summaryrefslogtreecommitdiff
path: root/doc/html/tutorial01
diff options
context:
space:
mode:
authorJuan Linietsky <reduzio@gmail.com>2014-02-09 22:10:30 -0300
committerJuan Linietsky <reduzio@gmail.com>2014-02-09 22:10:30 -0300
commit0b806ee0fc9097fa7bda7ac0109191c9c5e0a1ac (patch)
tree276c4d099e178eb67fbd14f61d77b05e3808e9e3 /doc/html/tutorial01
parent0e49da1687bc8192ed210947da52c9e5c5f301bb (diff)
GODOT IS OPEN SOURCE
Diffstat (limited to 'doc/html/tutorial01')
-rw-r--r--doc/html/tutorial01/0_home_red_coding_godot_doc_math_position.pngbin0 -> 1679 bytes
-rw-r--r--doc/html/tutorial01/1_home_red_coding_godot_doc_math_direction.pngbin0 -> 3600 bytes
-rw-r--r--doc/html/tutorial01/2_home_red_coding_godot_doc_math_normals.pngbin0 -> 2452 bytes
-rw-r--r--doc/html/tutorial01/tutorial.css128
-rw-r--r--doc/html/tutorial01/tutorial.html902
-rw-r--r--doc/html/tutorial01/tutorial0x.pngbin0 -> 2056 bytes
-rw-r--r--doc/html/tutorial01/tutorial1x.pngbin0 -> 4122 bytes
-rw-r--r--doc/html/tutorial01/tutorial2x.pngbin0 -> 618 bytes
-rw-r--r--doc/html/tutorial01/tutorial3x.pngbin0 -> 754 bytes
-rw-r--r--doc/html/tutorial01/tutorial4x.pngbin0 -> 2961 bytes
10 files changed, 1030 insertions, 0 deletions
diff --git a/doc/html/tutorial01/0_home_red_coding_godot_doc_math_position.png b/doc/html/tutorial01/0_home_red_coding_godot_doc_math_position.png
new file mode 100644
index 0000000000..df52c05462
--- /dev/null
+++ b/doc/html/tutorial01/0_home_red_coding_godot_doc_math_position.png
Binary files differ
diff --git a/doc/html/tutorial01/1_home_red_coding_godot_doc_math_direction.png b/doc/html/tutorial01/1_home_red_coding_godot_doc_math_direction.png
new file mode 100644
index 0000000000..5b58274bcb
--- /dev/null
+++ b/doc/html/tutorial01/1_home_red_coding_godot_doc_math_direction.png
Binary files differ
diff --git a/doc/html/tutorial01/2_home_red_coding_godot_doc_math_normals.png b/doc/html/tutorial01/2_home_red_coding_godot_doc_math_normals.png
new file mode 100644
index 0000000000..73681a58ce
--- /dev/null
+++ b/doc/html/tutorial01/2_home_red_coding_godot_doc_math_normals.png
Binary files differ
diff --git a/doc/html/tutorial01/tutorial.css b/doc/html/tutorial01/tutorial.css
new file mode 100644
index 0000000000..a518c6dff7
--- /dev/null
+++ b/doc/html/tutorial01/tutorial.css
@@ -0,0 +1,128 @@
+
+/* start css.sty */
+.cmr-7{font-size:70%;}
+.cmmi-7{font-size:70%;font-style: italic;}
+.cmmi-10{font-style: italic;}
+.ectt-1000{ font-family: monospace;}
+.ectt-1000{ font-family: monospace;}
+.ectt-1000{ font-family: monospace;}
+.ectt-1000{ font-family: monospace;}
+.ectt-1000{ font-family: monospace;}
+.ecti-1000{ font-style: italic;}
+.ecti-1000{ font-style: italic;}
+.ecti-1000{ font-style: italic;}
+.ecti-1000{ font-style: italic;}
+.ecti-1000{ font-style: italic;}
+.ecti-0700{font-size:70%; font-style: italic;}
+.ecti-0700{ font-style: italic;}
+.ecti-0700{ font-style: italic;}
+.ecti-0700{ font-style: italic;}
+.ecti-0700{ font-style: italic;}
+.ecrm-0700{font-size:70%;}
+p.noindent { text-indent: 0em }
+td p.noindent { text-indent: 0em; margin-top:0em; }
+p.nopar { text-indent: 0em; }
+p.indent{ text-indent: 1.5em }
+@media print {div.crosslinks {visibility:hidden;}}
+a img { border-top: 0; border-left: 0; border-right: 0; }
+center { margin-top:1em; margin-bottom:1em; }
+td center { margin-top:0em; margin-bottom:0em; }
+.Canvas { position:relative; }
+img.math{vertical-align:middle;}
+li p.indent { text-indent: 0em }
+.enumerate1 {list-style-type:decimal;}
+.enumerate2 {list-style-type:lower-alpha;}
+.enumerate3 {list-style-type:lower-roman;}
+.enumerate4 {list-style-type:upper-alpha;}
+div.newtheorem { margin-bottom: 2em; margin-top: 2em;}
+.obeylines-h,.obeylines-v {white-space: nowrap; }
+div.obeylines-v p { margin-top:0; margin-bottom:0; }
+.overline{ text-decoration:overline; }
+.overline img{ border-top: 1px solid black; }
+td.displaylines {text-align:center; white-space:nowrap;}
+.centerline {text-align:center;}
+.rightline {text-align:right;}
+div.verbatim {font-family: monospace; white-space: nowrap; text-align:left; clear:both; }
+.fbox {padding-left:3.0pt; padding-right:3.0pt; text-indent:0pt; border:solid black 0.4pt; }
+div.fbox {display:table}
+div.center div.fbox {text-align:center; clear:both; padding-left:3.0pt; padding-right:3.0pt; text-indent:0pt; border:solid black 0.4pt; }
+table.minipage{width:100%;}
+div.center, div.center div.center {text-align: center; margin-left:1em; margin-right:1em;}
+div.center div {text-align: left;}
+div.flushright, div.flushright div.flushright {text-align: right;}
+div.flushright div {text-align: left;}
+div.flushleft {text-align: left;}
+.underline{ text-decoration:underline; }
+.underline img{ border-bottom: 1px solid black; margin-bottom:1pt; }
+.framebox-c, .framebox-l, .framebox-r { padding-left:3.0pt; padding-right:3.0pt; text-indent:0pt; border:solid black 0.4pt; }
+.framebox-c {text-align:center;}
+.framebox-l {text-align:left;}
+.framebox-r {text-align:right;}
+span.thank-mark{ vertical-align: super }
+span.footnote-mark sup.textsuperscript, span.footnote-mark a sup.textsuperscript{ font-size:80%; }
+div.tabular, div.center div.tabular {text-align: center; margin-top:0.5em; margin-bottom:0.5em; }
+table.tabular td p{margin-top:0em;}
+table.tabular {margin-left: auto; margin-right: auto;}
+div.td00{ margin-left:0pt; margin-right:0pt; }
+div.td01{ margin-left:0pt; margin-right:5pt; }
+div.td10{ margin-left:5pt; margin-right:0pt; }
+div.td11{ margin-left:5pt; margin-right:5pt; }
+table[rules] {border-left:solid black 0.4pt; border-right:solid black 0.4pt; }
+td.td00{ padding-left:0pt; padding-right:0pt; }
+td.td01{ padding-left:0pt; padding-right:5pt; }
+td.td10{ padding-left:5pt; padding-right:0pt; }
+td.td11{ padding-left:5pt; padding-right:5pt; }
+table[rules] {border-left:solid black 0.4pt; border-right:solid black 0.4pt; }
+.hline hr, .cline hr{ height : 1px; margin:0px; }
+.tabbing-right {text-align:right;}
+span.TEX {letter-spacing: -0.125em; }
+span.TEX span.E{ position:relative;top:0.5ex;left:-0.0417em;}
+a span.TEX span.E {text-decoration: none; }
+span.LATEX span.A{ position:relative; top:-0.5ex; left:-0.4em; font-size:85%;}
+span.LATEX span.TEX{ position:relative; left: -0.4em; }
+div.float img, div.float .caption {text-align:center;}
+div.figure img, div.figure .caption {text-align:center;}
+.marginpar {width:20%; float:right; text-align:left; margin-left:auto; margin-top:0.5em; font-size:85%; text-decoration:underline;}
+.marginpar p{margin-top:0.4em; margin-bottom:0.4em;}
+table.equation {width:100%;}
+.equation td{text-align:center; }
+td.equation { margin-top:1em; margin-bottom:1em; }
+td.equation-label { width:5%; text-align:center; }
+td.eqnarray4 { width:5%; white-space: normal; }
+td.eqnarray2 { width:5%; }
+table.eqnarray-star, table.eqnarray {width:100%;}
