summaryrefslogtreecommitdiff
path: root/core/math
diff options
context:
space:
mode:
authorJuan Linietsky <reduzio@gmail.com>2015-02-15 01:19:46 -0300
committerJuan Linietsky <reduzio@gmail.com>2015-02-15 01:21:26 -0300
commit2185c018f6593e6d64b2beb62202d2291e2e008e (patch)
treeb6f57e0a20ff3d0432e6ac6eb809bc34ca8eefa0 /core/math
parent7ebb224ec1d81ccd62b77f21f01f5267220aee09 (diff)
begin new serialization framework
also got rid of STL dependency on triangulator
Diffstat (limited to 'core/math')
-rw-r--r--core/math/triangulator.cpp325
-rw-r--r--core/math/triangulator.h41
2 files changed, 185 insertions, 181 deletions
diff --git a/core/math/triangulator.cpp b/core/math/triangulator.cpp
index 6be1cdb330..8f82d76823 100644
--- a/core/math/triangulator.cpp
+++ b/core/math/triangulator.cpp
@@ -22,9 +22,9 @@
#include <stdio.h>
#include <string.h>
#include <math.h>
-#include <algorithm>
+
#include "triangulator.h"
-using namespace std;
+
#define TRIANGULATOR_VERTEXTYPE_REGULAR 0
#define TRIANGULATOR_VERTEXTYPE_START 1
@@ -163,9 +163,9 @@ int TriangulatorPartition::Intersects(Vector2 &p11, Vector2 &p12, Vector2 &p21,
}
//removes holes from inpolys by merging them with non-holes
-int TriangulatorPartition::RemoveHoles(list<TriangulatorPoly> *inpolys, list<TriangulatorPoly> *outpolys) {
- list<TriangulatorPoly> polys;
- list<TriangulatorPoly>::iterator holeiter,polyiter,iter,iter2;
+int TriangulatorPartition::RemoveHoles(List<TriangulatorPoly> *inpolys, List<TriangulatorPoly> *outpolys) {
+ List<TriangulatorPoly> polys;
+ List<TriangulatorPoly>::Element *holeiter,*polyiter,*iter,*iter2;
long i,i2,holepointindex,polypointindex;
Vector2 holepoint,polypoint,bestpolypoint;
Vector2 linep1,linep2;
@@ -177,15 +177,15 @@ int TriangulatorPartition::RemoveHoles(list<TriangulatorPoly> *inpolys, list<Tri
//check for trivial case (no holes)
hasholes = false;
- for(iter = inpolys->begin(); iter!=inpolys->end(); iter++) {
- if(iter->IsHole()) {
+ for(iter = inpolys->front(); iter; iter=iter->next()) {
+ if(iter->get().IsHole()) {
hasholes = true;
break;
}
}
if(!hasholes) {
- for(iter = inpolys->begin(); iter!=inpolys->end(); iter++) {
- outpolys->push_back(*iter);
+ for(iter = inpolys->front(); iter; iter=iter->next()) {
+ outpolys->push_back(iter->get());
}
return 1;
}
@@ -195,8 +195,8 @@ int TriangulatorPartition::RemoveHoles(list<TriangulatorPoly> *inpolys, list<Tri
while(1) {
//find the hole point with the largest x
hasholes = false;
- for(iter = polys.begin(); iter!=polys.end(); iter++) {
- if(!iter->IsHole()) continue;
+ for(iter = polys.front(); iter; iter=iter->next()) {
+ if(!iter->get().IsHole()) continue;
if(!hasholes) {
hasholes = true;
@@ -204,38 +204,38 @@ int TriangulatorPartition::RemoveHoles(list<TriangulatorPoly> *inpolys, list<Tri
holepointindex = 0;
}
- for(i=0; i < iter->GetNumPoints(); i++) {
- if(iter->GetPoint(i).x > holeiter->GetPoint(holepointindex).x) {
+ for(i=0; i < iter->get().GetNumPoints(); i++) {
+ if(iter->get().GetPoint(i).x > holeiter->get().GetPoint(holepointindex).x) {
holeiter = iter;
holepointindex = i;
}
}
}
if(!hasholes) break;
- holepoint = holeiter->GetPoint(holepointindex);
+ holepoint = holeiter->get().GetPoint(holepointindex);
pointfound = false;
- for(iter = polys.begin(); iter!=polys.end(); iter++) {
- if(iter->IsHole()) continue;
- for(i=0; i < iter->GetNumPoints(); i++) {
- if(iter->GetPoint(i).x <= holepoint.x) continue;
- if(!InCone(iter->GetPoint((i+iter->GetNumPoints()-1)%(iter->GetNumPoints())),
- iter->GetPoint(i),
- iter->GetPoint((i+1)%(iter->GetNumPoints())),
+ for(iter = polys.front(); iter; iter=iter->next()) {
+ if(iter->get().IsHole()) continue;
+ for(i=0; i < iter->get().GetNumPoints(); i++) {
+ if(iter->get().GetPoint(i).x <= holepoint.x) continue;
+ if(!InCone(iter->get().GetPoint((i+iter->get().GetNumPoints()-1)%(iter->get().GetNumPoints())),
+ iter->get().GetPoint(i),
+ iter->get().GetPoint((i+1)%(iter->get().GetNumPoints())),
holepoint))
continue;
- polypoint = iter->GetPoint(i);
+ polypoint = iter->get().GetPoint(i);
if(pointfound) {
v1 = Normalize(polypoint-holepoint);
v2 = Normalize(bestpolypoint-holepoint);
if(v2.x > v1.x) continue;
}
pointvisible = true;
- for(iter2 = polys.begin(); iter2!=polys.end(); iter2++) {
- if(iter2->IsHole()) continue;
- for(i2=0; i2 < iter2->GetNumPoints(); i2++) {
- linep1 = iter2->GetPoint(i2);
- linep2 = iter2->GetPoint((i2+1)%(iter2->GetNumPoints()));
