diff options
author | Rémi Verschelde <rverschelde@gmail.com> | 2017-04-24 11:16:20 +0200 |
---|---|---|
committer | GitHub <noreply@github.com> | 2017-04-24 11:16:20 +0200 |
commit | 5ae1e172da08a63b14635f5d06e32385901525e2 (patch) | |
tree | 9a9bd7f4dd90eada323f504b551e7630802fa494 /core | |
parent | 90ef1fd03d43d51f09b730dee107c0e407cf0703 (diff) | |
parent | 9a37ff1e34fe445a9168a7d91ae1df7d9928eb25 (diff) |
Merge pull request #8277 from tagcup/math_checks
Added various functions basic math classes. Also enabled math checks …
Diffstat (limited to 'core')
-rw-r--r-- | core/math/math_2d.cpp | 9 | ||||
-rw-r--r-- | core/math/math_defs.h | 4 | ||||
-rw-r--r-- | core/math/math_funcs.h | 2 | ||||
-rw-r--r-- | core/math/matrix3.cpp | 126 | ||||
-rw-r--r-- | core/math/matrix3.h | 20 | ||||
-rw-r--r-- | core/math/quat.cpp | 4 | ||||
-rw-r--r-- | core/math/quat.h | 3 | ||||
-rw-r--r-- | core/math/vector3.h | 7 | ||||
-rw-r--r-- | core/variant_call.cpp | 18 |
9 files changed, 151 insertions, 42 deletions
diff --git a/core/math/math_2d.cpp b/core/math/math_2d.cpp index 20b916ee3b..962a42acb9 100644 --- a/core/math/math_2d.cpp +++ b/core/math/math_2d.cpp @@ -63,7 +63,8 @@ Vector2 Vector2::normalized() const { } bool Vector2::is_normalized() const { - return Math::isequal_approx(length(), (real_t)1.0); + // use length_squared() instead of length() to avoid sqrt(), makes it more stringent. + return Math::is_equal_approx(length_squared(), 1.0); } real_t Vector2::distance_to(const Vector2 &p_vector2) const { @@ -281,7 +282,7 @@ Vector2 Vector2::cubic_interpolate(const Vector2 &p_b, const Vector2 &p_pre_a, c // slide returns the component of the vector along the given plane, specified by its normal vector. Vector2 Vector2::slide(const Vector2 &p_n) const { -#ifdef DEBUG_ENABLED +#ifdef MATH_CHECKS ERR_FAIL_COND_V(p_n.is_normalized() == false, Vector2()); #endif return *this - p_n * this->dot(p_n); @@ -292,7 +293,7 @@ Vector2 Vector2::bounce(const Vector2 &p_n) const { } Vector2 Vector2::reflect(const Vector2 &p_n) const { -#ifdef DEBUG_ENABLED +#ifdef MATH_CHECKS ERR_FAIL_COND_V(p_n.is_normalized() == false, Vector2()); #endif return 2.0 * p_n * this->dot(p_n) - *this; @@ -439,7 +440,9 @@ Transform2D Transform2D::inverse() const { void Transform2D::affine_invert() { real_t det = basis_determinant(); +#ifdef MATH_CHECKS ERR_FAIL_COND(det == 0); +#endif real_t idet = 1.0 / det; SWAP(elements[0][0], elements[1][1]); diff --git a/core/math/math_defs.h b/core/math/math_defs.h index 1a5768e515..3d9eb63e11 100644 --- a/core/math/math_defs.h +++ b/core/math/math_defs.h @@ -35,6 +35,10 @@ #define CMP_NORMALIZE_TOLERANCE 0.000001 #define CMP_POINT_IN_PLANE_EPSILON 0.00001 +#ifdef DEBUG_ENABLED +#define MATH_CHECKS +#endif + #define USEC_TO_SEC(m_usec) ((m_usec) / 1000000.0) /** * "Real" is a type that will be translated to either floats or fixed depending diff --git a/core/math/math_funcs.h b/core/math/math_funcs.h index d71d9bd792..5bfbc1005f 100644 --- a/core/math/math_funcs.h +++ b/core/math/math_funcs.h @@ -168,7 +168,7 @@ public: static float random(float from, float to); static real_t random(int