+div.eqnarray{text-align:center;}
+div.array {text-align:center;}
+div.pmatrix {text-align:center;}
+table.pmatrix {width:100%;}
+span.pmatrix img{vertical-align:middle;}
+div.pmatrix {text-align:center;}
+table.pmatrix {width:100%;}
+img.cdots{vertical-align:middle;}
+.partToc a, .partToc, .likepartToc a, .likepartToc {line-height: 200%; font-weight:bold; font-size:110%;}
+.index-item, .index-subitem, .index-subsubitem {display:block}
+.caption td.id{font-weight: bold; white-space: nowrap; }
+table.caption {text-align:center;}
+h1.partHead{text-align: center}
+p.bibitem { text-indent: -2em; margin-left: 2em; margin-top:0.6em; margin-bottom:0.6em; }
+p.bibitem-p { text-indent: 0em; margin-left: 2em; margin-top:0.6em; margin-bottom:0.6em; }
+.paragraphHead, .likeparagraphHead { margin-top:2em; font-weight: bold;}
+.subparagraphHead, .likesubparagraphHead { font-weight: bold;}
+.quote {margin-bottom:0.25em; margin-top:0.25em; margin-left:1em; margin-right:1em; text-align:justify;}
+.verse{white-space:nowrap; margin-left:2em}
+div.maketitle {text-align:center;}
+h2.titleHead{text-align:center;}
+div.maketitle{ margin-bottom: 2em; }
+div.author, div.date {text-align:center;}
+div.thanks{text-align:left; margin-left:10%; font-size:85%; font-style:italic; }
+div.author{white-space: nowrap;}
+.quotation {margin-bottom:0.25em; margin-top:0.25em; margin-left:1em; }
+.abstract p {margin-left:5%; margin-right:5%;}
+table.abstract {width:100%;}
+.lstlisting .label{margin-right:0.5em; }
+div.lstlisting{font-family: monospace; white-space: nowrap; margin-top:0.5em; margin-bottom:0.5em; }
+div.lstinputlisting{ font-family: monospace; white-space: nowrap; }
+.lstinputlisting .label{margin-right:0.5em;}
+.figure img.graphics {margin-left:10%;}
+/* end css.sty */
+
diff --git a/doc/html/tutorial01/tutorial.html b/doc/html/tutorial01/tutorial.html
new file mode 100644
index 0000000000..45c0258709
--- /dev/null
+++ b/doc/html/tutorial01/tutorial.html
@@ -0,0 +1,902 @@
+<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
+ "http://www.w3.org/TR/html4/loose.dtd">
+<html >
+<head><title></title>
+<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
+<meta name="generator" content="TeX4ht (http://www.cse.ohio-state.edu/~gurari/TeX4ht/)">
+<meta name="originator" content="TeX4ht (http://www.cse.ohio-state.edu/~gurari/TeX4ht/)">
+<!-- html -->
+<meta name="src" content="tutorial.tex">
+<meta name="date" content="2009-10-07 00:28:00">
+<link rel="stylesheet" type="text/css" href="tutorial.css">
+</head><body
+>
+ <h3 class="sectionHead"><span class="titlemark">1 </span> <a
+ id="x1-10001"></a>Introduction to 3D Math</h3>
+<!--l. 27--><p class="noindent" >
+ <h4 class="subsectionHead"><span class="titlemark">1.1 </span> <a
+ id="x1-20001.1"></a>Introduction</h4>
+<!--l. 29--><p class="noindent" >There are many approaches to understanding the type of 3D math used in video
+games, modelling, ray-tracing, etc. The usual is through vector algebra, matrices, and
+linear transformations and, while they are not completely necesary to understand
+most of the aspects of 3D game programming (from the theorical point of view), they
+provide a common language to communicate with other programmers or
+engineers.
+<!--l. 36--><p class="indent" > This tutorial will focus on explaining all the basic concepts needed for a
+programmer to understand how to develop 3D games without getting too deep into
+algebra. Instead of a math-oriented language, code examples will be given instead
+when possible. The reason for this is that. while programmers may have
+different backgrounds or experience (be it scientific, engineering or self taught),
+code is the most familiar language and the lowest common denominator for
+understanding.
+<!--l. 45--><p class="noindent" >
+ <h4 class="subsectionHead"><span class="titlemark">1.2 </span> <a
+ id="x1-30001.2"></a>Vectors</h4>
+<!--l. 48--><p class="noindent" >
+ <h5 class="subsubsectionHead"><span class="titlemark">1.2.1 </span> <a
+ id="x1-40001.2.1"></a>Brief Introduction</h5>
+<!--l. 50--><p class="noindent" >When writing 2D games, interfaces and other applications, the typical convention is
+to define coordinates as an <span
+class="ecti-1000">x,y </span>pair, <span
+class="ecti-1000">x </span>representing the horizontal offset and <span
+class="ecti-1000">y </span>the
+vertical one. In most cases, the unit for both is <span
+class="ecti-1000">pixels</span>. This makes sense given the
+screen is just a rectangle in two dimensions.
+<!--l. 56--><p class="indent" > An <span
+class="ecti-1000">x,y </span>pair can be used for two purposes. It can be an absolute position (screen
+cordinate in the previous case), or a relative direction, if we trace an arrow from the
+origin (0,0 coordinates) to it&#8217;s position.
+<div class="center"
+>
+<!--l. 60--><p class="noindent" >
+
+<div class="tabular">
+ <table id="TBL-1" class="tabular"
+cellspacing="0" cellpadding="0"
+><colgroup id="TBL-1-1g"><col
+id="TBL-1-1"><col
+id="TBL-1-2"><col
+id="TBL-1-3"></colgroup><tr
+ style="vertical-align:baseline;" id="TBL-1-1-"><td style="white-space:nowrap; text-align:center;" id="TBL-1-1-1"
+class="td11"><img
+src="tutorial0x.png" alt="PIC" class="graphics" width="100.375pt" height="100.375pt" ><!--tex4ht:graphics
+name="tutorial0x.png" src="0_home_red_coding_godot_doc_math_position.eps"
+--></td><td style="white-space:nowrap; text-align:center;" id="TBL-1-1-2"
+class="td11"></td><td style="white-space:nowrap; text-align:center;" id="TBL-1-1-3"
+class="td11"><img
+src="tutorial1x.png" alt="PIC" class="graphics" width="100.375pt" height="100.375pt" ><!--tex4ht:graphics
+name="tutorial1x.png" src="1_home_red_coding_godot_doc_math_direction.eps"
+--></td>
+</tr><tr
+ style="vertical-align:baseline;" id="TBL-1-2-"><td style="white-space:nowrap; text-align:center;" id="TBL-1-2-1"
+class="td11"> <span
+class="ecti-0700">Position </span></td><td style="white-space:nowrap; text-align:center;" id="TBL-1-2-2"
+class="td11"></td><td style="white-space:nowrap; text-align:center;" id="TBL-1-2-3"
+class="td11"> <span
+class="ecti-0700">Direction </span></td>
+</tr><tr
+ style="vertical-align:baseline;" id="TBL-1-3-"><td style="white-space:nowrap; text-align:center;" id="TBL-1-3-1"
+class="td11"> </td>
+</tr></table></div>
+</div>
+<!--l. 67--><p class="indent" > When used as a direction, this pair is called a <span
+class="ecti-1000">vector</span>, and two properties can be
+observed: The first is the <span
+class="ecti-1000">magnitude </span>or <span
+class="ecti-1000">length </span>, and the second is the direction. In
+two dimensions, direction can be an angle. The <span
+class="ecti-1000">magnitude </span>or <span
+class="ecti-1000">length </span>can be computed
+by simply using Pithagoras theorem:
+<div class="center"
+>
