diff options
author | Ferenc Arn <tagcup@yahoo.com> | 2017-01-05 11:31:39 -0600 |
---|---|---|
committer | Ferenc Arn <tagcup@yahoo.com> | 2017-01-08 10:36:14 -0600 |
commit | 6b1252cdfa5988b77917518bc291a0cc34e5066e (patch) | |
tree | 05e0b10a1b80fcb97bbcaec8c6aca276a2502f49 /core/math | |
parent | 76c2e8583e70e8c976a306e77a40e8e7226aa249 (diff) |
Fix the order in which additional transformations are applied in Matrix3 and Transform.
This is a part of the breaking changes proposed in PR #6865, solving the issue regarding the order of affine transformations described in #2565. This PR also fixes the affected code within Godot codebase. Includes improvements to documentation too.
Another change is, Matrix3::get_scale() will now return negative scaling when the determinant of the matrix is negative. The rationale behind this is simple: when performing a polar decomposition on a basis matrix M = R.S, we have to ensure that the determinant of R is +1, such that it is a proper rotation matrix (with no reflections) which can be represented by Euler angles or a quaternion.
Also replaced the few instances of float with real_t in Matrix3 and Transform.
Furthermore, this PR fixes an issue introduced due to the API breakage in #6865. Namely Matrix3::get_euler() now only works with proper rotation matrices. As a result, the code that wants to get the rotation portion of a transform needs to use Matrix3::get_rotation() introduced in this commit, which complements Matrix3::get_scaled(), providing both parts of the polar decomposition.
Finally, it is now possible to construct a rotation matrix from Euler angles using the new constructor Matrix3::Matrix3(const Vector3 &p_euler).
Diffstat (limited to 'core/math')
-rw-r--r-- | core/math/matrix3.cpp | 66 | ||||
-rw-r--r-- | core/math/matrix3.h | 8 | ||||
-rw-r--r-- | core/math/transform.cpp | 9 | ||||
-rw-r--r-- | core/math/transform.h | 2 |
4 files changed, 58 insertions, 27 deletions
diff --git a/core/math/matrix3.cpp b/core/math/matrix3.cpp index a985e29abb..a928b4d0e5 100644 --- a/core/math/matrix3.cpp +++ b/core/math/matrix3.cpp @@ -133,16 +133,18 @@ Matrix3 Matrix3::transposed() const { return tr; } +// Multiplies the matrix from left by the scaling matrix: M -> S.M +// See the comment for Matrix3::rotated for further explanation. void Matrix3::scale(const Vector3& p_scale) { elements[0][0]*=p_scale.x; - elements[1][0]*=p_scale.x; - elements[2][0]*=p_scale.x; - elements[0][1]*=p_scale.y; + elements[0][1]*=p_scale.x; + elements[0][2]*=p_scale.x; + elements[1][0]*=p_scale.y; elements[1][1]*=p_scale.y; - elements[2][1]*=p_scale.y; - elements[0][2]*=p_scale.z; - elements[1][2]*=p_scale.z; + elements[1][2]*=p_scale.y; + elements[2][0]*=p_scale.z; + elements[2][1]*=p_scale.z; elements[2][2]*=p_scale.z; } @@ -154,8 +156,13 @@ Matrix3 Matrix3::scaled( const Vector3& p_scale ) const { } Vector3 Matrix3::get_scale() const { - - return Vector3( + // We are assuming M = R.S, and performing a polar decomposition to extract R and S. + // FIXME: We eventually need a proper polar decomposition. + // As a cheap workaround until then, to ensure that R is a proper rotation matrix with determinant +1 + // (such that it can be represented by a Quat or Euler angles), we absorb the sign flip into the scaling matrix. + // As such, it works in conjuction with get_rotation(). + real_t det_sign = determinant() > 0 ? 1 : -1; + return det_sign*Vector3( Vector3(elements[0][0],elements[1][0],elements[2][0]).length(), Vector3(elements[0][1],elements[1][1],elements[2][1]).length(), Vector3(elements[0][2],elements[1][2],elements[2][2]).length() @@ -163,18 +170,40 @@ Vector3 Matrix3::get_scale() const { } -// Matrix3::rotate and Matrix3::rotated return M * R(axis,phi), and is a convenience function. They do *not* perform proper matrix rotation. +// Multiplies the matrix from left by the rotation matrix: M -> R.M +// Note that this does *not* rotate the matrix itself. +// +// The main use of Matrix3 is as Transform.basis, which is used a the transformation matrix +// of 3D object. Rotate here refers to rotation of the object (which is R * (*this)), +// not the matrix itself (which is R * (*this) * R.transposed()). +Matrix3 Matrix3::rotated(const Vector3& p_axis, real_t p_phi) const { + return Matrix3(p_axis, p_phi) * (*this); +} + void Matrix3::rotate(const Vector3& p_axis, real_t p_phi) { - // TODO: This function should also be renamed as the current name is misleading: rotate does *not* perform matrix rotation. - // Same problem affects Matrix3::rotated. - // A similar problem exists in 2D math, which will be handled