+ for(iter2 = polys.front(); iter2; iter2=iter2->next()) {
+ if(iter2->get().IsHole()) continue;
+ for(i2=0; i2 < iter2->get().GetNumPoints(); i2++) {
+ linep1 = iter2->get().GetPoint(i2);
+ linep2 = iter2->get().GetPoint((i2+1)%(iter2->get().GetNumPoints()));
if(Intersects(holepoint,polypoint,linep1,linep2)) {
pointvisible = false;
break;
@@ -254,18 +254,18 @@ int TriangulatorPartition::RemoveHoles(list<TriangulatorPoly> *inpolys, list<Tri
if(!pointfound) return 0;
- newpoly.Init(holeiter->GetNumPoints() + polyiter->GetNumPoints() + 2);
+ newpoly.Init(holeiter->get().GetNumPoints() + polyiter->get().GetNumPoints() + 2);
i2 = 0;
for(i=0;i<=polypointindex;i++) {
- newpoly[i2] = polyiter->GetPoint(i);
+ newpoly[i2] = polyiter->get().GetPoint(i);
i2++;
}
- for(i=0;i<=holeiter->GetNumPoints();i++) {
- newpoly[i2] = holeiter->GetPoint((i+holepointindex)%holeiter->GetNumPoints());
+ for(i=0;i<=holeiter->get().GetNumPoints();i++) {
+ newpoly[i2] = holeiter->get().GetPoint((i+holepointindex)%holeiter->get().GetNumPoints());
i2++;
}
- for(i=polypointindex;i<polyiter->GetNumPoints();i++) {
- newpoly[i2] = polyiter->GetPoint(i);
+ for(i=polypointindex;i<polyiter->get().GetNumPoints();i++) {
+ newpoly[i2] = polyiter->get().GetPoint(i);
i2++;
}
@@ -274,8 +274,8 @@ int TriangulatorPartition::RemoveHoles(list<TriangulatorPoly> *inpolys, list<Tri
polys.push_back(newpoly);
}
- for(iter = polys.begin(); iter!=polys.end(); iter++) {
- outpolys->push_back(*iter);
+ for(iter = polys.front(); iter; iter=iter->next()) {
+ outpolys->push_back(iter->get());
}
return 1;
@@ -366,7 +366,7 @@ void TriangulatorPartition::UpdateVertex(PartitionVertex *v, PartitionVertex *ve
}
//triangulation by ear removal
-int TriangulatorPartition::Triangulate_EC(TriangulatorPoly *poly, list<TriangulatorPoly> *triangles) {
+int TriangulatorPartition::Triangulate_EC(TriangulatorPoly *poly, List<TriangulatorPoly> *triangles) {
long numvertices;
PartitionVertex *vertices;
PartitionVertex *ear;
@@ -440,20 +440,20 @@ int TriangulatorPartition::Triangulate_EC(TriangulatorPoly *poly, list<Triangula
return 1;
}
-int TriangulatorPartition::Triangulate_EC(list<TriangulatorPoly> *inpolys, list<TriangulatorPoly> *triangles) {
- list<TriangulatorPoly> outpolys;
- list<TriangulatorPoly>::iterator iter;
+int TriangulatorPartition::Triangulate_EC(List<TriangulatorPoly> *inpolys, List<TriangulatorPoly> *triangles) {
+ List<TriangulatorPoly> outpolys;
+ List<TriangulatorPoly>::Element*iter;
if(!RemoveHoles(inpolys,&outpolys)) return 0;
- for(iter=outpolys.begin();iter!=outpolys.end();iter++) {
- if(!Triangulate_EC(&(*iter),triangles)) return 0;
+ for(iter=outpolys.front();iter;iter=iter->next()) {
+ if(!Triangulate_EC(&(iter->get()),triangles)) return 0;
}
return 1;
}
-int TriangulatorPartition::ConvexPartition_HM(TriangulatorPoly *poly, list<TriangulatorPoly> *parts) {
- list<TriangulatorPoly> triangles;
- list<TriangulatorPoly>::iterator iter1,iter2;
+int TriangulatorPartition::ConvexPartition_HM(TriangulatorPoly *poly, List<TriangulatorPoly> *parts) {
+ List<TriangulatorPoly> triangles;
+ List<TriangulatorPoly>::Element *iter1,*iter2;
TriangulatorPoly *poly1,*poly2;
TriangulatorPoly newpoly;
Vector2 d1,d2,p1,p2,p3;
@@ -480,17 +480,17 @@ int TriangulatorPartition::ConvexPartition_HM(TriangulatorPoly *poly, list<Trian
if(!Triangulate_EC(poly,&triangles)) return 0;
- for(iter1 = triangles.begin(); iter1 != triangles.end(); iter1++) {
- poly1 = &(*iter1);
+ for(iter1 = triangles.front(); iter1 ; iter1=iter1->next()) {
+ poly1 = &(iter1->get());
for(i11=0;i11<poly1->GetNumPoints();i11++) {
d1 = poly1->GetPoint(i11);
i12 = (i11+1)%(poly1->GetNumPoints());
d2 = poly1->GetPoint(i12);
isdiagonal = false;
- for(iter2 = iter1; iter2 != triangles.end(); iter2++) {
+ for(iter2 = iter1; iter2 ; iter2=iter2->next()) {
if(iter1 == iter2) continue;
- poly2 = &(*iter2);
+ poly2 = &(iter2->get());
for(i21=0;i21<poly2->GetNumPoints();i21++) {
if((d2.x != poly2->GetPoint(i21).x)||(d2.y != poly2->GetPoint(i21).y)) continue;
@@ -536,28 +536,28 @@ int TriangulatorPartition::ConvexPartition_HM(TriangulatorPoly *poly, list<Trian
}
triangles.erase(iter2);
- *iter1 = newpoly;
- poly1 = &(*iter1);
+ iter1->get() = newpoly;
+ poly1 = &(iter1->get());
i11 = -1;
continue;
}
}
- for(iter1 = triangles.begin(); iter1 != triangles.end(); iter1++) {
- parts->push_back(*iter1);