+<!--l. 73--><p class="noindent" >
+<div class="tabular"> <table id="TBL-2" class="tabular"
+cellspacing="0" cellpadding="0"
+><colgroup id="TBL-2-1g"><col
+id="TBL-2-1"><col
+id="TBL-2-2"></colgroup><tr
+ style="vertical-align:baseline;" id="TBL-2-1-"><td style="white-space:nowrap; text-align:center;" id="TBL-2-1-1"
+class="td11"><img
+src="tutorial2x.png" alt="&#x2218;x2-+-y2-" class="sqrt" ></td><td style="white-space:nowrap; text-align:center;" id="TBL-2-1-2"
+class="td11"><img
+src="tutorial3x.png" alt="&#x2218;x2-+-y2 +-z2" class="sqrt" ></td>
+</tr><tr
+ style="vertical-align:baseline;" id="TBL-2-2-"><td style="white-space:nowrap; text-align:center;" id="TBL-2-2-1"
+class="td11"> <span
+class="ecti-0700">2D </span></td><td style="white-space:nowrap; text-align:center;" id="TBL-2-2-2"
+class="td11"> <span
+class="ecti-0700">3D </span></td>
+</tr><tr
+ style="vertical-align:baseline;" id="TBL-2-3-"><td style="white-space:nowrap; text-align:center;" id="TBL-2-3-1"
+class="td11"> </td>
+</tr></table></div>
+</div>
+<!--l. 80--><p class="indent" > The direction can be an arbitrary angle from either the <span
+class="ecti-1000">x </span>or <span
+class="ecti-1000">y </span>axis, and could be
+computed by using trigonometry, or just using the usual <span
+class="ecti-1000">atan2 </span>function present in
+most math libraries. However, when dealing with 3D, the direction can&#8217;t be described
+as an angle. To separate magnitude and direction, 3D uses the concept of <span
+class="ecti-1000">normal</span>
+<span
+class="ecti-1000">vectors.</span>
+<!--l. 88--><p class="noindent" >
+ <h5 class="subsubsectionHead"><span class="titlemark">1.2.2 </span> <a
+ id="x1-50001.2.2"></a>Implementation</h5>
+<!--l. 90--><p class="noindent" >Vectors are implemented in Godot Engine as a class named <span
+class="ecti-1000">Vector3 </span>for 3D, and as
+both <span
+class="ecti-1000">Vector2</span>, <span
+class="ecti-1000">Point2 </span>or <span
+class="ecti-1000">Size2 </span>in 2D (they are all aliases). They are used for any
+purpose where a pair of 2D or 3D values (described as <span
+class="ecti-1000">x,y </span>or <span
+class="ecti-1000">x,y,z) </span>is needed. This is
+somewhat a standard in most libraries or engines. In the script API, they can be
+instanced like this:
+ <!--l. 98-->
+ <div class="lstlisting"><span class="label"><a
+ id="x1-5001r1"></a></span>a&#x00A0;=&#x00A0;Vector3()&#x00A0;<br /><span class="label"><a
+ id="x1-5002r2"></a></span>a&#x00A0;=&#x00A0;Vector2(&#x00A0;2.0,&#x00A0;3.4&#x00A0;)
+ </div>
+
+<!--l. 104--><p class="indent" > Vectors also support the common operators <span
+class="ecti-1000">+, -, / and * </span>for addition,
+substraction, multiplication and division.
+ <!--l. 108-->
+ <div class="lstlisting"><span class="label"><a
+ id="x1-5003r1"></a></span>a&#x00A0;=&#x00A0;Vector3(1,2,3)&#x00A0;<br /><span class="label"><a
+ id="x1-5004r2"></a></span>b&#x00A0;=&#x00A0;Vector3(4,5,6)&#x00A0;<br /><span class="label"><a
+ id="x1-5005r3"></a></span>c&#x00A0;=&#x00A0;Vector3()&#x00A0;<br /><span class="label"><a
+ id="x1-5006r4"></a></span>&#x00A0;<br /><span class="label"><a
+ id="x1-5007r5"></a></span>//&#x00A0;writing&#x00A0;<br /><span class="label"><a
+ id="x1-5008r6"></a></span>&#x00A0;<br /><span class="label"><a
+ id="x1-5009r7"></a></span>c&#x00A0;=&#x00A0;a&#x00A0;+&#x00A0;b&#x00A0;<br /><span class="label"><a
+ id="x1-5010r8"></a></span>&#x00A0;<br /><span class="label"><a
+ id="x1-5011r9"></a></span>//&#x00A0;is&#x00A0;the&#x00A0;same&#x00A0;as&#x00A0;writing&#x00A0;<br /><span class="label"><a
+ id="x1-5012r10"></a></span>&#x00A0;<br /><span class="label"><a
+ id="x1-5013r11"></a></span>c.x&#x00A0;=&#x00A0;a.x&#x00A0;+&#x00A0;b.x&#x00A0;<br /><span class="label"><a
+ id="x1-5014r12"></a></span>c.y&#x00A0;=&#x00A0;a.y&#x00A0;+&#x00A0;b.y&#x00A0;<br /><span class="label"><a
+ id="x1-5015r13"></a></span>c.z&#x00A0;=&#x00A0;a.z&#x00A0;+&#x00A0;b.z&#x00A0;<br /><span class="label"><a
+ id="x1-5016r14"></a></span>&#x00A0;<br /><span class="label"><a
+ id="x1-5017r15"></a></span>//&#x00A0;both&#x00A0;will&#x00A0;result&#x00A0;in&#x00A0;a&#x00A0;vector&#x00A0;containing&#x00A0;(5,7,9).&#x00A0;<br /><span class="label"><a
+ id="x1-5018r16"></a></span>//&#x00A0;the&#x00A0;same&#x00A0;happens&#x00A0;for&#x00A0;the&#x00A0;rest&#x00A0;of&#x00A0;the&#x00A0;operators.
+ </div>
+<!--l. 128--><p class="indent" > Vectors also can perform a wide variety of built-in functions, their most common
+usages will be explored next.
+<!--l. 132--><p class="noindent" >
+ <h5 class="subsubsectionHead"><span class="titlemark">1.2.3 </span> <a
+ id="x1-60001.2.3"></a>Normal Vectors</h5>
+<!--l. 134--><p class="noindent" >Two points ago, it was mentioned that 3D vectors can&#8217;t describe their direction as an
+agle (as 2D vectors can). Because of this, <span
+class="ecti-1000">normal vectors </span>become important for
+separating a vector between <span
+class="ecti-1000">direction </span>and <span
+class="ecti-1000">magnitude.</span>
+<!--l. 139--><p class="indent" > A <span
+class="ecti-1000">normal vector </span>is a vector with a <span
+class="ecti-1000">magnitude </span>of <span
+class="ecti-1000">1. </span>This means, no matter where
+the vector is pointing to, it&#8217;s length is always <span
+class="ecti-1000">1</span>.
+ <div class="tabular">
+ <table id="TBL-3" class="tabular"
+cellspacing="0" cellpadding="0"
+><colgroup id="TBL-3-1g"><col
+id="TBL-3-1"></colgroup><tr
+ style="vertical-align:baseline;" id="TBL-3-1-"><td style="white-space:nowrap; text-align:center;" id="TBL-3-1-1"
+class="td11"><img
+src="tutorial4x.png" alt="PIC" class="graphics" width="100.375pt" height="100.375pt" ><!--tex4ht:graphics
+name="tutorial4x.png" src="2_home_red_coding_godot_doc_math_normals.eps"
+--></td>
+</tr><tr
+ style="vertical-align:baseline;" id="TBL-3-2-"><td style="white-space:nowrap; text-align:center;" id="TBL-3-2-1"
+class="td11"> <span
+class="ecrm-0700">Normal vectors aroud the origin. </span></td>
+</tr><tr
+ style="vertical-align:baseline;" id="TBL-3-3-"><td style="white-space:nowrap; text-align:center;" id="TBL-3-3-1"
+class="td11"> </td> </tr></table>
+</div>
+<!--l. 148--><p class="indent" > Normal vectors have endless uses in 3D graphics programming, so it&#8217;s
+recommended to get familiar with them as much as possible.
+<!--l. 152--><p class="noindent" >
+ <h5 class="subsubsectionHead"><span class="titlemark">1.2.4 </span> <a
+ id="x1-70001.2.4"></a>Normalization</h5>
+<!--l. 154--><p class="noindent" >Normalization is the process through which normal vectors are obtained
+from regular vectors. In other words, normalization is used to reduce the
+<span
+class="ecti-1000">magnitude </span>of any vector to <span
+class="ecti-1000">1</span>. (except of course, unless the vector is (0,0,0)
+).