from, int to) { return (real_t)random((real_t)from, (real_t)to); } - static _ALWAYS_INLINE_ bool isequal_approx(real_t a, real_t b) { + static _ALWAYS_INLINE_ bool is_equal_approx(real_t a, real_t b) { // TODO: Comparing floats for approximate-equality is non-trivial. // Using epsilon should cover the typical cases in Godot (where a == b is used to compare two reals), such as matrix and vector comparison operators. // A proper implementation in terms of ULPs should eventually replace the contents of this function. diff --git a/core/math/matrix3.cpp b/core/math/matrix3.cpp index ef368009d1..c733251c3c 100644 --- a/core/math/matrix3.cpp +++ b/core/math/matrix3.cpp @@ -62,8 +62,9 @@ void Basis::invert() { real_t det = elements[0][0] * co[0] + elements[0][1] * co[1] + elements[0][2] * co[2]; - +#ifdef MATH_CHECKS ERR_FAIL_COND(det == 0); +#endif real_t s = 1.0 / det; set(co[0] * s, cofac(0, 2, 2, 1) * s, cofac(0, 1, 1, 2) * s, @@ -72,8 +73,9 @@ void Basis::invert() { } void Basis::orthonormalize() { +#ifdef MATH_CHECKS ERR_FAIL_COND(determinant() == 0); - +#endif // Gram-Schmidt Process Vector3 x = get_axis(0); @@ -102,20 +104,20 @@ bool Basis::is_orthogonal() const { Basis id; Basis m = (*this) * transposed(); - return isequal_approx(id, m); + return is_equal_approx(id, m); } bool Basis::is_rotation() const { - return Math::isequal_approx(determinant(), 1) && is_orthogonal(); + return Math::is_equal_approx(determinant(), 1) && is_orthogonal(); } bool Basis::is_symmetric() const { - if (Math::abs(elements[0][1] - elements[1][0]) > CMP_EPSILON) + if (!Math::is_equal_approx(elements[0][1], elements[1][0])) return false; - if (Math::abs(elements[0][2] - elements[2][0]) > CMP_EPSILON) + if (!Math::is_equal_approx(elements[0][2], elements[2][0])) return false; - if (Math::abs(elements[1][2] - elements[2][1]) > CMP_EPSILON) + if (!Math::is_equal_approx(elements[1][2], elements[2][1])) return false; return true; @@ -123,11 +125,11 @@ bool Basis::is_symmetric() const { Basis Basis::diagonalize() { - //NOTE: only implemented for symmetric matrices - //with the Jacobi iterative method method - +//NOTE: only implemented for symmetric matrices +//with the Jacobi iterative method method +#ifdef MATH_CHECKS ERR_FAIL_COND_V(!is_symmetric(), Basis()); - +#endif const int ite_max = 1024; real_t off_matrix_norm_2 = elements[0][1] * elements[0][1] + elements[0][2] * elements[0][2] + elements[1][2] * elements[1][2]; @@ -160,7 +162,7 @@ Basis Basis::diagonalize() { // Compute the rotation angle real_t angle; - if (Math::abs(elements[j][j] - elements[i][i]) < CMP_EPSILON) { + if (Math::is_equal_approx(elements[j][j], elements[i][i])) { angle = Math_PI / 4; } else { angle = 0.5 * Math::atan(2 * elements[i][j] / (elements[j][j] - elements[i][i])); @@ -226,11 +228,25 @@ Basis Basis::scaled(const Vector3 &p_scale) const { } Vector3 Basis::get_scale() const { - // We are assuming M = R.S, and performing a polar decomposition to extract R and S. - // FIXME: We eventually need a proper polar decomposition. - // As a cheap workaround until then, to ensure that R is a proper rotation matrix with determinant +1 - // (such that it can be represented by a Quat or Euler angles), we absorb the sign flip into the scaling matrix. - // As such, it works in conjunction with get_rotation(). + // FIXME: We are assuming M = R.S (R is rotation and S is scaling), and use polar decomposition to extract R and S. + // A polar decomposition is M = O.P, where O is an orthogonal matrix (meaning rotation and reflection) and + // P is a positive semi-definite matrix (meaning it contains absolute values of scaling along its diagonal). + // + // Despite being different from what we want to achieve, we can nevertheless make use of polar decomposition + // here as follows. We can split O into a rotation and a reflection as O = R.Q, and obtain M = R.S where + // we defined S = Q.P. Now, R is a proper rotation matrix and S is a (signed) scaling matrix, + // which can involve negative scalings. However, there is a catch: unlike the polar decomposition of M = O.P, + // the decomposition of O into a rotation and reflection matrix as O = R.Q is not unique. + // Therefore, we are going to do this decomposition by sticking to a particular convention. + // This may lead to confusion for some users though. + // + // The convention we use here is to absorb the sign flip into the scaling matrix. + // The same convention is also used in other similar functions such as set_scale, + // get_rotation_axis_angle, get_rotation, set_rotation_axis_angle, set_rotation_euler, ... + // + // A proper way to get rid of this issue would be to store the scaling values (or at least their signs) + // as a part of Basis. However, if we go that path, we need to disable direct (write) access to the + // matrix elements. real_t det_sign = determinant() > 0 ? 1 : -1; return det_sign * Vector3( Vector3(elements[0][0], elements[1][0], elements[2][0]).length(), @@ -238,6 +254,17 @@ Vector3 Basis::get_scale() const { Vector3(elements[0][2], elements[1][2], elements[2][2]).length()); } +// Sets scaling while preserving rotation. +// This requires some care when working with matrices with negative determinant, +// since we're using a particular convention for "polar" decomposition in get_scale and get_rotation. +// For details, see the explanation in get_scale. +void Basis::set_scale(const Vector3 &p_scale) { + Vector3 e = get_euler(); + Basis(); // reset to identity + scale(p_scale); + rotate(e); +} + // Multiplies the matrix from left by the rotation matrix: M -> R.M // Note that this does *not* rotate the matrix itself. // @@ -260,6 +287,7 @@ void Basis::rotate(const Vector3 &p_euler) { *this = rotated(p_euler); } +// TODO: rename this to get_rotation_euler Vector3 Basis::get_rotation() const { // Assumes that the matrix can be decomposed into a proper rotation and scaling matrix as M = R.S, // and returns the Euler angles corresponding to the rotation part, complementing get_scale(). @@ -274,6 +302,42 @@ Vector3 Basis::get_rotation() const { return m.get_euler(); } +void Basis::get_rotation_axis_angle(Vector3 &p_axis, real_t &p_angle) const { + // Assumes that the matrix can be decomposed into a proper rotation and scaling matrix as M = R.S, + // and returns the Euler angles corresponding to the rotation part, complementing get_scale(). + // See the comment in get_scale() for further information. + Basis m = orthonormalized(); + real_t det = m.determinant(); + if (det < 0) { + // Ensure that the determinant is 1, such that result is a proper rotation matrix which can be represented by Euler angles. + m.scale(Vector3(-1, -1, -1)); + } + + m.get_axis_angle(p_axis, p_angle); +} + +// Sets rotation while preserving scaling. +// This requires some care when working with matrices with negative determinant, +// since we're using a particular convention for "polar" decomposition in get_scale and get_rotation. +// For details, see the explanation in get_scale. +void Basis::set_rotation_euler(const Vector3 &p_euler) { + Vector3 s = get_scale(); + Basis(); // reset to identity + scale(s); + rotate(p_euler); +} + +// Sets rotation while preserving scaling. +// This requires some care when working with matrices with negative determinant, +// since we're using a particular convention for "polar" decomposition in get_scale and get_rotation. +// For details, see the explanation in get_scale. +void Basis::set_rotation_axis_angle(const Vector3 &p_axis, real_t p_angle) { + Vector3 s = get_scale(); + Basis(); // reset to identity + scale(s); + rotate(p_axis, p_angle); +} + // get_euler returns a vector containing the Euler angles in the format // (a1,a2,a3), where a3 is the angle of the first rotation, and a1 is the last // (following the convention they are commonly defined in the literature). @@ -294,9 +358,9 @@ Vector3 Basis::get_euler() const { // -cx*cz*sy+sx*sz cz*sx+cx*sy*sz cx*cy Vector3 euler; - +#ifdef MATH_CHECKS ERR_FAIL_COND_V(is_rotation() == false, euler); - +#endif euler.y = Math::asin(elements[0][2]); if (euler.y < Math_PI * 0.5) { if (euler.y > -Math_PI * 0.5) { @@ -340,11 +404,11 @@ void Basis::set_euler(const Vector3 &p_euler) { *this = xmat * (ymat * zmat); } -bool Basis::isequal_approx(const Basis &a, const Basis &b) const { +bool Basis::is_equal_approx(const Basis &a, const Basis &b) const { for (int i = 0; i < 3; i++) { for (int j = 0; j < 3; j++) { - if (Math::isequal_approx(a.elements[i][j], b.elements[i][j]) == false) + if (Math::is_equal_approx(a.elements[i][j], b.elements[i][j]) == false) return false; } } @@ -387,8 +451,9 @@ Basis::operator String() const { } Basis::operator Quat() const { +#ifdef MATH_CHECKS ERR_FAIL_COND_V(is_rotation() == false, Quat()); - +#endif real_t trace = elements[0][0] + elements[1][1] + elements[2][2]; real_t temp[4]; @@ -482,9 +547,10 @@ void Basis::set_orthogonal_index(int p_index) { *this = _ortho_bases[p_index]; } -void Basis::get_axis_and_angle(Vector3 &r_axis, real_t &r_angle) const { +void Basis::get_axis_angle(Vector3 &r_axis, real_t &r_angle) const { +#ifdef MATH_CHECKS ERR_FAIL_COND(is_rotation() == false); - +#endif real_t angle, x, y, z; // variables for result real_t epsilon = 0.01; // margin to allow for rounding errors real_t epsilon2 = 0.1; // margin to distinguish between 0 and 180 degrees @@ -573,11 +639,11 @@ Basis::Basis(const Quat &p_quat) { xz - wy, yz + wx, 1.0 - (xx + yy)); } -Basis::Basis(const Vector3 &p_axis, real_t p_phi) { - // Rotation matrix from axis and angle, see https://en.wikipedia.org/wiki/Rotation_matrix#Rotation_matrix_from_axis_and_angle - +void Basis::set_axis_angle(const Vector3 &p_axis, real_t p_phi) { +// Rotation matrix from axis and angle, see https://en.wikipedia.org/wiki/Rotation_matrix#Rotation_matrix_from_axis_angle +#ifdef MATH_CHECKS ERR_FAIL_COND(p_axis.is_normalized() == false); - +#endif Vector3 axis_sq(p_axis.x * p_axis.x, p_axis.y * p_axis.y, p_axis.z * p_axis.z); real_t cosine = Math::cos(p_phi); @@ -595,3 +661,7 @@ Basis::Basis(const Vector3 &p_axis, real_t p_phi) { elements[2][1] = p_axis.y * p_axis.z * (1.0 - cosine) + p_axis.x * sine; elements[2][2] = axis_sq.z + cosine * (1.0 - axis_sq.z); } + +Basis::Basis(const Vector3 &p_axis, real_t p_phi) { + set_axis_angle(p_axis, p_phi); +} diff --git a/core/math/matrix3.h b/core/math/matrix3.h index 08e963f56e..c3eeb1f705 100644 --- a/core/math/matrix3.h +++ b/core/math/matrix3.h @@ -77,15 +77,25 @@ public: void rotate(const Vector3 &p_euler); Basis rotated(const Vector3 &p_euler) const; + Vector3 get_rotation() const; + void get_rotation_axis_angle(Vector3 &p_axis, real_t &p_angle) const; - void scale(const Vector3 &p_scale); - Basis scaled(const Vector3 &p_scale) const; - Vector3 get_scale() const; + void set_rotation_euler(const Vector3 &p_euler); + void set_rotation_axis_angle(const Vector3 &p_axis, real_t p_angle); Vector3 get_euler() const; void set_euler(const Vector3 &p_euler); + void get_axis_angle(Vector3 &r_axis, real_t &r_angle) const; + void set_axis_angle(const Vector3 &p_axis, real_t p_phi); + + void scale(const Vector3 &p_scale); + Basis scaled(const Vector3 &p_scale) const; + + Vector3 get_scale() const; + void set_scale(const Vector3 &p_scale); + // transposed dot products _FORCE_INLINE_ real_t tdotx(const Vector3 &v) const { return elements[0][0] * v[0] + elements[1][0] * v[1] + elements[2][0] * v[2]; @@ -97,7 +107,7 @@ public: return elements[0][2] * v[0] + elements[1][2] * v[1] + elements[2][2] * v[2]; } - bool isequal_approx(const Basis &a, const Basis &b) const; + bool is_equal_approx(const Basis &a, const Basis &b) const; bool operator==(const Basis &p_matrix) const; bool operator!=(const Basis &p_matrix) const; @@ -121,8 +131,6 @@ public: operator String() const; - void get_axis_and_angle(Vector3 &r_axis, real_t &r_angle) const; - /* create / set */ _FORCE_INLINE_ void set(real_t xx, real_t xy, real_t xz, real_t yx, real_t yy, real_t yz, real_t zx, real_t zy, real_t zz) { diff --git a/core/math/quat.cpp b/core/math/quat.cpp index 9662542224..0bea97c2e8 100644 --- a/core/math/quat.cpp +++ b/core/math/quat.cpp @@ -92,6 +92,10 @@ Quat Quat::normalized() const { return *this / length(); } +bool Quat::is_normalized() const { + return Math::is_equal_approx(length(), 1.0); +} + Quat Quat::inverse() const { return Quat(-x, -y, -z, w); } diff --git a/core/math/quat.h b/core/math/quat.h index 76b3cde2a3..f22275b457 100644 --- a/core/math/quat.h +++ b/core/math/quat.h @@ -48,6 +48,7 @@ public: real_t length() const; void normalize(); Quat