+ for(iter1 = triangles.front(); iter1 ; iter1=iter1->next()) {
+ parts->push_back(iter1->get());
}
return 1;
}
-int TriangulatorPartition::ConvexPartition_HM(list<TriangulatorPoly> *inpolys, list<TriangulatorPoly> *parts) {
- list<TriangulatorPoly> outpolys;
- list<TriangulatorPoly>::iterator iter;
+int TriangulatorPartition::ConvexPartition_HM(List<TriangulatorPoly> *inpolys, List<TriangulatorPoly> *parts) {
+ List<TriangulatorPoly> outpolys;
+ List<TriangulatorPoly>::Element* iter;
if(!RemoveHoles(inpolys,&outpolys)) return 0;
- for(iter=outpolys.begin();iter!=outpolys.end();iter++) {
- if(!ConvexPartition_HM(&(*iter),parts)) return 0;
+ for(iter=outpolys.front();iter;iter=iter->next()) {
+ if(!ConvexPartition_HM(&(iter->get()),parts)) return 0;
}
return 1;
}
@@ -565,14 +565,14 @@ int TriangulatorPartition::ConvexPartition_HM(list<TriangulatorPoly> *inpolys, l
//minimum-weight polygon triangulation by dynamic programming
//O(n^3) time complexity
//O(n^2) space complexity
-int TriangulatorPartition::Triangulate_OPT(TriangulatorPoly *poly, list<TriangulatorPoly> *triangles) {
+int TriangulatorPartition::Triangulate_OPT(TriangulatorPoly *poly, List<TriangulatorPoly> *triangles) {
long i,j,k,gap,n;
DPState **dpstates;
Vector2 p1,p2,p3,p4;
long bestvertex;
real_t weight,minweight,d1,d2;
Diagonal diagonal,newdiagonal;
- list<Diagonal> diagonals;
+ List<Diagonal> diagonals;
TriangulatorPoly triangle;
int ret = 1;
@@ -666,7 +666,7 @@ int TriangulatorPartition::Triangulate_OPT(TriangulatorPoly *poly, list<Triangul
newdiagonal.index2 = n-1;
diagonals.push_back(newdiagonal);
while(!diagonals.empty()) {
- diagonal = *(diagonals.begin());
+ diagonal = (diagonals.front()->get());
diagonals.pop_front();
bestvertex = dpstates[diagonal.index2][diagonal.index1].bestvertex;
if(bestvertex == -1) {
@@ -697,7 +697,7 @@ int TriangulatorPartition::Triangulate_OPT(TriangulatorPoly *poly, list<Triangul
void TriangulatorPartition::UpdateState(long a, long b, long w, long i, long j, DPState2 **dpstates) {
Diagonal newdiagonal;
- list<Diagonal> *pairs;
+ List<Diagonal> *pairs;
long w2;
w2 = dpstates[a][b].weight;
@@ -712,15 +712,15 @@ void TriangulatorPartition::UpdateState(long a, long b, long w, long i, long j,
pairs->push_front(newdiagonal);
dpstates[a][b].weight = w;
} else {
- if((!pairs->empty())&&(i <= pairs->begin()->index1)) return;
- while((!pairs->empty())&&(pairs->begin()->index2 >= j)) pairs->pop_front();
+ if((!pairs->empty())&&(i <= pairs->front()->get().index1)) return;
+ while((!pairs->empty())&&(pairs->front()->get().index2 >= j)) pairs->pop_front();
pairs->push_front(newdiagonal);
}
}
void TriangulatorPartition::TypeA(long i, long j, long k, PartitionVertex *vertices, DPState2 **dpstates) {
- list<Diagonal> *pairs;
- list<Diagonal>::iterator iter,lastiter;
+ List<Diagonal> *pairs;
+ List<Diagonal>::Element *iter,*lastiter;
long top;
long w;
@@ -733,25 +733,29 @@ void TriangulatorPartition::TypeA(long i, long j, long k, PartitionVertex *verti
}
if(j-i > 1) {
pairs = &(dpstates[i][j].pairs);
- iter = pairs->end();
- lastiter = pairs->end();
- while(iter!=pairs->begin()) {
- iter--;
- if(!IsReflex(vertices[iter->index2].p,vertices[j].p,vertices[k].p)) lastiter = iter;
+ iter = NULL;
+ lastiter = NULL;
+ while(iter!=pairs->front()) {
+ if (!iter)
+ iter=pairs->back();
+ else
+ iter=iter->prev();
+
+ if(!IsReflex(vertices[iter->get().index2].p,vertices[j].p,vertices[k].p)) lastiter = iter;
else break;
}
- if(lastiter == pairs->end()) w++;
+ if(lastiter == NULL) w++;
else {
- if(IsReflex(vertices[k].p,vertices[i].p,vertices[lastiter->index1].p)) w++;
- else top = lastiter->index1;
+ if(IsReflex(vertices[k].p,vertices[i].p,vertices[lastiter->get().index1].p)) w++;
+ else top = lastiter->get().index1;
}
}
UpdateState(i,k,w,top,j,dpstates);
}
void TriangulatorPartition::TypeB(long i, long j, long k, PartitionVertex *vertices, DPState2 **dpstates) {
- list<Diagonal> *pairs;
- list<Diagonal>::iterator iter,lastiter;
+ List<Diagonal> *pairs;
+ List<Diagonal>::Element* iter,*lastiter;
long top;
long w;
@@ -766,36 +770,36 @@ void TriangulatorPartition::TypeB(long i, long j, long k, PartitionVertex *verti
if (k-j > 1) {
pairs = &(dpstates[j][k].pairs);
- iter = pairs->begin();
- if((!pairs->empty())&&(!IsReflex(vertices[i].p,vertices[j].p,vertices[iter->index1].p))) {
+ iter = pairs->front();
+ if((!pairs->empty())&&(!IsReflex(vertices[i].p,vertices[j].p,vertices[iter->get().index1].p))) {
