diff options
author | kobewi <kobewi4e@gmail.com> | 2022-07-25 23:53:03 +0200 |
---|---|---|
committer | kobewi <kobewi4e@gmail.com> | 2022-07-26 22:37:05 +0200 |
commit | d7b30b23278b21710fcccf4f3b58f8981fe82438 (patch) | |
tree | 3776d1a565fc6f0271aad5c8b23a678b04149577 /doc | |
parent | 7006f7d69318f72017bcfbe21d9fb87cb96b5d7d (diff) |
Add Vector4 documentation
Diffstat (limited to 'doc')
-rw-r--r-- | doc/classes/Vector4.xml | 73 |
1 files changed, 73 insertions, 0 deletions
diff --git a/doc/classes/Vector4.xml b/doc/classes/Vector4.xml index 435be4213a..4df3bbb80e 100644 --- a/doc/classes/Vector4.xml +++ b/doc/classes/Vector4.xml @@ -1,8 +1,12 @@ <?xml version="1.0" encoding="UTF-8" ?> <class name="Vector4" version="4.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:noNamespaceSchemaLocation="../class.xsd"> <brief_description> + Vector used for 4D math using floating point coordinates. </brief_description> <description> + 4-element structure that can be used to represent any quadruplet of numeric values. + It uses floating-point coordinates. See [Vector4i] for its integer counterpart. + [b]Note:[/b] In a boolean context, a Vector4 will evaluate to [code]false[/code] if it's equal to [code]Vector4(0, 0, 0, 0)[/code]. Otherwise, a Vector4 will always evaluate to [code]true[/code]. </description> <tutorials> </tutorials> @@ -10,18 +14,21 @@ <constructor name="Vector4"> <return type="Vector4" /> <description> + Constructs a default-initialized [Vector4] with all components set to [code]0[/code]. </description> </constructor> <constructor name="Vector4"> <return type="Vector4" /> <argument index="0" name="from" type="Vector4" /> <description> + Constructs a [Vector4] as a copy of the given [Vector4]. </description> </constructor> <constructor name="Vector4"> <return type="Vector4" /> <argument index="0" name="from" type="Vector4i" /> <description> + Constructs a new [Vector4] from [Vector4i]. </description> </constructor> <constructor name="Vector4"> @@ -31,6 +38,7 @@ <argument index="2" name="z" type="float" /> <argument index="3" name="w" type="float" /> <description> + Returns a [Vector4] with the given components. </description> </constructor> </constructors> @@ -38,11 +46,13 @@ <method name="abs" qualifiers="const"> <return type="Vector4" /> <description> + Returns a new vector with all components in absolute values (i.e. positive). </description> </method> <method name="ceil" qualifiers="const"> <return type="Vector4" /> <description> + Returns a new vector with all components rounded up (towards positive infinity). </description> </method> <method name="clamp" qualifiers="const"> @@ -50,43 +60,51 @@ <argument index="0" name="min" type="Vector4" /> <argument index="1" name="max" type="Vector4" /> <description> + Returns a new vector with all components clamped between the components of [code]min[/code] and [code]max[/code], by running [method @GlobalScope.clamp] on each component. </description> </method> <method name="dot" qualifiers="const"> <return type="float" /> <argument index="0" name="with" type="Vector4" /> <description> + Returns the dot product of this vector and [code]with[/code]. </description> </method> <method name="floor" qualifiers="const"> <return type="Vector4" /> <description> + Returns a new vector with all components rounded down (towards negative infinity). </description> </method> <method name="inverse" qualifiers="const"> <return type="Vector4" /> <description> + Returns the inverse of the vector. This is the same as [code]Vector4(1.0 / v.x, 1.0 / v.y, 1.0 / v.z, 1.0 / v.w)[/code]. </description> </method> <method name="is_equal_approx" qualifiers="const"> <return type="bool" /> <argument index="0" name="with" type="Vector4" /> <description> + Returns [code]true[/code] if this vector and [code]v[/code] are approximately equal, by running [method @GlobalScope.is_equal_approx] on each component. </description> </method> <method name="is_normalized" qualifiers="const"> <return type="bool" /> <description> + Returns [code]true[/code] if the vector is normalized, i.e. its length is equal to 1. </description> </method> <method name="length" qualifiers="const"> <return type="float" /> <description> + Returns the length (magnitude) of this vector. </description> </method> <method name="length_squared" qualifiers="const"> <return type="float" /> <description> + Returns the squared length (squared magnitude) of this vector. This method runs faster than [method length]. </description> </method> <method name="lerp" qualifiers="const"> @@ -94,58 +112,75 @@ <argument index="0" name="to" type="Vector4" /> <argument index="1" name="weight" type="float" /> <description> + Returns the result