summaryrefslogtreecommitdiff
path: root/drivers/builtin_openssl2/crypto/modes/asm/ghash-s390x.pl
diff options
context:
space:
mode:
authormrezai <mhd.rezai@gmail.com>2016-04-15 19:03:35 +0430
committermrezai <mhd.rezai@gmail.com>2016-04-15 19:03:35 +0430
commite97922f22038e9049ed4c2db5b3736dfaa0edde3 (patch)
tree37e036a343e7482a387b7acd0a88509af78a69eb /drivers/builtin_openssl2/crypto/modes/asm/ghash-s390x.pl
parent880f4abda44a42532abb6f15999a90bc85f6264a (diff)
Update OpenSSL to version 1.0.2g
Diffstat (limited to 'drivers/builtin_openssl2/crypto/modes/asm/ghash-s390x.pl')
-rw-r--r--drivers/builtin_openssl2/crypto/modes/asm/ghash-s390x.pl262
1 files changed, 0 insertions, 262 deletions
diff --git a/drivers/builtin_openssl2/crypto/modes/asm/ghash-s390x.pl b/drivers/builtin_openssl2/crypto/modes/asm/ghash-s390x.pl
deleted file mode 100644
index 6a40d5d89c..0000000000
--- a/drivers/builtin_openssl2/crypto/modes/asm/ghash-s390x.pl
+++ /dev/null
@@ -1,262 +0,0 @@
-#!/usr/bin/env perl
-
-# ====================================================================
-# Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
-# project. The module is, however, dual licensed under OpenSSL and
-# CRYPTOGAMS licenses depending on where you obtain it. For further
-# details see http://www.openssl.org/~appro/cryptogams/.
-# ====================================================================
-
-# September 2010.
-#
-# The module implements "4-bit" GCM GHASH function and underlying
-# single multiplication operation in GF(2^128). "4-bit" means that it
-# uses 256 bytes per-key table [+128 bytes shared table]. Performance
-# was measured to be ~18 cycles per processed byte on z10, which is
-# almost 40% better than gcc-generated code. It should be noted that
-# 18 cycles is worse result than expected: loop is scheduled for 12
-# and the result should be close to 12. In the lack of instruction-
-# level profiling data it's impossible to tell why...
-
-# November 2010.
-#
-# Adapt for -m31 build. If kernel supports what's called "highgprs"
-# feature on Linux [see /proc/cpuinfo], it's possible to use 64-bit
-# instructions and achieve "64-bit" performance even in 31-bit legacy
-# application context. The feature is not specific to any particular
-# processor, as long as it's "z-CPU". Latter implies that the code
-# remains z/Architecture specific. On z990 it was measured to perform
-# 2.8x better than 32-bit code generated by gcc 4.3.
-
-# March 2011.
-#
-# Support for hardware KIMD-GHASH is verified to produce correct
-# result and therefore is engaged. On z196 it was measured to process
-# 8KB buffer ~7 faster than software implementation. It's not as
-# impressive for smaller buffer sizes and for smallest 16-bytes buffer
-# it's actually almost 2 times slower. Which is the reason why
-# KIMD-GHASH is not used in gcm_gmult_4bit.
-
-$flavour = shift;
-
-if ($flavour =~ /3[12]/) {
- $SIZE_T=4;
- $g="";
-} else {
- $SIZE_T=8;
- $g="g";
-}
-
-while (($output=shift) && ($output!~/^\w[\w\-]*\.\w+$/)) {}
-open STDOUT,">$output";
-
-$softonly=0;
-
-$Zhi="%r0";
-$Zlo="%r1";
-
-$Xi="%r2"; # argument block
-$Htbl="%r3";
-$inp="%r4";
-$len="%r5";
-
-$rem0="%r6"; # variables
-$rem1="%r7";
-$nlo="%r8";
-$nhi="%r9";
-$xi="%r10";
-$cnt="%r11";
-$tmp="%r12";
-$x78="%r13";
-$rem_4bit="%r14";
-
-$sp="%r15";
-
-$code.=<<___;
-.text
-
-.globl gcm_gmult_4bit
-.align 32
-gcm_gmult_4bit:
-___
-$code.=<<___ if(!$softonly && 0); # hardware is slow for single block...