+<!--l. 159--><p class="indent" > To normalize a vector, it must be divided by its magnitude (which should be
+greater than zero):
+ <!--l. 163-->
+ <div class="lstlisting"><span class="label"><a
+ id="x1-7001r1"></a></span><span
+class="ecti-1000">//</span><span
+class="ecti-1000">&#x00A0;</span><span
+class="ecti-1000">a</span><span
+class="ecti-1000">&#x00A0;</span><span
+class="ecti-1000">custom</span><span
+class="ecti-1000">&#x00A0;</span><span
+class="ecti-1000">vector</span><span
+class="ecti-1000">&#x00A0;</span><span
+class="ecti-1000">is</span><span
+class="ecti-1000">&#x00A0;</span><span
+class="ecti-1000">created</span>&#x00A0;<br /><span class="label"><a
+ id="x1-7002r2"></a></span>a&#x00A0;=&#x00A0;Vector3(4,5,6)&#x00A0;<br /><span class="label"><a
+ id="x1-7003r3"></a></span><span
+class="ecti-1000">//</span><span
+class="ecti-1000">&#x00A0;</span><span
+class="ecti-1000">&#8217;</span><span
+class="ecti-1000">l</span><span
+class="ecti-1000">&#8217;</span><span
+class="ecti-1000">&#x00A0;</span><span
+class="ecti-1000">is</span><span
+class="ecti-1000">&#x00A0;</span><span
+class="ecti-1000">a</span><span
+class="ecti-1000">&#x00A0;</span><span
+class="ecti-1000">single</span><span
+class="ecti-1000">&#x00A0;</span><span
+class="ecti-1000">real</span><span
+class="ecti-1000">&#x00A0;</span><span
+class="ecti-1000">number</span><span
+class="ecti-1000">&#x00A0;</span><span
+class="ecti-1000">(</span><span
+class="ecti-1000">or</span><span
+class="ecti-1000">&#x00A0;</span><span
+class="ecti-1000">scalar</span><span
+class="ecti-1000">)</span><span
+class="ecti-1000">&#x00A0;</span><span
+class="ecti-1000">containight</span><span
+class="ecti-1000">&#x00A0;</span><span
+class="ecti-1000">the</span><span
+class="ecti-1000">&#x00A0;</span><span
+class="ecti-1000">length</span>&#x00A0;<br /><span class="label"><a
+ id="x1-7004r4"></a></span>l&#x00A0;=&#x00A0;Math.sqrt(&#x00A0;a.x<span
+class="cmsy-10">*</span>a.x&#x00A0;+&#x00A0;a.y<span
+class="cmsy-10">*</span>a.y&#x00A0;+&#x00A0;a.z<span
+class="cmsy-10">*</span>a.z&#x00A0;)&#x00A0;<br /><span class="label"><a
+ id="x1-7005r5"></a></span><span
+class="ecti-1000">//</span><span
+class="ecti-1000">&#x00A0;</span><span
+class="ecti-1000">the</span><span
+class="ecti-1000">&#x00A0;</span><span
+class="ecti-1000">vector</span><span
+class="ecti-1000">&#x00A0;</span><span
+class="ecti-1000">&#8217;</span><span
+class="ecti-1000">a</span><span
+class="ecti-1000">&#8217;</span><span
+class="ecti-1000">&#x00A0;</span><span
+class="ecti-1000">is</span><span
+class="ecti-1000">&#x00A0;</span><span
+class="ecti-1000">divided</span><span
+class="ecti-1000">&#x00A0;</span><span
+class="ecti-1000">by</span><span
+class="ecti-1000">&#x00A0;</span><span
+class="ecti-1000">its</span><span
+class="ecti-1000">&#x00A0;</span><span
+class="ecti-1000">length</span><span
+class="ecti-1000">,</span><span
+class="ecti-1000">&#x00A0;</span><span
+class="ecti-1000">by</span><span
+class="ecti-1000">&#x00A0;</span><span
+class="ecti-1000">performing</span><span
+class="ecti-1000">&#x00A0;</span><span
+class="ecti-1000">scalar</span><span
+class="ecti-1000">&#x00A0;</span><span
+class="ecti-1000">divide</span>&#x00A0;<br /><span class="label"><a
+ id="x1-7006r6"></a></span>a&#x00A0;=&#x00A0;a&#x00A0;/&#x00A0;l&#x00A0;<br /><span class="label"><a
+ id="x1-7007r7"></a></span><span
+class="ecti-1000">//</span><span
+class="ecti-1000">&#x00A0;</span><span
+class="ecti-1000">which</span><span
+class="ecti-1000">&#x00A0;</span><span
+class="ecti-1000">is</span><span
+class="ecti-1000">&#x00A0;</span><span
+class="ecti-1000">the</span><span
+class="ecti-1000">&#x00A0;</span><span
+class="ecti-1000">same</span><span
+class="ecti-1000">&#x00A0;</span><span
+class="ecti-1000">as</span>&#x00A0;<br /><span class="label"><a
+ id="x1-7008r8"></a></span>a.x&#x00A0;=&#x00A0;a.x&#x00A0;/&#x00A0;l&#x00A0;<br /><span class="label"><a
+ id="x1-7009r9"></a></span>a.y&#x00A0;=&#x00A0;a.y&#x00A0;/&#x00A0;l&#x00A0;<br /><span class="label"><a
+ id="x1-7010r10"></a></span>a.z&#x00A0;=&#x00A0;a.z&#x00A0;/&#x00A0;l
+
+ </div>
+<!--l. 177--><p class="indent" > Vector3 contains two built in functions for normalization:
+ <!--l. 180-->
+ <div class="lstlisting"><span class="label"><a
+ id="x1-7011r1"></a></span>a&#x00A0;=&#x00A0;Vector3(4,5,6)&#x00A0;<br /><span class="label"><a
+ id="x1-7012r2"></a></span>a.normalize()&#x00A0;<span
+class="ecti-1000">//</span><span
+class="ecti-1000">&#x00A0;</span><span
+class="ecti-1000">in</span><span
+class="cmsy-10">-</span><span
+class="ecti-1000">place</span><span
+class="ecti-1000">&#x00A0;</span><span
+class="ecti-1000">normalization</span>&#x00A0;<br /><span class="label"><a
+ id="x1-7013r3"></a></span>b&#x00A0;=&#x00A0;a.normalized()&#x00A0;<span
+class="ecti-1000">//</span><span
+class="ecti-1000">&#x00A0;</span><span
+class="ecti-1000">returns</span><span
+class="ecti-1000">&#x00A0;</span><span
+class="ecti-1000">a</span><span
+class="ecti-1000">&#x00A0;</span><span
+class="ecti-1000">copy</span><span
+class="ecti-1000">&#x00A0;</span><span
+class="ecti-1000">of</span><span
+class="ecti-1000">&#x00A0;</span><span
+class="ecti-1000">a</span><span
+class="ecti-1000">,</span><span
+class="ecti-1000">&#x00A0;</span><span
+class="ecti-1000">normalized</span>
+ </div>
+<!--l. 188--><p class="noindent" >
+ <h5 class="subsubsectionHead"><span class="titlemark">1.2.5 </span> <a
+ id="x1-80001.2.5"></a>Dot Product</h5>
+<!--l. 190--><p class="noindent" >The dot product is, pheraps, the most useful operation that can be applied to 3D
+vectors. In the surface, it&#8217;s multiple usages are not very obvious, but in depth it can
+provide very useful information between two vectors (be it direction or just points in
+space).