normalized() const; + bool is_normalized() const; Quat inverse() const; _FORCE_INLINE_ real_t dot(const Quat &q) const; void set_euler(const Vector3 &p_euler); @@ -56,7 +57,7 @@ public: Quat slerpni(const Quat &q, const real_t &t) const; Quat cubic_slerp(const Quat &q, const Quat &prep, const Quat &postq, const real_t &t) const; - _FORCE_INLINE_ void get_axis_and_angle(Vector3 &r_axis, real_t &r_angle) const { + _FORCE_INLINE_ void get_axis_angle(Vector3 &r_axis, real_t &r_angle) const { r_angle = 2 * Math::acos(w); r_axis.x = x / Math::sqrt(1 - w * w); r_axis.y = y / Math::sqrt(1 - w * w); diff --git a/core/math/vector3.h b/core/math/vector3.h index a6bc20ccb2..5f4390fbd1 100644 --- a/core/math/vector3.h +++ b/core/math/vector3.h @@ -389,7 +389,8 @@ Vector3 Vector3::normalized() const { } bool Vector3::is_normalized() const { - return Math::isequal_approx(length(), (real_t)1.0); + // use length_squared() instead of length() to avoid sqrt(), makes it more stringent. + return Math::is_equal_approx(length_squared(), 1.0); } Vector3 Vector3::inverse() const { @@ -404,7 +405,7 @@ void Vector3::zero() { // slide returns the component of the vector along the given plane, specified by its normal vector. Vector3 Vector3::slide(const Vector3 &p_n) const { -#ifdef DEBUG_ENABLED +#ifdef MATH_CHECKS ERR_FAIL_COND_V(p_n.is_normalized() == false, Vector3()); #endif return *this - p_n * this->dot(p_n); @@ -415,7 +416,7 @@ Vector3 Vector3::bounce(const Vector3 &p_n) const { } Vector3 Vector3::reflect(const Vector3 &p_n) const { -#ifdef DEBUG_ENABLED +#ifdef MATH_CHECKS ERR_FAIL_COND_V(p_n.is_normalized() == false, Vector3()); #endif return 2.0 * p_n * this->dot(p_n) - *this; diff --git a/core/variant_call.cpp b/core/variant_call.cpp index e87dfd2768..beaee188eb 100644 --- a/core/variant_call.cpp +++ b/core/variant_call.cpp @@ -328,6 +328,7 @@ struct _VariantCall { VCALL_LOCALMEM0R(Vector2, normalized); VCALL_LOCALMEM0R(Vector2, length); VCALL_LOCALMEM0R(Vector2, length_squared); + VCALL_LOCALMEM0R(Vector2, is_normalized); VCALL_LOCALMEM1R(Vector2, distance_to); VCALL_LOCALMEM1R(Vector2, distance_squared_to); VCALL_LOCALMEM1R(Vector2, angle_to); @@ -362,6 +363,7 @@ struct _VariantCall { VCALL_LOCALMEM0R(Vector3, max_axis); VCALL_LOCALMEM0R(Vector3, length); VCALL_LOCALMEM0R(Vector3, length_squared); + VCALL_LOCALMEM0R(Vector3, is_normalized); VCALL_LOCALMEM0R(Vector3, normalized); VCALL_LOCALMEM0R(Vector3, inverse); VCALL_LOCALMEM1R(Vector3, snapped); @@ -418,6 +420,7 @@ struct _VariantCall { VCALL_LOCALMEM0R(Quat, length); VCALL_LOCALMEM0R(Quat, length_squared); VCALL_LOCALMEM0R(Quat, normalized); + VCALL_LOCALMEM0R(Quat, is_normalized); VCALL_LOCALMEM0R(Quat, inverse); VCALL_LOCALMEM1R(Quat, dot); VCALL_LOCALMEM1R(Quat, xform); @@ -704,6 +707,9 @@ struct _VariantCall { VCALL_PTR1R(Basis, scaled); VCALL_PTR0R(Basis, get_scale); VCALL_PTR0R(Basis, get_euler); + VCALL_PTR1(Basis, set_scale); + VCALL_PTR1(Basis, set_rotation_euler); + VCALL_PTR2(Basis, set_rotation_axis_angle); VCALL_PTR1R(Basis, tdotx); VCALL_PTR1R(Basis, tdoty); VCALL_PTR1R(Basis, tdotz); @@ -875,6 +881,11 @@ struct _VariantCall { r_ret = Basis(p_args[0]->operator Vector3(), p_args[1]->operator real_t()); } + static void Basis_init3(Variant &r_ret, const Variant **p_args) { + + r_ret = Basis(p_args[0]->operator Vector3()); + } + static void Transform_init1(Variant &r_ret, const Variant **p_args) { Transform t; @@ -1429,6 +1440,7 @@ void register_variant_methods() { ADDFUNC0(VECTOR2, REAL, Vector2, length, varray()); ADDFUNC0(VECTOR2, REAL, Vector2, angle, varray()); ADDFUNC0(VECTOR2, REAL, Vector2, length_squared, varray()); + ADDFUNC0(VECTOR2, BOOL, Vector2, is_normalized, varray()); ADDFUNC1(VECTOR2, REAL, Vector2, distance_to, VECTOR2, "to", varray()); ADDFUNC1(VECTOR2, REAL, Vector2, distance_squared_to, VECTOR2, "to", varray()); ADDFUNC1(VECTOR2, REAL, Vector2, angle_to, VECTOR2, "to", varray()); @@ -1462,6 +1474,7 @@ void register_variant_methods() { ADDFUNC0(VECTOR3, INT, Vector3, max_axis, varray()); ADDFUNC0(VECTOR3, REAL, Vector3, length, varray()); ADDFUNC0(VECTOR3, REAL, Vector3, length_squared, varray()); + ADDFUNC0(VECTOR3, BOOL, Vector3, is_normalized, varray()); ADDFUNC0(VECTOR3, VECTOR3, Vector3, normalized, varray()); ADDFUNC0(VECTOR3, VECTOR3, Vector3, inverse, varray()); ADDFUNC1(VECTOR3, VECTOR3, Vector3, snapped, REAL, "by", varray()); @@ -1497,6 +1510,7 @@ void register_variant_methods() { ADDFUNC0(QUAT, REAL, Quat, length, varray()); ADDFUNC0(QUAT, REAL, Quat, length_squared, varray()); ADDFUNC0(QUAT, QUAT, Quat, normalized, varray()); + ADDFUNC0(QUAT, BOOL, Quat, is_normalized, varray()); ADDFUNC0(QUAT, QUAT, Quat, inverse, varray()); ADDFUNC1(QUAT, REAL, Quat, dot, QUAT, "b", varray()); ADDFUNC1(QUAT, VECTOR3, Quat, xform, VECTOR3, "v", varray()); @@ -1692,6 +1706,9 @@ void register_variant_methods() { ADDFUNC0(BASIS, REAL, Basis, determinant, varray()); ADDFUNC2(BASIS, BASIS, Basis, rotated, VECTOR3, "axis", REAL, "phi", varray()); ADDFUNC1(BASIS, BASIS, Basis, scaled, VECTOR3, "scale", varray()); + ADDFUNC1(BASIS, NIL, Basis, set_scale, VECTOR3, "scale", varray()); + ADDFUNC1(BASIS, NIL, Basis, set_rotation_euler, VECTOR3, "euler", varray()); + ADDFUNC2(BASIS, NIL, Basis, set_rotation_axis_angle, VECTOR3, "axis", REAL, "angle", varray()); ADDFUNC0(BASIS, VECTOR3, Basis, get_scale, varray()); ADDFUNC0(BASIS, VECTOR3, Basis, get_euler, varray()); ADDFUNC1(BASIS, REAL, Basis, tdotx, VECTOR3, "with", varray()); @@ -1749,6 +1766,7 @@ void register_variant_methods() { _VariantCall::add_constructor(_VariantCall::Basis_init1, Variant::BASIS, "x_axis", Variant::VECTOR3, "y_axis", Variant::VECTOR3, "z_axis", Variant::VECTOR3); _VariantCall::add_constructor(_VariantCall::Basis_init2, Variant::BASIS, "axis", Variant::VECTOR3, "phi", Variant::REAL); + _VariantCall::add_constructor(_VariantCall::Basis_init3, Variant::BASIS, "euler", Variant::VECTOR3); _VariantCall::add_constructor(_VariantCall::Transform_init1, Variant::TRANSFORM, "x_axis", Variant::VECTOR3, "y_axis", Variant::VECTOR3, "z_axis", Variant::VECTOR3, "origin", Variant::VECTOR3); _VariantCall::add_constructor(_VariantCall::Transform_init2, Variant::TRANSFORM, "basis", Variant::BASIS, "origin", Variant::VECTOR3); |