of the linear interpolation between this vector and [code]to[/code] by amount [code]weight[/code]. [code]weight[/code] is on the range of [code]0.0[/code] to [code]1.0[/code], representing the amount of interpolation. </description> </method> <method name="max_axis_index" qualifiers="const"> <return type="int" /> <description> + Returns the axis of the vector's highest value. See [code]AXIS_*[/code] constants. If all components are equal, this method returns [constant AXIS_X]. </description> </method> <method name="min_axis_index" qualifiers="const"> <return type="int" /> <description> + Returns the axis of the vector's lowest value. See [code]AXIS_*[/code] constants. If all components are equal, this method returns [constant AXIS_W]. </description> </method> <method name="normalized" qualifiers="const"> <return type="Vector4" /> <description> + Returns the vector scaled to unit length. Equivalent to [code]v / v.length()[/code]. </description> </method> <method name="round" qualifiers="const"> <return type="Vector4" /> <description> + Returns a new vector with all components rounded to the nearest integer, with halfway cases rounded away from zero. </description> </method> <method name="sign" qualifiers="const"> <return type="Vector4" /> <description> + Returns a new vector with each component set to one or negative one, depending on the signs of the components, or zero if the component is zero, by calling [method @GlobalScope.sign] on each component. </description> </method> </methods> <members> <member name="w" type="float" setter="" getter="" default="0.0"> + The vector's W component. Also accessible by using the index position [code][3][/code]. </member> <member name="x" type="float" setter="" getter="" default="0.0"> + The vector's X component. Also accessible by using the index position [code][0][/code]. </member> <member name="y" type="float" setter="" getter="" default="0.0"> + The vector's Y component. Also accessible by using the index position [code][1][/code]. </member> <member name="z" type="float" setter="" getter="" default="0.0"> + The vector's Z component. Also accessible by using the index position [code][2][/code]. </member> </members> <constants> <constant name="AXIS_X" value="0"> + Enumerated value for the X axis. Returned by [method max_axis_index] and [method min_axis_index]. </constant> <constant name="AXIS_Y" value="1"> + Enumerated value for the Y axis. Returned by [method max_axis_index] and [method min_axis_index]. </constant> <constant name="AXIS_Z" value="2"> + Enumerated value for the Z axis. Returned by [method max_axis_index] and [method min_axis_index]. </constant> <constant name="AXIS_W" value="3"> + Enumerated value for the W axis. Returned by [method max_axis_index] and [method min_axis_index]. </constant> <constant name="ZERO" value="Vector4(0, 0, 0)"> + Zero vector, a vector with all components set to [code]0[/code]. </constant> <constant name="ONE" value="Vector4(1, 1, 1)"> + One vector, a vector with all components set to [code]1[/code]. </constant> <constant name="INF" value="Vector4(inf, inf, inf)"> + Infinity vector, a vector with all components set to [constant @GDScript.INF]. </constant> </constants> <operators> @@ -153,106 +188,144 @@ <return type="bool" /> <argument index="0" name="right" type="Vector4" /> <description> + Returns [code]true[/code] if the vectors are not equal. + [b]Note:[/b] Due to floating-point precision errors, consider using [method is_equal_approx] instead, which is more reliable. </description> </operator> <operator name="operator *"> <return type="Vector4" /> <argument index="0" name="right" type="Projection" /> <description> + Inversely transforms (multiplies) the [Vector4] by the given [Projection] matrix. </description> </operator> <operator name="operator *"> <return type="Vector4" /> <argument index="0" name="right" type="Vector4" /> <description> + Multiplies each component of the [Vector4] by the components of the given [Vector4]. + [codeblock] + print(Vector4(10, 20, 30, 40) * Vector4(3, 4, 5, 6)) # Prints "(30, 80, 150, 240)" + [/codeblock] </description> </operator> <operator name="operator *"> <return type="Vector4" /> <argument index="0" name="right" type="float" /> <description> + Multiplies each component of the [Vector4] by the given [float]. + [codeblock] + print(Vector4(10, 20, 30, 40) * 2) # Prints "(20, 40, 60, 80)" + [/codeblock] </description> </operator> <operator name="operator *"> <return type="Vector4" /> <argument index="0" name="right" type="int" /> <description> + Multiplies each component of the [Vector4] by the given [int]. </description> </operator> <operator name="operator +"> <return type="Vector4" /> <argument