpredictable
+ */
+static int ssleay_rand_pseudo_bytes(unsigned char *buf, int num)
+{
+ return ssleay_rand_bytes(buf, num, 1, 1);
+}
static int ssleay_rand_status(void)
- {
- CRYPTO_THREADID cur;
- int ret;
- int do_not_lock;
-
- CRYPTO_THREADID_current(&cur);
- /* check if we already have the lock
- * (could happen if a RAND_poll() implementation calls RAND_status()) */
- if (crypto_lock_rand)
- {
- CRYPTO_r_lock(CRYPTO_LOCK_RAND2);
- do_not_lock = !CRYPTO_THREADID_cmp(&locking_threadid, &cur);
- CRYPTO_r_unlock(CRYPTO_LOCK_RAND2);
- }
- else
- do_not_lock = 0;
-
- if (!do_not_lock)
- {
- CRYPTO_w_lock(CRYPTO_LOCK_RAND);
-
- /* prevent ssleay_rand_bytes() from trying to obtain the lock again */
- CRYPTO_w_lock(CRYPTO_LOCK_RAND2);
- CRYPTO_THREADID_cpy(&locking_threadid, &cur);
- CRYPTO_w_unlock(CRYPTO_LOCK_RAND2);
- crypto_lock_rand = 1;
- }
-
- if (!initialized)
- {
- RAND_poll();
- initialized = 1;
- }
-
- ret = entropy >= ENTROPY_NEEDED;
-
- if (!do_not_lock)
- {
- /* before unlocking, we must clear 'crypto_lock_rand' */
- crypto_lock_rand = 0;
-
- CRYPTO_w_unlock(CRYPTO_LOCK_RAND);
- }
-
- return ret;
- }
+{
+ CRYPTO_THREADID cur;
+ int ret;
+ int do_not_lock;
+
+ CRYPTO_THREADID_current(&cur);
+ /*
+ * check if we already have the lock (could happen if a RAND_poll()
+ * implementation calls RAND_status())
+ */
+ if (crypto_lock_rand) {
+ CRYPTO_r_lock(CRYPTO_LOCK_RAND2);
+ do_not_lock = !CRYPTO_THREADID_cmp(&locking_threadid, &cur);
+ CRYPTO_r_unlock(CRYPTO_LOCK_RAND2);
+ } else
+ do_not_lock = 0;
+
+ if (!do_not_lock) {
+ CRYPTO_w_lock(CRYPTO_LOCK_RAND);
+
+ /*
+ * prevent ssleay_rand_bytes() from trying to obtain the lock again
+ */
+ CRYPTO_w_lock(CRYPTO_LOCK_RAND2);
+ CRYPTO_THREADID_cpy(&locking_threadid, &cur);
+ CRYPTO_w_unlock(CRYPTO_LOCK_RAND2);
+ crypto_lock_rand = 1;
+ }
+
+ if (!initialized) {
+ RAND_poll();
+ initialized = 1;
+ }
+
+ ret = entropy >= ENTROPY_NEEDED;
+
+ if (!do_not_lock) {
+ /* before unlocking, we must clear 'crypto_lock_rand' */
+ crypto_lock_rand = 0;
+
+ CRYPTO_w_unlock(CRYPTO_LOCK_RAND);
+ }
+
+ return ret;
+}