lastiter = iter;
- while(iter!=pairs->end()) {
- if(!IsReflex(vertices[i].p,vertices[j].p,vertices[iter->index1].p)) {
+ while(iter!=NULL) {
+ if(!IsReflex(vertices[i].p,vertices[j].p,vertices[iter->get().index1].p)) {
lastiter = iter;
- iter++;
+ iter=iter->next();
}
else break;
}
- if(IsReflex(vertices[lastiter->index2].p,vertices[k].p,vertices[i].p)) w++;
- else top = lastiter->index2;
+ if(IsReflex(vertices[lastiter->get().index2].p,vertices[k].p,vertices[i].p)) w++;
+ else top = lastiter->get().index2;
} else w++;
}
UpdateState(i,k,w,j,top,dpstates);
}
-int TriangulatorPartition::ConvexPartition_OPT(TriangulatorPoly *poly, list<TriangulatorPoly> *parts) {
+int TriangulatorPartition::ConvexPartition_OPT(TriangulatorPoly *poly, List<TriangulatorPoly> *parts) {
Vector2 p1,p2,p3,p4;
PartitionVertex *vertices;
DPState2 **dpstates;
long i,j,k,n,gap;
- list<Diagonal> diagonals,diagonals2;
+ List<Diagonal> diagonals,diagonals2;
Diagonal diagonal,newdiagonal;
- list<Diagonal> *pairs,*pairs2;
- list<Diagonal>::iterator iter,iter2;
+ List<Diagonal> *pairs,*pairs2;
+ List<Diagonal>::Element* iter,*iter2;
int ret;
TriangulatorPoly newpoly;
- list<long> indices;
- list<long>::iterator iiter;
+ List<long> indices;
+ List<long>::Element* iiter;
bool ijreal,jkreal;
n = poly->GetNumPoints();
@@ -903,7 +907,7 @@ int TriangulatorPartition::ConvexPartition_OPT(TriangulatorPoly *poly, list<Tria
newdiagonal.index2 = n-1;
diagonals.push_front(newdiagonal);
while(!diagonals.empty()) {
- diagonal = *(diagonals.begin());
+ diagonal = (diagonals.front()->get());
diagonals.pop_front();
if((diagonal.index2 - diagonal.index1) <=1) continue;
pairs = &(dpstates[diagonal.index1][diagonal.index2].pairs);
@@ -912,23 +916,23 @@ int TriangulatorPartition::ConvexPartition_OPT(TriangulatorPoly *poly, list<Tria
break;
}
if(!vertices[diagonal.index1].isConvex) {
- iter = pairs->end();
- iter--;
- j = iter->index2;
+ iter = pairs->back();
+
+ j = iter->get().index2;
newdiagonal.index1 = j;
newdiagonal.index2 = diagonal.index2;
diagonals.push_front(newdiagonal);
if((j - diagonal.index1)>1) {
- if(iter->index1 != iter->index2) {
+ if(iter->get().index1 != iter->get().index2) {
pairs2 = &(dpstates[diagonal.index1][j].pairs);
while(1) {
if(pairs2->empty()) {
ret = 0;
break;
}
- iter2 = pairs2->end();
- iter2--;
- if(iter->index1 != iter2->index1) pairs2->pop_back();
+ iter2 = pairs2->back();
+
+ if(iter->get().index1 != iter2->get().index1) pairs2->pop_back();
else break;
}
if(ret == 0) break;
@@ -938,21 +942,21 @@ int TriangulatorPartition::ConvexPartition_OPT(TriangulatorPoly *poly, list<Tria
diagonals.push_front(newdiagonal);
}
} else {
- iter = pairs->begin();
- j = iter->index1;
+ iter = pairs->front();
+ j = iter->get().index1;
newdiagonal.index1 = diagonal.index1;
newdiagonal.index2 = j;
diagonals.push_front(newdiagonal);
if((diagonal.index2 - j) > 1) {
- if(iter->index1 != iter->index2) {
+ if(iter->get().index1 != iter->get().index2) {
pairs2 = &(dpstates[j][diagonal.index2].pairs);
while(1) {
if(pairs2->empty()) {
ret = 0;
break;
}
- iter2 = pairs2->begin();
- if(iter->index2 != iter2->index2) pairs2->pop_front();
+ iter2 = pairs2->front();
+ if(iter->get().index2 != iter2->get().index2) pairs2->pop_front();
else break;
}
if(ret == 0) break;
@@ -978,7 +982,7 @@ int TriangulatorPartition::ConvexPartition_OPT(TriangulatorPoly *poly, list<Tria
newdiagonal.index2 = n-1;
diagonals.push_front(newdiagonal);
while(!diagonals.empty()) {
- diagonal = *(diagonals.begin());
+ diagonal = (diagonals.front())->get();
diagonals.pop_front();
if((diagonal.index2 - diagonal.index1) <= 1) continue;
@@ -989,21 +993,20 @@ int TriangulatorPartition::ConvexPartition_OPT(TriangulatorPoly *poly, list<Tria
diagonals2.push_front(diagonal);
while(!diagonals2.empty()) {
- diagonal = *(diagonals2.begin());
+ diagonal = (diagonals2.front()->get());
diagonals2.pop_front();
if((diagonal.index2 - diagonal.index1) <= 1) continue;
ijreal = true;
jkreal = true;
pairs = &(dpstates[diagonal.index1][diagonal.index2].pairs);
if(!vertices[diagonal.index1].isConvex) {
- iter = pairs->end();
- iter--;
- j = iter->index2;
- if(iter->index1 != iter->index2) ijreal = false;
+ iter = pairs->back();
+ j = iter->get().index2;
+ if(iter->get().index1 != iter->get().index2) ijreal = false;
} else {
- iter = pairs->begin();
- j = iter->index1;
