diff options
author | Juan Linietsky <reduzio@gmail.com> | 2019-10-03 17:39:08 -0300 |
---|---|---|
committer | Juan Linietsky <reduzio@gmail.com> | 2020-02-11 12:03:20 +0100 |
commit | acf0f6c8a7955517ef71ec95c683a6ff7bd5f437 (patch) | |
tree | 2bbadc4c770579be1f63317363b1843efff4d6f1 | |
parent | 52f96abd8ba4323ff358f34683f9502ec24b9961 (diff) |
GIProbes working.
51 files changed, 5064 insertions, 5088 deletions
diff --git a/core/class_db.cpp b/core/class_db.cpp index 8800f51778..a2941d70f6 100644 --- a/core/class_db.cpp +++ b/core/class_db.cpp @@ -335,6 +335,19 @@ StringName ClassDB::get_parent_class_nocheck(const StringName &p_class) { return ti->inherits; } +StringName ClassDB::get_compatibility_remapped_class(const StringName &p_class) { + + if (classes.has(p_class)) { + return p_class; + } + + if (compat_classes.has(p_class)) { + return compat_classes[p_class]; + } + + return p_class; +} + StringName ClassDB::get_parent_class(const StringName &p_class) { OBJTYPE_RLOCK; diff --git a/core/class_db.h b/core/class_db.h index 34301d6cba..404b04f2d0 100644 --- a/core/class_db.h +++ b/core/class_db.h @@ -218,6 +218,7 @@ public: static void get_direct_inheriters_from_class(const StringName &p_class, List<StringName> *p_classes); static StringName get_parent_class_nocheck(const StringName &p_class); static StringName get_parent_class(const StringName &p_class); + static StringName get_compatibility_remapped_class(const StringName &p_class); static bool class_exists(const StringName &p_class); static bool is_parent_class(const StringName &p_class, const StringName &p_inherits); static bool can_instance(const StringName &p_class); diff --git a/core/io/resource_format_binary.cpp b/core/io/resource_format_binary.cpp index 97dca98185..7325532b6f 100644 --- a/core/io/resource_format_binary.cpp +++ b/core/io/resource_format_binary.cpp @@ -1255,7 +1255,7 @@ String ResourceFormatLoaderBinary::get_resource_type(const String &p_path) const ria->res_path = ria->local_path; //ria->set_local_path( Globals::get_singleton()->localize_path(p_path) ); String r = ria->recognize(f); - return r; + return ClassDB::get_compatibility_remapped_class(r); } /////////////////////////////////////////////////////////// diff --git a/core/io/resource_loader.cpp b/core/io/resource_loader.cpp index b6e75dd0e7..0ee6478fa2 100644 --- a/core/io/resource_loader.cpp +++ b/core/io/resource_loader.cpp @@ -729,8 +729,9 @@ String ResourceLoader::get_resource_type(const String &p_path) { for (int i = 0; i < loader_count; i++) { String result = loader[i]->get_resource_type(local_path); - if (result != "") + if (result != "") { return result; + } } return ""; diff --git a/core/math/vector3.h b/core/math/vector3.h index 4ad3017109..3bf8644af9 100644 --- a/core/math/vector3.h +++ b/core/math/vector3.h @@ -32,6 +32,7 @@ #define VECTOR3_H #include "core/math/math_funcs.h" +#include "core/math/vector3i.h" #include "core/ustring.h" class Basis; @@ -147,6 +148,15 @@ struct Vector3 { _FORCE_INLINE_ bool operator>=(const Vector3 &p_v) const; operator String() const; + _FORCE_INLINE_ operator Vector3i() const { + return Vector3i(x, y, z); + } + + _FORCE_INLINE_ Vector3(const Vector3i &p_ivec) { + x = p_ivec.x; + y = p_ivec.y; + z = p_ivec.z; + } _FORCE_INLINE_ Vector3(real_t p_x, real_t p_y, real_t p_z) { x = p_x; diff --git a/core/math/vector3i.cpp b/core/math/vector3i.cpp new file mode 100644 index 0000000000..d5e05c1398 --- /dev/null +++ b/core/math/vector3i.cpp @@ -0,0 +1,25 @@ +#include "vector3i.h" + +void Vector3i::set_axis(int p_axis, int32_t p_value) { + ERR_FAIL_INDEX(p_axis, 3); + coord[p_axis] = p_value; +} +int32_t Vector3i::get_axis(int p_axis) const { + + ERR_FAIL_INDEX_V(p_axis, 3, 0); + return operator[](p_axis); +} + +int Vector3i::min_axis() const { + + return x < y ? (x < z ? 0 : 2) : (y < z ? 1 : 2); +} +int Vector3i::max_axis() const { + + return x < y ? (y < z ? 2 : 1) : (x < z ? 2 : 0); +} + +Vector3i::operator String() const { + + return (itos(x) + ", " + itos(y) + ", " + itos(z)); +} diff --git a/core/math/vector3i.h b/core/math/vector3i.h new file mode 100644 index 0000000000..cb2e2bdd2d --- /dev/null +++ b/core/math/vector3i.h @@ -0,0 +1,242 @@ +#ifndef VECTOR3I_H +#define VECTOR3I_H + +#include "core/typedefs.h" +#include "core/ustring.h" + +struct Vector3i { + + enum Axis { + AXIS_X, + AXIS_Y, + AXIS_Z, + }; + + union { + struct { + int32_t x; + int32_t y; + int32_t z; + }; + + int32_t coord[3]; + }; + + _FORCE_INLINE_ const int32_t &operator[](int p_axis) const { + + return coord[p_axis]; + } + + _FORCE_INLINE_ int32_t &operator[](int p_axis) { + + return coord[p_axis]; + } + + void set_axis(int p_axis, int32_t p_value); + int32_t get_axis(int p_axis) const; + + int min_axis() const; + int max_axis() const; + + _FORCE_INLINE_ void zero(); + + _FORCE_INLINE_ Vector3i abs() const; + _FORCE_INLINE_ Vector3i sign() const; + + /* Operators */ + + _FORCE_INLINE_ Vector3i &operator+=(const Vector3i &p_v); + _FORCE_INLINE_ Vector3i operator+(const Vector3i &p_v) const; + _FORCE_INLINE_ Vector3i &operator-=(const Vector3i &p_v); + _FORCE_INLINE_ Vector3i operator-(const Vector3i &p_v) const; + _FORCE_INLINE_ Vector3i &operator*=(const Vector3i &p_v); + _FORCE_INLINE_ Vector3i operator*(const Vector3i &p_v) const; + _FORCE_INLINE_ Vector3i &operator/=(const Vector3i &p_v); + _FORCE_INLINE_ Vector3i operator/(const Vector3i &p_v) const; + + _FORCE_INLINE_ Vector3i &operator*=(int32_t p_scalar); + _FORCE_INLINE_ Vector3i operator*(int32_t p_scalar) const; + _FORCE_INLINE_ Vector3i &operator/=(int32_t p_scalar); + _FORCE_INLINE_ Vector3i operator/(int32_t p_scalar) const; + + _FORCE_INLINE_ Vector3i operator-() const; + + _FORCE_INLINE_ bool operator==(const Vector3i &p_v) const; + _FORCE_INLINE_ bool operator!=(const Vector3i &p_v) const; + _FORCE_INLINE_ bool operator<(const Vector3i &p_v) const; + _FORCE_INLINE_ bool operator<=(const Vector3i &p_v) const; + _FORCE_INLINE_ bool operator>(const Vector3i &p_v) const; + _FORCE_INLINE_ bool operator>=(const Vector3i &p_v) const; + + operator String() const; + + _FORCE_INLINE_ Vector3i(int32_t p_x, int32_t p_y, int32_t p_z) { + x = p_x; + y = p_y; + z = p_z; + } + _FORCE_INLINE_ Vector3i() { x = y = z = 0; } +}; + +Vector3i Vector3i::abs() const { + + return Vector3i(ABS(x), ABS(y), ABS(z)); +} + +Vector3i Vector3i::sign() const { + + return Vector3i(SGN(x), SGN(y), SGN(z)); +} + +/* Operators */ + +Vector3i &Vector3i::operator+=(const Vector3i &p_v) { + + x += p_v.x; + y += p_v.y; + z += p_v.z; + return *this; +} + +Vector3i Vector3i::operator+(const Vector3i &p_v) const { + + return Vector3i(x + p_v.x, y + p_v.y, z + p_v.z); +} + +Vector3i &Vector3i::operator-=(const Vector3i &p_v) { + + x -= p_v.x; + y -= p_v.y; + z -= p_v.z; + return *this; +} +Vector3i Vector3i::operator-(const Vector3i &p_v) const { + + return Vector3i(x - p_v.x, y - p_v.y, z - p_v.z); +} + +Vector3i &Vector3i::operator*=(const Vector3i &p_v) { + + x *= p_v.x; + y *= p_v.y; + z *= p_v.z; + return *this; +} +Vector3i Vector3i::operator*(const Vector3i &p_v) const { + + return Vector3i(x * p_v.x, y * p_v.y, z * p_v.z); +} + +Vector3i &Vector3i::operator/=(const Vector3i &p_v) { + + x /= p_v.x; + y /= p_v.y; + z /= p_v.z; + return *this; +} + +Vector3i Vector3i::operator/(const Vector3i &p_v) const { + + return Vector3i(x / p_v.x, y / p_v.y, z / p_v.z); +} + +Vector3i &Vector3i::operator*=(int32_t p_scalar) { + + x *= p_scalar; + y *= p_scalar; + z *= p_scalar; + return *this; +} + +_FORCE_INLINE_ Vector3i operator*(int32_t p_scalar, const Vector3i &p_vec) { + + return p_vec * p_scalar; +} + +Vector3i Vector3i::operator*(int32_t p_scalar) const { + + return Vector3i(x * p_scalar, y * p_scalar, z * p_scalar); +} + +Vector3i &Vector3i::operator/=(int32_t p_scalar) { + + x /= p_scalar; + y /= p_scalar; + z /= p_scalar; + return *this; +} + +Vector3i Vector3i::operator/(int32_t p_scalar) const { + + return Vector3i(x / p_scalar, y / p_scalar, z / p_scalar); +} + +Vector3i Vector3i::operator-() const { + + return Vector3i(-x, -y, -z); +} + +bool Vector3i::operator==(const Vector3i &p_v) const { + + return (x == p_v.x && y == p_v.y && z == p_v.z); +} + +bool Vector3i::operator!=(const Vector3i &p_v) const { + + return (x != p_v.x || y == p_v.y || z == p_v.z); +} + +bool Vector3i::operator<(const Vector3i &p_v) const { + + if (x == p_v.x) { + if (y == p_v.y) + return z < p_v.z; + else + return y < p_v.y; + } else { + return x < p_v.x; + } +} + +bool Vector3i::operator>(const Vector3i &p_v) const { + + if (x == p_v.x) { + if (y == p_v.y) + return z > p_v.z; + else + return y > p_v.y; + } else { + return x > p_v.x; + } +} + +bool Vector3i::operator<=(const Vector3i &p_v) const { + + if (x == p_v.x) { + if (y == p_v.y) + return z <= p_v.z; + else + return y < p_v.y; + } else { + return x < p_v.x; + } +} + +bool Vector3i::operator>=(const Vector3i &p_v) const { + + if (x == p_v.x) { + if (y == p_v.y) + return z >= p_v.z; + else + return y > p_v.y; + } else { + return x > p_v.x; + } +} + +void Vector3i::zero() { + + x = y = z = 0; +} + +#endif // VECTOR3I_H diff --git a/drivers/vulkan/rendering_device_vulkan.cpp b/drivers/vulkan/rendering_device_vulkan.cpp index 7e9d11137e..118679a8b5 100644 --- a/drivers/vulkan/rendering_device_vulkan.cpp +++ b/drivers/vulkan/rendering_device_vulkan.cpp @@ -1950,6 +1950,9 @@ RID RenderingDeviceVulkan::texture_create_shared_from_slice(const TextureView &p ERR_FAIL_COND_V_MSG(p_slice_type == TEXTURE_SLICE_CUBEMAP && (src_texture->type != TEXTURE_TYPE_CUBE && src_texture->type != TEXTURE_TYPE_CUBE_ARRAY), RID(), "Can only create a cubemap slice from a cubemap or cubemap array mipmap"); + ERR_FAIL_COND_V_MSG(p_slice_type == TEXTURE_SLICE_3D && src_texture->type != TEXTURE_TYPE_3D, RID(), + "Can only create a 3D slice from a 3D texture"); + //create view ERR_FAIL_INDEX_V(p_mipmap, src_texture->mipmaps, RID()); @@ -1976,7 +1979,7 @@ RID RenderingDeviceVulkan::texture_create_shared_from_slice(const TextureView &p VK_IMAGE_VIEW_TYPE_2D, }; - image_view_create_info.viewType = p_slice_type == TEXTURE_SLICE_CUBEMAP ? VK_IMAGE_VIEW_TYPE_CUBE : view_types[texture.type]; + image_view_create_info.viewType = p_slice_type == TEXTURE_SLICE_CUBEMAP ? VK_IMAGE_VIEW_TYPE_CUBE : (p_slice_type == TEXTURE_SLICE_3D ? VK_IMAGE_VIEW_TYPE_3D : view_types[texture.type]); if (p_view.format_override == DATA_FORMAT_MAX || p_view.format_override == texture.format) { image_view_create_info.format = vulkan_formats[texture.format]; } else { @@ -2676,6 +2679,94 @@ Error RenderingDeviceVulkan::texture_copy(RID p_from_texture, RID p_to_texture, return OK; } +Error RenderingDeviceVulkan::texture_clear(RID p_texture, const Color &p_color, uint32_t p_base_mipmap, uint32_t p_mipmaps, uint32_t p_base_layer, uint32_t p_layers, bool p_sync_with_draw) { + + Texture *src_tex = texture_owner.getornull(p_texture); + ERR_FAIL_COND_V(!src_tex, ERR_INVALID_PARAMETER); + + ERR_FAIL_COND_V_MSG(p_sync_with_draw && src_tex->bound, ERR_INVALID_PARAMETER, + "Source texture can't be cleared while a render pass that uses it is being created. Ensure render pass is finalized (and that it was created with RENDER_PASS_CONTENTS_FINISH) to unbind this texture."); + + ERR_FAIL_COND_V(p_layers == 0, ERR_INVALID_PARAMETER); + ERR_FAIL_COND_V(p_mipmaps == 0, ERR_INVALID_PARAMETER); + + ERR_FAIL_COND_V_MSG(!(src_tex->usage_flags & TEXTURE_USAGE_CAN_COPY_TO_BIT), ERR_INVALID_PARAMETER, + "Source texture requires the TEXTURE_USAGE_CAN_COPY_TO_BIT in order to be cleared."); + + uint32_t src_layer_count = src_tex->layers; + if (src_tex->type == TEXTURE_TYPE_CUBE || src_tex->type == TEXTURE_TYPE_CUBE_ARRAY) { + src_layer_count *= 6; + } + + ERR_FAIL_COND_V(p_base_mipmap + p_mipmaps > src_tex->mipmaps, ERR_INVALID_PARAMETER); + ERR_FAIL_COND_V(p_base_layer + p_layers > src_layer_count, ERR_INVALID_PARAMETER); + + VkCommandBuffer command_buffer = p_sync_with_draw ? frames[frame].draw_command_buffer : frames[frame].setup_command_buffer; + + VkImageLayout layout = src_tex->layout; + + if (src_tex->layout != VK_IMAGE_LAYOUT_GENERAL) { //storage may be in general state + VkImageMemoryBarrier image_memory_barrier; + image_memory_barrier.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER; + image_memory_barrier.pNext = NULL; + image_memory_barrier.srcAccessMask = 0; + image_memory_barrier.dstAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT; + image_memory_barrier.oldLayout = src_tex->layout; + image_memory_barrier.newLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL; + + image_memory_barrier.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED; + image_memory_barrier.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED; + image_memory_barrier.image = src_tex->image; + image_memory_barrier.subresourceRange.aspectMask = src_tex->read_aspect_mask; + image_memory_barrier.subresourceRange.baseMipLevel = p_base_mipmap; + image_memory_barrier.subresourceRange.levelCount = p_mipmaps; + image_memory_barrier.subresourceRange.baseArrayLayer = p_base_layer; + image_memory_barrier.subresourceRange.layerCount = p_layers; + + layout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL; + vkCmdPipelineBarrier(command_buffer, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, 0, 0, NULL, 0, NULL, 1, &image_memory_barrier); + } + + VkClearColorValue clear_color; + clear_color.float32[0] = p_color.r; + clear_color.float32[1] = p_color.g; + clear_color.float32[2] = p_color.b; + clear_color.float32[3] = p_color.a; + + VkImageSubresourceRange range; + range.aspectMask = src_tex->read_aspect_mask; + range.baseArrayLayer = p_base_layer; + range.layerCount = p_layers; + range.baseMipLevel = p_base_mipmap; + range.levelCount = p_mipmaps; + + vkCmdClearColorImage(command_buffer, src_tex->image, layout, &clear_color, 1, &range); + + if (src_tex->layout != VK_IMAGE_LAYOUT_GENERAL) { //storage may be in general state + + VkImageMemoryBarrier image_memory_barrier; + image_memory_barrier.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER; + image_memory_barrier.pNext = NULL; + image_memory_barrier.srcAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT; + image_memory_barrier.dstAccessMask = VK_ACCESS_SHADER_READ_BIT; + image_memory_barrier.oldLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL; + image_memory_barrier.newLayout = src_tex->layout; + + image_memory_barrier.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED; + image_memory_barrier.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED; + image_memory_barrier.image = src_tex->image; + image_memory_barrier.subresourceRange.aspectMask = src_tex->read_aspect_mask; + image_memory_barrier.subresourceRange.baseMipLevel = p_base_mipmap; + image_memory_barrier.subresourceRange.levelCount = p_mipmaps; + image_memory_barrier.subresourceRange.baseArrayLayer = p_base_layer; + image_memory_barrier.subresourceRange.layerCount = p_layers; + + vkCmdPipelineBarrier(command_buffer, VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_VERTEX_SHADER_BIT | VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT, 0, 0, NULL, 0, NULL, 1, &image_memory_barrier); + } + + return OK; +} + bool RenderingDeviceVulkan::texture_is_format_supported_for_usage(DataFormat p_format, uint32_t p_usage) const { ERR_FAIL_INDEX_V(p_format, DATA_FORMAT_MAX, false); @@ -2719,7 +2810,7 @@ bool RenderingDeviceVulkan::texture_is_format_supported_for_usage(DataFormat p_f /**** ATTACHMENT ****/ /********************/ -VkRenderPass RenderingDeviceVulkan::_render_pass_create(const Vector<AttachmentFormat> &p_format, InitialAction p_initial_action, FinalAction p_final_action, int *r_color_attachment_count) { +VkRenderPass RenderingDeviceVulkan::_render_pass_create(const Vector<AttachmentFormat> &p_format, InitialAction p_initial_color_action, FinalAction p_final_color_action, InitialAction p_initial_depth_action, FinalAction p_final_depth_action, int *r_color_attachment_count) { Vector<VkAttachmentDescription> attachments; Vector<VkAttachmentReference> color_references; @@ -2739,17 +2830,18 @@ VkRenderPass RenderingDeviceVulkan::_render_pass_create(const Vector<AttachmentF ERR_FAIL_COND_V_MSG(!(p_format[i].usage_flags & (TEXTURE_USAGE_COLOR_ATTACHMENT_BIT | TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT | TEXTURE_USAGE_RESOLVE_ATTACHMENT_BIT)), VK_NULL_HANDLE, "Texture format for index (" + itos(i) + ") requires an attachment (depth, stencil or resolve) bit set."); + bool is_depth_stencil = p_format[i].usage_flags & TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT; bool is_sampled = p_format[i].usage_flags & TEXTURE_USAGE_SAMPLING_BIT; bool is_storage = p_format[i].usage_flags & TEXTURE_USAGE_STORAGE_BIT; - switch (p_initial_action) { + switch (is_depth_stencil ? p_initial_depth_action : p_initial_color_action) { case INITIAL_ACTION_CLEAR: { description.loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR; description.stencilLoadOp = VK_ATTACHMENT_LOAD_OP_CLEAR; description.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED; //don't care what is there } break; - case INITIAL_ACTION_KEEP_COLOR: { + case INITIAL_ACTION_KEEP: { if (p_format[i].usage_flags & TEXTURE_USAGE_COLOR_ATTACHMENT_BIT) { description.loadOp = VK_ATTACHMENT_LOAD_OP_LOAD; description.initialLayout = is_sampled ? VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL : (is_storage ? VK_IMAGE_LAYOUT_GENERAL : VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL); @@ -2764,22 +2856,6 @@ VkRenderPass RenderingDeviceVulkan::_render_pass_create(const Vector<AttachmentF description.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED; //don't care what is there } } break; - case INITIAL_ACTION_KEEP_COLOR_AND_DEPTH: { - - if (p_format[i].usage_flags & TEXTURE_USAGE_COLOR_ATTACHMENT_BIT) { - description.loadOp = VK_ATTACHMENT_LOAD_OP_LOAD; - description.initialLayout = is_sampled ? VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL : (is_storage ? VK_IMAGE_LAYOUT_GENERAL : VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL); - } else if (p_format[i].usage_flags & TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT) { - description.loadOp = VK_ATTACHMENT_LOAD_OP_LOAD; - description.initialLayout = is_sampled ? VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL : (is_storage ? VK_IMAGE_LAYOUT_GENERAL : VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL); - description.stencilLoadOp = VK_ATTACHMENT_LOAD_OP_CLEAR; - } else { - description.loadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE; - description.stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE; - description.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED; //don't care what is there - } - - } break; case INITIAL_ACTION_CONTINUE: { if (p_format[i].usage_flags & TEXTURE_USAGE_COLOR_ATTACHMENT_BIT) { description.loadOp = VK_ATTACHMENT_LOAD_OP_LOAD; @@ -2800,8 +2876,8 @@ VkRenderPass RenderingDeviceVulkan::_render_pass_create(const Vector<AttachmentF } } - switch (p_final_action) { - case FINAL_ACTION_READ_COLOR_AND_DEPTH: { + switch (is_depth_stencil ? p_final_depth_action : p_final_color_action) { + case FINAL_ACTION_READ: { if (p_format[i].usage_flags & TEXTURE_USAGE_COLOR_ATTACHMENT_BIT) { description.storeOp = VK_ATTACHMENT_STORE_OP_STORE; @@ -2817,59 +2893,42 @@ VkRenderPass RenderingDeviceVulkan::_render_pass_create(const Vector<AttachmentF description.stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE; description.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED; //don't care what is there } - break; - case FINAL_ACTION_READ_COLOR_DISCARD_DEPTH: { - if (p_format[i].usage_flags & TEXTURE_USAGE_COLOR_ATTACHMENT_BIT) { - description.storeOp = VK_ATTACHMENT_STORE_OP_STORE; - description.stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE; - description.finalLayout = is_sampled ? VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL : (is_storage ? VK_IMAGE_LAYOUT_GENERAL : VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL); - } else if (p_format[i].usage_flags & TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT) { - - description.storeOp = VK_ATTACHMENT_STORE_OP_DONT_CARE; - description.stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE; - description.finalLayout = is_sampled ? VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL : (is_storage ? VK_IMAGE_LAYOUT_GENERAL : VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL); - } else { - description.loadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE; - description.stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE; - description.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED; //don't care what is there - } - } break; - case FINAL_ACTION_DISCARD: { - if (p_format[i].usage_flags & TEXTURE_USAGE_COLOR_ATTACHMENT_BIT) { - description.storeOp = VK_ATTACHMENT_STORE_OP_DONT_CARE; - description.stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE; - description.finalLayout = is_sampled ? VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL : (is_storage ? VK_IMAGE_LAYOUT_GENERAL : VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL); - } else if (p_format[i].usage_flags & TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT) { - - description.storeOp = VK_ATTACHMENT_STORE_OP_DONT_CARE; - description.stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE; - description.finalLayout = is_sampled ? VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL : (is_storage ? VK_IMAGE_LAYOUT_GENERAL : VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL); - } else { - description.loadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE; - description.stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE; - description.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED; //don't care what is there - } - } break; - case FINAL_ACTION_CONTINUE: { - if (p_format[i].usage_flags & TEXTURE_USAGE_COLOR_ATTACHMENT_BIT) { - description.storeOp = VK_ATTACHMENT_STORE_OP_STORE; - description.stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE; - description.finalLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL; - } else if (p_format[i].usage_flags & TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT) { - - description.storeOp = VK_ATTACHMENT_STORE_OP_STORE; - description.stencilStoreOp = VK_ATTACHMENT_STORE_OP_STORE; - description.finalLayout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL; - } else { - description.loadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE; - description.stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE; - description.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED; //don't care what is there - } + } break; + case FINAL_ACTION_DISCARD: { + if (p_format[i].usage_flags & TEXTURE_USAGE_COLOR_ATTACHMENT_BIT) { + description.storeOp = VK_ATTACHMENT_STORE_OP_DONT_CARE; + description.stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE; + description.finalLayout = is_sampled ? VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL : (is_storage ? VK_IMAGE_LAYOUT_GENERAL : VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL); + } else if (p_format[i].usage_flags & TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT) { + + description.storeOp = VK_ATTACHMENT_STORE_OP_DONT_CARE; + description.stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE; + description.finalLayout = is_sampled ? VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL : (is_storage ? VK_IMAGE_LAYOUT_GENERAL : VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL); + } else { + description.loadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE; + description.stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE; + description.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED; //don't care what is there + } + } break; + case FINAL_ACTION_CONTINUE: { + if (p_format[i].usage_flags & TEXTURE_USAGE_COLOR_ATTACHMENT_BIT) { + description.storeOp = VK_ATTACHMENT_STORE_OP_STORE; + description.stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE; + description.finalLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL; + } else if (p_format[i].usage_flags & TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT) { - } break; - default: { - ERR_FAIL_V(VK_NULL_HANDLE); //should never reach here + description.storeOp = VK_ATTACHMENT_STORE_OP_STORE; + description.stencilStoreOp = VK_ATTACHMENT_STORE_OP_STORE; + description.finalLayout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL; + } else { + description.loadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE; + description.stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE; + description.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED; //don't care what is there } + + } break; + default: { + ERR_FAIL_V(VK_NULL_HANDLE); //should never reach here } } @@ -2945,7 +3004,7 @@ RenderingDevice::FramebufferFormatID RenderingDeviceVulkan::framebuffer_format_c } int color_references; - VkRenderPass render_pass = _render_pass_create(p_format, INITIAL_ACTION_CLEAR, FINAL_ACTION_DISCARD, &color_references); //actions don't matter for this use case + VkRenderPass render_pass = _render_pass_create(p_format, INITIAL_ACTION_CLEAR, FINAL_ACTION_DISCARD, INITIAL_ACTION_CLEAR, FINAL_ACTION_DISCARD, &color_references); //actions don't matter for this use case if (render_pass == VK_NULL_HANDLE) { //was likely invalid return INVALID_ID; @@ -5240,17 +5299,19 @@ RenderingDevice::DrawListID RenderingDeviceVulkan::draw_list_begin_for_screen(in return ID_TYPE_DRAW_LIST; } -Error RenderingDeviceVulkan::_draw_list_setup_framebuffer(Framebuffer *p_framebuffer, InitialAction p_initial_action, FinalAction p_final_action, VkFramebuffer *r_framebuffer, VkRenderPass *r_render_pass) { +Error RenderingDeviceVulkan::_draw_list_setup_framebuffer(Framebuffer *p_framebuffer, InitialAction p_initial_color_action, FinalAction p_final_color_action, InitialAction p_initial_depth_action, FinalAction p_final_depth_action, VkFramebuffer *r_framebuffer, VkRenderPass *r_render_pass) { Framebuffer::VersionKey vk; - vk.initial_action = p_initial_action; - vk.final_action = p_final_action; + vk.initial_color_action = p_initial_color_action; + vk.final_color_action = p_final_color_action; + vk.initial_depth_action = p_initial_depth_action; + vk.final_depth_action = p_final_depth_action; if (!p_framebuffer->framebuffers.has(vk)) { //need to create this version Framebuffer::Version version; - version.render_pass = _render_pass_create(framebuffer_formats[p_framebuffer->format_id].E->key().attachments, p_initial_action, p_final_action); + version.render_pass = _render_pass_create(framebuffer_formats[p_framebuffer->format_id].E->key().attachments, p_initial_color_action, p_final_color_action, p_initial_depth_action, p_final_depth_action); VkFramebufferCreateInfo framebuffer_create_info; framebuffer_create_info.sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO; @@ -5283,7 +5344,7 @@ Error RenderingDeviceVulkan::_draw_list_setup_framebuffer(Framebuffer *p_framebu return OK; } -Error RenderingDeviceVulkan::_draw_list_render_pass_begin(Framebuffer *framebuffer, InitialAction p_initial_action, FinalAction p_final_action, const Vector<Color> &p_clear_colors, Point2i viewport_offset, Point2i viewport_size, VkFramebuffer vkframebuffer, VkRenderPass render_pass, VkCommandBuffer command_buffer, VkSubpassContents subpass_contents) { +Error RenderingDeviceVulkan::_draw_list_render_pass_begin(Framebuffer *framebuffer, InitialAction p_initial_color_action, FinalAction p_final_color_action, InitialAction p_initial_depth_action, FinalAction p_final_depth_action, const Vector<Color> &p_clear_colors, float p_clear_depth, uint32_t p_clear_stencil, Point2i viewport_offset, Point2i viewport_size, VkFramebuffer vkframebuffer, VkRenderPass render_pass, VkCommandBuffer command_buffer, VkSubpassContents subpass_contents) { VkRenderPassBeginInfo render_pass_begin; render_pass_begin.sType = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO; @@ -5297,12 +5358,15 @@ Error RenderingDeviceVulkan::_draw_list_render_pass_begin(Framebuffer *framebuff render_pass_begin.renderArea.offset.y = viewport_offset.y; Vector<VkClearValue> clear_values; - if (p_initial_action == INITIAL_ACTION_CLEAR) { + clear_values.resize(framebuffer->texture_ids.size()); + + { int color_index = 0; for (int i = 0; i < framebuffer->texture_ids.size(); i++) { Texture *texture = texture_owner.getornull(framebuffer->texture_ids[i]); VkClearValue clear_value; - if (texture->usage_flags & TEXTURE_USAGE_COLOR_ATTACHMENT_BIT) { + + if (color_index < p_clear_colors.size() && texture->usage_flags & TEXTURE_USAGE_COLOR_ATTACHMENT_BIT) { ERR_FAIL_INDEX_V(color_index, p_clear_colors.size(), ERR_BUG); //a bug Color clear_color = p_clear_colors[color_index]; clear_value.color.float32[0] = clear_color.r; @@ -5311,15 +5375,15 @@ Error RenderingDeviceVulkan::_draw_list_render_pass_begin(Framebuffer *framebuff clear_value.color.float32[3] = clear_color.a; color_index++; } else if (texture->usage_flags & TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT) { - clear_value.depthStencil.depth = 1.0; - clear_value.depthStencil.stencil = 0; + clear_value.depthStencil.depth = p_clear_depth; + clear_value.depthStencil.stencil = p_clear_stencil; } else { clear_value.color.float32[0] = 0; clear_value.color.float32[1] = 0; clear_value.color.float32[2] = 0; clear_value.color.float32[3] = 0; } - clear_values.push_back(clear_value); + clear_values.write[i] = clear_value; } } @@ -5330,7 +5394,9 @@ Error RenderingDeviceVulkan::_draw_list_render_pass_begin(Framebuffer *framebuff //mark textures as bound draw_list_bound_textures.clear(); - draw_list_unbind_textures = p_final_action != FINAL_ACTION_CONTINUE; + draw_list_unbind_color_textures = p_final_color_action != FINAL_ACTION_CONTINUE; + draw_list_unbind_depth_textures = p_final_depth_action != FINAL_ACTION_CONTINUE; + for (int i = 0; i < framebuffer->texture_ids.size(); i++) { Texture *texture = texture_owner.getornull(framebuffer->texture_ids[i]); texture->bound = true; @@ -5340,13 +5406,13 @@ Error RenderingDeviceVulkan::_draw_list_render_pass_begin(Framebuffer *framebuff return OK; } -void RenderingDeviceVulkan::_draw_list_insert_clear_region(DrawList *draw_list, Framebuffer *framebuffer, Point2i viewport_offset, Point2i viewport_size, const Vector<Color> &p_clear_colors) { +void RenderingDeviceVulkan::_draw_list_insert_clear_region(DrawList *draw_list, Framebuffer *framebuffer, Point2i viewport_offset, Point2i viewport_size, bool p_clear_color, const Vector<Color> &p_clear_colors, bool p_clear_depth, float p_depth, uint32_t p_stencil) { Vector<VkClearAttachment> clear_attachments; int color_index = 0; for (int i = 0; i < framebuffer->texture_ids.size(); i++) { Texture *texture = texture_owner.getornull(framebuffer->texture_ids[i]); VkClearAttachment clear_at; - if (texture->usage_flags & TEXTURE_USAGE_COLOR_ATTACHMENT_BIT) { + if (p_clear_color && texture->usage_flags & TEXTURE_USAGE_COLOR_ATTACHMENT_BIT) { ERR_FAIL_INDEX(color_index, p_clear_colors.size()); //a bug Color clear_color = p_clear_colors[color_index]; clear_at.clearValue.color.float32[0] = clear_color.r; @@ -5355,10 +5421,10 @@ void RenderingDeviceVulkan::_draw_list_insert_clear_region(DrawList *draw_list, clear_at.clearValue.color.float32[3] = clear_color.a; clear_at.colorAttachment = color_index++; clear_at.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; - } else if (texture->usage_flags & TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT) { + } else if (p_clear_depth && texture->usage_flags & TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT) { - clear_at.clearValue.depthStencil.depth = 1.0; - clear_at.clearValue.depthStencil.stencil = 0; + clear_at.clearValue.depthStencil.depth = p_depth; + clear_at.clearValue.depthStencil.stencil = p_stencil; clear_at.colorAttachment = 0; clear_at.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT; if (format_has_stencil(texture->format)) { @@ -5381,7 +5447,7 @@ void RenderingDeviceVulkan::_draw_list_insert_clear_region(DrawList *draw_list, vkCmdClearAttachments(draw_list->command_buffer, clear_attachments.size(), clear_attachments.ptr(), 1, &cr); } -RenderingDevice::DrawListID RenderingDeviceVulkan::draw_list_begin(RID p_framebuffer, InitialAction p_initial_action, FinalAction p_final_action, const Vector<Color> &p_clear_colors, const Rect2 &p_region) { +RenderingDevice::DrawListID RenderingDeviceVulkan::draw_list_begin(RID p_framebuffer, InitialAction p_initial_color_action, FinalAction p_final_color_action, InitialAction p_initial_depth_action, FinalAction p_final_depth_action, const Vector<Color> &p_clear_color_values, float p_clear_depth, uint32_t p_clear_stencil, const Rect2 &p_region) { _THREAD_SAFE_METHOD_ @@ -5393,7 +5459,8 @@ RenderingDevice::DrawListID RenderingDeviceVulkan::draw_list_begin(RID p_framebu Point2i viewport_offset; Point2i viewport_size = framebuffer->size; - bool needs_clear_region = false; + bool needs_clear_color = false; + bool needs_clear_depth = false; if (p_region != Rect2() && p_region != Rect2(Vector2(), viewport_size)) { //check custom region Rect2i viewport(viewport_offset, viewport_size); @@ -5407,27 +5474,31 @@ RenderingDevice::DrawListID RenderingDeviceVulkan::draw_list_begin(RID p_framebu viewport_offset = regioni.position; viewport_size = regioni.size; - if (p_initial_action == INITIAL_ACTION_CLEAR) { - p_initial_action = INITIAL_ACTION_KEEP_COLOR_AND_DEPTH; - needs_clear_region = true; + if (p_initial_color_action == INITIAL_ACTION_CLEAR) { + needs_clear_color = true; + p_initial_color_action = INITIAL_ACTION_KEEP; + } + if (p_initial_depth_action == INITIAL_ACTION_CLEAR) { + needs_clear_depth = true; + p_initial_depth_action = INITIAL_ACTION_KEEP; } } - if (p_initial_action == INITIAL_ACTION_CLEAR) { //check clear values + if (p_initial_color_action == INITIAL_ACTION_CLEAR) { //check clear values int color_attachments = framebuffer_formats[framebuffer->format_id].color_attachments; - ERR_FAIL_COND_V_MSG(p_clear_colors.size() != color_attachments, INVALID_ID, - "Clear color values supplied (" + itos(p_clear_colors.size()) + ") differ from the amount required for framebuffer (" + itos(color_attachments) + ")."); + ERR_FAIL_COND_V_MSG(p_clear_color_values.size() != color_attachments, INVALID_ID, + "Clear color values supplied (" + itos(p_clear_color_values.size()) + ") differ from the amount required for framebuffer (" + itos(color_attachments) + ")."); } VkFramebuffer vkframebuffer; VkRenderPass render_pass; - Error err = _draw_list_setup_framebuffer(framebuffer, p_initial_action, p_final_action, &vkframebuffer, &render_pass); + Error err = _draw_list_setup_framebuffer(framebuffer, p_initial_color_action, p_final_color_action, p_initial_depth_action, p_final_depth_action, &vkframebuffer, &render_pass); ERR_FAIL_COND_V(err != OK, INVALID_ID); VkCommandBuffer command_buffer = frames[frame].draw_command_buffer; - err = _draw_list_render_pass_begin(framebuffer, p_initial_action, p_final_action, p_clear_colors, viewport_offset, viewport_size, vkframebuffer, render_pass, command_buffer, VK_SUBPASS_CONTENTS_INLINE); + err = _draw_list_render_pass_begin(framebuffer, p_initial_color_action, p_final_color_action, p_initial_depth_action, p_final_depth_action, p_clear_color_values, p_clear_depth, p_clear_stencil, viewport_offset, viewport_size, vkframebuffer, render_pass, command_buffer, VK_SUBPASS_CONTENTS_INLINE); if (err != OK) { return INVALID_ID; @@ -5441,8 +5512,8 @@ RenderingDevice::DrawListID RenderingDeviceVulkan::draw_list_begin(RID p_framebu draw_list_count = 0; draw_list_split = false; - if (needs_clear_region) { - _draw_list_insert_clear_region(draw_list, framebuffer, viewport_offset, viewport_size, p_clear_colors); + if (needs_clear_color || needs_clear_depth) { + _draw_list_insert_clear_region(draw_list, framebuffer, viewport_offset, viewport_size, needs_clear_color, p_clear_color_values, needs_clear_depth, p_clear_depth, p_clear_stencil); } VkViewport viewport; @@ -5467,7 +5538,7 @@ RenderingDevice::DrawListID RenderingDeviceVulkan::draw_list_begin(RID p_framebu return ID_TYPE_DRAW_LIST; } -Error RenderingDeviceVulkan::draw_list_begin_split(RID p_framebuffer, uint32_t p_splits, DrawListID *r_split_ids, InitialAction p_initial_action, FinalAction p_final_action, const Vector<Color> &p_clear_colors, const Rect2 &p_region) { +Error RenderingDeviceVulkan::draw_list_begin_split(RID p_framebuffer, uint32_t p_splits, DrawListID *r_split_ids, InitialAction p_initial_color_action, FinalAction p_final_color_action, InitialAction p_initial_depth_action, FinalAction p_final_depth_action, const Vector<Color> &p_clear_color_values, float p_clear_depth, uint32_t p_clear_stencil, const Rect2 &p_region) { _THREAD_SAFE_METHOD_ @@ -5479,7 +5550,8 @@ Error RenderingDeviceVulkan::draw_list_begin_split(RID p_framebuffer, uint32_t p Point2i viewport_offset; Point2i viewport_size = framebuffer->size; - bool needs_clear_region = false; + bool needs_clear_color = false; + bool needs_clear_depth = false; if (p_region != Rect2() && p_region != Rect2(Vector2(), viewport_size)) { //check custom region Rect2i viewport(viewport_offset, viewport_size); @@ -5493,17 +5565,21 @@ Error RenderingDeviceVulkan::draw_list_begin_split(RID p_framebuffer, uint32_t p viewport_offset = regioni.position; viewport_size = regioni.size; - if (p_initial_action == INITIAL_ACTION_CLEAR) { - p_initial_action = INITIAL_ACTION_KEEP_COLOR_AND_DEPTH; - needs_clear_region = true; + if (p_initial_color_action == INITIAL_ACTION_CLEAR) { + needs_clear_color = true; + p_initial_color_action = INITIAL_ACTION_KEEP; + } + if (p_initial_depth_action == INITIAL_ACTION_CLEAR) { + needs_clear_depth = true; + p_initial_depth_action = INITIAL_ACTION_KEEP; } } - if (p_initial_action == INITIAL_ACTION_CLEAR) { //check clear values + if (p_initial_color_action == INITIAL_ACTION_CLEAR) { //check clear values int color_attachments = framebuffer_formats[framebuffer->format_id].color_attachments; - ERR_FAIL_COND_V_MSG(p_clear_colors.size() != color_attachments, ERR_INVALID_PARAMETER, - "Clear color values supplied (" + itos(p_clear_colors.size()) + ") differ from the amount required for framebuffer (" + itos(color_attachments) + ")."); + ERR_FAIL_COND_V_MSG(p_clear_color_values.size() != color_attachments, ERR_INVALID_PARAMETER, + "Clear color values supplied (" + itos(p_clear_color_values.size()) + ") differ from the amount required for framebuffer (" + itos(color_attachments) + ")."); } if (p_splits > (uint32_t)split_draw_list_allocators.size()) { @@ -5543,11 +5619,11 @@ Error RenderingDeviceVulkan::draw_list_begin_split(RID p_framebuffer, uint32_t p VkFramebuffer vkframebuffer; VkRenderPass render_pass; - Error err = _draw_list_setup_framebuffer(framebuffer, p_initial_action, p_final_action, &vkframebuffer, &render_pass); + Error err = _draw_list_setup_framebuffer(framebuffer, p_initial_color_action, p_final_color_action, p_initial_depth_action, p_final_depth_action, &vkframebuffer, &render_pass); ERR_FAIL_COND_V(err != OK, ERR_CANT_CREATE); VkCommandBuffer frame_command_buffer = frames[frame].draw_command_buffer; - err = _draw_list_render_pass_begin(framebuffer, p_initial_action, p_final_action, p_clear_colors, viewport_offset, viewport_size, vkframebuffer, render_pass, frame_command_buffer, VK_SUBPASS_CONTENTS_SECONDARY_COMMAND_BUFFERS); + err = _draw_list_render_pass_begin(framebuffer, p_initial_color_action, p_final_color_action, p_initial_depth_action, p_final_depth_action, p_clear_color_values, p_clear_depth, p_clear_stencil, viewport_offset, viewport_size, vkframebuffer, render_pass, frame_command_buffer, VK_SUBPASS_CONTENTS_SECONDARY_COMMAND_BUFFERS); if (err != OK) { return ERR_CANT_CREATE; @@ -5596,8 +5672,9 @@ Error RenderingDeviceVulkan::draw_list_begin_split(RID p_framebuffer, uint32_t p #ifdef DEBUG_ENABLED draw_list[i].validation.framebuffer_format = framebuffer->format_id; #endif - if (i == 0 && needs_clear_region) { - _draw_list_insert_clear_region(&draw_list[i], framebuffer, viewport_offset, viewport_size, p_clear_colors); + + if (i == 0 && (needs_clear_color || needs_clear_depth)) { + _draw_list_insert_clear_region(draw_list, framebuffer, viewport_offset, viewport_size, needs_clear_color, p_clear_color_values, needs_clear_depth, p_clear_depth, p_clear_stencil); } VkViewport viewport; @@ -5626,6 +5703,7 @@ Error RenderingDeviceVulkan::draw_list_begin_split(RID p_framebuffer, uint32_t p } RenderingDeviceVulkan::DrawList *RenderingDeviceVulkan::_get_draw_list_ptr(DrawListID p_id) { + if (p_id < 0) { return NULL; } @@ -5841,7 +5919,7 @@ void RenderingDeviceVulkan::draw_list_set_push_constant(DrawListID p_list, void #endif } -void RenderingDeviceVulkan::draw_list_draw(DrawListID p_list, bool p_use_indices, uint32_t p_instances) { +void RenderingDeviceVulkan::draw_list_draw(DrawListID p_list, bool p_use_indices, uint32_t p_instances, uint32_t p_procedural_vertices) { DrawList *dl = _get_draw_list_ptr(p_list); ERR_FAIL_COND(!dl); @@ -5902,8 +5980,12 @@ void RenderingDeviceVulkan::draw_list_draw(DrawListID p_list, bool p_use_indices if (p_use_indices) { #ifdef DEBUG_ENABLED + ERR_FAIL_COND_MSG(p_procedural_vertices > 0, + "Procedural vertices can't be used together with indices."); + ERR_FAIL_COND_MSG(!dl->validation.index_array_size, "Draw command requested indices, but no index buffer was set."); + if (dl->validation.pipeline_vertex_format != INVALID_ID) { //uses vertices, do some vertex validations ERR_FAIL_COND_MSG(dl->validation.vertex_array_size < dl->validation.index_array_max_index, @@ -5924,11 +6006,23 @@ void RenderingDeviceVulkan::draw_list_draw(DrawListID p_list, bool p_use_indices #endif vkCmdDrawIndexed(dl->command_buffer, to_draw, p_instances, dl->validation.index_array_offset, 0, 0); } else { + + uint32_t to_draw; + + if (p_procedural_vertices > 0) { #ifdef DEBUG_ENABLED ERR_FAIL_COND_MSG(dl->validation.pipeline_vertex_format == INVALID_ID, - "Draw command lacks indices, but pipeline format does not use vertices."); + "Procedural vertices requested, but pipeline expects a vertex array."); #endif - uint32_t to_draw = dl->validation.vertex_array_size; + to_draw = p_procedural_vertices; + } else { + +#ifdef DEBUG_ENABLED + ERR_FAIL_COND_MSG(dl->validation.pipeline_vertex_format == INVALID_ID, + "Draw command lacks indices, but pipeline format does not use vertices."); +#endif + to_draw = dl->validation.vertex_array_size; + } #ifdef DEBUG_ENABLED ERR_FAIL_COND_MSG(to_draw < dl->validation.pipeline_primitive_minimum, @@ -5937,6 +6031,7 @@ void RenderingDeviceVulkan::draw_list_draw(DrawListID p_list, bool p_use_indices ERR_FAIL_COND_MSG((to_draw % dl->validation.pipeline_primitive_divisor) != 0, "Vertex amount (" + itos(to_draw) + ") must be a multiple of the amount of vertices required by the render primitive (" + itos(dl->validation.pipeline_primitive_divisor) + ")."); #endif + vkCmdDraw(dl->command_buffer, to_draw, p_instances, 0, 0); } } @@ -6005,13 +6100,17 @@ void RenderingDeviceVulkan::draw_list_end() { draw_list = NULL; } - if (draw_list_unbind_textures) { - for (int i = 0; i < draw_list_bound_textures.size(); i++) { - Texture *texture = texture_owner.getornull(draw_list_bound_textures[i]); - ERR_CONTINUE(!texture); //wtf + for (int i = 0; i < draw_list_bound_textures.size(); i++) { + Texture *texture = texture_owner.getornull(draw_list_bound_textures[i]); + ERR_CONTINUE(!texture); //wtf + if (draw_list_unbind_color_textures && (texture->usage_flags & TEXTURE_USAGE_COLOR_ATTACHMENT_BIT)) { + texture->bound = false; + } + if (draw_list_unbind_depth_textures && (texture->usage_flags & TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT)) { texture->bound = false; } } + draw_list_bound_textures.clear(); // To ensure proper synchronization, we must make sure rendering is done before: @@ -6168,7 +6267,7 @@ void RenderingDeviceVulkan::compute_list_bind_uniform_set(ComputeListID p_list, image_memory_barrier.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED; image_memory_barrier.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED; image_memory_barrier.image = textures_to_storage[i]->image; - image_memory_barrier.subresourceRange.aspectMask = textures_to_sampled[i]->read_aspect_mask; + image_memory_barrier.subresourceRange.aspectMask = textures_to_storage[i]->read_aspect_mask; image_memory_barrier.subresourceRange.baseMipLevel = 0; image_memory_barrier.subresourceRange.levelCount = textures_to_storage[i]->mipmaps; image_memory_barrier.subresourceRange.baseArrayLayer = 0; @@ -6197,6 +6296,7 @@ void RenderingDeviceVulkan::compute_list_bind_uniform_set(ComputeListID p_list, } #endif } + void RenderingDeviceVulkan::compute_list_set_push_constant(ComputeListID p_list, void *p_data, uint32_t p_data_size) { ERR_FAIL_COND(p_list != ID_TYPE_COMPUTE_LIST); ERR_FAIL_COND(!compute_list); @@ -6223,6 +6323,10 @@ void RenderingDeviceVulkan::compute_list_dispatch(ComputeListID p_list, uint32_t ComputeList *cl = compute_list; #ifdef DEBUG_ENABLED + ERR_FAIL_COND(p_x_groups > limits.maxComputeWorkGroupCount[0]); + ERR_FAIL_COND(p_y_groups > limits.maxComputeWorkGroupCount[1]); + ERR_FAIL_COND(p_z_groups > limits.maxComputeWorkGroupCount[2]); + ERR_FAIL_COND_MSG(!cl->validation.active, "Submitted Compute Lists can no longer be modified."); #endif @@ -6267,6 +6371,11 @@ void RenderingDeviceVulkan::compute_list_dispatch(ComputeListID p_list, uint32_t vkCmdDispatch(cl->command_buffer, p_x_groups, p_y_groups, p_z_groups); } + +void RenderingDeviceVulkan::compute_list_add_barrier(ComputeListID p_list) { + _memory_barrier(VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT, VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT, VK_ACCESS_SHADER_WRITE_BIT, VK_ACCESS_SHADER_READ_BIT, true); +} + void RenderingDeviceVulkan::compute_list_end() { ERR_FAIL_COND(!compute_list); @@ -6295,6 +6404,9 @@ void RenderingDeviceVulkan::compute_list_end() { } memdelete(compute_list); + compute_list = NULL; + + _memory_barrier(VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT, VK_PIPELINE_STAGE_VERTEX_INPUT_BIT | VK_PIPELINE_STAGE_TRANSFER_BIT, VK_ACCESS_SHADER_WRITE_BIT, VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT | VK_ACCESS_INDEX_READ_BIT | VK_ACCESS_VERTEX_ATTRIBUTE_READ_BIT | VK_ACCESS_TRANSFER_READ_BIT, true); } #if 0 diff --git a/drivers/vulkan/rendering_device_vulkan.h b/drivers/vulkan/rendering_device_vulkan.h index 2781fc71e2..d487f4612e 100644 --- a/drivers/vulkan/rendering_device_vulkan.h +++ b/drivers/vulkan/rendering_device_vulkan.h @@ -259,7 +259,7 @@ class RenderingDeviceVulkan : public RenderingDevice { } }; - VkRenderPass _render_pass_create(const Vector<AttachmentFormat> &p_format, InitialAction p_initial_action, FinalAction p_final_action, int *r_color_attachment_count = NULL); + VkRenderPass _render_pass_create(const Vector<AttachmentFormat> &p_format, InitialAction p_initial_action, FinalAction p_final_action, InitialAction p_initial_depth_action, FinalAction p_final_depthcolor_action, int *r_color_attachment_count = NULL); // This is a cache and it's never freed, it ensures // IDs for a given format are always unique. @@ -276,13 +276,23 @@ class RenderingDeviceVulkan : public RenderingDevice { struct Framebuffer { FramebufferFormatID format_id; struct VersionKey { - InitialAction initial_action; - FinalAction final_action; + InitialAction initial_color_action; + FinalAction final_color_action; + InitialAction initial_depth_action; + FinalAction final_depth_action; bool operator<(const VersionKey &p_key) const { - if (initial_action == p_key.initial_action) { - return final_action < p_key.final_action; + if (initial_color_action == p_key.initial_color_action) { + if (final_color_action == p_key.final_color_action) { + if (initial_depth_action == p_key.initial_depth_action) { + return final_depth_action < p_key.final_depth_action; + } else { + return initial_depth_action < p_key.initial_depth_action; + } + } else { + return final_color_action < p_key.final_color_action; + } } else { - return initial_action < p_key.initial_action; + return initial_color_action < p_key.initial_color_action; } } }; @@ -806,11 +816,12 @@ class RenderingDeviceVulkan : public RenderingDevice { uint32_t draw_list_count; bool draw_list_split; Vector<RID> draw_list_bound_textures; - bool draw_list_unbind_textures; + bool draw_list_unbind_color_textures; + bool draw_list_unbind_depth_textures; - void _draw_list_insert_clear_region(DrawList *draw_list, Framebuffer *framebuffer, Point2i viewport_offset, Point2i viewport_size, const Vector<Color> &p_clear_colors); - Error _draw_list_setup_framebuffer(Framebuffer *p_framebuffer, InitialAction p_initial_action, FinalAction p_final_action, VkFramebuffer *r_framebuffer, VkRenderPass *r_render_pass); - Error _draw_list_render_pass_begin(Framebuffer *framebuffer, InitialAction p_initial_action, FinalAction p_final_action, const Vector<Color> &p_clear_colors, Point2i viewport_offset, Point2i viewport_size, VkFramebuffer vkframebuffer, VkRenderPass render_pass, VkCommandBuffer command_buffer, VkSubpassContents subpass_contents); + void _draw_list_insert_clear_region(DrawList *draw_list, Framebuffer *framebuffer, Point2i viewport_offset, Point2i viewport_size, bool p_clear_color, const Vector<Color> &p_clear_colors, bool p_clear_depth, float p_depth, uint32_t p_stencil); + Error _draw_list_setup_framebuffer(Framebuffer *p_framebuffer, InitialAction p_initial_color_action, FinalAction p_final_color_action, InitialAction p_initial_depth_action, FinalAction p_final_depth_action, VkFramebuffer *r_framebuffer, VkRenderPass *r_render_pass); + Error _draw_list_render_pass_begin(Framebuffer *framebuffer, InitialAction p_initial_color_action, FinalAction p_final_color_action, InitialAction p_initial_depth_action, FinalAction p_final_depth_action, const Vector<Color> &p_clear_colors, float p_clear_depth, uint32_t p_clear_stencil, Point2i viewport_offset, Point2i viewport_size, VkFramebuffer vkframebuffer, VkRenderPass render_pass, VkCommandBuffer command_buffer, VkSubpassContents subpass_contents); _FORCE_INLINE_ DrawList *_get_draw_list_ptr(DrawListID p_id); /**********************/ @@ -966,6 +977,7 @@ public: virtual bool texture_is_valid(RID p_texture); virtual Error texture_copy(RID p_from_texture, RID p_to_texture, const Vector3 &p_from, const Vector3 &p_to, const Vector3 &p_size, uint32_t p_src_mipmap, uint32_t p_dst_mipmap, uint32_t p_src_layer, uint32_t p_dst_layer, bool p_sync_with_draw = false); + virtual Error texture_clear(RID p_texture, const Color &p_color, uint32_t p_base_mipmap, uint32_t p_mipmaps, uint32_t p_base_layer, uint32_t p_layers, bool p_sync_with_draw = false); /*********************/ /**** FRAMEBUFFER ****/ @@ -1046,8 +1058,9 @@ public: /********************/ virtual DrawListID draw_list_begin_for_screen(int p_screen = 0, const Color &p_clear_color = Color()); - virtual DrawListID draw_list_begin(RID p_framebuffer, InitialAction p_initial_action, FinalAction p_final_action, const Vector<Color> &p_clear_colors = Vector<Color>(), const Rect2 &p_region = Rect2()); - virtual Error draw_list_begin_split(RID p_framebuffer, uint32_t p_splits, DrawListID *r_split_ids, InitialAction p_initial_action, FinalAction p_final_action, const Vector<Color> &p_clear_colors = Vector<Color>(), const Rect2 &p_region = Rect2()); + + virtual DrawListID draw_list_begin(RID p_framebuffer, InitialAction p_initial_color_action, FinalAction p_final_color_action, InitialAction p_initial_depth_action, FinalAction p_final_depth_action, const Vector<Color> &p_clear_color_values = Vector<Color>(), float p_clear_depth = 1.0, uint32_t p_clear_stencil = 0, const Rect2 &p_region = Rect2()); + virtual Error draw_list_begin_split(RID p_framebuffer, uint32_t p_splits, DrawListID *r_split_ids, InitialAction p_initial_color_action, FinalAction p_final_color_action, InitialAction p_initial_depth_action, FinalAction p_final_depth_action, const Vector<Color> &p_clear_color_values = Vector<Color>(), float p_clear_depth = 1.0, uint32_t p_clear_stencil = 0, const Rect2 &p_region = Rect2()); virtual void draw_list_bind_render_pipeline(DrawListID p_list, RID p_render_pipeline); virtual void draw_list_bind_uniform_set(DrawListID p_list, RID p_uniform_set, uint32_t p_index); @@ -1056,7 +1069,7 @@ public: virtual void draw_list_set_line_width(DrawListID p_list, float p_width); virtual void draw_list_set_push_constant(DrawListID p_list, void *p_data, uint32_t p_data_size); - virtual void draw_list_draw(DrawListID p_list, bool p_use_indices, uint32_t p_instances = 1); + virtual void draw_list_draw(DrawListID p_list, bool p_use_indices, uint32_t p_instances = 1, uint32_t p_procedural_vertices = 0); virtual void draw_list_enable_scissor(DrawListID p_list, const Rect2 &p_rect); virtual void draw_list_disable_scissor(DrawListID p_list); @@ -1071,6 +1084,8 @@ public: virtual void compute_list_bind_compute_pipeline(ComputeListID p_list, RID p_compute_pipeline); virtual void compute_list_bind_uniform_set(ComputeListID p_list, RID p_uniform_set, uint32_t p_index); virtual void compute_list_set_push_constant(ComputeListID p_list, void *p_data, uint32_t p_data_size); + virtual void compute_list_add_barrier(ComputeListID p_list); + virtual void compute_list_dispatch(ComputeListID p_list, uint32_t p_x_groups, uint32_t p_y_groups, uint32_t p_z_groups); virtual void compute_list_end(); diff --git a/drivers/vulkan/vulkan_context.cpp b/drivers/vulkan/vulkan_context.cpp index f232073f47..34ce79ab02 100644 --- a/drivers/vulkan/vulkan_context.cpp +++ b/drivers/vulkan/vulkan_context.cpp @@ -53,6 +53,11 @@ VKAPI_ATTR VkBool32 VKAPI_CALL VulkanContext::_debug_messenger_callback(VkDebugU strstr(pCallbackData->pMessage, "can result in undefined behavior if this memory is used by the device") != NULL) { return VK_FALSE; } + // This needs to be ignored because Validator is wrong here + if (strstr(pCallbackData->pMessage, "SPIR-V module not valid: Pointer operand") != NULL && + strstr(pCallbackData->pMessage, "must be a memory object") != NULL) { + return VK_FALSE; + } if (messageSeverity & VK_DEBUG_UTILS_MESSAGE_SEVERITY_VERBOSE_BIT_EXT) { strcat(prefix, "VERBOSE : "); diff --git a/editor/editor_node.cpp b/editor/editor_node.cpp index 6256dff967..e7cda66d3c 100644 --- a/editor/editor_node.cpp +++ b/editor/editor_node.cpp @@ -6682,7 +6682,7 @@ EditorNode::EditorNode() { add_editor_plugin(memnew(TextureRegionEditorPlugin(this))); add_editor_plugin(memnew(Particles2DEditorPlugin(this))); add_editor_plugin(memnew(GIProbeEditorPlugin(this))); - add_editor_plugin(memnew(BakedLightmapEditorPlugin(this))); + // add_editor_plugin(memnew(BakedLightmapEditorPlugin(this))); add_editor_plugin(memnew(Path2DEditorPlugin(this))); add_editor_plugin(memnew(PathEditorPlugin(this))); add_editor_plugin(memnew(Line2DEditorPlugin(this))); diff --git a/editor/plugins/baked_lightmap_editor_plugin.cpp b/editor/plugins/baked_lightmap_editor_plugin.cpp index 7db936ccb8..6bc9562c5a 100644 --- a/editor/plugins/baked_lightmap_editor_plugin.cpp +++ b/editor/plugins/baked_lightmap_editor_plugin.cpp @@ -28,6 +28,7 @@ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /*************************************************************************/ +#if 0 #include "baked_lightmap_editor_plugin.h" void BakedLightmapEditorPlugin::_bake() { @@ -124,3 +125,4 @@ BakedLightmapEditorPlugin::BakedLightmapEditorPlugin(EditorNode *p_node) { BakedLightmapEditorPlugin::~BakedLightmapEditorPlugin() { } +#endif diff --git a/editor/plugins/baked_lightmap_editor_plugin.h b/editor/plugins/baked_lightmap_editor_plugin.h index 8b94257a62..818cdfe8fa 100644 --- a/editor/plugins/baked_lightmap_editor_plugin.h +++ b/editor/plugins/baked_lightmap_editor_plugin.h @@ -28,6 +28,7 @@ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /*************************************************************************/ +#if 0 #ifndef BAKED_LIGHTMAP_EDITOR_PLUGIN_H #define BAKED_LIGHTMAP_EDITOR_PLUGIN_H @@ -67,3 +68,4 @@ public: }; #endif // BAKED_LIGHTMAP_EDITOR_PLUGIN_H +#endif diff --git a/editor/plugins/spatial_editor_plugin.cpp b/editor/plugins/spatial_editor_plugin.cpp index 7c7585ff12..5fdc2eadaf 100644 --- a/editor/plugins/spatial_editor_plugin.cpp +++ b/editor/plugins/spatial_editor_plugin.cpp @@ -2759,43 +2759,60 @@ void SpatialEditorViewport::_menu_option(int p_option) { view_menu->get_popup()->set_item_checked(idx, !current); } break; - case VIEW_DISPLAY_NORMAL: { - - viewport->set_debug_draw(Viewport::DEBUG_DRAW_DISABLED); - - view_menu->get_popup()->set_item_checked(view_menu->get_popup()->get_item_index(VIEW_DISPLAY_NORMAL), true); - view_menu->get_popup()->set_item_checked(view_menu->get_popup()->get_item_index(VIEW_DISPLAY_WIREFRAME), false); - view_menu->get_popup()->set_item_checked(view_menu->get_popup()->get_item_index(VIEW_DISPLAY_OVERDRAW), false); - view_menu->get_popup()->set_item_checked(view_menu->get_popup()->get_item_index(VIEW_DISPLAY_SHADELESS), false); - } break; - case VIEW_DISPLAY_WIREFRAME: { - - viewport->set_debug_draw(Viewport::DEBUG_DRAW_WIREFRAME); - view_menu->get_popup()->set_item_checked(view_menu->get_popup()->get_item_index(VIEW_DISPLAY_NORMAL), false); - view_menu->get_popup()->set_item_checked(view_menu->get_popup()->get_item_index(VIEW_DISPLAY_WIREFRAME), true); - view_menu->get_popup()->set_item_checked(view_menu->get_popup()->get_item_index(VIEW_DISPLAY_OVERDRAW), false); - view_menu->get_popup()->set_item_checked(view_menu->get_popup()->get_item_index(VIEW_DISPLAY_SHADELESS), false); - - } break; - case VIEW_DISPLAY_OVERDRAW: { - - viewport->set_debug_draw(Viewport::DEBUG_DRAW_OVERDRAW); - VisualServer::get_singleton()->scenario_set_debug(get_tree()->get_root()->get_world()->get_scenario(), VisualServer::SCENARIO_DEBUG_OVERDRAW); - view_menu->get_popup()->set_item_checked(view_menu->get_popup()->get_item_index(VIEW_DISPLAY_NORMAL), false); - view_menu->get_popup()->set_item_checked(view_menu->get_popup()->get_item_index(VIEW_DISPLAY_WIREFRAME), false); - view_menu->get_popup()->set_item_checked(view_menu->get_popup()->get_item_index(VIEW_DISPLAY_OVERDRAW), true); - view_menu->get_popup()->set_item_checked(view_menu->get_popup()->get_item_index(VIEW_DISPLAY_SHADELESS), false); - - } break; - case VIEW_DISPLAY_SHADELESS: { - - viewport->set_debug_draw(Viewport::DEBUG_DRAW_UNSHADED); - VisualServer::get_singleton()->scenario_set_debug(get_tree()->get_root()->get_world()->get_scenario(), VisualServer::SCENARIO_DEBUG_SHADELESS); - view_menu->get_popup()->set_item_checked(view_menu->get_popup()->get_item_index(VIEW_DISPLAY_NORMAL), false); - view_menu->get_popup()->set_item_checked(view_menu->get_popup()->get_item_index(VIEW_DISPLAY_WIREFRAME), false); - view_menu->get_popup()->set_item_checked(view_menu->get_popup()->get_item_index(VIEW_DISPLAY_OVERDRAW), false); - view_menu->get_popup()->set_item_checked(view_menu->get_popup()->get_item_index(VIEW_DISPLAY_SHADELESS), true); + case VIEW_DISPLAY_NORMAL: + case VIEW_DISPLAY_WIREFRAME: + case VIEW_DISPLAY_OVERDRAW: + case VIEW_DISPLAY_SHADELESS: + case VIEW_DISPLAY_LIGHTING: + case VIEW_DISPLAY_DEBUG_SHADOW_ATLAS: + case VIEW_DISPLAY_DEBUG_DIRECTIONAL_SHADOW_ATLAS: + case VIEW_DISPLAY_DEBUG_GIPROBE_ALBEDO: + case VIEW_DISPLAY_DEBUG_GIPROBE_LIGHTING: { + + static const int display_options[] = { + VIEW_DISPLAY_NORMAL, + VIEW_DISPLAY_WIREFRAME, + VIEW_DISPLAY_OVERDRAW, + VIEW_DISPLAY_SHADELESS, + VIEW_DISPLAY_LIGHTING, + VIEW_DISPLAY_DEBUG_SHADOW_ATLAS, + VIEW_DISPLAY_DEBUG_DIRECTIONAL_SHADOW_ATLAS, + VIEW_DISPLAY_DEBUG_GIPROBE_ALBEDO, + VIEW_DISPLAY_DEBUG_GIPROBE_LIGHTING, + VIEW_MAX + }; + static const Viewport::DebugDraw debug_draw_modes[] = { + Viewport::DEBUG_DRAW_DISABLED, + Viewport::DEBUG_DRAW_WIREFRAME, + Viewport::DEBUG_DRAW_OVERDRAW, + Viewport::DEBUG_DRAW_UNSHADED, + Viewport::DEBUG_DRAW_LIGHTING, + Viewport::DEBUG_DRAW_WIREFRAME, + Viewport::DEBUG_DRAW_SHADOW_ATLAS, + Viewport::DEBUG_DRAW_DIRECTIONAL_SHADOW_ATLAS, + Viewport::DEBUG_DRAW_GI_PROBE_LIGHTING, + Viewport::DEBUG_DRAW_GI_PROBE_ALBEDO + }; + + int idx = 0; + + while (display_options[idx] != VIEW_MAX) { + + int id = display_options[idx]; + int item_idx = view_menu->get_popup()->get_item_index(id); + if (item_idx != -1) { + view_menu->get_popup()->set_item_checked(item_idx, id == p_option); + } + item_idx = display_submenu->get_item_index(id); + if (item_idx != -1) { + display_submenu->set_item_checked(item_idx, id == p_option); + } + if (id == p_option) { + viewport->set_debug_draw(debug_draw_modes[idx]); + } + idx++; + } } break; } } @@ -3590,6 +3607,9 @@ SpatialEditorViewport::SpatialEditorViewport(SpatialEditor *p_spatial_editor, Ed vbox->add_child(view_menu); view_menu->set_h_size_flags(0); + display_submenu = memnew(PopupMenu); + view_menu->get_popup()->add_child(display_submenu); + view_menu->get_popup()->add_shortcut(ED_GET_SHORTCUT("spatial_editor/top_view"), VIEW_TOP); view_menu->get_popup()->add_shortcut(ED_GET_SHORTCUT("spatial_editor/bottom_view"), VIEW_BOTTOM); view_menu->get_popup()->add_shortcut(ED_GET_SHORTCUT("spatial_editor/left_view"), VIEW_LEFT); @@ -3608,6 +3628,13 @@ SpatialEditorViewport::SpatialEditorViewport(SpatialEditor *p_spatial_editor, Ed view_menu->get_popup()->add_radio_check_shortcut(ED_SHORTCUT("spatial_editor/view_display_overdraw", TTR("Display Overdraw")), VIEW_DISPLAY_OVERDRAW); view_menu->get_popup()->add_radio_check_shortcut(ED_SHORTCUT("spatial_editor/view_display_unshaded", TTR("Display Unshaded")), VIEW_DISPLAY_SHADELESS); view_menu->get_popup()->set_item_checked(view_menu->get_popup()->get_item_index(VIEW_DISPLAY_NORMAL), true); + display_submenu->add_radio_check_item(TTR("Shadow Atlas"), VIEW_DISPLAY_DEBUG_SHADOW_ATLAS); + display_submenu->add_radio_check_item(TTR("Directional Shadow"), VIEW_DISPLAY_DEBUG_DIRECTIONAL_SHADOW_ATLAS); + display_submenu->add_separator(); + display_submenu->add_radio_check_item(TTR("GIProbe Lighting"), VIEW_DISPLAY_DEBUG_GIPROBE_LIGHTING); + display_submenu->add_radio_check_item(TTR("GIProbe Albedo"), VIEW_DISPLAY_DEBUG_GIPROBE_ALBEDO); + display_submenu->set_name("display_advanced"); + view_menu->get_popup()->add_submenu_item(TTR("Display Advanced..."), "display_advanced"); view_menu->get_popup()->add_separator(); view_menu->get_popup()->add_check_shortcut(ED_SHORTCUT("spatial_editor/view_environment", TTR("View Environment")), VIEW_ENVIRONMENT); view_menu->get_popup()->add_check_shortcut(ED_SHORTCUT("spatial_editor/view_gizmos", TTR("View Gizmos")), VIEW_GIZMOS); @@ -3630,7 +3657,7 @@ SpatialEditorViewport::SpatialEditorViewport(SpatialEditor *p_spatial_editor, Ed view_menu->get_popup()->add_shortcut(ED_GET_SHORTCUT("spatial_editor/align_transform_with_view"), VIEW_ALIGN_TRANSFORM_WITH_VIEW); view_menu->get_popup()->add_shortcut(ED_GET_SHORTCUT("spatial_editor/align_rotation_with_view"), VIEW_ALIGN_ROTATION_WITH_VIEW); view_menu->get_popup()->connect("id_pressed", this, "_menu_option"); - + display_submenu->connect("id_pressed", this, "_menu_option"); view_menu->set_disable_shortcuts(true); if (OS::get_singleton()->get_current_video_driver() == OS::VIDEO_DRIVER_GLES2) { @@ -5587,7 +5614,7 @@ void SpatialEditor::_register_all_gizmos() { add_gizmo_plugin(Ref<CPUParticlesGizmoPlugin>(memnew(CPUParticlesGizmoPlugin))); add_gizmo_plugin(Ref<ReflectionProbeGizmoPlugin>(memnew(ReflectionProbeGizmoPlugin))); add_gizmo_plugin(Ref<GIProbeGizmoPlugin>(memnew(GIProbeGizmoPlugin))); - add_gizmo_plugin(Ref<BakedIndirectLightGizmoPlugin>(memnew(BakedIndirectLightGizmoPlugin))); + // add_gizmo_plugin(Ref<BakedIndirectLightGizmoPlugin>(memnew(BakedIndirectLightGizmoPlugin))); add_gizmo_plugin(Ref<CollisionShapeSpatialGizmoPlugin>(memnew(CollisionShapeSpatialGizmoPlugin))); add_gizmo_plugin(Ref<CollisionPolygonSpatialGizmoPlugin>(memnew(CollisionPolygonSpatialGizmoPlugin))); add_gizmo_plugin(Ref<NavigationMeshSpatialGizmoPlugin>(memnew(NavigationMeshSpatialGizmoPlugin))); diff --git a/editor/plugins/spatial_editor_plugin.h b/editor/plugins/spatial_editor_plugin.h index 790e058fe8..7bd8ffa54c 100644 --- a/editor/plugins/spatial_editor_plugin.h +++ b/editor/plugins/spatial_editor_plugin.h @@ -167,8 +167,14 @@ class SpatialEditorViewport : public Control { VIEW_DISPLAY_WIREFRAME, VIEW_DISPLAY_OVERDRAW, VIEW_DISPLAY_SHADELESS, + VIEW_DISPLAY_LIGHTING, + VIEW_DISPLAY_DEBUG_SHADOW_ATLAS, + VIEW_DISPLAY_DEBUG_DIRECTIONAL_SHADOW_ATLAS, + VIEW_DISPLAY_DEBUG_GIPROBE_ALBEDO, + VIEW_DISPLAY_DEBUG_GIPROBE_LIGHTING, VIEW_LOCK_ROTATION, - VIEW_CINEMATIC_PREVIEW + VIEW_CINEMATIC_PREVIEW, + VIEW_MAX }; public: @@ -205,6 +211,7 @@ private: ViewportContainer *viewport_container; MenuButton *view_menu; + PopupMenu *display_submenu; Control *surface; Viewport *viewport; diff --git a/editor/spatial_editor_gizmos.cpp b/editor/spatial_editor_gizmos.cpp index 3541b132da..1163621815 100644 --- a/editor/spatial_editor_gizmos.cpp +++ b/editor/spatial_editor_gizmos.cpp @@ -2904,7 +2904,7 @@ void GIProbeGizmoPlugin::redraw(EditorSpatialGizmo *p_gizmo) { } //// - +#if 0 BakedIndirectLightGizmoPlugin::BakedIndirectLightGizmoPlugin() { Color gizmo_color = EDITOR_DEF("editors/3d_gizmos/gizmo_colors/baked_indirect_light", Color(0.5, 0.6, 1)); @@ -3033,7 +3033,7 @@ void BakedIndirectLightGizmoPlugin::redraw(EditorSpatialGizmo *p_gizmo) { p_gizmo->add_unscaled_billboard(icon, 0.05); p_gizmo->add_handles(handles, get_material("handles")); } - +#endif //// CollisionShapeSpatialGizmoPlugin::CollisionShapeSpatialGizmoPlugin() { diff --git a/editor/spatial_editor_gizmos.h b/editor/spatial_editor_gizmos.h index 81b62981ac..b786aa2b50 100644 --- a/editor/spatial_editor_gizmos.h +++ b/editor/spatial_editor_gizmos.h @@ -303,6 +303,7 @@ public: GIProbeGizmoPlugin(); }; +#if 0 class BakedIndirectLightGizmoPlugin : public EditorSpatialGizmoPlugin { GDCLASS(BakedIndirectLightGizmoPlugin, EditorSpatialGizmoPlugin); @@ -320,7 +321,7 @@ public: BakedIndirectLightGizmoPlugin(); }; - +#endif class CollisionShapeSpatialGizmoPlugin : public EditorSpatialGizmoPlugin { GDCLASS(CollisionShapeSpatialGizmoPlugin, EditorSpatialGizmoPlugin); diff --git a/scene/3d/baked_lightmap.cpp b/scene/3d/baked_lightmap.cpp index d199e53db5..31a80bc2db 100644 --- a/scene/3d/baked_lightmap.cpp +++ b/scene/3d/baked_lightmap.cpp @@ -28,6 +28,7 @@ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /*************************************************************************/ +#if 0 #include "baked_lightmap.h" #include "core/io/config_file.h" #include "core/io/resource_saver.h" @@ -368,7 +369,7 @@ BakedLightmap::BakeError BakedLightmap::bake(Node *p_from_node, bool p_create_vi Ref<BakedLightmapData> new_light_data; new_light_data.instance(); - VoxelLightBaker baker; + Voxelizer baker; int bake_subdiv; int capture_subdiv; @@ -413,7 +414,7 @@ BakedLightmap::BakeError BakedLightmap::bake(Node *p_from_node, bool p_create_vi } pmc = 0; - baker.begin_bake_light(VoxelLightBaker::BakeQuality(bake_quality), VoxelLightBaker::BakeMode(bake_mode), propagation, energy); + baker.begin_bake_light(Voxelizer::BakeQuality(bake_quality), Voxelizer::BakeMode(bake_mode), propagation, energy); for (List<PlotLight>::Element *E = light_list.front(); E; E = E->next()) { @@ -465,7 +466,7 @@ BakedLightmap::BakeError BakedLightmap::bake(Node *p_from_node, bool p_create_vi used_mesh_names.insert(mesh_name); pmc++; - VoxelLightBaker::LightMapData lm; + Voxelizer::LightMapData lm; Error err; if (bake_step_function) { @@ -626,7 +627,7 @@ BakedLightmap::BakeError BakedLightmap::bake(Node *p_from_node, bool p_create_vi if (p_create_visual_debug) { MultiMeshInstance *mmi = memnew(MultiMeshInstance); - mmi->set_multimesh(baker.create_debug_multimesh(VoxelLightBaker::DEBUG_LIGHT)); + mmi->set_multimesh(baker.create_debug_multimesh(Voxelizer::DEBUG_LIGHT)); add_child(mmi); #ifdef TOOLS_ENABLED if (get_tree()->get_edited_scene_root() == this) { @@ -860,3 +861,4 @@ BakedLightmap::BakedLightmap() { image_path = "."; set_disable_scale(true); } +#endif diff --git a/scene/3d/baked_lightmap.h b/scene/3d/baked_lightmap.h index 895a52aad8..0633ffa641 100644 --- a/scene/3d/baked_lightmap.h +++ b/scene/3d/baked_lightmap.h @@ -28,6 +28,7 @@ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /*************************************************************************/ +#if 0 #ifndef BAKED_INDIRECT_LIGHT_H #define BAKED_INDIRECT_LIGHT_H @@ -211,4 +212,5 @@ VARIANT_ENUM_CAST(BakedLightmap::BakeQuality); VARIANT_ENUM_CAST(BakedLightmap::BakeMode); VARIANT_ENUM_CAST(BakedLightmap::BakeError); +#endif #endif // BAKED_INDIRECT_LIGHT_H diff --git a/scene/3d/gi_probe.cpp b/scene/3d/gi_probe.cpp index 99bc78f5d2..32afcc7935 100644 --- a/scene/3d/gi_probe.cpp +++ b/scene/3d/gi_probe.cpp @@ -32,116 +32,135 @@ #include "core/os/os.h" +#include "core/method_bind_ext.gen.inc" #include "mesh_instance.h" -#include "voxel_light_baker.h" +#include "voxelizer.h" -void GIProbeData::set_bounds(const AABB &p_bounds) { +void GIProbeData::_set_data(const Dictionary &p_data) { + ERR_FAIL_COND(!p_data.has("bounds")); + ERR_FAIL_COND(!p_data.has("octree_size")); + ERR_FAIL_COND(!p_data.has("octree_cells")); + ERR_FAIL_COND(!p_data.has("octree_data")); + ERR_FAIL_COND(!p_data.has("level_counts")); + ERR_FAIL_COND(!p_data.has("to_cell_xform")); - VS::get_singleton()->gi_probe_set_bounds(probe, p_bounds); -} - -AABB GIProbeData::get_bounds() const { + AABB bounds = p_data["bounds"]; + Vector3 octree_size = p_data["octree_size"]; + PoolVector<uint8_t> octree_cells = p_data["octree_cells"]; + PoolVector<uint8_t> octree_data = p_data["octree_data"]; + PoolVector<int> octree_levels = p_data["level_counts"]; + Transform to_cell_xform = p_data["to_cell_xform"]; - return VS::get_singleton()->gi_probe_get_bounds(probe); + allocate(to_cell_xform, bounds, octree_size, octree_cells, octree_data, octree_levels); } -void GIProbeData::set_cell_size(float p_size) { - - VS::get_singleton()->gi_probe_set_cell_size(probe, p_size); +Dictionary GIProbeData::_get_data() const { + Dictionary d; + d["bounds"] = get_bounds(); + d["octree_size"] = get_octree_size(); + d["octree_cells"] = get_octree_cells(); + d["octree_data"] = get_data_cells(); + d["level_counts"] = get_level_counts(); + d["to_cell_xform"] = get_to_cell_xform(); + return d; } -float GIProbeData::get_cell_size() const { - - return VS::get_singleton()->gi_probe_get_cell_size(probe); +void GIProbeData::allocate(const Transform &p_to_cell_xform, const AABB &p_aabb, const Vector3 &p_octree_size, const PoolVector<uint8_t> &p_octree_cells, const PoolVector<uint8_t> &p_data_cells, const PoolVector<int> &p_level_counts) { + VS::get_singleton()->gi_probe_allocate(probe, p_to_cell_xform, p_aabb, p_octree_size, p_octree_cells, p_data_cells, p_level_counts); + bounds = p_aabb; + to_cell_xform = p_to_cell_xform; + octree_size = p_octree_size; } -void GIProbeData::set_to_cell_xform(const Transform &p_xform) { - - VS::get_singleton()->gi_probe_set_to_cell_xform(probe, p_xform); +AABB GIProbeData::get_bounds() const { + return bounds; +} +Vector3 GIProbeData::get_octree_size() const { + return octree_size; +} +PoolVector<uint8_t> GIProbeData::get_octree_cells() const { + return VS::get_singleton()->gi_probe_get_octree_cells(probe); +} +PoolVector<uint8_t> GIProbeData::get_data_cells() const { + return VS::get_singleton()->gi_probe_get_data_cells(probe); +} +PoolVector<int> GIProbeData::get_level_counts() const { + return VS::get_singleton()->gi_probe_get_level_counts(probe); } - Transform GIProbeData::get_to_cell_xform() const { - - return VS::get_singleton()->gi_probe_get_to_cell_xform(probe); + return to_cell_xform; } -void GIProbeData::set_dynamic_data(const PoolVector<int> &p_data) { +void GIProbeData::set_dynamic_range(float p_range) { + VS::get_singleton()->gi_probe_set_dynamic_range(probe, p_range); + dynamic_range = p_range; +} - VS::get_singleton()->gi_probe_set_dynamic_data(probe, p_data); +float GIProbeData::get_dynamic_range() const { + return dynamic_range; } -PoolVector<int> GIProbeData::get_dynamic_data() const { - return VS::get_singleton()->gi_probe_get_dynamic_data(probe); +void GIProbeData::set_propagation(float p_propagation) { + VS::get_singleton()->gi_probe_set_propagation(probe, p_propagation); + propagation = p_propagation; } -void GIProbeData::set_dynamic_range(int p_range) { +float GIProbeData::get_propagation() const { + return propagation; +} - VS::get_singleton()->gi_probe_set_dynamic_range(probe, p_range); +void GIProbeData::set_anisotropy_strength(float p_anisotropy_strength) { + VS::get_singleton()->gi_probe_set_anisotropy_strength(probe, p_anisotropy_strength); + anisotropy_strength = p_anisotropy_strength; } -void GIProbeData::set_energy(float p_range) { +float GIProbeData::get_anisotropy_strength() const { + return anisotropy_strength; +} - VS::get_singleton()->gi_probe_set_energy(probe, p_range); +void GIProbeData::set_energy(float p_energy) { + VS::get_singleton()->gi_probe_set_energy(probe, p_energy); + energy = p_energy; } float GIProbeData::get_energy() const { - - return VS::get_singleton()->gi_probe_get_energy(probe); + return energy; } -void GIProbeData::set_bias(float p_range) { - - VS::get_singleton()->gi_probe_set_bias(probe, p_range); +void GIProbeData::set_bias(float p_bias) { + VS::get_singleton()->gi_probe_set_bias(probe, p_bias); + bias = p_bias; } float GIProbeData::get_bias() const { - - return VS::get_singleton()->gi_probe_get_bias(probe); + return bias; } -void GIProbeData::set_normal_bias(float p_range) { - - VS::get_singleton()->gi_probe_set_normal_bias(probe, p_range); +void GIProbeData::set_normal_bias(float p_normal_bias) { + VS::get_singleton()->gi_probe_set_normal_bias(probe, p_normal_bias); + normal_bias = p_normal_bias; } float GIProbeData::get_normal_bias() const { - - return VS::get_singleton()->gi_probe_get_normal_bias(probe); -} - -void GIProbeData::set_propagation(float p_range) { - - VS::get_singleton()->gi_probe_set_propagation(probe, p_range); -} - -float GIProbeData::get_propagation() const { - - return VS::get_singleton()->gi_probe_get_propagation(probe); + return normal_bias; } void GIProbeData::set_interior(bool p_enable) { - VS::get_singleton()->gi_probe_set_interior(probe, p_enable); + interior = p_enable; } bool GIProbeData::is_interior() const { - - return VS::get_singleton()->gi_probe_is_interior(probe); -} - -bool GIProbeData::is_compressed() const { - - return VS::get_singleton()->gi_probe_is_compressed(probe); + return interior; } -void GIProbeData::set_compress(bool p_enable) { - - VS::get_singleton()->gi_probe_set_compress(probe, p_enable); +void GIProbeData::set_use_two_bounces(bool p_enable) { + VS::get_singleton()->gi_probe_set_use_two_bounces(probe, p_enable); + use_two_bounces = p_enable; } -int GIProbeData::get_dynamic_range() const { - - return VS::get_singleton()->gi_probe_get_dynamic_range(probe); +bool GIProbeData::is_using_two_bounces() const { + return use_two_bounces; } RID GIProbeData::get_rid() const { @@ -149,19 +168,25 @@ RID GIProbeData::get_rid() const { return probe; } -void GIProbeData::_bind_methods() { +void GIProbeData::_validate_property(PropertyInfo &property) const { + if (property.name == "anisotropy_strength") { + bool anisotropy_enabled = ProjectSettings::get_singleton()->get("rendering/quality/gi_probes/anisotropic"); + if (!anisotropy_enabled) { + property.usage = PROPERTY_USAGE_NOEDITOR; + } + } +} - ClassDB::bind_method(D_METHOD("set_bounds", "bounds"), &GIProbeData::set_bounds); - ClassDB::bind_method(D_METHOD("get_bounds"), &GIProbeData::get_bounds); +void GIProbeData::_bind_methods() { - ClassDB::bind_method(D_METHOD("set_cell_size", "cell_size"), &GIProbeData::set_cell_size); - ClassDB::bind_method(D_METHOD("get_cell_size"), &GIProbeData::get_cell_size); + ClassDB::bind_method(D_METHOD("allocate", "to_cell_xform", "aabb", "octree_size", "octree_cells", "octree_data", "octree_level_count"), &GIProbeData::allocate); - ClassDB::bind_method(D_METHOD("set_to_cell_xform", "to_cell_xform"), &GIProbeData::set_to_cell_xform); + ClassDB::bind_method(D_METHOD("get_bounds"), &GIProbeData::get_bounds); + ClassDB::bind_method(D_METHOD("get_octree_size"), &GIProbeData::get_octree_size); ClassDB::bind_method(D_METHOD("get_to_cell_xform"), &GIProbeData::get_to_cell_xform); - - ClassDB::bind_method(D_METHOD("set_dynamic_data", "dynamic_data"), &GIProbeData::set_dynamic_data); - ClassDB::bind_method(D_METHOD("get_dynamic_data"), &GIProbeData::get_dynamic_data); + ClassDB::bind_method(D_METHOD("get_octree_cells"), &GIProbeData::get_octree_cells); + ClassDB::bind_method(D_METHOD("get_data_cells"), &GIProbeData::get_data_cells); + ClassDB::bind_method(D_METHOD("get_level_counts"), &GIProbeData::get_level_counts); ClassDB::bind_method(D_METHOD("set_dynamic_range", "dynamic_range"), &GIProbeData::set_dynamic_range); ClassDB::bind_method(D_METHOD("get_dynamic_range"), &GIProbeData::get_dynamic_range); @@ -178,28 +203,40 @@ void GIProbeData::_bind_methods() { ClassDB::bind_method(D_METHOD("set_propagation", "propagation"), &GIProbeData::set_propagation); ClassDB::bind_method(D_METHOD("get_propagation"), &GIProbeData::get_propagation); + ClassDB::bind_method(D_METHOD("set_anisotropy_strength", "strength"), &GIProbeData::set_anisotropy_strength); + ClassDB::bind_method(D_METHOD("get_anisotropy_strength"), &GIProbeData::get_anisotropy_strength); + ClassDB::bind_method(D_METHOD("set_interior", "interior"), &GIProbeData::set_interior); ClassDB::bind_method(D_METHOD("is_interior"), &GIProbeData::is_interior); - ClassDB::bind_method(D_METHOD("set_compress", "compress"), &GIProbeData::set_compress); - ClassDB::bind_method(D_METHOD("is_compressed"), &GIProbeData::is_compressed); + ClassDB::bind_method(D_METHOD("set_use_two_bounces", "enable"), &GIProbeData::set_use_two_bounces); + ClassDB::bind_method(D_METHOD("is_using_two_bounces"), &GIProbeData::is_using_two_bounces); + + ClassDB::bind_method(D_METHOD("_set_data", "data"), &GIProbeData::_set_data); + ClassDB::bind_method(D_METHOD("_get_data"), &GIProbeData::_get_data); - ADD_PROPERTY(PropertyInfo(Variant::AABB, "bounds", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_NOEDITOR), "set_bounds", "get_bounds"); - ADD_PROPERTY(PropertyInfo(Variant::REAL, "cell_size", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_NOEDITOR), "set_cell_size", "get_cell_size"); - ADD_PROPERTY(PropertyInfo(Variant::TRANSFORM, "to_cell_xform", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_NOEDITOR), "set_to_cell_xform", "get_to_cell_xform"); + ADD_PROPERTY(PropertyInfo(Variant::DICTIONARY, "_data", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_NOEDITOR), "_set_data", "_get_data"); - ADD_PROPERTY(PropertyInfo(Variant::POOL_INT_ARRAY, "dynamic_data", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_NOEDITOR), "set_dynamic_data", "get_dynamic_data"); - ADD_PROPERTY(PropertyInfo(Variant::INT, "dynamic_range", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_NOEDITOR), "set_dynamic_range", "get_dynamic_range"); - ADD_PROPERTY(PropertyInfo(Variant::REAL, "energy", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_NOEDITOR), "set_energy", "get_energy"); - ADD_PROPERTY(PropertyInfo(Variant::REAL, "bias", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_NOEDITOR), "set_bias", "get_bias"); - ADD_PROPERTY(PropertyInfo(Variant::REAL, "normal_bias", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_NOEDITOR), "set_normal_bias", "get_normal_bias"); - ADD_PROPERTY(PropertyInfo(Variant::REAL, "propagation", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_NOEDITOR), "set_propagation", "get_propagation"); - ADD_PROPERTY(PropertyInfo(Variant::BOOL, "interior", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_NOEDITOR), "set_interior", "is_interior"); - ADD_PROPERTY(PropertyInfo(Variant::BOOL, "compress", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_NOEDITOR), "set_compress", "is_compressed"); + ADD_PROPERTY(PropertyInfo(Variant::INT, "dynamic_range", PROPERTY_HINT_RANGE, "0,8,0.01"), "set_dynamic_range", "get_dynamic_range"); + ADD_PROPERTY(PropertyInfo(Variant::REAL, "energy", PROPERTY_HINT_RANGE, "0,64,0.01"), "set_energy", "get_energy"); + ADD_PROPERTY(PropertyInfo(Variant::REAL, "bias", PROPERTY_HINT_RANGE, "0,8,0.01"), "set_bias", "get_bias"); + ADD_PROPERTY(PropertyInfo(Variant::REAL, "normal_bias", PROPERTY_HINT_RANGE, "0,8,0.01"), "set_normal_bias", "get_normal_bias"); + ADD_PROPERTY(PropertyInfo(Variant::REAL, "propagation", PROPERTY_HINT_RANGE, "0,1,0.01"), "set_propagation", "get_propagation"); + ADD_PROPERTY(PropertyInfo(Variant::REAL, "anisotropy_strength", PROPERTY_HINT_RANGE, "0,1,0.01"), "set_anisotropy_strength", "get_anisotropy_strength"); + ADD_PROPERTY(PropertyInfo(Variant::BOOL, "use_two_bounces"), "set_use_two_bounces", "is_using_two_bounces"); + ADD_PROPERTY(PropertyInfo(Variant::BOOL, "interior"), "set_interior", "is_interior"); } GIProbeData::GIProbeData() { + dynamic_range = 4; + energy = 1.0; + bias = 1.5; + normal_bias = 0.0; + propagation = 0.7; + anisotropy_strength = 0.5; + interior = false; + probe = VS::get_singleton()->gi_probe_create(); } @@ -251,89 +288,6 @@ Vector3 GIProbe::get_extents() const { return extents; } -void GIProbe::set_dynamic_range(int p_dynamic_range) { - - dynamic_range = p_dynamic_range; -} -int GIProbe::get_dynamic_range() const { - - return dynamic_range; -} - -void GIProbe::set_energy(float p_energy) { - - energy = p_energy; - if (probe_data.is_valid()) { - probe_data->set_energy(energy); - } -} -float GIProbe::get_energy() const { - - return energy; -} - -void GIProbe::set_bias(float p_bias) { - - bias = p_bias; - if (probe_data.is_valid()) { - probe_data->set_bias(bias); - } -} -float GIProbe::get_bias() const { - - return bias; -} - -void GIProbe::set_normal_bias(float p_normal_bias) { - - normal_bias = p_normal_bias; - if (probe_data.is_valid()) { - probe_data->set_normal_bias(normal_bias); - } -} -float GIProbe::get_normal_bias() const { - - return normal_bias; -} - -void GIProbe::set_propagation(float p_propagation) { - - propagation = p_propagation; - if (probe_data.is_valid()) { - probe_data->set_propagation(propagation); - } -} -float GIProbe::get_propagation() const { - - return propagation; -} - -void GIProbe::set_interior(bool p_enable) { - - interior = p_enable; - if (probe_data.is_valid()) { - probe_data->set_interior(p_enable); - } -} - -bool GIProbe::is_interior() const { - - return interior; -} - -void GIProbe::set_compress(bool p_enable) { - - compress = p_enable; - if (probe_data.is_valid()) { - probe_data->set_compress(p_enable); - } -} - -bool GIProbe::is_compressed() const { - - return compress; -} - void GIProbe::_find_meshes(Node *p_at_node, List<PlotMesh> &plot_meshes) { MeshInstance *mi = Object::cast_to<MeshInstance>(p_at_node); @@ -397,9 +351,9 @@ GIProbe::BakeEndFunc GIProbe::bake_end_function = NULL; void GIProbe::bake(Node *p_from_node, bool p_create_visual_debug) { - static const int subdiv_value[SUBDIV_MAX] = { 7, 8, 9, 10 }; + static const int subdiv_value[SUBDIV_MAX] = { 6, 7, 8, 9 }; - VoxelLightBaker baker; + Voxelizer baker; baker.begin_bake(subdiv_value[subdiv], AABB(-extents, extents * 2.0)); @@ -431,8 +385,6 @@ void GIProbe::bake(Node *p_from_node, bool p_create_visual_debug) { //create the data for visual server - PoolVector<int> data = baker.create_gi_probe_data(); - if (p_create_visual_debug) { MultiMeshInstance *mmi = memnew(MultiMeshInstance); mmi->set_multimesh(baker.create_debug_multimesh()); @@ -454,17 +406,7 @@ void GIProbe::bake(Node *p_from_node, bool p_create_visual_debug) { if (probe_data.is_null()) probe_data.instance(); - probe_data->set_bounds(AABB(-extents, extents * 2.0)); - probe_data->set_cell_size(baker.get_cell_size()); - probe_data->set_dynamic_data(data); - probe_data->set_dynamic_range(dynamic_range); - probe_data->set_energy(energy); - probe_data->set_bias(bias); - probe_data->set_normal_bias(normal_bias); - probe_data->set_propagation(propagation); - probe_data->set_interior(interior); - probe_data->set_compress(compress); - probe_data->set_to_cell_xform(baker.get_to_cell_space_xform()); + probe_data->allocate(baker.get_to_cell_space_xform(), AABB(-extents, extents * 2.0), baker.get_giprobe_octree_size(), baker.get_giprobe_octree_cells(), baker.get_giprobe_data_cells(), baker.get_giprobe_level_cell_count()); set_probe_data(probe_data); } @@ -508,40 +450,12 @@ void GIProbe::_bind_methods() { ClassDB::bind_method(D_METHOD("set_extents", "extents"), &GIProbe::set_extents); ClassDB::bind_method(D_METHOD("get_extents"), &GIProbe::get_extents); - ClassDB::bind_method(D_METHOD("set_dynamic_range", "max"), &GIProbe::set_dynamic_range); - ClassDB::bind_method(D_METHOD("get_dynamic_range"), &GIProbe::get_dynamic_range); - - ClassDB::bind_method(D_METHOD("set_energy", "max"), &GIProbe::set_energy); - ClassDB::bind_method(D_METHOD("get_energy"), &GIProbe::get_energy); - - ClassDB::bind_method(D_METHOD("set_bias", "max"), &GIProbe::set_bias); - ClassDB::bind_method(D_METHOD("get_bias"), &GIProbe::get_bias); - - ClassDB::bind_method(D_METHOD("set_normal_bias", "max"), &GIProbe::set_normal_bias); - ClassDB::bind_method(D_METHOD("get_normal_bias"), &GIProbe::get_normal_bias); - - ClassDB::bind_method(D_METHOD("set_propagation", "max"), &GIProbe::set_propagation); - ClassDB::bind_method(D_METHOD("get_propagation"), &GIProbe::get_propagation); - - ClassDB::bind_method(D_METHOD("set_interior", "enable"), &GIProbe::set_interior); - ClassDB::bind_method(D_METHOD("is_interior"), &GIProbe::is_interior); - - ClassDB::bind_method(D_METHOD("set_compress", "enable"), &GIProbe::set_compress); - ClassDB::bind_method(D_METHOD("is_compressed"), &GIProbe::is_compressed); - ClassDB::bind_method(D_METHOD("bake", "from_node", "create_visual_debug"), &GIProbe::bake, DEFVAL(Variant()), DEFVAL(false)); ClassDB::bind_method(D_METHOD("debug_bake"), &GIProbe::_debug_bake); ClassDB::set_method_flags(get_class_static(), _scs_create("debug_bake"), METHOD_FLAGS_DEFAULT | METHOD_FLAG_EDITOR); ADD_PROPERTY(PropertyInfo(Variant::INT, "subdiv", PROPERTY_HINT_ENUM, "64,128,256,512"), "set_subdiv", "get_subdiv"); ADD_PROPERTY(PropertyInfo(Variant::VECTOR3, "extents"), "set_extents", "get_extents"); - ADD_PROPERTY(PropertyInfo(Variant::INT, "dynamic_range", PROPERTY_HINT_RANGE, "1,16,1"), "set_dynamic_range", "get_dynamic_range"); - ADD_PROPERTY(PropertyInfo(Variant::REAL, "energy", PROPERTY_HINT_RANGE, "0,16,0.01,or_greater"), "set_energy", "get_energy"); - ADD_PROPERTY(PropertyInfo(Variant::REAL, "propagation", PROPERTY_HINT_RANGE, "0,1,0.01"), "set_propagation", "get_propagation"); - ADD_PROPERTY(PropertyInfo(Variant::REAL, "bias", PROPERTY_HINT_RANGE, "0,4,0.001"), "set_bias", "get_bias"); - ADD_PROPERTY(PropertyInfo(Variant::REAL, "normal_bias", PROPERTY_HINT_RANGE, "0,4,0.001"), "set_normal_bias", "get_normal_bias"); - ADD_PROPERTY(PropertyInfo(Variant::BOOL, "interior"), "set_interior", "is_interior"); - ADD_PROPERTY(PropertyInfo(Variant::BOOL, "compress"), "set_compress", "is_compressed"); ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "data", PROPERTY_HINT_RESOURCE_TYPE, "GIProbeData", PROPERTY_USAGE_DEFAULT | PROPERTY_USAGE_DO_NOT_SHARE_ON_DUPLICATE), "set_probe_data", "get_probe_data"); BIND_ENUM_CONSTANT(SUBDIV_64); @@ -554,14 +468,7 @@ void GIProbe::_bind_methods() { GIProbe::GIProbe() { subdiv = SUBDIV_128; - dynamic_range = 4; - energy = 1.0; - bias = 1.5; - normal_bias = 0.0; - propagation = 0.7; extents = Vector3(10, 10, 10); - interior = false; - compress = false; gi_probe = VS::get_singleton()->gi_probe_create(); set_disable_scale(true); diff --git a/scene/3d/gi_probe.h b/scene/3d/gi_probe.h index 7c58f862e4..7cb4b435c5 100644 --- a/scene/3d/gi_probe.h +++ b/scene/3d/gi_probe.h @@ -40,42 +40,58 @@ class GIProbeData : public Resource { RID probe; + void _set_data(const Dictionary &p_data); + Dictionary _get_data() const; + + Transform to_cell_xform; + AABB bounds; + Vector3 octree_size; + + float dynamic_range; + float energy; + float bias; + float normal_bias; + float propagation; + float anisotropy_strength; + bool interior; + bool use_two_bounces; + protected: static void _bind_methods(); + void _validate_property(PropertyInfo &property) const; public: - void set_bounds(const AABB &p_bounds); + void allocate(const Transform &p_to_cell_xform, const AABB &p_aabb, const Vector3 &p_octree_size, const PoolVector<uint8_t> &p_octree_cells, const PoolVector<uint8_t> &p_data_cells, const PoolVector<int> &p_level_counts); AABB get_bounds() const; - - void set_cell_size(float p_size); - float get_cell_size() const; - - void set_to_cell_xform(const Transform &p_xform); + Vector3 get_octree_size() const; + PoolVector<uint8_t> get_octree_cells() const; + PoolVector<uint8_t> get_data_cells() const; + PoolVector<int> get_level_counts() const; Transform get_to_cell_xform() const; - void set_dynamic_data(const PoolVector<int> &p_data); - PoolVector<int> get_dynamic_data() const; + void set_dynamic_range(float p_range); + float get_dynamic_range() const; - void set_dynamic_range(int p_range); - int get_dynamic_range() const; - - void set_propagation(float p_range); + void set_propagation(float p_propagation); float get_propagation() const; - void set_energy(float p_range); + void set_anisotropy_strength(float p_anisotropy_strength); + float get_anisotropy_strength() const; + + void set_energy(float p_energy); float get_energy() const; - void set_bias(float p_range); + void set_bias(float p_bias); float get_bias() const; - void set_normal_bias(float p_range); + void set_normal_bias(float p_normal_bias); float get_normal_bias() const; void set_interior(bool p_enable); bool is_interior() const; - void set_compress(bool p_enable); - bool is_compressed() const; + void set_use_two_bounces(bool p_enable); + bool is_using_two_bounces() const; virtual RID get_rid() const; @@ -107,13 +123,6 @@ private: Subdiv subdiv; Vector3 extents; - int dynamic_range; - float energy; - float bias; - float normal_bias; - float propagation; - bool interior; - bool compress; struct PlotMesh { Ref<Material> override_material; @@ -142,27 +151,6 @@ public: void set_extents(const Vector3 &p_extents); Vector3 get_extents() const; - void set_dynamic_range(int p_dynamic_range); - int get_dynamic_range() const; - - void set_energy(float p_energy); - float get_energy() const; - - void set_bias(float p_bias); - float get_bias() const; - - void set_normal_bias(float p_normal_bias); - float get_normal_bias() const; - - void set_propagation(float p_propagation); - float get_propagation() const; - - void set_interior(bool p_enable); - bool is_interior() const; - - void set_compress(bool p_enable); - bool is_compressed() const; - void bake(Node *p_from_node = NULL, bool p_create_visual_debug = false); virtual AABB get_aabb() const; diff --git a/scene/3d/voxel_light_baker.cpp b/scene/3d/voxel_light_baker.cpp deleted file mode 100644 index 412c53e36b..0000000000 --- a/scene/3d/voxel_light_baker.cpp +++ /dev/null @@ -1,2486 +0,0 @@ -/*************************************************************************/ -/* voxel_light_baker.cpp */ -/*************************************************************************/ -/* This file is part of: */ -/* GODOT ENGINE */ -/* https://godotengine.org */ -/*************************************************************************/ -/* Copyright (c) 2007-2020 Juan Linietsky, Ariel Manzur. */ -/* Copyright (c) 2014-2020 Godot Engine contributors (cf. AUTHORS.md). */ -/* */ -/* Permission is hereby granted, free of charge, to any person obtaining */ -/* a copy of this software and associated documentation files (the */ -/* "Software"), to deal in the Software without restriction, including */ -/* without limitation the rights to use, copy, modify, merge, publish, */ -/* distribute, sublicense, and/or sell copies of the Software, and to */ -/* permit persons to whom the Software is furnished to do so, subject to */ -/* the following conditions: */ -/* */ -/* The above copyright notice and this permission notice shall be */ -/* included in all copies or substantial portions of the Software. */ -/* */ -/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ -/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ -/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ -/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ -/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ -/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ -/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ -/*************************************************************************/ - -#include "voxel_light_baker.h" - -#include "core/os/os.h" -#include "core/os/threaded_array_processor.h" - -#include <stdlib.h> - -#define FINDMINMAX(x0, x1, x2, min, max) \ - min = max = x0; \ - if (x1 < min) min = x1; \ - if (x1 > max) max = x1; \ - if (x2 < min) min = x2; \ - if (x2 > max) max = x2; - -static bool planeBoxOverlap(Vector3 normal, float d, Vector3 maxbox) { - int q; - Vector3 vmin, vmax; - for (q = 0; q <= 2; q++) { - if (normal[q] > 0.0f) { - vmin[q] = -maxbox[q]; - vmax[q] = maxbox[q]; - } else { - vmin[q] = maxbox[q]; - vmax[q] = -maxbox[q]; - } - } - if (normal.dot(vmin) + d > 0.0f) return false; - if (normal.dot(vmax) + d >= 0.0f) return true; - - return false; -} - -/*======================== X-tests ========================*/ -#define AXISTEST_X01(a, b, fa, fb) \ - p0 = a * v0.y - b * v0.z; \ - p2 = a * v2.y - b * v2.z; \ - if (p0 < p2) { \ - min = p0; \ - max = p2; \ - } else { \ - min = p2; \ - max = p0; \ - } \ - rad = fa * boxhalfsize.y + fb * boxhalfsize.z; \ - if (min > rad || max < -rad) return false; - -#define AXISTEST_X2(a, b, fa, fb) \ - p0 = a * v0.y - b * v0.z; \ - p1 = a * v1.y - b * v1.z; \ - if (p0 < p1) { \ - min = p0; \ - max = p1; \ - } else { \ - min = p1; \ - max = p0; \ - } \ - rad = fa * boxhalfsize.y + fb * boxhalfsize.z; \ - if (min > rad || max < -rad) return false; - -/*======================== Y-tests ========================*/ -#define AXISTEST_Y02(a, b, fa, fb) \ - p0 = -a * v0.x + b * v0.z; \ - p2 = -a * v2.x + b * v2.z; \ - if (p0 < p2) { \ - min = p0; \ - max = p2; \ - } else { \ - min = p2; \ - max = p0; \ - } \ - rad = fa * boxhalfsize.x + fb * boxhalfsize.z; \ - if (min > rad || max < -rad) return false; - -#define AXISTEST_Y1(a, b, fa, fb) \ - p0 = -a * v0.x + b * v0.z; \ - p1 = -a * v1.x + b * v1.z; \ - if (p0 < p1) { \ - min = p0; \ - max = p1; \ - } else { \ - min = p1; \ - max = p0; \ - } \ - rad = fa * boxhalfsize.x + fb * boxhalfsize.z; \ - if (min > rad || max < -rad) return false; - -/*======================== Z-tests ========================*/ - -#define AXISTEST_Z12(a, b, fa, fb) \ - p1 = a * v1.x - b * v1.y; \ - p2 = a * v2.x - b * v2.y; \ - if (p2 < p1) { \ - min = p2; \ - max = p1; \ - } else { \ - min = p1; \ - max = p2; \ - } \ - rad = fa * boxhalfsize.x + fb * boxhalfsize.y; \ - if (min > rad || max < -rad) return false; - -#define AXISTEST_Z0(a, b, fa, fb) \ - p0 = a * v0.x - b * v0.y; \ - p1 = a * v1.x - b * v1.y; \ - if (p0 < p1) { \ - min = p0; \ - max = p1; \ - } else { \ - min = p1; \ - max = p0; \ - } \ - rad = fa * boxhalfsize.x + fb * boxhalfsize.y; \ - if (min > rad || max < -rad) return false; - -static bool fast_tri_box_overlap(const Vector3 &boxcenter, const Vector3 boxhalfsize, const Vector3 *triverts) { - - /* use separating axis theorem to test overlap between triangle and box */ - /* need to test for overlap in these directions: */ - /* 1) the {x,y,z}-directions (actually, since we use the AABB of the triangle */ - /* we do not even need to test these) */ - /* 2) normal of the triangle */ - /* 3) crossproduct(edge from tri, {x,y,z}-directin) */ - /* this gives 3x3=9 more tests */ - Vector3 v0, v1, v2; - float min, max, d, p0, p1, p2, rad, fex, fey, fez; - Vector3 normal, e0, e1, e2; - - /* This is the fastest branch on Sun */ - /* move everything so that the boxcenter is in (0,0,0) */ - - v0 = triverts[0] - boxcenter; - v1 = triverts[1] - boxcenter; - v2 = triverts[2] - boxcenter; - - /* compute triangle edges */ - e0 = v1 - v0; /* tri edge 0 */ - e1 = v2 - v1; /* tri edge 1 */ - e2 = v0 - v2; /* tri edge 2 */ - - /* Bullet 3: */ - /* test the 9 tests first (this was faster) */ - fex = Math::abs(e0.x); - fey = Math::abs(e0.y); - fez = Math::abs(e0.z); - AXISTEST_X01(e0.z, e0.y, fez, fey); - AXISTEST_Y02(e0.z, e0.x, fez, fex); - AXISTEST_Z12(e0.y, e0.x, fey, fex); - - fex = Math::abs(e1.x); - fey = Math::abs(e1.y); - fez = Math::abs(e1.z); - AXISTEST_X01(e1.z, e1.y, fez, fey); - AXISTEST_Y02(e1.z, e1.x, fez, fex); - AXISTEST_Z0(e1.y, e1.x, fey, fex); - - fex = Math::abs(e2.x); - fey = Math::abs(e2.y); - fez = Math::abs(e2.z); - AXISTEST_X2(e2.z, e2.y, fez, fey); - AXISTEST_Y1(e2.z, e2.x, fez, fex); - AXISTEST_Z12(e2.y, e2.x, fey, fex); - - /* Bullet 1: */ - /* first test overlap in the {x,y,z}-directions */ - /* find min, max of the triangle each direction, and test for overlap in */ - /* that direction -- this is equivalent to testing a minimal AABB around */ - /* the triangle against the AABB */ - - /* test in X-direction */ - FINDMINMAX(v0.x, v1.x, v2.x, min, max); - if (min > boxhalfsize.x || max < -boxhalfsize.x) return false; - - /* test in Y-direction */ - FINDMINMAX(v0.y, v1.y, v2.y, min, max); - if (min > boxhalfsize.y || max < -boxhalfsize.y) return false; - - /* test in Z-direction */ - FINDMINMAX(v0.z, v1.z, v2.z, min, max); - if (min > boxhalfsize.z || max < -boxhalfsize.z) return false; - - /* Bullet 2: */ - /* test if the box intersects the plane of the triangle */ - /* compute plane equation of triangle: normal*x+d=0 */ - normal = e0.cross(e1); - d = -normal.dot(v0); /* plane eq: normal.x+d=0 */ - return planeBoxOverlap(normal, d, boxhalfsize); /* if true, box and triangle overlaps */ -} - -static _FORCE_INLINE_ void get_uv_and_normal(const Vector3 &p_pos, const Vector3 *p_vtx, const Vector2 *p_uv, const Vector3 *p_normal, Vector2 &r_uv, Vector3 &r_normal) { - - if (p_pos.distance_squared_to(p_vtx[0]) < CMP_EPSILON2) { - r_uv = p_uv[0]; - r_normal = p_normal[0]; - return; - } - if (p_pos.distance_squared_to(p_vtx[1]) < CMP_EPSILON2) { - r_uv = p_uv[1]; - r_normal = p_normal[1]; - return; - } - if (p_pos.distance_squared_to(p_vtx[2]) < CMP_EPSILON2) { - r_uv = p_uv[2]; - r_normal = p_normal[2]; - return; - } - - Vector3 v0 = p_vtx[1] - p_vtx[0]; - Vector3 v1 = p_vtx[2] - p_vtx[0]; - Vector3 v2 = p_pos - p_vtx[0]; - - float d00 = v0.dot(v0); - float d01 = v0.dot(v1); - float d11 = v1.dot(v1); - float d20 = v2.dot(v0); - float d21 = v2.dot(v1); - float denom = (d00 * d11 - d01 * d01); - if (denom == 0) { - r_uv = p_uv[0]; - r_normal = p_normal[0]; - return; - } - float v = (d11 * d20 - d01 * d21) / denom; - float w = (d00 * d21 - d01 * d20) / denom; - float u = 1.0f - v - w; - - r_uv = p_uv[0] * u + p_uv[1] * v + p_uv[2] * w; - r_normal = (p_normal[0] * u + p_normal[1] * v + p_normal[2] * w).normalized(); -} - -void VoxelLightBaker::_plot_face(int p_idx, int p_level, int p_x, int p_y, int p_z, const Vector3 *p_vtx, const Vector3 *p_normal, const Vector2 *p_uv, const MaterialCache &p_material, const AABB &p_aabb) { - - if (p_level == cell_subdiv - 1) { - //plot the face by guessing its albedo and emission value - - //find best axis to map to, for scanning values - int closest_axis = 0; - float closest_dot = 0; - - Plane plane = Plane(p_vtx[0], p_vtx[1], p_vtx[2]); - Vector3 normal = plane.normal; - - for (int i = 0; i < 3; i++) { - - Vector3 axis; - axis[i] = 1.0; - float dot = ABS(normal.dot(axis)); - if (i == 0 || dot > closest_dot) { - closest_axis = i; - closest_dot = dot; - } - } - - Vector3 axis; - axis[closest_axis] = 1.0; - Vector3 t1; - t1[(closest_axis + 1) % 3] = 1.0; - Vector3 t2; - t2[(closest_axis + 2) % 3] = 1.0; - - t1 *= p_aabb.size[(closest_axis + 1) % 3] / float(color_scan_cell_width); - t2 *= p_aabb.size[(closest_axis + 2) % 3] / float(color_scan_cell_width); - - Color albedo_accum; - Color emission_accum; - Vector3 normal_accum; - - float alpha = 0.0; - - //map to a grid average in the best axis for this face - for (int i = 0; i < color_scan_cell_width; i++) { - - Vector3 ofs_i = float(i) * t1; - - for (int j = 0; j < color_scan_cell_width; j++) { - - Vector3 ofs_j = float(j) * t2; - - Vector3 from = p_aabb.position + ofs_i + ofs_j; - Vector3 to = from + t1 + t2 + axis * p_aabb.size[closest_axis]; - Vector3 half = (to - from) * 0.5; - - //is in this cell? - if (!fast_tri_box_overlap(from + half, half, p_vtx)) { - continue; //face does not span this cell - } - - //go from -size to +size*2 to avoid skipping collisions - Vector3 ray_from = from + (t1 + t2) * 0.5 - axis * p_aabb.size[closest_axis]; - Vector3 ray_to = ray_from + axis * p_aabb.size[closest_axis] * 2; - - if (normal.dot(ray_from - ray_to) < 0) { - SWAP(ray_from, ray_to); - } - - Vector3 intersection; - - if (!plane.intersects_segment(ray_from, ray_to, &intersection)) { - if (ABS(plane.distance_to(ray_from)) < ABS(plane.distance_to(ray_to))) { - intersection = plane.project(ray_from); - } else { - - intersection = plane.project(ray_to); - } - } - - intersection = Face3(p_vtx[0], p_vtx[1], p_vtx[2]).get_closest_point_to(intersection); - - Vector2 uv; - Vector3 lnormal; - get_uv_and_normal(intersection, p_vtx, p_uv, p_normal, uv, lnormal); - if (lnormal == Vector3()) //just in case normal as nor provided - lnormal = normal; - - int uv_x = CLAMP(int(Math::fposmod(uv.x, 1.0f) * bake_texture_size), 0, bake_texture_size - 1); - int uv_y = CLAMP(int(Math::fposmod(uv.y, 1.0f) * bake_texture_size), 0, bake_texture_size - 1); - - int ofs = uv_y * bake_texture_size + uv_x; - albedo_accum.r += p_material.albedo[ofs].r; - albedo_accum.g += p_material.albedo[ofs].g; - albedo_accum.b += p_material.albedo[ofs].b; - albedo_accum.a += p_material.albedo[ofs].a; - - emission_accum.r += p_material.emission[ofs].r; - emission_accum.g += p_material.emission[ofs].g; - emission_accum.b += p_material.emission[ofs].b; - - normal_accum += lnormal; - - alpha += 1.0; - } - } - - if (alpha == 0) { - //could not in any way get texture information.. so use closest point to center - - Face3 f(p_vtx[0], p_vtx[1], p_vtx[2]); - Vector3 inters = f.get_closest_point_to(p_aabb.position + p_aabb.size * 0.5); - - Vector3 lnormal; - Vector2 uv; - get_uv_and_normal(inters, p_vtx, p_uv, p_normal, uv, normal); - if (lnormal == Vector3()) //just in case normal as nor provided - lnormal = normal; - - int uv_x = CLAMP(Math::fposmod(uv.x, 1.0f) * bake_texture_size, 0, bake_texture_size - 1); - int uv_y = CLAMP(Math::fposmod(uv.y, 1.0f) * bake_texture_size, 0, bake_texture_size - 1); - - int ofs = uv_y * bake_texture_size + uv_x; - - alpha = 1.0 / (color_scan_cell_width * color_scan_cell_width); - - albedo_accum.r = p_material.albedo[ofs].r * alpha; - albedo_accum.g = p_material.albedo[ofs].g * alpha; - albedo_accum.b = p_material.albedo[ofs].b * alpha; - albedo_accum.a = p_material.albedo[ofs].a * alpha; - - emission_accum.r = p_material.emission[ofs].r * alpha; - emission_accum.g = p_material.emission[ofs].g * alpha; - emission_accum.b = p_material.emission[ofs].b * alpha; - - normal_accum = lnormal * alpha; - - } else { - - float accdiv = 1.0 / (color_scan_cell_width * color_scan_cell_width); - alpha *= accdiv; - - albedo_accum.r *= accdiv; - albedo_accum.g *= accdiv; - albedo_accum.b *= accdiv; - albedo_accum.a *= accdiv; - - emission_accum.r *= accdiv; - emission_accum.g *= accdiv; - emission_accum.b *= accdiv; - - normal_accum *= accdiv; - } - - //put this temporarily here, corrected in a later step - bake_cells.write[p_idx].albedo[0] += albedo_accum.r; - bake_cells.write[p_idx].albedo[1] += albedo_accum.g; - bake_cells.write[p_idx].albedo[2] += albedo_accum.b; - bake_cells.write[p_idx].emission[0] += emission_accum.r; - bake_cells.write[p_idx].emission[1] += emission_accum.g; - bake_cells.write[p_idx].emission[2] += emission_accum.b; - bake_cells.write[p_idx].normal[0] += normal_accum.x; - bake_cells.write[p_idx].normal[1] += normal_accum.y; - bake_cells.write[p_idx].normal[2] += normal_accum.z; - bake_cells.write[p_idx].alpha += alpha; - - } else { - //go down - - int half = (1 << (cell_subdiv - 1)) >> (p_level + 1); - for (int i = 0; i < 8; i++) { - - AABB aabb = p_aabb; - aabb.size *= 0.5; - - int nx = p_x; - int ny = p_y; - int nz = p_z; - - if (i & 1) { - aabb.position.x += aabb.size.x; - nx += half; - } - if (i & 2) { - aabb.position.y += aabb.size.y; - ny += half; - } - if (i & 4) { - aabb.position.z += aabb.size.z; - nz += half; - } - //make sure to not plot beyond limits - if (nx < 0 || nx >= axis_cell_size[0] || ny < 0 || ny >= axis_cell_size[1] || nz < 0 || nz >= axis_cell_size[2]) - continue; - - { - AABB test_aabb = aabb; - //test_aabb.grow_by(test_aabb.get_longest_axis_size()*0.05); //grow a bit to avoid numerical error in real-time - Vector3 qsize = test_aabb.size * 0.5; //quarter size, for fast aabb test - - if (!fast_tri_box_overlap(test_aabb.position + qsize, qsize, p_vtx)) { - //if (!Face3(p_vtx[0],p_vtx[1],p_vtx[2]).intersects_aabb2(aabb)) { - //does not fit in child, go on - continue; - } - } - - if (bake_cells[p_idx].children[i] == CHILD_EMPTY) { - //sub cell must be created - - uint32_t child_idx = bake_cells.size(); - bake_cells.write[p_idx].children[i] = child_idx; - bake_cells.resize(bake_cells.size() + 1); - bake_cells.write[child_idx].level = p_level + 1; - } - - _plot_face(bake_cells[p_idx].children[i], p_level + 1, nx, ny, nz, p_vtx, p_normal, p_uv, p_material, aabb); - } - } -} - -Vector<Color> VoxelLightBaker::_get_bake_texture(Ref<Image> p_image, const Color &p_color_mul, const Color &p_color_add) { - - Vector<Color> ret; - - if (p_image.is_null() || p_image->empty()) { - - ret.resize(bake_texture_size * bake_texture_size); - for (int i = 0; i < bake_texture_size * bake_texture_size; i++) { - ret.write[i] = p_color_add; - } - - return ret; - } - p_image = p_image->duplicate(); - - if (p_image->is_compressed()) { - p_image->decompress(); - } - p_image->convert(Image::FORMAT_RGBA8); - p_image->resize(bake_texture_size, bake_texture_size, Image::INTERPOLATE_CUBIC); - - PoolVector<uint8_t>::Read r = p_image->get_data().read(); - ret.resize(bake_texture_size * bake_texture_size); - - for (int i = 0; i < bake_texture_size * bake_texture_size; i++) { - Color c; - c.r = (r[i * 4 + 0] / 255.0) * p_color_mul.r + p_color_add.r; - c.g = (r[i * 4 + 1] / 255.0) * p_color_mul.g + p_color_add.g; - c.b = (r[i * 4 + 2] / 255.0) * p_color_mul.b + p_color_add.b; - - c.a = r[i * 4 + 3] / 255.0; - - ret.write[i] = c; - } - - return ret; -} - -VoxelLightBaker::MaterialCache VoxelLightBaker::_get_material_cache(Ref<Material> p_material) { - - //this way of obtaining materials is inaccurate and also does not support some compressed formats very well - Ref<StandardMaterial3D> mat = p_material; - - Ref<Material> material = mat; //hack for now - - if (material_cache.has(material)) { - return material_cache[material]; - } - - MaterialCache mc; - - if (mat.is_valid()) { - - Ref<Texture2D> albedo_tex = mat->get_texture(StandardMaterial3D::TEXTURE_ALBEDO); - - Ref<Image> img_albedo; - if (albedo_tex.is_valid()) { - - img_albedo = albedo_tex->get_data(); - mc.albedo = _get_bake_texture(img_albedo, mat->get_albedo(), Color(0, 0, 0)); // albedo texture, color is multiplicative - } else { - mc.albedo = _get_bake_texture(img_albedo, Color(1, 1, 1), mat->get_albedo()); // no albedo texture, color is additive - } - - Ref<Texture2D> emission_tex = mat->get_texture(StandardMaterial3D::TEXTURE_EMISSION); - - Color emission_col = mat->get_emission(); - float emission_energy = mat->get_emission_energy(); - - Ref<Image> img_emission; - - if (emission_tex.is_valid()) { - - img_emission = emission_tex->get_data(); - } - - if (mat->get_emission_operator() == StandardMaterial3D::EMISSION_OP_ADD) { - mc.emission = _get_bake_texture(img_emission, Color(1, 1, 1) * emission_energy, emission_col * emission_energy); - } else { - mc.emission = _get_bake_texture(img_emission, emission_col * emission_energy, Color(0, 0, 0)); - } - - } else { - Ref<Image> empty; - - mc.albedo = _get_bake_texture(empty, Color(0, 0, 0), Color(1, 1, 1)); - mc.emission = _get_bake_texture(empty, Color(0, 0, 0), Color(0, 0, 0)); - } - - material_cache[p_material] = mc; - return mc; -} - -void VoxelLightBaker::plot_mesh(const Transform &p_xform, Ref<Mesh> &p_mesh, const Vector<Ref<Material> > &p_materials, const Ref<Material> &p_override_material) { - - for (int i = 0; i < p_mesh->get_surface_count(); i++) { - - if (p_mesh->surface_get_primitive_type(i) != Mesh::PRIMITIVE_TRIANGLES) - continue; //only triangles - - Ref<Material> src_material; - - if (p_override_material.is_valid()) { - src_material = p_override_material; - } else if (i < p_materials.size() && p_materials[i].is_valid()) { - src_material = p_materials[i]; - } else { - src_material = p_mesh->surface_get_material(i); - } - MaterialCache material = _get_material_cache(src_material); - - Array a = p_mesh->surface_get_arrays(i); - - PoolVector<Vector3> vertices = a[Mesh::ARRAY_VERTEX]; - PoolVector<Vector3>::Read vr = vertices.read(); - PoolVector<Vector2> uv = a[Mesh::ARRAY_TEX_UV]; - PoolVector<Vector2>::Read uvr; - PoolVector<Vector3> normals = a[Mesh::ARRAY_NORMAL]; - PoolVector<Vector3>::Read nr; - PoolVector<int> index = a[Mesh::ARRAY_INDEX]; - - bool read_uv = false; - bool read_normals = false; - - if (uv.size()) { - - uvr = uv.read(); - read_uv = true; - } - - if (normals.size()) { - read_normals = true; - nr = normals.read(); - } - - if (index.size()) { - - int facecount = index.size() / 3; - PoolVector<int>::Read ir = index.read(); - - for (int j = 0; j < facecount; j++) { - - Vector3 vtxs[3]; - Vector2 uvs[3]; - Vector3 normal[3]; - - for (int k = 0; k < 3; k++) { - vtxs[k] = p_xform.xform(vr[ir[j * 3 + k]]); - } - - if (read_uv) { - for (int k = 0; k < 3; k++) { - uvs[k] = uvr[ir[j * 3 + k]]; - } - } - - if (read_normals) { - for (int k = 0; k < 3; k++) { - normal[k] = nr[ir[j * 3 + k]]; - } - } - - //test against original bounds - if (!fast_tri_box_overlap(original_bounds.position + original_bounds.size * 0.5, original_bounds.size * 0.5, vtxs)) - continue; - //plot - _plot_face(0, 0, 0, 0, 0, vtxs, normal, uvs, material, po2_bounds); - } - - } else { - - int facecount = vertices.size() / 3; - - for (int j = 0; j < facecount; j++) { - - Vector3 vtxs[3]; - Vector2 uvs[3]; - Vector3 normal[3]; - - for (int k = 0; k < 3; k++) { - vtxs[k] = p_xform.xform(vr[j * 3 + k]); - } - - if (read_uv) { - for (int k = 0; k < 3; k++) { - uvs[k] = uvr[j * 3 + k]; - } - } - - if (read_normals) { - for (int k = 0; k < 3; k++) { - normal[k] = nr[j * 3 + k]; - } - } - - //test against original bounds - if (!fast_tri_box_overlap(original_bounds.position + original_bounds.size * 0.5, original_bounds.size * 0.5, vtxs)) - continue; - //plot face - _plot_face(0, 0, 0, 0, 0, vtxs, normal, uvs, material, po2_bounds); - } - } - } - - max_original_cells = bake_cells.size(); -} - -void VoxelLightBaker::_init_light_plot(int p_idx, int p_level, int p_x, int p_y, int p_z, uint32_t p_parent) { - - bake_light.write[p_idx].x = p_x; - bake_light.write[p_idx].y = p_y; - bake_light.write[p_idx].z = p_z; - - if (p_level == cell_subdiv - 1) { - - bake_light.write[p_idx].next_leaf = first_leaf; - first_leaf = p_idx; - } else { - - //go down - int half = (1 << (cell_subdiv - 1)) >> (p_level + 1); - for (int i = 0; i < 8; i++) { - - uint32_t child = bake_cells[p_idx].children[i]; - - if (child == CHILD_EMPTY) - continue; - - int nx = p_x; - int ny = p_y; - int nz = p_z; - - if (i & 1) - nx += half; - if (i & 2) - ny += half; - if (i & 4) - nz += half; - - _init_light_plot(child, p_level + 1, nx, ny, nz, p_idx); - } - } -} - -void VoxelLightBaker::begin_bake_light(BakeQuality p_quality, BakeMode p_bake_mode, float p_propagation, float p_energy) { - _check_init_light(); - propagation = p_propagation; - bake_quality = p_quality; - bake_mode = p_bake_mode; - energy = p_energy; -} - -void VoxelLightBaker::_check_init_light() { - if (bake_light.size() == 0) { - - direct_lights_baked = false; - leaf_voxel_count = 0; - _fixup_plot(0, 0); //pre fixup, so normal, albedo, emission, etc. work for lighting. - bake_light.resize(bake_cells.size()); - print_line("bake light size: " + itos(bake_light.size())); - //zeromem(bake_light.ptrw(), bake_light.size() * sizeof(Light)); - first_leaf = -1; - _init_light_plot(0, 0, 0, 0, 0, CHILD_EMPTY); - } -} - -static float _get_normal_advance(const Vector3 &p_normal) { - - Vector3 normal = p_normal; - Vector3 unorm = normal.abs(); - - if ((unorm.x >= unorm.y) && (unorm.x >= unorm.z)) { - // x code - unorm = normal.x > 0.0 ? Vector3(1.0, 0.0, 0.0) : Vector3(-1.0, 0.0, 0.0); - } else if ((unorm.y > unorm.x) && (unorm.y >= unorm.z)) { - // y code - unorm = normal.y > 0.0 ? Vector3(0.0, 1.0, 0.0) : Vector3(0.0, -1.0, 0.0); - } else if ((unorm.z > unorm.x) && (unorm.z > unorm.y)) { - // z code - unorm = normal.z > 0.0 ? Vector3(0.0, 0.0, 1.0) : Vector3(0.0, 0.0, -1.0); - } else { - // oh-no we messed up code - // has to be - unorm = Vector3(1.0, 0.0, 0.0); - } - - return 1.0 / normal.dot(unorm); -} - -static const Vector3 aniso_normal[6] = { - Vector3(-1, 0, 0), - Vector3(1, 0, 0), - Vector3(0, -1, 0), - Vector3(0, 1, 0), - Vector3(0, 0, -1), - Vector3(0, 0, 1) -}; - -uint32_t VoxelLightBaker::_find_cell_at_pos(const Cell *cells, int x, int y, int z) { - - uint32_t cell = 0; - - int ofs_x = 0; - int ofs_y = 0; - int ofs_z = 0; - int size = 1 << (cell_subdiv - 1); - int half = size / 2; - - if (x < 0 || x >= size) - return -1; - if (y < 0 || y >= size) - return -1; - if (z < 0 || z >= size) - return -1; - - for (int i = 0; i < cell_subdiv - 1; i++) { - - const Cell *bc = &cells[cell]; - - int child = 0; - if (x >= ofs_x + half) { - child |= 1; - ofs_x += half; - } - if (y >= ofs_y + half) { - child |= 2; - ofs_y += half; - } - if (z >= ofs_z + half) { - child |= 4; - ofs_z += half; - } - - cell = bc->children[child]; - if (cell == CHILD_EMPTY) - return CHILD_EMPTY; - - half >>= 1; - } - - return cell; -} -void VoxelLightBaker::plot_light_directional(const Vector3 &p_direction, const Color &p_color, float p_energy, float p_indirect_energy, bool p_direct) { - - _check_init_light(); - - float max_len = Vector3(axis_cell_size[0], axis_cell_size[1], axis_cell_size[2]).length() * 1.1; - - if (p_direct) - direct_lights_baked = true; - - Vector3 light_axis = p_direction; - Plane clip[3]; - int clip_planes = 0; - - Light *light_data = bake_light.ptrw(); - const Cell *cells = bake_cells.ptr(); - - for (int i = 0; i < 3; i++) { - - if (Math::is_zero_approx(light_axis[i])) - continue; - clip[clip_planes].normal[i] = 1.0; - - if (light_axis[i] < 0) { - - clip[clip_planes].d = axis_cell_size[i] + 1; - } else { - clip[clip_planes].d -= 1.0; - } - - clip_planes++; - } - - float distance_adv = _get_normal_advance(light_axis); - - int success_count = 0; - - Vector3 light_energy = Vector3(p_color.r, p_color.g, p_color.b) * p_energy * p_indirect_energy; - - int idx = first_leaf; - while (idx >= 0) { - - Light *light = &light_data[idx]; - - Vector3 to(light->x + 0.5, light->y + 0.5, light->z + 0.5); - to += -light_axis.sign() * 0.47; //make it more likely to receive a ray - - Vector3 from = to - max_len * light_axis; - - for (int j = 0; j < clip_planes; j++) { - - clip[j].intersects_segment(from, to, &from); - } - - float distance = (to - from).length(); - distance += distance_adv - Math::fmod(distance, distance_adv); //make it reach the center of the box always - from = to - light_axis * distance; - - uint32_t result = 0xFFFFFFFF; - - while (distance > -distance_adv) { //use this to avoid precision errors - - result = _find_cell_at_pos(cells, int(floor(from.x)), int(floor(from.y)), int(floor(from.z))); - if (result != 0xFFFFFFFF) { - break; - } - - from += light_axis * distance_adv; - distance -= distance_adv; - } - - if (result == (uint32_t)idx) { - //cell hit itself! hooray! - - Vector3 normal(cells[idx].normal[0], cells[idx].normal[1], cells[idx].normal[2]); - if (normal == Vector3()) { - for (int i = 0; i < 6; i++) { - light->accum[i][0] += light_energy.x * cells[idx].albedo[0]; - light->accum[i][1] += light_energy.y * cells[idx].albedo[1]; - light->accum[i][2] += light_energy.z * cells[idx].albedo[2]; - } - - } else { - - for (int i = 0; i < 6; i++) { - float s = MAX(0.0, aniso_normal[i].dot(-normal)); - light->accum[i][0] += light_energy.x * cells[idx].albedo[0] * s; - light->accum[i][1] += light_energy.y * cells[idx].albedo[1] * s; - light->accum[i][2] += light_energy.z * cells[idx].albedo[2] * s; - } - } - - if (p_direct) { - for (int i = 0; i < 6; i++) { - float s = MAX(0.0, aniso_normal[i].dot(-light_axis)); //light depending on normal for direct - light->direct_accum[i][0] += light_energy.x * s; - light->direct_accum[i][1] += light_energy.y * s; - light->direct_accum[i][2] += light_energy.z * s; - } - } - success_count++; - } - - idx = light_data[idx].next_leaf; - } -} - -void VoxelLightBaker::plot_light_omni(const Vector3 &p_pos, const Color &p_color, float p_energy, float p_indirect_energy, float p_radius, float p_attenutation, bool p_direct) { - - _check_init_light(); - - if (p_direct) - direct_lights_baked = true; - - Plane clip[3]; - int clip_planes = 0; - - // uint64_t us = OS::get_singleton()->get_ticks_usec(); - - Vector3 light_pos = to_cell_space.xform(p_pos) + Vector3(0.5, 0.5, 0.5); - //Vector3 spot_axis = -light_cache.transform.basis.get_axis(2).normalized(); - - float local_radius = to_cell_space.basis.xform(Vector3(0, 0, 1)).length() * p_radius; - - Light *light_data = bake_light.ptrw(); - const Cell *cells = bake_cells.ptr(); - Vector3 light_energy = Vector3(p_color.r, p_color.g, p_color.b) * p_energy * p_indirect_energy; - - int idx = first_leaf; - while (idx >= 0) { - - Light *light = &light_data[idx]; - - Vector3 to(light->x + 0.5, light->y + 0.5, light->z + 0.5); - to += (light_pos - to).sign() * 0.47; //make it more likely to receive a ray - - Vector3 light_axis = (to - light_pos).normalized(); - float distance_adv = _get_normal_advance(light_axis); - - Vector3 normal(cells[idx].normal[0], cells[idx].normal[1], cells[idx].normal[2]); - - if (normal != Vector3() && normal.dot(-light_axis) < 0.001) { - idx = light_data[idx].next_leaf; - continue; - } - - float att = 1.0; - { - float d = light_pos.distance_to(to); - if (d + distance_adv > local_radius) { - idx = light_data[idx].next_leaf; - continue; // too far away - } - - float dt = CLAMP((d + distance_adv) / local_radius, 0, 1); - att *= powf(1.0 - dt, p_attenutation); - } - - clip_planes = 0; - - for (int c = 0; c < 3; c++) { - - if (Math::is_zero_approx(light_axis[c])) - continue; - clip[clip_planes].normal[c] = 1.0; - - if (light_axis[c] < 0) { - - clip[clip_planes].d = (1 << (cell_subdiv - 1)) + 1; - } else { - clip[clip_planes].d -= 1.0; - } - - clip_planes++; - } - - Vector3 from = light_pos; - - for (int j = 0; j < clip_planes; j++) { - - clip[j].intersects_segment(from, to, &from); - } - - float distance = (to - from).length(); - - distance -= Math::fmod(distance, distance_adv); //make it reach the center of the box always, but this tame make it closer - from = to - light_axis * distance; - to += (light_pos - to).sign() * 0.47; //make it more likely to receive a ray - - uint32_t result = 0xFFFFFFFF; - - while (distance > -distance_adv) { //use this to avoid precision errors - - result = _find_cell_at_pos(cells, int(floor(from.x)), int(floor(from.y)), int(floor(from.z))); - if (result != 0xFFFFFFFF) { - break; - } - - from += light_axis * distance_adv; - distance -= distance_adv; - } - - if (result == (uint32_t)idx) { - //cell hit itself! hooray! - - if (normal == Vector3()) { - for (int i = 0; i < 6; i++) { - light->accum[i][0] += light_energy.x * cells[idx].albedo[0] * att; - light->accum[i][1] += light_energy.y * cells[idx].albedo[1] * att; - light->accum[i][2] += light_energy.z * cells[idx].albedo[2] * att; - } - - } else { - - for (int i = 0; i < 6; i++) { - float s = MAX(0.0, aniso_normal[i].dot(-normal)); - light->accum[i][0] += light_energy.x * cells[idx].albedo[0] * s * att; - light->accum[i][1] += light_energy.y * cells[idx].albedo[1] * s * att; - light->accum[i][2] += light_energy.z * cells[idx].albedo[2] * s * att; - } - } - - if (p_direct) { - for (int i = 0; i < 6; i++) { - float s = MAX(0.0, aniso_normal[i].dot(-light_axis)); //light depending on normal for direct - light->direct_accum[i][0] += light_energy.x * s * att; - light->direct_accum[i][1] += light_energy.y * s * att; - light->direct_accum[i][2] += light_energy.z * s * att; - } - } - } - - idx = light_data[idx].next_leaf; - } -} - -void VoxelLightBaker::plot_light_spot(const Vector3 &p_pos, const Vector3 &p_axis, const Color &p_color, float p_energy, float p_indirect_energy, float p_radius, float p_attenutation, float p_spot_angle, float p_spot_attenuation, bool p_direct) { - - _check_init_light(); - - if (p_direct) - direct_lights_baked = true; - - Plane clip[3]; - int clip_planes = 0; - - // uint64_t us = OS::get_singleton()->get_ticks_usec(); - - Vector3 light_pos = to_cell_space.xform(p_pos) + Vector3(0.5, 0.5, 0.5); - Vector3 spot_axis = to_cell_space.basis.xform(p_axis).normalized(); - - float local_radius = to_cell_space.basis.xform(Vector3(0, 0, 1)).length() * p_radius; - - Light *light_data = bake_light.ptrw(); - const Cell *cells = bake_cells.ptr(); - Vector3 light_energy = Vector3(p_color.r, p_color.g, p_color.b) * p_energy * p_indirect_energy; - - int idx = first_leaf; - while (idx >= 0) { - - Light *light = &light_data[idx]; - - Vector3 to(light->x + 0.5, light->y + 0.5, light->z + 0.5); - - Vector3 light_axis = (to - light_pos).normalized(); - float distance_adv = _get_normal_advance(light_axis); - - Vector3 normal(cells[idx].normal[0], cells[idx].normal[1], cells[idx].normal[2]); - - if (normal != Vector3() && normal.dot(-light_axis) < 0.001) { - idx = light_data[idx].next_leaf; - continue; - } - - float angle = Math::rad2deg(Math::acos(light_axis.dot(-spot_axis))); - if (angle > p_spot_angle) { - idx = light_data[idx].next_leaf; - continue; // too far away - } - - float att = Math::pow(1.0f - angle / p_spot_angle, p_spot_attenuation); - - { - float d = light_pos.distance_to(to); - if (d + distance_adv > local_radius) { - idx = light_data[idx].next_leaf; - continue; // too far away - } - - float dt = CLAMP((d + distance_adv) / local_radius, 0, 1); - att *= powf(1.0 - dt, p_attenutation); - } - - clip_planes = 0; - - for (int c = 0; c < 3; c++) { - - if (Math::is_zero_approx(light_axis[c])) - continue; - clip[clip_planes].normal[c] = 1.0; - - if (light_axis[c] < 0) { - - clip[clip_planes].d = (1 << (cell_subdiv - 1)) + 1; - } else { - clip[clip_planes].d -= 1.0; - } - - clip_planes++; - } - - Vector3 from = light_pos; - - for (int j = 0; j < clip_planes; j++) { - - clip[j].intersects_segment(from, to, &from); - } - - float distance = (to - from).length(); - - distance -= Math::fmod(distance, distance_adv); //make it reach the center of the box always, but this tame make it closer - from = to - light_axis * distance; - - uint32_t result = 0xFFFFFFFF; - - while (distance > -distance_adv) { //use this to avoid precision errors - - result = _find_cell_at_pos(cells, int(floor(from.x)), int(floor(from.y)), int(floor(from.z))); - if (result != 0xFFFFFFFF) { - break; - } - - from += light_axis * distance_adv; - distance -= distance_adv; - } - - if (result == (uint32_t)idx) { - //cell hit itself! hooray! - - if (normal == Vector3()) { - for (int i = 0; i < 6; i++) { - light->accum[i][0] += light_energy.x * cells[idx].albedo[0] * att; - light->accum[i][1] += light_energy.y * cells[idx].albedo[1] * att; - light->accum[i][2] += light_energy.z * cells[idx].albedo[2] * att; - } - - } else { - - for (int i = 0; i < 6; i++) { - float s = MAX(0.0, aniso_normal[i].dot(-normal)); - light->accum[i][0] += light_energy.x * cells[idx].albedo[0] * s * att; - light->accum[i][1] += light_energy.y * cells[idx].albedo[1] * s * att; - light->accum[i][2] += light_energy.z * cells[idx].albedo[2] * s * att; - } - } - - if (p_direct) { - for (int i = 0; i < 6; i++) { - float s = MAX(0.0, aniso_normal[i].dot(-light_axis)); //light depending on normal for direct - light->direct_accum[i][0] += light_energy.x * s * att; - light->direct_accum[i][1] += light_energy.y * s * att; - light->direct_accum[i][2] += light_energy.z * s * att; - } - } - } - - idx = light_data[idx].next_leaf; - } -} - -void VoxelLightBaker::_fixup_plot(int p_idx, int p_level) { - - if (p_level == cell_subdiv - 1) { - - leaf_voxel_count++; - float alpha = bake_cells[p_idx].alpha; - - bake_cells.write[p_idx].albedo[0] /= alpha; - bake_cells.write[p_idx].albedo[1] /= alpha; - bake_cells.write[p_idx].albedo[2] /= alpha; - - //transfer emission to light - bake_cells.write[p_idx].emission[0] /= alpha; - bake_cells.write[p_idx].emission[1] /= alpha; - bake_cells.write[p_idx].emission[2] /= alpha; - - bake_cells.write[p_idx].normal[0] /= alpha; - bake_cells.write[p_idx].normal[1] /= alpha; - bake_cells.write[p_idx].normal[2] /= alpha; - - Vector3 n(bake_cells[p_idx].normal[0], bake_cells[p_idx].normal[1], bake_cells[p_idx].normal[2]); - if (n.length() < 0.01) { - //too much fight over normal, zero it - bake_cells.write[p_idx].normal[0] = 0; - bake_cells.write[p_idx].normal[1] = 0; - bake_cells.write[p_idx].normal[2] = 0; - } else { - n.normalize(); - bake_cells.write[p_idx].normal[0] = n.x; - bake_cells.write[p_idx].normal[1] = n.y; - bake_cells.write[p_idx].normal[2] = n.z; - } - - bake_cells.write[p_idx].alpha = 1.0; - - /*if (bake_light.size()) { - for(int i=0;i<6;i++) { - - } - }*/ - - } else { - - //go down - - bake_cells.write[p_idx].emission[0] = 0; - bake_cells.write[p_idx].emission[1] = 0; - bake_cells.write[p_idx].emission[2] = 0; - bake_cells.write[p_idx].normal[0] = 0; - bake_cells.write[p_idx].normal[1] = 0; - bake_cells.write[p_idx].normal[2] = 0; - bake_cells.write[p_idx].albedo[0] = 0; - bake_cells.write[p_idx].albedo[1] = 0; - bake_cells.write[p_idx].albedo[2] = 0; - if (bake_light.size()) { - for (int j = 0; j < 6; j++) { - bake_light.write[p_idx].accum[j][0] = 0; - bake_light.write[p_idx].accum[j][1] = 0; - bake_light.write[p_idx].accum[j][2] = 0; - } - } - - float alpha_average = 0; - int children_found = 0; - - for (int i = 0; i < 8; i++) { - - uint32_t child = bake_cells[p_idx].children[i]; - - if (child == CHILD_EMPTY) - continue; - - _fixup_plot(child, p_level + 1); - alpha_average += bake_cells[child].alpha; - - if (bake_light.size() > 0) { - for (int j = 0; j < 6; j++) { - bake_light.write[p_idx].accum[j][0] += bake_light[child].accum[j][0]; - bake_light.write[p_idx].accum[j][1] += bake_light[child].accum[j][1]; - bake_light.write[p_idx].accum[j][2] += bake_light[child].accum[j][2]; - } - bake_cells.write[p_idx].emission[0] += bake_cells[child].emission[0]; - bake_cells.write[p_idx].emission[1] += bake_cells[child].emission[1]; - bake_cells.write[p_idx].emission[2] += bake_cells[child].emission[2]; - } - - children_found++; - } - - bake_cells.write[p_idx].alpha = alpha_average / 8.0; - if (bake_light.size() && children_found) { - float divisor = Math::lerp(8, children_found, propagation); - for (int j = 0; j < 6; j++) { - bake_light.write[p_idx].accum[j][0] /= divisor; - bake_light.write[p_idx].accum[j][1] /= divisor; - bake_light.write[p_idx].accum[j][2] /= divisor; - } - bake_cells.write[p_idx].emission[0] /= divisor; - bake_cells.write[p_idx].emission[1] /= divisor; - bake_cells.write[p_idx].emission[2] /= divisor; - } - } -} - -//make sure any cell (save for the root) has an empty cell previous to it, so it can be interpolated into - -void VoxelLightBaker::_plot_triangle(Vector2 *vertices, Vector3 *positions, Vector3 *normals, LightMap *pixels, int width, int height) { - - int x[3]; - int y[3]; - - for (int j = 0; j < 3; j++) { - - x[j] = vertices[j].x * width; - y[j] = vertices[j].y * height; - //x[j] = CLAMP(x[j], 0, bt.width - 1); - //y[j] = CLAMP(y[j], 0, bt.height - 1); - } - - // sort the points vertically - if (y[1] > y[2]) { - SWAP(x[1], x[2]); - SWAP(y[1], y[2]); - SWAP(positions[1], positions[2]); - SWAP(normals[1], normals[2]); - } - if (y[0] > y[1]) { - SWAP(x[0], x[1]); - SWAP(y[0], y[1]); - SWAP(positions[0], positions[1]); - SWAP(normals[0], normals[1]); - } - if (y[1] > y[2]) { - SWAP(x[1], x[2]); - SWAP(y[1], y[2]); - SWAP(positions[1], positions[2]); - SWAP(normals[1], normals[2]); - } - - double dx_far = double(x[2] - x[0]) / (y[2] - y[0] + 1); - double dx_upper = double(x[1] - x[0]) / (y[1] - y[0] + 1); - double dx_low = double(x[2] - x[1]) / (y[2] - y[1] + 1); - double xf = x[0]; - double xt = x[0] + dx_upper; // if y[0] == y[1], special case - for (int yi = y[0]; yi <= (y[2] > height - 1 ? height - 1 : y[2]); yi++) { - if (yi >= 0) { - for (int xi = (xf > 0 ? int(xf) : 0); xi <= (xt < width ? xt : width - 1); xi++) { - //pixels[int(x + y * width)] = color; - - Vector2 v0 = Vector2(x[1] - x[0], y[1] - y[0]); - Vector2 v1 = Vector2(x[2] - x[0], y[2] - y[0]); - //vertices[2] - vertices[0]; - Vector2 v2 = Vector2(xi - x[0], yi - y[0]); - float d00 = v0.dot(v0); - float d01 = v0.dot(v1); - float d11 = v1.dot(v1); - float d20 = v2.dot(v0); - float d21 = v2.dot(v1); - float denom = (d00 * d11 - d01 * d01); - Vector3 pos; - Vector3 normal; - if (denom == 0) { - pos = positions[0]; - normal = normals[0]; - } else { - float v = (d11 * d20 - d01 * d21) / denom; - float w = (d00 * d21 - d01 * d20) / denom; - float u = 1.0f - v - w; - pos = positions[0] * u + positions[1] * v + positions[2] * w; - normal = normals[0] * u + normals[1] * v + normals[2] * w; - } - - int ofs = yi * width + xi; - pixels[ofs].normal = normal; - pixels[ofs].pos = pos; - } - - for (int xi = (xf < width ? int(xf) : width - 1); xi >= (xt > 0 ? xt : 0); xi--) { - //pixels[int(x + y * width)] = color; - Vector2 v0 = Vector2(x[1] - x[0], y[1] - y[0]); - Vector2 v1 = Vector2(x[2] - x[0], y[2] - y[0]); - //vertices[2] - vertices[0]; - Vector2 v2 = Vector2(xi - x[0], yi - y[0]); - float d00 = v0.dot(v0); - float d01 = v0.dot(v1); - float d11 = v1.dot(v1); - float d20 = v2.dot(v0); - float d21 = v2.dot(v1); - float denom = (d00 * d11 - d01 * d01); - Vector3 pos; - Vector3 normal; - if (denom == 0) { - pos = positions[0]; - normal = normals[0]; - } else { - float v = (d11 * d20 - d01 * d21) / denom; - float w = (d00 * d21 - d01 * d20) / denom; - float u = 1.0f - v - w; - pos = positions[0] * u + positions[1] * v + positions[2] * w; - normal = normals[0] * u + normals[1] * v + normals[2] * w; - } - - int ofs = yi * width + xi; - pixels[ofs].normal = normal; - pixels[ofs].pos = pos; - } - } - xf += dx_far; - if (yi < y[1]) - xt += dx_upper; - else - xt += dx_low; - } -} - -void VoxelLightBaker::_sample_baked_octree_filtered_and_anisotropic(const Vector3 &p_posf, const Vector3 &p_direction, float p_level, Vector3 &r_color, float &r_alpha) { - - int size = 1 << (cell_subdiv - 1); - - int clamp_v = size - 1; - //first of all, clamp - Vector3 pos; - pos.x = CLAMP(p_posf.x, 0, clamp_v); - pos.y = CLAMP(p_posf.y, 0, clamp_v); - pos.z = CLAMP(p_posf.z, 0, clamp_v); - - float level = (cell_subdiv - 1) - p_level; - - int target_level; - float level_filter; - if (level <= 0.0) { - level_filter = 0; - target_level = 0; - } else { - target_level = Math::ceil(level); - level_filter = target_level - level; - } - - const Cell *cells = bake_cells.ptr(); - const Light *light = bake_light.ptr(); - - Vector3 color[2][8]; - float alpha[2][8]; - zeromem(alpha, sizeof(float) * 2 * 8); - - //find cell at given level first - - for (int c = 0; c < 2; c++) { - - int current_level = MAX(0, target_level - c); - int level_cell_size = (1 << (cell_subdiv - 1)) >> current_level; - - for (int n = 0; n < 8; n++) { - - int x = int(pos.x); - int y = int(pos.y); - int z = int(pos.z); - - if (n & 1) - x += level_cell_size; - if (n & 2) - y += level_cell_size; - if (n & 4) - z += level_cell_size; - - int ofs_x = 0; - int ofs_y = 0; - int ofs_z = 0; - - x = CLAMP(x, 0, clamp_v); - y = CLAMP(y, 0, clamp_v); - z = CLAMP(z, 0, clamp_v); - - int half = size / 2; - uint32_t cell = 0; - for (int i = 0; i < current_level; i++) { - - const Cell *bc = &cells[cell]; - - int child = 0; - if (x >= ofs_x + half) { - child |= 1; - ofs_x += half; - } - if (y >= ofs_y + half) { - child |= 2; - ofs_y += half; - } - if (z >= ofs_z + half) { - child |= 4; - ofs_z += half; - } - - cell = bc->children[child]; - if (cell == CHILD_EMPTY) - break; - - half >>= 1; - } - - if (cell == CHILD_EMPTY) { - alpha[c][n] = 0; - } else { - alpha[c][n] = cells[cell].alpha; - - for (int i = 0; i < 6; i++) { - //anisotropic read light - float amount = p_direction.dot(aniso_normal[i]); - if (amount < 0) - amount = 0; - color[c][n].x += light[cell].accum[i][0] * amount; - color[c][n].y += light[cell].accum[i][1] * amount; - color[c][n].z += light[cell].accum[i][2] * amount; - } - - color[c][n].x += cells[cell].emission[0]; - color[c][n].y += cells[cell].emission[1]; - color[c][n].z += cells[cell].emission[2]; - } - } - } - - float target_level_size = size >> target_level; - Vector3 pos_fract[2]; - - pos_fract[0].x = Math::fmod(pos.x, target_level_size) / target_level_size; - pos_fract[0].y = Math::fmod(pos.y, target_level_size) / target_level_size; - pos_fract[0].z = Math::fmod(pos.z, target_level_size) / target_level_size; - - target_level_size = size >> MAX(0, target_level - 1); - - pos_fract[1].x = Math::fmod(pos.x, target_level_size) / target_level_size; - pos_fract[1].y = Math::fmod(pos.y, target_level_size) / target_level_size; - pos_fract[1].z = Math::fmod(pos.z, target_level_size) / target_level_size; - - float alpha_interp[2]; - Vector3 color_interp[2]; - - for (int i = 0; i < 2; i++) { - - Vector3 color_x00 = color[i][0].linear_interpolate(color[i][1], pos_fract[i].x); - Vector3 color_xy0 = color[i][2].linear_interpolate(color[i][3], pos_fract[i].x); - Vector3 blend_z0 = color_x00.linear_interpolate(color_xy0, pos_fract[i].y); - - Vector3 color_x0z = color[i][4].linear_interpolate(color[i][5], pos_fract[i].x); - Vector3 color_xyz = color[i][6].linear_interpolate(color[i][7], pos_fract[i].x); - Vector3 blend_z1 = color_x0z.linear_interpolate(color_xyz, pos_fract[i].y); - - color_interp[i] = blend_z0.linear_interpolate(blend_z1, pos_fract[i].z); - - float alpha_x00 = Math::lerp(alpha[i][0], alpha[i][1], pos_fract[i].x); - float alpha_xy0 = Math::lerp(alpha[i][2], alpha[i][3], pos_fract[i].x); - float alpha_z0 = Math::lerp(alpha_x00, alpha_xy0, pos_fract[i].y); - - float alpha_x0z = Math::lerp(alpha[i][4], alpha[i][5], pos_fract[i].x); - float alpha_xyz = Math::lerp(alpha[i][6], alpha[i][7], pos_fract[i].x); - float alpha_z1 = Math::lerp(alpha_x0z, alpha_xyz, pos_fract[i].y); - - alpha_interp[i] = Math::lerp(alpha_z0, alpha_z1, pos_fract[i].z); - } - - r_color = color_interp[0].linear_interpolate(color_interp[1], level_filter); - r_alpha = Math::lerp(alpha_interp[0], alpha_interp[1], level_filter); -} - -Vector3 VoxelLightBaker::_voxel_cone_trace(const Vector3 &p_pos, const Vector3 &p_normal, float p_aperture) { - - float bias = 2.5; - float max_distance = (Vector3(1, 1, 1) * (1 << (cell_subdiv - 1))).length(); - - float dist = bias; - float alpha = 0.0; - Vector3 color; - - Vector3 scolor; - float salpha; - - while (dist < max_distance && alpha < 0.95) { - float diameter = MAX(1.0, 2.0 * p_aperture * dist); - _sample_baked_octree_filtered_and_anisotropic(p_pos + dist * p_normal, p_normal, log2(diameter), scolor, salpha); - float a = (1.0 - alpha); - color += scolor * a; - alpha += a * salpha; - dist += diameter * 0.5; - } - - /*if (blend_ambient) { - color.rgb = mix(ambient,color.rgb,min(1.0,alpha/0.95)); - }*/ - - return color; -} - -Vector3 VoxelLightBaker::_compute_pixel_light_at_pos(const Vector3 &p_pos, const Vector3 &p_normal) { - - //find arbitrary tangent and bitangent, then build a matrix - Vector3 v0 = Math::abs(p_normal.z) < 0.999 ? Vector3(0, 0, 1) : Vector3(0, 1, 0); - Vector3 tangent = v0.cross(p_normal).normalized(); - Vector3 bitangent = tangent.cross(p_normal).normalized(); - Basis normal_xform = Basis(tangent, bitangent, p_normal).transposed(); - - const Vector3 *cone_dirs = NULL; - const float *cone_weights = NULL; - int cone_dir_count = 0; - float cone_aperture = 0; - - switch (bake_quality) { - case BAKE_QUALITY_LOW: { - //default quality - static const Vector3 dirs[4] = { - Vector3(Math_SQRT12, 0, Math_SQRT12), - Vector3(0, Math_SQRT12, Math_SQRT12), - Vector3(-Math_SQRT12, 0, Math_SQRT12), - Vector3(0, -Math_SQRT12, Math_SQRT12) - }; - - static const float weights[4] = { 0.25, 0.25, 0.25, 0.25 }; - - cone_dirs = dirs; - cone_dir_count = 4; - cone_aperture = 1.0; // tan(angle) 90 degrees - cone_weights = weights; - } break; - case BAKE_QUALITY_MEDIUM: { - //default quality - static const Vector3 dirs[6] = { - Vector3(0, 0, 1), - Vector3(0.866025, 0, 0.5), - Vector3(0.267617, 0.823639, 0.5), - Vector3(-0.700629, 0.509037, 0.5), - Vector3(-0.700629, -0.509037, 0.5), - Vector3(0.267617, -0.823639, 0.5) - }; - static const float weights[6] = { 0.25f, 0.15f, 0.15f, 0.15f, 0.15f, 0.15f }; - // - cone_dirs = dirs; - cone_dir_count = 6; - cone_aperture = 0.577; // tan(angle) 60 degrees - cone_weights = weights; - } break; - case BAKE_QUALITY_HIGH: { - - //high qualily - static const Vector3 dirs[10] = { - Vector3(0.8781648411741658, 0.0, 0.478358141694643), - Vector3(0.5369754325592234, 0.6794204427701518, 0.5000452447267606), - Vector3(-0.19849436573466497, 0.8429904390140635, 0.49996710542041645), - Vector3(-0.7856196499811189, 0.3639120321329737, 0.5003696617825604), - Vector3(-0.7856196499811189, -0.3639120321329737, 0.5003696617825604), - Vector3(-0.19849436573466497, -0.8429904390140635, 0.49996710542041645), - Vector3(0.5369754325592234, -0.6794204427701518, 0.5000452447267606), - Vector3(-0.4451656858129485, 0.0, 0.8954482185892644), - Vector3(0.19124006749743122, 0.39355745585016605, 0.8991883926788214), - Vector3(0.19124006749743122, -0.39355745585016605, 0.8991883926788214), - }; - static const float weights[10] = { 0.08571f, 0.08571f, 0.08571f, 0.08571f, 0.08571f, 0.08571f, 0.08571f, 0.133333f, 0.133333f, 0.13333f }; - cone_dirs = dirs; - cone_dir_count = 10; - cone_aperture = 0.404; // tan(angle) 45 degrees - cone_weights = weights; - } break; - } - - Vector3 accum; - - for (int i = 0; i < cone_dir_count; i++) { - Vector3 dir = normal_xform.xform(cone_dirs[i]).normalized(); //normal may not completely correct when transformed to cell - accum += _voxel_cone_trace(p_pos, dir, cone_aperture) * cone_weights[i]; - } - - return accum; -} - -_ALWAYS_INLINE_ uint32_t xorshift32(uint32_t *state) { - /* Algorithm "xor" from p. 4 of Marsaglia, "Xorshift RNGs" */ - uint32_t x = *state; - x ^= x << 13; - x ^= x >> 17; - x ^= x << 5; - *state = x; - return x; -} - -Vector3 VoxelLightBaker::_compute_ray_trace_at_pos(const Vector3 &p_pos, const Vector3 &p_normal) { - - int samples_per_quality[3] = { 48, 128, 512 }; - - int samples = samples_per_quality[bake_quality]; - - //create a basis in Z - Vector3 v0 = Math::abs(p_normal.z) < 0.999 ? Vector3(0, 0, 1) : Vector3(0, 1, 0); - Vector3 tangent = v0.cross(p_normal).normalized(); - Vector3 bitangent = tangent.cross(p_normal).normalized(); - Basis normal_xform = Basis(tangent, bitangent, p_normal).transposed(); - - float bias = 1.5; - int max_level = cell_subdiv - 1; - int size = 1 << max_level; - - Vector3 accum; - float spread = Math::deg2rad(80.0); - - const Light *light = bake_light.ptr(); - const Cell *cells = bake_cells.ptr(); - - uint32_t local_rng_state = rand(); //needs to be fixed again - - for (int i = 0; i < samples; i++) { - - float random_angle1 = (((xorshift32(&local_rng_state) % 65535) / 65535.0) * 2.0 - 1.0) * spread; - Vector3 axis(0, sin(random_angle1), cos(random_angle1)); - float random_angle2 = ((xorshift32(&local_rng_state) % 65535) / 65535.0) * Math_PI * 2.0; - Basis rot(Vector3(0, 0, 1), random_angle2); - axis = rot.xform(axis); - - Vector3 direction = normal_xform.xform(axis).normalized(); - - Vector3 advance = direction * _get_normal_advance(direction); - - Vector3 pos = p_pos /*+ Vector3(0.5, 0.5, 0.5)*/ + advance * bias; - - uint32_t cell = CHILD_EMPTY; - - while (cell == CHILD_EMPTY) { - - int x = int(pos.x); - int y = int(pos.y); - int z = int(pos.z); - - int ofs_x = 0; - int ofs_y = 0; - int ofs_z = 0; - int half = size / 2; - - if (x < 0 || x >= size) - break; - if (y < 0 || y >= size) - break; - if (z < 0 || z >= size) - break; - - //int level_limit = max_level; - - cell = 0; //start from root - for (int j = 0; j < max_level; j++) { - - const Cell *bc = &cells[cell]; - - int child = 0; - if (x >= ofs_x + half) { - child |= 1; - ofs_x += half; - } - if (y >= ofs_y + half) { - child |= 2; - ofs_y += half; - } - if (z >= ofs_z + half) { - child |= 4; - ofs_z += half; - } - - cell = bc->children[child]; - if (unlikely(cell == CHILD_EMPTY)) - break; - - half >>= 1; - } - - pos += advance; - } - - if (unlikely(cell != CHILD_EMPTY)) { - for (int j = 0; j < 6; j++) { - //anisotropic read light - float amount = direction.dot(aniso_normal[j]); - if (amount <= 0) - continue; - accum.x += light[cell].accum[j][0] * amount; - accum.y += light[cell].accum[j][1] * amount; - accum.z += light[cell].accum[j][2] * amount; - } - accum.x += cells[cell].emission[0]; - accum.y += cells[cell].emission[1]; - accum.z += cells[cell].emission[2]; - } - } - - // Make sure we don't reset this thread's RNG state - - return accum / samples; -} - -void VoxelLightBaker::_lightmap_bake_point(uint32_t p_x, LightMap *p_line) { - - LightMap *pixel = &p_line[p_x]; - if (pixel->pos == Vector3()) - return; - switch (bake_mode) { - case BAKE_MODE_CONE_TRACE: { - pixel->light = _compute_pixel_light_at_pos(pixel->pos, pixel->normal) * energy; - } break; - case BAKE_MODE_RAY_TRACE: { - pixel->light = _compute_ray_trace_at_pos(pixel->pos, pixel->normal) * energy; - } break; - } -} - -Error VoxelLightBaker::make_lightmap(const Transform &p_xform, Ref<Mesh> &p_mesh, float default_texels_per_unit, LightMapData &r_lightmap, bool (*p_bake_time_func)(void *, float, float), void *p_bake_time_ud) { - - //transfer light information to a lightmap - Ref<Mesh> mesh = p_mesh; - - //step 1 - create lightmap - int width; - int height; - Vector<LightMap> lightmap; - Transform xform = to_cell_space * p_xform; - if (mesh->get_lightmap_size_hint() == Size2()) { - double area = 0; - double uv_area = 0; - for (int i = 0; i < mesh->get_surface_count(); i++) { - Array arrays = mesh->surface_get_arrays(i); - PoolVector<Vector3> vertices = arrays[Mesh::ARRAY_VERTEX]; - PoolVector<Vector2> uv2 = arrays[Mesh::ARRAY_TEX_UV2]; - PoolVector<int> indices = arrays[Mesh::ARRAY_INDEX]; - - ERR_FAIL_COND_V(vertices.size() == 0, ERR_INVALID_PARAMETER); - ERR_FAIL_COND_V(uv2.size() == 0, ERR_INVALID_PARAMETER); - - int vc = vertices.size(); - PoolVector<Vector3>::Read vr = vertices.read(); - PoolVector<Vector2>::Read u2r = uv2.read(); - PoolVector<int>::Read ir; - int ic = 0; - - if (indices.size()) { - ic = indices.size(); - ir = indices.read(); - } - - int faces = ic ? ic / 3 : vc / 3; - for (int j = 0; j < faces; j++) { - Vector3 vertex[3]; - Vector2 uv[3]; - - for (int k = 0; k < 3; k++) { - int idx = ic ? ir[j * 3 + k] : j * 3 + k; - vertex[k] = xform.xform(vr[idx]); - uv[k] = u2r[idx]; - } - - Vector3 p1 = vertex[0]; - Vector3 p2 = vertex[1]; - Vector3 p3 = vertex[2]; - double a = p1.distance_to(p2); - double b = p2.distance_to(p3); - double c = p3.distance_to(p1); - double halfPerimeter = (a + b + c) / 2.0; - area += sqrt(halfPerimeter * (halfPerimeter - a) * (halfPerimeter - b) * (halfPerimeter - c)); - - Vector2 uv_p1 = uv[0]; - Vector2 uv_p2 = uv[1]; - Vector2 uv_p3 = uv[2]; - double uv_a = uv_p1.distance_to(uv_p2); - double uv_b = uv_p2.distance_to(uv_p3); - double uv_c = uv_p3.distance_to(uv_p1); - double uv_halfPerimeter = (uv_a + uv_b + uv_c) / 2.0; - uv_area += sqrt(uv_halfPerimeter * (uv_halfPerimeter - uv_a) * (uv_halfPerimeter - uv_b) * (uv_halfPerimeter - uv_c)); - } - } - - if (uv_area < 0.0001f) { - uv_area = 1.0; - } - - int pixels = (ceil((1.0 / sqrt(uv_area)) * sqrt(area * default_texels_per_unit))); - width = height = CLAMP(pixels, 2, 4096); - } else { - width = mesh->get_lightmap_size_hint().x; - height = mesh->get_lightmap_size_hint().y; - } - - lightmap.resize(width * height); - - //step 2 plot faces to lightmap - for (int i = 0; i < mesh->get_surface_count(); i++) { - Array arrays = mesh->surface_get_arrays(i); - PoolVector<Vector3> vertices = arrays[Mesh::ARRAY_VERTEX]; - PoolVector<Vector3> normals = arrays[Mesh::ARRAY_NORMAL]; - PoolVector<Vector2> uv2 = arrays[Mesh::ARRAY_TEX_UV2]; - PoolVector<int> indices = arrays[Mesh::ARRAY_INDEX]; - - ERR_FAIL_COND_V(vertices.size() == 0, ERR_INVALID_PARAMETER); - ERR_FAIL_COND_V(normals.size() == 0, ERR_INVALID_PARAMETER); - ERR_FAIL_COND_V(uv2.size() == 0, ERR_INVALID_PARAMETER); - - int vc = vertices.size(); - PoolVector<Vector3>::Read vr = vertices.read(); - PoolVector<Vector3>::Read nr = normals.read(); - PoolVector<Vector2>::Read u2r = uv2.read(); - PoolVector<int>::Read ir; - int ic = 0; - - if (indices.size()) { - ic = indices.size(); - ir = indices.read(); - } - - int faces = ic ? ic / 3 : vc / 3; - for (int j = 0; j < faces; j++) { - Vector3 vertex[3]; - Vector3 normal[3]; - Vector2 uv[3]; - - for (int k = 0; k < 3; k++) { - int idx = ic ? ir[j * 3 + k] : j * 3 + k; - vertex[k] = xform.xform(vr[idx]); - normal[k] = xform.basis.xform(nr[idx]).normalized(); - uv[k] = u2r[idx]; - } - - _plot_triangle(uv, vertex, normal, lightmap.ptrw(), width, height); - } - } - - //step 3 perform voxel cone trace on lightmap pixels - { - LightMap *lightmap_ptr = lightmap.ptrw(); - uint64_t begin_time = OS::get_singleton()->get_ticks_usec(); - volatile int lines = 0; - - // make sure our OS-level rng is seeded - - for (int i = 0; i < height; i++) { - - thread_process_array(width, this, &VoxelLightBaker::_lightmap_bake_point, &lightmap_ptr[i * width]); - - lines = MAX(lines, i); //for multithread - if (p_bake_time_func) { - uint64_t elapsed = OS::get_singleton()->get_ticks_usec() - begin_time; - float elapsed_sec = double(elapsed) / 1000000.0; - float remaining = lines < 1 ? 0 : (elapsed_sec / lines) * (height - lines - 1); - if (p_bake_time_func(p_bake_time_ud, remaining, lines / float(height))) { - return ERR_SKIP; - } - } - } - - if (bake_mode == BAKE_MODE_RAY_TRACE) { - //blur - //gauss kernel, 7 step sigma 2 - static const float gauss_kernel[4] = { 0.214607f, 0.189879f, 0.131514f, 0.071303f }; - //horizontal pass - for (int i = 0; i < height; i++) { - for (int j = 0; j < width; j++) { - if (lightmap_ptr[i * width + j].normal == Vector3()) { - continue; //empty - } - float gauss_sum = gauss_kernel[0]; - Vector3 accum = lightmap_ptr[i * width + j].light * gauss_kernel[0]; - for (int k = 1; k < 4; k++) { - int new_x = j + k; - if (new_x >= width || lightmap_ptr[i * width + new_x].normal == Vector3()) - break; - gauss_sum += gauss_kernel[k]; - accum += lightmap_ptr[i * width + new_x].light * gauss_kernel[k]; - } - for (int k = 1; k < 4; k++) { - int new_x = j - k; - if (new_x < 0 || lightmap_ptr[i * width + new_x].normal == Vector3()) - break; - gauss_sum += gauss_kernel[k]; - accum += lightmap_ptr[i * width + new_x].light * gauss_kernel[k]; - } - - lightmap_ptr[i * width + j].pos = accum /= gauss_sum; - } - } - //vertical pass - for (int i = 0; i < height; i++) { - for (int j = 0; j < width; j++) { - if (lightmap_ptr[i * width + j].normal == Vector3()) - continue; //empty, don't write over it anyway - float gauss_sum = gauss_kernel[0]; - Vector3 accum = lightmap_ptr[i * width + j].pos * gauss_kernel[0]; - for (int k = 1; k < 4; k++) { - int new_y = i + k; - if (new_y >= height || lightmap_ptr[new_y * width + j].normal == Vector3()) - break; - gauss_sum += gauss_kernel[k]; - accum += lightmap_ptr[new_y * width + j].pos * gauss_kernel[k]; - } - for (int k = 1; k < 4; k++) { - int new_y = i - k; - if (new_y < 0 || lightmap_ptr[new_y * width + j].normal == Vector3()) - break; - gauss_sum += gauss_kernel[k]; - accum += lightmap_ptr[new_y * width + j].pos * gauss_kernel[k]; - } - - lightmap_ptr[i * width + j].light = accum /= gauss_sum; - } - } - } - - //add directional light (do this after blur) - { - const Cell *cells = bake_cells.ptr(); - const Light *light = bake_light.ptr(); -#ifdef _OPENMP -#pragma omp parallel -#endif - for (int i = 0; i < height; i++) { -#ifdef _OPENMP -#pragma omp parallel for schedule(dynamic, 1) -#endif - for (int j = 0; j < width; j++) { - - //if (i == 125 && j == 280) { - - LightMap *pixel = &lightmap_ptr[i * width + j]; - if (pixel->pos == Vector3()) - continue; //unused, skipe - - int x = int(pixel->pos.x) - 1; - int y = int(pixel->pos.y) - 1; - int z = int(pixel->pos.z) - 1; - Color accum; - int size = 1 << (cell_subdiv - 1); - - int found = 0; - - for (int k = 0; k < 8; k++) { - - int ofs_x = x; - int ofs_y = y; - int ofs_z = z; - - if (k & 1) - ofs_x++; - if (k & 2) - ofs_y++; - if (k & 4) - ofs_z++; - - if (x < 0 || x >= size) - continue; - if (y < 0 || y >= size) - continue; - if (z < 0 || z >= size) - continue; - - uint32_t cell = _find_cell_at_pos(cells, ofs_x, ofs_y, ofs_z); - - if (cell == CHILD_EMPTY) - continue; - for (int l = 0; l < 6; l++) { - float s = pixel->normal.dot(aniso_normal[l]); - if (s < 0) - s = 0; - accum.r += light[cell].direct_accum[l][0] * s; - accum.g += light[cell].direct_accum[l][1] * s; - accum.b += light[cell].direct_accum[l][2] * s; - } - found++; - } - if (found) { - accum /= found; - pixel->light.x += accum.r; - pixel->light.y += accum.g; - pixel->light.z += accum.b; - } - } - } - } - - { - //fill gaps with neighbour vertices to avoid filter fades to black on edges - - for (int i = 0; i < height; i++) { - for (int j = 0; j < width; j++) { - if (lightmap_ptr[i * width + j].normal != Vector3()) { - continue; //filled, skip - } - - //this can't be made separatable.. - - int closest_i = -1, closest_j = 1; - float closest_dist = 1e20; - - const int margin = 3; - for (int y = i - margin; y <= i + margin; y++) { - for (int x = j - margin; x <= j + margin; x++) { - - if (x == j && y == i) - continue; - if (x < 0 || x >= width) - continue; - if (y < 0 || y >= height) - continue; - if (lightmap_ptr[y * width + x].normal == Vector3()) - continue; //also ensures that blitted stuff is not reused - - float dist = Vector2(i - y, j - x).length(); - if (dist > closest_dist) - continue; - - closest_dist = dist; - closest_i = y; - closest_j = x; - } - } - - if (closest_i != -1) { - lightmap_ptr[i * width + j].light = lightmap_ptr[closest_i * width + closest_j].light; - } - } - } - } - - { - //fill the lightmap data - r_lightmap.width = width; - r_lightmap.height = height; - r_lightmap.light.resize(lightmap.size() * 3); - PoolVector<float>::Write w = r_lightmap.light.write(); - for (int i = 0; i < lightmap.size(); i++) { - w[i * 3 + 0] = lightmap[i].light.x; - w[i * 3 + 1] = lightmap[i].light.y; - w[i * 3 + 2] = lightmap[i].light.z; - } - } - -#if 0 // Enable for debugging. - { - PoolVector<uint8_t> img; - int ls = lightmap.size(); - img.resize(ls * 3); - { - PoolVector<uint8_t>::Write w = img.write(); - for (int i = 0; i < ls; i++) { - w[i * 3 + 0] = CLAMP(lightmap_ptr[i].light.x * 255, 0, 255); - w[i * 3 + 1] = CLAMP(lightmap_ptr[i].light.y * 255, 0, 255); - w[i * 3 + 2] = CLAMP(lightmap_ptr[i].light.z * 255, 0, 255); - //w[i * 3 + 0] = CLAMP(lightmap_ptr[i].normal.x * 255, 0, 255); - //w[i * 3 + 1] = CLAMP(lightmap_ptr[i].normal.y * 255, 0, 255); - //w[i * 3 + 2] = CLAMP(lightmap_ptr[i].normal.z * 255, 0, 255); - //w[i * 3 + 0] = CLAMP(lightmap_ptr[i].pos.x / (1 << (cell_subdiv - 1)) * 255, 0, 255); - //w[i * 3 + 1] = CLAMP(lightmap_ptr[i].pos.y / (1 << (cell_subdiv - 1)) * 255, 0, 255); - //w[i * 3 + 2] = CLAMP(lightmap_ptr[i].pos.z / (1 << (cell_subdiv - 1)) * 255, 0, 255); - } - } - - Ref<Image> image; - image.instance(); - image->create(width, height, false, Image::FORMAT_RGB8, img); - - String name = p_mesh->get_name(); - if (name == "") { - name = "Mesh" + itos(p_mesh->get_instance_id()); - } - image->save_png(name + ".png"); - } -#endif - } - - return OK; -} - -void VoxelLightBaker::begin_bake(int p_subdiv, const AABB &p_bounds) { - - original_bounds = p_bounds; - cell_subdiv = p_subdiv; - bake_cells.resize(1); - material_cache.clear(); - - //find out the actual real bounds, power of 2, which gets the highest subdivision - po2_bounds = p_bounds; - int longest_axis = po2_bounds.get_longest_axis_index(); - axis_cell_size[longest_axis] = (1 << (cell_subdiv - 1)); - leaf_voxel_count = 0; - - for (int i = 0; i < 3; i++) { - - if (i == longest_axis) - continue; - - axis_cell_size[i] = axis_cell_size[longest_axis]; - float axis_size = po2_bounds.size[longest_axis]; - - //shrink until fit subdiv - while (axis_size / 2.0 >= po2_bounds.size[i]) { - axis_size /= 2.0; - axis_cell_size[i] >>= 1; - } - - po2_bounds.size[i] = po2_bounds.size[longest_axis]; - } - - Transform to_bounds; - to_bounds.basis.scale(Vector3(po2_bounds.size[longest_axis], po2_bounds.size[longest_axis], po2_bounds.size[longest_axis])); - to_bounds.origin = po2_bounds.position; - - Transform to_grid; - to_grid.basis.scale(Vector3(axis_cell_size[longest_axis], axis_cell_size[longest_axis], axis_cell_size[longest_axis])); - - to_cell_space = to_grid * to_bounds.affine_inverse(); - - cell_size = po2_bounds.size[longest_axis] / axis_cell_size[longest_axis]; -} - -void VoxelLightBaker::end_bake() { - _fixup_plot(0, 0); -} - -//create the data for visual server - -PoolVector<int> VoxelLightBaker::create_gi_probe_data() { - - PoolVector<int> data; - - data.resize(16 + (8 + 1 + 1 + 1 + 1) * bake_cells.size()); //4 for header, rest for rest. - - { - PoolVector<int>::Write w = data.write(); - - uint32_t *w32 = (uint32_t *)w.ptr(); - - w32[0] = 0; //version - w32[1] = cell_subdiv; //subdiv - w32[2] = axis_cell_size[0]; - w32[3] = axis_cell_size[1]; - w32[4] = axis_cell_size[2]; - w32[5] = bake_cells.size(); - w32[6] = leaf_voxel_count; - - int ofs = 16; - - for (int i = 0; i < bake_cells.size(); i++) { - - for (int j = 0; j < 8; j++) { - w32[ofs++] = bake_cells[i].children[j]; - } - - { //albedo - uint32_t rgba = uint32_t(CLAMP(bake_cells[i].albedo[0] * 255.0, 0, 255)) << 16; - rgba |= uint32_t(CLAMP(bake_cells[i].albedo[1] * 255.0, 0, 255)) << 8; - rgba |= uint32_t(CLAMP(bake_cells[i].albedo[2] * 255.0, 0, 255)) << 0; - - w32[ofs++] = rgba; - } - { //emission - - Vector3 e(bake_cells[i].emission[0], bake_cells[i].emission[1], bake_cells[i].emission[2]); - float l = e.length(); - if (l > 0) { - e.normalize(); - l = CLAMP(l / 8.0, 0, 1.0); - } - - uint32_t em = uint32_t(CLAMP(e[0] * 255, 0, 255)) << 24; - em |= uint32_t(CLAMP(e[1] * 255, 0, 255)) << 16; - em |= uint32_t(CLAMP(e[2] * 255, 0, 255)) << 8; - em |= uint32_t(CLAMP(l * 255, 0, 255)); - - w32[ofs++] = em; - } - - //w32[ofs++]=bake_cells[i].used_sides; - { //normal - - Vector3 n(bake_cells[i].normal[0], bake_cells[i].normal[1], bake_cells[i].normal[2]); - n = n * Vector3(0.5, 0.5, 0.5) + Vector3(0.5, 0.5, 0.5); - uint32_t norm = 0; - - norm |= uint32_t(CLAMP(n.x * 255.0, 0, 255)) << 16; - norm |= uint32_t(CLAMP(n.y * 255.0, 0, 255)) << 8; - norm |= uint32_t(CLAMP(n.z * 255.0, 0, 255)) << 0; - - w32[ofs++] = norm; - } - - { - uint16_t alpha = MIN(uint32_t(bake_cells[i].alpha * 65535.0), 65535); - uint16_t level = bake_cells[i].level; - - w32[ofs++] = (uint32_t(level) << 16) | uint32_t(alpha); - } - } - } - - return data; -} - -void VoxelLightBaker::_debug_mesh(int p_idx, int p_level, const AABB &p_aabb, Ref<MultiMesh> &p_multimesh, int &idx, DebugMode p_mode) { - - if (p_level == cell_subdiv - 1) { - - Vector3 center = p_aabb.position + p_aabb.size * 0.5; - Transform xform; - xform.origin = center; - xform.basis.scale(p_aabb.size * 0.5); - p_multimesh->set_instance_transform(idx, xform); - Color col; - if (p_mode == DEBUG_ALBEDO) { - col = Color(bake_cells[p_idx].albedo[0], bake_cells[p_idx].albedo[1], bake_cells[p_idx].albedo[2]); - } else if (p_mode == DEBUG_LIGHT) { - for (int i = 0; i < 6; i++) { - col.r += bake_light[p_idx].accum[i][0]; - col.g += bake_light[p_idx].accum[i][1]; - col.b += bake_light[p_idx].accum[i][2]; - col.r += bake_light[p_idx].direct_accum[i][0]; - col.g += bake_light[p_idx].direct_accum[i][1]; - col.b += bake_light[p_idx].direct_accum[i][2]; - } - } - //Color col = Color(bake_cells[p_idx].emission[0], bake_cells[p_idx].emission[1], bake_cells[p_idx].emission[2]); - p_multimesh->set_instance_color(idx, col); - - idx++; - - } else { - - for (int i = 0; i < 8; i++) { - - uint32_t child = bake_cells[p_idx].children[i]; - - if (child == CHILD_EMPTY || child >= (uint32_t)max_original_cells) - continue; - - AABB aabb = p_aabb; - aabb.size *= 0.5; - - if (i & 1) - aabb.position.x += aabb.size.x; - if (i & 2) - aabb.position.y += aabb.size.y; - if (i & 4) - aabb.position.z += aabb.size.z; - - _debug_mesh(bake_cells[p_idx].children[i], p_level + 1, aabb, p_multimesh, idx, p_mode); - } - } -} - -Ref<MultiMesh> VoxelLightBaker::create_debug_multimesh(DebugMode p_mode) { - - Ref<MultiMesh> mm; - - ERR_FAIL_COND_V(p_mode == DEBUG_LIGHT && bake_light.size() == 0, mm); - mm.instance(); - - mm->set_transform_format(MultiMesh::TRANSFORM_3D); - mm->set_use_colors(true); - mm->set_instance_count(leaf_voxel_count); - - Ref<ArrayMesh> mesh; - mesh.instance(); - - { - Array arr; - arr.resize(Mesh::ARRAY_MAX); - - PoolVector<Vector3> vertices; - PoolVector<Color> colors; -#define ADD_VTX(m_idx) \ - ; \ - vertices.push_back(face_points[m_idx]); \ - colors.push_back(Color(1, 1, 1, 1)); - - for (int i = 0; i < 6; i++) { - - Vector3 face_points[4]; - - for (int j = 0; j < 4; j++) { - - float v[3]; - v[0] = 1.0; - v[1] = 1 - 2 * ((j >> 1) & 1); - v[2] = v[1] * (1 - 2 * (j & 1)); - - for (int k = 0; k < 3; k++) { - - if (i < 3) - face_points[j][(i + k) % 3] = v[k]; - else - face_points[3 - j][(i + k) % 3] = -v[k]; - } - } - - //tri 1 - ADD_VTX(0); - ADD_VTX(1); - ADD_VTX(2); - //tri 2 - ADD_VTX(2); - ADD_VTX(3); - ADD_VTX(0); - } - - arr[Mesh::ARRAY_VERTEX] = vertices; - arr[Mesh::ARRAY_COLOR] = colors; - mesh->add_surface_from_arrays(Mesh::PRIMITIVE_TRIANGLES, arr); - } - - { - Ref<StandardMaterial3D> fsm; - fsm.instance(); - fsm->set_flag(StandardMaterial3D::FLAG_SRGB_VERTEX_COLOR, true); - fsm->set_flag(StandardMaterial3D::FLAG_ALBEDO_FROM_VERTEX_COLOR, true); - fsm->set_shading_mode(StandardMaterial3D::SHADING_MODE_UNSHADED); - fsm->set_albedo(Color(1, 1, 1, 1)); - - mesh->surface_set_material(0, fsm); - } - - mm->set_mesh(mesh); - - int idx = 0; - _debug_mesh(0, 0, po2_bounds, mm, idx, p_mode); - - return mm; -} - -struct VoxelLightBakerOctree { - - enum { - CHILD_EMPTY = 0xFFFFFFFF - }; - - uint16_t light[6][3]; //anisotropic light - float alpha; - uint32_t children[8]; -}; - -PoolVector<uint8_t> VoxelLightBaker::create_capture_octree(int p_subdiv) { - - p_subdiv = MIN(p_subdiv, cell_subdiv); // use the smaller one - - Vector<uint32_t> remap; - int bc = bake_cells.size(); - remap.resize(bc); - Vector<uint32_t> demap; - - int new_size = 0; - for (int i = 0; i < bc; i++) { - uint32_t c = CHILD_EMPTY; - if (bake_cells[i].level < p_subdiv) { - c = new_size; - new_size++; - demap.push_back(i); - } - remap.write[i] = c; - } - - Vector<VoxelLightBakerOctree> octree; - octree.resize(new_size); - - for (int i = 0; i < new_size; i++) { - octree.write[i].alpha = bake_cells[demap[i]].alpha; - for (int j = 0; j < 6; j++) { - for (int k = 0; k < 3; k++) { - float l = bake_light[demap[i]].accum[j][k]; //add anisotropic light - l += bake_cells[demap[i]].emission[k]; //add emission - octree.write[i].light[j][k] = CLAMP(l * 1024, 0, 65535); //give two more bits to octree - } - } - - for (int j = 0; j < 8; j++) { - uint32_t child = bake_cells[demap[i]].children[j]; - octree.write[i].children[j] = child == CHILD_EMPTY ? CHILD_EMPTY : remap[child]; - } - } - - PoolVector<uint8_t> ret; - int ret_bytes = octree.size() * sizeof(VoxelLightBakerOctree); - ret.resize(ret_bytes); - { - PoolVector<uint8_t>::Write w = ret.write(); - copymem(w.ptr(), octree.ptr(), ret_bytes); - } - - return ret; -} - -float VoxelLightBaker::get_cell_size() const { - return cell_size; -} - -Transform VoxelLightBaker::get_to_cell_space_xform() const { - return to_cell_space; -} -VoxelLightBaker::VoxelLightBaker() { - color_scan_cell_width = 4; - bake_texture_size = 128; - propagation = 0.85; - energy = 1.0; -} diff --git a/scene/3d/voxelizer.cpp b/scene/3d/voxelizer.cpp new file mode 100644 index 0000000000..2aa2f79f43 --- /dev/null +++ b/scene/3d/voxelizer.cpp @@ -0,0 +1,1108 @@ +/*************************************************************************/ +/* voxelizer.cpp */ +/*************************************************************************/ +/* This file is part of: */ +/* GODOT ENGINE */ +/* https://godotengine.org */ +/*************************************************************************/ +/* Copyright (c) 2007-2019 Juan Linietsky, Ariel Manzur. */ +/* Copyright (c) 2014-2019 Godot Engine contributors (cf. AUTHORS.md) */ +/* */ +/* Permission is hereby granted, free of charge, to any person obtaining */ +/* a copy of this software and associated documentation files (the */ +/* "Software"), to deal in the Software without restriction, including */ +/* without limitation the rights to use, copy, modify, merge, publish, */ +/* distribute, sublicense, and/or sell copies of the Software, and to */ +/* permit persons to whom the Software is furnished to do so, subject to */ +/* the following conditions: */ +/* */ +/* The above copyright notice and this permission notice shall be */ +/* included in all copies or substantial portions of the Software. */ +/* */ +/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ +/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ +/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ +/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ +/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ +/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ +/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ +/*************************************************************************/ + +#include "voxelizer.h" +#include "core/os/os.h" +#include "core/os/threaded_array_processor.h" + +#include <stdlib.h> + +#define FINDMINMAX(x0, x1, x2, min, max) \ + min = max = x0; \ + if (x1 < min) min = x1; \ + if (x1 > max) max = x1; \ + if (x2 < min) min = x2; \ + if (x2 > max) max = x2; + +static bool planeBoxOverlap(Vector3 normal, float d, Vector3 maxbox) { + int q; + Vector3 vmin, vmax; + for (q = 0; q <= 2; q++) { + if (normal[q] > 0.0f) { + vmin[q] = -maxbox[q]; + vmax[q] = maxbox[q]; + } else { + vmin[q] = maxbox[q]; + vmax[q] = -maxbox[q]; + } + } + if (normal.dot(vmin) + d > 0.0f) return false; + if (normal.dot(vmax) + d >= 0.0f) return true; + + return false; +} + +/*======================== X-tests ========================*/ +#define AXISTEST_X01(a, b, fa, fb) \ + p0 = a * v0.y - b * v0.z; \ + p2 = a * v2.y - b * v2.z; \ + if (p0 < p2) { \ + min = p0; \ + max = p2; \ + } else { \ + min = p2; \ + max = p0; \ + } \ + rad = fa * boxhalfsize.y + fb * boxhalfsize.z; \ + if (min > rad || max < -rad) return false; + +#define AXISTEST_X2(a, b, fa, fb) \ + p0 = a * v0.y - b * v0.z; \ + p1 = a * v1.y - b * v1.z; \ + if (p0 < p1) { \ + min = p0; \ + max = p1; \ + } else { \ + min = p1; \ + max = p0; \ + } \ + rad = fa * boxhalfsize.y + fb * boxhalfsize.z; \ + if (min > rad || max < -rad) return false; + +/*======================== Y-tests ========================*/ +#define AXISTEST_Y02(a, b, fa, fb) \ + p0 = -a * v0.x + b * v0.z; \ + p2 = -a * v2.x + b * v2.z; \ + if (p0 < p2) { \ + min = p0; \ + max = p2; \ + } else { \ + min = p2; \ + max = p0; \ + } \ + rad = fa * boxhalfsize.x + fb * boxhalfsize.z; \ + if (min > rad || max < -rad) return false; + +#define AXISTEST_Y1(a, b, fa, fb) \ + p0 = -a * v0.x + b * v0.z; \ + p1 = -a * v1.x + b * v1.z; \ + if (p0 < p1) { \ + min = p0; \ + max = p1; \ + } else { \ + min = p1; \ + max = p0; \ + } \ + rad = fa * boxhalfsize.x + fb * boxhalfsize.z; \ + if (min > rad || max < -rad) return false; + +/*======================== Z-tests ========================*/ + +#define AXISTEST_Z12(a, b, fa, fb) \ + p1 = a * v1.x - b * v1.y; \ + p2 = a * v2.x - b * v2.y; \ + if (p2 < p1) { \ + min = p2; \ + max = p1; \ + } else { \ + min = p1; \ + max = p2; \ + } \ + rad = fa * boxhalfsize.x + fb * boxhalfsize.y; \ + if (min > rad || max < -rad) return false; + +#define AXISTEST_Z0(a, b, fa, fb) \ + p0 = a * v0.x - b * v0.y; \ + p1 = a * v1.x - b * v1.y; \ + if (p0 < p1) { \ + min = p0; \ + max = p1; \ + } else { \ + min = p1; \ + max = p0; \ + } \ + rad = fa * boxhalfsize.x + fb * boxhalfsize.y; \ + if (min > rad || max < -rad) return false; + +static bool fast_tri_box_overlap(const Vector3 &boxcenter, const Vector3 boxhalfsize, const Vector3 *triverts) { + + /* use separating axis theorem to test overlap between triangle and box */ + /* need to test for overlap in these directions: */ + /* 1) the {x,y,z}-directions (actually, since we use the AABB of the triangle */ + /* we do not even need to test these) */ + /* 2) normal of the triangle */ + /* 3) crossproduct(edge from tri, {x,y,z}-directin) */ + /* this gives 3x3=9 more tests */ + Vector3 v0, v1, v2; + float min, max, d, p0, p1, p2, rad, fex, fey, fez; + Vector3 normal, e0, e1, e2; + + /* This is the fastest branch on Sun */ + /* move everything so that the boxcenter is in (0,0,0) */ + + v0 = triverts[0] - boxcenter; + v1 = triverts[1] - boxcenter; + v2 = triverts[2] - boxcenter; + + /* compute triangle edges */ + e0 = v1 - v0; /* tri edge 0 */ + e1 = v2 - v1; /* tri edge 1 */ + e2 = v0 - v2; /* tri edge 2 */ + + /* Bullet 3: */ + /* test the 9 tests first (this was faster) */ + fex = Math::abs(e0.x); + fey = Math::abs(e0.y); + fez = Math::abs(e0.z); + AXISTEST_X01(e0.z, e0.y, fez, fey); + AXISTEST_Y02(e0.z, e0.x, fez, fex); + AXISTEST_Z12(e0.y, e0.x, fey, fex); + + fex = Math::abs(e1.x); + fey = Math::abs(e1.y); + fez = Math::abs(e1.z); + AXISTEST_X01(e1.z, e1.y, fez, fey); + AXISTEST_Y02(e1.z, e1.x, fez, fex); + AXISTEST_Z0(e1.y, e1.x, fey, fex); + + fex = Math::abs(e2.x); + fey = Math::abs(e2.y); + fez = Math::abs(e2.z); + AXISTEST_X2(e2.z, e2.y, fez, fey); + AXISTEST_Y1(e2.z, e2.x, fez, fex); + AXISTEST_Z12(e2.y, e2.x, fey, fex); + + /* Bullet 1: */ + /* first test overlap in the {x,y,z}-directions */ + /* find min, max of the triangle each direction, and test for overlap in */ + /* that direction -- this is equivalent to testing a minimal AABB around */ + /* the triangle against the AABB */ + + /* test in X-direction */ + FINDMINMAX(v0.x, v1.x, v2.x, min, max); + if (min > boxhalfsize.x || max < -boxhalfsize.x) return false; + + /* test in Y-direction */ + FINDMINMAX(v0.y, v1.y, v2.y, min, max); + if (min > boxhalfsize.y || max < -boxhalfsize.y) return false; + + /* test in Z-direction */ + FINDMINMAX(v0.z, v1.z, v2.z, min, max); + if (min > boxhalfsize.z || max < -boxhalfsize.z) return false; + + /* Bullet 2: */ + /* test if the box intersects the plane of the triangle */ + /* compute plane equation of triangle: normal*x+d=0 */ + normal = e0.cross(e1); + d = -normal.dot(v0); /* plane eq: normal.x+d=0 */ + return planeBoxOverlap(normal, d, boxhalfsize); /* if true, box and triangle overlaps */ +} + +static _FORCE_INLINE_ void get_uv_and_normal(const Vector3 &p_pos, const Vector3 *p_vtx, const Vector2 *p_uv, const Vector3 *p_normal, Vector2 &r_uv, Vector3 &r_normal) { + + if (p_pos.distance_squared_to(p_vtx[0]) < CMP_EPSILON2) { + r_uv = p_uv[0]; + r_normal = p_normal[0]; + return; + } + if (p_pos.distance_squared_to(p_vtx[1]) < CMP_EPSILON2) { + r_uv = p_uv[1]; + r_normal = p_normal[1]; + return; + } + if (p_pos.distance_squared_to(p_vtx[2]) < CMP_EPSILON2) { + r_uv = p_uv[2]; + r_normal = p_normal[2]; + return; + } + + Vector3 v0 = p_vtx[1] - p_vtx[0]; + Vector3 v1 = p_vtx[2] - p_vtx[0]; + Vector3 v2 = p_pos - p_vtx[0]; + + float d00 = v0.dot(v0); + float d01 = v0.dot(v1); + float d11 = v1.dot(v1); + float d20 = v2.dot(v0); + float d21 = v2.dot(v1); + float denom = (d00 * d11 - d01 * d01); + if (denom == 0) { + r_uv = p_uv[0]; + r_normal = p_normal[0]; + return; + } + float v = (d11 * d20 - d01 * d21) / denom; + float w = (d00 * d21 - d01 * d20) / denom; + float u = 1.0f - v - w; + + r_uv = p_uv[0] * u + p_uv[1] * v + p_uv[2] * w; + r_normal = (p_normal[0] * u + p_normal[1] * v + p_normal[2] * w).normalized(); +} + +void Voxelizer::_plot_face(int p_idx, int p_level, int p_x, int p_y, int p_z, const Vector3 *p_vtx, const Vector3 *p_normal, const Vector2 *p_uv, const MaterialCache &p_material, const AABB &p_aabb) { + + if (p_level == cell_subdiv) { + //plot the face by guessing its albedo and emission value + + //find best axis to map to, for scanning values + int closest_axis = 0; + float closest_dot = 0; + + Plane plane = Plane(p_vtx[0], p_vtx[1], p_vtx[2]); + Vector3 normal = plane.normal; + + for (int i = 0; i < 3; i++) { + + Vector3 axis; + axis[i] = 1.0; + float dot = ABS(normal.dot(axis)); + if (i == 0 || dot > closest_dot) { + closest_axis = i; + closest_dot = dot; + } + } + + Vector3 axis; + axis[closest_axis] = 1.0; + Vector3 t1; + t1[(closest_axis + 1) % 3] = 1.0; + Vector3 t2; + t2[(closest_axis + 2) % 3] = 1.0; + + t1 *= p_aabb.size[(closest_axis + 1) % 3] / float(color_scan_cell_width); + t2 *= p_aabb.size[(closest_axis + 2) % 3] / float(color_scan_cell_width); + + Color albedo_accum; + Color emission_accum; + Vector3 normal_accum; + + float alpha = 0.0; + + //map to a grid average in the best axis for this face + for (int i = 0; i < color_scan_cell_width; i++) { + + Vector3 ofs_i = float(i) * t1; + + for (int j = 0; j < color_scan_cell_width; j++) { + + Vector3 ofs_j = float(j) * t2; + + Vector3 from = p_aabb.position + ofs_i + ofs_j; + Vector3 to = from + t1 + t2 + axis * p_aabb.size[closest_axis]; + Vector3 half = (to - from) * 0.5; + + //is in this cell? + if (!fast_tri_box_overlap(from + half, half, p_vtx)) { + continue; //face does not span this cell + } + + //go from -size to +size*2 to avoid skipping collisions + Vector3 ray_from = from + (t1 + t2) * 0.5 - axis * p_aabb.size[closest_axis]; + Vector3 ray_to = ray_from + axis * p_aabb.size[closest_axis] * 2; + + if (normal.dot(ray_from - ray_to) < 0) { + SWAP(ray_from, ray_to); + } + + Vector3 intersection; + + if (!plane.intersects_segment(ray_from, ray_to, &intersection)) { + if (ABS(plane.distance_to(ray_from)) < ABS(plane.distance_to(ray_to))) { + intersection = plane.project(ray_from); + } else { + + intersection = plane.project(ray_to); + } + } + + intersection = Face3(p_vtx[0], p_vtx[1], p_vtx[2]).get_closest_point_to(intersection); + + Vector2 uv; + Vector3 lnormal; + get_uv_and_normal(intersection, p_vtx, p_uv, p_normal, uv, lnormal); + if (lnormal == Vector3()) //just in case normal as nor provided + lnormal = normal; + + int uv_x = CLAMP(int(Math::fposmod(uv.x, 1.0f) * bake_texture_size), 0, bake_texture_size - 1); + int uv_y = CLAMP(int(Math::fposmod(uv.y, 1.0f) * bake_texture_size), 0, bake_texture_size - 1); + + int ofs = uv_y * bake_texture_size + uv_x; + albedo_accum.r += p_material.albedo[ofs].r; + albedo_accum.g += p_material.albedo[ofs].g; + albedo_accum.b += p_material.albedo[ofs].b; + albedo_accum.a += p_material.albedo[ofs].a; + + emission_accum.r += p_material.emission[ofs].r; + emission_accum.g += p_material.emission[ofs].g; + emission_accum.b += p_material.emission[ofs].b; + + normal_accum += lnormal; + + alpha += 1.0; + } + } + + if (alpha == 0) { + //could not in any way get texture information.. so use closest point to center + + Face3 f(p_vtx[0], p_vtx[1], p_vtx[2]); + Vector3 inters = f.get_closest_point_to(p_aabb.position + p_aabb.size * 0.5); + + Vector3 lnormal; + Vector2 uv; + get_uv_and_normal(inters, p_vtx, p_uv, p_normal, uv, normal); + if (lnormal == Vector3()) //just in case normal as nor provided + lnormal = normal; + + int uv_x = CLAMP(Math::fposmod(uv.x, 1.0f) * bake_texture_size, 0, bake_texture_size - 1); + int uv_y = CLAMP(Math::fposmod(uv.y, 1.0f) * bake_texture_size, 0, bake_texture_size - 1); + + int ofs = uv_y * bake_texture_size + uv_x; + + alpha = 1.0 / (color_scan_cell_width * color_scan_cell_width); + + albedo_accum.r = p_material.albedo[ofs].r * alpha; + albedo_accum.g = p_material.albedo[ofs].g * alpha; + albedo_accum.b = p_material.albedo[ofs].b * alpha; + albedo_accum.a = p_material.albedo[ofs].a * alpha; + + emission_accum.r = p_material.emission[ofs].r * alpha; + emission_accum.g = p_material.emission[ofs].g * alpha; + emission_accum.b = p_material.emission[ofs].b * alpha; + + normal_accum = lnormal * alpha; + + } else { + + float accdiv = 1.0 / (color_scan_cell_width * color_scan_cell_width); + alpha *= accdiv; + + albedo_accum.r *= accdiv; + albedo_accum.g *= accdiv; + albedo_accum.b *= accdiv; + albedo_accum.a *= accdiv; + + emission_accum.r *= accdiv; + emission_accum.g *= accdiv; + emission_accum.b *= accdiv; + + normal_accum *= accdiv; + } + + //put this temporarily here, corrected in a later step + bake_cells.write[p_idx].albedo[0] += albedo_accum.r; + bake_cells.write[p_idx].albedo[1] += albedo_accum.g; + bake_cells.write[p_idx].albedo[2] += albedo_accum.b; + bake_cells.write[p_idx].emission[0] += emission_accum.r; + bake_cells.write[p_idx].emission[1] += emission_accum.g; + bake_cells.write[p_idx].emission[2] += emission_accum.b; + bake_cells.write[p_idx].normal[0] += normal_accum.x; + bake_cells.write[p_idx].normal[1] += normal_accum.y; + bake_cells.write[p_idx].normal[2] += normal_accum.z; + bake_cells.write[p_idx].alpha += alpha; + + } else { + //go down + + int half = (1 << cell_subdiv) >> (p_level + 1); + for (int i = 0; i < 8; i++) { + + AABB aabb = p_aabb; + aabb.size *= 0.5; + + int nx = p_x; + int ny = p_y; + int nz = p_z; + + if (i & 1) { + aabb.position.x += aabb.size.x; + nx += half; + } + if (i & 2) { + aabb.position.y += aabb.size.y; + ny += half; + } + if (i & 4) { + aabb.position.z += aabb.size.z; + nz += half; + } + //make sure to not plot beyond limits + if (nx < 0 || nx >= axis_cell_size[0] || ny < 0 || ny >= axis_cell_size[1] || nz < 0 || nz >= axis_cell_size[2]) + continue; + + { + AABB test_aabb = aabb; + //test_aabb.grow_by(test_aabb.get_longest_axis_size()*0.05); //grow a bit to avoid numerical error in real-time + Vector3 qsize = test_aabb.size * 0.5; //quarter size, for fast aabb test + + if (!fast_tri_box_overlap(test_aabb.position + qsize, qsize, p_vtx)) { + //if (!Face3(p_vtx[0],p_vtx[1],p_vtx[2]).intersects_aabb2(aabb)) { + //does not fit in child, go on + continue; + } + } + + if (bake_cells[p_idx].children[i] == CHILD_EMPTY) { + //sub cell must be created + + uint32_t child_idx = bake_cells.size(); + bake_cells.write[p_idx].children[i] = child_idx; + bake_cells.resize(bake_cells.size() + 1); + bake_cells.write[child_idx].level = p_level + 1; + bake_cells.write[child_idx].x = nx / half; + bake_cells.write[child_idx].y = ny / half; + bake_cells.write[child_idx].z = nz / half; + } + + _plot_face(bake_cells[p_idx].children[i], p_level + 1, nx, ny, nz, p_vtx, p_normal, p_uv, p_material, aabb); + } + } +} + +Vector<Color> Voxelizer::_get_bake_texture(Ref<Image> p_image, const Color &p_color_mul, const Color &p_color_add) { + + Vector<Color> ret; + + if (p_image.is_null() || p_image->empty()) { + + ret.resize(bake_texture_size * bake_texture_size); + for (int i = 0; i < bake_texture_size * bake_texture_size; i++) { + ret.write[i] = p_color_add; + } + + return ret; + } + p_image = p_image->duplicate(); + + if (p_image->is_compressed()) { + p_image->decompress(); + } + p_image->convert(Image::FORMAT_RGBA8); + p_image->resize(bake_texture_size, bake_texture_size, Image::INTERPOLATE_CUBIC); + + PoolVector<uint8_t>::Read r = p_image->get_data().read(); + ret.resize(bake_texture_size * bake_texture_size); + + for (int i = 0; i < bake_texture_size * bake_texture_size; i++) { + Color c; + c.r = (r[i * 4 + 0] / 255.0) * p_color_mul.r + p_color_add.r; + c.g = (r[i * 4 + 1] / 255.0) * p_color_mul.g + p_color_add.g; + c.b = (r[i * 4 + 2] / 255.0) * p_color_mul.b + p_color_add.b; + + c.a = r[i * 4 + 3] / 255.0; + + ret.write[i] = c; + } + + return ret; +} + +Voxelizer::MaterialCache Voxelizer::_get_material_cache(Ref<Material> p_material) { + + //this way of obtaining materials is inaccurate and also does not support some compressed formats very well + Ref<StandardMaterial3D> mat = p_material; + + Ref<Material> material = mat; //hack for now + + if (material_cache.has(material)) { + return material_cache[material]; + } + + MaterialCache mc; + + if (mat.is_valid()) { + + Ref<Texture2D> albedo_tex = mat->get_texture(StandardMaterial3D::TEXTURE_ALBEDO); + + Ref<Image> img_albedo; + if (albedo_tex.is_valid()) { + + img_albedo = albedo_tex->get_data(); + mc.albedo = _get_bake_texture(img_albedo, mat->get_albedo(), Color(0, 0, 0)); // albedo texture, color is multiplicative + } else { + mc.albedo = _get_bake_texture(img_albedo, Color(1, 1, 1), mat->get_albedo()); // no albedo texture, color is additive + } + + Ref<Texture2D> emission_tex = mat->get_texture(StandardMaterial3D::TEXTURE_EMISSION); + + Color emission_col = mat->get_emission(); + float emission_energy = mat->get_emission_energy(); + + Ref<Image> img_emission; + + if (emission_tex.is_valid()) { + + img_emission = emission_tex->get_data(); + } + + if (mat->get_emission_operator() == StandardMaterial3D::EMISSION_OP_ADD) { + mc.emission = _get_bake_texture(img_emission, Color(1, 1, 1) * emission_energy, emission_col * emission_energy); + } else { + mc.emission = _get_bake_texture(img_emission, emission_col * emission_energy, Color(0, 0, 0)); + } + + } else { + Ref<Image> empty; + + mc.albedo = _get_bake_texture(empty, Color(0, 0, 0), Color(1, 1, 1)); + mc.emission = _get_bake_texture(empty, Color(0, 0, 0), Color(0, 0, 0)); + } + + material_cache[p_material] = mc; + return mc; +} + +void Voxelizer::plot_mesh(const Transform &p_xform, Ref<Mesh> &p_mesh, const Vector<Ref<Material> > &p_materials, const Ref<Material> &p_override_material) { + + for (int i = 0; i < p_mesh->get_surface_count(); i++) { + + if (p_mesh->surface_get_primitive_type(i) != Mesh::PRIMITIVE_TRIANGLES) + continue; //only triangles + + Ref<Material> src_material; + + if (p_override_material.is_valid()) { + src_material = p_override_material; + } else if (i < p_materials.size() && p_materials[i].is_valid()) { + src_material = p_materials[i]; + } else { + src_material = p_mesh->surface_get_material(i); + } + MaterialCache material = _get_material_cache(src_material); + + Array a = p_mesh->surface_get_arrays(i); + + PoolVector<Vector3> vertices = a[Mesh::ARRAY_VERTEX]; + PoolVector<Vector3>::Read vr = vertices.read(); + PoolVector<Vector2> uv = a[Mesh::ARRAY_TEX_UV]; + PoolVector<Vector2>::Read uvr; + PoolVector<Vector3> normals = a[Mesh::ARRAY_NORMAL]; + PoolVector<Vector3>::Read nr; + PoolVector<int> index = a[Mesh::ARRAY_INDEX]; + + bool read_uv = false; + bool read_normals = false; + + if (uv.size()) { + + uvr = uv.read(); + read_uv = true; + } + + if (normals.size()) { + read_normals = true; + nr = normals.read(); + } + + if (index.size()) { + + int facecount = index.size() / 3; + PoolVector<int>::Read ir = index.read(); + + for (int j = 0; j < facecount; j++) { + + Vector3 vtxs[3]; + Vector2 uvs[3]; + Vector3 normal[3]; + + for (int k = 0; k < 3; k++) { + vtxs[k] = p_xform.xform(vr[ir[j * 3 + k]]); + } + + if (read_uv) { + for (int k = 0; k < 3; k++) { + uvs[k] = uvr[ir[j * 3 + k]]; + } + } + + if (read_normals) { + for (int k = 0; k < 3; k++) { + normal[k] = nr[ir[j * 3 + k]]; + } + } + + //test against original bounds + if (!fast_tri_box_overlap(original_bounds.position + original_bounds.size * 0.5, original_bounds.size * 0.5, vtxs)) + continue; + //plot + _plot_face(0, 0, 0, 0, 0, vtxs, normal, uvs, material, po2_bounds); + } + + } else { + + int facecount = vertices.size() / 3; + + for (int j = 0; j < facecount; j++) { + + Vector3 vtxs[3]; + Vector2 uvs[3]; + Vector3 normal[3]; + + for (int k = 0; k < 3; k++) { + vtxs[k] = p_xform.xform(vr[j * 3 + k]); + } + + if (read_uv) { + for (int k = 0; k < 3; k++) { + uvs[k] = uvr[j * 3 + k]; + } + } + + if (read_normals) { + for (int k = 0; k < 3; k++) { + normal[k] = nr[j * 3 + k]; + } + } + + //test against original bounds + if (!fast_tri_box_overlap(original_bounds.position + original_bounds.size * 0.5, original_bounds.size * 0.5, vtxs)) + continue; + //plot face + _plot_face(0, 0, 0, 0, 0, vtxs, normal, uvs, material, po2_bounds); + } + } + } + + max_original_cells = bake_cells.size(); +} + +void Voxelizer::_sort() { + + // cells need to be sorted by level and coordinates + // it is important that level has more priority (for compute), and that Z has the least, + // given it may aid older implementations plot using GPU + + Vector<CellSort> sorted_cells; + uint32_t cell_count = bake_cells.size(); + sorted_cells.resize(cell_count); + { + + CellSort *sort_cellsp = sorted_cells.ptrw(); + const Cell *bake_cellsp = bake_cells.ptr(); + + for (uint32_t i = 0; i < cell_count; i++) { + sort_cellsp[i].x = bake_cellsp[i].x; + sort_cellsp[i].y = bake_cellsp[i].y; + sort_cellsp[i].z = bake_cellsp[i].z; + sort_cellsp[i].level = bake_cellsp[i].level; + sort_cellsp[i].index = i; + } + } + + sorted_cells.sort(); + + //verify just in case, index 0 must be level 0 + ERR_FAIL_COND(sorted_cells[0].level != 0); + + Vector<Cell> new_bake_cells; + new_bake_cells.resize(cell_count); + Vector<uint32_t> reverse_map; + + { + reverse_map.resize(cell_count); + const CellSort *sort_cellsp = sorted_cells.ptr(); + uint32_t *reverse_mapp = reverse_map.ptrw(); + + for (uint32_t i = 0; i < cell_count; i++) { + reverse_mapp[sort_cellsp[i].index] = i; + } + } + + { + + const CellSort *sort_cellsp = sorted_cells.ptr(); + const Cell *bake_cellsp = bake_cells.ptr(); + const uint32_t *reverse_mapp = reverse_map.ptr(); + Cell *new_bake_cellsp = new_bake_cells.ptrw(); + + for (uint32_t i = 0; i < cell_count; i++) { + //copy to new cell + new_bake_cellsp[i] = bake_cellsp[sort_cellsp[i].index]; + //remap children + for (uint32_t j = 0; j < 8; j++) { + if (new_bake_cellsp[i].children[j] != CHILD_EMPTY) { + new_bake_cellsp[i].children[j] = reverse_mapp[new_bake_cellsp[i].children[j]]; + } + } + } + } + + bake_cells = new_bake_cells; + sorted = true; +} + +void Voxelizer::_fixup_plot(int p_idx, int p_level) { + + if (p_level == cell_subdiv) { + + leaf_voxel_count++; + float alpha = bake_cells[p_idx].alpha; + + bake_cells.write[p_idx].albedo[0] /= alpha; + bake_cells.write[p_idx].albedo[1] /= alpha; + bake_cells.write[p_idx].albedo[2] /= alpha; + + //transfer emission to light + bake_cells.write[p_idx].emission[0] /= alpha; + bake_cells.write[p_idx].emission[1] /= alpha; + bake_cells.write[p_idx].emission[2] /= alpha; + + bake_cells.write[p_idx].normal[0] /= alpha; + bake_cells.write[p_idx].normal[1] /= alpha; + bake_cells.write[p_idx].normal[2] /= alpha; + + Vector3 n(bake_cells[p_idx].normal[0], bake_cells[p_idx].normal[1], bake_cells[p_idx].normal[2]); + if (n.length() < 0.01) { + //too much fight over normal, zero it + bake_cells.write[p_idx].normal[0] = 0; + bake_cells.write[p_idx].normal[1] = 0; + bake_cells.write[p_idx].normal[2] = 0; + } else { + n.normalize(); + bake_cells.write[p_idx].normal[0] = n.x; + bake_cells.write[p_idx].normal[1] = n.y; + bake_cells.write[p_idx].normal[2] = n.z; + } + + bake_cells.write[p_idx].alpha = 1.0; + + /*if (bake_light.size()) { + for(int i=0;i<6;i++) { + + } + }*/ + + } else { + + //go down + + bake_cells.write[p_idx].emission[0] = 0; + bake_cells.write[p_idx].emission[1] = 0; + bake_cells.write[p_idx].emission[2] = 0; + bake_cells.write[p_idx].normal[0] = 0; + bake_cells.write[p_idx].normal[1] = 0; + bake_cells.write[p_idx].normal[2] = 0; + bake_cells.write[p_idx].albedo[0] = 0; + bake_cells.write[p_idx].albedo[1] = 0; + bake_cells.write[p_idx].albedo[2] = 0; + + float alpha_average = 0; + int children_found = 0; + + for (int i = 0; i < 8; i++) { + + uint32_t child = bake_cells[p_idx].children[i]; + + if (child == CHILD_EMPTY) + continue; + + _fixup_plot(child, p_level + 1); + alpha_average += bake_cells[child].alpha; + + children_found++; + } + + bake_cells.write[p_idx].alpha = alpha_average / 8.0; + } +} + +void Voxelizer::begin_bake(int p_subdiv, const AABB &p_bounds) { + + sorted = false; + original_bounds = p_bounds; + cell_subdiv = p_subdiv; + bake_cells.resize(1); + material_cache.clear(); + + print_line("subdiv: " + itos(p_subdiv)); + //find out the actual real bounds, power of 2, which gets the highest subdivision + po2_bounds = p_bounds; + int longest_axis = po2_bounds.get_longest_axis_index(); + axis_cell_size[longest_axis] = 1 << cell_subdiv; + leaf_voxel_count = 0; + + for (int i = 0; i < 3; i++) { + + if (i == longest_axis) + continue; + + axis_cell_size[i] = axis_cell_size[longest_axis]; + float axis_size = po2_bounds.size[longest_axis]; + + //shrink until fit subdiv + while (axis_size / 2.0 >= po2_bounds.size[i]) { + axis_size /= 2.0; + axis_cell_size[i] >>= 1; + } + + po2_bounds.size[i] = po2_bounds.size[longest_axis]; + } + + Transform to_bounds; + to_bounds.basis.scale(Vector3(po2_bounds.size[longest_axis], po2_bounds.size[longest_axis], po2_bounds.size[longest_axis])); + to_bounds.origin = po2_bounds.position; + + Transform to_grid; + to_grid.basis.scale(Vector3(axis_cell_size[longest_axis], axis_cell_size[longest_axis], axis_cell_size[longest_axis])); + + to_cell_space = to_grid * to_bounds.affine_inverse(); + + cell_size = po2_bounds.size[longest_axis] / axis_cell_size[longest_axis]; +} + +void Voxelizer::end_bake() { + if (!sorted) { + _sort(); + } + _fixup_plot(0, 0); +} + +//create the data for visual server + +int Voxelizer::get_gi_probe_octree_depth() const { + return cell_subdiv; +} +Vector3i Voxelizer::get_giprobe_octree_size() const { + return Vector3i(axis_cell_size[0], axis_cell_size[1], axis_cell_size[2]); +} +int Voxelizer::get_giprobe_cell_count() const { + return bake_cells.size(); +} + +PoolVector<uint8_t> Voxelizer::get_giprobe_octree_cells() const { + PoolVector<uint8_t> data; + data.resize((8 * 4) * bake_cells.size()); //8 uint32t values + { + PoolVector<uint8_t>::Write w = data.write(); + uint32_t *children_cells = (uint32_t *)w.ptr(); + const Cell *cells = bake_cells.ptr(); + + uint32_t cell_count = bake_cells.size(); + + for (uint32_t i = 0; i < cell_count; i++) { + + for (uint32_t j = 0; j < 8; j++) { + children_cells[i * 8 + j] = cells[i].children[j]; + } + } + } + + return data; +} +PoolVector<uint8_t> Voxelizer::get_giprobe_data_cells() const { + PoolVector<uint8_t> data; + data.resize((4 * 4) * bake_cells.size()); //8 uint32t values + { + PoolVector<uint8_t>::Write w = data.write(); + uint32_t *dataptr = (uint32_t *)w.ptr(); + const Cell *cells = bake_cells.ptr(); + + uint32_t cell_count = bake_cells.size(); + + for (uint32_t i = 0; i < cell_count; i++) { + + { //position + + uint32_t x = cells[i].x; + uint32_t y = cells[i].y; + uint32_t z = cells[i].z; + + uint32_t position = x; + position |= y << 11; + position |= z << 21; + + dataptr[i * 4 + 0] = position; + } + + { //albedo + alpha + uint32_t rgba = uint32_t(CLAMP(cells[i].alpha * 255.0, 0, 255)) << 24; //a + rgba |= uint32_t(CLAMP(cells[i].albedo[2] * 255.0, 0, 255)) << 16; //b + rgba |= uint32_t(CLAMP(cells[i].albedo[1] * 255.0, 0, 255)) << 8; //g + rgba |= uint32_t(CLAMP(cells[i].albedo[0] * 255.0, 0, 255)); //r + + dataptr[i * 4 + 1] = rgba; + } + + { //emission, as rgbe9995 + Color emission = Color(cells[i].emission[0], cells[i].emission[1], cells[i].emission[2]); + dataptr[i * 4 + 2] = emission.to_rgbe9995(); + } + + { //normal + + Vector3 n(bake_cells[i].normal[0], bake_cells[i].normal[1], bake_cells[i].normal[2]); + n.normalize(); + + uint32_t normal = uint32_t(uint8_t(int8_t(CLAMP(n.x * 127.0, -128, 127)))); + normal |= uint32_t(uint8_t(int8_t(CLAMP(n.y * 127.0, -128, 127)))) << 8; + normal |= uint32_t(uint8_t(int8_t(CLAMP(n.z * 127.0, -128, 127)))) << 16; + + dataptr[i * 4 + 3] = normal; + } + } + } + + return data; +} + +PoolVector<int> Voxelizer::get_giprobe_level_cell_count() const { + uint32_t cell_count = bake_cells.size(); + const Cell *cells = bake_cells.ptr(); + PoolVector<int> level_count; + level_count.resize(cell_subdiv + 1); //remember, always x+1 levels for x subdivisions + { + PoolVector<int>::Write w = level_count.write(); + for (int i = 0; i < cell_subdiv; i++) { + w[i] = 0; + } + + for (uint32_t i = 0; i < cell_count; i++) { + w[cells[i].level]++; + } + } + + return level_count; +} + +void Voxelizer::_debug_mesh(int p_idx, int p_level, const AABB &p_aabb, Ref<MultiMesh> &p_multimesh, int &idx) { + + if (p_level == cell_subdiv - 1) { + + Vector3 center = p_aabb.position + p_aabb.size * 0.5; + Transform xform; + xform.origin = center; + xform.basis.scale(p_aabb.size * 0.5); + p_multimesh->set_instance_transform(idx, xform); + Color col; + col = Color(bake_cells[p_idx].albedo[0], bake_cells[p_idx].albedo[1], bake_cells[p_idx].albedo[2]); + //Color col = Color(bake_cells[p_idx].emission[0], bake_cells[p_idx].emission[1], bake_cells[p_idx].emission[2]); + p_multimesh->set_instance_color(idx, col); + + idx++; + + } else { + + for (int i = 0; i < 8; i++) { + + uint32_t child = bake_cells[p_idx].children[i]; + + if (child == CHILD_EMPTY || child >= (uint32_t)max_original_cells) + continue; + + AABB aabb = p_aabb; + aabb.size *= 0.5; + + if (i & 1) + aabb.position.x += aabb.size.x; + if (i & 2) + aabb.position.y += aabb.size.y; + if (i & 4) + aabb.position.z += aabb.size.z; + + _debug_mesh(bake_cells[p_idx].children[i], p_level + 1, aabb, p_multimesh, idx); + } + } +} + +Ref<MultiMesh> Voxelizer::create_debug_multimesh() { + + Ref<MultiMesh> mm; + + mm.instance(); + + mm->set_transform_format(MultiMesh::TRANSFORM_3D); + mm->set_use_colors(true); + mm->set_instance_count(leaf_voxel_count); + + Ref<ArrayMesh> mesh; + mesh.instance(); + + { + Array arr; + arr.resize(Mesh::ARRAY_MAX); + + PoolVector<Vector3> vertices; + PoolVector<Color> colors; +#define ADD_VTX(m_idx) \ + vertices.push_back(face_points[m_idx]); \ + colors.push_back(Color(1, 1, 1, 1)); + + for (int i = 0; i < 6; i++) { + + Vector3 face_points[4]; + + for (int j = 0; j < 4; j++) { + + float v[3]; + v[0] = 1.0; + v[1] = 1 - 2 * ((j >> 1) & 1); + v[2] = v[1] * (1 - 2 * (j & 1)); + + for (int k = 0; k < 3; k++) { + + if (i < 3) + face_points[j][(i + k) % 3] = v[k]; + else + face_points[3 - j][(i + k) % 3] = -v[k]; + } + } + + //tri 1 + ADD_VTX(0); + ADD_VTX(1); + ADD_VTX(2); + //tri 2 + ADD_VTX(2); + ADD_VTX(3); + ADD_VTX(0); + } + + arr[Mesh::ARRAY_VERTEX] = vertices; + arr[Mesh::ARRAY_COLOR] = colors; + mesh->add_surface_from_arrays(Mesh::PRIMITIVE_TRIANGLES, arr); + } + + { + Ref<StandardMaterial3D> fsm; + fsm.instance(); + fsm->set_flag(StandardMaterial3D::FLAG_SRGB_VERTEX_COLOR, true); + fsm->set_flag(StandardMaterial3D::FLAG_ALBEDO_FROM_VERTEX_COLOR, true); + fsm->set_shading_mode(StandardMaterial3D::SHADING_MODE_UNSHADED); + fsm->set_albedo(Color(1, 1, 1, 1)); + + mesh->surface_set_material(0, fsm); + } + + mm->set_mesh(mesh); + + int idx = 0; + _debug_mesh(0, 0, po2_bounds, mm, idx); + + return mm; +} + +Transform Voxelizer::get_to_cell_space_xform() const { + return to_cell_space; +} +Voxelizer::Voxelizer() { + sorted = false; + color_scan_cell_width = 4; + bake_texture_size = 128; +} diff --git a/scene/3d/voxel_light_baker.h b/scene/3d/voxelizer.h index 7e78a19830..37de6b782e 100644 --- a/scene/3d/voxel_light_baker.h +++ b/scene/3d/voxelizer.h @@ -1,5 +1,5 @@ /*************************************************************************/ -/* voxel_light_baker.h */ +/* voxelizer.h */ /*************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ @@ -31,27 +31,11 @@ #ifndef VOXEL_LIGHT_BAKER_H #define VOXEL_LIGHT_BAKER_H +#include "core/math/vector3i.h" #include "scene/3d/mesh_instance.h" #include "scene/resources/multimesh.h" -class VoxelLightBaker { -public: - enum DebugMode { - DEBUG_ALBEDO, - DEBUG_LIGHT - }; - - enum BakeQuality { - BAKE_QUALITY_LOW, - BAKE_QUALITY_MEDIUM, - BAKE_QUALITY_HIGH - }; - - enum BakeMode { - BAKE_MODE_CONE_TRACE, - BAKE_MODE_RAY_TRACE, - }; - +class Voxelizer { private: enum { CHILD_EMPTY = 0xFFFFFFFF @@ -66,7 +50,10 @@ private: float normal[3]; uint32_t used_sides; float alpha; //used for upsampling - int level; + uint16_t x; + uint16_t y; + uint16_t z; + uint16_t level; Cell() { for (int i = 0; i < 8; i++) { @@ -80,6 +67,7 @@ private: } alpha = 0; used_sides = 0; + x = y = z = 0; level = 0; } }; @@ -87,27 +75,24 @@ private: Vector<Cell> bake_cells; int cell_subdiv; - struct Light { - int x, y, z; - float accum[6][3]; //rgb anisotropic - float direct_accum[6][3]; //for direct bake - int next_leaf; - Light() { - x = y = z = 0; - for (int i = 0; i < 6; i++) { - for (int j = 0; j < 3; j++) { - accum[i][j] = 0; - direct_accum[i][j] = 0; - } - } - next_leaf = 0; + struct CellSort { + union { + struct { + uint64_t z : 16; + uint64_t y : 16; + uint64_t x : 16; + uint64_t level : 16; + }; + uint64_t key; + }; + + int32_t index; + + _FORCE_INLINE_ bool operator<(const CellSort &p_cell_sort) const { + return key < p_cell_sort.key; } }; - int first_leaf; - - Vector<Light> bake_light; - struct MaterialCache { //128x128 textures Vector<Color> albedo; @@ -115,9 +100,6 @@ private: }; Map<Ref<Material>, MaterialCache> material_cache; - int leaf_voxel_count; - bool direct_lights_baked; - AABB original_bounds; AABB po2_bounds; int axis_cell_size[3]; @@ -128,64 +110,36 @@ private: int bake_texture_size; float cell_size; float propagation; - float energy; - - BakeQuality bake_quality; - BakeMode bake_mode; int max_original_cells; - - void _init_light_plot(int p_idx, int p_level, int p_x, int p_y, int p_z, uint32_t p_parent); + int leaf_voxel_count; Vector<Color> _get_bake_texture(Ref<Image> p_image, const Color &p_color_mul, const Color &p_color_add); MaterialCache _get_material_cache(Ref<Material> p_material); void _plot_face(int p_idx, int p_level, int p_x, int p_y, int p_z, const Vector3 *p_vtx, const Vector3 *p_normal, const Vector2 *p_uv, const MaterialCache &p_material, const AABB &p_aabb); void _fixup_plot(int p_idx, int p_level); - void _debug_mesh(int p_idx, int p_level, const AABB &p_aabb, Ref<MultiMesh> &p_multimesh, int &idx, DebugMode p_mode); - void _check_init_light(); - - uint32_t _find_cell_at_pos(const Cell *cells, int x, int y, int z); + void _debug_mesh(int p_idx, int p_level, const AABB &p_aabb, Ref<MultiMesh> &p_multimesh, int &idx); - struct LightMap { - Vector3 light; - Vector3 pos; - Vector3 normal; - }; - - void _plot_triangle(Vector2 *vertices, Vector3 *positions, Vector3 *normals, LightMap *pixels, int width, int height); - - _FORCE_INLINE_ void _sample_baked_octree_filtered_and_anisotropic(const Vector3 &p_posf, const Vector3 &p_direction, float p_level, Vector3 &r_color, float &r_alpha); - _FORCE_INLINE_ Vector3 _voxel_cone_trace(const Vector3 &p_pos, const Vector3 &p_normal, float p_aperture); - _FORCE_INLINE_ Vector3 _compute_pixel_light_at_pos(const Vector3 &p_pos, const Vector3 &p_normal); - _FORCE_INLINE_ Vector3 _compute_ray_trace_at_pos(const Vector3 &p_pos, const Vector3 &p_normal); - - void _lightmap_bake_point(uint32_t p_x, LightMap *p_line); + bool sorted; + void _sort(); public: void begin_bake(int p_subdiv, const AABB &p_bounds); void plot_mesh(const Transform &p_xform, Ref<Mesh> &p_mesh, const Vector<Ref<Material> > &p_materials, const Ref<Material> &p_override_material); - void begin_bake_light(BakeQuality p_quality = BAKE_QUALITY_MEDIUM, BakeMode p_bake_mode = BAKE_MODE_CONE_TRACE, float p_propagation = 0.85, float p_energy = 1); - void plot_light_directional(const Vector3 &p_direction, const Color &p_color, float p_energy, float p_indirect_energy, bool p_direct); - void plot_light_omni(const Vector3 &p_pos, const Color &p_color, float p_energy, float p_indirect_energy, float p_radius, float p_attenutation, bool p_direct); - void plot_light_spot(const Vector3 &p_pos, const Vector3 &p_axis, const Color &p_color, float p_energy, float p_indirect_energy, float p_radius, float p_attenutation, float p_spot_angle, float p_spot_attenuation, bool p_direct); void end_bake(); - struct LightMapData { - int width; - int height; - PoolVector<float> light; - }; - - Error make_lightmap(const Transform &p_xform, Ref<Mesh> &p_mesh, float default_texels_per_unit, LightMapData &r_lightmap, bool (*p_bake_time_func)(void *, float, float) = NULL, void *p_bake_time_ud = NULL); + int get_gi_probe_octree_depth() const; + Vector3i get_giprobe_octree_size() const; + int get_giprobe_cell_count() const; + PoolVector<uint8_t> get_giprobe_octree_cells() const; + PoolVector<uint8_t> get_giprobe_data_cells() const; + PoolVector<int> get_giprobe_level_cell_count() const; - PoolVector<int> create_gi_probe_data(); - Ref<MultiMesh> create_debug_multimesh(DebugMode p_mode = DEBUG_ALBEDO); - PoolVector<uint8_t> create_capture_octree(int p_subdiv); + Ref<MultiMesh> create_debug_multimesh(); - float get_cell_size() const; Transform get_to_cell_space_xform() const; - VoxelLightBaker(); + Voxelizer(); }; #endif // VOXEL_LIGHT_BAKER_H diff --git a/scene/main/viewport.h b/scene/main/viewport.h index 469665676c..831bb77c0f 100644 --- a/scene/main/viewport.h +++ b/scene/main/viewport.h @@ -129,8 +129,14 @@ public: enum DebugDraw { DEBUG_DRAW_DISABLED, DEBUG_DRAW_UNSHADED, + DEBUG_DRAW_LIGHTING, DEBUG_DRAW_OVERDRAW, DEBUG_DRAW_WIREFRAME, + DEBUG_DRAW_GI_PROBE_ALBEDO, + DEBUG_DRAW_GI_PROBE_LIGHTING, + DEBUG_DRAW_SHADOW_ATLAS, + DEBUG_DRAW_DIRECTIONAL_SHADOW_ATLAS, + }; enum ClearMode { diff --git a/scene/register_scene_types.cpp b/scene/register_scene_types.cpp index de7600d417..957e41ce9b 100644 --- a/scene/register_scene_types.cpp +++ b/scene/register_scene_types.cpp @@ -419,8 +419,8 @@ void register_scene_types() { ClassDB::register_class<ReflectionProbe>(); ClassDB::register_class<GIProbe>(); ClassDB::register_class<GIProbeData>(); - ClassDB::register_class<BakedLightmap>(); - ClassDB::register_class<BakedLightmapData>(); + //ClassDB::register_class<BakedLightmap>(); + //ClassDB::register_class<BakedLightmapData>(); ClassDB::register_class<Particles>(); ClassDB::register_class<CPUParticles>(); ClassDB::register_class<Position3D>(); diff --git a/scene/resources/mesh.cpp b/scene/resources/mesh.cpp index 6765a15208..571415a045 100644 --- a/scene/resources/mesh.cpp +++ b/scene/resources/mesh.cpp @@ -904,6 +904,8 @@ Array ArrayMesh::_get_surfaces() const { ret.push_back(data); } + print_line("Saving surfaces: " + itos(ret.size())); + return ret; } @@ -983,7 +985,15 @@ void ArrayMesh::_set_surfaces(const Array &p_surfaces) { if (d.has("2d")) { _2d = d["2d"]; } - + /* + print_line("format: " + itos(surface.format)); + print_line("aabb: " + surface.aabb); + print_line("array size: " + itos(surface.vertex_data.size())); + print_line("vertex count: " + itos(surface.vertex_count)); + print_line("index size: " + itos(surface.index_data.size())); + print_line("index count: " + itos(surface.index_count)); + print_line("primitive: " + itos(surface.primitive)); +*/ surface_data.push_back(surface); surface_materials.push_back(material); surface_names.push_back(name); @@ -999,6 +1009,7 @@ void ArrayMesh::_set_surfaces(const Array &p_surfaces) { } else { // if mesh does not exist (first time this is loaded, most likely), // we can create it with a single call, which is a lot more efficient and thread friendly + print_line("create mesh from surfaces: " + itos(surface_data.size())); mesh = VS::get_singleton()->mesh_create_from_surfaces(surface_data); VS::get_singleton()->mesh_set_blend_shape_mode(mesh, (VS::BlendShapeMode)blend_shape_mode); } @@ -1144,6 +1155,14 @@ void ArrayMesh::add_surface_from_arrays(PrimitiveType p_primitive, const Array & Error err = VS::get_singleton()->mesh_create_surface_data_from_arrays(&surface, (VisualServer::PrimitiveType)p_primitive, p_arrays, p_blend_shapes, p_lods, p_flags); ERR_FAIL_COND(err != OK); + /* print_line("format: " + itos(surface.format)); + print_line("aabb: " + surface.aabb); + print_line("array size: " + itos(surface.vertex_data.size())); + print_line("vertex count: " + itos(surface.vertex_count)); + print_line("index size: " + itos(surface.index_data.size())); + print_line("index count: " + itos(surface.index_count)); + print_line("primitive: " + itos(surface.primitive)); +*/ add_surface(surface.format, PrimitiveType(surface.primitive), surface.vertex_data, surface.vertex_count, surface.index_data, surface.index_count, surface.aabb, surface.blend_shapes, surface.bone_aabbs, surface.lods); } @@ -1570,8 +1589,8 @@ void ArrayMesh::_bind_methods() { ClassDB::bind_method(D_METHOD("_set_surfaces", "surfaces"), &ArrayMesh::_set_surfaces); ClassDB::bind_method(D_METHOD("_get_surfaces"), &ArrayMesh::_get_surfaces); - ADD_PROPERTY(PropertyInfo(Variant::ARRAY, "_surfaces", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_INTERNAL), "_set_surfaces", "_get_surfaces"); - ADD_PROPERTY(PropertyInfo(Variant::INT, "blend_shape_mode", PROPERTY_HINT_ENUM, "Normalized,Relative", PROPERTY_USAGE_NOEDITOR), "set_blend_shape_mode", "get_blend_shape_mode"); + ADD_PROPERTY(PropertyInfo(Variant::ARRAY, "_surfaces", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_NOEDITOR), "_set_surfaces", "_get_surfaces"); + ADD_PROPERTY(PropertyInfo(Variant::INT, "blend_shape_mode", PROPERTY_HINT_ENUM, "Normalized,Relative"), "set_blend_shape_mode", "get_blend_shape_mode"); ADD_PROPERTY(PropertyInfo(Variant::AABB, "custom_aabb", PROPERTY_HINT_NONE, ""), "set_custom_aabb", "get_custom_aabb"); BIND_CONSTANT(NO_INDEX_ARRAY); diff --git a/scene/resources/resource_format_text.cpp b/scene/resources/resource_format_text.cpp index 849fb087ba..9779f9c9ca 100644 --- a/scene/resources/resource_format_text.cpp +++ b/scene/resources/resource_format_text.cpp @@ -1281,7 +1281,7 @@ String ResourceFormatLoaderText::get_resource_type(const String &p_path) const { ria->res_path = ria->local_path; //ria->set_local_path( ProjectSettings::get_singleton()->localize_path(p_path) ); String r = ria->recognize(f); - return r; + return ClassDB::get_compatibility_remapped_class(r); } void ResourceFormatLoaderText::get_dependencies(const String &p_path, List<String> *p_dependencies, bool p_add_types) { diff --git a/servers/visual/rasterizer.h b/servers/visual/rasterizer.h index 02d44c5c5d..85e2b8aadc 100644 --- a/servers/visual/rasterizer.h +++ b/servers/visual/rasterizer.h @@ -230,12 +230,13 @@ public: virtual bool reflection_probe_instance_begin_render(RID p_instance, RID p_reflection_atlas) = 0; virtual bool reflection_probe_instance_postprocess_step(RID p_instance) = 0; - virtual RID gi_probe_instance_create() = 0; - virtual void gi_probe_instance_set_light_data(RID p_probe, RID p_base, RID p_data) = 0; + virtual RID gi_probe_instance_create(RID p_gi_probe) = 0; virtual void gi_probe_instance_set_transform_to_data(RID p_probe, const Transform &p_xform) = 0; - virtual void gi_probe_instance_set_bounds(RID p_probe, const Vector3 &p_bounds) = 0; + virtual bool gi_probe_needs_update(RID p_probe) const = 0; + virtual void gi_probe_update(RID p_probe, const Vector<RID> &p_light_instances) = 0; + + virtual void render_scene(RID p_render_buffers, const Transform &p_cam_transform, const CameraMatrix &p_cam_projection, bool p_cam_ortogonal, InstanceBase **p_cull_result, int p_cull_count, RID *p_light_cull_result, int p_light_cull_count, RID *p_reflection_probe_cull_result, int p_reflection_probe_cull_count, RID *p_gi_probe_cull_result, int p_gi_probe_cull_count, RID p_environment, RID p_shadow_atlas, RID p_reflection_atlas, RID p_reflection_probe, int p_reflection_probe_pass) = 0; - virtual void render_scene(RID p_render_buffers, const Transform &p_cam_transform, const CameraMatrix &p_cam_projection, bool p_cam_ortogonal, InstanceBase **p_cull_result, int p_cull_count, RID *p_light_cull_result, int p_light_cull_count, RID *p_reflection_probe_cull_result, int p_reflection_probe_cull_count, RID p_environment, RID p_shadow_atlas, RID p_reflection_atlas, RID p_reflection_probe, int p_reflection_probe_pass) = 0; virtual void render_shadow(RID p_light, RID p_shadow_atlas, int p_pass, InstanceBase **p_cull_result, int p_cull_count) = 0; virtual void set_scene_pass(uint64_t p_pass) = 0; @@ -481,51 +482,41 @@ public: virtual RID gi_probe_create() = 0; - virtual void gi_probe_set_bounds(RID p_probe, const AABB &p_bounds) = 0; - virtual AABB gi_probe_get_bounds(RID p_probe) const = 0; - - virtual void gi_probe_set_cell_size(RID p_probe, float p_range) = 0; - virtual float gi_probe_get_cell_size(RID p_probe) const = 0; + virtual void gi_probe_allocate(RID p_gi_probe, const Transform &p_to_cell_xform, const AABB &p_aabb, const Vector3i &p_octree_size, const PoolVector<uint8_t> &p_octree_cells, const PoolVector<uint8_t> &p_data_cells, const PoolVector<int> &p_level_counts) = 0; - virtual void gi_probe_set_to_cell_xform(RID p_probe, const Transform &p_xform) = 0; - virtual Transform gi_probe_get_to_cell_xform(RID p_probe) const = 0; + virtual AABB gi_probe_get_bounds(RID p_gi_probe) const = 0; + virtual Vector3i gi_probe_get_octree_size(RID p_gi_probe) const = 0; + virtual PoolVector<uint8_t> gi_probe_get_octree_cells(RID p_gi_probe) const = 0; + virtual PoolVector<uint8_t> gi_probe_get_data_cells(RID p_gi_probe) const = 0; + virtual PoolVector<int> gi_probe_get_level_counts(RID p_gi_probe) const = 0; + virtual Transform gi_probe_get_to_cell_xform(RID p_gi_probe) const = 0; - virtual void gi_probe_set_dynamic_data(RID p_probe, const PoolVector<int> &p_data) = 0; - virtual PoolVector<int> gi_probe_get_dynamic_data(RID p_probe) const = 0; + virtual void gi_probe_set_dynamic_range(RID p_gi_probe, float p_range) = 0; + virtual float gi_probe_get_dynamic_range(RID p_gi_probe) const = 0; - virtual void gi_probe_set_dynamic_range(RID p_probe, int p_range) = 0; - virtual int gi_probe_get_dynamic_range(RID p_probe) const = 0; + virtual void gi_probe_set_propagation(RID p_gi_probe, float p_range) = 0; + virtual float gi_probe_get_propagation(RID p_gi_probe) const = 0; - virtual void gi_probe_set_energy(RID p_probe, float p_range) = 0; - virtual float gi_probe_get_energy(RID p_probe) const = 0; + virtual void gi_probe_set_energy(RID p_gi_probe, float p_energy) = 0; + virtual float gi_probe_get_energy(RID p_gi_probe) const = 0; - virtual void gi_probe_set_bias(RID p_probe, float p_range) = 0; - virtual float gi_probe_get_bias(RID p_probe) const = 0; + virtual void gi_probe_set_bias(RID p_gi_probe, float p_bias) = 0; + virtual float gi_probe_get_bias(RID p_gi_probe) const = 0; - virtual void gi_probe_set_normal_bias(RID p_probe, float p_range) = 0; - virtual float gi_probe_get_normal_bias(RID p_probe) const = 0; + virtual void gi_probe_set_normal_bias(RID p_gi_probe, float p_range) = 0; + virtual float gi_probe_get_normal_bias(RID p_gi_probe) const = 0; - virtual void gi_probe_set_propagation(RID p_probe, float p_range) = 0; - virtual float gi_probe_get_propagation(RID p_probe) const = 0; + virtual void gi_probe_set_interior(RID p_gi_probe, bool p_enable) = 0; + virtual bool gi_probe_is_interior(RID p_gi_probe) const = 0; - virtual void gi_probe_set_interior(RID p_probe, bool p_enable) = 0; - virtual bool gi_probe_is_interior(RID p_probe) const = 0; + virtual void gi_probe_set_use_two_bounces(RID p_gi_probe, bool p_enable) = 0; + virtual bool gi_probe_is_using_two_bounces(RID p_gi_probe) const = 0; - virtual void gi_probe_set_compress(RID p_probe, bool p_enable) = 0; - virtual bool gi_probe_is_compressed(RID p_probe) const = 0; + virtual void gi_probe_set_anisotropy_strength(RID p_gi_probe, float p_strength) = 0; + virtual float gi_probe_get_anisotropy_strength(RID p_gi_probe) const = 0; virtual uint32_t gi_probe_get_version(RID p_probe) = 0; - enum GIProbeCompression { - GI_PROBE_UNCOMPRESSED, - GI_PROBE_S3TC, - GI_PROBE_ETC2 - }; - - virtual GIProbeCompression gi_probe_get_dynamic_data_get_preferred_compression() const = 0; - virtual RID gi_probe_dynamic_data_create(int p_width, int p_height, int p_depth, GIProbeCompression p_compression) = 0; - virtual void gi_probe_dynamic_data_update(RID p_gi_probe_data, int p_depth_slice, int p_slice_count, int p_mipmap, const void *p_data) = 0; - /* LIGHTMAP CAPTURE */ struct LightmapCaptureOctree { diff --git a/servers/visual/rasterizer_rd/rasterizer_canvas_rd.cpp b/servers/visual/rasterizer_rd/rasterizer_canvas_rd.cpp index 0da86f23a7..b6228bf165 100644 --- a/servers/visual/rasterizer_rd/rasterizer_canvas_rd.cpp +++ b/servers/visual/rasterizer_rd/rasterizer_canvas_rd.cpp @@ -1331,7 +1331,7 @@ void RasterizerCanvasRD::_render_items(RID p_to_render_target, int p_item_count, RD::FramebufferFormatID fb_format = RD::get_singleton()->framebuffer_get_format(framebuffer); - RD::DrawListID draw_list = RD::get_singleton()->draw_list_begin(framebuffer, clear ? RD::INITIAL_ACTION_CLEAR : RD::INITIAL_ACTION_KEEP_COLOR, RD::FINAL_ACTION_READ_COLOR_DISCARD_DEPTH, clear_colors); + RD::DrawListID draw_list = RD::get_singleton()->draw_list_begin(framebuffer, clear ? RD::INITIAL_ACTION_CLEAR : RD::INITIAL_ACTION_KEEP, RD::FINAL_ACTION_READ, RD::INITIAL_ACTION_KEEP, RD::FINAL_ACTION_DISCARD, clear_colors); if (p_screen_uniform_set.is_valid()) { RD::get_singleton()->draw_list_bind_uniform_set(draw_list, p_screen_uniform_set, 3); @@ -1637,7 +1637,7 @@ void RasterizerCanvasRD::light_update_shadow(RID p_rid, const Transform2D &p_lig Vector<Color> cc; cc.push_back(Color(p_far, p_far, p_far, 1.0)); - RD::DrawListID draw_list = RD::get_singleton()->draw_list_begin(cl->shadow.fb, RD::INITIAL_ACTION_CLEAR, RD::FINAL_ACTION_READ_COLOR_DISCARD_DEPTH, cc, Rect2i((cl->shadow.size / 4) * i, 0, (cl->shadow.size / 4), 1)); + RD::DrawListID draw_list = RD::get_singleton()->draw_list_begin(cl->shadow.fb, RD::INITIAL_ACTION_CLEAR, RD::FINAL_ACTION_READ, RD::INITIAL_ACTION_CLEAR, RD::FINAL_ACTION_DISCARD, cc, 1.0, 0, Rect2i((cl->shadow.size / 4) * i, 0, (cl->shadow.size / 4), 1)); CameraMatrix projection; { diff --git a/servers/visual/rasterizer_rd/rasterizer_effects_rd.cpp b/servers/visual/rasterizer_rd/rasterizer_effects_rd.cpp index 1e32594118..3d3298d0c1 100644 --- a/servers/visual/rasterizer_rd/rasterizer_effects_rd.cpp +++ b/servers/visual/rasterizer_rd/rasterizer_effects_rd.cpp @@ -46,7 +46,7 @@ void RasterizerEffectsRD::copy_to_rect(RID p_source_rd_texture, RID p_dest_frame blur.push_constant.flags |= BLUR_FLAG_FLIP_Y; } - RD::DrawListID draw_list = RD::get_singleton()->draw_list_begin(p_dest_framebuffer, RD::INITIAL_ACTION_KEEP_COLOR, RD::FINAL_ACTION_READ_COLOR_DISCARD_DEPTH, Vector<Color>(), p_rect); + RD::DrawListID draw_list = RD::get_singleton()->draw_list_begin(p_dest_framebuffer, RD::INITIAL_ACTION_KEEP, RD::FINAL_ACTION_READ, RD::INITIAL_ACTION_KEEP, RD::FINAL_ACTION_DISCARD, Vector<Color>(), 1.0, 0, p_rect); RD::get_singleton()->draw_list_bind_render_pipeline(draw_list, blur.pipelines[BLUR_MODE_SIMPLY_COPY].get_render_pipeline(RD::INVALID_ID, RD::get_singleton()->framebuffer_get_format(p_dest_framebuffer))); RD::get_singleton()->draw_list_bind_uniform_set(draw_list, _get_uniform_set_from_texture(p_source_rd_texture), 0); RD::get_singleton()->draw_list_bind_index_array(draw_list, index_array); @@ -67,7 +67,7 @@ void RasterizerEffectsRD::region_copy(RID p_source_rd_texture, RID p_dest_frameb blur.push_constant.section[3] = p_region.size.height; } - RD::DrawListID draw_list = RD::get_singleton()->draw_list_begin(p_dest_framebuffer, RD::INITIAL_ACTION_KEEP_COLOR, RD::FINAL_ACTION_READ_COLOR_DISCARD_DEPTH); + RD::DrawListID draw_list = RD::get_singleton()->draw_list_begin(p_dest_framebuffer, RD::INITIAL_ACTION_KEEP, RD::FINAL_ACTION_READ, RD::INITIAL_ACTION_KEEP, RD::FINAL_ACTION_DISCARD); RD::get_singleton()->draw_list_bind_render_pipeline(draw_list, blur.pipelines[BLUR_MODE_SIMPLY_COPY].get_render_pipeline(RD::INVALID_ID, RD::get_singleton()->framebuffer_get_format(p_dest_framebuffer))); RD::get_singleton()->draw_list_bind_uniform_set(draw_list, _get_uniform_set_from_texture(p_source_rd_texture), 0); RD::get_singleton()->draw_list_bind_index_array(draw_list, index_array); @@ -93,7 +93,7 @@ void RasterizerEffectsRD::gaussian_blur(RID p_source_rd_texture, RID p_framebuff blur.push_constant.pixel_size[1] = p_pixel_size.y; //HORIZONTAL - RD::DrawListID draw_list = RD::get_singleton()->draw_list_begin(p_framebuffer_half, RD::INITIAL_ACTION_KEEP_COLOR, RD::FINAL_ACTION_READ_COLOR_DISCARD_DEPTH); + RD::DrawListID draw_list = RD::get_singleton()->draw_list_begin(p_framebuffer_half, RD::INITIAL_ACTION_KEEP, RD::FINAL_ACTION_READ, RD::INITIAL_ACTION_KEEP, RD::FINAL_ACTION_DISCARD); RD::get_singleton()->draw_list_bind_render_pipeline(draw_list, blur.pipelines[BLUR_MODE_GAUSSIAN_BLUR].get_render_pipeline(RD::INVALID_ID, RD::get_singleton()->framebuffer_get_format(p_framebuffer_half))); RD::get_singleton()->draw_list_bind_uniform_set(draw_list, _get_uniform_set_from_texture(p_source_rd_texture), 0); RD::get_singleton()->draw_list_bind_index_array(draw_list, index_array); @@ -105,7 +105,7 @@ void RasterizerEffectsRD::gaussian_blur(RID p_source_rd_texture, RID p_framebuff RD::get_singleton()->draw_list_end(); //VERTICAL - draw_list = RD::get_singleton()->draw_list_begin(p_dest_framebuffer, RD::INITIAL_ACTION_KEEP_COLOR, RD::FINAL_ACTION_READ_COLOR_DISCARD_DEPTH); + draw_list = RD::get_singleton()->draw_list_begin(p_dest_framebuffer, RD::INITIAL_ACTION_KEEP, RD::FINAL_ACTION_READ, RD::INITIAL_ACTION_KEEP, RD::FINAL_ACTION_DISCARD); RD::get_singleton()->draw_list_bind_render_pipeline(draw_list, blur.pipelines[BLUR_MODE_GAUSSIAN_BLUR].get_render_pipeline(RD::INVALID_ID, RD::get_singleton()->framebuffer_get_format(p_dest_framebuffer))); RD::get_singleton()->draw_list_bind_uniform_set(draw_list, _get_uniform_set_from_texture(p_rd_texture_half), 0); RD::get_singleton()->draw_list_bind_index_array(draw_list, index_array); @@ -127,7 +127,7 @@ void RasterizerEffectsRD::cubemap_roughness(RID p_source_rd_texture, bool p_sour roughness.push_constant.use_direct_write = p_roughness == 0.0; //RUN - RD::DrawListID draw_list = RD::get_singleton()->draw_list_begin(p_dest_framebuffer, RD::INITIAL_ACTION_KEEP_COLOR, RD::FINAL_ACTION_READ_COLOR_DISCARD_DEPTH); + RD::DrawListID draw_list = RD::get_singleton()->draw_list_begin(p_dest_framebuffer, RD::INITIAL_ACTION_KEEP, RD::FINAL_ACTION_READ, RD::INITIAL_ACTION_KEEP, RD::FINAL_ACTION_DISCARD); RD::get_singleton()->draw_list_bind_render_pipeline(draw_list, roughness.pipelines[p_source_is_panorama ? CUBEMAP_ROUGHNESS_SOURCE_PANORAMA : CUBEMAP_ROUGHNESS_SOURCE_CUBEMAP].get_render_pipeline(RD::INVALID_ID, RD::get_singleton()->framebuffer_get_format(p_dest_framebuffer))); RD::get_singleton()->draw_list_bind_uniform_set(draw_list, _get_uniform_set_from_texture(p_source_rd_texture), 0); @@ -171,7 +171,7 @@ void RasterizerEffectsRD::make_mipmap(RID p_source_rd_texture, RID p_dest_frameb blur.push_constant.pixel_size[0] = p_pixel_size.x; blur.push_constant.pixel_size[1] = p_pixel_size.y; - RD::DrawListID draw_list = RD::get_singleton()->draw_list_begin(p_dest_framebuffer, RD::INITIAL_ACTION_KEEP_COLOR, RD::FINAL_ACTION_READ_COLOR_DISCARD_DEPTH); + RD::DrawListID draw_list = RD::get_singleton()->draw_list_begin(p_dest_framebuffer, RD::INITIAL_ACTION_KEEP, RD::FINAL_ACTION_READ, RD::INITIAL_ACTION_KEEP, RD::FINAL_ACTION_DISCARD); RD::get_singleton()->draw_list_bind_render_pipeline(draw_list, blur.pipelines[BLUR_MODE_MIPMAP].get_render_pipeline(RD::INVALID_ID, RD::get_singleton()->framebuffer_get_format(p_dest_framebuffer))); RD::get_singleton()->draw_list_bind_uniform_set(draw_list, _get_uniform_set_from_texture(p_source_rd_texture), 0); RD::get_singleton()->draw_list_bind_index_array(draw_list, index_array); @@ -188,7 +188,7 @@ void RasterizerEffectsRD::copy_cubemap_to_dp(RID p_source_rd_texture, RID p_dest push_constant.z_near = p_z_near; push_constant.z_flip = p_dp_flip; - RD::DrawListID draw_list = RD::get_singleton()->draw_list_begin(p_dest_framebuffer, RD::INITIAL_ACTION_KEEP_COLOR, RD::FINAL_ACTION_READ_COLOR_DISCARD_DEPTH, Vector<Color>(), p_rect); + RD::DrawListID draw_list = RD::get_singleton()->draw_list_begin(p_dest_framebuffer, RD::INITIAL_ACTION_KEEP, RD::FINAL_ACTION_READ, RD::INITIAL_ACTION_KEEP, RD::FINAL_ACTION_DISCARD, Vector<Color>(), 1.0, 0, p_rect); RD::get_singleton()->draw_list_bind_render_pipeline(draw_list, copy.pipelines[COPY_MODE_CUBE_TO_DP].get_render_pipeline(RD::INVALID_ID, RD::get_singleton()->framebuffer_get_format(p_dest_framebuffer))); RD::get_singleton()->draw_list_bind_uniform_set(draw_list, _get_uniform_set_from_texture(p_source_rd_texture), 0); RD::get_singleton()->draw_list_bind_index_array(draw_list, index_array); @@ -222,7 +222,7 @@ void RasterizerEffectsRD::tonemapper(RID p_source_color, RID p_dst_framebuffer, tonemap.push_constant.use_color_correction = p_settings.use_color_correction; - RD::DrawListID draw_list = RD::get_singleton()->draw_list_begin(p_dst_framebuffer, RD::INITIAL_ACTION_KEEP_COLOR, RD::FINAL_ACTION_READ_COLOR_DISCARD_DEPTH); + RD::DrawListID draw_list = RD::get_singleton()->draw_list_begin(p_dst_framebuffer, RD::INITIAL_ACTION_KEEP, RD::FINAL_ACTION_READ, RD::INITIAL_ACTION_KEEP, RD::FINAL_ACTION_DISCARD); RD::get_singleton()->draw_list_bind_render_pipeline(draw_list, tonemap.pipelines[mode].get_render_pipeline(RD::INVALID_ID, RD::get_singleton()->framebuffer_get_format(p_dst_framebuffer))); RD::get_singleton()->draw_list_bind_uniform_set(draw_list, _get_uniform_set_from_texture(p_source_color), 0); RD::get_singleton()->draw_list_bind_uniform_set(draw_list, _get_uniform_set_from_texture(p_settings.exposure_texture), 1); diff --git a/servers/visual/rasterizer_rd/rasterizer_scene_forward_rd.cpp