summaryrefslogtreecommitdiff
path: root/doc/base/classes.xml
diff options
context:
space:
mode:
authorJuan Linietsky <reduzio@gmail.com>2017-01-03 23:20:20 -0300
committerGitHub <noreply@github.com>2017-01-03 23:20:20 -0300
commit3a0c19d3f6ddb26359c95d84c376a8e6b1afd04d (patch)
tree8e313066ce55a3366cd6b972ff429372583cda28 /doc/base/classes.xml
parentf2e99826c0b1e8227644bfab0795d858c504d279 (diff)
parentbd7ba0b664fa98381db9ef8edb69ba211213d595 (diff)
Merge pull request #6865 from tagcup/godot_issue_6816
Use right handed coordinate system for rotation matrices and quaternions. Also fixed Euler angles (XYZ convention).
Diffstat (limited to 'doc/base/classes.xml')
-rw-r--r--doc/base/classes.xml21
1 files changed, 10 insertions, 11 deletions
diff --git a/doc/base/classes.xml b/doc/base/classes.xml
index b49c23f117..4be1666e59 100644
--- a/doc/base/classes.xml
+++ b/doc/base/classes.xml
@@ -20714,7 +20714,7 @@
<argument index="1" name="phi" type="float">
</argument>
<description>
- Create a matrix from an axis vector and an angle.
+ Create a matrix which rotates around the given axis by the specified angle.
</description>
</method>
<method name="Matrix3">
@@ -20741,7 +20741,7 @@
<return type="Vector3">
</return>
<description>
- Return euler angles from the matrix.
+ Return euler angles (in the XYZ convention: first Z, then Y, and X last) from the matrix. Returned vector contains the rotation angles in the format (third,second,first).
</description>
</method>
<method name="get_orthogonal_index">
@@ -20767,7 +20767,7 @@
<return type="Matrix3">
</return>
<description>
- Return the orthonormalized version of the matrix (useful to call from time to time to avoid rounding error).
+ Return the orthonormalized version of the matrix (useful to call from time to time to avoid rounding error for orthogonal matrices). This performs a Gram-Schmidt orthonormalization on the basis of the matrix.
</description>
</method>
<method name="rotated">
@@ -20777,10 +20777,7 @@
</argument>
<argument index="1" name="phi" type="float">
</argument>
- <description>
- Return the rotated version of the matrix, by a given axis and angle.
- </description>
- </method>
+ </method>
<method name="scaled">
<return type="Matrix3">
</return>
@@ -31485,7 +31482,7 @@
Quaternion.
</brief_description>
<description>
- Quaternion is a 4 dimensional vector that is used to represent a rotation. It mainly exists to perform SLERP (spherical-linear interpolation) between to rotations obtained by a Matrix3 cheaply. Adding quaternions also cheaply adds the rotations, however quaternions need to be often normalized, or else they suffer from precision issues.
+ Quaternion is a 4 dimensional vector that is used to represent a rotation. It mainly exists to perform SLERP (spherical-linear interpolation) between to rotations obtained by a Matrix3 cheaply. Multiplying quaternions also cheaply reproduces rotation sequences, however quaternions need to be often normalized, or else they suffer from precision issues.
</description>
<methods>
<method name="Quat">
@@ -31510,6 +31507,7 @@
<argument index="1" name="angle" type="float">
</argument>
<description>
+ Returns a quaternion that will rotate around the given axis by the specified angle.
</description>
</method>
<method name="Quat">
@@ -31518,6 +31516,7 @@
<argument index="0" name="from" type="Matrix3">
</argument>
<description>
+ Returns the rotation matrix corresponding to the given quaternion.
</description>
</method>
<method name="cubic_slerp">
@@ -31540,14 +31539,14 @@
<argument index="0" name="b" type="Quat">
</argument>
<description>
- Returns the dot product between two quaternions.
+ Returns the dot product of two quaternions.
</description>
</method>
<method name="inverse">
<return type="Quat">
</return>
<description>
- Returns the inverse of the quaternion (applies to the inverse rotation too).
+ Returns the inverse of the quaternion.
</description>
</method>
<method name="length">
@@ -43135,7 +43134,7 @@
<argument index="1" name="phi" type="float">
</argument>
<description>
- Rotate the transform locally.
+ Rotate the transform locally. This introduces an additional pre-rotation to the transform, changing the basis to basis * Matrix3(axis, phi).
</description>
</method>
<method name="scaled">