index="0" name="right" type="Vector4" /> <description> + Adds each component of the [Vector4] by the components of the given [Vector4]. + [codeblock] + print(Vector4(10, 20, 30, 40) + Vector4(3, 4, 5, 6)) # Prints "(13, 24, 35, 46)" + [/codeblock] </description> </operator> <operator name="operator -"> <return type="Vector4" /> <argument index="0" name="right" type="Vector4" /> <description> + Subtracts each component of the [Vector4] by the components of the given [Vector4]. + [codeblock] + print(Vector4(10, 20, 30, 40) - Vector4(3, 4, 5, 6)) # Prints "(7, 16, 25, 34)" + [/codeblock] </description> </operator> <operator name="operator /"> <return type="Vector4" /> <argument index="0" name="right" type="Vector4" /> <description> + Divides each component of the [Vector4] by the components of the given [Vector4]. + [codeblock] + print(Vector4(10, 20, 30, 40) / Vector4(2, 5, 3, 4)) # Prints "(5, 4, 10, 10)" + [/codeblock] </description> </operator> <operator name="operator /"> <return type="Vector4" /> <argument index="0" name="right" type="float" /> <description> + Divides each component of the [Vector4] by the given [float]. + [codeblock] + print(Vector4(10, 20, 30, 40) / 2 # Prints "(5, 10, 15, 20)" + [/codeblock] </description> </operator> <operator name="operator /"> <return type="Vector4" /> <argument index="0" name="right" type="int" /> <description> + Divides each component of the [Vector4] by the given [int]. </description> </operator> <operator name="operator <"> <return type="bool" /> <argument index="0" name="right" type="Vector4" /> <description> + Compares two [Vector4] vectors by first checking if the X value of the left vector is less than the X value of the [code]right[/code] vector. If the X values are exactly equal, then it repeats this check with the Y values of the two vectors, Z values of the two vectors, and then with the W values. This operator is useful for sorting vectors. </description> </operator> <operator name="operator <="> <return type="bool" /> <argument index="0" name="right" type="Vector4" /> <description> + Compares two [Vector4] vectors by first checking if the X value of the left vector is less than or equal to the X value of the [code]right[/code] vector. If the X values are exactly equal, then it repeats this check with the Y values of the two vectors, Z values of the two vectors, and then with the W values. This operator is useful for sorting vectors. </description> </operator> <operator name="operator =="> <return type="bool" /> <argument index="0" name="right" type="Vector4" /> <description> + Returns [code]true[/code] if the vectors are exactly equal. + [b]Note:[/b] Due to floating-point precision errors, consider using [method is_equal_approx] instead, which is more reliable. </description> </operator> <operator name="operator >"> <return type="bool" /> <argument index="0" name="right" type="Vector4" /> <description> + Compares two [Vector4] vectors by first checking if the X value of the left vector is greater than the X value of the [code]right[/code] vector. If the X values are exactly equal, then it repeats this check with the Y values of the two vectors, Z values of the two vectors, and then with the W values. This operator is useful for sorting vectors. </description> </operator> <operator name="operator >="> <return type="bool" /> <argument index="0" name="right" type="Vector4" /> <description> + Access vector components using their index. [code]v[0][/code] is equivalent to [code]v.x[/code], [code]v[1][/code] is equivalent to [code]v.y[/code], and [code]v[2][/code] is equivalent to [code]v.z[/code]. </description> </operator> <operator name="operator []"> <return type="float" /> <argument index="0" name="index" type="int" /> <description> + Access vector components using their index. [code]v[0][/code] is equivalent to [code]v.x[/code], [code]v[1][/code] is equivalent to [code]v.y[/code], [code]v[2][/code] is equivalent to [code]v.z[/code], and [code]v[3][/code] is equivalent to [code]v.w[/code]. </description> </operator> <operator name="operator unary+"> <return type="Vector4" /> <description> + Returns the same value as if the [code]+[/code] was not there. Unary [code]+[/code] does nothing, but sometimes it can make your code more readable. </description> </operator> <operator name="operator unary-"> <return type="Vector4" /> <description> + Returns the negative value of the [Vector4]. This is the same as writing [code]Vector4(-v.x, -v.y, -v.z, -v.w)[/code]. This operation flips the direction of the vector while keeping the same magnitude. With floats, the number zero can be either positive or negative. </description> </operator> </operators> |