- larl %r1,OPENSSL_s390xcap_P
- lg %r0,0(%r1)
- tmhl %r0,0x4000 # check for message-security-assist
- jz .Lsoft_gmult
- lghi %r0,0
- la %r1,16($sp)
- .long 0xb93e0004 # kimd %r0,%r4
- lg %r1,24($sp)
- tmhh %r1,0x4000 # check for function 65
- jz .Lsoft_gmult
- stg %r0,16($sp) # arrange 16 bytes of zero input
- stg %r0,24($sp)
- lghi %r0,65 # function 65
- la %r1,0($Xi) # H lies right after Xi in gcm128_context
- la $inp,16($sp)
- lghi $len,16
- .long 0xb93e0004 # kimd %r0,$inp
- brc 1,.-4 # pay attention to "partial completion"
- br %r14
-.align 32
-.Lsoft_gmult:
-___
-$code.=<<___;
- stm${g} %r6,%r14,6*$SIZE_T($sp)
-
- aghi $Xi,-1
- lghi $len,1
- lghi $x78,`0xf<<3`
- larl $rem_4bit,rem_4bit
-
- lg $Zlo,8+1($Xi) # Xi
- j .Lgmult_shortcut
-.type gcm_gmult_4bit,\@function
-.size gcm_gmult_4bit,(.-gcm_gmult_4bit)
-
-.globl gcm_ghash_4bit
-.align 32
-gcm_ghash_4bit:
-___
-$code.=<<___ if(!$softonly);
- larl %r1,OPENSSL_s390xcap_P
- lg %r0,0(%r1)
- tmhl %r0,0x4000 # check for message-security-assist
- jz .Lsoft_ghash
- lghi %r0,0
- la %r1,16($sp)
- .long 0xb93e0004 # kimd %r0,%r4
- lg %r1,24($sp)
- tmhh %r1,0x4000 # check for function 65
- jz .Lsoft_ghash
- lghi %r0,65 # function 65
- la %r1,0($Xi) # H lies right after Xi in gcm128_context
- .long 0xb93e0004 # kimd %r0,$inp
- brc 1,.-4 # pay attention to "partial completion"
- br %r14
-.align 32
-.Lsoft_ghash:
-___
-$code.=<<___ if ($flavour =~ /3[12]/);
- llgfr $len,$len
-___
-$code.=<<___;
- stm${g} %r6,%r14,6*$SIZE_T($sp)
-
- aghi $Xi,-1
- srlg $len,$len,4
- lghi $x78,`0xf<<3`
- larl $rem_4bit,rem_4bit
-
- lg $Zlo,8+1($Xi) # Xi
- lg $Zhi,0+1($Xi)
- lghi $tmp,0
-.Louter:
- xg $Zhi,0($inp) # Xi ^= inp
- xg $Zlo,8($inp)
- xgr $Zhi,$tmp
- stg $Zlo,8+1($Xi)
- stg $Zhi,0+1($Xi)
-
-.Lgmult_shortcut:
- lghi $tmp,0xf0
- sllg $nlo,$Zlo,4
- srlg $xi,$Zlo,8 # extract second byte
- ngr $nlo,$tmp
- lgr $nhi,$Zlo
- lghi $cnt,14
- ngr $nhi,$tmp
-
- lg $Zlo,8($nlo,$Htbl)
- lg $Zhi,0($nlo,$Htbl)
-
- sllg $nlo,$xi,4
- sllg $rem0,$Zlo,3
- ngr $nlo,$tmp
- ngr $rem0,$x78
- ngr $xi,$tmp
-
- sllg $tmp,$Zhi,60
- srlg $Zlo,$Zlo,4
- srlg $Zhi,$Zhi,4
- xg $Zlo,8($nhi,$Htbl)
- xg $Zhi,0($nhi,$Htbl)
- lgr $nhi,$xi
- sllg $rem1,$Zlo,3
- xgr $Zlo,$tmp
- ngr $rem1,$x78
- j .Lghash_inner
-.align 16
-.Lghash_inner:
- srlg $Zlo,$Zlo,4
- sllg $tmp,$Zhi,60
- xg $Zlo,8($nlo,$Htbl)
- srlg $Zhi,$Zhi,4
- llgc $xi,0($cnt,$Xi)
- xg $Zhi,0($nlo,$Htbl)
- sllg $nlo,$xi,4
- xg $Zhi,0($rem0,$rem_4bit)
- nill $nlo,0xf0
- sllg $rem0,$Zlo,3
- xgr $Zlo,$tmp
- ngr $rem0,$x78
- nill $xi,0xf0
-
- sllg $tmp,$Zhi,60
- srlg $Zlo,$Zlo,4
- srlg $Zhi,$Zhi,4
- xg $Zlo,8($nhi,$Htbl)
- xg $Zhi,0($nhi,$Htbl)
- lgr $nhi,$xi
- xg $Zhi,0($rem1,$rem_4bit)
- sllg $rem1,$Zlo,3
- xgr $Zlo,$tmp
- ngr $rem1,$x78
- brct $cnt,.Lghash_inner
-
- sllg $tmp,$Zhi,60
- srlg $Zlo,$Zlo,4
- srlg $Zhi,$Zhi,4
- xg $Zlo,8($nlo,$Htbl)
- xg $Zhi,0($nlo,$Htbl)
- sllg $xi,$Zlo,3
- xg $Zhi,0($rem0,$rem_4bit)
- xgr $Zlo,$tmp
- ngr $xi,$x78
-
- sllg $tmp,$Zhi,60
- srlg $Zlo,$Zlo,4
- srlg $Zhi,$Zhi,4
- xg $Zlo,8($nhi,$Htbl)
- xg $Zhi,0($nhi,$Htbl)
- xgr $Zlo,$tmp
- xg $Zhi,0($rem1,$rem_4bit)
-
- lg $tmp,0($xi,$rem_4bit)
- la $inp,16($inp)
- sllg $tmp,$tmp,4 # correct last rem_4bit[rem]
- brctg $len,.Louter
-
- xgr $Zhi,$tmp
- stg $Zlo,8+1($Xi)
- stg $Zhi,0+1($Xi)
- lm${g} %r6,%r14,6*$SIZE_T($sp)
- br %r14
-.type gcm_ghash_4bit,\@function
-.size gcm_ghash_4bit,(.-gcm_ghash_4bit)
-
-.align 64
-rem_4bit:
- .long `0x0000<<12`,0,`0x1C20<<12`,0,`0x3840<<12`,0,`0x2460<<12`,0
- .long `0x7080<<12`,0,`0x6CA0<<12`,0,`0x48C0<<12`,0,`0x54E0<<12`,0
- .long `0xE100<<12`,0,`0xFD20<<12`,0,`0xD940<<12`,0,`0xC560<<12`,0
- .long `0x9180<<12`,0,`0x8DA0<<12`,0,`0xA9C0<<12`,0,`0xB5E0<<12`,0
-.type rem_4bit,\@object
-.size rem_4bit,(.-rem_4bit)
-.string "GHASH for s390x, CRYPTOGAMS by <appro\@openssl.org>"
-___
-
-$code =~ s/\`([^\`]*)\`/eval $1/gem;
-print $code;
-close STDOUT;