b/servers/visual/rasterizer_rd/rasterizer_scene_forward_rd.cpp index e44955d666..3fda64c536 100644 --- a/servers/visual/rasterizer_rd/rasterizer_scene_forward_rd.cpp +++ b/servers/visual/rasterizer_rd/rasterizer_scene_forward_rd.cpp @@ -267,7 +267,7 @@ void RasterizerSceneForwardRD::ShaderData::set_code(const String &p_code) { if (depth_test != DEPTH_TEST_DISABLED) { depth_stencil_state.enable_depth_test = true; - depth_stencil_state.depth_compare_operator = RD::COMPARE_OP_LESS_OR_EQUAL; + depth_stencil_state.depth_compare_operator = RD::COMPARE_OP_LESS; depth_stencil_state.enable_depth_write = depth_draw != DEPTH_DRAW_DISABLED ? true : false; } @@ -500,7 +500,7 @@ void RasterizerSceneForwardRD::MaterialData::update_parameters(const Map<StringN } } - uniform_set = RD::get_singleton()->uniform_set_create(uniforms, scene_singleton->shader.scene_shader.version_get_shader(shader_data->version, 0), 2); + uniform_set = RD::get_singleton()->uniform_set_create(uniforms, scene_singleton->shader.scene_shader.version_get_shader(shader_data->version, 0), 3); } RasterizerSceneForwardRD::MaterialData::~MaterialData() { if (uniform_set.is_valid() && RD::get_singleton()->uniform_set_is_valid(uniform_set)) { @@ -576,7 +576,12 @@ void RasterizerSceneForwardRD::RenderBufferDataForward::configure(RID p_render_t color_fb = RD::get_singleton()->framebuffer_create(fb); } + { + Vector<RID> fb; + fb.push_back(depth); + depth_fb = RD::get_singleton()->framebuffer_create(fb); + } { Vector<RID> fb; fb.push_back(color); @@ -697,6 +702,39 @@ void RasterizerSceneForwardRD::_fill_instances(RenderList::Element **p_elements, id.flags |= omni_count << 3; id.flags |= spot_count << 6; id.flags |= decal_count << 9; + + if (!e->instance->gi_probe_instances.empty()) { + uint32_t written = 0; + for (int j = 0; j < e->instance->gi_probe_instances.size(); j++) { + RID probe = e->instance->gi_probe_instances[j]; + int slot = gi_probe_instance_get_slot(probe); + if (slot < 0) { + continue; //unallocated, dont render + } + + if (render_pass != gi_probe_instance_get_render_pass(probe)) { + continue; //not rendered in this frame + } + + uint32_t index = gi_probe_instance_get_render_index(probe); + + if (written == 0) { + id.gi_offset = index; + written = 1; + } else { + id.gi_offset = index << 16; + written = 2; + break; + } + } + if (written == 0) { + id.gi_offset = 0xFFFFFFFF; + } else if (written == 1) { + id.gi_offset |= 0xFFFF0000; + } + } else { + id.gi_offset = 0xFFFFFFFF; + } } RD::get_singleton()->buffer_update(scene_state.instance_buffer, 0, sizeof(InstanceData) * p_element_count, scene_state.instances, true); @@ -711,7 +749,8 @@ void RasterizerSceneForwardRD::_render_list(RenderingDevice::DrawListID p_draw_l //global scope bindings RD::get_singleton()->draw_list_bind_uniform_set(draw_list, render_base_uniform_set, 0); - RD::get_singleton()->draw_list_bind_uniform_set(draw_list, default_vec4_xform_uniform_set, 1); + RD::get_singleton()->draw_list_bind_uniform_set(draw_list, render_pass_uniform_set, 1); + RD::get_singleton()->draw_list_bind_uniform_set(draw_list, default_vec4_xform_uniform_set, 2); MaterialData *prev_material = nullptr; // ShaderData *prev_shader = nullptr; @@ -752,7 +791,7 @@ void RasterizerSceneForwardRD::_render_list(RenderingDevice::DrawListID p_draw_l case VS::INSTANCE_MESH: { primitive = storage->mesh_surface_get_primitive(e->instance->base, e->surface_index); if (e->instance->skeleton.is_valid()) { - xforms_uniform_set = storage->skeleton_get_3d_uniform_set(e->instance->skeleton, default_shader_rd, 1); + xforms_uniform_set = storage->skeleton_get_3d_uniform_set(e->instance->skeleton, default_shader_rd, 2); } } break; case VS::INSTANCE_MULTIMESH: { @@ -760,7 +799,7 @@ void RasterizerSceneForwardRD::_render_list(RenderingDevice::DrawListID p_draw_l ERR_CONTINUE(!mesh.is_valid()); //should be a bug primitive = storage->mesh_surface_get_primitive(mesh, e->surface_index); - xforms_uniform_set = storage->multimesh_get_3d_uniform_set(e->instance->base, default_shader_rd, 1); + xforms_uniform_set = storage->multimesh_get_3d_uniform_set(e->instance->base, default_shader_rd, 2); } break; case VS::INSTANCE_IMMEDIATE: { @@ -863,14 +902,14 @@ void RasterizerSceneForwardRD::_render_list(RenderingDevice::DrawListID p_draw_l } if (xforms_uniform_set.is_valid() && prev_xforms_uniform_set != xforms_uniform_set) { - RD::get_singleton()->draw_list_bind_uniform_set(draw_list, xforms_uniform_set, 1); + RD::get_singleton()->draw_list_bind_uniform_set(draw_list, xforms_uniform_set, 2); prev_xforms_uniform_set = xforms_uniform_set; } if (material != prev_material) { //update uniform set if (material->uniform_set.is_valid()) { - RD::get_singleton()->draw_list_bind_uniform_set(draw_list, material->uniform_set, 2); + RD::get_singleton()->draw_list_bind_uniform_set(draw_list, material->uniform_set, 3); } prev_material = material; @@ -1449,6 +1488,59 @@ void RasterizerSceneForwardRD::_setup_reflections(RID *p_reflection_probe_cull_r } } +void RasterizerSceneForwardRD::_setup_gi_probes(RID *p_gi_probe_probe_cull_result, int p_gi_probe_probe_cull_count, const Transform &p_camera_transform) { + + int index = 0; + + for (int i = 0; i < p_gi_probe_probe_cull_count; i++) { + + RID rpi = p_gi_probe_probe_cull_result[i]; + + if (index >= (int)scene_state.max_gi_probes) { + continue; + } + + int slot = gi_probe_instance_get_slot(rpi); + if (slot < 0) { + continue; //not usable + } + + RID base_probe = gi_probe_instance_get_base_probe(rpi); + + GIProbeData &gi_probe_ubo = scene_state.gi_probes[index]; + + Transform to_cell = gi_probe_instance_get_transform_to_cell(rpi) * p_camera_transform; + + store_transform(to_cell, gi_probe_ubo.xform); + + Vector3 bounds = storage->gi_probe_get_octree_size(base_probe); + + gi_probe_ubo.bounds[0] = bounds.x; + gi_probe_ubo.bounds[1] = bounds.y; + gi_probe_ubo.bounds[2] = bounds.z; + + gi_probe_ubo.dynamic_range = storage->gi_probe_get_dynamic_range(base_probe) * storage->gi_probe_get_energy(base_probe); + gi_probe_ubo.bias = storage->gi_probe_get_bias(base_probe); + gi_probe_ubo.normal_bias = storage->gi_probe_get_normal_bias(base_probe); + gi_probe_ubo.blend_ambient = !storage->gi_probe_is_interior(base_probe); + gi_probe_ubo.texture_slot = gi_probe_instance_get_slot(rpi); + gi_probe_ubo.anisotropy_strength = storage->gi_probe_get_anisotropy_strength(base_probe); + + if (gi_probe_is_anisotropic()) { + gi_probe_ubo.texture_slot *= 3; + } + + gi_probe_instance_set_render_index(rpi, index); + gi_probe_instance_set_render_pass(rpi, render_pass); + + index++; + } + + if (index) { + RD::get_singleton()->buffer_update(scene_state.gi_probe_buffer, 0, index * sizeof(GIProbeData), scene_state.gi_probes, true); + } +} + void RasterizerSceneForwardRD::_setup_lights(RID *p_light_cull_result, int p_light_cull_count, const Transform &p_camera_inverse_transform, RID p_shadow_atlas, bool p_using_shadows) { uint32_t light_count = 0; @@ -1632,7 +1724,7 @@ void RasterizerSceneForwardRD::_setup_lights(RID *p_light_cull_result, int p_lig } } -void RasterizerSceneForwardRD::_render_scene(RenderBufferData *p_buffer_data, const Transform &p_cam_transform, const CameraMatrix &p_cam_projection, bool p_cam_ortogonal, InstanceBase **p_cull_result, int p_cull_count, RID *p_light_cull_result, int p_light_cull_count, RID *p_reflection_probe_cull_result, int p_reflection_probe_cull_count, RID p_environment, RID p_shadow_atlas, RID p_reflection_atlas, RID p_reflection_probe, int p_reflection_probe_pass) { +void RasterizerSceneForwardRD::_render_scene(RenderBufferData *p_buffer_data, const Transform &p_cam_transform, const CameraMatrix &p_cam_projection, bool p_cam_ortogonal, InstanceBase **p_cull_result, int p_cull_count, RID *p_light_cull_result, int p_light_cull_count, RID *p_reflection_probe_cull_result, int p_reflection_probe_cull_count, RID *p_gi_probe_cull_result, int p_gi_probe_cull_count, RID p_environment, RID p_shadow_atlas, RID p_reflection_atlas, RID p_reflection_probe, int p_reflection_probe_pass) { RenderBufferDataForward *render_buffer = (RenderBufferDataForward *)p_buffer_data; @@ -1664,6 +1756,8 @@ void RasterizerSceneForwardRD::_render_scene(RenderBufferData *p_buffer_data, co RENDER_TIMESTAMP("Setup 3D Scene"); + _update_render_base_uniform_set(); + bool using_shadows = true; if (p_reflection_probe.is_valid()) { @@ -1687,6 +1781,7 @@ void RasterizerSceneForwardRD::_render_scene(RenderBufferData *p_buffer_data, co RID render_target; Size2 screen_pixel_size; RID opaque_framebuffer; + RID depth_framebuffer; RID alpha_framebuffer; if (render_buffer) { @@ -1695,6 +1790,7 @@ void RasterizerSceneForwardRD::_render_scene(RenderBufferData *p_buffer_data, co render_target = render_buffer->render_target; opaque_framebuffer = render_buffer->color_fb; + depth_framebuffer = render_buffer->depth_fb; alpha_framebuffer = opaque_framebuffer; } else if (p_reflection_probe.is_valid()) { @@ -1703,6 +1799,7 @@ void RasterizerSceneForwardRD::_render_scene(RenderBufferData *p_buffer_data, co screen_pixel_size.height = 1.0 / resolution; opaque_framebuffer = reflection_probe_instance_get_framebuffer(p_reflection_probe, p_reflection_probe_pass); + depth_framebuffer = reflection_probe_instance_get_depth_framebuffer(p_reflection_probe, p_reflection_probe_pass); alpha_framebuffer = opaque_framebuffer; if (storage->reflection_probe_is_interior(reflection_probe_instance_get_probe(p_reflection_probe))) { @@ -1715,337 +1812,11 @@ void RasterizerSceneForwardRD::_render_scene(RenderBufferData *p_buffer_data, co _setup_lights(p_light_cull_result, p_light_cull_count, p_cam_transform.affine_inverse(), p_shadow_atlas, using_shadows); _setup_reflections(p_reflection_probe_cull_result, p_reflection_probe_cull_count, p_cam_transform.affine_inverse(), p_environment); + _setup_gi_probes(p_gi_probe_cull_result, p_gi_probe_cull_count, p_cam_transform); _setup_environment(render_target, p_environment, p_cam_projection, p_cam_transform, p_reflection_probe, p_reflection_probe.is_valid(), screen_pixel_size, p_shadow_atlas); -#if 0 - for (int i = 0; i < p_light_cull_count; i++) { - - ERR_BREAK(i >= RenderList::MAX_LIGHTS); - - LightInstance *li = light_instance_owner.getornull(p_light_cull_result[i]); - if (li->light_ptr->param[VS::LIGHT_PARAM_CONTACT_SHADOW_SIZE] > CMP_EPSILON) { - state.used_contact_shadows = true; - } - } -#endif -#if 0 - // Do depth prepass if it's explicitly enabled - bool use_depth_prepass = storage->config.use_depth_prepass; - - // If contact shadows are used then we need to do depth prepass even if it's otherwise disabled - use_depth_prepass = use_depth_prepass || state.used_contact_shadows; - - // Never do depth prepass if effects are disabled or if we render overdraws - use_depth_prepass = use_depth_prepass && storage->frame.current_rt && !storage->frame.current_rt->flags[RasterizerStorage::RENDER_TARGET_NO_3D_EFFECTS]; - use_depth_prepass = use_depth_prepass && state.debug_draw != VS::VIEWPORT_DEBUG_DRAW_OVERDRAW; - - if (use_depth_prepass) { - //pre z pass - - glDisable(GL_BLEND); - glDepthMask(GL_TRUE); - glEnable(GL_DEPTH_TEST); - glDisable(GL_SCISSOR_TEST); - glBindFramebuffer(GL_FRAMEBUFFER, storage->frame.current_rt->buffers.fbo); - glDrawBuffers(0, NULL); - - glViewport(0, 0, storage->frame.current_rt->width, storage->frame.current_rt->height); - - glColorMask(0, 0, 0, 0); - glClearDepth(1.0f); - glClear(GL_DEPTH_BUFFER_BIT); - - render_list.clear(); - _fill_render_list(p_cull_result, p_cull_count, true, false); - render_list.sort_by_key(false); - state.scene_shader.set_conditional(SceneShaderGLES3::RENDER_DEPTH, true); - _render_list(render_list.elements, render_list.element_count, p_cam_transform, p_cam_projection, 0, false, false, true, false, false); - state.scene_shader.set_conditional(SceneShaderGLES3::RENDER_DEPTH, false); - - glColorMask(1, 1, 1, 1); - - if (state.used_contact_shadows) { - - _prepare_depth_texture(); - _bind_depth_texture(); - } - - fb_cleared = true; - render_pass++; - state.used_depth_prepass = true; - } else { - state.used_depth_prepass = false; - } - - _setup_lights(p_light_cull_result, p_light_cull_count, p_cam_transform.affine_inverse(), p_cam_projection, p_shadow_atlas); - _setup_reflections(p_reflection_probe_cull_result, p_reflection_probe_cull_count, p_cam_transform.affine_inverse(), p_cam_projection, p_reflection_atlas, env); - - bool use_mrt = false; -#endif - render_list.clear(); _fill_render_list(p_cull_result, p_cull_count, PASS_MODE_COLOR, render_buffer == nullptr); -#if 0 - // - - glEnable(GL_BLEND); - glDepthMask(GL_TRUE); - glEnable(GL_DEPTH_TEST); - glDisable(GL_SCISSOR_TEST); - - //rendering to a probe cubemap side - ReflectionProbeInstance *probe = reflection_probe_instance_owner.getornull(p_reflection_probe); - GLuint current_fbo; - - if (probe) { - - ReflectionAtlas *ref_atlas = reflection_atlas_owner.getornull(probe->atlas); - ERR_FAIL_COND(!ref_atlas); - - int target_size = ref_atlas->size / ref_atlas->subdiv; - - int cubemap_index = reflection_cubemaps.size() - 1; - - for (int i = reflection_cubemaps.size() - 1; i >= 0; i--) { - //find appropriate cubemap to render to - if (reflection_cubemaps[i].size > target_size * 2) - break; - - cubemap_index = i; - } - - current_fbo = reflection_cubemaps[cubemap_index].fbo_id[p_reflection_probe_pass]; - use_mrt = false; - state.scene_shader.set_conditional(SceneShaderGLES3::USE_MULTIPLE_RENDER_TARGETS, false); - - glViewport(0, 0, reflection_cubemaps[cubemap_index].size, reflection_cubemaps[cubemap_index].size); - glBindFramebuffer(GL_FRAMEBUFFER, current_fbo); - - } else { - - use_mrt = env && (state.used_sss || env->ssao_enabled || env->ssr_enabled || env->dof_blur_far_enabled || env->dof_blur_near_enabled); //only enable MRT rendering if any of these is enabled - //effects disabled and transparency also prevent using MRTs - use_mrt = use_mrt && !storage->frame.current_rt->flags[RasterizerStorage::RENDER_TARGET_TRANSPARENT]; - use_mrt = use_mrt && !storage->frame.current_rt->flags[RasterizerStorage::RENDER_TARGET_NO_3D_EFFECTS]; - use_mrt = use_mrt && state.debug_draw != VS::VIEWPORT_DEBUG_DRAW_OVERDRAW; - use_mrt = use_mrt && (env->bg_mode != VS::ENV_BG_KEEP && env->bg_mode != VS::ENV_BG_CANVAS); - - glViewport(0, 0, storage->frame.current_rt->width, storage->frame.current_rt->height); - - if (use_mrt) { - - current_fbo = storage->frame.current_rt->buffers.fbo; - - glBindFramebuffer(GL_FRAMEBUFFER, storage->frame.current_rt->buffers.fbo); - state.scene_shader.set_conditional(SceneShaderGLES3::USE_MULTIPLE_RENDER_TARGETS, true); - - Vector<GLenum> draw_buffers; - draw_buffers.push_back(GL_COLOR_ATTACHMENT0); - draw_buffers.push_back(GL_COLOR_ATTACHMENT1); - draw_buffers.push_back(GL_COLOR_ATTACHMENT2); - if (state.used_sss) { - draw_buffers.push_back(GL_COLOR_ATTACHMENT3); - } - glDrawBuffers(draw_buffers.size(), draw_buffers.ptr()); - - Color black(0, 0, 0, 0); - glClearBufferfv(GL_COLOR, 1, black.components); // specular - glClearBufferfv(GL_COLOR, 2, black.components); // normal metal rough - if (state.used_sss) { - glClearBufferfv(GL_COLOR, 3, black.components); // normal metal rough - } - - } else { - - if (storage->frame.current_rt->buffers.active) { - current_fbo = storage->frame.current_rt->buffers.fbo; - } else { - current_fbo = storage->frame.current_rt->effects.mip_maps[0].sizes[0].fbo; - } - - glBindFramebuffer(GL_FRAMEBUFFER, current_fbo); - state.scene_shader.set_conditional(SceneShaderGLES3::USE_MULTIPLE_RENDER_TARGETS, false); - - Vector<GLenum> draw_buffers; - draw_buffers.push_back(GL_COLOR_ATTACHMENT0); - glDrawBuffers(draw_buffers.size(), draw_buffers.ptr()); - } - } - - if (!fb_cleared) { - glClearDepth(1.0f); - glClear(GL_DEPTH_BUFFER_BIT); - } - - Color clear_color(0, 0, 0, 0); - - RasterizerStorageGLES3::Sky *sky = NULL; - Ref<CameraFeed> feed; - GLuint env_radiance_tex = 0; - - if (state.debug_draw == VS::VIEWPORT_DEBUG_DRAW_OVERDRAW) { - clear_color = Color(0, 0, 0, 0); - storage->frame.clear_request = false; - } else if (!probe && storage->frame.current_rt->flags[RasterizerStorage::RENDER_TARGET_TRANSPARENT]) { - clear_color = Color(0, 0, 0, 0); - storage->frame.clear_request = false; - - } else if (!env || env->bg_mode == VS::ENV_BG_CLEAR_COLOR) { - - if (storage->frame.clear_request) { - - clear_color = storage->frame.clear_request_color.to_linear(); - storage->frame.clear_request = false; - } - - } else if (env->bg_mode == VS::ENV_BG_CANVAS) { - - clear_color = env->bg_color.to_linear(); - storage->frame.clear_request = false; - } else if (env->bg_mode == VS::ENV_BG_COLOR) { - - clear_color = env->bg_color.to_linear(); - storage->frame.clear_request = false; - } else if (env->bg_mode == VS::ENV_BG_SKY) { - - storage->frame.clear_request = false; - - } else if (env->bg_mode == VS::ENV_BG_COLOR_SKY) { - - clear_color = env->bg_color.to_linear(); - storage->frame.clear_request = false; - - } else if (env->bg_mode == VS::ENV_BG_CAMERA_FEED) { - feed = CameraServer::get_singleton()->get_feed_by_id(env->camera_feed_id); - storage->frame.clear_request = false; - } else { - storage->frame.clear_request = false; - } - - if (!env || env->bg_mode != VS::ENV_BG_KEEP) { - glClearBufferfv(GL_COLOR, 0, clear_color.components); // specular - } - - VS::EnvironmentBG bg_mode = (!env || (probe && env->bg_mode == VS::ENV_BG_CANVAS)) ? VS::ENV_BG_CLEAR_COLOR : env->bg_mode; //if no environment, or canvas while rendering a probe (invalid use case), use color. - - if (env) { - switch (bg_mode) { - case VS::ENV_BG_COLOR_SKY: - case VS::ENV_BG_SKY: - - sky = storage->sky_owner.getornull(env->sky); - - if (sky) { - env_radiance_tex = sky->radiance; - } - break; - case VS::ENV_BG_CANVAS: - //copy canvas to 3d buffer and convert it to linear - - glDisable(GL_BLEND); - glDepthMask(GL_FALSE); - glDisable(GL_DEPTH_TEST); - glDisable(GL_CULL_FACE); - - glActiveTexture(GL_TEXTURE0); - glBindTexture(GL_TEXTURE_2D, storage->frame.current_rt->color); - - storage->shaders.copy.set_conditional(CopyShaderGLES3::DISABLE_ALPHA, true); - - storage->shaders.copy.set_conditional(CopyShaderGLES3::SRGB_TO_LINEAR, true); - - storage->shaders.copy.bind(); - - _copy_screen(true, true); - - //turn off everything used - storage->shaders.copy.set_conditional(CopyShaderGLES3::SRGB_TO_LINEAR, false); - storage->shaders.copy.set_conditional(CopyShaderGLES3::DISABLE_ALPHA, false); - - //restore - glEnable(GL_BLEND); - glDepthMask(GL_TRUE); - glEnable(GL_DEPTH_TEST); - glEnable(GL_CULL_FACE); - break; - case VS::ENV_BG_CAMERA_FEED: - if (feed.is_valid() && (feed->get_base_width() > 0) && (feed->get_base_height() > 0)) { - // copy our camera feed to our background - - glDisable(GL_BLEND); - glDepthMask(GL_FALSE); - glDisable(GL_DEPTH_TEST); - glDisable(GL_CULL_FACE); - - storage->shaders.copy.set_conditional(CopyShaderGLES3::USE_DISPLAY_TRANSFORM, true); - storage->shaders.copy.set_conditional(CopyShaderGLES3::DISABLE_ALPHA, true); - storage->shaders.copy.set_conditional(CopyShaderGLES3::SRGB_TO_LINEAR, true); - - if (feed->get_datatype() == CameraFeed::FEED_RGB) { - RID camera_RGBA = feed->get_texture(CameraServer::FEED_RGBA_IMAGE); - - VS::get_singleton()->texture_bind(camera_RGBA, 0); - } else if (feed->get_datatype() == CameraFeed::FEED_YCBCR) { - RID camera_YCbCr = feed->get_texture(CameraServer::FEED_YCBCR_IMAGE); - - VS::get_singleton()->texture_bind(camera_YCbCr, 0); - - storage->shaders.copy.set_conditional(CopyShaderGLES3::YCBCR_TO_SRGB, true); - - } else if (feed->get_datatype() == CameraFeed::FEED_YCBCR_SEP) { - RID camera_Y = feed->get_texture(CameraServer::FEED_Y_IMAGE); - RID camera_CbCr = feed->get_texture(CameraServer::FEED_CBCR_IMAGE); - - VS::get_singleton()->texture_bind(camera_Y, 0); - VS::get_singleton()->texture_bind(camera_CbCr, 1); - - storage->shaders.copy.set_conditional(CopyShaderGLES3::SEP_CBCR_TEXTURE, true); - storage->shaders.copy.set_conditional(CopyShaderGLES3::YCBCR_TO_SRGB, true); - }; - - storage->shaders.copy.bind(); - storage->shaders.copy.set_uniform(CopyShaderGLES3::DISPLAY_TRANSFORM, feed->get_transform()); - - _copy_screen(true, true); - - //turn off everything used - storage->shaders.copy.set_conditional(CopyShaderGLES3::USE_DISPLAY_TRANSFORM, false); - storage->shaders.copy.set_conditional(CopyShaderGLES3::DISABLE_ALPHA, false); - storage->shaders.copy.set_conditional(CopyShaderGLES3::SRGB_TO_LINEAR, false); - storage->shaders.copy.set_conditional(CopyShaderGLES3::SEP_CBCR_TEXTURE, false); - storage->shaders.copy.set_conditional(CopyShaderGLES3::YCBCR_TO_SRGB, false); - - //restore - glEnable(GL_BLEND); - glDepthMask(GL_TRUE); - glEnable(GL_DEPTH_TEST); - glEnable(GL_CULL_FACE); - } else { - // don't have a feed, just show greenscreen :) - clear_color = Color(0.0, 1.0, 0.0, 1.0); - } - break; - default: { - } - } - } - - if (probe && probe->probe_ptr->interior) { - env_radiance_tex = 0; //for rendering probe interiors, radiance must not be used. - } - - state.texscreen_copied = false; - - glBlendEquation(GL_FUNC_ADD); - - if (storage->frame.current_rt && storage->frame.current_rt->flags[RasterizerStorage::RENDER_TARGET_TRANSPARENT]) { - glBlendFuncSeparate(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA, GL_ONE, GL_ONE_MINUS_SRC_ALPHA); - glEnable(GL_BLEND); - } else { - glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); - glDisable(GL_BLEND); - } -#endif RID radiance_cubemap; bool draw_sky = false; @@ -2097,27 +1868,50 @@ void RasterizerSceneForwardRD::_render_scene(RenderBufferData *p_buffer_data, co RENDER_TIMESTAMP("Render Opaque Pass"); - _setup_render_base_uniform_set(RID(), RID(), RID(), RID(), radiance_cubemap, p_shadow_atlas, p_reflection_atlas); + _setup_render_pass_uniform_set(RID(), RID(), RID(), RID(), radiance_cubemap, p_shadow_atlas, p_reflection_atlas); render_list.sort_by_key(false); _fill_instances(render_list.elements, render_list.element_count); bool can_continue = true; //unless the middle buffers are needed + bool debug_giprobes = debug_draw == VS::VIEWPORT_DEBUG_DRAW_GI_PROBE_ALBEDO || debug_draw == VS::VIEWPORT_DEBUG_DRAW_GI_PROBE_LIGHTING; bool using_separate_specular = false; + bool depth_pre_pass = depth_framebuffer.is_valid(); + if (depth_pre_pass) { //depth pre pass + + RD::DrawListID draw_list = RD::get_singleton()->draw_list_begin(depth_framebuffer, RD::INITIAL_ACTION_CLEAR, RD::FINAL_ACTION_CONTINUE, RD::INITIAL_ACTION_CLEAR, RD::FINAL_ACTION_CONTINUE); + _render_list(draw_list, RD::get_singleton()->framebuffer_get_format(depth_framebuffer), render_list.elements, render_list.element_count, false, PASS_MODE_DEPTH, render_buffer == nullptr); + RD::get_singleton()->draw_list_end(); + } + { + bool will_continue = (can_continue || draw_sky || debug_giprobes); //regular forward for now Vector<Color> c; c.push_back(clear_color.to_linear()); - RD::DrawListID draw_list = RD::get_singleton()->draw_list_begin(opaque_framebuffer, keep_color ? RD::INITIAL_ACTION_KEEP_COLOR : RD::INITIAL_ACTION_CLEAR, (can_continue || draw_sky) ? RD::FINAL_ACTION_CONTINUE : RD::FINAL_ACTION_READ_COLOR_AND_DEPTH, c); + RD::DrawListID draw_list = RD::get_singleton()->draw_list_begin(opaque_framebuffer, keep_color ? RD::INITIAL_ACTION_KEEP : RD::INITIAL_ACTION_CLEAR, will_continue ? RD::FINAL_ACTION_CONTINUE : RD::FINAL_ACTION_READ, depth_pre_pass ? RD::INITIAL_ACTION_CONTINUE : RD::INITIAL_ACTION_CLEAR, will_continue ? RD::FINAL_ACTION_CONTINUE : RD::FINAL_ACTION_READ, c, 1.0, 0); _render_list(draw_list, RD::get_singleton()->framebuffer_get_format(opaque_framebuffer), render_list.elements, render_list.element_count, false, PASS_MODE_COLOR, render_buffer == nullptr); RD::get_singleton()->draw_list_end(); } + if (debug_giprobes) { + //debug giprobes + bool will_continue = (can_continue || draw_sky); + CameraMatrix dc; + dc.set_depth_correction(true); + CameraMatrix cm = (dc * p_cam_projection) * CameraMatrix(p_cam_transform.affine_inverse()); + RD::DrawListID draw_list = RD::get_singleton()->draw_list_begin(opaque_framebuffer, RD::INITIAL_ACTION_CONTINUE, will_continue ? RD::FINAL_ACTION_CONTINUE : RD::FINAL_ACTION_READ, RD::INITIAL_ACTION_CONTINUE, will_continue ? RD::FINAL_ACTION_CONTINUE : RD::FINAL_ACTION_READ); + for (int i = 0; i < p_gi_probe_cull_count; i++) { + _debug_giprobe(p_gi_probe_cull_result[i], draw_list, opaque_framebuffer, cm, debug_draw == VS::VIEWPORT_DEBUG_DRAW_GI_PROBE_LIGHTING, 1.0); + } + RD::get_singleton()->draw_list_end(); + } + if (draw_sky) { RENDER_TIMESTAMP("Render Sky"); - RD::DrawListID draw_list = RD::get_singleton()->draw_list_begin(opaque_framebuffer, RD::INITIAL_ACTION_CONTINUE, can_continue ? RD::FINAL_ACTION_CONTINUE : RD::FINAL_ACTION_READ_COLOR_AND_DEPTH); + RD::DrawListID draw_list = RD::get_singleton()->draw_list_begin(opaque_framebuffer, RD::INITIAL_ACTION_CONTINUE, can_continue ? RD::FINAL_ACTION_CONTINUE : RD::FINAL_ACTION_READ, RD::INITIAL_ACTION_CONTINUE, can_continue ? RD::FINAL_ACTION_CONTINUE : RD::FINAL_ACTION_READ); _draw_sky(draw_list, RD::get_singleton()->framebuffer_get_format(opaque_framebuffer), p_environment, p_cam_projection, p_cam_transform, 1.0); RD::get_singleton()->draw_list_end(); @@ -2128,93 +1922,6 @@ void RasterizerSceneForwardRD::_render_scene(RenderBufferData *p_buffer_data, co } } - //_render_list -#if 0 - if (state.directional_light_count == 0) { - directional_light = NULL; - _render_list(render_list.elements, render_list.element_count, p_cam_transform, p_cam_projection, env_radiance_tex, false, false, false, false, shadow_atlas != NULL); - } else { - for (int i = 0; i < state.directional_light_count; i++) { - directional_light = directional_lights[i]; - if (i > 0) { - glEnable(GL_BLEND); - } - _setup_directional_light(i, p_cam_transform.affine_inverse(), shadow_atlas != NULL && shadow_atlas->size > 0); - _render_list(render_list.elements, render_list.element_count, p_cam_transform, p_cam_projection, env_radiance_tex, false, false, false, i > 0, shadow_atlas != NULL); - } - } - - state.scene_shader.set_conditional(SceneShaderGLES3::USE_MULTIPLE_RENDER_TARGETS, false); - - if (use_mrt) { - GLenum gldb = GL_COLOR_ATTACHMENT0; - glDrawBuffers(1, &gldb); - } - - if (env && env->bg_mode == VS::ENV_BG_SKY && (!storage->frame.current_rt || (!storage->frame.current_rt->flags[RasterizerStorage::RENDER_TARGET_TRANSPARENT] && state.debug_draw != VS::VIEWPORT_DEBUG_DRAW_OVERDRAW))) { - - /* - if (use_mrt) { - glBindFramebuffer(GL_FRAMEBUFFER,storage->frame.current_rt->buffers.fbo); //switch to alpha fbo for sky, only diffuse/ambient matters - */ - - if (sky && sky->panorama.is_valid()) - _draw_sky(sky, p_cam_projection, p_cam_transform, false, env->sky_custom_fov, env->bg_energy, env->sky_orientation); - } - - //_render_list_forward(&alpha_render_list,camera_transform,camera_transform_inverse,camera_projection,false,fragment_lighting,true); - //glColorMask(1,1,1,1); - - //state.scene_shader.set_conditional( SceneShaderGLES3::USE_FOG,false); - - if (use_mrt) { - - _render_mrts(env, p_cam_projection); - } else { - // Here we have to do the blits/resolves that otherwise are done in the MRT rendering, in particular - // - prepare screen texture for any geometry that uses a shader with screen texture - // - prepare depth texture for any geometry that uses a shader with depth texture - - bool framebuffer_dirty = false; - - if (storage->frame.current_rt && storage->frame.current_rt->buffers.active && state.used_screen_texture) { - glBindFramebuffer(GL_READ_FRAMEBUFFER, storage->frame.current_rt->buffers.fbo); - glReadBuffer(GL_COLOR_ATTACHMENT0); - glBindFramebuffer(GL_DRAW_FRAMEBUFFER, storage->frame.current_rt->effects.mip_maps[0].sizes[0].fbo); - glBlitFramebuffer(0, 0, storage->frame.current_rt->width, storage->frame.current_rt->height, 0, 0, storage->frame.current_rt->width, storage->frame.current_rt->height, GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT, GL_NEAREST); - glBindFramebuffer(GL_READ_FRAMEBUFFER, 0); - glBindFramebuffer(GL_DRAW_FRAMEBUFFER, 0); - _blur_effect_buffer(); - framebuffer_dirty = true; - } - - if (storage->frame.current_rt && storage->frame.current_rt->buffers.active && state.used_depth_texture) { - _prepare_depth_texture(); - framebuffer_dirty = true; - } - - if (framebuffer_dirty) { - // Restore framebuffer - glBindFramebuffer(GL_FRAMEBUFFER, storage->frame.current_rt->buffers.fbo); - glViewport(0, 0, storage->frame.current_rt->width, storage->frame.current_rt->height); - } - } - - if (storage->frame.current_rt && state.used_depth_texture && storage->frame.current_rt->buffers.active) { - _bind_depth_texture(); - } - - if (storage->frame.current_rt && state.used_screen_texture && storage->frame.current_rt->buffers.active) { - glActiveTexture(GL_TEXTURE0 + storage->config.max_texture_image_units - 7); - glBindTexture(GL_TEXTURE_2D, storage->frame.current_rt->effects.mip_maps[0].color); - } - - glEnable(GL_BLEND); - glDepthMask(GL_TRUE); - glEnable(GL_DEPTH_TEST); - glDisable(GL_SCISSOR_TEST); -#endif - RENDER_TIMESTAMP("Render Transparent Pass"); render_list.sort_by_reverse_depth_and_priority(true); @@ -2222,7 +1929,7 @@ void RasterizerSceneForwardRD::_render_scene(RenderBufferData *p_buffer_data, co _fill_instances(&render_list.elements[render_list.max_elements - render_list.alpha_element_count], render_list.alpha_element_count); { - RD::DrawListID draw_list = RD::get_singleton()->draw_list_begin(alpha_framebuffer, can_continue ? RD::INITIAL_ACTION_CONTINUE : RD::INITIAL_ACTION_KEEP_COLOR_AND_DEPTH, RD::FINAL_ACTION_READ_COLOR_AND_DEPTH); + RD::DrawListID draw_list = RD::get_singleton()->draw_list_begin(alpha_framebuffer, can_continue ? RD::INITIAL_ACTION_CONTINUE : RD::INITIAL_ACTION_KEEP, RD::FINAL_ACTION_READ, can_continue ? RD::INITIAL_ACTION_CONTINUE : RD::INITIAL_ACTION_KEEP, RD::FINAL_ACTION_READ); _render_list(draw_list, RD::get_singleton()->framebuffer_get_format(alpha_framebuffer), &render_list.elements[render_list.max_elements - render_list.alpha_element_count], render_list.alpha_element_count, false, PASS_MODE_COLOR, render_buffer == nullptr); RD::get_singleton()->draw_list_end(); } @@ -2266,7 +1973,7 @@ void RasterizerSceneForwardRD::_render_scene(RenderBufferData *p_buffer_data, co storage->render_target_disable_clear_request(render_buffer->render_target); - if (false) { + if (render_buffer && debug_draw == VS::VIEWPORT_DEBUG_DRAW_SHADOW_ATLAS) { if (p_shadow_atlas.is_valid()) { RID shadow_atlas_texture = shadow_atlas_get_texture(p_shadow_atlas); Size2 rtsize = storage->render_target_get_size(render_buffer->render_target); @@ -2275,7 +1982,7 @@ void RasterizerSceneForwardRD::_render_scene(RenderBufferData *p_buffer_data, co } } - if (false) { + if (render_buffer && debug_draw == VS::VIEWPORT_DEBUG_DRAW_DIRECTIONAL_SHADOW_ATLAS) { if (directional_shadow_get_texture().is_valid()) { RID shadow_atlas_texture = directional_shadow_get_texture(); Size2 rtsize = storage->render_target_get_size(render_buffer->render_target); @@ -2345,6 +2052,8 @@ void RasterizerSceneForwardRD::_render_shadow(RID p_framebuffer, InstanceBase ** RENDER_TIMESTAMP("Setup Rendering Shadow"); + _update_render_base_uniform_set(); + render_pass++; scene_state.ubo.shadow_z_offset = p_bias; @@ -2360,7 +2069,7 @@ void RasterizerSceneForwardRD::_render_shadow(RID p_framebuffer, InstanceBase ** _fill_render_list(p_cull_result, p_cull_count, pass_mode, true); - _setup_render_base_uniform_set(RID(), RID(), RID(), RID(), RID(), RID(), RID()); + _setup_render_pass_uniform_set(RID(), RID(), RID(), RID(), RID(), RID(), RID()); RENDER_TIMESTAMP("Render Shadow"); @@ -2370,16 +2079,142 @@ void RasterizerSceneForwardRD::_render_shadow(RID p_framebuffer, InstanceBase ** { //regular forward for now - RD::DrawListID draw_list = RD::get_singleton()->draw_list_begin(p_framebuffer, RD::INITIAL_ACTION_CLEAR, RD::FINAL_ACTION_READ_COLOR_AND_DEPTH); + RD::DrawListID draw_list = RD::get_singleton()->draw_list_begin(p_framebuffer, RD::INITIAL_ACTION_CLEAR, RD::FINAL_ACTION_READ, RD::INITIAL_ACTION_CLEAR, RD::FINAL_ACTION_READ); _render_list(draw_list, RD::get_singleton()->framebuffer_get_format(p_framebuffer), render_list.elements, render_list.element_count, p_use_dp_flip, pass_mode, true); RD::get_singleton()->draw_list_end(); } } -void RasterizerSceneForwardRD::_setup_render_base_uniform_set(RID p_depth_buffer, RID p_color_buffer, RID p_normal_buffer, RID p_roughness_limit_buffer, RID p_radiance_cubemap, RID p_shadow_atlas, RID p_reflection_atlas) { +void RasterizerSceneForwardRD::_update_render_base_uniform_set() { + + if (render_base_uniform_set.is_null() || !RD::get_singleton()->uniform_set_is_valid(render_base_uniform_set) || gi_probe_slots_are_dirty()) { + + if (render_base_uniform_set.is_valid() && RD::get_singleton()->uniform_set_is_valid(render_base_uniform_set)) { + RD::get_singleton()->free(render_base_uniform_set); + } + + Vector<RD::Uniform> uniforms; + + { + RD::Uniform u; + u.type = RD::UNIFORM_TYPE_SAMPLER; + u.binding = 1; + u.ids.resize(12); + RID *ids_ptr = u.ids.ptrw(); + ids_ptr[0] = storage->sampler_rd_get_default(VS::CANVAS_ITEM_TEXTURE_FILTER_NEAREST, VS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED); + ids_ptr[1] = storage->sampler_rd_get_default(VS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR, VS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED); + ids_ptr[2] = storage->sampler_rd_get_default(VS::CANVAS_ITEM_TEXTURE_FILTER_NEAREST_WITH_MIMPAMPS, VS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED); + ids_ptr[3] = storage->sampler_rd_get_default(VS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR_WITH_MIPMAPS, VS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED); + ids_ptr[4] = storage->sampler_rd_get_default(VS::CANVAS_ITEM_TEXTURE_FILTER_NEAREST_WITH_MIMPAMPS_ANISOTROPIC, VS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED); + ids_ptr[5] = storage->sampler_rd_get_default(VS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR_WITH_MIPMAPS_ANISOTROPIC, VS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED); + ids_ptr[6] = storage->sampler_rd_get_default(VS::CANVAS_ITEM_TEXTURE_FILTER_NEAREST, VS::CANVAS_ITEM_TEXTURE_REPEAT_ENABLED); + ids_ptr[7] = storage->sampler_rd_get_default(VS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR, VS::CANVAS_ITEM_TEXTURE_REPEAT_ENABLED); + ids_ptr[8] = storage->sampler_rd_get_default(VS::CANVAS_ITEM_TEXTURE_FILTER_NEAREST_WITH_MIMPAMPS, VS::CANVAS_ITEM_TEXTURE_REPEAT_ENABLED); + ids_ptr[9] = storage->sampler_rd_get_default(VS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR_WITH_MIPMAPS, VS::CANVAS_ITEM_TEXTURE_REPEAT_ENABLED); + ids_ptr[10] = storage->sampler_rd_get_default(VS::CANVAS_ITEM_TEXTURE_FILTER_NEAREST_WITH_MIMPAMPS_ANISOTROPIC, VS::CANVAS_ITEM_TEXTURE_REPEAT_ENABLED); + ids_ptr[11] = storage->sampler_rd_get_default(VS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR_WITH_MIPMAPS_ANISOTROPIC, VS::CANVAS_ITEM_TEXTURE_REPEAT_ENABLED); + uniforms.push_back(u); + } + + { + RD::Uniform u; + u.binding = 2; + u.type = RD::UNIFORM_TYPE_SAMPLER; + u.ids.push_back(shadow_sampler); + uniforms.push_back(u); + } + + { + RD::Uniform u; + u.binding = 3; + u.type = RD::UNIFORM_TYPE_UNIFORM_BUFFER; + u.ids.push_back(scene_state.uniform_buffer); + uniforms.push_back(u); + } + { + RD::Uniform u; + u.binding = 4; + u.type = RD::UNIFORM_TYPE_STORAGE_BUFFER; + u.ids.push_back(scene_state.instance_buffer); + uniforms.push_back(u); + } + + { + RD::Uniform u; + u.binding = 5; + u.type = RD::UNIFORM_TYPE_UNIFORM_BUFFER; + u.ids.push_back(scene_state.light_buffer); + uniforms.push_back(u); + } + + { + RD::Uniform u; + u.binding = 6; + u.type = RD::UNIFORM_TYPE_UNIFORM_BUFFER; + u.ids.push_back(scene_state.reflection_buffer); + uniforms.push_back(u); + } + { + RD::Uniform u; + u.binding = 7; + u.type = RD::UNIFORM_TYPE_UNIFORM_BUFFER; + u.ids.push_back(scene_state.directional_light_buffer); + uniforms.push_back(u); + } + { + RD::Uniform u; + u.binding = 8; + u.type = RD::UNIFORM_TYPE_UNIFORM_BUFFER; + u.ids.push_back(scene_state.gi_probe_buffer); + uniforms.push_back(u); + } + { + RD::Uniform u; + u.binding = 9; + u.type = RD::UNIFORM_TYPE_TEXTURE; + int slot_count = gi_probe_get_slots().size(); + if (gi_probe_is_anisotropic()) { + u.ids.resize(slot_count * 3); + } else { + u.ids.resize(slot_count); + } + for (int i = 0; i < slot_count; i++) { + + RID probe = gi_probe_get_slots()[i]; + + if (gi_probe_is_anisotropic()) { + if (probe.is_null()) { + RID empty_tex = storage->texture_rd_get_default(RasterizerStorageRD::DEFAULT_RD_TEXTURE_3D_WHITE); + u.ids.write[i * 3 + 0] = empty_tex; + u.ids.write[i * 3 + 1] = empty_tex; + u.ids.write[i * 3 + 2] = empty_tex; + } else { + u.ids.write[i * 3 + 0] = gi_probe_instance_get_texture(probe); + u.ids.write[i * 3 + 1] = gi_probe_instance_get_aniso_texture(probe, 0); + u.ids.write[i * 3 + 2] = gi_probe_instance_get_aniso_texture(probe, 1); + } + } else { + if (probe.is_null()) { + u.ids.write[i] = storage->texture_rd_get_default(RasterizerStorageRD::DEFAULT_RD_TEXTURE_3D_WHITE); + } else { + u.ids.write[i] = gi_probe_instance_get_texture(probe); + } + } + } + + uniforms.push_back(u); + } + + render_base_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, default_shader_rd, 0); + + gi_probe_slots_make_not_dirty(); + } +} + +void RasterizerSceneForwardRD::_setup_render_pass_uniform_set(RID p_depth_buffer, RID p_color_buffer, RID p_normal_buffer, RID p_roughness_limit_buffer, RID p_radiance_cubemap, RID p_shadow_atlas, RID p_reflection_atlas) { - if (render_base_uniform_set.is_valid() && RD::get_singleton()->uniform_set_is_valid(render_base_uniform_set)) { - RD::get_singleton()->free(render_base_uniform_set); + if (render_pass_uniform_set.is_valid() && RD::get_singleton()->uniform_set_is_valid(render_pass_uniform_set)) { + RD::get_singleton()->free(render_pass_uniform_set); } //default render buffer and scene state uniform set @@ -2387,7 +2222,7 @@ void RasterizerSceneForwardRD::_setup_render_base_uniform_set(RID p_depth_buffer Vector<RD::Uniform> uniforms; { RD::Uniform u; - u.binding = 1; + u.binding = 0; u.type = RD::UNIFORM_TYPE_TEXTURE; RID texture = p_depth_buffer.is_valid() ? p_depth_buffer : storage->texture_rd_get_default(RasterizerStorageRD::DEFAULT_RD_TEXTURE_WHITE); u.ids.push_back(texture); @@ -2395,7 +2230,7 @@ void RasterizerSceneForwardRD::_setup_render_base_uniform_set(RID p_depth_buffer } { RD::Uniform u; - u.binding = 2; + u.binding = 1; u.type = RD::UNIFORM_TYPE_TEXTURE; RID texture = p_color_buffer.is_valid() ? p_color_buffer : storage->texture_rd_get_default(RasterizerStorageRD::DEFAULT_RD_TEXTURE_BLACK); u.ids.push_back(texture); @@ -2403,7 +2238,7 @@ void RasterizerSceneForwardRD::_setup_render_base_uniform_set(RID p_depth_buffer } { RD::Uniform u; - u.binding = 3; + u.binding = 2; u.type = RD::UNIFORM_TYPE_TEXTURE; RID texture = p_normal_buffer.is_valid() ? p_normal_buffer : storage->texture_rd_get_default(RasterizerStorageRD::DEFAULT_RD_TEXTURE_NORMAL); u.ids.push_back(texture); @@ -2412,7 +2247,7 @@ void RasterizerSceneForwardRD::_setup_render_base_uniform_set(RID p_depth_buffer { RD::Uniform u; - u.binding = 4; + u.binding = 3; u.type = RD::UNIFORM_TYPE_TEXTURE; RID texture = p_roughness_limit_buffer.is_valid() ? p_roughness_limit_buffer : storage->texture_rd_get_default(RasterizerStorageRD::DEFAULT_RD_TEXTURE_BLACK); u.ids.push_back(texture); @@ -2421,7 +2256,7 @@ void RasterizerSceneForwardRD::_setup_render_base_uniform_set(RID p_depth_buffer { RD::Uniform u; - u.binding = 5; + u.binding = 4; u.type = RD::UNIFORM_TYPE_TEXTURE; RID texture = p_radiance_cubemap.is_valid() ? p_radiance_cubemap : storage->texture_rd_get_default(is_using_radiance_cubemap_array() ? RasterizerStorageRD::DEFAULT_RD_TEXTURE_CUBEMAP_ARRAY_BLACK : RasterizerStorageRD::DEFAULT_RD_TEXTURE_CUBEMAP_BLACK); u.ids.push_back(texture); @@ -2429,62 +2264,10 @@ void RasterizerSceneForwardRD::_setup_render_base_uniform_set(RID p_depth_buffer } { - RD::Uniform u; - u.type = RD::UNIFORM_TYPE_SAMPLER; - u.binding = 6; - u.ids.resize(12); - RID *ids_ptr = u.ids.ptrw(); - ids_ptr[0] = storage->sampler_rd_get_default(VS::CANVAS_ITEM_TEXTURE_FILTER_NEAREST, VS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED); - ids_ptr[1] = storage->sampler_rd_get_default(VS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR, VS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED); - ids_ptr[2] = storage->sampler_rd_get_default(VS::CANVAS_ITEM_TEXTURE_FILTER_NEAREST_WITH_MIMPAMPS, VS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED); - ids_ptr[3] = storage->sampler_rd_get_default(VS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR_WITH_MIPMAPS, VS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED); - ids_ptr[4] = storage->sampler_rd_get_default(VS::CANVAS_ITEM_TEXTURE_FILTER_NEAREST_WITH_MIMPAMPS_ANISOTROPIC, VS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED); - ids_ptr[5] = storage->sampler_rd_get_default(VS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR_WITH_MIPMAPS_ANISOTROPIC, VS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED); - ids_ptr[6] = storage->sampler_rd_get_default(VS::CANVAS_ITEM_TEXTURE_FILTER_NEAREST, VS::CANVAS_ITEM_TEXTURE_REPEAT_ENABLED); - ids_ptr[7] = storage->sampler_rd_get_default(VS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR, VS::CANVAS_ITEM_TEXTURE_REPEAT_ENABLED); - ids_ptr[8] = storage->sampler_rd_get_default(VS::CANVAS_ITEM_TEXTURE_FILTER_NEAREST_WITH_MIMPAMPS, VS::CANVAS_ITEM_TEXTURE_REPEAT_ENABLED); - ids_ptr[9] = storage->sampler_rd_get_default(VS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR_WITH_MIPMAPS, VS::CANVAS_ITEM_TEXTURE_REPEAT_ENABLED); - ids_ptr[10] = storage->sampler_rd_get_default(VS::CANVAS_ITEM_TEXTURE_FILTER_NEAREST_WITH_MIMPAMPS_ANISOTROPIC, VS::CANVAS_ITEM_TEXTURE_REPEAT_ENABLED); - ids_ptr[11] = storage->sampler_rd_get_default(VS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR_WITH_MIPMAPS_ANISOTROPIC, VS::CANVAS_ITEM_TEXTURE_REPEAT_ENABLED); - uniforms.push_back(u); - } - - { - RD::Uniform u; - u.binding = 7; - u.type = RD::UNIFORM_TYPE_SAMPLER; - u.ids.push_back(shadow_sampler); - uniforms.push_back(u); - } - - { - RD::Uniform u; - u.binding = 8; - u.type = RD::UNIFORM_TYPE_UNIFORM_BUFFER; - u.ids.push_back(scene_state.uniform_buffer); - uniforms.push_back(u); - } - { - RD::Uniform u; - u.binding = 9; - u.type = RD::UNIFORM_TYPE_STORAGE_BUFFER; - u.ids.push_back(scene_state.instance_buffer); - uniforms.push_back(u); - } - - { - RD::Uniform u; - u.binding = 10; - u.type = RD::UNIFORM_TYPE_UNIFORM_BUFFER; - u.ids.push_back(scene_state.reflection_buffer); - uniforms.push_back(u); - } - - { RID ref_texture = p_reflection_atlas.is_valid() ? reflection_atlas_get_texture(p_reflection_atlas) : RID(); RD::Uniform u; - u.binding = 11; + u.binding = 5; u.type = RD::UNIFORM_TYPE_TEXTURE; if (ref_texture.is_valid()) { u.ids.push_back(ref_texture); @@ -2496,15 +2279,7 @@ void RasterizerSceneForwardRD::_setup_render_base_uniform_set(RID p_depth_buffer { RD::Uniform u; - u.binding = 12; - u.type = RD::UNIFORM_TYPE_UNIFORM_BUFFER; - u.ids.push_back(scene_state.light_buffer); - uniforms.push_back(u); - } - - { - RD::Uniform u; - u.binding = 13; + u.binding = 6; u.type = RD::UNIFORM_TYPE_TEXTURE; if (p_shadow_atlas.is_valid()) { u.ids.push_back(shadow_atlas_get_texture(p_shadow_atlas)); @@ -2516,15 +2291,7 @@ void RasterizerSceneForwardRD::_setup_render_base_uniform_set(RID p_depth_buffer { RD::Uniform u; - u.binding = 14; - u.type = RD::UNIFORM_TYPE_UNIFORM_BUFFER; - u.ids.push_back(scene_state.directional_light_buffer); - uniforms.push_back(u); - } - - { - RD::Uniform u; - u.binding = 15; + u.binding = 7; u.type = RD::UNIFORM_TYPE_TEXTURE; if (directional_shadow_get_texture().is_valid()) { u.ids.push_back(directional_shadow_get_texture()); @@ -2534,7 +2301,7 @@ void RasterizerSceneForwardRD::_setup_render_base_uniform_set(RID p_depth_buffer uniforms.push_back(u); } - render_base_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, default_shader_rd, 0); + render_pass_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, default_shader_rd, 1); } RasterizerSceneForwardRD *RasterizerSceneForwardRD::singleton = NULL; @@ -2543,6 +2310,10 @@ void RasterizerSceneForwardRD::set_time(double p_time) { time = p_time; } +void RasterizerSceneForwardRD::set_debug_draw_mode(VS::ViewportDebugDraw p_debug_draw) { + debug_draw = p_debug_draw; +} + RasterizerSceneForwardRD::RasterizerSceneForwardRD(RasterizerStorageRD *p_storage) : RasterizerSceneRD(p_storage) { singleton = this; @@ -2577,7 +2348,6 @@ RasterizerSceneForwardRD::RasterizerSceneForwardRD(RasterizerStorageRD *p_storag { //lights scene_state.max_lights = MIN(65536, uniform_max_size) / sizeof(LightData); uint32_t light_buffer_size = scene_state.max_lights * sizeof(LightData); - print_line("ID: " + itos(sizeof(InstanceData))); scene_state.lights = memnew_arr(LightData, scene_state.max_lights); scene_state.light_buffer = RD::get_singleton()->uniform_buffer_create(light_buffer_size); defines += "\n#define MAX_LIGHT_DATA_STRUCTS " + itos(scene_state.max_lights) + "\n"; @@ -2589,6 +2359,32 @@ RasterizerSceneForwardRD::RasterizerSceneForwardRD(RasterizerStorageRD *p_storag defines += "\n#define MAX_DIRECTIONAL_LIGHT_DATA_STRUCTS " + itos(scene_state.max_directional_lights) + "\n"; } + { //giprobes + int slot_count = gi_probe_get_slots().size(); + if (gi_probe_is_anisotropic()) { + slot_count *= 3; + defines += "\n#define GI_PROBE_USE_ANISOTROPY\n"; + } + if (gi_probe_is_high_quality()) { + defines += "\n#define GI_PROBE_HIGH_QUALITY\n"; + } + defines += "\n#define MAX_GI_PROBE_TEXTURES " + itos(slot_count) + "\n"; + + uint32_t giprobe_buffer_size; + if (uniform_max_size < 65536) { + //Yes, you guessed right, ARM again + giprobe_buffer_size = uniform_max_size; + } else { + giprobe_buffer_size = 65536; + } + + giprobe_buffer_size = MIN(sizeof(GIProbeData) * gi_probe_get_slots().size(), giprobe_buffer_size); + scene_state.max_gi_probes = giprobe_buffer_size / sizeof(GIProbeData); + scene_state.gi_probes = memnew_arr(GIProbeData, scene_state.max_gi_probes); + scene_state.gi_probe_buffer = RD::get_singleton()->uniform_buffer_create(sizeof(GIProbeData) * scene_state.max_gi_probes); + defines += "\n#define MAX_GI_PROBES " + itos(scene_state.max_gi_probes) + "\n"; + } + Vector<String> shader_versions; shader_versions.push_back("\n#define MODE_RENDER_DEPTH\n"); shader_versions.push_back("\n#define MODE_RENDER_DEPTH\n#define MODE_DUAL_PARABOLOID\n"); @@ -2733,7 +2529,7 @@ RasterizerSceneForwardRD::RasterizerSceneForwardRD(RasterizerStorageRD *p_storag actions.sampler_array_name = "material_samplers"; actions.base_texture_binding_index = 1; - actions.texture_layout_set = 2; + actions.texture_layout_set = 3; actions.base_uniform_string = "material."; actions.base_varying_index = 10; @@ -2777,7 +2573,7 @@ RasterizerSceneForwardRD::RasterizerSceneForwardRD(RasterizerStorageRD *p_storag u.binding = 0; uniforms.push_back(u); - default_vec4_xform_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, default_shader_rd, 1); + default_vec4_xform_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, default_shader_rd, 2); } { @@ -2792,8 +2588,8 @@ RasterizerSceneForwardRD::RasterizerSceneForwardRD(RasterizerStorageRD *p_storag RasterizerSceneForwardRD::~RasterizerSceneForwardRD() { //clear base uniform set if still valid - if (render_base_uniform_set.is_valid() && RD::get_singleton()->uniform_set_is_valid(render_base_uniform_set)) { - RD::get_singleton()->free(render_base_uniform_set); + if (render_pass_uniform_set.is_valid() && RD::get_singleton()->uniform_set_is_valid(render_pass_uniform_set)) { + RD::get_singleton()->free(render_pass_uniform_set); } { diff --git a/servers/visual/rasterizer_rd/rasterizer_scene_forward_rd.h b/servers/visual/rasterizer_rd/rasterizer_scene_forward_rd.h index 73d48c5fe8..f62fe11de7 100644 --- a/servers/visual/rasterizer_rd/rasterizer_scene_forward_rd.h +++ b/servers/visual/rasterizer_rd/rasterizer_scene_forward_rd.h @@ -188,6 +188,7 @@ class RasterizerSceneForwardRD : public RasterizerSceneRD { //for rendering, may be MSAAd RID color; RID depth; + RID depth_fb; RID color_fb; RID color_only_fb; int width, height; @@ -204,7 +205,9 @@ class RasterizerSceneForwardRD : public RasterizerSceneRD { RID shadow_sampler; RID render_base_uniform_set; - void _setup_render_base_uniform_set(RID p_depth_buffer, RID p_color_buffer, RID p_normal_buffer, RID p_roughness_limit_buffer, RID p_radiance_cubemap, RID p_shadow_atlas, RID p_reflection_atlas); + RID render_pass_uniform_set; + void _update_render_base_uniform_set(); + void _setup_render_pass_uniform_set(RID p_depth_buffer, RID p_color_buffer, RID p_normal_buffer, RID p_roughness_limit_buffer, RID p_radiance_cubemap, RID p_shadow_atlas, RID p_reflection_atlas); /* Scene State UBO */ @@ -247,6 +250,20 @@ class RasterizerSceneForwardRD : public RasterizerSceneRD { float shadow_matrices[4][16]; }; + struct GIProbeData { + float xform[16]; + float bounds[3]; + float dynamic_range; + + float bias; + float normal_bias; + uint32_t blend_ambient; + uint32_t texture_slot; + + float anisotropy_strength; + uint32_t pad[3]; + }; + enum { INSTANCE_DATA_FLAG_MULTIMESH = 1 << 12, INSTANCE_DATA_FLAG_MULTIMESH_FORMAT_2D = 1 << 13, @@ -315,6 +332,11 @@ class RasterizerSceneForwardRD : public RasterizerSceneRD { RID reflection_buffer; uint32_t max_reflection_probes_per_instance; + GIProbeData *gi_probes; + uint32_t max_gi_probes; + RID gi_probe_buffer; + uint32_t max_gi_probe_probes_per_instance; + LightData *lights; uint32_t max_lights; RID light_buffer; @@ -498,6 +520,7 @@ class RasterizerSceneForwardRD : public RasterizerSceneRD { void _setup_environment(RID p_render_target, RID p_environment, const CameraMatrix &p_cam_projection, const Transform &p_cam_transform, RID p_reflection_probe, bool p_no_fog, const Size2 &p_screen_pixel_size, RID p_shadow_atlas); void _setup_lights(RID *p_light_cull_result, int p_light_cull_count, const Transform &p_camera_inverse_transform, RID p_shadow_atlas, bool p_using_shadows); void _setup_reflections(RID *p_reflection_probe_cull_result, int p_reflection_probe_cull_count, const Transform &p_camera_inverse_transform, RID p_environment); + void _setup_gi_probes(RID *p_gi_probe_probe_cull_result, int p_gi_probe_probe_cull_count, const Transform &p_camera_transform); void _fill_instances(RenderList::Element **p_elements, int p_element_count); void _render_list(RenderingDevice::DrawListID p_draw_list, RenderingDevice::FramebufferFormatID p_framebuffer_Format, RenderList::Element **p_elements, int p_element_count, bool p_reverse_cull, PassMode p_pass_mode, bool p_no_gi); @@ -508,13 +531,15 @@ class RasterizerSceneForwardRD : public RasterizerSceneRD { void _draw_sky(RD::DrawListID p_draw_list, RenderingDevice::FramebufferFormatID p_fb_format, RID p_environment, const CameraMatrix &p_projection, const Transform &p_transform, float p_alpha); + VS::ViewportDebugDraw debug_draw = VS::VIEWPORT_DEBUG_DRAW_DISABLED; + protected: - virtual void _render_scene(RenderBufferData *p_buffer_data, const Transform &p_cam_transform, const CameraMatrix &p_cam_projection, bool p_cam_ortogonal, InstanceBase **p_cull_result, int p_cull_count, RID *p_light_cull_result, int p_light_cull_count, RID *p_reflection_probe_cull_result, int p_reflection_probe_cull_count, RID p_environment, RID p_shadow_atlas, RID p_reflection_atlas, RID p_reflection_probe, int p_reflection_probe_pass); + virtual void _render_scene(RenderBufferData *p_buffer_data, const Transform &p_cam_transform, const CameraMatrix &p_cam_projection, bool p_cam_ortogonal, InstanceBase **p_cull_result, int p_cull_count, RID *p_light_cull_result, int p_light_cull_count, RID *p_reflection_probe_cull_result, int p_reflection_probe_cull_count, RID *p_gi_probe_cull_result, int p_gi_probe_cull_count, RID p_environment, RID p_shadow_atlas, RID p_reflection_atlas, RID p_reflection_probe, int p_reflection_probe_pass); virtual void _render_shadow(RID p_framebuffer, InstanceBase **p_cull_result, int p_cull_count, const CameraMatrix &p_projection, const Transform &p_transform, float p_zfar, float p_bias, float p_normal_bias, bool p_use_dp, bool p_use_dp_flip); public: virtual void set_time(double p_time); - virtual void set_debug_draw_mode(VS::ViewportDebugDraw p_debug_draw) {} + virtual void set_debug_draw_mode(VS::ViewportDebugDraw p_debug_draw); virtual bool free(RID p_rid); diff --git a/servers/visual/rasterizer_rd/rasterizer_scene_rd.cpp b/servers/visual/rasterizer_rd/rasterizer_scene_rd.cpp index 888568e21a..e292f9c69b 100644 --- a/servers/visual/rasterizer_rd/rasterizer_scene_rd.cpp +++ b/servers/visual/rasterizer_rd/rasterizer_scene_rd.cpp @@ -619,6 +619,10 @@ bool RasterizerSceneRD::reflection_probe_instance_begin_render(RID p_instance, R atlas->reflections.write[i].fbs[j] = RD::get_singleton()->framebuffer_create(fb); } } + + Vector<RID> fb; + fb.push_back(atlas->depth_buffer); + atlas->depth_fb = RD::get_singleton()->framebuffer_create(fb); } ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance); @@ -700,6 +704,16 @@ RID RasterizerSceneRD::reflection_probe_instance_get_framebuffer(RID p_instance, return atlas->reflections[rpi->atlas_index].fbs[p_index]; } +RID RasterizerSceneRD::reflection_probe_instance_get_depth_framebuffer(RID p_instance, int p_index) { + ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance); + ERR_FAIL_COND_V(!rpi, RID()); + ERR_FAIL_INDEX_V(p_index, 6, RID()); + + ReflectionAtlas *atlas = reflection_atlas_owner.getornull(rpi->atlas); + ERR_FAIL_COND_V(!atlas, RID()); + return atlas->depth_fb; +} + /////////////////////////////////////////////////////////// RID RasterizerSceneRD::shadow_atlas_create() { @@ -1192,6 +1206,454 @@ RasterizerSceneRD::ShadowMap *RasterizerSceneRD::_get_shadow_map(const Size2i &p return &shadow_maps[p_size]; } +///////////////////////////////// + +RID RasterizerSceneRD::gi_probe_instance_create(RID p_base) { + //find a free slot + int index = -1; + for (int i = 0; i < gi_probe_slots.size(); i++) { + if (gi_probe_slots[i] == RID()) { + index = i; + break; + } + } + + ERR_FAIL_COND_V(index == -1, RID()); + + GIProbeInstance gi_probe; + gi_probe.slot = index; + gi_probe.probe = p_base; + RID rid = gi_probe_instance_owner.make_rid(gi_probe); + gi_probe_slots.write[index] = rid; + + return rid; +} + +void RasterizerSceneRD::gi_probe_instance_set_transform_to_data(RID p_probe, const Transform &p_xform) { + + GIProbeInstance *gi_probe = gi_probe_instance_owner.getornull(p_probe); + ERR_FAIL_COND(!gi_probe); + + gi_probe->transform = p_xform; +} + +bool RasterizerSceneRD::gi_probe_needs_update(RID p_probe) const { + GIProbeInstance *gi_probe = gi_probe_instance_owner.getornull(p_probe); + ERR_FAIL_COND_V(!gi_probe, false); + + //return true; + return gi_probe->last_probe_version != storage->gi_probe_get_version(gi_probe->probe); +} + +void RasterizerSceneRD::gi_probe_update(RID p_probe, const Vector<RID> &p_light_instances) { + + GIProbeInstance *gi_probe = gi_probe_instance_owner.getornull(p_probe); + ERR_FAIL_COND(!gi_probe); + + uint32_t data_version = storage->gi_probe_get_data_version(gi_probe->probe); + + // (RE)CREATE IF NEEDED + + if (gi_probe->last_probe_data_version != data_version) { + //need to re-create everything + if (gi_probe->texture.is_valid()) { + RD::get_singleton()->free(gi_probe->texture); + if (gi_probe_use_anisotropy) { + RD::get_singleton()->free(gi_probe->anisotropy[0]); + RD::get_singleton()->free(gi_probe->anisotropy[1]); + } + RD::get_singleton()->free(gi_probe->write_buffer); + gi_probe->mipmaps.clear(); + } + + Vector3i octree_size = storage->gi_probe_get_octree_size(gi_probe->probe); + + if (octree_size != Vector3i()) { + //can create a 3D texture + PoolVector<int> levels = storage->gi_probe_get_level_counts(gi_probe->probe); + + for (int i = 0; i < levels.size(); i++) { + print_line("level " + itos(i) + ": " + itos(levels[i])); + } + RD::TextureFormat tf; + tf.format = RD::DATA_FORMAT_R8G8B8A8_UNORM; + tf.width = octree_size.x; + tf.height = octree_size.y; + tf.depth = octree_size.z; + tf.type = RD::TEXTURE_TYPE_3D; + tf.mipmaps = levels.size(); + + tf.