- if(iter->index1 != iter->index2) jkreal = false;
+ iter = pairs->front();
+ j = iter->get().index1;
+ if(iter->get().index1 != iter->get().index2) jkreal = false;
}
newdiagonal.index1 = diagonal.index1;
@@ -1028,8 +1031,8 @@ int TriangulatorPartition::ConvexPartition_OPT(TriangulatorPoly *poly, list<Tria
indices.sort();
newpoly.Init((long)indices.size());
k=0;
- for(iiter = indices.begin();iiter!=indices.end();iiter++) {
- newpoly[k] = vertices[*iiter].p;
+ for(iiter = indices.front();iiter;iiter=iiter->next()) {
+ newpoly[k] = vertices[iiter->get()].p;
k++;
}
parts->push_back(newpoly);
@@ -1049,8 +1052,8 @@ int TriangulatorPartition::ConvexPartition_OPT(TriangulatorPoly *poly, list<Tria
//the algorithm used here is outlined in the book
//"Computational Geometry: Algorithms and Applications"
//by Mark de Berg, Otfried Cheong, Marc van Kreveld and Mark Overmars
-int TriangulatorPartition::MonotonePartition(list<TriangulatorPoly> *inpolys, list<TriangulatorPoly> *monotonePolys) {
- list<TriangulatorPoly>::iterator iter;
+int TriangulatorPartition::MonotonePartition(List<TriangulatorPoly> *inpolys, List<TriangulatorPoly> *monotonePolys) {
+ List<TriangulatorPoly>::Element *iter;
MonotoneVertex *vertices;
long i,numvertices,vindex,vindex2,newnumvertices,maxnumvertices;
long polystartindex, polyendindex;
@@ -1060,8 +1063,8 @@ int TriangulatorPartition::MonotonePartition(list<TriangulatorPoly> *inpolys, li
bool error = false;
numvertices = 0;
- for(iter = inpolys->begin(); iter != inpolys->end(); iter++) {
- numvertices += iter->GetNumPoints();
+ for(iter = inpolys->front(); iter ; iter=iter->next()) {
+ numvertices += iter->get().GetNumPoints();
}
maxnumvertices = numvertices*3;
@@ -1069,8 +1072,8 @@ int TriangulatorPartition::MonotonePartition(list<TriangulatorPoly> *inpolys, li
newnumvertices = numvertices;
polystartindex = 0;
- for(iter = inpolys->begin(); iter != inpolys->end(); iter++) {
- poly = &(*iter);
+ for(iter = inpolys->front(); iter ; iter=iter->next()) {
+ poly = &(iter->get());
polyendindex = polystartindex + poly->GetNumPoints()-1;
for(i=0;i<poly->GetNumPoints();i++) {
vertices[i+polystartindex].p = poly->GetPoint(i);
@@ -1085,7 +1088,9 @@ int TriangulatorPartition::MonotonePartition(list<TriangulatorPoly> *inpolys, li
//construct the priority queue
long *priority = new long [numvertices];
for(i=0;i<numvertices;i++) priority[i] = i;
- std::sort(priority,&(priority[numvertices]),VertexSorter(vertices));
+ SortArray<long,VertexSorter> sorter;
+ sorter.compare.vertices=vertices;
+ sorter.sort(priority,numvertices);
//determine vertex types
char *vertextypes = new char[maxnumvertices];
@@ -1118,13 +1123,13 @@ int TriangulatorPartition::MonotonePartition(list<TriangulatorPoly> *inpolys, li
//binary search tree that holds edges intersecting the scanline
//note that while set doesn't actually have to be implemented as a tree
//complexity requirements for operations are the same as for the balanced binary search tree
- set<ScanLineEdge> edgeTree;
+ Set<ScanLineEdge> edgeTree;
//store iterators to the edge tree elements
//this makes deleting existing edges much faster
- set<ScanLineEdge>::iterator *edgeTreeIterators,edgeIter;
- edgeTreeIterators = new set<ScanLineEdge>::iterator[maxnumvertices];
- pair<set<ScanLineEdge>::iterator,bool> edgeTreeRet;
- for(i = 0; i<numvertices; i++) edgeTreeIterators[i] = edgeTree.end();
+ Set<ScanLineEdge>::Element **edgeTreeIterators,*edgeIter;
+ edgeTreeIterators = new Set<ScanLineEdge>::Element*[maxnumvertices];
+// Pair<Set<ScanLineEdge>::Element*,bool> edgeTreeRet;
+ for(i = 0; i<numvertices; i++) edgeTreeIterators[i] = NULL;
//for each vertex
for(i=0;i<numvertices;i++) {
@@ -1141,8 +1146,7 @@ int TriangulatorPartition::MonotonePartition(list<TriangulatorPoly> *inpolys, li
newedge.p1 = v->p;
newedge.p2 = vertices[v->next].p;
newedge.index = vindex;
- edgeTreeRet = edgeTree.insert(newedge);
- edgeTreeIterators[vindex] = edgeTreeRet.first;
+ edgeTreeIterators[vindex] = edgeTree.insert(newedge);
helpers[vindex] = vindex;
break;
@@ -1162,24 +1166,24 @@ int TriangulatorPartition::MonotonePartition(list<TriangulatorPoly> *inpolys, li
newedge.p1 = v->p;
newedge.p2 = v->p;
edgeIter = edgeTree.lower_bound(newedge);
- if(edgeIter == edgeTree.begin()) {
+ if(edgeIter == edgeTree.front()) {
error = true;
break;
}
- edgeIter--;
+ edgeIter=edgeIter->prev();
//Insert the diagonal connecting vi to helper(ej) in D.