+<!--l. 195--><p class="indent" > The dot product takes two vectors (<span
+class="ecti-1000">a </span>and <span
+class="ecti-1000">b </span>in the example) and returns a scalar
+(single real number):
+<div class="center"
+>
+<!--l. 198--><p class="noindent" >
+<!--l. 199--><p class="noindent" ><span
+class="cmmi-10">a</span><sub><span
+class="cmmi-7">x</span></sub><span
+class="cmmi-10">b</span><sub><span
+class="cmmi-7">x</span></sub> <span
+class="cmr-10">+ </span><span
+class="cmmi-10">a</span><sub><span
+class="cmmi-7">y</span></sub><span
+class="cmmi-10">b</span><sub><span
+class="cmmi-7">y</span></sub> <span
+class="cmr-10">+ </span><span
+class="cmmi-10">a</span><sub><span
+class="cmmi-7">z</span></sub><span
+class="cmmi-10">b</span><sub><span
+class="cmmi-7">z</span></sub>
+</div>
+<!--l. 202--><p class="indent" > The same expressed in code:
+ <!--l. 205-->
+ <div class="lstlisting"><span class="label"><a
+ id="x1-8001r1"></a></span>a&#x00A0;=&#x00A0;Vector3(...)&#x00A0;<br /><span class="label"><a
+ id="x1-8002r2"></a></span>b&#x00A0;=&#x00A0;Vector3(...)&#x00A0;<br /><span class="label"><a
+ id="x1-8003r3"></a></span>&#x00A0;<br /><span class="label"><a
+ id="x1-8004r4"></a></span>c&#x00A0;=&#x00A0;a.x<span
+class="cmsy-10">*</span>b.x&#x00A0;+&#x00A0;a.y<span
+class="cmsy-10">*</span>b.y&#x00A0;+&#x00A0;a.z<span
+class="cmsy-10">*</span>b.z&#x00A0;<br /><span class="label"><a
+ id="x1-8005r5"></a></span>&#x00A0;<br /><span class="label"><a
+ id="x1-8006r6"></a></span><span
+class="ecti-1000">//</span><span
+class="ecti-1000">&#x00A0;</span><span
+class="ecti-1000">using</span><span
+class="ecti-1000">&#x00A0;</span><span
+class="ecti-1000">built</span><span
+class="cmsy-10">-</span><span
+class="ecti-1000">in</span><span
+class="ecti-1000">&#x00A0;</span><span
+class="ecti-1000">dot</span><span
+class="ecti-1000">()</span><span
+class="ecti-1000">&#x00A0;</span><span
+class="ecti-1000">function</span>&#x00A0;<br /><span class="label"><a
+ id="x1-8007r7"></a></span>&#x00A0;<br /><span class="label"><a
+ id="x1-8008r8"></a></span>c&#x00A0;=&#x00A0;a.dot(b)
+ </div>
+<!--l. 218--><p class="indent" > The dot product presents several useful properties:
+ <ul class="itemize1">
+ <li class="itemize">If both <span
+class="ecti-1000">a </span>and <span
+class="ecti-1000">b </span>parameters to a <span
+class="ecti-1000">dot product </span>are direction vectors, dot
+ product will return positive if both point towards the same direction,
+ negative if both point towards opposite directions, and zero if they are
+ orthogonal (one is perpendicular to the other).
+ </li>
+ <li class="itemize">If both <span
+class="ecti-1000">a </span>and <span
+class="ecti-1000">b </span>parameters to a <span
+class="ecti-1000">dot product </span>are <span
+class="ecti-1000">normalized </span>direction
+ vectors, then the dot product will return the cosine of the angle between
+ them (ranging from 1 if they are equal, 0 if they are orthogonal, and -1 if
+ they are opposed (a == -b)).
+ </li>
+ <li class="itemize">If <span
+class="ecti-1000">a </span>is a <span
+class="ecti-1000">normalized </span>direction vector and <span
+class="ecti-1000">b </span>is a point, the dot product will
+ return the distance from <span
+class="ecti-1000">b </span>to the plane passing through the origin, with
+ normal <span
+class="ecti-1000">a (see item about planes)</span>
+
+ </li>
+ <li class="itemize">More uses will be presented later in this tutorial.</li></ul>
+<!--l. 236--><p class="noindent" >
+ <h5 class="subsubsectionHead"><span class="titlemark">1.2.6 </span> <a
+ id="x1-90001.2.6"></a>Cross Product</h5>
+<!--l. 238--><p class="noindent" >The <span
+class="ecti-1000">cross product </span>also takes two vectors <span
+class="ecti-1000">a </span>and <span
+class="ecti-1000">b</span>, but returns another vector <span
+class="ecti-1000">c </span>that is
+orthogonal to the two previous ones.
+<div class="center"
+>
+<!--l. 242--><p class="noindent" >
+<!--l. 243--><p class="noindent" ><span
+class="cmmi-10">c</span><sub><span
+class="cmmi-7">x</span></sub> <span
+class="cmr-10">= </span><span
+class="cmmi-10">a</span><sub><span
+class="cmmi-7">x</span></sub><span
+class="cmmi-10">b</span><sub><span
+class="cmmi-7">z</span></sub> <span
+class="cmsy-10">- </span><span
+class="cmmi-10">a</span><sub><span
+class="cmmi-7">z</span></sub><span
+class="cmmi-10">b</span><sub><span
+class="cmmi-7">y</span></sub>
+</div>
+<div class="center"
+>
+<!--l. 246--><p class="noindent" >
+<!--l. 247--><p class="noindent" ><span
+class="cmmi-10">c</span><sub><span
+class="cmmi-7">y</span></sub> <span
+class="cmr-10">= </span><span
+class="cmmi-10">a</span><sub><span
+class="cmmi-7">z</span></sub><span
+class="cmmi-10">b</span><sub><span
+class="cmmi-7">x</span></sub> <span
+class="cmsy-10">- </span><span
+class="cmmi-10">a</span><sub><span
+class="cmmi-7">x</span></sub><span
+class="cmmi-10">b</span><sub><span
+class="cmmi-7">z</span></sub>
+</div>
+<div class="center"
+>
+<!--l. 250--><p class="noindent" >
+<!--l. 251--><p class="noindent" ><span
+class="cmmi-10">c</span><sub><span
+class="cmmi-7">z</span></sub> <span
+class="cmr-10">= </span><span
+class="cmmi-10">a</span><sub><span
+class="cmmi-7">x</span></sub><span
+class="cmmi-10">b</span><sub><span
+class="cmmi-7">y</span></sub> <span
+class="cmsy-10">- </span><span
+class="cmmi-10">a</span><sub><span
+class="cmmi-7">y</span></sub><span
+class="cmmi-10">b</span><sub><span
+class="cmmi-7">x</span></sub>
+</div>
+<!--l. 254--><p class="indent" > The same in code:
+ <!--l. 257-->
+ <div class="lstlisting"><span class="label"><a
+ id="x1-9001r1"></a></span>a&#x00A0;=&#x00A0;Vector3(...)&#x00A0;<br /><span class="label"><a
+ id="x1-9002r2"></a></span>b&#x00A0;=&#x00A0;Vector3(...)&#x00A0;<br /><span class="label"><a
+ id="x1-9003r3"></a></span>c&#x00A0;=&#x00A0;Vector3(...)&#x00A0;<br /><span class="label"><a
+ id="x1-9004r4"></a></span>&#x00A0;<br /><span class="label"><a
+ id="x1-9005r5"></a></span>c.x&#x00A0;=&#x00A0;a.x<span
+class="cmsy-10">*</span>b.z&#x00A0;<span
+class="cmsy-10">-</span>&#x00A0;a.z<span
+class="cmsy-10">*</span>b.y&#x00A0;<br /><span class="label"><a
+ id="x1-9006r6"></a></span>c.y&#x00A0;=&#x00A0;a.z<span
+class="cmsy-10">*</span>b.x&#x00A0;<span
+class="cmsy-10">-</span>&#x00A0;a.x<span
+class="cmsy-10">*</span>b.z&#x00A0;<br /><span class="label"><a
+ id="x1-9007r7"></a></span>c.z&#x00A0;=&#x00A0;a.x<span
+class="cmsy-10">*</span>b.y&#x00A0;<span
+class="cmsy-10">-</span>&#x00A0;a.y<span
+class="cmsy-10">*</span>b.x&#x00A0;<br /><span class="label"><a
+ id="x1-9008r8"></a></span>&#x00A0;<br /><span class="label"><a
+ id="x1-9009r9"></a></span>//&#x00A0;or&#x00A0;using&#x00A0;the&#x00A0;built<span
+class="cmsy-10">-</span>in&#x00A0;function&#x00A0;<br /><span class="label"><a
+ id="x1-9010r10"></a></span>&#x00A0;<br /><span class="label"><a
+ id="x1-9011r11"></a></span>c&#x00A0;=&#x00A0;a.cross(b)
+ </div>
+<!--l. 273--><p class="indent" > The <span
+class="ecti-1000">cross product </span>also presents several useful properties:
+ <ul class="itemize1">
+ <li class="itemize">As mentioned, the resulting vector <span
+class="ecti-1000">c </span>is orthogonal to the input vectors <span
+class="ecti-1000">a</span>
+ and <span
+class="ecti-1000">b.</span>
+ </li>
+ <li class="itemize">Since the <span
+class="ecti-1000">cross product </span>is anticommutative, swapping <span
+class="ecti-1000">a </span>and <span
+class="ecti-1000">b </span>will result
+ in a negated vector <span
+class="ecti-1000">c.</span>
+
+ </li>
+ <li class="itemize">if <span
+class="ecti-1000">a </span>and <span
+class="ecti-1000">b </span>are taken from two of the segmets <span
+class="ecti-1000">AB</span>, <span
+class="ecti-1000">BC </span>or <span
+class="ecti-1000">CA </span>that form a
+ 3D triangle, the magnitude of the resulting vector divided by 2 is the area
+ of that triangle.