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_STORAGE_BIT | RD::TEXTURE_USAGE_CAN_COPY_TO_BIT; + + gi_probe->texture = RD::get_singleton()->texture_create(tf, RD::TextureView()); + + RD::get_singleton()->texture_clear(gi_probe->texture, Color(0, 0, 0, 0), 0, levels.size(), 0, 1, false); + + if (gi_probe_use_anisotropy) { + tf.format = RD::DATA_FORMAT_R5G6B5_UNORM_PACK16; + tf.shareable_formats.push_back(RD::DATA_FORMAT_R5G6B5_UNORM_PACK16); + tf.shareable_formats.push_back(RD::DATA_FORMAT_R16_UINT); + + gi_probe->anisotropy[0] = RD::get_singleton()->texture_create(tf, RD::TextureView()); + gi_probe->anisotropy[1] = RD::get_singleton()->texture_create(tf, RD::TextureView()); + + RD::get_singleton()->texture_clear(gi_probe->anisotropy[0], Color(0, 0, 0, 0), 0, levels.size(), 0, 1, false); + RD::get_singleton()->texture_clear(gi_probe->anisotropy[1], Color(0, 0, 0, 0), 0, levels.size(), 0, 1, false); + } + + { + int total_elements = 0; + for (int i = 0; i < levels.size(); i++) { + total_elements += levels[i]; + } + + if (gi_probe_use_anisotropy) { + total_elements *= 6; + } + + gi_probe->write_buffer = RD::get_singleton()->storage_buffer_create(total_elements * 16); + } + + for (int i = 0; i < levels.size(); i++) { + GIProbeInstance::Mipmap mipmap; + mipmap.texture = RD::get_singleton()->texture_create_shared_from_slice(RD::TextureView(), gi_probe->texture, 0, i, RD::TEXTURE_SLICE_3D); + if (gi_probe_use_anisotropy) { + RD::TextureView tv; + tv.format_override = RD::DATA_FORMAT_R16_UINT; + mipmap.anisotropy[0] = RD::get_singleton()->texture_create_shared_from_slice(tv, gi_probe->anisotropy[0], 0, i, RD::TEXTURE_SLICE_3D); + mipmap.anisotropy[1] = RD::get_singleton()->texture_create_shared_from_slice(tv, gi_probe->anisotropy[1], 0, i, RD::TEXTURE_SLICE_3D); + } + + mipmap.level = levels.size() - i - 1; + mipmap.cell_offset = 0; + for (uint32_t j = 0; j < mipmap.level; j++) { + mipmap.cell_offset += levels[j]; + } + mipmap.cell_count = levels[mipmap.level]; + + Vector<RD::Uniform> uniforms; + { + RD::Uniform u; + u.type = RD::UNIFORM_TYPE_STORAGE_BUFFER; + u.binding = 1; + u.ids.push_back(storage->gi_probe_get_octree_buffer(gi_probe->probe)); + uniforms.push_back(u); + } + { + RD::Uniform u; + u.type = RD::UNIFORM_TYPE_STORAGE_BUFFER; + u.binding = 2; + u.ids.push_back(storage->gi_probe_get_data_buffer(gi_probe->probe)); + uniforms.push_back(u); + } + + { + RD::Uniform u; + u.type = RD::UNIFORM_TYPE_STORAGE_BUFFER; + u.binding = 4; + u.ids.push_back(gi_probe->write_buffer); + uniforms.push_back(u); + } + { + Vector<RD::Uniform> copy_uniforms = uniforms; + if (i == 0) { + { + RD::Uniform u; + u.type = RD::UNIFORM_TYPE_UNIFORM_BUFFER; + u.binding = 3; + u.ids.push_back(gi_probe_lights_uniform); + copy_uniforms.push_back(u); + } + + mipmap.uniform_set = RD::get_singleton()->uniform_set_create(copy_uniforms, giprobe_lighting_shader_version_shaders[GI_PROBE_SHADER_VERSION_COMPUTE_LIGHT], 0); + + copy_uniforms = uniforms; //restore + + { + RD::Uniform u; + u.type = RD::UNIFORM_TYPE_TEXTURE; + u.binding = 5; + u.ids.push_back(gi_probe->texture); + copy_uniforms.push_back(u); + } + { + RD::Uniform u; + u.type = RD::UNIFORM_TYPE_SAMPLER; + u.binding = 6; + u.ids.push_back(storage->sampler_rd_get_default(VS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR_WITH_MIPMAPS, VS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED)); + copy_uniforms.push_back(u); + } + + if (gi_probe_use_anisotropy) { + { + RD::Uniform u; + u.type = RD::UNIFORM_TYPE_TEXTURE; + u.binding = 7; + u.ids.push_back(gi_probe->anisotropy[0]); + copy_uniforms.push_back(u); + } + { + RD::Uniform u; + u.type = RD::UNIFORM_TYPE_TEXTURE; + u.binding = 8; + u.ids.push_back(gi_probe->anisotropy[1]); + copy_uniforms.push_back(u); + } + } + + mipmap.second_bounce_uniform_set = RD::get_singleton()->uniform_set_create(copy_uniforms, giprobe_lighting_shader_version_shaders[GI_PROBE_SHADER_VERSION_COMPUTE_SECOND_BOUNCE], 0); + } else { + mipmap.uniform_set = RD::get_singleton()->uniform_set_create(copy_uniforms, giprobe_lighting_shader_version_shaders[GI_PROBE_SHADER_VERSION_COMPUTE_MIPMAP], 0); + } + } + + { + RD::Uniform u; + u.type = RD::UNIFORM_TYPE_IMAGE; + u.binding = 5; + u.ids.push_back(mipmap.texture); + uniforms.push_back(u); + } + + if (gi_probe_use_anisotropy) { + { + RD::Uniform u; + u.type = RD::UNIFORM_TYPE_IMAGE; + u.binding = 6; + u.ids.push_back(mipmap.anisotropy[0]); + uniforms.push_back(u); + } + { + RD::Uniform u; + u.type = RD::UNIFORM_TYPE_IMAGE; + u.binding = 7; + u.ids.push_back(mipmap.anisotropy[1]); + uniforms.push_back(u); + } + } + + mipmap.write_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, giprobe_lighting_shader_version_shaders[GI_PROBE_SHADER_VERSION_WRITE_TEXTURE], 0); + + gi_probe->mipmaps.push_back(mipmap); + } + } + + gi_probe->last_probe_data_version = data_version; + } + + // UDPDATE TIME + + uint32_t light_count = MIN(gi_probe_max_lights, (uint32_t)p_light_instances.size()); + { + Transform to_cell = storage->gi_probe_get_to_cell_xform(gi_probe->probe); + Transform to_probe_xform = (gi_probe->transform * to_cell.affine_inverse()).affine_inverse(); + //update lights + + for (uint32_t i = 0; i < light_count; i++) { + GIProbeLight &l = gi_probe_lights[i]; + RID light_instance = p_light_instances[i]; + RID light = light_instance_get_base_light(light_instance); + + l.type = storage->light_get_type(light); + l.attenuation = storage->light_get_param(light, VS::LIGHT_PARAM_ATTENUATION); + l.energy = storage->light_get_param(light, VS::LIGHT_PARAM_ENERGY) * storage->light_get_param(light, VS::LIGHT_PARAM_INDIRECT_ENERGY); + l.radius = to_cell.basis.xform(Vector3(storage->light_get_param(light, VS::LIGHT_PARAM_RANGE), 0, 0)).length(); + Color color = storage->light_get_color(light).to_linear(); + l.color[0] = color.r; + l.color[1] = color.g; + l.color[2] = color.b; + + l.spot_angle_radians = Math::deg2rad(storage->light_get_param(light, VS::LIGHT_PARAM_SPOT_ANGLE)); + l.spot_attenuation = storage->light_get_param(light, VS::LIGHT_PARAM_SPOT_ATTENUATION); + + Transform xform = light_instance_get_base_transform(light_instance); + + Vector3 pos = to_probe_xform.xform(xform.origin); + Vector3 dir = to_probe_xform.basis.xform(-xform.basis.get_axis(2)).normalized(); + + l.position[0] = pos.x; + l.position[1] = pos.y; + l.position[2] = pos.z; + + l.direction[0] = dir.x; + l.direction[1] = dir.y; + l.direction[2] = dir.z; + + l.has_shadow = storage->light_has_shadow(light); + } + + RD::get_singleton()->buffer_update(gi_probe_lights_uniform, 0, sizeof(GIProbeLight) * light_count, gi_probe_lights, true); + } + + // PROCESS MIPMAPS + if (gi_probe->mipmaps.size()) { + //can update mipmaps + + Vector3i probe_size = storage->gi_probe_get_octree_size(gi_probe->probe); + + GIProbePushConstant push_constant; + + push_constant.limits[0] = probe_size.x; + push_constant.limits[1] = probe_size.y; + push_constant.limits[2] = probe_size.z; + push_constant.stack_size = gi_probe->mipmaps.size(); + push_constant.emission_scale = 1.0; + push_constant.propagation = storage->gi_probe_get_propagation(gi_probe->probe); + push_constant.dynamic_range = storage->gi_probe_get_dynamic_range(gi_probe->probe); + push_constant.light_count = light_count; + push_constant.aniso_strength = storage->gi_probe_get_anisotropy_strength(gi_probe->probe); + + /* print_line("probe update to version " + itos(gi_probe->last_probe_version)); + print_line("propagation " + rtos(push_constant.propagation)); + print_line("dynrange " + rtos(push_constant.dynamic_range)); +*/ + RD::ComputeListID compute_list = RD::get_singleton()->compute_list_begin(); + + int passes = storage->gi_probe_is_using_two_bounces(gi_probe->probe) ? 2 : 1; + + for (int pass = 0; pass < passes; pass++) { + + for (int i = 0; i < gi_probe->mipmaps.size(); i++) { + if (i == 0) { + RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, giprobe_lighting_shader_version_pipelines[pass == 0 ? GI_PROBE_SHADER_VERSION_COMPUTE_LIGHT : GI_PROBE_SHADER_VERSION_COMPUTE_SECOND_BOUNCE]); + } else if (i == 1) { + RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, giprobe_lighting_shader_version_pipelines[GI_PROBE_SHADER_VERSION_COMPUTE_MIPMAP]); + } + + if (pass == 1 || i > 0) { + RD::get_singleton()->compute_list_add_barrier(compute_list); //wait til previous step is done + } + if (pass == 0 || i > 0) { + RD::get_singleton()->compute_list_bind_uniform_set(compute_list, gi_probe->mipmaps[i].uniform_set, 0); + } else { + RD::get_singleton()->compute_list_bind_uniform_set(compute_list, gi_probe->mipmaps[i].second_bounce_uniform_set, 0); + } + + push_constant.cell_offset = gi_probe->mipmaps[i].cell_offset; + push_constant.cell_count = gi_probe->mipmaps[i].cell_count; + + RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(GIProbePushConstant)); + + RD::get_singleton()->compute_list_dispatch(compute_list, (gi_probe->mipmaps[i].cell_count - 1) / 64 + 1, 1, 1); + } + + RD::get_singleton()->compute_list_add_barrier(compute_list); //wait til previous step is done + + RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, giprobe_lighting_shader_version_pipelines[GI_PROBE_SHADER_VERSION_WRITE_TEXTURE]); + + for (int i = 0; i < gi_probe->mipmaps.size(); i++) { + + RD::get_singleton()->compute_list_bind_uniform_set(compute_list, gi_probe->mipmaps[i].write_uniform_set, 0); + + push_constant.cell_offset = gi_probe->mipmaps[i].cell_offset; + push_constant.cell_count = gi_probe->mipmaps[i].cell_count; + + RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(GIProbePushConstant)); + + RD::get_singleton()->compute_list_dispatch(compute_list, (gi_probe->mipmaps[i].cell_count - 1) / 64 + 1, 1, 1); + } + } + + RD::get_singleton()->compute_list_end(); + } + + gi_probe->last_probe_version = storage->gi_probe_get_version(gi_probe->probe); + print_line("update GI"); +} + +void RasterizerSceneRD::_debug_giprobe(RID p_gi_probe, RD::DrawListID p_draw_list, RID p_framebuffer, const CameraMatrix &p_camera_with_transform, bool p_lighting, float p_alpha) { + GIProbeInstance *gi_probe = gi_probe_instance_owner.getornull(p_gi_probe); + ERR_FAIL_COND(!gi_probe); + + if (gi_probe->mipmaps.size() == 0) { + return; + } + + CameraMatrix transform = (p_camera_with_transform * CameraMatrix(gi_probe->transform)) * CameraMatrix(storage->gi_probe_get_to_cell_xform(gi_probe->probe).affine_inverse()); + + int level = 0; + + GIProbeDebugPushConstant push_constant; + push_constant.alpha = p_alpha; + push_constant.dynamic_range = storage->gi_probe_get_dynamic_range(gi_probe->probe); + push_constant.cell_offset = gi_probe->mipmaps[level].cell_offset; + push_constant.level = level; + + int cell_count = gi_probe->mipmaps[level].cell_count; + + for (int i = 0; i < 4; i++) { + for (int j = 0; j < 4; j++) { + + push_constant.projection[i * 4 + j] = transform.matrix[i][j]; + } + } + + if (giprobe_debug_uniform_set.is_valid()) { + RD::get_singleton()->free(giprobe_debug_uniform_set); + } + Vector<RD::Uniform> uniforms; + { + RD::Uniform u; + u.type = RD::UNIFORM_TYPE_STORAGE_BUFFER; + u.binding = 1; + u.ids.push_back(storage->gi_probe_get_data_buffer(gi_probe->probe)); + uniforms.push_back(u); + } + { + RD::Uniform u; + u.type = RD::UNIFORM_TYPE_TEXTURE; + u.binding = 2; + u.ids.push_back(gi_probe->texture); + uniforms.push_back(u); + } + { + RD::Uniform u; + u.type = RD::UNIFORM_TYPE_SAMPLER; + u.binding = 3; + u.ids.push_back(storage->sampler_rd_get_default(VS::CANVAS_ITEM_TEXTURE_FILTER_NEAREST, VS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED)); + uniforms.push_back(u); + } + + if (gi_probe_use_anisotropy) { + { + RD::Uniform u; + u.type = RD::UNIFORM_TYPE_TEXTURE; + u.binding = 4; + u.ids.push_back(gi_probe->anisotropy[0]); + uniforms.push_back(u); + } + { + RD::Uniform u; + u.type = RD::UNIFORM_TYPE_TEXTURE; + u.binding = 5; + u.ids.push_back(gi_probe->anisotropy[1]); + uniforms.push_back(u); + } + } + + giprobe_debug_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, giprobe_debug_shader_version_shaders[0], 0); + RD::get_singleton()->draw_list_bind_render_pipeline(p_draw_list, giprobe_debug_shader_version_pipelines[p_lighting ? GI_PROBE_DEBUG_LIGHT : GI_PROBE_DEBUG_COLOR].get_render_pipeline(RD::INVALID_ID, RD::get_singleton()->framebuffer_get_format(p_framebuffer))); + RD::get_singleton()->draw_list_bind_uniform_set(p_draw_list, giprobe_debug_uniform_set, 0); + RD::get_singleton()->draw_list_set_push_constant(p_draw_list, &push_constant, sizeof(GIProbeDebugPushConstant)); + RD::get_singleton()->draw_list_draw(p_draw_list, false, cell_count, 36); +} + +const Vector<RID> &RasterizerSceneRD::gi_probe_get_slots() const { + + return gi_probe_slots; +} + +bool RasterizerSceneRD::gi_probe_slots_are_dirty() const { + return gi_probe_slots_dirty; +} + +void RasterizerSceneRD::gi_probe_slots_make_not_dirty() { + gi_probe_slots_dirty = false; +} + +bool RasterizerSceneRD::gi_probe_is_high_quality() const { + return gi_probe_use_6_cones; +} //////////////////////////////// RID RasterizerSceneRD::render_buffers_create() { @@ -1218,12 +1680,12 @@ bool RasterizerSceneRD::is_using_radiance_cubemap_array() const { return sky_use_cubemap_array; } -void RasterizerSceneRD::render_scene(RID p_render_buffers, const Transform &p_cam_transform, const CameraMatrix &p_cam_projection, bool p_cam_ortogonal, InstanceBase **p_cull_result, int p_cull_count, RID *p_light_cull_result, int p_light_cull_count, RID *p_reflection_probe_cull_result, int p_reflection_probe_cull_count, RID p_environment, RID p_shadow_atlas, RID p_reflection_atlas, RID p_reflection_probe, int p_reflection_probe_pass) { +void RasterizerSceneRD::render_scene(RID p_render_buffers, const Transform &p_cam_transform, const CameraMatrix &p_cam_projection, bool p_cam_ortogonal, InstanceBase **p_cull_result, int p_cull_count, RID *p_light_cull_result, int p_light_cull_count, RID *p_reflection_probe_cull_result, int p_reflection_probe_cull_count, RID *p_gi_probe_cull_result, int p_gi_probe_cull_count, RID p_environment, RID p_shadow_atlas, RID p_reflection_atlas, RID p_reflection_probe, int p_reflection_probe_pass) { RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers); ERR_FAIL_COND(!rb && p_render_buffers.is_valid()); - _render_scene(rb ? rb->data : (RenderBufferData *)NULL, p_cam_transform, p_cam_projection, p_cam_ortogonal, p_cull_result, p_cull_count, p_light_cull_result, p_light_cull_count, p_reflection_probe_cull_result, p_reflection_probe_cull_count, p_environment, p_shadow_atlas, p_reflection_atlas, p_reflection_probe, p_reflection_probe_pass); + _render_scene(rb ? rb->data : (RenderBufferData *)NULL, p_cam_transform, p_cam_projection, p_cam_ortogonal, p_cull_result, p_cull_count, p_light_cull_result, p_light_cull_count, p_reflection_probe_cull_result, p_reflection_probe_cull_count, p_gi_probe_cull_result, p_gi_probe_cull_count, p_environment, p_shadow_atlas, p_reflection_atlas, p_reflection_probe, p_reflection_probe_pass); } void RasterizerSceneRD::render_shadow(RID p_light, RID p_shadow_atlas, int p_pass, InstanceBase **p_cull_result, int p_cull_count) { @@ -1418,6 +1880,20 @@ bool RasterizerSceneRD::free(RID p_rid) { //ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_rid); reflection_probe_release_atlas_index(p_rid); reflection_probe_instance_owner.free(p_rid); + } else if (gi_probe_instance_owner.owns(p_rid)) { + GIProbeInstance *gi_probe = gi_probe_instance_owner.getornull(p_rid); + if (gi_probe->texture.is_valid()) { + RD::get_singleton()->free(gi_probe->texture); + RD::get_singleton()->free(gi_probe->write_buffer); + } + if (gi_probe->anisotropy[0].is_valid()) { + RD::get_singleton()->free(gi_probe->anisotropy[0]); + RD::get_singleton()->free(gi_probe->anisotropy[1]); + } + + gi_probe_slots.write[gi_probe->slot] = RID(); + + gi_probe_instance_owner.free(p_rid); } else if (sky_owner.owns(p_rid)) { _update_dirty_skys(); Sky *sky = sky_owner.getornull(p_rid); @@ -1470,13 +1946,83 @@ RasterizerSceneRD::RasterizerSceneRD(RasterizerStorageRD *p_storage) { sky_use_cubemap_array = GLOBAL_GET("rendering/quality/reflections/texture_array_reflections"); // sky_use_cubemap_array = false; + uint32_t textures_per_stage = RD::get_singleton()->limit_get(RD::LIMIT_MAX_TEXTURES_PER_SHADER_STAGE); + { - String defines = ""; + + //kinda complicated to compute the amount of slots, we try to use as many as we can + + gi_probe_max_lights = 32; + + gi_probe_lights = memnew_arr(GIProbeLight, gi_probe_max_lights); + gi_probe_lights_uniform = RD::get_singleton()->uniform_buffer_create(gi_probe_max_lights * sizeof(GIProbeLight)); + + gi_probe_use_anisotropy = GLOBAL_GET("rendering/quality/gi_probes/anisotropic"); + gi_probe_use_6_cones = GLOBAL_GET("rendering/quality/gi_probes/high_quality"); + + if (textures_per_stage <= 16) { + gi_probe_slots.resize(2); //thats all you can get + gi_probe_use_anisotropy = false; + } else if (textures_per_stage <= 31) { + gi_probe_slots.resize(4); //thats all you can get, iOS + gi_probe_use_anisotropy = false; + } else if (textures_per_stage <= 128) { + gi_probe_slots.resize(32); //old intel + gi_probe_use_anisotropy = false; + } else if (textures_per_stage <= 256) { + gi_probe_slots.resize(64); //old intel too + gi_probe_use_anisotropy = false; + } else { + if (gi_probe_use_anisotropy) { + gi_probe_slots.resize(1024 / 3); //needs 3 textures + } else { + gi_probe_slots.resize(1024); //modern intel, nvidia, 8192 or greater + } + } + + String defines = "\n#define MAX_LIGHTS " + itos(gi_probe_max_lights) + "\n"; + if (gi_probe_use_anisotropy) { + defines += "\n#define MODE_ANISOTROPIC\n"; + } + + Vector<String> versions; + versions.push_back("\n#define MODE_COMPUTE_LIGHT\n"); + versions.push_back("\n#define MODE_SECOND_BOUNCE\n"); + versions.push_back("\n#define MODE_UPDATE_MIPMAPS\n"); + versions.push_back("\n#define MODE_WRITE_TEXTURE\n"); + + giprobe_shader.initialize(versions, defines); + giprobe_lighting_shader_version = giprobe_shader.version_create(); + for (int i = 0; i < GI_PROBE_SHADER_VERSION_MAX; i++) { + giprobe_lighting_shader_version_shaders[i] = giprobe_shader.version_get_shader(giprobe_lighting_shader_version, i); + giprobe_lighting_shader_version_pipelines[i] = RD::get_singleton()->compute_pipeline_create(giprobe_lighting_shader_version_shaders[i]); + } + } + + { + + String defines; + if (gi_probe_use_anisotropy) { + defines += "\n#define USE_ANISOTROPY\n"; + } Vector<String> versions; - versions.push_back(""); - giprobe_lighting_shader.initialize(versions, defines); - giprobe_lighting_shader_version = giprobe_lighting_shader.version_create(); - giprobe_lighting_shader_version_shader = giprobe_lighting_shader.version_get_shader(giprobe_lighting_shader_version, 0); + versions.push_back("\n#define MODE_DEBUG_COLOR\n"); + versions.push_back("\n#define MODE_DEBUG_LIGHT\n"); + + giprobe_debug_shader.initialize(versions, defines); + giprobe_debug_shader_version = giprobe_debug_shader.version_create(); + for (int i = 0; i < GI_PROBE_DEBUG_MAX; i++) { + giprobe_debug_shader_version_shaders[i] = giprobe_debug_shader.version_get_shader(giprobe_debug_shader_version, i); + + RD::PipelineRasterizationState rs; + rs.cull_mode = RD::POLYGON_CULL_FRONT; + RD::PipelineDepthStencilState ds; + ds.enable_depth_test = true; + ds.enable_depth_write = true; + ds.depth_compare_operator = RD::COMPARE_OP_LESS_OR_EQUAL; + + giprobe_debug_shader_version_pipelines[i].setup(giprobe_debug_shader_version_shaders[i], RD::RENDER_PRIMITIVE_TRIANGLES, rs, RD::PipelineMultisampleState(), ds, RD::PipelineColorBlendState::create_disabled(), 0); + } } } @@ -1489,4 +2035,7 @@ RasterizerSceneRD::~RasterizerSceneRD() { for (Map<int, ShadowCubemap>::Element *E = shadow_cubemaps.front(); E; E = E->next()) { RD::get_singleton()->free(E->get().cubemap); } + + RD::get_singleton()->free(gi_probe_lights_uniform); + memdelete_arr(gi_probe_lights); } diff --git a/servers/visual/rasterizer_rd/rasterizer_scene_rd.h b/servers/visual/rasterizer_rd/rasterizer_scene_rd.h index 97e1d08d90..cb32880e13 100644 --- a/servers/visual/rasterizer_rd/rasterizer_scene_rd.h +++ b/servers/visual/rasterizer_rd/rasterizer_scene_rd.h @@ -4,7 +4,8 @@ #include "core/rid_owner.h" #include "servers/visual/rasterizer.h" #include "servers/visual/rasterizer_rd/rasterizer_storage_rd.h" -#include "servers/visual/rasterizer_rd/shaders/giprobe_lighting.glsl.gen.h" +#include "servers/visual/rasterizer_rd/shaders/giprobe.glsl.gen.h" +#include "servers/visual/rasterizer_rd/shaders/giprobe_debug.glsl.gen.h" #include "servers/visual/rendering_device.h" class RasterizerSceneRD : public RasterizerScene { @@ -16,9 +17,11 @@ protected: }; virtual RenderBufferData *_create_render_buffer_data() = 0; - virtual void _render_scene(RenderBufferData *p_buffer_data, const Transform &p_cam_transform, const CameraMatrix &p_cam_projection, bool p_cam_ortogonal, InstanceBase **p_cull_result, int p_cull_count, RID *p_light_cull_result, int p_light_cull_count, RID *p_reflection_probe_cull_result, int p_reflection_probe_cull_count, RID p_environment, RID p_shadow_atlas, RID p_reflection_atlas, RID p_reflection_probe, int p_reflection_probe_pass) = 0; + virtual void _render_scene(RenderBufferData *p_buffer_data, const Transform &p_cam_transform, const CameraMatrix &p_cam_projection, bool p_cam_ortogonal, InstanceBase **p_cull_result, int p_cull_count, RID *p_light_cull_result, int p_light_cull_count, RID *p_reflection_probe_cull_result, int p_reflection_probe_cull_count, RID *p_gi_probe_cull_result, int p_gi_probe_cull_count, RID p_environment, RID p_shadow_atlas, RID p_reflection_atlas, RID p_reflection_probe, int p_reflection_probe_pass) = 0; virtual void _render_shadow(RID p_framebuffer, InstanceBase **p_cull_result, int p_cull_count, const CameraMatrix &p_projection, const Transform &p_transform, float p_zfar, float p_bias, float p_normal_bias, bool p_use_dp, bool use_dp_flip) = 0; + virtual void _debug_giprobe(RID p_gi_probe, RenderingDevice::DrawListID p_draw_list, RID p_framebuffer, const CameraMatrix &p_camera_with_transform, bool p_lighting, float p_alpha); + private: int roughness_layers; @@ -76,6 +79,7 @@ private: RID reflection; RID depth_buffer; + RID depth_fb; struct Reflection { RID owner; @@ -111,9 +115,110 @@ private: /* GIPROBE INSTANCE */ - GiprobeLightingShaderRD giprobe_lighting_shader; + struct GIProbeLight { + + uint32_t type; + float energy; + float radius; + float attenuation; + + float color[3]; + float spot_angle_radians; + + float position[3]; + float spot_attenuation; + + float direction[3]; + uint32_t has_shadow; + }; + + struct GIProbePushConstant { + + int32_t limits[3]; + uint32_t stack_size; + + float emission_scale; + float propagation; + float dynamic_range; + uint32_t light_count; + + uint32_t cell_offset; + uint32_t cell_count; + float aniso_strength; + uint32_t pad; + }; + + struct GIProbeInstance { + + RID probe; + RID texture; + RID anisotropy[2]; //only if anisotropy is used + RID write_buffer; + + struct Mipmap { + RID texture; + RID anisotropy[2]; //only if anisotropy is used + RID uniform_set; + RID second_bounce_uniform_set; + RID write_uniform_set; + uint32_t level; + uint32_t cell_offset; + uint32_t cell_count; + }; + Vector<Mipmap> mipmaps; + + int slot = -1; + uint32_t last_probe_version = 0; + uint32_t last_probe_data_version = 0; + + uint64_t last_pass = 0; + uint32_t render_index = 0; + + Transform transform; + }; + + GIProbeLight *gi_probe_lights; + uint32_t gi_probe_max_lights; + RID gi_probe_lights_uniform; + + bool gi_probe_use_anisotropy = false; + bool gi_probe_use_6_cones = false; + bool gi_probe_slots_dirty = true; + Vector<RID> gi_probe_slots; + + enum { + GI_PROBE_SHADER_VERSION_COMPUTE_LIGHT, + GI_PROBE_SHADER_VERSION_COMPUTE_SECOND_BOUNCE, + GI_PROBE_SHADER_VERSION_COMPUTE_MIPMAP, + GI_PROBE_SHADER_VERSION_WRITE_TEXTURE, + GI_PROBE_SHADER_VERSION_MAX + }; + GiprobeShaderRD giprobe_shader; RID giprobe_lighting_shader_version; - RID giprobe_lighting_shader_version_shader; + RID giprobe_lighting_shader_version_shaders[GI_PROBE_SHADER_VERSION_MAX]; + RID giprobe_lighting_shader_version_pipelines[GI_PROBE_SHADER_VERSION_MAX]; + + mutable RID_Owner<GIProbeInstance> gi_probe_instance_owner; + + enum { + GI_PROBE_DEBUG_COLOR, + GI_PROBE_DEBUG_LIGHT, + GI_PROBE_DEBUG_MAX + }; + + struct GIProbeDebugPushConstant { + float projection[16]; + uint32_t cell_offset; + float dynamic_range; + float alpha; + uint32_t level; + }; + + GiprobeDebugShaderRD giprobe_debug_shader; + RID giprobe_debug_shader_version; + RID giprobe_debug_shader_version_shaders[GI_PROBE_DEBUG_MAX]; + RenderPipelineVertexFormatCacheRD giprobe_debug_shader_version_pipelines[GI_PROBE_DEBUG_MAX]; + RID giprobe_debug_uniform_set; /* SHADOW ATLAS */ @@ -497,6 +602,7 @@ public: uint32_t reflection_probe_instance_get_resolution(RID p_instance); RID reflection_probe_instance_get_framebuffer(RID p_instance, int p_index); + RID reflection_probe_instance_get_depth_framebuffer(RID p_instance, int p_index); _FORCE_INLINE_ RID reflection_probe_instance_get_probe(RID p_instance) { ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance); @@ -545,15 +651,70 @@ public: return rpi->atlas_index; } - RID gi_probe_instance_create() { return RID(); } - void gi_probe_instance_set_light_data(RID p_probe, RID p_base, RID p_data) {} - void gi_probe_instance_set_transform_to_data(RID p_probe, const Transform &p_xform) {} - void gi_probe_instance_set_bounds(RID p_probe, const Vector3 &p_bounds) {} + RID gi_probe_instance_create(RID p_base); + void gi_probe_instance_set_transform_to_data(RID p_probe, const Transform &p_xform); + bool gi_probe_needs_update(RID p_probe) const; + void gi_probe_update(RID p_probe, const Vector<RID> &p_light_instances); + _FORCE_INLINE_ uint32_t gi_probe_instance_get_slot(RID p_probe) { + GIProbeInstance *gi_probe = gi_probe_instance_owner.getornull(p_probe); + return gi_probe->slot; + } + _FORCE_INLINE_ RID gi_probe_instance_get_base_probe(RID p_probe) { + GIProbeInstance *gi_probe = gi_probe_instance_owner.getornull(p_probe); + return gi_probe->probe; + } + _FORCE_INLINE_ Transform gi_probe_instance_get_transform_to_cell(RID p_probe) { + GIProbeInstance *gi_probe = gi_probe_instance_owner.getornull(p_probe); + return storage->gi_probe_get_to_cell_xform(gi_probe->probe) * gi_probe->transform.affine_inverse(); + } + + _FORCE_INLINE_ RID gi_probe_instance_get_texture(RID p_probe) { + GIProbeInstance *gi_probe = gi_probe_instance_owner.getornull(p_probe); + return gi_probe->texture; + } + _FORCE_INLINE_ RID gi_probe_instance_get_aniso_texture(RID p_probe, int p_index) { + GIProbeInstance *gi_probe = gi_probe_instance_owner.getornull(p_probe); + return gi_probe->anisotropy[p_index]; + } + + _FORCE_INLINE_ void gi_probe_instance_set_render_index(RID p_instance, uint32_t p_render_index) { + GIProbeInstance *gi_probe = gi_probe_instance_owner.getornull(p_instance); + ERR_FAIL_COND(!gi_probe); + gi_probe->render_index = p_render_index; + } + + _FORCE_INLINE_ uint32_t gi_probe_instance_get_render_index(RID p_instance) { + GIProbeInstance *gi_probe = gi_probe_instance_owner.getornull(p_instance); + ERR_FAIL_COND_V(!gi_probe, 0); + + return gi_probe->render_index; + } + + _FORCE_INLINE_ void gi_probe_instance_set_render_pass(RID p_instance, uint32_t p_render_pass) { + GIProbeInstance *g_probe = gi_probe_instance_owner.getornull(p_instance); + ERR_FAIL_COND(!g_probe); + g_probe->last_pass = p_render_pass; + } + + _FORCE_INLINE_ uint32_t gi_probe_instance_get_render_pass(RID p_instance) { + GIProbeInstance *g_probe = gi_probe_instance_owner.getornull(p_instance); + ERR_FAIL_COND_V(!g_probe, 0); + + return g_probe->last_pass; + } + + const Vector<RID> &gi_probe_get_slots() const; + bool gi_probe_slots_are_dirty() const; + void gi_probe_slots_make_not_dirty(); + _FORCE_INLINE_ bool gi_probe_is_anisotropic() const { + return gi_probe_use_anisotropy; + } + bool gi_probe_is_high_quality() const; RID render_buffers_create(); void render_buffers_configure(RID p_render_buffers, RID p_render_target, int p_width, int p_height, VS::ViewportMSAA p_msaa); - void render_scene(RID p_render_buffers, const Transform &p_cam_transform, const CameraMatrix &p_cam_projection, bool p_cam_ortogonal, InstanceBase **p_cull_result, int p_cull_count, RID *p_light_cull_result, int p_light_cull_count, RID *p_reflection_probe_cull_result, int p_reflection_probe_cull_count, RID p_environment, RID p_shadow_atlas, RID p_reflection_atlas, RID p_reflection_probe, int p_reflection_probe_pass); + void render_scene(RID p_render_buffers, const Transform &p_cam_transform, const CameraMatrix &p_cam_projection, bool p_cam_ortogonal, InstanceBase **p_cull_result, int p_cull_count, RID *p_light_cull_result, int p_light_cull_count, RID *p_reflection_probe_cull_result, int p_reflection_probe_cull_count, RID *p_gi_probe_cull_result, int p_gi_probe_cull_count, RID p_environment, RID p_shadow_atlas, RID p_reflection_atlas, RID p_reflection_probe, int p_reflection_probe_pass); void render_shadow(RID p_light, RID p_shadow_atlas, int p_pass, InstanceBase **p_cull_result, int p_cull_count); diff --git a/servers/visual/rasterizer_rd/rasterizer_storage_rd.cpp b/servers/visual/rasterizer_rd/rasterizer_storage_rd.cpp index cd2f48b328..28ecda081d 100644 --- a/servers/visual/rasterizer_rd/rasterizer_storage_rd.cpp +++ b/servers/visual/rasterizer_rd/rasterizer_storage_rd.cpp @@ -987,6 +987,7 @@ void RasterizerStorageRD::shader_set_data_request_function(ShaderType p_shader_t /* COMMON MATERIAL API */ RID RasterizerStorageRD::material_create() { + Material material; material.data = NULL; material.shader = NULL; @@ -1924,7 +1925,7 @@ void RasterizerStorageRD::mesh_add_surface(RID p_mesh, const VS::SurfaceData &p_ mesh->aabb.merge_with(p_surface.aabb); } - s->material = p_mesh; + s->material = p_surface.material; mesh->surfaces = (Mesh::Surface **)memrealloc(mesh->surfaces, sizeof(Mesh::Surface *) * (mesh->surface_count + 1)); mesh->surfaces[mesh->surface_count] = s; @@ -1995,6 +1996,8 @@ VS::SurfaceData RasterizerStorageRD::mesh_get_surface(RID p_mesh, int p_surface) sd.vertex_data = RD::get_singleton()->buffer_get_data(s.vertex_buffer); sd.vertex_count = s.vertex_count; sd.index_count = s.index_count; + sd.primitive = s.primitive; + if (sd.index_count) { sd.index_data = RD::get_singleton()->buffer_get_data(s.index_buffer); } @@ -3544,6 +3547,253 @@ float RasterizerStorageRD::reflection_probe_get_interior_ambient_probe_contribut return reflection_probe->interior_ambient_probe_contrib; } +RID RasterizerStorageRD::gi_probe_create() { + + return gi_probe_owner.make_rid(GIProbe()); +} + +void RasterizerStorageRD::gi_probe_allocate(RID p_gi_probe, const Transform &p_to_cell_xform, const AABB &p_aabb, const Vector3i &p_octree_size, const PoolVector<uint8_t> &p_octree_cells, const PoolVector<uint8_t> &p_data_cells, const PoolVector<int> &p_level_counts) { + GIProbe *gi_probe = gi_probe_owner.getornull(p_gi_probe); + ERR_FAIL_COND(!gi_probe); + + bool data_version_changed = false; + + if (gi_probe->octree_buffer_size != p_octree_cells.size() || gi_probe->data_buffer_size != p_data_cells.size()) { + //buffer size changed, clear if needed + if (gi_probe->octree_buffer.is_valid()) { + RD::get_singleton()->free(gi_probe->octree_buffer); + RD::get_singleton()->free(gi_probe->data_buffer); + + gi_probe->octree_buffer = RID(); + gi_probe->data_buffer = RID(); + gi_probe->octree_buffer_size = 0; + gi_probe->data_buffer_size = 0; + gi_probe->cell_count = 0; + } + + data_version_changed = true; + + } else if (gi_probe->octree_buffer_size) { + //they are the same and size did not change.. + //update + + PoolVector<uint8_t>::Read rc = p_octree_cells.read(); + PoolVector<uint8_t>::Read rd = p_data_cells.read(); + + RD::get_singleton()->buffer_update(gi_probe->octree_buffer, 0, gi_probe->octree_buffer_size, rc.ptr()); + RD::get_singleton()->buffer_update(gi_probe->data_buffer, 0, gi_probe->data_buffer_size, rd.ptr()); + } + + if (gi_probe->level_counts.size() != p_level_counts.size()) { + data_version_changed = true; + } else { + for (int i = 0; i < p_level_counts.size(); i++) { + if (gi_probe->level_counts[i] != p_level_counts[i]) { + data_version_changed = true; + break; + } + } + } + + gi_probe->to_cell_xform = p_to_cell_xform; + gi_probe->bounds = p_aabb; + gi_probe->octree_size = p_octree_size; + gi_probe->level_counts = p_level_counts; + + if (p_octree_cells.size() && gi_probe->octree_buffer.is_null()) { + ERR_FAIL_COND(p_octree_cells.size() % 32 != 0); //cells size must be a multiple of 32 + + uint32_t cell_count = p_octree_cells.size() / 32; + + ERR_FAIL_COND(p_data_cells.size() != cell_count * 16); //see that data size matches + + gi_probe->cell_count = cell_count; + gi_probe->octree_buffer = RD::get_singleton()->storage_buffer_create(p_octree_cells.size(), p_octree_cells); + gi_probe->octree_buffer_size = p_octree_cells.size(); + gi_probe->data_buffer = RD::get_singleton()->storage_buffer_create(p_data_cells.size(), p_data_cells); + gi_probe->data_buffer_size = p_data_cells.size(); + data_version_changed = true; + } + + gi_probe->version++; + if (data_version_changed) { + gi_probe->data_version++; + } + gi_probe->instance_dependency.instance_notify_changed(true, false); +} + +AABB RasterizerStorageRD::gi_probe_get_bounds(RID p_gi_probe) const { + GIProbe *gi_probe = gi_probe_owner.getornull(p_gi_probe); + ERR_FAIL_COND_V(!gi_probe, AABB()); + + return gi_probe->bounds; +} + +Vector3i RasterizerStorageRD::gi_probe_get_octree_size(RID p_gi_probe) const { + GIProbe *gi_probe = gi_probe_owner.getornull(p_gi_probe); + ERR_FAIL_COND_V(!gi_probe, Vector3i()); + return gi_probe->octree_size; +} +PoolVector<uint8_t> RasterizerStorageRD::gi_probe_get_octree_cells(RID p_gi_probe) const { + GIProbe *gi_probe = gi_probe_owner.getornull(p_gi_probe); + ERR_FAIL_COND_V(!gi_probe, PoolVector<uint8_t>()); + + if (gi_probe->octree_buffer.is_valid()) { + return RD::get_singleton()->buffer_get_data(gi_probe->octree_buffer); + } + return PoolVector<uint8_t>(); +} +PoolVector<uint8_t> RasterizerStorageRD::gi_probe_get_data_cells(RID p_gi_probe) const { + GIProbe *gi_probe = gi_probe_owner.getornull(p_gi_probe); + ERR_FAIL_COND_V(!gi_probe, PoolVector<uint8_t>()); + + if (gi_probe->data_buffer.is_valid()) { + return RD::get_singleton()->buffer_get_data(gi_probe->data_buffer); + } + return PoolVector<uint8_t>(); +} +PoolVector<int> RasterizerStorageRD::gi_probe_get_level_counts(RID p_gi_probe) const { + GIProbe *gi_probe = gi_probe_owner.getornull(p_gi_probe); + ERR_FAIL_COND_V(!gi_probe, PoolVector<int>()); + + return gi_probe->level_counts; +} +Transform RasterizerStorageRD::gi_probe_get_to_cell_xform(RID p_gi_probe) const { + GIProbe *gi_probe = gi_probe_owner.getornull(p_gi_probe); + ERR_FAIL_COND_V(!gi_probe, Transform()); + + return gi_probe->to_cell_xform; +} + +void RasterizerStorageRD::gi_probe_set_dynamic_range(RID p_gi_probe, float p_range) { + GIProbe *gi_probe = gi_probe_owner.getornull(p_gi_probe); + ERR_FAIL_COND(!gi_probe); + + gi_probe->dynamic_range = p_range; + gi_probe->version++; +} +float RasterizerStorageRD::gi_probe_get_dynamic_range(RID p_gi_probe) const { + GIProbe *gi_probe = gi_probe_owner.getornull(p_gi_probe); + ERR_FAIL_COND_V(!gi_probe, 0); + + return gi_probe->dynamic_range; +} + +void RasterizerStorageRD::gi_probe_set_propagation(RID p_gi_probe, float p_range) { + GIProbe *gi_probe = gi_probe_owner.getornull(p_gi_probe); + ERR_FAIL_COND(!gi_probe); + + gi_probe->propagation = p_range; + gi_probe->version++; +} +float RasterizerStorageRD::gi_probe_get_propagation(RID p_gi_probe) const { + GIProbe *gi_probe = gi_probe_owner.getornull(p_gi_probe); + ERR_FAIL_COND_V(!gi_probe, 0); + return gi_probe->propagation; +} + +void RasterizerStorageRD::gi_probe_set_energy(RID p_gi_probe, float p_energy) { + GIProbe *gi_probe = gi_probe_owner.getornull(p_gi_probe); + ERR_FAIL_COND(!gi_probe); + + gi_probe->energy = p_energy; +} +float RasterizerStorageRD::gi_probe_get_energy(RID p_gi_probe) const { + GIProbe *gi_probe = gi_probe_owner.getornull(p_gi_probe); + ERR_FAIL_COND_V(!gi_probe, 0); + return gi_probe->energy; +} + +void RasterizerStorageRD::gi_probe_set_bias(RID p_gi_probe, float p_bias) { + GIProbe *gi_probe = gi_probe_owner.getornull(p_gi_probe); + ERR_FAIL_COND(!gi_probe); + + gi_probe->bias = p_bias; +} +float RasterizerStorageRD::gi_probe_get_bias(RID p_gi_probe) const { + GIProbe *gi_probe = gi_probe_owner.getornull(p_gi_probe); + ERR_FAIL_COND_V(!gi_probe, 0); + return gi_probe->bias; +} + +void RasterizerStorageRD::gi_probe_set_normal_bias(RID p_gi_probe, float p_normal_bias) { + GIProbe *gi_probe = gi_probe_owner.getornull(p_gi_probe); + ERR_FAIL_COND(!gi_probe); + + gi_probe->normal_bias = p_normal_bias; +} +float RasterizerStorageRD::gi_probe_get_normal_bias(RID p_gi_probe) const { + GIProbe *gi_probe = gi_probe_owner.getornull(p_gi_probe); + ERR_FAIL_COND_V(!gi_probe, 0); + return gi_probe->normal_bias; +} + +void RasterizerStorageRD::gi_probe_set_anisotropy_strength(RID p_gi_probe, float p_strength) { + + GIProbe *gi_probe = gi_probe_owner.getornull(p_gi_probe); + ERR_FAIL_COND(!gi_probe); + + gi_probe->anisotropy_strength = p_strength; +} + +float RasterizerStorageRD::gi_probe_get_anisotropy_strength(RID p_gi_probe) const { + GIProbe *gi_probe = gi_probe_owner.getornull(p_gi_probe); + ERR_FAIL_COND_V(!gi_probe, 0); + return gi_probe->anisotropy_strength; +} + +void RasterizerStorageRD::gi_probe_set_interior(RID p_gi_probe, bool p_enable) { + GIProbe *gi_probe = gi_probe_owner.getornull(p_gi_probe); + ERR_FAIL_COND(!gi_probe); + + gi_probe->interior = p_enable; +} + +void RasterizerStorageRD::gi_probe_set_use_two_bounces(RID p_gi_probe, bool p_enable) { + GIProbe *gi_probe = gi_probe_owner.getornull(p_gi_probe); + ERR_FAIL_COND(!gi_probe); + + gi_probe->use_two_bounces = p_enable; + gi_probe->version++; +} + +bool RasterizerStorageRD::gi_probe_is_using_two_bounces(RID p_gi_probe) const { + GIProbe *gi_probe = gi_probe_owner.getornull(p_gi_probe); + ERR_FAIL_COND_V(!gi_probe, false); + return gi_probe->use_two_bounces; +} + +bool RasterizerStorageRD::gi_probe_is_interior(RID p_gi_probe) const { + GIProbe *gi_probe = gi_probe_owner.getornull(p_gi_probe); + ERR_FAIL_COND_V(!gi_probe, 0); + return gi_probe->interior; +} + +uint32_t RasterizerStorageRD::gi_probe_get_version(RID p_gi_probe) { + GIProbe *gi_probe = gi_probe_owner.getornull(p_gi_probe); + ERR_FAIL_COND_V(!gi_probe, 0); + return gi_probe->version; +} + +uint32_t RasterizerStorageRD::gi_probe_get_data_version(RID p_gi_probe) { + GIProbe *gi_probe = gi_probe_owner.getornull(p_gi_probe); + ERR_FAIL_COND_V(!gi_probe, 0); + return gi_probe->data_version; +} + +RID RasterizerStorageRD::gi_probe_get_octree_buffer(RID p_gi_probe) const { + + GIProbe *gi_probe = gi_probe_owner.getornull(p_gi_probe); + ERR_FAIL_COND_V(!gi_probe, RID()); + return gi_probe->octree_buffer; +} +RID RasterizerStorageRD::gi_probe_get_data_buffer(RID p_gi_probe) const { + + GIProbe *gi_probe = gi_probe_owner.getornull(p_gi_probe); + ERR_FAIL_COND_V(!gi_probe, RID()); + return gi_probe->data_buffer; +} + /* RENDER TARGET API */ void RasterizerStorageRD::_clear_render_target(RenderTarget *rt) { @@ -3821,7 +4071,7 @@ void RasterizerStorageRD::render_target_do_clear_request(RID p_render_target) { } Vector<Color> clear_colors; clear_colors.push_back(rt->clear_color); - RD::get_singleton()->draw_list_begin(rt->framebuffer, RD::INITIAL_ACTION_CLEAR, RD::FINAL_ACTION_READ_COLOR_DISCARD_DEPTH, clear_colors); + RD::get_singleton()->draw_list_begin(rt->framebuffer, RD::INITIAL_ACTION_CLEAR, RD::FINAL_ACTION_READ, RD::INITIAL_ACTION_KEEP, RD::FINAL_ACTION_DISCARD, clear_colors); RD::get_singleton()->draw_list_end(); rt->clear_requested = false; } @@ -3899,6 +4149,9 @@ void RasterizerStorageRD::base_update_dependency(RID p_base, RasterizerScene::In } else if (reflection_probe_owner.owns(p_base)) { ReflectionProbe *rp = reflection_probe_owner.getornull(p_base); p_instance->update_dependency(&rp->instance_dependency); + } else if (gi_probe_owner.owns(p_base)) { + GIProbe *gip = gi_probe_owner.getornull(p_base); + p_instance->update_dependency(&gip->instance_dependency); } else if (light_owner.owns(p_base)) { Light *l = light_owner.getornull(p_base); p_instance->update_dependency(&l->instance_dependency); @@ -3924,6 +4177,9 @@ VS::InstanceType RasterizerStorageRD::get_base_type(RID p_rid) const { if (reflection_probe_owner.owns(p_rid)) { return VS::INSTANCE_REFLECTION_PROBE; } + if (gi_probe_owner.owns(p_rid)) { + return VS::INSTANCE_GI_PROBE; + } if (light_owner.owns(p_rid)) { return VS::INSTANCE_LIGHT; } @@ -4032,6 +4288,11 @@ bool RasterizerStorageRD::free(RID p_rid) { ReflectionProbe *reflection_probe = reflection_probe_owner.getornull(p_rid); reflection_probe->instance_dependency.instance_notify_deleted(p_rid); reflection_probe_owner.free(p_rid); + } else if (gi_probe_owner.owns(p_rid)) { + gi_probe_allocate(p_rid, Transform(), AABB(), Vector3i(), PoolVector<uint8_t>(), PoolVector<uint8_t>(), PoolVector<int>()); //deallocate + GIProbe *gi_probe = gi_probe_owner.getornull(p_rid); + gi_probe->instance_dependency.instance_notify_deleted(p_rid); + gi_probe_owner.free(p_rid); } else if (light_owner.owns(p_rid)) { diff --git a/servers/visual/rasterizer_rd/rasterizer_storage_rd.h b/servers/visual/rasterizer_rd/rasterizer_storage_rd.h index 6cdc21c2f0..289a2ae5a8 100644 --- a/servers/visual/rasterizer_rd/rasterizer_storage_rd.h +++ b/servers/visual/rasterizer_rd/rasterizer_storage_rd.h @@ -401,6 +401,42 @@ private: mutable RID_Owner<ReflectionProbe> reflection_probe_owner; + /* GI PROBE */ + + struct GIProbe { + + RID octree_buffer; + RID data_buffer; + + uint32_t octree_buffer_size = 0; + uint32_t data_buffer_size = 0; + + PoolVector<int> level_counts; + + int cell_count = 0; + + Transform to_cell_xform; + AABB bounds; + Vector3i octree_size; + + float dynamic_range = 4.0; + float energy = 1.0; + float bias = 1.4; + float normal_bias = 0.0; + float propagation = 0.7; + bool interior = false; + bool use_two_bounces = false; + + float anisotropy_strength = 0.5; + + uint32_t version = 1; + uint32_t data_version = 1; + + RasterizerScene::InstanceDependency instance_dependency; + }; + + mutable RID_Owner<GIProbe> gi_probe_owner; + /* RENDER TARGET */ struct RenderTarget { @@ -922,49 +958,46 @@ public: /* GI PROBE API */ - RID gi_probe_create() { return RID(); } + RID gi_probe_create(); - void gi_probe_set_bounds(RID p_probe, const AABB &p_bounds) {} - AABB gi_probe_get_bounds(RID p_probe) const { return AABB(); } + void gi_probe_allocate(RID p_gi_probe, const Transform &p_to_cell_xform, const AABB &p_aabb, const Vector3i &p_octree_size, const PoolVector<uint8_t> &p_octree_cells, const PoolVector<uint8_t> &p_data_cells, const PoolVector<int> &p_level_counts); - void gi_probe_set_cell_size(RID p_probe, float p_range) {} - float gi_probe_get_cell_size(RID p_probe) const { return 0.0; } + AABB gi_probe_get_bounds(RID p_gi_probe) const; + Vector3i gi_probe_get_octree_size(RID p_gi_probe) const; + PoolVector<uint8_t> gi_probe_get_octree_cells(RID p_gi_probe) const; + PoolVector<uint8_t> gi_probe_get_data_cells(RID p_gi_probe) const; + PoolVector<int> gi_probe_get_level_counts(RID p_gi_probe) const; + Transform gi_probe_get_to_cell_xform(RID p_gi_probe) const; - void gi_probe_set_to_cell_xform(RID p_probe, const Transform &p_xform) {} - Transform gi_probe_get_to_cell_xform(RID p_probe) const { return Transform(); } - - void gi_probe_set_dynamic_data(RID p_probe, const PoolVector<int> &p_data) {} - PoolVector<int> gi_probe_get_dynamic_data(RID p_probe) const { - PoolVector<int> p; - return p; - } + void gi_probe_set_dynamic_range(RID p_gi_probe, float p_range); + float gi_probe_get_dynamic_range(RID p_gi_probe) const; - void gi_probe_set_dynamic_range(RID p_probe, int p_range) {} - int gi_probe_get_dynamic_range(RID p_probe) const { return 0; } + void gi_probe_set_propagation(RID p_gi_probe, float p_range); + float gi_probe_get_propagation(RID p_gi_probe) const; - void gi_probe_set_energy(RID p_probe, float p_range) {} - float gi_probe_get_energy(RID p_probe) const { return 0.0; } + void gi_probe_set_energy(RID p_gi_probe, float p_energy); + float gi_probe_get_energy(RID p_gi_probe) const; - void gi_probe_set_bias(RID p_probe, float p_range) {} - float gi_probe_get_bias(RID p_probe) const { return 0.0; } + void gi_probe_set_bias(RID p_gi_probe, float p_bias); + float gi_probe_get_bias(RID p_gi_probe) const; - void gi_probe_set_normal_bias(RID p_probe, float p_range) {} - float gi_probe_get_normal_bias(RID p_probe) const { return 0.0; } + void gi_probe_set_normal_bias(RID p_gi_probe, float p_range); + float gi_probe_get_normal_bias(RID p_gi_probe) const; - void gi_probe_set_propagation(RID p_probe, float p_range) {} - float gi_probe_get_propagation(RID p_probe) const { return 0.0; } + void gi_probe_set_interior(RID p_gi_probe, bool p_enable); + bool gi_probe_is_interior(RID p_gi_probe) const; - void gi_probe_set_interior(RID p_probe, bool p_enable) {} - bool gi_probe_is_interior(RID p_probe) const { return false; } + void gi_probe_set_use_two_bounces(RID p_gi_probe, bool p_enable); + bool gi_probe_is_using_two_bounces(RID p_gi_probe) const; - void gi_probe_set_compress(RID p_probe, bool p_enable) {} - bool gi_probe_is_compressed(RID p_probe) const { return false; } + void gi_probe_set_anisotropy_strength(RID p_gi_probe, float p_strength); + float gi_probe_get_anisotropy_strength(RID p_gi_probe) const; - uint32_t gi_probe_get_version(RID p_probe) { return 0; } + uint32_t gi_probe_get_version(RID p_probe); + uint32_t gi_probe_get_data_version(RID p_probe); - GIProbeCompression gi_probe_get_dynamic_data_get_preferred_compression() const { return GI_PROBE_UNCOMPRESSED; } - RID gi_probe_dynamic_data_create(int p_width, int p_height, int p_depth, GIProbeCompression p_compression) { return RID(); } - void gi_probe_dynamic_data_update(RID p_gi_probe_data, int p_depth_slice, int p_slice_count, int p_mipmap, const void *p_data) {} + RID gi_probe_get_octree_buffer(RID p_gi_probe) const; + RID gi_probe_get_data_buffer(RID p_gi_probe) const; /* LIGHTMAP CAPTURE */ diff --git a/servers/visual/rasterizer_rd/shaders/SCsub b/servers/visual/rasterizer_rd/shaders/SCsub index 660523e29f..bce700f7b0 100644 --- a/servers/visual/rasterizer_rd/shaders/SCsub +++ b/servers/visual/rasterizer_rd/shaders/SCsub @@ -11,5 +11,6 @@ if 'RD_GLSL' in env['BUILDERS']: env.RD_GLSL('sky.glsl'); env.RD_GLSL('tonemap.glsl'); env.RD_GLSL('copy.glsl'); - env.RD_GLSL('giprobe_lighting.glsl'); + env.RD_GLSL('giprobe.glsl'); + env.RD_GLSL('giprobe_debug.glsl'); diff --git a/servers/visual/rasterizer_rd/shaders/giprobe.glsl b/servers/visual/rasterizer_rd/shaders/giprobe.glsl new file mode 100644 index 0000000000..35b8d6ba6b --- /dev/null +++ b/servers/visual/rasterizer_rd/shaders/giprobe.glsl @@ -0,0 +1,543 @@ +[compute] + +#version 450 + +VERSION_DEFINES + +layout(local_size_x = 64, local_size_y = 1, local_size_z = 1) in; + +#define NO_CHILDREN 0xFFFFFFFF +#define GREY_VEC vec3(0.33333,0.33333,0.33333) + +struct CellChildren { + uint children[8]; +}; + +layout(set=0,binding=1,std430) buffer CellChildrenBuffer { + CellChildren data[]; +} cell_children; + +struct CellData { + uint position; // xyz 10 bits + uint albedo; //rgb albedo + uint emission; //rgb normalized with e as multiplier + uint normal; //RGB normal encoded +}; + +layout(set=0,binding=2,std430) buffer CellDataBuffer { + CellData data[]; +} cell_data; + +#define LIGHT_TYPE_DIRECTIONAL 0 +#define LIGHT_TYPE_OMNI 1 +#define LIGHT_TYPE_SPOT 2 + +#ifdef MODE_COMPUTE_LIGHT + +struct Light { + + uint type; + float energy; + float radius; + float attenuation; + + vec3 color; + float spot_angle_radians; + + vec3 position; + float spot_attenuation; + + vec3 direction; + bool has_shadow; +}; + + +layout(set=0,binding=3,std140) uniform Lights { + Light data[MAX_LIGHTS]; +} lights; + + + +#endif // MODE COMPUTE LIGHT + + +#ifdef MODE_SECOND_BOUNCE + +layout (set=0,binding=5) uniform texture3D color_texture; +layout (set=0,binding=6) uniform sampler texture_sampler; + +#ifdef MODE_ANISOTROPIC +layout (set=0,binding=7) uniform texture3D aniso_pos_texture; +layout (set=0,binding=8) uniform texture3D aniso_neg_texture; +#endif // MODE ANISOTROPIC + +#endif // MODE_SECOND_BOUNCE + + +layout(push_constant, binding = 0, std430) uniform Params { + + ivec3 limits; + uint stack_size; + + float emission_scale; + float propagation; + float dynamic_range; + + uint light_count; + uint cell_offset; + uint cell_count; + float aniso_strength; + uint pad; + +} params; + + +layout(set=0,binding=4,std430) buffer Outputs { + vec4 data[]; +} outputs; + +#ifdef MODE_WRITE_TEXTURE + +layout (rgba8,set=0,binding=5) uniform restrict writeonly image3D color_tex; + +#ifdef MODE_ANISOTROPIC + +layout (r16ui,set=0,binding=6) uniform restrict writeonly uimage3D aniso_pos_tex; +layout (r16ui,set=0,binding=7) uniform restrict writeonly uimage3D aniso_neg_tex; + +#endif + + +#endif + + +#ifdef MODE_COMPUTE_LIGHT + +uint raymarch(float distance,float distance_adv,vec3 from,vec3 direction) { + + uint result = NO_CHILDREN; + + ivec3 size = ivec3(max(max(params.limits.x,params.limits.y),params.limits.z)); + + while (distance > -distance_adv) { //use this to avoid precision errors + + uint cell = 0; + + ivec3 pos = ivec3(from); + + if (all(greaterThanEqual(pos,ivec3(0))) && all(lessThan(pos,size))) { + + ivec3 ofs = ivec3(0); + ivec3 half_size = size / 2; + + for (int i = 0; i < params.stack_size - 1; i++) { + + bvec3 greater = greaterThanEqual(pos,ofs+half_size); + + ofs += mix(ivec3(0),half_size,greater); + + uint child = 0; //wonder if this can be done faster + if (greater.x) { + child|=1; + } + if (greater.y) { + child|=2; + } + if (greater.z) { + child|=4; + } + + cell = cell_children.data[cell].children[child]; + if (cell == NO_CHILDREN) + break; + + half_size >>= ivec3(1); + } + + if ( cell != NO_CHILDREN) { + return cell; //found cell! + } + + } + + from += direction * distance_adv; + distance -= distance_adv; + } + + return NO_CHILDREN; +} + +bool compute_light_vector(uint light,uint cell, vec3 pos,out float attenuation, out vec3 light_pos) { + + + if (lights.data[light].type==LIGHT_TYPE_DIRECTIONAL) { + + light_pos = pos - lights.data[light].direction * length(vec3(params.limits)); + attenuation = 1.0; + + } else { + + light_pos = lights.data[light].position; + float distance = length(pos - light_pos); + if (distance >= lights.data[light].radius) { + return false; + } + + + attenuation = pow( clamp( 1.0 - distance / lights.data[light].radius, 0.0001, 1.0), lights.data[light].attenuation ); + + + if (lights.data[light].type==LIGHT_TYPE_SPOT) { + + vec3 rel = normalize(pos - light_pos); + float angle = acos(dot(rel,lights.data[light].direction)); + if (angle > lights.data[light].spot_angle_radians) { + return false; + } + + float d = clamp(angle / lights.data[light].spot_angle_radians, 0, 1); + attenuation *= pow(1.0 - d, lights.data[light].spot_attenuation); + } + } + + return true; +} + +float get_normal_advance(vec3 p_normal) { + + vec3 normal = p_normal; + vec3 unorm = abs(normal); + + if ((unorm.x >= unorm.y) && (unorm.x >= unorm.z)) { + // x code + unorm = normal.x > 0.0 ? vec3(1.0, 0.0, 0.0) : vec3(-1.0, 0.0, 0.0); + } else if ((unorm.y > unorm.x) && (unorm.y >= unorm.z)) { + // y code + unorm = normal.y > 0.0 ? vec3(0.0, 1.0, 0.0) : vec3(0.0, -1.0, 0.0); + } else if ((unorm.z > unorm.x) && (unorm.z > unorm.y)) { + // z code + unorm = normal.z > 0.0 ? vec3(0.0, 0.0, 1.0) : vec3(0.0, 0.0, -1.0); + } else { + // oh-no we messed up code + // has to be + unorm = vec3(1.0, 0.0, 0.0); + } + + return 1.0 / dot(normal,unorm); +} + +#endif + + + + +void main() { + + uint cell_index = gl_GlobalInvocationID.x;; + if (cell_index >= params.cell_count) { + return; + } + cell_index += params.cell_offset; + + uvec3 posu = uvec3(cell_data.data[cell_index].position&0x7FF,(cell_data.data[cell_index].position>>11)&0x3FF,cell_data.data[cell_index].position>>21); + vec4 albedo = unpackUnorm4x8(cell_data.data[cell_index].albedo); + +/////////////////COMPUTE LIGHT/////////////////////////////// + +#ifdef MODE_COMPUTE_LIGHT + + vec3 pos = vec3(posu) + vec3(0.5); + + vec3 emission = vec3(ivec3(cell_data.data[cell_index].emission&0x3FF,(cell_data.data[cell_index].emission>>10)&0x7FF,cell_data.data[cell_index].emission>>21)) * params.emission_scale; + vec4 normal = unpackSnorm4x8(cell_data.data[cell_index].normal); + +#ifdef MODE_ANISOTROPIC + vec3 accum[6]=vec3[](vec3(0.0),vec3(0.0),vec3(0.0),vec3(0.0),vec3(0.0),vec3(0.0)); + const vec3 accum_dirs[6]=vec3[](vec3(1.0,0.0,0.0),vec3(-1.0,0.0,0.0),vec3(0.0,1.0,0.0),vec3(0.0,-1.0,0.0),vec3(0.0,0.0,1.0),vec3(0.0,0.0,-1.0)); +#else + vec3 accum = vec3(0.0); +#endif + + for(uint i=0;i<params.light_count;i++) { + + float attenuation; + vec3 light_pos; + + if (!compute_light_vector(i,cell_index,pos,attenuation,light_pos)) { + continue; + } + + vec3 light_dir = pos - light_pos; + float distance = length(light_dir); + light_dir=normalize(light_dir); + + if (length(normal.xyz) > 0.2 && dot(normal.xyz,light_dir)>=0) { + continue; //not facing the light + } + + if (lights.data[i].has_shadow) { + + float distance_adv = get_normal_advance(light_dir); + + + distance += distance_adv - mod(distance, distance_adv); //make it reach the center of the box always + + vec3 from = pos - light_dir * distance; //approximate + from -= sign(light_dir)*0.45; //go near the edge towards the light direction to avoid self occlusion + + + + uint result = raymarch(distance,distance_adv,from,light_dir); + + if (result != cell_index) { + continue; //was occluded + } + } + + vec3 light = lights.data[i].color * albedo.rgb * attenuation * lights.data[i].energy; + +#ifdef MODE_ANISOTROPIC + for(uint j=0;j<6;j++) { + + accum[j]+=max(0.0,dot(accum_dirs[j],-light_dir))*light+emission; + } +#else + if (length(normal.xyz) > 0.2) { + accum+=max(0.0,dot(normal.xyz,-light_dir))*light+emission; + } else { + //all directions + accum+=light+emission; + } +#endif + } + + +#ifdef MODE_ANISOTROPIC + + outputs.data[cell_index*6+0]=vec4(accum[0],0.0); + outputs.data[cell_index*6+1]=vec4(accum[1],0.0); + outputs.data[cell_index*6+2]=vec4(accum[2],0.0); + outputs.data[cell_index*6+3]=vec4(accum[3],0.0); + outputs.data[cell_index*6+4]=vec4(accum[4],0.0); + outputs.data[cell_index*6+5]=vec4(accum[5],0.0); +#else + outputs.data[cell_index]=vec4(accum,0.0); + +#endif + + + +#endif //MODE_COMPUTE_LIGHT + +/////////////////SECOND BOUNCE/////////////////////////////// +#ifdef MODE_SECOND_BOUNCE + vec3 pos = vec3(posu) + vec3(0.5); + ivec3 ipos = ivec3(posu); + vec4 normal = unpackSnorm4x8(cell_data.data[cell_index].normal); + + +#ifdef MODE_ANISOTROPIC + vec3 accum[6]; + const vec3 accum_dirs[6]=vec3[](vec3(1.0,0.0,0.0),vec3(-1.0,0.0,0.0),vec3(0.0,1.0,0.0),vec3(0.0,-1.0,0.0),vec3(0.0,0.0,1.0),vec3(0.0,0.0,-1.0)); + + /*vec3 src_color = texelFetch(sampler3D(color_texture,texture_sampler),ipos,0).rgb * params.dynamic_range; + vec3 src_aniso_pos = texelFetch(sampler3D(aniso_pos_texture,texture_sampler),ipos,0).rgb; + vec3 src_anisp_neg = texelFetch(sampler3D(anisp_neg_texture,texture_sampler),ipos,0).rgb; + accum[0]=src_col * src_aniso_pos.x; + accum[1]=src_col * src_aniso_neg.x; + accum[2]=src_col * src_aniso_pos.y; + accum[3]=src_col * src_aniso_neg.y; + accum[4]=src_col * src_aniso_pos.z; + accum[5]=src_col * src_aniso_neg.z;*/ + + accum[0] = outputs.data[cell_index*6+0].rgb; + accum[1] = outputs.data[cell_index*6+1].rgb; + accum[2] = outputs.data[cell_index*6+2].rgb; + accum[3] = outputs.data[cell_index*6+3].rgb; + accum[4] = outputs.data[cell_index*6+4].rgb; + accum[5] = outputs.data[cell_index*6+5].rgb; + +#else + vec3 accum = outputs.data[cell_index].rgb; + +#endif + + if (length(normal.xyz) > 0.2) { + + vec3 v0 = abs(normal.z) < 0.999 ? vec3(0.0, 0.0, 1.0) : vec3(0.0, 1.0, 0.0); + vec3 tangent = normalize(cross(v0, normal.xyz)); + vec3 bitangent = normalize(cross(tangent, normal.xyz)); + mat3 normal_mat = mat3(tangent, bitangent, normal.xyz); + +#define MAX_CONE_DIRS 6 + + vec3 cone_dirs[MAX_CONE_DIRS] = vec3[]( + vec3(0.0, 0.0, 1.0), + vec3(0.866025, 0.0, 0.5), + vec3(0.267617, 0.823639, 0.5), + vec3(-0.700629, 0.509037, 0.5), + vec3(-0.700629, -0.509037, 0.5), + vec3(0.267617, -0.823639, 0.5)); + + float cone_weights[MAX_CONE_DIRS] = float[](0.25, 0.15, 0.15, 0.15, 0.15, 0.15); + float tan_half_angle = 0.577; + + for (int i = 0; i < MAX_CONE_DIRS; i++) { + + vec3 direction = normal_mat * cone_dirs[i]; + vec4 color = vec4(0.0); + { + + float dist = 1.5; + float max_distance = length(vec3(params.limits)); + vec3 cell_size = 1.0 / vec3(params.limits); + +#ifdef MODE_ANISOTROPIC + vec3 aniso_normal = mix(direction,normal.xyz,params.aniso_strength); +#endif + while (dist < max_distance && color.a < 0.95) { + float diameter = max(1.0, 2.0 * tan_half_angle * dist); + vec3 uvw_pos = (pos + dist * direction) * cell_size; + float half_diameter = diameter * 0.5; + //check if outside, then break + //if ( any(greaterThan(abs(uvw_pos - 0.5),vec3(0.5f + half_diameter * cell_size)) ) ) { + // break; + //} + + float log2_diameter = log2(diameter); + vec4 scolor = textureLod(sampler3D(color_texture,texture_sampler), uvw_pos, log2_diameter); +#ifdef MODE_ANISOTROPIC + + vec3 aniso_neg = textureLod(sampler3D(aniso_neg_texture,texture_sampler), uvw_pos, log2_diameter).rgb; + vec3 aniso_pos = textureLod(sampler3D(aniso_pos_texture,texture_sampler), uvw_pos, log2_diameter).rgb; + + scolor.rgb*=dot(max(vec3(0.0),(aniso_normal * aniso_pos)),vec3(1.0)) + dot(max(vec3(0.0),(-aniso_normal * aniso_neg)),vec3(1.0)); +#endif + float a = (1.0 - color.a); + color += a * scolor; + dist += half_diameter; + + } + + } + color *= cone_weights[i] * params.dynamic_range; //restore range +#ifdef MODE_ANISOTROPIC + for(uint j=0;j<6;j++) { + + accum[j]+=max(0.0,dot(accum_dirs[j],direction))*color.rgb; + } +#else + accum+=color.rgb; +#endif + } + } + +#ifdef MODE_ANISOTROPIC + + outputs.data[cell_index*6+0]=vec4(accum[0],0.0); + outputs.data[cell_index*6+1]=vec4(accum[1],0.0); + outputs.data[cell_index*6+2]=vec4(accum[2],0.0); + outputs.data[cell_index*6+3]=vec4(accum[3],0.0); + outputs.data[cell_index*6+4]=vec4(accum[4],0.0); + outputs.data[cell_index*6+5]=vec4(accum[5],0.0); +#else + outputs.data[cell_index]=vec4(accum,0.0); + +#endif + +#endif // MODE_SECOND_BOUNCE +/////////////////UPDATE MIPMAPS/////////////////////////////// + +#ifdef MODE_UPDATE_MIPMAPS + + { +#ifdef MODE_ANISOTROPIC + vec3 light_accum[6] = vec3[](vec3(0.0),vec3(0.0),vec3(0.0),vec3(0.0),vec3(0.0),vec3(0.0)); +#else + vec3 light_accum = vec3(0.0); +#endif + float count = 0.0; + for(uint i=0;i<8;i++) { + uint child_index = cell_children.data[cell_index].children[i]; + if (child_index==NO_CHILDREN) { + continue; + } +#ifdef MODE_ANISOTROPIC + light_accum[0] += outputs.data[child_index*6+0].rgb; + light_accum[1] += outputs.data[child_index*6+1].rgb; + light_accum[2] += outputs.data[child_index*6+2].rgb; + light_accum[3] += outputs.data[child_index*6+3].rgb; + light_accum[4] += outputs.data[child_index*6+4].rgb; + light_accum[5] += outputs.data[child_index*6+5].rgb; + +#else + light_accum += outputs.data[child_index].rgb; + +#endif + + count+=1.0; + } + + float divisor = mix(8.0,count,params.propagation); +#ifdef MODE_ANISOTROPIC + outputs.data[cell_index*6+0]=vec4(light_accum[0] / divisor,0.0); + outputs.data[cell_index*6+1]=vec4(light_accum[1] / divisor,0.0); + outputs.data[cell_index*6+2]=vec4(light_accum[2] / divisor,0.0); + outputs.data[cell_index*6+3]=vec4(light_accum[3] / divisor,0.0); + outputs.data[cell_index*6+4]=vec4(light_accum[4] / divisor,0.0); + outputs.data[cell_index*6+5]=vec4(light_accum[5] / divisor,0.0); + +#else + outputs.data[cell_index]=vec4(light_accum / divisor,0.0); +#endif + + + + } +#endif + +///////////////////WRITE TEXTURE///////////////////////////// + +#ifdef MODE_WRITE_TEXTURE + { + +#ifdef MODE_ANISOTROPIC + vec3 accum_total = vec3(0.0); + accum_total += outputs.data[cell_index*6+0].rgb; + accum_total += outputs.data[cell_index*6+1].rgb; + accum_total += outputs.data[cell_index*6+2].rgb; + accum_total += outputs.data[cell_index*6+3].rgb; + accum_total += outputs.data[cell_index*6+4].rgb; + accum_total += outputs.data[cell_index*6+5].rgb; + + float accum_total_energy = max(dot(accum_total,GREY_VEC),0.00001); + vec3 iso_positive = vec3(dot(outputs.data[cell_index*6+0].rgb,GREY_VEC),dot(outputs.data[cell_index*6+2].rgb,GREY_VEC),dot(outputs.data[cell_index*6+4].rgb,GREY_VEC))/vec3(accum_total_energy); + vec3 iso_negative = vec3(dot(outputs.data[cell_index*6+1].rgb,GREY_VEC),dot(outputs.data[cell_index*6+3].rgb,GREY_VEC),dot(outputs.data[cell_index*6+5].rgb,GREY_VEC))/vec3(accum_total_energy); + + + { + uint aniso_pos = uint(clamp(iso_positive.b * 31.0,0.0,31.0)); + aniso_pos |= uint(clamp(iso_positive.g * 63.0,0.0,63.0))<<5; + aniso_pos |= uint(clamp(iso_positive.r * 31.0,0.0,31.0))<<11; + imageStore(aniso_pos_tex,ivec3(posu),uvec4(aniso_pos)); + } + + { + uint aniso_neg = uint(clamp(iso_negative.b * 31.0,0.0,31.0)); + aniso_neg |= uint(clamp(iso_negative.g * 63.0,0.0,63.0))<<5; + aniso_neg |= uint(clamp(iso_negative.r * 31.0,0.0,31.0))<<11; + imageStore(aniso_neg_tex,ivec3(posu),uvec4(aniso_neg)); + } + + imageStore(color_tex,ivec3(posu),vec4(accum_total / params.dynamic_range ,albedo.a)); + +#else + + imageStore(color_tex,ivec3(posu),vec4(outputs.data[cell_index].rgb / params.dynamic_range,albedo.a)); + +#endif + + + } +#endif +} diff --git a/servers/visual/rasterizer_rd/shaders/giprobe_debug.glsl b/servers/visual/rasterizer_rd/shaders/giprobe_debug.glsl new file mode 100644 index 0000000000..deaeb771b9 --- /dev/null +++ b/servers/visual/rasterizer_rd/shaders/giprobe_debug.glsl @@ -0,0 +1,160 @@ +[vertex] + +#version 450 + +VERSION_DEFINES + +struct CellData { + uint position; // xyz 10 bits + uint albedo; //rgb albedo + uint emission; //rgb normalized with e as multiplier + uint normal; //RGB normal encoded +}; + +layout(set=0,binding=1,std140) buffer CellDataBuffer { + CellData data[]; +} cell_data; + +layout (set=0,binding=2) uniform texture3D color_tex; + +layout (set=0,binding=3) uniform sampler tex_sampler; + +#ifdef USE_ANISOTROPY +layout (set=0,binding=4) uniform texture3D aniso_pos_tex; +layout (set=0,binding=5) uniform texture3D aniso_neg_tex; +#endif + + +layout(push_constant, binding = 0, std430) uniform Params { + + mat4 projection; + uint cell_offset; + float dynamic_range; + float alpha; + uint level; + +} params; + +layout(location=0) out vec4 color_interp; + +void main() { + + const vec3 cube_triangles[36] = vec3[]( + vec3(-1.0f,-1.0f,-1.0f), + vec3(-1.0f,-1.0f, 1.0f), + vec3(-1.0f, 1.0f, 1.0f), + vec3(1.0f, 1.0f,-1.0f), + vec3(-1.0f,-1.0f,-1.0f), + vec3(-1.0f, 1.0f,-1.0f), + vec3(1.0f,-1.0f, 1.0f), + vec3(-1.0f,-1.0f,-1.0f), + vec3(1.0f,-1.0f,-1.0f), + vec3(1.0f, 1.0f,-1.0f), + vec3(1.0f,-1.0f,-1.0f), + vec3(-1.0f,-1.0f,-1.0f), + vec3(-1.0f,-1.0f,-1.0f), + vec3(-1.0f, 1.0f, 1.0f), + vec3(-1.0f, 1.0f,-1.0f), + vec3(1.0f,-1.0f, 1.0f), + vec3(-1.0f,-1.0f, 1.0f), + vec3(-1.0f,-1.0f,-1.0f), + vec3(-1.0f, 1.0f, 1.0f), + vec3(-1.0f,-1.0f, 1.0f), + vec3(1.0f,-1.0f, 1.0f), + vec3(1.0f, 1.0f, 1.0f), + vec3(1.0f,-1.0f,-1.0f), + vec3(1.0f, 1.0f,-1.0f), + vec3(1.0f,-1.0f,-1.0f), + vec3(1.0f, 1.0f, 1.0f), + vec3(1.0f,-1.0f, 1.0f), + vec3(1.0f, 1.0f, 1.0f), + vec3(1.0f, 1.0f,-1.0f), + vec3(-1.0f, 1.0f,-1.0f), + vec3(1.0f, 1.0f, 1.0f), + vec3(-1.0f, 1.0f,-1.0f), + vec3(-1.0f, 1.0f, 1.0f), + vec3(1.0f, 1.0f, 1.0f), + vec3(-1.0f, 1.0f, 1.0f), + vec3(1.0f,-1.0f, 1.0f) + ); + + + vec3 vertex = cube_triangles[gl_VertexIndex] * 0.5 + 0.5; + + uint cell_index = gl_InstanceIndex + params.cell_offset; + + uvec3 posu = uvec3(cell_data.data[cell_index].position&0x7FF,(cell_data.data[cell_index].position>>11)&0x3FF,cell_data.data[cell_index].position>>21); + +#ifdef MODE_DEBUG_COLOR + color_interp.xyz = unpackUnorm4x8(cell_data.data[cell_index].albedo).xyz; +#endif +#ifdef MODE_DEBUG_LIGHT + +#ifdef USE_ANISOTROPY + +#define POS_X 0 +#define POS_Y 1 +#define POS_Z 2 +#define NEG_X 3 +#define NEG_Y 4 +#define NEG_Z 5 + + const uint triangle_aniso[12] = uint[]( + NEG_X, + NEG_Z, + NEG_Y, + NEG_Z, + NEG_X, + NEG_Y, + POS_Z, + POS_X, + POS_X, + POS_Y, + POS_Y, + POS_Z + ); + + color_interp.xyz = texelFetch(sampler3D(color_tex,tex_sampler),ivec3(posu),int(params.level)).xyz * params.dynamic_range; + vec3 aniso_pos = texelFetch(sampler3D(aniso_pos_tex,tex_sampler),ivec3(posu),int(params.level)).xyz; + vec3 aniso_neg = texelFetch(sampler3D(aniso_neg_tex,tex_sampler),ivec3(posu),int(params.level)).xyz; + uint side = triangle_aniso[gl_VertexIndex/3]; + + float strength = 0.0; + switch(side) { + case POS_X: strength = aniso_pos.x; break; + case POS_Y: strength = aniso_pos.y; break; + case POS_Z: strength = aniso_pos.z; break; + case NEG_X: strength = aniso_neg.x; break; + case NEG_Y: strength = aniso_neg.y; break; + case NEG_Z: strength = aniso_neg.z; break; + + } + + color_interp.xyz *= strength; + +#else + color_interp.xyz = texelFetch(sampler3D(color_tex,tex_sampler),ivec3(posu),int(params.level)).xyz * params.dynamic_range; + +#endif + +#endif + float scale = (1<<params.level); + color_interp.a = params.alpha; + + gl_Position = params.projection * vec4((vec3(posu)+vertex)*scale,1.0); + +} + +[fragment] + +#version 450 + +VERSION_DEFINES + +layout(location=0) in vec4 color_interp; +layout(location=0) out vec4 frag_color; + +void main() { + + frag_color = color_interp; +} diff --git a/servers/visual/rasterizer_rd/shaders/giprobe_lighting.glsl b/servers/visual/rasterizer_rd/shaders/giprobe_lighting.glsl deleted file mode 100644 index cec25f86f9..0000000000 --- a/servers/visual/rasterizer_rd/shaders/giprobe_lighting.glsl +++ /dev/null @@ -1,241 +0,0 @@ -[compute] - -#version 450 - -VERSION_DEFINES - -layout(local_size_x = 64, local_size_y = 1, local_size_z = 1) in; - -#define NO_CHILDREN 0xFFFFFFFF -#define GREY_VEC vec3(0.33333,0.33333,0.33333) - -struct CellPosition { - uint children[8]; -}; - - -layout(set=0,binding=1,std140) buffer CellPositions { - CellPosition data[]; -} cell_positions; - -struct CellMaterial { - uint position; // xyz 10 bits - uint albedo; //rgb albedo - uint emission; //rgb normalized with e as multiplier - uint normal; //RGB normal encoded -}; - -layout(set=0,binding=2,std140) buffer CellMaterials { - CellMaterial data[]; -} cell_materials; - -#define LIGHT_TYPE_DIRECTIONAL 0 -#define LIGHT_TYPE_OMNI 1 -#define LIGHT_TYPE_SPOT 2 - -struct Light { - - uint type; - float energy; - float radius; - float attenuation; - - vec3 color; - float spot_angle_radians; - - float advance; - float max_length; - uint pad0; - uint pad2; - - vec3 position; - float spot_attenuation; - - - vec3 direction; - bool visible; - - vec4 clip_planes[3]; -}; - -layout(set=0,binding=3,std140) buffer Lights { - Light data[]; -} lights; - - -layout(set=0,binding=4,std140) uniform Params { - vec3 limits; - float max_length; - uint size; - uint stack_size; - uint light_count; - float emission_scale; -} params; - - -layout (rgba8,set=0,binding=5) uniform restrict writeonly image3D color_tex; - - -uint raymarch(float distance,float distance_adv,vec3 from,vec3 direction) { - - uint result = NO_CHILDREN; - - while (distance > -distance_adv) { //use this to avoid precision errors - - uint cell = 0; - - ivec3 pos = ivec3(from); - ivec3 ofs = ivec3(0); - ivec3 half_size = ivec3(params.size) / 2; - if (any(lessThan(pos,ivec3(0))) || any(greaterThanEqual(pos,ivec3(params.size)))) { - return NO_CHILDREN; //outside range - } - - for (int i = 0; i < params.stack_size - 1; i++) { - - bvec3 greater = greaterThanEqual(pos,ofs+half_size); - - ofs += mix(ivec3(0),half_size,greater); - - uint child = 0; //wonder if this can be done faster - if (greater.x) { - child|=1; - } - if (greater.y) { - child|=2; - } - if (greater.z) { - child|=4; - } - - cell = cell_positions.data[cell].children[child]; - if (cell == NO_CHILDREN) - break; - - half_size >>= ivec3(1); - } - - if ( cell != NO_CHILDREN) { - return cell; //found cell! - } - - from += direction * distance_adv; - distance -= distance_adv; - } - - return NO_CHILDREN; -} - -bool compute_light_vector(uint light,uint cell, vec3 pos,out float attenuation, out vec3 light_pos) { - - if (lights.data[light].type==LIGHT_TYPE_DIRECTIONAL) { - - light_pos = pos - lights.data[light].direction * params.max_length; - attenuation = 1.0; - - } else { - - light_pos = lights.data[light].position; - float distance = length(pos - light_pos); - if (distance >= lights.data[light].radius) { - return false; - } - - attenuation = pow( distance / lights.data[light].radius + 0.0001, lights.data[light].attenuation ); - - - if (lights.data[light].type==LIGHT_TYPE_SPOT) { - - vec3 rel = normalize(pos - light_pos); - float angle = acos(dot(rel,lights.data[light].direction)); - if (angle > lights.data[light].spot_angle_radians) { - return false; - } - - float d = clamp(angle / lights.data[light].spot_angle_radians, 0, 1); - attenuation *= pow(1.0 - d, lights.data[light].spot_attenuation); - } - } - - return true; -} - -void main() { - - uint cell_index = gl_GlobalInvocationID.x; - - uvec3 posu = uvec3(cell_materials.data[cell_index].position&0x3FF,(cell_materials.data[cell_index].position>>10)&0x3FF,cell_materials.data[cell_index].position>>20); - vec3 pos = vec3(posu); - - vec3 emission = vec3(ivec3(cell_materials.data[cell_index].emission&0x3FF,(cell_materials.data[cell_index].emission>>10)&0x7FF,cell_materials.data[cell_index].emission>>21)) * params.emission_scale; - vec4 albedo = unpackUnorm4x8(cell_materials.data[cell_index].albedo); - vec4 normal = unpackSnorm4x8(cell_materials.data[cell_index].normal); //w >0.5 means, all directions - -#ifdef MODE_ANISOTROPIC - vec3 accum[6]=vec3[](vec3(0.0),vec3(0.0),vec3(0.0),vec3(0.0),vec3(0.0),vec3(0.0)); - const vec3 accum_dirs[6]=vec3[](vec3(1.0,0.0,0.0),vec3(-1.0,0.0,0.0),vec3(0.0,1.0,0.0),vec3(0.0,-1.0,0.0),vec3(0.0,0.0,1.0),vec3(0.0,0.0,-1.0)); -#else - vec3 accum = vec3(0); -#endif - - for(uint i=0;i<params.light_count;i++) { - - float attenuation; - vec3 light_pos; - - if (!compute_light_vector(i,cell_index,pos,attenuation,light_pos)) { - continue; - } - - float distance_adv = lights.data[i].advance; - - vec3 light_dir = pos - light_pos; - float distance = length(light_dir); - - light_dir=normalize(light_dir); - - distance += distance_adv - mod(distance, distance_adv); //make it reach the center of the box always - - vec3 from = pos - light_dir * distance; //approximate - - if (normal.w < 0.5 && dot(normal.xyz,light_dir)>=0) { - continue; //not facing the light - } - - uint result = raymarch(distance,distance_adv,from,lights.data[i].direction); - - if (result != cell_index) { - continue; //was occluded - } - - vec3 light = lights.data[i].color * albedo.rgb * attenuation; - -#ifdef MODE_ANISOTROPIC - for(uint j=0;j<6;j++) { - accum[j]+=max(0.0,dot(accum_dir,-light_dir))*light+emission; - } -#else - if (normal.w < 0.5) { - accum+=max(0.0,dot(normal.xyz,-light_dir))*light+emission; - } else { - //all directions - accum+=light+emission; - } -#endif - - } - -#ifdef MODE_ANISOTROPIC - - vec3 accum_total = accum[0]+accum[1]+accum[2]+accum[3]+accum[4]+accum[5]; - float accum_total_energy = max(dot(accum_total,GREY_VEC),0.00001); - vec3 iso_positive = vec3(dot(aniso[0],GREY_VEC),dot(aniso[2],GREY_VEC),dot(aniso[4],GREY_VEC))/vec3(accum_total_energy); - vec3 iso_negative = vec3(dot(aniso[1],GREY_VEC),dot(aniso[3],GREY_VEC),dot(aniso[5],GREY_VEC))/vec3(accum_total_energy); - - //store in 3D textures, total color, and isotropic magnitudes -#else - //store in 3D texture pos, accum - imageStore(color_tex,ivec3(posu),vec4(accum,albedo.a)); -#endif - -} diff --git a/servers/visual/rasterizer_rd/shaders/giprobe_write.glsl b/servers/visual/rasterizer_rd/shaders/giprobe_write.glsl new file mode 100644 index 0000000000..01d33c28de --- /dev/null +++ b/servers/visual/rasterizer_rd/shaders/giprobe_write.glsl @@ -0,0 +1,353 @@ +[compute] + +#version 450 + +VERSION_DEFINES + +layout(local_size_x = 64, local_size_y = 1, local_size_z = 1) in; + +#define NO_CHILDREN 0xFFFFFFFF +#define GREY_VEC vec3(0.33333,0.33333,0.33333) + +struct CellChildren { + uint children[8]; +}; + +layout(set=0,binding=1,std430) buffer CellChildrenBuffer { + CellChildren data[]; +} cell_children; + +struct CellData { + uint position; // xyz 10 bits + uint albedo; //rgb albedo + uint emission; //rgb normalized with e as multiplier + uint normal; //RGB normal encoded +}; + +layout(set=0,binding=2,std430) buffer CellDataBuffer { + CellData data[]; +} cell_data; + +#define LIGHT_TYPE_DIRECTIONAL 0 +#define LIGHT_TYPE_OMNI 1 +#define LIGHT_TYPE_SPOT 2 + +#ifdef MODE_COMPUTE_LIGHT + +struct Light { + + uint type; + float energy; + float radius; + float attenuation; + + vec3 color; + float spot_angle_radians; + + vec3 position; + float spot_attenuation; + + vec3 direction; + bool has_shadow; +}; + + +layout(set=0,binding=3,std140) uniform Lights { + Light data[MAX_LIGHTS]; +} lights; + +#endif + +layout(push_constant, binding = 0, std430) uniform Params { + + ivec3 limits; + uint stack_size; + + float emission_scale; + float propagation; + float dynamic_range; + + uint light_count; + uint cell_offset; + uint cell_count; + uint pad[2]; + +} params; + + +layout(set=0,binding=4,std140) uniform Outputs { + vec4 data[]; +} output; + + + +#ifdef MODE_COMPUTE_LIGHT + +uint raymarch(float distance,float distance_adv,vec3 from,vec3 direction) { + + uint result = NO_CHILDREN; + + ivec3 size = ivec3(max(max(params.limits.x,params.limits.y),params.limits.z)); + + while (distance > -distance_adv) { //use this to avoid precision errors + + uint cell = 0; + + ivec3 pos = ivec3(from); + + if (all(greaterThanEqual(pos,ivec3(0))) && all(lessThan(pos,size))) { + + ivec3 ofs = ivec3(0); + ivec3 half_size = size / 2; + + for (int i = 0; i < params.stack_size - 1; i++) { + + bvec3 greater = greaterThanEqual(pos,ofs+half_size); + + ofs += mix(ivec3(0),half_size,greater); + + uint child = 0; //wonder if this can be done faster + if (greater.x) { + child|=1; + } + if (greater.y) { + child|=2; + } + if (greater.z) { + child|=4; + } + + cell = cell_children.data[cell].children[child]; + if (cell == NO_CHILDREN) + break; + + half_size >>= ivec3(1); + } + + if ( cell != NO_CHILDREN) { + return cell; //found cell! + } + + } + + from += direction * distance_adv; + distance -= distance_adv; + } + + return NO_CHILDREN; +} + +bool compute_light_vector(uint light,uint cell, vec3 pos,out float attenuation, out vec3 light_pos) { + + + if (lights.data[light].type==LIGHT_TYPE_DIRECTIONAL) { + + light_pos = pos - lights.data[light].direction * length(vec3(params.limits)); + attenuation = 1.0; + + } else { + + light_pos = lights.data[light].position; + float distance = length(pos - light_pos); + if (distance >= lights.data[light].radius) { + return false; + } + + + attenuation = pow( clamp( 1.0 - distance / lights.data[light].radius, 0.0001, 1.0), lights.data[light].attenuation ); + + + if (lights.data[light].type==LIGHT_TYPE_SPOT) { + + vec3 rel = normalize(pos - light_pos); + float angle = acos(dot(rel,lights.data[light].direction)); + if (angle > lights.data[light].spot_angle_radians) { + return false; + } + + float d = clamp(angle / lights.data[light].spot_angle_radians, 0, 1); + attenuation *= pow(1.0 - d, lights.data[light].spot_attenuation); + } + } + + return true; +} + +float get_normal_advance(vec3 p_normal) { + + vec3 normal = p_normal; + vec3 unorm = abs(normal); + + if ((unorm.x >= unorm.y) && (unorm.x >= unorm.z)) { + // x code + unorm = normal.x > 0.0 ? vec3(1.0, 0.0, 0.0) : vec3(-1.0, 0.0, 0.0); + } else if ((unorm.y > unorm.x) && (unorm.y >= unorm.z)) { + // y code + unorm = normal.y > 0.0 ? vec3(0.0, 1.0, 0.0) : vec3(0.0, -1.0, 0.0); + } else if ((unorm.z > unorm.x) && (unorm.z > unorm.y)) { + // z code + unorm = normal.z > 0.0 ? vec3(0.0, 0.0, 1.0) : vec3(0.0, 0.0, -1.0); + } else { + // oh-no we messed up code + // has to be + unorm = vec3(1.0, 0.0, 0.0); + } + + return 1.0 / dot(normal,unorm); +} + +#endif + + + + +void main() { + + uint cell_index = gl_GlobalInvocationID.x;; + if (cell_index >= params.cell_count) { + return; + } + cell_index += params.cell_offset; + + uvec3 posu = uvec3(cell_data.data[cell_index].position&0x7FF,(cell_data.data[cell_index].position>>11)&0x3FF,cell_data.data[cell_index].position>>21); + vec4 albedo = unpackUnorm4x8(cell_data.data[cell_index].albedo); + +#ifdef MODE_COMPUTE_LIGHT + + vec3 pos = vec3(posu) + vec3(0.5); + + vec3 emission = vec3(ivec3(cell_data.data[cell_index].emission&0x3FF,(cell_data.data[cell_index].emission>>10)&0x7FF,cell_data.data[cell_index].emission>>21)) * params.emission_scale; + vec4 normal = unpackSnorm4x8(cell_data.data[cell_index].normal); + +#ifdef MODE_ANISOTROPIC + vec3 accum[6]=vec3[](vec3(0.0),vec3(0.0),vec3(0.0),vec3(0.0),vec3(0.0),vec3(0.0)); + const vec3 accum_dirs[6]=vec3[](vec3(1.0,0.0,0.0),vec3(-1.0,0.0,0.0),vec3(0.0,1.0,0.0),vec3(0.0,-1.0,0.0),vec3(0.0,0.0,1.0),vec3(0.0,0.0,-1.0)); +#else + vec3 accum = vec3(0.0); +#endif + + for(uint i=0;i<params.light_count;i++) { + + float attenuation; + vec3 light_pos; + + if (!compute_light_vector(i,cell_index,pos,attenuation,light_pos)) { + continue; + } + + vec3 light_dir = pos - light_pos; + float distance = length(light_dir); + light_dir=normalize(light_dir); + + if (length(normal.xyz) > 0.2 && dot(normal.xyz,light_dir)>=0) { + continue; //not facing the light + } + + if (lights.data[i].has_shadow) { + + float distance_adv = get_normal_advance(light_dir); + + + distance += distance_adv - mod(distance, distance_adv); //make it reach the center of the box always + + vec3 from = pos - light_dir * distance; //approximate + from -= sign(light_dir)*0.45; //go near the edge towards the light direction to avoid self occlusion + + + + uint result = raymarch(distance,distance_adv,from,light_dir); + + if (result != cell_index) { + continue; //was occluded + } + } + + vec3 light = lights.data[i].color * albedo.rgb * attenuation * lights.data[i].energy; + +#ifdef MODE_ANISOTROPIC + for(uint j=0;j<6;j++) { + accum[j]+=max(0.0,dot(accum_dir,-light_dir))*light+emission; + } +#else + if (length(normal.xyz) > 0.2) { + accum+=max(0.0,dot(normal.xyz,-light_dir))*light+emission; + } else { + //all directions + accum+=light+emission; + } +#endif + + } + +#ifdef MODE_ANISOTROPIC + + output.data[cell_index*6+0]=vec4(accum[0],0.0); + output.data[cell_index*6+1]=vec4(accum[1],0.0); + output.data[cell_index*6+2]=vec4(accum[2],0.0); + output.data[cell_index*6+3]=vec4(accum[3],0.0); + output.data[cell_index*6+4]=vec4(accum[4],0.0); + output.data[cell_index*6+5]=vec4(accum[5],0.0); +#else + output.data[cell_index]=vec4(accum,0.0); + +#endif + +#endif //MODE_COMPUTE_LIGHT + + +#ifdef MODE_UPDATE_MIPMAPS + + { +#ifdef MODE_ANISOTROPIC + vec3 light_accum[6] = vec3[](vec3(0.0),vec3(0.0),vec3(0.0),vec3(0.0),vec3(0.0),vec3(0.0)); +#else + vec3 light_accum = vec3(0.0); +#endif + float count = 0.0; + for(uint i=0;i<8;i++) { + uint child_index = cell_children.data[cell_index].children[i]; + if (child_index==NO_CHILDREN) { + continue; + } +#ifdef MODE_ANISOTROPIC + light_accum[1] += output.data[child_index*6+0].rgb; + light_accum[2] += output.data[child_index*6+1].rgb; + light_accum[3] += output.data[child_index*6+2].rgb; + light_accum[4] += output.data[child_index*6+3].rgb; + light_accum[5] += output.data[child_index*6+4].rgb; + light_accum[6] += output.data[child_index*6+5].rgb; + +#else + light_accum += output.data[child_index].rgb; + +#endif + + count+=1.0; + } + + float divisor = mix(8.0,count,params.propagation); +#ifdef MODE_ANISOTROPIC + output.data[cell_index*6+0]=vec4(light_accum[0] / divisor,0.0); + output.data[cell_index*6+1]=vec4(light_accum[1] / divisor,0.0); + output.data[cell_index*6+2]=vec4(light_accum[2] / divisor,0.0); + output.data[cell_index*6+3]=vec4(light_accum[3] / divisor,0.0); + output.data[cell_index*6+4]=vec4(light_accum[4] / divisor,0.0); + output.data[cell_index*6+5]=vec4(light_accum[5] / divisor,0.0); + +#else + output.data[cell_index]=vec4(light_accum / divisor,0.0); +#endif + + + + } +#endif + +#ifdef MODE_WRITE_TEXTURE + { + + + + } +#endif +} diff --git a/servers/visual/rasterizer_rd/shaders/scene_forward.glsl b/servers/visual/rasterizer_rd/shaders/scene_forward.glsl index 711da3be9b..95e64f8778 100644 --- a/servers/visual/rasterizer_rd/shaders/scene_forward.glsl +++ b/servers/visual/rasterizer_rd/shaders/scene_forward.glsl @@ -57,7 +57,7 @@ layout(location = 6) out vec3 binormal_interp; #endif #ifdef USE_MATERIAL_UNIFORMS -layout(set = 2, binding = 0, std140) uniform MaterialUniforms { +layout(set = 3, binding = 0, std140) uniform MaterialUniforms { /* clang-format off */ MATERIAL_UNIFORMS /* clang-format on */ @@ -73,7 +73,7 @@ VERTEX_SHADER_GLOBALS // FIXME: This triggers a Mesa bug that breaks rendering, so disabled for now. // See GH-13450 and https://bugs.freedesktop.org/show_bug.cgi?id=100316 -//invariant gl_Position; +invariant gl_Position; layout(location =7) flat out uint instance_index; @@ -274,7 +274,7 @@ VERTEX_SHADER_CODE #endif //MODE_RENDER_DEPTH #ifdef USE_OVERRIDE_POSITION - gl_Position = position;; + gl_Position = position; #else gl_Position = projection_matrix * vec4(vertex_interp, 1.0); #endif @@ -331,7 +331,7 @@ layout(location =8) in float dp_clip; #define projection_matrix scene_data.projection_matrix; #ifdef USE_MATERIAL_UNIFORMS -layout(set = 2, binding = 0, std140) uniform MaterialUniforms { +layout(set = 3, binding = 0, std140) uniform MaterialUniforms { /* clang-format off */ MATERIAL_UNIFORMS /* clang-format on */ @@ -918,6 +918,265 @@ void reflection_process(uint ref_index, vec3 vertex, vec3 normal,float roughness #endif //USE_LIGHTMAP } +#ifdef USE_VOXEL_CONE_TRACING + +//standard voxel cone trace +vec4 voxel_cone_trace(texture3D probe, vec3 cell_size, vec3 pos, vec3 direction, float tan_half_angle, float max_distance, float p_bias) { + + float dist = p_bias; + vec4 color = vec4(0.0); + + while (dist < max_distance && color.a < 0.95) { + float diameter = max(1.0, 2.0 * tan_half_angle * dist); + vec3 uvw_pos = (pos + dist * direction) * cell_size; + float half_diameter = diameter * 0.5; + //check if outside, then break + if ( any(greaterThan(abs(uvw_pos - 0.5),vec3(0.5f + half_diameter * cell_size)) ) ) { + break; + } + vec4 scolor = textureLod(sampler3D(probe,material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), uvw_pos, log2(diameter)); + float a = (1.0 - color.a); + color += a * scolor; + dist += half_diameter; + + } + + return color; +} +#if 0 +vec4 voxel_cone_trace_skiplod(texture3D probe, vec3 cell_size, vec3 pos, vec3 direction, float tan_half_angle, float max_distance, float p_bias) { + + float dist = p_bias; + vec4 color = vec4(0.0); + float skip_lod = 1.0; + + while (dist < max_distance && color.a < 0.95) { + float diameter = max(1.0, 2.0 * tan_half_angle * dist); + vec3 uvw_pos = (pos + dist * direction) * cell_size; + float half_diameter = diameter * 0.5; + //check if outside, then break + if ( any(greaterThan(abs(uvw_pos - 0.5),vec3(0.5f + half_diameter * cell_size)) ) ) { + break; + } + vec4 scolor = textureLod(sampler3D(probe,material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), uvw_pos, log2(diameter)); + float a = (1.0 - color.a); + color += a * scolor; + + float upper_opacity = textureLod(sampler3D(probe,material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), uvw_pos, skip_lod).a; + float skip_factor = exp2( max( 0.0f, skip_lod * 0.5f - 1.0f ) ) * (1.0f - upper_opacity) + upper_opacity; + + skip_factor = mix( skip_factor, 1.0f, min( -1.0 + upper_opacity * probeParams.vctSpecularSdfFactor + tan_half_angle * 50.0f, 1.0f ) ); + skip_lod = clamp( skip_lod + (1.0f - upper_opacity) * 2.0f - 1.0f, 1.0f, probeParams.vctSpecSdfMaxMip ); + + dist += half_diameter * skip_factor; + } + + return color; +} +#endif + +#ifndef GI_PROBE_HIGH_QUALITY +//faster version for 45 degrees + +#ifdef GI_PROBE_USE_ANISOTROPY + +vec4 voxel_cone_trace_anisotropic_45_degrees(texture3D probe,texture3D aniso_pos,texture3D aniso_neg,vec3 normal, vec3 cell_size, vec3 pos, vec3 direction, float tan_half_angle, float max_distance, float p_bias) { + + float dist = p_bias; + vec4 color = vec4(0.0); + float radius = max(0.5, tan_half_angle * dist); + float lod_level = log2(radius*2.0); + + while (dist < max_distance && color.a < 0.95) { + vec3 uvw_pos = (pos + dist * direction) * cell_size; + //check if outside, then break + if ( any(greaterThan(abs(uvw_pos - 0.5),vec3(0.5f + radius * cell_size)) ) ) { + break; + } + + vec4 scolor = textureLod(sampler3D(probe,material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), uvw_pos, lod_level); + vec3 aniso_neg = textureLod(sampler3D(aniso_neg,material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), uvw_pos, lod_level).rgb; + vec3 aniso_pos = textureLod(sampler3D(aniso_pos,material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), uvw_pos, lod_level).rgb; + + scolor.rgb*=dot(max(vec3(0.0),(normal * aniso_pos)),vec3(1.0)) + dot(max(vec3(0.0),(-normal * aniso_neg)),vec3(1.0)); + lod_level+=1.0; + + float a = (1.0 - color.a); + color += a * scolor; + dist += radius; + radius = max(0.5, tan_half_angle * dist); + + + } + + return color; +} +#else + +vec4 voxel_cone_trace_45_degrees(texture3D probe, vec3 cell_size, vec3 pos, vec3 direction, float tan_half_angle, float max_distance, float p_bias) { + + float dist = p_bias; + vec4 color = vec4(0.0); + float radius = max(0.5, tan_half_angle * dist); + float lod_level = log2(radius*2.0); + + while (dist < max_distance && color.a < 0.95) { + vec3 uvw_pos = (pos + dist * direction) * cell_size; + + //check if outside, then break + if ( any(greaterThan(abs(uvw_pos - 0.5),vec3(0.5f + radius * cell_size)) ) ) { + break; + } + vec4 scolor = textureLod(sampler3D(probe,material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), uvw_pos, lod_level); + lod_level+=1.0; + + float a = (1.0 - color.a); + color += a * scolor; + dist += radius; + radius = max(0.5, tan_half_angle * dist); + + } + + return color; +} + +#endif + + +#elif defined(GI_PROBE_USE_ANISOTROPY) + + +//standard voxel cone trace +vec4 voxel_cone_trace_anisotropic(texture3D probe,texture3D aniso_pos,texture3D aniso_neg,vec3 normal, vec3 cell_size, vec3 pos, vec3 direction, float tan_half_angle, float max_distance, float p_bias) { + + float dist = p_bias; + vec4 color = vec4(0.0); + + while (dist < max_distance && color.a < 0.95) { + float diameter = max(1.0, 2.0 * tan_half_angle * dist); + vec3 uvw_pos = (pos + dist * direction) * cell_size; + float half_diameter = diameter * 0.5; + //check if outside, then break + if ( any(greaterThan(abs(uvw_pos - 0.5),vec3(0.5f + half_diameter * cell_size)) ) ) { + break; + } + float log2_diameter = log2(diameter); + vec4 scolor = textureLod(sampler3D(probe,material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), uvw_pos, log2_diameter); + vec3 aniso_neg = textureLod(sampler3D(aniso_neg,material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), uvw_pos, log2_diameter).rgb; + vec3 aniso_pos = textureLod(sampler3D(aniso_pos,material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), uvw_pos, log2_diameter).rgb; + + scolor.rgb*=dot(max(vec3(0.0),(normal * aniso_pos)),vec3(1.0)) + dot(max(vec3(0.0),(-normal * aniso_neg)),vec3(1.0)); + + float a = (1.0 - color.a); + color += a * scolor; + dist += half_diameter; + + } + + return color; +} + + + +#endif + +void gi_probe_compute(uint index, vec3 position, vec3 normal,vec3 ref_vec, mat3 normal_xform, float roughness,vec3 ambient, vec3 environment, inout vec4 out_spec, inout vec4 out_diff) { + + + + position = (gi_probes.data[index].xform * vec4(position, 1.0)).xyz; + ref_vec = normalize((gi_probes.data[index].xform * vec4(ref_vec, 0.0)).xyz); + normal = normalize((gi_probes.data[index].xform * vec4(normal, 0.0)).xyz); + + position += normal * gi_probes.data[index].normal_bias; + + //this causes corrupted pixels, i have no idea why.. + if (any(bvec2(any(lessThan(position, vec3(0.0))), any(greaterThan(position, gi_probes.data[index].bounds))))) { + return; + } + + vec3 blendv = abs(position / gi_probes.data[index].bounds * 2.0 - 1.0); + float blend = clamp(1.0 - max(blendv.x, max(blendv.y, blendv.z)), 0.0, 1.0); + //float blend=1.0; + + float max_distance = length(gi_probes.data[index].bounds); + vec3 cell_size = 1.0 / gi_probes.data[index].bounds; + + //radiance +#ifdef GI_PROBE_HIGH_QUALITY + +#define MAX_CONE_DIRS 6 + vec3 cone_dirs[MAX_CONE_DIRS] = vec3[]( + vec3(0.0, 0.0, 1.0), + vec3(0.866025, 0.0, 0.5), + vec3(0.267617, 0.823639, 0.5), + vec3(-0.700629, 0.509037, 0.5), + vec3(-0.700629, -0.509037, 0.5), + vec3(0.267617, -0.823639, 0.5)); + + float cone_weights[MAX_CONE_DIRS] = float[](0.25, 0.15, 0.15, 0.15, 0.15, 0.15); + float cone_angle_tan = 0.577; +#else + +#define MAX_CONE_DIRS 4 + + vec3 cone_dirs[MAX_CONE_DIRS] = vec3[]( + vec3(0.707107, 0.0, 0.707107), + vec3(0.0, 0.707107, 0.707107), + vec3(-0.707107, 0.0, 0.707107), + vec3(0.0, -0.707107, 0.707107)); + + float cone_weights[MAX_CONE_DIRS] = float[](0.25, 0.25, 0.25, 0.25); + float cone_angle_tan = 0.98269; + +#endif + vec3 light = vec3(0.0); + for (int i = 0; i < MAX_CONE_DIRS; i++) { + + + vec3 dir = normalize((gi_probes.data[index].xform * vec4(normal_xform * cone_dirs[i], 0.0)).xyz); + +#ifdef GI_PROBE_HIGH_QUALITY + +#ifdef GI_PROBE_USE_ANISOTROPY + vec4 cone_light = voxel_cone_trace_anisotropic(gi_probe_textures[gi_probes.data[index].texture_slot],gi_probe_textures[gi_probes.data[index].texture_slot+1],gi_probe_textures[gi_probes.data[index].texture_slot+2],normalize(mix(dir,normal,gi_probes.data[index].anisotropy_strength)),cell_size, position, dir, cone_angle_tan, max_distance, gi_probes.data[index].bias); +#else + vec4 cone_light = voxel_cone_trace(gi_probe_textures[gi_probes.data[index].texture_slot], cell_size, position, dir, cone_angle_tan, max_distance, gi_probes.data[index].bias); +#endif // GI_PROBE_USE_ANISOTROPY + +#else + +#ifdef GI_PROBE_USE_ANISOTROPY + vec4 cone_light = voxel_cone_trace_anisotropic_45_degrees(gi_probe_textures[gi_probes.data[index].texture_slot],gi_probe_textures[gi_probes.data[index].texture_slot+1],gi_probe_textures[gi_probes.data[index].texture_slot+2],normalize(mix(dir,normal,gi_probes.data[index].anisotropy_strength)),cell_size, position, dir, cone_angle_tan, max_distance, gi_probes.data[index].bias); +#else + vec4 cone_light = voxel_cone_trace_45_degrees(gi_probe_textures[gi_probes.data[index].texture_slot], cell_size, position, dir, cone_angle_tan, max_distance, gi_probes.data[index].bias); +#endif // GI_PROBE_USE_ANISOTROPY + +#endif + if (gi_probes.data[index].blend_ambient) { + cone_light.rgb = mix(ambient, cone_light.rgb, min(1.0, cone_light.a / 0.95)); + } + light+=cone_weights[i] * cone_light.rgb; + } + + light *= gi_probes.data[index].dynamic_range; + + out_diff += vec4(light * blend, blend); + + //irradiance + + vec4 irr_light = voxel_cone_trace(gi_probe_textures[gi_probes.data[index].texture_slot], cell_size, position, ref_vec, tan(roughness * 0.5 * M_PI * 0.99), max_distance, gi_probes.data[index].bias); + if (gi_probes.data[index].blend_ambient) { + irr_light.rgb = mix(environment,irr_light.rgb, min(1.0, irr_light.a / 0.95)); + } + irr_light.rgb *= gi_probes.data[index].dynamic_range; + //irr_light=vec3(0.0); + + out_spec += vec4(irr_light.rgb * blend, blend); +} + +#endif //USE_VOXEL_CONE_TRACING + #endif //!defined(MODE_RENDER_DEPTH) && !defined(MODE_UNSHADED) @@ -1118,7 +1377,42 @@ FRAGMENT_SHADER_CODE //lightmap capture +#ifdef USE_VOXEL_CONE_TRACING + { // process giprobes + uint index1 = instances.data[instance_index].gi_offset&0xFFFF; + if (index1!=0xFFFF) { + vec3 ref_vec = normalize(reflect(normalize(vertex), normal)); + //find arbitrary tangent and bitangent, then build a matrix + vec3 v0 = abs(normal.z) < 0.999 ? vec3(0.0, 0.0, 1.0) : vec3(0.0, 1.0, 0.0); + vec3 tangent = normalize(cross(v0, normal)); + vec3 bitangent = normalize(cross(tangent, normal)); + mat3 normal_mat = mat3(tangent, bitangent, normal); + + vec4 amb_accum = vec4(0.0); + vec4 spec_accum = vec4(0.0); + + gi_probe_compute(index1, vertex, normal, ref_vec,normal_mat, roughness * roughness, ambient_light, specular_light, spec_accum, amb_accum ); + + uint index2 = instances.data[instance_index].gi_offset>>16; + + if (index2!=0xFFFF) { + gi_probe_compute(index2, vertex, normal, ref_vec,normal_mat, roughness * roughness, ambient_light, specular_light, spec_accum, amb_accum ); + } + + if (amb_accum.a > 0.0) { + amb_accum.rgb /= amb_accum.a; + } + + if (spec_accum.a > 0.0) { + spec_accum.rgb /= spec_accum.a; + } + + specular_light = spec_accum.rgb; + ambient_light = amb_accum.rgb; + } + } +#endif { // process reflections diff --git a/servers/visual/rasterizer_rd/shaders/scene_forward_inc.glsl b/servers/visual/rasterizer_rd/shaders/scene_forward_inc.glsl index 81cf47b192..c59d5ed756 100644 --- a/servers/visual/rasterizer_rd/shaders/scene_forward_inc.glsl +++ b/servers/visual/rasterizer_rd/shaders/scene_forward_inc.glsl @@ -9,22 +9,7 @@ layout(push_constant, binding = 0, std430) uniform DrawCall { -/* Set 0 Scene data, screen and sources (changes the least) */ - -layout(set=0,binding=1) uniform texture2D depth_buffer; -layout(set=0,binding=2) uniform texture2D color_buffer; -layout(set=0,binding=3) uniform texture2D normal_buffer; -layout(set=0,binding=4) uniform texture2D roughness_limit; - -#ifdef USE_RADIANCE_CUBEMAP_ARRAY - -layout(set = 0, binding = 5) uniform textureCubeArray radiance_cubemap; - -#else - -layout(set = 0, binding = 5) uniform textureCube radiance_cubemap; - -#endif +/* Set 0 Scene data that never changes, ever */ #define SAMPLER_NEAREST_CLAMP 0 @@ -40,11 +25,11 @@ layout(set = 0, binding = 5) uniform textureCube radiance_cubemap; #define SAMPLER_NEAREST_WITH_MIMPAMPS_ANISOTROPIC_REPEAT 10 #define SAMPLER_LINEAR_WITH_MIPMAPS_ANISOTROPIC_REPEAT 11 -layout(set = 0, binding = 6) uniform sampler material_samplers[12]; +layout(set = 0, binding = 1) uniform sampler material_samplers[12]; -layout(set = 0, binding = 7) uniform sampler shadow_sampler; +layout(set = 0, binding = 2) uniform sampler shadow_sampler; -layout(set=0,binding=8,std140) uniform SceneData { +layout(set=0,binding=3,std140) uniform SceneData { mat4 projection_matrix; mat4 inv_projection_matrix; @@ -149,28 +134,10 @@ struct InstanceData { }; -layout(set=0,binding=9,std430) buffer Instances { +layout(set=0,binding=4,std430) buffer Instances { InstanceData data[]; } instances; -struct ReflectionData { - - vec3 box_extents; - float index; - vec3 box_offset; - uint mask; - vec4 params; // intensity, 0, interior , boxproject - vec4 ambient; // ambient color, energy - mat4 local_matrix; // up to here for spot and omni, rest is for directional - // notes: for ambientblend, use distance to edge to blend between already existing global environment -}; - -layout(set=0,binding=10,std140) uniform ReflectionProbeData { - ReflectionData data[MAX_REFLECTION_DATA_STRUCTS]; -} reflections; - -layout(set=0,binding=11) uniform textureCubeArray reflection_atlas; - struct LightData { //this structure needs to be 128 bits vec3 position; @@ -185,11 +152,25 @@ struct LightData { //this structure needs to be 128 bits mat4 shadow_matrix; }; -layout(set=0,binding=12,std140) uniform Lights { +layout(set=0,binding=5,std140) uniform Lights { LightData data[MAX_LIGHT_DATA_STRUCTS]; } lights; -layout(set=0,binding=13) uniform texture2D shadow_atlas; +struct ReflectionData { + + vec3 box_extents; + float index; + vec3 box_offset; + uint mask; + vec4 params; // intensity, 0, interior , boxproject + vec4 ambient; // ambient color, energy + mat4 local_matrix; // up to here for spot and omni, rest is for directional + // notes: for ambientblend, use distance to edge to blend between already existing global environment +}; + +layout(set=0,binding=6,std140) uniform ReflectionProbeData { + ReflectionData data[MAX_REFLECTION_DATA_STRUCTS]; +} reflections; struct DirectionalLightData { @@ -211,51 +192,65 @@ struct DirectionalLightData { }; -layout(set=0,binding=14,std140) uniform DirectionalLights { +layout(set=0,binding=7,std140) uniform DirectionalLights { DirectionalLightData data[MAX_DIRECTIONAL_LIGHT_DATA_STRUCTS]; } directional_lights; -layout(set=0,binding=15) uniform texture2D directional_shadow_atlas; +struct GIProbeData { + mat4 xform; + vec3 bounds; + float dynamic_range; -/* -layout(set=0,binding=15,std430) buffer Skeletons { - vec4 data[]; -} skeletons; -*/ + float bias; + float normal_bias; + bool blend_ambient; + uint texture_slot; -/* Set 1 Instancing (Multimesh) */ + float anisotropy_strength; + uint pad0; + uint pad1; + uint pad2; +}; -//layout(set = 1, binding = 0) uniform textureBuffer multimesh_transforms; +layout(set=0,binding=8,std140) uniform GIProbes { + GIProbeData data[MAX_GI_PROBES]; +} gi_probes; -layout(set=1,binding=0,std430) buffer Transforms { - vec4 data[]; -} transforms; +layout(set=0,binding=9) uniform texture3D gi_probe_textures[MAX_GI_PROBE_TEXTURES]; -/* Set 2 Instancing (Multimesh) data */ +/* Set 1, Scene data that changes per render pass */ -#if 0 + +layout(set=1,binding=0) uniform texture2D depth_buffer; +layout(set=1,binding=1) uniform texture2D color_buffer; +layout(set=1,binding=2) uniform texture2D normal_buffer; +layout(set=1,binding=3) uniform texture2D roughness_limit; #ifdef USE_RADIANCE_CUBEMAP_ARRAY -layout(set = 3, binding = 2) uniform textureCubeArray reflection_probes[MAX_REFLECTION_PROBES]; +layout(set = 1, binding = 4) uniform textureCubeArray radiance_cubemap; #else -layout(set = 3, binding = 2) uniform textureCube reflection_probes[MAX_REFLECTION_PROBES]; +layout(set = 1, binding = 4) uniform textureCube radiance_cubemap; #endif -#ifdef USE_VOXEL_CONE_TRACING +layout(set=1,binding=5) uniform textureCubeArray reflection_atlas; -layout(set = 3, binding = 4) uniform texture3D gi_probe[2]; +layout(set=1,binding=6) uniform texture2D shadow_atlas; -#ifdef USE_ANISOTROPIC_VOXEL_CONE_TRACING -layout(set = 3, binding = 5) uniform texture3D gi_probe_aniso_pos[2]; -layout(set = 3, binding = 6) uniform texture3D gi_probe_aniso_neg[2]; -#endif +layout(set=1,binding=7) uniform texture2D directional_shadow_atlas; + + +/* Set 2 Skeleton & Instancing (Multimesh) */ + +layout(set=2,binding=0,std430) buffer Transforms { + vec4 data[]; +} transforms; + +/* Set 3 User Material */ -#endif -#endif diff --git a/servers/visual/rendering_device.h b/servers/visual/rendering_device.h index d0afb3f13b..f5a212b076 100644 --- a/servers/visual/rendering_device.h +++ b/servers/visual/rendering_device.h @@ -412,7 +412,8 @@ public: enum TextureSliceType { TEXTURE_SLICE_2D, - TEXTURE_SLICE_CUBEMAP + TEXTURE_SLICE_CUBEMAP, + TEXTURE_SLICE_3D, }; virtual RID texture_create_shared_from_slice(const TextureView &p_view, RID p_with_texture, uint32_t p_layer, uint32_t p_mipmap, TextureSliceType p_slice_type = TEXTURE_SLICE_2D) = 0; @@ -425,6 +426,8 @@ public: virtual bool texture_is_valid(RID p_texture) = 0; virtual Error texture_copy(RID p_from_texture, RID p_to_texture, const Vector3 &p_from, const Vector3 &p_to, const Vector3 &p_size, uint32_t p_src_mipmap, uint32_t p_dst_mipmap, uint32_t p_src_layer, uint32_t p_dst_layer, bool p_sync_with_draw = false) = 0; + virtual Error texture_clear(RID p_texture, const Color &p_color, uint32_t p_base_mipmap, uint32_t p_mipmaps, uint32_t p_base_layer, uint32_t p_layers, bool p_sync_with_draw = false) = 0; + /*********************/ /**** FRAMEBUFFER ****/ /*********************/ @@ -903,15 +906,13 @@ public: enum InitialAction { INITIAL_ACTION_CLEAR, //start rendering and clear the framebuffer (supply params) - INITIAL_ACTION_KEEP_COLOR, //start rendering, but keep attached color texture contents (depth will be cleared) - INITIAL_ACTION_KEEP_COLOR_AND_DEPTH, //start rendering, but keep attached color and depth texture contents (depth will be cleared) + INITIAL_ACTION_KEEP, //start rendering, but keep attached color texture contents (depth will be cleared) INITIAL_ACTION_CONTINUE, //continue rendering (framebuffer must have been left in "continue" state as final action prevously) INITIAL_ACTION_MAX }; enum FinalAction { - FINAL_ACTION_READ_COLOR_AND_DEPTH, //will no longer render to it, allows attached textures to be read again, but depth buffer contents will be dropped (Can't be read from) - FINAL_ACTION_READ_COLOR_DISCARD_DEPTH, //will no longer render to it, allows attached textures to be read again + FINAL_ACTION_READ, //will no longer render to it, allows attached textures to be read again, but depth buffer contents will be dropped (Can't be read from) FINAL_ACTION_DISCARD, // discard contents after rendering FINAL_ACTION_CONTINUE, //will continue rendering later, attached textures can't be read until re-bound with "finish" FINAL_ACTION_MAX @@ -920,8 +921,8 @@ public: typedef int64_t DrawListID; virtual DrawListID draw_list_begin_for_screen(int p_screen = 0, const Color &p_clear_color = Color()) = 0; - virtual DrawListID draw_list_begin(RID p_framebuffer, InitialAction p_initial_action, FinalAction p_final_action, const Vector<Color> &p_clear_color_values = Vector<Color>(), const Rect2 &p_region = Rect2()) = 0; - virtual Error draw_list_begin_split(RID p_framebuffer, uint32_t p_splits, DrawListID *r_split_ids, InitialAction p_initial_action, FinalAction p_final_action, const Vector<Color> &p_clear_color_values = Vector<Color>(), const Rect2 &p_region = Rect2()) = 0; + virtual DrawListID draw_list_begin(RID p_framebuffer, InitialAction p_initial_color_action, FinalAction p_final_color_action, InitialAction p_initial_depth_action, FinalAction p_final_depth_action, const Vector<Color> &p_clear_color_values = Vector<Color>(), float p_clear_depth = 1.0, uint32_t p_clear_stencil = 0, const Rect2 &p_region = Rect2()) = 0; + virtual Error draw_list_begin_split(RID p_framebuffer, uint32_t p_splits, DrawListID *r_split_ids, InitialAction p_initial_color_action, FinalAction p_final_color_action, InitialAction p_initial_depth_action, FinalAction p_final_depth_action, const Vector<Color> &p_clear_color_values = Vector<Color>(), float p_clear_depth = 1.0, uint32_t p_clear_stencil = 0, const Rect2 &p_region = Rect2()) = 0; virtual void draw_list_bind_render_pipeline(DrawListID p_list, RID p_render_pipeline) = 0; virtual void draw_list_bind_uniform_set(DrawListID p_list, RID p_uniform_set, uint32_t p_index) = 0; @@ -930,7 +931,7 @@ public: virtual void draw_list_set_line_width(DrawListID p_list, float p_width) = 0; virtual void draw_list_set_push_constant(DrawListID p_list, void *p_data, uint32_t p_data_size) = 0; - virtual void draw_list_draw(DrawListID p_list, bool p_use_indices, uint32_t p_instances = 1) = 0; + virtual void draw_list_draw(DrawListID p_list, bool p_use_indices, uint32_t p_instances = 1, uint32_t p_procedural_vertices = 0) = 0; virtual void draw_list_enable_scissor(DrawListID p_list, const Rect2 &p_rect) = 0; virtual void draw_list_disable_scissor(DrawListID p_list) = 0; @@ -948,6 +949,8 @@ public: virtual void compute_list_bind_uniform_set(ComputeListID p_list, RID p_uniform_set, uint32_t p_index) = 0; virtual void compute_list_set_push_constant(ComputeListID p_list, void *p_data, uint32_t p_data_size) = 0; virtual void compute_list_dispatch(ComputeListID p_list, uint32_t p_x_groups, uint32_t p_y_groups, uint32_t p_z_groups) = 0; + virtual void compute_list_add_barrier(ComputeListID p_list) = 0; + virtual void compute_list_end() = 0; /***************/ diff --git a/servers/visual/visual_server_raster.h b/servers/visual/visual_server_raster.h index 510296f11c..38f5c1ec58 100644 --- a/servers/visual/visual_server_raster.h +++ b/servers/visual/visual_server_raster.h @@ -344,17 +344,20 @@ public: BIND0R(RID, gi_probe_create) - BIND2(gi_probe_set_bounds, RID, const AABB &) - BIND1RC(AABB, gi_probe_get_bounds, RID) - - BIND2(gi_probe_set_cell_size, RID, float) - BIND1RC(float, gi_probe_get_cell_size, RID) + BIND7(gi_probe_allocate, RID, const Transform &, const AABB &, const Vector3i &, const PoolVector<uint8_t> &, const PoolVector<uint8_t> &, const PoolVector<int> &) - BIND2(gi_probe_set_to_cell_xform, RID, const Transform &) + BIND1RC(AABB, gi_probe_get_bounds, RID) + BIND1RC(Vector3i, gi_probe_get_octree_size, RID) + BIND1RC(PoolVector<uint8_t>, gi_probe_get_octree_cells, RID) + BIND1RC(PoolVector<uint8_t>, gi_probe_get_data_cells, RID) + BIND1RC(PoolVector<int>, gi_probe_get_level_counts, RID) BIND1RC(Transform, gi_probe_get_to_cell_xform, RID) - BIND2(gi_probe_set_dynamic_range, RID, int) - BIND1RC(int, gi_probe_get_dynamic_range, RID) + BIND2(gi_probe_set_dynamic_range, RID, float) + BIND1RC(float, gi_probe_get_dynamic_range, RID) + + BIND2(gi_probe_set_propagation, RID, float) + BIND1RC(float, gi_probe_get_propagation, RID) BIND2(gi_probe_set_energy, RID, float) BIND1RC(float, gi_probe_get_energy, RID) @@ -365,17 +368,14 @@ public: BIND2(gi_probe_set_normal_bias, RID, float) BIND1RC(float, gi_probe_get_normal_bias, RID) - BIND2(gi_probe_set_propagation, RID, float) - BIND1RC(float, gi_probe_get_propagation, RID) - BIND2(gi_probe_set_interior, RID, bool) BIND1RC(bool, gi_probe_is_interior, RID) - BIND2(gi_probe_set_compress, RID, bool) - BIND1RC(bool, gi_probe_is_compressed, RID) + BIND2(gi_probe_set_use_two_bounces, RID, bool) + BIND1RC(bool, gi_probe_is_using_two_bounces, RID) - BIND2(gi_probe_set_dynamic_data, RID, const PoolVector<int> &) - BIND1RC(PoolVector<int>, gi_probe_get_dynamic_data, RID) + BIND2(gi_probe_set_anisotropy_strength, RID, float) + BIND1RC(float, gi_probe_get_anisotropy_strength, RID) /* LIGHTMAP CAPTURE */ diff --git a/servers/visual/visual_server_scene.cpp b/servers/visual/visual_server_scene.cpp index f240f91b12..f7b118bfe5 100644 --- a/servers/visual/visual_server_scene.cpp +++ b/servers/visual/visual_server_scene.cpp @@ -336,23 +336,6 @@ void VisualServerScene::instance_set_base(RID p_instance, RID p_base) { if (instance->base_type != VS::INSTANCE_NONE) { //free anything related to that base - if (instance->base_type == VS::INSTANCE_GI_PROBE) { - //if gi probe is baking, wait until done baking, else race condition may happen when removing it - //from octree - InstanceGIProbeData *gi_probe = static_cast<InstanceGIProbeData *>(instance->base_data); - - //make sure probes are done baking - while (!probe_bake_list.empty()) { - OS::get_singleton()->delay_usec(1); - } - //make sure this one is done baking - - while (gi_probe->dynamic.updating_stage == GI_UPDATE_STAGE_LIGHTING) { - //wait until bake is done if it's baking - OS::get_singleton()->delay_usec(1); - } - } - if (scenario && instance->octree_id) { scenario->octree.erase(instance->octree_id); //make dependencies generated by the octree go away instance->octree_id = 0; @@ -392,9 +375,6 @@ void VisualServerScene::instance_set_base(RID p_instance, RID p_base) { if (gi_probe->update_element.in_list()) { gi_probe_update_list.remove(&gi_probe->update_element); } - if (gi_probe->dynamic.probe_data.is_valid()) { - VSG::storage->free(gi_probe->dynamic.probe_data); - } if (instance->lightmap_capture) { Instance *capture = (Instance *)instance->lightmap_capture; @@ -476,7 +456,7 @@ void VisualServerScene::instance_set_base(RID p_instance, RID p_base) { gi_probe_update_list.add(&gi_probe->update_element); } - gi_probe->probe_instance = VSG::scene_render->gi_probe_instance_create(); + gi_probe->probe_instance = VSG::scene_render->gi_probe_instance_create(p_base); } break; default: { @@ -891,6 +871,13 @@ void VisualServerScene::_update_instance(Instance *p_instance) { reflection_probe->reflection_dirty = true; } + if (p_instance->base_type == VS::INSTANCE_GI_PROBE) { + + InstanceGIProbeData *gi_probe = static_cast<InstanceGIProbeData *>(p_instance->base_data); + + VSG::scene_render->gi_probe_instance_set_transform_to_data(gi_probe->probe_instance, p_instance->transform); + } + if (p_instance->base_type == VS::INSTANCE_PARTICLES) { VSG::storage->particles_set_emission_transform(p_instance->base, p_instance->transform); @@ -1849,6 +1836,7 @@ void VisualServerScene::_prepare_scene(const Transform p_cam_transform, const Ca light_cull_count = 0; reflection_probe_cull_count = 0; + gi_probe_cull_count = 0; //light_samplers_culled=0; @@ -1925,6 +1913,11 @@ void VisualServerScene::_prepare_scene(const Transform p_cam_transform, const Ca gi_probe_update_list.add(&gi_probe->update_element); } + if (gi_probe_cull_count < MAX_GI_PROBES_CULLED) { + gi_probe_instance_cull_result[gi_probe_cull_count] = gi_probe->probe_instance; + gi_probe_cull_count++; + } + } else if (((1 << ins->base_type) & VS::INSTANCE_GEOMETRY_MASK) && ins->visible && ins->cast_shadows != VS::SHADOW_CASTING_SETTING_SHADOWS_ONLY) { keep = true; @@ -2173,7 +2166,7 @@ void VisualServerScene::_render_scene(RID p_render_buffers, const Transform p_ca /* PROCESS GEOMETRY AND DRAW SCENE */ RENDER_TIMESTAMP("Render Scene "); - VSG::scene_render->render_scene(p_render_buffers, p_cam_transform, p_cam_projection, p_cam_orthogonal, (RasterizerScene::InstanceBase **)instance_cull_result, instance_cull_count, light_instance_cull_result, light_cull_count + directional_light_count, reflection_probe_instance_cull_result, reflection_probe_cull_count, environment, p_shadow_atlas, p_reflection_probe.is_valid() ? RID() : scenario->reflection_atlas, p_reflection_probe, p_reflection_probe_pass); + VSG::scene_render->render_scene(p_render_buffers, p_cam_transform, p_cam_projection, p_cam_orthogonal, (RasterizerScene::InstanceBase **)instance_cull_result, instance_cull_count, light_instance_cull_result, light_cull_count + directional_light_count, reflection_probe_instance_cull_result, reflection_probe_cull_count, gi_probe_instance_cull_result, gi_probe_cull_count, environment, p_shadow_atlas, p_reflection_probe.is_valid() ? RID() : scenario->reflection_atlas, p_reflection_probe, p_reflection_probe_pass); } void VisualServerScene::render_empty_scene(RID p_render_buffers, RID p_scenario, RID p_shadow_atlas) { @@ -2188,7 +2181,7 @@ void VisualServerScene::render_empty_scene(RID p_render_buffers, RID p_scenario, else environment = scenario->fallback_environment; RENDER_TIMESTAMP("Render Empty Scene "); - VSG::scene_render->render_scene(p_render_buffers, Transform(), CameraMatrix(), true, NULL, 0, NULL, 0, NULL, 0, environment, p_shadow_atlas, scenario->reflection_atlas, RID(), 0); + VSG::scene_render->render_scene(p_render_buffers, Transform(), CameraMatrix(), true, NULL, 0, NULL, 0, NULL, 0, NULL, 0, environment, p_shadow_atlas, scenario->reflection_atlas, RID(), 0); #endif } @@ -2265,898 +2258,6 @@ bool VisualServerScene::_render_reflection_probe_step(Instance *p_instance, int return false; } -void VisualServerScene::_gi_probe_fill_local_data(int p_idx, int p_level, int p_x, int p_y, int p_z, const GIProbeDataCell *p_cell, const GIProbeDataHeader *p_header, InstanceGIProbeData::LocalData *p_local_data, Vector<uint32_t> *prev_cell) { - - if ((uint32_t)p_level == p_header->cell_subdiv - 1) { - - Vector3 emission; - emission.x = (p_cell[p_idx].emission >> 24) / 255.0; - emission.y = ((p_cell[p_idx].emission >> 16) & 0xFF) / 255.0; - emission.z = ((p_cell[p_idx].emission >> 8) & 0xFF) / 255.0; - float l = (p_cell[p_idx].emission & 0xFF) / 255.0; - l *= 8.0; - - emission *= l; - - p_local_data[p_idx].energy[0] = uint16_t(emission.x * 1024); //go from 0 to 1024 for light - p_local_data[p_idx].energy[1] = uint16_t(emission.y * 1024); //go from 0 to 1024 for light - p_local_data[p_idx].energy[2] = uint16_t(emission.z * 1024); //go from 0 to 1024 for light - } else { - - p_local_data[p_idx].energy[0] = 0; - p_local_data[p_idx].energy[1] = 0; - p_local_data[p_idx].energy[2] = 0; - - int half = (1 << (p_header->cell_subdiv - 1)) >> (p_level + 1); - - for (int i = 0; i < 8; i++) { - - uint32_t child = p_cell[p_idx].children[i]; - - if (child == 0xFFFFFFFF) - continue; - - int x = p_x; - int y = p_y; - int z = p_z; - - if (i & 1) - x += half; - if (i & 2) - y += half; - if (i & 4) - z += half; - - _gi_probe_fill_local_data(child, p_level + 1, x, y, z, p_cell, p_header, p_local_data, prev_cell); - } - } - - //position for each part of the mipmaped texture - p_local_data[p_idx].pos[0] = p_x >> (p_header->cell_subdiv - p_level - 1); - p_local_data[p_idx].pos[1] = p_y >> (p_header->cell_subdiv - p_level - 1); - p_local_data[p_idx].pos[2] = p_z >> (p_header->cell_subdiv - p_level - 1); - - prev_cell[p_level].push_back(p_idx); -} - -void VisualServerScene::_gi_probe_bake_threads(void *self) { - - VisualServerScene *vss = (VisualServerScene *)self; - vss->_gi_probe_bake_thread(); -} - -void VisualServerScene::_setup_gi_probe(Instance *p_instance) { - - InstanceGIProbeData *probe = static_cast<InstanceGIProbeData *>(p_instance->base_data); - - if (probe->dynamic.probe_data.is_valid()) { - VSG::storage->free(probe->dynamic.probe_data); - probe->dynamic.probe_data = RID(); - } - - probe->dynamic.light_data = VSG::storage->gi_probe_get_dynamic_data(p_instance->base); - - if (probe->dynamic.light_data.size() == 0) - return; - //using dynamic data - PoolVector<int>::Read r = probe->dynamic.light_data.read(); - - const GIProbeDataHeader *header = (GIProbeDataHeader *)r.ptr(); - - probe->dynamic.local_data.resize(header->cell_count); - - int cell_count = probe->dynamic.local_data.size(); - PoolVector<InstanceGIProbeData::LocalData>::Write ldw = probe->dynamic.local_data.write(); - const GIProbeDataCell *cells = (GIProbeDataCell *)&r[16]; - - probe->dynamic.level_cell_lists.resize(header->cell_subdiv); - - _gi_probe_fill_local_data(0, 0, 0, 0, 0, cells, header, ldw.ptr(), probe->dynamic.level_cell_lists.ptrw()); - - bool compress = VSG::storage->gi_probe_is_compressed(p_instance->base); - - probe->dynamic.compression = compress ? VSG::storage->gi_probe_get_dynamic_data_get_preferred_compression() : RasterizerStorage::GI_PROBE_UNCOMPRESSED; - - probe->dynamic.probe_data = VSG::storage->gi_probe_dynamic_data_create(header->width, header->height, header->depth, probe->dynamic.compression); - - probe->dynamic.bake_dynamic_range = VSG::storage->gi_probe_get_dynamic_range(p_instance->base); - - probe->dynamic.mipmaps_3d.clear(); - probe->dynamic.propagate = VSG::storage->gi_probe_get_propagation(p_instance->base); - - probe->dynamic.grid_size[0] = header->width; - probe->dynamic.grid_size[1] = header->height; - probe->dynamic.grid_size[2] = header->depth; - - int size_limit = 1; - int size_divisor = 1; - - if (probe->dynamic.compression == RasterizerStorage::GI_PROBE_S3TC) { - size_limit = 4; - size_divisor = 4; - } - for (int i = 0; i < (int)header->cell_subdiv; i++) { - - int x = header->width >> i; - int y = header->height >> i; - int z = header->depth >> i; - - //create and clear mipmap - PoolVector<uint8_t> mipmap; - int size = x * y * z * 4; - size /= size_divisor; - mipmap.resize(size); - PoolVector<uint8_t>::Write w = mipmap.write(); - zeromem(w.ptr(), size); - w.release(); - - probe->dynamic.mipmaps_3d.push_back(mipmap); - - if (x <= size_limit || y <= size_limit || z <= size_limit) - break; - } - - probe->dynamic.updating_stage = GI_UPDATE_STAGE_CHECK; - probe->invalid = false; - probe->dynamic.enabled = true; - - Transform cell_to_xform = VSG::storage->gi_probe_get_to_cell_xform(p_instance->base); - AABB bounds = VSG::storage->gi_probe_get_bounds(p_instance->base); - float cell_size = VSG::storage->gi_probe_get_cell_size(p_instance->base); - - probe->dynamic.light_to_cell_xform = cell_to_xform * p_instance->transform.affine_inverse(); - - VSG::scene_render->gi_probe_instance_set_light_data(probe->probe_instance, p_instance->base, probe->dynamic.probe_data); - VSG::scene_render->gi_probe_instance_set_transform_to_data(probe->probe_instance, probe->dynamic.light_to_cell_xform); - - VSG::scene_render->gi_probe_instance_set_bounds(probe->probe_instance, bounds.size / cell_size); - - probe->base_version = VSG::storage->gi_probe_get_version(p_instance->base); - - //if compression is S3TC, fill it up - if (probe->dynamic.compression == RasterizerStorage::GI_PROBE_S3TC) { - - //create all blocks - Vector<Map<uint32_t, InstanceGIProbeData::CompBlockS3TC> > comp_blocks; - int mipmap_count = probe->dynamic.mipmaps_3d.size(); - comp_blocks.resize(mipmap_count); - - for (int i = 0; i < cell_count; i++) { - - const GIProbeDataCell &c = cells[i]; - const InstanceGIProbeData::LocalData &ld = ldw[i]; - int level = c.level_alpha >> 16; - int mipmap = header->cell_subdiv - level - 1; - if (mipmap >= mipmap_count) - continue; //uninteresting - - int blockx = (ld.pos[0] >> 2); - int blocky = (ld.pos[1] >> 2); - int blockz = (ld.pos[2]); //compression is x/y only - - int blockw = (header->width >> mipmap) >> 2; - int blockh = (header->height >> mipmap) >> 2; - - //print_line("cell "+itos(i)+" level "+itos(level)+"mipmap: "+itos(mipmap)+" pos: "+Vector3(blockx,blocky,blockz)+" size "+Vector2(blockw,blockh)); - - uint32_t key = blockz * blockw * blockh + blocky * blockw + blockx; - - Map<uint32_t, InstanceGIProbeData::CompBlockS3TC> &cmap = comp_blocks.write[mipmap]; - - if (!cmap.has(key)) { - - InstanceGIProbeData::CompBlockS3TC k; - k.offset = key; //use offset as counter first - k.source_count = 0; - cmap[key] = k; - } - - InstanceGIProbeData::CompBlockS3TC &k = cmap[key]; - ERR_CONTINUE(k.source_count == 16); - k.sources[k.source_count++] = i; - } - - //fix the blocks, precomputing what is needed - probe->dynamic.mipmaps_s3tc.resize(mipmap_count); - - for (int i = 0; i < mipmap_count; i++) { - //print_line("S3TC level: " + itos(i) + " blocks: " + itos(comp_blocks[i].size())); - probe->dynamic.mipmaps_s3tc.write[i].resize(comp_blocks[i].size()); - PoolVector<InstanceGIProbeData::CompBlockS3TC>::Write w = probe->dynamic.mipmaps_s3tc.write[i].write(); - int block_idx = 0; - - for (Map<uint32_t, InstanceGIProbeData::CompBlockS3TC>::Element *E = comp_blocks[i].front(); E; E = E->next()) { - - InstanceGIProbeData::CompBlockS3TC k = E->get(); - - //PRECOMPUTE ALPHA - int max_alpha = -100000; - int min_alpha = k.source_count == 16 ? 100000 : 0; //if the block is not completely full, minimum is always 0, (and those blocks will map to 1, which will be zero) - - uint8_t alpha_block[4][4] = { { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 } }; - - for (uint32_t j = 0; j < k.source_count; j++) { - - int alpha = (cells[k.sources[j]].level_alpha >> 8) & 0xFF; - if (alpha < min_alpha) - min_alpha = alpha; - if (alpha > max_alpha) - max_alpha = alpha; - //fill up alpha block - alpha_block[ldw[k.sources[j]].pos[0] % 4][ldw[k.sources[j]].pos[1] % 4] = alpha; - } - - //use the first mode (8 adjustable levels) - k.alpha[0] = max_alpha; - k.alpha[1] = min_alpha; - - uint64_t alpha_bits = 0; - - if (max_alpha != min_alpha) { - - int idx = 0; - - for (int y = 0; y < 4; y++) { - for (int x = 0; x < 4; x++) { - - //subtract minimum - uint32_t a = uint32_t(alpha_block[x][y]) - min_alpha; - //convert range to 3 bits - a = int((a * 7.0 / (max_alpha - min_alpha)) + 0.5); - a = MIN(a, 7); //just to be sure - a = 7 - a; //because range is inverted in this mode - if (a == 0) { - //do none, remain - } else if (a == 7) { - a = 1; - } else { - a = a + 1; - } - - alpha_bits |= uint64_t(a) << (idx * 3); - idx++; - } - } - } - - k.alpha[2] = (alpha_bits >> 0) & 0xFF; - k.alpha[3] = (alpha_bits >> 8) & 0xFF; - k.alpha[4] = (alpha_bits >> 16) & 0xFF; - k.alpha[5] = (alpha_bits >> 24) & 0xFF; - k.alpha[6] = (alpha_bits >> 32) & 0xFF; - k.alpha[7] = (alpha_bits >> 40) & 0xFF; - - w[block_idx++] = k; - } - } - } -} - -void VisualServerScene::_gi_probe_bake_thread() { - - while (true) { - - probe_bake_sem->wait(); - if (probe_bake_thread_exit) { - break; - } - - Instance *to_bake = NULL; - - probe_bake_mutex->lock(); - - if (!probe_bake_list.empty()) { - to_bake = probe_bake_list.front()->get(); - probe_bake_list.pop_front(); - } - probe_bake_mutex->unlock(); - - if (!to_bake) - continue; - - _bake_gi_probe(to_bake); - } -} - -uint32_t VisualServerScene::_gi_bake_find_cell(const GIProbeDataCell *cells, int x, int y, int z, int p_cell_subdiv) { - - uint32_t cell = 0; - - int ofs_x = 0; - int ofs_y = 0; - int ofs_z = 0; - int size = 1 << (p_cell_subdiv - 1); - int half = size / 2; - - if (x < 0 || x >= size) - return -1; - if (y < 0 || y >= size) - return -1; - if (z < 0 || z >= size) - return -1; - - for (int i = 0; i < p_cell_subdiv - 1; i++) { - - const GIProbeDataCell *bc = &cells[cell]; - - int child = 0; - if (x >= ofs_x + half) { - child |= 1; - ofs_x += half; - } - if (y >= ofs_y + half) { - child |= 2; - ofs_y += half; - } - if (z >= ofs_z + half) { - child |= 4; - ofs_z += half; - } - - cell = bc->children[child]; - if (cell == 0xFFFFFFFF) - return 0xFFFFFFFF; - - half >>= 1; - } - - return cell; -} - -static float _get_normal_advance(const Vector3 &p_normal) { - - Vector3 normal = p_normal; - Vector3 unorm = normal.abs(); - - if ((unorm.x >= unorm.y) && (unorm.x >= unorm.z)) { - // x code - unorm = normal.x > 0.0 ? Vector3(1.0, 0.0, 0.0) : Vector3(-1.0, 0.0, 0.0); - } else if ((unorm.y > unorm.x) && (unorm.y >= unorm.z)) { - // y code - unorm = normal.y > 0.0 ? Vector3(0.0, 1.0, 0.0) : Vector3(0.0, -1.0, 0.0); - } else if ((unorm.z > unorm.x) && (unorm.z > unorm.y)) { - // z code - unorm = normal.z > 0.0 ? Vector3(0.0, 0.0, 1.0) : Vector3(0.0, 0.0, -1.0); - } else { - // oh-no we messed up code - // has to be - unorm = Vector3(1.0, 0.0, 0.0); - } - - return 1.0 / normal.dot(unorm); -} - -void VisualServerScene::_bake_gi_probe_light(const GIProbeDataHeader *header, const GIProbeDataCell *cells, InstanceGIProbeData::LocalData *local_data, const uint32_t *leaves, int p_leaf_count, const InstanceGIProbeData::LightCache &light_cache, int p_sign) { - - int light_r = int(light_cache.color.r * light_cache.energy * 1024.0) * p_sign; - int light_g = int(light_cache.color.g * light_cache.energy * 1024.0) * p_sign; - int light_b = int(light_cache.color.b * light_cache.energy * 1024.0) * p_sign; - - float limits[3] = { float(header->width), float(header->height), float(header->depth) }; - Plane clip[3]; - int clip_planes = 0; - - switch (light_cache.type) { - - case VS::LIGHT_DIRECTIONAL: { - - float max_len = Vector3(limits[0], limits[1], limits[2]).length() * 1.1; - - Vector3 light_axis = -light_cache.transform.basis.get_axis(2).normalized(); - - for (int i = 0; i < 3; i++) { - - if (Math::is_zero_approx(light_axis[i])) - continue; - clip[clip_planes].normal[i] = 1.0; - - if (light_axis[i] < 0) { - - clip[clip_planes].d = limits[i] + 1; - } else { - clip[clip_planes].d -= 1.0; - } - - clip_planes++; - } - - float distance_adv = _get_normal_advance(light_axis); - - int success_count = 0; - - // uint64_t us = OS::get_singleton()->get_ticks_usec(); - - for (int i = 0; i < p_leaf_count; i++) { - - uint32_t idx = leaves[i]; - - const GIProbeDataCell *cell = &cells[idx]; - InstanceGIProbeData::LocalData *light = &local_data[idx]; - - Vector3 to(light->pos[0] + 0.5, light->pos[1] + 0.5, light->pos[2] + 0.5); - to += -light_axis.sign() * 0.47; //make it more likely to receive a ray - - Vector3 norm( - (((cells[idx].normal >> 16) & 0xFF) / 255.0) * 2.0 - 1.0, - (((cells[idx].normal >> 8) & 0xFF) / 255.0) * 2.0 - 1.0, - (((cells[idx].normal >> 0) & 0xFF) / 255.0) * 2.0 - 1.0); - - float att = norm.dot(-light_axis); - if (att < 0.001) { - //not lighting towards this - continue; - } - - Vector3 from = to - max_len * light_axis; - - for (int j = 0; j < clip_planes; j++) { - - clip[j].intersects_segment(from, to, &from); - } - - float distance = (to - from).length(); - distance += distance_adv - Math::fmod(distance, distance_adv); //make it reach the center of the box always - from = to - light_axis * distance; - - uint32_t result = 0xFFFFFFFF; - - while (distance > -distance_adv) { //use this to avoid precision errors - - result = _gi_bake_find_cell(cells, int(floor(from.x)), int(floor(from.y)), int(floor(from.z)), header->cell_subdiv); - if (result != 0xFFFFFFFF) { - break; - } - - from += light_axis * distance_adv; - distance -= distance_adv; - } - - if (result == idx) { - //cell hit itself! hooray! - light->energy[0] += int32_t(light_r * att * ((cell->albedo >> 16) & 0xFF) / 255.0); - light->energy[1] += int32_t(light_g * att * ((cell->albedo >> 8) & 0xFF) / 255.0); - light->energy[2] += int32_t(light_b * att * ((cell->albedo) & 0xFF) / 255.0); - success_count++; - } - } - - // print_line("BAKE TIME: " + rtos((OS::get_singleton()->get_ticks_usec() - us) / 1000000.0)); - // print_line("valid cells: " + itos(success_count)); - - } break; - case VS::LIGHT_OMNI: - case VS::LIGHT_SPOT: { - - // uint64_t us = OS::get_singleton()->get_ticks_usec(); - - Vector3 light_pos = light_cache.transform.origin; - Vector3 spot_axis = -light_cache.transform.basis.get_axis(2).normalized(); - - float local_radius = light_cache.radius * light_cache.transform.basis.get_axis(2).length(); - - for (int i = 0; i < p_leaf_count; i++) { - - uint32_t idx = leaves[i]; - - const GIProbeDataCell *cell = &cells[idx]; - InstanceGIProbeData::LocalData *light = &local_data[idx]; - - Vector3 to(light->pos[0] + 0.5, light->pos[1] + 0.5, light->pos[2] + 0.5); - to += (light_pos - to).sign() * 0.47; //make it more likely to receive a ray - - Vector3 norm( - (((cells[idx].normal >> 16) & 0xFF) / 255.0) * 2.0 - 1.0, - (((cells[idx].normal >> 8) & 0xFF) / 255.0) * 2.0 - 1.0, - (((cells[idx].normal >> 0) & 0xFF) / 255.0) * 2.0 - 1.0); - - Vector3 light_axis = (to - light_pos).normalized(); - float distance_adv = _get_normal_advance(light_axis); - - float att = norm.dot(-light_axis); - if (att < 0.001) { - //not lighting towards this - continue; - } - - { - float d = light_pos.distance_to(to); - if (d + distance_adv > local_radius) - continue; // too far away - - float dt = CLAMP((d + distance_adv) / local_radius, 0, 1); - att *= powf(1.0 - dt, light_cache.attenuation); - } - - if (light_cache.type == VS::LIGHT_SPOT) { - - float angle = Math::rad2deg(acos(light_axis.dot(spot_axis))); - if (angle > light_cache.spot_angle) - continue; - - float d = CLAMP(angle / light_cache.spot_angle, 0, 1); - att *= powf(1.0 - d, light_cache.spot_attenuation); - } - - clip_planes = 0; - - for (int c = 0; c < 3; c++) { - - if (Math::is_zero_approx(light_axis[c])) - continue; - clip[clip_planes].normal[c] = 1.0; - - if (light_axis[c] < 0) { - - clip[clip_planes].d = limits[c] + 1; - } else { - clip[clip_planes].d -= 1.0; - } - - clip_planes++; - } - - Vector3 from = light_pos; - - for (int j = 0; j < clip_planes; j++) { - - clip[j].intersects_segment(from, to, &from); - } - - float distance = (to - from).length(); - - distance -= Math::fmod(distance, distance_adv); //make it reach the center of the box always, but this tame make it closer - from = to - light_axis * distance; - - uint32_t result = 0xFFFFFFFF; - - while (distance > -distance_adv) { //use this to avoid precision errors - - result = _gi_bake_find_cell(cells, int(floor(from.x)), int(floor(from.y)), int(floor(from.z)), header->cell_subdiv); - if (result != 0xFFFFFFFF) { - break; - } - - from += light_axis * distance_adv; - distance -= distance_adv; - } - - if (result == idx) { - //cell hit itself! hooray! - - light->energy[0] += int32_t(light_r * att * ((cell->albedo >> 16) & 0xFF) / 255.0); - light->energy[1] += int32_t(light_g * att * ((cell->albedo >> 8) & 0xFF) / 255.0); - light->energy[2] += int32_t(light_b * att * ((cell->albedo) & 0xFF) / 255.0); - } - } - //print_line("BAKE TIME: " + rtos((OS::get_singleton()->get_ticks_usec() - us) / 1000000.0)); - } break; - } -} - -void VisualServerScene::_bake_gi_downscale_light(int p_idx, int p_level, const GIProbeDataCell *p_cells, const GIProbeDataHeader *p_header, InstanceGIProbeData::LocalData *p_local_data, float p_propagate) { - - //average light to upper level - - float divisor = 0; - float sum[3] = { 0.0, 0.0, 0.0 }; - - for (int i = 0; i < 8; i++) { - - uint32_t child = p_cells[p_idx].children[i]; - - if (child == 0xFFFFFFFF) - continue; - - if (p_level + 1 < (int)p_header->cell_subdiv - 1) { - _bake_gi_downscale_light(child, p_level + 1, p_cells, p_header, p_local_data, p_propagate); - } - - sum[0] += p_local_data[child].energy[0]; - sum[1] += p_local_data[child].energy[1]; - sum[2] += p_local_data[child].energy[2]; - divisor += 1.0; - } - - divisor = Math::lerp((float)8.0, divisor, p_propagate); - sum[0] /= divisor; - sum[1] /= divisor; - sum[2] /= divisor; - - //divide by eight for average - p_local_data[p_idx].energy[0] = Math::fast_ftoi(sum[0]); - p_local_data[p_idx].energy[1] = Math::fast_ftoi(sum[1]); - p_local_data[p_idx].energy[2] = Math::fast_ftoi(sum[2]); -} - -void VisualServerScene::_bake_gi_probe(Instance *p_gi_probe) { - - InstanceGIProbeData *probe_data = static_cast<InstanceGIProbeData *>(p_gi_probe->base_data); - - PoolVector<int>::Read r = probe_data->dynamic.light_data.read(); - - const GIProbeDataHeader *header = (const GIProbeDataHeader *)r.ptr(); - const GIProbeDataCell *cells = (const GIProbeDataCell *)&r[16]; - - int leaf_count = probe_data->dynamic.level_cell_lists[header->cell_subdiv - 1].size(); - const uint32_t *leaves = probe_data->dynamic.level_cell_lists[header->cell_subdiv - 1].ptr(); - - PoolVector<InstanceGIProbeData::LocalData>::Write ldw = probe_data->dynamic.local_data.write(); - - InstanceGIProbeData::LocalData *local_data = ldw.ptr(); - - //remove what must be removed - for (Map<RID, InstanceGIProbeData::LightCache>::Element *E = probe_data->dynamic.light_cache.front(); E; E = E->next()) { - - RID rid = E->key(); - const InstanceGIProbeData::LightCache &lc = E->get(); - - if ((!probe_data->dynamic.light_cache_changes.has(rid) || probe_data->dynamic.light_cache_changes[rid] != lc) && lc.visible) { - //erase light data - - _bake_gi_probe_light(header, cells, local_data, leaves, leaf_count, lc, -1); - } - } - - //add what must be added - for (Map<RID, InstanceGIProbeData::LightCache>::Element *E = probe_data->dynamic.light_cache_changes.front(); E; E = E->next()) { - - RID rid = E->key(); - const InstanceGIProbeData::LightCache &lc = E->get(); - - if ((!probe_data->dynamic.light_cache.has(rid) || probe_data->dynamic.light_cache[rid] != lc) && lc.visible) { - //add light data - - _bake_gi_probe_light(header, cells, local_data, leaves, leaf_count, lc, 1); - } - } - - SWAP(probe_data->dynamic.light_cache_changes, probe_data->dynamic.light_cache); - - //downscale to lower res levels - _bake_gi_downscale_light(0, 0, cells, header, local_data, probe_data->dynamic.propagate); - - //plot result to 3D texture! - - if (probe_data->dynamic.compression == RasterizerStorage::GI_PROBE_UNCOMPRESSED) { - - for (int i = 0; i < (int)header->cell_subdiv; i++) { - - int stage = header->cell_subdiv - i - 1; - - if (stage >= probe_data->dynamic.mipmaps_3d.size()) - continue; //no mipmap for this one - - //print_line("generating mipmap stage: " + itos(stage)); - int level_cell_count = probe_data->dynamic.level_cell_lists[i].size(); - const uint32_t *level_cells = probe_data->dynamic.level_cell_lists[i].ptr(); - - PoolVector<uint8_t>::Write lw = probe_data->dynamic.mipmaps_3d.write[stage].write(); - uint8_t *mipmapw = lw.ptr(); - - uint32_t sizes[3] = { header->width >> stage, header->height >> stage, header->depth >> stage }; - - for (int j = 0; j < level_cell_count; j++) { - - uint32_t idx = level_cells[j]; - - uint32_t r2 = (uint32_t(local_data[idx].energy[0]) / probe_data->dynamic.bake_dynamic_range) >> 2; - uint32_t g = (uint32_t(local_data[idx].energy[1]) / probe_data->dynamic.bake_dynamic_range) >> 2; - uint32_t b = (uint32_t(local_data[idx].energy[2]) / probe_data->dynamic.bake_dynamic_range) >> 2; - uint32_t a = (cells[idx].level_alpha >> 8) & 0xFF; - - uint32_t mm_ofs = sizes[0] * sizes[1] * (local_data[idx].pos[2]) + sizes[0] * (local_data[idx].pos[1]) + (local_data[idx].pos[0]); - mm_ofs *= 4; //for RGBA (4 bytes) - - mipmapw[mm_ofs + 0] = uint8_t(MIN(r2, 255)); - mipmapw[mm_ofs + 1] = uint8_t(MIN(g, 255)); - mipmapw[mm_ofs + 2] = uint8_t(MIN(b, 255)); - mipmapw[mm_ofs + 3] = uint8_t(MIN(a, 255)); - } - } - } else if (probe_data->dynamic.compression == RasterizerStorage::GI_PROBE_S3TC) { - - int mipmap_count = probe_data->dynamic.mipmaps_3d.size(); - - for (int mmi = 0; mmi < mipmap_count; mmi++) { - - PoolVector<uint8_t>::Write mmw = probe_data->dynamic.mipmaps_3d.write[mmi].write(); - int block_count = probe_data->dynamic.mipmaps_s3tc[mmi].size(); - PoolVector<InstanceGIProbeData::CompBlockS3TC>::Read mmr = probe_data->dynamic.mipmaps_s3tc[mmi].read(); - - for (int i = 0; i < block_count; i++) { - - const InstanceGIProbeData::CompBlockS3TC &b = mmr[i]; - - uint8_t *blockptr = &mmw[b.offset * 16]; - copymem(blockptr, b.alpha, 8); //copy alpha part, which is precomputed - - Vector3 colors[16]; - - for (uint32_t j = 0; j < b.source_count; j++) { - - colors[j].x = (local_data[b.sources[j]].energy[0] / float(probe_data->dynamic.bake_dynamic_range)) / 1024.0; - colors[j].y = (local_data[b.sources[j]].energy[1] / float(probe_data->dynamic.bake_dynamic_range)) / 1024.0; - colors[j].z = (local_data[b.sources[j]].energy[2] / float(probe_data->dynamic.bake_dynamic_range)) / 1024.0; - } - //super quick and dirty compression - //find 2 most further apart - float distance = 0; - Vector3 from, to; - - if (b.source_count == 16) { - //all cells are used so, find minmax between them - int further_apart[2] = { 0, 0 }; - for (uint32_t j = 0; j < b.source_count; j++) { - for (uint32_t k = j + 1; k < b.source_count; k++) { - float d = colors[j].distance_squared_to(colors[k]); - if (d > distance) { - distance = d; - further_apart[0] = j; - further_apart[1] = k; - } - } - } - - from = colors[further_apart[0]]; - to = colors[further_apart[1]]; - - } else { - //if a block is missing, the priority is that this block remains black, - //otherwise the geometry will appear deformed - //correct shape wins over correct color in this case - //average all colors first - Vector3 average; - - for (uint32_t j = 0; j < b.source_count; j++) { - average += colors[j]; - } - average.normalize(); - //find max distance in normal from average - for (uint32_t j = 0; j < b.source_count; j++) { - float d = average.dot(colors[j]); - distance = MAX(d, distance); - } - - from = Vector3(); //from black - to = average * distance; - //find max distance - } - - int indices[16]; - uint16_t color_0 = 0; - color_0 = CLAMP(int(from.x * 31), 0, 31) << 11; - color_0 |= CLAMP(int(from.y * 63), 0, 63) << 5; - color_0 |= CLAMP(int(from.z * 31), 0, 31); - - uint16_t color_1 = 0; - color_1 = CLAMP(int(to.x * 31), 0, 31) << 11; - color_1 |= CLAMP(int(to.y * 63), 0, 63) << 5; - color_1 |= CLAMP(int(to.z * 31), 0, 31); - - if (color_1 > color_0) { - SWAP(color_1, color_0); - SWAP(from, to); - } - - if (distance > 0) { - - Vector3 dir = (to - from).normalized(); - - for (uint32_t j = 0; j < b.source_count; j++) { - - float d = (colors[j] - from).dot(dir) / distance; - indices[j] = int(d * 3 + 0.5); - - static const int index_swap[4] = { 0, 3, 1, 2 }; - - indices[j] = index_swap[CLAMP(indices[j], 0, 3)]; - } - } else { - for (uint32_t j = 0; j < b.source_count; j++) { - indices[j] = 0; - } - } - - //by default, 1 is black, otherwise it will be overridden by source - - uint32_t index_block[16] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }; - - for (uint32_t j = 0; j < b.source_count; j++) { - - int x = local_data[b.sources[j]].pos[0] % 4; - int y = local_data[b.sources[j]].pos[1] % 4; - - index_block[y * 4 + x] = indices[j]; - } - - uint32_t encode = 0; - - for (int j = 0; j < 16; j++) { - encode |= index_block[j] << (j * 2); - } - - blockptr[8] = color_0 & 0xFF; - blockptr[9] = (color_0 >> 8) & 0xFF; - blockptr[10] = color_1 & 0xFF; - blockptr[11] = (color_1 >> 8) & 0xFF; - blockptr[12] = encode & 0xFF; - blockptr[13] = (encode >> 8) & 0xFF; - blockptr[14] = (encode >> 16) & 0xFF; - blockptr[15] = (encode >> 24) & 0xFF; - } - } - } - - //send back to main thread to update un little chunks - if (probe_bake_mutex) { - probe_bake_mutex->lock(); - } - - probe_data->dynamic.updating_stage = GI_UPDATE_STAGE_UPLOADING; - - if (probe_bake_mutex) { - probe_bake_mutex->unlock(); - } -} - -bool VisualServerScene::_check_gi_probe(Instance *p_gi_probe) { - - InstanceGIProbeData *probe_data = static_cast<InstanceGIProbeData *>(p_gi_probe->base_data); - - probe_data->dynamic.light_cache_changes.clear(); - - bool all_equal = true; - - for (List<Instance *>::Element *E = p_gi_probe->scenario->directional_lights.front(); E; E = E->next()) { - - if (!VSG::storage->light_get_use_gi(E->get()->base)) - continue; - - InstanceGIProbeData::LightCache lc; - lc.type = VSG::storage->light_get_type(E->get()->base); - lc.color = VSG::storage->light_get_color(E->get()->base); - lc.energy = VSG::storage->light_get_param(E->get()->base, VS::LIGHT_PARAM_ENERGY) * VSG::storage->light_get_param(E->get()->base, VS::LIGHT_PARAM_INDIRECT_ENERGY); - lc.radius = VSG::storage->light_get_param(E->get()->base, VS::LIGHT_PARAM_RANGE); - lc.attenuation = VSG::storage->light_get_param(E->get()->base, VS::LIGHT_PARAM_ATTENUATION); - lc.spot_angle = VSG::storage->light_get_param(E->get()->base, VS::LIGHT_PARAM_SPOT_ANGLE); - lc.spot_attenuation = VSG::storage->light_get_param(E->get()->base, VS::LIGHT_PARAM_SPOT_ATTENUATION); - lc.transform = probe_data->dynamic.light_to_cell_xform * E->get()->transform; - lc.visible = E->get()->visible; - - if (!probe_data->dynamic.light_cache.has(E->get()->self) || probe_data->dynamic.light_cache[E->get()->self] != lc) { - all_equal = false; - } - - probe_data->dynamic.light_cache_changes[E->get()->self] = lc; - } - - for (Set<Instance *>::Element *E = probe_data->lights.front(); E; E = E->next()) { - - if (!VSG::storage->light_get_use_gi(E->get()->base)) - continue; - - InstanceGIProbeData::LightCache lc; - lc.type = VSG::storage->light_get_type(E->get()->base); - lc.color = VSG::storage->light_get_color(E->get()->base); - lc.energy = VSG::storage->light_get_param(E->get()->base, VS::LIGHT_PARAM_ENERGY) * VSG::storage->light_get_param(E->get()->base, VS::LIGHT_PARAM_INDIRECT_ENERGY); - lc.radius = VSG::storage->light_get_param(E->get()->base, VS::LIGHT_PARAM_RANGE); - lc.attenuation = VSG::storage->light_get_param(E->get()->base, VS::LIGHT_PARAM_ATTENUATION); - lc.spot_angle = VSG::storage->light_get_param(E->get()->base, VS::LIGHT_PARAM_SPOT_ANGLE); - lc.spot_attenuation = VSG::storage->light_get_param(E->get()->base, VS::LIGHT_PARAM_SPOT_ATTENUATION); - lc.transform = probe_data->dynamic.light_to_cell_xform * E->get()->transform; - lc.visible = E->get()->visible; - - if (!probe_data->dynamic.light_cache.has(E->get()->self) || probe_data->dynamic.light_cache[E->get()->self] != lc) { - all_equal = false; - } - - probe_data->dynamic.light_cache_changes[E->get()->self] = lc; - } - - //lighting changed from after to before, must do some updating - return !all_equal || probe_data->dynamic.light_cache_changes.size() != probe_data->dynamic.light_cache.size(); -} - void VisualServerScene::render_probes() { /* REFLECTION PROBES */ @@ -3205,71 +2306,169 @@ void VisualServerScene::render_probes() { SelfList<InstanceGIProbeData> *gi_probe = gi_probe_update_list.first(); + if (gi_probe) { + RENDER_TIMESTAMP("Render GI Probes"); + } + while (gi_probe) { SelfList<InstanceGIProbeData> *next = gi_probe->next(); InstanceGIProbeData *probe = gi_probe->self(); - Instance *instance_probe = probe->owner; + //Instance *instance_probe = probe->owner; //check if probe must be setup, but don't do if on the lighting thread - bool force_lighting = false; + bool cache_dirty = false; + int cache_count = 0; + { - if (probe->invalid || (probe->dynamic.updating_stage == GI_UPDATE_STAGE_CHECK && probe->base_version != VSG::storage->gi_probe_get_version(instance_probe->base))) { + int light_cache_size = probe->light_cache.size(); + const InstanceGIProbeData::LightCache *caches = probe->light_cache.ptr(); + const RID *instance_caches = probe->light_instances.ptr(); - _setup_gi_probe(instance_probe); - force_lighting = true; - } + int idx = 0; //must count visible lights + for (Set<Instance *>::Element *E = probe->lights.front(); E; E = E->next()) { + Instance *instance = E->get(); + InstanceLightData *instance_light = (InstanceLightData *)instance->base_data; + if (!instance->visible) { + continue; + } + if (cache_dirty) { + //do nothing, since idx must count all visible lights anyway + } else if (idx >= light_cache_size) { + cache_dirty = true; + } else { - float propagate = VSG::storage->gi_probe_get_propagation(instance_probe->base); + const InstanceGIProbeData::LightCache *cache = &caches[idx]; + + if ( + instance_caches[idx] != instance_light->instance || + cache->has_shadow != VSG::storage->light_has_shadow(instance->base) || + cache->type != VSG::storage->light_get_type(instance->base) || + cache->transform != instance->transform || + cache->color != VSG::storage->light_get_color(instance->base) || + cache->energy != VSG::storage->light_get_param(instance->base, VS::LIGHT_PARAM_ENERGY) || + cache->bake_energy != VSG::storage->light_get_param(instance->base, VS::LIGHT_PARAM_INDIRECT_ENERGY) || + cache->radius != VSG::storage->light_get_param(instance->base, VS::LIGHT_PARAM_RANGE) || + cache->attenuation != VSG::storage->light_get_param(instance->base, VS::LIGHT_PARAM_ATTENUATION) || + cache->spot_angle != VSG::storage->light_get_param(instance->base, VS::LIGHT_PARAM_SPOT_ANGLE) || + cache->spot_attenuation != VSG::storage->light_get_param(instance->base, VS::LIGHT_PARAM_SPOT_ATTENUATION)) { + cache_dirty = true; + } + } - if (probe->dynamic.propagate != propagate) { - probe->dynamic.propagate = propagate; - force_lighting = true; - } + idx++; + } - if (!probe->invalid && probe->dynamic.enabled) { + for (List<Instance *>::Element *E = probe->owner->scenario->directional_lights.front(); E; E = E->next()) { - switch (probe->dynamic.updating_stage) { - case GI_UPDATE_STAGE_CHECK: { + Instance *instance = E->get(); + InstanceLightData *instance_light = (InstanceLightData *)instance->base_data; + if (!instance->visible) { + continue; + } + if (cache_dirty) { + //do nothing, since idx must count all visible lights anyway + } else if (idx >= light_cache_size) { + cache_dirty = true; + } else { - if (_check_gi_probe(instance_probe) || force_lighting) { //send to lighting thread + const InstanceGIProbeData::LightCache *cache = &caches[idx]; + + if ( + instance_caches[idx] != instance_light->instance || + cache->has_shadow != VSG::storage->light_has_shadow(instance->base) || + cache->type != VSG::storage->light_get_type(instance->base) || + cache->transform != instance->transform || + cache->color != VSG::storage->light_get_color(instance->base) || + cache->energy != VSG::storage->light_get_param(instance->base, VS::LIGHT_PARAM_ENERGY) || + cache->bake_energy != VSG::storage->light_get_param(instance->base, VS::LIGHT_PARAM_INDIRECT_ENERGY) || + cache->radius != VSG::storage->light_get_param(instance->base, VS::LIGHT_PARAM_RANGE) || + cache->attenuation != VSG::storage->light_get_param(instance->base, VS::LIGHT_PARAM_ATTENUATION) || + cache->spot_angle != VSG::storage->light_get_param(instance->base, VS::LIGHT_PARAM_SPOT_ANGLE) || + cache->spot_attenuation != VSG::storage->light_get_param(instance->base, VS::LIGHT_PARAM_SPOT_ATTENUATION)) { + cache_dirty = true; + } + } -#ifndef NO_THREADS - probe_bake_mutex->lock(); - probe->dynamic.updating_stage = GI_UPDATE_STAGE_LIGHTING; - probe_bake_list.push_back(instance_probe); - probe_bake_mutex->unlock(); - probe_bake_sem->post(); + idx++; + } -#else + if (idx != light_cache_size) { + cache_dirty = true; + } - _bake_gi_probe(instance_probe); -#endif - } - } break; - case GI_UPDATE_STAGE_LIGHTING: { - //do none, wait til done! + cache_count = idx; + } - } break; - case GI_UPDATE_STAGE_UPLOADING: { + bool update_probe = VSG::scene_render->gi_probe_needs_update(probe->probe_instance); - //uint64_t us = OS::get_singleton()->get_ticks_usec(); + if (cache_dirty) { + probe->light_cache.resize(cache_count); + probe->light_instances.resize(cache_count); - for (int i = 0; i < (int)probe->dynamic.mipmaps_3d.size(); i++) { + if (cache_count) { + InstanceGIProbeData::LightCache *caches = probe->light_cache.ptrw(); + RID *instance_caches = probe->light_instances.ptrw(); - PoolVector<uint8_t>::Read r = probe->dynamic.mipmaps_3d[i].read(); - VSG::storage->gi_probe_dynamic_data_update(probe->dynamic.probe_data, 0, probe->dynamic.grid_size[2] >> i, i, r.ptr()); + int idx = 0; //must count visible lights + for (Set<Instance *>::Element *E = probe->lights.front(); E; E = E->next()) { + Instance *instance = E->get(); + InstanceLightData *instance_light = (InstanceLightData *)instance->base_data; + if (!instance->visible) { + continue; } - probe->dynamic.updating_stage = GI_UPDATE_STAGE_CHECK; + InstanceGIProbeData::LightCache *cache = &caches[idx]; + + instance_caches[idx] = instance_light->instance; + cache->has_shadow = VSG::storage->light_has_shadow(instance->base); + cache->type = VSG::storage->light_get_type(instance->base); + cache->transform = instance->transform; + cache->color = VSG::storage->light_get_color(instance->base); + cache->energy = VSG::storage->light_get_param(instance->base, VS::LIGHT_PARAM_ENERGY); + cache->bake_energy = VSG::storage->light_get_param(instance->base, VS::LIGHT_PARAM_INDIRECT_ENERGY); + cache->radius = VSG::storage->light_get_param(instance->base, VS::LIGHT_PARAM_RANGE); + cache->attenuation = VSG::storage->light_get_param(instance->base, VS::LIGHT_PARAM_ATTENUATION); + cache->spot_angle = VSG::storage->light_get_param(instance->base, VS::LIGHT_PARAM_SPOT_ANGLE); + cache->spot_attenuation = VSG::storage->light_get_param(instance->base, VS::LIGHT_PARAM_SPOT_ATTENUATION); + + idx++; + } + for (List<Instance *>::Element *E = probe->owner->scenario->directional_lights.front(); E; E = E->next()) { + Instance *instance = E->get(); + InstanceLightData *instance_light = (InstanceLightData *)instance->base_data; + if (!instance->visible) { + continue; + } - //print_line("UPLOAD TIME: " + rtos((OS::get_singleton()->get_ticks_usec() - us) / 1000000.0)); - } break; + InstanceGIProbeData::LightCache *cache = &caches[idx]; + + instance_caches[idx] = instance_light->instance; + cache->has_shadow = VSG::storage->light_has_shadow(instance->base); + cache->type = VSG::storage->light_get_type(instance->base); + cache->transform = instance->transform; + cache->color = VSG::storage->light_get_color(instance->base); + cache->energy = VSG::storage->light_get_param(instance->base, VS::LIGHT_PARAM_ENERGY); + cache->bake_energy = VSG::storage->light_get_param(instance->base, VS::LIGHT_PARAM_INDIRECT_ENERGY); + cache->radius = VSG::storage->light_get_param(instance->base, VS::LIGHT_PARAM_RANGE); + cache->attenuation = VSG::storage->light_get_param(instance->base, VS::LIGHT_PARAM_ATTENUATION); + cache->spot_angle = VSG::storage->light_get_param(instance->base, VS::LIGHT_PARAM_SPOT_ANGLE); + cache->spot_attenuation = VSG::storage->light_get_param(instance->base, VS::LIGHT_PARAM_SPOT_ATTENUATION); + + idx++; + } } + + update_probe = true; + } + + if (update_probe) { + VSG::scene_render->gi_probe_update(probe->probe_instance, probe->light_instances); } - //_update_gi_probe(gi_probe->self()->owner); + + gi_probe_update_list.remove(gi_probe); gi_probe = next; } @@ -3527,26 +2726,9 @@ VisualServerScene *VisualServerScene::singleton = NULL; VisualServerScene::VisualServerScene() { -#ifndef NO_THREADS - probe_bake_sem = SemaphoreOld::create(); - probe_bake_mutex = Mutex::create(); - probe_bake_thread = Thread::create(_gi_probe_bake_threads, this); - probe_bake_thread_exit = false; -#endif - render_pass = 1; singleton = this; } VisualServerScene::~VisualServerScene() { - -#ifndef NO_THREADS - probe_bake_thread_exit = true; - probe_bake_sem->post(); - Thread::wait_to_finish(probe_bake_thread); - memdelete(probe_bake_thread); - memdelete(probe_bake_sem); - memdelete(probe_bake_mutex); - -#endif } diff --git a/servers/visual/visual_server_scene.h b/servers/visual/visual_server_scene.h index 2fadd778be..b4ff26653b 100644 --- a/servers/visual/visual_server_scene.h +++ b/servers/visual/visual_server_scene.h @@ -48,6 +48,7 @@ public: MAX_INSTANCE_CULL = 65536, MAX_LIGHTS_CULLED = 4096, MAX_REFLECTION_PROBES_CULLED = 4096, + MAX_GI_PROBES_CULLED = 4096, MAX_ROOM_CULL = 32, MAX_EXTERIOR_PORTALS = 128, }; @@ -324,77 +325,16 @@ public: Transform transform; Color color; float energy; + float bake_energy; float radius; float attenuation; float spot_angle; float spot_attenuation; - bool visible; - - bool operator==(const LightCache &p_cache) { - - return (type == p_cache.type && - transform == p_cache.transform && - color == p_cache.color && - energy == p_cache.energy && - radius == p_cache.radius && - attenuation == p_cache.attenuation && - spot_angle == p_cache.spot_angle && - spot_attenuation == p_cache.spot_attenuation && - visible == p_cache.visible); - } - - bool operator!=(const LightCache &p_cache) { - - return !operator==(p_cache); - } - - LightCache() { - - type = VS::LIGHT_DIRECTIONAL; - energy = 1.0; - radius = 1.0; - attenuation = 1.0; - spot_angle = 1.0; - spot_attenuation = 1.0; - visible = true; - } - }; - - struct LocalData { - uint16_t pos[3]; - uint16_t energy[3]; //using 0..1024 for float range 0..1. integer is needed for deterministic add/remove of lights - }; - - struct CompBlockS3TC { - uint32_t offset; //offset in mipmap - uint32_t source_count; //sources - uint32_t sources[16]; //id for each source - uint8_t alpha[8]; //alpha block is pre-computed + bool has_shadow; }; - struct Dynamic { - - Map<RID, LightCache> light_cache; - Map<RID, LightCache> light_cache_changes; - PoolVector<int> light_data; - PoolVector<LocalData> local_data; - Vector<Vector<uint32_t> > level_cell_lists; - RID probe_data; - bool enabled; - int bake_dynamic_range; - RasterizerStorage::GIProbeCompression compression; - - Vector<PoolVector<uint8_t> > mipmaps_3d; - Vector<PoolVector<CompBlockS3TC> > mipmaps_s3tc; //for s3tc - - int updating_stage; - float propagate; - - int grid_size[3]; - - Transform light_to_cell_xform; - - } dynamic; + Vector<LightCache> light_cache; + Vector<RID> light_instances; RID probe_instance; @@ -407,7 +347,6 @@ public: update_element(this) { invalid = true; base_version = 0; - dynamic.updating_stage = GI_UPDATE_STAGE_CHECK; } }; @@ -436,6 +375,8 @@ public: int directional_light_count; RID reflection_probe_instance_cull_result[MAX_REFLECTION_PROBES_CULLED]; int reflection_probe_cull_count; + RID gi_probe_instance_cull_result[MAX_GI_PROBES_CULLED]; + int gi_probe_cull_count; RID_PtrOwner<Instance> instance_owner; @@ -477,6 +418,7 @@ public: _FORCE_INLINE_ bool _light_instance_update_shadow(Instance *p_instance, const Transform p_cam_transform, const CameraMatrix &p_cam_projection, bool p_cam_orthogonal, RID p_shadow_atlas, Scenario *p_scenario); + bool _render_reflection_probe_step(Instance *p_instance, int p_step); void _prepare_scene(const Transform p_cam_transform, const CameraMatrix &p_cam_projection, bool p_cam_orthogonal, RID p_force_environment, uint32_t p_visible_layers, RID p_scenario, RID p_shadow_atlas, RID p_reflection_probe, bool p_using_shadows = true); void _render_scene(RID p_render_buffers, const Transform p_cam_transform, const CameraMatrix &p_cam_projection, bool p_cam_orthogonal, RID p_force_environment, RID p_scenario, RID p_shadow_atlas, RID p_reflection_probe, int p_reflection_probe_pass); void render_empty_scene(RID p_render_buffers, RID p_scenario, RID p_shadow_atlas); @@ -485,52 +427,6 @@ public: void render_camera(RID p_render_buffers, Ref<ARVRInterface> &p_interface, ARVRInterface::Eyes p_eye, RID p_camera, RID p_scenario, Size2 p_viewport_size, RID p_shadow_atlas); void update_dirty_instances(); - //probes - struct GIProbeDataHeader { - - uint32_t version; - uint32_t cell_subdiv; - uint32_t width; - uint32_t height; - uint32_t depth; - uint32_t cell_count; - uint32_t leaf_cell_count; - }; - - struct GIProbeDataCell { - - uint32_t children[8]; - uint32_t albedo; - uint32_t emission; - uint32_t normal; - uint32_t level_alpha; - }; - - enum { - GI_UPDATE_STAGE_CHECK, - GI_UPDATE_STAGE_LIGHTING, - GI_UPDATE_STAGE_UPLOADING, - }; - - void _gi_probe_bake_thread(); - static void _gi_probe_bake_threads(void *); - - volatile bool probe_bake_thread_exit; - Thread *probe_bake_thread; - SemaphoreOld *probe_bake_sem; - Mutex *probe_bake_mutex; - List<Instance *> probe_bake_list; - - bool _render_reflection_probe_step(Instance *p_instance, int p_step); - void _gi_probe_fill_local_data(int p_idx, int p_level, int p_x, int p_y, int p_z, const GIProbeDataCell *p_cell, const GIProbeDataHeader *p_header, InstanceGIProbeData::LocalData *p_local_data, Vector<uint32_t> *prev_cell); - - _FORCE_INLINE_ uint32_t _gi_bake_find_cell(const GIProbeDataCell *cells, int x, int y, int z, int p_cell_subdiv); - void _bake_gi_downscale_light(int p_idx, int p_level, const GIProbeDataCell *p_cells, const GIProbeDataHeader *p_header, InstanceGIProbeData::LocalData *p_local_data, float p_propagate); - void _bake_gi_probe_light(const GIProbeDataHeader *header, const GIProbeDataCell *cells, InstanceGIProbeData::LocalData *local_data, const uint32_t *leaves, int p_leaf_count, const InstanceGIProbeData::LightCache &light_cache, int p_sign); - void _bake_gi_probe(Instance *p_gi_probe); - bool _check_gi_probe(Instance *p_gi_probe); - void _setup_gi_probe(Instance *p_instance); - void render_probes(); bool free(RID p_rid); diff --git a/servers/visual/visual_server_wrap_mt.h b/servers/visual/visual_server_wrap_mt.h index e1873e5999..37a2fffa7a 100644 --- a/servers/visual/visual_server_wrap_mt.h +++ b/servers/visual/visual_server_wrap_mt.h @@ -268,17 +268,20 @@ public: FUNCRID(gi_probe) - FUNC2(gi_probe_set_bounds, RID, const AABB &) - FUNC1RC(AABB, gi_probe_get_bounds, RID) - - FUNC2(gi_probe_set_cell_size, RID, float) - FUNC1RC(float, gi_probe_get_cell_size, RID) + FUNC7(gi_probe_allocate, RID, const Transform &, const AABB &, const Vector3i &, const PoolVector<uint8_t> &, const PoolVector<uint8_t> &, const PoolVector<int> &) - FUNC2(gi_probe_set_to_cell_xform, RID, const Transform &) + FUNC1RC(AABB, gi_probe_get_bounds, RID) + FUNC1RC(Vector3i, gi_probe_get_octree_size, RID) + FUNC1RC(PoolVector<uint8_t>, gi_probe_get_octree_cells, RID) + FUNC1RC(PoolVector<uint8_t>, gi_probe_get_data_cells, RID) + FUNC1RC(PoolVector<int>, gi_probe_get_level_counts, RID) FUNC1RC(Transform, gi_probe_get_to_cell_xform, RID) - FUNC2(gi_probe_set_dynamic_range, RID, int) - FUNC1RC(int, gi_probe_get_dynamic_range, RID) + FUNC2(gi_probe_set_dynamic_range, RID, float) + FUNC1RC(float, gi_probe_get_dynamic_range, RID) + + FUNC2(gi_probe_set_propagation, RID, float) + FUNC1RC(float, gi_probe_get_propagation, RID) FUNC2(gi_probe_set_energy, RID, float) FUNC1RC(float, gi_probe_get_energy, RID) @@ -289,17 +292,14 @@ public: FUNC2(gi_probe_set_normal_bias, RID, float) FUNC1RC(float, gi_probe_get_normal_bias, RID) - FUNC2(gi_probe_set_propagation, RID, float) - FUNC1RC(float, gi_probe_get_propagation, RID) - FUNC2(gi_probe_set_interior, RID, bool) FUNC1RC(bool, gi_probe_is_interior, RID) - FUNC2(gi_probe_set_compress, RID, bool) - FUNC1RC(bool, gi_probe_is_compressed, RID) + FUNC2(gi_probe_set_use_two_bounces, RID, bool) + FUNC1RC(bool, gi_probe_is_using_two_bounces, RID) - FUNC2(gi_probe_set_dynamic_data, RID, const PoolVector<int> &) - FUNC1RC(PoolVector<int>, gi_probe_get_dynamic_data, RID) + FUNC2(gi_probe_set_anisotropy_strength, RID, float) + FUNC1RC(float, gi_probe_get_anisotropy_strength, RID) /* LIGHTMAP CAPTURE */ diff --git a/servers/visual_server.cpp b/servers/visual_server.cpp index da57ab3e33..b3ce7103a9 100644 --- a/servers/visual_server.cpp +++ b/servers/visual_server.cpp @@ -1710,6 +1710,10 @@ void VisualServer::_bind_methods() { ClassDB::bind_method(D_METHOD("reflection_probe_set_enable_shadows", "probe", "enable"), &VisualServer::reflection_probe_set_enable_shadows); ClassDB::bind_method(D_METHOD("reflection_probe_set_cull_mask", "probe", "layers"), &VisualServer::reflection_probe_set_cull_mask); +#ifndef _MSC_VER +#warning TODO all giprobe methods need re-binding +#endif +#if 0 ClassDB::bind_method(D_METHOD("gi_probe_create"), &VisualServer::gi_probe_create); ClassDB::bind_method(D_METHOD("gi_probe_set_bounds", "probe", "bounds"), &VisualServer::gi_probe_set_bounds); ClassDB::bind_method(D_METHOD("gi_probe_get_bounds", "probe"), &VisualServer::gi_probe_get_bounds); @@ -1733,6 +1737,7 @@ void VisualServer::_bind_methods() { ClassDB::bind_method(D_METHOD("gi_probe_is_interior", "probe"), &VisualServer::gi_probe_is_interior); ClassDB::bind_method(D_METHOD("gi_probe_set_compress", "probe", "enable"), &VisualServer::gi_probe_set_compress); ClassDB::bind_method(D_METHOD("gi_probe_is_compressed", "probe"), &VisualServer::gi_probe_is_compressed); +#endif ClassDB::bind_method(D_METHOD("lightmap_capture_create"), &VisualServer::lightmap_capture_create); ClassDB::bind_method(D_METHOD("lightmap_capture_set_bounds", "capture", "bounds"), &VisualServer::lightmap_capture_set_bounds); @@ -2297,6 +2302,9 @@ VisualServer::VisualServer() { GLOBAL_DEF("rendering/quality/reflection_atlas/reflection_size.mobile", 128); GLOBAL_DEF("rendering/quality/reflection_atlas/reflection_count", 64); + GLOBAL_DEF("rendering/quality/gi_probes/anisotropic", false); + GLOBAL_DEF("rendering/quality/gi_probes/high_quality", false); + GLOBAL_DEF("rendering/quality/shading/force_vertex_shading", false); GLOBAL_DEF("rendering/quality/shading/force_vertex_shading.mobile", true); GLOBAL_DEF("rendering/quality/shading/force_lambert_over_burley", false); diff --git a/servers/visual_server.h b/servers/visual_server.h index 4c89e3d976..5408ad665b 100644 --- a/servers/visual_server.h +++ b/servers/visual_server.h @@ -465,38 +465,38 @@ public: virtual RID gi_probe_create() = 0; - virtual void gi_probe_set_bounds(RID p_probe, const AABB &p_bounds) = 0; - virtual AABB gi_probe_get_bounds(RID p_probe) const = 0; + virtual void gi_probe_allocate(RID p_gi_probe, const Transform &p_to_cell_xform, const AABB &p_aabb, const Vector3i &p_octree_size, const PoolVector<uint8_t> &p_octree_cells, const PoolVector<uint8_t> &p_data_cells, const PoolVector<int> &p_level_counts) = 0; - virtual void gi_probe_set_cell_size(RID p_probe, float p_range) = 0; - virtual float gi_probe_get_cell_size(RID p_probe) const = 0; + virtual AABB gi_probe_get_bounds(RID p_gi_probe) const = 0; + virtual Vector3i gi_probe_get_octree_size(RID p_gi_probe) const = 0; + virtual PoolVector<uint8_t> gi_probe_get_octree_cells(RID p_gi_probe) const = 0; + virtual PoolVector<uint8_t> gi_probe_get_data_cells(RID p_gi_probe) const = 0; + virtual PoolVector<int> gi_probe_get_level_counts(RID p_gi_probe) const = 0; + virtual Transform gi_probe_get_to_cell_xform(RID p_gi_probe) const = 0; - virtual void gi_probe_set_to_cell_xform(RID p_probe, const Transform &p_xform) = 0; - virtual Transform gi_probe_get_to_cell_xform(RID p_probe) const = 0; + virtual void gi_probe_set_dynamic_range(RID p_gi_probe, float p_range) = 0; + virtual float gi_probe_get_dynamic_range(RID p_gi_probe) const = 0; - virtual void gi_probe_set_dynamic_data(RID p_probe, const PoolVector<int> &p_data) = 0; - virtual PoolVector<int> gi_probe_get_dynamic_data(RID p_probe) const = 0; + virtual void gi_probe_set_propagation(RID p_gi_probe, float p_range) = 0; + virtual float gi_probe_get_propagation(RID p_gi_probe) const = 0; - virtual void gi_probe_set_dynamic_range(RID p_probe, int p_range) = 0; - virtual int gi_probe_get_dynamic_range(RID p_probe) const = 0; + virtual void gi_probe_set_energy(RID p_gi_probe, float p_energy) = 0; + virtual float gi_probe_get_energy(RID p_gi_probe) const = 0; - virtual void gi_probe_set_energy(RID p_probe, float p_range) = 0; - virtual float gi_probe_get_energy(RID p_probe) const = 0; + virtual void gi_probe_set_bias(RID p_gi_probe, float p_bias) = 0; + virtual float gi_probe_get_bias(RID p_gi_probe) const = 0; - virtual void gi_probe_set_bias(RID p_probe, float p_range) = 0; - virtual float gi_probe_get_bias(RID p_probe) const = 0; + virtual void gi_probe_set_normal_bias(RID p_gi_probe, float p_range) = 0; + virtual float gi_probe_get_normal_bias(RID p_gi_probe) const = 0; - virtual void gi_probe_set_normal_bias(RID p_probe, float p_range) = 0; - virtual float gi_probe_get_normal_bias(RID p_probe) const = 0; + virtual void gi_probe_set_interior(RID p_gi_probe, bool p_enable) = 0; + virtual bool gi_probe_is_interior(RID p_gi_probe) const = 0; - virtual void gi_probe_set_propagation(RID p_probe, float p_range) = 0; - virtual float gi_probe_get_propagation(RID p_probe) const = 0; + virtual void gi_probe_set_use_two_bounces(RID p_gi_probe, bool p_enable) = 0; + virtual bool gi_probe_is_using_two_bounces(RID p_gi_probe) const = 0; - virtual void gi_probe_set_interior(RID p_probe, bool p_enable) = 0; - virtual bool gi_probe_is_interior(RID p_probe) const = 0; - - virtual void gi_probe_set_compress(RID p_probe, bool p_enable) = 0; - virtual bool gi_probe_is_compressed(RID p_probe) const = 0; + virtual void gi_probe_set_anisotropy_strength(RID p_gi_probe, float p_strength) = 0; + virtual float gi_probe_get_anisotropy_strength(RID p_gi_probe) const = 0; /* LIGHTMAP CAPTURE */ @@ -650,7 +650,10 @@ public: VIEWPORT_DEBUG_DRAW_LIGHTING, VIEWPORT_DEBUG_DRAW_OVERDRAW, VIEWPORT_DEBUG_DRAW_WIREFRAME, - VIEWPORT_DEBUG_DRAW_SHADOW_ATLAS + VIEWPORT_DEBUG_DRAW_GI_PROBE_ALBEDO, + VIEWPORT_DEBUG_DRAW_GI_PROBE_LIGHTING, + VIEWPORT_DEBUG_DRAW_SHADOW_ATLAS, + VIEWPORT_DEBUG_DRAW_DIRECTIONAL_SHADOW_ATLAS, }; |