- AddDiagonal(vertices,&newnumvertices,vindex,helpers[edgeIter->index],
+ AddDiagonal(vertices,&newnumvertices,vindex,helpers[edgeIter->get().index],
vertextypes, edgeTreeIterators, &edgeTree, helpers);
vindex2 = newnumvertices-2;
v2 = &(vertices[vindex2]);
//helper(e j)�vi
- helpers[edgeIter->index] = vindex;
+ helpers[edgeIter->get().index] = vindex;
//Insert ei in T and set helper(ei) to vi.
newedge.p1 = v2->p;
newedge.p2 = vertices[v2->next].p;
newedge.index = vindex2;
- edgeTreeRet = edgeTree.insert(newedge);
- edgeTreeIterators[vindex2] = edgeTreeRet.first;
+
+ edgeTreeIterators[vindex2] = edgeTree.insert(newedge);
helpers[vindex2] = vindex2;
break;
@@ -1198,19 +1202,19 @@ int TriangulatorPartition::MonotonePartition(list<TriangulatorPoly> *inpolys, li
newedge.p1 = v->p;
newedge.p2 = v->p;
edgeIter = edgeTree.lower_bound(newedge);
- if(edgeIter == edgeTree.begin()) {
+ if(edgeIter == edgeTree.front()) {
error = true;
break;
}
- edgeIter--;
+ edgeIter=edgeIter->prev();
//if helper(ej) is a merge vertex
- if(vertextypes[helpers[edgeIter->index]]==TRIANGULATOR_VERTEXTYPE_MERGE) {
+ if(vertextypes[helpers[edgeIter->get().index]]==TRIANGULATOR_VERTEXTYPE_MERGE) {
//Insert the diagonal connecting vi to helper(e j) in D.
- AddDiagonal(vertices,&newnumvertices,vindex2,helpers[edgeIter->index],
+ AddDiagonal(vertices,&newnumvertices,vindex2,helpers[edgeIter->get().index],
vertextypes, edgeTreeIterators, &edgeTree, helpers);
}
//helper(e j)�vi
- helpers[edgeIter->index] = vindex2;
+ helpers[edgeIter->get().index] = vindex2;
break;
case TRIANGULATOR_VERTEXTYPE_REGULAR:
@@ -1230,27 +1234,26 @@ int TriangulatorPartition::MonotonePartition(list<TriangulatorPoly> *inpolys, li
newedge.p1 = v2->p;
newedge.p2 = vertices[v2->next].p;
newedge.index = vindex2;
- edgeTreeRet = edgeTree.insert(newedge);
- edgeTreeIterators[vindex2] = edgeTreeRet.first;
+ edgeTreeIterators[vindex2] = edgeTree.insert(newedge);
helpers[vindex2] = vindex;
} else {
//Search in T to find the edge ej directly left of vi.
newedge.p1 = v->p;
newedge.p2 = v->p;
edgeIter = edgeTree.lower_bound(newedge);
- if(edgeIter == edgeTree.begin()) {
+ if(edgeIter == edgeTree.front()) {
error = true;
break;
}
- edgeIter--;
+ edgeIter=edgeIter->prev();
//if helper(ej) is a merge vertex
- if(vertextypes[helpers[edgeIter->index]]==TRIANGULATOR_VERTEXTYPE_MERGE) {
+ if(vertextypes[helpers[edgeIter->get().index]]==TRIANGULATOR_VERTEXTYPE_MERGE) {
//Insert the diagonal connecting vi to helper(e j) in D.
