diff options
author | Juan Linietsky <reduzio@gmail.com> | 2017-01-03 23:20:20 -0300 |
---|---|---|
committer | GitHub <noreply@github.com> | 2017-01-03 23:20:20 -0300 |
commit | 3a0c19d3f6ddb26359c95d84c376a8e6b1afd04d (patch) | |
tree | 8e313066ce55a3366cd6b972ff429372583cda28 /doc/base/classes.xml | |
parent | f2e99826c0b1e8227644bfab0795d858c504d279 (diff) | |
parent | bd7ba0b664fa98381db9ef8edb69ba211213d595 (diff) |
Merge pull request #6865 from tagcup/godot_issue_6816
Use right handed coordinate system for rotation matrices and quaternions. Also fixed Euler angles (XYZ convention).
Diffstat (limited to 'doc/base/classes.xml')
-rw-r--r-- | doc/base/classes.xml | 21 |
1 files changed, 10 insertions, 11 deletions
diff --git a/doc/base/classes.xml b/doc/base/classes.xml index b49c23f117..4be1666e59 100644 --- a/doc/base/classes.xml +++ b/doc/base/classes.xml @@ -20714,7 +20714,7 @@ <argument index="1" name="phi" type="float"> </argument> <description> - Create a matrix from an axis vector and an angle. + Create a matrix which rotates around the given axis by the specified angle. </description> </method> <method name="Matrix3"> @@ -20741,7 +20741,7 @@ <return type="Vector3"> </return> <description> - Return euler angles from the matrix. + Return euler angles (in the XYZ convention: first Z, then Y, and X last) from the matrix. Returned vector contains the rotation angles in the format (third,second,first). </description> </method> <method name="get_orthogonal_index"> @@ -20767,7 +20767,7 @@ <return type="Matrix3"> </return> <description> - Return the orthonormalized version of the matrix (useful to call from time to time to avoid rounding error). + Return the orthonormalized version of the matrix (useful to call from time to time to avoid rounding error for orthogonal matrices). This performs a Gram-Schmidt orthonormalization on the basis of the matrix. </description> </method> <method name="rotated"> @@ -20777,10 +20777,7 @@ </argument> <argument index="1" name="phi" type="float"> </argument> - <description> - Return the rotated version of the matrix, by a given axis and angle. - </description> - </method> + </method> <method name="scaled"> <return type="Matrix3"> </return> @@ -31485,7 +31482,7 @@ Quaternion. </brief_description> <description> - Quaternion is a 4 dimensional vector that is used to represent a rotation. It mainly exists to perform SLERP (spherical-linear interpolation) between to rotations obtained by a Matrix3 cheaply. Adding quaternions also cheaply adds the rotations, however quaternions need to be often normalized, or else they suffer from precision issues. + Quaternion is a 4 dimensional vector that is used to represent a rotation. It mainly exists to perform SLERP (spherical-linear interpolation) between to rotations obtained by a Matrix3 cheaply. Multiplying quaternions also cheaply reproduces rotation sequences, however quaternions need to be often normalized, or else they suffer from precision issues. </description> <methods> <method name="Quat"> @@ -31510,6 +31507,7 @@ <argument index="1" name="angle" type="float"> </argument> <description> + Returns a quaternion that will rotate around the given axis by the specified angle. </description> </method> <method name="Quat"> @@ -31518,6 +31516,7 @@ <argument index="0" name="from" type="Matrix3"> </argument> <description> + Returns the rotation matrix corresponding to the given quaternion. </description> </method> <method name="cubic_slerp"> @@ -31540,14 +31539,14 @@ <argument index="0" name="b" type="Quat"> </argument> <description> - Returns the dot product between two quaternions. + Returns the dot product of two quaternions. </description> </method> <method name="inverse"> <return type="Quat"> </return> <description> - Returns the inverse of the quaternion (applies to the inverse rotation too). + Returns the inverse of the quaternion. </description> </method> <method name="length"> @@ -43135,7 +43134,7 @@ <argument index="1" name="phi" type="float"> </argument> <description> - Rotate the transform locally. + Rotate the transform locally. This introduces an additional pre-rotation to the transform, changing the basis to basis * Matrix3(axis, phi). </description> </method> <method name="scaled"> |