separately. - // After Matrix3 is renamed to Basis, this comments needs to be revised. - *this = *this * Matrix3(p_axis, p_phi); + *this = rotated(p_axis, p_phi); } -Matrix3 Matrix3::rotated(const Vector3& p_axis, real_t p_phi) const { - return *this * Matrix3(p_axis, p_phi); +Matrix3 Matrix3::rotated(const Vector3& p_euler) const { + return Matrix3(p_euler) * (*this); +} + +void Matrix3::rotate(const Vector3& p_euler) { + *this = rotated(p_euler); +} + +Vector3 Matrix3::get_rotation() const { + // Assumes that the matrix can be decomposed into a proper rotation and scaling matrix as M = R.S, + // and returns the Euler angles corresponding to the rotation part, complementing get_scale(). + // See the comment in get_scale() for further information. + Matrix3 m = orthonormalized(); + real_t det = m.determinant(); + if (det < 0) { + // Ensure that the determinant is 1, such that result is a proper rotation matrix which can be represented by Euler angles. + m.scale(Vector3(-1,-1,-1)); + } + return m.get_euler(); } // get_euler returns a vector containing the Euler angles in the format @@ -363,7 +392,7 @@ int Matrix3::get_orthogonal_index() const { for(int i=0;i<3;i++) { for(int j=0;j<3;j++) { - float v = orth[i][j]; + real_t v = orth[i][j]; if (v>0.5) v=1.0; else if (v<-0.5) @@ -398,9 +427,6 @@ void Matrix3::set_orthogonal_index(int p_index){ void Matrix3::get_axis_and_angle(Vector3 &r_axis,real_t& r_angle) const { - // TODO: We can handle improper matrices here too, in which case axis will also correspond to the axis of reflection. - // See Eq. (52) in http://scipp.ucsc.edu/~haber/ph251/rotreflect_13.pdf for example - // After that change, we should fail on is_orthogonal() == false. ERR_FAIL_COND(is_rotation() == false); diff --git a/core/math/matrix3.h b/core/math/matrix3.h index 1d967c03b8..33a5ce8687 100644 --- a/core/math/matrix3.h +++ b/core/math/matrix3.h @@ -55,7 +55,7 @@ public: Matrix3 inverse() const; Matrix3 transposed() const; - _FORCE_INLINE_ float determinant() const; + _FORCE_INLINE_ real_t determinant() const; void from_z(const Vector3& p_z); @@ -73,6 +73,10 @@ public: void rotate(const Vector3& p_axis, real_t p_phi); Matrix3 rotated(const Vector3& p_axis, real_t p_phi) const; + void rotate(const Vector3& p_euler); + Matrix3 rotated(const Vector3& p_euler) const; + Vector3 get_rotation() const; + void scale( const Vector3& p_scale ); Matrix3 scaled( const Vector3& p_scale ) const; Vector3 get_scale() const; @@ -226,7 +230,7 @@ Vector3 Matrix3::xform_inv(const Vector3& p_vector) const { ); } -float Matrix3::determinant() const { +real_t Matrix3::determinant() const { return elements[0][0]*(elements[1][1]*elements[2][2] - elements[2][1]*elements[1][2]) - elements[1][0]*(elements[0][1]*elements[2][2] - elements[2][1]*elements[0][2]) + diff --git a/core/math/transform.cpp b/core/math/transform.cpp index 8516e4afcf..0dba121013 100644 --- a/core/math/transform.cpp +++ b/core/math/transform.cpp @@ -54,7 +54,8 @@ void Transform::invert() { } Transform Transform::inverse() const { - + // FIXME: this function assumes the basis is a rotation matrix, with no scaling. + // Transform::affine_inverse can handle matrices with scaling, so GDScript should eventually use that. Transform ret=*this; ret.invert(); return ret; @@ -63,12 +64,12 @@ Transform Transform::inverse() const { void Transform::rotate(const Vector3& p_axis,real_t p_phi) { - *this = *this * Transform( Matrix3( p_axis, p_phi ), Vector3() ); + *this = rotated(p_axis, p_phi); } Transform Transform::rotated(const Vector3& p_axis,real_t p_phi) const{ - return *this * Transform( Matrix3( p_axis, p_phi ), Vector3() ); + return Transform(Matrix3( p_axis, p_phi ), Vector3()) * (*this); } void Transform::rotate_basis(const Vector3& p_axis,real_t p_phi) { @@ -113,7 +114,7 @@ void Transform::set_look_at( const Vector3& p_eye, const Vector3& p_target, cons } -Transform Transform::interpolate_with(const Transform& p_transform, float p_c) const { +Transform Transform::interpolate_with(const Transform& p_transform, real_t p_c) const { /* not sure if very "efficient" but good enough? */ diff --git a/core/math/transform.h b/core/math/transform.h index 7999f0b347..5f069ab586 100644 --- a/core/math/transform.h +++ b/core/math/transform.h @@ -86,7 +86,7 @@ public: void operator*=(const Transform& p_transform); Transform operator*(const Transform& p_transform) const; - Transform interpolate_with(const Transform& p_transform, float p_c) const; + Transform interpolate_with(const Transform& p_transform, real_t p_c) const; _FORCE_INLINE_ Transform inverse_xform(const Transform& t) const { |