- AddDiagonal(vertices,&newnumvertices,vindex,helpers[edgeIter->index],
+ AddDiagonal(vertices,&newnumvertices,vindex,helpers[edgeIter->get().index],
vertextypes, edgeTreeIterators, &edgeTree, helpers);
}
//helper(e j)�vi
- helpers[edgeIter->index] = vindex;
+ helpers[edgeIter->get().index] = vindex;
}
break;
}
@@ -1308,8 +1311,8 @@ int TriangulatorPartition::MonotonePartition(list<TriangulatorPoly> *inpolys, li
//adds a diagonal to the doubly-connected list of vertices
void TriangulatorPartition::AddDiagonal(MonotoneVertex *vertices, long *numvertices, long index1, long index2,
- char *vertextypes, set<ScanLineEdge>::iterator *edgeTreeIterators,
- set<ScanLineEdge> *edgeTree, long *helpers)
+ char *vertextypes, Set<ScanLineEdge>::Element **edgeTreeIterators,
+ Set<ScanLineEdge> *edgeTree, long *helpers)
{
long newindex1,newindex2;
@@ -1337,13 +1340,13 @@ void TriangulatorPartition::AddDiagonal(MonotoneVertex *vertices, long *numverti
vertextypes[newindex1] = vertextypes[index1];
edgeTreeIterators[newindex1] = edgeTreeIterators[index1];
helpers[newindex1] = helpers[index1];
- if(edgeTreeIterators[newindex1] != edgeTree->end())
- edgeTreeIterators[newindex1]->index = newindex1;
+ if(edgeTreeIterators[newindex1] != NULL)
+ edgeTreeIterators[newindex1]->get().index = newindex1;
vertextypes[newindex2] = vertextypes[index2];
edgeTreeIterators[newindex2] = edgeTreeIterators[index2];
helpers[newindex2] = helpers[index2];
- if(edgeTreeIterators[newindex2] != edgeTree->end())
- edgeTreeIterators[newindex2]->index = newindex2;
+ if(edgeTreeIterators[newindex2] != NULL)
+ edgeTreeIterators[newindex2]->get().index = newindex2;
}
bool TriangulatorPartition::Below(Vector2 &p1, Vector2 &p2) {
@@ -1354,8 +1357,12 @@ bool TriangulatorPartition::Below(Vector2 &p1, Vector2 &p2) {
return false;
}
+
+
+
+
//sorts in the falling order of y values, if y is equal, x is used instead
-bool TriangulatorPartition::VertexSorter::operator() (long index1, long index2) {
+bool TriangulatorPartition::VertexSorter::operator() (long index1, long index2) const {
if(vertices[index1].p.y > vertices[index2].p.y) return true;
else if(vertices[index1].p.y == vertices[index2].p.y) {
if(vertices[index1].p.x > vertices[index2].p.x) return true;
@@ -1392,7 +1399,7 @@ bool TriangulatorPartition::ScanLineEdge::operator < (const ScanLineEdge & other
//triangulates monotone polygon
//O(n) time, O(n) space complexity
-int TriangulatorPartition::TriangulateMonotone(TriangulatorPoly *inPoly, list<TriangulatorPoly> *triangles) {
+int TriangulatorPartition::TriangulateMonotone(TriangulatorPoly *inPoly, List<TriangulatorPoly> *triangles) {
long i,i2,j,topindex,bottomindex,leftindex,rightindex,vindex;
Vector2 *points;
long numpoints;
@@ -1524,19 +1531,19 @@ int TriangulatorPartition::TriangulateMonotone(TriangulatorPoly *inPoly, list<Tr
return 1;
}
-int TriangulatorPartition::Triangulate_MONO(list<TriangulatorPoly> *inpolys, list<TriangulatorPoly> *triangles) {
- list<TriangulatorPoly> monotone;
- list<TriangulatorPoly>::iterator iter;
+int TriangulatorPartition::Triangulate_MONO(List<TriangulatorPoly> *inpolys, List<TriangulatorPoly> *triangles) {
+ List<TriangulatorPoly> monotone;
+ List<TriangulatorPoly>::Element* iter;
if(!MonotonePartition(inpolys,&monotone)) return 0;
- for(iter = monotone.begin(); iter!=monotone.end();iter++) {
- if(!TriangulateMonotone(&(*iter),triangles)) return 0;
+ for(iter = monotone.front(); iter;iter=iter->next()) {
+ if(!TriangulateMonotone(&(iter->get()),triangles)) return 0;
}
return 1;
}
-int TriangulatorPartition::Triangulate_MONO(TriangulatorPoly *poly, list<TriangulatorPoly> *triangles) {
- list<TriangulatorPoly> polys;
+int TriangulatorPartition::Triangulate_MONO(TriangulatorPoly *poly, List<TriangulatorPoly> *triangles) {
+ List<TriangulatorPoly> polys;
polys.push_back(*poly);
return Triangulate_MONO(&polys, triangles);
diff --git a/core/math/triangulator.h b/core/math/triangulator.h
index c34c445892..b6dd7e8236 100644
--- a/core/math/triangulator.h
+++ b/core/math/triangulator.h
@@ -22,9 +22,8 @@
#define TRIANGULATOR_H
#include "math_2d.h"
-#include <list>
-#include <set>
-
+#include "list.h"
+#include "set.h"
//2D point structure
@@ -119,11 +118,9 @@ protected:
long next;
};
- class VertexSorter{
- MonotoneVertex *vertices;
- public:
- VertexSorter(MonotoneVertex *v) : vertices(v) {}
- bool operator() (long index1, long index2);
+ struct VertexSorter{
+ mutable MonotoneVertex *vertices;
+ bool operator() (long index1, long index2) const;
};
struct Diagonal {
@@ -142,7 +139,7 @@ protected:
struct DPState2 {
bool visible;
long weight;
- std::list<Diagonal> pairs;
+ List<Diagonal> pairs;
};
//edge that intersects the scanline
@@ -182,11 +179,11 @@ protected:
//helper functions for MonotonePartition
bool Below(Vector2 &p1, Vector2 &p2);
void AddDiagonal(MonotoneVertex *vertices, long *numvertices, long index1, long index2,
- char *vertextypes, std::set<ScanLineEdge>::iterator *edgeTreeIterators,
- std::set<ScanLineEdge> *edgeTree, long *helpers);
+ char *vertextypes, Set<ScanLineEdge>::Element **edgeTreeIterators,