+ </li>
+ <li class="itemize">The direction of the resulting vector <span
+class="ecti-1000">c </span>in the previous triangle example
+ determines wether the points A,B and C are arranged in clocwise or
+ counter-clockwise order.</li></ul>
+<!--l. 287--><p class="noindent" >
+ <h4 class="subsectionHead"><span class="titlemark">1.3 </span> <a
+ id="x1-100001.3"></a>Plane</h4>
+<!--l. 290--><p class="noindent" >
+ <h5 class="subsubsectionHead"><span class="titlemark">1.3.1 </span> <a
+ id="x1-110001.3.1"></a>Theory</h5>
+<!--l. 292--><p class="noindent" >A plane can be considered as an infinite, flat surface that splits space in two halves,
+usually one named positive and one named negative. In regular mathematics, a plane
+formula is described as:
+<div class="center"
+>
+<!--l. 296--><p class="noindent" >
+<!--l. 297--><p class="noindent" ><span
+class="cmmi-10">ax </span><span
+class="cmr-10">+ </span><span
+class="cmmi-10">by </span><span
+class="cmr-10">+ </span><span
+class="cmmi-10">cz </span><span
+class="cmr-10">+ </span><span
+class="cmmi-10">d</span>
+</div>
+<!--l. 300--><p class="indent" > However, in 3D programming, this form alone is often of little use. For planes to
+become useful, they must be in normalized form.
+<!--l. 303--><p class="indent" > A normalized plane consists of a <span
+class="ecti-1000">normal vector n </span>and a <span
+class="ecti-1000">distance d. </span>To normalize
+a plane, a vector <span
+class="ecti-1000">n </span>and distance <span
+class="ecti-1000">d&#8217; </span>are created this way:
+<!--l. 307--><p class="indent" > <span
+class="cmmi-10">n</span><sub><span
+class="cmmi-7">x</span></sub> <span
+class="cmr-10">= </span><span
+class="cmmi-10">a</span>
+<!--l. 309--><p class="indent" > <span
+class="cmmi-10">n</span><sub><span
+class="cmmi-7">y</span></sub> <span
+class="cmr-10">= </span><span
+class="cmmi-10">b</span>
+<!--l. 311--><p class="indent" > <span
+class="cmmi-10">n</span><sub><span
+class="cmmi-7">z</span></sub> <span
+class="cmr-10">= </span><span
+class="cmmi-10">c</span>
+<!--l. 313--><p class="indent" > <span
+class="cmmi-10">d</span><span
+class="cmsy-10">&#x2032; </span><span
+class="cmr-10">= </span><span
+class="cmmi-10">d</span>
+<!--l. 315--><p class="indent" > Finally, both <span
+class="ecti-1000">n </span>and <span
+class="ecti-1000">d&#8217; </span>are both divided by the magnitude of n.
+<!--l. 318--><p class="indent" > In any case, normalizing planes is not often needed (this was mostly for
+explanation purposes), and normalized planes are useful because they can be created
+and used easily.
+<!--l. 322--><p class="indent" > A normalized plane could be visualized as a plane pointing towards normal <span
+class="ecti-1000">n,</span>
+offseted by <span
+class="ecti-1000">d </span>in the direction of <span
+class="ecti-1000">n</span>.
+<!--l. 325--><p class="indent" > In other words, take <span
+class="ecti-1000">n</span>, multiply it by scalar <span
+class="ecti-1000">d </span>and the resulting point will be part
+of the plane. This may need some thinking, so an example with a 2D normal vector
+(z is 0, so plane is orthogonal to it) is provided:
+<!--l. 330--><p class="indent" > Some operations can be done with normalized planes:
+
+ <ul class="itemize1">
+ <li class="itemize">Given any point <span
+class="ecti-1000">p</span>, the distance from it to a plane can be computed by
+ doing: n.dot(p) - d
+ </li>
+ <li class="itemize">If the resulting distance in the previous point is negative, the point is
+ below the plane.
+ </li>
+ <li class="itemize">Convex polygonal shapes can be defined by enclosing them in planes (the
+ physics engine uses this property)</li></ul>
+<!--l. 340--><p class="noindent" >
+ <h5 class="subsubsectionHead"><span class="titlemark">1.3.2 </span> <a
+ id="x1-120001.3.2"></a>Implementation</h5>
+<!--l. 342--><p class="noindent" >Godot Engine implements normalized planes by using the <span
+class="ecti-1000">Plane </span>class.
+ <!--l. 346-->
+ <div class="lstlisting"><span class="label"><a
+ id="x1-12001r1"></a></span>//creates&#x00A0;a&#x00A0;plane&#x00A0;with&#x00A0;normal&#x00A0;(0,1,0)&#x00A0;and&#x00A0;distance&#x00A0;5&#x00A0;<br /><span class="label"><a
+ id="x1-12002r2"></a></span>p&#x00A0;=&#x00A0;Plane(&#x00A0;Vector3(0,1,0),&#x00A0;5&#x00A0;)&#x00A0;<br /><span class="label"><a
+ id="x1-12003r3"></a></span>//&#x00A0;get&#x00A0;the&#x00A0;distance&#x00A0;to&#x00A0;a&#x00A0;point&#x00A0;<br /><span class="label"><a
+ id="x1-12004r4"></a></span>d&#x00A0;=&#x00A0;p.distance(&#x00A0;Vector3(4,5,6)&#x00A0;)
+ </div>
+<!--l. 355--><p class="noindent" >
+ <h4 class="subsectionHead"><span class="titlemark">1.4 </span> <a
+ id="x1-130001.4"></a>Matrices, Quaternions and Coordinate Systems</h4>
+<!--l. 357--><p class="noindent" >It is very often needed to store the location/rotation of something. In 2D, it is often
+enough to store an <span
+class="ecti-1000">x,y </span>location and maybe an angle as the rotation, as that should
+be enough to represent any posible position.
+<!--l. 362--><p class="indent" > In 3D this becomes a little more difficult, as there is nothing as simple as an angle
+to store a 3-axis rotation.
+<!--l. 365--><p class="indent" > The first think that may come to mind is to use 3 angles, one for x, one for y and
+one for z. However this suffers from the problem that it becomes very cumbersome to
+use, as the individual rotations in each axis need to be performed one after another
+(they can&#8217;t be performed at the same time), leading to a problem called &#8220;gimbal
+lock&#8221;. Also, it becomes impossible to accumulate rotations (add a rotation to an
+existing one).
+<!--l. 373--><p class="indent" > To solve this, there are two known diferent approaches that aid in solving
+rotation, <span
+class="ecti-1000">Quaternions </span>and <span
+class="ecti-1000">Oriented Coordinate Systems.</span>
+<!--l. 378--><p class="noindent" >
+ <h5 class="subsubsectionHead"><span class="titlemark">1.4.1 </span> <a
+ id="x1-140001.4.1"></a>Oriented Coordinate Systems</h5>
+<!--l. 380--><p class="noindent" ><span
+class="ecti-1000">Oriented Coordinate Systems </span>(<span
+class="ecti-1000">OCS</span>) are a way of representing a coordinate system
+inside the cartesian coordinate system. They are mainly composed of 3 Vectors, one
+for each axis. The first vector is the <span
+class="ecti-1000">x </span>axis, the second the <span
+class="ecti-1000">y </span>axis, and the third is the
+
+<span
+class="ecti-1000">z </span>axis. The OCS vectors can be rotated around freely as long as they are kept the
+same length (as changing the length of an axis changes its cale), and as long as they
+remain orthogonal to eachother (as in, the same as the default cartesian system,
+with <span
+class="ecti-1000">y </span>pointing up, <span
+class="ecti-1000">x </span>pointing left and <span
+class="ecti-1000">z </span>pointing front, but all rotated
+together).
+<!--l. 391--><p class="indent" > <span
+class="ecti-1000">Oriented Coordinate Systems </span>are represented in 3D programming as a 3x3 matrix,
+where each row (or column, depending on the implementation) contains one of the
+axis vectors. Transforming a Vector by a rotated OCS Matrix results in the rotation
+being applied to the resulting vector. OCS Matrices can also be multiplied to
+accumulate their transformations.
