summaryrefslogtreecommitdiff
path: root/core/math/transform_2d.cpp
diff options
context:
space:
mode:
authorAaron Franke <arnfranke@yahoo.com>2018-08-10 23:40:44 -0500
committerAaron Franke <arnfranke@yahoo.com>2018-08-10 23:40:50 -0500
commit2eb8a9749ea005325e6918288a1b6f1be311eebf (patch)
treea9010570ac9baaa248dd01b70ae92841cea0deec /core/math/transform_2d.cpp
parent9170d932e3832c86e5e1fc09a6a555b4efd95992 (diff)
[Core] Move Rect2 and Transform2D to their own files
Math2D includes Transform2D, which includes Rect2, which includes Vector2.
Diffstat (limited to 'core/math/transform_2d.cpp')
-rw-r--r--core/math/transform_2d.cpp272
1 files changed, 272 insertions, 0 deletions
diff --git a/core/math/transform_2d.cpp b/core/math/transform_2d.cpp
new file mode 100644
index 0000000000..4bb763c879
--- /dev/null
+++ b/core/math/transform_2d.cpp
@@ -0,0 +1,272 @@
+/*************************************************************************/
+/* transform_2d.cpp */
+/*************************************************************************/
+/* This file is part of: */
+/* GODOT ENGINE */
+/* https://godotengine.org */
+/*************************************************************************/
+/* Copyright (c) 2007-2018 Juan Linietsky, Ariel Manzur. */
+/* Copyright (c) 2014-2018 Godot Engine contributors (cf. AUTHORS.md) */
+/* */
+/* Permission is hereby granted, free of charge, to any person obtaining */
+/* a copy of this software and associated documentation files (the */
+/* "Software"), to deal in the Software without restriction, including */
+/* without limitation the rights to use, copy, modify, merge, publish, */
+/* distribute, sublicense, and/or sell copies of the Software, and to */
+/* permit persons to whom the Software is furnished to do so, subject to */
+/* the following conditions: */
+/* */
+/* The above copyright notice and this permission notice shall be */
+/* included in all copies or substantial portions of the Software. */
+/* */
+/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
+/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
+/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
+/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
+/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
+/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
+/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
+/*************************************************************************/
+
+#include "transform_2d.h"
+
+void Transform2D::invert() {
+ // FIXME: this function assumes the basis is a rotation matrix, with no scaling.
+ // Transform2D::affine_inverse can handle matrices with scaling, so GDScript should eventually use that.
+ SWAP(elements[0][1], elements[1][0]);
+ elements[2] = basis_xform(-elements[2]);
+}
+
+Transform2D Transform2D::inverse() const {
+
+ Transform2D inv = *this;
+ inv.invert();
+ return inv;
+}
+
+void Transform2D::affine_invert() {
+
+ real_t det = basis_determinant();
+#ifdef MATH_CHECKS
+ ERR_FAIL_COND(det == 0);
+#endif
+ real_t idet = 1.0 / det;
+
+ SWAP(elements[0][0], elements[1][1]);
+ elements[0] *= Vector2(idet, -idet);
+ elements[1] *= Vector2(-idet, idet);
+
+ elements[2] = basis_xform(-elements[2]);
+}
+
+Transform2D Transform2D::affine_inverse() const {
+
+ Transform2D inv = *this;
+ inv.affine_invert();
+ return inv;
+}
+
+void Transform2D::rotate(real_t p_phi) {
+ *this = Transform2D(p_phi, Vector2()) * (*this);
+}
+
+real_t Transform2D::get_rotation() const {
+ real_t det = basis_determinant();
+ Transform2D m = orthonormalized();
+ if (det < 0) {
+ m.scale_basis(Size2(1, -1)); // convention to separate rotation and reflection for 2D is to absorb a flip along y into scaling.