+ Set<ScanLineEdge> *edgeTree, long *helpers);
//triangulates a monotone polygon, used in Triangulate_MONO
- int TriangulateMonotone(TriangulatorPoly *inPoly, std::list<TriangulatorPoly> *triangles);
+ int TriangulateMonotone(TriangulatorPoly *inPoly, List<TriangulatorPoly> *triangles);
public:
@@ -200,7 +197,7 @@ public:
// vertices of all hole polys have to be in clockwise order
// outpolys : a list of polygons without holes
//returns 1 on success, 0 on failure
- int RemoveHoles(std::list<TriangulatorPoly> *inpolys, std::list<TriangulatorPoly> *outpolys);
+ int RemoveHoles(List<TriangulatorPoly> *inpolys, List<TriangulatorPoly> *outpolys);
//triangulates a polygon by ear clipping
//time complexity O(n^2), n is the number of vertices
@@ -210,7 +207,7 @@ public:
// vertices have to be in counter-clockwise order
// triangles : a list of triangles (result)
//returns 1 on success, 0 on failure
- int Triangulate_EC(TriangulatorPoly *poly, std::list<TriangulatorPoly> *triangles);
+ int Triangulate_EC(TriangulatorPoly *poly, List<TriangulatorPoly> *triangles);
//triangulates a list of polygons that may contain holes by ear clipping algorithm
//first calls RemoveHoles to get rid of the holes, and then Triangulate_EC for each resulting polygon
@@ -222,7 +219,7 @@ public:
// vertices of all hole polys have to be in clockwise order
// triangles : a list of triangles (result)
//returns 1 on success, 0 on failure
- int Triangulate_EC(std::list<TriangulatorPoly> *inpolys, std::list<TriangulatorPoly> *triangles);
+ int Triangulate_EC(List<TriangulatorPoly> *inpolys, List<TriangulatorPoly> *triangles);
//creates an optimal polygon triangulation in terms of minimal edge length
//time complexity: O(n^3), n is the number of vertices
@@ -232,7 +229,7 @@ public:
// vertices have to be in counter-clockwise order
// triangles : a list of triangles (result)
//returns 1 on success, 0 on failure
- int Triangulate_OPT(TriangulatorPoly *poly, std::list<TriangulatorPoly> *triangles);
+ int Triangulate_OPT(TriangulatorPoly *poly, List<TriangulatorPoly> *triangles);
//triangulates a polygons by firstly partitioning it into monotone polygons
//time complexity: O(n*log(n)), n is the number of vertices
@@ -242,7 +239,7 @@ public:
// vertices have to be in counter-clockwise order
// triangles : a list of triangles (result)
//returns 1 on success, 0 on failure
- int Triangulate_MONO(TriangulatorPoly *poly, std::list<TriangulatorPoly> *triangles);
+ int Triangulate_MONO(TriangulatorPoly *poly, List<TriangulatorPoly> *triangles);
//triangulates a list of polygons by firstly partitioning them into monotone polygons
//time complexity: O(n*log(n)), n is the number of vertices
@@ -253,7 +250,7 @@ public:
// vertices of all hole polys have to be in clockwise order
// triangles : a list of triangles (result)
//returns 1 on success, 0 on failure
- int Triangulate_MONO(std::list<TriangulatorPoly> *inpolys, std::list<TriangulatorPoly> *triangles);
+ int Triangulate_MONO(List<TriangulatorPoly> *inpolys, List<TriangulatorPoly> *triangles);
//creates a monotone partition of a list of polygons that can contain holes
//time complexity: O(n*log(n)), n is the number of vertices
@@ -264,7 +261,7 @@ public:
// vertices of all hole polys have to be in clockwise order
// monotonePolys : a list of monotone polygons (result)
//returns 1 on success, 0 on failure
- int MonotonePartition(std::list<TriangulatorPoly> *inpolys, std::list<TriangulatorPoly> *monotonePolys);
+ int MonotonePartition(List<TriangulatorPoly> *inpolys, List<TriangulatorPoly> *monotonePolys);
//partitions a polygon into convex polygons by using Hertel-Mehlhorn algorithm
//the algorithm gives at most four times the number of parts as the optimal algorithm
@@ -277,7 +274,7 @@ public:
// vertices have to be in counter-clockwise order
// parts : resulting list of convex polygons
//returns 1 on success, 0 on failure
- int ConvexPartition_HM(TriangulatorPoly *poly, std::list<TriangulatorPoly> *parts);
+ int ConvexPartition_HM(TriangulatorPoly *poly, List<TriangulatorPoly> *parts);
//partitions a list of polygons into convex parts by using Hertel-Mehlhorn algorithm
//the algorithm gives at most four times the number of parts as the optimal algorithm
@@ -291,7 +288,7 @@ public:
// vertices of all hole polys have to be in clockwise order
// parts : resulting list of convex polygons
//returns 1 on success, 0 on failure
- int ConvexPartition_HM(std::list<TriangulatorPoly> *inpolys, std::list<TriangulatorPoly> *parts);
+ int ConvexPartition_HM(List<TriangulatorPoly> *inpolys, List<TriangulatorPoly> *parts);
//optimal convex partitioning (in terms of number of resulting convex polygons)
//using the Keil-Snoeyink algorithm
@@ -302,7 +299,7 @@ public:
// vertices have to be in counter-clockwise order
// parts : resulting list of convex polygons
//returns 1 on success, 0 on failure
- int ConvexPartition_OPT(TriangulatorPoly *poly, std::list<TriangulatorPoly> *parts);
+ int ConvexPartition_OPT(TriangulatorPoly *poly, List<TriangulatorPoly> *parts);
};