+<!--l. 397--><p class="indent" > Godot Engine implements OCS Matrices in the <span
+class="ecti-1000">Matrix3 </span>class:
+ <!--l. 400-->
+ <div class="lstlisting"><span class="label"><a
+ id="x1-14001r1"></a></span><span
+class="ecti-1000">//</span><span
+class="ecti-1000">create</span><span
+class="ecti-1000">&#x00A0;</span><span
+class="ecti-1000">a</span><span
+class="ecti-1000">&#x00A0;</span><span
+class="ecti-1000">3</span><span
+class="ecti-1000">x3</span><span
+class="ecti-1000">&#x00A0;</span><span
+class="ecti-1000">matrix</span>&#x00A0;<br /><span class="label"><a
+ id="x1-14002r2"></a></span>m&#x00A0;=&#x00A0;Matrix3()&#x00A0;<br /><span class="label"><a
+ id="x1-14003r3"></a></span><span
+class="ecti-1000">//</span><span
+class="ecti-1000">rotate</span><span
+class="ecti-1000">&#x00A0;</span><span
+class="ecti-1000">the</span><span
+class="ecti-1000">&#x00A0;</span><span
+class="ecti-1000">matrix</span><span
+class="ecti-1000">&#x00A0;</span><span
+class="ecti-1000">in</span><span
+class="ecti-1000">&#x00A0;</span><span
+class="ecti-1000">the</span><span
+class="ecti-1000">&#x00A0;</span><span
+class="ecti-1000">y</span><span
+class="ecti-1000">&#x00A0;</span><span
+class="ecti-1000">axis</span><span
+class="ecti-1000">,</span><span
+class="ecti-1000">&#x00A0;</span><span
+class="ecti-1000">by</span><span
+class="ecti-1000">&#x00A0;</span><span
+class="ecti-1000">45</span><span
+class="ecti-1000">&#x00A0;</span><span
+class="ecti-1000">degrees</span>&#x00A0;<br /><span class="label"><a
+ id="x1-14004r4"></a></span>m.rotate(&#x00A0;Vector3(0,1,0),&#x00A0;Math.deg2rad(45)&#x00A0;)&#x00A0;<br /><span class="label"><a
+ id="x1-14005r5"></a></span><span
+class="ecti-1000">//</span><span
+class="ecti-1000">transform</span><span
+class="ecti-1000">&#x00A0;</span><span
+class="ecti-1000">a</span><span
+class="ecti-1000">&#x00A0;</span><span
+class="ecti-1000">vector</span><span
+class="ecti-1000">&#x00A0;</span><span
+class="ecti-1000">v</span><span
+class="ecti-1000">&#x00A0;</span><span
+class="ecti-1000">(</span><span
+class="ecti-1000">xform</span><span
+class="ecti-1000">&#x00A0;</span><span
+class="ecti-1000">method</span><span
+class="ecti-1000">&#x00A0;</span><span
+class="ecti-1000">is</span><span
+class="ecti-1000">&#x00A0;</span><span
+class="ecti-1000">used</span><span
+class="ecti-1000">)</span>&#x00A0;<br /><span class="label"><a
+ id="x1-14006r6"></a></span>v&#x00A0;=&#x00A0;Vector3(...)&#x00A0;<br /><span class="label"><a
+ id="x1-14007r7"></a></span>result&#x00A0;=&#x00A0;m.xform(&#x00A0;v&#x00A0;)
+ </div>
+<!--l. 412--><p class="indent" > However, in most usage cases, one wants to store a translation together with the
+rotation. For this, an <span
+class="ecti-1000">origin </span>vector must be added to the OCS, thus transforming it
+into a 3x4 (or 4x3, depending on preference) matrix. Godot engine implements this
+functionality in the <span
+class="ecti-1000">Transform </span>class:
+ <!--l. 419-->
+ <div class="lstlisting"><span class="label"><a
+ id="x1-14010r1"></a></span>t&#x00A0;=&#x00A0;Transform()&#x00A0;<br /><span class="label"><a
+ id="x1-14011r2"></a></span>//rotate&#x00A0;the&#x00A0;transform&#x00A0;in&#x00A0;the&#x00A0;y&#x00A0;axis,&#x00A0;by&#x00A0;45&#x00A0;degrees&#x00A0;<br /><span class="label"><a
+ id="x1-14012r3"></a></span>t.rotate(&#x00A0;Vector3(0,1,0),&#x00A0;Math.deg2rad(45)&#x00A0;)&#x00A0;<br /><span class="label"><a
+ id="x1-14013r4"></a></span>//translate&#x00A0;the&#x00A0;transform&#x00A0;by&#x00A0;5&#x00A0;in&#x00A0;the&#x00A0;z&#x00A0;axis&#x00A0;<br /><span class="label"><a
+ id="x1-14014r5"></a></span>t.translate(&#x00A0;Vector3(&#x00A0;0,0,5&#x00A0;)&#x00A0;)&#x00A0;<br /><span class="label"><a
+ id="x1-14015r6"></a></span>//transform&#x00A0;a&#x00A0;vector&#x00A0;v&#x00A0;(xform&#x00A0;method&#x00A0;is&#x00A0;used)&#x00A0;<br /><span class="label"><a
+ id="x1-14016r7"></a></span>v&#x00A0;=&#x00A0;Vector3(...)&#x00A0;<br /><span class="label"><a
+ id="x1-14017r8"></a></span>result&#x00A0;=&#x00A0;t.xform(&#x00A0;v&#x00A0;)
+ </div>
+<!--l. 431--><p class="indent" > Transform contains internally a Matrix3 &#8220;basis&#8221; and a Vector3 &#8220;origin&#8221; (which can
+be modified individually).
+<!--l. 435--><p class="noindent" >
+ <h5 class="subsubsectionHead"><span class="titlemark">1.4.2 </span> <a
+ id="x1-150001.4.2"></a>Transform Internals</h5>
+<!--l. 437--><p class="noindent" >Internally, the xform() process is quite simple, to apply a 3x3 transform to a vector,
+the transposed axis vectors are used (as using the regular axis vectors will result on
+an inverse of the desired transform):
+ <!--l. 442-->
+ <div class="lstlisting"><span class="label"><a
+ id="x1-15001r1"></a></span>m&#x00A0;=&#x00A0;Matrix3(...)&#x00A0;<br /><span class="label"><a
+ id="x1-15002r2"></a></span>v&#x00A0;=&#x00A0;Vector3(..)&#x00A0;<br /><span class="label"><a
+ id="x1-15003r3"></a></span>result&#x00A0;=&#x00A0;Vector3(...)&#x00A0;<br /><span class="label"><a
+ id="x1-15004r4"></a></span>&#x00A0;<br /><span class="label"><a
+ id="x1-15005r5"></a></span>x_axis&#x00A0;=&#x00A0;m.get_axis(0)&#x00A0;<br /><span class="label"><a
+ id="x1-15006r6"></a></span>y_axis&#x00A0;=&#x00A0;m.get_axis(1)&#x00A0;<br /><span class="label"><a
+ id="x1-15007r7"></a></span>z_axis&#x00A0;=&#x00A0;m.get_axis(2)&#x00A0;<br /><span class="label"><a
+ id="x1-15008r8"></a></span>&#x00A0;<br /><span class="label"><a
+ id="x1-15009r9"></a></span>result.x&#x00A0;=&#x00A0;Vector3(x_axis.x,&#x00A0;y_axis.x,&#x00A0;z_axis.x).dot(v)&#x00A0;<br /><span class="label"><a
+ id="x1-15010r10"></a></span>result.y&#x00A0;=&#x00A0;Vector3(x_axis.y,&#x00A0;y_axis.y,&#x00A0;z_axis.y).dot(v)&#x00A0;<br /><span class="label"><a
+ id="x1-15011r11"></a></span>result.z&#x00A0;=&#x00A0;Vector3(x_axis.z,&#x00A0;y_axis.z,&#x00A0;z_axis.z).dot(v)&#x00A0;<br /><span class="label"><a
+ id="x1-15012r12"></a></span>&#x00A0;<br /><span class="label"><a
+ id="x1-15013r13"></a></span>//&#x00A0;is&#x00A0;the&#x00A0;same&#x00A0;as&#x00A0;doing&#x00A0;<br /><span class="label"><a
+ id="x1-15014r14"></a></span>&#x00A0;<br /><span class="label"><a
+ id="x1-15015r15"></a></span>result&#x00A0;=&#x00A0;m.xform(v)&#x00A0;<br /><span class="label"><a
+ id="x1-15016r16"></a></span>&#x00A0;<br /><span class="label"><a
+ id="x1-15017r17"></a></span>//&#x00A0;if&#x00A0;m&#x00A0;this&#x00A0;was&#x00A0;a&#x00A0;Transform(),&#x00A0;the&#x00A0;origin&#x00A0;would&#x00A0;be&#x00A0;added&#x00A0;<br /><span class="label"><a
+ id="x1-15018r18"></a></span>//&#x00A0;like&#x00A0;this:&#x00A0;<br /><span class="label"><a
+ id="x1-15019r19"></a></span>&#x00A0;<br /><span class="label"><a
+ id="x1-15020r20"></a></span>result&#x00A0;=&#x00A0;result&#x00A0;+&#x00A0;t.get_origin()
+ </div>
+<!--l. 468--><p class="noindent" >
+ <h5 class="subsubsectionHead"><span class="titlemark">1.4.3 </span> <a
+ id="x1-160001.4.3"></a>Using The Transform</h5>
+<!--l. 470--><p class="noindent" >So, it is often desired apply sucessive operations to a transformation. For example,
+let&#8217;s a assume that there is a turtle sitting at the origin (the turtle is a logo reference,
+
+for those familiar with it). The <span
+class="ecti-1000">y </span>axis is up, and the the turtle&#8217;s nose is pointing
+towards the <span
+class="ecti-1000">z </span>axis.