+ }
+ return Math::atan2(m[0].y, m[0].x);
+}
+
+void Transform2D::set_rotation(real_t p_rot) {
+
+ real_t cr = Math::cos(p_rot);
+ real_t sr = Math::sin(p_rot);
+ elements[0][0] = cr;
+ elements[0][1] = sr;
+ elements[1][0] = -sr;
+ elements[1][1] = cr;
+}
+
+Transform2D::Transform2D(real_t p_rot, const Vector2 &p_pos) {
+
+ real_t cr = Math::cos(p_rot);
+ real_t sr = Math::sin(p_rot);
+ elements[0][0] = cr;
+ elements[0][1] = sr;
+ elements[1][0] = -sr;
+ elements[1][1] = cr;
+ elements[2] = p_pos;
+}
+
+Size2 Transform2D::get_scale() const {
+ real_t det_sign = basis_determinant() > 0 ? 1 : -1;
+ return Size2(elements[0].length(), det_sign * elements[1].length());
+}
+
+void Transform2D::scale(const Size2 &p_scale) {
+ scale_basis(p_scale);
+ elements[2] *= p_scale;
+}
+void Transform2D::scale_basis(const Size2 &p_scale) {
+
+ elements[0][0] *= p_scale.x;
+ elements[0][1] *= p_scale.y;
+ elements[1][0] *= p_scale.x;
+ elements[1][1] *= p_scale.y;
+}
+void Transform2D::translate(real_t p_tx, real_t p_ty) {
+
+ translate(Vector2(p_tx, p_ty));
+}
+void Transform2D::translate(const Vector2 &p_translation) {
+
+ elements[2] += basis_xform(p_translation);
+}
+
+void Transform2D::orthonormalize() {
+
+ // Gram-Schmidt Process
+
+ Vector2 x = elements[0];
+ Vector2 y = elements[1];
+
+ x.normalize();
+ y = (y - x * (x.dot(y)));
+ y.normalize();
+
+ elements[0] = x;
+ elements[1] = y;
+}
+Transform2D Transform2D::orthonormalized() const {
+
+ Transform2D on = *this;
+ on.orthonormalize();
+ return on;
+}
+
+bool Transform2D::operator==(const Transform2D &p_transform) const {
+
+ for (int i = 0; i < 3; i++) {
+ if (elements[i] != p_transform.elements[i])
+ return false;
+ }
+
+ return true;
+}
+
+bool Transform2D::operator!=(const Transform2D &p_transform) const {
+
+ for (int i = 0; i < 3; i++) {
+ if (elements[i] != p_transform.elements[i])
+ return true;
+ }
+
+ return false;
+}
+
+void Transform2D::operator*=(const Transform2D &p_transform) {
+
+ elements[2] = xform(p_transform.elements[2]);
+
+ real_t x0, x1, y0, y1;
+
+ x0 = tdotx(p_transform.elements[0]);
+ x1 = tdoty(p_transform.elements[0]);
+ y0 = tdotx(p_transform.elements[1]);
+ y1 = tdoty(p_transform.elements[1]);
+
+ elements[0][0] = x0;
+ elements[0][1] = x1;
+ elements[1][0] = y0;
+ elements[1][1] = y1;
+}
+
+Transform2D Transform2D::operator*(const Transform2D &p_transform) const {
+
+ Transform2D t = *this;
+ t *= p_transform;
+ return t;
+}
+
+Transform2D Transform2D::scaled(const Size2 &p_scale) const {
+
+ Transform2D copy = *this;
+ copy.scale(p_scale);
+ return copy;
+}
+
+Transform2D Transform2D::basis_scaled(const Size2 &p_scale) const {
+
+ Transform2D copy = *this;
+ copy.scale_basis(p_scale);
+ return copy;
+}
+
+Transform2D Transform2D::untranslated() const {
+
+ Transform2D copy = *this;
+ copy.elements[2] = Vector2();
+ return copy;
+}
+
+Transform2D Transform2D::translated(const Vector2 &p_offset) const {
+
+ Transform2D copy = *this;
+ copy.translate(p_offset);
+ return copy;
+}
+
+Transform2D Transform2D::rotated(real_t p_phi) const {
+
+ Transform2D copy = *this;
+ copy.rotate(p_phi);
+ return copy;
+}
+
+real_t Transform2D::basis_determinant() const {
+
+ return elements[0].x * elements[1].y - elements[0].y * elements[1].x;
+}
+
+Transform2D Transform2D::interpolate_with(const Transform2D &p_transform, real_t p_c) const {
+
+ //extract parameters
+ Vector2 p1 = get_origin();
+ Vector2 p2 = p_transform.get_origin();
+
+ real_t r1 = get_rotation();
+ real_t r2 = p_transform.get_rotation();
+
+ Size2 s1 = get_scale();
+ Size2 s2 = p_transform.get_scale();
+
+ //slerp rotation
+ Vector2 v1(Math::cos(r1), Math::sin(r1));
+ Vector2 v2(Math::cos(r2), Math::sin(r2));
+
+ real_t dot = v1.dot(v2);
+
+ dot = (dot < -1.0) ? -1.0 : ((dot > 1.0) ? 1.0 : dot); //clamp dot to [-1,1]
+
+ Vector2 v;
+
+ if (dot > 0.9995) {
+ v = Vector2::linear_interpolate(v1, v2, p_c).normalized(); //linearly interpolate to avoid numerical precision issues
+ } else {
+ real_t angle = p_c * Math::acos(dot);
+ Vector2 v3 = (v2 - v1 * dot).normalized();
+ v = v1 * Math::cos(angle) + v3 * Math::sin(angle);
+ }
+
+ //construct matrix
+ Transform2D res(Math::atan2(v.y, v.x), Vector2::linear_interpolate(p1, p2, p_c));
+ res.scale_basis(Vector2::linear_interpolate(s1, s2, p_c));
+ return res;
+}
+
+Transform2D::operator String() const {
+
+ return String(String() + elements[0] + ", " + elements[1] + ", " + elements[2]);
+}