+<!--l. 476--><p class="indent" > The turtle (like many other animals, or vehicles!) can only walk towards the
+direction it&#8217;s looking at. So, moving the turtle around a little should be something
+like this:
+ <!--l. 481-->
+ <div class="lstlisting"><span class="label"><a
+ id="x1-16001r1"></a></span><span
+class="ecti-1000">//</span><span
+class="ecti-1000">&#x00A0;</span><span
+class="ecti-1000">turtle</span><span
+class="ecti-1000">&#x00A0;</span><span
+class="ecti-1000">at</span><span
+class="ecti-1000">&#x00A0;</span><span
+class="ecti-1000">the</span><span
+class="ecti-1000">&#x00A0;</span><span
+class="ecti-1000">origin</span>&#x00A0;<br /><span class="label"><a
+ id="x1-16002r2"></a></span>turtle&#x00A0;=&#x00A0;Transform()&#x00A0;<br /><span class="label"><a
+ id="x1-16003r3"></a></span><span
+class="ecti-1000">//</span><span
+class="ecti-1000">&#x00A0;</span><span
+class="ecti-1000">turtle</span><span
+class="ecti-1000">&#x00A0;</span><span
+class="ecti-1000">will</span><span
+class="ecti-1000">&#x00A0;</span><span
+class="ecti-1000">walk</span><span
+class="ecti-1000">&#x00A0;</span><span
+class="ecti-1000">5</span><span
+class="ecti-1000">&#x00A0;</span><span
+class="ecti-1000">units</span><span
+class="ecti-1000">&#x00A0;</span><span
+class="ecti-1000">in</span><span
+class="ecti-1000">&#x00A0;</span><span
+class="ecti-1000">z</span><span
+class="ecti-1000">&#x00A0;</span><span
+class="ecti-1000">axis</span>&#x00A0;<br /><span class="label"><a
+ id="x1-16004r4"></a></span>turtle.translate(&#x00A0;Vector3(0,0,5)&#x00A0;)&#x00A0;<br /><span class="label"><a
+ id="x1-16005r5"></a></span><span
+class="ecti-1000">//</span><span
+class="ecti-1000">&#x00A0;</span><span
+class="ecti-1000">turtle</span><span
+class="ecti-1000">&#x00A0;</span><span
+class="ecti-1000">eyes</span><span
+class="ecti-1000">&#x00A0;</span><span
+class="ecti-1000">a</span><span
+class="ecti-1000">&#x00A0;</span><span
+class="ecti-1000">lettuce</span><span
+class="ecti-1000">&#x00A0;</span><span
+class="ecti-1000">3</span><span
+class="ecti-1000">&#x00A0;</span><span
+class="ecti-1000">units</span><span
+class="ecti-1000">&#x00A0;</span><span
+class="ecti-1000">away</span><span
+class="ecti-1000">,</span><span
+class="ecti-1000">&#x00A0;</span><span
+class="ecti-1000">will</span><span
+class="ecti-1000">&#x00A0;</span><span
+class="ecti-1000">rotate</span><span
+class="ecti-1000">&#x00A0;</span><span
+class="ecti-1000">45</span><span
+class="ecti-1000">&#x00A0;</span><span
+class="ecti-1000">degrees</span><span
+class="ecti-1000">&#x00A0;</span><span
+class="ecti-1000">right</span>&#x00A0;<br /><span class="label"><a
+ id="x1-16006r6"></a></span>turtle.rotate(&#x00A0;Vector3(0,1,0),&#x00A0;Math.deg2rad(45)&#x00A0;)&#x00A0;<br /><span class="label"><a
+ id="x1-16007r7"></a></span><span
+class="ecti-1000">//</span><span
+class="ecti-1000">&#x00A0;</span><span
+class="ecti-1000">turtle</span><span
+class="ecti-1000">&#x00A0;</span><span
+class="ecti-1000">approaches</span><span
+class="ecti-1000">&#x00A0;</span><span
+class="ecti-1000">the</span><span
+class="ecti-1000">&#x00A0;</span><span
+class="ecti-1000">lettuce</span>&#x00A0;<br /><span class="label"><a
+ id="x1-16008r8"></a></span>turtle.translate(&#x00A0;Vector3(0,0,5)&#x00A0;)&#x00A0;<br /><span class="label"><a
+ id="x1-16009r9"></a></span><span
+class="ecti-1000">//</span><span
+class="ecti-1000">&#x00A0;</span><span
+class="ecti-1000">happy</span><span
+class="ecti-1000">&#x00A0;</span><span
+class="ecti-1000">turtle</span><span
+class="ecti-1000">&#x00A0;</span><span
+class="ecti-1000">over</span><span
+class="ecti-1000">&#x00A0;</span><span
+class="ecti-1000">lettuce</span><span
+class="ecti-1000">&#x00A0;</span><span
+class="ecti-1000">is</span><span
+class="ecti-1000">&#x00A0;</span><span
+class="ecti-1000">at</span>&#x00A0;<br /><span class="label"><a
+ id="x1-16010r10"></a></span>print(turtle.get_origin())
+ </div>
+<!--l. 496--><p class="indent" > As can be seen, every new action the turtle takes is based on the previous one it
+took. Had the order of actions been different and the turtle would have never reached
+the lettuce.
+<!--l. 500--><p class="indent" > Transforms are just that, a mean of &#8220;accumulating&#8221; rotation, translation, scale,
+etc.
+<!--l. 504--><p class="noindent" >
+ <h5 class="subsubsectionHead"><span class="titlemark">1.4.4 </span> <a
+ id="x1-170001.4.4"></a>A Warning about Numerical Precision</h5>
+<!--l. 506--><p class="noindent" >Performing several actions over a transform will slowly and gradually lead to
+precision loss (objects that draw according to a transform may get jittery, bigger,
+smaller, skewed, etc). This happens due to the nature of floating point numbers. if
+transforms/matrices are created from other kind of values (like a position and
+some angular rotation) this is not needed, but if has been accumulating
+transformations and was never recreated, it can be normalized by calling the
+.orthonormalize() built-in function. This function has little cost and calling it every
+now and then will avoid the effects from precision loss to become visible.
+
+</body></html>
+
+
+
diff --git a/doc/html/tutorial01/tutorial0x.png b/doc/html/tutorial01/tutorial0x.png
new file mode 100644
index 0000000000..a0ed4f53ff
--- /dev/null
+++ b/doc/html/tutorial01/tutorial0x.png
Binary files differ
diff --git a/doc/html/tutorial01/tutorial1x.png b/doc/html/tutorial01/tutorial1x.png
new file mode 100644
index 0000000000..80f0d099f7
--- /dev/null
+++ b/doc/html/tutorial01/tutorial1x.png
Binary files differ
diff --git a/doc/html/tutorial01/tutorial2x.png b/doc/html/tutorial01/tutorial2x.png
new file mode 100644
index 0000000000..76c502b6da
--- /dev/null
+++ b/doc/html/tutorial01/tutorial2x.png
Binary files differ
diff --git a/doc/html/tutorial01/tutorial3x.png b/doc/html/tutorial01/tutorial3x.png
new file mode 100644
index 0000000000..8431e9d15c
--- /dev/null
+++ b/doc/html/tutorial01/tutorial3x.png
Binary files differ
diff --git a/doc/html/tutorial01/tutorial4x.png b/doc/html/tutorial01/tutorial4x.png
new file mode 100644
index 0000000000..1ce7a2bb45
--- /dev/null
+++ b/doc/html/tutorial01/tutorial4x.png
Binary files differ